
The Meet Property in Local Degree

Structures

Benedict Richard Fabian Durrant

Submitted in accordance with the requirements for the degree of Doctor

of Philosophy

The University of Leeds

Department of Pure Mathematics

May 2014

ii

The candidate confirms that the work submitted is his own, except where

work which forms part of jointly authored papers has been included. The

contribution of the candidate and other authors has been explicitly

indicated overleaf. The candidate confirms that appropriate credit has

been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright

material and that no quotation from the thesis may be published without

proper acknowledgement.

c©2014 The University of Leeds and Benedict Richard Fabian Durrant

iii

Joint Work

Chapter 4 of this thesis contains work from the paper Computably Enumerable Turing

Degrees and the Meet Property, jointly authored with Andrew Lewis-Pye, Keng Meng

Ng and James Riley. This paper is awaiting submission. The main result in this paper was

primarily my work with some assistance from James Riley. It was based on an idea by

Keng Meng Ng and important technical advice was given by Andrew Lewis-Pye.

iv

v

Acknowledgements

I would like to thank my supervisors Andrew Lewis-Pye and Barry Cooper for their

support and guidance during my PhD, and for their assistance in helping me secure

funding. I would also like to thank my parents for their on going support and Emily

for her unfailing encouragement in the final stages of my work.

vi

vii

Abstract

In this thesis we look at whether two different classes of local Turing degrees (the c.e.

degrees, and the 1-generic degrees below 0′) satisfy the meet property - where a degree a

satisfies the meet property if it is incomputable and for all b < a there exists a non-zero

degree c such that a ∧ c = 0. We first give a general discussion of the Turing Degrees

and certain known results, before giving a brief introduction to priority arguments. This is

followed by some more technical considerations (full approximation and minimal degree

constructions) before the proof of two new theorems - the first concerning c.e. degrees and

the meet property and the second concerning 1− generic degrees and the meet property.

Chapter 1 contains a broad introduction to the Turing Degrees, and Chapter 2 to the

Local Degrees. In Chapter 3 we consider minimal degree constructions, which we use

in Chapter 4 to prove our first new theorem - Theorem 4.2.1 Given any non-zero c.e.

degree a and any degree b < a, there is a minimal degree m < a such that m � b. From

which we get Corollary 4.2.2 Every c.e. degree satisfies the meet property - answering a

question first asked by Cooper and Epstein in the 1980s. In Chapter 5 we prove the second

new theorem - Theorem 5.2.2 There exists a 1 − generic degree which does not satisfy

the meet property - showing that a result from Kumabe in the 1990s does not extend to

the case n = 1.

viii

ix

Contents

Joint Work . iii

Acknowledgements . v

Abstract . vii

Contents . ix

List of figures . xiii

1 Introduction 1

1.1 Notation and Conventions . 3

1.2 Trees . 8

1.3 Priority Arguments . 9

2 The Local Degrees 15

2.1 The High-Low Hierarchy . 16

2.2 Natural Definability . 27

2.3 Properties in the Local Degrees . 28

CONTENTS x

3 Minimal Degree Constructions 30

3.1 Splitting Trees . 31

3.2 A Minimal Degree below 0′′ . 34

3.2.1 Construction . 35

3.2.2 Verification . 35

3.3 A Minimal Degree below 0′ . 36

3.3.1 Construction . 38

3.3.2 Verification . 39

3.3.3 Remarks . 40

3.4 A Minimal Degree by Full Approximation 40

3.4.1 Construction . 43

3.4.2 Verification . 44

4 Computably Enumerable Degrees and the Meet Property 49

4.1 A Minimal Degree below a C.E. Degree 50

4.1.1 Constructions below a C.E. Degree 50

4.1.2 Construction . 52

4.1.3 Verification . 54

4.2 C.E. Degrees and the Meet Property . 56

4.2.1 Outline Proof . 58

4.2.2 Construction . 61

4.2.3 Verification . 65

CONTENTS xi

5 1-Generic Degrees and the Meet Property 72

5.1 A 1-Generic by Full Approximation . 74

5.2 1-Generic Degrees and the Meet Property 76

5.2.1 Outline Proof . 77

5.2.2 Tree of Strategies . 88

5.2.3 Formal Construction . 91

5.2.4 Verification . 98

Bibliography 107

CONTENTS xii

xiii

List of figures

1.1 Friedberg-Muchnik Tree of Strategies 12

3.1 A Ψi splitting above a string σ . 31

3.2 Tree of Strategies for the Minimal Degree by Full Approximation

Construction . 42

3.3 Possible Outcomes on the Minimal Degree Tree of Strategies 43

4.1 Tree of Strategies for the C.E. Meet Construction 58

5.1 Example Cluster . 85

LIST OF FIGURES xiv

1

Chapter 1

Introduction

This chapter gives a brief overview of Computability Theory, and includes key definitions

and concepts used later in this thesis. The majority of the the content is assumed, and

little motivation is given. The reader is referred to, for instance, [Coo04] or [Odi92] and

[Odi99] for a more detailed technical introduction to the area.

Informally we can consider an algorithm to be an effective procedure (given some finite

list of instructions) for calculating the answer to a given question - for example the

calculation of the output of a given function on a certain input, or deciding whether a

given element is in a specified set (e.g. the set of prime numbers). Although the informal

notion of an algorithm has been around for many years (the word itself deriving from the

Latin form of the name of the 9th century Persian mathematician al-Khwarizmi1), it is

only relatively recently that the concept has been formalised.

Turing’s 1936 paper [Tur36], written in response to Hilbert’s Entscheidungsproblem, gave

the first widely accepted formalisation of the notion of an algorithm. Turing did this

via the Turing Machine, and it is this which provides us with the modern notion of

computability2. We consider a function on the natural numbers to be computable if it

1See [AD77] for more details on this.
2Other sufficiently strong notions of computability can be shown to be equivalent.

Chapter 1. Introduction 2

can be computed on a Turing Machine. The technical details of the construction of the

Turing Machine are assumed, further details can be found in [Coo04].

Normally in computability we work with functions from A ⊆ ω to ω, if A = ω we call

the function total, otherwise we call it partial. A characteristic function of a subset A of

ω is a function f : ω → {0, 1} which on input n outputs 0 if n is not in A and 1 if n is in

A. We identify subsets of ω with their characteristic function.

The construction of a Turing Machine allows us to assign each a unique Gödel Number.

By the Padding Lemma we have that for a given partial computable function f , there exist

infinitely many i, such that i is the Gödel Number of a machine which computes f . For

simplicity of numbering we assume that for any n if n is not the Gödel number of some

Turing Machine, then Mn is a Turing Machine running the empty program. This allows

us to list all possible Turing Machines in some effective order: M0,M1, . . . ,Mn, We

are also able, given any number n, to find the Turing Machine it represents. Given a list of

all Turing Machines, we are able to pick a partial computable function f(x, y) = Mx(y),

which is able to represent any Turing Machine on the list. A machine which computes

such a function is called a Universal Turing Machine.

Turing’s paper gave the first use of a diagonalisation argument to produce an incomputable

set, and thus showed that a general solution to the Entscheidungsproblem is impossible.

This set is now known as the halting set. It is denoted either ∅′ or K and is defined to be,

{x : ψx(x) is defined}, where ψx is the xth partial computable function.

Three years after the introduction of Turing Machines, Turing introduced, in [Tur39],

the concept of an oracle Turing Machine (where a Turing Machine may ask if a certain

element is contained in the given - oracle - set), and so of relative computability. Technical

details of the construction of an oracle Turing Machine can again be found in [Coo04].

We write Ψ(B) = A to mean that given set B, as an oracle, the Turing Machine Ψ can

compute A, denoted A ≤T B. We use Ψi to denote the Turing Functional which is the

functional computed by the ith Turing Machine - where we use functional to indicate that

Chapter 1. Introduction 3

the machine may take both elements of 2ω (i.e., oracle sets) as well as natural numbers

as inputs. In 1944 Post [Pos44] defined the Turing degrees using this idea. If there are

two Turing functionals Ψ and Ψ′ (not necessarily the same) such that Ψ(A) = B and

Ψ′(B) = A then we say that A and B are Turing equivalent, and denote this A ≡T B.

The Turing Degree of a set A ⊂ ω is deg(A) = {X ⊂ ω : X ≡T A}, usually denoted

a. The partially ordered set of all degrees is denoted D and has its ordering given by ≤T ,

namely a ≤ b ⇔ A ≤T B. The structure of D, is a major area of study in computability

and has been since its introduction.

In [KP54] Kleene and Post combined their ideas by looking at the relativisation of the

halting set. They did this in the natural way - the halting set, relative to a set A, is the set

{x : Ψx(A, x) is defined}. This is denoted A′, and is called the jump of A. The (n+ 1)th

jump of A is the jump of the nth jump of A, namely An+1 = (An)′. The jump of a degree

a follows naturally: a′ = deg(A′). They go on to define the jump function f : D → D,

where f(a) = a′. Within the structure of D, specific interest is given to the local degrees,

those below 0′ = deg(∅′). Further details of this, along with results relevant to this thesis,

are found in Chapter 2.

The above is a (very) brief introduction to computability theory, and a working knowledge

of the material covered so far is assumed. A broader overview of the history of the area

can be found in [ASF06].

1.1 Notation and Conventions

In this section we lay out the framework of notation, and conventions, that we will work

within - any variations from this will be clearly explained. We include it for clarity and to

remove any confusion caused by the changes in notation over the past 70 years of study.

We use lower case Roman letters from the end of the alphabet to denote natural numbers,

Chapter 1. Introduction 4

and capital Roman letters to denote subsets of ω. We use lower case Greek letters to

denote strings. Typically the strings we consider are elements of 2<ω, though more

generally a string may be from ωω. We let λ represent the empty string, and let σ ∗ τ

be the concatenation of (the finite strings) σ and τ . For a finite string σ we use |σ| to

denote the length of σ. We use the notation σ �n to denote the initial segment of σ of

length n. τ is an extension of σ if τ �|σ|= σ. We use the notation σ ⊂ τ if τ is a

proper extension of σ, and we write σ ⊆ τ to allow for the possibility of non-proper

extension. We consider strings to be ordered by length first and then lexicographically.

Given two (possibly partial) functions f and g, we write f ⊆ g if the domain of f is a

subset of the domain of g and for all n in the domain of f , f(n) = g(n). Two functions

are incompatible if, for some n, f(n) ↓6= g(n) ↓, where we use the notation f(n) ↓ to

mean that the function f is defined on input n. If a f is not defined on input n, we denote

this f(n) ↑.

We have a standard pairing function, which is a computable bijection ω×ω → ω. We use

〈x, y〉 to denote the output of our pairing function on input (x, y). If desired we are able to

nest these bijections as follows 〈•, · · · , 〈•〈•, •〉〉 · · · 〉 to get a bijection ω× · · · × ω → ω.

We let A[i] denote the ith column of A, i.e., the set of all numbers in A of the form 〈i, j〉.

Given a finite F ⊂ ω, let F = {a0 < · · · < an} and for each i ≤ n let Xi be A[ai]. Then

we define A[F] =
⋃n
i=0Xi.

As noted before we are able to list all Turing functionals in some effective list, and from

now on we assume that this list is fixed. We let Ψi denote the ith functional from it

and use the convention that Ψ0 is the identity functional - that is the functional such that

Ψ0(A, x) = A(x) for any A and x. We use other upper case Greek letters to represent

specific Turing functionals - either ones we construct or which compute know functions.

Turing functionals compute in stages and we write Ψi(A, y)[s] ↓= x to mean that the ith

Turing functional (from our list) with oracleA is defined on input y in at most s steps, and

is equal on this input to x. If Ψi(A, y)[s] ↓, then for all t ≥ s, Ψi(A, y)[t] ↓= Ψi(A, y)[s].

Chapter 1. Introduction 5

We write Ψi(A, y)[s] ↑ to mean the functional is not defined in s steps. We write Ψi(y) as

shorthand for Ψi(∅, y), i.e., when the functional uses the empty set as an oracle.

We write Ψi(A) to denote the (possibly) partial function which on argument n is equal

to Ψi(A, n), and in this context we may write Ψi as shorthand for Ψi(∅). When we are

dealing with subsets of ω we identify them with their characteristic functions - so it makes

sense to say, for instance, Ψ(A) = B.

The use of an oracle computation Ψi(A, y) is x + 1, where x is the largest number,

such that A(x) is queried in the oracle computation. We write u(A, i, y) for the use in

computing Ψi(A, y), and assume that if Ψi(A, y)[s] ↓ then u(A, i, y) < s. We may also

write u(A, i, y, s) for the use in computing Ψi(A, y)[s]. If a computation halts then it does

so after a finite number of stages, and so its use is finite. We may write Ψi(σ, y) ↓= x if

Ψi(A, y) ↓= x and u(A, i, y) < |σ|, where σ is an initial segment of (the characteristic

sequence of) A. This means that if Ψi(A, y) ↓= x, then there exists some σ ∈ 2<ω, such

that Ψi(B, y) ↓= x for all B ⊃ σ. The use principle states the following: let Ψ(A) be

a converging oracle computation, and let B be a set such that B �u(A,n)= A �u(A,n) then

Ψ(B) �n= Ψ(A) �n .

Given two finite strings σ and τ we abuse notation and may say that Ψi(σ) is an initial

segment of Ψi(τ) (denoted Ψi(σ) ⊆ Ψi(τ)) if given the greatest n such that Ψi(σ, n) ↓

there is some n′ ≥ n such that Ψi(τ, n
′) ↓⊇ Ψi(σ, n).

A set A is computably enumerable (c.e.) if there is an effective process for enumerating

all the members of A. Formally we have that A is c.e. iff A = ∅ or there is a computable

function f such that A = range(f). All computable sets are c.e. (we simply enumerate

the set in order, using the function which computes it) and if both A and Ā are c.e. then A

is computable. Not all c.e. sets are computable, however. ∅′ is an example of such a set.

In the enumeration of a c.e. set each element may only be enumerated once, and may

never be removed. We are able to expand on this by increasing the number of times an

Chapter 1. Introduction 6

element may be entered and subsequently removed.

Definition 1.1.1 A is n − c.e. if an element x ∈ ω may be enumerated and removed at

most n times during the enumeration of A, i.e.,As(x) 6= As+1(x) at most n times during

the enumeration of A and A0(x) = 0. A is ω − c.e. if there is a computable bound on the

number of such enumerations and removals.

A setA is c.e. iff it is 1−c.e. and is n−c.e. if it can be expressed as a boolean combination

of n many c.e. sets, and their complements.

The following two theorems will be used throughout the thesis, proofs for them can be

found in [Coo04] and [Soa87].

Theorem 1.1.2 Normal Form Theorem

The following are equivalent

1. A is c.e.;

2. A ∈ Σ0
1;

3. A = domain(ψi) for some i.

This means we are able to list the c.e. sets in an effective order. We use Wi to denote

domain(Ψi), and call it the ith c.e. set. We use the notation Wi,s to denote the set of

numbers enumerated into Wi by the end of stage s. We use the notation WA
i to mean the

ith c.e. set with respect to A.

Theorem 1.1.3 Post’s Theorem

Given A ⊆ ω and n ≥ 0, then

Chapter 1. Introduction 7

1. ∅(n+1) is Σ0
n+1-complete;

2. A ∈ Σ0
n+1 ⇔ A is c.e. in ∅(n);

3. A ∈ ∆0
n+1 ⇔ A ≤T ∅n.

We are especially interested in ∆2
0 sets, and have the following definition.

Definition 1.1.4 A computable sequence {As}s∈ω of finite sets is a ∆0
2 approximating

sequence for A if (∀x)lims→∞As(x) exists and is equal to A(x). As is the approximation

to A at stage s. For shorthand if {As}s∈ω is a approximating sequence for A, we denote

this limsAs = A.

As this thesis is focused on those sets which have approximating sequences we give a

proof of the following.

Theorem 1.1.5 The Limit Lemma

A ≤T ∅′ if and only if A has a ∆0
2 approximating sequence. Similarly A is limit

computable in B if and only if A ≤T B′.

Proof: Let {∅s} be a computable enumeration of the ∅ First we show that if A ≤T ∅′

then A is ∆0
2. A ≤T ∅′, so we have a Turing functional Ψi such that A = Ψi(∅′). Then

As = {x < s : Ψi(∅′s, x)[s] = 1} is the required approximating sequence for A.

Now we show that if A is ∆0
2 then A ≤T ∅We construct a change set C, which is a c.e.

set such that A ≤T C (as C is c.e., C ≤T ∅′). We use C to record the changes in the δ0
2

approximation to A. If As(x) 6= As+1(x), then we enumerate 〈x, i〉 into Cs+1, where i is

the least a such that 〈x, a〉 /∈ Cs. To compute A from C, on input x using the oracle C

we compute the least i such that 〈x, i〉 /∈ C. If i is even then A(x) = A0(x), otherwise

A(x) = 1− A0(x). So A ≤T C ≤T ∅′.

Chapter 1. Introduction 8

2

Through out the thesis we will use the equivalences between being c.e. and Σ0
1 and being

∆0
2 and computable in ∅′. We will not cite them when doing so.

1.2 Trees

The trees we work with will normally be binary trees. The definitions given below easily

generalise to non binary trees. Given i ∈ {0, 1}, we let ī denote 1 − i. We then define a

tree to be a possibly partial function T : 2<ω → 2<ω subject to the following conditions:

for all σ ∈ 2<ω and i ∈ {0, 1}, when T (σ ∗ i) ↓

1. T (σ) ↓⊂ T (σ ∗ i)

2. T (σ ∗ ī) ↓ and is incompatible with T (σ ∗ i)

Condition 2 means that if σ and τ are incompatible, then T (σ) and T (τ) are incompatible

if defined. If T is a total function, then the tree is described as perfect.

Although not strictly correct, we follow standard conventions in terms of the following

abuses of notation. We say a string τ is in, or lies in, T if τ is in the range of T . We denote

this τ ∈ T . Given an infinite binary sequence A ⊂ ω (possibly the characteristic function

of a set) we say that it is a branch of T if for infinitely many τ ⊂ A, τ ∈ T . If this is the

case we may also say that A lies on T or (for emphasis) we might refer to A as an infinite

branch of T .

T0 is a subtree of T1 if it is a tree and the range of T0 is a subset of the range of T1. We

denote this T0 ⊆ T1. τ is of level n (or of height n) in a tree T if τ = T (σ) for some σ of

length n. τ is a leaf of T if τ ∈ T and there do not exist any proper extensions of τ in T .

A tree is of height n if it is finite and its leaves are at most of height n.

Chapter 1. Introduction 9

A tree is computable if it is computable as a function 2<ω → 2<ω. This means that the

range of a computable tree is a computably enumerable subset of 2<ω. Given a computable

tree T , we let T [s] denote the portion of the tree enumerated by stage s. We assume that

if σ ⊂ τ and T (τ) ↓, then T (σ) is enumerated before T (τ). When talking about trees we

say that τ is a successor of σ if both σ and τ lie in T and σ ⊂ τ . We may also say that σ

is a predecessor of τ . If there is no string γ with σ ⊂ γ ⊂ τ we say that τ is an immediate

successor of σ, or that σ is the immediate predecessor of τ . In general we use the notation

σ− to mean the immediate predecessor of σ.

1.3 Priority Arguments

Priority arguments are ubiquitous in computability theory - many proofs involve them in

some form. The basic idea behind the priority method is to break down the property (or

properties) the set being constructed must have into infinitely many requirements, and

give them a priority ordering. As an example, if we require that A 6= Ψi for all i then

A will be incomputable. In a standard priority argument we give a strategy to satisfy

each requirement in isolation, and then give a method for combining these strategies so

that all of the requirements are satisfied. We usually start by giving the ideas naively,

before formalising the construction. The action of given strategies may interact and if

two strategies have competing (or conflicting) aims to satisfy their requirements, then

precedence is given to the requirement of higher priority. Once the priority argument is

completed, and the required sets constructed, we have a verification (usually using an

inductive argument) which shows that the set(s) constructed do indeed have the required

properties.

Friedberg and Muchnik independently came up with a construction which allowed

requirements of higher priority to injure requirements of lower priority. They did this

to prove

Chapter 1. Introduction 10

Theorem 1.3.1 [Fri57];[Muc56] There exist incomparable c.e. degrees.

We first describe in general how a tree of strategies works, and then provide a proof

of the Friedberg-Muchnik Theorem using a tree argument, (which we split into a naive

construction, formal construction and verification) by way of example.

The simplest tree of strategies is a downwards closed subset of n<ω, for some n ∈ ω

- though they may also be downwards closed subsets of ω<ω or (ω + n)<ω. To create

a tree of strategies, as well as the downwards closed set, we need a way of assigning a

requirement to each node. Formally a node is a node on the tree of strategies and a module

is the version of a requirement associated with a node. In practice, when discussing the

tree, we use these terms interchangeably. We use calligraphic letters to denote a generic

requirement on the tree of strategies, and lower case Greek letters to give examples of

specific modules. The branches leaving a node are its external states. Nodes may also

have a set of internal states, these combined with the external states give the modules

possible outcomes.

Each module has a set of instructions to perform and which instructions it performs will

depend upon the state that it is in. At the beginning of a stage control is passed to the

module at the base of the tree. This module then acts based upon its current state and

its instructions. Control is passed to the immediate successor of the module, along the

branch corresponding to the modules outcome. In this situation, for brevity, we normally

omit the word ‘immediate’. The module that is passed control then acts, according to its

instructions and so the process continues. We bound the height of the tree of strategies

which can be reached at any given stage (so as to ensure that we only attempt to access

finitely many modules at each stage) by ending a stage s when height s is reached on the

tree of strategies. A stage may finish before this happens, if instructed to by a module

accessed during the stage. If a module performs no actions, then it simply passes control

along the branch according to the outcome it was in when passed control. We define the

control path for a given stage (CPs) to be the set of modules passed control during the

Chapter 1. Introduction 11

stage. That is, if σ is the last module to act in a given stage, then the control path for that

stage is the set of modules on substrings of σ. Naively the true path (TP) is the string

on the tree of strategies which builds the required sets. How we formally define the true

path varies from construction to construction. In the Friedberg-Muchnik example it is the

rightmost path visited during the construction, though this is not always the case.

Proof (of Theorem 1.3.1):

We build two c.e. sets A and B such that A �T B and B �T A. To do this we build

approximationsAs andAs, such thatAs ⊆ As+1 andBs ⊆ Bs+1, toA andB respectively.

We end by defining A =
⋃
sAs and B =

⋃
sBs. We start with A0 = B0 = ∅ and at stage

s use the current approximation to A or B when performing calculations. We have the

following requirements.

Qi : A 6= Ψi(B)

Ri : B 6= Ψi(A).

For an individual requirement the strategy is simple. Qi picks a witness x (not yet in A)

to try and show that A(x) 6= Ψi(B, x). Ri does nothing until we reach a stage s + 1

where Ψi(Bs, x) ↓ [s] = 0, at which point it enumerates x into As. There are two possible

outcomes here, either Ψi(B, x) ↑ (but A(x) is defined), or Ψi(B, x) ↓6= A(x) - both of

which satisfy the requirement. (The strategy for a Ri requirement is the same, but with

A and B switched). The difficulty here is that a requirement may see Ψi(A, x) ↓= 0

at some stage and act accordingly (enumerating x into B), but then at some later stage

a requirement of higher priority alters B below u(A, i, x). This means that we can no

longer be certain of the final value of Ψi(A, x). We use the tree of strategies to solve this

problem.

Formally a Qi module has two possible states - labeled 0 and 1. In state 1 it has managed

to successfully diagonalise A and Ψi(B). In this case this particular module will not act

Chapter 1. Introduction 12

Q1 Q1 Q1 Q1

R0

0

aa

1

>>

R0

0

aa

1

>>

Q0

0

hh

1

66

Figure 1.1: Friedberg-Muchnik Tree of Strategies

again, though a change of state lower down the tree may cause another module associated

with the same requirement to be accessed, and the diagonalisation reattempted. At stage

s in state 0, if the module does not have an associated value, then it picks n such that

As−1(n) ↑ and sets As(n) ↓= 0. If the module does have an associated n then it checks

if Ψi(Bs−1, n)[s− 1] ↓. If so and Ψi(Bs−1, n) 6= 0 (or As−1(n)), then it sets As = As−1,

Bs = Bs−1 and enters state one. If Ψi(Bs−1, n) = 0, then it sets As = As−1 ∪ {n},

Bs = Bs−1 and enters state one.

AnRi module acts precisely the same, but with the roles of A and B swapped.

In Figure 1.1 you can see the lay out of the base few nodes in the tree of strategies. If

we consider the left most Q1 module. When this module is first passed control it picks a

witness, and then at some later stage, s, it acts to diagonalise using some B value. If at

some stage s′ > s, after this has happened, the left most R0 module acts, altering the B

value thatQ1 used, however in doing soR0 moves into state 1, and a differentQ1 module

now attempts to diagonalise Ψ1(B) andA. This new module is able to pick a new witness,

and wait for a new β value which allows it to diagonalise. If no such β is everfound then

Ψ1(B) is partial, and so not equal to A.

The discussion above can be condensed into the following formal construction

Chapter 1. Introduction 13

Stage 0: Set A0 = λ and B0 = λ.

Stage s + 1: We are given As and As. We describe the action of Qi nodes, for Ri nodes

the action is the same but with As and Bs swapped. Start at the bottom of the tree and

work upwards as follows. The stage finishes when height s of the tree is reached, unless

instructed to before that height is reached. If a node is in state 1, do nothing and move to

the next node on the control path. If a node is in state 0, and does not have an associated

value, pick n ≥ s larger than previously used and larger than the use of any previously

computed functional, associate it with the node and setAs+1(n) = 0. If the node is in state

0, and has associated value n, check if Ψi(Bs, n)[s] ↓6= As(n). If so set As+1 = As, move

the node into state 1 and finish the stage. If not, and Ψi(Bs, n) ↓, set As+1 = As ∪ {n},

move the module into state 1 and finish the stage. If Ψi(Bs, n) ↑ move to the next node

on the control path.

Formally we verify that all the requirements are satisfied as follows. We argue without

loss of generality for the Q module case - the arguments all work in the R case, with Q

andR swapped and A and B swapped.

First we show that no module higher up the tree of strategies is able to injure one lower

down the tree. Let ρ be anQi module with witness nρ. EveryQ module of lower priority

(on the same branch as ρ) must have a witness strictly larger than nρ, and so noQmodule

of lower priority is able to injure ρ by enumerating nρ in A. We must also consider the

actions of lower priority R modules. Suppose at stage t, ρ sees Ψi(αt, nρ) ↓ [t] = 0 and

then at some stage t′ > t a Ri′ module (with i′ > i) wants to enumerate into (the set

represnted by) αt below height nρ. This is impossible, as when ρ first saw convergence

it entered state 1, and so a new Ri′ module was accessed and it picked a new witness,

larger than previously seen and larger than the use in computing any previously computed

functional and hence larger than u(At, i, nρ).

Now we have to show by induction that all requirements are satisfied. We do this by

induction as follows. At stage s = 0 the True Path is the empty string and so the base

Chapter 1. Introduction 14

case holds. Let s′ > 0 be the stage such that all modules of height < t on the True Path

(on the tree of strategies) have acted. Let ρ be the module at height t on the True Path,

and without loss of generallity assume that ρ is a Q module, with associated functional

Ψi and associated value nρ. No module below or to the left of ρ on the tree of strategies

will act after stage s′. Consider two cases:

1. For no s′′ > s′ do we see Ψi(As′′ , nρ)[s] ↓. In this case ρ is satisfied as B(nρ) = 0

and Ψi(A, nρ) ↑.

2. There is some stage s′′ > s′ such that Ψi(As′′ , nρ)[t
′] ↓. If this is the case then at

stage s′′ > s′ diagonalises, so Bs′′(nρ) 6= Ψi(As′′ , nρ). From before we know that

after this stage ρ is never again injured and so B(nρ) 6= Ψi(A, nρ)

This completes the induction, and hence the proof.

2

In the example above each module can only injure modules of lower priority finitely many

times, hence constructions of this type are called finite injury constructions. It is possible

for a construction to be infinite injury as well. When a construction uses an oracle to

perform a step (typically, though not necessarily, ∅n for some n) it is called an oracle

construction. A construction may be described as full approximation if it is an (effective)

priority construction where the sets being constructed are not recursively enumerated but

computably approximated.

Further information on priority arguments and details of using a tree of strategies can be

found in [Odi99].

15

Chapter 2

The Local Degrees

In this chapter we look at the degrees below ∅′. The main results covered are to do with

the High-Low Hieararchy - first described in [Coo74] and [Soa74]. Proofs concerning the

High-Low Hierachy come originally fro [Sac63], but we use the method from [JS84]. We

also introduce the concept of natural definability. An introduction to this can be found

[Lew]. The content of this chapter is not essential for following the new work in Chapters

4 and 5, but helps to give a broader overview of the subject.

The study of the structure of the degrees inD, is a main area of focus in computability and

within this those degrees below 0′ - known as the local degrees - are of especial interest.

We have already seen that a natural ordering exists on D, and that incomparable degrees

exist so the ordering cannot be linear.

To see that any pair of degrees has a unique least upper bound note that given any two

representative sets A and B from degrees a and b, we are able to construct a set A ⊕ B

whose characteristic function is (A ⊕ B)(2n) = A(n) and (A ⊕ B)(2n + 1) = B(n).

Any set which computes both A and B computes A⊕ B, and A⊕ B computes both and

A and B. From this we see that the least upper bound of any two degrees a and b is

deg(A ⊕ B). In Chapter 3, (Theorem 3.2.1) we construct a pair of degrees which has no

Chapter 2. The Local Degrees 16

non-trivial lower bound.

We use the notation a ∨ b to mean the least upper bound of a and b; and a ∧ b to mean

the greatest lower bound of a and b, if it exists.

When looking at structural properties and definability within D another important area of

study is natural definability (see for instance [Lew]). What exactly we mean by natural

definability is not clear, as the notion of what makes a mathematical statement natural is

clearly not a precise one. In Section 2.2 we will consider more what we mean by natural.

2.1 The High-Low Hierarchy

In this section we discuss the High-Low Hierarchy, as developed by Cooper [Coo74] and

Soare [Soa74]. It gives us a way of describing the information content of a degree below

0′. Informally the higher a degree is, the closer to 0′ it is and the more ‘knowledge’

(in some sense) it has; conversely the lower a degree is the closer it is to 0 and the less

‘knowledge’ it has.

Definition 2.1.1 For n ≥ 1 we have the following definition of the High-Low Hiearchy.

highn = {a ≤ 0′ : an = 0n+1}

lown = {a ≤ 0′ : an = 0n}

.

Given a set A if deg(A) ∈ highn we say that A and a = deg(A) are highn, sometimes

shortened to Hn. Similarly for lown. If n = 1 we often drop the subscript and simply say

that a set or degree is low or high.

Chapter 2. The Local Degrees 17

That the high-low hierarchy does not collapse follows from results in [Sac63]. We give

a proof (in Theorem 2.1.2), which follows the ideas given in [JS84]. First we use a

full approximation construction to build a low degree. We use a full approximation

construction, rather than the easier oracle construction, as we are later able to give simple

modifications which allow us to construct a set which is low relative to an arbitrary degree.

Once we have constructed a low degree we introduce the psuedo-jump operator and then

prove a theorem which when combined with the low degree construction will allow us to

build sets which are highn+1, but not highn, and lown+1, but not lown for all n.

Theorem 2.1.2 (From work in [Sac63])There exists a set A 6=T ∅ which is c.e. and low.

Proof:[JS84] We construct a set A using a basic priority argument, such that A is c.e.

and deg(A)′ = 0′. We build A in stages, and ensure that As ⊆ As+1 - where As is the

approximation to A at stage s. In the end we will define A =
⋃
sAs.

Outline: We have the following two requirements:

Pi : Wi infinite⇒ Wi ∩ A 6= ∅,

Qi : ∃∞s[Ψi(As, i)[s] ↓]⇒ Ψi(A, i) ↓.

Where ∃∞ means “there exist infinitely many”. We must also ensure that A is coinfinite,

and so (with the Pi requirements) that A is simple.

The Qi requirements look to show that A is low. This is done in two parts, first consider

the function

g(i, s) =

 1 if Ψi(As, i)[s] ↓

0 otherwise

Chapter 2. The Local Degrees 18

and let g∗(i) = limsg(i, s), which exists if Qi is satisfied. g∗ is the characteristic function

of A′, and as g is computable, g∗ can be computed using an oracle for ∅′ - ensuring that A

is low.

In order to satisfy the Qi requirements we make use of a restraint function, which allows

us to stop the construction injuring Qi requirements which are of ‘too high’ priority -

exactly how this works is described later. We define the restraint function as follows:

ri(s) = u(As, i, i, s).

The restraint function is injured at stage s + 1 of the construction if some n < ri(s) is

enumerated into A. Then if there is some stage after which ri is not again injured then Qi

is satisfied and limsre(s) is defined. To see this let s0 be the least stage after which re is

never again injured. As for all stages t ≥ s0 if Ψi(At, i)[t] ↓ then Qi is satisfied and in

the limit ri(s) equals 0. Alternatively let t ≥ s0 be the least subsequent stage at which

Ψi(At, i)[t] ↓. No numbers are enumerated into A which are less than u(At, i, i, t) after

stage t, and so the computation is preserved with Ψi(A, i) ↓. Hence ri(s) = ri(t) for all

s ≥ t.

The Pi requirements, combined with making sure that A is coinfinite, ensure that the

complement of A is not equal to Wi for any i - this is sufficient to guarantee that A is

incomputable, as A is computable if and only if both A and Ā are c.e.

Ordering the Requirements: The requirements are given the following priority order

Q0 > P0 > Q1 > P1 > · · · > Qn > Pn > · · ·

Where A > B denotes “A is of higher priority than B”. Q0 is the module of highest

priority. No module is allowed to injure a module of higher priority. Specifically Pi may

Chapter 2. The Local Degrees 19

only enumerate n into A at stage s + 1 if for all j ≤ i, n > rj(s). Each Pi module need

act only once, as once it has enumerated a number into A it is irreversibly satisfied.

All modules will eventually be satisfied as each Qi module is of lower priority than only

finitely many Pi modules. Once all the Pi modules below it are satisfied (which occurs at

some finite stage) the Qi module is never again injured. As each Qi module is satisfied,

limsri(s) exists for all i. All Pi modules are satisfied as well, as if Wi is infinite then it

will have a member which is greater than the restraint function of all modules of higher

priority - this can be enumerated into A as required. If Wi is finite then the implication is

automatically satisfied.

Construction: The formal construction is as follows

Stage 0: Set A0 = ∅

Stage s+ 1: Given As, find the least i ≤ s (if such an i exists) such that:

1. Wi,s ∩ As = ∅,

2. ∃x[x ∈ Wi,s ∧ x > 2i ∧ (∀e ≤ i)[re(s) < x]].

If such an i exists then pick the least such i and enumerate the least x satisfying (2) into

A and go to the next stage. If not, go to the next stage.

Verification: Ā is infinite as each Pi requirement may enumerate at most one element

into A. If it does enumerate an element x into A then x > 2i.

The formal induction that every requirement is satisfied uses the arguments given in the

“Ordering the Requirements” section and is omitted.

This completes the proof of Theorem 2.1.2.

2

Chapter 2. The Local Degrees 20

We can relativise the proof of lowness as follows:

Definition 2.1.3 A set A is low relative to a set Y if A ≥T Y and A′ =T Y
′.

This extends to A being lown relative to Y and transfers to A being highn relative to Y

in the obvious way.

Showing the existence of a set which is low relative to a set Y is very simliar to

showing the existence of a set which is low. We construct a set A which is c.e. in Y .

The construction follows the same basic pattern, except that we ensure that A is not

computable in Y and when constructing g and g∗ we ensure that g is computable in Y

and that g∗ can be computed using an oracle for Y ′. This guarantees that Y ⊕ A has the

desired properties. Full details are omitted.

Next we introduce the pseudo-jump operator (first described by Jockusch and Shore

[JS83]) which naively acts like a “little jump operator”.

Definition 2.1.4 We define Je(Y) to be the eth pseudo-jump of Y. For e ∈ ω and Y ⊆ ω

define Je(Y) = Y ⊕W Y
e

We define the pseudo-jump operator to be Y ⊕W Y
i so as to ensure that Y ≤T Ji(Y). We

now show that there exists a set which pseudo-jumps to 0′.

Theorem 2.1.5 [JS83]For every i there is a non-computable c.e. set A such that

Ji(A) ≡T ∅′

Proof: Fix i. We construct a c.e. set A, such that deg(A) > 0 and such that, deg(A ⊕

WA
i) ≥ 0′. We build A in stages, and ensure that As ⊆ As+1. In the end we will define

A =
⋃
sAs.

Chapter 2. The Local Degrees 21

Outline: To prove this we have three types of requirements, the first aiming to show that

WA
i ≤T ∅′, the second guarunteeing that A is not computable and the aiming to show that

A⊕WA
i ≥ ∅′.

P2x : x ∈ ∅′ ⇔ (∃y ≤ h(2x))[y ∈ ω[2x] and y ∈ A],

P2x+1 : A 6= W̄e

Qx : (∃∞s)[x ∈ WAs
i,s]⇒ x ∈ WA

i .

h(x) is defined formally later but the basic idea for the P2x requirements is as follows.

We wish to encode ∅′ into A⊕WA
i . To do this we first ensure that A ∩ ω[x] is non-empty

if x ∈ ∅′ (i.e., we enumerate an element into the xth column of A iff x ∈ ∅′), and then we

ensure that there exists some function h ≤T WA
i such that whenever there is a number in

the xth column ofA, it is less than h(2x). In this way we ensure that ∅′ ≤T A⊕WA
i - using

arguments similar to those used previously we are able to build characterstic function of

∅′ which is computable in A⊕WA
i .

TheQx requirements follow the same pattern as theQ requirements in the previous proof.

As before we build a function computable given an oracle for ∅′ which allows us to

compute the characteristic function of A ⊕ WA
i , and use a restraint function to ensure

that all the Q requirements are satisfied. Consider the following function,

g(i, s) =

 1 if x ∈ WAs
i,s

0 Otherwise

Arguments given in the previous proof ensure that if theQ requirements are satisfied then

g∗(i) = limsg(i, s) exists, is computable in ∅′ and computes A ⊕ WA
i . We define the

restraint function as follows:

rx(s) = u(As, i, x, s).

Chapter 2. The Local Degrees 22

The restraint is injured if at some stage an element is enumerated into A which is less

than the current value of the restraint function for x. As before we require (for each x)

that after some finite stage of the construction the restraint is never again injured.

Ordering the Requirements The requirements are given the following priority order

Q0 > P0 > Q1 > P1 > · · · > Qn > Pn > · · ·

With Q0 being the module of highest priority. No module is allowed to injure a module

of higher priority.

Each Px module only has finitely many Qx′ modules which are of higher priority than it.

If we have an oracle for WA
i then we know which x′ are in WA

i , and using an oracle for

A we are then able to compute limsrx′(s). So using an oracle for A ⊕WA
i we are able

to find a position within the xth column after which enumerating numbers will not injure

requirements of higher priority.

Construction:

Stage 0: Set A0 = ∅. For all x define h∗(x, 0) = 〈x, 0〉

Stage s+ 1: At stage s+ 1, given As, define the computable function

h∗(x, s) = (µy)
[
y ∈ ω[x] ∧ h∗(x− 1, s) < y ∧ h(x, s− 1) ≤ y ∧ (∀j ≤ x)[rj(s) < y]

]
.

Given As we have rj(s) for all j.

Fix an enumeration {∅′s} of ∅′, and consider the P2x and P2x+1 requirements serparately

Choose the least j ≤ s such that ∅′j+1 − ∅′j 6⊆ ∅ and [∅′j+1 − ∅′j] /∈ As i.e., such that

the element enumerated into ∅′ at the jth step of our fixed enumeration is not in our

approximation to A at stage s. If such a j exists choose the least x ∈ ∅′j+1 − ∅′j and

Chapter 2. The Local Degrees 23

enumerate h∗(2x, s) into As+1. If such a j exists we say that P2j receives attention. If

such an j exists we say that P2j receives attention. P2j is satisfied for all stages >s+1 and

hence P2j never again receives attention. If i does not exist, do nothing.

Secondly choose the smallest j such that j ≤ x, Wj,s ∩ As = ∅ and

(∃x)
[
h(2x+ 1, s) ∈ Wj,s & x > 2j & (∀e ≤ j)[r(e, s) < x]

]
If such a j exists choose the least x satisfying the above equation. Enumerate this into

As+1. If this happens we say that P2j+1 receives attention. P2j+1 is satisfied for all stages

>s+1 and hence P2j+1 never again receives attention. If j does not exist, do nothing.

We define h(x) = limsh
∗(x, s).

Verification

We say that y injures Qx at stage s + 1 if y ∈ As+1 − As and y ≤ rj(s). We define the

injury set set for Qx as follows

Ix = {y: y injures Qx at some stage s+ 1}

We now have to show that our construction does indeed satisfy all of the requirements,

required in the proof of Theorem 2.1.5.

Lemma 2.1.6 For all x, Ix is finite.

Proof: (Note: This is the same as saying that for each x, Qx is injured at most finitely

often.) Each positive requirement contributes at most 1 element to A. Also, Qx can be

injured by Px′ only if x′ < x. So |Ix| ≤ x.

2

Chapter 2. The Local Degrees 24

Lemma 2.1.7 For every x, Qx is met and r(x) = limsrx(s) exists.

Proof: Fix some x. By the previous Lemma we know that there is an s such that Qx is

not injured at any stage s′ > s. If x ∈ WAs
x,s for s′ > s then (by induction on t ≥ s)

rx(t) = rx(s) and WAt
x,t (x) = WAs

x,s (x) for all t ≥ s so As �r= A �r for r = rx(s) and

hence WA
x (x) is defined.

2

Lemma 2.1.8 For all j, h(j) = limsh
∗(j, s) exists.

Proof: This follows from the definition of h∗(j, s) and Lemma 2.1.7.

2

Lemma 2.1.9 For every x, requirement Px is met.

Proof: Fix some j.

If j = 2x: Choose s such that (∀t ≥ s)(∀e ≤ x)[re(t) = r(t)]. Choose s′ ≥ s such that

no Pj′ , j′ < j receives attention after stage s′. Choose t > s′ such that

∃x
[
x ∈ ∅′x+1 − ∅′x and (∀e ≤ x)[r(t) < x]

]
Now, either h(j, t) ∈ As or Pj receives attention at the next stage i.e., j is enumerated

into a column of A at the next stage. Either way Pj is met.

If j = 2x + 1. Choose s such that (∀t ≥ s)(∀e ≤ x)[r(e, t) = r(e)]. Choose s′ ≥ s such

that no Pj , j′ < j receives attention after stage s′. Choose t > s′ such that

Chapter 2. The Local Degrees 25

∃x
[
x ∈ Wj′,t and (∀e ≤ j′[r(e) < x]

]
Now, either Wj,t ∩At 6= ∅ or Pj receives attention at the next stage. Either way Pj is met.

2

Now note that r ≤ A⊕WA
i , and hence h ≤ A⊕WA

i . As noted earlier this gives us that

∅′ ≤T A⊕WA
i , and so completes the proof.

2

This concludes the proof of Theorem 2.1.5

The proof of Theorem 2.1.5 is uniform in e and can be relativised to any oracle. That is

there exist computable functions f and g such that for all e ∈ ω and Y ⊆ ω

Je(Jf(e)(Y)) = Y ′, via g(e).

i.e.,

Jf(e)(Y) �T Y and Y = Ψ
Jf(e)(Y)

g(e) .

Also, note that: Y ′ is lown over C ⇔ Y is highn over C.

Finally we come to the main proof, that the high-low hierachy doesn’t collapse.

Theorem 2.1.10 ([Sac63])For every n there exist c.e. degrees in Hn+1 −Hn and Ln+1 −

Ln

Chapter 2. The Local Degrees 26

Proof: We prove this by induction.

Note that a set Y ′ is lown over C if and only if C is highn over Y .

The existence of a low1 set is given in Theorem 2.1.2. Theorem 2.1.2 can be relativised

to give an index e1 for which Y <T W Y
e1

and Y ′ ≡T (W Y
e1

)′, i.e.,We1 is low relative to

Y . We can use Theorem 2.1.5 on index e1 to produce a set A which ∅′ is relative to, and

hence which is high1. This completes the base of the induction.

Assume that the theorem holds for n. We wish to show that it hold for n + 1. At stage

n we were an index, en say, such that for any set Y , W Y
en is highn over Y . We can use

the relativisation of Theorem 2.1.2 on en to produce a set A which is lown+1 and then can

use Theorem 2.1.5 to construct a set B such that ∅′ is lown+1 relative to B′ and hence B

is highn+1.

This finishes the induction, and hence the proof.

2

The high-low hierarchy gives us a horizontal layering of the local degrees, and is

important as many properties of the local degrees are dependent on the jump class a degree

lies in (i.e., where in the high-low hierarchy a degree lies). For instance the minimal

degrees we construct in Chapter 3 are all low2 and the 1 generic degrees we are concerned

with in Chapter 5 are low1.

It is possible to generalise the concept of the jump classes to the Turing degrees as a whole

(see [JP78]), using the following definition.

Definition 2.1.11 For n ≥ 1 a degree a is generalised lown if an = (a∨0′)n−1. A degree

a is generalised highn if an = (a ∨ 0′)n.

Intuitively a degree is lown if its nth jump is as low as it can be with relation to 0′ and

generalised lown if its nth jump is as low as it can be with relation to a∨ 0′; and a degree

Chapter 2. The Local Degrees 27

is highn if its nth jump is as high as it can be with relation to 0′ and generalised highn if

its nth jump is as high as it can be with relation to a∨0′. Below 0′ the low and generalised

low classes, and high and generalised high classes coincide.

Many results from the high-low hierarchy generalise but this is not always the case. An

important example is that every degree which is not above 0′ is bounded by a generalised

low degree. As there exist generalised high degrees below 0′, the generalised jump classes

do not respect our ordering on the Turing degrees in the same way the (non-generalised)

jump classes do.

2.2 Natural Definability

Within the Turing Degrees a relationship is definable if there is a formula in the language

of partial orders which is true of those tuples of degrees in the relationship.

Definability results do exist for some of the key concepts in computability. 0′ was shown

to be definable in [SS99], the definition of the jump function is definable by a relativisation

of this, and Nies, Shore and Slaman [NSS98] showed that all jump classes except low are

definable in the c.e. degrees.

The technique used in these proofs (and in many other definability results) is to encode

models of arithmetic into the degree structure. Although a powerful technique it does

not yield what would be considered natural definitions. The question left is whether the

presented definition of a given relation (or one which is equally unnatural) is the only one

which exists or whether there might be a more natural one.

What exactly is natural is not precise, but intuitively we wish the definition to be in

the language of partial orders, relatively short, and contain relatively few alterations of

quantifiers. Such a definition might be of the form a is the least degree such that all

degrees above have a certain property or the greatest degree such that all degrees below

Chapter 2. The Local Degrees 28

have a certain property, or some other equally ‘simple’ concept.

2.3 Properties in the Local Degrees

In this section we give definitions for some properties which a degree may have, and are

potentially useful in our search for natural definability results. For this to happen we need

the properties to themselves have some natural definition. We think of an order theoretic

property being natural if the property can be described by a formula in the first order

language for Turing degrees and which uses only a small number of non-logical symbols.

As before we require the definition to be not too long, or have too many alterations of

quantifiers.

In Chapter 4 and Chapter 5, we will give results about certain classes of degrees (within

the local degrees) concerning the following properties.

Definition 2.3.1 A degree a > 0 satisfies the join property if, for all non-zero b < a there

exists c < a with b ∨ c = a.

Definition 2.3.2 A degree a > 0 satisfies the meet property if, for all b < a there exists

non-zero c < a with b ∧ c = ∅.

We can extend the previous two definitions as follows

Definition 2.3.3 A degree a satisfies the complementation property if for all non zero

c < a there exists non-zero b < a such that b ∨ c = a and b ∧ c = 0.

These definitions satisfy the conditions we gave to be natural and 0′ satisfies all of them

[Pos81]. It is however not known whether 0′ is the least degree such that all degrees above

satisfy complementation. A positive answer to this would be a natural definition for 0′.

Chapter 2. The Local Degrees 29

In this thesis we are looking at order theoretic properties concerning meet and join, in the

hope that they will provide some use in helping to show whether 0′ is indeed the least

such degree.

We show in Chapter 3 (Theorem 3.2.1) that degrees exist which satisfy the following

definition.

Definition 2.3.4 A degree a > 0 is minimal if b < a implies that b = 0.

This shows us that the local degrees are not densely ordered. In Chapter 4 we will use this

property to show certain classes of degrees satisfy the meet property.

The final result in this thesis (Theorem 5.2.2) concerns generic degrees. Our notion of

generic degrees comes originally from Cohen’s idea of forcing, invented by him in 1963

[Coh63]. In 1965 Feferman showed that one could force relative to the first order language

of arithmetic [Fef65] and in 1977 Jockusch developed the version of forcing we currently

use in computability theory [Joc77b]

Definition 2.3.5 A set A is 1-generic if for every c.e. set of strings W either

1. (∃σ ⊂ A)[σ ∈ W]; or

2. (∃σ ⊂ A)(∀τ ⊇ σ)[τ /∈ W].

A degree is 1-generic if it contains a 1-generic set. In Chapter 5 (Theorem 5.0.5) we show

how to build 1-generic sets within the local degrees.

30

Chapter 3

Minimal Degree Constructions

In this chapter we cover minimal degree constructions. A Turing degree, a, is minimal

if a 6= 0 and for any degree b if b < a then b = 0. The first minimal degree was

constructed by Spector in [Spe56]. In [Sac61], Sacks adapted the proof given by Spector,

to fit within the ideas given by Friedberg and Muchnik in order to show that there exists

a minimal degree a ≤ 0′. In [Sho66] Shoenfield, showed that if 0 < a < 0′, then there is

a minimal degree b below 0 and incomparable with a. The method he used to construct

the minimal degree b was (presentationally)a considerable simplification of the previous

methods used to construct a minimal degree. This framework became the standard one

for constructing minimal degrees, and our constructions follow this. We end the chapter

with a full approximation construction of a minimal degree, following the ideas of Cooper

[Coo72]

The necessary machinery for our construction of minimal degrees is splitting trees, and

we introduce these first. With this in place we build a minimal degree below 0′′ and then

below 0′. Finally we discuss building a minimal degree by full approximation. It is an

adaptation of this method which we will use for the results in Chapter 4.

Chapter 3. Minimal Degree Constructions 31

σ′ σ′′ Ψi(σ
′) Ψi(σ

′′)

Ψi

++

σ Ψi(σ)

Figure 3.1: A Ψi splitting above a string σ

3.1 Splitting Trees

A key concept in the construction of minimal degrees is that of splitting trees. Where we

are considering binary versions of trees, as defined in Chapter 1.

Given two strings σ and τ , we say they are Ψi splitting if neither Ψi(σ) ⊆ Ψi(τ) nor

Ψi(τ) ⊆ Ψi(σ). We often refer to a pair of Ψi splitting strings as “a Ψi splitting”. So, to

“search for a Ψi splitting” means to search for two strings which are Ψi splitting.

As depicted in Figure 3.1, if asked to find a Ψi splitting above a string σ, we search for

two strings σ′ and σ′′, extending σ such that for some n, Ψi(σ
′;n) ↓6= Ψi(σ

′′;n) ↓.

Using the idea of splitting strings we have the following definitions.

Definition 3.1.1 A tree T is a Ψi splitting tree if any two incompatible strings on T are

also Ψi splitting.

Definition 3.1.2 A tree T is a Ψi nonsplitting tree if no pair of strings in T are Ψi -

splitting.

A tree may be neither Ψi splitting nor Ψi nonsplitting. Remembering our convention that

Ψ0 is the identity functional, we can see that 2<ω is a Ψ0 splitting tree. Given a tree T , a

Ψ splitting subtree T ′ is a subtree of T which is also a Ψ splitting tree. Given a tree T and

Chapter 3. Minimal Degree Constructions 32

a branch τ in T , a Ψ splitting subtree above τ is a subtree T ′ of T which is Ψ splitting and

for which T ′(∅) = τ .

If we wish to build a set M of minimal degree, we require that it is incomputable and that

for all i if Ψi(M) is total then it is computable or M ≤T Ψi(M), as this ensures that M

satisfies the definition of minimality. To this end we have the following two lemmas.

Lemma 3.1.3 If M lies on T which is a partial computable Ψi splitting tree and Ψi(M)

is total, then M ≤T Ψi(M).

Proof: We suppose that M lies on T , a partial computable Ψi splitting tree, and that

Ψi(M) is total. We show that in this case, given an oracle for Ψi(M) we can compute M .

To do this we start at the base of T and work upwards. As, by assumption,M lies on T we

know that T (∅) ↓⊂ M , and that one of T (0) and T (1) must be an initial segment of M .

Compute T (0) = τ0 and T (1) = τ1. AsM lies on T these values must be defined. T is Ψi

splitting, so Ψi(τ0) and Ψi(τ1) are incompatible, and exactly one of them is compatible

with Ψi(M). Determine which of them it is and hence which of τ0 and τ1 is an initial

segment of M .

The process described above used the knowledge of which string on level 1 of the tree

was an initial segment of M and gave us the string on level 2 which is an initial segment

of M . It is clear how we continue to iterate this process, and so compute M using an

oracle for Ψi(M).

2

Lemma 3.1.4 If M lies on T which is partial computable and Ψi nonsplitting, then

Ψi(M) is computable if total.

Chapter 3. Minimal Degree Constructions 33

Proof: We suppose that M lies on T , a partial computable Ψi nonsplitting tree, and that

Ψi(M) is total. To compute Ψi(M ;n), search until τ ∈ T is found with Ψi(τ ;n) ↓. Such

a string exists as M lies on T and Ψi(M) is total. Then Ψi(τ ;n) = Ψi(M ;n) as T is Ψi

nonsplitting.

2

If, for each Ψi we can ensure that the requirements for either Lemma 3.1.3 or Lemma

3.1.4 are satisfied, then we can ensure that if Ψi(M) is total then it is computable or

M ≤T Ψi(M). Using a trick first used by Posner [Pos79] we are also able to remove the

need for a separate incomputability requirement.

Lemma 3.1.5 If, for every i, there exists a computable tree Ti such that M lies on Ti and

either

1. Ti is Ψi splitting, or

2. there is some initial segment of M in Ti with no Ψi splitting extension in Ti

then M is not computable.

Proof: Assume that M satisfies the conditions in the lemma. If M is computable then

given a string σ we may computably test whether σ is an initial segment of M . Consider

the Turing functional defined as follows

Ψ(σ;n) =

 σ(n) if σ 6⊂M

undefined if σ ⊂M

For any µ ⊂ M , on any input n, Ψ(µ;n) ↑, so M does not lie on a Ψ splitting tree.

Every infinite tree contains Ψ splittings, and any tree containing M must be infinite -

contradicting the existence of M .

Chapter 3. Minimal Degree Constructions 34

2

The previous three lemmas are integral to the following minimal degree constructions.

During our discussions we use them without explicit reference. In the formal verifications

we reference them as appropriate.

3.2 A Minimal Degree below 0′′

It is comparatively easy to construct a minimal degree below 0′′ due to the high amount of

power we are able to utilise thanks to the oracle. The proof we give, of the original result

by Spector[Spe56], follows that given by Epstein in [Eps75]. We discuss the 0′′ oracle

and the 0′ oracle in more detail in Section 3.3.3. We leave the details of the ability of the

oracle to answer certain questions until then.

Theorem 3.2.1 [Spe56]There exists a minimal degree.

Proof[Eps75]: We construct a setM of minimal degree. Thanks to Posner’s trick [Pos79],

we have only one type of requirement for this proof, which we must satisfy for all i ∈ ω.

Ri: If Ψi(M) is total, then M lies on a computable tree Ti such that either Ti is Ψi

splitting or above some initial segment of M Ti has no Ψi splittings.

The requirements are given a priority order as follows,

R0 > R1 > · · · > Ri > · · ·

R0 is the module of highest priority.

Chapter 3. Minimal Degree Constructions 35

We define a sequence of computable trees {Ts}s∈ω, with Ts ⊃ Ts+1, and a sequence of

finite strings {µs}s∈ω such that µs ⊂ µs+1. For each s we require that µs lies in Ts and

that Ts is Ψs splitting or that µs has no Ψs splitting extensions on Ts. The set M =
⋃
µs

then satisfies all the requirements.

3.2.1 Construction

Stage 0. Set µ0 = λ and T0 = 2<ω.

Stage s+1. We have trees T0 ⊇ · · · ⊇ Ts and a string µs ∈ Ts. We consider the following

two possibilities and act as required.

If all extensions of µs in Ts have Ψs+1 splitting extensions in Ts then define Ts+1 to be a

Ψs+1 splitting subtree of Ts above µs and define µs+1 to be the immediate left1 successor

of µs in Ts+1.

If there is some extension of µs in Ts which has no Ψs+1 splitting extension in Ts then let

µ be the least such string and let Ts+1 be the complete subtree of Ts above µ. Define µs+1

to be the immediate left successor of µ in Ts+1.

3.2.2 Verification

Lemmas 3.1.3, 3.1.4 and 3.1.5 are sufficient to confirm that the degree constructed is

minimal, as each requirement is satisfied the first time it is visited.

This concludes the proof of Theorem 3.2.1

2

1The choice of left here is arbitrary, we simply require that µs+1 lies on Ts+1 and properly extends µs.

Chapter 3. Minimal Degree Constructions 36

We only asked questions recursive in ∅′′ during the construction, and as ∅′′ is not minimal,

it must be the case that, the degree ofM , m < 0′′. Given an oracle for ∅′′ we are able to tell

whether above every extension of a string µ there exists splittings for a given functional -

see Section 3.3.3

3.3 A Minimal Degree below 0′

During the construction of a minimal degree below 0′′ in the previous section, we were

able to ask directly if (for a given i) every extension of a string µ had a Ψi splitting. Below

0′ we are unable to do this. We are able to ask whether there exists a Ψi splitting above µ,

but not whether a splitting exists above every extension of µ.

Theorem 3.3.1 [Sac61]There exists a minimal degree a ≤ 0′

Proof: In order to construct a minimal degree below 0′, we adapt the proof of Theorem

3.2.1 so that we build the necessary trees in stages. At each stage we have approximations

to what the different trees will look like. The basic idea is that at stage s we will have an

initial segment µ ofM and a sequence of trees T0, . . . , Tk for the first k ≤ s trees. (Where

we desire the trees to have the same properties as those in the 0′′ proof.) At stage s we

check the approximations to splitting trees we currently have, and if possible extend our

approximations. Naively, if we find a splitting for Ψi we guess that at every subsequent

stage we will find another Ψi splitting, and if we don’t find a Ψi splitting then we guess

that we will never again find a Ψi splitting - doing this allows us to avoid the need to use

a 0′′ oracle. If at a stage we realise that the approximation we have to a splitting tree is

incorrect (using the 0′ oracle) we may change it - details of how this works are given later.

We ensure that we only change our guesses finitely many times, and that in the limit all

of our trees are infinite. In this way, we are able to ensure that in the limit we construct

nested trees {Ti}i∈ω such that if Ψi(M) is total, then either M lies on a Ψi splitting tree

Chapter 3. Minimal Degree Constructions 37

or above some initial segment of M has no Ψi splitting extensions - as we did for the 0′′

case.

We build nested Ψi splitting trees, but as noted we can not simply construct Ti in one go.

Initially we assume that Ti is a Ψi splitting tree we will be able to make M lie on. We

check each Ti in stages, and let T si denote the approximation to Ti at stage s. At each

stage we are able to determine whether there exists (at least) one more pair of Ψi splitting

strings in T si , above our current initial segment of M . If so the construction believes that

infinitely many more splittings will be found, and so we are able to continue in the belief

that Ti as a splitting tree, if not then we must instead make Ti a nonsplitting tree.

As the trees need to be nested we must take care when altering the approximations we

have to each splitting tree {T si }. We are able to alter our guess for Ti, but if we do then Ti

must remain a subtree of Ti′ for all 0 ≤ i′ < i and every Ti′′ for i′′ > imust be abandoned,

and we must build different approximations to them within the new Ti. For each version

of Ti we build we are only able to change our minds once. If at some stage the 0′ oracle

does not find a splitting above µs for Ψi, then no splitting exists above µs. So we only

alter trees which affect Ti finitely many times.

At each stage in the construction we bound the number of trees we look at, by the number

of the stage we are at.

We have just one type of requirement for our construction.

Ri: If Ψi(M) is total, then M lies on a computable tree Ti such that either Ti is Ψi

splitting or above some initial segment of M Ti has no Ψi splittings.

The requirements are given a priority order as follows,

R0 > R1 > · · · > Ri > · · ·

Chapter 3. Minimal Degree Constructions 38

We use this order to ensure that the trees are nested correctly.

Each Ri has a functional Ψi and a tree Ti associated with it. We denote by T si the tree

associated with requirementRi at stage s.

At the start ofstage s + 1 we have an approximation to M , µs and a sequence of nested

trees T s0 ⊇ · · · ⊇ T si , for some i ≤ s which are the current approximations to splitting

and nonsplitting trees.

3.3.1 Construction

We build a sequence of nested trees T sk (k ≤∈ ω), and a set of approximations {µs}s∈ω
such that

⋃
s µs = M and lies on a branch of the nested trees. The formal construction is

as follows.

Stage 0: Set µ0 = λ, and T 0
0 = 2<ω.

Stage s+1: We have µs and some finite sequence of nested trees

T s0 ⊇ · · · ⊇ T sk

where k ≤ s.

Find the least k′ such that either

1. There are no strings in T sk′ which properly extend µs.

2. k′ = k + 1.

If k′ ≤ k then define T s+1
k′ to be the complete subtree of T sk′−1 above µs. Define T s+1

k′′ =

T sk′′ for all k′′ < k′ and make T s+1
k′′ ↑ for all k′′ > k′. Define µs+1 to be a proper extension

of µs in T s+1
k′ which is not an initial segment of Ψs.

Chapter 3. Minimal Degree Constructions 39

If k′ = k + 1. Define µs+1 to be a proper extension of µs in T sk , which is not an initial

segment of Ψs. For all k′′ < k′ define T s+1
k′′ = T sk′′ . Define T s+1

k′ to be the subtree of T sk

above µs+1. Leave T s+1
k′′ undefined for all k′′ > k.

3.3.2 Verification

In order to show that each Ri requirement is satisfied we must show that for each i our

approximation to Ti is stable in the limit (i.e., each Ri is only injured finitely many times)

and that each Ti is either a Ψi splitting tree or above some initial segment of M Ti has no

Ψi splittings.

We show that each Ti is eventually stable, and has the require properties by induction.

The base case T0 = 2<ω is trivially stable Ψ0 splitting and contains M as a branch.

Suppose we are at stage s and that the trees T0, · · ·Tn is such that at all stages s′ > s

when, during the construction, we search for k′ the least such we find is strictly greater

than n. If this is the case then for all i ∈ {0, . . . , n} T si contains µs as a branch, and

by construction each T s′i will contain µs′ as a branch. More over if T si is a Ψi splitting

tree then by assumption Ti will be an infinite Ψi splitting tree, similarly if above some

inital segment of µs T si contains no further Ψi splittings than there will be no further Ψi

splittings above (the same initial segment) of M in Ti.

We now argue that there exists a stage s′′ > s where this is also true for T s′′n+1. There are

two possibilities.

1. At no future stage when we search for k is the least such k = n+ 1. In this case the

induction holds, and we build Tn+1 as a Ψn+1 nonsplitting tree.

2. At stage s′′ we pick k = n + 1. If this is the case, then we are unable to find a

further splitting above some initial segment of µs′′ . In this case we build Tn+1 to

Chapter 3. Minimal Degree Constructions 40

follow Tn. If Tn contains Ψn+1 splittings above some initial segment ofM we reach

a contradiction.

So at all stages after s′′ the value of k picked is greater than n + 1 and so the induction

holds and Tn+1 is constructed such that above some inital segment of M it contains no

further Ψn splittings.

This completes the proof of Theorem 3.3.1

2

3.3.3 Remarks

In the ∅′ construction we ask the question “Do there exist two strings extend µ which Ψi

split?”. This is answerable using a ∅′ oracle. We are unable to ask more though, like we

do in the ∅′′ construction.

In the ∅′′ construction we ask “Does there exist τ extending µ such that no two strings in

Ts extending τ are Ψi splitting?”.

One way to answer this is the following search procedure: search all extensions τ of µ

(ordered by length and then lexicographically) for two strings in Ts extending τ which Ψi

split and terminate if no such exist. This is a ∅′ oracle search procedure and so computable

in ∅′′.

3.4 A Minimal Degree by Full Approximation

The two previous minimal degree constructions(Theorems 3.1.1 and 3.2.1), in this

chapter, both used oracles but we do not always have this option. For instance suppse

Chapter 3. Minimal Degree Constructions 41

we wish to build a set (A of degree a) computable in a given set (B of degree (b) > a).

If we ask questions of an oracle C of degree c > b durign the construction we will have

the a ≤ c but not necessarily that a ≤ b - as we required. An example of this is building

a minimal degree below an arbitrary (given) c.e. set, as we do in Section 4.1, where using

an oracle for ∅′ does not guarantee that the set constructed is below the given c.e. set.

Theorem 3.4.1 [Yat70]It is possible to construct a minimal degree by full approximation.

Proof[Coo72]: If we do not have access to a 0′ oracle then we are not able to simply

ask if a splitting for a certain functional exists above a given string. As for the previous

constructions of minimal degrees, we build a set M and nested splitting trees so that for

all i either M lies on a Ψi splitting tree or a Ψi nonsplitting tree. We are unable to ask

an oracle for the splitting trees and so instead build approximations to them. This method

of construction, only asks recursive questions. Our approximations, {µs}s∈ω, to M are

uniformly recursive. The limit of uniformly computable functions is computable in ∅′, by

the limit lemma, and so M ≤T ∅′. During our construction, where previously we were

able to use the fixed listing of trees to provide the necessary nested splittings, we will

approximate all of the necessary splitting trees separately.

Our tree of strategies, depicted in Figure 3.2, has one type of module:

Ri: If Ψi(M) is total, then M lies on a computable tree Ti such that either Ti is Ψi

splitting or above some initial segment of M Ti has no Ψi splittings.

Each module has two outcomes∞ and f - representing that Ri believes infinitely many

Ψi splittings exist and thatRi believes that no more Ψi splittings exist, respectively. Each

module, α, on the tree of strategies has an associated tree denoted Tα, which is initially

empty, and has strings enumerated into it as we build our approximation to the appropriate

splitting tree. A module’s approximation to the splitting tree may be initialised, if certain

conditions are met - details of this are given later.

Chapter 3. Minimal Degree Constructions 42

R2 R2 R2 R2

R1

∞

aa

f

==

R1

∞

aa

f

==

R0

∞

hh

f

66

Figure 3.2: Tree of Strategies for the Minimal Degree by Full Approximation

Construction

Modules may move from playing outcome ∞ to playing outcome f , and move from

playing outcome f to outcome∞. A module α changes the outcome it plays, as its belief

about whether further Ψα splittings exist changes. The control path is the path of modules

accessed during a stage s, and is denoted CPs. The true path is the left most control path

visited infinitely often, and is denoted TP .

Consider the different possible outcomes played by modules, as depicted in Figure 3.3.

If both R0 and R1 play outcome ∞, then they both currently believe that they will find

splittings for their associated functionals infinitely often. In this case the tree R2 builds,

T2, must be within both T1 and T0 (i.e.,T2 ⊆ T1 ⊆ T0). If however R1 plays outcome f ,

then (althoughR1 will at subsequent stages continue to look for Ψ1 splittings) all modules

of lower priority on the control path do not believe that any more Ψ1 splittings exist. In

this case R2 must build, its tree T2 directly within T0.

Naively, when given control a module α will search (in a complete and bounded fashion)

for a pair of strings extending a (given) string which form a Ψα splitting. It will then

enumerate these splittings into its current approximation to Tα.

In order to manage the splitting trees we are approximating, each module monitors the

tree it needs to be working within. If α = ∅, then Tα∗ = 2<ω, otherwise let α∗ be the

greatest β ⊂ α on the tree of strategies such that β ∗ f 6⊂ α. Then Tα∗ is the tree of lowest

Chapter 3. Minimal Degree Constructions 43

R2 R2

R1

∞

aa

R1

f

==

R0

∞

aa

R0

∞

aa

Figure 3.3: Possible Outcomes on the Minimal Degree Tree of Strategies

priority which α must work within as it builds Tα. As Ψ0 is the identity functional R0

always plays outcome∞ and so Tα∗ is defined for all α.

At stage s + 1 if µs extends a T sα leaf τ , we search for τ0, τ1 on T sα∗ extending τ which

form a Ψα splitting. If we find such strings then we enumerate them into Tα.

If α lies on the true path then either M will lie on Ta which will either be Ψα splitting

tree or above some initial segment of M Ta will contain no further Ψα splittings and so

we will be able to use Lemmas 3.1.3, 3.1.4 and 3.1.5 as usual.

This construction differs from the first two minimal degree constructions in that the formal

construction is split into different phases. We have a phase where we define µs (as we

require that {µs} is a computable approximation and not that µs ⊂ µs+1), and a phase

where we search for and enumerate splittings.

3.4.1 Construction

At stage s by initialise T sα we mean make T s+1
α (ρ) undefined on all inputs. We use β <L α

to mean that β is lexicographically less than α but β 6⊂ α - intuitively we think of this as

meaning that β is to the left of α on the tree of strategies.

A node α is initialised at stage s if either:

Chapter 3. Minimal Degree Constructions 44

1. s = 0.

2. β enumerates a string into Sβ and either β ∗ f ⊆ α or β <L α.

At stage s = 0 all modules are initialised. At stage s > 0 the instructions consist of two

phases.

Phase 1: Defining µs Perform the following finitely terminating iteration, which defines

a path through the nested splitting trees.

Step 0: Define µ∗s = 0.

Step k > 0: Check if there exists α such that µ∗s ∈ T s−1
α , but is not a T s−1

α leaf. If not

define µs = µ∗s. Otherwise let α the lowest priority of all such nodes. Let µ be the left

successor of µ∗s on T s−1
α , redefine µ∗s = µ and go to the next step of the iteration.

Phase 2: Action Phase In this phase we define the control path, CPs,inductively on i ≤ s,

and search for splittings.

Step 0: Define CPs �0= λα0.

Step i > 0 Assume α = CPs �i−1 is defined. If |α| ≥ s finish the stage.

If T s−1
α (∅) ↑ set T sα(∅) = T s−1

α∗ (ρ) where ρ is the largest string such that T s−1
α∗ (ρ) ⊂ µs.

Otherwise if ν ⊂ µs for some T s−1
α leaf ν search for Ψα splittings above ν of length

≤ s on T s−1
α∗ and enumerate them into T sα. If such splittings are found define CPs �i=

CPs �i−1 ∗∞. If no such splitting is found define CPs �i= CPs �i−1 ∗f . Repeat Phase

2.

3.4.2 Verification

As is standard, all our searches are bounded, and at no point do we require the use of an

oracle. During Phase 2 of the construction we ask for the “largest ρ”, this is unique so

Chapter 3. Minimal Degree Constructions 45

there is no ambiguity as to the string we pick.

During the verification we show the following.

1. For all n there exists a left most node of length n which is visited infinitely often

and initialised finitely many times (i.e., the true path exists, and nodes on it are

initialised finitely often).

2. M is total, i.e., lims→∞µs(n) exists for all n.

3. If α is on the true path and plays∞ infinitely often then Tα is infinite and M ≤T
Ψα(M). Otherwise Tα is finite and Ψα(M) is partial or computable.

We also argue, as we have done previously, that M is incomputable using Lemma 3.1.5.

Lemma 3.4.2 For all n there exists a left most node of length n, αn, which is visited

infinitely often and initialised finitely many times.

Proof: We prove this by induction on n. The base case, for α0 = λ, holds trivially.

For the induction step we let n > 0 and assume that the result holds for all n′ < n. The

control path passes through αn−1 infinitely often, and every time this happens αn−1 must

play some outcome. If αn−1 plays∞ infinitely often then αn is the left successor of αn−1,

otherwise it is the right successor of αn−1.

αn can only be initialised finitely often, as it is only initialised when a node β <L α is

accessed by the tree of strategies which by the hypothesis only happens finitely often, or

when a node β with β ∗ f ⊂ α acts, which again by induction only happens finitely often.

2

Chapter 3. Minimal Degree Constructions 46

In the previous constructions we demanded that, for all s, µs ⊂ µs+1. This is not the case

with this construction we simply demand that {µs}s∈ω is an approximating sequence, and

so we must show that there is no value n such that µs(n) 6= µs+1(n) for infinitely many s.

Lemma 3.4.3 M is total

Proof: We prove this by induction on the length of µ. α0 is the module of heighest priority,

and works with the identity functional. From this it follows that T0 is infinite, and hence

that for every length l there exists s such that |µs| > l.

We consider what might happen to make µs−1 and µs incompatible infinitely often. For

this to be the case, during Phase 1 of the construction the iterative procedure must differ

in stage s − 1 and s, let k be the least step in the iteration that this happens. If this is the

case then in stage s we found an α of lowest priority such that µ∗s ∈ T sα, but µ∗s was not

a T sα leaf (but in stage s − 1 was, otherwise µs and µs−1 are compatible at step k) and

redefined µ∗s to be the left successor of its previous value in T sα.

The existence of the TP was proven in Lemma 3.4.2, and we consider the actions of

the modules on the TP now. A module α can only redfine µ∗s′ for s′ > s, to be

the left successor of its previous value if a tree associated with a module of higher

priority is initialised. If α is on the true path this can only happen finitely often (by

the previous lemma) and so there can only be finitely many stages at which µs and µs−1

are incompatible. Hence M = limsµs is total.

2

Conceptually the bulk of the verification is in showing that the nested trees we build have

the required properties - i.e., for each α, Tα is either infinite and Ψα splitting with M as

a branch, or finite with a leaf which is extended by M and above this leaf there are no

further Ψα splittings. Once we have shown this, Lemmas 3.1.3, 3.1.4 and 3.1.5 will give

us the minimality result.

Chapter 3. Minimal Degree Constructions 47

Lemma 3.4.4 If α is on the TP and plays outcome ∞ infinitely often then Tα is infinite

and M ≤T Ψα(M), otherwise Tα is finite and Ψα(M) is partial or computable. M is not

computable.

Proof: Let α be a node on the TP, by Lemma 3.4.2 α is visited infinitely often, and only

initialised finitely many times. Let s be the last stage at which α is initialised. Let s0 be

the next stage at which α is visited.

We have two possibilities to consider.

1. α only plays outcome∞ finitely many times;

2. α plays∞ infinitely many times.

In the first case that Tα is finite is clear. We only extend Tα if Ψα splittings are found

extending a leaf of Tα. If this happens we play∞. If we only play∞ finitely many times

then at some stage s′ we never again play ∞. At this stage Tα is finite, and it is never

again extended. Phase 1 of the construction ensures that if Tα is finite then it contains M

and that if Tα is finite then one of its leaves is extended by M .

If α plays∞ infinitely many times then we show by induction on stage number that Tα

grows unboundedly and that M lies on Tα. Let si be the ith stage > s0 in which α plays

∞.

The base of the induction holds, as at stage s0 we define T s0α (∅) = T s0−1
α∗ (ρ) ⊂ µs0−1.

Suppose the induction holds for every si′ < si and consider the possible actions at stage

si. During Phase 1 µsi is defined to be a branch of T si−1
α . During Phase 2 a Ψα splitting

is found and enumerated into T sia . So T siα is a Ψα splitting tree, with µsi as a branch which

is strictly larger than at the previous stage, and so the induction holds.

That is Tα is finite, or Ψα splitting.

Chapter 3. Minimal Degree Constructions 48

Considering the two cases again, we see that in the first M lextends a leaf, τ of Tα which

is finite and no Ψα splittings above this initial segment of M have been found. This is

equivalent to saying thatM lies on an infinite tree which above some initial segment ofM

contains no further Ψα splittings - simply define Ψα non splitting tree T ′α to be the union

of Tα and the complete tree extending τ within Tα∗ . No branches in Talpha∗ which extend

τ form a Ψα splitting, as if they did they would previously have been enumerated into Tα.

We are then able to use Lemma 3.1.4 to show that Ψα(M) is either partial or computable.

In the second case M lies on Tα which is an infinite Ψα splitting tree and so we are able

to use Lemma 3.1.3 to show that M ≤T Ψα(M).

This means that for all α either M lies on Tα which is either a computable Ψα splitting

tree or for which above some initial segment ofM contains no further Ψα splittings and so

we are able to use Posner’s trick (Lemma 3.1.5) which gives us that M is incomputable.

2

Hence we have constructed a minimal degree, below 0′ using the full approximation

method.

2

49

Chapter 4

Computably Enumerable Degrees and

the Meet Property

In this chapter we look at the relationship between computably enumerable degrees and

the meet property, leading towards our first new result - Theorem 4.2.1. We first consider

how to build a minimal degree below an arbitrary c.e. degree this was first shown in

[Yat70]

As per Definition 2.3.2, degree a satisfies the meet property if a is incomputable and for

all b < a there exists a non-zero degree c < a such that b ∧ c = 0. In this chapter we

show that an arbitrary incomputable c.e. degree satisfies the meet property. Whether this

was true was first asked by Cooper and Epstein in [CE87]. In this paper a partial solution

was given: if a is low, and b < a is c.e. one is able to find a minimal degree m < a for

which b∧m = 0. In the paper it was further conjectured that one is unable to drop either

the assumption that a is low or that b is low. In [Ish03] Ishmukhametov showed that the

assumption lowness can be dropped. Further details of work in this area can be found in

[Lew].

In [Sho66], Shoenfield showed that 0′ satisfies the meet property. He did this by showing

Chapter 4. Computably Enumerable Degrees and the Meet Property 50

that given an arbitrary degree non-zero a strictly below 0′ there exists a minimal degree

which is below 0′ and incomparable with a. It is this approach which we use to show that

all c.e. degrees satisfy the meet property, though the implimentation is significantly more

involved than in previous proofs.

First, in Section 4.1 we show that given a non-zero c.e. degree we can construct a minimal

degree below it, before showing that all c.e. degrees satisfy the meet property in Section

4.2.

4.1 A Minimal Degree below a C.E. Degree

In this section we show that given an incomputable c.e. degree there exists a minimal

degree below it. This was first shown by Yates in [Yat70], and in [Eps75] Epstein gave

a proof of the result based on the full approximation method of constructing a minimal

degree.

The proof we give is an adaptation of our full approximation construction of a minimal

degree, in Section 3.4. Although the alteration is not huge, the construction of a minimal

degree below a c.e. degree is essential for the main result in this chapter, Theorem 4.2.1

in Section 4.2, and so we give full details.

4.1.1 Constructions below a C.E. Degree

We give a general a method for constructing reductions or functionals (not necessarily

c.e.) below a given non-zero c.e. degree. Our basic idea only ensures that the set we

construct is less than the given c.e. degree and so must be combined with whatever

other requirements we have for the set being constructed. In this case we combine the

argument with the minimality requirements. See [Coo04] or [Nie09] for a more detailed

introduction to the concept.

Chapter 4. Computably Enumerable Degrees and the Meet Property 51

Given a set A ∈ a incomputable and c.e. we may assume that we have a function f such

that f(ω) = A which is 1 − 1 and computable. We define a computable approximation

{µs} of a set M ≤T A. We then require that if ∀s′ > s, f(s′) ≥ n then M �n= µs �n,

i.e., if f no longer enumerates elements below n then M is fixed up to height n. Then in

order to compute M(n) we simply have to find an s with the given property and M(n) =

µs(n).

Conceptually this says that any change in our approximation to M must have permission

from a corresponding (sufficiently low) change in A. Given a computable enumeration

{As}s∈ω of A, in order to show that M ≤ A in stages we enumerate axioms into a

functional Γ such that Γ(A) = M . If at stage s we wish to alter M at height n we may

only do so if As−1 �n′ 6= As �n′ where n′ is the use in computing M up to height n from

A using Γ.

The tree of strategies is as for the minimal degree construction given in Section 3.4 and

each Ri requirement is still

Ri: If Ψi(M) is total, then M lies on a computable tree Ti such that either Ti is Ψi

splitting or above some initial segment of M Ti has no Ψi splittings.

We also have a global permitting requirement, which naively says ‘a module α requires

permission from A in order to enumerate a string into Tα’.

The global permitting requirement is implemented as follows. We enumerate axioms into

a functional Γ such that Γ(A) = M . Axioms will be enumerated at the end of stage s for

arguments n < s. On arguments n < s we let s0 be the maximum of n and s1− 1 for any

stage s1 ≤ s at which a number less than n has been enumerated into A. We let the initial

segment of As of length s0 + 1 be the use in computing Γ(As, n). At the end of stage s

we define Γ(σ, n) = µs(n), where σ is the initial segment of As of length s0 + 1.

During a stage s a string µ is permissible if it is compatible with Γ(As−1).

Chapter 4. Computably Enumerable Degrees and the Meet Property 52

As before each module α has an associated tree Tα, initially undefined and Tα∗ is Tβ

where β is the module of lowest priority such that β ⊂ α and β ∗ f 6⊂ α.

Now a module α also has an associated set, s(α), of pairs of strings which form Ψα

splittings. The modules now search for a splitting, and if they find one add it into s(α). A

splitting µ0, µ1 in s(α) may only be enumerated into Tα during stage s if both µ0 and µ1

are permissible.

The trees we build are nested, so if α′ < α then Tα′ ⊃ Tα.

4.1.2 Construction

Given a computable enumeration {As}s∈ω a set A, which is c.e. and incomputable,

we define a computable approximation {µs} of a set M in stages. We also construct a

functional Γ, by enumerating axioms into it, such that Γ(A) = M . To accommodate the

the global permitting requirement each stage of the construction consists of 4 phases. We

define µs and search for splittings, as in Section 3.4, and have two extra phases - one

which checks if splittings are permissible and if so enumerates them into trees, and one

which enumerates axioms into Γ. A module α is active if it has been visited subsequent

to its last initialisation

By initialise α we mean make Tα(ρ) ↑ for all ρ and empty s(α) of all splittings it is

seeking permission for. α is initialised at stage s if

1. s = 0.

2. β enumerates a string into Sβ and either β ∗ f ⊆ α or β <L α.

At stage s = 0 initialise all nodes. At stage s > 0 the construction acts as follows

Chapter 4. Computably Enumerable Degrees and the Meet Property 53

Phase 1: Tree Enumeration For each active module α, in order of priority, search s(α) for

the first Ψα splitting which is permissible. If such a splitting exists enumerate it into T sα

and empty s(α).

Phase 2: Defining µs Perform the following finitely terminating iteration, which defines

a path through the nested splitting trees.

Step 0: Define µ∗s = 0.

Step k > 0: Check if there exists α, with |α| < s, such that µ∗s ∈ T sα, but is not a T sα leaf.

If not define µs = µ∗s. If so let α the lowest priority of all such nodes. Let µ be the left

successor of µ∗s on T sα, redefine µ∗s = µ and go to the next step.

Phase 3: Splitting Phase In this phase we define the control path, CPs,inductively on

i ≤ s, and search for splittings.

Step 0: Define CPs �0= λα0.

Step i > 0: If T sα(∅) ↑ set T sα(∅) = T sα∗(ρ) where ρ is the largest string such that T sα∗(ρ) ⊂

µs.

Otherwise if η ⊂ µs for some T sα leaf η search for Ψα splittings above η of length ≤ s on

Tα∗ and enumerate them into s(α).

If a splitting has been enumerated into Tα since we last visited α defineCPs �i+1= CPs �i

∗∞, otherwise define CPs �i+1= CPs �i ∗f . Repeat Phase 3.

Phase 4: Enumerating Γ On arguments n < s for which µs(n) ↓ let s0 be the maximum

of n and s1 − 1 for any stage s1 ≤ s at which a number less than n has been enumerated

into A. Let σ be the initial segment of As of length s0 + 1 and define Γ(σ, n) = µs(n).

Chapter 4. Computably Enumerable Degrees and the Meet Property 54

4.1.3 Verification

No c.e. degree is minimal and so the A permitting requirements, which give M ≤T A,

are therefor sufficient to show that M 6=T A, and so M <T A.

We must argue that at every stage µs is permissible, that M is total and that Γ(A) = M .

We must also show that any delays caused by waiting for splittings to become permissible

do not affect the minimality arguments. If we can show these properties hold, then we

may argue that M is minimal using Lemmas 3.1.3, 3.1.4 and 3.1.5.

Lemma 4.1.1 For all stages s, µs is permissible, limsµs = M and Γ(A) = M

Proof: By assumption Ψ0 is the identity functional, and so T0 is infinite. From this it

follows that given a length l, there exists an s such that |µs| > l. The use of Γ on

argument n is also bounded (by Phase 4), and so we see that for all stages s if µs is

permissible (i.e., compatible with Γ(As)) then M is total and Γ(A) = M .

We prove that at each stage s µs is permissible by induction on s, considering what could

occur to make µs−1 permissible but µs not permissible.

At stage s = 0, µ0 = 0 and Γ = ∅ and so the base case holds. Assume that the induction

holds for all s′ ≤ s− 1. If µs and µs−1 are compatible, then the induction holds.

µs is defined during Phase 2 of stage s and so if µs and µs−1 are incompatible then the

action taken by the iterative processes described in Phase 2 must differ in stage s and

stage s− 1. Let k be the least step in the process at which the iterations diverge.

At each step of the iterative process either we find α of lowest priority such that µ∗s ∈ Tα,

but is not a Tα leaf and redefine µ∗s to be the left successor of its previous value (on Tα)

or the iterative process terminates. If µs and µs−1 are incompatible, then at step k of the

iteration in stage s− 1, µ∗s was a leaf of Tα, but in stage s it is not i.e., a new Ψα splitting,

µ0, µ1 say, was permitted to be enumerated into Tα in Phase 1 of stage s. Both halves

Chapter 4. Computably Enumerable Degrees and the Meet Property 55

of the splitting enumerated into Tα are permissible (as described in Phase 1). In stage

s the left half of the splitting is chosen to be µ∗s. The iterative process ends here, as no

module of lower priority than α has enumerated any splittings extending µ0 within the

newly redefined Tα, and so µs is permissible.

2

Lemma 4.1.2 There exists a TP , and any node on the TP is initialised only finitely often.

is proven as its counterpart in 3.4.2.

We now show is that the permitting requirements do not affect the minimality

requirements.

Lemma 4.1.3 If a module α, on the true path, has to wait to enumerate a splitting into

Tα or after some finite stage s is never permitted to enumerate a splitting into Tα (despite

finding them), then M still either lies on a Ψα splitting or Ψα nonsplitting tree.

Proof: We consider three possibilities.

1. If after some finite stage s α never again finds a Ψα splitting extending a leaf of

Tα, then the permitting requirements do not have any effect on the minimality

requirements, and α plays outcome f .

2. If at some stage s α finds a Ψα splitting but has to wait until stage s′ > s for

permission to enumerate it, then the wait is finite. This means that at some finite

stage α receives persmission to enumerate the splitting into Tα during Phase 1 of

the construction. Infinitely often α may find a Ψα splitting extending a leaf on T sα,

but have to wait to enumerate it. At stage s′, T s
′
i

α is a Ψα splitting tree, with the new

Ψα splitting enumerated into it. If this happens infinitely often then lims→∞T
s
α is a

Ψα splitting tree, with M as a branch.

Chapter 4. Computably Enumerable Degrees and the Meet Property 56

3. If α finds infinitely many splittings, but never gets permission from A to enumerate

them then we are able to argue that A is computable. The idea is that we can use the

stages at which the Ψα splittings are found to give a bound on the last stage at which

As may change below a certain height. To see this note that if α finds a splitting

during stage s, but never receives permission to enumerate it then either µ0 or µ1 (or

both) never becomes permissible. Let µ be the longer of µ0 and µ1 which does not

receive permission. Let µ′ be the longest initial segment of µ which is permissible

(this exists as we are searching for an extension of some string η ⊂ µs which is

permissible), and let n = |µ′|. At stage s the use in computing µs from A is defined

(as in Phase 4) to be s0 + 1, and for all stages s′ > s As′ �s0+1= As �s0+1. The

use of Γ in computing µs(n) increases as n increases, and so when we find further

splittings at subsequent stages, the initial segment of A which is fixed grows. To

computeA(x) we simply run the computation until we reach a (finite) stage swhere

find a Ψα splitting, and the use in computing M via Γ is ≥ x. Then A(x) = As(x).

2

This shows us that the permitting requirement does not affect the ability of the minimality

requirements to act, and so we prove

Lemma 4.1.4 M is minimal.

as we do its counterpart in Section 3.4.2.

4.2 C.E. Degrees and the Meet Property

In this section we prove the main result of this chapter:

Chapter 4. Computably Enumerable Degrees and the Meet Property 57

Theorem 4.2.1 Given any non-zero c.e. degree a and any degree b < a, there is a

minimal degree m < a such that m � b.

From this the following corollary is immediate

Corollary 4.2.2 Every c.e. degree satisfies the meet property.

We are given an incomputable c.e. set A, with computable enumeration {As}s∈ω. We are

also given a set B <T A (which is necessarily ∆0
2, but need not be c.e.) and a Turing

functional Φ such that Φ(A) = B. By speeding up the enumerations of Φ and A as

necessary we get a computable approximation {Bs}s∈ω to B. Each Bs is a finite binary

string of length s, such that Bs ⊆ Φ(As)[s]. Although each Bs is a finite binary string,

we consider As to be an infinite binary string, which is still the characteristic function of

a finite set.

We then construct a set M which is of minimal degree, and is computable from A, but

M �T B. We construct M in stages and let µs be our approximation to M at stage s.

Then limsµs = M and {µs}s∈ω forms a computable approximation to M .

Tree of Strategies

As for our previous constructions, we place the requirements on a tree of strategies.

This construction has two distinct types of requirements placed on the tree, as well as

a global permitting requirement. We ensure that M is minimal building nested splitting

and nonsplitting trees, as we have done previously. These requirements are labelledMe.

We also have requirements which aim to show that M �T B. These requirements are

labelled Pe, and broadly each looks to show M 6= Ψe(B).

As depicted in Figure 4.1 a node on the tree of length 2e is assigned the requirementMe.

As before this node has two outcomes∞ <L f , where∞ means that splittings are found

Chapter 4. Computably Enumerable Degrees and the Meet Property 58

1, 2, · · ·ω f 1, 2, · · ·ω f

Pe

??

Pe

??

Me

∞

gg

f

55

Figure 4.1: Tree of Strategies for the C.E. Meet Construction

above infinitely many initial segments of M and f means that this is not true. A node

on the tree of length 2e + 1 is assigned the requirement Pe. Each Pe requirement has

infinitely many outcomes labelled 0 <L 1 <L 2 <L · · · <L f . The set of outcomes for

Pe has order type ω + 1, with a single distinguished rightmost outcome. f means that

either there is some argument m for which Ψe(Bs,m) ↓ for only finitely many s, or else

successful diagonalisation has been achieved. Naively each of the other outcomes is a

guess as to the least m for which there are infinitely many stages at which Ψe(Bs,m) ↓

with different uses (i.e., the observed uses are unbounded).

During the construction we use the α, β and γ to denote nodes on the tree of strategies. σ

is used to denote potential initial segments of A, and τ is used to denote potential initial

segments of B. We use both µ and η to denote potential initial segments of M . We let ρ

range more generally over binary strings. If ρ 6= ∅ then ρ† is the binary string which is

the same length as ρ but differs only in the final bit. ρ− is as before. If α isMe (or Pe)

requirement on the tree of strategies then as before we may denote Ψe as Ψα.

4.2.1 Outline Proof

This construction is more involved than those given previously, and so we give a broad

outline of how the different requirements work before giving a formal construction.

Chapter 4. Computably Enumerable Degrees and the Meet Property 59

Permitting

To ensure that M ≤T A, we use the method discussed in Section 4.1.1. We must adapt

this method, as in order to attempt diagonalisation we are now also concerned with the

movement of B. The process is the same, but the height of A we look at alters. We

enumerate a functional Γ, such that Γ(A) = M . Axioms are enumerated at the end of

each stage s, for arguments n < s. We choose the use for argument n < s as follows.

Let s0 be the maximum of n and s1 − 1 for any stage s1 ≤ s at which a number less

than n has been enumerated into A. Let σ be the shortest initial segment of As such that

Bs �s0+1⊆ Φ(σ) - Φ is the functional we use to compute B from A. Such a σ exists by

our conventions regarding Bs. At the end of stage s we define Γ(σ, n) = µs(n).

During a stage s, η is permissible if it is compatible with Γ(As−1).

Me Requirements

To ensure that M is minimal we reemploy the notion of nested splitting trees used

previously. For each Ψα we aim to build an infinite Ψα splitting or nonsplitting tree

with M as a branch. The basic process is as for the full approximation construction given

in Section 3.4. We use the same notation conventions as in Section 4.1, but reiterate them

here.

EachMe requirement α has an associated tree Tα, initially undefined. Tα∗ is Tβ where β

is theM requirement of lowest priority such that β ⊂ α and β ∗ f 6⊂ α, unless α = ∅

in which case Tα∗ = 2<ω. T sα is α’s approximation to either a Ψα splitting or nonsplitting

tree at the end of stage s.

EachMe requirement α also has an associated set, s(α), of pairs of strings which form

Ψα splittings. Each requirment searches for a Ψα splitting extending a leaf of Tα, and if

they find one add it into s(α). A splitting µ0, µ1 in s(α) may only be enumerated into Tα

Chapter 4. Computably Enumerable Degrees and the Meet Property 60

during stage s if both µ0 and µ1 are permissible.

The trees we build are nested, so if α′ < α then Tα′ ⊃ Tα.

Pe Requirements

To satisfy a Pe node, α, we must ensure that if Ψe is total then there exists some argument

n for which M(n) 6= Ψα(B, n). As B ≤T A, any change in the approximation to B at

stage s must be witnessed by a sufficiently low change in A at stage s, similarly for M .

By carefully monitoring when the A changes occur, and checking if B changes occur, we

are able to decided what M changes we wish to make.

Naively we implement this idea as follows. Monitor Ψα(B) �n for a fixed n. If at some

stage s, Ψα(B) �n agrees with µs �n then a suitably low A change would mean that we

could change our approximation to M below n. If it remains the case that Bs ⊂ B, then

we will have successfully diagonalised.

While we wait for an A change we map the initial segment of B involved in the

computation of Ψα to the initial segment of A we are hoping to see a change in, and

start working again with a larger n. As A �T B, we must either find that we get some

A-permission to diagonalise (i.e., we see an A-change with no corresponding B-change),

or there is some n such that M �n is not an initial segment of Ψα(B).

Competing Requirements

Although the idea of using diagonalisation and permitting to ensure that M is below

A and incomparable with B seems intuitive, we must coordinate the diagonalisation

with the minimality requirements and it is here that the difficulties lie. Each Pe node

α builds a functional Φα, with which it threatens to compute A from B. It does this using

modules. Each node α maintains infinitely many modules M0
α,M

1
α, · · · . The module M i

α

Chapter 4. Computably Enumerable Degrees and the Meet Property 61

is responsible for enumerating axioms into Φα(i). The node α works within the tree Tα∗ ,

where Tα∗ is as previously defined.

We build Φα(i) as a c.e. set of strings and ensure that after i enters A (if it ever does) no

more strings are enumerated into Φα(i). A is c.e. so if i enters A, it is never removed.

Then to compute ΦX
α (i) we run the enumeration of Φα(i) until either a string τ is found

such that τ ⊂ X , or else i enters A. In the former case we output 0, in the latter we output

1.

While i /∈ A, the module M i
α waits until it sees η ⊂ Ψe(τ) for some τ ⊆ Bs and

η ⊆ µs such that η = Tα∗(ρ) for some ρ which is specific to this module. Then it

enumerates τ into Φα(i) as well as issuing the demand (τ, i, η0, η1), where η0 = Tα∗(ρ
−)

and η1 = Tα∗(ρ
†). This demand is read “if τ ⊂ B and i ∈ A, then η0 ⊂M ⇒ η1 ⊂M”.

When a demand is acted upon and plays a role in the definition of µs at stage s, we say

that it is implemented at stage s. The precise definition of implementation is given during

the formal construction.

Having demands of this form might seem unnecessarily complicated. But when we

consider possible alternatives problems occur, due to the necessary A-permissions -

specifically the need for modules to the left of the true path to require action during a

stage. For instance if we were to issue the demand “if τ ⊂ B and i ∈ A, then η1 ⊂ M”

(rather than “if τ ⊂ B and i ∈ A, then η0 ⊂ M ⇒ η1 ⊂ M”) then if i ∈ A we have

permission to change our mind about whether ηi ⊆ M as our information about whether

τ ⊆ B changes, as long as µ0 is an initial segment of the approximations we have to M .

4.2.2 Construction

Given a computable enumeration {As}s∈ω ofA, c.e. and incomputable, and a setB <T A

we construct a set M in stages µs such that limsµs = M . We are also given a Turing

functional Φ, such that B = Φ(A) and by speeding up the enumeration of Φ and A

Chapter 4. Computably Enumerable Degrees and the Meet Property 62

we have an approximation {Bs}s∈ω. As well as M we build a functional Γ such that

Γ(A) = M .

We divide each stage of the construction into four phases.

If α is anMe requirement then by initialise α we mean make Tα(ρ) ↑ for all ρ and set

s(α) = ∅. If α is a Pe requirement then by intitialise α we mean discard all axioms

enumerated for Φe, and all demands issued by modules maintained by α. We also discard

all recorded computations (as defined in Phase 4) for α.

All nodes α are assigned a number (zα - larger than any previously used) the first time

they are visited after an initialisation. When any node α is initialised zα is made to be

undefined.

A node α is initialised at stage s as soon as one of the following conditions is met -

irrespective of whether it is anMe node or a Pe node.

1. s = 0.

2. A node strictly to the left of α is visited.

3. β enumerates strings into Sβ at stage s and either β ∗ f ⊆ α or β <L α.

4. A demand issued by a module M j
β such that either β <L α or β ∗ i ⊆ α for some

i < j is implemented (as defined in Phase 2) at stage s, but that demand was not

implemented at stage s − 1 or vice-versa, the demand was implemented at stage

s− 1 but is not implemented at stage s.

A module α is active if it has been visited subsequent to its last initialisation. Tα is active

if α is active.

Stage 0.

All nodes are initialised.

Chapter 4. Computably Enumerable Degrees and the Meet Property 63

Stage s > 0.

At stage s > 0 the construction is divided into four phases as follows.

Phase 1: Tree Enumeration For each active module, α, assigned a minimality

requirement, in order of priority, search s(α) for the earliest enumerated splitting which

is permissible. If such a splitting exists enumerate it into T sα and empty s(α).

Phase 2: Defining µs Perform the following finitely terminating iteration, which defines

a path through the nested splitting trees. The process takes into account issued demands

(where they exist) and takes the left path otherwise. As we proceed, we also enumerate

pairs of the form (µ,B) in order to keep track of the priority with which we have

implemented demands.

Step 0: Define µ∗s = λ.

Step k > 0: Check if there exists a demand issued by some M i
β of the form (τ, i, η0, η1)

such that τ ⊆ Bs, i ∈ As, η0 ⊂ µ∗s and such that we have not already enumerated any pair

(µ, γ) during the iteration at stage s with µ ⊃ η0 and γ of higher priority than β. If so,

choose that for which η0 is shortest, declare that this demand is implemented at stage s,

redefine µ∗s = η1, enumerate the pair (η1, β) and go to the next step. Otherwise check to

see if there exists α such that µ∗s ∈ Tα but µ∗s is not a Tα leaf. If not then define µs = µ∗s

and terminate the process, otherwise let α be the lowest priority of all such nodes. Let µ

be the left successor of µ∗s on Tα, and then redefine µ∗s to be µ and go to the next step.

Note: Implemented demands may subsequently be injured by another demand of higher

priority i.e., for the implemented demand (τ, i, η0, η1) it may not always be the case that

η1 ⊆ µs.

Phase 3: Visiting Phase In this phase we define the control path, CPs, inductively on

i ≤ s, and (depending on the requirement type) search for splittings or look to diagonalise.

Step 0: Define CPs �0= λ = α0. Define Tα0 = ∅.

Chapter 4. Computably Enumerable Degrees and the Meet Property 64

Step i: Assume α = CPs �i is defined. If |α| ≥ s finish the phase. Otherwise if zα is not

already defined choose it to be an odd number larger than previously used. Then consider

the following two cases:

1. α is assigned Me. If Tα(∅) ↑ and Tα∗(ρ) ⊂ µs then set Tα(∅) = Tα∗(ρ) where

|ρ| = zα If no such ρ exists leave Tα(∅) undefined.

Otherwise (i.e.,Tα is non-empty) if η ⊂ µs for some Tα-leaf η search for Ψα

splittings above η of length less than s, on Tα∗ , and enumerate them into sα.

If a splitting has been enumerated into Tα since we last visited α define CPs �i+1=

CPs �i ∗∞, otherwise define CPs �i+1= CPs �i ∗f . Repeat Phase 3.

2. α is assigned Pe. Determine the least j < s such that M j
α requires attention. M j

α

requires attention if there exists µ ⊂ µs such that µ = Tα∗(ρ) for ρ of length pzaj

(i.e., the jth prime raised to the zthα powers) and (for some shortest stringτ ⊆ Bs)

µ = Ψe(τ)[s], but M j
α has not yet recorded the computation (as defined in the next

paragraph).

If no M j
α requires attention then α performs no action and sets CPs �i+1= CPs �i

∗f . Otherwise let j be the least such that M j
α requires attention and declare Ψe(τ)

to be a recorded computation. If j /∈ As then issue the demand (τ, j, η0, η1), where

ρ is as above, η0 = Tα∗(ρ
−) and η1 = Tα∗(ρ

†). Enumerate τ into Φα(j), set

CPs �i+1= CPs �i ∗j and repeat Phase 3.

Phase 4: Enumerating Γ On arguments n < s for which µs(n) ↓ let s0 be the maximum

of n and s1 − 1 for any stage s1 ≤ s at which a number less than n has been enumerated

into A. Let σ be the shortest inital segment of As such that Bs �(s0+1)⊆ Γ(σ) and define

Γ(σ, n) = µs(n).

Chapter 4. Computably Enumerable Degrees and the Meet Property 65

4.2.3 Verification

In the verification we must show the following:

1. At every stage µs is permissible, M is total, i.e., lims→∞µs(n) exists for all n and

Γ(A) = M .

2. Each node on the true path is only initialised finitely many times, each Pe node is

satisfied, for allMe requirements, α, if Ψe(M) is total, thenM lies on a computable

tree Tα such that either Tα is Ψi splitting or above some initial segment of M Ti has

no Ψi splittings.

If we can show 2 then we can argue that M is minimal using Lemmas 3.1.3, 3.1.4 and

3.1.5 as we have done previously.

First we verify that all the instructions are well defined. The only place where any

ambiguity occurs in the construction, during a stage s, is during Phase 2 of the

construction. During Phase 2, at step k we are required to select the appropriate demand

(τ, i, η0, η1) for which η0 is shortest. We must verify that there is a unique such demand.

Once we have shown that there is a least such demand it will be clear that the instructions

for each stage (particularly during Phase 2) are finite as:

1. If the demand (τ, i, η0, η1) is implemented during step k of phase 2 of stage s, and

(τ ′, j, η2, η3) is implemented at step k′ > k of the same stage then η2 properly

extends η0.

2. At each stage only finitely many demands are issued, and only finitely many strings

are enumerated into trees.

So we must ensure that at any point of the construction if (τ, i, η0, η1) and (τ ′, j, η2, η3)

are both issued demands which have not been discarded due to some initialisation, then

Chapter 4. Computably Enumerable Degrees and the Meet Property 66

η0 = η2 implies i = j and that both demands where implemented by the same module,

namely M i
α.

As zα was chosen to be large whenever a node was visited for the first time, subsequent

to initialisation, we have that when µ ∈ Tα ∩ Tα′ , we must also have that α ∗ ∞ ⊂ α′ or

vice-versa, i.e.,α′ ∗ ∞ ⊂ α. That is when a string belongs to two valid trees it must be

the case that one of these trees is purposely built as a subtree of the other. Considering

the following:

1. For α of even length, strings in Tα are of odd length in Tα∗ .

2. If M i
α issues a demand (τ, i, η0, η1) then η0 is of even level in Tα∗ .

3. If two nodes α1 and α2 are such that they are both of odd length, both valid and

Tα∗1 = Tα∗2 then, as zα1 6= zα2 it follows that for any two demands (τ, i, η0, η1) and

(τ ′, j, η2, η3) issued by modules M i
α1

and M j
α2

respectively, we must have η0 6= η2.

we see that no two demands contradict each other, and so the construction is well defined

and at the instructions are at each stage finite.

With this done, we can begin the verification proper.

Lemma 4.2.3 At every stage s, µs is permissible, limsµs = M is total and Γ(A) = M

.

Proof: A is incomputable, and as α0 looks for splittings for the identity functional, we

see that T∅ is infinite. It follows that for any given length l, there exists some s such

that |µs| > l. The use of Γ on argument n is bounded (clearly, by the construction), that

limsµs = M and Γ(A) = M follows from µs being permissible for every stage s.

We prove that µs is permissible at every stage, s, by induction on s. The base case is

trivial. Suppose that µs is incompatible with µs−1 and consider the iterations which take

Chapter 4. Computably Enumerable Degrees and the Meet Property 67

place during Phase 2 of the construction during stage s and s− 1. These must diverge at

some point, otherwise µs and µs−1 are compatible and the induction follows directly. We

let k be the least step at which the iterations for stage s and s−1 diverge and consider why

this might have happened. At each step of the iteration either a demand is implemented;

we find α of lowest priority such that µ∗s ∈ Tα but is not a Tα leaf and redefine µ∗s to be

the left successor of its previous value on Tα; or the iteration is terminated. With this in

mind we consider the following three possibilities, as to why divergence occurred at step

k of the iteration.

1. During step k at stage s− 1 a demand (τ, i, η0, η1) is implemented, and during step

k of stage s no demand (τ ′, j, η2, η3) such that η2 ⊂ η0 is implemented.

If this is the case then i was enumerated into A at a stage > |τ |, and as |η0| > i,

any σ ⊂ As−1 such that η0 ⊆ Γ(σ) at the end of stage s− 1 is sufficiently long that

τ ⊆ Φ(σ). As the demand (τ, i, η0, η1) is not implemented at stage s we know that

τ 6⊂ Bs and hence any extension of η0 is permissible.

2. The reverse of case 1 happens, i.e., during step k at stage s a demand (τ, i, η0, η1)

is implemented, and during step k of stage s− 1 no demand (τ ′, j, η2, η3) such that

η2 ⊂ η0 is implemented.

This case can be divided down further. As the demand (τ, i, η0, η1) was not

implemented at stage s − 1 it is possible that either (a) i was enumerated into

A at stage s, in which case any extension of η0 is permissible of (b) we must have

that τ 6⊂ Bs−1. The induction follows for (b), as any extension of η0 is permissible.

For (a) we argue similarly to case 1. i was enumerated into A at a stage s′ > |τ |,

as η0 is of length > i, any σ ⊂ As−1 such that η ⊆ Γ(σ) at the end of stage s − 1

is sufficiently long that τ ′ ⊆ Φ(σ), where τ ′ is the initial segment of Bs−1 of length

s′. It follows that, as for case 1, any extension of η0 is permissible.

3. Cases 1 and 2 don’t hold, but the iteration does not terminate, i.e., we find α of

Chapter 4. Computably Enumerable Degrees and the Meet Property 68

lowest priority such that µ∗s ∈ Tα but is not a Tα leaf and redefine µ∗s to be the left

successor of its previous value on Tα.

In this case µ := µ∗s (before its redefinition at step k) was a leaf of Tα prior to

stage s. We let µ′ be the longest string which is the longest initial segment of both

successors of µ in Tα, and also of µs−1, and consider two further possibilities.

If µ′ ⊂ µs then µs is permissible.

Otherwise there must be some demand (τ, i, η0, η1) such that η0 ⊂ µ′, and which is

implemented at step k + 1 of stage s. If this demand was also implemented at step

k + 1 of stage s− 1, then the two processes have not strongly diverged at step k, as

the same demand was implemented anyway at the next step. We consider instead

the least step at which the two iterations strongly disagree. In this case a demand

was implemented at step k+ 1 of stage s, which was not implemented at step k+ 1

of stage s− 1. The two cases that this provides us with are identical to (1) and (2),

with k replaced by k + 1.

2

Lemma 4.2.4 For all n, there exists a leftmost node of length n which is visited infinitely

often, αn, say. This node satisfies the following:

1. αn is initialised only finitely many times

2. If αn is of length 2e + 1 then it ensures that Pe is satisfied. Either αn has outcome

f at all but finitely many stages at which it is visited, or else there exists some least

m such that αn has outcome m at infinitely many stages.

3. If αn is of length 2e and has outcome come∞ at infinitely many stages then Tα is

infinite and M ≤T ΨM
e . Otherwise Tα is finite and ΨM

e is partial or computable.

Chapter 4. Computably Enumerable Degrees and the Meet Property 69

Proof: We prove this by induction on n. The result fot n = 0 follows trivially from our

assumptions about Ψ0.

Suppose that n > 0 and that the induction holds for all n′ < n. Then (2) of the induction

hypothesis implies that αn exists, i.e., there exists a leftmost node of length n which is

visited at infinitely many stages, and also that there are only finitely many stages at which

nodes strictly to the left of αn are visited. Also, (3) of the induction hypothesis implies

that for β of even length with β ∗ f ⊂ αn, Tβ is finite. This β <L αn are only visited

finitely many times, and so cane only enumerate finitely many splittings into their lists.

We conclude that αn satisfies any of the the conditions for initialisation (1), (2) or (3) at

only finitely many stages. We are left to deal with initialisation condition (4).

Those modules M j
β such thate eitehr β <l αn or β ∗ i ⊆ αn for j < i can only enumerate

finitely many demands. Consider one such demand τ, j, η0, η1),issued by M j
β0

say. If τ 6⊂

B, j 6∈ A or η0 6⊂M then at all sufficiently late stages this dmeand is not implemented (if

implemented at stage s then η0 ⊂ µs). On the other hand, for any stage s at which τ ⊆ Bs,

j ∈ As and η0 ⊆ µs, the only way in which the demand could fail to be implemented

(we are not concerned with injury) would be the implementation of a demand of higher

priority (τ ′, k, η2, η3), such that η2 ⊂ η0 and η3 ⊃ η0. When two distinct trees Tα and Tα′

are nested (i.e., when it is not the case that α ∗ ∞ ⊂ α′ or α′ ∗ ∞ ⊂ α), initialisation

means that all of the strings in one of the trees are of strictly greater length than all strings

in the other. Let β1 be the node which issued the demand (τ ′, k, η2, η3). Since η2 ⊂ η0 and

η3 ⊃ η0, it must be that Tβ∗0 and Tβ∗1 are nested. Since β1 is of higher priority, Tβ∗0 must

either be equal to Tβ∗1 or built as a subtree of it. This contradicts the condition η0 ⊂ η0 and

η3 ⊃ η0, given that η3 is a successor of η2 in Tβ∗1 . So for each member of this finite set of

demands there is either a stage after which they are always implemented, or else a stage

after which they are never implemented. Thus αn is initialised only finitely many times.

Now suppose that αn is of length 2e + 1. We wish to show that any demand (τ, i, η0, η1)

issued by αn subsequent to its final initialisation is met, i.e., if τ ⊂ β, i ∈ A and η0 ⊂M ,

Chapter 4. Computably Enumerable Degrees and the Meet Property 70

then η1 ⊂ M . (That is, under these conditions there is a stage after which the demand is

always implemented and not injured). The argument above, that αn only satisfies (4) of

the initialisation conditions at finitely many stages, suffices to show that at any stage at

which τ ⊆ Bs, i ∈ As and η0 ⊂M , the demand is implemented. In order for the demand

to be injured we would thne have to implement another demand (τ |prime, j, η2, η3) of

higher priority, at a later step of the iteration for phase 2 of that stage, for which η0 ⊂

η2 ⊂ η1. Initialisation means that β which issued this demand, cannot satisy β <L αn

(since αn chooses zαn large). In fact β ∗ k ⊂ αn for some k ∈ ω with k ≤ j. The

finite length of η1 also means that there are only finitely many possible values for j, and

in order for any such demand to be implemented, it must be the case that the dmeand

is issued at a stage prior to one at which j is enumerated into A. Thus there can only

be issued finitely many demands (τ ′, j, η2, η3) of the correct form to cause injury to the

demand (τ, i, η0, η1). The fact that the injuring demand is issued by M j
β and β ∗ k ⊂ αn

for some k ∈ ω with k ≤ j, means that there is a stage s such that for all s′ ≥ s, τ ′ 6⊂ Bs

and the potentially injuring demand is not implemented.

Now if αn has outcome f at all sufficiently large stages at which it is visited, or else there

exists some least m such that αn has outcome m at infinitely many stages, then it is clear

thatPe is satisfied. So suppose that this does not hold. Then Ψe(B) = M . For each i 6∈ A,

there exists τ ⊂ B enumerated into Φαn(i). If i ∈ A, then for any τ ⊂ B enumerated into

Φαn(i), there is a demand issued (τ, i, η0η1), such that η0 ⊂ Ψe(τ) and η1 is incomparable

with Ψe(τ). Since Ψe(B) = M , mwe have η0 ⊂ M , and there is a stage after which this

demand is always implemented and not injured giving the required contradiction.

Finally, finally suppose that αn is assigned requirement (M)e. Out task is to show that,

subsequent to the last initialisation of αn, once Tαn is non-empty, µs extends a leaf of

Tα at every stage at which αn is visited. Once we have shown this we are able to argue

the minimality of M using Lemmas 3.1.3, 3.1.4 and 3.1.5, apply to M , and hence M is

minimal.

Chapter 4. Computably Enumerable Degrees and the Meet Property 71

Let s0 be the first stage at which αn is visited subsequent to its last initialisation. Let

s1 > s0 be the stage at which we define Tαn(∅). Then at every subsequent stage s ≥ s1

at which αn is visited Tαn(∅) ⊆ µs and the implemented demands are precisely those

which are implemented at stage s1, together with possibly extra demands issued by nodes

properly extending αn on the construction tree, which are of the form (τ, 1, η0, η1) for η0

and η1 in Tαn

2

The end of Lemma 4.2.4 means that for all α either M lies on Tα which is either a

computable Ψα splitting tree or for which above some initial segment of M contains

no further Ψα splittings and so we are able to use Posner’s trick (Lemma 3.1.5) which

gives us that M is incomputable.

This completes the proof of Theorem 4.2.1

2

Corollary 4.2.2 follows directly and so the conjecture of Cooper and Epstein from [CE87]

is settled - incomputable c.e. degrees satisfy the meet property.

72

Chapter 5

1-Generic Degrees and the Meet

Property

First we show the existence of a 1-generic set using an oracle, and then give proofs for

some of the basic (known) properties of 1-generics. Then, as for the minimal degrees in

Chapter 3, we give a full approximation construction of a 1-generic which we will need

for the main result of this chapter, Theorem 5.2.2 in Section 5.2. For more details on the

introductory work in this chapter see [Ler83].

Theorem 5.0.5 The exists a 1-generic set A ≤ ∅′.

Proof: We use an oracle for ∅′ to pick strings α0 ⊂ α1 ⊂ · · · ⊂ A =
⋃
i∈ω αi such that

each αi satisfies the following requirement

Pi : αi ∈ Wi ∨ (∀τ ⊇ αi)(τ /∈ Wi),

where Wi is the ith c.e. set of finite strings.

Stage 0: If W0 is empty set α0 = λ otherwise set α0 = τ where τ is the least

lexicographically least string in W0.

Chapter 5. 1-Generic Degrees and the Meet Property 73

Stage s+1: Use the oracle to check if (∃τ ⊃ αs)[τ ⊇ some τ ′ ∈ Wi]. Consider the two

possible answers:

Yes - Choose the least such τ and define αs+1 = τ . In this case αs+1 satisfies the first part

requirement Ps+1.

No - Define αs+1 = α ∗s 0. In this case αs+1 satisfies the second.

Clearly there are no other possible options, and so Pi is satisfied for all i, hence A is

1-generic. We also only need access to a ∅′ oracle during the proof, and hence A ≤T ∅′

2

Having shown the existence of a 1-generic set we now give some basic properties.

Theorem 5.0.6 If A is 1-generic, then A is not computable.

Proof: Suppose that B is an arbitrary recursive set, and let i be such that

Ψi(X;x) = 1⇔ ∃zB(z) 6= X(z),

and is undefined otherwise.

If Ψi(A, x) ↓, then clearly A 6= B. Suppose that Ψi(A)(x) is undefined, then (by the

genericity of A),

∃σ ⊆ A(∀τ ⊇ σ)(Ψi(τ ;x) ↑).

This is a contradiction, as given an arbitrary σ, we are able to find X ⊃ σ such that

Ψi(X;x) ↓ by picking some n on which σ is undefined and letting X differ from B on it.

So Ψi(A;x) ↓ and so A 6= B. Hence A is incomputable.

Chapter 5. 1-Generic Degrees and the Meet Property 74

2

Theorem 5.0.7 If A is 1-generic then it is GL1, and hence is low if below ∅′.

Proof: As A is 1-generic for every c.e. set of finite strings W there exists σ ⊂ A such that

either

1. σ ∈ W ;

2. ∀τ ⊃ σ(τ /∈ W).

Consider the c.e. sets given by Vi = {τ : Ψi(τ ; i) ↓} for i ≥ 0. Using an oracle for A⊕∅′

we are able to check for successive initial segments σ of A whether 1 and 2 holds (for σ

and W = Vi for any given i). Since, eventually either 1 or 2 must hold - and since i ∈ A′

if and only if former happens - it follows that A ≤T A⊕ ∅′.

2

5.1 A 1-Generic by Full Approximation

In this section give a proof of the existence of a 1-generic degree, using a full

approximation construction. We do this, as we will use a full approximation construction

when we disucss 1-generics and the meet property in Section 5.2.

Although the notation is similar to that of the proof of Theorem 5.0.6 the proof is

quite different. Where as the proof of Theorem 5.0.6 use a finite extension method,

the following proof uses a full approximation method. Instead of asking an oracle for

strings, we use a search process which is bounded at each stage and allow a module

to injure modules of lower priority. This means that as the construction progresses our

approximation at stage s to αn associated with requirmentPn may change. If this happens

we must discard all strings associated with modules of lower priority.

Chapter 5. 1-Generic Degrees and the Meet Property 75

Theorem 5.1.1 There exists a 1-generic degree.

Proof [by full approximation]: We build a set A in stages {αs}s, lims→∞αs = A. We

have one type of requirement:

Pi : αi ∈ Wi ∨ (∀τ ⊇ αi)(τ /∈ Wi),

where Wi is the ith c.e. set of finite substrings. Requirements are placed on a tree of

strategies, and each module may be in two states - 0 and 1. The states correspond to the

branches leaving a node on the tree. All modules start in state 0.

Naively, each module is given a finite string σ, a c.e. set Wi and acts as follows. While

in state 0 it searches for an extension of σ which is in Wi. If such an extension is found

then the module makes it an initial segment of A and moves into state 1. At each stage

we bound the search that a module can do.

A module β working towards strategy Pi, say, may only move from state 0 into state 1.

When it does so, we access new modules on the tree of strategies for every strategy of

lower priority than Pi. When first accessed these modules are given associated strings.

This is defined formally later.

The control path is the set of modules accessed during a stage.

The formal construction is as follows:

Each Pi module β (i.e., |β| = i) on the tree of strategies, has a string σβ associated with

it when it is first accessed, and β also has the set Wi associated with it. We let αs be the

approximation to A during stage s. At the end of a stage s we define αs to be the longest

σβ associated with a module β on the control path during stage s. Define A = lims→∞αs.

The true path is the right most path visited during the construction.

Stage 0: Set α0 = λ.

Chapter 5. 1-Generic Degrees and the Meet Property 76

Stage s+ 1: The stage finishes and the next stage is begun when either a module changes

state, or height s+ 1 of the tree of strategies is reached. Work through the modules on the

control path acting as follows. When a module β with associated Wi is reached, and is in

state 1, do nothing and pass control along the branch labeled 1. If β is in state 0, and has

an associated string σβ then search for a string (of length at most s + 1) τ ⊃ σβ which

is in Wi[s]. If no such string is found, no action is performed and control is passed down

branch 0. If such a string is found then σβ is redefined to be an extension of τ longer than

any string previously seen, the module is put into state 1 and the stage ends. If β does not

have an associated string then associate sβ = sbeta− ∗ 0 with it, and end the stage.

The True Path is the left most Control Path visited infinitely often during the construction.

Each module may only move from state 0 to state 1. If a module moves state it does so at

some finite stage. It follows that the True Path is well defined.

To see that A is 1-generic. Assume otherwise, i.e., that for some module β, concerned

with Wi is on the true path but not satisfied - so σβ 6∈ A but there exists some extension

τ of σβ such that τ ∈ Wi. Let β be the module of highest priority for which this is the

case. If this is the case, then at some finite stage we will find τ , and redefine σβ to be such

extension of τ - contradicting the assumption that β is not satisfied.

2

5.2 1-Generic Degrees and the Meet Property

The definition of 1-genericity can be extended as follows.

Definition 5.2.1 A set A is n generic, for n ≥ 1, if for every Σn set of strings S either

1. (∃σ ⊂ A)[σ ∈ S]; or

Chapter 5. 1-Generic Degrees and the Meet Property 77

2. (∃σ ⊂ A)(∀τ ⊇ σ)[τ /∈ S].

In the late 1970s Jockusch [Joc77a] show that every degree strictly below a 2-generic

degree satisfies the complemenetation property and in 1993 [Kum93] Kumabe furthered

this by showing that for all n ≥ 2, every n-generic has the complementation property.

In [Joc77a] Jockusch also shows that for n ≥ 2 no n-generic bounds a minimal degree,

and together with Chong he showed that no 1-generic computable in 0′ (i.e., in the local

degrees) bounds a minimal degree [CJ85] - meaning that we are unable to approach 1-

generics and the meet property in the same way we approached c.e. degrees and the meet

proprty.

Following Kumabe’s paper a natural question to ask is ”Do 1-generics satisfy the

complementation property?”. In this section we go a step further and prove

Theorem 5.2.2 There exists a 1-generic set D which does not satisfy the meet property.

We construct a 1-generic set D (of degree d) which does not have the meet property. To

show that D does not have the meet property we construct a set B <T D (of degree b)

such that for all non-computable sets C ≤T D (of degree c), b ∧ c is non-computable.

5.2.1 Outline Proof

To achieve this we satisfy the following requirements for all i and j.

Pi : ∃δ ⊂ D[δ ∈ Wi ∨ (∀τ ⊃ δ)(τ /∈ Wi)].

Qi : Ψi(B) 6= D.

R〈i,j〉 : Ψi(D) is non-computable → [Γi(Ψi(D)) = Θi(B) 6= Ψj(∅)].

Chapter 5. 1-Generic Degrees and the Meet Property 78

Where for each i, Ψi is a given functional, and for all i we construct Γi and Θi.

Each R〈i,j〉 works as a subrequirement of a larger requirement which is concerned with

constructing Θi - how thi works in details is explained later. The Pi strategies ensure that

D is 1-generic, the Qi strategies ensure that B �T D, and the latter combined with the

R〈i,j〉 strategies, show that D does not have the meet property (assuming B ≤T D). It

follows from the construction that B ≤T D but in order to make it easy to see we build a

functional Λ such that Λ(D) = B.

As is standard we build functionals by adding axioms to them - these are triples consisting

of an oracle string, an input and an an output. AS string is associated with an axiom it it

extends the oracle string in the axiom. By τ is an axiom free extension of σ we mean that

the only axioms associated with τ are also associated with σ.

As we proceed we will see that this consrtuction has several competing sets of

requirements. In order to aid a conceptual understanding of the approach we are taking

we give a fairly detailied naive construction. This makes the formal construction, which

comes after, easier to follow.

We list our requirements in the following order of priority:

P0 > Q0 > R0 > · · · > Pn > Qn > Rn > · · ·

During the construction we define B solely in terms of Λ(D), so if δ �n is fixed and

Λ(δ �n) ↓= β �m then β �m is fixed.

Isolated Modules

First we outline the basic strategies. In this section we just consider how a module would

act in isolation, if it did not have to consider the actions of other modules. Later we will

Chapter 5. 1-Generic Degrees and the Meet Property 79

discuss problems arising because of the interaction of the modules and then give a formal

construction.

The module descriptions we give here will be adapted later for use on the tree of strategies.

To simplify this process we include in the descriptions the points at which the modules

will have to wait for other modules to act. This manifests itself as defining values and then

checking conditions, as opposed to (more logically) checking conditions before assigning

values. In the following we let δ be an initial segment of D, and β be an initial segment

of B.

The Pi Strategies

∃δ ⊂ D[δ ∈ Wi ∨ (∀τ ⊃ δ)(τ /∈ Wi)].

Each Pi module has a given string δ, say, and ais associated to Wi. It searches for an

extension of δ which is in Wi. At each stage the search is bounded.

If such an extension of δ is found, then the module notes this, and makes it an initial

segment of D. The module then performs no further actions. If such an extension is never

found the module need not act.

The Qi Strategies

Ψn(B) 6= D.

The Qi strategies look to show that Ψi(B) 6= D. They do this by finding a witness to the

inequality in the requirement.

Initially each module is given a pair of strings of equal length, δ1 and δ2, which extend

δ the current approximation to D, which do not form a Λ splitting. Without loss of

generality we may assume that Λ(δ1) ⊇ Λ(δ2). An axiom free extension, Λ(δ) = β of

Chapter 5. 1-Generic Degrees and the Meet Property 80

Λ(δ1) is picked which is of the same length as δ1 and axioms are added to Λ such that

Λ(δ1 ∗ 0) = Λ(δ2 ∗ 1) = β. δ = δ1 ∗ 0 is then associated with Qn, as is m = |δ| − 1.

At subsequent stages s, where δs ⊃ δ, ((so Λ(δs) = βs ⊇ β) the module checks

if Ψi(βs,m) ↓. Once this has occurred, if δ(m) = 1 − Ψn(βs,m) then successful

diagonalisation has occurred and δs is now associated with this module.

If δ(m) = Ψi(β,m) then an axiom free extension of δ2 ∗0 of length βs, δ′, is chosen. This

extension is associated with the module, and axioms are added to Λ so that Λ(δ′) = βs.

TheR〈i,j〉 Strategies

Ψi(D) is incomputable → [Γi(Ψi(D)) = Θi(B) 6= Ψj(∅)].

Initially the module has two associated strings δ and β, and an associated functional Ψi.

First the module searches for two extensions δ′ and δ′′ of δ (of the same length) which

form a Ψi splitting. At each stage the search is bounded, and if a splitting is never found

then the module performs no other actions.

Once a splitting has been found the module picks a witness m and adds axioms to Γi such

that 0 = Γi(Ψi(δ
′),m) 6= Γi(Ψi(δ

′′),m) = 1. The module picks two distinct extensions

β′ and β′′ of β (of the same length as δ′) and adds axioms into Θi so that Θi(β
′,m) =

Γi(Ψi(δ
′),m) = 0 and Θi(β

′′,m) = Γi(Ψi(δ
′′),m) = 1; and so that Λ(δ′) = β′ and

Λ(δ′′) = β′′. It sets δ′ to be an initial segment of D, and so Λ(δ′) = β′ is now an initial

segment of B.

At subsequent stages the module looks to see if Ψj(∅,m) ↓, and if so whether

Γi(Ψi(δ
′),m) = Ψj(∅,m) ↓. If not the module need perform no further actions. If so

the module sets δ′′ as an initial segment of D, meaning Λ(δ′′) = β′′ is an initial segment

of B, and performs no further actions.

Chapter 5. 1-Generic Degrees and the Meet Property 81

Module Interactions

The Γi and Θi functionals we construct are associated with module groups (i.e. for a given

i, Γi is associated withR〈i,j〉 modules for every value of j). The reason for this is that for

a given Γi (or Θi) functional, if Ψj(∅) is total then (on some input) it must be unequal to

Γi(Ψi(D)). If Ψi(D) is incomputable then Γi must be total. We know that Γi(Ψi(D)) is

not computable once the entire associated module group has been tested. We define the

priority of a module group as the priority of its highest priority member - this module is

called the prime module for (or in) the group. As the construction continues a module’s

approximation of D may change. This will, potentially, affect the value of Ψi(D), for a

given i, and hence the axioms we have enumerated of Γi.

We build Γi in response to what happens to Ψi(D), as our approximations to D change,

and we build Θi in response to Γi. During the construction we build various versions

of the functionals Γi and Θi. We start to build a functional when we reach a module

group’s prime module. Each functional Ψi may be associated with several prime modules

and several module groups. We require that the functionals Γi and Θi built by module

groups associated with prime modules on the true path are total, and that for each i such

a prime module exists. Movement of the control path on the tree of strategies below a

prime module means that a new prime module will be accessed and new versions of the

functionals Γi and Θi will start to be built. We label them Γαi and Θα
i where α is the prime

module for that group, on the current control path. When talking about a functional Γi we

almost always drop the superscript, as by any mention of Γi we mean Γαi for α, the prime

module of highest priority on the current control path. We only build one version of the

functional Λ.

Consider three nodes, α1, α2 and α3, on the control path with the following order of

priority α1 > α2 > α3 and with α1 and α3 R nodes in the same module group (i.e. R〈i,j〉
modules which have the same i value but different j values) with prime module α and α2

a Qi module. The main concern we have is that the following will happen, meaning that

Chapter 5. 1-Generic Degrees and the Meet Property 82

(at least) one of the R module groups fails.

1. α1 starts to enumerate Γαi and Θα
i . It adds axioms such that Γαi (Ψi(δ),m1) = 0 and

Θα
i (β,m1) = 0.

2. α3 (higher up the tree than α1) finds a splitting for Ψi, δ′ and δ′′ above δ and

enumerates axioms such that Γαi (Ψi(δ
′),m2) = 0 and Θα

i (β′,m2) = 0 (where

β′ ⊃ β).

3. α3 has to diagonalise, enumerating axioms such that Γαi (Ψi(δ
′′),m2) = 1 and

Θα
i (β′′,m2) = 1 , where β′′ ⊃ β.

4. α2 (between α1 and α3 on the tree of strategies) acts, forcing us to change our

current approximation to D for δ′′, to δ∗, but having to keep β′′ the same. For the

new δ∗, we have Ψi(δ
∗) = Ψi(δ

′) (up to input m2) so Ψi(δ
∗) is already associated

with a Γαi axiom. Γαi (Ψi(δ
′),m2) = 0 - because of α3. Similarly β′′ is associated

with a Θα
i axiom, so Θα

i (β′′,m2) = 1.

5. We are left in a situation where Γαi (Ψi(D)) 6= Θα
i (B).

The crux of the problem in this example is how we pick a witness for α2 (the Qn
requirement). We have to choose a witness so that we are able to move D as necessary

without worrying whether or not modules of lower priority have already diagonalised

(and so added in axioms which might cause Γi(Ψi(D) 6= Θi(B)). To do this we look for

two strings which form a splitting for every Ψi associated with a prime module of higher

priority than the Qn module we are working with. If when we move D we do so across

such a splitting, then the new value of Ψi(D), for any Ψi of higher prime priority, will not

be associated with any Γi axioms above the point of the movement.

We are unable to look directly for pairs of strings which do not form a splitting for multiple

different functionals. However if we are given pairs of strings (with certain properties

Chapter 5. 1-Generic Degrees and the Meet Property 83

- outline below), each of which is not a splitting for a certain functional, we are able

to combine them together to get a pair of strings which are not splitting for multiple

functionals. Doing this allows us to build the splittings we need in order that whenever

we move D we do so without causing Γi(Ψi(D) 6= Θi(B).

To build these splittings given a Ψi splitting τ1, τ2 ⊃ τ and two Ψj splittings τ ′1, τ
′′
1 ⊃ τ1

and τ ′2, τ
′′
2 ⊃ τ2 we pick a pair of strings (from amongst τ ′1, τ

′′
1 ⊃ τ1 and τ ′2, τ

′′
2 ⊃ τ2)

which form both a Ψi splitting and a Ψj splitting. This is possible because both of τ ′1 and

τ ′′1 will form a Ψi splitting with either of τ ′2 and τ ′′2 (as they extend opposite sides of a Ψi

splitting), and both pairs independently Ψj split. Without loss of generality assume that

Ψj(τ
′
1) is the longest for the given strings. At least one of τ ′2 and τ ′′2 must form Ψj splitting

with τ ′1, as although Ψj(τ
′
1) may extend (at most) one of Ψj(τ

′
2) and Ψj(τ

′′
2) if it does so

it must be incompatible with the other. So if Ψj(τ
′
1) ⊃ Ψj(τ

′
2) then τ ′1 and τ ′′2 are both Ψi

and Ψj splitting. If Ψj(τ
′
1) extends neither Ψj(τ

′
2) nor Ψj(τ

′′
2), then τ ′1 forms a splitting

with both τ ′2 and τ ′′2 .

Definition 5.2.3 By Combine Splittings, we mean that, in a situation where τ ′i , τ
′′
i Ψi split

and τ ′j,1, τ
′′
j,1 ⊃ τ ′i Ψj split and τ ′j,2, τ

′′
j,2 ⊃ τ ′′i Ψj split, pick whichever pair of {τ ′j,1, τ ′′j,1}

and {τ ′j,2, τ ′′j,2} form a splitting for both Ψi and Ψj to use as a new splitting.

In the example above we were given the necessary splittings. The difficulty we have in

using this process to create splittings for finitely many functionals is that we don’t know

whether splittings exist for a given Ψ above a given string, and if a splitting does exist we

don’t know when we are going to find it. So, we are unable to simply wait until we find a

splitting before moving on.

It is also worth noting that we must also take into account that when we find a splitting,

δ′, δ′′ for a given functional Ψ, previous modules may have enumerated axioms into Λ

for either (or both) of δ′, δ′′. This is because we must keep enumerating Λ axioms, and

Chapter 5. 1-Generic Degrees and the Meet Property 84

this may happen before we know which Ψ splitting we will use, and may have no choice

about the tails of the splitting.

Searching for Nested Splittings

To find the required nested splittings we introduce two new kinds of module, exactly how

these fit into the tree of strategies will be discussed in the next section - for the moment

we will consider them as isolated clusters of modules. The modules we introduce are S

modules, which search for splittings, and C modules, which co-ordinate S modules.

S nodes and C nodes are linked together into clusters, containing one C node and at

least one S node. We define the set of left descendants of a node α to be the set defined

iteratively as follows: initially enumerate α into S, at subsequent stages of the iteration

enumerate the left child of the greatest node in S into S and go to the next stage. If not

such node exists finish the iteration. The left descendants of a C node are all S nodes. As

the construction progresses, these clusters build approximations to the nested splittings

required by Q modules.

Definition 5.2.4 A node σ on the tree of strategies believes a splitting exists for Ψ if either

all the ancestors of σ which have searched for a splitting for Ψ have found one, or none

of σ’s ancestors have searched for a Ψ splitting.

Modules on the tree of strategies only enumerate axioms into Γi and Θi if they are on a

part of the tree which believes that Ψi splittings exist. For each functional Γi we require

lots of different splittings, and for each version of Γi (i.e., Γαi for each prime module α)

these splittings will be different. We enumerate the splittings into a set associated with

each module α (not just prime modules), denoted s(α) - these are the strings which α is

keeping track of. We will formally describe s(α) later.

Chapter 5. 1-Generic Degrees and the Meet Property 85

S3(δ) C2(δ′0) C2(δ′′0)

S2(δ)

0

cc

1

OO

2

;;

C1(δ′1) C1(δ′′1)

S1(δ)

0

cc

1

OO

2

::

C0(δ)

0

dd

1

??

Figure 5.1: Example Cluster

Consider the example cluster given in Figure 5.1, which contains three S nodes. This

cluster works above the string δ which the base node, α believes to be an initial segment

of D. In this position on the tree of strategies we are building versions of Γ0, Γ1 and Γ2.

α does not believe that any other splittings (for functionals associated with modules of

higher priority than α) will be found. The cluster hopes to find more splittings for Ψ0,Ψ1

and Ψ2, and be able to nest those splittings. Remember that by our conventions Ψ0 is

the identity functional. We use the notation s(α) to mean the splittings that the node α is

keeping track of - this is defined formally later.

When first passed control all the nodes in the cluster are in state 0 and control is passed

along the left branches to S3; at this point no other modules act. S3 enumerates a Ψ0

splitting (δ′0, δ
′′
0), passes this splitting to S2 and moves S2 into state 1.

The next time the cluster is passed control S2 will pick one half of the splitting it has been

given by S3, δ′0 say, and searches for a Ψ1 splitting above it. If S2 fails to find such a

splitting it passes control to C2, the bottom of another C cluster, which does not believe

that any further Ψ1 splittings will be found. The new cluster will search for a new Ψ0

splitting and then a Ψ2 splitting extending this. If S2 finds a splitting it enumerates it into

s(S2), and enters state 2. The next time the cluster is passed control, S2 searches for a

Chapter 5. 1-Generic Degrees and the Meet Property 86

Ψ1 splitting, above the other half of the splitting it was given by S3, δ′′0 . If S2 fails to find

the second splitting it passes control to the bottom of a different C cluster. Again this

cluster does not believe that a Ψ1 splitting exists above this point and searches for a new

Ψ0 splitting and then for a Ψ2 splitting directly extending this. If S2 does find a splitting

above δ′′0 , then it enumerates it into s(S2). It then combines this splitting with the splitting

found when it was in state 1 to get a pair of strings which are splitting for both Ψ0 and Ψ1

- δ′1, δ
′′
1 . S2 passes this new combined splitting down to S1 and moves S1 into state 1.

The next time the cluster is passed control S1 will look for a Ψ2 splitting above δ′1. While

it fails to find one S1 passes control to a new C cluster. This cluster does not believe that

Ψ2 splits again and will just look for a pair of Ψ1 splittings nested within a Ψ0 splitting.

Once S1 has found a splitting it enumerates the splitting into s(S1) and enters state 2. In

state 2 S1 searches for a Ψ2 splitting above δ′′1 . As before if it fails to find a splitting S2

passes control to the bottom of a new C cluster. If S2 finds a splitting it enumerates it into

s(S2). S2 combines this splitting with the splitting it found while in state 1 to produce a

splitting for Ψ0,Ψ1 and Ψ2. S2 passes the combined splitting down to C0 and moves C0

into state 1.

By convention, when we search for a splitting for Ψ above a string τ , we demand that the

two halves of the splitting (if one is found) are of the same length, and longer than any

string previously seen.

The reason that we use clusters like the ones described is that if a node is unable to find

Ψi splitting for a particular i, then another cluster takes over - one which does not require

a Ψi splitting for this i. This cluster then attempts to diagonalise D and B.

Let the example cluster look to diagonalise D and Ψ(B). If splittings of the appropriate

form are found for Ψ0, Ψ1 and Ψ2, C0 will pass them to a Q module with associated

functional Ψ and diagonalisation is attempted. If no Ψ1 splitting is found then one of the

C2 modules will have control. These modules are at the base of a cluster which still wants

to diagonalise D and Ψ(B), but does not require a Ψ1 splitting to do so.

Chapter 5. 1-Generic Degrees and the Meet Property 87

The important point is that both Q(or R) modules attempt to provide a diagonalisation

for D and B using the same functional Ψ, but require splittings to be found for different

modules. If at any stage a new splitting is found by an S module then a differentQ node,

with the same associated functional, will be accessed.

Further Considerations

When searching for a Ψi splitting above a given string, we also require that the splitting

found is not a Λ splitting, as otherwise we may find ourselves in a situation where different

halves of the splitting already map to different β values - preventing diagonalisation.

If, above, an initial segment δ of D, every Ψi splitting (for a given i) is also a Λ splitting,

then given an oracle for B we will be able to construct a Ψi nonsplitting tree containing

D as a branch. Hence we will be able to compute Ψi(D) from B, meaning that Ψi(D)

does not witness the failure of the meet property.

The formal details of how we do this are given in the next section, but we outline the

process here. If the S module αwhich is looking for the splitting has associated functional

Ψ0, then it now looks for a Ψ0 splitting which is not a Λ splitting. As before it enumerates

the splitting into s(α), passes the splitting to its parent module and moves this module

into state 1.

If the S module has associated functional Ψi (for any i 6= 0), and is in state 1 then it looks

for a Ψi splitting extending one half of the splitting it has been given which is not a Λ

splitting (δ1 say) . If the module finds such a splitting δ′1, δ′′1 it enters state 2. When the

module is first reached in state 2 it then searches for a Ψi splitting extending δ2 which is

not a Λ splitting. When we first enter state 2 and search for the splitting above δ2, it is

the first time that we have worked above δ2, and so at this point no Λ axioms have been

enumerated on extensions of it. If the module finds such a splitting δ′2, δ′′2 say, then as per

Definition 5.2.3 it is able to pick a string from {δ′1, δ′′1} and a string from {δ′2, δ′′2} which

Chapter 5. 1-Generic Degrees and the Meet Property 88

form are splitting for both Ψi and the functional associated with α’s daughter S module

and which are also not Λ splitting. The process can then be repeated for every S module

in the cluster until the base C module is given a nested splitting which is not Λ splitting.

Looking for splittings in this way does not affect our ability to diagonalise Ψi(B) and D

for all the i for which it is necessary, or to enumerate axioms into Λ so that Λ(D) = B,

and so we still have B <T D.

5.2.2 Tree of Strategies

The tree of strategies is made up of the following module types. All modules have

branches leaving them labeled corresponding to their possible states, ordered numerically.

P-nodes These nodes are concerned with making D 1-generic, and may be in two states 0

and 1. Both a P node’s children are C nodes.

Q-nodes These nodes are concerned with showing that D �T B, and may be in two states 0

and 1. Both a Q node’s children are C nodes.

R-nodes These nodes are concerned with showing that if Ψ(D) >T ∅ then if B and Ψ(D)

have a computable lower bound, then it is strictly above 0. They may be in 2 states,

0 and 1. All an R node’s children are P nodes.

S-nodes These nodes look for splittings and may be in three states 0, 1 and 2. An S node’s

left child is an S node, its other two children are C nodes.

C-nodes These nodes organise S nodes and may be in two states 0 and 1. A C node’s left

child is an S node. A C nodes right child depends upon whether, when retracing

the branch it is on, a Q node is reached before an R node or vice-versa. In the first

case the C-node’s right child is anR-node and in the second it is a Q-node.

Chapter 5. 1-Generic Degrees and the Meet Property 89

Each node α also has an associated set I(α), which contains the indices of all the

functionals the node believes split.

Along every branch of the tree of strategies we order the Pi, Qi and R〈i,j〉 nodes as

follows.

Pi-nodes These nodes are ordered along each branch by subscript.

Qi-nodes These nodes are ordered along each branch by subscript.

R〈i,j〉-nodes These nodes are ordered along each branch by subscript with the extra proviso that

i ∈ I(α), i.e. we don’t list R〈i,j〉 modules if a previous module on the branch has

failed to find a Ψi splitting.

We make explicit the ordering of the P , Q and R requirements as it makes it easier to

follow the construction. As C and S nodes are responsible only for finding splittings we

do not need to number them in this way. How they act depends only on their associated

values. Each C node has infinitely many left S successors but only finitely many of them

are ever accessed (why this is is covered in the formal construction).

The ordering of the P ,Q andRmodules is as given earlier, but they are now interspersed

with C and S nodes. The base node of the tree is P0, and this is the module of highest

priority.

A module may only move from state 0 into state 1 or (if applicable) from state 1 into state

2

Enumeration of Functionals

We break the enumeration of axioms down into two cases. As our approximation to

D changes we have complete control over the Λ axioms we enumerate. Similarly we

Chapter 5. 1-Generic Degrees and the Meet Property 90

have complete control over Θi axioms. We do not want to be in a position where every

proper extension of a string σ is associated with more axioms than σ itself, as this could

cause problems with our functionals becoming unequal. The key to ensuring this does

not happen is to ensure that for no string σ are both σ∗0 and σ∗1 used as oracles for any

enumerated axioms. To do this every time we search for a string we require it to be strictly

longer than any previously seen - so between stages there is no problem. Within a stage

if we are enumerating more than one axiom we ensure that if |σ∗0| = |σ′∗1| and we wish

to enumerate axioms for both then σ 6= σ′. This means that at all subsequent stages when

we go to enumerate axioms we will be able to do so, without worrying that the functionals

are already defined on all extensions of a string.

As we alter D we have no control over Ψi(D), and so are unable to do the same for Γi. To

get around this we ensure that for all δ, if Λ(δ) = β and Ψi(δ) = ψ, then Γi(ψ) ⊇ Θi(β).

Qi nodes may enumerate axioms into Λ and Γi, and Ri nodes may enumerate axioms into

Γi,Θi and Λ. P , C and S modules do not enumerate axioms into any functional.

At stage s we only enumerate axioms into Λ which have oracle strings of length greater

than s. If the Ψi splitting we have found is of length less than s we arbitrarily extend

it to be of the appropriate length. In this way when enumerating the Ψi nonsplitting

tree, if necessary, at stage s we are able to look at strings shorter than s as candidates

for enumeration knowing that at later stages no Λ axioms will be enumerated on them,

causing a splitting to occur.

A Q module α is passed a splitting by its parent C node, α−, and enumerates axioms into

Λ mapping both halves of the splitting to the initial segment of B associated with α−. At

later stages if α is able to diagonalise, using a longer initial segment of B, then it adds

axioms into all the necessary Γi (associated with prime modules of higher priority) so that

Γi(Ψi(δ)) = Θi(β).

An R module α is also passed a splitting by its parent C node. The R module picks an

Chapter 5. 1-Generic Degrees and the Meet Property 91

axiom free extension of both strings in the splitting and two distinct axiom free extensions

of the initial segment of B, associated with α− and adds axioms into Λ so that one half

of the extended splitting maps to each. The R module extends Γi by one (but so that the

output is different when different halves of the splitting are used as an oracle), and adds

axioms into Θi to match.

5.2.3 Formal Construction

We break this into two sections, one containing the construction and one detailing how,

we use an oracle forB to build a Ψi nonsplitting tree if we are unable to find a Ψi splitting

which is not Λ splitting.

Every module starts in state 0. A module passes control down the tree, along the branch

according to the state it is in. We describe modules handed control during a stage as being

on the control path, only these modules are able to act during a stage. The true path is the

rightmost control path visited during the construction.

Each module α has a string δα associated with it, this is the module’s current

approximation toD. If α is passed control at stage s+1 for the first time, then initially we

let δα = δs, where δs is the initial segment of D built by the end of stage s. At later stages

it is possible that α will change the value of δα. Modules also have a string βα associated

with them. This is defined to be Λ(δα), and is the module’s current approximation to B.

At the end of a stage s+1 we define δs+1 = δα for the longest δα, associated with a module

α on the control path during this stage. We define βs+1 = Λ(δs+1). Along a branch of the

tree, for two modules if α ⊆ α′, we may only have δα ⊆ δα′ and βα ⊆ βα′ .

A stage always ends when a module changes state. A stage may also end if instructed to

do so by a module, this occurs after a module has had its associated values changed.

Every module α has an associated set I(α) of the indices of the Ψi functionals it believes

Chapter 5. 1-Generic Degrees and the Meet Property 92

split. The sets of indices are used in addition to the sets of functionals described later to

monitor which splittings a module is looking for. If a module α which is looking for a

Ψi splitting fails to find one, then it removes i from I(α). No module above α on the

tree accessed while i /∈ I(α) will look for a Ψi splitting. When next reached the module

will continue to look for a Ψi splitting, and if one is found i will be re-enumerated into

I(α). If i is re-enumerated into I(α) then a new branch of the tree will be accessed and

some of these modules will look for a Ψi splitting. When it is first reached a module sets

I(α) = I(α−) - as if its parent has failed to find a splitting the appropriate index will

already have been removed from I(α−).

EachQ,R, S and C module α has a pair of strings associated with it which form a splitting

for one or more Ψi. This pairs is denoted s(α). Q andRmodules will be given this pair by

their parent C module. A C module will be given s(α) by its daughter S module. For ease

of notation when discussing an R〈i,j〉 node with associated strings s(α) = {δ1, δ2}, we

will refer to the (Θi splitting) strings Λ(δ1) and Λ(δ2) as sβ(α) = {β1, β2}. An S module

has two extra pairs of strings associated with it - these are denoted si(α) for i ∈ {1, 2},

and are used to build the nested splittings.

C nodes have a set F (α) = {Ψ0, · · · ,Ψn} of functionals that the cluster they are

the base of will look to find nested splittings for. Each S node has a set F (α) of

functionals, containing the functionals that they (and their left successors) still need

to find splittings for. These sets are ordered by subscript from least to greatest. For

an S whose parent is a C node F (α) = F (α−), for all other S nodes F (α) =

F (α−) \ {Ψi} for the greatest i in F (α−). When F (α) = {Ψ0}, we call the S

node a special S node. This S node is guaranteed to find a splitting for all the

functionals in F (α) (as Ψ0 is the identity functional), and so no nodes further along

the branch need be accessed. For a C node F (α) = {Ψi : i ∈ I(α−) and i ≤

j where j is the largest index of a prime module on the control path below α}.

Pi nodes have associated with them computably enumerable sets of strings. For a P node

Chapter 5. 1-Generic Degrees and the Meet Property 93

with index i this is the ith c.e. set Wi.

Q and R nodes have an associated diagonalisation value, denoted n(α). This is initially

undefined.

At stage 0 we have δ0 = β0 = λ, Λ = ∅ and Γi = Θi = ∅ (for all i) and all values and

sets associated with modules are initially 0, with the exception of I(α) = ω - where α is

the base module of the tree. We describe how each module α acts if given control at stage

s+ 1 - we will refer to these instructions in the construciion whch follows.

Pi Strategies

State 0

1. Search for a string τ (of length at most s+ 1) extending δα in Wi. If no such string

is found perform no further actions.

2. If such a string is found then define δα to be an extension of τ , longer than any seen

before which is Λ axiom free (above τ).

3. Enter State 1.

State 1

1. Do nothing.

Qi Strategies

State 0

Chapter 5. 1-Generic Degrees and the Meet Property 94

1. If this is the first time visiting this module, act as follows, otherwise go to instruction

2. Set s(α) = s(α−)(= {δ1, δ2}). Assume without loss of generality that Λ(δ1) ⊃

Λ(δ2) and pick an axiom free extension, βα, of Λ(δ1), of the same length as δ1. Add

axioms to Λ such that Λ(δ1 ∗ 1) = Λ(δ2 ∗ 0) = βα. Define δα = δ1 ∗ 1 and set

n(α) = |δα| − 1.

Finish the stage.

2. Check if Ψi(βs, n(α)) ↓. If so we consider two possibilities

(a) δα(n(α)) 6= Ψi(βs, n(α)). In this case we do not need to alter anything. Set

δα = δs and enter state 1.

(b) δα(n(α)) = Ψi(βs, n(α)). In this case we redefine δα to be an axiom free

extension of δ2 ∗ 0 of length at least |βs|, and set δs+1 = δα. Add axioms so

that Λ(δα) = βα, add axioms to Γi as necessary for all i associated with prime

modules of higher priority so that Γi(Ψi(δ2)) = Θi(βs) and enter state 1.

If Ψi(βs, n(α)) ↑ do nothing.

State 1

1. Do nothing.

R〈i,j〉 Strategies

State 0

1. If this is the first time we are visiting this module act as follows, otherwise go to

instruction 2.

Chapter 5. 1-Generic Degrees and the Meet Property 95

(a) Define the δ1, δ2 ∈ s(α) to be Λ axiom avoiding extensions of δ′ and

δ′′ ∈ s(α−), such that δ1 and δ2 are of the same length, and longer than any

previously seen.

(b) Let β be the longest string which is an initial segment of both Λ(δ1) and Λ(δ2)

and pick two distinct extensions of β, β1 and β2, which are of the same length

as δ1.

(c) Find the least m for which Γi(Ψi(δα),m) ↑ and set n(α) = m.

(d) Set Γi(Ψi(δ1), n(α)) = 0.

(e) For functionals associated with prime modules of higher priority add axioms

as necessary, (i.e., for all functionals Γk, Θk, Λk which, if axioms were

not re-enumerated, would be shorter than at the end of the previous stage

i.e., axiom are added to Θk and Γk so that for all m ≤ n(α), Θk(β1,m) =

Γi(Ψk(δ1),m) = 0 and Θk(β2,m) = Γi(Ψk(δ2),m) = 1). Add axioms to Λ

so that Λ(δ1) = β1 and Λ(δ2) = β2.

(f) Redefine δα = δ1

2. Check if Ψj(∅, n(α)) ↑. If so, then we perform no further actions, and move to the

next module. Otherwise we continue.

3. If Ψj(∅, n(α)) ↓= 1, then the module enters state one (and we finish the stage).

4. If Ψj(∅, n(α)) ↓= 0, then set δα to be an axiom free extension of δ2 and pick

an axiom free extension of β2 and add axioms into Λ so that Λ(δα) equals this

extension. Add axioms to Γj as necessary for all j associated with prime modules

of higher priority so that Γi(Ψj(δ2)) = Θj(β) and enter state 1.

State 1

1. Do nothing.

Chapter 5. 1-Generic Degrees and the Meet Property 96

Special S Modules

(These are S modules whose only associated functional is the identity functional.)

1. Search for a Ψ0 splitting δ1, δ2 extending δα, which is not a Λ splitting. Set s(α−) =

{δ1, δ2} and move α− into state 1.

Normal S Modules

State 0

1. Pass control along branch 0.

State 1

1. If this is the first time we are visiting this module act as follows, otherwise go to

instruction 2. Set δα = δ1 ∈ s(α).

2. Search for a Ψi splitting extending δα for Ψi in F (α) with greatest subscript, which

is not a Λ splitting. If no such splitting is found set I(α) = I(α) \ {i}, and pass

control down branch 1. If such a splitting δ′1, δ′2 is found enumerate this into s1(α)

enumerate i into I(α) (if necessary), redefine δα to be an extension of δ2 ∈ s(α)

which is not a Λ splitting with the longer of Λ(δ′1) and Λ(δ′2) and enter state 2.

State 2

1. Search for a Ψi splitting extending δα for the greatest Ψi in F (α), which is not a Λ

splitting. If no such splitting is found set I(α) = I(α) \ {i}, and pass control down

branch 2. If such a splitting δ′′1 , δ′′2 is found enumerate this into s2(α) enumerate i

into I(α), redefine δα = δ2 ∈ s1(α) and go to instruction 2.

Chapter 5. 1-Generic Degrees and the Meet Property 97

2. Combine1 s1(α) and s2(α) into a new splitting, and set s(α−). to be this splitting.

Move α− into state 1.

C modules

State 0

1. Pass control down branch 0.

State 1

1. Pass control down branch 1.

Construction

We finish a stage whenever a module changes state. We also finish a stage if instructed to

by a module. If no module changes state during a stage or has associated values redefined,

the stage finishes when all of the actions described below have been completed. Once the

construction has completed one stage it moves on to the next one. We bound the height

on the tree of strategies we may access by the stage number.

Stage 0: Set δ0 = λ, β0 = λ, Λ = ∅ and Γi = Θi = Si = ∅ for all i. Set all values and

sets associated with modules to be zero or empty, with the exception of I(α) = ω - where

α is the base module of the tree.

Stage s+1: Work through the modules on the control path in order (from highest to lowest

priority), acting on their instructions. If a module is able to act it does so as described, if a

module is unable to act it passes control down the appropriate branch to the next module.

If no module is able to act, then the stage finishes and we move on to the next stage.
1c.f. Definition 5.2.1

Chapter 5. 1-Generic Degrees and the Meet Property 98

Enumeration of Nonsplitting Trees

Here we describe how to enumerate Ti, a Ψi nonsplitting tree, if above an initial segment

of D every Ψi splitting is also a Λ splitting, using an oracle for B.

If we need to build a Ψi nonsplitting tree it is because after some stage in the construction

and above some intial segment of D no further Ψi splittings, which are Λ nonsplitting are

found. We assume without loss of generality that we are at this stage. We may do this as

the nonsplitting trees we build have no effect on the construction - they are not used by

the construction in any way. The building of these trees does, however, follow the stages

in the construction.

Assume that after stage s of the construction no further splittings of the appropriate form

are found for Ψi, and at this stage the approximation to D is δs. At stage s enumerate λ

and δs into Ti the Ψi nonsplitting tree.

At all subsequent stages s′, search for the least extension τ of δs not currently in Ti, of

length at most |s′|, such that Λ(τ) is an initial segment ofB - use our oracle forB for this.

If we find such a τ we enumerate it into Ti, and wait for the next stage to finish. If we do

not find such a τ we enumerate nothing and wait for the next stage to finish. All searches

are bound by the stage number, as is the length of any string enumerated into the tree.

We perform this process for all Ψi such that no further Ψi splittings which are Λ

nonsplitting will be found.

Note that this does not affect our ability to diagonalise D against Ψj(B), as some other Q

module (which requires fewer Ψ splittings) will perform the diagonalisation.

5.2.4 Verification

In the verification we have to show that the construction is well defined and that each

stage terminates, we also have to argue that the sets and functionals built have the required

Chapter 5. 1-Generic Degrees and the Meet Property 99

properties.

That a true path through the tree of strategies exists is clear - as each module is only able

to change state at most twice, and cannot return to a state it has been in previously. If a

module acts, it does so at stage s for some finite s - otherwise it stays in the same state

forever. This means that every module that acts is at some stage the module of highest

priority which still has to act. For a given module we do not know when this stage is, but

the fact that it exists is important.

It is also clear that all of the instructions given in the construction are feasible. At no point

do we perform an unbounded search, or require the use of an oracle we do not have access

to. As we are using the convention that if at stage s a computation requires more than s

steps then we assume (for the moment) that the computation is undefined and the process

halts after s steps, all searches and computations terminate and every stage finishes in

some finite time.

Claim 5.2.5 For all i at every stage s ≥ 0, for all δs if Λs(δs) = βs and Ψi,s(δs) = ψs,

then Γi,s(ψs) ⊇ Θi,s(β).

Proof: We prove this by induction on the stage number.

Stage 0: δ0 = β0 = λ, Λ = ∅ and Γi,0 = Θi,0 = ∅ for all i and so the result holds.

Stage s+1: Assume the result holds at the end of all stages≤ s and prove that if this is the

case then it also holds at the end of stage s+ 1.

If no module acts, then the induction is trivial.

If a P module acts it moves δs above δα ⊆ δs to δs+1, which is longer than any

approximation to D previously seen. There is a maximal initial segment of δs+1, δ, which

is part of a Λ axiom, by the induction hypothesis Λ(δ) = β and Γi,s(Ψi,s(δ)) ⊇ Θi,s(β)

for all i. P modules do not add any axioms to any Γ nor Θ; or to Λ, and so at the end

Chapter 5. 1-Generic Degrees and the Meet Property 100

of the stage Γi,s+1 = Γi,s; Θi,s+1 = Θi,s, Λs+1 = Λs and for all i, for all δ ⊂ δs+1 such

that Λs+1(δ) = β (an initial segment of βs+1), Γi,s+1(Ψi,s+1(δ)) ⊇ Θi,s+1(β) and so the

induction holds.

Note that for some i there may be strings δ‡ such that δ ⊂ δ‡ ⊆ δs+1 for which Ψi,s+1(δ‡)

is part of a Γi axiom but Λ(δ‡) is not defined (yet) and so this does not matter. Note also

that if δ‡ ⊃ δ then Γi,s+1(Ψi(δ
‡)) ⊃ Γi,s+1(Ψi,s+1(δ)) if they are both defined.

For reasons similar to those for P modules, if a S module enumerates a splitting, and

extends δs, no axioms are enumerated and the induction holds. The details of this are

omitted.

We consider all the possibilities for the actions of a Q module separately. We start with

the module being in state 0 and instruction 1 acting. We may assume without loss of

generality that Λs(δ1) ⊇ Λs(δ2) ⊇ Λs(δs). We show that if Λs+1(δ2) violates the inductive

condition, then so does Λs(δ2) - contradicting the induction hypothesis. Suppose the Q

module acts in state 1 to extend Λs(δ2) to be equal to Λs(δ1) and for contradiction let i

be the least such that the extension of Λs(δ2) violates the inductive condition (via Γi,s or

Θi,s). Note that if Λs(δ2) = Λs(δ1) then the induction trivially holds.

We are in a position where Γi and Θi axioms have been enumerated by another cluster on

the tree of strategies.

δ1 and δ2 are Ψi splitting, so Ψi(δ1) 6= Ψi(δ2). The concern we have is that Θi,s(Λs(δ1)) =

Γi,s(Ψi,s(δ1)) 6= Γi,s(Ψi,s(δ2)) - as Ψi,s(δ2) = Ψi,s(δ) for some δ associated with some

previously accessed cluster - and that by extending Λs(δ2) we will violate the induction

condition. By considering the points at which axioms for Γi and Θi could have been

enumerated we see that if the inductive condition is violated by such an extension, then

in fact it has been violated at some previous stage.

We are in a situation where δ is incompatible with δ2 (if δ ⊂ δ2 it is easy to see that the

situation we are concerned with does not arise).

Chapter 5. 1-Generic Degrees and the Meet Property 101

If Ψi,s+1(δ2) is comparable with Ψi,s+1(δ) for some previously accessed δ, for which

Γi,s(Ψi,s+1(δ)) is already defined then δ is part of some Ψi splitting which was previously

found. Let δ′ be the other half of this splitting.

Let τ be the longest initial segment of δ, δ′, δ1 and δ2 and let τ ′ be the longest initial

segment of δ and δ′ and τ ′′ be the longest initial segment of δ1 and δ2. We have that

Ψi,s+1(τ ′) and Ψi,s+1(τ ′′) are comparable and Ψi,s+1(δ′) and Ψi,s+1(δ1) are incomparable

(as if the both Ψi,s+1(δ′) and Ψi,s+1(δ1) are comparable and Ψi,s+1(δ) and Ψi,s+1(δ2) are

comparable then the induction follows).

Consider when axioms are enumerated into Γi and Θi. If Θi,s has axioms enumerated

into it for some extension of Λs(τ
′′) then the induction follows as we are in a position

where Ψi,s(τ
′′) must be part of a Γi,s axiom, and so if we are are unable to extend Λs(δ2)

as desired it must be because at some prior stage the inductive condition was violated. If

Θi,s does not have axioms enumerated into it for some extension of Λs(τ
′′) then we can

extend Λs(δ2) as required as the extension of βα picked by the Q is axiom free for Θi,s

and so the induction holds.

If a Q module acts in state zero instruction two (a), then nothing is altered and the

induction holds. If instruction (b) acts then we are just re-enumerating Θ axioms (which

at the end of stage s did not violate the induction hypothesis) onto a string which is axiom

free above Λs(δs), and so the induction holds.

If an R module acts on instruction 1 in state 0, then for reasons similar to those for Q

modules the induction holds, the details are omitted. Instructions 2 and 3 of state 0 make

no alterations to any axioms or strings and so the induction holds here.

If instruction 4 acts then we argue that the induction holds using similar reasons to those

used for showing it holds when Λs is extended, in instruction one of a Q module.

2

Chapter 5. 1-Generic Degrees and the Meet Property 102

Claim 5.2.6 If we are unable to diagonalise D and Ψi(B), then Ψi(D) ≤T B

Proof: Assume that after stage s of the construction no further Ψi splittings which are not

Λ splittings are found and so we are unable to diagonalise. If this is the case we look to

build a Ψi non-splitting tree computably in B, which contains D as a branch.

Suppose that at stage s the approximation to D is δs. At stage s enumerate λ and δs into

Ti the Ψi nonsplitting tree.

At all subsequent stages s′, search for the least extension τ of δs not currently in Ti, of

length at most |s′|, such that Λ(τ) is an initial segment ofB - use our oracle forB for this.

If we find such a τ we enumerate it into Ti, and wait for the next stage to finish. If we do

not find such a τ we enumerate nothing and wait for the next stage to finish. All searches

are bound by the stage number, as is the length of any string enumerated into the tree and

hence we computably build a Ψi non splitting tree with D as a branch, and so by a similar

argument to Lemma 3.1.4 Ψi(D) ≤T B.

2

Claim 5.2.7 B is total and for all j, if Ψi(D) is total, then both Γi(Ψi(D)) and Θi(D)

are total.

Proof: When first given control R a module α on the control path is given an associated

βα(= Λ(δα)), of some length n. α may not move βα below length n. Q and R modules

extend our approximation to βα, and we access infinitely many of them on the true path,

and so we can see that B = limα→ωβα is infinite.

If Ψi(D) is total, then eventually for all j ∈ ω the module R〈i,j〉 is the module of on the

true path of highest priority yet to act. At this point both Γi(D) and Θi(D) are extended

up to a certain height, n (strictly greater than previously seen on the true path) and are

never again injured below this height.

Chapter 5. 1-Generic Degrees and the Meet Property 103

Claim 5.2.8 For all j, if Ψj is total, then if Ψi(D) total for some input n, Γi(Ψi(D,n)) 6=

Ψj(n).

Proof: For a given Γi, if this is not true then there is some minimum j for which Ψj

witnesses the failure. We assume that this i and j are being dealt with by the module R

on the True Path.

As noted in the introduction to this section, eventuallyR is the module of highest priority

still to act. After it has been injured for the last time R finds a splitting and chooses a

witness to try and show that Γi(Ψi(D)) 6= Ψj , say argument n.

If Ψj ↓ at this stage then we can pick diagonalise Γi(Ψi(D)) and Ψj straight away, giving

a contradiction in our assumption

If Ψj(n) ↑ at this stage then as we need to keep extending Γi(Ψi(D)) we choose an output

for Gammai(Ψi(D), n). Eventually (as it is total) Ψj(n) ↓. At this stage we are able to

diagonalise.

R was the module of highest priority still to act, and so is never again injured, and n

witness that Γi(Ψi) 6= Ψj - contradicting that j was the least such failure.

2

Claim 5.2.9 B <T D.

Proof: The Qi strategies are concerned with showing that Ψi(B) 6= D, and hence B �T

D. Let i be the least such that Ψi(B) = D (by assumption here, Ψi is total). LetQ be the

module on the true path which is dealing with this i. At some stage of the constructionQ

was the module of highest priority yet to act. After it was been injured for the last timeQ

chose a witness n to try and show that Ψi(B, n) 6= D(n). At some stage (later) D(n) ↓

(as D is defined on every input) and at some stage (possibly later) Ψi(B, n) ↓ (as it is

Chapter 5. 1-Generic Degrees and the Meet Property 104

total). At this stage we were able to move D, while leaving B the same and hence force

Ψi(B) 6= D. Contradicting the assumption that i was the least failure.

This shows that D ≤T B. As we are able to compute B from D via Λ, we know that B

and D are not incompatible, and so B is strictly less than D.

2

Claim 5.2.10 D is 1-generic

Proof:Assume otherwise, i.e., that module α, concerned with Wi, is on the true path but

not satisfied - so δα 6∈ Wi but there exists some extension τ of σα such that τ ∈ Wi. Let

α′ be the module of highest priority for which this is the case. If this is the case, then at

some finite stage we will find τ , and redefine σα to be such extension of τ . If α is on the

true path, then (as modules may only change state once), not module of higher priority on

the True Path beneath α acts at any subsequent stage. This means that at no stage after s′

is α injured. Contradicting the assumption that α is not satisfied.

2

These claims show that our construction is indeed of a 1-generic set D, which does not

have the meet property, and so conclude the proof of Theorem 5.2.2

2

As previously noted in Chapter 4, for the final proof in this thesis we were unable to

proceed by building a minimal degree. Chong and Downey showed that there exist

minimal degrees that are bound by 1-generics between 0′ and 0′′ [CD90], and also that

there exist minimal degrees below 0′ which are bound by no 1- generic [CD89]. Indeed

in the later paper they state:

Chapter 5. 1-Generic Degrees and the Meet Property 105

..the interplay between 1-genericcs and minimal degrees appears to be

fairly complex.

and

...there is more work to be done in this area.

Another interesting open problem, asked by Slaman and Steel [RT99], is whether 0′ is the

least degree such that all degrees above satisfy the complementation property.

Chapter 5. 1-Generic Degrees and the Meet Property 106

107

Bibliography

[AD77] A. A. Al-Daffa’. The Muslim Contribution to Mathematics. Croom

Helm/Humanities Press, 1977.

[ASF06] K. Ambos-Spies and P.A. Fejer. Degrees of Unsolvability. 2006.

[CD89] C.T. Chong and R. Downey. Defining the Turing Jump. Math. Proc. Camb.

Phil. Soc., 105(5):211 – 222, 1989.

[CD90] C.T. Chong and R. Downey. Defining the Turing Jump. Ann. Pure and Appl.

Logic, 48:215 – 225, 1990.

[CE87] S. B. Cooper and R. L. Epstein. Complementing Below Recursively

Enumerable Degrees. Ann. of Pure and Appl. Logic, 34:15 – 32, 1987.

[CJ85] C.T. Chong and C.G. Jockusch. Minimal degrees and 1-genrics below 0′. In

M.M. Richter, E. Börger, W. Oberschelp, B. Schinzel, and W. Thomas, editors,

Proceedings of Aachen Logic Conference, Berlin, 1985.

[Coh63] P.J. Cohen. Set Theory and the Continuum Hypothesis. Proc. Natl. Acad. Sci.

USA, 55(6):1143 – 1148, 1963.

[Coo72] S. B. Cooper. Degrees of Unsolvability Complementary between Recursively

Enumerable Degrees. Ann. of Math. Logic, 4(1):31 – 73, 1972.

[Coo74] S. B. Cooper. Distinguishing the Arithmetical Hierarchy. Preprint, 1974.

BIBLIOGRAPHY 108

[Coo04] S. B. Cooper. Computability Theory. Chapman and Hall/CRC Mathematics,

2004.

[Eps75] R. L. Epstein. Minimal Degrees of Unsolvability and the Full Approximation

Construction. Memoirs of the Am. Math. Soc., 3(162), 1975.

[Fef65] S. Feferman. Some Applications of the Notions of Forcing and Genericity.

Fundamenta Mathematicae, 56:325–345, 1965.

[Fri57] R. M. Friedberg. Two Recursively Enumerable Sets of Incomparable Degrees

of Unsolvability (Solution of Post’s Problem, 1944). Proc. Nat. Acad. Sci.

U.S.A., 43(2):236–238, 1957.

[Ish03] S. Ishmukhametov. On a Problem of Cooper and Epstein. J. Sym. Logic, 68:52

– 64, 2003.

[Joc77a] C.G. Jockusch. Degrees of Generic Sets. In F. R. Drake and S. S. Wainer,

editors, Proceedings of Logic Colloquium, Leeds, 1977.

[Joc77b] C.G. Jockusch. Simple Proofs of some Theorems of High Degrees. Canad. J.

Math., 29:1072 – 1080, 1977.

[JP78] C. G. Jockusch and D. B. Posner. Double Jumps of Minimal Degrees. J. Sym.

Logic, 43:715–724, 1978.

[JS83] C.G. Jockusch and R. A. Shore. Pseudojump Operators I: The R.E. Case. Trans.

Am. Math. Soc., 275(2):599 – 609, 1983.

[JS84] C.G. Jockusch and R. A. Shore. Pseudojump Operators II: Transfinite

Iterations, Hierarchies and Minimal Covers. J. Sym. Logic, 49(4):1205 – 1236,

1984.

[KP54] S. C. Kleene and E. L. Post. The Upper Semi-Lattice of Degrees of Recursive

Unsolvability. Ann. of Math., 59(2):379–407, 1954.

BIBLIOGRAPHY 109

[Kum93] M. Kumabe. Generic Degrees are Complimented. Ann. of Pure Appl. Logic,

59(2):257–272, 1993.

[Ler83] M. Lerman. Degrees of Unsolvability. Springer, 1983.

[Lew] A. E. M. Lewis. The Search for Natural Definability in the Turing Degrees.

submitted.

[Muc56] A. A. Muchnik. On the Unsolvability of the Problem of Reducibility in the

Theory of Algorithms. Dokl. Akad. SSSR (N.S), 108:194–197, 1956.

[Nie09] A. Nies. Computability and Randomness. Oxford University Press, 2009.

[NSS98] A. Nies, R. A. Shore, and T. A. Slaman. Interpretability and Definability in

the Recursively Enumerable Degrees. Proc. London Math. Soc., 77:241 – 291,

1998.

[Odi92] P. Odifreddi. Classical Recursion Theory, volume 1. Elsevier, 1992.

[Odi99] P. Odifreddi. Classical Recursion Theory, volume 2. Elsevier, 1999.

[Pos44] E. L. Post. Recursively Enumerable Sets of Positive Integers and their Decision

Problems. Bull. Amer. Math. Soc., 50:284–316, 1944.

[Pos79] D.B. Posner. A Survey of non-r.e. degrees ≤ 0′. In F.R.Drake and S.S.Wainer,

editors, Proceedings of Logic Colloquium, Leeds, 1979.

[Pos81] D. Posner. The Upper Semi-Lattices of Degrees≤ 0′ is complemented. J. Sym.

Logic, 46:705–713, 1981.

[RT99] R.A.Shore and T.A.Slaman. Defining the Turing Jump. Math. Res. Lett., 6:711–

722, 1999.

[Sac61] G. E. Sacks. A minimal Degree less than 0′ . Bull. Am. Math. Soc., 67:416 –

419, 1961.

BIBLIOGRAPHY 110

[Sac63] G. E. Sacks. Recursive Enumerability and the Jump Operator. Trans. Am.

Math. Soc., 108:223 –239, 1963.

[Sho66] J. R. Shoenfield. A Theorem on Minimal Degrees. J. Sym. Logic, 31:539 –

544, 1966.

[Soa74] R. I. Soare. Automorphisms of the Lattice of Recursively Enumerable Sets.

Bul. Am. Math. Soc., 80:53 – 58, 1974.

[Soa87] R. I. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, 1987.

[Spe56] C. Spector. On Degees of Recursive Unsolvability. Ann. of Math., 64(3):581 –

592, 1956.

[SS99] R. A. Shore and T. A. Slaman. Defining the Turing Jump. Math. Res. Lett.,

6:711 – 722, 1999.

[Tur36] A. M. Turing. On Computable Numbers, with an Application to the

Entscheidungsproblem. Proc. London Math. Soc., 42:230–265, 1936.

[Tur39] A. M. Turing. Systems of Logic Based on Ordinals. Proc. Lond. Math. Soc.,

45:161–228, 1939.

[Yat70] C. E. M. Yates. Initial Segments of the Degrees of Unsolvability, part II:

Minimal Degrees. J. Sym. Logic, 35:243 – 266, 1970.

