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Abstract

This thesis introduces and explores the performance of the Y-ACCDIST sys-
tem (the York ACCDIST automatic accent recognition system). Based on
the ACCDIST metric (Huckvale, 2004), it is a newly developed accent recog-
nition system intended for forensic applications. Accent has received a lot
of research attention within speech technology as it is often to blame for
automatic speech recognition errors. A lot of research has therefore targeted
automatic accent recognition while taking the automatic speech recognition
application into account. Little has been done, however, to research auto-
matically recognising speakers’ accents for forensic purposes. Such a task
might involve identifying speaker properties (e.g. geographical origin) if no
suspect is in the frame for making an incriminating telephone call.

The Y-ACCDIST system is applied to the forensic context in two main
ways. Firstly, it is applied to geographically-proximate accents, where a pre-
dicted increase in similarity between varieties exists. This accent recognition
task is therefore expected to be more difficult than tasks in previous studies.
Secondly, the model is adapted in such a way which makes it possible to
process spontaneous speech, instead of just highly comparable speech con-
tent (i.e. read prompts). The present thesis shows accent recognition results,
distinguishing between four geographically-proximate accents, of up to 90%.
Accent recognition results of spontaneous speech are lower (up to 59.3%).
However, light is shed on clear research directions aiming to improve this

result.
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Introduction

The overarching goal of this thesis is to explore the performance of the York
ACCDIST automatic accent recognition system (the Y-ACCDIST system)
with a forensic application in mind. This section aims to offer a background
of the motivations behind the system within the field of forensic speech sci-
ence. It also outlines the research directions of this thesis and why they are

important steps to take for the system’s forensic application.

Background

Literature on linguistic variation is vast and yet accent still poses problems
for automatic speech recognition applications. If we take two speakers of
English, where one is a speaker of Southern British English and the other a
speaker of Glasgow Standard English, it may be problematic if the two speak-
ers were to produce the word pot to an automatic speech recognition system.
It could be very easy for the Glasgow Standard English speaker to have been
mistaken for saying port due to the Glasgow Standard English vowel sys-
tem (Stuart-Smith, 1999: 206). This, of course, is just one example of the

repercussions brought about by accent variation and countless instances ex-
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ist. For automatic speech recognisers, accounting for the variation is a key
consideration. There is a large body of research committed to developing
more effective accent adaptation strategies in the hope of improving speech
recognition performance. Accent clearly exists as a major obstacle for auto-
matic speech recognition and it is blamed for the significant drops in speech
recognition success rates. Teixeira et al (1997) show a detrimental difference
of around 15% when speakers with non-native accents of English were tested
on a speech recognition system which was trained on native British English
varieties.

The forensic application, however, can take advantage of this variation
in the population. The area of forensic speech science brings together a
number of subdisciplines (such as phonetics, statistics and acoustics) to assist
in legal casework. Most casework tasks fall under the heading of speaker
comparison (once known as ‘speaker identification’) (Broeders, 2001). This
involves taking two speech samples and arriving at the likelihood of the
two samples belonging to the same speaker. A typical case would entail
comparing a police interview recording with an incriminating telephone call
for example. For some cases, by exploiting accent-specific features, forensic
speech scientists can offer information regarding a speaker’s geographical
origin which may be of value in a legal setting. Identifying properties of
unknown speakers in this way is referred to as speaker profiling. Within
the nature of forensic science, the specific application of speaker profiling is
undoubtedly varied, but to set the scene, it is a relatively common task in
kidnapping cases (Foulkes and French, 2001: 330). In these kinds of cases

the offender may make a ransom telephone call which could subsequently
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be used as evidence. Gathering as much information about the culprit as
possible can assist investigative teams to home in on specified populations,
which in turn can respond to a case’s urgency. Another typical scenario may
be the profiling of masked robbers where speech samples have been captured
by CCTV technology (French and Harrison, 2006: 248). However, the list of
possible scenarios is of course endless in line with the unpredictable subfield.
The present thesis seeks to develop an automatic accent recognition system
which could objectively provide accent information to assist on such cases.

More specific cases have been reported in the literature. The ‘Yorkshire
Ripper’ case is famous both nationally and within forensic speech science.
Throughout the late 1970s, a number of women were murdered in Yorkshire.
In 1979, George Oldfield, leading the investigation to find the serial killer
responsible, was sent a cassette tape with a recorded message from a man
claiming to be the “Yorkshire Ripper’. At this point, Stanley Ellis, an expert
in dialects, was brought in to offer expertise on the speaker’s geographical
origin. From the recording, it is likely that listeners could comfortably guess
that the speaker was from the North-East of England. As a specialist, El-
lis narrowed down the speaker’s accent to be spoken in the Southwick or
Castletown areas of Sunderland (Ellis, 1994: 202). It later became apparent
that the recording was in fact of a hoaxer. However, when the hoaxer was
identified much later in 2006, it turned out that the recorded speaker was
indeed from the Wearside area of Sunderland near Ellis’ estimations.

As an example of accent information used to provide evidence to either
eliminate or confirm a suspect’s involvment in a crime, Ash (1988) reports on

a case she worked on. For this case, the police had four recorded telephone
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calls of false claims of bombs and a fire at one particular company premises.
The police had a suspect for the offence and Ash was asked to provide her
expertise. With a strong focus on the vowel system, Ash was able to classify
the suspect as a typical speaker of white Philadelphia vernacular accent, while
commenting that his accent aligned with this variety ‘in every detail’ (Ash
1988: 27). By plotting formant values in a vowel space, Ash clearly shows
that the offensive caller and the suspect had very different vowel systems,
therefore recommending that they belong to different speech communities
(Ash, 1988: 29-31). By confirming the speaker’s accent and demonstrating
its difference from the incriminating data, Ash’s analysis provided compelling
evidence in support of the defence.

The roles of the above individuals in their respective cases are instances of
expert analysts in the area of speech science. The rise in technology has led
to a rise in demand for forensic speech experts to assist in legal cases. Within
the bounds of the broader domain of forensic science, Dror et al (2013) and
Kassin et al (2013) have challenged the reliability of expert witnesses as hu-
man beings subject to ‘psychological contamination’ (Dror et al, 2013: 79;
Kassin et al, 2013: 48). The researchers in these papers are concerned with
what is termed forensic confirmation bias (Kassin et al, 2013: 45), which is
determined by a combination of the individual’s prior beliefs, motivations,
exposure to irrelevant but potentially biassing case information, etc. Al-
though these witnesses are called upon as experts, Dror et al and Kassin et
al highlight that forensic examiners are human and the effects of bias can
seep into their conclusions. Kassin et al (2013) offer some recommendations

as to how biassing factors can be reduced. Suggestions include developing
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‘blind testing’ protocol to avoid exposure to irrelevant information and also
the use of technology (Kassin et al, 2013: 49). Rhodes (2014) brings the issue
of forensic confirmation bias to the surface with direct reference to forensic
speech science. Rhodes highlights the fact that forensic speech scientists
utilise a perceptual mechanism for their analysis, as well as the issue that
the data being analysed often holds excess contextual information which may
contribute to the examiner’s beliefs (e.g. a police interview recording). Psy-
chological contamination does not pose an issue for a technological tool. One
of the main advantages of incorporating technology is its objectivity in deriv-
ing an outcome given data. However, Kassin et al (2013: 49) correctly point
out that technology could have a negative biassing effect itself. Of course,
technology is not resistant to error and outcomes from a computational tool
(erroneous or not) could add to a forensic practitioner’s false prior beliefs
during an analysis. This is an issue for consideration when forensic exam-
iners and technology come together in casework analysis. Guidelines should
be put in place before a combination of methods are put into practice. If
developed and used carefully, technology could offer reliable and objective
information.

The introduction of new technologies to the forensic domain should not
of course be welcomed without caution. Eriksson and Lacerda (2007) bring
some shocking material to the forefront. They raise concerns regarding both
the performance of some automatic ‘lie detectors’ available on the market
coupled with the readiness of various institutions to invest in these technolo-
gies without sufficient checks. Inner software mechanisms should be carefully

analysed, particularly when potentially very serious consequences are tied to
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the application.
The research conducted here aims to assess a technological tool’s potential
for forensic applications. As well as uncovering the Y-ACCDIST system’s

capabilities, this thesis aims to discover its limitations.

Research Aims

Experiments and system developments in the present thesis differ from pre-
vious automatic accent recognition studies in two main ways. These are

manifested in the two key research aims below:

e Recognition of geographically-proximate accents
Previous studies developing automatic accent recognisers have used
varieties dispersed across the breadth of Britain or indeed across the
globe. Since it is unlikely that such recognition tasks would be of use
in the forensic context, this thesis will address the recognition of ac-
cents distributed within a geographically-proximate area (namely the
Scottish-English Border). By using a corpus comprising varieties which
are geographically closer together, this would mimic the sort of task
Stanley Ellis conducted in the case of the ‘Yorkshire Ripper’. Although
at the time Ellis” analysis did not necessarily aid the ‘Yorkshire Ripper’
investigation, it still demonstrates an instance of speaker profiling and
a specific case where an accent recognition system might have been

applied had the technology been available.

e Accent Recognition using spontaneous (incomparable) data

Making further steps towards forensic applicability this thesis aims
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to investigate the Y-ACCDIST system’s performance on spontaneous
speech samples. Although a shared reading passage is mostly used, the
system presented here has made adaptations to the model to be able
to process spontancous speech. In contrast, previous systems using a
similar model to the Y-ACCDIST system have relied on highly compa-
rable speech content (Hanani et al, 2011, 2013; Huckvale, 2004, 2007a).
It is highly unlikely that speech samples brought to a forensic practi-
tioner will be directly comparable in this way, so the following system
makes context-independent segmental comparisons. Its performance

on spontaneous speech (incomparable data) is presented.

It is of interest to improve the system’s performance under the testing
conditions brought about by the above research aims. Along with addressing
these objectives, this thesis goes on to make further modifications to the
system in attempt to improve on the results. In doing so, this thesis also
addresses the need to discover the optimum phonemic units or combinations
which yield the highest recognition rates. Past systems have either selected
all segments containing vowels (excluding schwa) or taken a list of the most
frequent segments. These approaches towards selection may have been the
most appropriate for distinguishing between a large number of geographically
disperse accents, but for the purposes of a more localised accent recognition
task, a more considered or informed approach should be taken. Some speech
segments are of value to accent classification while others may create ‘noise’
and distort results. The present thesis will address this issue and will discuss

the possible routes to identify optimum system configurations.
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Simultaneously, the results in the recognition tasks provide a basis for
sociophonetic interpretation, implying categorical behaviour of the spoken
varieties involved. This reveals an additional use of the Y-ACCDIST system:

a tool for sociophonetic research.

Thesis Outline

To introduce the Y-ACCDIST system, chapter 1 focusses on accent recogni-
tion in a broader context by first looking at manual accent recognition and
then moving on to past computational models. These computational models
have largely been developed with the aim of supporting automatic speech
recognition systems. Chapter 2 outlines the baseline architecture of the Y-
ACCDIST system. Chapter 3 delivers results assessing the Y-ACCDIST
system’s recognition performance on geographically-proximate accents (ad-
dressing the first research aim). The first two sections of chapter 4 address
the second research aim, applying the system to spontaneous speech data.
Following sections test its performance under different configurations. The
thesis then concludes with a discussion of the numerous avenues available to

further develop the system.
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Chapter 1

Accent Recognition

Accent recognition is a task which is more widespread than its role within the
forensic domain. As discussed in the Introduction, accent is a major cause
for concern and performance degradation in speech recognition technologies.
Many accent recognition methods and approaches in the past therefore have
automatic speech recognisers in mind and researchers are looking to link
accent recognition models to their speech recognisers.

Elements of accent recognition also occur in sociophonetic studies where
specific features of interest are highlighted as typical of a particular speech
community. From a manual point of view, approaches adopted by socio-
phoneticians will be considered in this chapter. The issue of lay persons’
perceptions of speakers’ accents is also of interest to forensic speech science.
This is with regards to the ability of a witness to give an accurate accent
label to what they may have heard in relation to a crime.

This chapter looks at both manual performance and automatic models

which have been applied to accent recognition for purposes which may or
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may not go beyond the forensic application. We will finally arrive at the
ACCDIST (Accent Characterization by Comparison of Distances in the Inter-
segment Similarity Table) metric (Huckvale, 2004, 2007a), which has been

employed for the system developed and presented in this thesis.

1.1 Manual Accent Recognition

Quantity of literature surrounding forensic speaker profiling in relation to
literature on speaker comparison seems to be reflective of the proportion of
casework each task type presents. Speaker comparison is by far the more
common task in forensic speech science. Koster et al (2012: 56), however,
report on a speaker profiling experiment. They find a 15.7% error rate for
a group of 15 phonetically trained individuals who came to accent identity
conclusions on 20 German speech samples. They were classifying samples
into one of 14 accent classes. All of the analysts were native speakers of
German. This result can be compared with some past results involving lay
listeners discussed below. In general, it appears that phonetically trained
individuals perform at a higher level than lay listeners.

Without a forensic focus, Vieru et al (2011) look into human accent identi-
fication. They assess French speakers’ native language classification of speech
samples. They had French speech samples of native speakers of American
English, English English, German, Italian, Portuguese, Spanish and French.
Overall, the native French listeners were correctly classifying the read speech
samples 60% of the time (Vieru et al, 2011: 296).

Accent recognition results of native language varieties in Hanani et al
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(2013) tell a very similar story. They use the Accents of the British Isles
(ABI) corpus (D’Arcy et al, 2004) which contains speech samples of 14 va-
rieties taken from locations across Britain (a more detailed description is
given in section 1.2.4). By testing 24 lay listeners on the ABI corpus, they
record a human accent recognition accuracy of 58.24% (Hanani et al, 2013:
70) in a forced choice experiment between 14 British accents. They also
make a distinction within this result by comparing human accent recognition
performance of ‘familiar’ and “unfamiliar’ accents. These categories were de-
termined by marking accents belonging to regions in which they had lived as
‘familiar’ accents. Other accents were marked as ‘unfamiliar’. By treating
these familiarity categories separately, human listeners correctly identified
76.2% familiar accents, while only achieving 51.7% when asked to classify
unfamiliar accents. These human accent performance experiments were con-
ducted on the ABI corpus which Hanani ef al (2011, 2013) also used to train
and test their automatic accent recognition systems. Two of these systems
employ the same model implemented in the Y-ACCDIST system presented
here: the ACCDIST metric (Huckvale, 2004, 2007a). This allows for a direct
comparison to be made with the automatic models which are discussed in
further detail in the sections below.

First though, we move away from lay listener performance and towards
traditional linguistic analysis of speech. Some discussion on the use of for-

mants as analytical tools is given.

20



1.1.1 Formants

Ellis (1994) gives a detailed perceptual account of the phonetic features in
the “Yorkshire Ripper” hoax tape recording. A fine-grained phonetic analysis
like this by an expert can pick out distinguishing accent features. For in-
stance, the vowel in strike surfaced as a distinctive indicator. The vowel was
realised more as a PRICE vowel, rather than a FACE vowel which would be
typically expected in some parts of North East England (Ellis, 1994: 200).
Such details can therefore contribute to specific accent conclusions. It is more
common though to rely on formant frequency values taken from a spectro-
gram. Formants reveal the points at which there is increased energy within
the vocal tract. Formants displayed in the spectrogram can therefore capture
the shape of the vocal tract offering a way to measure and record vowel reali-
sations. Most attention is paid to the first and second formants (F1 and F2).
These frequency values produce a picture of vowel quality since F1 largely
represents vowel height and F2 largely represents vowel backness (Ladefoged,
2003: 131).

Returning to the case described by Ash (1988), already discussed in the
Introduction, she plots vowels in a 2-Dimensional vowel space (where F1 and
2 occupy the x and y axes). Plotting vowels in this way provided a visually
accessible account of how different the vowel realisations were between the
suspect’s speech sample and the incriminating telephone calls. We can clearly
observe the distance between the same vowel in the different speech samples.
This formant-based approach resonates throughout forensic speech reports.

Another advantage behind formants is that they are primarily used through-
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out sociophonetic literature. If variety-specific literature is relevant to a spe-
cific case, the consistent discussion of formants could enable cohesive com-
parisons.

Although they are useful vowel descriptors, formants come with disadvan-
tages requiring a lot of time, and therefore expense, from the phonetician.
The demand for population data in forensic casework means that more for-
mants than those in the centrally involved recordings are often needed. This,
then, may lead to extensive formant value extraction. There are automatic
formant value estimators in existence, but these do not necessarily offer the
reliability required in forensic casework. Harrison (2004) compares the for-
mant estimations for different software packages showing some great discrep-
ancies between formant values. Such variation led Harrison to conclude that
forensic phoneticians should be wary of the software they use and the set-
tings in place due to inconsistencies. This calls for either the development of
much more reliable automatic formant estimators or an alternative method of
capturing vowel quality which is much more reliable. The system presented
in this study opts for the latter and uses an alternative to formants: Mel
Frequency Cepstral Coefficients (MFCCs) (explained below in section 1.2.1).
Interestingly, previous studies (namely Huckvale, 2004, 2007a) have trialled
the performance of formant values in a similar accent recognition model to
the one employed here. This enables a comparison between these two meth-
ods of phonetic representation. These past results are discussed in further

detail in the sections below.
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1.2 Automatic Accent Recognition

In the past, automatic accent recognition systems have been developed for
different languages. For example, Biadsy et al (2010) applies combinations
and adaptations of the techniques described below to distinguish between
four Arabic dialects. Similarly, in Koller et al, (2010), recognition systems
were tested on different varieties of Portuguese. A large proportion of these
systems involve decisions from the developer to dictate distinct groupings
of accents. This assumes clear-cut divisions between them. Zheng et al
(2005) acknowledge the reality of different degrees of accent and explore an
‘accentedness’ detection model with a view to adapting a speech recognition
system based on the outcome.

Previous automatic accent recognition systems have ranged in the dif-
ferent algorithms used to maximise success rate. We can categorise ap-
proaches into two types: text-independent and text-dependent systems. Text-
independent systems do not require transcriptions of the speech sample to
conduct the analysis, whereas text-dependent ones do. In the context of de-
veloping automatic speech recognition systems, where an accent recogniser
is run before the speech recogniser in the hope of improving speech recogni-
tion performance, text-independent methods are crucial. This is because a
transcription is effectively the objective of these systems. Text-dependent ac-
cent recognition systems therefore have no place in general automatic speech
recognition applications. DeMarco and Cox (2013) take text-independency
a step further and specifically target accent classification methods with no

phonetic labelling at all. In training their system, just one accent label is
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assigned to entire stretches of speech samples, motviated by the practicalities
involved in acquiring phonetic labels for the majority of applications.

More recently, Najafian et al (2014a, 2014b) have been exploring the
bridge between the results generated from an accent recogniser which then
go on to make adaptations to an automatic speech recognition system. Here
they are concerned with accent recognition models’” overall impact on error
rate of an automatic speech recognition system. Najafian et al (2014b) report
a reduction of 44% in automatic speech recognition error rate when accent-
specific systems are used. Najafian and Russell (2014) also highlight results
regarding the quantity of speech data required for this adaptation. They
compare the performance of speech recognition systems when they have been
adapted by the results of accent recognition systems and individual speaker
adaptation models. They find that accent-based model adaptation outper-
forms unsupervised speaker adaptation even when the speaker adaptation
model uses five times the amount of adaptation data. This demonstrates
how effective accent information can be in the broader area of automatic
speech recognition.

Obviously, to be able to be practically applied to automatic speech recog-
nition in as many applications as possible, these accent recognition models
need to be text-independent. Conversely, in forensic speech science a text-
dependent accent recogniser could have an informative role to play, particu-
larly if it is a text-dependent system which achieves higher accent recognition
rates.

Before this chapter embarks on the details of past systems, below is a

description of Mel-Frequency Cepstral Coefficients (MFCCs) regularly used
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across speech technology and the feature vector used here. Following on
are examples of past text-independent and text-dependent automatic accent
recognition approaches. The chapter ends with details on the ACCDIST

metric, a text-dependent method.

1.2.1 Mel Frequency Cepstral Coefficients (MFCCs)

As already mentioned, MFCCs are extensively used across speech technology.
They can represent the speech signal ready for further processing for various
applications. As we will also see, they can exist as an alternative to formant
values for sociophonetic studies. This section goes into the details of how
they are extracted.

The first stage of MFCC extraction is preemphasis. This reduces the
effects of ‘spectral tilt’ by boosting the energy at higher frequencies which
would otherwise be very low. MFCCs are taken at overlapping intervals
throughout a speech signal. Short overlapping frames of usually 25ms of the
speech signal are taken to generate a single MFCC vector. These frames
are captured by a Hamming window, rather than a rectangular window. A
Hamming window reduces the abrupt boundaries of each frame by peatering
off gradually. Abrupt boundaries would ensue more signal discontinuities at
the edges of the frame which would present problems for a Fourier analysis,
the next step of feature extraction. To gather the spectral information of
the speech signal, we apply a Discrete Fourier Transform (DFT) to each
windowed selection. From the DFT of each window, we can extract the
magnitude of each frequency component. Information at every frequency

band in the signal, however, offers much more spectral detail than required
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(Holmes and Holmes: 160). For each frame, therefore, a mel-spaced filterbank
is applied. This is based on the mel scale which which is an approximation
of the human auditory system; reflecting the fact that humans perceive more
spectral information at lower frequencies. Consequently, in the case of mel-
spaced filterbanks, more filters exist at the lower frequencies of the spectrum
to extract more information lower down the spectrum. It is at these lower
frequencies where, as humans, we can differentiate between speech sounds.
The cepstrum is then derived by a Discrete Cosine Transform (DCT). The
cepstrum separates signal properties determined by the source and those
determined by the shape of the filter. Since it is the changes in the speaker’s
filter that lead to changes in the phones, values largely representative of only
the filter contribute to the composition of the feature vector. For this reason
it is common for the first 12 cepstral values to be incorporated into the MFCC
vector. Values beyond the first 12 may contain useless information for speech
recognition purposes (i.e, information about the speech source), producing
noise in any forthcoming results.

It is possible to add dynamic information to the MFCCs. It may be use-
ful to monitor ‘change’ between neighbouring frames of a speech signal since
telling phonetic cues may be manifested in these changes. Diphthongization,
for example may be represented more effectively if dynamic factors were inte-
grated. Delta coefficients log the difference between one mel-frequency cep-
stral coefficient to its corresponding coefficient extracted from neighbouring
frames. A delta coefficient can therefore be generated for each of the cep-
stral coefficients. Taking this further, double delta coefficents can be added

which log change in a similar way between corresponding delta coefficients

26



of neighbouring MFCC vectors.

1.2.2 Text-independent Accent Recognition

This section outlines some commonly used models applied to the accent
recognition task which do not require a transcription of the speech sam-
ple as input (text-independent). Such methods have the potential of being

applied to automatic speech recognition systems.

Gaussian Mixture Models

Gaussian Mixture Models (GMMs) are a widely used acoustic modelling
technique. Within the area of speech science, GMMs have been used for
Language Identification (e.g. Torres-Carrasquillo et al (2002), where they
conclude that the performance of a GMM-based system is comparable with
phonotactic approaches), speaker recognition (e.g. Reynolds et al (2000) as
just one example of a huge pool of speaker recognition systems), and speaker
sex classification (e.g. Zeng et al, 2006). The possibilities continue given the
appropriate data.

Using extracted feature vectors from training data, GMMs can formulate
a picture of what could be typically expected of a category of data. GMMs
statistically model the parameters of the training data using a weighted mix-
ture of multivariate Gaussian distributions. In the case of speech, where
often MFCCs are used for modelling, corresponding coefficients are used to
compute multivariate Gaussian distributions of the data, defined by a vector
of means and a covariance matrix. When given unknown data observations,

probabilities can be computed from the models to discover the most likely
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identity or class that unknown data belong to. GMMs can take on a wide
range of configuration combinations and are often fused with a number of
techniques to produce numerous variant systems. Hanani et al (2013) trial
a range of variant GMM-based systems, including fusing the outputs of four
different GMM variant systems to generate overall recognition decisions. This
acoustic fused system generated the highest recognition rate out of the variant
GMM systems with a recognition accuracy of 77.32%. This was conducted

on the 14-way recognition task using fourteen British accents.

Phone Recognition followed by Language Modelling (PRLM)

Phone Recognition followed by Language Modelling (PRLM) is a method
adopted from Language Identification (LID). As its name suggests, speech
data is first passed through a phone recogniser and then the hypothesised
sequence of phones is analysed to identify distinguishing phonotactic cues.
Zissman (1996) employs a PRLM model to conduct an LID task, distin-
guishing between ten different languages. The model relies on the use of
n-grams. These are sequential units consisting of n phones. In the training
data of multiple languages, it is expected that the distributions of n-grams
differ according to the particular language. These differences in distributions
provide the basis for language recognition. Phone sequences of an unknown
speech sample are hypothesised by the phone recogniser and the distribution
of n-grams is computed. Likelihoods based on these n-gram distributions
are calculated to arrive at a classification decision. In comparing different
LID systems, Zissman finds that in a task involving ten languages. his vari-

ant PRLM system outperfoms a GMM system with an error rate of 21%,

28



compared to the GMM error rate of 47% (Zissman, 1996: 39).

In the case of accent recognition, we can imagine accent properties such
as rhoticity being detected in this way. For instance, the word park would
be pronounced by a rhotic speaker of English with an /r/ segment included
- /park/. A mnon-rhotic speaker, on the other hand, would pronounce it
without /r/ - /pak/. These differences in sequential patternings among pro-
nunciation systems should be reflected through the distributions of n-grams.
An example of one of these PRLM accent recognition systems was developed
in Lincoln et al (1998). In Lincoln et al’s system, distributions of diphones
(sequential pairs of phones) throughout entire pronunciation dictionaries for
different accents are logged. These act as reference databases of diphone
distributions for unknown speech samples to be compared against. These
comparisons lead to probabilities regarding class membership. Lincoln et al
report results and link performance in relation to the number or spoken sen-
tences per test speaker. In a task which recognises individuals as either a
speaker of American English or British English, they report that no speakers
are misclassified or unclassified when using at least 4 sentences from the test

speakers. We return to the issue of data quantity in section 4.3.

1.2.3 Text-dependent Accent Recognition

This section describes past examples of text-dependent systems, where the
transcription of test speech samples is known.

In contrast to the above unsupervised methods, Woehrling et al (2009)
determine which linguistic features are accounted for in the classification of

different French accents. They make a number of measurements of features
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which are known to be identifying factors between the varieties within their
corpora. They take average vowel formant values for F1 and F2, voicing
rate of consonants and segmental duration information to name a few. The
automatic part comes in the form of the classification mechanism. Using
this information they train two types of classifier: decision trees (using the
Classification and Regression Tree (CART) algorithm) and Support Vector
Machines (SVMs). SVMs have been employed in the Y-ACCDIST system
and are explained later in section 2.1.2. Woehrling et al found that the
SVM classifier outperformed the CART model with a highest classification
rate of 85% distinguishing between five accents spoken in parts spanning
over a wide geographical range: Northern France, Southern France, Alsace,
Belgium and Switzerland. As well as being text-dependent, these classifiers
have been modelled using vectors consisting only of information which the
authors have specifically selected as being likely candidates for differentiation.
Along with being laborious, it is possible that an automatic system would
be more effective if it were able to identify the most telling factors which
distinguish one accent from another. From a practicality point of view, this
certainly would be preferable.

Moving towards phonotactic methods, Chen et al (2014) look at com-
paring segmental sequences of given speech samples. Their model could be
viewed as a text-dependent alternative to the PRLM models introduced in
the previous section. The segmental sequences were given by a reference
pronunciation dictionary. Specifically in relation to this pronunciation dic-
tionary, they look for insertions, deletions and substitutions of phones to

formulate sets of accent-specific phonotactic rules. These sequences are dis-
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covered through modelling on adapted Hidden Markov Models (HMMs) -
sequential statistical models. Their best variant system, when conducting a
two-way recognition task on African American Vernacular English and non-
African American Vernacular English, was performing with an Equal Error
Rate of 9.97%. It is speculated here that for the accent recognition tasks
conducted in this thesis, these sorts of sequential methods would not prove
useful. Because geographically-proximate accents (which are hypothesised
to be more similar than accents in past studies) are being tested, the de-
gree of similarity is expected to be too great for these sequential methods
to overcome. It is predicted that the distributions in sequential units would
be too similar. Instead, we need to focus on differences in the realisations of
individual phones. However, this specific hypothesis requires experimental
support.

We can observe structural ideas of the ACCDIST metric (the model at
the centre of the Y-ACCDIST system) in Barry et al (1989). Here, they con-
sider inter-speaker variation and how it could be addressed. They form three-
element vectors representing formant values of F1, F2 and F3. We can make
a broad comparison of these with MFCC vectors when later considering the
ACCDIST metric (section 1.2.4). It was these three-element formant vectors
which represented stressed vowels of words in deliberately constructed sen-
tences, encouraging the expression of accent differences. Using these vectors,
Barry et al (1989) created an ‘acoustic space’ for each speaker while reducing
the effects of ‘long-term articulatory idiosyncrasies’ (Barry et al, 1989: 356)
(i.e, vocal tract length determined by biological characteristics such as gen-

der). This was achieved by calculating the Euclidean distance between these
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formant-value vectors between pairs of vowel tokens. Despite differing vo-
cal tract sizes - which therefore produce ranging formant values for the same
phonetic segments for different speakers - calculating intra-speaker Euclidean
distance in this way disregards these absolute spectral values and produces
the relative distances between the different segments an individual utters. It
is a way of normalising speakers’ pronunciation systems. It is assumed that
these relative distances are much more similar among same-accented indi-
viduals, consequently harbouring relatively similar ‘acoustic spaces’. These
acoustic spaces can therefore be compared among a population to speculate
which individuals fall into the same accent class. Barry et al incorporated a
basic scoring system, where Euclidean distances were used to judge the com-
parative degree of similarity between sets of vowels. A tally-like system was
effectively put in place to log the number of characteristic vowel similarity
hierarchies for each of the accents involved. ACCDIST-based studies have
made progress on this kind of classification mechanism as will be revealed in
this thesis.

The methodology adopted in Barry et al (1989) achieved promising re-
sults. The system processed the speech of 58 speakers, correctly classifying
43 into one of four accent categories (North American English, Scottish En-
glish, Northern English and Southern English). The methodology and results
from Barry et al (1989) has provoked further interest and research producing

and making use of accent spaces.
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1.2.4 The ACCDIST Metric

The ACCDIST metric (Accent Characterization by Comparison of Distances
in the Inter-segment Similarity Table) (Huckvale, 2004, 2007a) delivers a
strategy for accent recognition which incorporates the relationships between
individual speech segments. It combines techniques from speech technology
with distance measures to arrive at a label for a speech sample attached to an
originally unknown identity. ACCDIST provides a normalisation framework
for direct comparison of individuals’ pronunciation systems, disregarding ad-
ditional complicating factors associated with varying voice quality, such as
gender or age. By expelling such factors, ACCDIST becomes an appealing
method for its purpose. The ACCDIST metric has been adopted by other
rescarchers. Hanani et al (2011, 2013) trial a range of accent recognition ap-
proaches on the ABI corpus, reporting that an ACCCIST-based model yields

the highest accent recognition rate (95.18%).

Past Studies Using ACCDIST

Most studies involving ACCDIST have used the same speech corpus: Ac-
cents of the British Isles (ABI) corpus (D’Arcy et al, 2004). The difference
in accent corpora is a key focus of the present thesis, which is outlined in
the first research objective in the Introduction. The current study looks at
more geographically-proximate accents which are thought to harbour fewer
distinctive accent features. The ABI corpus, on the other hand, contains
varieties which are spoken in locations with greater distances in between. A

description of the ABI corpus is given below to give context to past AC-
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CDIST studies and for comparison with the experiments presented in this

thesis.

Accents of the British Isles - ABI - Corpus

The ABI corpus comprises 14 different accents from across the breadth of

the British Isles (D’Arcy et al, 2004: 116):
e Standard Southern English
e Midlands (Birmingham)
e Wales (Denbeigh)
e Scottish Highlands (Elgin)
e Republic of Ireland (Dublin)
e East Yorkshire (Hull)
e Lancashire (Burnley)
e Ulster (Belfast)
e North East England (Newcastle)
e Scotland (Glasgow)
e Inner London
e North West England (Liverpool)

e East Anglia (Lowestoft)
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e West Country (Truro)

In each of the above locations, 10 males and 10 females were recorded.
Each informant was required to have been born in the location and have lived
there for the entirety of their lives. Each informant read a number of short

prompts and longer pieces designed to elicit accent-specific features.

Huckvale’s (2004, 2007a) ACCDIST metric could be viewed as a devel-
opment of Barry et al’s three-formant vector approach, one key development
being the use of MFCC vectors (described above in section 1.2.1). Using
recordings of 274 speakers from the ABI corpus uttering 20 short sentences,
Huckvale (2004, 2007a) takes the vowels from cach speaker’s sample and
halves each vowel by time. The median MFCC vector from each half is
taken. The resultant vectors from each half are concatenated to represent
the vowel as a whole. Splitting and representing the vowel in this way makes
sense to an accent recognition task. Taking measurements from two differ-
ent temporal points of a vowel can capture dynamic movement within it
which may prove significant when distinguishing between different varieties
(i.e. capturing the difference between diphthongs and monophthongs). Once
each vowel has been represented in this way, a distance table (an ACCDIST
matrix) is formed by calculating the Euclidean distance between all possible
vowel pairs. These intra-speaker vowel distances produce a normalised repre-
sentation of the speaker’s accent. Whether the speaker is male or female, for
example, the distance between the TRAP and BATH vowels should be sim-
ilar to others within the same accent class. Unknown speakers can therefore

be classified on this basis. By employing a measure of similarity an un-
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known speaker’s matrix can be compared against a reference set of speakers
with known accent labels. Huckvale (2007a) uses correlation distance for this
purpose. Chapter 2 gives a more detailed description of how an ACCDIST-
based system works, obviously with reference to the specific mechanisms of
the Y-ACCDIST system.

Like Barry et al (1989), Huckvale (2004) reports results where formant
values have been used, incorporating them into intersegmental distance tables
for comparison. He contrasts the use of these against the use of MFCCs for
the same purpose and in the same model. The median first four formant
frequencies were taken for each half of each vowel phone. By training and
testing on the ABI corpus, a best score of 72.6% was generated. This greatly
contrasts with the results gathered by using MFCCs as the representative
vector for each phone, where a best score of 87.2% is reported (Huckvale,
2004: 31). One methodological difference which is likely to have a negative
impact on the formant frequency vector method is formant value estimation.
It is widely agreed that formant trackers on various spectrographic software
are not completely reliable. This issue has already been touched upon in
section 1.1.1.

Ferragne and Pellegrino (2007, 2010) also compare strategies for accent
classification using the ABI corpus. Using the ACCDIST metric, they cat-
egorise speakers using the /hVd/ wordlist from ABI: a set of comparable
and realistic word contexts for most of the vowel phonemes in English. This
specific wordlist provides a common consonantal enviroment in which each
of the traditional vowel phonemes can be expressed. These are frequently

used to express the differences in accents. The vowel phonemes are fa-
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mously outlined in Wells’ lexical sets (Wells, 1982). Ferragne and Pellegrino
(2007, 2010) demonstrate the ACCDIST metric’s potential in sociophonetic
research. They contrast its performance and practical advantages with that
of more traditional formant analyses. It is shown that as well as being able to
automatically extract MFCC vectors more reliably than formants, this sys-
tem can display expected vowel space relationships between accents in line
with sociolinguistic literature - such relationships are also uncovered in chap-
ter 3 of this thesis. The individual vowel representations from each of the
/hVd/ contexts are placed into an ACCDIST matrix for each speaker, and
the matrices are compared using Pearson product-moment correlation. They
generated a similar recognition rate to Huckvale (2004) of 89.7%. Ferragne
and Pellegrino (2007: 251) suggest that by generating very similar recogni-
tion scores, it is possible that the ABI corpus has been exhausted for this
particular accent recognition method.

Hanani et al (2011, 2013) compare the performance of a number of accent
recognition systems. Included are two ACCDIST-based systems, GMM sys-
tems and human accent recognition performance. It was found that both the
ACCDIST-based systems outperformed other system designs with recogni-
tion rates of 95.18% and 93.17%, while human performance was recorded at
58.24%. We saw above in section 1.2.2 that the highest performing GMM-
based system achieved 77.32%. The ACCDIST-based systems were devel-
oped using triphones as the segments acting as pinpoints for distance calcu-
lations. This differs from Huckvale’s (2004, 2007a) systems where he treated
each vowel in the speech samples as unique vowels if they appeared in unique

word contexts. Triphones, on the other hand, are sequential units of three
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phones which phonotactically exist within a language. They are often used
in automatic speech recognition systems. (The difference in segmental units
is returned to and tested later in section 4.1 of this thesis.) The resultant
ACCDIST matrices were of a substantial size (105 x 105). They used the 105
most frequent triphones in the speech dataset, generating the mean MFCC
vector across multiple tokens of the same triphone.

Hanani et al’s highest performing accent recognition system was the
ACCDIST-SVM system (ACCDIST coupled with a Support Vector Machine
classifier). Since it was found to be a powerful system, the Y-ACCDIST sys-
tem is based on this model combination. The specifics of the Y-ACCDIST

system are outlined in chapter 2.
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Chapter 2

The Y-ACCDIST Accent

Recognition System

The Y-ACCDIST system’s development can be explained in two phases: ac-
cent modelling and accent classification. The accent modelling phase de-
scribes how an individual's speech sample is taken and represented by a
table (matrix) of distinctive values. Most importantly, how this table rep-
resents a speaker’s accent is explained. These matrices are generated for all
speaker samples involved for both the known reference speakers and the un-
known speakers which are later classified. The classification phase describes
the process of taking these representative speaker matrices and how they
can be fed into a Support Vector Machine, ready for an unknown speaker to
be compared against the reference population and to be assigned an accent

label. Information about some previous classification methods is also given.
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2.1 System Development

The baseline Y-ACCDIST system in this study was developed as follows.

The numbered steps below are accompanied by figure 2.1 for the explanation.

2.1.1 Phase 1: Accent Modelling

1. A forced aligner was built (using the Hidden Markov Model Toolkit
(HTK) version 3.4 (Young et al, 2009)) to automatically segment each

speaker’s transcribed speech sample.
2. 12-element midpoint MFCCs are extracted for each phone segment.

3. For each vowel phoneme type, the corresponding phone MFCCs are
pooled together to produce an average vector. This results in a mean

vector to represent each vowel phoneme.

4. Each segment in the vowel inventory forms the template of a matrix
(as shown in step 4 of figure 2.1 below). The Euclidean distance is then
calculated between the averaged vectors for each combination of vowel
pairs. To standardise the Euclidean distances, z-scores are calculated

to generate relative distances for the specific speaker.
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Figure 2.1: The production of an ACCDIST matrix

Distance values can represent the degree of similarity between two vectors,
showing how ‘close’ they are to each other. This collection of values represents
an individual’s vowel pronunciation system. This can be illustrated by taking
the vowels in FOOT and STRUT, as a classic example. Having heard a
speaker of Northern English English utter these items as well as a Southern
English English speaker, a listener is likely to agree that these two vowels

sound more similar for the Nothern speaker than they do for the Southern
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speaker. In theory, distance values should reflect these differences. For the
Northern speaker, the distance value between these two vowel phonemes is
expected to be smaller than it would be for a Southern speaker. By extending
this theory across a vowel inventory in the matrix shown above, the similarity
relationships between speech segments is quantified for individual speakers,
ready for comparison.

The above sequence is applied to speech samples from a number of speak-
ers until we have a number of matrices to represent a variety of accents. This
first phase has described how individuals’ accents are represented. The next

phase describes how these models are implemented in classification.

2.1.2 Phase 2: Accent Classification

Past ACCDIST-based systems have incorporated different classification mech-
anisms. Initially in Huckvale (2004, 2007a), correlation distance was used.
Another correlation measure (Pearson product-moment correlation) was used
by Ferragne and Pellegrino (2007, 2010). Similar results were achieved among
these systems. Using a correlation measure expresses degree of similarity
between an unknown speaker’s matrix and a reference matrix. A high cor-
relation between two matrices would therefore suggest that they belong to
the same accent class. Hanani et al (2013) look at two alternative classifiers
to follow ACCDIST modelling: correlation distance and Support Vector Ma-
chines (SVMs). They found SVMs to outperform the correlation method,
where the SVM system achieved a recognition rate of 95.18% and the corre-
lation system achieved 93.17%. Similar findings have been found during the

Y-ACCDIST system’s development. An earlier version of the Y-ACCDIST
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system was presented in Brown and Watt (2014) and Brown and Wormald
(2014). The only difference between the earlier system and the system pre-
sented here is the classification mechanism. The earlier system implemented
Pearson product-moment correlation (as per Ferragne and Pellegrino (2007,
2010)). Using the earlier version of the Y-ACCDIST system, Brown and
Watt (2014), reported a recognition rate of 79.2% on the same four-way ac-
cent recognition task conducted later in this thesis. However, when a SVM
replaced correlation, it was found that it served as a stronger classifier as

results in chapter 3 clearly show.

Support Vector Machines

The Support Vector Machine is a widely used machine learning algorithm
across numerous disciplines. It bases its classification conclusions on the
plotting of classes of training data in high-dimensional space followed by
the plotting of unknown data. Classification is governed by where unknown
samples fall in relation to decision boundaries determined by the training
data. The SVM used in this study to classify speakers into accent categories

works as follows:

1. Each speaker’s speech sample in the training database is converted into

an ACCDIST matrix in the way shown in phase 1 (section 2.1.1).

2. For each of the different elements within a single ACCDIST matrix, a
high-dimensional space is constructed for an SVM where the number of

dimensions corresponds with the number of different matrix elements.

3. One SVM is constructed for each of the four classes involved in this
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recognition task and a ‘one-against-the-rest’ structure is employed. A
decision boundary is formulated in the form of a ‘hyperplane’. Since
an SVM is an optimisation algorithm, the optimal hyperplane is calcu-
lated. Obviously, in such classification problems, there are numerous
possible hyperplanes. The optimal hyperplane is the one which sits
with the largest possible margin between the two classes of data. Us-
ing a simplified 2-Dimensional space, the diagram below illustrates just

one SVM modelling one accent category:
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Figure 2.2: Simplified illustration of a Support Vector Machine

Figure 2.2 above shows a support vector machine where training speak-
ers of one accent class (Accent A) are modelled against all other speak-
ers of the remaining accent classes in the reference set which take on a

collective category (hence ‘one-against-the-rest’).

. An SVM is constructed for each accent where each takes on the role of

Accent A in the figure above. Each accent is also integrated into the
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collective ‘the-rest’” category for each of the other three models.

5. To classify an unknown speaker, the speech sample is processed to
form a representative ACCDIST matrix. It can therefore be compared
and classified within each of the four SVMs by plotting the speaker’s
matrix in these high-dimensional spaces. Classification is derived from
the model in which the unknown speaker achieves the clearest margin

in, indicating accent class membership.

Figure 2.3 below illustrates an overview of the whole process explained

by the two phases above.
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Figure 2.3: Overview of the Y-ACCDIST accent recognition process

2.2 Testing Protocol

Outlined below are the experimental details which recur throughout the ex-
periments in this thesis. Of course, the system is tested under different
configurations. The corresponding methodological manipulations required

to test the system are described in their resepective sections.
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2.2.1 Data Processing

All experiments within this thesis have been conducted using data from the
AISEB (Accent and Identity on the Scottish/English Border) corpus (Watt
et al, 2014). A more detailed account of the AISEB corpus is given below
in section 3.1. For the purposes of describing the testing process, here is a
short summary of the data used throughout.

Most experiments are based on recordings of 120 informants reading a
passage, Fern’s Star Turn. These 120 speakers can be divided into four accent
groups based on their geographical origin: Berwick-upon-Tweed, Carlisle,
Eyemouth and Gretna. Within each of these geographical groups, two further
subcategories of 15 informants aligning with speaker age exist: older and
younger speakers. The younger category contains speakers ranging from ages
14 to 27. The older category ranges from 54 to 93. Recordings took place
in each of the four locations, in varying environments (often in individuals’
homes). Although the recordings are of a high quality (with a sampling rate
of 44.1 kHz), there is some variability between speakers’ recordings.

Each speaker’s reading passage recording was divided into indvidual sound
files for each sentence (although some sentences were judged as being signif-
icantly longer than others, so were cut into two clauses, assisting the forth-
coming forced alignment process). Some sound files were rejected from the
study due to one of a number of reasons: the presence of multiple reading
disfluencies (e.g, false starts, filled pauses, etc.), background noise or disrup-
tion, coughing, laughing or another emotion affecting the reading quality. If

one of these factors occurred throughout the recording or on multiple occa-
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sions, the informant was discarded for this particular study. This is largely
due to the effects impacting on the forced alignment process. The AISEB
corpus i8 large enough for discarding speakers in this way as it holds a total
of 160 speakers. Consequently, for this study, a total of 120 speakers could be
processed while keeping each speaker origin category and speaker age sub-
category equal across the board. In the worst cases of the remaining 120
speakers, where only specific sentences were discarded, all informants still
maintain at least 35 of the total 39 partitions of the reading passage. Al-
though a selective mindset was at play here, some sentences containing such
errors are included in the present study’s dataset. If only one disfluency or
cough, for example, occurred within a sound file, then it has retained a place
in the dataset. The reading passage provided approximately 3-4 minutes of
speech per speaker. This is a quantity which may be appropriate for com-
parison with forensic casework. In practice, speech samples of between 90
seconds and five minutes would a reasonable target length when conducting
real-life analysis (Foulkes and French, 2012: 563).

The forced aligner used in this study was built using the Hidden Markov
Model Toolkit (HTK) version 3.4 (Young et al, 2009). The HTK toolkit was
also used to extract the midpoint MFCCs described in stage 2 of the Accent
Modelling process (see section 2.1.1 above). These contained 12 cepstral

coefficients, which were extracted every 10ms with a window length of 25ms.

2.2.2 Testing

For testing, the leave-one-out cross-validation approach was employed (as per

Huckvale (2004, 2007a)) to maximise training data. In turn, each speaker
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in the corpus becomes the ‘test’/‘unknown’ speaker and is removed from the
reference set. The test speaker is then treated in the way described and
shown above to contribute to an overall result. This is repeated on rotation
for each speaker within the corpus.

Throughout this thesis numerous modifications will be made to the overall
process, be it changes to the data or to the system composition itself. The
percentage of correct classifications will be logged as a measure of the Y-

ACCDIST system’s performance under various settings.
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Chapter 3

Automatic Recognition of
Geographically-Proximate

Accents

The previous studies involving the ACCDIST metric (discussed in chapter
1) all make use of the Accents of the British Isles (ABI) corpus (D’Arcy
et al, 2004). As already stated, this corpus is composed of varieties taken
from a wide dispersion of locations across Britain. Through cluster analyses,
Huckvale (2007b) shows that accent varieties are more distinct when they
are spoken at greater geographical distances apart. There appears to be a
relationship between relative physical distance and degree of accent similarity
among the ABI varieties. This chapter focusses on the ACCDIST metric’s
sensitivity in this respect by testing the Y-ACCDIST system’s performance
on a corpus of varieties spoken within shorter geographical distances. This

falls in line with tasks which may be of relevance to the forensic field (as we
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saw in the ‘Yorkshire Ripper’ case). The current study challenges the system
by observing its performance on more similar varieties. The AISEB corpus
(introduced fully in section 3.1) has been chosen to serve this purpose.

As well as exploring ACCDIST’s capabilities on a more localised scale,
this study also explores its potential in speaker age estimation tasks. This
aims to explore the model’s sensitivity further. Investigating the potential
for speakers to be classified by age using an ACCDIST model may also prove
advantageous for forensic applications. Accents change through time and so
it is reasonable to expect accent differences between generations.

From an acoustic perspective, Schotz and Miiller (2007) assessed a range
of features manifested in the speech signal as hypothesised indicators of age.
Out of the selection, they identify speech rate and sound pressure level as
the most accurate age estimators. The factors tested were largely associ-
ated with the physiological traits of aging. Another study was conducted by
Metze et al (2007) where they compared different computational models to
classify speakers according to age and gender group. They found that the
system which employed a phoneme-based recogniser (i.e, taking phonemic in-
formation into account) combined with Hidden Markov Models (HMMSs) out-
performed other systems designed for the same purpose. The other systems
were modelled on other feature types such as prosodic indicators (jitter and
shimmer) and fundamental frequency. These systems did not take phonemic
information into account and used a much more general modelling procedure
using GMMs. Such findings suggest that more phonemically dependent ap-
proaches to age classification should be considered in system development.

This study, combined with the outcomes of sociophonetic research, calls for
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the Y-ACCDIST system, a phonemic model, to be trialled in the context of
age recognition. Results for this kind of accent recognition task, where age
is incorporated into accent groupings, are presented in this chapter.

Metze et al also show, however, their phonemic-based model’s drop in
performance when the quantity of speech data is reduced. By contrast, the
system which uses prosodic indicators to estimate speaker age and gender
appeared to be relatively robust to a shorter duration of speech data. The
topic of speech sample duration is obviously a crucial talking point when
developing a compuational tool in the context of forensic speech science.
This issue is revisited later in this thesis in section 4.3.

The current chapter presents the Y-ACCDIST system’s classification per-
formance on geographically-proximate location categories and further subcat-
egories determined by age group. To do this, the sytem will be trained and

tested on the AISEB corpus which is described in detail in the section below.

3.1 The Accent and Identity on the Scottish/English
Border (AISEB) Corpus

Interest in the effects of a political border dividing two countries led to the
Accent and Identity on the Scottish/English Border (AISEB) project (Watt
et al, 2014). The AISEB corpus consists of speech production data, as well
as perception data collected from informants living in one of four locations
closely situated either side of the Scottish-English border: Berwick-upon-
Tweed, Eyvemouth, Carlisle and Gretna. Recorded readings and interviews

were involved in data collection. The AISEB locations are ‘paired’ (Watt et
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al, 2014: 80) in terms of their geographical proximity and differing national
affiliation. Berwick-upon-Tweed, an English town, is only approximately
ten miles away from Eyemouth sitting on the Scottish side of the border.
Likewise, Carlisle is approximately ten miles away from Gretna, but Carlisle
is south of the border while Gretna is on the Scottish side. These pairings

can be seen more clearly in figure 3.1 below:

Eyemouth

Berwick

Gretna

=]
Carlisle

Figure 3.1: The four locations of the AISEB project

It is largely the reading passage which is used throughout this thesis.
The reading passage Fern’s Star Turn is a story specifically written for the
AISEB project. It contains all of the words in Wells’ lexical sets (Wells,
1982), eliciting accent differences through vowel realisations.

Some sociolinguistic analysis has already been conducted on the corpus.
As a focussed study, Watt et al (2014) look at rhoticity and the /r/ variants
used in the speech among the four locations. Rhoticity is a key distinguisher

between the broad generalised varieties spoken in Scotland and England,

53



with Scottish varieties associated with the presence of /r/ in a syllable’s
coda (Hughes et al, 2005: 45). With such a typical feature separating the two
countries’ spoken varieties, it is of great interest to explore its place in speech
communities lying so close to the national border. Despite the very short
distance between the Scottish towns and their English counterparts, Watt et
al found that rhoticity was almost completely absent in the English speech
communities, whereas it is a retained feature in the Scottish communities.
Speakers of Eyemouth, in particular, show a much higher proportion of rhotic
forms (roughly 80% rhotic), while Gretna, the other Scottish town in the
corpus, collectively produces a lower proportion of just under 50% (Watt
et al, 2014: 88). Findings such as this suggest a sort of continuum with
Gretna sitting midway between Eyemouth and the English towns regarding
rhoticity. Given the towns’ respective histories, we can expect realisational
continuums to be in place and that is in fact what is shown in results below.
As suggested by Watt el al’s rhoticity results, it can be hypothesised that
Gretna can fall as a ‘hybrid’ between the Eyemouth accent and the English
varieties because of its relative youth as a place. Gretna formed in the First
World War due to housing demand from new employees coming to the area
to work in the world’s largest munitions factory (Watt et al, 2014: 82). This
involved people coming together from a range of areas surrounding Gretna
and so linguistic contact would have taken its toll. It may well be due to
Gretna’s history and relatively young age that its spoken variety behaves
as a hybrid in relation to other spoken varieties within the corpus. Such
relationships between the spoken varieties in this corpus are reflected in the

automatic accent recognition results shown in this chapter.
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3.2 Methodology

The first classification task aimed to recognise speakers by their geograph-
ical origin. This was achieved by following the testing protocol outlined in
2.2.2. The AISEB corpus however, as explained above, offers an additional
classification dimension as two different age categories exist among speakers.
Following recognition tasks therefore consider age groups. System perfo-
mance has been assessed by training and classifying data by geographical
origin from just one age category at a time, as well as adding age category

as an additional group variable to create eight speaker groups.

3.3 Results

Presented here is the classification performance of the system under different
arrangements and groupings of the data. The results produced by these

different data configurations are shown in the table below.
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Classification Task % Correct

4-way classification according to geo- | 86.7

graphical origin, all speakers, N=120

4-way classification according to ge- | 83.3
ographical origin, younger speakers,

N=60

4-way classification according to ge- | 83.3
ographical origin, older speakers,

N=60

8-way classifcation according to ge- | 69.2

ographical origin and age category,

N=120

Table 3.1: Recognition of accents under different data groupings

The first recognition task tested all speech samples, collapsing age groups,
classifying speakers according to location alone. As a four-way recognition
task, a chance-level recognition rate of 25% would be expected, but here
a result of 86.7% exceeds chance expectations. Although the recognition
rates are not as high as previous studies which employ ACCDIST-based
models, the difference in geographical proximity of these spoken varieties is
expected to be to blamed for this reduction. Originally, it was predicted
that by restricting the reference system’s age categories (i.e, narrowing the
variational focus by conducting recognition tasks within the respective age
group) would ouput higher recognition rates. The results in table, however,
show reasonably consistent recognition rates, irrespective of separating age

categories or combining them. We can observe a slightly higher recognition
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rate in the first recognition task, but this could be down to twice the number
of speakers used overall. This leads to a more substantial quantity of training
data. All three sets of recognition tasks here demonstrate rates of well above
chance level.

Confusion matrices of each of the recognition tasks are found in the tables
below. They offer some insight into the sociolinguistics of these accents and

these are discussed.

loc. | Ber | Car | Eye | Gre

Ber | 24 1 1 4
Car 1 28 0 1
Eye 1 0 29 0
Gre | 1 4 2 23

Table 3.2: Confusion matriz of four-way recognition task between locations

loc. | Ber | Car | Eye | Gre
Ber 9 2 1 3
Car 0 14 0 1
Eye 0 0 15 0
Gre 2 0 1 12

Table 3.3: Confusion matriz of younger speakers’ four-way recognition task

between locations
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loc. | Ber | Car | Eye | Gre
Ber | 13 0 1 1
Car 0 14 0 1
0 12 1

bJ

Eye
Gre 1 3 0 11

Table 3.4: Confusion matriz of older speakers’ four-way recognition task be-

tween locations

loc. BY | BO | CY | CO | EY |EO | GY | GO
BY | 4 4 2 0 2 0 3 0
BO b 8 0 0 0 1 0 1
CY 1 0 11 1 0 0 2 0
COo | 0 0 1 12 0 0 0 2
EY 1 0 0 0 14 0 0 0
EO 0 2 0 0 0 12 0 1
GY | 1 0 1 0 1 0 11 1
GO | 0 0 1 0 1 0 2 11

Table 3.5: FEight-way recognition task between combined location and age
categories - BY=Younger Berwick speakers, BO=0lder Berwick speakers,
CY=Younger Carlisle speakers, CO=0lder Carlisle speakers, EY=Younger
Eyemouth speakers, EO=0lder Eyemouth speakers, GY=Younger Gretna
speakers, GO=C0lder Gretna speakers
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3.4 Discussion

The results presented here fall in line with sociophonetic expectations. Gen-
erally speaking, the confusion matrices (in particular, see table 3.2) show a
greater proportion of Eyemouth speakers being correctly classified. Speakers
from Carlisle tend to follow Eyemouth in this respect. Berwick and Gretna
speakers on the other hand are correctly classified on fewer occasions. This
pattern is largely echoed throughout the confusion matrices (apart from table
3.4 showing results for only older speakers). This consistent patterning is put
down to the histories of each location. As already stated, Gretna was estab-
lished later than Carlisle and Eyemouth, and so it is expected that spoken
varieties are less distinct in these locations. In the way that Gretna formed in
the First World War, the influences of the different spoken varieties coming
together seem to be having effects on the probability of a Gretna speaker be-
ing correctly classified. This aligns with what has already been suggested in
section 3.1 from Watt et al’s (2014) findings: Gretna’s ‘hybrid’ nature as an
accent variety. Berwick has historically swapped between national identities
a number of times which may have impacted on the number of confusions
the system makes with these speakers.

With the relative geographical distance in mind, no confusions occur be-
tween Carlisle and Eyemouth speakers at all. Sociolinguistically, this is to be
expected between the two more established locations which exist on either
side of the border and at opposite ends of its length. As a result, we would
expect fewer accent characteristics to overlap between these varieties which

holds true in the above tables. A distinctive classification ranking between
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different accents was also found among the ABI varieties. DeMarco and Cox
(2012: 3) find in their experiments that speakers from the Scottish Highlands
hold the highest classification rate as a group with 95.24%, while speakers
from Cornwall are collectively recognised 22.22% of the time. These sub-
stantial differences suggest that accent recognition is also influenced by the
varieties themselves.

The recognition rate generated by the eight-way system, where age fac-
tors into the grouping as well, suggests that there are marked accent dif-
ferences between age groups. We see a correct classification rate of 69.2%,
which is well above the expected chance classification rate of 12.5% attached
to eight-way recognition tasks. This result suggests a reasonably high de-
gree of accent distinctiveness between age groups within a single location.
The worst performing speaker group, in this respect, seems to be Berwick
speakers, showing only four correct classifications of younger speakers and
eight correctly classified older speakers. From the confusion matrix, shown
as table 3.5, we can see a number of confusions occurring between age cat-
egories within speaker location. For example, five older Berwick speakers
which were incorrectly classified were instead assigned the younger Berwick
speaker accent category. This is not surprising as we would expect the most
accent similarity to exist between age group varieties within the same lo-
cation. Another interesting point regarding these age group confusions is
that all incorrect classifications which occur between locations remain within
the same age category. For example, taking the worst performing speaker
group, younger Berwick speakers, most incorrect classifications are with older

Berwick speakers. However, all other incorrect classifications of these speak-
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ers occur in only the younger categories of the other locations. This is a
pattern which resonates throughout all speaker categories in the confusion
matrix. The consistency of this patterning is suggestive of the Y-ACCDIST
system’s potential as a sociophonetic tool, as well as a forensic tool. The
confusion matrices express patternings which largely fit with the varieties’
sociolinguistic profiles and is therefore showing a novel and objective method
for analysing accent corpora.

For forensic purposes, it may be of interest to simulate a situation where
a test speaker is compared against an old corpus and the effects this may
have. A shortage in population data may tempt the use of old corpora, or
the closest that can be found, but here we find a large decrease in recognition
rate. French and Harrison (2006: 248) rightly point out that the ‘shelf life’ of
information on regional variation is very short since ‘accents are in a constant
state of flux’. To demonstrate, all 60 speakers from the older category were
used to form the reference matrices of each of the four geographical locations.
All 60 younger speakers were used as test speakers and recognition rate is
based on whether they were correctly classified according to geographical lo-
cation. This experimental configuration could be seen to mimic a scenario
where a recently produced speech sample is compared against a database
collected some time ago. The result is compared directly with that collected
when all the younger speakers were tested only on reference matrices pro-

duced from only other younger speakers (the recognition task shown in table

3.3).
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Age category of reference | % Correct - Younger
data speakers tested

Younger speakers 83.3

Older speakers 65.0

Table 3.6: Comparison of results with mismatched age groups

These recognition results clearly echo the short ‘shelf life’ of informa-
tive accent material and the importance of collecting ‘fresh’ speech data for
analysis. Even though the data still needs to be collected, one major advan-
tage of using compuational tools is the speed at which they can process the
data. Computational tools can help to keep up with the inevitable changes

embraced by language.

Agglomerative Hierarchical Clustering

A cluster analysis of individual speakers” ACCDIST matrices supports the
conclusions drawn from the confusion matrices above. In the development
of the Y-ACCDIST system, it is effectively trained on accent groups chosen
by its developer. In experiments throughout this thesis, reference ACCDIST
matrices are grouped based on speaker properties (i.e, geographical origin
and some experimentation with age group). A speaker’s accent, however,
can be influenced by a number of factors. Shown here is a hierarchical clus-
ter analysis of every individual’'s ACCDIST matrix and how the speakers
naturally group without the developer’s decisions and assumptions dictating
a specific direction. Huckvale (2007b) shows the ‘complete’ linkage method

to be a satisfactory clustering method using ACCDIST and is subsequently
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the one employed here.

Agglomerative hierarchical clustering works in a ‘bottom-up’ fashion,
meaning that starting at the lowest level of clusters (beginning with each
of the individual speakers), it then clusters in stages based on highest degree
of similarity between pairs. Clusters are formed and similarity measurement
is continued between larger and larger clusters. It is the relative position-
ing of speakers along the x-axis which is meaningful here. By assumption,
the further away two speakers are along the x-axis, the lower the correlation
between the speakers” ACCDIST matrices, indicating less similarity between
the speakers. The dendrogram below displays the cluster analysis of all 120
speakers. True speaker properties regarding geographical origin and age are

revealed along the x-axis.
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Speaker Codes

BY - Younger Berwick
BO - Older Berwick

CY =Younger Carlisle

CO —0Older Carlisle

EY = Younger Eyemouth
EOQ —Older Eyemouth
GY - Younger Gretna

GO - Older Gretna
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Figure 3.2: Agglomerative hierarchical cluster analysis of 120 AISEB speak-

ers

Obviously at present, due to the number of speakers, the outcome is dif-
ficult to observe. This section takes a closer look using close-up windows.
The cluster analysis in figure 3.2 above shows a similar overall picture to the
one predicted by sociolinguistic speculation over these AISEB accent vari-
eties. It reveals a similar story manifested in the confusion matrices already
seen above. Earlier in this chapter we can recall an expected ‘continuum’ of
these varieties, where it could be expected that Gretna speakers and Berwick
speakers generally fall between those in Eyemouth and Carlisle. We also saw

no confusions existing between Eyemouth and Carlisle, indicating that there
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is limited overlap between the spoken varieties. This possibly suggests that
these sit on opposing ends of a continuum. The dendrogram here supports
this expectation. Figure 3.3 shows four clusters, arranged into three (two
smaller ones to the left are put into one division). These divisions of the
clusters best highlight the significant arrangement and ordering of speaker
identities along the x-axis. Figure 3.4 overleaf presents close-up windows of

each of these divisions for a clearer viewing of the true speaker properties.

Speaker Codes

BY —Younger Berwick
BO — Older Berwick

CV =Younger Carlisle
CO —Older Carlisle

EY = Younger Eyemouth
EC - Older Eyemouth
GY - Younger Gretna
GO - Older Gretna

R R A e F R IR E R EEES SEER LIS R SR B BL T

I 1 T

1 2 3

Figure 3.3: Agglomerative hierarchical cluster analysis of 120 AISEB speak-

ers with observational divides
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Speaker Codes

BY —Younger Berwick
BO — Older Berwick

CY =Younger Carlisle
2 £ = Older Carlisle

P 0230 982% 555 RR bR R BEbEEg SBEI LI 6 EY - Younger Eyemouth
£0 —Older Eyemouth
GY — Younger Gretna
GO — Older Gretna

Figure 3.4: Close-up windows of the cluster analysis

Taking a closer look at these divisions in close-up windows, we can see
the distinctive variety spoken in Eyemouth by the clear Eyemouth clusters
towards the left of the dendrogram (shown more clearly in block 1 of figure
3.4). Likewise, block 3 of figure 3.4 shows that Carlisle speakers are largely
found towards the right of the dendrogram, although there appears to be
much more interference from other varieties. This could be seen as supportive
of preliminary observations of the AISEB varieties in Llamas (2010). With
respect to coda /r/ again, Llamas (2010: 234) speculates that ‘as regards to
the Scottish-English border, the divide is stronger and more stable on the east

side both linguistically and in terms of social categorisations’. By scanning
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the x-axis of the cluster analysis above, we can get a feel that Eyemouth
and Berwick appear to have a more stabilised and predictable posting. In
a general grouping shown in figure 3.4(2), Berwick speakers appear to be
straddling between the Eyemouth and Carlisle clusters, which is suggestive
that a continuum of these varieties is indeed in place. In contrast, Gretna
speakers are found spanning across the whole length of the x-axis without
forming a distinctive cluster. Again, this can be put down to the location’s
later date of establishment.

Overall, this chapter has further investigated an ACCDIST-based model’s
sensitivity on varieties thought to be more similar than those used in past
studies. This has opened up the possibility of using the Y-ACCDIST sys-
tem in forensic applications where it is the aim of the practitioner to obtain
speaker properties to do with place of origin, or even a general age group.
This chapter has established that the Y-ACCDIST system can work to some
extent on the geographically-proximate AISEB varieties. Chapter 4 builds
on the baseline system presented so far to investigate whether adapting the
system in different ways can improve recognition performance. First, how-
ever, chapter 4 looks at the possibility of using the Y-ACCDIST system on

spontaneous speech data.
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Chapter 4

System Modifications

The previous chapter has demonstrated the Y-ACCDIST system’s baseline
performance on the AISEB data. It showed results revolving around how
the system performed on different groupings of speakers and how an accent
corpus could be analysed using the system. While chapter 3 mainly dealt with
changes in the sociolinguistic groupings of the data, this chapter will assess
accent recognition with changes to the system and some of its limitations.

Firstly, this chapter will address one key feature of the Y-ACCDIST sytem
which differs from previous ACCDIST-based systems: segmental context in-
dependency. This is explained further in section 4.1 below, but its appeal is
down to the Y-ACCDIST system’s potential applicability to incomparable
speech content. The Y-ACCDIST system is therefore tested on spontaneous
speech data in section 4.2 as this is of relevance to forensic casework. To-
gether, sections 4.1 and 4.2 therefore address the second research objective
given in the Introduction.

Also of relevance to forensic casework is the quantity of data required for
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optimum classification performance. This is addressed in 4.3. In the base-
line Y-ACCDIST system, midpoint MFCC vectors are used to represent the
segmental data. Different ways of representing the segments are trialled. A
different feature vector type, Perceptual Linear Predictive coefficients (PLPs)
are trialled in 4.4, while an attempt to capture the dynamic nature of vowels
is made in section 4.5. This is done by using concatenated MFCC vectors
taken from two separate temporal points within the phoneme segment. It be-
comes apparent that when dealing with a smaller number of varieties which
are spoken within a more limited geographical area, some segments are more
important than others when distinguishing between varieties. By focussing
on /r/, section 4.6 shows how the addition of a single phoneme can have an

effect on recognition results.

4.1 Segmental Context Dependency

The present thesis refers to segmental context dependency with respect to
a speech segment’s phonological environment. By returning to figure 2.1 in
chapter 2, we can recall symbols a-e representing speech segments which
form the ACCDIST matrix. In past systems, these speech segments are
not necessarily individual phonemes. These speech segments in previous
ACCDIST-based systems have been sequential units of phonemes, making
these segments more context-dependent and less frequent in a speech sam-
ple. Further details and examples are given in section 4.1.1 below. One of
the key features of the Y-ACCDIST system is its segmental context inde-

pendency. ACCDIST as a model relies on the relationship between different
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segments within a single speaker’s speech sample. To be able to then com-
pare speakers to reference populations, or even other speakers, ACCDIST
requires the same segments to be present in all speech samples involved.
In the previous ACCDIST-based systems discussed in this paper (Huckvale,
2004, 2007a; Hanani et al, 2011, 2013), highly context-dependent speech
segments are used which of course have repercussions on the sort of speech
material required. When highly context-dependent segments are used in
the model, identical read prompts or passages are needed. In other words,
the more context-dependent the speech segments are, the more comparable
the content of the speech samples need to be. When considering the foren-
sic application, there is obviously an extremely limited number of contexts
where comparisons between identical read passages can be made. We cannot
assume full co-operation from individuals if we were to ask for a recorded
reading. The advantage of using context-dependent segments is that they
are expected to reduce the effects of coarticulation. It is well known that
neighbouring speech segments affect the realisation of a phone. This section
compares the performance of highly context-dependent word-context vowel
segments (used in Huckvale (2004, 2007a)), context-dependent phone-vowel-
phone triphone segments (used in Hanani et al, (2011, 2013)), and finally
context-independent phoneme segments (used in the Y-ACCDIST system).
Each of these types are illustrated and the performance of all three segment
types are trialled on the reading passage recordings from speakers of the

AISEB corpus.
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4.1.1 Segmental Context Types

This section gives a demonstration of each segmental type. Taking the first
clause, ‘Fern was a nurse from Harrogate’, from the reading passage, each
segmental context type is illustrated below. Only vowels (excluding schwa)
are taken into account in this section, in line with previous studies. These
can of course alter depending on the phonemic transcriptions used. Section
4.6, however, shows the effects of including phones beyond just the vowel

inventory.
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Vowel Segment Type

Specific segments found in Fern

was a nurse from Harrogate

No.
unique

segments

Word-context vowels

vowel in Fern

vowel in was

VOW"B] in nurse

vowel in from

vowel in first syllable of Harrogate

vowel in third syllable of Harrogate

6

Phone-vowel-phone triphones

/3/ in /fan/
/o/ in /woz/
/3/ in /n3s/
/o/ in /from/
Ja/ in /har/
Jei/ in /geit/

Context-independent vowels

/3/ in both Fern and nurse
/o/ in both was and from
/a/ in Harrogate

/e1/ in Harrogate

Table 4.1: Demonstration of different segmental types

During the ACCDIST process, when a unique segment is reencountered,

within a speech sample the segments are simply clustered together to form an

average MFCC representation of that segment. Euclidean distances are then

calculated from these average representations to form an ACCDIST matrix.

As we can see from the table above, this happens more regularly in the case
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of context-independent phonemes than for the word and triphone context
segments. When only counting all word-context vowel segments (excluding
schwa) the reading passage, Fern’s Star Turn, contains a total of 342 unique
segments. This can be compared with the 15 unique vowel segments within
the context-independent phoneme inventory (this can change depending on
the particular phoneset used, which is usually dependent on accent). In
effect, these counts impact on the size of the ACCDIST matrices computed
in the accent recognition process.

When considering the effects of coarticulation on the realisation of vow-
els, it could be expected that the more detailed word-context segments will
perform very well, grasping the specific quality of a vowel. In the case of the
ABI corpus, this is certainly shown to be true as Huckvale (2007a) presents
an impressive recognition rate of 92.3%. However, in the case of more lo-
calised varieties, this section shows that this level of detail is unnecessary
and in fact produces unwanted ‘noise’ in the model. Not only would context-
independent phonemes be the preferred choice for comparing accents across
incomparable spoken content, but it also appears to be the preferred choice

when comparing accents across comparable data as well.

4.1.2 Methodology

To investigate the effects of segmental context-dependency, two further vari-
ant Y-ACCDIST systems were built to compare with the context-independent
baseline system. For all three of the systems the recorded reading passage
for each speaker was forced aligned and the midpoint MFCC vectors for ev-

ery vowel token were extracted. Vowel segment contexts were then coded
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for the word-context and triphone systems. For each of the variant systems,
ACCDIST matrices were generated for all 120 speakers. To mirror segmen-
tal quantities of previous works, only the first sixteen divides of the reading
passage (which is less than half of the entire passage) were taken, which left
approximately 150 unique word-context vowels for each speaker. This allows
for comparison with Huckvale (2007a), who reported that approximately 140
word-context segments were incorporated into his system. Only approximate
quantities are given because some portions of a speaker’s sample may have
been discarded as a result of background disruption or significant reading er-
rors. These are factors which would have had a negative impact on the forced
aligner. For comparison, each of the variant systems were trained and tested
on the same first portion of the reading passage. Hanani et al (2013) used the
105 most frequent segments which is the same as what has been employed
here for the triphone variant system. Recall that recognition rates of over
90% have been reported using these context-dependent segments on the ABI
corpus. As mentioned above, the phoneme-based system only incorporates
15 different types. Each of the three variant systems conducted a four-way
recognition task on all 120 speakers, following the testing protocol outlined

in section 2.2.2, classifying them into AISEB’s four geographical locations.

4.1.3 Results

The recognition rates of each variant system are shown below:
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Segmental context-dependency variation % Correct
Word-context vowels 74.2
Phone-vowel-phone triphones 75.0
Context-independent vowel phonemes (baseline) 76.7

Table 4.2: Y-ACCDIST’s performance using different segmental types

A four-way classification task naturally carries a 25% chance recogni-
tion rate (i.e, if the model was not working the way we predicted, 25% is
approximately the recognition rate we would expect if the system were as-
signing categories to speakers at random). Each of the three variant systems
achieve recognition rates well above 25%. Marginal differences exist between
the three variant systems. However, a hierarchy seems to be in place. The
more context-dependent the segmental type is, the lower the recognition
rate. This hierarchy is more evident when these experiments are conducted
on an earlier version of the Y-ACCDIST system presented in Brown and
Watt (2014) and Brown and Wormald (2014). The only difference between
the earlier system and the present system is the difference in classification
procedure. It appears that the current Y-ACCDIST system is less sensitive
to such modifications than an earlier version. As described in section 2.1.2,
the current Y-ACCDIST system uses Support Vector Machines to classify
speakers, whereas the earlier system used Pearson product-moment corre-
lation to compare and classify speakers. The earlier system processes and
classifies the AISEB data in the same way and the pattern above appears to

be more significant and worthy of note:
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Segmental context-dependency variation % Correct
Word-context vowels 50.0
Phone-vowel-phone triphones 56.7
Context-independent vowel phonemes (baseline) 60.0

Table 4.3: An earlier Y-ACCDIST system’s performance using different seg-

mental types

4.1.4 Discussion

The above results suggest that at the very least, more context-dependent
segments do not entail better recognition results for this particular corpus.
Coupled with results from an earlier system, there is even suggestion that
the more context-dependent the segments are, the lower the recognition rate.
This outcome is put down to a larger number of context-specific segmental
units seemingly creating ‘noise” within the model. This may well be a side
effect of classifying geographically-proximate varieties. Hanani et al (2013:
67) identify the reduction in vowel context information, when comparing
their triphone segment system to Huckvale's (2007a) word-context system as
a likely disadvantage to performance. Interestingly, the results shown above
do not align with findings made by Huckvale (2007a: 266-267), where he
built a comparable system to ACCDIST-based systems. The key difference
was that vectors of formant values replace MFCCs, and in the formant-based
system he pools together averages across phoneme formant frequency values
in a similar way to the pooling of MFCC vectors in the context-independent
baseline Y-ACCDIST model. Huckvale reports that there was a reduction

in best accent recognition rate in the averaged formant frequency system,
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dropping from 89.4% to 79.6%. In the accent recognition task here however, it
is shown that this pooling of speech segments into phonemic categories is not
necessarily a degrading factor. The recognition results displayed above may
even suggest a spectrum of segmental context-dependency and its interaction
with a similarity scale of the particular varieties involved.

Another likely contributing factor is the frequency of segmental units. As
well as adding larger numbers of irrelevant rows and columns to ACCDIST
matrices, the use of more context-dependent units reduces the number of
segments which produces the average representative feature vector. This
minimises room for error which may be required, especially when using au-
tomatic segmenters (which are not wholly reliable) as part of the overall
system.

In sum, this section has revealed that the context-independent phoneme
segments are the preferred choice when conducting recognition tasks among

geographically-proximate accents.

4.2 Spontaneous Speech

The results from the above section show the recognition advantage of using
context-independent phoneme segments. They appear to outperform more
context-dependent segments in a geographically-proximate accent recogni-
tion task. Phoneme segments have a practical advantage as well which is
that they are more likely to create segmental overlap between spontancous
speech samples (incomparable spoken content). This overlap is essential for

classification. As the present research is conducted with the forensic appli-
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cation in mind, where the likelihood of receiving comparable speech samples
is low, the context-independent phoneme-based system (Y-ACCDIST) has
been tested on spontancous speech.

As well as the practical motivations, it is also critical to test the system
on spontaneous speech as more realistic data. Watt et al, (2014: 91-93) show
a difference in their results from /r/ variant analysis of the AISEB varieties.
They show that phonetic realisations do in fact alter between read speech
and spontaneous. Particularly in the Gretna speakers, they point out the
higher proportion of rhotic realisations in word list recordings compared with
the same speakers’ conversational recordings. Such differences may change
recognition performance.

In terms of automatic systems, past ACCDIST-based systems have only
been tested on comparable read speech. Hanani et al (2013) predict a rise in
accent recognition rates when using spontaneous speech data as they suspect
that paralinguistic information, like accent, would be more explicit. The
results shown in this section do not support this prediction, but it is likely
that quantity of spontaneous speech data plays a role in accent recognition
performance. In Woehrling et al (2009), automatic accent classifiers were
tested on French spontaneous speech data. However, in their study, while
comparing with approximately 3 minutes of read speech per speaker, they
used approximately 13 minutes of spontaneous speech. Using these unequal
quantities brought about similar results between the two modes of speech.

In this section, approximately the same duration of speech data per
speaker was used for both the spontancous speech system and the reading

passage system (approximately 3 minutes).
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4.2.1 Methodology

For each speaker, the whole reading passage is processed to gain a recog-
nition rate for comparable data (which is approximately 3-4 minutes long),
and to gain a result for incomparable data, the first three minutes (approx-
imately) of unoverlapped speech from the informant’s interview session is
taken. The interview sessions involved the researcher asking questions about
the informants’ local areas and their opinions regarding national identity
and such topics. It was not uncommon for informants to go off topic during
interview sessions. However, conversations remained fairly neutral regard-
ing subject and temperament. Under both conditions, speech samples were
automatically aligned. Each speaker for each experiment was taken from
the reference population and treated as the unknown test speaker (again,

following the testing protocol).

4.2.2 Results

The recognition rate generated from spontaneous speech data is directly com-

pared with that generated by the reading passage data below:

Speech data type % Correct
Reading Passage (comparable) 86.7
Spontaneous (incomparable) 52.5

Table 4.4: Comparison of recognition rate on comparable and incomparable

data
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4.2.3 Discussion

Of course, there is a large discrepancy between the system’s performance
on comparable and incomparable data, but the model appears to be work-
ing to some extent since the recognition rate still sits well above chance
expectations. This task is likely to require larger quantities of speech data
than reading passage data to achieve similar recognition rates. This is due
to varying coarticulation effects and their impact on the averaging processes
which feature in the Y-ACC