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Abstract

Inspired by the experiments with the three strains of E. coli bacteria

as well as the three morphs of Uta stansburiana lizards, a model of

cyclic dominance was proposed to investigate the mechanisms facili-

tating the maintenance of biodiversity in spatially structured popu-

lations. Subsequent studies enriched the original model with various

biologically motivated extension repeating the proposed mathematical

analysis and computer simulations.

The research presented in this thesis unifies and generalises these mod-

els by combining the birth, selection-removal, selection-replacement

and mutation processes as well as two forms of mobility into a generic

metapopulation model. Instead of the standard mathematical treat-

ment, more controlled analysis with inverse system size and multiscale

asymptotic expansions is presented to derive an approximation of the

system dynamics in terms of a well-known pattern forming equation.

The novel analysis, capable of increased accuracy, is evaluated with

improved numerical experiments performed with bespoke software de-

veloped for simulating the stochastic and deterministic descriptions of

the generic metapopulation model.

The emergence of spiral waves facilitating the long term biodiversity

is confirmed in the computer simulations as predicted by the theory.

The derived conditions on the stability of spiral patterns for different

values of the biological parameters are studied resulting in discoveries

of interesting phenomena such as spiral annihilation or instabilities

caused by nonlinear diffusive terms.
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Chapter 1

Introduction

Over 90 percent (...) of all the

species that have ever lived (...)

on this planet are (...) extinct.

We didn’t kill them all.

George Carlin

This chapter contains a broad introduction of the biological motivations be-

hind the postgraduate research presented in this thesis. More technical introduc-

tions of the mathematical and computational methods can be found in Chapters

2 and 3 dedicated to those subjects. This introductory chapter concludes by sum-

marising the analytical and numerical improvements made over previous studies

with the resulting discoveries of novel phenomena.

1.1 Cyclic Dominance in Structured Populations

The 125th anniversary of Science magazine was celebrated by a publication of

articles discussing the 125 most compelling questions facing scientists. One of

the top 25 questions featured in that special collection asked “What Determines

Species Diversity?” (Pennisi, 2005) with excerpts from the article given below.

1



1. INTRODUCTION

Countless species of plants, animals, and microbes fill every crack

and crevice on land and in the sea. (...) In some places and some

groups, hundreds of species exist, whereas in others, very few have

evolved (...). Biologists are striving to understand why. The inter-

play between environment and living organisms and between the or-

ganisms themselves play key roles in encouraging or discouraging di-

versity (...). But exactly how these and other forces work together

to shape diversity is largely a mystery. (...) Future studies should

continue to reveal large-scale patterns of distribution and perhaps

shed more light on the origins of mass extinctions and the effects of

these catastrophes on the evolution of new species. From field stud-

ies of plants and animals, researchers have learned that habitat can

influence morphology and behavior (...), for example, as separated

populations become reconnected, homogenizing genomes that would

otherwise diverge. Molecular forces, such as low mutation rates (...)

influence the rate of speciation, and in some cases, differences in di-

versity can vary within an ecosystem: edges of ecosystems sometimes

support fewer species than the interior.

Biological diversity, or biodiversity, is often interpreted as the measure of

variation of genes expressed in the number of unique life forms in current existence

(Harper & Hawksworth, 1994). A large number of organisms found in a biodiverse

habitat forms the components of a system in which different species interact

through exchange of organic matter and energy. If such interactions between the

biological agents are understood as a complex system, the biodiversity can be

considered as a mechanism which supports the existence of life by increasing the

adaptability to changes in the ecosystem (Darwin, 1859; Harper & Hawksworth,

1994). When the cumulative gene pool becomes depleted through an extinction

of species, some of the biological diversity is lost, with the evolutionary solutions

to successful survival in certain environmental conditions becoming no longer

accessible. On the other hand, it is also advantageous to remove the unsuccessful

strategies from the gene pool by the elimination of some species which makes

extinctions a natural process of self-correction. What should be considered is

2



1.1 Cyclic Dominance in Structured Populations

Figure 1.1: Mutually exclusive interactions self-organise lichen in the tundra

to a state of high biodiversity in a form of a spiral wave. Reproduced from

[BiophysikBildergalerie], see Mathiesen et al. (2011) for details.

the rate at which such processes are occurring in order to avoid mass extinctions

which are usually an effect of natural disasters or rapid changes in the climate.

The notion that the next mass extinction is likely to be caused by human

impact on the environment has gained a lot of attention in recent years with

much talk about sustainability and calls for ecosystem engineering (Cardinale

et al., 2012; Chapin III et al., 2000; Myers et al., 2000). While noble in nature,

these issues originate mainly from the fear of potential negative effects which loss

of biodiversity can have on humanity. The gradual disappearance of the so-called

“ecosystem services”, such as food, fuel or climate regulation, seems to be the

greatest concern amongst the majority of conservationists. This is certainly true

in the case of insects whose extinctions are not widely reported (Dunn, 2005)

except for some species which, coincidentally, happen to play a major role in pest

control and crop pollination.

Amongst the many mechanism of maintenance of biodiversity (Chesson, 2000),

cyclic dominance was proposed as a facilitator of species coexistence in ecosys-

tems (Claussen & Traulsen, 2008; Dawkins, 1989; May & Leonard, 1975). In

such situations, the species form a circular chain of interactions by dominating

and being dominated at the same time. These processes are similar to those of

the paradigmatic rock-paper-scissors (RPS) game in which rock crushes scissors,

scissors cut paper and paper wraps rock. Such mutually exclusive interaction are

3
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1. INTRODUCTION

Figure 1.2: Orange, blue and yellow throat colouring in Uta stansburiana lizards.

See caption of Figure 1.3 for description of mating behaviour. Reproduced from

[LizardLand].

found to increase the biological diversity in habitats constrained to two spatial

dimensions as shown in Figure 1.1 (Boerlijst & van Ballegooijen, 2010; Cameron

et al., 2009; Heilmann et al., 2010; Mathiesen et al., 2011). In particular, real-life

examples of structured populations of three-species were reported in Californian

lizards Uta stansburiana, depicted in Figure 1.2, which exhibit competitive rock-

paper-scissors dynamics (Corl et al., 2010; Dickinson & Koenig, 2003; Sinervo

& Lively, 1996; Sinervo et al., 2000; Smith, 1996; Zamudio & Sinervo, 2000).

The peculiar mating habits of the side-blotched lizards gained a lot of attention,

eventually making their way into the popular culture as shown in Figure 1.3.

While the field studies on the lizards proved the existence of cyclic dominance

between three species in nature, they were also time consuming with an oscil-

latory time period of approximate four years (Sinervo & Lively, 1996). A more

controlled experiment, involving time and length scales suitable for laboratory

work, could enable a convenient way to study such dynamics. Fortunately, with

recent advancements in microbial sciences, a similar rock-paper-scissors behaviour

was found in the communities of E. coli bacteria (Kerr et al., 2002, 2006; Kirkup

& Riley, 2004; Morlon, 2012; Nahum et al., 2011; Nowak & Sigmund, 2002) and

such dynamics was the biological motivation behind this postgraduate research.

4
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1.1 Cyclic Dominance in Structured Populations

Figure 1.3: Side-blotched lizards cartoon from a comic about strange mating

habits of animals. The strong red/orange throated lizards defend large territories

and mate with many females. They dominate the blue throated lizards which

form stronger bonds with fewer females. As a result, these females do not mate

with the yellow throated lizard which itself looks like a female. However, the

yellow throated lizards breed easily with the females of the red/orange throated

lizards by sneaking into their large territories. In other words, orange beats blue,

blue beats yellow and yellow beats orange. Reproduced from [HumonComics].
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1. INTRODUCTION

Figure 1.4: Toxin based cyclic dominance between producing, sensitive and re-

sistant strains of E. coli bacteria. See text for the description of the dynamics.

Reproduced from Hibbing et al. (2010).

The system is modelled in the framework of evolutionary game theory with

rock-paper-scissors interactions. The three species forming the microbial com-

munity are the colicin-producing, colicin-sensitive and colicin-resistant strains

shown in Figure 1.4. The strain sensitive to the toxic colicin devotes all of its

resources to reproduction possessing the largest birth rate. The resistant species

produces an immunity protein sacrificing a part of its reproduction capabilities.

The toxic bacteria, produce both the colicin and the antidote thus having the

lowest birth rate. Therefore, there are three strategies concerning immunity and

reproduction with the cyclic dominant model where the producing strain poisons

the sensitive, the sensitive outgrows the resistant and the resistant outgrows the

producing. This misleadingly simple dynamics can lead to complex behaviour

when applied to a finite population of interacting individuals and the resulting

emergent phenomena are studied in the remaining chapters of this thesis.
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1.2 Advancements of Previous Studies

The aim of the postgraduate research presented in this thesis was to unify and gen-

eralise the models of cyclic dominance in structured populations of three species

within a coherent mathematical and computational framework. In order to ad-

vance the studies of the original model (Reichenbach et al., 2007a), and the closely

related research it inspired (Cremer, 2008; Frey, 2010; Jiang et al., 2011, 2012;

Peltomäki & Alava, 2008; Reichenbach & Frey, 2008; Reichenbach et al., 2007b,

2008; Rulands et al., 2013), it was necessary to reconsider the proposed tech-

niques of mathematical analysis and simulation. As a result, the understanding

of previously reported effects was corrected and expanded while new phenomena

were also discovered. The findings were interpreted and communicated to the

scientific community via a peer-reviewed publication and this thesis serves as a

more detailed description of the analysis summarised in Szczesny et al. (2013) and

Szczesny et al. (2014) with supplementary material provided in Szczesny et al.

(2012). In addition, the results of the postgraduate research are included in a

review on cyclic dominance in evolutionary games (Szolnoki et al.).

The model presented here is a generic model inspired by bacterial dynamics

incorporating many biological interactions such as different forms of mobility,

predatory selection and mutation, unifying some of the most common extensions

of the original rock-paper-scissors system (Reichenbach et al., 2007a). The novel

approach to the analysis of this model consists of three different descriptions of

the underlying dynamics with a mathematically tractable and coherent frame-

work of transitions between them. Such framework allows for tracking of the

entire spatial and temporal dynamics in arbitrary detail and for long times. It

proves that a connection between theoretical predictions and numerical experi-

ments can be realised even for complex models of population dynamics, and that

such connection can lead to discoveries of new phenomena as well as clarifications

of well-known results.

The stochastic model of previous studies consisted of a lattice of single oc-

cupancy sites, populated by individuals representing the bacteria. The single

occupancy meant that the demographic noise associated with such finite system

prevented any meaningful coarse-graining of the microscopic dynamics despite the
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macroscopic descriptions being presented alongside the stochastic model. There-

fore, the generic metapopulation model implements a lattice of subpopulations

with an adjustable carrying capacity (Lugo & McKane, 2008; McKane & New-

man, 2004). This allows for a controlled derivation leading to the deterministic

equations via the standard techniques of the inverse system size expansion (Gar-

diner, 1985; Van Kampen, 2007). Such derivation presents a significant improve-

ment over the naive proposal of deterministic models based on the mass action

law which neglects the nonlinear terms resulting from spatial interactions.

The discovery of spiral patterns in the original model prompted a mapping

of the macroscopic description onto a specific amplitude equation. This mapping

was achieved via the centre manifold and near identity transformations based

on assumptions which cannot be satisfied. The chosen amplitude equation was

the two-dimensional complex Ginzburg–Landau equation (CGLE), a celebrated

pattern forming system exhibiting spiral waves. The existing literature on the 2D

CGLE was then used to characterise the dynamics of the patterns in the original

model. This procedure was followed by the subsequent studies of closely related

models. However, the postgraduate research presented in this thesis questions the

validity of the predictions based on such mapping and proposes an alternative

controlled perturbative treatment. In such analysis, an asymptotic multiscale ex-

pansion is performed around the bifurcation responsible for the formation of the

spiral waves (Miller, 2006). Subsequently, a smooth departure from the onset of

bifurcation is possible through an additional parameter motivated by the muta-

tion of bacteria reported in the experiments with E. coli. Therefore, the CGLE is

derived close to the onset of the bifurcation such that the theoretical predictions

can then be tested away from the onset in the regime of previous studies.

The spiral patterns of the original and the related models were characterised

by a derivation based on localised perturbations (van Saarloos, 2003). This pre-

dictions are shown to be valid only for a specific set of parameters and an al-

ternative approach utilising a plane wave Ansatz is proposed to find the correct

wavelengths and velocities of the spiral waves. In addition, the analysis of the

convective instability of the waves is presented (Hoyle, 2006) and its predictions

are confirmed in numerical simulations.
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1.2 Advancements of Previous Studies

The application of the two aforementioned expansions to a problem of this

complexity was not attempted before and presents considerable algebraic chal-

lenges. Nevertheless, this approach is a combination of standard methods and

their complexity is overcome with computer algebra systems. In contrast, the sim-

ulations of the generic metapopulation model are arguably the most innovative

part of this research with a complete departure from the algorithms used in the

previous studies. As with the mathematical analysis, the numerical framework

presented here insists on rigorous coherence between stochastic and deterministic

descriptions of the bacterial dynamics by employing exact computer simulations.

This allows for validation of the numerical experiments by performing simula-

tions of the same system with two different techniques and cross-checking the

generated outputs which must be identical in certain limiting cases.

During the postgraduate research, the Gillespie algorithm (Gillespie, 1976)

was extended to simulate two-dimensional structured populations of bacteria with

a large number of individuals and possible reactions showing complete agreement

with the deterministic predictions. These statistically exact experiments are a

significant improvement on the usual lattice Monte Carlo simulations. As a re-

sult, no additional rescalings or renormalisations are required to compare the

theoretical results with the numerical experiments.

To complement the stochastic simulations, the macroscopic equations and

the CGLE are solved numerically with accurate pseudo-spectral methods (Cox

& Matthews, 2002) instead of relying on preconfigured software packages. The

insight gained from developing the bespoke algorithms allowed for a better under-

standing of the interplay between the diffusion constants, domain sizes and other

simulations parameters. Some research concentrated on this interplay reporting

effects on the pattern formation linked to the maintenance of biodiversity. This

research takes a different approach by first showing how these effects can be ex-

plained and predicted with the knowledge of the numerical methods. The aim of

such approach is to isolate effects of numerical simulations in order to study the

intrinsic dynamics of the generic metapopulation model.
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Chapter 2

Mathematical Methods

The following sections in this chapter contain the details of the mathematical

framework modelling the bacterial dynamics described in Chapter 1. The frame-

work consists of three complementary equations, which approximate the inter-

actions between the bacteria at varying levels of complexity. The starting point

of the derivations is an individual based stochastic model of a metapopulation,

formulated in terms of a Markov chain and described in Section 2.2. The inverse

system size expansion, also known as the van Kampen expansion (Van Kampen,

2007), is then applied to such stochastic description. As a result, partial differen-

tial equations (PDEs) are derived as an approximation of the stochastic dynamics

in the limit of large system size. Section 2.3 contains the discussion of the de-

terministic model, followed by a multi-scale asymptotic expansion (Miller, 2006).

The second expansion yields an amplitude equation approximating the behaviour

of the PDEs and can be recognised as the two-dimensional complex Ginzburg–

Landau equation (CGLE). Finally, certain aspects of the pattern forming nature

of the CGLE, such as the Eckhaus instability, are studied with controlled deriva-

tions (Hoyle, 2006). The results of the analysis, complemented by the existing

literature on the CGLE, serve as a guide to understanding the dynamics of the

deterministic and stochastic descriptions of the generic metapopulation model.

11



2. MATHEMATICAL METHODS

2.1 Mathematical Introduction

Mathematical modelling of populations is an interesting problem which may help

understanding the maintenance of biodiversity as well as its loss leading to extinc-

tion of species. In the language of mathematical biology, the extinctions occur

when the system dynamics drifts into an absorbing state. Since this situation

is guaranteed in finite models discussed below, the scaling of extinctions times

with the system size is usually considered. For example, in certain nonspatial

models, the time to extinction scales linearly with the population size. However,

when space is added, the coexistence time is proportional to the exponent of the

population size implying prolonged biodiversity (Reichenbach et al., 2007a).

Early descriptions of population dynamics considered continuous nonspatial

systems modelled with ordinary differential equations (ODEs) which were appro-

priate for populations with a large number of individuals (Lotka, 1920; Volterra,

1926, 1928). However, when that number was insufficient for the assumed coarse-

graining to be accurate, the discrete and finite nature of the dynamics remained

hidden by this deterministic approach. The need to capture those missing charac-

teristics focused the research onto a microscopic description based on stochastic

processes. Such model was adequate to capture the effects of the intrinsic fluc-

tuations caused by the finite sizes of the populations and was used to derive

the macroscopic ODEs in the limit of infinite population where the demographic

noise vanishes (Black & McKane, 2012; Van Kampen, 2007). This approach pro-

vided individual based models (Grimm, 1999) which were accurate not only in

the limit of finite system size but also reduced to the aforementioned macroscopic

models in the continuum limit. The effects of the demographic noise due to the

discreteness of the populations could now be studied in detail. The inclusion

of this intrinsic stochasticity corrected the previous results obtained with ODEs

and showed a rather different, nondeterministic nature of biological ecosystems

(Durrett & Levin, 1994; McKane & Newman, 2004, 2005; Traulsen et al., 2005).

Both the individual and population level models were primarily concerned

with well-mixed systems. The assumed mixing meant that any number of biolog-

ical agents can interact with complete disregard of the spatial structure of their

habitat. While this zero-dimensional model was suitable in some cases, it was

12



2.1 Mathematical Introduction

necessary to develop more realistic spatially extended descriptions. In addition

to stochastic effects, the spatial structure of the populations was shown to be im-

portant (Durrett, 1999; Durrett & Levin, 1994, 1998; Kareiva et al., 1990). For

example, in the experiments with E. coli bacteria, spatial structure facilitated

maintenance of biodiversity by changing the final state of the system. When all

species were kept in a flask, i.e. a well-mixed system, all sensitive bacteria were

poisoned by the toxic strain which in turn was outgrown by the resistant bacteria.

However, when placed on a two dimensional habitat of agar plates, the bacteria

coexisted for the entire period of the experiment as shown in Figure 5.15. Sub-

sequently, the deterministic modelling focused on partial differential equations

while complementary stochastic reaction-diffusion systems were proposed for mi-

croscopic models. As in the nonspatial case, the PDEs could be derived from the

stochastic dynamics as the two descriptions were again equivalent in the limit of

large system size.

As with the addition of stochasticity caused by the finite population size, the

inclusion of mobility of the individuals resulted in new and rich dynamics. The

spatial structure of the system was shown to impact on the underlying dynamics

and biodiversity (Reichenbach et al., 2007a). In addition, interactions between

different strains of bacterial species may cause them to self-organise into complex

patterns emerging from random initial conditions (Koch & Meinhardt, 1994)

including spiral waves (Boerlijst & Hogeweg, 1991). Such pattern formation helps

to maintain the biodiversity of the ecosystem by allowing the strains to coexist

without extinctions. However, the patterns can be destroyed in certain conditions

resulting in the loss of biodiversity while the true role of demographic noise in

such processes is yet to be determined. One of aims of theoretical biology is

to study ecosystems using various mathematical and computational approaches

in order to understand the stability of these patterns as a function of biological

parameters. Therefore, it is important to incorporate an appropriate level of

spatial structure into the mathematical models to make such analysis possible.

One such model is based on a metapopulation, an assembly of well-mixed systems

residing on a lattice or a network as shown in Figure 2.1 (Eriksson et al., 2013;

Kareiva et al., 1990). The interactions between the individuals are restricted

to a single subpopulation while their movement is allowed between the patches.
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Figure 2.1: A diagram depicting a small section of the periodic square lattice of

bacterial metapopulation. Each circle is a well-mixed subpopulation of carrying

capacity N . The migrations occur in 4-neighbourhood, e.g. the neighbourhood

of the middle pat ch, coloured in darker grey, are the four patches coloured in

lighter grey (Boerlijst & Hogeweg, 1991). See Section 2.2 for details.

An advantage of such model is the possibility of a system size expansion which can

be achieved for the entire lattice (Lugo & McKane, 2008). In comparison to other

models which allow only one individual per site, larger sizes of the subpopulations

enable a more controlled expansion.

It should be noted that choosing a lattice as an underlying spatial structure

is an appropriate description of the local interactions within the neighbourhood

which are physical and not social in nature. Therefore, network structures are not

studied in this thesis, while the most promising extensions of the model consider

the individuals interacting within a certain radius (Ni et al., 2010).
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2.2 Stochastic Model

2.2 Stochastic Model

The generic stochastic system consists of L2 subpopulations placed on a square

(L×L) periodic lattice, labelled by a vector ℓ = (ℓ1, ℓ2) ∈ {1, . . . , L}2 as depicted
in Figure 2.1. Each patch is a well-mixed population of species S1, S2, S3 and

empty spaces Ø with their respective numbers in patch ℓ denoted as N1,ℓ, N2,ℓ,

N3,ℓ and NØ,ℓ. All populations have a limited carrying capacity N such that

N = NØ,ℓ + N1,ℓ + N2,ℓ + N3,ℓ. Inside one patch, each species undergoes the

following reactions

Si +Ø
β−→ 2Si (2.1)

Si + Si+1
σ−→ Si +Ø (2.2)

Si + Si+1
ζ−→ 2Si (2.3)

Si
µ−→ Si±1. (2.4)

Here, the index of the species i ∈ {1, 2, 3} and it is ordered cyclically such that

S3+1 = S1 and S1−1 = S3. The cyclic dominance interactions, summarised in

(2.2) and (2.3), take the form of selection-removal process at rate σ and selection-

replacement at rate ζ. If empty space is available, the reproduction occurs at rate

β as stated in (2.1) while there are also two mutation reactions for each species

at rate µ as given in (2.4).

It should be emphasised that all of the reactions happen in each subpopulation

between the individuals who are currently inside it. Such system is then allowed

to exchange individuals via migration between two neighbouring patches. The

migration happens either when two individuals exchange their habitat at rate

δE or when one diffuses into a previously unoccupied empty space at rate δD.

These two kinds of diffusion are usually modelled as happening at the same rate,

however, the generic metapopulation model presented here considers them as

different processes. This leads to the appearance of nonlinear diffusive terms

in the partial differential equations describing the dynamics of the system which

vanish only for the special case δD = δE considered in previous studies. Therefore,

these rates have been divorced in order to observe any effects of such nonlinear

mobility (He et al., 2011).
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Reference β σ ζ µ δD ?† δE N ‡ L‡ NL2/106

Reichenbach et al. (2007a) ✓ ✓ ✗ ✗ = 1 200 0.04

Reichenbach et al. (2007b) ✓ ✓ ✗ ✗ = 1 1000 1.00

Reichenbach et al. (2008) ✓ ✓ ✗ ✗ = 1 200 0.04

Reichenbach & Frey (2008) ✓ ✓ ✓ ✗ = 1 100 0.01

Peltomäki & Alava (2008) ✓ ✗ ✓ ✗ = 1 200 0.04

Cremer (2008) ✓ ✓ ✗ ✓ = 1 - -

He et al. (2011) ✓ ✓ ✗ ✗ =, 6= 1 256 0.07

Jiang et al. (2011) ✓ ✓ ✗ ✗ = 1 1000 1.00

Jiang et al. (2012) ✓ ✓ ✗ ✗ = 1 512 0.26

Rulands et al. (2013) ✓ ✓ ✓ ✗ = 8 60 0.03

Szczesny et al. (2013, 2014) ✓ ✓ ✓ ✓ =, 6= 1024 512 268.44

Table 2.1: Comparison of previous studies to the postgraduate research presented

in this thesis, also published in Szczesny et al. (2013, 2014). † Symbols = and 6=
refer to studies with δD = δE and δD 6= δE respectively. ‡ Maximum values of N

and L in a single simulation are reported with the resulting value of NL2.

Two neighbouring populations will be denoted with ℓ and ℓ′ where the site ℓ′

is considered to be in the 4-neighbourhood of ℓ i.e. above, below, left and right

of site ℓ, as explained by Figure 2.1. In addition, the summation over all of the

neighbour sites will be denoted as ℓ′ ∈ ℓ. Formally, the migration reactions can

be written as

[

Si

]

ℓ

[

Ø
]

ℓ′

δD−→
[

Ø
]

ℓ

[

Si

]

ℓ′
(2.5)

[

Si

]

ℓ

[

Si±1

]

ℓ′

δE−→
[

Si±1

]

ℓ

[

Si

]

ℓ′
(2.6)

where the square brackets with subscript position emphasise the two different

subpopulations between which the migrations take place.
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Most previous studies of similar models considered single occupancy sites by

setting N = 1 while some simulated metapopulations with N = 8 (Rulands

et al., 2013). Since the derivation of the deterministic description of the model

assumes 1√
N

≪ 1, such low values of the subpopulation carrying capacity do not

allow for significant elimination of noise. This claim is confirmed by the control

experiments in Section 5.6 where stochastic and deterministic simulations are

validated by direct comparison whose satisfactory level is achieved for N ≥ 256

as shown in Figure 5.13. It should be noted that in the case of single occupancy,

the on-site reactions cannot occur in the metapopulation model presented in this

thesis. In previous studies, these reactions involved individuals from neighbouring

sites while the nonlinear terms arising due to such modelling were ignored in the

deterministic equations. Apart from these differences, the generic model can be

considered similar to the original model proposed in Reichenbach et al. (2007a) in

the specific case of ζ = µ = 0 and δD = δE. Other aspects of the dynamics with

ζ 6= 0, µ 6= 0 and δD 6= δE were investigated respectively in Reichenbach & Frey

(2008), Cremer (2008) and He et al. (2011) and are thus generalised in this work.

The detailed comparison between the previous studies and the generic model is

summarised in Table 2.1. It is also worth mentioning that similar models were

also studied in one spatial dimension (He et al., 2010; Rulands et al., 2011).

2.2.1 Master Equation

The Master equation describes the probabilistic time evolution of the metapop-

ulation lattice (Reichl, 2009; Van Kampen, 2007). Firstly, the transition proba-

bilities for each reaction (2.1), (2.2), (2.3), (2.4) occurring inside the patch are

defined by combining their rates with appropriate combinatorial factors

T β
i,ℓ = β

Ni,ℓNØ,ℓ

N2
(2.7)

T σ
i,ℓ = σ

Ni,ℓNi+1,ℓ

N2
(2.8)

T ζ
i,ℓ = ζ

Ni,ℓNi+1,ℓ

N2
(2.9)

T µ
i,ℓ = µ

Ni,ℓ

N
. (2.10)
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The combinatorial factors, such as
Ni,ℓNi+1,ℓ

N2 , define the probability of individ-

uals of species Si and Si+1 to interact within a subpopulation at site ℓ. The

same argument applies to birth and hopping reactions where
Ni,ℓNØ,ℓ′

N2 denotes the

probability of species Si encountering an empty space. Migration between two

patches, stated in (2.5) and (2.6), can be defined in a similar way by writing

DδD
i,ℓ,ℓ′ = δD

Ni,ℓNØ,ℓ′

N2
(2.11)

DδE
i,ℓ,ℓ′ = δE

Ni,ℓNi±1,ℓ′

N2
. (2.12)

Before stating the full Master equation, which can be thought of as an equation

describing the flow of probabilities in and out of a particular state, it is convenient

to introduce the step up and step down operators. These act on a given state or

transition by increasing or decreasing the numbers of individuals such that

E
±
i,ℓ T

β
i,ℓ = β

(Ni,ℓ ± 1) NØ,ℓ

N2
. (2.13)

Here, the number of species Si in population ℓ is altered by ±1 in the expression

for the transition probability T β
i,ℓ. Since increasing or decreasing Ni,ℓ and NØ,ℓ will

be a common operation in the analysis, the definition of such operators shortens

the notation and allows for writing the total transition operator for reactions

within each subpopulation as

Ti,ℓ =
[

E
+
i+1,ℓ − 1

]

T σ
i,ℓ +

[

E
−
i,ℓE

+
i+1,ℓ − 1

]

T ζ
i,ℓ

+
[

E
−
i,ℓ − 1

]

T β
i,ℓ +

[

E
−
i,ℓE

+
i+1,ℓ + E

−
i,ℓE

+
i−1,ℓ − 2

]

T µ
i,ℓ. (2.14)

The general form of the [E±
... − 1]T ...

... terms comes from the gains and losses of

probability to find the system in a particular state. For example, considering

the birth reaction of N1, the system with N1 individuals gains probability of

occurrence with transitions from state with N1 − 1 individuals while losing the

probability by transitioning into N1 + 1 state.
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Similarly, the total migration operator summarising the diffusions reads

Di,ℓ,ℓ′ =
[

E
+
i,ℓE

−
i,ℓ′ − 1

]

DδD
i,ℓ,ℓ′

+
[

E
+
i,ℓE

−
i+1,ℓE

−
i,ℓ′E

+
i+1,ℓ′ − 1

]

DδE
i,ℓ,ℓ′ . (2.15)

Therefore, the Master equation for the probability P (N, t) of a system occu-

pying a certain state N at time t can be written down by summing the operators

over all species and subpopulations

dP (N, t)

dt
=

3
∑

i=1

{1,...,L}2
∑

ℓ

[

Ti,ℓ +
∑

ℓ′∈ℓ
Di,ℓ,ℓ′

]

P (N, t). (2.16)

Here, N is a collection of numbers of species Ni,ℓ and empty spaces NØ,ℓ in all

subpopulations defining uniquely the state of the whole system. Later, η is used

to symbolise a similar collection of stochastic fluctuations ηi defined below in

Section 2.2.2 discussing the system size expansion.

2.2.2 System Size Expansion

To proceed with the inverse system size expansion in the carrying capacity N

(Van Kampen, 2007), new rescaled variables need to be defined. The normalised

abundances of species are equal to si,ℓ = Ni,ℓ/N while the fluctuations ηi,ℓ around

the fixed point s∗ are defined to scale with
√
N such that

ηi,ℓ =
√
N (s∗ − si,ℓ) (2.17)

which after differentiating with respect to time becomes

dηi,ℓ
dt

= −
√
N
dsi,ℓ
dt

. (2.18)

With this Ansatz, it is now possible to write the Master equation in terms of

the fluctuations for a redefined probability Π(η, t). It should be noted that the

time taken for a change in the normalised species abundances si,ℓ scales with N
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as each reaction changes the abundances by 1
N

on average. As a result, it takes

longer to achieve the same percentage change in si,ℓ for increasing values of N ,

creating discrepancies with the continuous equations for which N is not relevant.

Therefore, a rescaled time t → Nt is introduced such that d
dt

→ 1
N

d
dt

in order to

obtain sensible time scales in the dynamics. Dropping the dependence of Π(η, t)

on all ηi,ℓ and t to ease the notation, the right hand side of (2.16) reads

dΠ

dt
=

1

N

∂Π

∂t
−

3
∑

i=1

{1,...,L}2
∑

ℓ

1√
N

dsi,ℓ
dt

∂Π

∂ηi,ℓ
. (2.19)

The left hand side of (2.16) is written in a similar way after the introduction

of si and ηi. The step up and step down operators are now expanded in their

differential form which, up to the order O( 1
N
), are

E
±
i,ℓ = 1± 1√

N

∂

∂ηi,ℓ
+

1

2

1

N

∂2

∂η2i,ℓ
. (2.20)

The consecutive application of the operators can be obtained by multiplying their

differential forms. For example, the application of E+
i,ℓE

−
i,ℓ′ gives

E
+
i,ℓE

−
j,ℓ′ = 1 +

1√
N

(

∂

∂ηi,ℓ
− ∂

∂ηj,ℓ′

)

+
1

2

1

N

(

∂

∂ηi,ℓ
− ∂

∂ηj,ℓ′

)2

. (2.21)

After some lengthy algebra, outlined in Section A.1, terms at the same order

of N can be collected on both sides of the Master equation (2.16). Leading

terms appear at order O
(

1√
N

)

describing the time evolution of the normalised

species densities si,ℓ. Ignoring the migration terms for now, collecting only the

on-site reactions, ordinary differential equations also referred to as the replicator

equations are obtained. After dropping the vector labels ℓ and introducing s =

(s1, s2, s3) and r = s1 + s2 + s3, the ODEs describing changes in one patch read

dsi
dt

= si[β(1− r)− σsi−1 + ζ(si+1 − si−1)]

+ µ(si−1 + si+1 − 2si) = Fi(s). (2.22)
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2.2 Stochastic Model

At this point, it is possible to remove one of the rates from the equation by

rescaling the time. However, all rates will be retained explicitly throughout the

subsequent derivations while the birth rate β will be set to unity in the final

results of Chapter 5 without the loss of generality.

Before considering the full PDEs for the whole spatial system, the general

dynamics of the replicator ODEs for one subpopulation will be briefly described.

The equations, analysed in Section A.2, possess a single fixed point

s∗ = s∗





1
1
1



 =
β

3β + σ





1
1
1



 (2.23)

which is globally stable for mutation rates µ > µH where

µH =
βσ

6(3β + σ)
. (2.24)

Below the critical value of µH (2.24), the system undergoes a supercritical Hopf

bifurcation developing a stable limit cycle with an approximate frequency

ωH ≈
√
3β(σ + 2ζ)

2(3β + σ)
(2.25)

and leaving the fixed point unstable. As mentioned before, other variants of

the model were considered previously in the literature. It should be noted that

retaining only the zero-sum interactions (2.3) with β = σ = µ = 0 results in

degenerate bifurcation and centres while the models considering the birth (2.1)

and selection (2.2) processed with ζ = µ = 0 lead to heteroclinic orbits.

Reintroducing the previously ignored migration terms into the repilcator equa-

tion (2.22), the full coupled ODEs describing the dynamics in the entire metapop-

ulation lattice can be obtained and used as a guide to state the following PDEs

∂tsi = Fi(s) + δD∇2si

+ (δD − δE)
(

si∇2(si+1 + si−1)− (si+1 + si−1)∇2si

)

(2.26)

21



2. MATHEMATICAL METHODS

1 pde_s1 :=

2 beta*s1*(1 - s1 - s2 - s3) - sigma*s1*s3 + zeta*s1*(s2 - s3)

3 + mu*(s2 + s3 - 2*s1) + delta_d*lap_s1

4 + (delta_d - delta_e) * (s1*( lap_s2 - lap_s3) - (s2 + s3)*lap_s1)

Listing 2.1: Simplified solution from the REDUCE script provided in Section A.1

deriving the PDEs (2.26) from the Master equation (2.16). Here, the prefix lap

indicates the Laplacian operator. Only the first equation for ∂ts1 is shown in this

listing and the remaining PDEs can be obtained through cyclic permutations.

where the discrete Laplacian in the ODEs is replaced by a continuous one

∇2 = ∂2
x1

+ ∂2
x2

(2.27)

by defining the continuous spatial coordinate x = [0, L] such that

∇2si ≡
∑

ℓ′∈ℓ
si,ℓ′ − 4si,ℓ. (2.28)

It is important to mention that an alternative definition of the continuous limit

was proposed in previous studies (Reichenbach et al., 2008). Such procedure

involves shrinking the domain size to unit area in the limit of vanishing lattice

spacing and the introduction of rescaled diffusion constants DD ∼ δD/L
2 and

DE ∼ δE/L
2. However, no such rescaling is performed here to allow for the same

values of δD, δE and L to be used in both stochastic and deterministic simulations.

It should be noted that apart from the nonspatial replicator equation Fi(sℓ)

(2.22) and a linear diffusive term δD∇2si,ℓ there are also some additional nonlinear

diffusive terms. These are one of the novelties of the model which vanish in the

case of δD = δE assumed in a majority of previous studies.

The manual derivation of PDEs (2.26) requires some considerable algebraic

manipulations providing plenty of opportunities for introducing unintentional er-

rors. Therefore, the computer algebra system REDUCE (Hearn, 2004) is utilised

to derive the equations and part of its output related to the PDEs (2.26) can be

seen in Listing 2.1. The full listing of the REDUCE notebook capable of performing

the system size expansion can be found in Section A.1.
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2.3 Deterministic Model

The macroscopic PDEs (2.26) derived in Section 2.2.2 serve as a deterministic

description of the generic metapopulation model in the limit of large system size.

The equations can be approximated by the CGLE which is derived via a con-

trolled asymptotic expansion in Section 2.3.3 while the mapping onto the CGLE

performed in previous studies is reproduced in Section 2.3.2 for comparison.

2.3.1 Linear Transformations

Before performing the mapping and the asymptotic expansion outlined in Sections

2.3.2 and 2.3.3, the PDEs (2.26) are subject to some linear transformations. After

the origin is moved to the position of the fixed point (2.23) via (s−s∗), the system

is transformed into the Jordan normal form with new variables u = (u1, u2, u3)

replacing s = (s1, s2, s3). This is achieved by constructing a transformation ma-

trix with the real and imaginary parts of the conjugate eigenvectors and the third

real eigenvector of the Jacobian matrix as implemented in Section A.2. The two

transformations can be summarised in the following way

u =
1√
6





−1 −1 −2

−
√
3

√
3 0√

2
√
2

√
2



 (s− s∗). (2.29)

The equations for the new variable u can now be expressed in the Jordan normal

form where the linear part of the replicator equation (2.22) reads

du

dt
=





ǫ −ωH 0
ωH ǫ 0
0 0 −β



u. (2.30)

The benefit of the linear transformation to variable u can now be observed. The

transformations expose the decoupling of u3 component from the oscillations in

the u1-u2 plane happening at Hopf frequency ωH (2.25). This suggests that

the dynamics of three species abundances is confined to two dimensions which

simplifies subsequent derivations.
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2.3.2 Mapping

Before describing the asymptotic expansion of the PDEs (2.26) resulting in the

derivation of the CGLE, the approximate mapping of the replicator equation

(2.22) onto the CGLE is detailed below. This mapping procedure, used in previ-

ous studies, is included here for completeness and to contrast it with the multiscale

expansion carried out in this thesis. It should be noted that a different matrix





√
3 0 −

√
3

−1 2 −1
1 1 1



 (2.31)

was used in previous studies to obtain the Jordan normal form (Frey, 2010).

The technique starts with proposing an approximation to the centre manifold

equation which confines the dynamics to two dimensions. In contrast with the

mapping, the asymptotic expansion requires no such uncontrolled approximation

and the manifold equation appears in the results of the derivation. The first order

approximation is a plane perpendicular to the radial eigenvector u = (1, 1, 1). In

addition, the terms in u1, u2 and u1u2 can be safely ignored since their coefficient

vanish in the derivation. Therefore, the proposed approximate equation of the

manifold, valid for u1, u2 ≪ 1, reads

u3 = M(u1, u2) = M20u
2
1 +M02u

2
2. (2.32)

The constant coefficients M20 and M02 are found by comparing terms of the same

order in the following relation

∂tu3 = ∂u1
M(u1, u2)∂tu1 + ∂u2

M(u1, u2)∂tu2 (2.33)

where all u3 are now replaced with the centre manifold equation M(u1, u2) (2.32).

This step enables redefinition of u3 in terms of u1 and u2 which reduces the

dimensionality of the dynamics. The solutions produce

M20 = M02 =
σ(3 + σ)

4(3 + 2σ − 6µ(3 + σ))
(2.34)
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2.3 Deterministic Model

which gives the approximate equation for the manifold and the expression for the

u3 component. This expression is then substituted into the nonspatial replicator

equations for u1 and u2 reducing the dynamics to two dimensions.

After confining the dynamics onto the surface of the manifold, the near iden-

tity transformations are proposed. These nonlinear transformations map (u1, u2)

to a new variable z = z1 + iz2 in the following way

z1 = u1 + C20u
2
1 + C11u1u2 + C02u

2
2 (2.35)

z2 = u2 +K20u
2
1 +K11u1u2 +K02u

2
2. (2.36)

Similarly to the manifold Ansatz (2.32), the transformations are valid only when

u1, u2 ≪ 1. The coefficients of the transformations are chosen such that the

macroscopic ODEs assume the form of the nonspatial CGLE. Such mapping is

achieved by the removal of the quadratic terms in the original ODEs which at this

stage are expressed in terms of u after aforementioned transformations. Subse-

quently, inverse transformations (u1, u2) → (z1, z2) are calculated by assuming a

power series expansion in components of u. After the linear and quadratic terms

are found by inspection, the inverse transformations read

u1 = z1 − C20z
2
1 − C11z1z2 − C02z

2
2

+ C30z
3
1 + C21z

2
1z2 + C12z1z

2
2 + C03z

3
2 (2.37)

u2 = z2 −K20z
2
1 −K11z1z2 −K02z

2
2

+K30z
3
1 +K21z

2
1z2 +K12z1z

2
2 +K03z

3
2 . (2.38)

The cubic coefficients have to be computed algebraically and their expression in

terms of other coefficients are listed below for completeness

C30 = 2C2
20 + C11K20 (2.39)

K03 = 2K2
02 + C02K11 (2.40)

C03 = 2C02K02 + C02C11 (2.41)

K30 = 2C20K20 +K02K11 (2.42)
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C21 = 3C11C20 + 2C02K20 + C11K11 (2.43)

K12 = 3K11K02 + 2C02K20 + C11K11 (2.44)

C12 = 2C02K11 + 2C02C20 + C11K02 + C2
11 (2.45)

K21 = 2K02K20 + 2C11K20 +K11C20 +K2
11. (2.46)

Time derivatives of z1 and z2 are obtained by differentiating the near identity

transformations (2.35) with time and inserting the ODEs for the components

of u. Then, by using the backwards transformation u → z, the formulas for

∂t(z1, z2) are obtained. The resulting equation can be put into a form of the

nonspatial CGLE if the quadratic terms in z are removed. This is achieved by

setting the near identity transformation coefficients to

C20 = C02 = 2K11 =

√
3σ(σ + 3µ(3 + σ))(3 + σ)

4 (3µσ(3 + σ)− 7σ2 − 9µ2(3 + σ)2)
(2.47)

K20 = K02 = 2C11 =
σ(−5σ + 3µ(3 + σ))(3 + σ)

4 (3µσ(3 + σ)− 7σ2 − 9µ2(3 + σ)2)
. (2.48)

Finally, the resulting equations for (z1, z2) can be written as

∂tz1 = c1z1 + ωHz1 − c2(z1 + c3z2)(z
2
1 + z22) (2.49)

∂tz2 = c1z2 − ωHz2 − c2(z2 − c3z1)(z
2
1 + z22) (2.50)

which can be manipulated further to obtain the nonspatial CGLE for a complex

variable z. The expressions for c1, c2 and c3 for models with ζ = µ = 0 can be

found in Frey (2010); Reichenbach et al. (2008) and are reproduced below

c1 =
βσ

2(3β + σ)
(2.51)

c2 =
σ(3β + σ)(48β + 11σ)

56β(3β + 2σ)
(2.52)

c3 =

√
3(18β + 5σ)

48β + 11σ
. (2.53)
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More complicated expressions for ζ 6= 0 are provided in Rulands et al. (2013)

while a case with ζ 6= 0 and µ 6= 0 is reported in Cremer (2008). The expression

for ωH is equivalent to (2.25) with ζ = 0 in studies where the zerosum interaction

(2.3) was not considered.

As mentioned before, the final equation for complex variable z is not the full

CGLE as it normally contains a spatial diffusive terms in∇2(z1, z2). These had to

be added manually in an ad hoc fashion at the end of the derivations in previous

studies. It is also important to note that µ = 0 in the majority of original

research, implying an absence of the Hopf bifurcation. This in turn guarantees

that u1, u2 ≪ 1 is not satisfied as required for the manifold Ansatz (2.32) and the

near identity transformations (2.35).

2.3.3 Asymptotic Expansion

After obtaining the PDEs in the Jordan normal form in Section 2.3.1, the interest

of the mathematical analysis lies with a small perturbation of size ǫ around the

Hopf bifurcation. It is possible to begin with µ = µH + p(ǫ) and expect the small

perturbation p(ǫ) to define the scaling. Most general form of such perturbation

is p(ǫ) = p1ǫ + p2ǫ
2 + O(ǫ3) where p1 and p2 are real constants of order O(1).

However, the standard approach is to begin with p(ǫ) = p2ǫ
2 since the derivation

is expected to yield p1 = 0 to satisfy conditions on secular terms. Furthermore,

with the advance knowledge of the derivation, it is convenient to set p2 = −1
3
in

order to simplify the analysis. Therefore, the departure from the onset of Hopf

bifurcation is described by a perturbation parameter ǫ such that

µ = µH − 1

3
ǫ2. (2.54)

The following derivation provides the details of the multiscale asymptotic

expansion adopted from a similar derivation in Miller (2006). In contrast to the

strained coordinate methods, such expansion assumes a general undetermined

functional dependence on the new multiscale coordinates.
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Therefore, the first step of the analysis is the multiscale expansion of time

and space coordinates

∂

∂t
→ ∂

∂t
+ ǫ2

∂

∂T
(2.55)

∂

∂x
→ ∂

∂x
+ ǫ

∂

∂X
(2.56)

shown here for the case of one dimensional space. The coordinates T = ǫ2t

and X = ǫx are usually referred to as the “slow” coordinates in the literature.

However, as shown later in the derivation, the leading order solution has no x

dependence and the “fast” spatial coordinate can be safely ignored. Subsequently,

the Laplace operator (2.27) ∇2 → ǫ2∇2
X
which can be defined in terms of X as

∇2
X
= ∂2

X1
+ ∂2

X2
. (2.57)

Finally, the variable u is also expanded in the perturbation parameter ǫ. The

expansion, which can be truncated at the order O(ǫ3) where the CGLE is expected

to appear, reads

u(x, t) =
3

∑

n=1

ǫnU(n)(t, T,X). (2.58)

It should be noted that all scaling in ǫ is made explicit with the variables T , X

and U(n) for all n, being of order O(1).

The application of the chain rule implies ∂tui =
∑

i,n ǫ
i+n∂Tn

Ui and similarly

for ∇2ui with T0 = t, T2 = T , X1 = X and i ∈ {1, 2, 3}. This creates a new

hierarchy of simplified PDEs describing the original system which are solved at

each order of ǫ while also removing the secular terms. These unbound terms arise

naturally upon the application of the perturbation theory to weakly nonlinear

problems and their removal provides additional information about the dynamics.

Moreover, the Jordan normal form of the system suggests that the first two

oscillating components of U(n) can be combined into a complex number

Z
(n) = U

(n)
1 + iU

(n)
2 . (2.59)
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After the multiscale expansion is complete, solving the hierarchy of simplified

PDEs begins at the leading order of O(ǫ) where the first set of equations reads

∂Z(1)

∂t
= iωHZ

(1) (2.60)

∂U
(1)
3

∂t
= −βU

(1)
3 (2.61)

The inspection of the these PDEs suggests oscillating and decaying solutions.

Hence, the following Ansätze are proposed

Z
(1) = A

(1)(T,X)eiωH t (2.62)

U
(1)
3 = 0 (2.63)

with A(1) being the complex amplitude modulation at the “slow” time and length

scales. Here, U
(1)
3 = 0 can be safely assumed as evident from its exponentially

decaying nature with rate β > 0. At the second order of ǫ, the next set of PDEs

yields

U
(2)
3 =

σ

2
√
3β

|Z(1)|2 (2.64)

which is the leading term in the equation for the centre manifold proposed in the

mapping procedure (2.32). Finally, solving at order O(ǫ3) requires the removal of

a secular term which happens to be the CGLE and can be written as

∂TA
(1) = δ∇2

X
A

(1) +A
(1) − (cRe + icIm)|A(1)|2A(1) (2.65)

where the two constants in the coefficient of the “cubic” |A(1)|2A(1) term are

cRe =
σ

2

(

1 +
σ

6β

)

(2.66)

cIm = ωH +
σ2

36ωH

+
σωH

6β

(

1− σ

3β

)

. (2.67)
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In addition, it is convenient to define an effective diffusion constant δ in terms

of the two mobility rates δD and δE such that

δ =
3βδE + σδD

3β + σ
. (2.68)

The form of the combined constant δ summarises the contributions from the

two diffusion rates weighted by the reaction rates β and σ showing an intuitive

relation between migration and biological processes. For example, in case of high

reproduction β ≫ σ, exchange of habitat dominates due to lack of empty space.

However, when β ≪ σ, diffusive migration is dominant as aggressive predation

leaves most of the ecosystem unoccupied. Nevertheless, δ can be set to unity by

rescaling X, changing only the size of the overall pattern in the domain.

Finally, the equation (2.65) is simplified by a rescaled amplitudeA =
√
cReA

(1)

and introduction of parameter c = cIm/cRe to yield the final form of the complex

Ginzburg–Landau equation

∂TA = δ∇2
X
A+A− (1 + ic)|A|2A. (2.69)

Therefore, the only remaining variable in the CGLE (2.69) is the parameter c

which combines reaction rates from the generic metapopulation model such that

c =
cIm
cRe

=
12ζ(6β − σ)(σ + ζ) + σ2(24β − σ)

3
√
3σ(6β + σ)(σ + 2ζ)

. (2.70)

It should be noted that the general form of the CGLE has an additional complex

coefficient (1 + ib) in front of the diffusive term δ∇2
X
A (Aranson et al., 1992,

1993; Weber et al., 1992). However, the multiscale expansion of the PDEs (2.26)

results in b = 0 and a real diffusion constant.

As with the system size expansion in Section 2.2.2, the algebraic manipulations

of the asymptotic expansion can be challenging. To avoid any mistakes, the

REDUCE (Hearn, 2004) computer algebra system was used again and the full listing

of the notebook deriving the CGLE (2.69) can be found in Section A.2.
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2.3.4 Plane Wave Ansatz

Characterisation of the spiral patterns exhibited by the two dimensional CGLE

(2.69) can be attempted by proposing closed form solutions of the spiral waves.

However, such complicated expressions are not necessary to gain a substantial

understanding of the properties and the stability of spirals. Instead, the effects

of the parameter c (2.70) are studied here with a plane wave approximation of

the spiral waves which is expected to be valid away from the spiral core. Similar

analysis, presented in previous studies, was shown to be inadequate because of

the assumption that the velocity of the waves is constant. Therefore, the wave

properties are instead obtained numerically and used to predict phenomena such

as the Eckhaus instability through the analysis shown in Section 2.3.5.

To better appreciate this novel approach, the treatment based on the constant

velocity assumption used in majority of previous studies is outlined below. Firstly,

to understand the properties of spiral waves in the complex Ginzburg–Landau

equation, a plane wave Ansatz

A = Rei(kX−ωT ) (2.71)

with a complex amplitude R is substituted into the CGLE producing

ω = c|R|2 = c(1− δk2). (2.72)

The dispersion relation (2.72) shows that δk2 < 1 has to be satisfied for meaning-

ful solutions whose amplitude must have a non-negative modulus. The next step

is a calculation of the wavelength of the waves by assuming that their velocity is

v = 2
√
δ. This assumption is incorrect by relying on the results of van Saarloos

(2003) where spreading velocity of localised perturbations around the unstable

state A = 0 are considered as explained in Figure 2.2. However, according to

results from Section 4.2, the numerical experiments suggest that the travelling

waves have a range of different velocities which depend on the parameter c as sum-

marised in Table 4.1. This could explain the discrepancies reported in previous

studies where the results had to be rescaled by a factor of ≈ 1.6 in order to match

the predictions based on constant velocity assumption (Frey, 2010; Reichenbach

et al., 2007b, 2008).
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Figure 2.2: Solid line: schematic perturbation of a plane wave Ansatz analysed in

Section 2.3.5. Dashed line: schematic localised perturbation around zero ampli-

tude whose spreading velocity derived in van Saarloos (2003) was used in previous

studies.

Nevertheless, the steps leading to the standard formula for the wavelength of

the plane waves (2.74) are reproduced here for comparison. Firstly, substituting

ω = vk = 2
√
δk into the dispersion relation (2.72) gives a quadratic equation for√

δk whose solutions satisfy

δk2 =
1

c2

(

−1±
√
1 + c2

)2

. (2.73)

As mentioned above, according to the dispersion relation (2.72) all physical

solutions must satisfy δk2 < 1. Substituting (2.73) into this condition and sim-

plifying yields 2 < ±2
√
1 + c2 which shows that the solution for k with the minus

sign has to be discarded as nonphysical. Therefore, based on the assumption that

v = 2
√
δ, the derived formula for the wavelength is

λ =
2π

k
=

2πc
√
δ√

1 + c2 − 1
. (2.74)

In addition, it should be noted that some of the formulas reported in previous

studies contain a factor of 1−
√
1 + c2 instead of

√
1 + c2− 1 in the denominator

which makes the expression for the wavelength negative (Cremer, 2008; Frey,

2010; Reichenbach & Frey, 2008; Reichenbach et al., 2007b, 2008).
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In contrast, following the plane wave approach (2.71) presented in this thesis,

the wavelength λ = 2π/k obtained from the dispersion relation (2.72) reads

λ = 2π

√

δ

1− |R|2 (2.75)

while the velocity v = ω/k can be calculated with

v = c|R|2
√

δ

1− |R|2 (2.76)

where |R|2 must be obtained numerically as explained in Section 4.2.

2.3.5 Eckhaus Instability

Eckhaus instability, also referred to as Benjamin-Feir instability, is a convective

instability caused by growing perturbations which are convected away from the

spiral core (Hoyle, 2006). In order to derive the Eckhaus criterion in the CGLE, a

similar derivation for the Newell-Whitehead-Segel equation is adopted from Hoyle

(2006). Firstly, amplitude and phase pertubations |ρ|, |ϕ| ≪ 1 are added to the

plane wave Ansatz to allow for full generality such that

A = (1 + ǫ′ρ)Rei(kX−ωT+ǫ′ϕ). (2.77)

The parameter ǫ′ is introduced here to track the order of ρ and ϕ in the REDUCE

notebook shown in Section A.3 and should not be confused with the asymptotic

expansion perturbation parameter ǫ. After substituting the perturbed plane wave

(2.77) into the CGLE (2.69), the resulting expression is linearised in ρ and ϕ by

setting (ǫ′)2 = 0. Taking the real and imaginary parts of the equation yields the

following PDEs for the amplitude and phase perturbations

ρT = δρXX − 2δkϕX − 2|R|2ρ (2.78)

ϕT = δϕXX + 2δkρX − 2|R|2ρc. (2.79)
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The perturbations, approximated by plane waves, are assumed to grow expo-

nentially with growth rate g while their wavelengths are assumed to be large

compared to the wavelengths of the plane waves, i.e. their wavenumber |q| ≪ 1.

Both perturbations are combined into a vector form

[

ρ
ϕ

]

=

[

ρ̂
ϕ̂

]

egT+iqX (2.80)

where ρ̂ and ϕ̂ are real constants. Substituting this expression into the equations

(2.78) and (2.79) leads to the following eigenvalue problem

g

[

ρ̂
ϕ̂

]

=

[

−2|R|2 − δq2 −i2δkq
−2|R|2c+ i2δkq −δq2

] [

ρ̂
ϕ̂

]

. (2.81)

An approximate expression for the possible growth factors can now be calculated

from the eigenvalues of (2.81) by expanding in powers of q. The real part of the

growth rate has two possible solutions, which up to the order of O(q2) are

Re{g} = (−1± 1)|R|2 + 2δ

[

c2 + 1

|R|2 −
(

c2 − 3

2

)]

q2. (2.82)

Therefore, the solution with the negative sign is dominated by the leading term

−2|R|2 which results in a decaying perturbations and stable waves. However, tak-

ing the positive sign in (2.82) can lead to Re{g} > 0 and growing perturbations.

The critical condition for such instability can be derived by calculating when the

coefficient of q2 becomes greater than zero. This yields the critical value for the

squared modulus of the amplitude of the unperturbed waves which reads

|R|2 < c2 + 1

c2 + 3
2

. (2.83)

Thus, if the amplitude of the waves falls below a certain critical value, they

become unstable due to the Eckhaus instability. This prediction is confirmed in

numerical experiments detailed in Sections 4.2 and 4.3.
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The condition on the amplitude of the waves (2.83) can be also expressed in

terms of the wavenumber k of the unperturbed waves to produce

δk2 >
1

3 + 2c2
. (2.84)

The condition on the wavenumber (2.84) can be checked for consistency by refer-

ring to Aranson et al. (1992) or Weber et al. (1992) where a similar perturbative

treatment was used to derive the Eckhaus criterion.

More intuitively, the Eckhaus instability can be associated with the decrease

in the wavelength of the plane waves below a critical value defined as

λ < 2π
√

δ(3 + 2c2). (2.85)

This general rule appears to hold even in regimes where the CGLE approxima-

tion is not longer valid as the onset of the Eckhaus-like instability is usually

accompanied by a decrease in the wavelength as discussed in Section 5.5.

∗ ∗ ∗

As mentioned throughout this chapter, the notebooks for the computer alge-

bra system REDUCE (Hearn, 2004) complementing the analytical derivations are

listed in Appendix A. These notebooks reproduce the main mathematical results

and are provided with comments linking the source code to the derived equations.
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Chapter 3

Computational Methods

Inserted debug statements into

anomdtb.f90, discovered that

a sum-of-squared variable is

becoming very, very negative!

UEA Climategate files

3.1 Computational Introduction

As in many areas of science, computer simulations became an important research

method complementing experimental techniques in biology. The main objective

of such numerical experiments is to compare their results with the theoretical

predictions obtained through mathematical analysis. In order to guarantee fur-

ther discoveries in the field of computational biology, appropriate models which

balance realistic complexity with mathematical tractability need to be developed.

However, as the analytical tools progress to describe more complicated models,

their predictions may not be fully utilised if a direct comparison to numerical

results is not feasible. Simulations of more complex systems pose certain chal-

lenges, however, they offer a possibility to study phenomena such as maintenance

of biodiversity through formation of stable patterns as explored in this thesis.
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The history of individual based simulations in computational biology spans

several decades and can be characterised by a trend of adopting established meth-

ods used to simulate chemical reactions. Early simulations of spatially structured

populations consisted of simplified cellular automatons (Boon et al., 1996; Ziff

et al., 1986) with biologically motivated rules (Rozenfeld & Albano, 1999). It

was assumed that synchronously updating the system across the entire spatial

domain at each time step did not affect the dynamics of the system. However,

this meant that such dynamics was defined by the initial conditions which evolved

deterministically into a steady or an oscillating state due to the finite number of

all possible configurations (Nowak & May, 1992). To correct this unrealistic situ-

ation, an asynchronous and randomised updating was introduced to capture the

stochastic nature of the biological dynamics (Huberman & Glance, 1993). This

approach is often referred to as the Monte Carlo simulation. Despite initial claims

of little importance to the dynamics (Nowak et al., 1994), this update scheme was

adopted by researchers because of its more realistic nature. The popularity of

such approach has grown and the lattice based Monte Carlo simulations became

the default way of modelling spatial populations.

Nevertheless, while being the de-facto standard, simulations which are often

referred to as lattice Monte Carlo (LMC) are far from standardised. In fact, the

algorithm for performing such simulations given a particular stochastic system

was never formalised while the source codes are not published. There exist a

handful of rules which are usually present in various implementation but inclu-

sion of all is not guaranteed. Therefore, there is no lattice Monte Carlo algorithm,

only a loosely defined set of instructions which are often interpreted in different

ways. With the absence of a predefined procedure, there exists a number of dif-

ferent implementations which do not accurately simulate the stochastic systems.

A modeller is free to pick and choose the different features of the algorithm, often

introduced to correct well known discrepancies with the theoretical predictions. It

is usually difficult to know which implementation is used as a detailed description

of the algorithm, allowing for a good degree of reproducibility, appears only in a

selection of papers (Antal & Droz, 2001; Boccara et al., 1994; Droz & Pekalski,

2004; Lipowski, 1999; Lipowski & Lipowska, 2000; Mobilia et al., 2007; Pekalski,

2004; Provata et al., 1999; Satulovsky & Tom, 1994; Washenberger et al., 2007;
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Wodarz et al., 2012). The ability to solve the underlying stochastic process by

the lattice Monte Carlo simulations remains unproven while analytical arguments

suggest that LMC does not generate accurate realisations of the underlying mi-

croscopic dynamics as explained in Section 3.2. Fortunately, improving the LMC

approach to perform more accurate simulations is not necessary since there al-

ready exists another method generating exact realisations of a stochastic process.

The Gillespie algorithm is rigorously defined in terms of the dynamics of the

stochastic system and it is mathematically proven to provide statistically exact

solutions (Anderson, 2007; Cao et al., 2004; Erban et al., 2007; Gibson & Bruck,

2000; Gillespie, 1976; Li & Petzold, 2006; Roberts et al., 2013; Twomey, 2007).

The reader is encouraged to study an excellent introduction to the algorithm

along with a thorough review of its various modifications in Gillespie (2007). The

results of the stochastic simulations were compared successfully to the solutions

of macroscopic ODEs while also predicting new phenomena not captured by the

deterministic equations (McKane & Newman, 2005; Traulsen et al., 2005). The

usual implementation of the Gillespie algorithm for well-mixed systems can be

extended to simulate spatial dynamics and such studies were already performed

successfully in one dimension (Lugo & McKane, 2008; McKane et al., 2013).

The following sections contain the details of the bespoke computational frame-

work modelling the two-dimensional model inspired by the bacterial dynamics de-

scribed in Section 1.1. The framework consists of three complementary computer

programs solving the Master equation (2.16), the macroscopic PDEs (2.26) and

the CGLE (2.69) which are derived in Chapter 2. As mentioned above, the lattice

Monte Carlo simulations possess certain limitations which make them unsuitable

for simulations required in this research. More concrete example of simulating a

simple toy model using LMC is provided in Section 3.2 along with the comparison

to exact results from the Gillespie approach.

A lattice Gillespie algorithm used in this research was developed to simulate

large metapopulation lattice systems as explained in Section 3.3. The increased

efficiency was achieved by the use of a binary tree data structures which reduced

the computational complexity from O(L2) to O(lnL). Finally, some details of

implementing the second order exponential time differencing method (ETD2),

such as the dealiasing procedure, are provided in Section 3.4.
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3.2 Lattice Monte Carlo

One of the major problems with the lattice Monte Carlo simulations is a priori

assumption that all events are separated by a constant time step. This distorts

the time evolution of the dynamics as there is no distinction between slow and

fast rates since a reaction must occur at each time step. In addition, the time

is measured in the so-called Monte Carlo steps which consists of some number

of the constant time steps. This number is usually the system size, interpreted

as the total number of lattice sites, while some implementations rescale by the

number of individual currently present in the system (Krebs et al., 1995). This

makes it difficult to trust measurements of any time related quantities such as

velocities or frequencies obtained from these simulations (Case et al., 2010).

Another problem of the LMC approach stems from the inappropriate way of

choosing the next reaction since the usual methods do not reflect the probabilities

of the reactions. Such probabilities, also referred to as propensities, should be

based on the relative reaction rate and the possible number of reactions in the

current state. Therefore, the choice of interacting pairs requires careful imple-

mentation or additional corrections in the reactions rates. An example of such

correction appears in some papers where choosing an occupied site and its neigh-

bour means that a pair of individuals is chosen twice as often as an individual

neighbouring an empty site (Krebs et al., 1995).

To present the inconsistencies of the LMC approach, a simplified predator-

prey system is defined with S1 (predator) and S2 (prey) strains. The only allowed

reactions are the removal of S2 upon a contact with the dominant S1 at rate σ

and the movement of S1 to the right across empty spaces at rate δD. In addition,

the total propensity from the Gillespie algorithm, a0, is defined as the sum of

rates of all reactions that can occur at a given instance (Gillespie, 2007).

The evolution of such system can be easily envisioned, the S1 strain explores

the lattice sites, removing individuals of S2 strain which remain stationary. Con-

sidering first a one dimensional chain of three agents with non-periodic boundary

conditions and an initial state of S1S2S2 it is clear that the next two states of the

system are S1ØS2 and ØS1S2. According to the Gillespie algorithm, the waiting

times are exponentially distributed and the time elapsed between these states is
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3.2 Lattice Monte Carlo

− ln(ru)/a0 where ru is an uniform random number in the interval (0, 1] and a0

is the total propensity for each state. In the first stage, only a removal of S2 is

possible whereas at a later time hopping of S1 to the right is the only allowed

event. Therefore, the mean waiting times are 1/σ and 1/δD respectively as the

factor of − ln(ru) averages to unity.

A typical interpretation of the lattice Monte Carlo simulation would carry

out the procedure in a different way with both events separated by a constant

time step. As this is not a realistic approach, a more sensible method used in

Krebs et al. (1995) is applied even though it is not normally utilised in the field

of population modelling. Firstly, a lattice site needs to be picked along with one

of its neighbours. However, there is only one reactive pair per each state, S1S2 or

S1Ø, and the pair choosing is not necessary. Once a pair is picked, a predefined

small time step dt is multiplied by rates of possible reactions between the two

lattice sites to give a probability of an event happening in time interval [t, t+dt).

Here, the situation is again simplified as there is only one possible reaction in first

two stages of the system. Subsequently, a uniform random number r is generated.

If ru ≤ δDdt or ru ≤ σdt is satisfied, depending on which reaction is considered,

the event is chosen to happen. This procedure puts a limit on the value of dt since

true randomness is achieved only if most of the small time intervals elapse without

a single reaction happening. Small values of dt mean that most of the generated

random numbers are wasted, particularly in the case of reactions happening on

different time scales. Assuming that the removal of S2 is much less likely than

the hopping with σ ≪ δD, the small time interval must satisfy dt ≪ σ to give

appropriate level of randomness. Therefore, waiting for r ≤ σdt during the first

stage takes a long time, requiring many random numbers which are not utilised.

Choosing which reaction should occur is another problem in LMC technique.

In Gillespie algorithm, all the possible reactions from all lattice sites are weighted

by their respective rates. A uniform random number is then used to decide which

one is to happen. For example in state ØS1S2, if hopping to the left was allowed,

the selection and diffusion reactions would be possible with respective probabili-

ties of σ/(δD+σ) and δD/(δD+σ). In contrast, LMC approach requires choosing

a lattice site and one of its neighbours. The system is then evolved as described
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previously. Therefore, the simulation depends not only on the value of dt and gen-

erated random numbers but also on the way of choosing pairs. Usually, an agent

is picked and then, with equal probabilities, one of its neighbours. The two chosen

individuals are considered only if there is a possible reaction between them and in

the case of this simplified system only S1S2 and S1Ø are allowed. However, the

descriptions of the LMC algorithms do not usually make clear whether empty

spaces can be chosen as the first lattice site which implies that S1S2 is picked

twice as frequently as S1Ø. This incorrect approach must then be amended by

additional factors in the reaction rates (Krebs et al., 1995).

To see another inconsistency of LMC approach, an initial chain S2S1S2 is con-

sidered where hopping of S1 is no longer allowed. Second stage of this systems

is either ØS1S2 or S2S1Ø with the final state being ØS1Ø. Calculating total

propensities at each state, the Gillespie algorithm predicts that mean time inter-

vals between the three stages are exactly 1/(2σ) and 1/σ. However, according to

LMC simulation, the states are separated by equal time periods on average since

both require ru ≤ σdt to be satisfied. Therefore, the time interval is computed

without taking into account the delay originating from a smaller number of pos-

sible reactions. In addition, the two most common LMC time rescalings, dividing

by the lattice size and the number of agents left on a lattice, fail to correct these

time intervals.

Since one the objectives of this postgraduate research was to validate the cor-

rectness of micro- and macroscopic descriptions of the generic model by direct

comparison of the generated results, the Gillespie algorithm was used in simu-

lating the stochastic system. This ensures a correct time evolution and reliable

results for all time-dependent quantities which cannot be guaranteed by the lat-

tice Monte Carlo simulations (Case et al., 2010).
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3.3 Lattice Gillespie Algorithm

1 fun update_tree(node_coord) {

2 parent = parent_of(node_coord)

3 value_of(parent) = value_of(left_child_of(parent))

4 + value_of(right_child_of (parent))

5 if (has_parent(parent)) {

6 update_tree(parent)

7 } else {

8 return

9 }

10 }

Listing 3.1: Pseudocode of the recursive function updating the tree of

propensities. The input variable node coord is the coordinate of a node in the

tree. Initially, the functions is called with coordinate of the leaf node whose value

has changed. The function is then called recursively until the parentless root

node is reached.

3.3 Lattice Gillespie Algorithm

In the original Gillespie algorithm, the time taken for the accumulation of reaction

propensities, and the subsequent choice of the next reaction, scales with the

total number of reactions (Gillespie, 2007). Therefore, the standard algorithm

is relatively efficient only when a small number of reactions is considered. This

is certainly not the case for the metapopulation lattice system where millions

of reaction are possible. Their number is proportional to the lattice size L2

meaning that the accumulation of propensities as well as the reaction search

require computational complexity of order O(L2). The search can be optimised

through various algorithms to run at order O(lnL) (Li & Petzold, 2006), however,

the summation of propensities occurs then at order O(L2). In this thesis, an

improved algorithm based on the direct method is presented, in which not only

the search but also the accumulation occurs at logarithmic complexity allowing

for O(lnL) scaling of the entire algorithm. This novel approach is based on storing

the reaction propensities in a binary tree data structure (Knuth, 1968) while a

similar approach utilising the direct methods and the next reaction method can

be found in Elf & Ehrenberg (2004). In order to make the implementation as

simple as possible, the binary tree is extended up to the level of individual lattice
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1 fun reaction_search(node_coord , rand) {

2 if (has_children(node_coord)) {

3 if (rand < value_of(left_child_of(node_coord))) {

4 reaction_search(left_child_of(node_coord), rand)

5 } else {

6 rand = rand - value_of(left_child_of(node_coord))

7 reaction_search(right_child_of (node_coord), rand)

8 }

9 } else {

10 i, j = get_site_coords(node_coord)

11 for (r = 0; r < NUM_OF_REACTIONS ; r++) {

12 rand = rand - propensity(i, j, r)

13 if (rand < 0.0) {

14 return i, j, r

15 }

16 }

17 }

18 }

Listing 3.2: Pseudocode of the recursive next reaction search function. The input

parameter node coord is the coordinate of the parent node while rand is a random

number. Initially, the function starts from the top of the tree and is then called

recursively with the coordinate of one of the children. It should be noted that

the value of rand must be decreased when descending to the right. After a leaf

node is reached, the corresponding lattice site coordinates i and j are obtained

along with the reaction number r as in the standard direct method.

sites while the on-site search is performed by the standard technique. Since the

number of possible birth, selection and mutation reactions inside one population

is constant, the on-site search is essentially an order O(1) process.

The binary tree is built starting from the lowest level where each leaf holds

the sum of the propensities in one subpopulation, with an example for L2 = 42

representable as a 4 by 4 array









0.01 0.02 0.03 0.04
0.05 0.06 0.07 0.08
0.09 0.10 0.11 0.12
0.13 0.14 0.15 0.16









→ (3.2). (3.1)
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1 fun update_propensities (i, j, reaction_num) {

2 update_site(i , j )

3 update_site(i-1, j )

4 update_site(i , j-1)

5 if (is_migration_reaction(reaction_num)) {

6 if (is_in_i_direction(reaction_num)) {

7 update_site(i+1, j )

8 update_site(i+1, j-1)

9 } else {

10 update_site(i , j+1)

11 update_site(i+1, j+1)

12 }

13 }

14 }

Listing 3.3: Pseudocode of the function updating the leaves in the binary tree of

propensities. Depending on the reaction number, only the affected neighbours of

the population at coordinates i and j are updated.

The next layer is a sum of pairs in each row while the following layer consists of

summed pairs in each column. The process, presented in Listing 3.1, is repeated

until arriving at the root of the tree which holds the value of the total propensity

producing the remaining structure of the binary tree

(3.1) →









0.03 0.07
0.11 0.15
0.19 0.23
0.27 0.31









→
[

0.14 0.22
0.46 0.54

]

→
[

0.36
1.00

]

→
[

1.36
]

. (3.2)

When a reaction occurs at a certain patch, the total propensity associated with

that patch changes and the binary tree needs to be updated in turn. However,

this procedure can be done simply by updating only relevant entries along the

branches with O(lnL) complexity. The search is done by comparing the randomly

generated number with the entries at each level, subtracting the cumulative sums

when necessary as shown in Listing 3.2. After the reaction is chosen and executed,

the tree has to be updated. However, since each reaction affects only the nearest

neighbour populations, only a small number of propensities needs updating as

shown in Listing 3.3. This works to speed up the simulations in a similar fashion

to dependency graph methods (Gibson & Bruck, 2000).
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3.4 Exponential Time Differencing

At the macroscopic level, the dynamics of the generic metapopulation model

can be described by the PDEs (2.26) which in turn are approximated by the

CGLE (2.69). These macroscopic descriptions are solved with a pseudo-spectral

method called exponential time differencing (ETD) of second order (ETD2) using

a time step of ∆t = 0.125 in all numerical experiments. A detailed analysis of

ETD, discussing accuracy, stability and a comparison to other methods can be

found in Cox & Matthews (2002). More interestingly, the actual computational

implementation can be found in the open source code of OpenCGLE discussed in

Section 3.5. In addition, a short description of the dealiasing process, added as

an enhancement to the ETD scheme, is given below in Section 3.4.1.

An important different between the stochastic and deterministic simulations

is the additional grid size parameter G2 specifying the number of discrete points

representing the patterns in the domain of size L2. Metapopulation lattice can be

thought of as having L2 = G2 while the ETD method allows L2 6= G2. Therefore,

the spatial coordinate x = (g/G)L becomes continuous as G → ∞ with g =

(g1, g2) being the position of the grid point. This has a consequence on the

resolvability of the patterns emerging in the simulations and the important issue

of resolution effects is discussed in Section 5.4.

It should be noted that the PDEs (2.26) are integrated after the origin is

moved to the fixed point s∗ (2.23) via s̃i = si − s∗ as described in Section 2.3.1.

Separating the diagonal terms in s̃i from the off-diagonal terms (ODT), the re-

defined PDEs can be represented as

∂ts̃i =
(

(1− 4s∗)β − s∗σ − 2µ
)

s̃i + δD∇2s̃i − 2s∗(δD − δE)∇2s̃i (3.3)

+ ODT(s̃i+1, s̃i−1, s̃is̃i+1, s̃is̃i−1, s̃i∇2s̃i+1, s̃i∇2s̃i−1, s̃i+1∇2s̃i, s̃i−1∇2s̃i)

while their full expression can be obtained with the REDUCE notebook listed in

Section A.4. As a result of this transformation, the nonlinear terms such as

(s̃i+1 + s̃i−1)∆s̃i generate linear diagonal terms such as −2s∗(δD − δE)∆s̃i which

can be solved exactly by the ETD method. In addition, the off-diagonal terms in

si±1 are solved as nonlinear terms avoiding calculations of matrix exponentials.
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1 for (i = 0; i < grid_pts_x; i++) {

2 for (j = 0; j < grid_pts_y; j++) {

3 if (( k_abs_x[i] == k_dealias_x and

4 k_abs_y[j] <= k_dealias_y) or

5 (k_abs_x[i] <= k_dealias_x and

6 k_abs_y[j] == k_dealias_y)) {

7 dealias_mask[i][j] = ETD_DEALIAS_EDGE ;

8 } else if (k_abs_x[i] < k_dealias_x and

9 k_abs_y[j] < k_dealias_y) {

10 dealias_mask[i][j] = ETD_DEALIAS_KEEP ;

11 } else {

12 dealias_mask[i][j] = ETD_DEALIAS_LOSE ;

13 }

14 }

15 }

Listing 3.4: Pseudocode of the loop initialiasing the dealiasing mask. The

absolute values of the wave numbers in x and y direction are compared to the

cutoff values set by the dealiasing factor. If the values are to be kept after

the dealiasing, the constants ETD DEALIAS KEEP or ETD DEALIAS EDGE are set to

the mask. Otherwise, the mask assumes the value of ETD DEALIAS LOSE which

indicates that the Fourier modes corresponding to the particular wavenumbers

will be removed. See Listing 3.5 for example of a dealiasing mask.

3.4.1 Dealiasing

An important issue in implementation of the ETD scheme is the aliasing of Fourier

modes (Press et al., 2007). The well-known fact of the sampling theorem defines

a critical Nyquist frequency fNq specifying a limit on the bandwidth which can

be resolved on a discrete grid. As a consequence, any frequencies outside of the

bandwidth are aliased into that range of frequencies introducing numerical errors.

One concrete example of aliasing considers an expression in cos(2πfNq) where

fNq is the aforementioned critical frequency. Calculations of any nonlinear terms,

in which such expression is squared, produce terms in cos(4πfNq) oscillating at

twice the Nyquist frequency. These terms alias into the resolvable bandwidth,

introducing errors in the discrete representation of the waves. In order to avoid

such errors, the numerical scheme should remove any terms causing an aliasing.
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1 1 1 1 1 2 0 0 0 0 0 0 0 2 1 1 1

2 1 1 1 1 2 0 0 0 0 0 0 0 2 1 1 1

3 1 1 1 1 2 0 0 0 0 0 0 0 2 1 1 1

4 1 1 1 1 2 0 0 0 0 0 0 0 2 1 1 1

5 2 2 2 2 2 0 0 0 0 0 0 0 2 2 2 2

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 2 2 2 2 2 0 0 0 0 0 0 0 2 2 2 2

14 1 1 1 1 2 0 0 0 0 0 0 0 2 1 1 1

15 1 1 1 1 2 0 0 0 0 0 0 0 2 1 1 1

16 1 1 1 1 2 0 0 0 0 0 0 0 2 1 1 1

Listing 3.5: Dealiasing mask for a grid with G2 = 162 and 1
2
dealiasing factor.

The constants ETD DEALIAS LOSE, ETD DEALIAS KEEP and ETD DEALIAS EDGE are

represented as 0, 1 and 2 respectively. The (kx, ky) = (0, 0) Fourier mode is

placed in the top left corner.

Dealiasing is achieved by removing Fourier modes above a certain wavenumber

depending on the highest order of nonlinear terms in the solved equations. In

case of the CGLE (2.69), the removal of all modes above 1
2
fNq is required due to

the cubic terms and is referred to as the 1
2
-dealiasing rule (Phillips, 1959). For

the PDEs (2.26), where only quadratic terms are present, the 2
3
-dealiasing rule is

sufficient (Orszag, 1971). The removal of the unwanted terms is performed by the

dealiasing mask whose initialisation algorithm is given in Listing 3.4. In addition

to specifying the kept or lost Fourier modes, the edges of the retained region are

also marked as shown in Listing 3.5. This helps monitoring the amplitude of the

removed modes which should be significantly smaller than the retained modes

in a well resolved numerical experiment. For example, the OpenCGLE software,

discussed in Section 3.5, requires at least three orders of magnitude difference

between the maximum modes from the ETD DEALIAS KEEP and ETD DEALIAS EDGE

regions shown in Listing 3.5. If such condition is not met, the user of the program

is warned about the lack of resolution. This helps determining the appropriate

number of grid points G2 which balance performance and accuracy.
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Name Repository URL License

Datum https://github.com/bszcz/datum.git [MIT]

Pixmap https://github.com/bszcz/pixmap.git [MIT]

OpenCGLE https://github.com/bszcz/opencgle.git [GPLv2+]

Table 3.1: Summary of the independently developed open source research soft-

ware inspired by the postgraduate research. Full source code and development

history can be obtained by cloning the repositories from the provided URLs.

3.5 Open Source Research Software

A number of independent open source projects (Ince et al., 2012; McCafferty,

2010) was released during the postgraduate research. The projects are written

in C programming language (Kernighan et al., 1988), version controlled with git

(Chacon & Hamano, 2009; Prlić & Procter, 2012; Wilson et al., 2014) and released

under open source licenses (Morin et al., 2012) as summarised in Table 3.1.

The first library called Datum is an input/output library designed for storage

of numerical arrays. The human readable plain text format of Datum files allows

for maximum flexibility and compatibility with other tools and programming

languages. In addition, the software supports optional compression in GZ and

BZ2 standards performed transparently upon reading and writing of data.

The second library, Pixmap, enables creation of lossless bitmap images in PPM,

PPM.GZ and PNG formats as well as in the lossy JPEG standard with optional ad-

justments of quality and chroma subsampling. This library was used to visualise

the results from a majority of simulations presented in this thesis.

OpenCGLE is a pseudo-spectral solver of the complex Ginzburg–Landau equa-

tion implementing the exponential time stepping methods of 1st and 2nd order.

The main part of the project is a modular ETD library which can be separated

for reuse in other software. The module utilises FFTW3 library (Frigo & Johnson,

1998, 2005) and allows for threaded parallel execution. The input and output of

data and images in OpenCGLE are performed with Datum and Pixmap libraries.
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Chapter 4

Results: Complex

Ginzburg–Landau Equation

The complex Ginzburg-Landau equation (CGLE) is a celebrated pattern forming

system exhibiting spiral waves. The most well-known application of the CGLE is

the modelling of Belousov–Zhabotinsky reaction in which periodically oscillating

reactants form a chemical clock (Smolka et al., 2005; Zaikin & Zhabotinsky, 1970).

Another interesting example of spiral formation can be found in the aggregation

of unicellular amoeba Dictyostelium discoideum by the process of chemotaxis

(Pálsson & Cox, 1996; Pálsson et al., 1997; Tyson & Murray, 1989). In both

cases, the visual appearance of the evolving system bears striking resemblance to

the numerical solutions of the CGLE as shown in Figure 4.1.

This chapter summarises the results related to the two-dimensional complex

Ginzburg–Landau equation (2.69) derived in Section 2.3.3. These results are pro-

vided here to complement the discussion on the generic metapopulation model

which can be approximated by the 2D CGLE. The equation, and the spiral waves

it exhibits, were studied for decades with numerous publications covering ana-

lytical and numerical aspects of the subject as reviewed in Aranson & Kramer

(2002). Nevertheless, a rigorous mathematical analysis of the properties and sta-

bility of the spiral patterns in the context of cyclic dominant models is missing

from the previous studies as explained in Section 2.3.4.
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Figure 4.1: Spiral waves in a biological and a chemical system. Left

panel: chemotactic movements of amoeba population reproduced from

[BiophysikBildergalerie]. Centre panel: the Belousov–Zhabotinsky chemical re-

action reproduced from [ChemWiki]. Right panel: numerical solution of the two-

dimensional CGLE with phase of the complex amplitude encoded in greyscale.

Moreover, with the rapid advancement in the computational power, it is now

possible to reproduce the original results with much higher quality. For example,

the simulations reported here have up to 103 times as many Fourier modes as the

original results performed on the CRAY YMP supercomputer (Aranson et al.,

1993) allowing for exploration of previously inaccessible regimes.

4.1 Four Phases

One of the main aims of this research is to confirm the existence of the four CGLE

phases in the generic metapopulation model. However, it is useful to study them

first in the actual CGLE to understand the nature of those regimes in more detail.

Based on the formula for the variable c (2.70) in the derived CGLE (2.69), the

phase diagram of the original system is plotted in Figure 4.2. As mentioned in

Section 2.3, setting β = 1 has no effect on the generality of the results. Therefore,

it is sufficient to plot the contours of the parameter c in the σ − ζ plane. The

values of (cAI , cEI , cBS) = (0.845, 1.25, 1.75) were approximated from Aranson

et al. (1993) and divide the diagram into four phases as explained in the caption of

Figure 4.2. A snapshot of the four different solutions with values of the parameter
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4.1 Four Phases

Figure 4.2: The phase diagram of the 2D CGLE (2.69) based on the expression for

the parameter c (2.70) with β = 1. The contours of c = (cAI , cEI , cBS) distinguish

four phases characterised by absolute instability (AI), Eckhaus instability (EI),

bound states (BS) and spiral annihilation (SA). See Section 4.1 for details.

c placed in the four different regions of the phase diagram is shown in Figure 4.3.

The images visualise the argument of the complex amplitude A encoded as hue in

which red, green and blue are placed at 0◦, 120◦ and 240◦ respectively. Such choice

of the colour scheme is grounded in the derivation of the CGLE where the values

of the phase correspond to the dominance of one of the species. The four values of

c = (2.0, 1.5, 1.0, 0.5) used in the numerical experiments are placed conveniently

between the three critical values of (cAI , cEI , cBS) = (0.845, 1.25, 1.75). They

are also closely related to the values β = σ = 1 and ζ = (1.8, 1.2, 0.6, 0) used

later in the generic metapopulation model simulations which correspond to c =

(1.9, 1.5, 1.0, 0.6) respectively via (2.70).

Starting from the rightmost panel of Figure 4.3, the spiral annihilation phase

(SA) is characterised by colliding spirals. These annihilate in pairs until a homo-

geneous oscillating state fills the entire domain. Such deterministic phenomenon

is not a result of noise or any type of instabilities and occurs in a relatively short

time for low values of c as discussed in Section 4.4. The time for complete anni-
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Figure 4.3: Four phases in the 2D CGLE (2.69) for c = (2.0, 1.5, 1.0, 0.5) from

left to right. The colours represent the argument of the complex amplitude A

encoded in hue. See Section 4.1 for more detailed discussion of the four phases.

hilation of spirals increases asymptotically with c until cBS = 0.845 above which

the spirals form bound states (BS). In the next panel with c = 1.0, pairs of stable

spirals are formed and coevolve. The properties of the spiral arms can be approx-

imated to a good degree of accuracy by the dispersion relation (2.72) following

from the plane wave Ansatz (2.71). These states are stable below cEI = 1.25

which signifies the onset of the Eckhaus instability (EI). Therefore, in the next

panel at c = 1.5, the spirals are convectively unstable due to EI which limits the

size to which the patterns can grow. However, this effect is not easily observable

with many spirals present in the domain since the high density of spirals lim-

its their growth to a larger degree than the Eckhaus instability. Because of the

convective nature of the instability, the perturbations are convected away before

growing and destabilising the spiral arms in small spirals. This is not the case

in the absolute instability (AI) phase where the speed of the spreading perturba-

tions exceeds the speed at which the spiral waves can convect them away. At the

critical value of cAI = 1.75 any perturbations grow in place until their amplitude

destroys the spiral arms whose shapes become significantly distorted. The two

situations are depicted in Figure 4.9 while the Eckhaus and the absolute insta-

bility are characterised and discussed in more details in Section 4.3. Finally, the

argument and the modulus of the solutions to the CGLE for c = 0.1 up to c = 2.0

in steps of 0.1 are visualised in Figures 4.4 and 4.5 to show a more continuous

transition between the four phases.
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4.1 Four Phases

Figure 4.4: Argument of the solutions to the 2D CGLE (2.69) encoded in

greyscale. Values of c vary from 0.1 to 2.0 in steps of 0.1 in a zigzag fashion,

left to right, top to bottom, as stated in the corner of the frames. The images are

taken at time t = 100000 with L2 = 642, G2 = 2562 and δ = 1 in all simulations.
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Figure 4.5: Modulus of the solutions to the 2D CGLE (2.69) encoded in greyscale.

Bright areas indicate high values of the modulus, dark areas indicate low values.

All parameters, including variation of the parameter c, are as in Figure 4.4.
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4.2 Amplitude Measurements
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Figure 4.6: Amplitude histogram with 100 bins for c = 1.0 averaged over 200

frames between t = 800 and t = 999 showing a sharp peak at pixel count with

|R|2 = 0.9. In comparison, a similar value of |R|2 = 0.904444 is obtained with

the technique of global averaging. Both approaches are explained in Section 4.2.

4.2 Amplitude Measurements

In addition to visualising the solutions the two-dimensional complex Ginzburg–

Landau equation, the data produced in the experiments can be analysed to con-

firm the theoretical predictions based on the plane wave Ansatz (2.71) detailed

in Section 2.3.4. Despite this naive approximation of the spiral waves, expected

to be accurate away from the core, a good agreement is found when predicting

the properties of the patterns. The measurements are based on the amplitude

of the spiral waves from which their wavelength, velocity and frequency are then

calculated as shown in Table 4.1. The amplitude is computed from the solutions

of CGLE by globally averaging over the whole domain which allows for a more

automated approach and deployment on large datasets. The solutions are inte-

grated initially up to the time t = 799 until the spirals are well developed to avoid

any transient effects. Then, the amplitude from the successive 200 data frames

between t = 800 and t = 999 are averaged. This gives a total of approximately

1.3 × 107 data points for each value of c as the grid size used in all experiments

is equal to G2 = 2562. The diffusion constant was set to δ = 1 in all simulations.

The global averaging technique is found to be very accurate since the ampli-

tude is usually constant everywhere in the domain excluding small regions where

the cores are nucleated as shown in Figure 4.12. In an alternative approach, the
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Figure 4.7: Well developed spiral waves at c = 1.0 (left) and c = 1.5 (right) in

the CGLE used for manual wavelength measurements. The spirals for c = 1.0

are in the stable phase while for c = 1.5 they remain unperturbed due to their

small size despite the presence of Eckhaus instability. See Section 4.2 for results.

amplitude can be obtained from a histogram where a distinct peak can be ob-

served at the value of |R|2 as shown in Figure 4.6. However, unless the CGLE is

strongly Eckhaus unstable with c & 1.5, the average stays very close the more ac-

curate value obtained from the histogram since the number of cores in the domain

remains small. This claim was verified numerically by comparing results obtained

with both methods while also varying bin sizes in the histogram approach. The

values from a histogram with 1000 bins and the results of global averaging are

compared in Figure 4.8 showing a good agreement.

In addition, the amplitude measurements are also validated by manually cal-

culating the wavelengths of the waves. This process relies on counting the pixels

between successive wave fronts in the obtained images. For example, in Figure

4.7 with L = G, one pixel corresponds to one spatial unit of the physical domain.

Averaging the wavelengths of the five most distant waves from the core, where the

plane wave approximation is most accurate, gives a good estimate of the wave-

lengths in the spiral wave arms. The values obtained from the manual counting

are (20.2, 18.2, 16.8, 15.6, 14.6, 13.8) respectively for c = (1.0, 1.1, 1.2, 1.3, 1.4, 1.5)

while the values obtained with amplitude measurements and the formula derived

from the plane wave Ansatz (2.75) are (20.3, 18.3, 16.7, 15.5, 14.5, 13.7).

Furthermore, the frequency of the phase oscillations is also calculated via a

Fourier transform and compared to the predicted frequency obtained from the

amplitude measurements. Using the values for the last 300 data frames between

58

figs/cgl_wavelength_measurement_1.eps
figs/cgl_wavelength_measurement_2.eps


4.2 Amplitude Measurements

c (2.70) |R|2 λ (2.75) v (2.76) ω (2.72)

0.10 0.998826 183. 2.92 0.10

0.20 0.998520 163. 5.19 0.20

0.30 0.997951 139. 6.61 0.30

0.40 0.996919 113. 7.18 0.40

0.50 0.994523 84.9 6.72 0.50

0.60 0.986988 55.1 5.19 0.59

0.70 0.968483 35.4 3.82 0.68

0.80 0.946138 27.1 3.26 0.76

0.90 0.926029 23.1 3.06 0.83

1.00 0.904444 20.3 2.93 0.90

1.10 0.881941 18.3 2.82 0.97

1.15 0.870495 17.5 2.78 1.00

1.20 0.858985 16.7 2.74 1.03

1.25 0.847453 16.1 2.71 1.06

1.30 0.835936 15.5 2.68 1.09

1.35 0.824478 15.0 2.66 1.11

1.40 0.813129 14.5 2.63 1.14

1.50 0.790724 13.7 2.59 1.19

Table 4.1: Global averages of amplitude |R|2 in the CGLE (2.69) for different

values of the parameter c (2.70). Other properties of the plane waves, derived

from the value of |R|2, are calculated with δ = 1. Additional points at c =

(1.15, 1.25, 1.35) are added to more accurately determine the value of cEI . See

Section 4.2 for details on the experimental methods.
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Figure 4.8: Numerical values of |R|2 obtained from a 1000–bin histogram (2)

and global averaging (#) with interpolation (dashed line). Dotted line shows the

value of cEI ≈ 1.28 obtained from the experiments. Solid line is the theoretical

Eckhaus criterion (2.83) obtained from the plane wave Ansatz in Section 2.3.5.

t = 700 and t = 999 at c = 0.9, a time series for a single point in the domain is

extracted. Its frequency spectrum shows a sharp peak at the 40th wavenumber

corresponding to sin(2π 40
300

t) mode. This suggests an angular frequency ω = 0.84

while the value calculated from the plane wave dispersion relation (2.72) is ω =

0.83 resulting in a good agreement with 1.2% discrepancy.

4.3 Instabilities

The plot shown in Figure 4.8 displays the values of |R|2 from Table 4.1 as a

function of c along with the derived Eckhaus criterion (2.83). As mentioned in

Section 2.3.5, when the amplitude drops below the critical value close to cEI =

1.25, the system enters into the EI phase and the spirals become convectively

unstable. The convective nature of the Eckhaus instability makes it difficult

to confirm the value of cEI which marks the onset of the instability. Below this

critical parameter, any small perturbations decay leaving the bound states stable.
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Figure 4.9: Perturbations of plane waves, travelling to the right with t1 < t2 < t3,

due to the Eckhaus (EI) and absolute (AI) instabilities. Solid lines mark the

amplitude of the waves with dashed lines showing the underlying perturbations.

Once cEI is exceeded, the perturbations begin to grow while also being con-

vected away from the spiral core. In small domains, the perturbations reach the

boundaries before growing to the necessary amplitude which destabilises the spi-

ral waves. Therefore, extremely large domains are required to see the Eckhaus

instability at its onset. This increase in the domain size L has to be coupled with

the increase in the grid size G for good resolution as more waves can fit into the

domain. It should be noted that the initial conditions must be carefully prepared

to ensure that the spirals have enough space to grow to large sizes. Starting from

random initial conditions results in nucleation of many spirals whose sizes become

limited by their neighbours. Therefore, only two spirals are seeded as shown in

the rightmost panel of Figure 4.1. An example of the Eckhaus instability obtained

in a simulation with L2 = G2 = 8192 can be seen in Figure 4.10. Despite this

relatively large domain size, the lowest value of c at which the instability can be

observed is 1.5 whereas the amplitude measurements suggest cEI ≈ 1.28. In con-

trast with Eckhaus instability, the absolute instability can be observed in systems

with intermediate domain and grid sizes. Because of the velocity at which the

absolute instability spreads, the core is unable to convect away the perturbations

which grow in the place of their origin as plotted in Figure 4.9.
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Figure 4.10: The far-field break-up of spirals due to convective Eckhaus instability

at c = 1.5 in the CGLE. A small part of the image obtained in experiments with

L2 = G2 = 8192 is shown at time t = 700, 800, 900 from left to right.

4.4 Spiral Annihilation

The phenomenon of spiral annihilation, predicted from the phase diagram of the

2D CGLE, is a novel discovery in the context of cyclic dominant models. The

effect appears to be restricted to the vicinity of the Hopf bifurcation, a regime

which remained inaccessible in previous studies of the rock-paper-scissors dynam-

ics lacking the mutation process (2.4). It should be noted that the annihilations

are a purely deterministic phenomena resulting from nonlinearities of the CGLE.

The collisions and the subsequent loss of all spiral patterns is not an effect of

demographic noise or any type of instability. Confirmation of the existence of

the phase in the generic model requires, as in the case of Eckhaus instability,

intensive computers simulations which were not attempted before.

According to the theoretical results, the stable equilibrium distance between

two spirals increases asymptotically as the value of c is lowered to cBS = 0.845

which marks the end of the bound state phase (Aranson et al., 1993). In other

words, unless the two spirals are separated by an infinite distance, they are des-

tined to annihilate for values below cBS. As to the time before annihilation for a

certain separation distance, it increases asymptotically as the value of c is raised

until cBS at which it takes an infinite time for the spirals to annihilate.
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Figure 4.11: Quantised decay of the total core area |R|2 < 0.25 at c = 0.4 in

the CGLE. After initial transients, 10 spirals remain with a total core area of

approximately 120 pixels. Subsequently, five annihilations occur marked by the

sharp decreases in the total core area until the disappearance of all spirals.

One way of quantifying the spiral annihilation is tracking the decay of the spi-

ral core area in time. The value of |R|2 is usually of order O(1) as shown in Table

4.1 and Figure 4.8. However, it drops rapidly to 0 within the small area of the

core as shown in Figure 4.12. For a single core, such area remains approximately

constant provided that good enough resolution is used in the simulations. There-

fore, the total core area becomes a quantised quantity allowing for observations of

individual spiral annihilations. These annihilations are manifested as sharp drops

in the total core area equal to area of the two colliding cores. An example of such

process for c = 0.4, where pixels with |R|2 < 0.25 are counted, is presented in

Figure 4.11 showing five annihilations and an eventual disappearance of all spi-

rals. The initial transient is characterised by a continuous decrease in the core

area since the starting conditions are perturbations around |R|2 = 0. The time

periods between first collisions are notably shorter since more spirals are present

in the domain. The last annihilation takes longest since the spirals need to move

over larger distances to collide. It should also be noted that spirals need to spin

in opposite directions in order the annihilate which may prolong their existence in
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Figure 4.12: Spiral annihilation for c = 0.1 in the CGLE. The modu-

lus of the complex amplitude is visualised here with dark pixels represent-

ing |R|2 ∼ 0 while light pixels show areas with |R|2 ∼ 1. Images taken at

t = (1800, 2000, 2200, 2400, 2600) respectively from left to right. Blue frame is

added in post-processing to outline the boundaries of the domains.

the domain before an appropriate pairing is achieved. A visual representation of

spiral annihilation for c = 0.1 is also shown in Figure 4.12 where |R|2 is encoded

in greyscale. Four pairs of dark spots, signifying the spiral cores with |R|2 ∼ 0,

are shown colliding and disappearing in a time period of approximately 3000 time

steps. In comparison, the numerical experiments for c = 0.4 shown in Figure 4.11

take about 30000 time steps before all spirals annihilate.

∗ ∗ ∗

As mentioned in the introduction to this chapter, the discussion of the nu-

merical experiments of the two-dimensional complex Ginzburg–Landau equation

were presented here to accompany the main results for the generic metapopula-

tion model given in Chapter 5. These rely on approximating the model with the

2D CGLE near the onset of Hopf bifurcation and the predictions of such approach

are analysed also in the absence of the bifurcation as in the previous studies.
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Chapter 5

Results: Generic

Metapopulation Model

Chapter 2 on mathematical methods contains various predictions about the generic

metapopulation model based on the novel analysis involving system size and

asymptotic expansions leading to the derivation of the macroscopic PDEs (2.26)

and the CGLE (2.69). Because the two equations are derived under specific as-

sumptions, the validity of the predictions is tested here as these assumptions are

relaxed. The value of the mutation rate µ, related to the perturbation parameter

ǫ from the asymptotic expansion through (2.54), is explored here at three differ-

ent regimes. Firstly, the absence of the Hopf bifurcation is confirmed for µ > µH

with no emerging patterns being observed. The prediction of the existence of four

CGLE phases in the generic metapopulation model, as described in Chapter 4,

is confirmed at µ ∼ 1
2
µH implying a relatively large perturbation of ǫ ∼ 1/4. All

phases can be observed despite the departure from the Hopf bifurcation with the

condition of the asymptotic expansion ǫ ≪ 1 being no longer satisfied. Finally, in

order to relate to the previous studies in which the mutation rate was absent, the

system is also simulated at µ = 0 with the limit cycle created by the bifurcation

becoming a heteroclinic orbit.
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Figure 5.1: Colour-coded simplex of species abundances with total density r = 1.

Each corner represents complete dominance of one of the species while the middle

of the simplex is a grey area around the point s = (1/3, 1/3, 1/3). The colours fade

to black as the total density decreases to r = 0.

Furthermore, in contrast with previous studies and wider scientific literature

(Joppa et al., 2013; Merali, 2010), the novel computations methods outlined in

Chapter 3 are evaluated here with a series of control experiments. Such testing

of the algorithms is performed to ensure the correctness of the bespoke computa-

tional framework developed in this research. In addition, the control experiments

play an important role in proper understanding of the numerical methods whose

artefacts may be interpreted as genuine phenomena in the intrinsic dynamics of

the generic metapopulation model.

The far-field break-up of spiral waves, a phenomenon resembling the Eckhaus

instability (Bär & Brusch, 2004; Bär & Or-Guil, 1999; Ouyang & Flesselles, 1996),

is also discussed in this chapter. The initial results obtained from the numeri-

cal experiments suggest that the various effects leading to the break-up can be

associated with the decrease in the wavelength of the spiral waves. In addition,

the nonlinear mobility is found to affect the stability of the spirals in a similar

manner without a significant reduction in the wavelength.

The results of the simulations are visualised by colour coding the abundances

of the three bacterial strains in each population with appropriate RGB intensities

such that (red, green, blue) = (s1, s2, s3). An example of this colour scheme is

presented in Figure 5.1 where values corresponding to total density r = s1+ s2+

s3 = 1 are encoded in RGB colours. When the sum of the species frequencies

r < 1, the colours are darker with the case for r = 0 resulting in black colouring.

Each pixel in the images shown in this chapter represents one subpopulation in

the stochastic simulations or one grid point in the deterministic case.
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5.1 Absence of Hopf Bifurcation

Figure 5.2: Absence of the Hopf bifuraction and related pattern formation at

µ = 0.050 > µH = 0.042. The population sizes are N = (64, 256, 1024) increasing

from left to right while all other parameters remain the same.

5.1 Absence of Hopf Bifurcation

As argued analytically in Section 2.2.2, the generic metapopulation model exhibits

a Hopf bifurcation at the critical value of the mutation rate µH (2.24) developing

a stable limit cycle with an approximate frequency of ωH (2.25). For values

of µ > µH , the only fixed point (2.23) is globally stable and no patterns are

expected to form on the metapopulation lattice. This regime for β = σ = 1 and

ζ = 0 is presented in Figure 5.2 where no pattern formation can be observed.

The dynamics fluctuates around the stable fixed point due to finite sizes of the

subpopulations with the frequencies of all species being approximately equal.

As the patch size N is increased, the fluctuations become less pronounced since

their amplitude is proportional to the factor of 1√
N
. The entire domain becomes

filled with grey coloured subpopulations because of the almost equal quantities

of red, green and blue agents as explained in Figure 5.1. These results confirm

the global stability of the fixed point for µ > µH with the amplitude of the

stochastic fluctuations around the fixed point originating from the strength of the

demographic noise. Time evolutions of the three experiments resulting in the final

states shown in Figure 5.2 can be observed in Movie 4 from the supplementary

material in Szczesny et al. (2012).
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Figure 5.3: Four phases in the PDEs (2.26) (top panel) and the stochastic system

(lower panel) for ζ = (1.8, 1.2, 0.6, 0) from left to right with µ = 0.02 < µH =

0.042. Other parameters are β = σ = δD = δE = 1, L2 = G2 = 1282 and N = 64.

All frames are visualised at time t = 1000.

5.2 Four Phases

One of the main results of this research is the classification of the different phases

exhibited by the generic metapopulation model. This classification is based on the

parameter c from the CGLE (2.69), the phase diagram shown in Figure 4.2 and

the four phases observed in the CGLE as discussed in Section 4.1. Even though

such predictions are valid only close to the onset of Hopf bifurcation, that is for

values of ǫ ≪ 1, the mutation rate of µ = 0.02 implying ǫ = 0.25 was used in the

simulations. The presence of the phases is confirmed in Figure 5.3 for β = σ = 1

and ζ = (1.8, 1.2, 0.6, 0) in both stochastic and deterministic simulations. These

values β, σ and ζ translate to c = (1.9, 1.5, 1.0, 0.6) respectively placing the

system in each of the four different phases. Starting from the rightmost panel,

the spiral annihilation (SA) phase is clearly present with the collisions of spirals

and eventual relaxation into a homogeneous oscillating state. Further to the left

is the phase of bound states (BS) in which stable spiral waves persist forever. The

next phase is the Eckhaus instability (EI) phase which does not clearly exhibits
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5.2 Four Phases

convective instabilities due to the small sizes of the spirals as explained in Section

4.3 for the case of the CGLE. The leftmost panel shows the absolute instability

(AI) phase where the distortion of the shape of the patterns is clearly visible.

Overall, the patterns presented in Figure 5.3 show striking resemblance to those

obtained from the CGLE in Figure 4.3 despite significant departure from the

assumptions made during the asymptotic expansion. For the time evolution of

the simulations resulting in the final states shown in Figure 5.3 see Movie 1 in

Szczesny et al. (2012). In addition, the numerical experiments for a low value of

carrying capacity N = 2 are also recorded as Movie 2 in Szczesny et al. (2012).

While the noise fluctuations make is difficult to compare the pattern in AI, EI

and BS phases, the spiral annihilation is indeed observed in SA phase despite

violating the assumptions that N ≫ 1 required by the system size expansion.

5.2.1 Robustness Testing

The reaction rates stated in the generic model outlined in Section 2.2 are in-

dependent of the species indices. Such rates are often considered to ensure the

mathematical tractability of the analysis which is greatly simplified for cyclically

symmetric equations. However, one can argue analytically that the results of

the derivations should be valid in a case of asymmetric rates. Such asymmetry

arises in the interactions of the E. coli bacteria where the cyclic dominance re-

sults from different processes such as reproduction and toxin production in each

species (Kerr et al., 2002). The robustness to asymmetry in rates is tested in the

simulations by perturbing the rates of the on-site reactions (2.1), (2.2), (2.3) and

(2.4) as well as the migration reactions (2.5) and (2.6). More concretely, each

of the 39 reaction rates present in the stochastic simulation algorithm was mul-

tiplied by a perturbation coefficient drawn from a uniform random distribution

in range [0.95, 1.05]. Since the EI and AI phases are difficult to compare due

their distorted appearance, the robustness testing considered the striking differ-

ences between the BS and SA phases. The experiments were repeated several

times, starting from different initial conditions, with new perturbing coefficients

generated each time. Other parameters were the same as in Section 5.2.
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Figure 5.4: Stochastic simulations from Figure 5.3 reproduced far away from the

Hopf bifuraction at µ = 0.001 ≪ µH = 0.042. All parameters are the same with

ζ = (1.8, 1.2, 0.6, 0) from left to right as before. See Section 5.3 for discussion.

Despite the perturbations, the simulations reproduce the predictions of spiral

annihilation at ζ = 0 leading to an oscillating homogeneous state. In the next

phase, at ζ = 0.6, persistent bound states were observed after their emergence

from the random initial conditions.

5.3 Low Mutation Rates

One of the key assumptions in the multiscale expansion deriving the CGLE (2.69)

in Section 2.3.3 is that the perturbation parameter ǫ ≪ 1. Despite this assump-

tion, the predictions regarding the appearance of the four phases in the metapop-

ulation model are shown to be valid even for µ = 0.02 implying ǫ = 0.25 via

(2.54) as discussed in Section 5.2. Nevertheless, the theory breaks down eventu-

ally as shown in Figure 5.4 where a relatively low value of µ = 0.001 was used

in stochastic simulations. Comparing the resulting patterns with those obtained

with µ = 0.02 shown in Figure 5.3, suggests that the the spiral annihilation phase

is no longer present in the right most panel. However, since both experiments

were set to run for the same period of time until t = 1000, this results can be

attributed to the extended annihilation time with spiral collisions happening at

later stages of the simulation. The reduction of the wavelength is also noticeable

in all phases while the brighter colouring can be attributed to the enlarged limit

cycle which increases the amplitude of oscillations in species abundances.
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5.3 Low Mutation Rates

↓ µ (ǫ) \ ζ (c) → 0.2 (0.73) 0.4 (0.86) 0.6 (1.01) 0.8 (1.16)

0.035 (0.14) (too large) 155 128 111
0.030 (0.19) 130 107 91 80
0.025 (0.22) 99 83 71 63
0.020 (0.25) 77 66 58 52
0.015 (0.28) 61 54 48 (unstable)

Table 5.1: Measurements of spiral arm wavelength λ in solutions to the

macroscpic PDEs (2.26) as a function of µ and ζ with corresponding values of ǫ

and c. The results are plotted in the domain of CGLE via (5.1) in Figure 5.5.

The decrease of the wavelength for the vanishing mutation rate was investi-

gated in a separate experiment. These findings are important since almost all

previous studies of the rock-paper-scissors dynamics set µ = 0 which is shown

to be a special case of wavelength convergence. Firstly, the PDEs (2.26) were

solved numerically at four different values of ζ in the bound state phase which

corresponded to different values of c and wavelengths λǫ in the CGLE space. It

is important to understand, that the numerical values of λǫ in Figure 5.5 are

obtained by the coordinate transformation outlined in the multiscale expansion

in Section 2.3.3. In contrast to mapping technique, the multiscale expansion dis-

tinguishes between the spatial coordinate x in the PDEs and X in the CGLE.

Therefore, the spatial dimension must be matched through the perturbation pa-

rameter ǫ based on the coordinate transformation X = ǫx such that

λǫ = ǫλ =
√

3(µH − µ)λ. (5.1)

Since the critical mutation rate is not a function of ζ (2.24), its value of µH =

0.042 for β = σ = 1 is valid in all simulations. A good agreement between the

theoretical and experimental values of λǫ are observed close to the onset of Hopf

bifurcation. However, as the mutation rate decreases, the wavelengths converge

to a single point for all ζ. This discrepancy shows that the predictions about the

generic model should be considered as valid only close to the Hopf bifurcation

when µ . µH rather than when µ = 0 as in the majority of previous studies.
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10

15

20

25

30

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045

λ ε

ζ = 0.2

ζ = 0.4

ζ = 0.6

ζ = 0.8

µ

Figure 5.5: The convergence of wavelengths λǫ in the macroscopic PDEs (2.26)

as a function of vanishing mutation rate µ. Wavelengths λ obtained from the

numerical solutions (circles) are rescaled to λǫ via (5.1) and compared to the

predictions from the CGLE (squares) at Hopf bifurcation where µ = µH = 0.042.

Raw measurements of the wavelength λ are provided in Table 5.1. Dashed lines

represent linear fits through the values of λǫ corresponding to a given value of ζ.
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5.4 Resolution Effects

Figure 5.6: Resolution effects in stochastic simulations (left) with equivalent de-

terministic simulations (right). Domain sizes in both simulations are L2 = 1282

while the deterministic system has grid size G2 = 10242. Other parameters are

the same. See Section 5.4 for discussion on the differences in appearance.

5.4 Resolution Effects

The interplay between the diffusion constants δD, δE and δ, domain size L and

grid size G can be a source of confusion when simulating the spatial dynamics of

the generic metapopulation model. The relative sizes of δD and δE are important

in the nonlinear mobility case when δD 6= δE as reported in Section 5.5. However,

in the case of linear diffusion with δD = δE, the constants have no effect on

the dynamics except for changing the overall sizes of the patterns. This can be

understood by absorbing the constants into the derivatives with δD∂x → ∂x. Such

spatial rescaling shows explicitly that diffusion rates δD, δE and δ from the PDEs

(2.26) and the CGLE (2.69) act to zoom out and zoom in on the patterns formed

in the domain. One example of such effect is the reported loss of biodiversity for

large diffusion rates (Reichenbach et al., 2007a) which results from the patterns

outgrowing the domain. It should also be noted that the migration constants δD

and δE from (2.5) and (2.6) are the same quantities as the diffusion constants in

the macroscopic PDEs as explained in Section 2.2.2.
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Figure 5.7: Identical outcomes from simulations of the rock-paper-scissors PDEs

(2.26) for grid sizes G2 = (1282, 2562, 5122) from left to right respectively. The

domain size is L2 = 1282 while δD = δE = 1.

In stochastic simulations, the domain size and the grid size are coupled quanti-

ties such that a lattice of L2 populations corresponds to a domain with area equal

to L2. Therefore, when integrating the PDEs (2.26), such physical size should be

chosen for the domain to obtain solutions matching in space. This also means

that certain patterns cannot be represented on the grid of the stochastic system.

For example, a plane wave with a wavelength of λ = 0.1 space units cannot

be visualised on a discrete domain with one population representing a minimum

distance of 1 space unit. In contrast, the ETD2 integration scheme outlined in

Section 3.4 allows for varying the grid size G2 as an independent variable in the

numerical experiments which acts to increase the resolution of the image. There-

fore, in the case G > L there can be multiple grid points spanning the distance

of 1 space unit in the physical domain. The two different scenarios are shown in

Figure 5.6 where the spiral waves, predicted in the continuous system, are absent

from the discrete system because of the lack of resolution rather than effects of

intrinsic dynamics. In the simulations performed in this research, the diffusion

constants used are of order O(1) which makes the spiral patterns resolvable on

the metapopulation grid. Increasing the grid size G in deterministic simulations

has no visible effect on the resulting patterns as shown in Figure 5.7. Therefore,

the value of G2 = 1282 is chosen as a default grid size, delivering good resolution

and fast performance.
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5.5 Far-field Break-up

Figure 5.8: An attempt at reproducing results from Rulands et al. (2013) re-

porting effects of diffusion constant on the spiral patterns with δD = δE =

(0.000625, 0.005625, 0.64, 2.56) left to right. See Section 5.4 for details.

The problems outlined in this section can lead to claims about the effects of the

diffusion constants on the dynamics of the system (Rulands et al., 2013). Namely,

critical values of the diffusion constants marking the disappearance of spirals are

reported. These claims, in the case of linear diffusion, can be understood and

predicted by calculating the wavelength λ of the waves in the spiral arms and

comparing them to the resolution of the numerical simulations. For example, the

leftmost panel of Figure 5.8 shows results of stochastic simulations for λ = 1 space

unit, while the next panel has λ = 3 space units. Representing a wave in 1 or

even 3 populations is not possible due to the lack of resolution. Therefore, noisy

patches rather than spirals are observed. The next two panels to the right show

λ = L/2 and λ = L where L2 = 642 is the physical domain size. While the case

of λ = L/2 exhibits spirals, the patterns decay into a homogeneous oscillating

state as shown in the the rightmost panel of Figure 5.8 where the size of the spiral

arms is too large to fit into the domain.

5.5 Far-field Break-up

The effects of the selection-removal process (2.2) on the stability of spiral waves

were reported in previous studies in models without mutation with µ = 0. The

phenomenon was investigated as a function of the selection-removal rate σ and a

critical value of approximately 2 was reported as the onset of Eckhaus instability

in Reichenbach & Frey (2008). However, due to the random initial conditions
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5. RESULTS: GENERIC METAPOPULATION MODEL

Figure 5.9: Left and centre: BS and EI phases in the PDEs (2.26) with L2 = 10242

for ζ = (0.6, 1.2). Right: AI phase with L2 = 2562 for ζ = 1.8. Other parameters

were β = σ = δD = δE = 1, µ = 0.02 and G2 = 2562.

and a large number of small spirals present in the domain, it is not clear if the

reported simulations at σ = 5 were not in EI phase. As shown in the left and

centre panels of Figure 5.9, the bound state and Eckhaus instability phases are

similar in appearance when the starting conditions are random. In contrast,

special initial conditions shown in Movie 3 from Szczesny et al. (2012) are used

in the simulations in order to observe the far-field break-up phenomenon. The

conditions are arranged geometrically such that four spirals are seeded in the

domain and are then allowed to grow up to a radius equal to a quarter of the

domain width L. Moreover, the apparent distortion and blurring of the patterns

reported at σ = 0.5 is most likely caused by the absolute instability rather than

Eckhaus instability as can be seen in the rightmost panel of Figure 5.9.

More interestingly, a similar value was estimated as 2.3 ± 0.3 in Jiang et al.

(2011) for a system with a domain size L2 = 5122. Different values were also

reported for varying domain sizes as would be the case with Eckhaus instability

which can be observed only in domains of appropriate size as discussed in Sec-

tion 4.3. While it is not possible to directly compare the lattice Monte Carlo

simulations performed in the previous studies with the lattice Gillespie algorithm

simulations, an attempt of reproducing the results is shown in Figure 5.10. The

far-field break-up, resembling the Eckhaus instability, can be seen as the value

of σ is increased. The wavelength of waves in the spiral arms are also reduced

suggesting a critical value of the wavelength, similar to that derived for Eckhaus

instability (2.85) in Section 2.3.5.
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5.5 Far-field Break-up

This hypothesis is tested in simulations which gradually decrease the wave-

length of the waves by reducing the values of the diffusion constants δD and δE

as shown in Figure 5.11. It should be noted that despite the value of the sub-

population size N = 256, the demographic noise can be responsible for the spiral

break-up. The size of carrying capacity N is relevant for low diffusion rates since

the resulting thin stripes representing the bacterial concentrations can be easily

disrupted by the noise. Nevertheless, the spirals in the leftmost panel of Figure

5.11 with δD = δE = 0.4 are stable and a higher value of 0.5 is used as a starting

point in simulations presented in Figure 5.12 and discussed below.

As shown in Section 5.4, the effects of diffusion rates in case of linear mobility,

when δD = δE, have no effects on the stability of spiral waves. However, when

δD 6= δE, the far-field break-up of spirals resembling the Eckhaus instability can

be observed in stochastic simulations. At this point, it should be noted that

hopping and exchange mechanisms were investigated previously (He et al., 2011).

However, the numerical experiments were performed on single occupancy lattices

with N = 1 meaning that the influence of demographic noise could be a significant

factor in the simulations.

The influence of the nonlinear diffusion rates is reported in Figure 5.12. The

leftmost panel of Figure 5.12 shows results for linear mobility only and serves

as a control experiment reaffirming that noise effects are not present with δD =

δE = 0.5 and N = 256. The parameters in the next panels remain the same

except for δD which is increased to the value of 2 in steps of 0.5 from left to

right such that δD > δE. It should be noted that in the opposite case, when

δD < δE, the stability of the spirals is not observed after divorcing of the mobility

rates. Consequently, the gradual reduction of the maximum radius of the spirals

is observed, caused by the break-up of spiral arms. The final check against the

influence of noise is performed for the results with δD = 2 in the rightmost panel

of Figure 5.12 by repeating them with N = 512 and N = 1024. The increased

patch sizes act to further diminish any effects of the demographic noise on the

stability of the waves. The results are in agreement with those performed with

N = 256, showing the far-field break-up of spiral arms caused by the nonlinear

mobility. The time evolution of a similar experiment is recorded as Movie 3 in

Szczesny et al. (2012).
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Figure 5.10: Instability of spiral waves with selection-removal rate σ = (1, 2, 3, 4)

from left to right. The system size is constant in all panels with N = 64 and

L2 = 5122. Other parameters are δD = δE = 0.5, β = 1 and ζ = µ = 0.

Figure 5.11: Decrease in wavelength and far-field break-up of spiral waves with

δD = δE = (0.4, 0.2, 0.1, 0.05) from left to right. The domain size is L2 = 5122

wtih N = 256 in all panels. Other parameters are β = σ = 1 and ζ = µ = 0.

Frames shown at time t = 800 with initial conditions still partially visible.

Figure 5.12: Effects of nonlinear mobility on the stability of spiral waves. The

diffusion rates are δD = (0.5, 1, 1.5, 2) left to right while δE = 0.5 in all panels.

Other parameters are β = σ = 1, ζ = µ = 0 and L2 = 5122. The demographic

noise can be considered negligible with N = 256 as shown in Figure 5.13.
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5.6 Matching in Space and Time

Figure 5.13: Matching stochastic and deterministic simulations for identical pa-

rameters. Top panels show initial conditions while lower panels show the domains

at time t = 1000. The five leftmost panels are the results of stochastic simula-

tions for L2 = 1282 with N = 4, 16, 64, 256, 1024 left to right respectively. The

rightmost panels are the solutions of the PDEs (2.26) with grid size G2 = 1282.

5.6 Matching in Space and Time

As argued in Section 3.2, the lattice Monte Carlo approach is not capable of exact

simulations of the Master equation (2.16). However, the lattice Gillespie algo-

rithm described in Section 3.3 is proven to provide statistically exact realisations

of the stochastic process. This is an important matter if the long term spatio-

temporal properties of the system are to be studied. The agreement between the

deterministic dynamics, describing the averages of the simulated quantities, and

the stochastic dynamics increases with the population carrying capacity N ac-

cording to the system size expansion detailed in Section 2.2.2. Therefore, provided

that identical initial conditions are used, the evolution of the generic metapop-

ulation model should be indistinguishable for large N when simulated by the

deterministic and stochastic algorithms. The results of such numerical exper-

iments are shown in Figure 5.13 while the time evolution is also recorded as

Movie 5 in Szczesny et al. (2012). As can be seen, the snapshots of the stochastic

dynamics match the deterministic results for increasing values of N as predicted

by the theory without the need for any arbitrary time or space rescaling.
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Figure 5.14: Stochastic simulations at time t = 50, 52, 54, 56 from left to right.

The leftmost panel resembles the starting conditions of the laboratory experi-

ments from Kerr et al. (2006). The subsequent time evolution, taking only 6

time units in the simulations, can be compared to 4 days in the experiment with

real bacteria reproduced in Figure 5.15.

Certain conclusions about the time scales involved in the numerical and lab-

oratory experiments can also be proposed. The original experiments with E. coli

bacteria were followed by a number of theoretical studies predicting the appear-

ance of spiral waves. Nevertheless, these patterns are yet to be observed in the

real-life bacterial interactions. Most explanations of the missing spirals concen-

trate on the dynamics of the system discussing various effects impacting on the

stability of the spiral waves. However, a different explanation can be proposed,

based on matching the time scales reported in the original experiments and those

found in the numerical simulations. Starting initially from a random distribution

of bacterial species, their self-organisation into small patches can be observed

as shown in Figure 5.14. The resulting state is similar to the setup of the real

experiments where droplets containing each of the three species of E. coli were

deposited onto the Petri dish as reproduced in Figure 5.15. The cyclic dominance

of the bacteria is then observed from the movement of the boundaries between

the patches. This dynamics takes several days in the laboratory while similar

motion happens after only few time steps in the computer simulations. Noting

that most of theoretically predicted effects appear after hundreds or thousands

of such time steps, it is plausible to assume that the real experiments would have

to be carried out for months if not years to confirm the analytical predictions.
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5.6 Matching in Space and Time

Figure 5.15: Time series photographs of bacterial interactions on a static plate.

Letters C, R and S denote communities of colicinogenic (producing), resistant and

sensitive strains of E. coli bacteria from the diagram in Figure 1.4. Reproduced

from Kerr et al. (2006), see also Figure 5.14 for a comparison with simulations.
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Chapter 6

Conclusion

The postgraduate research presented in this thesis contains a number of innova-

tive approaches which advance or replace the mathematical and computational

methods utilised in previous studies as summarised in Section 1.2. These rig-

orously defined methods, outlined in Chapters 2 and 3, can be generalised to a

broad class of population modelling problems where more heuristic approaches

are currently in use. As reported in Chapters 4 and 5, the data obtained from

the computer simulations agrees with the theoretical predictions in a variety of

studies exploring the different aspects of the coevolutionary dynamics.

However, the predictions stated in this thesis should be considered with some

caution. As speculated in Section 5.6, the time scales involved in the reported

phenomena may not be attainable in laboratory experiments. Moreover, the

characterisation of the properties of the spiral waves, such as their velocities

and wavelength, are unlikely to be tested in experiments with living organisms.

The accurate calculations and measurements of these properties should therefore

be considered as a mathematical exercise while their relevance to the physical

interactions of the microbial communities should not be overestimated.

Finally, it is worth mentioning that despite inertia originating from a large

body of previous research, the more controlled derivation of the CGLE as well

as the treatment of previously neglected nonlinear diffusive terms received some

recognition in Mowlaei et al. (2014) and Claudia & Carletti (2014) while the

results are also to appear in a broad review of the field (Szolnoki et al.).
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Appendix A

Computer Algebra Notebooks

A.1 System Size Expansion

A.1.1 Variables

Mathematical symbols used in Chapter 2 and their corresponding representations

in the REDUCE notebook deriving the PDEs (2.26) via the system size expansion

detailed in Section 2.2:

Symbol Plaintext
√
N m

Ni,ℓ n(i, l)

si,ℓ s(i, l)

ηi,ℓ nn(i, l)

Π(η, t) pi

T β
1 re beta 1

E
+
i,ℓT

β
1 step p(re beta 1, i, l)

∆is1 lap s1

∂tsi ds1 dt
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A. COMPUTER ALGEBRA NOTEBOOKS

A.1.2 Comments

The following table contains comments on sections of the source code within

specific line numbers. The comments establish direct links to the derivation in

Section 2.2.2 and equations therein.

From To Comment

1 5 Defining positions for a subpopulation at ℓ = (ℓ1, ℓ2) and its
neighbours.

7 27 Definition of Ni,ℓ, si,ℓ and ηi,ℓ.

29 33 Redefinition of Ni,ℓ via (2.18).

37 58 Definition of the differential step up/down operators E±
i .

62 62 Stating dependence of Π on ηi.

64 98 Reactions T β, T σ, T ζ and T µ and application of the step
up/down operators.

101 205 Migration reactionsDδD andDδE and application of the step
up/down operators.

209 231 The master equation (2.16).

235 237 The substitutions defining the lattice Laplacian (2.28).

243 245 Extraction of the macroscopic PDEs (2.26).

250 255 Output of the macroscopic PDEs (2.26).

258 262 Checking the simplified output shown in Listing 2.1.
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A.1 System Size Expansion

A.1.3 Source

1 let centre = 1; % 2

2 let above = 2; % |

3 let right = 3; % 5--1--3

4 let below = 4; % |

5 let left = 5; % 4

6

7 matrix n(3,5); % numbers of individuals

8 matrix s(3,5); % normalised frequencies

9 matrix nn(3,5); % fluctuations (noise)

10

11 n := mat(

12 (n1 , n1a , n1r , n1b , n1l),

13 (n2 , n2a , n2r , n2b , n2l),

14 (n3 , n3a , n3r , n3b , n3l)

15 );

16

17 s := mat(

18 (s1 , s1a , s1r , s1b , s1l),

19 (s2 , s2a , s2r , s2b , s2l),

20 (s3 , s3a , s3r , s3b , s3l)

21 );

22

23 nn := mat(

24 (nn1 , nn1a , nn1r , nn1b , nn1l),

25 (nn2 , nn2a , nn2r , nn2b , nn2l),

26 (nn3 , nn3a , nn3r , nn3b , nn3l)

27 );

28

29 for sp :=1:3 do <<

30 for pos :=1:5 do

31 % m = sqrt(N) where N is the carrying capacity

32 let n(sp ,pos) = ( (m*m)*s(sp ,pos) + m*nn(sp ,pos) );

33 >>;

34

35 % operators: step up (plus) and step down (minus)

36

37 operator step_p;

38 operator step_m;

39 operator step_p_m;

40 operator step_pm_pm;

41

42 for all re , sp1p ,pos1 let step_p(re , sp1p ,pos1) = +df(re , nn(sp1p ,pos1)) / m +

df(re , nn(sp1p ,pos1), 2) / m**2 / 2;

43 for all re , sp1m ,pos1 let step_m(re , sp1m ,pos1) = -df(re , nn(sp1m ,pos1)) / m +

df(re , nn(sp1m ,pos1), 2) / m**2 / 2;

44

45 for all re , sp1p ,pos1 , sp2m ,pos2 let step_p_m(re , sp1p ,pos1 , sp2m ,pos2) = (

46 (df(re , nn(sp1p ,pos1) ) - df(re , nn(sp2m ,pos2) )) / m

47 +
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48 (df(re , nn(sp1p ,pos1) ,2) + df(re , nn(sp2m ,pos2) ,2) - 2*df(df(re ,

nn(sp1p ,pos1)), nn(sp2m ,pos2))) / m**2 / 2

49 );

50

51 for all re , sp1p ,sp1m ,pos1 , sp2p ,sp2m ,pos2 let step_pm_pm(re , sp1p ,sp1m ,pos1 ,

sp2p ,sp2m ,pos2) = (

52 (df(re , nn(sp1p ,pos1) ) - df(re , nn(sp1m ,pos1) ) + df(re , nn(sp2p ,pos2)

) - df(re , nn(sp2m ,pos2) )) / m

53 +

54 (df(re , nn(sp1p ,pos1) ,2) + df(re , nn(sp1m ,pos1) ,2) + df(re ,

nn(sp2p ,pos2) ,2) + df(re , nn(sp2m ,pos2) ,2)) / m**2 / 2

55 +

56 (-df(df(re ,nn(sp1p ,pos1)),nn(sp1m ,pos1)) +

df(df(re ,nn(sp1p ,pos1)),nn(sp2p ,pos2)) -

df(df(re ,nn(sp1p ,pos1)),nn(sp2m ,pos2))

57 -df(df(re ,nn(sp1m ,pos1)),nn(sp2p ,pos2)) +

df(df(re ,nn(sp1m ,pos1)),nn(sp2m ,pos2)) -

df(df(re ,nn(sp2p ,pos2)),nn(sp2m ,pos2))) / m**2

58 );

59

60 % transitions

61

62 depend pi , nn1 , nn2 , nn3;

63

64 re_beta_1 := beta * n(1,centre) * (m*m - n(1,centre) - n(2,centre) -

n(3,centre)) / m**4;

65 re_beta_2 := beta * n(2,centre) * (m*m - n(1,centre) - n(2,centre) -

n(3,centre)) / m**4;

66 re_beta_3 := beta * n(3,centre) * (m*m - n(1,centre) - n(2,centre) -

n(3,centre)) / m**4;

67 re_beta_1 := step_m(re_beta_1*pi , 1,centre) $

68 re_beta_2 := step_m(re_beta_2*pi , 2,centre) $

69 re_beta_3 := step_m(re_beta_3*pi , 3,centre) $

70

71 re_sigma_1 := sigma * n(1,centre) * n(2,centre) / m**4;

72 re_sigma_2 := sigma * n(2,centre) * n(3,centre) / m**4;

73 re_sigma_3 := sigma * n(3,centre) * n(1,centre) / m**4;

74 re_sigma_1 := step_p(re_sigma_1*pi , 2,centre) $

75 re_sigma_2 := step_p(re_sigma_2*pi , 3,centre) $

76 re_sigma_3 := step_p(re_sigma_3*pi , 1,centre) $

77

78 re_zeta_1 := zeta * n(1,centre) * n(2,centre) / m**4;

79 re_zeta_2 := zeta * n(2,centre) * n(3,centre) / m**4;

80 re_zeta_3 := zeta * n(3,centre) * n(1,centre) / m**4;

81 re_zeta_1 := step_p_m(re_zeta_1*pi , 2,centre , 1,centre) $

82 re_zeta_2 := step_p_m(re_zeta_2*pi , 3,centre , 2,centre) $

83 re_zeta_3 := step_p_m(re_zeta_3*pi , 1,centre , 3,centre) $

84

85 re_mu_12 := mu * n(1,centre) / m**2;

86 re_mu_13 := mu * n(1,centre) / m**2;

87 re_mu_12 := step_p_m(re_mu_12*pi , 1,centre , 2,centre) $
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88 re_mu_13 := step_p_m(re_mu_13*pi , 1,centre , 3,centre) $

89

90 re_mu_21 := mu * n(2,centre) / m**2;

91 re_mu_23 := mu * n(2,centre) / m**2;

92 re_mu_21 := step_p_m(re_mu_21*pi , 2,centre , 1,centre) $

93 re_mu_23 := step_p_m(re_mu_23*pi , 2,centre , 3,centre) $

94

95 re_mu_31 := mu * n(3,centre) / m**2;

96 re_mu_32 := mu * n(3,centre) / m**2;

97 re_mu_31 := step_p_m(re_mu_31*pi , 3,centre , 1,centre) $

98 re_mu_32 := step_p_m(re_mu_32*pi , 3,centre , 2,centre) $

99

100

101 re_delta_d_1_ca := delta_d * n(1,centre) * (m*m - n(1,above) - n(2,above) -

n(3,above)) / m**4;

102 re_delta_d_1_cr := delta_d * n(1,centre) * (m*m - n(1,right) - n(2,right) -

n(3,right)) / m**4;

103 re_delta_d_1_cb := delta_d * n(1,centre) * (m*m - n(1,below) - n(2,below) -

n(3,below)) / m**4;

104 re_delta_d_1_cl := delta_d * n(1,centre) * (m*m - n(1,left ) - n(2,left ) -

n(3,left )) / m**4;

105 re_delta_d_1_ca := step_p_m(re_delta_d_1_ca *pi , 1,centre , 1,above) $

106 re_delta_d_1_cr := step_p_m(re_delta_d_1_cr *pi , 1,centre , 1,right) $

107 re_delta_d_1_cb := step_p_m(re_delta_d_1_cb *pi , 1,centre , 1,below) $

108 re_delta_d_1_cl := step_p_m(re_delta_d_1_cl *pi , 1,centre , 1,left ) $

109

110 re_delta_d_2_ca := delta_d * n(2,centre) * (m*m - n(1,above) - n(2,above) -

n(3,above)) / m**4;

111 re_delta_d_2_cr := delta_d * n(2,centre) * (m*m - n(1,right) - n(2,right) -

n(3,right)) / m**4;

112 re_delta_d_2_cb := delta_d * n(2,centre) * (m*m - n(1,below) - n(2,below) -

n(3,below)) / m**4;

113 re_delta_d_2_cl := delta_d * n(2,centre) * (m*m - n(1,left ) - n(2,left ) -

n(3,left )) / m**4;

114 re_delta_d_2_ca := step_p_m(re_delta_d_2_ca *pi , 2,centre , 2,above) $

115 re_delta_d_2_cr := step_p_m(re_delta_d_2_cr *pi , 2,centre , 2,right) $

116 re_delta_d_2_cb := step_p_m(re_delta_d_2_cb *pi , 2,centre , 2,below) $

117 re_delta_d_2_cl := step_p_m(re_delta_d_2_cl *pi , 2,centre , 2,left ) $

118

119 re_delta_d_3_ca := delta_d * n(3,centre) * (m*m - n(1,above) - n(2,above) -

n(3,above)) / m**4;

120 re_delta_d_3_cr := delta_d * n(3,centre) * (m*m - n(1,right) - n(2,right) -

n(3,right)) / m**4;

121 re_delta_d_3_cb := delta_d * n(3,centre) * (m*m - n(1,below) - n(2,below) -

n(3,below)) / m**4;

122 re_delta_d_3_cl := delta_d * n(3,centre) * (m*m - n(1,left ) - n(2,left ) -

n(3,left )) / m**4;

123 re_delta_d_3_ca := step_p_m(re_delta_d_3_ca *pi , 3,centre , 3,above) $

124 re_delta_d_3_cr := step_p_m(re_delta_d_3_cr *pi , 3,centre , 3,right) $

125 re_delta_d_3_cb := step_p_m(re_delta_d_3_cb *pi , 3,centre , 3,below) $

126 re_delta_d_3_cl := step_p_m(re_delta_d_3_cl *pi , 3,centre , 3,left ) $
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127

128 re_delta_d_1_ac := delta_d * n(1,above) * (m*m - n(1,centre) - n(2,centre) -

n(3,centre)) / m**4;

129 re_delta_d_1_rc := delta_d * n(1,right) * (m*m - n(1,centre) - n(2,centre) -

n(3,centre)) / m**4;

130 re_delta_d_1_bc := delta_d * n(1,below) * (m*m - n(1,centre) - n(2,centre) -

n(3,centre)) / m**4;

131 re_delta_d_1_lc := delta_d * n(1,left ) * (m*m - n(1,centre) - n(2,centre) -

n(3,centre)) / m**4;

132 re_delta_d_1_ac := step_p_m(re_delta_d_1_ac *pi , 1,above , 1,centre) $

133 re_delta_d_1_rc := step_p_m(re_delta_d_1_rc *pi , 1,right , 1,centre) $

134 re_delta_d_1_bc := step_p_m(re_delta_d_1_bc *pi , 1,below , 1,centre) $

135 re_delta_d_1_lc := step_p_m(re_delta_d_1_lc *pi , 1,left , 1,centre) $

136

137 re_delta_d_2_ac := delta_d * n(2,above) * (m*m - n(1,centre) - n(2,centre) -

n(3,centre)) / m**4;

138 re_delta_d_2_rc := delta_d * n(2,right) * (m*m - n(1,centre) - n(2,centre) -

n(3,centre)) / m**4;

139 re_delta_d_2_bc := delta_d * n(2,below) * (m*m - n(1,centre) - n(2,centre) -

n(3,centre)) / m**4;

140 re_delta_d_2_lc := delta_d * n(2,left ) * (m*m - n(1,centre) - n(2,centre) -

n(3,centre)) / m**4;

141 re_delta_d_2_ac := step_p_m(re_delta_d_2_ac *pi , 2,above , 2,centre) $

142 re_delta_d_2_rc := step_p_m(re_delta_d_2_rc *pi , 2,right , 2,centre) $

143 re_delta_d_2_bc := step_p_m(re_delta_d_2_bc *pi , 2,below , 2,centre) $

144 re_delta_d_2_lc := step_p_m(re_delta_d_2_lc *pi , 2,left , 2,centre) $

145

146 re_delta_d_3_ac := delta_d * n(3,above) * (m*m - n(1,centre) - n(2,centre) -

n(3,centre)) / m**4;

147 re_delta_d_3_rc := delta_d * n(3,right) * (m*m - n(1,centre) - n(2,centre) -

n(3,centre)) / m**4;

148 re_delta_d_3_bc := delta_d * n(3,below) * (m*m - n(1,centre) - n(2,centre) -

n(3,centre)) / m**4;

149 re_delta_d_3_lc := delta_d * n(3,left ) * (m*m - n(1,centre) - n(2,centre) -

n(3,centre)) / m**4;

150 re_delta_d_3_ac := step_p_m(re_delta_d_3_ac *pi , 3,above , 3,centre) $

151 re_delta_d_3_rc := step_p_m(re_delta_d_3_rc *pi , 3,right , 3,centre) $

152 re_delta_d_3_bc := step_p_m(re_delta_d_3_bc *pi , 3,below , 3,centre) $

153 re_delta_d_3_lc := step_p_m(re_delta_d_3_lc *pi , 3,left , 3,centre) $

154

155

156 re_delta_e_12_ca := delta_e * n(1,centre) * n(2,above) / m**4;

157 re_delta_e_13_ca := delta_e * n(1,centre) * n(3,above) / m**4;

158 re_delta_e_12_cr := delta_e * n(1,centre) * n(2,right) / m**4;

159 re_delta_e_13_cr := delta_e * n(1,centre) * n(3,right) / m**4;

160 re_delta_e_12_cb := delta_e * n(1,centre) * n(2,below) / m**4;

161 re_delta_e_13_cb := delta_e * n(1,centre) * n(3,below) / m**4;

162 re_delta_e_12_cl := delta_e * n(1,centre) * n(2,left ) / m**4;

163 re_delta_e_13_cl := delta_e * n(1,centre) * n(3,left ) / m**4;

164 re_delta_e_12_ca := step_pm_pm(re_delta_e_12_ca*pi , 1,2,centre , 2,1,above) $

165 re_delta_e_13_ca := step_pm_pm(re_delta_e_13_ca*pi , 1,3,centre , 3,1,above) $
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166 re_delta_e_12_cr := step_pm_pm(re_delta_e_12_cr*pi , 1,2,centre , 2,1,right) $

167 re_delta_e_13_cr := step_pm_pm(re_delta_e_13_cr*pi , 1,3,centre , 3,1,right) $

168 re_delta_e_12_cb := step_pm_pm(re_delta_e_12_cb*pi , 1,2,centre , 2,1,below) $

169 re_delta_e_13_cb := step_pm_pm(re_delta_e_13_cb*pi , 1,3,centre , 3,1,below) $

170 re_delta_e_12_cl := step_pm_pm(re_delta_e_12_cl*pi , 1,2,centre , 2,1,left ) $

171 re_delta_e_13_cl := step_pm_pm(re_delta_e_13_cl*pi , 1,3,centre , 3,1,left ) $

172

173 re_delta_e_21_ca := delta_e * n(2,centre) * n(1,above) / m**4;

174 re_delta_e_23_ca := delta_e * n(2,centre) * n(3,above) / m**4;

175 re_delta_e_21_cr := delta_e * n(2,centre) * n(1,right) / m**4;

176 re_delta_e_23_cr := delta_e * n(2,centre) * n(3,right) / m**4;

177 re_delta_e_21_cb := delta_e * n(2,centre) * n(1,below) / m**4;

178 re_delta_e_23_cb := delta_e * n(2,centre) * n(3,below) / m**4;

179 re_delta_e_21_cl := delta_e * n(2,centre) * n(1,left ) / m**4;

180 re_delta_e_23_cl := delta_e * n(2,centre) * n(3,left ) / m**4;

181 re_delta_e_21_ca := step_pm_pm(re_delta_e_21_ca*pi , 2,1,centre , 1,2,above) $

182 re_delta_e_23_ca := step_pm_pm(re_delta_e_23_ca*pi , 2,3,centre , 3,2,above) $

183 re_delta_e_21_cr := step_pm_pm(re_delta_e_21_cr*pi , 2,1,centre , 1,2,right) $

184 re_delta_e_23_cr := step_pm_pm(re_delta_e_23_cr*pi , 2,3,centre , 3,2,right) $

185 re_delta_e_21_cb := step_pm_pm(re_delta_e_21_cb*pi , 2,1,centre , 1,2,below) $

186 re_delta_e_23_cb := step_pm_pm(re_delta_e_23_cb*pi , 2,3,centre , 3,2,below) $

187 re_delta_e_21_cl := step_pm_pm(re_delta_e_21_cl*pi , 2,1,centre , 1,2,left ) $

188 re_delta_e_23_cl := step_pm_pm(re_delta_e_23_cl*pi , 2,3,centre , 3,2,left ) $

189

190 re_delta_e_31_ca := delta_e * n(3,centre) * n(1,above) / m**4;

191 re_delta_e_32_ca := delta_e * n(3,centre) * n(2,above) / m**4;

192 re_delta_e_31_cr := delta_e * n(3,centre) * n(1,right) / m**4;

193 re_delta_e_32_cr := delta_e * n(3,centre) * n(2,right) / m**4;

194 re_delta_e_31_cb := delta_e * n(3,centre) * n(1,below) / m**4;

195 re_delta_e_32_cb := delta_e * n(3,centre) * n(2,below) / m**4;

196 re_delta_e_31_cl := delta_e * n(3,centre) * n(1,left ) / m**4;

197 re_delta_e_32_cl := delta_e * n(3,centre) * n(2,left ) / m**4;

198 re_delta_e_31_ca := step_pm_pm(re_delta_e_31_ca*pi , 3,1,centre , 1,3,above) $

199 re_delta_e_32_ca := step_pm_pm(re_delta_e_32_ca*pi , 3,2,centre , 2,3,above) $

200 re_delta_e_31_cr := step_pm_pm(re_delta_e_31_cr*pi , 3,1,centre , 1,3,right) $

201 re_delta_e_32_cr := step_pm_pm(re_delta_e_32_cr*pi , 3,2,centre , 2,3,right) $

202 re_delta_e_31_cb := step_pm_pm(re_delta_e_31_cb*pi , 3,1,centre , 1,3,below) $

203 re_delta_e_32_cb := step_pm_pm(re_delta_e_32_cb*pi , 3,2,centre , 2,3,below) $

204 re_delta_e_31_cl := step_pm_pm(re_delta_e_31_cl*pi , 3,1,centre , 1,3,left ) $

205 re_delta_e_32_cl := step_pm_pm(re_delta_e_32_cl*pi , 3,2,centre , 2,3,left ) $

206

207 % RHS of the Master equation

208

209 me_rhs := (-1)*m**4*(

210 re_beta_1 + re_beta_2 + re_beta_3 +

211 re_sigma_1 + re_sigma_2 + re_sigma_3 +

212 re_zeta_1 + re_zeta_2 + re_zeta_3 +

213 re_mu_12 + re_mu_13 + re_mu_21 + re_mu_23 + re_mu_31 + re_mu_32

214 +

215 re_delta_d_1_ca + re_delta_d_1_cr + re_delta_d_1_cb + re_delta_d_1_cl +

216 re_delta_d_2_ca + re_delta_d_2_cr + re_delta_d_2_cb + re_delta_d_2_cl +
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217 re_delta_d_3_ca + re_delta_d_3_cr + re_delta_d_3_cb + re_delta_d_3_cl

218 +

219 re_delta_d_1_ac + re_delta_d_1_rc + re_delta_d_1_bc + re_delta_d_1_lc +

220 re_delta_d_2_ac + re_delta_d_2_rc + re_delta_d_2_bc + re_delta_d_2_lc +

221 re_delta_d_3_ac + re_delta_d_3_rc + re_delta_d_3_bc + re_delta_d_3_lc

222 +

223 re_delta_e_12_ca + re_delta_e_13_ca + re_delta_e_12_cr + re_delta_e_13_cr +

224 re_delta_e_12_cb + re_delta_e_13_cb + re_delta_e_12_cl + re_delta_e_13_cl

225 +

226 re_delta_e_21_ca + re_delta_e_23_ca + re_delta_e_21_cr + re_delta_e_23_cr +

227 re_delta_e_21_cb + re_delta_e_23_cb + re_delta_e_21_cl + re_delta_e_23_cl

228 +

229 re_delta_e_31_ca + re_delta_e_32_ca + re_delta_e_31_cr + re_delta_e_32_cr +

230 re_delta_e_31_cb + re_delta_e_32_cb + re_delta_e_31_cl + re_delta_e_32_cl

231 ) $

232

233 % lattice Laplacian

234

235 let s1a + s1b + s1l + s1r = lap_s1 + 4*s1;

236 let s2a + s2b + s2l + s2r = lap_s2 + 4*s2;

237 let s3a + s3b + s3l + s3r = lap_s3 + 4*s3;

238

239 % rate equations

240

241 fator beta , sigma , zeta , mu , delta_d , delta_e;

242

243 ds1_dt := coeffn(me_rhs , df(pi ,nn1), 1) $

244 ds2_dt := coeffn(me_rhs , df(pi ,nn2), 1) $

245 ds3_dt := coeffn(me_rhs , df(pi ,nn3), 1) $

246

247 % order m**3 below is really m**(-1) since "me_rhs" was multiplied by m**4

248 % and since N = m**2, the expressions occur at order 1/sqrt{N} as expected

249

250 write "ds1/dt =";

251 coeffn(ds1_dt , m, 3);

252 write "ds2/dt =";

253 coeffn(ds2_dt , m, 3);

254 write "ds3/dt =";

255 coeffn(ds3_dt , m, 3);

256

257 % check simplified version from the thesis

258 pde_s1 :=

259 beta*s1*(1 - s1 - s2 - s3)- sigma*s1*s3 + zeta*s1*(s2 - s3)

260 + mu*(s2 + s3 - 2*s1) + delta_d*lap_s1 +

261 (delta_d - delta_e) * (s1*( lap_s2 + lap_s3) - (s2 + s3)*lap_s1);

262 pde_s1_error := coeffn(ds1_dt , m, 3) - pde_s1; % should = 0
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A.2 Asymptotic Expansion

A.2.1 Variables

Mathematical symbols used in Chapter 2 and their corresponding representations

in the REDUCE notebook deriving the CGLE (2.69) via the multiscale asymptotic

expansion detailed in Section 2.3:

Symbol Plaintext

s1 s1

s∗ fp (fixed point)

s1 − s∗ sfp1

F1(s) f1

∂ts1 − F1(s) d1 (diffusive terms only)

∂ts1 f1 + d1

u1 u1

U
(1)
1 , U

(2)
1 , . . . uu11, uu12, ...

Z(1),Z∗(1) zz1,zzc1

A(1), A∗(1) aa1, aac1

x, X x0, x1 (since X = ǫ1x)

t, T t0, t2 (since T = ǫ2t)
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A.2.2 Comments

The following table contains comments on sections of the source code within

specific line numbers. The comments establish direct links to the derivation in

Section 2.3.3 and equations therein.

From To Comment

1 23 Defining variables ǫ, β, σ, ζ, µ, and ωH as real numbers.

29 38 Definition of the PDEs (2.26).

44 53 Transformation s → s− s∗.

55 59 Jacobian of the PDEs (2.26).

61 78 Eigenvalues and eigenvectors of the Jacobian.

80 97 Matrix for transformation to the Jordan normal form.

99 113 Transformation to the Jordan normal form.

115 128 Dependence of U(n) on t, T and X.

132 149 Multiscale expansion of coordinates x and t via (2.55).

151 153 Multiscale expansion of variable u via (2.58).

155 161 Hierarchy of simplified PDEs at different orders of ǫ.

165 179 Dependence of Z on t, T and X and A on T and X.

181 212 Moving to a complex plane via (2.59).

217 230 Solving at order O(ǫ).

232 253 Solving at order O(ǫ2).

255 260 Solving at order O(ǫ3).

262 266 Checking the expression for c1 from line 241.

268 273 Calculation of c in the CGLE (2.69).

277 279 Checking the simplified expression for c (2.70).
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A.2.3 Source

1 let repart(epsilon) = epsilon;

2 let impart(epsilon) = 0;

3 let abs(epsilon) = epsilon;

4

5 let repart(sigma) = sigma;

6 let impart(sigma) = 0;

7 let abs(sigma) = sigma;

8

9 let repart(beta) = beta;

10 let impart(beta) = 0;

11 let abs(beta) = beta;

12

13 let repart(zeta) = zeta;

14 let impart(zeta) = 0;

15 let abs(zeta) = zeta;

16

17 let repart(mu) = mu;

18 let impart(mu) = 0;

19 let abs(mu) = mu;

20

21 let repart(omega_hopf) = omega_hopf;

22 let impart(omega_hopf) = 0;

23 let abs(omega_hopf) = omega_hopf;

24

25 depend s1 , x0 $

26 depend s2 , x0 $

27 depend s3 , x0 $

28

29 f1 := beta*s1*(1-s1 -s2 -s3) - sigma*s3*s1 - zeta*s3*s1 + zeta*s1*s2 + mu*(s2 +

s3 - 2*s1) $

30 f2 := beta*s2*(1-s1 -s2 -s3) - sigma*s1*s2 - zeta*s1*s2 + zeta*s2*s3 + mu*(s3 +

s1 - 2*s2) $

31 f3 := beta*s3*(1-s1 -s2 -s3) - sigma*s2*s3 - zeta*s2*s3 + zeta*s3*s1 + mu*(s1 +

s2 - 2*s3) $

32

33 d1 := delta_d*df(s1 , x0 ,2) + (delta_e - delta_d)*((s2 + s3)*df(s1 , x0 ,2) -

s1*df(s2 + s3 , x0 ,2)) $

34 d2 := delta_d*df(s2 , x0 ,2) + (delta_e - delta_d)*((s3 + s1)*df(s2 , x0 ,2) -

s2*df(s3 + s1 , x0 ,2)) $

35 d3 := delta_d*df(s3 , x0 ,2) + (delta_e - delta_d)*((s1 + s2)*df(s3 , x0 ,2) -

s3*df(s1 + s2 , x0 ,2)) $

36

37 f := tp mat((f1 , f2 , f3))$

38 d := tp mat((d1 , d2 , d3))$

39

40 depend sfp1 , x0 $

41 depend sfp2 , x0 $

42 depend sfp3 , x0 $

43
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44 sfp := tp mat((sfp1 ,sfp2 ,sfp3))$

45 fp := beta / (3* beta + sigma);

46 for n:=1:3 do

47 write "fixed point check: 0 == ", sub({s1=fp , s2=fp , s3=fp}, f(n,1));

48

49 sub_fp := {s1=sfp1+fp , s2=sfp2+fp , s3=sfp3+fp} $

50 new_fp := {sfp1=0, sfp2=0, sfp3 =0} $

51

52 f := sub(sub_fp , f) $

53 d := sub(sub_fp , d) $

54

55 matrix jac(3,3);

56 for n:=1:3 do

57 for m:=1:3 do

58 jac(n,m) := df(f(n,1), sfp(m,1));

59 jac := sub(new_fp , jac) $

60

61 on fullroots$

62 eigSol := mateigen(jac , ev) $

63

64 charpoly1 := part(eigSol , 1,1) $

65 charpoly2 := part(eigSol , 2,1) $

66

67 eSol1 := solve(charpoly1 =0, ev) $

68 eSol2 := solve(charpoly2 =0, ev) $

69

70 let abs(sigma + 3*beta) = sigma + 3*beta;

71 let abs(sigma + 2*zeta) = sigma + 2*zeta;

72

73 eVal1 := sub(part(eSol2 ,1), ev) $

74 eVal2 := sub(part(eSol2 ,2), ev) $

75 eVal3 := sub( eSol1 , ev) $

76 eVec1 := sub({ arbcomplex (2)=1, ev=eVal1}, part(eigSol , 2,3)) $

77 eVec2 := sub({ arbcomplex (2)=1, ev=eVal2}, part(eigSol , 2,3)) $

78 eVec3 := sub({ arbcomplex (1)=1, ev=eVal3}, part(eigSol , 1,3)) $

79

80 for k:=1:3 do <<

81 eVec1(k,1) := repart(eVec1(k,1));

82 eVec2(k,1) := impart(eVec2(k,1));

83 >>;

84

85 norm1 := tp(eVec1)*eVec1 $

86 norm2 := tp(eVec2)*eVec2 $

87 norm3 := tp(eVec3)*eVec3 $

88 norma := tp mat((sqrt(norm1 (1,1)), sqrt(norm2 (1,1)), sqrt(norm3 (1,1)))) $

89

90 matrix sep(3,3) $

91 for k:=1:3 do <<

92 sep(1,k) := eVec1(k,1) / norma (1,1) $

93 sep(2,k) := eVec2(k,1) / norma (2,1) $

94 sep(3,k) := eVec3(k,1) / norma (3,1) $
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95 >>;

96 sep := sep; % to display

97 transpose_sep_times_sep := tp(sep) * sep; % should = identity matrix

98

99 depend u1 , x0 ,x1 , t0 ,t1 $

100 depend u2 , x0 ,x1 , t0 ,t1 $

101 depend u3 , x0 ,x1 , t0 ,t1 $

102

103 u := tp mat((u1 , u2 , u3)) $

104 sfp_to_u_mat := 1/sep * u $

105 sfp_to_u_sub := {sfp1=sfp_to_u_mat (1,1), sfp2=sfp_to_u_mat (2,1),

sfp3=sfp_to_u_mat (3,1)} $

106

107 mu_hopf := beta*sigma / 6 / (sigma + 3*beta);

108 let mu = mu_hopf - epsilon **2 / 3;

109 let zeta = omega_hopf * (sigma + 3*beta) / sqrt (3) / beta - sigma / 2;

110

111 jack := sep * jac / sep;

112 f := sep * sub(sfp_to_u_sub , f) $

113 d := sep * sub(sfp_to_u_sub , d) $

114

115 depend uu11 , x1 , t0 ,t2 $

116 depend uu12 , x1 , t0 ,t2 $

117 depend uu13 , x1 , t0 ,t2 $

118 depend uu14 , x1 , t0 ,t2 $

119

120 depend uu21 , x1 , t0 ,t2 $

121 depend uu22 , x1 , t0 ,t2 $

122 depend uu23 , x1 , t0 ,t2 $

123 depend uu24 , x1 , t0 ,t2 $

124

125 depend uu31 , x1 , t0 ,t2 $

126 depend uu32 , x1 , t0 ,t2 $

127 depend uu33 , x1 , t0 ,t2 $

128 depend uu34 , x1 , t0 ,t2 $

129

130 let epsilon **5 = 0 $

131

132 dx_sub := {

133 df(u1 , x0 ,2) = epsilon **0 * ( df(u1 , x0 ,x0))

134 + epsilon **1 * (2*df(u1 , x0 ,x1))

135 + epsilon **2 * ( df(u1 , x1 ,x1)),

136 df(u2 , x0 ,2) = epsilon **0 * ( df(u2 , x0 ,x0))

137 + epsilon **1 * (2*df(u2 , x0 ,x1))

138 + epsilon **2 * ( df(u2 , x1 ,x1)),

139 df(u3 , x0 ,2) = epsilon **0 * ( df(u3 , x0 ,x0))

140 + epsilon **1 * (2*df(u3 , x0 ,x1))

141 + epsilon **2 * ( df(u3 , x1 ,x1))

142 } $

143 d := sub(dx_sub , d) $

144
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145 dt := tp mat ((

146 df(u1 , t0) + epsilon **2 * df(u1 , t2),

147 df(u2 , t0) + epsilon **2 * df(u2 , t2),

148 df(u3 , t0) + epsilon **2 * df(u3 , t2)

149 )) $

150

151 let u1 = epsilon * uu11 + epsilon **2 * uu12 + epsilon **3 * uu13 + epsilon **4 *

uu14 $

152 let u2 = epsilon * uu21 + epsilon **2 * uu22 + epsilon **3 * uu23 + epsilon **4 *

uu24 $

153 let u3 = epsilon * uu31 + epsilon **2 * uu32 + epsilon **3 * uu33 + epsilon **4 *

uu34 $

154

155 fd1_eps := coeff(f(1,1) + d(1,1), epsilon) $

156 fd2_eps := coeff(f(2,1) + d(2,1), epsilon) $

157 fd3_eps := coeff(f(3,1) + d(3,1), epsilon) $

158

159 dt1_eps := coeff(dt(1,1), epsilon) $

160 dt2_eps := coeff(dt(2,1), epsilon) $

161 dt3_eps := coeff(dt(3,1), epsilon) $

162

163 on complex $

164

165 depend zz1 , x1 , t0 ,t2 $

166 depend zz2 , x1 , t0 ,t2 $

167 depend zz3 , x1 , t0 ,t2 $

168 depend zz4 , x1 , t0 ,t2 $

169

170 depend zzc1 , x1 , t0 ,t2 $

171 depend zzc2 , x1 , t0 ,t2 $

172 depend zzc3 , x1 , t0 ,t2 $

173 depend zzc4 , x1 , t0 ,t2 $

174

175 depend aa1 , x1 , t2 $

176 depend aa2 , x1 , t2 $

177

178 depend aac1 , x1 , t2 $

179 depend aac2 , x1 , t2 $

180

181 matrix t_eps (5,1) $

182 matrix z_eps (5,1) $

183 matrix w_eps (5,1) $

184

185 for k:=1:4 do

186 <<

187 t_eps(k,1) := part(dt1_eps ,k) + i * part(dt2_eps ,k) $

188 z_eps(k,1) := part(fd1_eps ,k) + i * part(fd2_eps ,k) $

189 w_eps(k,1) := part(fd3_eps ,k) $

190 >>;

191

192 on div $
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193

194 fator zz1 , zz2 , zz3 , zz4;

195 fator zzc1 , zzc2 , zzc3 , zzc4;

196 fator uu31 , uu32 , uu33 , uu34;

197

198 fator df(zz1 , x1 ,2), df(zz2 , x1 ,2), df(zz3 , x1 ,2), df(zz4 , x1 ,2);

199 fator df(uu32 , x1 ,2);

200

201 fator aa1 , aac1;

202 fator exp(i*omega_hopf*t0);

203

204 let uu11 = (zz1 + zzc1) / 2 $

205 let uu12 = (zz2 + zzc2) / 2 $

206 let uu13 = (zz3 + zzc3) / 2 $

207 let uu14 = (zz4 + zzc4) / 2 $

208

209 let uu21 = (zz1 - zzc1) / (2*i) $

210 let uu22 = (zz2 - zzc2) / (2*i) $

211 let uu23 = (zz3 - zzc3) / (2*i) $

212 let uu24 = (zz4 - zzc4) / (2*i) $

213

214 % introduce delta = (3* beta*delta_e + sigma*delta_d) / (sigma + 3*beta)

215 let delta_e = (delta *( sigma + 3*beta) - sigma*delta_d) / 3 / beta $

216

217 write "### order O(epsilon **1):";

218 write t_eps (2,1), " = ", z_eps (2,1);

219 write part(dt3_eps , 2), " = ", w_eps (2,1);

220

221 zz1sol := aa1*exp( i*omega_hopf*t0);

222 zzc1sol := aac1*exp(-i*omega_hopf*t0);

223 uu31sol := 0 $

224

225 write "### O(epsilon **1) solution check: 0 == ", sub({zz1 = zz1sol}, t_eps (2,1)

- z_eps (2,1));

226 write "### O(epsilon **1) solution check: 0 == ", sub({uu31 = uu31sol},

part(dt3_eps , 2) - w_eps (2,1));

227

228 let uu31 = uu31sol $

229 let df(zz1 ,x0) = 0 $

230 let df(zzc1 ,x0) = 0 $

231

232 write "### order O(epsilon **2):";

233 write t_eps (3,1), " = ", z_eps (3,1);

234 write part(dt3_eps ,3), " = ", w_eps (3,1);

235

236 zz2sol := aa2 * exp(+i*omega_hopf*t0) + (+i* c1 ) / (3* omega_hopf) *

(zzc1sol **2);

237 zzc2sol := aac2 * exp(-i*omega_hopf*t0) + (-i*conj(c1)) / (3* omega_hopf) *

(zz1sol **2);

238 uu32sol := m1 * zzc1*zz1 / beta;

239

99



A. COMPUTER ALGEBRA NOTEBOOKS

240 m1 := sigma / 2 / sqrt (3);

241 c1 := (sigma / 2 - i*omega_hopf *( sigma/beta + 3)) / sqrt (6); % = coefficient of

zzc1 **2

242

243 write "### O(epsilon **2) solution check: 0 == ",

244 sub({zz1=zz1sol , zzc1=zzc1sol}, sub({zz2=zz2sol}, t_eps (3,1) -

z_eps (3,1))),

245 " <- secularity condition!";

246 write "### O(epsilon **2) solution check: 0 == ",

247 sub({zz1=zz1sol , zzc1=zzc1sol}, sub({uu32=uu32sol}, part(dt3_eps , 3) -

w_eps (3,1)));

248

249 let df(uu32 , x0) = 0 $

250 let df(uu32 , t0) = 0 $

251

252 let df(zz2 , x0) = 0 $

253 let df(zzc2 , x0) = 0 $

254

255 write "### order O(epsilon **3):";

256 write t_eps (4,1), " = ", z_eps (4,1);

257 write part(dt3_eps , 4), " = ", w_eps (4,1);

258

259 write "### (CGLE should be here)*exp(*i*omega_hopf*t0) :";

260 third_order := sub({zz1=zz1sol , zzc1=zzc1sol}, sub({zz2=zz2sol , zzc2=zzc2sol ,

uu32=uu32sol}, t_eps (4,1) - z_eps (4,1)));

261

262 check_c1_zzc1zzc2 := coeffn(coeffn(z_eps (4,1), zzc1 ,1), zzc2 ,1) - 2*c1;

263 check_c1_zz1uu32 := coeffn(coeffn(z_eps (4,1), zz1 ,1), uu32 ,1) - (-sqrt (2)*c1 -

sqrt (3)*beta);

264

265 cgl_c := 2*i*conj(c1)*c1 / 3 / omega_hopf + (sqrt (2)*c1 + sqrt (3)*beta)*m1 /

beta;

266 check_c1_aac1aa1aa1 := coeffn(coeffn(third_order , aa1 , 2), aac1 ,

1)/exp(i*omega_hopf*t0) - cgl_c;

267

268 cgl_c_re := repart(cgl_c);

269 cgl_c_im := impart(cgl_c);

270

271 lear zeta; % avoid cyclic substitution: zeta -> omega_hopf -> zeta -> ...

272 omega_hopf := sqrt (3)*beta*( sigma + 2*zeta) / 2 / (3* beta + sigma);

273 cgl_c := cgl_c_im / cgl_c_re;

274

275 off exp;

276

277 cgl_c_nice_num := 12* zeta *(6* beta - sigma)*( sigma + zeta) + sigma **2*(24* beta -

sigma);

278 cgl_c_nice_den := 3*sqrt (3) * sigma * (6* beta + sigma) * (sigma + 2*zeta);

279 cgl_c_nice_err := cgl_c_nice_num / cgl_c_nice_den - cgl_c; % should = 0
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A.3 Eckhaus Criterion

A.3.1 Variables

Mathematical symbols used in Chapter 2 and their corresponding representations

in the REDUCE notebook deriving the Eckhaus criterion (2.83) via the perturbed

plane wave Ansatz (2.77) detailed in Section 2.3.5, see also Table A.2.1:

Symbol Plaintext

A aa

R rr

ǫ′ epsilonp

ρ̂, ϕ̂ rho hat, phi hat

A.3.2 Comments

The following table contains comments on sections of the source code within

specific line numbers. The comments establish direct links to the derivation in

Section 2.3.5 and equations therein.

From To Comment

1 5 Defining operators for exponentials of complex numbers.

7 35 Defining variables as real.

39 49 Applying unperturbed plane wave Ansatz (2.71).

76 90 Applying the perturbed Ansatz (2.77).

92 97 Definition of perturbations (2.78) and (2.79).

101 106 Deriving the eigenvalue problem (2.81).

108 120 Solving the eigenvalue problem (2.81).

122 128 Taylor expansion of the growth rate g (2.82).
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A.3.3 Source

1 operator expi;

2 let expi (0) = 1;

3 for all arg1 ,arg2 let expi(arg1)*expi(arg2) = expi(arg1 + arg2);

4 for all arg ,amp let conj(amp*expi(arg)) = conj(amp)*expi(-arg);

5 for all arg ,dfv let df(expi(arg), dfv) = i*df(arg , dfv)*expi(arg);

6

7 let repart(rr) = rr;

8 let impart(rr) = 0;

9

10 let repart(c) = c;

11 let impart(c) = 0;

12

13 let repart(delta) = delta;

14 let impart(delta) = 0;

15

16 let repart(q) = q;

17 let impart(q) = 0;

18

19 let repart(k) = k;

20 let impart(k) = 0;

21

22 let repart(omega) = omega;

23 let impart(omega) = 0;

24

25 let repart(rho) = rho;

26 let impart(rho) = 0;

27

28 let repart(phi) = phi;

29 let impart(phi) = 0;

30

31 let repart(x0) = x0;

32 let impart(x0) = 0;

33

34 let repart(t0) = t0;

35 let impart(t0) = 0;

36

37 off exp;

38

39 aa := rr*expi(q*x0 + omega*t0) $

40 cgle := delta*df(aa , x0 ,x0) + aa - (1 + i*c)*aa*conj(aa)*aa - df(aa , t0) $

41 cgle_div := cgle / aa $

42

43 cgle_div_re := repart(cgle_div) $

44 cgle_div_im := impart(cgle_div) $

45

46 rr_sol := solve(cgle_div_re =0, rr) $

47 rr_sol := sub(part(rr_sol , 1), rr);

48 omega_sol := sub(solve(cgle_div_im =0, omega), omega) $

49 omega_sol := sub({rr=rr_sol},omega_sol);
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50

51 depend phi , x0 , t0;

52 depend rho , x0 , t0;

53

54 let repart(df(rho , t0)) = df(rho , t0);

55 let impart(df(rho , t0)) = 0;

56

57 let repart(df(rho , x0)) = df(rho , x0);

58 let impart(df(rho , x0)) = 0;

59

60 let repart(df(rho , x0 ,x0)) = df(rho , x0 ,x0);

61 let impart(df(rho , x0 ,x0)) = 0;

62

63 let repart(df(phi , t0)) = df(phi , t0);

64 let impart(df(phi , t0)) = 0;

65

66 let repart(df(phi , x0)) = df(phi , x0);

67 let impart(df(phi , x0)) = 0;

68

69 let repart(df(phi , x0 ,x0)) = df(phi , x0 ,x0);

70 let impart(df(phi , x0 ,x0)) = 0;

71

72 let repart(epsilonp) = epsilonp;

73 let impart(epsilonp) = 0;

74 let epsilonp **2 = 0;

75

76 aa := rr*(1 + epsilonp*rho)*expi(q*x0 + omega*t0 + epsilonp*phi) $

77 cgle := delta*df(aa , x0 ,x0) + aa - (1 + i*c)*aa*conj(aa)*aa - df(aa , t0) $

78 cgle_div := cgle / rr / expi(q*x0 + omega*t0 + epsilonp*phi) $

79

80 cgle_div_re := repart(cgle_div) $

81 cgle_div_im := impart(cgle_div) $

82

83 let q**2 = (1 - rr**2) / delta;

84 rr_omega_wave := {omega=omega_sol} $

85

86 cgle_div_re := sub(rr_omega_wave , repart(cgle_div)) $

87 cgle_div_im := sub(rr_omega_wave , impart(cgle_div)) $

88

89 df_rho_sub := sub(solve(cgle_div_re =0, df(rho , t0)), df(rho , t0)) $

90 df_phi_sub := sub(solve(cgle_div_im =0, df(phi , t0)), df(phi , t0)) $

91

92 rho_phi_wave := {

93 phi = phi_hat*exp(g*t0)*expi(k*x0),

94 rho = rho_hat*exp(g*t0)*expi(k*x0)

95 } $

96 df_rho_sub := sub(rho_phi_wave , df_rho_sub) / exp(g*t0) / expi(k*x0) $

97 df_phi_sub := sub(rho_phi_wave , df_phi_sub) / exp(g*t0) / expi(k*x0) $

98

99 on exp; % needed by coeff ()

100
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101 matrix rho_phi_mat (2,2);

102 rho_phi_mat (1,1) := coeffn(df_rho_sub , rho_hat , 1) $

103 rho_phi_mat (1,2) := coeffn(df_rho_sub , phi_hat , 1) $

104 rho_phi_mat (2,1) := coeffn(df_phi_sub , rho_hat , 1) $

105 rho_phi_mat (2,2) := coeffn(df_phi_sub , phi_hat , 1) $

106 write "rho_phi_mat := ", rho_phi_mat;

107

108 eig_sol := mateigen(rho_phi_mat , g) $

109

110 charpoly := part(eig_sol , 1, 1) $

111 charpoly_check := (rho_phi_mat (1, 1) - g)*( rho_phi_mat (2, 2) - g)

112 - (rho_phi_mat (1, 2) )*( rho_phi_mat (2, 1) ) $

113 charpoly_err := charpoly_check - charpoly;

114

115 eig_val1 := sub(part(solve(charpoly=0, g), 1), g) $

116 eig_val2 := sub(part(solve(charpoly=0, g), 2), g) $

117

118 eig_vec := part(eig_sol , 1, 3) $

119 eig_vec1 := sub({g=eig_val1 , arbcomplex (1)=1}, eig_vec) $

120 eig_vec2 := sub({g=eig_val2 , arbcomplex (1)=1}, eig_vec) $

121

122 load_package "taylor";

123

124 eig_vec1 := taylor(eig_vec1 , k, 0, 1);

125 eig_vec2 := taylor(eig_vec2 , k, 0, 1);

126

127 eig_val1 := taylor(eig_val1 , k, 0, 2);

128 eig_val2 := taylor(eig_val2 , k, 0, 2);
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A.4 Fixed Point Shift

1 % lin : linear terms

2 % nlt : nonlinear terms

3

4 depend s1 , x $

5 depend s2 , x $

6 depend s3 , x $

7 depend ss1 , x $

8 depend ss2 , x $

9 depend ss3 , x $

10

11 fator s1 , s2 , s3 $

12 fator ss1 , ss2 , ss3 $

13 fator df(s1 , x,2), df(s2 , x,2), df(s3 , x,2) $

14 fator df(ss1 ,x,2), df(ss2 ,x,2), df(ss3 ,x,2) $

15

16 f1 := beta*s1*(1 - s1 - s2 - s3) - sigma*s1*s3 + zeta*(s1*s2 - s1*s3)

17 + mu*(s2 + s3 - 2*s1) $

18 d1 := delta_d*df(s1 ,x,2)

19 + (delta_d - delta_e) * (s1*df(s2 + s3 ,x,2) - (s2 + s3)*df(s1 ,x,2)) $

20

21 let s1 = ss1 + fp $

22 let s2 = ss2 + fp $

23 let s3 = ss3 + fp $

24

25 d1_lin := coeffn(d1 , df(ss1 ,x,2), 1) $

26 d1_lin := coeffn(d1_lin , ss2 , 0) $

27 d1_lin := coeffn(d1_lin , ss3 , 0);

28 d1_nlt := d1 - d1_lin * df(ss1 ,x,2);

29

30 f1_lin := coeffn(f1 , ss1 , 1) $

31 f1_lin := coeffn(f1_lin , ss2 , 0) $

32 f1_lin := coeffn(f1_lin , ss3 , 0);

33 f1_lin_simplified := (1 - 4*fp)*beta - fp*sigma - 2*mu $

34

35 f1_nlt := f1 - f1_lin*ss1;

36 f1_nlt_simplified := fp*(beta - fp*(3* beta + sigma))

37 + (mu - fp*(beta - zeta)) * ss2

38 + (mu - fp*(beta + sigma + zeta)) * ss3

39 - (beta ) * ss1 * ss1

40 - (beta - zeta) * ss1 * ss2

41 - (beta + sigma + zeta) * ss1 * ss3 $

42

43 % checks , all err’s should = 0

44 err1 := f1 - f1_lin*ss1 - f1_nlt;

45 err2 := f1_lin - f1_lin_simplified;

46 err3 := f1_nlt - f1_nlt_simplified;
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