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Summary  

Multiple myeloma (MM) is characterised by destructive bone disease, mediated by an 

increase in osteoclastic bone resorption and impaired osteoblastic bone formation (Boise, 

Kaufman et al. 2014) The canonical Wingless-type (Wnt) and bone morphogenic protein 

(BMP) signalling pathways have both been implicated in the osteoblastogenesis (Chen, 

Deng et al. 2012, Kim, Liu et al. 2013). Data from our group in Sheffield (unpublished) 

show that SOSTDC1 is upregulated in the bone marrow (BM) of mice with osteolytic 

bone disease associated with myeloma. It is unclear whether SOSTDC1 regulates 

signalling in bone directly and which cells in the BM express SOSTDC1. We hypothesise 

that SOSTDC1 disrupts Wnt and BMP signalling in bone and is expressed by both 

myeloma cells (MC) and osteoblast (OB) progenitors as a result of direct MC/OB contact. 

In the first part of the work presented in this thesis, I characterised the murine OB 

progenitor model in-vitro establishing that these cells differentiated exponentially 

between day 8 and 15 of culture. I then assessed the effect of SOSTDC1 in OB progenitor 

differentiation in the presence of activated BMP and Wnt signalling. I showed that 

Wnt3a, BMP2 and BMP7 stimulated OB progenitor differentiation and downstream 

signalling of the Wnt and BMP pathways. Recombinant human SOSTDC1 (rhSOSTDC1) 

protein reduced the Wnt and BMP-induced differentiation/signalling in OB progenitors 

on a protein and gene level. This effect was observed in early differentiation, indicating 

that the inhibitory effect of SOSTDC1 on Wnt/BMP-induced signalling is specific to 

osteoprogenitors rather than mature OB. I also showed rhSOSTDC1 had the highest 

affinity for BMP7 out of the BMP2, BMP7 and Wnt-receptor LRP-6, interactions tested.  

In the second part, I assessed whether OB progenitors and 5TMM myeloma cells 

produced SOSTDC1 and sought to determine the distribution of SOSTDC1 in MC/OB 

progenitor cultures and co-cultures. SOSTDC1 was detected in MC but not OB 

progenitors and that SOSTDC1 was upregulated in both myeloma and OB progenitors 

following direct OB/MC contact in co-cultures. SOSTDC1 protein was also detected in-

vivo in myeloma-infiltrated bone sections. Blocking SOSTDC1 in-vitro using an antibody 

specific to SOSTDC1 reversed the suppression of OB progenitor differentiation. Taken 

together from these results, I conclude that targeting SOSTDC1 may reduce the osteolytic 

bone disease observed in MM. 
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Chapter 1 - Introduction 
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1.1 Multiple Myeloma 

 

Multiple Myeloma (MM) is a B-cell malignancy characterised by clonal proliferation of 

plasma cells (Egan, Shi et al. 2012). MM accounts for more than 10% of haematological 

cancers and accounts for approximately 1% of all cancer-related deaths in Western 

countries (Kyle and Rajkumar 2008). Myeloma is the 17th most common cancer in the 

UK (2011), accounting for around 1% of all new cases. In males, it is the 15th most 

common cancer (2% of the male total) and the 17th in females (1%). The latest statistics 

showed that in 201,4,792 new cases of myeloma were diagnosed in the UK. From this 

total 56% were men and 44% were women, resulting in a male:female ratio of 12:10 for 

the incidence of myeloma (Cancer Research UK 2014). In the United States, it is 

expected that by the end of 2104 over 24 000 new cases of MM will be diagnosed 

resulting in approximately half of these individuals to die (Siegel, Ma et al. 2014).  

 

In most cases, MM develops from a Monoclonal Gammopathy of Undetermined 

Significance (MGUS), a premalignant stage of clonal plasma cell proliferation displaying 

no obvious symptoms. Over 3% of the over 50 population will carry MGUS and 1% will 

develop myeloma or other related malignancies. Smouldering Multiple Myeloma (SMM) 

is another type of this disorder found in some patients who present with clinically 

recognisable symptoms of MM accompanying a more advanced premalignant stage 

(Mahindra, Hideshima et al. 2010).  

 

The acronym CRAB summarizes the typical clinical manifestations of MM: 

hypercalcemia, renal insufficiency, anaemia, and bone lesions (International Myeloma 

Working 2003). The CRAB features of MM can be used to distinguish between active, 

symptomatic MM and its precursor states MGUS and smouldering myeloma. The 

distinction is relevant not only for classification and diagnosis, but also for therapy: 

CRAB symptoms are critical for deciding when to initiate antineoplastic therapy, as 

asymptomatic cases of MM do not obtain survival benefit from treatment (Kyle and 

Rajkumar 2007). Beyond the usual CRAB symptoms, patients with MM can present with 

other relevant clinical manifestations including hyperviscosity syndrome, neurologic 

impairment from spinal cord compression, nephrotic syndrome or other signs of 

amyloidosis, cryoglobulinemia, recurrent infections, extramedullary involvement of 

various organs, and other complications. MM patients can be diagnosed only by chance, 
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in asymptomatic patients, often when tested for annual examination by primary care 

physician (Talamo, Farooq et al. 2010).. 

 

MM is the most common cancer to involve the skeleton with 80–90% of patients 

developing bone lesions during the course of the disease (Hameed, Brady et al. 2014). 

The bone lesions in myeloma are purely osteolytic and are associated with severe and 

debilitating bone pain, pathologic fractures, hypercalcemia, and spinal cord compression, 

as well as increased mortality (Terpos, Berenson et al. 2010). It is estimated that 20% of 

MM patients present with pathologic fractures, 40% develop a fracture in the first year 

after diagnosis, and up to 60% develop pathologic fractures over the course of their 

disease. Additionally, patients with pathologic fractures have a 20% increase in mortality 

when compared to patients without pathologic fractures (Saad, Lipton et al. 2007). The 

bone destructive lesions can be extensive and severe and bone pain, frequently centred on 

the chest or back and exacerbated by movement, is present in more than two-thirds of 

patients at diagnosis (Sezer 2009).  

 

The increasing evidence highlighting the crucial role of tumour cells and the bone 

microenvironment in the pathogenesis of myeloma has created novel targets for the 

therapy of myeloma bone disease (Fowler, Edwards et al. 2011). The tightly controlled 

physiological process of bone metabolism can be disrupted by various genetic and 

environmental factors. These include factors related to the onset of age, menopause 

hormone related changes, drugs, mechanical loading and secondary diseases leading to 

bone disorders (Feng and McDonald 2010). Disruptions in the interaction and regulation 

of the various osteotropic cytokines and hormones involved in maintaining the bone 

formation/resorption balance can result in irregular bone turnover cycles (Rodan and 

Martin 2000).  

 

Treatment of myeloma bone disease requires management of both the underlying 

malignancy and the increased bone destruction and suppressed new bone formation. Until 

the 1990s, there were few advances in the treatment of MM the disease and a result 

myeloma was deemed incurable with a median survival of 2-3 years. The introduction of 

high-dose melphalan and autologous bone marrow (BM) transplantation towards the end 

of the 1990’s was a major breakthrough in MM therapy and saw improvements in patient 

survival (Attal, Harousseau et al. 1996). A decade later saw the introduction of highly 
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active agents including Thalidomide and bortezomib did not target DNA damage and 

subsequently, immunodulatory drugs (IMiDs) and proteasome inhibitors. The 

combinations of these novel agents resulted in positive responses to treatment in the 

majority of myeloma patients and are now routinely used for the treatment of newly 

diagnosed myeloma followed by stem cell transplant (Lonial and Boise 2013). Bone 

disease is managed with a combination of bisphosphonate therapy, localized radiation, 

(for control of bone pain, treatment of impending fractures or solitary plasmacytomas) 

and kyphoplasty, vertebroplasty, or surgery (Hameed, Brady et al. 2014). Taken together, 

the overall survival of myeloma patients has improved with 20-30% of patients surviving 

for >10 years (Boise, Kaufman et al. 2014).  

 

Bisphosphonates, potent inhibitors of bone resorption, currently remain the standard 

therapy of MM-related bone disease. Bisphosphonates slow the progression of lytic bone 

disease, preventing the development of new pathologic fractures and improving bone 

pain. (Zhang, Chang et al. 2012, Terpos, Roodman et al. 2013). There is also some in-

vitro evidence to suggest that bisphosphonates have a direct anti-myeloma effect (Avcu, 

Ural et al. 2005). However, there are now thought to be complications associated with 

bisphosphonate therapy associated with osteonecrosis of the jaw (ONJ), with reports of 

1.6–11% of myeloma patients developing ONJ  (Van den Wyngaert, Huizing et al. 2007). 

Importantly, bisphosphonates cannot restore bone formation and lytic lesions do not heal 

even in patients in prolonged remission. These evidence highlight the need for the 

development of anabolic agents, which could potentially reverse osteolytic bone disease 

and reverse the loss of skeletal integrity at sites of previous bone destruction in MM 

patients (Hameed, Brady et al. 2014).  

 

1.2 Bone remodelling  

 

The skeleton is a sophisticated metabolically active structure that functions to protect 

major organs, supports locomotion and stature and is involved in maintaining plasma 

calcium homeostasis (Crockett, Rogers et al. 2011). Bone is composed of various 

components including minerals (most of which are calcium), phosphates, proteins and 

bone cells (Strewler 2001). The cells of the bone are osteoclasts (OC), osteoblasts (OB) 

and osteocytes. OC are giant multinucleated cells often containing between two and ten 
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nuclei and are responsible for the removal of bone through the process of bone resorption. 

These cells are mobile and morphologically structured to maintain optimal contact with 

the bone’s mineralised surface. OC precursors have a haemopoietic origin and are derived 

from monocyte-macrophage lineage. OC progenitor cells are recruited from 

haematopoietic compartments and proliferate and differentiate into mature OC cells 

(Vinholes, Coleman et al. 1996). 

 

OB cells are responsible for bone formation and normally attach to the surface of bone in 

a monolayer (Vinholes, Coleman et al. 1996). OB cells are derived from mesenchymal 

stem cells (MSC), which undergo differentiation to become pre-osteoblasts. The pre-

osteoblasts further differentiate to become matrix synthesising OB (Vinholes, Coleman et 

al. 1996). OB are located on a narrow area of newly produced organic matrix known as an 

osteoid seam and regulate formation of un-calcified matrix (osteoid). Osteoid mainly 

comprises type I collagen, and subsequently mineralises to become bone (Karsenty, 

Kronenberg et al. 2009). The basophilic cytoplasm of OB cells produce alkaline 

phosphatase (ALP), an enzyme involved in bone mineralization, and hormones that target 

the bone itself (Ducy, Schinke et al. 2000). In addition, OB produce both type I collagens 

and non-collagenous proteins (Vinholes, Coleman et al. 1996) including osteopontin, 

osteonectin, osteocalcin, fibronectin, decorin, bone sialoprotein (BSP) and traces of others 

(Strewler 2001). Following active bone formation, some OB cells become embedded 

within the bone matrix where they differentiate into osteocytes.  

 

In order to maintain its multitude of functions during vertebrate life, bone is under 

continual adaptation. These adaptations areregulated through the two distinct mechanisms 

of bone modelling and remodelling. Bone modelling involves the coordinated yet 

independent processes of bone formation and bone removal at different anatomical 

locations (Raggatt and Partridge 2010). Once bone becomes mature, it is continuously 

renewed to ensure microfractures are repaired and calcium homeostasis is maintained 

though the remodelling process. The tightly regulated process of remodelling involves the 

removal and replacement of measurable bone packets (bone structural units) at the same 

anatomical location consistent with an activation, resorption and formation order of 

activity (Robling, Castillo et al. 2006). The process of bone remodelling involves 

resorption by OC and is followed by matrix formation via OB activity (Figure 1.1) (Feng 

and McDonald 2010). The molecular mechanisms and cellular activity involved in 
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remodelling are closely coordinated which ensures that the bone resorption-formation 

sequence is carried out at a mutual location thus sustaining bone mass (Raggatt and 

Partridge 2010).  
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Figure 1.1- Bone remodelling: Mature osteoclasts (OC) are recruited to the bone target 

site. Mature OC originates from haemopoietic precursor cells, which differentiate into 

pre-OC and then further differentiate into mature OC. Mature OC remove bone during 

bone resorption phase of bone remodelling. Once the resorption process is complete, OC 

undergo apoptosis and mature osteoblast (OB) cells are recruited to the site. Mature OB 

originate from Mesenchymal Stem Cells (MSC), that undergo differentiation to become 

pre-osteoblasts, and subsequently matrix synthesising OB responsible for bone formation 

(Vinholes, Coleman et al. 1996). 
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1.2.1 Regulation of bone resorption  

 

The remodelling process occurs in different parts and at different times of the skeleton 

asynchronously, highlighting the importance of locally generated and regulated factors in 

ensuring effective communication mechanisms between the cells involved (Henriksen, 

Karsdal et al. 2014). Osteoclastogenesis is predominantly regulated by the expression of 

cytokines which are produced by MSC and their derivative OB in response to pro-

resorption stimuli, and regulate OC formation, activation, and function (Vaananen, Zhao 

et al. 2000). The role of  the cytokine macrophage colony-stimulating factor (M-CSF) in 

osteoclastic activity has been demonstrated using mice deficient in M-CSF, which 

develop osteopetrosis characterised by significant reduction in OC number (Tanaka, 

Takahashi et al. 1993). M-CSF functions through interaction with its receptor colony 

stimulating factor 1 (c-fms) located on the OC. The c-fms is a transmembrane tyrosine 

kinase receptor that activates tyrosine kinase (Src). Both c-fms and Src are required for 

osteoclastogenesis and the differentiation of OC precursors (Aeschlimann and Evans 

2004).  

 

The recognition of the RANKL-RANK/OPG system in bone biology first brought to light 

in 1997 in a paper by Simonet et al (Simonet, Lacey et al. 1997). Receptor activator of 

nuclear factor-kappa B (RANK) also referred to as TRANCE Receptor, is a Type I 

membrane protein expressed on OC, which is activated upon adhesion to its ligand 

receptor activator of nuclear factor-kappa B ligand (RANKL). RANKL is a member of 

Tumour Necrosis Factor (TNF) family and is a key cytokine that operates as a system to 

maintain the bone resorption and bone formation cycle, ultimately sustaining skeletal 

integrity. RANKL couples to the soluble decoy receptor osteoprotegerin (OPG) expressed 

on OB progenitor cells and MSC. OPG competes with RANK for RANKL binding.  

RANKL-RANK interaction promotes differentiation of monocytic precursor cells to 

octeoclastic lineage (Kohli and Kohli 2011).  

 

Studies demonstrate osteotropic factors and hormones such as PTH, 1,25-

Dihydroxyvitamin D3 (1,25(OH)2D3), interleukin-11 (IL-11), interleukin-1β (IL-1β), 

TNF-α or prostaglandin E2 (PgE2) promote RANKL expression in OB/stromal cells. Also 

PgE2 has shown to suppress OPG expression, whereas oestrogens up-regulate its 

expression (Hofbauer, Khosla et al. 2000). Cytokines IL-11 and leukaemia inhibiting 
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factor (LIF) have also shown evidence of stimulating bone resorption through induction 

of OC differentiation (Girasole, Passeri et al. 1994). In-vitro studies have shown that 

other cytokines such as interleukin-4 (IL-4) and interferon-gamma (IFN-γ) inhibit OC 

differentiation. Transforming growth factor β (TGF-β) has a more complicated role in that 

it suppresses the proliferation of OC precursors and bone resorption (Roux and Orcel 

2000).   

 

1.2.2  Regulation of Bone Formation  

 

Bone formation is activated through a series of complex cascades involving the 

proliferation of MSC and formation of matrix that subsequently becomes mineralised. 

When bone resorption is terminated, bone formation is activated in the resorption lacunae, 

mediated by local factors produced during the resorption mechanism. The release of local 

factors by bone during resorption results in the inhibition of OC function, coupled with 

induction of OB activity. The OC release factors that have inhibitory effects, thus 

enhancing OB function. On completion of the OC-induced resorption cycle, the OC 

produce proteins that are substrates for OB adhesion. In-vitro studies show resorbing 

bone produce chemotactic factors for OB-like cells (Suda, Takahashi et al, 1999). OB 

proliferation is activated following the formation process. Although the exact mechanism 

is unknown, growth factors and proteinases including TGF-β, insulin-like growth factor -I 

(IGF-I), IGF-II and plasminogen activators, have been implicated in OB proliferation. 

Other autocrine and paracrine presenting factors that stimulate OB proliferation and are 

sequestrated in bone matrix include fibroblast growth factors (FGF) and platelet-derived 

growth factor (PDGF). In-vitro, these growth factors appear to prevent OB apoptosis 

(Suda, Takahashi et al. 1999, Raggatt and Partridge 2010). 
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1.2.3 The Role of Wnts in Osteoblast Differentiation  

 

An important pathway implicated in postnatal bone formation is the canonical Wingless-

type (Wnt) signalling pathway. Components of the Wnt pathway have been shown to 

effect OB proliferation, function and survival. Members of the Wnt protein family are a 

large group of soluble glycoproteins formed from a combination of two homologous 

genes: the wingless (Wg) gene and the Int gene. The Wg gene was initially identified 

owing to a recessive mutation in Drosophila melanogaster causing defects in the wing and 

haltere (Sharma and Chopra 1976). The Int genes were established as vertebrate genes 

located close to sites of mouse mammary tumour virus (MMTV) (Rijsewijk, Schuermann 

et al. 1987) resulting in overproduction of a Wnt genes (Nusse 2008).The Wnts are 

secreted glycoproteins involved in a range of biological processes including 

embryogenesis, organogenesis (Yavropoulou and Yovos 2007) and tumour formation. 

The central role of the Wnts in OB development is well documented. The Wnts initiate 

cell signalling by interacting with receptor complexes consisting of low-density 

lipoprotein receptor–related protein 5/6 (LRP5/6) and frizzled (Fz) G-protein-coupled 

receptor (Zhong, Zylstra-Diegel et al. 2012). As a result, molecular groups are formed, 

stimulating nuclear production of transcription factors via activation of various 

intracellular signalling cascades (Kikuchi 2003). The mutation of LRP5 can lead to 

osteoporosis-pseudoglioma syndrome, characterised by childhood onset of osteoporosis 

and loss of vision (Gong, Slee et al. 2001). Alternatively, there are gain of Wnt function 

mutations such as G171V in LRP5, which lead to  increased bone mass (Little, Recker et 

al. 2002).  

 

The canocnical Wnt signalling involves stabalisation of β-catenin (Figure 1.2), which 

aids transcription of genes controlled by lymphoid enhancer-binding factor 1/T cell–

specific transcription factor (LEF/TCF) enhancers (Hens, Wilson et al. 2005). There is 

evidence that Wnt/ β-catenin signalling is a physiological response to mechanical loading 

(Robinson, Chatterjee-Kishore et al. 2006) and is involved in the repair of bone fractures 

(Chen, Whetstone et al. 2007). Adhesion of Wnt glycoproteins to Frizzled/LRP 5/6 

complex stimulates phosphorylation of Dishevelled (Dsh) and LRP 5/6. Dsh and LRP 5/6 

bind to Axin and prevent activation of a ‘destructive’ protein complex consisting of 

adenomatous polyposis coli protein (APC), glycogen synthase kinase-3β (GSK-3β) and 

serine/threonine kinase (CK1γ).  Inhibition of the APC/GSK-3β/CK1γ complex, prevent 
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β-catenin loss. β-catenin is free to translocate to the nucleus and interact with LEF/TCF 

transcription factors to stimulate specific gene transcription (Westendorf, Kahler et al. 

2004). 

 

Extracellular Wnt antagonists are produced naturally and impair OB function, 

suppressing bone formation. The soluble Wnt antagonist family members are sub-

categorised into the secreted Frizzled-related proteins (sFRPs) and the dickkopfs (Dkks), 

each group specific in its Wnt-related function. sFRPs directly adhere to Wnt to block 

receptor binding, whereas Dkks  inhibit Wnt receptor complex activity via adhesion to the 

Wnt co-receptors LRP5/6 (Pearse 2006).  
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Figure 1.2 - The proposed mechanism of the canonical Wnt signalling pathway. 

Axin and DSH are key proteins that bind to Wnt receptor complexes and result in the 

inhibition of the ‘destructive’ protein complex constituting of APC/GSK-β/CK1. β-

catenin is stabilised in the cytoplasm and translocates into the nucleus, where it 

interacts with LEF/TCF transcription factors. When Wnt signalling is inhibited, β-

catenin is phosphorylated by the APC/Axin/GSK-3β and subsequently relocated to 

the proteasome where it is degraded. Soluble Wnt antagonists such as Dkk1 and 

SFRPs block the interaction between Wnt ligands and their receptors suppressing 

osteoblast differentiation .  



14  

 

1.2.4 The Role of BMPs in Osteoblast differentiation  

 

As an extensive subgroup of the TGF-β family, the bone morphogenic proteins (BMPs) 

play an important role in embryogenesis by targeting the genes involved. Originally 

associated with bone formation by Wozney et al (Wozney, Rosen et al. 1988), the BMPs 

are now known to be exhibit a broad spectra of biological activities in various tissues, 

including blood vessels, heart, kidney, neurons, liver, lung cartilage and bone (Miyazono, 

Kamiya et al. 2010, Chen, Deng et al. 2012). Furthermore, after birth, BMPs regulate the 

pathophysiology of several diseases including osteoporosis, arthritis, renal diseases, 

pulmonary hypertension and cancer (Walsh, Godson et al. 2010).  

 

Once TGF-β is released from the bone following resorption, and exposed to OB 

precursors, OB cells undergo proliferation. As TGF-β exposure is brief, proliferating cells 

differentiate and then express BMPs. BMPs are produced in the bone marrow (BM) and 

adhere to their corresponding receptors, which in turn results in the production of the 

transcription factor Runt-related transcription factor 2 (Runx2) also referred to as core-

binding factor-1 (Cbfa1). Runx2/Cbfa1 is expressed on OPG cells and plays an essential 

role in the differentiation of OB cells from stromal cells of the BM, or MSC of the 

connective tissue. Of the 16 BMPs identified, BMP2 through to BMP7 and BMP9 

primarily mediate MSC differentiation into OB (Chen, Deng et al. 2012) 

 

BMP signalling occurs through activation of Smad proteins (Figure 1.3). Extracellular 

BMPs bind to type I and type II ligand-specific receptors. BMPs bind with a stronger 

affinity to type I and type II receptor heteromeric complexes. Upon binding of the BMP 

to a receptor heteromeric complex, the type I receptor becomes phosphorylated by the 

constitutively active serine/threonine kinase of the type II receptor. The Smad proteins are 

downstream intracellular messengers and are subdivided into receptor-mediated Smads 

(R-Smads), the common mediator Smad (C-Smad) and the inhibitory Smads (I-Smads). 

Smad1, 5 and 8 are R-Smads, which are phosphorylated by activated receptor complexes 

and are ligand specific. Smad4 is the C-Smad and forms a complex with the R-Smads 

once they have been activated by the type I receptor. The Smad complex translocates to 

the nucleus where it binds directly or indirectly (through BMP-binding partners) to 

specific promoters sequences within BMP target genes and regulates gene transcription 

(Varga and Wrana 2005). Although the mechanism by which the BMPs target genes is 
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not entirely understood, the Indian hedgehog (Ihh) gene has been identified as a BMP 

signalling target. Evidence of PTH and PTHLH regulation mediated through Ihh, which 

in turn maintains chondrocyte hypertrophy, has been determined in past studies (Seki and 

Hata 2004).  

 

In addition to the expression of tissue-specific BMP molecules and their associated cell 

surface receptors, BMP signalling is also tightly regulated by a family of soluble, 

extracellular secreted BMP antagonists. The relationship between BMP and their 

antagonists controls a variety of cellular processes including establishment of the 

embryonic dorsal–ventral axis, formation of neural tissue, development of joints in the 

skeletal system and brain neurogenesis. BMP antagonists function through direct 

interaction with BMP molecules and are characterized by their ability to block the action 

of BMPs through direct binding, stopping the BMPs from binding their receptors (Walsh, 

Godson et al. 2010). BMP antagonists are characterised by their ability to prohibit BMP 

signalling and include the Cerberus and DAN (CAN) family of proteins that include 

Cerberus and Gremlin (Pearce, Penny et al. 1999, Yeung, Gossan et al. 2014), Twisted 

gastrulation, Chordin and Crossveinless (Oelgeschlager, Larrain et al. 2000, Forsman, Ng 

et al. 2013) and Noggin (Tylzanowski, Mebis et al. 2006). Uterine sensitization-

associated gene-1 (USAG1) (Kiso, Takahashi et al. 2014) and Sclerostin are also more 

recently characterised BMP antagonists expressed in the kidneys and bones, respectively 

(Kiso et al. 2014; Krause et al. 2010b). The timing and concentration of BMP and their 

antagonists is essential to normal developmental processes. Modifications to the levels of 

BMP and BMP-antagonist can result in deformities in bone, limb and kidney formation, 

highlighting their role in the progression of human diseases including cancer (Walsh, 

Godson et al. 2010).  
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Figure 1.3 - BMP-dependent Smad phosphorylation: BMP ligands bind to the 

BMP heterotetrameric receptor complexes activating signalling through type II-

receptor-mediated phosphorylation of the type I receptor on the GS domain. This 

induces phosphorylation of regulatory Smad 1,5&8. The co-Smad 4 forms a new 

complex with the phosphorylated Smad 1,5&8 proteins. This newly formed pSFmad 

1,5&8/Smad 4 complex translocates into the nucleus where it binds to transcription 

factors/enhancers and regulates gene expression necessary for the differentiation of 

osteoblasts. BMP signalling is both extracellularly modulated (e.g., Noggin, 

SOSTDC1, Gremlin) and intracellularly modulated (e.g I-Smads).  
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1.3 Dysfunction of bone remodelling in MM: Cellular and molecular mechanisms 

 

Reduced formation of bone resorbing or forming cells, an increase in resorption or 

formation activity and abnormal mineral crystal formation, are all characteristic of 

disruptions in bone remodelling, which inevitably result in diseases such as Paget’s and 

osteoporosis (Russell, Mueller et al. 2001). The osteolytic and osteoblastic features of 

these diseases are characteristic of secondary tumours within the skeleton. Metastasis of 

the bone is the third most prevalent form of metastatic disease and most commonly results 

from tumours within the breast, prostate, thyroid, lung, bladder, kidney and MM (Chiang 

and Massague 2008). MM differs to bone disease occurring in other cancers, as the 

resorption of bone is not followed by further formation, and OB activation is reduced. 

Histomorphometric analysis of bone from patients with advanced MM shows a lack of 

bone formation within lesions, coupled by an increase in OC number at resorption sites. 

In addition, levels of bone resorption markers, including carboxyl-terminal telopeptide of 

type I collagen and tartrate-resistant acid phosphatase are elevated (Roodman 2009). 

The OC and OB activity that occurs during infiltration of MM through the marrow does 

not follow through when the disease advances. The coupling interaction between up-

regulated osteoblastic activity and increased bone resorption was initially reported in 

1991 by Bataille et al. They showed that this interaction occurs during early stages of 

MM, secondary to MGUS, and osteolytic disease does not develop in patients that 

maintained increased OB activity (Bataille, Chappard et al. 1991). Based on the 

observations that there is increased osteoclastic bone resorption coupled with decreased 

osteoblastic bone formation in myeloma bone disease, research has focused on OC and, 

more latterly OB activity.  

 

As reviewed by Fowler and Edwards et al, more recent research in MM bone disease has 

targeted the influence of other BM cell types, including immune cells, MSC and bone 

marrow stromal cells (BMSC) to determine potential therapeutic targets (Fowler, 

Edwards et al. 2011). The ‘seed and soil’ theory first described by Paget outlined the 

mechanisms existing between cancer cells and the bone microenvironment, where bone is 

the preferable soil in which cancer cells are seeded and go on to flourish. Growth factors 

within mineralized bone matrix are activated in the local microenvironment. Their release 

stimulates the physiological mechanisms between OC and OB (Guise and Mundy 1998). 
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In MM these mechanisms are disrupted, leading to aggressive bone disease in 

approximately 80% of patients (Yaccoby 2010).  

 

1.3.1 Dysfunction of bone resorption in MM 

 

Generation of OC activating factors by myeloma cells or the BM microenvironment can 

potentially result in the excessive bone resorption activity observed in MM. These factors 

function through mutual regulatory pathway involving RANKL/RANK (Roux and 

Mariette 2004).  Myeloma cells may express RANKL, while OPG binds both surface and 

soluble RANKL inhibiting OC development and bone resorption. Mouse 5T33MM 

myeloma model has been utilised to determine OPG-mediated changes in the local bone 

microenvironment and their effect on tumour activity/progression (Vanderkerken, De 

Leenheer et al. 2003). Inhibition of the RANK/RANKL-OPG interaction interferes with 

the progression of myeloma within bone and may reduce tumour growth and increase 

patient life span (Roux and Mariette 2004).  

 

Myeloma cells bind to BMSC via coupling of vascular cell adhesion molecule-1 (VCAM-

1) expressed on stromal cells and the α4β1 integrin VLA-4 located on the surface of MM 

cells. The interaction between MM cells and BMSC stimulates production of RANKL, 

OC activating function (OAF) cytokine activity and M-CSF and at the same time inhibits 

OPG production (Pearse 2006).  Therefore the role of RANKL in MM has mainly been 

researched on OPG, peptidominetics, anti-RANKL antibodies and soluble receptor 

constructs as targets (Buckle, Neville-Webbe et al. 2010). RANKL/RANK deficient mice 

and those with over-expression of OPG present a reduction in OC activity resulting in 

ostopetrosis, abnormal increased hardening of the bones (Dougall, Glaccum et al. 1999). 

OPG deficiency and excessive RANKL activity in mice has been linked to osteoporosis, 

although the mechanisms responsible are not clear (Mizuno, Amizuka et al. 1998). 

Evidence indicates that the crucial events in osteoclastic resorption in MM not only occur 

due to deregulation of the RANKL/OPG coupling (Brounais, Ruiz et al. 2008), but also 

through the various cytokines with OAF activity produced by MM cells and cells of the 

microenvironment. The OAFs that primarily mediate osteoclastogenesis are TNF, IL-1, 

IL-6 and specific chemokines including macrophage inflammatory protein-1α (MIP-1α), 
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macrophage inflammatory protein-1β (MIP-β) and stromal derived factor-1α (SDF-α) 

(Roodman 2004).  

 

Production of MIP-1α, hepatocyte growth factors (HGFs) up-regulate OC precursor 

proliferation and differentiation (Terpos and Dimopoulos 2005). HGF and the HGF 

receptor (c-met) are found on myeloma cells and promote OC activation, epithelial cell 

proliferation and angiogenesis. HGF increases IL-11 expression on OC-like cells and both 

IL-1 and TGF-β1 disrupt HGF activity on IL-11 (Seidel, Lenhoff et al. 2002). The 

cytokine VEGF is expressed on myeloma cells and increases osteoclastic bone resorption 

and survival, as it adheres to its OC receptor VEGFR-1. Studies have shown that in M-

CSF deficient mice, VEGFR is expressed as a substitute for OC recruitment.  In addition, 

the cells increase IL-6 expression from stromal cells in response to the increased levels of 

VEGF (Dankbar, Padro et al. 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1.4 – Myeloma vicious cycle: MM cells interact with OB precursors inducing 

RANKL, OAF and M-CSF. Tumour-derived osteoclast activating factors upregulate OC 

precursor differentiation and osteoclastic resorption. Tumour-derived osteoblast 

supressing factor inhibit OB differentiation . RANKL/OPG ratio favours RANKL, 

promoting OC activity.  
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1.3.2 Dysfunction of Bone Formation in MM 

 

Based on the literature, it can be deduced that our understanding of the suppression of 

bone formation in myeloma disease is poor. Recently, animal models have been used to 

further investigate the pathways and molecules involved in the mechanisms responsible 

for the suppression of bone formation. Although a number of molecules have been 

implicated in these mechanisms, there is a lack of functional data supporting an 

underlying role. In myeloma patients, abnormalities in osteoprogenitors and the 

production of OB inhibitors by both myeloma cells and myelomatous bone 

microenvironment cells results in a reduction in osteoblastogenesis. In MM the osteolytic 

lesions arise in close proximity to the tumour, indicating that in addition to the soluble 

factors that regulate osteoblastogenesis suppression, the close contact between myeloma 

cells and MSC also influence bone remodelling (Yaccoby 2010). 

 

 The importance of the transcription factor RUNX2/Cbfa1, in the formation and 

differentiation osteoblastic cells has to date been established. RUNX2 interacts with other 

transcription factors including osterix, to activate the bone formation process. The 

activation of Runx2/Cbfa1 in human BMSC and osteoblastic cells induces the expression 

of the OB markers collagen I, ALP, and osteocalcin during OB differentiation (Giuliani, 

Rizzoli et al. 2006). The potential involvement of Runx2/Cbfa1-mediated transcription in 

MM-induced OB inhibition has previously been reported (Giuliani, Colla et al. 2005). 

Giuliani et al showed that blocking Runx2/Cbfa1 activity in human osteoprogenitors in 

myeloma-osteoprogenitor co-cultures resulted in myeloma-induced inhibition of OB 

differentiation in long-term bone marrow culture determined by a decrease in ALP, 

osteocalcin, and collagen I (Giuliani, Colla et al. 2005).  

 

The concept that myeloma-OB cell contact induces a detrimental effect on the 

differentiation of OB has been demonstrated in Giuliani et al findings showing that when 

stimulated by myeloma cells, MSC reduced expression of Runx2 through cell surface 

molecules VLA-4 and VCAM-1. Their data strongly suggests that the effect of myeloma 

cells on Runx2/Cbfa1 activity is primarily mediated by cell-to-cell contact between 

myeloma and osteoprogenitor cells (Giuliani, Colla et al. 2005). It has previously been 

reported that direct contact between human myeloma and OB-like cells results in the 

inhibition of osteocalcin production in OB-like cells (Barille, Collette et al. 1995). In 
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addition, other adhesion molecules appear to be involved in the inhibition of 

osteoblastogenesis by human myeloma cells. For example, Neural Cell Adhesion 

Molecule (NCAM)-NCAM interactions between myeloma and OB-like cells decreased 

osteoid and bone matrix production by osteoblastic cells in-vitro (Griffiths and Ling 

1991). Based on these reports, regardless of the molecular interaction, it would appear 

that myeloma-OB interaction is linked to the development of osteolytic bone disease in 

myeloma.  

 

There is mounting evidence indicating OB differentiation is inhibited by factors secreted 

by myeloma cells including Wnt-signalling inhibitor Dkk1 (Tian, Zhan et al. 2003), 

sFRP-2 (Oshima, Abe et al. 2005), IL-7 (Standal, Abildgaard et al. 2007) and HGF (Lee, 

Chung et al. 2004) and by microenvironmental cells within myelomatous bone (e.g. IL-3) 

(Ehrlich, Chung et al. 2005). In the past decade, extensive research on myeloma-produced 

soluble inhibitors of Wnt ligands has been carried out. Data implicates the critical 

inhibitory role of Wnt in MM bone disease. These implications have been strengthened 

by in-vitro studies that determine the impact of Wnt in the formation of bone (Tian, Zhan 

et al. 2003, Oshima, Abe et al. 2005).  

 

The relationship between Dkk1 and inhibition of OB activity has been established. Tian et 

al analysed ALP activity of C2C12 MSC treated with BMP2 in human MM patient 

samples with high Dkk1 levels. The findings determined the inhibitory function of the 

patients BM plasma and recombinant human Dkk1 on the cells ALP activity (Tian, Zhan 

et al. 2003). More recent in-vivo studies using 5T2MM murine myeloma model in the 

investigation of Dkk1 inhibitory effects on osteolytic lesions, show that administration of 

5T2MM cells into C5BL/KaLwRjj mice leads to osteolytic bone lesion formation 

consistent with increased OC number, decreased OB numbers and reduced bone 

mineralisation. Although no effect was seen on OC number, treatment of 5T2MM cell 

with anti-Dkk1 antibody increased both mineralised surface by 28% and rate of bone 

formation by 25% (Heath, Chantry et al. 2009). These findings are consistent with the 

earlier studies by Tian et al using neutralising anti-Dkk1 antibodies on BM plasma in 

C2C12 cells (Tian, Zhan et al. 2003), in that suppressing Dkk1 promotes bone formation 

and is therefore an effective therapeutic target for preventing  development of myeloma 

induced osteolytic bone disease (Heath, Chantry et al. 2009).   
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Other Wnt antagonists including sFRP-2 and sFRP-3 have been identified during MM 

related transcript screening. Although analysis of MM cell lines and primary samples 

showed evidence of SFRP-2 expression, the link between sFRP-3 and MM has yet to be 

established (Pearse 2006). In-vitro studies by Oshima et al on MC3T3-E1 and human 

BM-derived MSC, suggest that recombinant mouse S2FRP-2 in the presence of BMP-2, 

inhibits ALP activity and mineralisation. Similar to Dkk1, anti-sFRP-2 antibodies 

expressed neutralising effects on the myeloma cells (Oshima, Abe et al. 2005).  Taking 

into consideration the role of Wnts in osteoblastic activity, Wnt antagonists may be 

responsible for the mechanism in which MM affects OB and OC function (Glass, Bialek 

et al. 2005, Holmen, Zylstra et al. 2005).  

 

As the most abundant cell in the bone, we have extensive knowledge of the biology of 

osteocytes (Bonewald 2011). However, the contribution of osteocyte cells to MM 

development and progression in bone remains unclear. Osteocytes produce molecules that 

modulate bone formation and resorption (Xiong, Onal et al. 2011). Recently, the Giuliani 

group showed that the osteocytes life span is compromised in MM patients with bone 

lesions (Giuliani, Ferretti et al. 2012). They also showed that MM cells affect the 

osteocyte transcriptional profiles, resulting in the upregulation of RANKL and increasing 

osteoclastogenesis. Patients with active MM also have increased levels of osteocyte-

produced circulating sclerostin, a potent inhibitor of bone formation (Brunetti, Oranger et 

al. 2011). Therefore, understanding the role of osteocytes in  mechanisms associated with 

MM bone disease could provide important new therapeutic strategies that target MM-

osteocyte interactions (Delgado-Calle, Bellido et al. 2014).  
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1.3.3 MM Models 

 

The development of effective MM drug therapy is required for the development of 

biological systems for pre-clinical evaluation of potential therapeutic molecules and for 

better understanding of the disease (Mitsiades, Anderson et al. 2007). Most established 

human myeloma cell lines (HMCL) are derived from the advanced or extramedullary 

phases of MM and are obtained from BM, peripheral blood, ascites or pleural effusion. 

HMCL have revealed many of the molecular and biological aspects of myeloma including 

the complicated cytokine network influencing angiogenesis and the growth of plasma 

cells (Moreaux, Klein et al. 2011). RPMI 8266 and Y-266 were the first MM cell lines 

which were established in the in the 1960s (Matsuoka, Moore et al. 1967; Nilsson, 

Bennich et al. 1970). In the following twenty years, an estimated 112 MM cell lines have 

been described since in the literature The availability of the HMCL has also meant that the 

function of the target genes of chromosomal translocations and the activity of novel 

candidate therapeutic agents can be investigated (Seidl et al., 2003; Bergsagel and Kuehl, 

2005). However, the establishment of HMCL are rare and samples are usually derived 

from patients who have end-stage disease. This means that the cells retain oncogenic 

abnormalities found at the time of isolation and are only partially reflective of the 

heterogeneity found in MM patients (Chiron, Surget et al. 2012). In addition, the clinical, 

immunophenotypic, cytogenetic and cell culture features of the majority of these HMCL 

are either partially characterized or, in some cases, have not been described at all (Drexler 

and Matsuo 2000). 

 

An animal model that accurately reflects human myeloma and takes into account the 

protective nature of BMSC would be powerful in defining the efficacy of therapeutic 

agents in-vivo, and accelerate the drug development process. A number of different 

animal models are currently used to study myeloma, and these include the severe 

combined immunodeficiency (SCID)-hu/rab xenograft model and the Radl 5TMM 

models (Fryer, Graham et al. 2013). Several mouse models of MM bone disease have 

been developed exhibiting OB suppression (Hjorth-Hansen, Seifert et al. 1999; 

Vanderkerken, Asosingh et al. 2003; Epstein and Yaccoby 2005). Recently Italian 

scientists Pierfrancesco Tassone and bioengineer Filippo Causa devised the Xenograft 

model using HMCL (Calimeri, Battista et al. 2011in which, small cylindrical plastic 

scaffoldings punctured with pores are used as a substitute for human bone. The purified 
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MM cells (CD138+) from human BM aspirates are injected into the artificial bone 

scaffolds and the whole structure implanted under the skin of immune-deficient mice. 

Once the human MM cells start interacting with the artificial bone, it is possible to study 

the interaction between the MM cells and BM (DeWeerdt 2011).  

The 5T series are another MM mouse model in which the MM cells can be transferred 

between syngeneic mouse models. In the Radl 5T murine model, young mice are injected 

with myeloma cells, which originated spontaneously in aged C57BL/KaLwRij mice. 

Originally, the well characterised 5T2MM and the 5T33MM cell lines derived from these 

elderly C57BL/KaLwRij mice where used to study the mechanisms associated with 

myeloma cell-BM homing, myeloma tumour interaction with the bone microenvironment 

and to assess novel anti-MM therapies (Radl, De Glopper et al. 1979; Radl, Croese et al. 

1988). Both the 5T2MM and 5T33MM models were characterised by the MM cell 

infiltration restricted to the BM and spleen. The main difference between the two models 

was that only the 5T2MM cells caused the osteolytic disease observed in the long bones 

of patients with MM. In a further development of the model, in-vitro sub-clones of the 

5T33MM model were established, and subsequently named the 5T33MMvt and the 

5TGM1MM cells. It was found that mice intravenously injected with 5TGM1MM cells 

developed MM disease (Asosingh, Radl et al. 2000). The 5TGM1 cells have since also 

been labelled with green fluorescent protein (GFP) and luciferase for in-vivo imaging in 

MM studies. Despite the advantages of the syngeneic 5TMM models, one major 

limitation is their dependency on the specific C57BL/KaLwRij mouse strain 

(Vanderkerken, Asosingh et al. 2003). Both the Xenograft and 5T series models show 

suppression of OB activity and bone formation, coupled with OC activation in the MM-

infiltrated BM. These models have been important in determining which molecules 

modulate bone lesion formation, induced by MM, and in helping to evaluate novel 

therapeutic approaches aimed at reversing osteolytic bone disease in MM patients. 
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1.4 The role of novel SOSTDC1 in Wnt and BMP signalling in osteoblasts  

 

Sclerostin domain containing 1 (SOSTDC1) is also known as SOSTL (Sclerostin-like) 

due to its homology with the SOST gene (Brunkow, Gardner et al. 2001). Expression of 

SOSTDC1,  also referred to as uterine sensitisation-associated gene-1 (USAG-1), Ectodin 

and Wise in the literature, has been demonstrated in various tissues including surface 

ectoderm of the posterior axis, branchial arches, hair follicles, rat endometrium, vibrissae, 

mammalian tooth cusps, developing testis, interdigital tissues and the kidneys (Lintern, 

Guidato et al. 2009). SOSTDC1 was originally isolated as a secreted molecule by a 

functional screen of chick cDNA library of embryonic cells. SOSTDC1 (referred to as 

Wise in this study) altered the antero-posterior character of neutralised Xenopus animal 

caps, stimulating Wnt signalling (Itasaki, Jones et al. 2003). In other studies, SOSTDC1 

was isolated from a functional screen of specifically expressed rat endometrium genes 

sensitised to implantation, and named USAG-1 (Simmons and Kennedy 2002). The 

protein was again identified, this time called ectodin, as a mouse and human cDNA 

encoding antagonist of BMP for mouse pre-osteoblastic MC3T3-E1 cells (Laurikkala, 

Kassai et al. 2003).  

 

Within the literature, reports suggest that SOSTDC1 and its orthologs modulate Wnt 

signalling and inhibit BMP activity. Data implicates that SOSTDC1-Wnt signalling is 

regulated via interactions with Wnt co-receptor LRP6 and SOSTDC1 induced BMP 

inhibition is regulated via adhesion to BMP ligands (Lintern, Guidato et al. 2009). The 

SOSTDC1 protein is very likely structured to form a three looped cystine knot (Avsian-

Kretchmer and Hsueh 2004) and binds to LRP5/6 through one of these loops. SOSTDC1 

deletion construct lacking this loop domain, still bind BMP4 and inhibit BMP signals. 

BMP4 does not disrupt SOSTDC1-LRP6 interaction, implicating separate domains for 

binding. The information that we now have in relation to the interactions of SOSTDC1 

with the BMP family members, LRP6 and its molecular characteristics, has given some 

perspective into the proteins’ multifunctional existence on a molecular level (Lintern, 

Guidato et al. 2009).  

 

There is evidence of SOSTDC1 inhibitory effect on BMP in the dental ectoderm, where 

SOSTDC1 expression is seen to suppress BMP2 and BMP7 activity. Mice deficient in 

SOSTDC1 (referred to USAG-1 in this study) display altered tooth morphology and 
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increased tooth growth (Laurikkala, Kassai et al. 2003). In other studies, SOSTDC1 is 

seen to inhibit BMP2, -4, or -7 induced bone differentiation in a mouse myeoblast cell 

line (C2C12) (Yanagita, Oka et al. 2004).  More recent research in tooth development, 

demonstrates the importance of SOSTDC1 expression in mesenchyme-epithelial tooth 

formation. Munne et al investigated SOSTDC1 induction of mouse incisors and 

determined SOSTDC1 an antagonist of BMP signalling mesenchymal induced tooth 

formation. Munne et al also show that reductions in dental mesenchyme in SOSTDC-1 

deficient incisors result in development of additional de novo incisors resembling those 

that develop from activated Wnt signalling. In this study the inhibitory role of Dkk1 is 

determined as preventing additional incisor development, thus implicating BMP and Wnt 

signalling inhibition promotes the inhibitory function of tooth mesenchyme (Munne, 

Tummers et al. 2009, Munne, Felszeghy et al. 2010). In a similar study by Ahn et al, 

SOSTDC1 is shown to suppress of tooth cells via inhibition of LRP5/6–induced Wnt 

signalling. SOSTDC1 suppression up-regulates Wnt signalling, consequently tooth buds 

in toothless regions proliferate and result in tooth development (Ahn, Sanderson et al. 

2010).  

 

In Wnt/β-catenin mediated hair follicle regeneration, SOSTDC1 is seen to express an 

inhibitory role. SOSTDC1 is repressed by nuclear receptor co-receptor Hairless (HR) in 

progenitor keratinocytes consistent with the timing of follicle regeneration (Beaudoin, 

Sisk et al. 2005). Other data suggest SOSTDC1 function in the inhibition of Wnt 

antagonists; Wnt1, Wnt3a and Wnt10 (Yanagita, Oka et al. 2004, Beaudoin, Sisk et al. 

2005). There is little data on the role of SOSTDC1 on osteoblastogensis and bone disease. 

In one recent study on Chinese women, a common variation in the SOSTDC1 gene was 

associated with increased bone mass (He, Yue et al. 2011). In earlier in-vitro studies, 

SOSTDC1 was seen to inhibit BMP2, -4, or -7 induced bone differentiation in a mouse 

myoblast cell line (C2C12) (Yanagita, Oka et al. 2004). Although this data is limited, it 

does provide a rational for studying the potential role of SOSTDC1 in the dysfunction of 

osteoblastogenesis.  

 

There is evidence of crosstalk between Wnt and BMP signalling in MSC (Bennett, Longo 

et al. 2005) and pre-osteoblasts (Bain, Muller et al. 2003, Mbalaviele, Sheikh et al. 2005). 

Data has shown that the loss of BMRP-1A results in increased levels of Wnt signalling in 

OB cells, correlating to an increase in bone mass (Kamiya, Ye et al. 2008). Findings from 
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other studies suggest that BMP4/BMP6 and Wnt1/3 regulate OB differentiation through a 

GSK3β-dependent but β-catenin-independent mechanism.(Fukuda, Kokabu et al. 2010). 

Although this data is indicative of a dependency of the BMP and Wnt signalling in OB, 

the underlying mechanisms are poorly understood. The role of SOSTDC1 in Wnt-BMP 

dependent signalling has not been reported in OB differentiation. Understanding the 

molecular mechanisms associated with SOSTDC1-modulated Wnt-BMP signalling 

crosstalk in OB is a novel understanding which could produce new therapeutic targets in 

osteolytic bone disease.   

 

1.5 SOSTDC1 expression in cancer: Could SOSTDC1 have a role in MM? 

 

Although data are limited, there is evidence that SOSTDC1 can regulate cell activity 

through BMP and Wnt signalling pathways within cancer of the breast and kidney (Blish, 

Wang et al. 2008, Clausen, Blish et al. 2010). Findings from numerous studies show that 

both BMP and Wnt signalling are modulators of breast cancer (Alarmo, Rauta et al. 2006, 

Alarmo, Kuukasjarvi et al. 2007). Studies by Clausen et al into SOSTDC1 secretion and 

BMP/Wnt signalling in breast cancer cells, link decreased SOSTDC1 expression to 

increased tumour size. Intriguingly, this group showed that SOSTDC1 modulated Wnt 

and BMP signalling very selectively in that within breast tissue, SOSTDC1 increased 

Wnt3a signalling, reduced BMP7 signalling and had no significant effect on BMP2 

signalling (Clausen, Blish et al. 2010). This data suggests that SOSTDC1, through its 

ability to regulate Wnt or/and BMP signalling, may contribute to the development of 

breast cancer. Similarly, the function of SOSTDC1 as a potential tumour suppressor has 

also been implicated in Wilms paediatric renal tumour development. The gene encoding 

SOSTDC1 is proven relevant to tumour activity consistent with evidence that the protein 

is down-regulated in adult renal cancer and regulates BMP and Wnt signalling activity 

(Blish, Clausen et al. 2010).   

 

The evidence indicating that SOSTDC1 modulates tumourgenesis in breast and rental 

cancer suggests that SOSTDC1 could play a similar role in other cancers. There is 

currently no evidence to show that SOSTDC1 has any role in MM or bone disease 

secondary to MM. As mentioned previously there are a few well characterised molecules 

known to be involved in osteoblastic suppression secondary to MM (Alarmo, Rauta et al. 
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2006) including Dkk1 which is perhaps the best characterised (Pinzone, Hall et al. 2009). 

As mentioned previously over-expression of Dkk1 has been associated with MM bone 

disease and the use of anti-Dkk1 neutralizing Ab has demonstrated a pro-anabolic effect 

with associated anti-myeloma activity in-vivo (Heath, Chantry et al. 2009). Nevertheless, 

data shows that Dkk1 is not detectable in all serum samples obtained from MM patients 

(Tian, Zhan et al. 2003).  The Dkk1 absence from MM clones that still expressed 

morphological characteristics of OB dysfunction suggest other MM-mediating factors 

may exist (Pearse 2006).  

 

In the search to identify other molecules that that could have a potential causal role in the 

suppression of osteoblastogenesis in MM, our group identified SOSTDC1 (data 

unpublished), as a gene that was highly upregulated in the 5T2MM C5BL/KaLwRjj mice 

compared to naïve animals using Affymetrix GeneChip™ technology (Figure 1.5 A, 

***P<0.002). The expression of SOSTDC1 in 5T2MM compared to naïve mice was 

further confirmed using TaqMan™ gene expression assays (Figure 1.5 B). This 

compelling data coupled with reports highlighting the role of SOSTDC1 in Wnt and BMP 

signalling modulation encouraged the rational that SOSTDC1 may have a key role in the 

suppression of osteoblastogensis in MM. Targeting SOSTDC1 could be the ideal therapy 

for the reversal of osteolytic bone disease in MM, specifically in cases where patients do 

not exhibit elevated levels of Dkk1. 
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A 

B 

Figure 1.5 – SOSTDC1 was detected in 5T2MM myeloma model and not 

detected in naïve C5BL/KaLwRjj mice: SOSTDC1 was significantly upregulated 

in the 5T2MM mice compared to naïve animals, determined by Affymetrix 

GeneChip™ technology (A) and TaqMan™ gene expression assays (B) (Buckle et 

al, data unpublished). 

 



30  

 

1.6 Overall aims and objectives of the study 

 

1.6.1 Aims 

 

To date, there has been no evidence of work investigating the role of SOSTDC1 in the 

suppression of bone formation in myeloma. Determining the effect of SOSTDC1 on OB 

differentiation and proliferation in-vitro is key to understanding the role of this novel 

protein in myeloma-induced suppression of bone formation and perhaps bone resorption. 

Our recent data (unpublished) suggest a putative role for SOSTDC1 protein in Wnt 

signalling modulation, resulting in suppression of bone formation. Following array 

analysis and using experimental models of myeloma bone disease, we suggest that 

SOSTDC1 may be a modulator of Wnt signalling in MM. The regulatory role of 

SOSTDC1 has been implied in BMP signalling in other tissues (Ahn, Sanderson et al. 

2010, Blish, Clausen et al. 2010, Clausen, Blish et al. 2010), and BMPs are known to 

have a regulatory role in bone development (Chen, Deng et al. 2012). This provides the 

rational for investigating the effect of SOSTDC1 on Wnt and BMP signalling in 

differentiating OB cells at various stages cell development.  

 

There have been  recent reports of evidence of Wnt-BMP crosstalk in pre-osteoblasts, 

providing some insight into the role of other antagonists such as Sclerostin and noggin 

(Itasaki and Hoppler 2010). The potential regulatory role of SOSTDC1 in Wnt-BMP 

signalling in OB differentiation may be another target for osteolytic bone disease therapy 

in myeloma. Interestingly, there is no data in the literature to suggest that either myeloma 

cells, osteoblasts or cells in the BM actually express SOSTDC1. Here, I aim to determine 

whether the 5TMM series of mouse myeloma models and differentiating OB progenitor 

cells do produce SOSTDC1 both in-vitro and in-vivo. In MM disease, there is a link 

between increased suppression of osteoblastogenesis and myeloma-OB interaction (Chen, 

Orlowski et al. 2014). In this study I wanted to further investigate a potential role for 

SOSTDC1 in myeloma-OB interaction using an in-vitro co-culture system. The overall 

aim of this study is to provide insight into the molecular mechanisms involved in 

SOSTDC1-regulated Wnt-BMP signalling and establish the conditions required for 

SOSTDC1 expression myeloma bone disease.   
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1.6.2 Objectives 

 

This study will address the hypotheses of ‘SOSTDC1 suppresses OB progenitor 

differentiation’ and ‘myeloma cells express SOSTDC1 and promote SOSTDC1 

expression in OB progenitors’.  

 

The hypotheses will be tested by addressing the following objectives:   

 

1 To determine the proliferation, differentiation and mineralisation profile of 

murine OB progenitors in culture. 

 

2 To determine the effect of SOSTDC1 on Wnt and BMP-induced differentiation, 

mineralisation and downstream intracellular signalling in differentiating OB 

progenitors in-vitro. 

 

3 To determine a modulatory role for SOSTDC1 in BMP-Wnt signalling crosstalk 

in differentiating OB progenitors in-vitro. 

 

4 To determine whether the 5TMM series myeloma cells and differentiating OB 

progenitors produce SOSTDC1 in-vitro and in-vivo. 

 

5 To determine the optimal conditions under which SOSTDC1 in produced in a 

myeloma and OB contact dependent microenvironment. 
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Chapter 2 – Materials and Methods 
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All equipment, chemicals and solutions used in this research were assessed for health and 

safety precautions (Control of Substances Hazardous to Health (COSHH). All appropriate 

safety measures were used, including latex examination gloves and laboratory coat 

(Kimerley-Clarke). 

 

2.1 Cell culture  

 

 

  

Cell Culture Equipment     

IITEM SUPPLIER 

Haemocytometer - depth 0.1mm, 1/400mm
2
 Hawksley 

Cell culture flat bottom plates – 6, 12, 24, 48& 96 Corning® Costar®   

Nunc™ cell culture treated flasks with filter caps 

– T25cm3, T75cm3, T175cm3 

Nalgene, Nunc Ltd.   

BD Falcon™  centrifuge tube – 15ml, 50ml Fisher Scientific 

Cryovials, 1.5ml Nalgene, Nunc Ltd.   

Bjoux tubes (5, 15, 15, 50ml) Starstedt 

Eppendorph tubes (0.05 abd 1.5ml) Starstedt 

Cell scrapers  Nalgene, Nunc Ltd.   

GPR centrifuge Beckman Coulter 

Microcentrifuge IEC Micromase 

Water bath  Fisher Scientific 

Vortex mixer VLP® Scientifica 

Heater Thermomixer Comfort Eppendorf 

Z2 counter Bechman Coulter Inc. 

Coulter Counter Beckman Coulter Inc. 

Syringe filters, 25mm Acrodisc®  Pall® Life Sciences 

BD Sterifill SCF™ syringe  BD Biosciences 
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All cell culture procedures were carried out within microbiological class II safety cabinets 

(Walker, UK), using sterile equipment. Media were always filtered and warmed to 37°C 

prior to cell treatment. All cell cultures were incubated in a humidified atmosphere at 

37°C and 5% CO2.   

Cell Culture Reagents 

ITEM SUPPLIER 

Minimum Essential Media (MEM) -Alpha + 

GlutaMAX 

Gilbco
TM

, Invitrogen 

Roswell Park Memorial Institute (RPMI) 1640 

(1x)+ GlutaMAX 

Gilbco
TM

, Invitrogen 

Dulbeccos Modified Eagle Medium (DMEM) + 

GlutaMAX 

Gilbco
TM

, Invitrogen 

Keratinocyte-SFM Medium (Kit) with L-

glutamine, EGF, and BPE 

 

Gilbco
TM

, Invitrogen 

MEM Non-Essential Amino Acids (NEAA) x100 Gilbco
TM

, Invitrogen 

Sodium pyruvate Gilbco
TM

, Invitrogen 

Fetal calf serum (FCS) PAA Laboratories 

Penicillin: streptomycin solution (PenStrep) Gilbco
TM

, Invitrogen 

Fungizone® Antimycotic 250µg/ml amphotericin 

B and 205µg/ml sodium deoxycholate 

Gilbco
TM

, Invitrogen 

Phosphate buffered saline (PBS) Sigma-Aldrich 

0.05% Trypsin EDTA  (0.53mM) Sigma-Aldrich 

Collagenase I Sigma-Aldrich 

Hank's Balanced Salt Solution (HBSS) Gilbco
TM

, Life Technologies 

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich 

L-ascorbic acid Sigma-Aldrich 

β-glycerophosphate disodium salt hydrate Sigma-Aldrich 

Trypan blue Sigma-Aldrich 

Dimethyl sulphoxide (DMSO) Sigma-Aldrich 

70% Industrial methylated spirits (IMS) Fischer Scientific 
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2.1.1 Osteoblast progenitor cell culture  

 

Osteoblast cultures were prepared with a modification of the method of Ecarot-Charrier et 

al (Ecarot-Charrier, Glorieux et al. 1983). Mouse primary osteoblast (OB) progenitor cells 

were isolated from the calvarial bones of 2 to 4 day old C57BLKaLwRij mice, (Harlan, 

UK) using Collagenase I digestion (Figure 2.1). Typically, 12-15 dissected calvarial 

bones were cut into small pieces using a scalpel and placed in 50ml BD falcon™  tubes 

containing 3ml of 1mg/ml Collagenase I digestion solution and placed in a water bath at 

37°C on a shaker for 10 minutes. The Collagenase I solution (fraction 1) was then 

removed and the calvaria submerged in 3ml of fresh Collagenase I solution. The calvaria 

were incubated for 30 minutes at 37°C with the fresh Collagenase I solution and the cells 

collected (fraction 2). The solution containing fraction 2 were transferred to a new 15ml 

BD falcon™ tubes.  The calvaria bone cells were washed with 7ml of PBS and 

centrifuged at 1000 RPM for 5 minutes. The supernatant containing the cells added to 

fraction 2. The calvaria bone cells were incubated with 4µM EDTA solution for 10 

minutes at 37ᴼC (fraction 3).  

 

The calvaria were washed in 7ml Hank's Balanced Salt Solution (HBSS) and the wash 

added to fraction 3. 3ml of fresh Collagenase I solution was added to the calvaria and 

incubated for 30 minutes at 37ᴼC (fraction 4). The solution collected from calvarial cell 

cultures from the fraction 4 digestions containing were centrifuged at 250g RPM for 5 

minutes and re-suspended in standard Minimum Essential Medium (MEM) alpha 

containing 10% fetal calf serum (FCS), 1% Streptomycin (PenStrep) (100 units/ml 

Penicillin/100 μg/ml) and 1% Fungizone Antimycotic (250µg/ml amphotericin B 

/205µg/ml sodium deoxycholate). MEM-Alpha and all its constituents will be referred to 

as standard MEM-Alpha media unless specified otherwise. OB progenitor cells were 

cultured in 7ml of MEM -Alpha in T25cm
2
 culture flasks for a minimum of 2 days until 

the cells were 70-80% confluent and ready for use. All experiments using OB progenitors 

were carried out with cells that had been passaged up to an including passage 4.  
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Figure 2.1 - Calvarial osteoblast isolation: Osteoblast progenitor cultures were 

derived from the calvaria of neonatal C57BLKaLwRij mice using Collagenase I 

digestion in 4 stages (fractions) of digestion.  
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2.1.2 Cell Lines 

 

2.1.2.1 5TMM myeloma Series 

 

The 5TMM myeloma series of cell lines were used as their features in-vivo are highly 

similar to human disease wherein they home and grow in the Bone Marrow (BM), as well 

as causing osteolytic bone disease. The 5TGM1MM murine multiple myeloma (MM) 

cells were derived from the 5T33MM murine myeloma cells (Fowler, Mundy et al. 2009). 

Both 5TGM1MM-GFP and 5T33MM-GFP myeloma cells were kindly provided by 

Claire Edwards at The University of Oxford, UK.  

The 5T33MM-GFP or 5TGM1MM-GFP cells were resuspended in 200µl PBS and 

injected via tail vein into 17-19 weeks old female C57BL/KaLwRijHSD 

(C57BLKaLwRij) mice at a cell density of 2 x10
6
. At the same time naïve mice were 

injected with PBS and used as tumour-negative controls. The growth of myeloma tumour 

was via the measurement of human Igλ in murine serum monitored by enzyme-linked 

immunosorbent assay (ELISA) (Human Lambda ELISA Kit; Bethyl Laboratories Inc). 

The assay was carried out as per the manufacturer’s protocol. Briefly, 100µl of standard 

or serum was added to designated wells and the plate incubated at room temperature for 1 

hour. Next, 100 µl of anti-Lambda detection antibody was added to each well and 

incubated at room temperature for 1 hour. Proteins were incubated with 100µl of HRP 

Solution for 30 minutes followed by the addition of 100µl of TMB Substrate in the dark 

at room temperature for 30 minutes. The reaction was stopped by adding 100µl of Stop 

Solution to each well. The absorbance was measured on a plate reader (Spectramax M5, 

Sunnyvalet) at a 450 nm wavelength.  

5T33MM and 5TGM1MM mice developed myeloma within 6-12 weeks of inoculation. 

At the first signs of illness (36 days 5T33MM-bearing mice and 21 days for 5TGM1MM-

bearing mice) animals were sacrificed by injection of pentobarbitone. In sterile 

conditions, the femora and tibiae were dissected free of soft tissue and the bone marrow 

of the animals were flushed out with 1000μl PBS. The cell suspension was mixed with 

3ml Roswell Park Memorial Institute (RPMI) medium and slowly overlaid onto 4ml of a 

Lymphoprep™ (Ficoll gradient). The cells were centrifuged at 400g for 20 minutes 

without any brakes. The mononuclear layer of cells were collected and washed twice in 

RPMI media. Isolated 5T33MM or 5TGMMM cells were then cultured in a T25 flask 
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containing 3 ml of RPMI medium with the following additive; 10% FCS, 1% PenStrep, 

1% sodium pyruvate and 1% NEAA. Cells were then sorted using a murine CD138 kit 

(Milteny Biotec) according to manufacturer’s instructions. Cell were cultured for 2 days 

and then frozen as outlined in section 2.1.4. All in-vivo animal work requiring an animal-

handling licence including the paraprotein ELISA and 5TMM cell isolation from the bone 

was kindly performed by Dr Shelly Lawson.  
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2.1.2.2 SAOS2 cells 

 

Human osteoblast-like SAOS2 cell were purchased from American Type Culture 

Collection (ATCC®).  SAOS2 cells are particular useful for the study of molecular 

mechanisms associated with OB differentiation due to their OB-like phenotype. SAOS2 

cells were cultured in T75 flasks containing 12 ml of Dulbeccos Modified Eagle Medium 

(DMEM) + GlutaMAX medium with the following additive; 10% FCS, 1% PenStrep, 1% 

sodium pyruvate and 1% NEAA. SAOS2 cells were passaged or frozen when not required 

for experimental purposes, as outlined in sections 2.2.2 and 2.2.3, respectively.  

 

2.1.2.3 Human Kidney Epithelial (HK-2)  
 

Human Kidney Epithelial (HK-2) cells were purchased from ATCC®. HK-2 cells are 

immortalised proximal tubule epithelial cells isolated from normal adult human kidney. 

HK-2 cells express SOSTDC1 and were used in experiments as a positive control for 

SOSTDC1 production. HK-2 cells were maintained in Keratinocyte-SFM media 

containing L-glutamine. Keratinocyte-SFM was supplied with prequalified human 

recombinant epidermal growth factor 1-53 (EGF 1-53) and bovine pituitary extract 

(BPE). The Keraticonyte media was supplemented with 30 µg/ml of BPE, 0.2 ng/ml 

rEGF, 10% FCS, 1% PenStrep, 1% sodium pyruvate and 1% NEAA. The HK-2 cells 

were passaged or frozen when not required for experimental purposes as outlined in 

sections 2.2.2 and 2.2.3, respectively.  

 

2.1.2.4 Endothelial STR-10 cells 

 

Human endothelial STR-10 cells were purchased from ATCC®. The SRT-10 cells were 

maintained in DMEM supplemented with 10% FCS, 1% PenStrep, 1% sodium pyruvate 

and 1% NEAA. STR-10 cells were passaged or frozen when not required for 

experimental purposes as outlined in sections 2.1.2 and 2.1.3, respectively.  
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2.1.3 Cell passage and routine counting using a haemocytometer  

 

OB progenitor cultures and cell lines were maintained in their standard media and 

passaged when cell confluence had reached 70-80%. All media was removed from T25, 

T75 or T175 flasks and discarded. Adherent cells were washed with sterile PBS to 

remove debris and remaining media, and 0.05% trypsin was used to re-suspend the 

adherent cells. The volume of trypsin used to detach cells from the culture surface was 

dependent on the size of flask i.e.0.5ml for T25, 1.5ml for a T75 and 3ml for T175. 10ml 

of media was added to the trypsinised cells to neutralise the effect of trypsin.  Cell 

suspensions were transferred into a BD Falcon™ tubes and centrifuged at 1000 RPM for 

5 minutes. Non-adherent cells were transferred directly into the BD Falcon™ tubes and 

also centrifuged at 1000 RPM for 5 minutes to pellet cells. The supernatant from cell 

pellets were discarded and the cells re-suspended in 10 ml of fresh media. Approximately 

1/5 or 1/10 dilution of the cells (dilution depended on the cell density and speed that was 

required for cell growth in preparation for an experiment) were placed in fresh flasks 

containing media and maintained in culture at 37℃ and 5% CO2. Cells were routinely 

passaged every 2-4 days when they became approximately 70-80 % confluent. 

  

Routine cell counting was performed on passaged cells prior to the set-up of experiments 

or freezing down of cells, using the Neubauer haemocytometer. The Neubauer 

haemocytometer has 4 large squares consisting of 16 smaller squares, each with a volume 

of 0.1mm
3
. Each of the 4 large squares of the haemocytometer, with a cover slip in place, 

represents a total volume of 0.1 mm
3
 (1.0mm X1.0mmX 0.1mm) or 10

-4
 cm

3 
(Figure 

2.2). The marked grid within the counting chamber allowed for the number of cells to be 

estimated. 10µl of this cell suspension was mixed with 10µl of 0.4% trypan blue solution 

in a 1:1 ratio and inserted into the counting chamber of the haemocytometer. The number 

of cells in each of the 4 squares was counted manually using a counter. The number of 

cells counted was divided by 4 to equate the average number of cells per grid. The 

calculated result was then multiplied by 2 to account for the dilution factor of adding 

trypan blue and then multiplied by the total volume of the large square; x 10
-4

 cm
3
. Since 

1 cm
3
 is equivalent to approximately 1 ml, the final value obtained was representative of 

the total number of cells per ml. The final number of cells/ml was used to calculate the 

volume of cell suspension required to seed the desired number of cells with a fresh flask.  
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For example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.2 - Cells were counted using a Neubauer haemocytometer: The 

haemocytometer comprises 4 large squares consisting of 16 smaller squares, each 

with a volume of 0.1mm
3
. Each individual square from the 16 squares has a volume 

of 0.00625 mm
3
. Therefore each of the 4 large squares of the haemocytometer 

represents a total volume of 0.1 mm
3
 (1.0mm X1.0mmX 0.1mm) or 10-4 cm

3
.  

 

 

 

 

 

To calculate the number of cells in a 5ml cell suspension: 

Total number of cells counted in 4 squares: 56 cells 

Average number per square: 56/4 = 14 

X2 to account for the addition of trypan blue: = 14 x 2 

28 x 10,000 (volume of each large square 10-4 cm3) = 280,000 cells/ml 

= 280,000 cells/ml x 5ml  

= Total of 1,400,000 cells in 5ml 
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2.1.4 Cell counting using Coulter Counter 

 

The Coulter Counter technology is used for determining the number and size of cells in a 

suspension. Similar to the flow cytometer, the cell suspension is passed through a small 

aperture and cell number/size assessed by changes in the electrical conductance within the 

aperture. The coulter count was performed as described by Wood et al (Wood, Requa et 

al. 2007). Cells were harvested from culture surfaces using 0.05% trypsin as outlined in 

section 2.13 and centrifuged at 1000 RPM for 5 minutes in 50ml BD Falcon™ tubes. The 

supernatants were removed and cells were resuspended in 10ml of isotonic solution. The 

cell suspensions were transferred to plastic cuvettes and the cuvette was inserted in the 

sample holder of the counter. The counter sampled 500µl of cell suspension per run and 

recorded the cell number and modal size.  A threshold on the counter was set to only 

consider cells with a diameter of between 10 to 30µm.  The cell number within each 

sample was counted 3 times in consecutive analysis. The average of these 3 readings was 

then multiplied by 20 to account for the dilution factor (0.5ml samples from 10ml). The 

final value calculated was the estimated total number of cells within the cell suspension.  
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2.1.5 Freezing and thawing of cell cultures 

 

Cells were frozen down and maintained in liquid nitrogen until required for experimental 

purposes. OB progenitor cells were frozen down between 0-3 passages and cell lines were 

frozen down between 2-10 passages to be used when required. Briefly, adherent cells 

were washed with sterile PBS and 0.05% trypsin was used to re-suspend the adherent 

cells. Media was added to the tryspinised cells to neutralise the effect of trypsin.  Cell 

suspensions from adherent or non-adherent cultures were transferred into the BD 

Falcon™ tubes and counted using a haemocytometer as described in section 2.1.3. 

Following cell counting, 1x10
6
 cells per sample were centrifuged at 1000 RPM for 5 

minutes at room temperature. Each sample was resuspended in 1 ml of 10% dimethyl 

sulphoxide (DMSO) diluted in 90% FCS (10µl of DMSO and 90µl of neat FCS). The 

cells were transferred into cryovials and placed immediately into a Cryo 1℃ freezing 

container. The freezing container was transferred to a
 
-80°C freezer over-night and the 

vials were placed in liquid nitrogen for long-term storage.  

 

When cells were required, they were removed from the liquid nitrogen storage and 

immediately agitated at 37
o
C in a water bath to aid efficient thawing.  The cells were 

transferred into BD Falcon™ tubes containing 10 mL of pre-warmed standard media and 

centrifuged at 1000 RPM for 5 minutes. On discarding of supernatant, the pellets were re-

suspended in fresh medium and harvested into fresh, sterile flasks. Cell pellets were 

usually re-suspended into T75 flasks at a cell density of 1x10
6 

cells in ~12ml of media 

and maintained in culture at 37℃ and 5% CO2.  
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2.2 Osteoblast progenitor differentiation using osteogenic media 

 

OB progenitors were counted using a haemocytometer as outlined in section 2.1.3 and 

cultured in plates or flasks in standard MEM-Alpha media. OB progenitor cultures were 

differentiated as reported by Ecarot-Charrier et al (Ecarot-Charrier, Glorieux et al. 1983). 

Briefly, isolated OB progenitors were incubated at 37°C and 5% CO2 for 72 hours, to 

allow the cells to adhere to the culture surface in optimal conditions. Standard MEM-

Alpha osteogenic media was prepared containing; 4% FCS, 1% PenStrep, 10mM β-

glycerol and 50µg/ml L-ascorbic acid (vitamin C) according to Table 2.1. The β-

glycerophosphate was prepared to a stock solution of 1000mM diluted in distilled water 

and L-ascorbic acid was prepared in a stock solution of 50mg/ml in distilled water. The β-

glycerophosphate and L-ascorbic acid stock solutions were aliquoted and stored at -20ºC 

until use. On each occasion, the osteogenic media was prepared fresh and filtered prior to 

use using 25mm syringe filters. All future references made to standard osteogenic media 

refer to media prepared as outlined in this section unless stated otherwise.  

 

 

Table 2.1 - Preparation of standard MEM-Alpha osteogenic media. 

 

 

  

Preparation of Osteogenic Media 

INGREDIENT Final 

Concentration 

Volume from Stock (ml) to make 

500ml of osteogenic media 

L-ascorbic acid 10mM 5 

β-glycerophosphate  50µg/ml 0.5 

Alpha-MEM + 

GlutaMAX 

Neat 470 

Penstrep  1% 5 

Fungizone 1% 5 

FCS 4% 20 
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Standard MEM-Alpha media was removed from the OB progenitor cultures and cells 

were washed once with PBS. The PBS was aspirated from the cells and osteogenic media 

was added in a volume specific to the size of the well within the culture plates or size of 

the culture flasks, as specified in Table 2.2. OB progenitor cultures were differentiated in 

osteogenic media for up to 4 weeks. Osteogenic media from OB progenitor cultures were 

discarded and replaced with fresh media every three days. 

 

 

 

Table 2.2 - Volume of PBS used to wash each well or flask prior to media change. 

 

 

 

 

 

 

  

PBS Wash  Volumes 

Cell Culture Plate Volume of PBS, per well or flask 

96 well plate  100 µl 

48 well plate  250 µl 

24 well plate 500 µl 

6 well plate 1.5 ml 

T25cm Flask 7 ml 

T75cm Flask 10 ml 

T175cm Flask 20 ml 
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2.3 Alkaline phosphatase activity  

 

 

 

 

The p-Nitrophenyl phosphate (pNPP) is a soluble substrate used for the detection of 

alkaline phosphatase (ALP) activity. ALP hydrolyses colourless pNPP to a yellow 

coloured product, which is determined by reading the absorbance (OD) at 405. ALP 

activity was assayed according to the method of Kumegawa  (Kumegawa, Hiramatsu et 

al. 1983) with adaptions outlined by Gartland et al  (Gartland, Rumney et al. 2012). ALP 

assays were carried out on differentiated cells cultures in 96 well culture plates at a cell 

density of 6000cell/cm
2
. Briefly, the cell supernatant was removed from each well and the 

cells were gently washed twice with PBS, avoiding detaching the cells. Cells were then 

permeabilised with 20μl of 0.1% Triton with agitation on a shaker for 20 minutes at 200 

RMP at room temperature. At the same time, one tablet of pNPP and one of Tris buffer 

were added to 20ml of distilled water and dissolved with agitation on a shaker for 20 

minutes at 200 RMP and at room temperature. Next, 200μl of pNPP was carefully added 

to each well and immediately analysed for ALP using SoftMax Pro software on a plate 

reader. ALP was determined by taking OD readings at A405 every 5 minutes for up to 90 

minutes using the Beer-Lambert law (Figure 2.3). To maintain uniformly across 

biological experimental repeats, the most linear part of ALP curve was used to calculate 

the ALP activity of the cell cultures within each well. The ALP values were normalised to 

DNA contents (ng/ml) by PicoGreen analysis as outlined in section 2.4, taking into 

account dilution factors. 

 

  

Alkaline phosphatase Assay  

ITEMS SUPPLIER 

p-Nitrophenyl phosphate (pNPP) 

1.0mg/ml PNPP, 0.2 M Tris buffer 

Sigma Aldrich 

0.1% Triton  - 5µl of Triton X into 5ml of PBS  Sigma-Aldrich 

Plate reader Spectramax M5 Sunnyvale 
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                                                   U = (ODtl- ODt0) X V 

 

      t x ε x 

 

U = ALP activity (nmol Pi per min). 

OD t 1 = absorbance at 405 nM of sample at the end time point. 

OD t 0 = absorbance at 405 nM of sample at start (background). 

V = volume in microlitre of sample and reagent in well that is measured. 

t = reaction time in min. 

e = 17.8 m L/nM/cm for p NPP. 

l = path length of light in cm (specific to the plate reader which is 0.639). 

 

 

 

 

  

t 

OD t 1 

OD t 0 

Figure 2.3 - Alkaline phosphatase analysis:  (A) The ALP was determined by 

taking absorbance (OD) readings at A405 every 5 minutes for up to 90 minutes. The 

OD values at the most linear part of the ALP curves were used to calculate the ALP 

activity (U). (B) ALP activity was calculated using Beer-Lambert Law.  

 

 

 

 

A 

B 
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2.4 Pico Green assay 

 

 

 

PicoGreen® double-stranded DNA (dsDNA) quantitation reagent is a fluorescent nucleic 

acid stain used to quantify dsDNA and is used as a surrogate for cell number. PicoGreen 

analysis was performed according to the protocol outlined by Gartland et al. Picogreen 

assays were carried out on cells cultures in culture plates at a cell density of 6000cell/cm
2
. 

Media from cell cultures was discarded and the cells were gently washed twice with 

200µl of PBS, avoiding detaching the cells. Cells were then permeabilised with 20μl of 

0.1% Triton with agitation on a shaker for 20 minutes at 200 RMP at room temperature. 

A 2µg/ml dsDNA standard solution was prepared from a stock of 100 µg/ml dsDNA 

supplied with the PicoGreen kit. 8µl of the 100µg/ml was diluted in 392µl of 1X TE 

buffer in a 1 ml eppendorf tube.  Increasing concentrations of 0, 50, 100, 200, 400, 600, 

800 and 1000ng/ml of dsDNA standard were prepared in a fresh 96 well plate, using 

appropriate volumes of 1X TE buffer and the prepared 2µg/ml dsDNA standard (Table 

2.3). Next, 50μl of the unknown permeabilised samples were transferred into the 96 well 

culture plate, and 50μl of 1X TE buffer was added to these samples. 100μl of 1:200 

dilution of PicoGreen reagent was added to each standard and unknown sample and 

placed on a shaker at room temperature for 5 minutes in the dark. Quantitation of DNA 

was determined by exciting samples at 485nm and detecting fluorescence emission 

intensity at 530nm using the plate reader.   

PiocoGreen Reagents 

ITEM SUPPLIER 

Quant-iT™PicoGreen®dsDNA reagent  Invitrogen 

Lambda DNA standard Invitrogen 

X20 TE buffer; 200mM Tris-HCl, 20mM EDTA, pH 7.5 

1 ml X20 diluted in 19 ml of PBS 

Invitrogen 

0.1% Triton X Sigma-Aldrich 

Plate reader Spectramax M5 Sunnyvale 
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Plate well Final DNA 

Concentration 

(ng/ml) 

Volume of  

2 µg/ml DNA 

standard (µl) 

Volume of X1 TE 

Buffer (µl) 

A1 +A2 0 0 100 

B1+ B2 50 2.5 97.5 

C1 + C2 100 5 95 

D1 + D2 200 10 90 

E1+ E2 400 20 80 

F1 + F2 600 30 70 

G1 + G2 800 40 60 

H1 + H2 1000 50 50 

 

Table 2.3 - Preparation of dsDNA standard curve for PicoGreen analysis. 

 

 

The fluorescence readings were exported into an Excel template and used to generate the 

linear regression analysis with coefficient of determination (R
2
). The concentration 

(ng/ml) of DNA for unknown samples were extrapolated from the standard curve linear 

regression using the formula Y = a + bX; where each point on the line has a Y value that 

is calculated by multiplying the point’s X value by ‘b’ (slope of the line) and then adding 

‘a’ (distance of the line’s intercept).  The line of best fit was plotted through 0 at the 

intercept (a=0). The R
2 

was used as a measure of the consistency of prepared standard 

dilutions. The extrapolated concentration of the unknown ‘X’ was multiplied by 4 to 

account for the dilution factor of the DNA within each well (100µl of PicoGreen reagent 

+ 50µl TE for every 50µl of DNA sample) (Figure 2.4).  
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For example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Known DNA Standard (ng/mL) 

 0 50 100 200 400 600 800 1000 

Fluorescence  6 68 122 217 430 627 817 961 

  5 62 112 212 408 597 771 930 

Average 5 65 117 215 419 612 794 946 

Figure 2.4 - Cell DNA contents were determined using PicoGreen analysis: 

PicoGreen® double-stranded DNA (dsDNA) quantitation was used to quantify the 

concentration of total dsDNA (ng/ml) of unknown samples. DNA for unknown 

samples were extrapolated from the DNA standard curve using the linear regression 

formula Y = a + bX. 

 

 

 

The DNA contents (ng/ml) of unknown samples with a fluorescent reading of 500 

can be determined using the above calculated linear regression data from the 

standard curve: 

 

Y=  a + bX 
Y= 500 

a = 0 

b = 0.982 

X = 500 / 0.982 

X = 509.2 ng/ml 

  

Final concentration of unknown sample taking into account the dilution factor: 

= 509.2 x 4 

= 2039 ng/ml 
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2.5 Mineralisation  

 

Osteoblasts produce an extracellular collagenous matrix that subsequently becomes 

mineralised by hydroxyapatite deposition (Coelho and Fernandes 2000, Jiang, et al 2013, 

McQuillan, et al 1995). Ascorbic acid promotes collagen secretion and serves as a 

cofactor for prolyl hydroxylase which catalyses the hydroxylation of proline residues, 

integral to the stability of the collagen triple helix (Franceschi, et al 1994, Murad, et al 

1981). Ascorbic acid also upregulates osteoblastic ALP and osteocalcin genes expression 

(Franceschi, et al 1994, Rickard, et al 1994). Inorganic phosphates initiate mineralisation 

by providing a source of phosphates to OB cells for the formation of hydroxyapatite.   

OB progenitor mineralisation was assessed using Alizarin red staining, an anthraquinone 

dye that binds to mineral deposits as confirmed by energy dispersive X-ray spectroscopy 

(Chang, et al 2000). OB progenitors were seeded in 48 well plates at a cell density of 

6000cm
2
 and cultured in 250µl per well of standard MEM-alpha media for 72 hours. OB 

Cultures were differentiated in standard osteogenic Alpha-MEM media containing 4% 

FCS for up to 21 days. Osteogenic media was replaced from the OB cultures every 3 

days. Mineralisation was assessed on various time points throughout differentiation. On 

these time points, the OB cultures were washed with 500µl of PBS and fixed in 100% 

ethanol for 1 hour on ice. To stain for mineral deposits, the wells were washed with PBS 

and incubated with 1% Alizarin red stain for 20 min on an orbital shaking platform. 

Excess stain was washed water until water ran clear. Stained cultures were also washed 

once with 200µl of 95% ethanol and plates air-dried overnight. The culture plates were 

scanned on a flatbed scanner and the percentage area of mineralisation per well was 

quantified using ImageJ (http://imagej.nih.gov/ij/). Values were expressed as a percentage 

response of the control.  

 

 

 

 

 

  

http://imagej.nih.gov/ij/
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2.6 Cell protein extraction  

 

 

 

 

Protein was extracted from cultured cells for protein quantification and subsequently 

western blotting analysis. Mammalian cell lysis buffer was prepared according to Table 

2.4; 1ml of mammalian cell lysis buffer was prepared and 1/100 dilution of protease 

inhibitor cocktail was added immediately prior to cell lysing procedure. For 

phosphorylation studies, 1/100 dilution of phosphatase inhibitor cocktail was also added 

to the lysis buffer. Cells were initially counted to establish cell number using the 

haemocytometer counting protocol outlined in the method section 2.1.3.  

 

 

 

Table 2.4 - Preparation of mammalian cell lysis buffer. 

  

Cell protein extraction 

ITEM SUPPLIER 

Mammalian cell lysis buffer kit Sigma-Aldrich 

Protease inhibitor cocktail Sigma-Aldrich 

Phosphatase inhibitor cocktail  2 Sigma-Aldrich 

Mammalian cell lysis buffer  

INGREDIENT Quantity 

Mammalian cell lysis buffer (kit): 

5X buffer Tris-EDTA  

5X Deoxycholic acid sodium salt  

5X Igepal CA 630  

5X Sodium dodecyl sulphate (SDS)  

5XSodium chloride 

 

1ml 

Protease inhibitor cocktail  10µl 

Phosphatase inhibitor cocktail  2: 

Sodium orthovanate 

Sodium molybdate 

Imidazole 

 

10µl 
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Media containing non-adherent cells were transferred into BD Falcon™ tubes and cells 

pelleted by centrifugation at 2000 RPM for 3 minutes. Media was removed from the cell 

pellets and pellets resuspended in 1ml of ice cold PBS. The PBS solution containing 

resuspended cells were transferred into 1.5ml eppendorf tubes and cells centrifuged for 

1000 RPM for 5 minutes. PBS wash was removed from cell pellets. Lysis buffer was 

added to cell pellets and the cell/lysis buffer solution vortexed for 2 minute to ensure 

membranes had sheared. The volume of lysis buffer added was dependent on the number 

of cells counted before seeding. Generally for every 500,000 cells, 100µl of lysis buffer 

was added to the cell pellets. After the vortex mix, eppendorfs containing cells/lysis 

buffer were placed on ice on an orbital shaker and agitated at 500 RPM for 30 minutes.  

 

Adherent cells cultured in 6 well culture plates containing adherent cells were placed on 

ice and the media removed carefully and quickly as to not disturb the cells. Cells were 

washed once with 1ml of ice cold PBS and lysis buffer added one well at a time. Based 

on proliferation assays, it was estimated that following cell seeding at a density of 6000 

cell/cm2 and at around 8 days in culture, each well within a 6 well plate contained 

approximately between 400,000 to 500,000 cells. 100µl of lysis buffer was added to each 

well and adherent cells were scraped off well surface using a plastic cell scraper one well 

at a time. The lysed cell solutions were transferred into 1.5ml eppendorfs and vortexed for 

2 minute to ensure membranes had sheared. Samples were placed on ice on an orbital 

shaker and agitated at 500 RPM for 30 minutes. 

 

Cells cultured in large T75 flasks were detached from the plastic surface by trypsination 

and resuspended in 1ml of ice cold PBS and counted using a haemocytometer as outlined 

in method section 2.1.3. Cell suspensions were transferred into 1.5ml eppendorf tubes 

and cells centrifuged for 1000 RPM for 5 minutes. PBS wash was removed from cell 

pellets and lysis buffer added. The volume of lysis buffer added to the cell pellet was 

dependent on the number of cells counted before seeding; in general the T75 flasks 

containing proliferating cells that were cultured for 8 days contained approximately 

1.5x105 cells and were therefore lysed with 300µl of lysis buffer. Eppendorfs containing 

cell/lysis buffer solution were vortexed for 2 minute to ensure membranes had sheared 

and placed on ice on an orbital shaker and agitated at 500 RPM for 30 minutes.  
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Cell lysates were centrifuged at 13,000 RPM for 15 minutes at 4ᴼC to remove any cell 

debris from the protein solution. The purified protein containing supernatants were 

transferred into fresh eppendorf tubes and the pellets discarded. A small volume (10-

20µl) of lysate was retained to perform protein assay and the remnants aliquoted to avoid 

protein degradation as result of freeze thawing. Protein lysate aliquots were either stored 

at -20ᴼC or diluted in Laemmli buffer in preparation for western blotting (section 2.8).  
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2.7 Bicinchoninic acid protein quantification assay  

 

 

 

Bicinchoninic acid (BCA) protein assay was performed to measure the concentration of 

protein in each sample. Copper (Cu2+) ions were added to the sample and consequently 

reduced to Cu1+ ions by the peptide bonds in the protein. As a result, the greater the 

amount of protein in the sample the greater the amount of Cu1+ ions present. Two 

molecules of BCA chelate with each Cu1+ ions and result in a green to purple colour 

product that strongly absorbs light at 563nm wavelength. At higher temperatures of 

around 37°C to 60 °C, peptide bonds stimulate the formation of the reaction product 

(Olson and Markwell 2007).  

 

BCA was prepared by diluting Copper II sulphate (CuSO4) 1:50 in BCA (for one 96 well 

plate, 250μl of CuSO4 was added to 12.25ml of BCA). A stock solution of 1000μg 

Bovine Serum Albumin (BSA) was prepared from 7.5% BSA; 10µl of 7.5% BSA was 

diluted in 740µl of distilled water. Next, 7.4% BSA and cell lysis buffer were combined 

to obtain 1000, 800, 600, 400, 200, 100 and 0μg/ml of BSA as outlined in Table 2.5. 10μl 

of each BSA concentration was added to duplicate columns A and B on a 96 well culture 

plate. Unknown samples were diluted with lysis buffer and 10μl of each sample was also 

added to duplicate columns on a 96 well plate.  

 

  

Bicinchoninic acid protein assay 

ITEMS SUPPLIER 

Mammalian cell lysis buffer Sigma-Aldrich 

7.5 % Bovine serum albumin (BSA) Sigma-Aldrich 

Bicinchoninic acid (BCA) solution In-house 

Copper (II) sulphate solution (4%) Sigma-Aldrich 

Plate reader Spectramax M5 Sunnyvale 
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Table 2.5 - Preparation BSA standards ranging from 0 to 1000µg for the BCA assay. 

 

 

200μl of BCA/Copper II sulphate solution was added to each well. BCA assay was 

performed at 37ᴼC in an incubator for 30 minutes. Colour change was quantified on a 

plate reader and values extrapolated standard protein solution. The absorbance was read 

at 562nm using a plate reader (Spectramax M5) and compared to the standard curve. 

Values from the standard curve were exported into Graphpad software (Prism V5) and 

un-known values extrapolated. Calculated values gave a standard amount of protein per 

sample (mg/ml). Based on the concentrations calculated, all protein samples within an 

experiment were diluted with lysis buffer to same concentration so limit any variability as 

a result of protein loading during western blot analysis.  

 

 

 

 

 

 

 

  

BSA standard curve for BCA assay 

BSA Concentration 

(μg) 

BSA Volume 

(μl) 

Lysis Buffer Volume 

(μl) 

1000 10 0 

800 8 2 

600 6 4 

400 4 6 

200 2 8 

100 1 9 

0 0 10 
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2.8 Western blot 

 

 

  

Western blotting   

EQUPTMENT SUPPLIER 

Mini PROTEAN electrophoresis system Bio Rad  

Mini Trans-blot cell Bio Rad  

Filter paper  Sigma-Aldrich 

Kodax Biomax MS film Sigma-Aldrich 

Gel Doc XR+ System and the Quantity One 

software 

Bio Rad  

GS-710 Calibrated imaging densitometer  Bio Rad 

Curix 60 film processor Curix, AGFA 

REAGENT SUPPLIER 

Molecular weight marker Bio Rad 

ß Mercaptorethanol Sigma-Aldrich 

Glycerol Fisher 

Bromophenol blue National Diagnostics 

ProtoGel resolving buffer -  0.4 M Tris-HCl, 0.1% 

SDS, pH 8.8 

National Diagnostics 

ProtoGel stacking buffer 1.0M Tris-HCL pH6.8 Life Sciences 

Sodium dodecyl sulphate (SDS) Sigma-Aldrich 

30% Acrylamide Geneflow, LTD 

Ammonium persulfate (APS) Sigma-Aldrich 

TEMED Sigma-Aldrich 

Bovine serum albumin (BSA)  Sigma-Aldrich 

SuperSignal*West Dura chemiluminescent substrate Thermo-scientific 

Methanol  Sigma Aldrich 

Ethanol VWR International 

Skimmed milk powder Marvel 

0.05% PBS Tween  In-house 

PBS tablets Oxoid 

Tween X20 VWR International 
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Western blotting is a technique used to identify and locate proteins based on their ability 

to bind to specific antibodies against these proteins. The proteins within a sample are 

separated using polyacrylamide gel electrophoresis (PAGE), where polyacrylamide gels 

and buffers are loaded with sodium dodecyl sulfate (SDS). SDS-PAGE maintains 

polypeptides in a denatured state once they have been treated with strong reducing agents 

to remove secondary and tertiary structures and allows separation of proteins according to 

their molecular weight. 

 

2.8.1 Sample preparation  

 

Protein samples (either recombinant protein or cell lysate) were mixed with 5X Laemmli 

buffer, one part buffer and four parts sample, in 0.5ml eppendorf tubes according to 

Table 2.6. Protein sample and buffer solutions were mixed by vortex and briefly pulsed 

in a microcentrifuge. Protein samples were denatured for 5 minutes at 96⁰C on a hot 

block. Boiled samples were maintained on ice until the gel loading stage. Denatured 

protein samples were aliquoted into 0.5ml eppendorfs and frozen at -20ᴼC. 

 

 

 

 

 

Table 2.6 - Preparation of 5X Laemmli loading buffer 

 

 

 

  

5X Laemmli loading buffer  

INGREDIENT Quantity 

SDS 2g 

0.5M TrisHCl pH 6.8+ 0.4% SDS  2.13ml 

ß Mercaptorethanol 2.56ml 

Glycerol 5.0ml 

Bromophenol blue 0.1g 
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2.8.2 SDS-PAGE and protein migration  

 

For each experiment, two SDS gels were prepared constituting of a separating gel layer 

and stacking gel layer. The separating gel ingredients were combined in a 50ml BD 

Falcon™ tube according to Table 2.7 and TEMED was added last to initiate the 

polymerisation reaction. The combined ingredients were mixed by vortexing the 

separating gel solution for 1 minute. Immediately the separating gel was cast between two 

glass plates. To maintain an even gel level and inhibit gel dehydration, 70% ethanol was 

added covering approximately 0.5cm of the top of the separating gel. Once the separating 

gel had set, all traces of the ethanol were removed by washing the gel three times using 

distilled water. All traces of water were removed by inserting a flat resorbing paper 

between the casting classes.  

 

 

 

Table 2.7 - Preparation separating gel solution for 1 gel. 

 

The ingredients for the stacking gel were combined according to Table 2.8. TEMED was 

added to the stacking gel solution last, and the solution mixed by vortex for 1 minute. The 

stacking gel solution was poured immediately to the top of the separating gel and 8, 10 or 

15 plastic tooth combs were inserted between the casting glass plates into the separating 

gel to create wells for loading of protein samples. The gels were allowed to set 

completely, usually requiring 15-20 minutes and the combs were removed.  

  

Separating  gel  

INGREDIENT 12% 10% 

                Volume (ml) 

Distilled water 3.35 4.05 

Resolving buffer 2.5 2.5 

10% SDS 0.1 0.1 

30% Acrylamide 4.0 3.3 

10% APS 0.05 0.05 

TEMED 0.05 0.05 
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Table 2.8 - Preparation stacking gel solution for 1 gel. 

 

 

The glass casting plates were placed into an electrophoresis tank. The central portion of 

the tank were the gel was placed, was filled with cold X1 running buffer and the buffer 

allowed to overflow into the tank to ensure bubbles did not interfere with the 

electrophoresis. Each tank required approximately 1 Litre of buffer. Each gel was loaded 

with 5-100µg of protein sample and 5µl of a 10-250kD horse radish peroxidase (HRP)-

conjugated molecular marker was pipetted into the first (and sometimes last) lane of each 

gel. For the migration of proteins, samples were run through the stacking gel for 45-60 

minutes at 60 Volts per gel at room temperature and further run through the separating gel 

for a further 60-120 minutes at 100 Volts. 

 

 

 

Table 2.9 - Preparation of 1 litre of 10X running buffer. 

  

Stacking  gel  

INGREDIENT Volume (ml) 

Distilled water 6.1 

Stacking buffer 2.5 

10% SDS 0.1 

30% Acrylamide 1.3 

10% APS 0.1 

TEMED 0.01 

10 X Running buffer  

100ml added to 900ml distilled H20 for X1 working solution 

INGREDIENT Amount 

Distilled water 500ml 

0.25M Tris 15.13g 

0.2M Glycine 75.05g 

1% SDS 5g 
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2.8.3 Transfer 

 

Following protein migration, the stacking gels were cut off from the remainder of the gel 

and discarded. The separating gel was carefully dislodged from the glass pane. An 

arrangement constituting of a scouring pad, two pieces of cellulose blotting paper and a 

piece of polyvinylidene fluoride (PVDF) membrane previously soaked in methanol for 20 

seconds, were placed within an open transfer cassette. The gel was placed onto the PVDF 

membrane (marker facing top left of membrane). The PVDF membrane was cut slightly 

on the left upper corner to indicate the position of the first lane containing protein sample. 

The PVDF membrane was sandwiched with another two pieces of cellulose blotting paper 

and a scouring pad. The cassette was closed firmly and placed into an electrophoresis 

tank. The tank was then filled with 1 Litre of 1X transfer buffer, prepared according to 

Table 2.10. The transfer buffer was kept cool using an ice pack, which was placed at one 

side of the tank. A magnetic stirrer was also placed in the centre of tank to distribute the 

temperature within the tank and also stir the buffer solution.  Membranes were blotted at 

70V for 60-70 minutes (depending on the size of the protein) at 4ºC in a cold room.  

 

 

 

Table 2.10 - Preparation of 1 litre of 10X transfer buffer. 

 

 

 

 

 

  

10 X Transfer buffer  

100ml added to 900ml distilled H20 for X1 working solution 

INGREDIENT Amount 

Distilled water 500ml 

20% Methanol  100ml 

0.25M Tris 15.13g 

0.2M Glycine 75.05g 
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2.8.4 Blocking and immunological detection 

 

Each membrane was removed from the transfer cassettes and placed in 20ml of 5% milk 

blocking solution for 1 hour on an orbital shaker at room temperature. Probing with 

primary antibody varied depending on the antibody being used. Primary antibody was 

added in the membrane blocking solution and either incubated overnight at 4ºC or for 2 

hours at room temperature. Each membrane required at least 10ml of primary antibody 

solution to be submerged completely and evenly in flat square polystyrene containers. 

The primary antibody was removed and the membrane was washed 3 times in 0.05% 

PBS-Tween, for 20 minutes per wash on an orbital shaker at room temperature. Next, 

membranes were incubated with secondary antibody prepared in 5% milk for 1 hour on 

an orbital shaker at room temperature. Membranes were washed again with 0.05% PBS-

tween X3 20 minute washes.  

 

 

 

 

 

 

 

 

 

Table 2.11 - Preparation of 0.05%PBS-Tween washing buffer and 5% milk blocking 

solution.  

 

The detection method for protein is dependent on the enzyme to which the secondary 

antibody is conjugated. HRP is the most common enzyme used in western blotting, and 

the substrate used for detection is known as chemiluminescent substrate (Figure 2.4). For 

visualisation of bands, the membranes were incubated in the dark for 5 minutes with 

Supersignal West Dura chemiluminescent substrate made from equal volumes of 

peroxidase and enhancer mixed together. Blots were developed in a dark room on 

photographic paper using an automated film processor. Protein bands on X-ray films were 

inspected using the GS-710 Calibrated imaging densitometer and the Quantity One 

software. 

0.05% PBS-Tween washing buffer  

INGREDIENT Quantity 

Distilled water 2L 

PBS tablets 20 Tablets 

Tween X20 1ml 

5% Milk blocking solution  

INGREDIENT Quantity 

Skimmed milk 

powder 

5g 

0.05% PBS Tween  100ml 
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2.8.5 Membrane stripping 

 

Antigens on the membranes were ‘stripped’ of their primary and secondary antibody 

complexes using a mild stripping buffer according to the Abcam® protocol. Membrane 

stripping was performed for the detection of multiple proteins on the same blot, for 

instance a protein of interest and a loading control. In brief, the stripping buffer was 

prepared according to Table 2.12 and adjusted to pH 2.2. Each membrane was incubated 

with 10ml of stripping buffer for 10 minutes on an orbital shaker. The buffer was 

discarded and the membrane washed twice with 10ml of PBS followed by one wash with 

0.05% PBS Tween. The membrane was then blocked in 5% milk solution as outlined in 

section 2.8.4.  

 

 

 

 

 

 

 

 

Table 2.12 - Preparation of 1 litre of mild stripping buffer.   

Stripping buffer  

 

INGREDIENT Quantity 

Distilled water  1 L 

Glycine 15 g 

SDS 1 g 

Figure 2.5 - Diagrammatic 

representation of 

immunological protein 

detection using 

chemiluminescent substrate 

in western blot: Anti-antigen 

IgG antibody binds to its specific 

antigen which is bound to the 

blot. The species-specific 

secondary HRP-conjugated 

antibody binds to the protein-

primary antibody complex. A 

HRP chemiluminescent substrate 

is introduced to the complex 

which is bound to the blot, and 

the emitted X-ray light is 

captured on film.  
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2.9 Flow cytometry  

 

 

 

 

Flow cytometry is a quantitative method used for the analysis of various parameters 

including cell surface expression, detection of intracellular molecules and characterisation 

of different cells types within a heterogeneous cell population. Flow cytometry enables 

simultaneous analysis of single cells by measuring the fluorescence intensity produced by 

fluorescent labeled antibodies that are specific for the molecule of interest. Cells are 

pushed through a fluidic system in a monolayer and several prisms and lenses direct a 

laser light to the cuvette where it intercepts with the cells. It is at this point that the 

information associated with the fluorescence and scatter of each individual cell can be 

obtained. Light scattered in the forward direction is collected by the Forward Scatter 

Channel (FSC) photodiode and provides information on the cells relative size. Light 

measured at a 90° angle to the excitation beam of the laser is collected by the Side Scatter 

channel (SSC) photomultiplier tube (PMT) and is used as a measure of the relative 

granularity of the cell. Fluorescent light associated with a cell is detected by individual 

fluorescence channels (FL). The data generated is either plotted in a single dimensional 

histogram or in a two-dimensional dot plot or in some cases, in three dimensions. Based 

on fluorescence intensity, the regions on plots can be separated using subset extractions or 

‘gates’.   

 

  

Flow Cytometry    

ITEM SUPPLIER 

Formalin solution Sigma Aldrich 

Bovine serum albumin (BSA)   Sigma-Aldrich 

FACS perm buffer BD Phospflow 

Triton X Invirtrogen 

BD Falcon™ round bottomed flow cytometry tubes BD Biosciences  

BD FACSCalibur™ platform  and Cell Quest software BD Biosciences 
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Flow cytometry was used to determine the presence of specific proteins in cells cultures. 

Cells were seeded at a density of 6000cm
3
/ml in T25 or T75 flasks. Media was removed 

from the cell cultures. The cells in T25 flasks were washed with 5ml of ice cold PBS and 

cells cultured in T75 flasks were washed with 10ml of ice cold PBS. Adherent cell 

cultures were detached from the plates or flask surface by trypsinisation as outlined in 

section 2.1.3. Adherent cells were resuspended in 1ml of ice cold PBS in 1.5ml 

eppendorfs, transferred to 1.5ml eppendorfs and chilled on ice. Non-adherent cell cultures 

were centrifuged at 2000 RPM for 3 minutes and the supernatant discarded. The cell 

pellets were resuspended in 1ml of ice cold PBS in 1.5ml eppendorfs and chilled on ice.  

 

The cell pellets resuspended in PBS were centrifuged at 2000 RPM for 3 minutes on a 

bench-top microcentrifuge. The supernatant was discarded and cells fixed with 300μl of 

4% Formalin per 1x10
5 

cells for 10 minutes at room temperature in the dark on a rotator. 

Cells were washed twice in 1ml of PBS (washing refers to the addition of PBS followed 

by centrifugation at 2000 RPM for 3 minutes). Cell pellets were re-suspended in 0.1% 

Triton-X to permeabilise membranes for 10 minutes at room temperature in the dark on a 

rotator. Cells were washed twice with PBS to remove all traces of fixative and detergent. 

Cells were then blocked in 10% normal serum originating from the species in which the 

secondary antibody was produced. The 10% normal serum was made up in 0.5% BSA 

solution and cell pellets were blocked in 300µl serum per 1x10
5
 cells in the dark for 30 

minutes at room temperature. Cells were washed twice with PBS. Supernatant was 

removed thoroughly by inversion on an absorbent paper surface to remove all liquid. 

Pellets were resuspended in 40μl of X1 Sample Perm buffer and 20μl of this cell 

suspension was transferred to another tube. Each of the 20μl cell suspensions was 

incubated with either 100µl of primary antibody or 100µl of isotype control antibody (at 

the same concentration of as the primary antibody) made up in 3% BSA for 30 minutes in 

the dark. Cell suspensions were washed twice with PBS ensuring all the liquid was 

removed completely following the final wash. The cell pellets were resuspended in 100μl 

of species-specific biotinylated secondary antibody and incubated in the dark for 30 

minutes. Cells were washed twice in PBS and 300μl of X1 Sample Perm buffer was 

added to cells. The cells were centrifuged at 2000 RPM for 3 minutes and re-suspended in 

300μl of Sample Perm buffer. Samples were transferred to flow cytometry tubes prior to 

analysis. Flow cytometric analysis was performed using the BD FACSCalibur™ platform 

and the data analysed using the Cell Quest software. Cells of interest were sorted through 
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three modes of scatter plot; FSC vs SSC, single color vs. SSC and a two-colour 

fluorescence plot. GFP-cells were detected through FL4 fluorescence channel and all 

other through the FL2 fluorescence channel. Analysis of results was carried out by gating 

around the viable cells and the presence of the protein of interest was detected through 

comparison with isotype antibody staining. The threshold for the isotype controls were set 

at >1% on the scatter plots. The same gating used for the isotype controls were copied 

and pasted onto the scatter plots of corresponding samples. 

 

2.10 Cell sorting  

 

Flow cytometers are capable of sorting cell populations of purified cells with specific 

characteristic from mixed cell populations. The stream of cells, which have been passed 

though the sheath fluid and are required for sorting, are passed through a narrow vibrating 

orifice. This results in the breakup of the cell steam into droplets containing cells. The 

period of time between the cells passing through the laser as a stream and then as 

droplets, is regulated. The cells of interest within the droplets become charged and 

subsequently flow through high-voltage deflection plates. The charged droplets are 

deflected appropriately into a collection vessel and any uncharged droplets are disposed 

into the waste container. Co-cultures were separated into their individual populations 

using the FACS Aria Cell sorter. Cells were cultured alone or co-cultured with a different 

cell type. Media was removed from the cells cultured in T25 or T175 and the cells 

washed once with 5ml or 10 ml of PBS, respectively. Adherent cell cultures were 

detached from the culture surface by trypsinisation as outlined in section 2.1.3. Cell 

pellets were resuspended in 1ml of PBS. Non-adherent cell cultures were transferred from 

the culture flasks into BD Falcon™ tubes and centrifuged at 2000 RPM for 3 minutes. 

The supernatant was discarded and the cell pellets were resuspended in 1ml of PBS. 

Protein and RNA were isolated from sorted samples as outlined in sections 2.5 and 2.12, 

respectively. 
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2.11 Immunofluorescent microscopy  

 

 

 

Immunofluorescent microscopy is performed to detect the presence of proteins of interest 

in microbiological samples with the use of a fluorescent microscope. This technique uses 

the specificity of antibodies to their antigen to target fluorescent dyes to specific 

biomolecule targets within a cell, allowing the distribution of the target molecules within 

a sample to be visualised. Immunofluorescence is a widely used example of 

immunostaining which effectively makes use of fluorophores to visualise the location of 

the antibodies. 

 

Immunofluorescent microscopy was performed to determine the presence of specific 

cellular intracellular and extracellular proteins. Non-adherent cells were attached to the 

surface of culture plates using sterile tissue culture grade Poly-L-lysine polymer reagent. 

The culture surface was aseptically coated with 1.0 mL/25 cm
2
 of the Poly-L-lysine, with 

gentle rocking to ensure even coating of the culture surface and aspirated after 5 minutes. 

The culture surface was thoroughly rinsed using sterile tissue culture grade water. The 

culture surface was allowed to dry thoroughly for 4 hours before introducing cell cultures. 

Cells were cultured at the same cell density of 6000cm
2
 in 8 well slide chambers (BD 

Falcon
TM

), 24 or 48 well plates. Media was removed from the adherent cell cultures and 

the cells washed once with 1ml of ice cold PBS (washing refers to the addition of PBS to 

Immunofluorescent microscopy 

REAGENTS  SUPPLIER 

Poly-L-lysine Sigma-Aldrich 

Sterile distilled water In-house 

Formalin solution, neutral buffered Sigma Aldrich 

Triton-X Invirtrogen 

DAPI in mounting reagent Duolink 

Glass cover slips  Menzel-Glasser 
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the cell cultures and removal of PBS). The cell cultures were fixed with 4% Formalin for 

10 minutes at room temperature in the dark. Cells were washed twice in 1ml of PBS and 

cell membranes were permeabilised using 0.1% Triton X for 10 minutes at room 

temperature in the dark. The volume of PBS, fixative and permeabilisation reagent was 

dependent on the well size/cell density (Table 2.13).  

 

 

 

 

Table 2.13 - The volume of PBS, fixative and permeabilisation reagent used in 

immunofluorescence microscopy were dependent the size of each well within the 

culture plate.  

 

 

Cells were washed twice with PBS to remove all traces of fixative and detergent. Non-

specific antigen-antibody binding in cell cultures was minimized by using 10% normal 

serum diluted in 0.5% BSA solution. The normal serum used originated from the species 

in which the secondary antibody was produced. Cell cultures were blocked in 10% 

normal serum in the dark for 30 minutes at room temperature on a shaker. The blocking 

solution was removed from cell cultures and the cells incubated with a primary antibody 

specific to the antigen of interest or an antibody isotype control.  

 

Unconjugated antibodies were made up (concentrations optimised) to the required 

concentrations in 3% BSA solution. Depending on the size of the plate/chamber, cells 

were incubated with 200-500µl of unconjugated primary/isotype antibody over night at -

4ᴼC. Cell cultures using a biotinylated-primary antibody system (no secondary antibody 

required) were incubated with the antibody for 1 hour at room temperature in the dark. 

The culture plates were wrapped in parafilm to prevent evaporation and cell dehydration. 

The cell cultures were washed twice with PBS for 3 minutes on a rotator.  

 

Cell culture plate Volume of PBS, 4% formalin and 0.1 

Triton X per well  

8 well slide chamber  200µl 

24 well plate 500µl 

48 well plate 300µl 
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Cell cultures that had been stained with an unconjugated primary/isotype antibody were 

incubated with biotinylated secondary antibody prepared in 3% BSA for 1 hour at room 

temperature in the dark on a rotator. The cell cultures were washed twice with PBS for 3 

minutes on a rotator. All PBS was removed completely from the cell cultures and one 

drop of DAPI mounting reagent added to visualise nuclear staining. Slides and wells were 

mounted with coverslips and cellular staining observed by the Leica DM16000 Inverted 

microscope and analysed by corresponding AF6000LX software. The DAPI blue staining 

was visualised through filter cube A4, far-red APC staining visualised though filter cube 

Y5 and the green staining via the L3 filter. To allow for direct comparisons between the 

isotype control and positive staining, images were captured at the same exposure, gain 

and intensity setting within each experiment. 
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2.12 Immunohistochemistry  

 

 

 

 

Immunohistochemistry is the technique used for the detection of antigens within cells of a 

tissue section using the principle of specific antibody-antigen interaction. 

Immunohistochemical staining is widely used in basic research to establish the 

distribution and localization of biomarkers in biological tissue. Antibody-antigen 

interactions can be visualised using an antibody-conjugated enzyme, such as peroxidase, 

which catalyses a colour-producing reaction. Immunohistochemistry analysis was 

performed according to Nakane et al (Nakane and Pierce 1966) with protocol 

modifications proposed by Clausen et al (Clausen, Blish et al. 2011).  

 

In brief, tissue fixation, embedding and processing were performed by our in-house Bone 

Analysis Laboratory facility. Briefly, tissue sections were fixed in paraformaldehyde 

(PFA) and decalcified for 7 days, with solution change every 3 days. The tissue sections 

were processed through graded alcohol solutions ad xylene overnight. Sections were 

embedded longitudinally in paraffin wax contained in a square mould, according to 

embedding machine manufacturer’s instructions. The tissues were cut in 3µm thick 

sections at 2 levels 50µm apart, using a rotatory microtome (Leica Microsystems) and 

Immunohistochemistry  

ITEMS SUPPLIER 

Ethanol  VWR 

Xylene  VWR 

Haematoxylin solution Merck  

1% Eosin solution VWR 

Trypsin enzyme digestion kit  Menarini Diagnostics 

Formalin solution, neutral buffered Sigma Aldrich 

Hydrogen peroxide 30%  Suprapur® 

DAB substrate-chromogen system Vector 

Glass cover slips  Menzel-Glasser 

Aperio® ScanScope slide scanner  Leica Biosystems 

Microscope  DMI4000 Leica Biosystems 

http://en.wikipedia.org/wiki/Peroxidase
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mounted on positively-charged Superfrost®PLUS slides. When required for 

immunohistochemical analysis, the tissue sections were first de-waxed by immersing the 

tissues in various solvents solutions in 5 steps for 4 minutes per step; xylene, xylene, 99% 

ethanol, 99% ethanol, 95% ethanol and 70% ethanol. Tissue sections were hydrated in 

running water for 2 minutes.  

 

A humid environment was prepared for tissue sections by moistening 

immunohistochemistry staining slide trays with distilled water. Heat-activated antigen 

retrieval was performed using 1:3 dilution of trypsin enzyme. The Trypsin was pre-heated 

in a 37ºC incubator for 30 minutes. Tissue slides were placed in the pre-moistened 

staining slide trays and 100µl of trypsin placed on each tissue section for 10 minutes at 

room temperature. Tissue sections were placed in staining racks containing PBS and 

placed on a rotator for 3 minutes. The PBS was discarded and tissue slides submerged in 

fresh PBS and washed again for 3 minutes. The tissue slides were removed from the 

staining racks and returned to the staining tray. The slides were tapped to discard any 

remaining PBS. A wax isolator pen was used to circle the area around the tissue, creating 

a reservoir surrounding the tissue.  

 

Tissue sections were incubated with 100µl of 3% hydrogen peroxide for 30 minutes at 

room temperature. The tissue sections were placed into staining racks containing PBS and 

washed twice. Sections were placed back in the staining trays and blocked with 100µl of 

10% normal serum blocking solution for 30 minutes at room temperature. The species 

from which the normal serum originated was dependent on the species from which the 

secondary antibody was produced. Unconjugated antibodies were made up 

(concentrations optimised) to the required concentrations in 3% BSA solution.  

 

Tissue sections were tapped gently on absorbent paper to remove blocking serum and 

then incubated with 100µl of unconjugated primary/isotype antibody over night at -4ᴼC. 

The tissue sections were placed into staining racks containing 0.05% PBS-Tween. 

Sections were washed twice for 3 minutes per wash on a rotator. Secondary biotinylated 

antibody was made up in normal serum to an optimal concentration. Sections were 

replaced into staining trays and incubated with 100µl of 1:500 dilution of secondary 

biotinylated antibody. The tissue sections were placed into staining racks and washed 

twice with 0.05% PBS-Tween for 3 minutes per wash on a rotator. To enhance antibody-



74  

 

antigen detection, sections were placed back in the staining trays and incubated with 

100µl of 1:300 Streptavidin solution for 30 minutes at room temperature. Sections were 

washed twice with 0.05% PBS-Tween for 3 minutes per wash on a rotator.  

 

Antibody-antigen specific staining was developed with DAB chromogen as per supplied 

kit; 1 drop of DAB was placed into 1ml of DAB buffer. Tissue sections were incubated 

with 100µl of the DAB solution for 5 minutes in the dark at room temperature. The tissue 

sections were placed into staining racks and washed under tap-water for 5 minutes. Tissue 

sections were counterstained with Gills haematoxylin for approximately 20 seconds and 

excess stain removed by washing sections gently under running tap water for 2-3 minutes.  

 

The tissue sections were dehydrated in solvent in consecutive steps; 70% ethanol for 12 

seconds, 95% ethanol for 12 seconds, 99% ethanol for 12 seconds, 99% ethanol for 12 

seconds, xylene for 30 seconds and xylene for 2 minutes. The sections were mounted with 

DPX and cover-slips and allowed to dry in a ventilated environment. Slides were scanned 

and images captured using the Aperio® ScanScope slide scanner or an upright light 

microscope (DMI4000, Leica Biosystems).  
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2.13 RNA Extraction 

 

 

Prior to RNA extraction, the following reagents were prepared: 

 

DNase I  

Lyophilised DNase I was reconstituted with 275μlof nuclease-free water (provided) as 

indicated on the vial label. The vial was gently mixed by swirling the vial of solution. A 

total of 3μl of rehydrated DNase I was required per RNA purification. The rehydrated 

DNase I was stored at –20°C for up to 6 months. 

 

BL-TG buffer  

The BL-TG buffer was prepared by adding 325μl of 1-thioglycerol (TG) to 32.5ml of BL 

buffer.  The BL-TG buffer was stored at 2°C–10°C for up to 30 days.  

  

RNA Extraction   

ITEM SUPPLIER 

ReliaPrep™ RNA cell miniprep system: 

ReliaPrep™ minicolumns (50/pack) 

Collection tubes (50/pack) 

Elution tubes (50/pack) 

BL buffer 

Column wash solution (CWE) 

1-Thioglycerol (TG) 

Nuclease-free water 

Yellow core buffer 

RNA wash solution (RWA) 

MnCl2, 0.09M 

DNase I (lyophilized) 

 

Progema  

Molecular-grade isopropanol  Sigma-Aldrich 

95% Molecular-grade ethanol Sigma-Aldrich 

Individual PCR tubes, 0.5 ml and 1.5ml  Thermo-Scientific 

384-Well standard PCR plates Thermo-Scientific 

Microseal® 'B' adhesive seals Bio Rad 
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RNA wash solution 

 

RNA wash solution was prepared by adding 60ml of 95% molecular grade ethanol to the 

bottle containing 35ml of concentrated RNA wash solution and stored at +15°C to +30°C.  

 

Colum wash solution 

Column wash solution was prepared with the addition of 7.5ml of 95% molecular grade 

ethanol to the bottle containing 5ml of CWE.  The column wash solution was stored at 

+15°C to +30°C.  

 

2.13.1 Column based RNA isolation  

 

RNA was extracted from cell cultures using the column-based ReliaPrep RNA cell 

Miniprep kit. RNA was extracted from adherent cells cultured in multiwall plates or 

flasks. The media from the cell cultures was removed and the cells washed with ice-cold 

sterile PBS followed by the addition of BL-TG buffer in a volume that was dependent on 

the estimated number of cells within each well or flask. RNA shearing was assisted with 

repeated pipetting of the lysate over the well surface. Non-adherent cell cultures were 

transferred into BD Falcon™ tubes and centrifuged at 1000 RPM for 5 minutes at room 

temperature. The supernatant was discarded and the cell pellets were washed in ice-cold 

PBS followed by the addition of BL-TG buffer in volumes according to Table 2.14. 

Lysates for adherent and non-adherent cell cultures were collected and transferred to 

PCR-grade microcentrifuge eppendorfs. Isopropanol was added to cell lysates in 1:3 

ratios; as an example, cells cultured in 6 well plates were lysed with 250µl of lysis buffer 

and 85µl of isopropanol was added to the lysed cells. The cell lysate and isopropanol 

were mixed thoroughly by vortex for ~10 seconds.  
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Table 2.14 – The manufacturer recommended wash and lysis buffer volumes used for 

harvesting adherent cells 

 

 

For each sample, a ReliaPrep™ minicolumn was placed into a collection tube and cell 

lysate transferred to the minicolumn. The lysate was centrifuged at 12,000 RPM for 30 

seconds at room temperature. The supernatant was discarded from the collection tube and 

500μl of RNA Wash Solution was added to the minicolumn and centrifuged at 12,000 

RPM for 30 seconds. The collection tube was removed the supernatant discarded. The 

RNA sample was DNase treated to remove any genomic DNA contamination. In a sterile 

tube, 30µl of DNase I solution was prepared by combining 24μl of Yellow Core buffer, 

3μl 0.09M MnCl2 and 3μl of DNase I enzyme per sample. The DNase I was mixed by 

pipetting and 3μl of freshly prepared DNase I solution was transferred directly to the 

membrane inside the minicolumn. RNA was incubated with DNase I solution for 15 

minutes at room temperature.  

 

Next, 200μl of Column Wash solution was added to the minicolumn and centrifuged at 

12,000 RPM for 15 seconds. 500μl of RNA Wash Solution was transferred into the 

minicolumn and centrifuged at 12,000 RPM for 30 seconds and the supernatant was 

discarded from the collection tube. The minicolumn membrane was washed a final time 

with 300μl of RNA Wash Solution and centrifuged at 13,000 RPM for 2 minutes.  The 

minicolumn was transferred to a new Elution tube, and nuclease-free water added to the 

membranes, ensuring the entire surface of membrane was covered with the water 

provided with the ReliaPrep™ Kit. The volume of water required to elude the RNA was 

dependent on the original number of cells cultured within the well/flask as recommended 

Manufacturer recommended wash and lysis volumes for harvesting adherent cells 

Plate/flask PBS wash volume 

per well 

Volume of BL-TG 

buffer 

Volume of 

isopropanol 

96-well 100 µl 100 µl 35µl 

48-well 250 µl 100 µl 35 µl 

24-well 500 µl 100 µl 35 µl 

6-well 2.0 ml 250 µl 85 µl 

T-25 5.0 ml 500 µl 175 µl 
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by the manufacturer (Table 2.15). The minicolumn was centrifuged at 13,000 RPM for 1 

minute. The elution tube containing the purified RNA was stored at –80°C.  

 

 
Recommended volume of nuclease-free water 

Cell number Nuclease-free water 

1 × 10
2
 to 5 × 10

5
                     15μl 

>5 × 10
5
 to 2 × 10

6
                   30μl 

>2 × 10
6
 to 5 × 10

6
                   50μl 

 
Table 2.15 – The addition of nuclease-free water required to elude the purified RNA 

was dependent on the original number of cells cultured in the well or flask.  

 

 

2.13.2 RNA quantification 

 

Nucleic acid concentration and purity were quantified using the NanoDrop-1000 

spectrophotometer (Thermo scientific) at an absorbance of 260nM (A260) and 280nM 

(A280). 1µl of RNA or DNA sample were required for the NanoDrop analysis. The 

concentration of nucleic acid was determined using the Beer-Lambert law, which 

calculates the change between light absorbance (A), the sample concentration (c) the 

specific extinction coefficient (ε) and the length of the pathway the light travels through 

the absorber (Ɩ), which is specific for every spectrophotometer: 

 

 

The Beer-Lambert Law: A = εƖc 

 

 

As an A260 reading of 1.0 was equivalent to approximately 40 µg/ml of RNA, the 

absorbance at 260 nm was used to determine the RNA concentration in an unknown 

sample. A A260/A280 ratio between 1.8 and 2.2 was considered an indicator of ‘clean’ 

RNA, which was free from contamination.  
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2.14 Reverse transcription-polymerase chain reaction (RT-PCR) 

 

 

 

  

Reverse Transcription and PCR   

REAGENTS  SUPPLIER 

RNAase-free eppendorfs Alpha Laboratories 

DEPC-treated water Ambion® Life Technologies 

100mM DNTP mix  Thermo-scientific 

Random primers supplied at 3µg/µl in 

3mM 

Invirtrogen 

Oligo(dT) 20 primer supplied at 50 µM. Invirtrogen 

5X First-strand buffer 375 mM KCl Invitrogen 

0.1M DTT Invitrogen 

RNasIN recombinant RNase inhibitor Invitrogen 

Superscript® III  supplied at 200Unites/µl Invitrogen 

End-point PCR primers Eurofins/MWS 

KAPATaq ready mix kit  Kappa Biosystems 

Gel Doc XR+ system BioRad 

Quantity One software BioRad 

Taqman gene expression assays Applied Biosystem 

2X Taqman universal master mix Applied Biosystem 

ABI 7900HT Platform Applied Biosystem 

Agarose Sigma-Aldrich 

Tris/Borate/EDTA (TBE) buffer  Applichem 

Ethidium bromide BioRad 

Full range100 BP DNA ladder Norgen 

X5 DNA loading buffer Kappa Biosystems 



80  

 

PCR is the in-vitro enzymatic amplification of a specific DNA sequence involving 

multiple cycles of template denaturation, primer annealing, and primer elongation. In the 

denaturation stage, the two strands of cDNA are cleaved. A temperature of 94ºC is 

required to denature the DNA due to the extremely strong stacking interactions and 

hydrogen bonds between the two stands. In the annealing step, specific oligonucleotide or 

primers anneal with their specific target sequences in each of the single stranded DNA 

templates. The annealing temperature typically ranges between 53ºC and 65ºC, depending 

on the length and guanine/cytosine (G/C) ratio of the primer. 

 

In the final elongation step, thermo-stable Taq polymerase replicates a DNA strand 

starting from the 3' end of the primer and synthesising new DNA in a 5' to 3' direction. 

The Taq polymerase is stable and active at high temperatures, typically to temperatures of 

72ºC. The PCR process is exponential in that the amplified products from each previous 

cycle serve as a template for the next amplification cycle. Typically, abundant 

amplification product is produced following 20 to 40 cycles of PCR. As a result this 

technique is highly sensitive and effective for detecting specific nucleic acids sequences. 
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2.14.1 Primer design 

 

Primer pairs were designed through the NCBI/BLAST software and ordered from Sigma 

Aldrich. Primers were designed on separate exons were possible, were 18-20 amino acids 

and contained 50% G/C ratio. The sequences of primers were checked by Blast. On 

arrival, the lyophilised primers were dissolved in DEPC-treated water to obtain a working 

concentration of 10µM. 

 

 

Table 2.16 - The sequences and the optimal PCR conditions for the reverse and 

forward primers specific to SOSTDC1 and GAPDH.  

 

  

Oligo Name Sequence ( 5’ -> 3’) Melting 

temperature  

Amplicon 

size 

SOSTDC1f CCGTCATGCTTCTCAGTTTC (20) 65 198 bp 

SOSTDC1r GCTGTCACACTCCAAGGGCC (20) 65 198 bp 

GAPDH f TTGTCAGCAATGCATCCTGC (20) 57 354bp 

GAPDH r GCTTCACCACCTTCTTGATG (20) 57 354bp 

Step Temperature Time 

Hot start PCR- 

denaturation  

T= 95℃ 2 minutes 

Second denaturation step  T=95℃ 1 minute 

Primer annealing 

temperature  

hSOSTDC1= 65℃ 

GAPDH= 57℃ 

1 minute 

Extension  T=72℃ 1 minutes 

Repeating 35 cycles 

Last extension  T=72℃ 5 minutes 

Hold at 4℃ 
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 2.14.2 Reverse Transcription and cDNA production  

 

Reverse transcription (RT) is a procedure based on the activity of the reverse transcriptase 

enzyme to catalyze the conversion of RNA template to complementary DNA (cDNA), 

required for the process of polymerase chain reaction (PCR) (Figure 2.5). Synthesis of 

cDNA is performed using a short piece of single-stranded DNA known as oligo(dT), 

which anneals to the stretch of the poly-A tail at the 3' end of most mRNA molecules. 

Although oligo(dT) primers are highly specific to  mRNA, they have the limitation of 

initiating RT at the 3´ end of the transcript resulting in incomplete cDNA synthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.6 - Reverse Transcription (RT) and cDNA production: Oligo(dT) and 

random primers can be used in RT to enable higher cDNA yield. Deoxynucleotide 

triphosphates (dNTPs) and under optimal salt and pH conditions, the RT enzyme 

extends a primer complementary to the RNA, producing cDNA.  
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In all experiments, RNA samples were converted to cDNA using SuperScript III 

following manufacturer’s instruction. Briefly, RNA samples isolated fresh or thawed 

from the -80°C storage were placed on ice for 20 minutes prior to the RT reaction. The 

working environment was sterilised using RNaseZap® RNase decontamination solution 

to eliminate RNases and this was followed by sterilisation with 70% ethanol. RNase-free 

eppendorfs, DEPC-treated water, pipettes and eppendorf racks were placed into a UV 

hood and irradiated for 20 minutes.  

 

In the RNase-free eppendorfs, 150ng-2µg of total RNA was isolated and quantified as 

outlined in Section 2.12. RNA was prepared in a total volume of 11 µl with DEPC-

treated water. For each RNA sample, a corresponding no-RT sample (RT-ve) was also 

prepared containing no RT enzyme (SuperScript III) to detect any DNA contamination. In 

addition, for every biological experiment, a no-RNA control was also included, in which 

DEPC-treated water was substituted for RNA in order to detect any contamination in the 

water (RT-H20).  

 

The following were added to 11µl of RNA; 0.25µl of random primers, 0.25µl of oligo 

(dT), 1.0µl 100mM dNTP and 1.0µl of DEPC-treated water. The reaction was heated to 

65ᴼC for 5 minutes on a Thermo Cycler and chilled on ice for approximately 2 minutes. 

The second part of the RT reaction was prepared in two separate tubes; one tube 

containing RT Superscript III enzyme and the other containing DEPC-treated water as a 

substitute for Superscript III. Each cDNA synthesis reactions contained 4µl of First 

Strand buffer, 1µl of 0.4M DTT, 1µl of RNAseIN and 1µl Superscript III (RT+ve) or 

DEPC (RT-ve). Each tube containing a total volume of 20µl of RNA/Supercript III or 

RNA/DEPC-treated water was incubated at 25ᴼC for 5 minutes, 50ᴼC for 60 minutes and 

inactivated at 70ᴼC for 15 minutes. The synthesised cDNA was stored at -20ᴼC for short 

period and -80ᴼC for longer term storage.  
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2.14.3 Polymerase Chain Reaction  

 

Polymerase chain reaction (PCR) is the in-vitro enzymatic amplification of a specific 

DNA sequence involving multiple cycles of template denaturation, primer annealing, and 

primer elongation. In the denaturation stage, the two strands of cDNA are cleaved. A 

temperature of 94ºC is required to denature the DNA due to the extremely strong stacking 

interactions and hydrogen bonds between the two stands. In the annealing step, specific 

oligonucleotide or primers anneal with their specific target sequences in each of the single 

stranded DNA templates. The annealing temperature typically ranges between 53ºC and 

65ºC, depending on the length and guanine/cytosine (G/C) ratio of the primer. 

 

In the final elongation step, thermo-stable Taq polymerase replicates a DNA strand 

starting from the 3' end of the primer and synthesising new DNA in a 5' to 3' direction. 

The Taq polymerase is stable and active at high temperatures, typically to temperatures of 

72ºC. The PCR process is exponential in that the amplified products from each previous 

cycle serve as a template for the next amplification cycle. Typically, abundant 

amplification product is produced following 20 to 40 cycles of PCR. As a result this 

technique is highly sensitive and effective for detecting specific nucleic acids sequences. 

 

2.14.3.1 End-point PCR  

 

The traditional PCR method of using agarose gels for the detection of final phase PCR 

amplification is referred to as End-point-PCR. Products of End-point PCR can be 

visualized on an ethidium bromide-stained agarose gel. The reaction includes a template 

(genomic/plasmid DNA and cDNA), forward primer, reverse primer, reaction buffer, 

magnesium, dNTP mix, and a thermostable DNA polymerase. The forward and reverse 

primers are specific to a sequence within the template and determine the length of the 

amplified product. Taq DNA polymerase is the most routinely used thermostable 

polymerase in amplifications. The concentration of magnesium ions have a direct effect 

on a range of factors including; enzyme activity, primer annealing, the template melting 

temperature and primer-dimer formation.   

 

PCR was performed using KAPATaq Ready Mix kit (Kappa Biosystems) following 

manufacturer’s instructions. Primer pairs were designed using the Primer3 software 
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(http:Frodo.wi.mit.edu/primer3) and ordered from Sigma Aldrich. On arrival, the 

lyophilised primers were dissolved in DEPC-treated water to obtain a working 

concentration of 10µM. The PCR reaction mix per cDNA sample comprised; 1-3 μl of 

cDNA (synthesised from 150ng-2µg of RNA), 2μl of 50mM magnesium chloride, 2μl of 

10x NH4 reaction buffer, 1μl of dNTP mix 10mM, 1μl of 10 μM forward primer, 1μl of 

10 μM reverse primer, 1μl of DNA polymerase, 1μl of loading buffer and DEPC-treated 

water to make up 20μl total reaction volume.   

 

For each experiment, the cDNA was also replaced with DEPC-treated control for one 

sample and used as a negative control in addition to the RT-ve control (section 2.14.2). 

PCR was performed setting the initial and secondary denaturing temperatures at 95ºC and 

an elongation temperature of 72ᴼC according the manufacturer’s instructions. The 

annealing temperature was specific to the melting temperature (Tm) of the primer and was 

optimised for each primer set.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

The annealing and extension steps of PCR were performed for 35 cycles: 

 

Initial denaturation:  95ºC for 2 minutes 

 

Secondary denaturation: 95ᴼC for 30s 

Annealing: 55ºC-65ᴼC for 30s 

Extension: 72ᴼC for 1min/kb 

 

Final extension: 72ᴼC for 2min 

 
35 Cycles 
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2.14.3.2 Agarose gel electrophoresis 

 

The presence of PCR products were verified using agarose-TBE gel electrophoresis. Gel 

electrophoresis was used to separate PCR productions based on their size (Bp). A 1.5% 

agarose gel was made by dissolving 1.5g of agarose (Sigma Aldrich) in 1X 

Tris/borate/EDTA (TBE) buffer. The agarose was dissolved by heating in a microwave 

for 2 minutes after which ethidium bromide was added to the agarose solution at a 

dilution of 1:100. A 16 or 32 well comb was placed in the gel plate and the agarose was 

poured into the gel cast and left to set for approximately 1 hour at room temperature. The 

set gel was placed in the electrophoresis tank and filled with TBE buffer. The comb was 

removed carefully from the set gel. 10µl of DNA ladder (full range100 BP Norgen) was 

loaded into the first well. 5µl of DNA loading buffer was added to 20µl of PCR product 

in a ratio. Each PCR product was loaded into the agarose gel at a volume of 10µl. The gel 

ran in TBE at 100V for 30 minutes and DNA fragments were inspected under UV light 

using the Gel Doc XR+ system and the Quantity One software.  

 

2.14.3.3 PCR product sequencing  

 

PCR products were sent into the DNA sequencing Core Facility housed within the 

University of Sheffield, Medical School and sequenced to verify SOSTDC1 expression 

(http://genetics.group.shef.ac.uk/dna-sequencing.html). Sequencing was performed using 

the Applied Biosystems' 3730 DNA Analyser. A 10µl of the 100ng/µl PCR product 

obtained from end-point PCR were initially purified by the Core Genomics Facility to 

remove excess primers and dNTPs using the Ampure bead purification kit (Beckman 

Coulter). Sequencing results were analysed using FinchTv software version 1.4.0 and the 

base pair sequences were assessed for nucleotide similarities to SOSTDC1 using the 

database on Basic Local Alignment Search Tool (BLAST)®. 

 

 

 

 

  

http://genetics.group.shef.ac.uk/dna-sequencing.html
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2.14.3.4 Real Time quantitative Reverse Transcription-PCR 

 

Real time quantitative RT-PCR (qRT-PCR) enables accurate measurement of products 

generated during PCR cycles. This technique involves TaqMan  oligonucleotide probes 

have a fluorescent probe (reporter) bound to the 5' end and a ‘quencher’ molecule 

attached to the 3' end. During PCR amplification, these probes hybridize to the target 

sequences in the amplicon. As the polymerase enzyme replicates the TaqMan bound-

template, the reported is cleaved due to the polymerase 5'- nuclease activity. The close 

distance between the reporter and quencher molecule prevents fluorescence from being 

detected through Fluorescence resonance energy transfer (FRET). The uncoupling of the 

two molecules results in an increase in fluorescence intensity, which is proportional to the 

number of the probe cleavage cycles. 

 

Species-specific TaqMan® Assays were used to determine the expression genes of 

interest. For each gene of interest a 7µl reaction mix was prepared containing; 5µl of 

TaqMan® gene expression mastermix, 0.5µl TaqMan® Assay and 1.5µl nuclease-free 

water. 3µl of cDNA template as prepared in section 2.13.2 and 7µl of reaction mix were 

loaded into a well in a 384 well PCR plate. Each cDNA sample was loaded in duplicates.  

The reaction mix was also loaded with 2µl of nuclease-free water instead of cDNA 

template to detect any contamination in the PCR reaction mix. The plates were sealed 

using an optical adhesive covers. PCR plates were analysed using Applied Biosystems 

7900HT Real-Time PCR system and data analysis performed on the SDS 2.2.1 software. 

The cycle threshold (CT) value that was measured by the Real-Time PCR system was 

representative of the number of cycles at which each specific reaction crossed a selected 

threshold. The CT values were used as a relative measure of the concentration of the 

template sequences in a sample. The thresholds were positioned to lie in the middle of the 

linear region of the logarithm amplification plot, in an area where the increasing 

amplification was exponential. High CT values meant that higher numbers of 

amplification cycles were required to reach the fluorescence intensity threshold due to 

lower amount of sample cDNA template.  

 

  

http://en.wikipedia.org/wiki/TaqMan
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The baseline of a PCR reaction was set in the SDS 2.2.1 software to remove any 

background fluorescence. To maintain uniformity across samples, a constant threshold  

was set at 0.2CT and a constant baseline was also set at 3-15 cycles. Sample replicates 

were analysed by the ΔΔCT method described by Livak and Schmittgen (Livak and 

Schmittgen 2001). Relative quantification of gene expression was performed by 

normalising to β2-microglobulin (B2M) and hypoxanthine phosphoribosyl transferase 1 

(HPRTL) house-keeping genes using the formula; ΔCT = CTtarget - CThousekeeping. Fold 

changes in target gene expression were calculated using the ΔΔCT method, in which data 

are normalised by the 2
-ΔΔCT 

function (calculated by taking 2 to the power if ΔΔCT).  

 

 

 

Table 2.17 - The TaqMan assays specific for genes studied using qRT-PCR in this 

study.  

 

 

 

 

 

 

 

  

TaqMan®  assays  

ITEM ID SUPPLIER 

Mouse hypoxanthine 

phosphoribosyltransferase 1 

(HPRTL) 

Mm00446968-m1 Life Technologies 

Mouse β2-microglobulin (B2M) Mm00437762-m1 Life Technologies 

Runt related transcription factor 2 

(Runx2) 

Mm00501584_m1 Life Technologies 

Mouse CTNNB1 mm00483033-m1 Life Technologies 

Mouse COL1A2  Mm00483888-m1 Life Technologies 
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2.15 Bio-Layer Interferometry 

 

 

 

 

Biosensor technology is commonly used the specific and sensitive investigation of 

biomolecular interactions. The Bio-Layer Interferometry (BLI) developed by ForteBio 

(www.ForteBio.com), is amongst the well-established biosensor platforms used to 

evaluate protein/protein interactions in research and routine applications (Wallner, Lhota 

et al. 2013). The BLI technology used by the BLItz® system provides real-time data on 

protein interactions. The BLItz® system emits white light down a biosensor, and the light 

reflected back is then collected by a detector (Figure 2.6). The molecule of interest is 

biochemically bound to the surface of the biosensor, where it forms complexes with 

partner molecules (analyte). The carboxylated biosensor surface allows covalent coupling 

of proteins via N-Hydroxysuccinimide (NHS)/ethyl(dimethylaminopropyl) carbodiimide 

(EDC) mediated amide bond formation. The thickness of the coating on the optical layer 

affects the reflected wavelengths. The wavelength interference, which is categorised as 

constructive or destructive, is captured by a spectrometer and is reported in relative 

intensity units (nm). Changes in the number of molecules bound to the biosensor result in 

changes or ‘shifts’ in the wavelength interference which is measured in real time. The 

interference shifts are a direct measure of the change in optical thickness of the biological 

layer. Based on these principles, a range of kinetic applications are possible including 

protein kinetic and affinity characterisation.   

 

 

  

BLItz analysis    

ITEM SUPPLIER 

Amine reactive 2nd generation (AR2G) 

Biosensor 

ForteBio 

96-well, black, polypropylene flat-bottom 

microplate 

ForteBio 

NHS/EDC  ForteBio 

BLItz® System bioanalyser  ForteBio 

http://www.fortebio.com/
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2.15.1 BLI kinetics 

 

The affinity of one molecule for another is calculated using the association constant (ka) 

and dissociation constant (kd). The ratio of between the kd/ka gives rise to the affinity 

constant KD. The ka is defined as the rate of complex formation per second in a 1 molar 

solution of two reaction partners. The kd (1/s) indicates the stability of this complex. The 

affinity constant KD is calculated by the ratio of the kd/ka (Katsamba, Navratilova et al. 

2006). This relation can be described by a basic equation shown below, where A is the 

analyte and B is the molecule of interest: 

 

 

 

 

 

 

Interferometry data were globally fit to a simple 1:1 Langmuir model (O’Shannessy et al. 

1993), calculating the affinities and rate constants (Octet software, Version 6.4, 

Figure 2.7 – BLItz system: 

The BLItz system emits white 

light down the biosensor, and 

collects reflected light. 

Wavelengths interference are 

constructive interference (blue) 

or destructive (red). 

Interference shifts captured by 

a spectrometer and reported in 

relative intensity units (nm) 

and are a direct measure of the 

change in optical thickness of 

the biological layer. Image 

adapted from 

www.ForteBio.com.  

 

 

 

 

 

 

 

 

http://www.fortebio.com/
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ForteBio). This model describes a 1:1 interaction where one ligand molecule interacts 

with one analyte molecule. To produce a complete kinetic prolife for the molecule of 

interest and its associated analyte, the interaction is measured at multiple analyte 

concentration (µg/ml) and the data is used for Langmuir model fitting. Ligand-analyte 

associations were run at an injection period length long enough to observe a curvature of 

the binding response. The association and dissociation responses were baseline corrected 

and processed using the Octet Software (Version 6.4, ForteBio). The individual signal 

responses at each concentration as well as the maximum responses (Rmax) were 

calculated. 

 

2.15.2 Determining protein-analyte interaction using ARG2 biosensors 

 

A BLI assay involves an equilibrium step, ligand immobilization step, analyte association 

and analyte dissociation step (Figure 2.7). An example of loading conditions and curves 

for the association of a target protein (termed ligand) and its specific analyte are shown in 

Figure 2.7. The assay was initiated by establishing the equilibration of Amine reactive 

2nd generation (AR2G) biosensor tips with PBS buffer to measure the baseline signal 

(Step 1). Biosensors were hydrated for 10 minutes prior to use by inserting the biosensor 

into 200μl of PBS buffer within a 96-well microplate. Biosenors were activated with 

EDC/NHS mixture is a tube (Step 2). For the immobilisation step, the protein 

concentrations and loading performance were optimized. Ligand solutions were prepared 

for the loading step to bring to a concentration of 1–100μg/ml. ARG2 biosensor tips were 

captured to saturation with the ligand to obtain a loading signal (Step 3). Subsequently, 

an additional equilibration step was applied with buffer to remove the excess ligand and 

to obtain a constant loading baseline (Step 4). In the final dissociation step, the biosensor 

was ‘quenched’ with quenching solution (Step 5). The sensogram data was collected in 

real time and presented as binding (nm) affinity at the start of ligand-analyte association 

and the start of complex dissociation. The measured affinity of the interaction KD (M) 

between the two proteins was reported by the BLItz Pro™ software.  
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Run Settings  

STEP  STEP TYPE DURATION 

1 Initial Baseline 60 

2 Custom 300 

3 Loading 600 

4 Custom 300 

5 Baseline 120 

6 Association 300 

7 Dissociation 600 

1 2 3 4 5 6 7 

Steps 

Figure 2.8 – BLItz system association/dissociation binding curve sensogram and 

run settings. 
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2.16 Statistical analysis 

 

Statistical analyses were performed with the statistical software package, GraphPad Prism 

6 version 6.0.4 for Windows. Firstly the data were analysed for normal distribution using 

the D'Agostino and Pearson normality test. The data were analysed using an ANOVA test 

(one way analysis of variance) for more than two group comparison. A Holme-Sidak's 

test was used as post-hoc analysis when ANOVA test was used in normal distribution 

data. When data not normally distributed, ANOVA test (non-parametric Kruskal-Wallis 

test) was used for more than two group comparisons. The Dunns test was used as post-

hoc analysis when ANOVA test was used in not normally distributed data. For two group 

comparisons an unpaired student’s t-test was performed when the data was normally 

distributed or non-parametric Mann-Whitney test for two group comparisons in cases 

were data was not normally distributed. Data were considered statistically significant 

when a p-value was equal to or less than 0.05. Results are expressed as mean ± values of 

standard error Mean (SEM). 
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Chapter 3 – In-Vitro Characterisation of the 

Osteoblast Progenitor Model 
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3.1 Introduction 

 

To study the molecular mechanisms involved in the regulation of osteoblast (OB) 

differentiation and mineralisation, I wanted to first establish an in-vitro culture system 

using murine OB progenitor cells derived from calvaria primary bone cells, reflecting the 

different stages of osteogenic maturation from proliferation to differentiation. OB 

progenitor cells isolated from the calvaria of 2-4 days old neonatal C57BL/KaLwRij 

mouse pups were selected for the optimisation of the in-vitro model of osteoblastogensis. 

These cells have been shown to differentiate into cells with a  clear OB phenotype 

including ALP expression and extracellular matrix mineralisation (Ecarot-Charrier, 

Glorieux et al. 1983). OB cells are derived from multipontent mesenchymal stem cells 

(MSC) and regulate the deposition and maintenance of skeletal tissues. The OB 

phenotype is defined by the genes expressed and the proteins produced by the cells. 

Characterising the expression of bone-specific genes and proteins provide valuable 

markers that are characteristic of bone OB phenotype detected in- vitro (Del Fattore, Teti 

et al. 2012).  

 

MSC produce progenitor cells of restricted OB lineage that have the potential to 

proliferate or continue onto amplification stages where they express specific osteoblastic 

markers. MSC committed to an osteo/chondro-progenitor lineage become osteoprogenitor 

cells that subsequently differentiate into pre-osteoblasts, followed by differentiation into 

active mature OB cells (Figure 3.1). Runx2, osterix and β-catenin are essential for OB 

differentiation. Runx2 plays a fundamental role in directing the MSC to an osteoblastic 

lineage instead of an adipocytic or chondrocytic lineage. Once MSC have differentiated 

into pre-osteoblasts, Runx2, osterix and 𝛽-catenin drive differentiation into immature OB 

cells that produce bone matrix proteins, suppressing the cells potential to differentiate into 

the chondrocyte lineage. Runx2 expression prevents the OB cells from developing into 

osteocytes, maintaining them in the OB phenotype (Komori 2006, Sila-Asna, Bunyaratvej 

et al. 2007). Mature OB cells synthesize dense cross-linked collagen in addition to other 

proteins produced in smaller quantities including osteocalcin and osteopontin which make 

up the matrix of the bone. Mature OB produce calcium and phosphate-based minerals in a 

tightly regulated manner.  These minerals are deposited into the organic matrix forming 

the dense and strong mineralarised tissue which forms the matrix. OB mineralisation 
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components such as calcium are commonly used as markers to determine the level of 

mineralisation using chemical staining (Arnett 2003).  

 

Osteoblastic cells are usually cultured in MEM-alpha or DMEM. Studies have shown that 

variations in components and their concentrations added to the media can lead in the 

differences obtained within proliferation and differentiation assays (Coelho and 

Fernandes 2000). Media additives that have been shown to drive osteoblastic cell function 

in culture include dexamethasone, 1,25(OH)2D3, β-glycerophosphate and ascorbic acid 

(Jorgensen, Henriksen et al. 2004). The addition of sscorbic acid to the cell culture media 

is necessary for the hydroxylation of proline and lysine residues in collagen to synthesis 

of collagenous extracellular matrix (Takamizawa, Maehata et al. 2004). In the literature 

50µg/mL of ascorbic acid is generally the standard concentration used in mouse primary 

OB cultures and is a sufficient concentration to upregulate proliferation, collagen and 

ALP expression in these cells. Phosphate substrates are also added to in media and are 

necessary for matrix mineralisation in primary OB cell cultures. Supplementation of 

primary OB cell cultures isolated from mice with 5-10 mM β-glycerophosphate leads to 

spontaneous mineral deposition (Czekanska, Stoddart et al. 2012).  

 

Primary cells isolated from neonatal mice are difficult to isolate and culture routinely.  To 

study molecular mechanisms/signalling in OB cells, fast growing and well characterised 

OB-like cell lines are commonly used. The Sarcoma osteogenic (SAOS2) cell line was 

originally derived from the primary osteosarcoma of an 11 year old Caucasian girl in the 

1973 by Fogh et al and later determined as possessing osteoblastic features which would 

be useful as a permanent line of OB-like cells (Fogh, Fogh et al. 1977, Rodan, Imai et al. 

1987). The SAOS2 cells present a more mature OB phenotype in comparison to primary 

OB progenitor cells, making the SAOS2 cells a good model for studying events 

associated with late OB differentiation stage in human cells (Gundle and Beresford 1995). 

 

It is important to be able to correlate transcription factors, proteins production and 

mineralisation levels to develop a timetable for OB differentiation (Arnett 2003). In this 

chapter I selected gene, protein and mineralisation markers that were clearly established 

markers of OB cell differentiation and analysed these markers across a range of time-

points. The primary aim of this analysis was to create a proliferation, differentiation and 

mineralisation profile for the murine calvarial OB progenitor cultures. This profile could 
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then be used as the foundations for future experimental design and contribute in the 

understanding of the molecular mechanisms involved in OB dysfunction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.1 - Schematic diagram of the osteoblastogenesis: osteoblasts arise from 

MSC which under the required stimuli are driven toward an osteo/chondro-progenitor 

lineage that then differentiate into osteoblast progenitor cells, followed differentiation into 

pre-osteoblasts and finally become active, mature osteoblasts. Mature osteoblasts produce 

calcium and phosphate-based minerals which are deposited into the organic matrix forming 

the mineralised matrix. 
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3.2 Hypothesis and Objectives  

 

3.2.1 Aims 

The aim of this study was to characterise an in-vitro culture system using murine 

osteoblast progenitor cells. 

To achieve this, the following hypothesis was tested. 

 

3.2.1 Hypothesis 

Murine osteoblast progenitor cells differentiate into mature-nodule forming osteoblasts in 

osteogenic media. 

 

3.2.2 Specific Objectives  

 

To test this hypothesis the following were determined: 

 

Determine the conditions under which osteoblast progenitor cells proliferate, differentiate 

and mineralise    

 

Determine which differentiation markers are specific to the different stages of osteoblast 

differentiation  
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3.3 Chapter specific methods 

 

3.3.1 Assessing the relationship between total cell DNA contents and cell number 

 

PicoGreen analysis of total DNA has been frequently used as a surrogate for cell number 

(Kumar, Gittings et al. 2010). In my studies investigating ALP activity of OB progenitor 

cells, the PicoGreen method of determining total DNA contents the cells was to be used 

as a measure of cell number. PicoGreen and Coulter Counter analysis were used to assess 

the direct correlation between total DNA contents per cell and cell number, respectively. 

OB progenitors were used to assess the relationship between total DNA contents and cell 

number. OB progenitor cells were harvested from a near confluent T75 flask following 

trypsinisation, pelleted by centrifugation, resuspended in 10ml of PBS and counted using 

a haemocytometer as described in section 2.1.3.12,500 cells were transferred into 15ml 

BD Falcon™ tubes and counted using a Coulter Counter as described in section 2.1.4 to 

verify the haemocytometer count. The 12,000 cells were serially diluted 1:2 to obtain 

approximate cell densities of 62500, 3125, 1562, 781, 390 and 195 cells.  

 

Using the same batch of OB progenitors, cells of the same densities were also placed into 

1.5ml eppendorfs. Cells were centrifuged at 1000 RPM for 5 minutes to pellet the cells. 

The supernatants were removed and cells lysed with 40µl of Triton-X for 30 minutes at 

room temperature with agitation. 20µl of the cell lysate was transferred into a well within 

a 96 well culture plate. The total DNA contents (ng/ml) of the cell populations in the 96 

well plates were determined with a PicoGreen dsDNA quantitation kit as described in 

section 2.4. Data from the PicoGreen and Coulter Counter assays were exported to an 

excel spreadsheet and the linear regression determined.  
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3.3.2 Determining the optimal FCS concentration in which calvarial osteoblast 

progenitor cells proliferate and differentiate 

 

OB progenitor cells were obtained from bone cell cultures isolated from the calvarias of 

2-4 days old neonatal C57BL/KaLwRij mice using collagenase with the modified time 

sequential enzymatic digestion described by Bakker et al and outlined in detail in the 

main method section 2.1.1 (Bakker and Klein-Nulend 2012). To reduce variability and 

OB phenotypic modifications, all experiments using OB progenitors were carried out with 

cells that had been passaged up to an including passage 4. Mouse calvarial OB progenitor 

cells were harvested from a near confluent flask following trypsinisation. Cells were 

pelleted by centrifugation and counted using a haemocytometer, as described in section 

2.1.3.  

 

To determine the optimal growth conditions under which OB progenitors proliferate and 

differentiate, cells were seeded in 96 well plates at a density of 2000 cells per well. 

Following a 72 hour period in culture, the OB progenitor cells were carefully washed 

once with PBS and the media replaced with 100µl of osteogenic MEM-Alpha media 

containing 0, 0.1, 0.25, 1, 4, 6, 8 or 10 % FCS. Osteogenic Alpha-MEM media containing 

various FCS concentrations were replaced every three days. ALP analysis which was 

used as a marker of differentiation in OB progenitors was carried out on day 8, day 11, 

and day 15 of differentiation. In separate experiments assessing the OB progenitor 

differentiation in the minimum FCS concentration required (4%) by the cells, OB 

progenitors were cultured up to day 19 of differentiation. Total DNA content of OB 

progenitor cultures were also determined with a PicoGreen dsDNA quantitation reagent 

as outlined in section 2.4. Total DNA values were used to normalise ALP activity to total 

cell DNA content, as described in section 2.3.  
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3.3.3 Assessing Runx2, CTNNB1 and COL1A2 gene expression in differentiating OB 

progenitor cells  

 

Runx2, β-catenin and Collagen have been established as gene markers of OB cell 

differentiation in the literature (Beck, Zerler et al. 2001, Prince, Banerjee et al. 2001, 

Matsuo, Tanaka et al. 2008, Baron and Kneissel 2013). The expression of Runx2, 

CTNNB1 (gene ecodin the protein for β-catenin) and COL1A2 (encodes the protein α-1 

type I collagen) genes during the differentiation stages of OB progenitors were assessed 

using qRT-PCR. Mouse calvarial OB progenitor cells were harvested from a near 

confluent flask following trypsinisation. Centrifuged cell pellets were resuspended and 

counted using a haemocytometer, as described in the method section 2.1.3. OB 

progenitors were cultured in 6 well culture plates at a density of 57,000 cells per well in 

standard MEM-Alpha media containing 10% FCS. Cells were differentiated for up to 21 

days in standard MEM-Alpha osteogenic media containing 4% FCS prepared according 

to section 2.2. Following a 72 hour period in culture, OB progenitor cells were washed 

once with PBS per well, and the media replaced with 1.5ml of osteogenic MEM-Alpha 

media. The osteogenic media on the OB progenitors were replaced every three days. 

RNA was extracted from the differentiating OB progenitors on day 8, 11, 15 and 21 of 

differentiation and quantified using a NanoDrop bioanalyser according to section 2.13. 

Following cDNA synthesis from 1000ng of RNA, Runx2, CTNNB1 and COL1A2 gene 

expression were quantified using qRT-PCR analysis as described in section 2.14.  

 

3.3.4 Assessing mineralisation in differentiating osteoblast progenitor cultures 

 

To determine the level of mineralisation in differentiating OB progenitor cells, OB 

progenitor cells were harvested from a near confluent flask by trypsinisation. Cells were 

pelleted by centrifugation and counted using a haemocytometer, as described in section 

2.1.3. Cells were seeded in 48 well culture plates at a density of 5,700 cells per well in 

standard MEM-Alpha containing 10% FCS. Following a 72 hour period in culture, OB 

progenitor cells were carefully washed once with PBS per well, and the media replaced 

with 250µl of osteogenic MEM-Alpha media containing 4% FCS prepared according to 

section 2.2. Osteogenic media in which OB progenitors were differentiating was replaced 

every three days, for up to 21 days. Mineral deposition was used as a marker of 

mineralisation in OB cultures and was assessed using Alizarin red staining on days 8, 11, 
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15 and 21 of OB differentiation as described in section 2.5. Percentage area 

mineralisation of OB cells was quantified per well using ImageJ Software. 

 

3.3.5 Characterisation of differentiated SAOS2 cells culture system 

 

SAOS2 are OB-like cells that have a similar phenotype to primary murine cells and are 

commonly used in studies in OB studies (Czekanska, Stoddart et al. 2012). The SAOS2 

cells have previously been shown to have a mature OB phenotype with high levels of 

ALP activity (Saldana, Bensiamar et al. 2011). In this study I wanted to establish another 

in-vitro OB-like culture system with a more mature OB phenotype to compare to murine 

OB progenitor cells. SAOS2 cells were harvested from a near confluent flask following 

trypsinisation as described in the method section. SAOS2 cells were pelleted by 

centrifugation and counted using a haemocytometer, as described in section 2.1.3.  

SAOS2 cells were seeded in 96 well plates at a density of 2000 cells per well in 100µl of 

standard DMEM media containing 10% FCS. Cells were given 48 hours to adhere to the 

culture surface and DMEM media was removed, washed once with PBS and replaced 

with 100µl of osteogenic-DMEM media containing 10 mM of β-glycerophosphate and 50 

μg/ml of L-ascorbic acid additives as described by Saldana et al (Saldana, Bensiamar et 

al. 2011). SAOS2 cells were differentiated for 8 days and osteogenic-DMEM media was 

replaced every three days. ALP analysis of SAOS2 cells was carried out on days 2, 4, 6 

and 8 of differentiation. Total DNA content of SAOS2 cells per well were also 

determined with a PicoGreen dsDNA quantitation reagent to normalise ALP activity to 

total cell DNA content, as described in sections 2.3 and 2.4.    
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3.4 Results  

 

3.4.1 Total DNA contents within cells determined by PicoGreen analysis correlated 

with cell number 

 

OB progenitors of various cell densities ranging from approximately 12,500 to 200 cells 

were counted using the Coulter Counter and this count was compared to the total DNA 

contents using PicoGreen dsDNA quantitation. The regression analysis between the two 

sets of data obtained from the PicoGreen and Coulter Counter assay showed that as the 

number of cells increased, the total DNA contents per cell also increased linearly  (Figure 

3.4.1,  R=0.094).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.4.1 - Analysis of cell DNA contents correlated with cell number 

determined by Coulter Counter analysis. Coulter Counter analysis of cell number 

showed that an increase in the number of cells correlated with an increase in total DNA 

contents. N=4 independent experiments, Linear Regression analysis. ***P<0.0001, 

R=0.092.  

0

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

1
4
0
0
0

0

5 0 0

1 0 0 0

1 5 0 0

C e ll n u m b e r v s

 T o ta l D N A

C e ll N u m b e r  c o u n te d  b y  C o u lte r

T
o

ta
l 

D
N

A
 (

n
g

/m
L

)



106  

 

3.4.2 Osteoblast progenitor cells differentiate exponentially from 8 to 15 days in 

osteogenic media 

 

To establish an in-vitro primary cell culture system to utilise in future experiments, I 

initially established the optimal growth conditions under which OB progenitors 

proliferated and differentiated. To ensure that the OB progenitor cells used in my studies 

also behaved comparably to those used in the literature under similar conditions, I first 

tested the optimal FCS concentration (%) in which OB progenitor cells proliferated and 

subsequently differentiated. OB progenitors isolated from the calvarias of neonatal pups 

C57BL/KaLwRij mice were differentiated for up to 15 days in osteogenic media 

containing various FCS concentrations ranging from 0 to 10 % FCS. ALP analysis of OB 

progenitors was carried out on day 8, day 11 and day 15 of differentiation and the results 

normalised to total DNA content of OB progenitor cells per well determined with a 

PicoGreen dsDNA quantitation assay.  

 

PicoGreen analysis showed that total DNA of OB progenitor cell in culture plate wells 

increased as FCS concentration increased. The exponential increase in total DNA was 

evident with as little as 4% FCS up to 10% FCS. By day 15 of differentiation, the total 

DNA contents of OB progenitors cultured in 10% FCS no longer increased indicated by 

the plateau phase of the growth curve  (Figure 3.4.2 A). The ALP analysis of OB 

progenitors showed that ALP activity was upregulated with increasing doses of FCS 

during all time points of differentiation, peaking in 10% FCS (Figure 3.4.2 B). 

 

Although I showed that the OB progenitor cultures differentiated optimally in 10% FCS, I 

wanted to carry out future experiments using the minimum dosage of FCS required by the 

cells. The rational for using a minimum FCS dosage and diluting the concentration of 

proteins in the FCS, any effects resulting from treatment with exogenous recombinant 

protein would not be masked. Based on the results in Figure 2.4.2, similar experiments 

were performed in which ALP analysis of OB progenitors cultured in 4% FCS were 

carried out on day 8, day 11 day 15 and 19 of differentiation. The OB progenitor cells 

proliferated and differentiated in 4% FCS concentration (Figure 2.4.2 C, D). The total 

DNA of OB progenitor cultures increased exponentially by approximately 40% 

(~300ng/ml to ~500 ng/ml) from day 4 to day 8 of differentiation. Subsequently, 4% FCS 

concentration was used in subsequent experiments.  
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Figures 3.4.2 - Osteoblasts exponentially differentiate in 4-10% FCS from day 8 

to day 15 of differentiation: The optimal FCS concentration (%) in which OB progenitor 

cells proliferated was determined using PicoGreen analysis of total DNA and the 

differentiation profile determined using ALP analysis. ( A, B) Total DNA increased as FCS 

concentration increased throughout day 8 to day 15 of differentiation. (C, D) OB 

progenitors proliferated and differentiated in a minimum concentration of 4% FCS. N=3 

independent experiments, One-way Anova. Data are displayed with mean ± SEM. **P=0.01, 

***P=0.001. 
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3.4.3 Runx2 and CTNNB1 gene expression decreased and COL1A2 expression 

increased during OB progenitor differentiation 

 

Quantitative RT-PCR was used to assess Runx2, CTNNB1 and COL1A2 gene expression 

during the differentiation of OB progenitors. Cells were differentiated for up to 21 days in 

standard osteogenic media containing 4% FCS. RNA was extracted from the 

differentiating OB progenitors on day 8, 11, 15 and 21 of differentiation. Runx2, CTNNB1 

and COL1A2 gene expression were quantified using qRT-PCR analysis. The qRT-PCR 

analysis showed that Runx2 gene was present at detectable levels on day 8, 11, 15 and 21 

of differentiation in OB progenitor cells. The OB progenitor Runx2 expression was at its 

highest level on day 8 of differentiation and decreased significantly compared to day 11, 

15 and 21 (***P<0.05, Figure 3.4.3 A).There were no differences between the level of 

Runx2 gene expression between day 11 and 21 of differentiation. The CTNNB1 

expression of differentiating OB progenitors was at its highest level on day 8 of 

differentiation and decreased exponentially until day 21 of differentiation (***P<0.001, 

Figure 3.4.3 B). Expression of COL1A2 gene was detected throughout the various time 

points of OB progenitor differentiation. COL1A2 expression did not change between day 

8 and day 11 of differentiation, but the expression decreased on day 15 compared to day 8 

(***P<0.001). Collagen expression of differentiating OB progenitor cells increased on 

day 21 compared to day 8 (*P<0.05) (Figure 3.4.3 C).  
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Figures 3.4.3 - Runx2 and CTNNB1 expression decreased and COL1A2 gene 

expression increased during OB progenitor differentiation: Runx2, CTNNB1 and 

COL1A2 gene expression of differentiating OB progenitors were quantified using qRT-PCR 

analysis and the results normalised to B2M expression and day 8 values. (A) Expression of 

Runx2 within OB progenitor was present at detectable levels on day 8 and 11 of 

differentiation and increased on day 15 and 20. (B) Collagen gene expression was detected 

throughout day 8 to day 21 of OB progenitor differentiation. N=3 independent experiments, 

Unpaired t test. Data are displayed with mean ± SEM. *P=0.05, **P=0.01, ***P=0.001. 
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3.4.4 Osteoblast progenitor cells form visible nodules and mineralise from day 15 of 

differentiation 

 

To determine the level of mineralisation in differentiating OB progenitor cells, OB 

progenitors were differentiated in osteogenic media containing 4% FCS and were stained 

with Alizarin red on days 8, 11, 15 and 21 of OB progenitor differentiation. The 

percentage area of mineralisation in differentiation OB cells was quantified and 

normalised to the day 8 values. Alizarin red staining representative of mineral deposition 

showed that day mineralisation in OB was significant on day 15 and 21 of differentiation 

(***P<0.001). Nodules were visible to the eye on day 15 and 21 of differentiation. 
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Figure 3.4.4 - Osteoblast mineralisation increased from day 15 to day 21 of 

differentiation: OB progenitors were stained with Alizarin red to detect mineralisation on 

days 8, 11, 15 and 21 of OB progenitor differentiation. The percentage (%) area of 

mineralisation in differentiating OB cells was quantified using ImageJ Software and 

normalised to day 8. Mineralisation in OB progenitors was significant on day 15 and 21 of 

differentiation. Nodules were visible to the eye on day 15 and 21 of differentiation. Graph 

and image is representative of one experiment from N=3 independent experiments. 

Unpaired t test. Data are displayed with mean ± SEM. ***P<0.001. 
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3.4.5 SAOS2 cells had high basal levels of ALP activity, indicative of a mature 

osteoblast phenotype  

 

SAOS2 cells were differentiated in osteogenic-DMEM media containing 4% FCS for up 

to 8 days in culture. ALP analysis of SAOS2 cells was carried out on day 2, 4 , 6 and 8 of 

differentiation and the results normalised to total DNA content of SAOS2 cells per well 

determined with a PicoGreen dsDNA quantitation assay. Due to a high rate of 

proliferation, the SAOS2 cells became over-confluent within wells, lifted and died 

beyond the day 4 time point. PicoGreen analysis showed that total DNA of differentiating 

SAOS2 cells increased from day 2 up to day 4 of differentiation (Figure 3.4.5 A). SAOS2 

ALP activity was also upregulated from day 2 to day 4 of differentiation (Figure 3.4.5 B).  
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Figure 3.4.5 - SAOS2 cells proliferated and differentiated up to day 4 of 

differentiation determined by PicoGreen and ALP analysis: SAOS2 cells were 

differentiated in osteogenic-DMEM media containing 4% FCS for up to 8 days in culture. 

ALP analysis was normalised to total DNA contents per well determined with PicoGreen 

quantitation. (A) The total DNA of differentiating SAOS2 cells increased up to day 4 of 

differentiation. (B) ALP activity was upregulated from day 2 to day 4 of differentiation. 

Graph is representative one experiment from N=3 independent experiments. Unpaired t test. 

Data are displayed with mean ± SEM. ***P<0.001. 
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3.5 Discussion  

 

The primary objective of this chapter was to characterise the proliferation, differentiation 

and mineralisation profile of progenitor cells isolated from calvarial primary bone 

cultures obtained from neonatal mice. Characterisation and optimising of an in-vitro 

culture system reflecting the different stages of osteogenic maturation using progenitor 

OB cells was required to understand and validate future experimental data studying the 

molecular mechanisms involved in regulation of osteoblastogensis. Primary murine cells 

are commonly used in the bone cell studies as a source of osteoprogenitors as the cells are 

extracted directly from the bones of animal and there is the possibility of controlling the 

selection of the donor animals. The disadvantages associated with primary cell cultures 

are that there are interspecies and genomic differences and cell phenotype is sensitive to 

age and site of isolation. Although cells lines such as SAOS2 and MC3T3-E1-E1 cells are 

abundant in number and homogeneous in character, they do not reflect the entire range of 

OB phenotypic changes, making  primary OB cultures a more preferable OB model  

(Wang, Christensen et al. 1999, Fernandes, Harkey et al. 2007).  

 

Flourimetric assessment of DNA contents using PicoGreen dye is an established method of 

correlating DNA to cell number that is both sensitive and accurate (Rao and Otto 1992, Otto 

2005). To measure changes in cell number in future OB proliferation studies the PicoGreen 

method was validated to ensure it did correlate to cell number, in line with the literature. The 

Coulter Counter analyser has previously been used to accurately and efficiently determine 

human OB cell numbers in the literature (Slapnicka, Fassmann et al. 2008). OB progenitor 

cells were used to assess the direct correlation between total DNA contents and cell 

number via PicoGreen and Coulter Counter analysis, respectively. The data obtained from 

the PicoGreen and Coulter Counter analyser show that as the number of cells increased, 

the total DNA contents (ng/ml) also increased. These results validate the methodology of 

using PicoGreen analysis of DNA contents as a surrogate for cell number.  

 

The pre-osteoblasts are the first recognisable cell of the differentiating OB lineage.
 
While 

pre-osteoblast maintain their proliferative capacity, they can simultaneously express 

various proteins associated with a more mature OB phenotype, including ALP enzyme 

(Birmingham, Niebur et al. 2012). As a result, ALP is suitable marker to be to be used in 

determining the optimal conditions under which the calvarial OB progenitor cells 
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proliferated and differentiated.  Quantification of DNA contents and ALP enzymatic 

activity of FCS dose response experiments showed that OB progenitor cells proliferate 

and differentiate optimally in 10% FCS from day 8 to day 11 of differentiation. 

PicoGreen analysis of DNA contents and analysis of ALP activity showed that the 

exponential differentiation period of OB cells initiated at approximately day 8 following 

treatment with osteogenic media, and continued increasing up to day 15 and plateaued 

beyond this time-point indicating that OB progenitor cells had differentiated into mature 

OB cells by day 19 of differentiation. Similar results were observed by Hasegawa et al , 

who found that primary calvarial cells increased in cell number up to 10 days in culture and 

the ALP activity of these cells increased up to 15 days in culture (Hasegawa, Shimada et al. 

2008).  I wanted to further determine the minimum concentration of FCS which was 

require for the OB progenitor cells to differentiate in a similar time-frame to those cells 

cultured in the optimal 10% FCS dose. The rational for using a lower dose of FCS in 

osteogenic media relates to future planned experiments investigating the effect of OB 

signalling pathways/molecules, when the levels of growth factors in the FCS may mask 

effects of exposure to recombinant exogenous growth factors. In addition other studies 

have shown that the use of 10% FCS in culture media may lead to reduced ALP and type 

I collagen coupled with increase cell multiplication (Pradel, Mai et al. 2008). From the 

PicoGreen and ALP results, we can infer that OB progenitors exponentially proliferate 

and differentiate within roughly the same time-frame 8 to 15 days in osteogenic media 

containing 4% FCS. Under the light microscope, by day 15 of differentiation the adherent 

OB progenitors present normal morphology in 4% FCS and show no signs of physical 

stress.  

 

Although there are no one set of defined markers of OB differentiation that relate to the 

various stages of OB maturation ranging from osteoprogenitors to mature osteoblast 

phenotype, Runx2 and Collagen are amongst the well characterised. Based on the 

literature, Runx2 gene expression is detectable throughout OB differentiation but is 

suggested to be upregulated in differentiating progenitors and pre-osteoblasts compared to 

mature OB cells (Ducy, Zhang et al. 1997). In line with the literature, the qRT-PCR 

analysis of Runx2 expression showed the high levels of Runx2 on day 8 of OB progenitor 

differentiation reduced during differentiation as cells become mature.  
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In addition to Runx2, Wnt/β-catenin signalling is essential to OB differentiation during 

embryonic development. Conditional inactivation of β-catenin in skeletal progenitors in 

mouse embryos blocked OB differentiation (Day, Guo et al. 2005). The qRT-PCR results 

in this chapter showed that the gene encoding β-catenin, CTNNB1, was expressed at a 

high level in OB progenitor cultures on day 8 of differentiation compared to subsequent 

time points. This data suggests that although β-catenin is required throughout OB 

differentiation, it may have a more predominant role in osteoprogenitors.  Others have 

reported that when β-catenin is inactivated in early skeletal progenitors, low levels of 

Runx2, but not OB differentiation-specific transcription factor Osterix, is detected. 

Reports show that at later stages of OB maturation, the inactivation of β-catenin does not 

inhibit Osterix expression, indicating that β-catenin is not required for Osterix expression 

in OB with a more mature phenotype (Rodda and McMahon 2006, Zhang, Cho et al. 

2008). These results correlate with the decrease in CTNNB1 expression observed during 

OB differentiation in this chapter.  

 

COL1A2 gene expression was also detected throughout the various time points of OB 

progenitor differentiation. However, there were no significant differences or trends 

between the levels of COL1A2 expression on differentiation stage. The level of Type I 

Collagen did appear to increase on day 21 compared to day 8 and this in line with the 

similar qRT-PCR studies by Chitteti et al investigating OB specific bone matrix markers 

in during OB maturation (Chitteti, Cheng et al. 2010).  

  

To further characterise the OB model, the time-point at which differentiating OB 

progenitor cells started to mineralise was determined. Assessment of Alizarin red staining 

of mineral deposits showed that mineralisation in differentiating OB progenitor cells was 

significant on day 15 and 21 of differentiation, with matrix nodules visible to the eye on 

both these occasions. These results are similar in terms of mineralisation time-points to 

the studies carried out by other groups (Hasegawa, Shimada et al. 2008, Kawazoe, Katoh 

et al. 2008). These observations are in context with the results obtained from the ALP 

analysis and gene expression suggesting that the OB progenitor cells acquire a more 

mature phenotype following 2 weeks in osteogenic culture. Based on the optimisation 

studies carried out on murine calvarial OB progenitor cells, it can be concluded these 

cells can be classified as progenitor/pre-osteoblasts up to day 11 of differentiation. 
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Beyond this time point, differentiating OB progenitors presumably amplify into mature 

functional OB cells with the capability of forming mineralised matrix.  

 

The analysis of ALP activity of SAOS2 cells showed that these cells in line with 

information in the literature had a high basal level of ALP, increasing up to day 4 of 

differentiation and decreasing beyond this time point (Rodan, Imai et al. 1987, Pautke, 

Schieker et al. 2004). The more mature OB phenotype of the SAOS2 cells makes this OB 

model adequate for future comparison with the calvarial primary OB progenitor cells. In 

summary, these studies support the hypothesis that OB differentiation is induced in 

murine OB progenitor cultures by treatment with osteogenic media as measured by an 

increase in ALP and mineralisation up to 21 days. The lowest serum concentration that 

reliably supported the growth and differentiation of these cells was 4% FCS. Analysis of 

known genes involved in OB differentiation supported that these were expressed at their 

maximum on day 8 of differentiation with the exception of COL1A2 which did appear to 

increase at day 21.  
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Chapter 4 – SOSTDC1: An antagonist of Wnt 

and BMP signalling in Osteoblast Progenitors 
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4.1 Introduction 

 

In the canonical Wnt pathway, the activation of receptors results in β-catenin stabilisation 

and translocation into the nucleus. Nuclear β-catenin interacts with transcription factors 

such as Tcf or Lef and induces the transcription of target genes (Miller, Hocking et al. 

1999). Wnt-induced stabilisation of β-catenin is suggested to be the basis of the effect of 

Wnt ligands on proliferation and differentiation. Recently it was shown that in postnatal 

humans and mice, loss of function of the Wnt co-receptor LRP5 resulted in decreased 

bone formation (Gong, Slee et al. 2001, Kato, Patel et al. 2002). A point mutation in the 

LRP5 receptor also caused high bone mass (Boyden, Mao et al. 2002).
 
Although these 

studies highlight the crucial role of Wnt-LRP5 signal transduction in bone development, 

the exact mechanisms by which Wnt signalling regulate bone formation remain unclear.  

 

The transcription factor Runx2 plays an important role in OB differentiation (Ducy 2000) 

as mentioned previously. It has been reported that mice deficient in LRP5 express Runx2 

normally (Kato, Patel et al. 2002) which suggests that the mechanism by which LRP5 

regulates OB function is independent of Runx2. Interestingly, although several OB genes 

are controlled by Runx2, ALP is not one of these.  On the other hand, BMP proteins are 

capable of inducing ALP in Mesenchymal Stem Cells (MSC) (Gong, Slee et al. 2001). 

These reports show that Runx2 is relevant to both the Wnt and BMP signalling pathways 

in OB differentiation and can be used as a mutual marker studies investigating the 

molecular mechanisms of Wnt and BMP signalling.  

 

SOSTDC1 has been characterised as a BMP antagonist (Yanagita, Oka et al. 2004). There 

is less information on the effect of SOSTDC1 on Wnt signalling. In contrast to Itasaki et 

al identification of SOSTDC1 as a Wnt-stimulator in their genetic screen (Itasaki, Jones 

et al. 2003), other studies suggested SOSTDC1 can function as an inhibitor of canonical 

Wnt signalling, specifically in relation to Wnt1, Wnt3a and Wnt10 (Yanagita, Oka et al. 

2004, Beaudoin, Sisk et al. 2005). Data implicate that SOSTDC1-Wnt signalling is 

regulated via interactions with Wnt co-receptor LRP5/6 and that SOSTDC1-induced 

BMP inhibition is regulated via direct adhesion to BMP ligands (Lintern, Guidato et al. 

2009).  
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Previous studies have shown that BMP2, 4 and 7-induced alkaline phosphatase (ALP) 

activity was inhibited by Ectodin, the mouse ortholog of SOSTDC1 (Laurikkala, Kassai 

et al. 2003). Similarly recombinant SOSTDC1was found to bind directly to specific 

BMPs and suppress BMP2, -4 and -7 stimulated ALP activity in the mouse myoblast cell 

line, C2C12 (Yanagita, Oka et al. 2004). Taken together, these data provide compelling 

evidence that SOSTDC1 may suppress BMP-induced bone formation. BMP signals are 

regulated through type II and type I serine/threonine kinase receptors and are central for 

signal transduction. The Smad proteins which are type I BMP receptor substrates, are 

involved in transmitting the BMP signal from the receptor to target genes within the 

nucleus (Cho, Kwak et al. 2011). Although the mechanism by which SOSTDC1 inhibits 

BMP activity is unclear, there are suggestions that there is a direct interaction between 

SOSTDC1 and BMP, in which BMP (BMP2, -4 and -7 specifically) is prevented from 

binding to its co-receptors (Yanagita, Oka et al. 2004). There is some evidence of the 

inhibitory effect of SOSTDC1 on BMP action in the dental ectoderm, where SOSTDC1 

expression was shown to suppress BMP2 and BMP7 activity. In a similar study by Ahn et 

al, SOSTDC1 is shown to suppress development of tooth cells via inhibition of LRP5/6–

induced Wnt signalling. SOSTDC1 suppression up-regulated Wnt signalling, stimulating 

proliferation of tooth bud growth in toothless regions (Ahn, Sanderson et al. 2010). The 

evidence taken from Ahn’s studies initiated the rational for a functional role of SOSTDC1 

in BMP and Wnt signalling in OB cells.  

In the previous chapter, I characterised the calvarial OB progenitor model and established 

the time points at which these cells exponentially proliferated and differentiated. In the 

literature, the studies investigating the effect of SOSTDC1 on Wnt/BMP signalling in 

bone have been carried out using cell lines. In my studies I have provided data to support 

the functional role of human recombinant SOSTDC1 (rhSOSTDC1) in Wnt and BMP-

induced differentiation of OB progenitor cells. In this chapter, I initially assessed the dose 

responses of Wnt and BMP ligands on OB differentiation. Based on this, I investigated 

whether SOSTDC1 suppressed differentiation in OB progenitors through disruption of 

Wnt and BMP signalling via mechanisms similar to other known Wnt and BMP 

antagonists.  
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4.2 Hypothesis and Objectives  

 

4.2.1 Aims 

 

The aim of this study was to determine whether Wnt and BMP-induced OB progenitor 

differentiation could be suppressed in the presence of SOSTDC1. 

To achieve this, the following hypothesis was tested. 

 

4.2.1 Hypothesis 

 

SOSTDC1 suppresses Wnt and BMP-induced cell signalling in differentiating OB 

progenitors. 

 

4.2.2 Specific objectives  

 

To test this hypothesis the following were determined: 

 

The effects of Wnt and BMP dose response on OB progenitor proliferation and 

differentiation   

 

The effects of SOSTDC1 on Wnt and BMP-induced markers of OB progenitor 

differentiation  and mineralisation 

 

The effect of SOSTDC1 on Wnt and BMP-induced acute intracellular signalling in 

differentiating OB progenitors  
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4.3 Chapter specific methods 

 

 

 

 

 

 

Table 4.1 - Recombinant protein doses required for sole and combined treatments.  

Recombinant Proteins 

ITEM CATALOGUE  

NUMBER 

SUPPLIER 

Human bone morphogenic protein 2 (BMP2) 10µg/ml  
10µg lyophilised stock Reconstituted in 1ml of sterile 4 mM HCL 

containing 0.1% BSA. 

355-BM-010 R&D 

Systems 

Human bone morphogenic protein 7 (BMP7) 10µg/ml 
10µg lyophilised stock Reconstituted in 1ml of sterile 4 mM HCL 

containing 0.1% BSA. 

354-BP-010 R&D 

Systems 

Mouse Wnt3a  10µg/ml 
10µg lyophilised stock Reconstituted in 1ml of sterile PBS. 

 

1324-WN-002 R&D 

Systems 

Human Sclorstin Domain Containing 1 (SOSTDC1) 

38µg/ml 
Supplied as a 38ug/ml in50 mM Tris-HCI, 10 mM reduced 

Glutathione, pH=8.buffer. 

H00025928-P01 Abnova 

Mouse Dikkopf 1 (Dkk1) 10µg/ml 
10µg lyophilised stock Reconstituted in 1ml of sterile PBS containing 

0.1% BSA. 

5439-DK-010 R&D 

Systems 

Human noggin 25µg/ml 
25µg lyophilised stock Reconstituted in 1ml of sterile PBS containing 

0.1% BSA. 

6057-NG-025 R&D 

Systems 

Human glutatione S-transferase (GST) 200µg/ml 
Supplied at 200µg/ml in 25% Glycerol, 50mM Tris HCl, 150mM 

Sodium chloride, 0.25mM DTT, 0.1mM PMSF, pH 7.5buffer 

ab70456 Abcam  

Recombinant Proteins doses required  

 

 

Recombinant protein  

Treatment 

Dose 

(ng/ml) 

PBS n/a 

Wnt3a 50 

BMP2 30 

BMP7 30 

SOSTDC1 250 

GST 250 

Dkk1 100 

Noggin 100 

Combined Recombinant Protein 

treatments 

 

Recombinant    

protein 

 

Combination 

Recombinant 

Protein  

Wnt3a SOSTDC1 

Dkk1 

GST 

BMP2 SOSTDC1 

Noggin 

GST 

BMP7 SOSTDC1 

Noggin 

GST 
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4.3.1 Assessing Wnt3a and BMP2 and BM7 dose effect on OB progenitor 

differentiation using ALP analysis  

 

ALP enzyme levels were quantified in bone cell cultures to assess the effects of Wnt3a 

and BMP2 and BMP7 proteins at different doses on OB progenitor differentiation. OB 

progenitor cells were seeded in 96 well plates at a density of 2000 cells per well. Cells 

were differentiated for 11 days in standard osteogenic media; exponential differentiation 

time point for the cells was previously determined in section 3.4.2. Following 72 hours in 

culture, cells were carefully washed once with PBS and cultured with 100µl/well of 

osteogenic media containing various concentrations of recombinant mouse Wnt3a 

(rmWnt3a) protein; 0, 10, 30, 50, 100 and 150ng/ml. In separate wells, OB progenitors 

were also treated with 100µl of various concentrations of recombinant human BMP2 

(rhBMP2) or recombinant human BMP7 (rhBMP7); 0, 10, 30, 40, 50 60ng/ml. OB 

progenitor cells which were treated with osteogenic media only were used as control. 

Osteogenic media containing recombinant protein treatments were removed from OB 

progenitor cultures and replaced with 100µl of fresh media and trearment every three 

days. Total DNA content of OB progenitors was determined with a PicoGreen dsDNA 

quantitation reagent as described in section 2.4 and total cell DNA was used to normalise 

ALP activity analysed on day 11 of differentiation according to section 2.3. 

 

4.3.2 Assessing the effect of SOSTDC1 on the ALP activity of differentiating OB 

progenitors 

 

Preliminary experiments were carried out to investigate the dose effect of Glutathione S-

transferase (GST) tagged-rhSOSTDC1 on OB progenitor differentiation, OB progenitors 

were cultured in 96 well plates at a density of 2000 cells per well in MEM-Alpha. 

Following a 72 hour incubation period, OB progenitor cultures were carefully washed 

once with PBS and sub-cultured with 100µl/well of osteogenic media containing various 

doses of rhSOSTDC1:  0, 14, 8, 32, 63, 125, 250 and 500ng/ml. To determine if any 

effect of rhSOSTDC1 observed on OB progenitor differentiation was solely as a result of 

the SOSTDC1 molecules and not the GST tag protein, OB progenitors were also cultured 

with rhGST protein at the same concentrations as rhSOSTDC1 protein-treated cultures. 

OB progenitors were differentiated in osteogenic media for up to 15 days and osteogenic 

media containing the rhSOSDC1 or rhGST proteins were removed from the OB 

progenitor cultures and replaced with fresh media every 3 days. Total DNA content of 
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OB cultures determined using PicoGreen dsDNA quantitation reagent was used as 

surrogate for of cell proliferation. ALP analysis was used as a marker of OB progenitor 

differentiation and performed on cultures on day 8, 11 and 15 of differentiation. 

Calculated PicoGreen values for total cell DNA contents were used to normalise ALP 

activity. Based on the results of the SOSTDC1 dose responses on OB progenitor 

proliferation and differentiation in preliminary studies, the same experiments were 

repeated using a low 50ng/ml and high 250ng/ml dose of rhSOSTDC1 compared to cells 

cultured with PBS control. The experiments were set up in an identical manner to the 

experimental design outlined in the preliminary studies. The objective of these subsequent 

studies was to be able to select an optimal concentration of rhSOSTDC1 to be used in 

future studies.  

 

4.3.3 Determining the effect of SOSTDC1 on Wnt and BMP-induced alkaline 

phosphatase Activity in OB progenitors and SAOS2 cells 

 

Analysis of the ALP activity of OB progenitors was performed to investigate the effect of 

SOSTDC1 on Wnt and BMP-induced cell differentiation. OB progenitors were harvested 

from a near confluent flask following trypsinisation as outlined in the main method 

section. Cells were pelleted by centrifugation and counted using a haemocytometer as 

described in the method section. OB progenitor cells were resuspended in MEM-Alpha at 

2000 cells per well in 96 well culture plates (6000cells/cm
2
). Following a 72 hours period 

in culture, the media was removed from the adherent OB progenitor cultures and the cells 

were washed twice with PBS. Wnt3a protein was diluted to 50ng/ml concentration and 

BMP2/7 diluted to 30ng/ml concentration in a volume of osteogenic media that was 

sufficient for all replicates within plate/s. To test the effect of SOSTDC1 and Dkk1 on 

Wnt3a, osteogenic media containing 50ng/ml of rmWnt3a was combined with either 

250ng/ml rhSOSTSDC1 or 100ng/ml rhDkk1. To test the effect of SOSTDC1 and noggin 

on BMP2/7, osteogenic media containing 30ng/ml of rhBMP2/7 was combined with 

either 250ng/ml rhSOSTSDC1 or 100ng/ml rhnoggin. To establish whether the GST-tag 

attached to the SOSTDC1 molecule had any effect on OB progenitor differentiation, 

rhGST protein was used as a control. In all experiments, osteogenic media containing 

PBS was used as a negative control and 250ng/ml of rhGST at the same dose as the 

corresponding rhSOSTDC1 concentration was used as the vehicle. 100 µl of osteogenic 

media containing the required protein/protein combination was added to each well 
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containing OB progenitor cells. Osteogenic media from the OB progenitors was replaced 

every three days with 100 µl of fresh media containing the required recombinant proteins. 

ALP for OB progenitors was analysed as described in the method section at day 8, 11 and 

15 of differentiation. The total DNA content of OB progenitor cultures were also 

determined with a PicoGreen dsDNA quantitation reagent to normalise ALP activity to 

cell DNA content, as described in the method section.  

 

In previous studies, I investigated the effect of SOSTDC1 on Wnt and BMP-induced 

differentiation in OB progenitors with differentiating potential. I wanted to compare this 

SOSTDC1-induced effect on differentiation in the OB progenitors to the SAOS2 cells 

which have a mature OB phenotype as established in Chapter 3. The same experiment 

design which was used to analyse ALP activity of primary OB progenitor cultures was 

also used to investigate the effect of rhSOSTDC1 on Wnt and BMP-induced 

differentiation in SAOS2 cells. The only difference between the SAOS2 and primary OB 

progenitor culture experiments was that ALP activity of SAOS2 cells was analysed on 

day 4 and 7 of differentiation. The total DNA content of SAOS2 cultures were also 

determined with a PicoGreen dsDNA quantitation reagent to normalise ALP activity to 

cell DNA content, as described in the method section. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 - A time line for ALP and PicoGreen Analysis of OB progenitors 

 

  

OB 
progenitors 
Seeded 2000 

cells/well 

Change osteogenic media containing 
Wnt3a, BMP2, BMP7 in the absence and 

presence of SOSTDC1, Dkk1, noggin 

ALP and PicoGreen Analysis 

0 4 8 11 15 -2 12 
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4.3.4 Determining the effect of SOSTDC1 on Wnt and BMP-induced Runx2 gene 

expression in differentiating OB progenitors 

 

Runx2 expression was used as a second marker of OB progenitor differentiation to 

investigate the effect of SOSTDC1 on Wnt and BMP activity. OB progenitor cells were 

harvested from a near confluent flask by trypsinisation and cell pellets were counted 

using a haemocytometer as described in the method section. OB progenitor cells were 

resuspended in MEM-Alpha at 57,000 cells per well in 6 well culture plates containing 

1.5ml of media within each well. Following 72 hours in culture, the media was removed 

from the adhered OB progenitor culture and cells were washed twice with PBS. OB 

progenitors were differentiated in 1500µl/well of standard osteogenic media for up to 11 

days and osteogenic media was replaced with fresh osteogenic media every three days. 

On day 7 and 10 of differentiation, OB progenitor cultures were treated with recombinant 

protein for 24 hours. The rmWnt3a protein was diluted to 50ng/ml in 65µl of osteogenic 

media in a 0.5ml sterile eppendorfs. The rhBMP2 and rhBM7 proteins were diluted to 

30ng/ml concentration in 65µl of osteogenic media in 0.5ml sterile polypropylene 

centrifuge tubes. 

 

To assess the effect of SOSTDC1 and Dkk1 on Wnt3a, 50ng/ml of rmWnt3a was 

combined with 250ng/ml rhSOSTSDC1 and 50ng/ml of rmWnt3a was combined with 

100ng/ml rmDkk1 in a 65µl volume of osteogenic media. To assess the effect of 

SOSTDC1 and noggin on BMP2/7, 50ng/ml of BMP2/7 was combined with 250ng/ml 

rhSOSTSDC1 or 100ng/ml rhnoggin in a 65µl volume of osteogenic media. All 

eppendorfs containing 65μl of protein/protein combinations were placed in a water bath 

for 1 hour at 37ᴼC to allow interaction between combined proteins. From the 65µl of 

protein/protein combination, 50μl was added to each well containing OB progenitor 

cultures and the media containing protein treatments were mixed gently within wells by 

pipetting. Culture plates were placed in 37ºC culture incubators for 24 hours.  RNA was 

isolated from the OB progenitor cultures using the RNA mini Prep kit and quantified with 

a Nanodrop as described in section 2.12. The expression of Runx2, COL1A2 and 

housekeeper B2M gene were quantified using TaqMan® Assays for qRT-PCR analysis 

using the SDS2.2.1. Relative quantification of gene expression were performed by 

normalising to the house keeping B2M gene using the formula ΔCT = CT target – CT 

housekeeping as described in section 2.13.3.  
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Figure 4.2 - A time line for RNA extraction for the analysis of Runx2 gene expression 

of differentiating OB progenitors by RT-PCR.  

 

  

4.3.5 Determining the effect of SOSTDC1 on Wnt and BMP-induced OB progenitor 

mineralisation  

 

To investigate the effect of SOSTDC1 on Wnt and BMP-induced mineralisation in OB 

progenitor cells, Alizarin red staining was used to detect mineral deposition. OB 

progenitor cultures were harvested from a near confluent flask by trypsinisation. 

Centrifuged cell pellets were counted using a haemocytometer, as described in section 

2.13. OB progenitors cells were resuspended in MEM-Alpha at 5700 cells per well in 48 

well culture plates. Following a 72 hours period in culture, the media was removed from 

the adhered OB progenitor cultures and cells were washed with PBS.  Recombinant 

proteins were diluted to the correct concentrations from their stock solutions in a volume 

of osteogenic media that was sufficient for all replicates within a plate/s. The rmWnt3a 

protein was diluted to 50ng/ml concentration and the rhBMP2/7 diluted to 30ng/ml 

concentration in a volume of osteogenic media that was sufficient for all replicates within 

plate/s. To test the effect of SOSTDC1 and Dkk1 on Wnt3a, osteogenic media containing 

50ng/ml of rmWnt3a was combined with either 250ng/ml rhSOSTSDC1 or 100ng/ml 

rhDkk1. To test the effect of SOSTDC1 and noggin on BMP2/7, osteogenic media 

containing 30ng/ml of rhBMP2/7 was combined with either 250ng/ml rhSOSTSDC1 or 
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100ng/ml rhnoggin. 250 µl of osteogenic media containing protein or protein 

combinations was added to each well. Osteogenic media from the OB progenitors were 

removed every three days and 250 µl of fresh media containing the required protein 

treatments replaced. Alizarin red staining of OB progenitor cultures was carried out and 

quantified on day 8, 11 and 15 of OB progenitor differentiation as described in section 

2.5.  

 

 

 

 

 

  

 

 

 

 

 

Figure 4.3 - A time line for the analysis of differentiating OB progenitor 

mineralisation.  
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4.3.6 Determining the effect of SOSTDC1 on acute Wnt and BMP-induced 

intracellular protein signalling in OB progenitors 

 

 

 

Table 4.2 – Primary and secondary antibodies used in western blotting for investigating 

the effect of SOSTDC1 on acute Wnt and BMP-induced intracellular protein signalling 

in OB progenitors.  

 

 

To investigate the effect of SOSTDC1 on the acute regulation of Wnt and BMP-induced 

intracellular signalling in OB progenitors, phosphorylated Smads 1,5&8 and 

phosphorylated β-catenin protein levels were quantified using western blot analysis. OB 

progenitor cultures were harvested from a near confluent flask using trypsin and cells 

counted using a haemocytometer, as described in section 2.1.3. OB progenitor cells were 

resuspended in MEM-Alpha at 57,000 cells per well in 6 well culture plates containing 

1500μl of media within each well. Following 72 hours in culture, the media was removed 

from the adherent OB cells and cells were washed with PBS. OB progenitors were 

differentiated in 1500µl/well of standard osteogenic media for up to 15 days.  

 

On day 8, 11 and 15 of differentiation, OB progenitor cultures were treated with 

recombinant proteins. The rmWnt3a protein was diluted to 50ng/ml in 65µl of osteogenic 

media in a 0.5ml sterile eppendorf. The rhBMP2 and rhBM7 proteins were diluted to 

Primary and secondary antibodies for western blot 

Antibody CATALOGUE  

NUMBER 

SUPPLIER 

Phospho-Smad1 (Ser463/465)/ Smad5 

(Ser463/465)/ Smad8 (Ser426/428) antibody  
Rabbit polyclonal  

9511 Cell Signalling 

Anti-β-catenin (phospho Y142) antibody 
Rabbit polyclonal  

Ab-27798 Abcam 

Anti-GAPDH (6C5) antibody 
Mouse monoclonal 

Ab-37168 Abcam 

Goat anti-Rabbit  IgG –HRP antibody  
Rabbit IgG 

9511 Life Technologies 

Novex® 

Goat anti-Mouse IgG –HRP antibody  
Mouse IgG 

SC-2031 SantaCruz 
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10ng/ml concentration in 65µl of osteogenic media in a 0.5ml sterile eppendorf. To assess 

the effect of SOSTDC1 and Dkk1 on Wnt3a, 50ng/ml of rmWnt3a was combined with 

250ng/ml rhSOSTSDC1 and 50ng/ml of rmWnt3a was combined with 100ng/ml rmDkk1 

in a 65µl volume of osteogenic media. To assess the effect of SOSTDC1 and noggin on 

BMP2/7, 10ng/ml of BMP2/7 was combined with 250ng/ml rhSOSTSDC1 or 100ng/ml 

rhnoggin in a 65µl volume of osteogenic media. All eppendorfs containing 65μl of 

protein or protein combinations were placed in a water bath for 1 hour at 37ᴼC to allow 

interaction between combined proteins. From the 65µl of protein/protein combination, 

50μl was added to each well containing OB progenitor cultures and the media containing 

protein treatments were mixed gently within wells by pipetting. Culture plates were 

immediately placed in 37ºC culture incubators for 20 minutes.   

 

The protein from OB progenitor cultures were isolated using Mammalian cell lysis kit 

(Sigma Aldrich) containing phosphatase and protease inhibitor cocktails as described in 

section 2.6. Protein concentration within OB progenitor cell lysates were quantified using 

the BCA assay as outlined in section 2.7.  The effect of SOSTDC1 on Wnt-induced 

signalling in OB progenitors was determined by quantifying levels of phosphorylated β-

catenin (92kD). The effect of SOSTDC1 on BMP2 and BMP7-induced signalling in OB 

progenitors was determined by quantification of phosphorylated Smads 1,5&8 protein 

complex (52kD). Phosphorylated levels of β-catenin and Smads 1,5&8 were assessed 

using western blotting as outlined in section 2.8.  

 

In brief, 10% polyacrylamide gels were loaded with 10μg of sample protein. Each gel was 

also loaded with 10µl of a 10-250kD protein molecular marker at the first and last lane. 

Proteins were run through the stacking gel for 40 minutes at 60 Volts and then separated 

out for 2 hours at 100 Volts. Proteins were transferred onto PVDF membranes for 70 

minutes at 70 Volts. Membranes were washed once in 0.05% PBS-Tween and cut across 

at just above the 75kD and just above the 35kD mark using the pre-stained molecular 

markers as reference points. All three pieces of membrane were blocked in 3% BSA 

solution for 45 minutes. The blot cut just above the 35kD mark was placed in a 1/15000 

dilution of anti-GAPDH mouse antibody. The blot cut above 75kD was placed in a 1/300 

dilution of anti-pβ-Catenin rabbit antibody and the blot cut between 50-75kD was probed 

with 1/3000 of rabbit anti-Psmad1,5&8 antibody. Antibody incubations were all carried 

out overnight at 4ᴼC on a roller. Blots probed with anti-GAPDH antibody were incubated 



131  

 

with 1/30,000 dilution of secondary HRP-conjugated anti-mouse IgG antibody. Blots 

probed with anti-pβ-catenin or anti-pSmad1,5&8 antibody were incubated with 1/5,000 

dilution of secondary HRP-conjugated anti-rabbit IgG antibody. The average density of 

SOSTDC1 protein was normalised to the average density of GAPDH using the GST-710 

Calibrated Imaging Densitometer.  

 

4.4. Results 

 

4.4.1 Wnt3a, BMP2 and BMP7 dose dependently induced differentiation of OB 

progenitors 

 

PicoGreen quantification and ALP assays were used to analyse the proliferation and 

differentiation of OB progenitors, respectively. In experiments in which differentiating 

OB progenitors were cultured with increasing concentrations of rmWnt3a protein, 

PicoGreen analysis showed that continuous exposure to rmWnt3a induced OB progenitor 

proliferation (***P=<0.0001, Figure 4.4.1.1 A). ALP levels increased dose-dependently 

in differentiating OB progenitor cells cultured with 50 to 150ng/ml rmWnt3a protein, 

with 100ng/ml rmWnt3a maximally increasing ALP  levels (***P=<0.0001 Figure 

4.4.1.1 B).   

 

PicoGreen analysis showed that continuous exposure to rhBMP2 and rhBMP7 stimulated 

OB progenitor proliferation (*P=0.014, ***P=0.0001, Figure 4.4.1.2 A, B). ALP activity 

of OB progenitors treated with rhBMP2 increased in a concentration-dependant manner 

with significant increases in ALP observed from 10-60 ng/ml concentrations (Figure 

4.4.1.2 C). Maximal BMP2-induced ALP upregulation was achieved when differentiating 

OB progenitors were cultured with 40ng/ml of rhBMP2 (***P= <0.0001). Although ALP 

levels rose at >40ng/ml rhBMP2 concentrations compared to control, ALP levels 

plateaued beyond the 40ng/ml treatment of rhBMP2. ALP levels of differentiating OB 

progenitors cultured with rhBMP7 increased in a dose-dependent manner with significant 

increases in ALP observed from 30-50 ng/ml of rhBMP7 (Figure 4.4.1.2 D). Maximal 

BMP7-induced ALP upregulation was observed when OB progenitors were treated with 

50ng/ml of BMP7 (***P= <0.0001) and ALP levels fell beyond this concentration. The 

ALP levels observed as a result of rhBMP2 induction (5-15U/ml/min/ng/ml) were on a 
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comparatively higher scale than the rhBMP7-induced ALP levels (~0.5-1.2 

U/ml/min/ng/ml).  
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Figure 4.4.1.1 - Wnt3a increased ALP activity of differentiating OB progenitors 

in a dose dependent manner: OB progenitor cells were differentiated in osteogenic 

media containing increasing doses of mrWnt3a. PicoGreen quantification of total DNA 

contents and ALP analysis were performed to determine dose effect on cell proliferation and 

differentiation. (A, B) Total DNA contents and ALP activity of differentiating OB progenitor 

cells increased following treatment with Wnt3a in comparison to control and that this effect 

was dose dependent. N=3 independent experiment .One way ANOVA and Holme-Sidak’s 

post-test. Data are displayed with mean ± SEM. ***P<0.0001. 
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Figure 4.4.1.2 - BMP2 and BMP7 increased ALP activity of differentiating OB 

progenitors in a dose dependent manner – OB progenitor cells were differentiated 

in osteogenic media containing increasing doses of rhBMP2 or rhBMP7. PicoGreen 

quantification of total DNA contents and ALP analysis were performed to determine dose 

effect on cell proliferation and differentiation, respectively. Graphs are representative of one 

of two independent experiments. (A, B) rhBMP2 and rhBMP7 induced proliferation of OB 

progenitors. (C, D) OB progenitor ALP levels increased following treatment with rhBMP2 

or rhBMP7 in comparison to control and that this effect was dose dependent. N=3 

independent experiments. One way ANOVA and Holme-Sidak’s post-test. Data are displayed 

with mean ± SEM. *P<0.05, **P=<0.01, ***P<0.0001. 
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4.4.2 SOSTDC1 had no effect on ALP levels of differentiating OB progenitors  

 

ALP analysis was performed to analyse the effect of rhSOSTDC1 on the differentiation 

of OB progenitor cultures. PicoGreen analysis of total DNA contents within cells was 

used to normalise the ALP levels. Based on the preliminary data, I showed that ALP 

levels of differentiating OB progenitors were not affected when cultured with increasing 

concentrations of either rhSOSTDC1 or GST vehicle protein (4-500ng/ml). There was no 

difference in ALP levels of OB progenitors cultured in rhSOSTDC1 compared to GST 

vehicle on any of the day 8, 11 or 15 analysis time-points (Figure 4.4.2 A).  

 

In subsequent SOSTDC1 dose response studies, direct comparisons of the effect 50ng/ml 

SOSTDC1 and 250 ng/ml SOSTDC1 showed that the ALP levels of differentiating OB 

progenitors did not differ in cells cultured with  either concentration (Figure 4.4.2 B).  In 

addition there was no difference between ALP levels of OB progenitors cultured with 

rhSOSTDC1 or PBS control. This effect was applicable throughout all differentiation 

time points  
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Figure 4.4.2 - SOSTDC1 had no 

effect on the activity of primary 

osteoblasts at day 8, day11 or 

day 15: (A) ALP levels of OB 

progenitor cells were not affected 

following treatment with 

rhSOSTDC1 in comparison to GST 

vehicle at any dose. (B) Direct 

comparison of ALP levels in 

differentiating OB progenitors 

cultured in PBS, 50ng/ml 

rhSOSTDC1 or 250 ng/ml of 

rhSOSTDC1 showed that there was 

no difference between any of the 

rhSOSTDC1 doses or between the 

rhSOSTDC1 treated OB progenitors 

and PBS controls. N=3 independent 

experiments, Student’s t-test. Data 

are displayed with mean ± SEM.  
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4.4.3 SOSTDC1 suppressed BMP-induced but not Wnt-induced ALP activity in 

differentiating OB progenitors 

 

Differentiating OB progenitor cells were treated with rhSOSTDC1 in the presence or 

absence of recombinant Wnt3a, BMP2 or BMP7 proteins and differentiation was assessed 

via analyses of OB progenitors ALP activity. OB progenitor cultures were also treated 

with ligands in the presence of a well characterised antagonist specific to that ligand. The 

ALP activity of OB progenitors cultured with 50ng/ml rmWnt3a combined with 

100ng/ml rmDkk1 and 30ng/ml rhBMP2/7 combined with 100ng/ml rhnoggin were 

assessed. To ensure that the GST protein tag attached to the rhSOSTDC1 protein did not 

affect ligand-induced OB progenitor differentiation, each experiment contained a control 

in which 250ng/ml rhGST protein which was added to the Wnt or BMP ligand. ALP 

analysis showed that there were no differences between the ALP activity of rmWnt3a, 

rhBMP2 and rhBMP7 treated with or without rhGST suggesting that any effect of 

rhSOSTDC1 observed was solely due to the rhSOSTDC1 protein, and not the rhGST 

(Appendix 1).  

 

ALP analysis showed that 50ng/ml Wnt3a only had an inductive effect on OB progenitor 

differentiation on day 8 of differentiation (*P= <0.026, Figure 4.4.3.1, A). This Wnt3a-

induced ALP activity was not significant on any other time point during OB progenitor 

differentiation (Fig. 4.4.3.1 B, C). The rhSOSTDC1 had no effect on OB progenitor ALP 

activity when in the presence of rmWnt3a. Canonical Wnt-antagonist Dkk1 similarly had 

no significant effect on Wnt3a-induced ALP activity.  

 

Experiments assessing the effect of rhBMP on OB progenitor ALP activity showed that 

rhBMP2 upregulated ALP activity throughout day 8-11 of OB progenitor differentiation, 

although this effect lessened throughout as the OB progenitor cells matured (Day 8 ***P= 

<0.0001, Day11 **P=0.0051, Figure 4.4.3.2). The rhBMP7 also induced ALP activity of 

OB progenitor cells from day 8-11 of differentiation (Day 8 *P= <0.032, Day11 

*P=0.021, Figure 4.4.3.3). The rhBMP2 and rhBMP7 and had no significant effect on 

OB progenitor cells on day 15 of differentiation. The rhSOSTDC1 had a modest 

suppressive effect on rhBMP2-induced ALP activity on day 8 of differentiation only 

(*P=0.038, Figure 4.4.3.2, A). SOSTDC1 had no effect on rhBMP7-induced ALP 

activity in OB at any time point during differentiation. In the presence of rhBMP2 or 
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rhBMP7, rhnoggin had a suppressive effect on ALP activity up to day 11 of OB 

progenitor differentiation (BMP2; Day 8 ***P= <0.0002, Day11 *P=0.022, Figure 

4.4.3.2, BMP7; Day 8 **P= <0.006, Day11 *P=0.029, Figure 4.4.3.3).  

 

In similar experiments assessing the effect of SOSTDC1 on Wnt and BMP-induced ALP 

activity in SAOS2 cells, I showed that neither Wnt3a, BMP2 nor BMP7 had any effect on 

ALP activity on any of the differentiation time-points. The 250ng/ml rhSOSTSDC1 did 

not have any effect in the absence or presence of either ligand (Appendix 2).  
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B 

Figure 4.4.3.1 - SOSTDC1 had no effect on Wnt-induced ALP activity in 

differentiating OB progenitors: Differentiating OB progenitors were treated with vehicle 

or 250 ng/ml rhSOSTDC1 and also separately with 50ng/ml rmWnt3a in the presence or 

absence of rhSOSTDC1. (A) OB progenitor cells treated with rmWnt3a had increased ALP 

activity in comparison to PBS control on day 8 of differentiation and neither rhSOSTDC1 or 

rmDkk1had an  effect on Wnt3a-induced ALP activity. (B, C) Wnt3a and SOSTDC1 had no 

effect on day 11 or 15 of differentiation. N=4 independent experiments, One way ANOVA 

and Holme-Sidak’s post-test. Data are displayed with mean ± SEM. *P<0.05. 
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A 

C 

Figure 4.4.3.2 - SOSTDC1 reduced BMP2-induced ALP activity in 

differentiating OB progenitors: OB progenitor cells were treated with vehicle or 

250ng/ml rhSOSTDC1 and also separately with 30ng/ml rhBMP2 in the presence or 

absence of rhSOSTDC1. (A, B) The rhBMP2 induced OB progenitor ALP activity up to day 

11 of differentiation and rhSOSTDC1 reduced rhBMP2 induction of OB progenitor ALP on 

day 8 of differentiation only. rhnoggin strongly suppressed BMP2-induced ALP activity up 

to day 11 of OB progenitor differentiation.  N=4 independent experiments, One way ANOVA 

and Holme-Sidak’s post-test. Data are displayed with mean ± SEM. *=P<0.05, **=P<0.01, 

***=P<0.001 
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Figure 4.4.3.3 - SOSTDC1 had no effect on BMP7-induced ALP activity in 

differentiating OB progenitors: OB progenitors were cultured with vehicle or 250ng/ml 

rhSOSTDC1 and also separately with 30ng/ml rhBMP7 in the presence or absence of 

rhSOSTDC1. (A, B) ALP activity of OB progenitor cultures treated with rhBMP7 increased 

up to day 11 of OB progenitor differentiation. The rhSOSTDC1 protein had no effect on 

rhBMP7-stimulated ALP on any differentiation time point analysed. rhnoggin strongly 

supressed BMP2-induced ALP activity up to day 11 of OB progenitor differentiation N=4 

independent experiments, One way ANOVA and Holme-Sidak’s post-test. Data are displayed 

with mean ± SEM. *=P<0.05, **=P<0.01. 
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4.4.4 SOSTDC1 inhibited Wnt and BMP-induced Runx2 gene expression in 

differentiating OB progenitors 

 

Quantitative RT-PCR was performed to assess to effect of rhSOSTDC1 on Wnt and 

BMP-induced Runx2 gene expression in differentiating OB progenitor cultures. RNA 

from OB progenitor cells was isolated on day 8 and 11 of differentiation following 

protein treatments in culture for 24 hours. Runx2 and housekeeping B2M gene expression 

were quantified using qRT-PCR. Differences in Runx2 gene expression were normalised 

to B2M expression and overall fold changes in gene expression were calculated using the 

ΔΔ-CT method. The effect of 100ng/ml rhDkk1 on rmWnt3a-induced Runx2 expression 

was also assessed as a known Wnt-antagonist control. 100ng/ml noggin was used as a 

known BMP antagonist in experiments investigating Runx2 expression. Data were 

normalised to PBS control. Data obtained from qRT-PCR analysis showed that 250ng/ml 

SOSTDC1 inhibited Wnt3a-induced Runx2 gene expression on day 8 of OB progenitor 

differentiation and this relationship was not statistically significant on any other occasion 

with the differentiation time course (**P=0.0052, Figure 4.4.4.1 A). The rhDkk1 had no 

significant effect on rmWnt-induced Runx2 expression during OB progenitor 

differentiation (Figure 4.4.4.1 A, B).   

Analysis of qRT-PCR analysis showed that rhBMP2-induced Runx2 gene expression on 

day 8 of OB progenitor differentiation and rhSOSTDC1 inhibited this inductive effect 

(**P=0.0047, Figure 4.4.4.2, A).  Furthermore, rhnoggin had a similar effect to 

rhSOSTDC1 in that is also down-regulated rhBMP2-induced Runx2 gene expression 

levels in OB progenitors on day 8 of differentiation (*P=0.049, Figure 4.4.4.2, A).  

Similarly, qRT-PCR showed that rhBMP7 stimulated Runx2 expression in the early 

stages of OB progenitor differentiation and rhSOSTDC1 was able to reverse this effect 

significantly (*P=0.024, Figure 4.4.4.3, A).  The rhnoggin had no effect on Runx2 

expression in OB when in presence of rhBMP7.  
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Wnt3a-Induced Runx2 CT values 

On Day 8 of OB differentiation 
Protein 

Treatment  

Average CT 

Value 

Control (CT) 21.7 

SOSTDC1 22.2 

Dkk1 22.3 

Wnt3a 20.7 

Wnt3a+SOSTDC1 23.0 

Wnt3a+Dkk1 22.5 

Wnt3a-induced Runx2 CT values 

On Day 11 of OB differentiation 

Protein 

Treatment  

Average CT 

Value 

Control (CT) 21.4 

SOSTDC1 22.3 

Dkk1 21.2 

Wnt3a 21.2 

Wnt3a+SOSTDC1 22.4 

Wnt3a+Dkk1 21.6 
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Figure 4.4.4.1 - SOSTDC1 suppressed Wnt3a-induced Runx2 gene expression in 

differentiating OB Progenitors: Differentiating OB cells were treated with 50ng/ml 

rmWnt3a in the presence or absence of 250ng/ml rhSOSTDC1 or 100ng/ml rmDkk1. (A) OB 

progenitors stimulated with Wnt3a resulted in significant induced levels of Runx2 which 

were down-regulated in the presence of rhSOSTDC1 on day 8 of differentiation and (B) not 

day 11. N=4 independent experiments, One way ANOVA and Holme-Sidak’s multiple 

comparisons test. Data are displayed with mean ± SEM. *P=0.05, **P=0.01. 
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BMP2-induced Runx2 CT values 

On Day 8 of OB differentiation 

Protein 

Treatment  

Average CT 

Value 

Control (CT) 21.7 

SOSTDC1 22.2 

Noggin 21.5 

BMP2 21.1 

BMP2+SOSTDC1 21.9 

BMP2+noggin 21.8 

BMP2-induced Runx2 CT values 

On Day 11 of OB differentiation 

Protein 

Treatment  

Average CT 

Value 

Control (CT) 21.4 

SOSTDC1 22.3 

Noggin 20.9 

BMP2 20.8 

BMP2+SOSTDC1 20.9 

BMP2+noggin 22.5 
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Figure 4.4.4.2 - SOSTDC1 suppressed BMP2-induced Runx2 gene expression in 

differentiating OB progenitors: Differentiating OB progenitor cells were treated with 

30ng/ml BMP2 in the presence or absence of 250ng/ml rhSOSTDC1 or 100ng/ml rhNoggin. 

(A) OB progenitors stimulated with rhBMP2 resulted in significant induced levels of Runx2 

which were reduced in the presence of rhSOSTDC1 on day 8 of differentiation and (B) not 

day 11. N=4 independent experiments, One way ANOVA and Holme-Sidak’s multiple 

comparisons test. Data are displayed with mean ± SEM. *P=0.05, **P=0.01. 
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BMP7-induced Runx2 CT values 

On Day 8 of OB differentiation 

Protein 

Treatment  

Average CT 

Value 

Control (CT) 21.7 

SOSTDC1 22.2 

Noggin 21.5 

BMP7 21.2 

BMP7+SOSTDC1 21.8 

BMP7+noggin 21.8 

BMP7-induced Runx2 CT values 

On Day 11 of OB differentiation 

Protein 

Treatment  

Average CT 

Value 

Control (CT) 21.4 

SOSTDC1 22.3 

Noggin 20.9 

BMP7 20.8 

BMP7+SOSTDC1 20.9 

BMP7+noggin 22.5 
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Figure 4.4.4.3 - SOSTDC1 suppressed BMP7-induced Runx2 gene expression in 

differentiating OB progenitors: Differentiating OB progenitor cells were treated with 

30ng/ml rhBMP7 in the presence or absence of 250ng/ml rhSOSTDC1 or 100ng/ml 

rhnoggin. (A) OB progenitor stimulated with BMP7 resulted in significant induced levels of 

Runx2 which were reduced in the presence of rhSOSTDC1 on day 8 and (B) not day 11 of 

differentiation. N=4 independent experiments, One way ANOVA and Holme-Sidak’s 

multiple comparisons test. Data are displayed with mean ± SEM. *P=0.05, **P=0.01. 
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4.4.5 SOSTDC1 suppressed Wnt and BMP-induced OB progenitor mineralisation  

 

Alizarin red staining was used to investigate the effect of rhSOSTDC1 on OB progenitor 

mineralisation in the presence of rmWnt3a, rhBMP2 or rhBMP7. Percentage (%) 

mineralisation relative to area was measured at day 8, day 11 and day 15 of differentiation 

following treatment and values were normalised to PBS control. As in the ALP 

experiments, the effect of 100ng/ml rmDkk1 on mineralisation when in the presence of 

rmWnt3a was used as an antagonist control. 100ng/ml rhnoggin was also used as a known 

BMP antagonist in all mineralisation experiments. When compared to PBS control, 

50ng/ml rmWnt3a stimulated mineralisation of OB progenitor cells on day 8 of 

differentiation which was apparent visually as a result of a darker red colour in staining 

(***P=0.0001, Figure 4.4.5.1 A, C). A trend in Wnt3a-induced OB progenitor 

mineralisation was evident up to day 11, although this was not statistically significant 

using a One-Way Anova test. Addition of rhSOSTDC1 to rmWnt3a treated OB 

progenitors, resulted in a moderate reduction of OB progenitor mineralisation on day 8 of 

differentiation (*P=0.016, Figure 4.4.5.1, A). The rhSOSTDC1 protein did not inhibit 

Wnt3a-induced OB progenitor mineralisation at any further differentiation time-point. 

The rhDkk1 had no suppressive effects on Wnt3a-induced mineralisation on any 

differentiation time-points. Analysis of Alizarin red staining showed that rhBMP2 

significantly induced OB mineralisation up to day 11 of differentiation (Day 8 **P= 

<0.0026, Day11 **P=0.0023, Figure 4.4.5.2). The rhBMP7 also stimulated 

mineralisation in differentiating OB progenitor cells (Day 8 *P= <0.049, Day11 

***P=0.0004, Figure 4.4.5.3). Although not significant, rhSOSTDC1 appeared to have 

some suppressive effect on rhBMP2 and BMP7-induced OB progenitor mineralisation on 

day 8 of differentiation. On day 11 of OB progenitor differentiation, rhSOSTDC1 

significantly inhibited BMP2-stimulated OB progenitor mineralisation (*P=0.044, Figure 

4.4.5.2, B) and also suppressed BMP7-induced OB progenitor mineralisation (*P=0.018 

Figure 4.4.5.3, B). When OB progenitor cultures were treated with rhnoggin in the 

presence of rhBMP2 or rhBMP7, the Alizarin red staining of OB progenitors did appear 

to be reduced visually. However this suppressive effect was not statistically significant at 

any time-point during OB progenitor differentiation. 
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Figure 4.4.5.1 - Wnt3a induced 

mineralisation in OB progenitor cultures 

and SOSTDC1 reduced this effect on 

day 8 of differentiation: OB progenitor 

cells were treated with 250 ng/ml rhSOSTDC1 

or 100ng/ml rmDkk1 and also separately with 

50ng/ml rmWnt3a in the presence or absence 

of SOSTDC1/Dkk1. The image is 

representative of mineralisation on day 11 of 

differentiation. (A) On day 8 of OB progenitor 

differentiation, rmWnt3a induced 

mineralisation and rhSOSTDC1 reduced this 

effect. The rmDkk1 had no significant effect on 

Wnt3a-stimulated mineralisation. (B, C) 

SOSTDC1 had no effect on mineralisation on 

day 11 or 15 of differentiation. N=4 

independent experiments, One way ANOVA 

and Holme-Sidak’s multiple comparisons test. 

Data are displayed with mean ± SEM. 

*P=0.05, ***P=0.001.  
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Figure 4.4.5.2 - BMP2 induced 

mineralisation in OB progenitors and 

SOSTDC1 reduced this effect on day 11 

of differentiation: OB progenitor cultures 

were treated with 250 ng/ml rhSOSTDC1 or 

100ng/ml rhNoggin and also separately with 

30ng/ml rhBMP2 in the presence or absence of 

SOSTDC1/Noggin. The image is representative 

of mineralisation on day 11 of differentiation. 

(A, B, C) The rhBMP2 induced OB progenitor 

mineralisation up to day 15 of differentiation 

and SOSTDC1 reduced this effect significantly 

on day 11 of differentiation only. The rhNoggin 

had no significant effect on BMP2-stimulated 

mineralisation. N=4 independent experiments, 

One way ANOVA and Holme-Sidak’s multiple 

comparisons test. Data are displayed with 

mean ± SEM. *P=0.05, **P=0.01. 
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Figure 4.4.5.3 - BMP7 induced 

mineralisation in OB progenitors and 

SOSTDC1 reduced this effect on day 11 

of OB differentiation: OB progenitor 

cultures were treated with 250ng/ml 

rhSOSTDC1 or 100ng/ml rhnoggin and also 

separately with 30ng/ml rhBMP7 in the 

presence or absence of SOSTDC1/Noggin.  The 

image is representative of mineralisation on 

day 11 of differentiation. (A, B, C) The rhBMP7 

induced OB progenitor mineralisation up to 

day 15 of differentiation and SOSTDC1reduced 

this effect significantly on day 11 of 

differentiation.  The rhnoggin had no 

significant effect on BMP7-stimulated 

mineralisation. N=4 independent experiments, 

One way ANOVA and Holme-Sidak’s multiple 

comparisons test. Data are displayed with 

mean ± SEM. *P=0.05, ***P=0.001. 
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4.4.6 SOSTDC1 inhibited acute Wnt and BMP-induced intracellular signalling  

 

To investigate the effect of SOSTDC1 on Wnt and BMP-induced intracellular signalling, 

downstream signalling molecules of the Wnt and BMP pathways were separately 

assessed following addition of rhSOSTDC1 protein treatment to OB cultures. OB 

progenitor cultures were differentiated for up to 15 days and on days 8, 11 and 15, cells 

were stimulated with single or combination protein treatments for 20 minutes, after which 

OB progenitor cultures were lysed. To assess the effect of rhSOSTDC1 on Wnt-induced 

intracellular signalling, phosphorylated levels of β-catenin (pβ-Catenin) protein were 

measured using western blot analysis. The effect of SOSTDC1 on BMP2 and BMP7-

induced downstream signalling was further determined via quantification of 

phosphorylated levels of Smads 1,5&8 protein using the same western blotting technique. 

100ng/ml rmDkk1 and 100ng/ml rhnoggin were used in all experiments as known Wnt 

and BMP antagonists, respectively. The average density of the bands on the X-ray images 

representing each OB progenitor sample were quantified and normalised to the 

corresponding GAPDH relative density and the calculated values normalised to PBS 

control.  

 

Western blot analysis showed that rhSOSTDC1 in the presence of rmWnt3a, suppressed 

pβ-Catenin protein levels in OB progenitor cultures on day 8 of differentiation 

(**P=0.0059, Figure 4.4.6.1, A, C). Although the post hoc test between the average 

density values of PBS control and rmWnt3a  was not statistically significant, the overall 

trend in pβ-Catenin levels between CT, rmWnt3a and rmWnt3a+rhSOSTDC1 were 

statistically significant on day 8 (**P=0.0092, Figure 4.4.6.1, A). No further inhibitory 

effects of rhSOSTDC1 on Wnt3a-induced pβ-Catenin levels were evident at other time 

points in differentiation. The rmDkk1 protein had no significant effect on Wnt-induced 

pβ-Catenin protein levels. Densitometry showed that rhBMP2 and rhBMP7 both induced 

pSmad 1,5&8 levels on day 8 of differentiation and rhSOSTDC1 reversed this effect 

(BMP2; *P=0.032, Figure 4.4.6.2, BMP7; ***P=0.0002 Figure 4.4.6.3). Similarly, 

rhnoggin also down-regulated BMP-induced pSmad 1,5&8 protein levels in the early 

stages of OB progenitor differentiation (BMP2; *P=0.033, Figure 4.4.6.2, BMP7; 

***P<0.0001 Figure 4.4.6.3).  
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Figure 4.4.6.1 - SOSTDC1 suppressed acute Wnt3a-induced β-catenin 

phosphorylation protein levels in differentiating OB progenitors: Phosphorylated 

levels of pβ-Catenin protein were measured using western blotting. The western blot image 

is representative of one out of three experiments. (A) The rmWnt3a acutely induced pβ-

Catenin protein levels in OB progenitors on day 8 of differentiation and (B, C) not on day 11 

or 15 .N=4 independent experiments, One way ANOVA and Holme-Sidak’s multiple 

comparisons test. Data are displayed with mean ± SEM.*P=0.05, **P=0.01. 
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Figure 4.4.6.2 - SOSTDC1 suppressed acute BMP2-induced phosphorylation of 

Smad 1,5&8 complex levels in differentiating OB progenitors: Phosphorylated 

levels of Smads 1,5&8 (pSmads 1,5&8) protein were measured using western blotting. Data 

represents the average density normalised to GAPDH. The western blot image is 

representative of one of three experiments on day 8 of differentiation. (A) The rhBMP2 

acutely induced pSmad protein levels in OB progenitors on day 8 of early differentiation 

only. The rhSOSTDC1 and rhNoggin inhibited pSmad levels on day 8 of differentiation. (B, 

C) SOSTDC1 had no effect on BMP-2 induced  Smad phosphorylation on day 11 or 15 of 

differentiation. N=4 independent experiments, One way ANOVA and Holme-Sidak’s multiple 

comparisons test. Data are displayed with mean ± SEM.*P=0.05. 
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Figure 4.4.6.3 - SOSTDC1 suppressed acute BMP7-induced phosphorylation of 

Smad 1,5&8 complex levels in differentiating OB progenitors: Phosphorylated 

levels of Smads 1,5&8 (pSmads 1,5&8) protein were measured using western blot analysis. 

The western blot image is representative of one of three experiments on day 8 of 

differentiation. (A) The rhBMP7 acutely induced pSmad protein levels in OB progenitors on 

day 8 of early differentiation only and both rhSOSTDC1 and rhnoggin strongly inhibited 

pSmad levels on day 8 of differentiation. (B, C) SOSTDC1 had no effect on BMP-7 induced  

Smad phosphorylation on day 11 or 15 of differentiation. N=4 independent experiments, 

One way ANOVA and Holme-Sidak’s multiple comparisons test. Data are displayed with 

mean ± SEM. ***P=0.0001. 
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4.5 Discussion  

 

In this chapter, I investigated the effect of rhSOSTDC1 on the Wnt and BMP pathways in 

OB progenitors during various maturation stages of differentiation. The aim of this part of 

the study was to firstly determine whether SOSTDC1 antagonised Wnt and BMP 

signalling in OB progenitors on a similar level to well characterised Wnt and BMP 

antagonists. The second aim was to determine whether any antagonistic SOSTDC1 effect 

observed was dependent on OB maturity. My data support the hypothesis of this 

particular part of the study in that SOSTDC1 suppresses Wnt and BMP-induced cell 

signalling in differentiating OB progenitors. 

 

ALP and Runx2 were selected as well characterised markers of OB differentiation. ALP 

is an early marker of OB differentiation and is secreted by differentiating OB cells. 

Runx2 is an early to mid-marker of OB differentiation and is detected in pre-osteoblasts, 

with the expression increasing in immature OB and decreasing in mature OB (Komori 

2010). OB matrix mineralisation was assessed by detection of mineral deposition by 

quantification of Alizarin red staining as described by Hesegawa et al (Hasegawa, 

Shimada et al. 2008). 

 

Firstly to observe the effects of SOSTDC1 on Wnt/BMP-induced OB progenitor 

differentiation, each experiment contained a control in which GST protein at the same 

concentration as the –GST component of the GST-SOSTDC1 fusion protein was added to 

the ligand. ALP analysis showed that there were no difference between Wnt3a, BMP2 

and BMP7-induced differentiation of OB progenitor cultures treated with or without GST. 

This data confirmed that the GST protein component of the SOSTDC1 molecule had no 

regulatory effect on Wnt3a/BMP-induced OB differentiation. Secondly, as can be seen 

from the presented data demonstrating the effects of potential regulators of OB 

differentiation, systematic and exhaustive experimentation was required over time courses 

in low doses of FCS and specific concentrations of Wnt and BMP molecules and 

antagonists. At least three independent experiments with a minimum of four replicates 

were used in each of analysis.  
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In preliminary experiments investigating the effect of SOSTDC1 on ALP activity of OB 

progenitors, my findings show that SOSTSDC1 has variable effect on OB progenitor 

differentiation depending on cell maturity. In agreement with the literature my findings 

showed that continuous exposure to recombinant Wnt3a, BMP2 and BMP7 induced ALP 

in cultured OB cells (Rawadi, Vayssiere et al. 2003). In the later stages of the OB 

progenitor cell differentiation (day 11 onwards), the same dosage of 50ng/ml Wnt3a and 

30ng/ml BMP2/7 no longer significantly induced differentiation.  Presumably as towards 

the end of the exponential phase of OB progenitor differentiation when differentiation 

potential of cells reaches their peak, OB progenitor cultures require a higher 

concentration of ligand to induce ALP activity. Interestingly in similar experiments 

assessing the effect of SOSTDC1 on Wnt and BMP-induced ALP activity in SAOS2 

cells, I showed that SOSTSDC1 did not have any effect in the absence or presence of 

either Wnt or BMP ligand, even in the very stages of differentiation (Appendix 2) This 

data is not surprising as the SAOS2 cells have a more mature/differentiated OB 

phenotype compared to primary OB progenitor cells and the all the effects of SOSTDC1 

observed in my studies have been in early differentiation time-points.  

 

Similar to the effect Laurikkala, Kassai et al found using MC3T3-E1 cells (Laurikkala, 

Kassai et al. 2003), I showed that SOSTDC1 inhibited BMP2-induced ALP activity. This 

antagonistic effect of SOSTDC1 was only observed in BMP2 and not BMP7-induced 

ALP activity. I further showed that SOSTDC1 had no significant effect on Wnt3a-

induced ALP activity. This differed from the data in the literature, where an inhibitory 

effect of SOSTDC1 was seen in MC3T3-E1 cells over expressing Wnt3a (Rawadi, 

Vayssiere et al. 2003). The contradictory results may be due to the phenotypic differences 

observed between cell-lines and primary OB cells and also the differences in 

methodology. 

 

To compare results obtained from ALP analysis, the more sensitive approach of 

investigating Runx2 gene expression by qRT-PCR was utilised. From the the qRT-PCR 

data I showed that on the early day 8 time point when Runx2 expression is known to be 

high in immature differentiating OB progenitor cells (Prince, Banerjee et al. 2001), 

SOSTDC1 had a clear inhibitory effect on Runx2 when in the presence of recombinant 

Wnt3a, BMP2 or BMP7 proteins.Next the effect of SOSTDC1 on Wnt and BMP-induced 

mineralisation in OB using Alizarin red staining was investigated. Again, the antagonistic 
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effect of SOSTDC1 when in the presence of Wnt and BMP ligands was evident when OB 

progenitor cells were in immature stages of differentiation. Although results indicated 

towards the inhibitory role of SOSTDC1 in OB progenitor differentiation and 

mineralisation, which was in line with the data in the literature, we wanted a clearer 

insight into the molecular mechanisms by which SOSTDC1 interfered with Wnt and 

BMP signalling. To determine whether SOSTDC1 antagonised acute Wnt/BMP 

signalling in OB progenitors, western blotting was used to quantify protein levels 

downstream of either Wnt or BMP signalling pathways. Western blot analysis showed 

that when differentiating OB progenitors were treated with SOSTDC1 in the presence of 

Wnt3a, the protein level of molecular mediator pβ-catenin reduced significantly. 

Similarly, western blotting was used for the quantification of pSmad 1,5&8 protein 

complex levels following treatment with rhSOSTDC1 in the presence of BMP2 or BMP7. 

In line with the literature, addition of recombinant BMP2 and BMP7 for just 20 minutes 

was able to induce pSmad levels in differentiating OB progenitor cells. Addition of 

rhSOSTDC1 to OB progenitor cells was able to effectively reverse BMP-induced Smad 

phosphorylation 

 

Wnt-antagonists such as Dkk1 function by interacting physically with Wnt-receptor 

LRP5/6 and as a result intracellular pβ-catenin protein levels are reduced. In the 

experiments investigating ALP, Runx2 and mineralisation, only a trend in Dkk1-induced 

Wnt3a suppression was observed. Interestingly, where SOSTDC1 inhibitory effects on 

Wnt3a-induced differentiation and mineralisation were significant, Dkk1 appeared less 

effective (no significant effect) in the same experiments. This could mean that LRP5/6 

may have higher affinity for SOSTDC1 in comparison to Dkk1. BMP antagonist noggin 

had variable suppressive effect on OB progenitors throughout differentiation and 

mineralisation. Noggin inhibited BMP-induced ALP activity and Runx2 expression on 

day 8 and 11 of OB progenitor differentiation. Interestingly, the negative effect of noggin 

on OB progenitor mineralisation was not significant at any time point throughout 

differentiation compared to SOSTDC1 in the same experiments.  

 

In this chapter I showed that SOSTDC1 suppressed Wnt-induced differentiation and 

mineralisation in immature OB progenitor cells by blocking the Wnt-signalling pathway. 

I also showed that SOSTDC1 suppressed BMP-induced differentiation and mineralisation 

via interference with the regulation of Smad phosphorylation. Thus, my data support the 
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hypothesis of this particular part of the study in that SOSTDC1 suppresses Wnt and 

BMP-induced cell signalling in differentiating OB progenitors. 

 

It is interesting to note that the suppressive SOSTDC1 effects within this study were only 

observed when OB progenitors were in the presence of Wnt or BMP ligand. 

Immunohistochemical and in situ hybridization analyses carried out as early as the 1970’s 

demonstrated that OB express BMPs and their receptors during bone formation, skeletal 

development and fracture repair (Helder, Ozkaynak et al. 1995, Lyons, Hogan et al. 1995, 

Yamaguchi, Komori et al. 2000). The canonical Wnt proteins have been shown to induce 

OB differentiation (Westendorf, Kahler et al. 2004, Kubota, Michigami et al. 2009). 

These studies correlate with data that indicate towards SOSTDC1’s regulatory role on OB 

is evident when BMP and Wnt protein levels in OB are very high.  
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Chapter 5 – SOSTDC1 is a Dual Regulator of 

Wnt-BMP Crosstalk 
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5.1 Introduction 

 

In the regulation of differentiation and haemostasis, it is highly likely that the actions of 

one signalling pathway can influence that of others, resulting in cellular responses that 

differ from the one achieved by just one single signalling cascade. The availability of 

intrinsic factors including cofactors and target genes, and the link between signalling 

pathways amplifies both the level and complexity of cell responses. The dependency 

between two signalling pathways is often referred to as the “crosstalk” of multiple 

signalling pathways. The Wnt and BMP signalling pathways are function independently 

of each other according to their own unique ligands, receptors and cytoplasmic/nuclear 

signal transducers, without requiring components of the other pathway. However recent 

studies have shown that in some biological contexts there is evidence of Wnt-BMP 

crosstalk. Depending on the cellular context, this Wnt-BMP crosstalk is found to be either 

synergistic or antagonistic (Azpiazu et al.,1996; Carmena et al.,1998). For example, in 

early Xenopus embryos, Wnt8 and BMP4 are co-expressed in overlapping domains and 

are both reliant on each other to regulate normal vertebrate development (Hoppler and 

Moon,1998). On the other hand, Wnt signalling is required for melanocyte development, 

whereas BMP signalling represses melanogenesis (Jin et al.,2001).  

 

In bone formation, Wnt and BMP pathways function cooperatively. The activation of Wnt 

signalling stimulates the differentiation of pluripotent MSC into OB progenitors and 

maintains the precursor lineage of these osteoprogenitors. BMP signalling then stimulates 

these cells to further differentiate into OB cells. Once the OB progenitors have become 

mature functional OB cells, both the Wnt and BMP pathways induce differentiation, 

evidenced by increased ALP activity and mineralization (Bain, Muller et al. 2003, Hill, 

Spater et al. 2005). Studies have shown the interaction between BMP and Wnt signalling 

results in synergistic effects on OB differentiation and bone development (Fukuda, 

Kokabu et al. 2010). Zhou et al showed BMP2 increased the nuclear β-catenin levels and 

the expression of Wnt15, 3a, 5b in pre-osteoblastic cell (Zhou 2011). The same group 

also showed that β-catenin directs osteogenic lineage allocation by enhancing MSC 

responsiveness to BMP-2 via Tcf/Lef response elements (TREs). This synergism is 

known to increase new bone formation in-vivo (Mbalaviele and Sheikh et al, 2009).   

http://onlinelibrary.wiley.com/doi/10.1002/dvdy.22009/full#bib7
http://onlinelibrary.wiley.com/doi/10.1002/dvdy.22009/full#bib26
http://onlinelibrary.wiley.com/doi/10.1002/dvdy.22009/full#bib80
http://onlinelibrary.wiley.com/doi/10.1002/dvdy.22009/full#bib95
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mbalaviele%20G%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sheikh%20S%5Bauth%5D
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Various molecular studies have shown that the functional communication which exists 

between Wnt and BMP signalling pathways involves several mechanisms. On an 

intracellular level, Smads have been shown to form complexes with molecules 

downstream of the Wnt signalling pathway including β-catenin, Dishevelled-1, Axin and 

GSK3. The formation of these complexes consequently regulates the phosphorylation and 

activity of Smads and β-catenin (Edlund, Lee et al. 2005, Liu, Tang et al. 2006, 

Fuentealba, Eivers et al. 2007). Interestingly, the transcriptional regulation of Wnt and 

BMP common target genes can involve both Smad and TREs. In response to BMP-Wnt 

dependent signalling the Smads can form transcriptional complexes with β-

catenin/Tcf/Lef and co-activate transcription of various target genes including Msx2 and 

Myc via these binding elements (Hussein, Duff et al. 2003, Hu and Rosenblum 2005).  

 

Some extracellular proteins, such as sclerostin, cerberus and sFRPs, are known to bind 

ligands and/or receptors of both the BMP and Wnt pathways (Piccolo, Agius et al. 1999, 

Kusu, Laurikkala et al. 2003, Misra and Matise 2010). Data suggests that SOSTDC1-Wnt 

signalling is regulated via interactions with Wnt co-receptor LRP5/6 and that SOSTDC1-

induced BMP inhibition is regulated via direct adhesion to BMP ligands (Lintern, 

Guidato et al. 2009). X-raycrystallography  has revealed that the SOSTDC1 protein 

consists of 3 cystine loops, 2 of which provide stability whilst the third has a functional 

role in receptor/ligand binding, specifically binding to LRP5/6 (Avsian-Kretchmer and 

Hsueh 2004). Lintern’s study showed SOSTDC1 deletion construct lacking the LRP-

specific loop domain still bound BMP4 and consequently inhibited BMP signalling 

(Lintern, Guidato et al. 2009). This data suggests that SOSTDC1 may function 

simultaneously as a dual Wnt and BMP antagonist. However, to my knowledge no studies 

have investigated the regulatory role of SOSTDC1 in Wnt-BMP cooperative signalling in 

OB progenitors. In light of my previous data suggesting SOSTDC1 down-regulated both 

Wnt and BMP signalling in OB progenitor cultures at early stages of differentiation, the 

objective of this study were to investigate the potential regulatory role of SOSTDC1 in 

the cooperative mechanisms between Wnt and BMP signalling in differentiating OB 

progenitors. In this study I also assessed the strength of the molecular interactions of 

SOSTDC1-LRP receptor and SOSTDC1-BMP ligands to provide clearer insight into the 

regulatory role of SOSTDC1 on Wnt-BMP dependent signalling.   
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5.2 Hypothesis and Objectives  

 

5.2.1 Aims 

The aim of this study was to determine whether SOSTDC1 had an antagonistic effect on 

Wnt-BMP dependent signalling within OB progenitor cells  

To achieve this, the following hypothesis was tested. 

 

5.2.2 Hypothesis 

 

SOSTDC1 suppresses Wnt-BMP crosstalk in signalling OB progenitor cells. 

 

5.2.3 Specific objectives  

 

To test this hypothesis the following were determined: 

 

Whether intracellular downstream signalling molecules of Wnt and BMP pathways in OB 

progenitor cells are dependent on each other 

 

The effect of SOSTDC1 on Wnt and BMP-induced acute intracellular signalling in OB 

progenitors 
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5.3 Chapter specific methods 

 

 

Table 5.1 - Recombinant proteins required for investigating the effect of SOSTDC1 on 

Wnt-BMP dependent signalling in OB progenitors. 

 

 

 

 

 

 

 

 

 

Table 5.2 - Recombinant protein doses required for sole and combined treatments to 

investigate the effect of SOSTDC1 on Wnt-BMP dependent signalling in OB 

progenitors.   

Recombinant Proteins 

ITEM CATALOGUE  

NUMBER 

SUPPLIER 

Human bone morphogenic protein 2 (BMP2) 

10µg/ml  
10µg lyophilised stock Reconstituted in 1ml of sterile 4 mM HCL 

containing 0.1% BSA. 

355-BM-010 R&D 

Systems 

Human bone morphogenic protein 7 (BMP7) 

10µg/ml 
10µg lyophilised stock Reconstituted in 1ml of sterile 4 mM HCL 

containing 0.1% BSA. 

354-BP-010 R&D 

Systems 

Mouse Wnt3a  10µg/ml 
10µg lyophilised stock Reconstituted in 1ml of sterile PBS. 

1324-WN-002 R&D 

Systems 

Human Sclorstin Domain Containing 1 (SOSTDC1) 

38µg/ml 
Supplied as a 38ug/ml in50 mM Tris-HCI, 10 mM reduced 

Glutathione, pH=8.buffer. 

H00025928-P01 Abnova 

Human glutatione S-transferase (GST) 200µg/ml 
Supplied at 200µg/ml in 25% Glycerol, 50mM Tris HCl, 150mM 

Sodium chloride, 0.25mM DTT, 0.1mM PMSF, pH 7.5buffer. 

ab70456 Abcam   

Mouse Dikkopf 1 (Dkk1) 10µg/ml 
10µg lyophilised stock Reconstituted in 1ml of sterile PBS 

containing 0.1% BSA. 

5439-DK-010 R&D 

Systems 

Human noggin 25µg/ml 
25µg lyophilised stock Reconstituted in 1ml of sterile PBS 

containing 0.1% BSA. 

6057-NG-025 R&D 

Systems 

Combined Recombinant Protein 

treatments 

Recombinant    

protein 

 

Combination 

Recombinant Protein  

Wnt3a SOSTDC1 

Dkk1 

BMP2 SOSTDC1 

Noggin 

BMP7 SOSTDC1 

Noggin 

Recombinant Protein doses 

Recombinant protein  

Treatment 

Dose 

(ng/ml) 

PBS n/a 

Wnt3a 50 

BMP2 30 

BMP7 30 

SOSTDC1 250 

Dkk1 100 

Noggin 100 
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5.3.1 Determining the effect of SOSTDC1 on Wnt-BMP dependent intracellular 

protein signalling in differentiating OB progenitors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3 - Recombinant protein doses required for sole and combined treatments to 

investigate the effect of SOSTDC1 h on Wnt-BMP dependent signalling in OB 

progenitors. 

 

 

The objective of the first part of this chapter was to establish whether intracellular Wnt 

signalling was dependent on BMP signalling. At the same time I also wanted to determine 

whether SOSTDC1 had a regulatory role on potential Wnt-BMP dependency.  OB 

progenitor cultures were harvested from a near confluent flask using trypsin and cells 

counted using a haemocytometer, as described in section 2.1.3. OB progenitors were 

resuspended in MEM-Alpha at 57,000 cells per well in 6 well culture plates containing 

1500μl of media within each well. Following 72 hours in culture, the media was removed 

from the adherent OB progenitors and cells were washed with PBS. OB progenitors were 

differentiated in 1500µl/well of standard osteogenic media for up to 15 days and 

osteogenic media was replaced with fresh media every three days. On day 8, 11 and 15 of 

differentiation, OB progenitor cultures were treated with recombinant proteins on day 8, 

11 and 15 of differentiation. The rmWnt3a protein was diluted to 50ng/ml in 65µl of 

osteogenic media in a 0.5ml sterile eppendorf. The rhBMP2 and rhBM7 proteins were 

diluted to 10ng/ml concentration in 65µl of osteogenic media in 0.5ml sterile eppendorfs. 

Primary and Secondary antibodies for western blot 

ITEM CATALOGUE  

NUMBER 

SUPPLIER 

Phospho-Smad1 (Ser463/465)/ Smad5 

(Ser463/465)/ Smad8 (Ser426/428) 

antibody  
Rabbit polyclonal  

9511 Cell Signalling 

Anti-β-catenin (phospho Y142) 

antibody 
Rabbit polyclonal  

Ab-27798 Abcam 

Anti-GAPDH (6C5) antibody 
Mouse monoclonal 

Ab-37168 Abcam 

Goat anti-Rabbit  IgG –HRP antibody  
Rabbit IgG 

9511 Life Technologies 

Novex® 

Goat anti-Mouse IgG –HRP antibody  
Mouse IgG 

SC-2031 SantaCruz 



166  

 

50ng/ml of rmWnt3a was combined with 250ng/ml rhSOSTSDC1 and 50ng/ml of 

rmWnt3a was combined with 100ng/ml rmDkk1 in a 65µl volume of osteogenic media. 

In separate tubes, 10ng/ml of rhBMP2 or rhBMP7 was combined with 250ng/ml 

rhSOSTSDC1 or 100ng/ml rhnoggin in a 65µl volume of osteogenic media. All 

eppendorfs containing 65μl of protein/protein combinations were placed in a water bath 

for 1 hour at 37ᴼC to allow interaction between combined proteins. From the 65µl of 

protein/protein combination, 50μl was added to each well containing OB progenitor 

cultures and the media containing protein treatments were mixed gently within wells by 

pipetting. 6 well culture plates were immediately placed in 37ºC culture incubators for 20 

minutes.  The protein from OB progenitor cultures were isolated using Mammalian cell 

lysis kit containing phosphatase and protease inhibitor cocktails as described section 2.6. 

Protein concentrations within OB progenitor cell lysates were quantified using the BCA 

assay as outlined in the method section 2.7. 

 

The effect of Wnt3a ligand on downstream intracellular BMP signalling was tested via 

quantification of Wnt3a-induced phosphorylated levels of Smad 1,5&8 protein complex 

(52kD). The effect of BMP2 and BMP7 ligand on downstream intracellular Wnt 

signalling was determined by quantifying the level of BMP-induced phosphorylated β-

catenin protein (92kD). The influence of SOSTDC1 on Wnt-induced Smad 

phosphorylation and BMP-induced β-catenin phosphorylation in differentiating OB 

progenitors was determined by western blotting as outlined in section 2.8.  

 

In brief, 10% polyacrylamide gels were loaded with 10μg of sample protein. Each gel was 

also loaded with 10µl of a 10-250kD protein molecular marker at the first and last lane 

and the proteins were run through the stacking gel for 40 minutes at 60 Volts. Proteins 

were separated with the separating gel according to their molecular weight for 2 hours at 

100 Volts. Proteins were transferred onto PVDF membranes for 70 minutes at 70 Volts. 

Membranes were washed once in 0.05% PBS-Tween. Membranes were blocked in 3% 

BSA solution for 45 minutes. Transferred proteins from Wnt-induced OB progenitor cell 

lysates were cut just below the 50kD mark using the pre-stained molecular markers as 

reference points and then incubated with 1/3000 of rabbit anti-Psmad1,5&8 antibody. 

Transferred proteins from BMP-induced OB progenitor cell lysates were cut just above 

the 75kD mark and incubated with a 1/300 dilution of anti-pβ-Catenin rabbit antibody. 

The remainder of the blot containing proteins <50kD was placed in a 1/15000 dilution of 
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anti-GAPDH mouse antibody. Antibody incubations were all carried out overnight at 4ᴼC 

on a roller. Blots incubated with anti-pβ-catenin or anti-pSmad1,5&8 antibody were 

probed with 1/5,000 dilution of secondary HRP-conjugated anti-rabbit IgG antibody. 

Blots incubated with anti-GAPDH antibody were incubated with 1/30,000 dilution of 

secondary HRP-conjugated anti-mouse IgG antibody. Protein bands were visualised and 

the average density quantified using GelDoc software. The average density of SOSTDC1 

protein was normalised to the average density of GAPDH to account for any loading 

variability.  

 

5.3.2 Determining the effect of SOSTDC1 on Wnt-BMP dependent CTNNB1 gene 

levels in differentiating OB progenitors 

 

To investigate the effect of SOSTDC1 on BMP-induced Wnt signalling in differentiating 

OB progenitors on a gene expression level, CTNNB1 (the gene encoding β-catenin 

protein) was determined using qRT-PCR as described in section 2.14.3. Wnt3a-induced 

CTNNB1 expression was also assessed as a positive control for CTNNB1 expression.  OB 

progenitor cells were harvested from a near confluent flask by trypsinisation and cell 

pellets were counted using a haemocytometer as described in section 2.1.3. OB 

progenitor cells were resuspended in MEM-Alpha at 57,000 cells per well in 6 well 

culture plates containing 1.5ml of media within each well. Following 72 hours in culture, 

the media was removed from the adhered OB progenitor culture and cells were washed 

with PBS. OB progenitors were differentiated in 1500µl/well of standard osteogenic 

media for up to 11 days and osteogenic media was replaced with fresh media every three 

days. On day 7 and 10 of differentiation, OB progenitors were cultured with recombinant 

protein for 24 hours. To determine the effect of Wnt and BMP on CTNNB1 expression in 

differentiating OB progenitors, rmWnt3a protein was diluted to 50ng/ml in 65µl of 

osteogenic media in a 0.5ml sterile eppendorf. The rhBMP2 or rhBM7 proteins were 

diluted to 30ng/ml concentration in 65µl of osteogenic media in 0.5ml sterile eppendorfs.  

To assess the effect of SOSTDC1 and Dkk1 on Wnt3a-induced CTNNB1 expression, 

50ng/ml of rmWnt3a was combined with 250ng/ml rhSOSTSDC1 and 50ng/ml of 

rmWnt3a was combined with 100ng/ml rmDkk1 in 65µl volumes of osteogenic media. 

The effect of SOSTDC1 and noggin on BMP2/7-induced CTNNB1 levels were assessed 

by combining 50ng/ml of rhBMP2/7 with 250ng/ml rhSOSTSDC1 or 100ng/ml rhnoggin 

in a 65µl volume of osteogenic media. All eppendorfs containing 65μl of protein 
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sample/protein combinations were placed in a water bath for 1 hour at 37ᴼC to allow 

interaction between combined proteins. From the 65µl of protein sample/protein 

combination, 50μl was added to each well containing OB progenitor cultures and mixed 

gently within wells by pipetting. Culture plates were placed back in 37ºC culture 

incubators for 24 hours.  

 

 RNA was isolated and quantified from the OB progenitor culture as described in section 

2.13. The CTNNB1 and B2M gene expression were quantified using TaqMan® Assays for 

qRT-PCR analysis using the SDS2.2.1. Relative quantification of CTNNB1 expression 

was performed by normalising to the house keeping B2M gene using the formula ΔCT = 

CT target – CT housekeeping as described in section 2.13.3.   
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5.3.3 Determining the affinity (KD) of recombinant SOSTDC1 for LRP-6, BMP2 

and BMP7 by Bio-layer interferometry  

 

 

 

Table 5.4 - Recombinant proteins required for determining the affinity of SOSTDC1 

for LRP-6, BMP2 and BMP7 by Bio-layer interferometry 

 

 

The affinity of Wise, the mouse orthologue to SOSTDC1 for LRP-6 receptor, BMP2 and 

BMP7 ligands has been previously been tested using BIAcore technology and 

Immunoprecipitation analysis (Laurikkala, Kassai et al. 2003). However to my 

knowledge, there are currently no reported KD values associated with the binding affinity 

of rhSOSTDC1 for LRP-6, BMP2 or BMP7. In this study the affinity of rhSOSTDC1 

protein for LRP-6, BMP2 and BMP7 was determined using the Bio-layer Interferometry 

technology of the Blitz Analysis system according to section 2.15. 

 

Briefly, all recombinant proteins were purchased in the carrier-free state in a lyophilised 

form. The rmLRP-6 protein was reconstituted to 100µg/ml concentration in the 

recommended buffer. The rhBMP2 and rhBMP7 proteins were reconstituted to 100µg/ml 

concentration in the recommended buffer. Recombinant protein samples were prepared in 

their corresponding buffers to 1, 10, 25, 50 and 100 µg/ml (neat) concentrations within 

sterile 0.5ml eppendorfs. 100 µg/ml of rhSOSTDC1 was immobilized on a pre-hydrated 

disposable ARG2 biosensor. For each SOSTDC1-analyte binding assay, a blank (buffer 

only) negative control was also performed to establish any non-specific binding.  

 

Recombinant Proteins 

ITEM CATALOGUE  

NUMBER 

SUPPLIER 

CF Human bone morphogenic protein 2 

(BMP2) 10µg  - lyophilised 

355-BM-010-CF R&D 

Systems 

CF Human bone morphogenic protein 7 

(BMP7) 10µg -  lyophilised 

354-BP-010-CF R&D 

Systems 

CF Mouse Wnt3a  10µg/ml 
Lyophilised 

1324-WN-002-

CF 

R&D 

Systems 

Human Sclorstin Domain Containing 1 

(SOSTDC1) 38µg/ml 

H00025928-P01 Abnova 

Human glutatione S-transferase (GST) 

200µg/ml 
. 

ab70456 Abcam   
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Eppendorf tubes containing LRP-6, BMP2 or BMP7 recombinant proteins in their various 

concentrations were placed on the Blitz Analyser one at a time starting with the highest 

100 µg/ml concentration. The rhSOSTDC1-coated ARG2 biosensor was placed into an 

eppendorf containing the analyte (LRP-6, BMP2 or BMP7 recombinant proteins). The 

molecular interaction between rhSOSTDC1 and decreasing concentrations of the protein 

analyte were assessed one at a time using the BLItz Pro™ software. The ARG2 

Biosensors were replaced following the assessment of the association of rhSOSTDC1 

with each concentration of analyte. Due to the fact that the rhSOSTDC1 had a GST-tag, 

the binding interaction between rhGST protein and rmLRP-6, rhBMP2 and rhBMP7 was 

also assessed as a control. The 100µg/ml rhGST protein was immobilised on an ARG2 

disposable biosensor and the binding affinity of rhGST for 100µg/ml of rmLRP-6, 

rhBMP2 or rhBMP7 assessed. The sensogram data was collected in real time and 

presented as binding (nm) affinity at the start of rhSOSTDC1-analyte association and the 

start of complex dissociation. The measured affinity of the interaction KD (M) between 

the two proteins was reported by the BLItz Pro™ software as outlined in section 2.15.1  
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5.4 Results  

 

5.4.1 SOSTDC1 down regulated Wnt-BMP dependent intracellular in differentiating 

OB progenitors 

 

Western blotting was performed to determine whether Wnt3a upregulated Smad 

phosphorylation downstream of the BMP signalling pathway in differentiating OB 

progenitors. Wnt-induced levels of phosphorylated Smads1,5&8 protein were quantified 

as the average density of the bands on x-ray images and normalised to the corresponding 

GAPDH relative density. Western blot analysis showed that 50ng/ml Wnt3a acutely 

induced pSmad1,5&8 protein levels in differentiating OB progenitors and this effect was 

significant on day 8 of differentiation (Figure 5.4.1.1 A, *P<0.05).  In the same 

experiments, the effect of SOSTDC1 and Dkk1 on Wnt3a-induced Smad phosphorylation 

was assessed. I showed rhSOSTDC1 and rhDkk1 both suppressed Wnt3a-induced pSmad 

1,5&8 protein levels on day 8 of OB progenitor differentiation (Figure 5.4.1.2 A, 

*P<0.05).  The pSmad protein levels within OB progenitors were not affected in the 

presence of rhSOSTDC1 or rmDkk1 (Figure 5.4.1.2 D).  

 

The effect of BMP ligands on downstream canonical Wnt signalling was assessed by 

western blotting. The level of β-Catenin phosphorylation within differentiating OB 

progenitors was assessed following stimulation with rhBMP2 or rhBMP7 protein. I 

showed that both rhBMP2 and rhBMP7 were able to induce pβ-Catenin protein levels 

downstream of the Wnt signalling pathway (Figure 5.4.1.3 A and B 5.4.1.5 B, *P<0.05). 

The BMP2-induced phosphorylation of β-Catenin protein levels was significant on day 8 

and day 11 of differentiation whereas BMP7-induced pβ-Catenin levels significantly on 

day 11 only (*P<0.05). Within the same experiments, the effect of SOSTDC1 and noggin 

on BMP-induced phosphorylation of β-Catenin protein was assessed using western 

blotting. I showed rhSOSTDC1 and rhnoggin both suppressed BMP2-induced pβ-Catenin 

levels on day 8 and 11 of OB progenitor differentiation (Figure 5.4.1.4 A, *P<0.05). The 

rhSOSTDC1 and rhnoggin recombinant proteins also suppressed BMP7-induced pβ-

Catenin levels on day 11 of OB progenitor differentiation (Figure 5.4.1.6 B, *P<0.05).  

The phosphorylated levels of β-Catenin protein within OB progenitors were not affected 

in the presence of rhSOSTDC1 or rhnoggin alone (Figure 5.4.1.6 D).   
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Figure 5.4.1.1 - Wnt3a induced phosphorylated Smad protein levels 

downstream of the BMP pathway in differentiating OB progenitors:  Western 

blot analysis was used to determine whether Wnt3a upregulated pSmad 1,5&8 protein levels 

in differentiating OB progenitors. Data represent the Average Density of pSmad 1,5&8 

levels normalised to GAPDH.  The western blot image is representative of one out of three 

experiments. Recombinant rmWnt3a acutely induced pSmad1,5&8  protein levels in OB 

progenitors on day 8 of differentiation (A) and not on any other occasion (B, C). N=3 

independent experiments, Students unpaired t-test. Data are displayed with mean ± 

SEM.*P=0.05.  
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Figure 5.4.1.2 - SOSTDC1 reduced 

Wnt3a-induced Smad phosphorylation 

in differentiating OB progenitors:  
Western blot analysis was used to determine 

whether SOSTDC1 down-regulated Wnt3a-

induced pSmad 1,5&8 protein levels 

downstream of the BMP signalling pathway in 

differentiating OB progenitors. Data represent 

the Average Density of pSmad 1,5&8 levels 

normalised to GAPDH.  The western blot 

image is representative of one out of three 

experiments. 250ng/ml rhSOSTDC1 and 

100ng/ml rmDkk1 reduced Wnt3a- induced 

pSmad1,5&8  protein levels in OB progenitors 

on day 8 of differentiation (A). N=3 
independent experiments, Students unpaired t-

test. Data are displayed with mean ± 

SEM.*P=0.05. 
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Figure 5.4.1.3 - BMP2 induced phosphorylated β-Catenin protein levels 

downstream of the Wnt pathway in differentiating OB progenitors:  Western blot 

analysis was used to determine whether 30ng/ml rhBMP2 upregulated pβ-Catenin levels in 

differentiating OB progenitors. Data represent the Average Density of pβ-Catenin levels 

normalised to GAPDH.  The western blot image is representative of one out of three 

experiment. Recombinant hBMP2 acutely induced pβ-Catenin protein levels in OB 

progenitors on day 8 and 11 of differentiation (A, B). N=3 independent experiments, 

Students unpaired t-test. Data are displayed with mean ± SEM.*P=0.05.  
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Figure 5.4.1.4 - SOSTDC1 reduced 

BMP2-induced phosphorylated β-

Catenin protein levels in differentiating 

OB progenitors:  Western blot analysis was 

used to determine whether SOSTDC1 down-

regulated BMP2-induced pβ-Catenin protein 

levels downstream of the canonical Wnt 

signalling pathway in differentiating OB 

progenitors. Data represent the Average 

Density of pβ-Catenin levels normalised to 

GAPDH.  The western blot image is 

representative of one out of three experiments. 

250ng/ml rhSOSTDC1 reduced BMP2- induced 

pβ-Catenin protein levels in OB progenitors on 

day 8 and 11 of differentiation (A, B). N=3 

independent experiments, Students unpaired t-

test. Data are displayed with mean ± 

SEM.*P=0.05. 
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Figure 5.4.1.5 - BMP7 induced phosphorylated β-Catenin protein levels 

downstream of the Wnt pathway in differentiating OB progenitors:  Western blot 

analysis was used to determine whether 30ng/ml rhBMP7 upregulated pβ-Catenin levels in 

differentiating OB progenitors. Data represent the Average Density of pβ-Catenin levels 

normalised to GAPDH.  The western blot image is representative of one out of three 

experiments. Recombinant h BMP7 acutely induced pβ-Catenin protein levels in OB 

progenitors on day 11 of differentiation only (B). N=3 independent experiments, Students 

unpaired t-test. Data are displayed with mean ± SEM.*P=0.05.  
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Figure 5.4.1.6 - SOSTDC1 reduced 

BMP7-induced phosphorylated β-

Catenin protein levels in differentiating 

OB progenitors:  Western blot analysis was 

used to determine whether SOSTDC1 down-

regulated BMP7-induced pβ-Catenin protein 

levels downstream of the canonical Wnt 

signalling pathway in differentiating OB 

progenitors. Data represent the Average 

Density of pβ-Catenin levels normalised to 

GAPDH.  The western blot image is 

representative of one out of three experiments. 

250ng/ml rhSOSTDC1 reduced BMP2-induced 

pβ-Catenin protein levels in OB progenitors on 

day 8 and 11 of differentiation (A, B). N=3 
independent experiments, Students unpaired t-

test. Data are displayed with mean ± 

SEM.*P=0.05. 
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5.4.2 SOSTDC1 inhibited BMP-induced CTNNB1 gene expression in differentiating 

OB progenitors 

 

To determine whether BMP could upregulate the expression of CTNNB1 downstream of 

the Wnt signalling pathway, the effect of Wnt ligand on CTNNB1 expression was initially 

assessed. The levels of CTNNB1 and B2M expression were quantified by qRT-PCR in OB 

progenitor cells obtained on day 8 and 11 of differentiation. The effects of Dkk1 on 

Wnt3a-induced and the effect of noggin on BMP-induced CTNNB1 expression were also 

assessed. Differences in CTNNB1 gene expression were normalised to B2M expression 

and overall fold changes in gene expression were calculated using the ΔΔ-CT method. 

Data were normalised to the PBS control. The data obtained from qRT-PCR analysis 

showed 50ng/ml rmWnt3a upregulated CTNNB1 expression in differentiating OB 

progenitors on day 8 of differentiation (Figure 5.4.2.1, A, *P=0.022).  

 

In the same experiments, 250ng/ml rhSOSTDC1 and 100ng/ml rmDkk1 reduced Wnt3a-

induced CTNNB1 levels (*P<0.05). The CTNNB1 expression of OB progenitors was not 

affected in the presence of rhSOSTDC1 or rmDkk1 alone. Further qRT-PCR analysis of 

CTNNB1 expression in BMP-stimulated OB progenitors showed that 30ng/ml rhBMP2 

and rhBMP7 induced CTNNB1 gene expression on day 8 of OB progenitor differentiation 

on a similar level observed in Wnt3a-induced CTNNB1 expression (Figure 5.4.2.2 A, 

**P=0.0057 and Figure 5.4.2.3 A *P=0.025). In the presence of rhBMP2, 250ng/ml 

rhSOSTDC1 reduced CTNNB1 levels in OB progenitors on day 8 of differentiation 

(Figure 5.4.2.2 A, ***P=0.0001). The 100ng/ml rhnoggin also had a suppressive effect 

on rhBMP2-induced CTNNB1 levels in OB progenitors on the same occasion (Figure 

5.4.2.2 A, **P=0.0057). The qRT-PCR analysis further showed that rhBMP7-induced 

CTNNB1 expression was reduced in the presence of 250ng/ml rhSOSTDC1 on day 8 of 

OB progenitor differentiation (Figure 5.4.2.2 A, *P=0.01). 100ng/ml rhnoggin also 

reduced rhBMP7-induced CTNNB1 levels in OB progenitors on day 8 of differentiation 

(Figure 5.4.2.3 A, **P=0.0081).  

  



179  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

E ffe c t  o f  S O S T D C 1

o n  W n t3 a -in d u c e d  C T N N B 1 o n  D a y  8

o f O B  d iffe re n tia tio n
R

e
la

ti
v

e
 E

x
p

re
s

s
io

n
 o

f
C

T
N

N
B

1
 (

B
2

M
)

0

1 0 0

2 0 0

3 0 0

S
O

S
T

D
C

1

D
k

k
1

W
n

t3
a

S
O

S
T

D
C

1

D
k

k
1

+  W n t3 a

 (5 0 n g /m l)

P
B

S

* *

*

Figure 5.4.2.1 - SOSTDC1 inhibited Wnt-induced CTNNB1 expression in 

differentiating OB progenitors: OB progenitor cells were cultured with 50ng/ml 

rmWnt3a in the presence or absence of 250ng/ml rhSOSTDC1 or 100ng/ml rmDkk1 and the 

CTNNB1 expression quantified using qRT-PCR. Data represent the relative expression of 

CTNNB1 normalised to B2M. (A) The rmWnt3a upregulated CTNNB1 expression in OB 

progenitors on day 8 of differentiation. On this occasion rhSOSTDC1 and rmDkk1 reduced 

the Wnt3a-induced CTNNB1 levels. N=4 independent experiments, One way ANOVA and 

Holm-Sidak multiple comparisons test.  Data are displayed with mean ± SEM.*P=0.05. 
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Figure 5.4.2.2 - SOSTDC1 inhibited BMP2-induced CTNNB1 expression in 

differentiating OB progenitors: OB progenitor cells were cultured with 30ng/ml 

rhBMP2 in the presence or absence of 250ng/ml rhSOSTDC1 or 100ng/ml rhnoggin and the 

CTNNB1 expression quantified using qRT-PCR. Data represent the relative expression of 

CTNNB1 normalised to B2M. (A) The rhBMP2 upregulated CTNNB1 expression in OB 

progenitors on day 8 of differentiation. On this occasion rhSOSTDC1 and rhnoggin reduced 

the rhBMP2-induced CTNNB1 levels. N=4 independent experiments, Holm-Sidak multiple 

comparisons test. Data are displayed with mean ± SEM. **P=0.01, ***P=0.001. 
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Figure 5.4.2.3 - SOSTDC1 inhibited BMP7-induced CTNNB1 expression in 

differentiating OB progenitors: OB progenitor cells were cultured with 30ng/ml 

rhBMP7 in the presence or absence of 250ng/ml rhSOSTDC1 or 250ng/ml rhnoggin and the 

CTNNB1 expression quantified using qRT-PCR. Data represent the relative expression of 

CTNNB1 to B2M. (A) The rhBMP7 upregulated CTNNB1 expression in OB progenitors on 

day 8 of differentiation. On this occasion rhSOSTDC1 and rhnoggin reduced the rhBMP7-

induced CTNNB1 levels. N=4 independent experiments, Holm-Sidak multiple comparisons 

test. Data are displayed with mean ± SEM. *P=0.05, **P=0.01. 
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5.4.3 Recombinant SOSTDC1 protein bound with high affinity to recombinant LRP-

6, BMP2 and BMP7 determined by Bio-layer interferometry  

 

The affinity of 100µg/ml rhSOSTDC1 protein for purified carrier-free rmLRP-6, rhBMP2 

and rhBMP7 were determined using the Blitz Analysis system as outlined in section 

2.15.1. The measured affinity of the interaction KD (M) between the rhSOSTDC1 protein 

and rmLRP-6, rhBMP2 or rhBMP7 was reported by the BLItz Pro™ software. 

Interferometry data were globally fit to a 1:1 Langmuir model calculating the affinities 

and rate constants. The interaction of rhSOSTDC1 for multiple concentrations (µg/ml) of 

rmLRP-6, rhBMP2 or rhBMP7 was used for the Langmuir model fitting. The association 

and dissociation responses were baseline corrected and processed using the Octet 

Software to rise to the affinity constant KD.  

 

In addition, the interactions between 100µg/ml rhGST protein and 100µg/ml rmLRP-6, 

rhBMP2 and rhBMP7 were also assessed. The rhGST-analyte binding assays were carried 

out to ensure that the KD values obtained for interaction between rhSOSTDC1 and 

rmLRP-6, rhBMP2 and rhBMP7 were not affected by the presence of the GST-tag. The 

sensogram data collected in real time showed that rhSOSTDC1 bound with high affinity 

to rmLRP-6, rhBMP2 and rhBMP7 (Figure 5.4.3).  

 

The binding affinity of rhSOSTDC1 for the Wnt receptor rmLRP-6 was determined as 

8.502e-10M KD (Figure 5.4.3 A). The affinity of rhSOSTDC1 for rhBMP2 was 

determined as 9.569e-9M KD (Figure 5.4.3 B) and the affinity of rhSOSTDC1 for 

rhBMP7 was calculated at <1.0e-12M KD (Figure 5.4.3 C). The affinity of rhSOSTDC1 

for the rmLPR-6 receptor protein was one-fold higher compared to the affinity of 

rhSOSTDC1 rhBMP2 ligand protein. Subsequently, I showed that rhSOSTDC1 had the 

highest binding affinity for the ligand BMP7 protein out of all three rhSOSTDC1-protein 

interactions. The rhSOSTDC1 protein had a three-fold higher binding affinity for 

rhBMP7 compared to rmLRP-6. The 100µg/ml of rhGST did not bind at detectable levels 

to rmLRP-6 or rhBMP7 protein and the KD value of 1.096e-4M calculated for rhGST-

rhBMP2 interaction was negligible, indicating little or no binding (Appendix 3).  
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100µg/ml SOSTDC1 interaction with 

LRP-6 

 

Sample Concentration 

(µg/ml) 

kD (M) 

LRP-6 100 8.502e-10 

 

 
LRP-6 50 

LRP-6 25 

LRP-6 10 

LRP-6 1 

LRP-6 0 (buffer only) - 

100µg/ml SOSTDC1 interaction with 

BMP2 

 

Sample Concentration 

(µg/ml) 

kD (M) 

BMP2 100 9.569e-9 

 BMP2 50 

BMP2 25 

BMP2 10 

BMP2 1 

BMP2 0 (buffer only) - 

100µg/ml SOSTDC1 interaction with 

BMP7 

 

Sample Concentration 

(µg/ml) 

kD (M) 

BMP7 100 <1e-12 

 BMP7 50 

BMP7 25 

BMP7 10 

BMP7 1 

BMP7 0 (buffer only) - 

Figure 5.4.3 - Recombinant SOSTDC1 protein bound with high affinity to 

recombinant LRP, BMP2 and BMP7 proteins: The affinity KD (M) of rhSOSTDC1 

for purified carrier-free rmLRP-6, rhBMP2 and rhBMP7 proteins were determined using 

the Blitz Analysis system.  (A) Binding (nm) association showed 100ug/ml of 

rhSOSTDC1bound to; rmLRP-6 with a kD of 8.502e-10M (B) rhBMP2 with a kD of 9.569e-

9M and (C) rhBMP7 with a kD of <1.0e-12M. 

 

A 

B 

C 

LRP-6 Concentration 

(µg/ml) 

BMP2 Concentration 

(µg/ml) 

BMP7 Concentration 

(µg/ml) 
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5.5 Discussion 

 

This chapter focused on the role of SOSTSDC1 in Wnt-BMP crosstalk in OB progenitor 

differentiation, in which the main aim of the study was to determine whether SOSTDC1 

had an antagonistic effect on Wnt-BMP dependent signalling within OB progenitor cells. 

The hypothesis of SOSTDC1 suppresses Wnt-BMP crosstalk in signalling OB progenitor 

cells was supported by my finding. Previously my data provided evidence for the 

antagonistic actions of SOSTDC1 on Wnt and BMP signalling in differentiating OB 

progenitors. Evidence of regulation between canonical Wnt signalling and BMP 

signalling has previously been demonstrated in embryonic development and 

tumourgenesis (Zhang, Yan et al. 2009). In studies by Bill et al, Wnt signalling was found 

to induce expression of BMP2, BMP4, BMP7 and BMP target genes including Msx2 and 

gremlin in the mesenchyme (Bill et al, 2006). In gastrointestinal cancer cells, β-catenin 

induced BMP2 expression (Kim, Crooks et al. 2002). The downstream target genes of 

BMP signalling and cross-interaction between BMP ligands and Wnt signalling in OB are 

poorly understood. Recent studies demonstrate that BMP2 has a synergic effect with β-

catenin on OB differentiation in-vitro (Rawadi, Vayssiere et al. 2003, Mbalaviele, Sheikh 

et al. 2005). However, the effects of Wnt signalling on BMP expression in OB and the 

associated molecular mechanisms remain unclear. 

 

Specific secreted molecules have an effect on Wnt and BMP signalling by binding to the 

extracellular components of both pathways. For example, Cerberus which is known to 

induce head formation in Xenopus inhibits Wnt and BMP signalling by binding directly to 

Wnt and BMP ligands, regulating head formation (Silva, Filipe et al. 2003). Another 

secreted molecule includes connective tissue growth factor (CTGF) which can bind 

BMP4, TGFβ1 and LRP6 (Silva, Filipe et al. 2003). As mentioned previously Sclerostin 

is another molecule that can inhibit bone formation by binding to BMP ligands (Kusu, 

Laurikkala et al. 2003) and the LRP5/6 receptors (Ellies, Viviano et al. 2006). 

Interestingly the interaction of Sclerostin, which has a very similar homology to 

SOSTDC1, with BMP ligands and LRP5/6 has been shown to interfere with Wnt 

signalling (ten Dijke, Krause et al. 2008). It would therefore seem that extracellular 

mechanisms modulating both Wnt and BMP signalling regulate simultaneous suppression 

of both signalling pathways providing a rational for investigating the role of SOSTDC1 in 

Wnt-BMP crosstalk.  
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A limited number of studies have investigated the role of SOSTDC1 in Wnt-BMP 

crosstalk and these studies have been specific to tooth development and kidney disease. In 

a study by Liu et al SOSTDC1 mouse mutants exhibited supernumerary teeth, which were 

thought to be a result of increased BMP and Wnt/β-catenin activity (Liu, Chu et al. 2008). 

I investigated the effect of Wnt3a ligand on phosphorylated levels of Regulatory Smad 

protein complex downstream of the BMP pathway and subsequently assessed this effect 

in the presence of recombinant SOSTDC1 in differentiating OB progenitors.  In my 

study, Wnt3a induced phosphorylation of Smad1,5&8 protein in OB progenitors and 

SOSTDC1 reversed this effect during the early stage of differentiation. In similar studies 

by Rawadi et al investigating the crosstalk between Wnt-BMP signalling, blocking 

Wnt/LRP5 signalling resulted in the inhibition of BMP2-induced ALP activity in MSC. 

Moreover, MC3T3-E1 cells overexpression of Dkk1 reduced BMP2-induced extracellular 

matrix mineralization (Rawadi et al, 2003).  

 

In the same experiments, I showed that SOSTDC1 suppressed Wnt3-induced 

phosphorylated Smad 1,5&8 levels in in differentiating OB progenitor cells on a similar 

level to Dkk1. Based on the literature it can be deduced that SOSTSDC1 antagonises Wnt 

signalling in a similar mechanism to that of antagonist Dkk1. SOSTDC1 and Dkk1 both 

bind to the LRP/Frz Wnt receptor and in doing so block Wnt ligand interaction with the 

LRP/Fz receptor. In the same study by Liu et al, overexpression of Dkk1 blocked tooth 

formation and this was accompanied by down-regulation of BMP and Msx1/2 expression 

domains. The BMP4 induction of Msx1/2 expression was not affected in Dkk1-

overexpression suggesting that Wnt/β-catenin signals are required upstream of BMP4 

function (Liu, Chu et al. 2008).  Based on the similarities between the antagonistic role of 

SOSTSDC1 and Dkk1 in Wnt-BMP crosstalk in differentiating OB progenitors, it may be 

assumed that both molecules have a similar detrimental effect in osteolytic bone disease. 

One possibility for this similarity may be that in osteolytic bone disease, if one molecule 

is not in abundance, then the other is produced at high levels to compensate.  

 

In my studies investigating BMP stimulation of downstream intracellular Wnt signalling, 

I found that both BMP2 and BMP7 increased phosphorylated levels of β-catenin protein 

and active CTNNB1 gene expression. SOSTSDC1 reduced BMP-induced β-catenin levels 

in the early stages of OB progenitor differentiation. This data is similar to that found by 

Papathanasiou et al showing treatment of chondrocyte cultures with BMP2 resulted in an 
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up-regulation of β-catenin nuclear translocation and LRP-5 expression. Papathanasiou 

showed that BMP2-induced LRP-5 expression was mediated through Smad1/5/8 binding 

on the LRP-5 promoter. In these studies, LRP-5 silencing resulted in reduction of nuclear 

β-catenin protein, MMPs and collagen X expression, whereas phosphorylated β-catenin 

protein levels in BMP-2-treated chondrocyte increased (Papathanasiou, Malizos et al. 

2012).   

 

Fukuda et al showed that in the presence of BMP-4, canonical Wnt1 and Wnt3a but not 

non-canonical Wnt5a and Wnt11 stimulated ALP activity of OB-like C2C12 cells. This 

group also showed that Type I collagen and osteonectin expression increased in response 

to Wnt3a and BMP4 stimulation and both noggin and Dkk1 suppressed the synergistic 

effect of BMP-4 and Wnt3a (Fukuda, Kokabu et al. 2010). Stimulation of GSK3β activity 

in the presence of BMP-4 caused induction of ALP activity. The Fukuda et al showed that 

Wnt3a did not stimulate BMP receptor/Smad1-induced ALP level and overexpression of 

β-catenin did not affect BMP4-induced ALP levels in C2C12 cells. Fukuda et al 

concluded that Wnt-BMP regulation of OB differentiation, especially at the early stages, 

through a GSK3β-dependent but β-catenin-independent mechanism (Fukuda, Kokabu et 

al. 2010). In comparison the Zhang et al data was contradictory as in these studies BMP2 

stimulated Lrp5 expression and enhanced protein levels of the active form of β-catenin in 

OB. The in-vitro deletion of the CTNNB1 gene supressed OB proliferation and 

differentiation and reduced BMP2-induced OB differentiation. BMP2 also increased 

nuclear β-catenin protein levels suggesting the interaction between Wnt and BMP2 

signalling during OB differentiation is (Zhang et al, 2009). Recently Zhang et al also 

showed that similar to BMP2, Wnt3a increased transcriptional activity of BMP/Smad 

reporter and noggin blocked this Wnt3a-induced effect, concluding that Wnt signalling 

acts as an upstream regulator of BMP signalling (Zhang, Oyajobi et al. 2013). There data 

is complimentary to mine in that in my studies, noggin significantly suppressed BMP-

induced nuclear β-catenin levels.  

 

It is of particular interest that the Wnt-BMP crosstalk relationship that Fukada et al 

demonstrated was especially specific to the early stages of OB differentiation (Fukuda, 

Kokabu et al. 2010). The increase in BMP-induced β-catenin levels was also observed in 

preosteblastic cells in Zhang et al study (Zhang et al, 2009). The data from these studies 
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are in line with my results in showing that the Wnt-BMP crosstalk may be occur on when 

OB cells have a more immature phenotype.  

 

Having established that SOSTDC1 may potentially have an important role Wnt-BMP 

crosstalk in osteoprogenitors cells, I wanted to determine the relative binding 

characteristics of this molecule for BMPs and Wnt receptors. To produce informative 

results, the binding affinity of SOSTDC1 for each potential partner ligand/receptor was 

determined using the same recombinant proteins used for all functional and signalling 

assays. I showed that recombinant SOSTDC1 had a higher binding affinity for the LRP6 

(8.502e-10M) receptor protein compared to the recombinant BMP2 protein (9.569e-9M). 

Interestingly, SOSTDC1 had the highest affinity for BMP7 (<1.0e-12M) out of the three 

SOSTDC1-protein partner interactions assessed. To my knowledge there are no studies 

that have investigated the binding affinity of rhSOSTDC1 for LPR6, BMP2 and BMP7. 

However Laurikkala et al did examine the binding of Ectodin (recombinant mouse 

SOSTDC1) to BMP2, BMP4, BMP6, and BMP7 ligands using the BIAcore system with a 

recombinant Ectodin protein-fixed sensor tip. This group found that Ectodin bound to 

BMP2, BMP4, BMP6, and BMP7 with high affinity (Laurikkala, Kassai et al. 2003) 

similar to my data. Lintern et al did attempt to quantify binding affinity of Wise to LRP6 

and to compare it with that to BMPs, however they were unsuccessful in express pure 

Wise protein in bacteria (Lintern et al, 2009). Krause et al also investigated the binding of 

the SOSTDC1 homolog Sclerostin for LRP5 using the Biacore system. They revealed a 

relatively low binding affinity with KD values ranging from 2 to 8.6 μm for full-length 

murine and human sclerostin, respectively (Krause, Korchynskyi et al. 2010). This data is 

interesting in the sense that if SOSTDC1 has a higher binding affinity for LRP5/6 

receptor compared to sclerostin, SOSTDC1 may potentially have a more important role in 

OB dysfunction in osteolytic bone disease.  

 

In summary, my findings provide compelling evidence for the molecular mechanisms by 

which SOSTDC1 antagonises both the canonical Wnt pathway and BMP signalling 

pathways in OB differentiation through Wnt-BMP dependency. The data in my studies 

suggests that the functional communication between Wnt-BMP involves β-catenin and 

SOSTDC1 may play an important role in integrating the anabolic functions of both 

pathways in bone.  



188  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



189  

 

 

 

 
 

 

Chapter 6 – The Role of SOSTDC1 in 

Myeloma Bone Disease 
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6.1 Introduction 

 

The formation of lytic lesions in the skeleton is an established hallmark of MM growth in 

bone. However, our understanding of the processes involved in MM bone disease is 

limited. Recently, animal models have been used to identify the pathways and molecules 

involved in the mechanisms responsible for the suppression of bone formation and 

although a number of molecules have been implicated, there is a lack of functional data 

defining the roles of the latter in MM bone disease.  

 

Preliminary gene array data (unpublished) produced by the Myeloma group in Sheffield 

has identified SOSTDC1 as a molecule upregulated in the bone of syngeneic mice 

bearing the 5T2MM mouse myeloma model compared to naive non-tumour bearing 

animals. Initially described by Radl et al, the 5TMM series of MM were aging immune-

competent C57BL/KalwRij mice that displayed numerous clinical characteristics of 

human MM disease. These characteristics included spontaneous age-related origin, 

plasma cell proliferation within the BM, elevated paraprotein levels, reduced levels of 

normal immunoglobulin, and development of osteolytic bone lesions (Radl, Croese et al. 

1988). The 5TMM models have since been maintained via the injection of tumour cells 

isolated from tumour-infiltrated C57BL/KaLwRij mice into 6-8 week old mice of the 

same strain. The 5TGM1MM model similar to 5T33MM is an aggressive form of the 

disease that develops over a 4 week period. The two models do vary in that the 

5TGM1MM cells appear to be independent of their environment and growth of myeloma 

tumours develop in numerous locations including the bone, spleen and liver. Another 

important variable between the two models is that osteolytic bone disease occurs in the 

5TGM1MM model and not in the 5T33MM model (Croese, Vas Nunes et al. 1987, 

Vanderkerken, De Raeve et al. 1997).  

 

In previous chapters, my functional and signalling data identified SOSTDC1 as a Wnt and 

BMP signalling antagonist in OB cells. It is not clear which cells in the BM express 

SOSTDC1 and whether the interaction between OB and myeloma cells, induce 

production of SOSTDC1. Although data is limited, there is evidence that SOSTDC1 can 

regulate cell activity through BMP and Wnt signalling pathways within other cancers. 

Studies by Clausen et al into SOSTDC1 secretion and BMP/Wnt signalling in breast 

cancer cells, link decreased SOSTDC1 expression to increased tumour size, highlighting 
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the role of SOSTDC1 as a potential clinical target (Clausen, Blish et al. 2010). However, 

the function of SOSTDC1 in relation to bone disease secondary to cancer growth in bone 

has not been studied to date within any type of cancer.  

 

In myeloma patients, abnormalities in osteoprogenitor cells and the production of OB 

inhibitors by both myeloma cells and myelomatous bone microenvironment cells result in 

a reduction in osteoblastogenesis (Yaccoby 2010). In MM the osteolytic lesions arise in 

close proximity to the tumour indicating that in addition to the soluble factors that 

regulate osteoblastogenesis suppression, the close or direct contact between myeloma 

cells and MSC may also influence bone remodelling. As an example myeloma cells 

partially suppress osteocalcin levels in osteogenic cells through direct cell contact 

(Roodman 2004). This data supports the rational that direct myeloma and OB interaction 

may induce SOSTDC1 production in either myeloma, OB or indeed both cell types. 

Determining the conditions under which SOSTDC1 is expressed in myeloma is key in 

understanding the role of this protein in MM osteolytic bone disease. 
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6.2 Hypothesis and Objectives  

 

6.2.1 Aims 

The aim of this study was to determine the conditions under which myeloma and OB 

progenitor cells produce SOSTDC1. 

To achieve this, the following hypothesis was tested. 

 

6.2.1 Hypothesis 

 

The 5T Series of MM produce SOSTDC1 

 

OB progenitors produce SOSTDC1 

 

Direct myeloma and OB progenitor interaction upregulates the production of SOSTDC1 

in myeloma and OB progenitor cells 

 

 

6.2.2 Specific Objectives 

 

To test this hypothesis the following were determined: 

 

Whether  SOSTDC1 is produced by 5T33MM/5TGM1MM myeloma cells or OB 

progenitors 

 

Whether co-culture of myeloma and OB cells upregulates SOSTDC1 levels 

 

The distribution of SOSTDC1 in 5T33MM and 5TGM1MM tibia  

 

Whether SOSTDC1 is expressed at higher levels in myeloma cells that produce lytic 

versus non-lytic lesions in-vivo  
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6.3 Chapter specific methods 

 

 

Table 6.1 - Recombinant proteins required for the detection of SOSTDC1 in OB 

progenitors and myeloma cells cultures and co-cultures.  

 

 

6.3.1 Detection of SOSTDC1 in OB progenitors and myeloma cells cultured on their 

own and co-cultured together by immunofluorescent microscopy  

 

There are currently no publications that show SOSTDC1 is expressed in OB or myeloma 

cells. The aim of the first part of this study was to qualitatively establish whether OB or 

myeloma cells produced SOSTDC1. Human kidney cells were used as a positive control 

in this study as they are known to secrete SOSTDC1 (Blish, Clausen et al. 2010). To 

 Primary and Secondary Antibodies  

Antibody Concentration 

of stock 

CATALOGUE  

NUMBER 

SUPPLIER 

Anti-SOSTDC1 antibody 
Rabbit polyclonal  

0.5mg/ml Ab56079 Abcam 

Normal Rabbit IgG (Isotype 

Control) 
Rabbit polyclonal  

1.0mg/ml AB-105-C R&D 

PE Rat IgG2a Isotype 

Control  

0.2 mg/ml 400508 BioLegend 

Anti-GAPDH (6C5) antibody  
Mouse monoclonal 

1.0mg/ml Ab-37168 Abcam 

PE Rat Anti-Mouse CD138  
Mouse monoclonal 

0.2mg/ml 581070 BD 

Pharmingen™ 

Donkey Anti-Rabbit IgG 

NL637  NorthernLights 637 
Rabbit polyclonal 

1.0mg/ml NL005 R&D 

 

HRP-Rabbit Anti-Mouse 

IgG   Mouse  polyclonal 

2.0mg/ml 613420 Cell Signalling 

HRP-Goat Anti-Rabbit IgG 
Rabbit polyclonal 

2.0mg/ml HAF008 R&D 

Biotinylated Goat Anti 

Rabbit IgG (H+L) 

1.0mg/ml ab64256 Abcam 
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validate immunological methods of SOSTDC1 detection, protocols were optimised with 

Human Kidney-2 (HK-2) cells derived from the cortex/proximal tubules of the human 

kidney. Immunofluorescent microscopy was initially used to determine whether there was 

any production of SOSTDC1 protein in OB progenitors, 5T33MM and 5TGM1MM cells 

cultured on their own. HK-2, OB progenitors, 5T33MM and 5TGM1MM were plated in 

48 well culture plates at a cell density of 5700 cells per well
 
(6000 cell/cm

2
) and allowed 

to adhere to the plate surface for 48 hours. OB progenitors were differentiated in standard 

osteogenic media for up to 8 days.  HK-2 cells were maintained in standard keratinocyte 

media and 5T33MM and 5TGM1MM were maintained in standard RPMI for the duration 

of the 8 days.  Media was removed and 500μl of fresh media replaced every three days. 

To determine whether SOSTDC1 production was affected by contact between myeloma 

and OB, 5T33MM or 5TGM1MM myeloma cells were counted and co-cultured on the 

differentiating OB progenitors on day 8 of differentiation. Myeloma cells were co-

cultured at a cell density of approximately 12000 cell/cm
2
 or 11400 cells per well in a 48-

well plate that was similar to the estimated OB progenitor cell number on day of 8 of 

differentiation. This cell density was based on the OB progenitor growth curves 

performed in Chapter 3, suggesting that OB cultures approximately doubled in DNA 

contents/cell number by day 8 of differentiation. Myeloma cells were co-cultured with the 

OB progenitors for 24 hours in 1ml of RPMI. The immunostaining method for 

microscopy was carried out according to section 2.11.  

 

Cells were stained with 1µg/ml (1:500 dilution) anti-SOSTDC1 antibody or isotype 

control at the same concentration overnight at 4ºC and then stained with a secondary 

3.3µg/ml (1:300) dilution of Donkey anti-Rabbit IgG NL637 antibody for 1 hour at room 

temperature. Cells were co-stained with 6.6 µg/ml (1:300 dilution) PE Rat Anti-Mouse 

CD138 for 1 hour. Images of phase contrast, DAPI, CD138 and SOSTDC1 staining were 

visualised simultaneously and represented as a single stain on their own or merged as one 

image.  Blue staining represented positive nuclear staining for DAPI and the green 

staining represented positive nuclear staining for CD138. Any SOSTDC1 staining, both 

intra and extra-cellular, were represented by the red colour within images (Figure 6.3.1). 
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Figure 6.3.1 – Diagrammatic representation of 5T33MM/ 5TGM1MM and 

osteoblast co-culture: OB progenitors were seeded at 5700 cells per well in 48 well 

plates and then differentiated in osteogenic media for 8 days. Differentiating OB 

progenitor cells were co-cultured with myeloma cells at a cell density of 11400 cell per 

well for 24 hours. Co-cultures were stained with anti-CD138 and anti-SOSTDC1 

antibodies.  
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6.3.2 Flow Cytometric analysis of SOSTDC1 production in myeloma-OB progenitor 

co-cultures  

 

Flow cytometry was used as a quantitative method for SOSTDC1 detection in myeloma-

OB progenitor co-cultures. Using HK-2 cells as a positive control, HK-2, OB progenitors, 

5T33MM-GFP and 5TGM1MM-GFP were seeded in 25cm
2 

culture flasks at a density of 

150,000 per flask (6000 cell/cm
2
). Cells were allowed to adhere to the plate surface for 48 

hours in 7ml of media. OB progenitors were differentiated in standard osteogenic media 

for up to 8 days. On day 8 of OB progenitor cell differentiation, 5T33MM-GFP or 

5TGM1MM-GFP myeloma cells were counted and seeded onto the differentiating OB 

progenitors at a cell density of 300,000 cells per flask (12000 cell/cm
2
). Myeloma cells 

were co-cultured with the OB progenitor cells for 24 hours in 14ml of RPMI. After 24 

hours HK-2 cells, OB progenitor and myeloma-OB progenitor co-cultures were detached 

by trypsinisation as outlined in section 2.1.3. Media containing 300,000 

5T33MM/5TGM1MM cells cultured on their own were transferred to 15ml Falcon™ 

tubes and myeloma cells centrifuged at 1000 RPM for 5 minutes.  

 

1ml of ice cold PBS was added to the cell pellets and cell/PBS solution transferred to 

1.5ml eppendorfs in preparation for flow cytometric analysis. The method for flow 

cytometry analysis was carried out according to the protocol outlined in section 2.9.  

Cells were stained with 1µg/ml (1:500 dilution) anti-SOSTDC1 antibody for 30 minutes 

and then stained with a secondary 2µg/ml (1:500 dilution) of Donkey anti-Rabbit IgG 

NL637 antibody for 30 minutes at room temperature in the dark. The percentage of 

SOSTDC1 positive (%SOSTDC1+) cells within separate OB progenitors, 5T33MM-GFP 

and 5TGM1MM-GFP cell population were determined first and following this the co-

cultures samples containing both myeloma and OB progenitor populations were analysed. 

Gating was set so that separate GFP-positive and negative cell populations could be 

distinguished. The GFP-positive myeloma cells appeared at the top half of the scatter plot 

gate and GFP-negative OB progenitor at the bottom half of the scatter plot. A right shift 

in the population of either myeloma or OB progenitor cells indicated positive for 

SOSTDC1 staining.  
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6.3.3 Detecting SOSTDC1 levels in sorted myeloma and OB progenitor populations 

in-vitro by western blotting and end-point PCR 

 

FACS Aria flow cytometry technology was used to sort myeloma and OB progenitor cells 

from myeloma-OB progenitor co-cultures to determine the level of SOSTDC1 in 

individual cell populations. OB progenitor cells were seeded into T175 culture flasks at 

cell density of 1,050,000 cells (6000 cells/cm2) containing 24ml of standard Alpha-MEM 

media. Following 48 hours in culture, the Alpha-MEM was removed from the OB 

progenitor cells and replaced with standard osteogenic media and OB progenitors were 

differentiated for 8 days. At the same time HK-2 cells, 5T33MM-GFP and 5TGM1MM-

GFP were cultured separately in 175ml culture flasks at a cell density of 1,050,000 cells 

(6000 cell/cm
2
).  

 

On day 8 of OB progenitor differentiation, 5T33MM-GFP or 5TGM1MM-GFP myeloma 

cells were counted and co-cultured with the OB progenitors at a cell density of 

approximately 2,000,000 cells (12000 cell/cm
2
).

 
Myeloma cells were co-cultured with the 

differentiating OB progenitor cells for 24 hours in 50ml of RPMI. Following the 24 hour 

culture period, the OB progenitor cultures and co-cultures were detached from culture 

surfaces by trypsinisation as outlined in section 2.1.3. The 5T33MM/5TGM1MM cells 

cultured on their own were transferred to 50ml Falcon™ tubes and myeloma cells 

pelleted by centrifugation at 1000 RPM for 5 minutes. 1ml of PBS was added to the cell 

pellets and cell/PBS solution transferred to flow 1.5ml BD flow cytometry tubes.  

 

Whole 5T33MM/5TGM1MM and OB progenitor co-cultures were sorted into separate 

OB and myeloma cell populations using the FACS Aria flow cytometer according to 

section 2.10.  Myeloma-GFP and OB progenitor cells cultured alone were sorted first so 

that the correct gating could be applied for each individual population (Figure 6.3.2). 

Cells from OB-myeloma co-cultures were sorted into 1ml of RPMI for approximately 30 

minutes. 1ml sorted cell populations were then split into two tubes containing 500μl each; 

from which protein or RNA was extracted according to section  2.6 and section 2.12, 

respectively (Figure 6.3.3).  
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Figure 6.3.2 - Sort gating for OB progenitor-5TMM-GFP co-cultures using the 

FACS Aria flow cytometer: Cells were sorted on the basis of fluorescence and scatter 

characteristics i.e. GFP fluorescence vs non-GF cells. Nonviable cells that fell outside of the 

gates were excluded from the counts. OB progenitor cultures and 5T33MM-GFP and 

5TGM1MM-GFP were sorted separately and the appropriate gating applied. This gating 

was used as a sorting template for separating the OB progenitor and myeloma-GFP 

population.  
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Western blotting was used to detect SOSTDC1 protein levels in 5T33MM-GFP and 

5TGM1MM-GFP myeloma cells co-cultured with differentiating OB as outlined in 

section 2.8. Briefly, 12% polyacrylamide gels were loaded with 10μg of protein and 10µl 

of a 10-250kD protein molecular marker at the first lane. Proteins lysates were run 

through the stacking gel for 40 minutes at 60 Volts and then separated out for 1 hour at 

100 Volts. Proteins were transferred onto PVDF membranes for 70 minutes at 70 Volts in 

4ᴼC. Membranes were washed once in 0.05% PBS-Tween and probed with 1μg/ml (1:500 

dilution) primary anti-SOSTDC1 antibody overnight at 4ᴼC. Blots were incubated for 1 

hour at RT with 0.2μg/ml (1:10,000 dilution) of secondary HRP-conjugated anti-rabbit 

IgG antibody to detect SOSTDC1 protein. HK-2 cell lysates were used as a positive 

control for SOSTDC1 protein production. SOSTDC1 protein bands were visualised at 

~47kD using the molecular marker as a reference point and the average density quantified 

using the GS-710 Calibrated Imaging Densitometer.  

 

The same membranes were ‘stripped’ using Mild Stripping Buffer as described in section 

2.8.5. The newly exposed proteins on the blots were re-probed with 0.07μg/ml (1:15,000 

dilution) of anti-GAPDH mouse antibody overnight at 4ᴼC. Blots were incubated with 

0.1μg/ml (1:20,000 dilution) of secondary HRP-conjugated anti-mouse IgG antibody. 

GAPDH bands were visualised at ~35kD and the average density of SOSTDC1 protein 

was normalised to the average density of GAPDH to account for any loading variability.  

End-point PCR was used to qualitatively determine SOSTDC1 expression in OB 

progenitors, myeloma cells and sorted myeloma-OB progenitor co-culture cell 

populations.  Following cDNA synthesis end-point PCR reaction was performed to detect 

SOSTDC1 expression using the forward and reverse primers set for SOSTDC1 sequences 

as described in section 2.14.3.1. PCR products were run on a 1.5% agarose gels stained 

with ethidium bromide and bands detected using the Gel Doc XR System and Quantity 

One Software as described in section 2.14.3.2. SOSTDC1 expression was indicated by a 

product size of 198bp. PCR products were sequenced verify SOSTDC1 expression by the 

DNA sequencing Core Facility housed within the University of Sheffield, Medical School 

as described in section 2.14.3.3.  
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Figure 6.3.3 - Myeloma-OB progenitor co-cultures sorted into separate 

populations by FACS Aria and SOSTDC1 level detection using end-point PCR 

and western blotting: 5T33MM/5TGM1MM and differentiating OB progenitors were 

cultured in T175 culture flasks on their own for 8 days after which the RNA and protein was 

extracted. In separate flasks, differentiating day 7 OB progenitors were co-cultured with 

5T33MM/5TGM1MM cells for 24 hours. Co-cultures were then sorted for approximately 30 

minutes by FACS Aria into separate myeloma and OB progenitor populations. RNA and 

protein were extracted from sorted cells. SOSTDC1 levels were determined by western blot 

and end-point RT-PCR. 
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6.3.4 Assessing the dependency of SOSTDC1 production on direct myeloma-OB 

progenitor interaction 

 

To test the concept that SOSTDC1 is upregulated in myeloma cells as a result of direct 

interaction between OB progenitors and myeloma cells, co-culture experiments were set 

up as previously described in section 6.2. In these experiments, co-culture of 5T33MM-

GFP or 5TGM1MM-GFP with differentiating OB progenitor cells for 24 hours resulted in 

some myeloma cells adhering to the OB progenitor cells. From these co-cultures, the 

media that contained the non-adhering myeloma population was removed and transferred 

to 50ml Falcon™ tubes and cells pelleted by centrifugation. 1ml of PBS was added to the 

cell non adherent myeloma cell pellets and cell/PBS solution was transferred to 1.5ml 

eppendorfs tubes. Flow cytometry was used to determine the percentage of SOSTDC1+ 

myeloma cells that had physically attached to the OB progenitors compared to the 

percentage of SOSTDC1+ myeloma cells that had not adhered to the OB progenitors but 

were present in co-culture.  

 

In separate experiments, myeloma-OB progenitor co-cultures were set up and sorted by 

FACS Aria into separate populations as previously described in section 6.3.3. Again the 

media from the myeloma-OB progenitor co-culture that contained the non-adhering 

myeloma cells was transferred to 50ml Falcon™ tubes and cells pelleted by 

centrifugation. 1ml of PBS was added to the non-adherent myeloma cell pellets and 

cell/PBS solutions were transferred to 1.5ml eppendorfs tubes in preparation for the 

protein lysing, BCA and western blotting procedure outlined in sections 2.6, -2.7 and -

2.8, respectively. Western blotting was used to compare SOSTDC1 protein levels in non- 

adherent 5T33MM-GFP/5TGM1MM-GFP myeloma cells taken from the media of 

myeloma-OB progenitor co-cultures and compared to adherent 5T33MM-

GFP/5TGM1MM-GFP cells sorted from co-cultures. Briefly, 12% polyacrylamide gels 

were loaded with 10μg of protein and blots were probed with 5μg/ml (1:100 dilution) 

primary anti-SOSTDC1 antibody overnight at 4ᴼC. Blots were incubated with 0.13μg/ml 

(1:15,000 dilution) of secondary HRP-conjugated anti-rabbit IgG antibody to detect 

SOSTDC1 protein. Membranes were stripped using mild stripping buffer as described in 

section 2.8.5 and proteins re-probed with 0.1μg/ml (1:20,000 dilution) dilution of mouse 

anti-GAPDH overnight at 4ᴼC. The average density of SOSTDC1 protein was normalised 

to the average density of GAPDH using the GS-710 Calibrated Imaging Densitometer.  
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6.3.5 Detection of SOSTDC1 in tibiae bearing myeloma tumour in-vivo 

 

Leading groups have characterised the 5TMM series myeloma cell lines which include 

the 5T33MM and 5TGM1MM and have reported protocols for the production and 

maintenance of the 5T model in C57BL/KaLwRijHsd mice (Asosingh, Radl et al. 2000, 

Oyajobi, Munoz et al. 2007). Our Myeloma group in Sheffield has used these protocols to 

reproduce the 5T33MM-GFP and 5TGM1MM-GFP myeloma model in our laboratory. In 

brief, bone marrow isolated from the long bones of 5TMM bearing mice were injected 

into the lateral tail of young naïve syngeneic mice. The growth of myeloma tumour was 

monitored by ELISA quantification of serum paraprotein. The long bones were then 

dissected from the terminally diseased mice and the bone marrow contents flushed out of 

the bones. Isolated bone marrow contents were purified by Lymphocyte M gradient 

centrifugation and the mononuclear layer of cells retained. 1,000,000 mononuclear cells 

were re-injected back into other naïve syngeneic mice. At the same time naïve mice were 

injected with PBS and used as tumour-negative controls. 5T33 and 5TGM1MM mice 

developed myeloma within 6-12 weeks of inoculation. The 5TGM1MM animals 

developed osteolytic bone disease associated with myeloma tumour burden and the 5T33 

animals did not.  Naïve animals were sacrificed at the same time as terminally ill 

5T33MM and 5TGM1MM animals.  

 

Tibiae from all animals were dissected and fixed in 4% paraformaldehyde ready for tissue 

processing and sectioning. Immunohistochemical analysis of mouse tibiae sections 

infiltrated with 5T33MM and 5TGM1MM myeloma in-vivo were used to detect 

SOSTDC1 staining in tumour bearing mice compared to naïve animals. Details of 

immunohistochemical staining are outlined in section 2.12. 5T33MM and 5TGM1MM 

tibiae sections were de-waxed and antigen removal was performed using 1/4 dilution of 

trypsin reagent. Non-specific binding was blocked using 10% normal goats serum and 

sections were stained with the manufactured 1μg/ml (1:500 dilution) primary anti-

SOSTDC1 rabbit antibody or rabbit IgG isotype control overnight at 4ºC. Sections were 

further stained with a 2.5μg/ml (1:400 dilution) dilution of goat anti-rabbit biotinylated 

secondary antibody. SOSTDC1 staining was developed using DAB and counter-stained 

with Gills haematoxylin.  
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6.3.6 Comparing SOSTDC1 expression in lytic 5TGM1MM versus non-lytic 

5T33MM myeloma cells in-vitro 

 

As mentioned previously, mice injected with 5TGM1MM cells developed lytic bone 

disease similar to that observed in MM patients. However, 5T33MM mice did not 

develop bone disease associated with tumour burden. To test the hypothesis that 

SOSTDC1 expression was upregulated in lytic 5TGM1MM myeloma cells compared to 

non-lytic 5T33MM cells, the data obtained from the SOSTDC1 western blot and cDNA 

samples obtained from the experiment outlined in section 6.3.3 and 6.3.4 were re-

analysed.  

 

6.3.7 Blocking SOSTDC1 production in myeloma-OB progenitor co-cultures 

 

In previous chapters I had shown that recombinant SOSTDC1 suppressed Runx2 and 

CTNNB1 expression via Wnt and BMP signalling in differentiation OB progenitor cells. 

To relate this mechanism to MM bone disease, I investigated the effect of the SOSTDC1 

produced by lytic 5TGM1 cells on Runx2 and CTNNB1 gene expression. If the 

5TGM1MM cells were indeed producing SOSTDC1 and this SOSTDC1 was suppressing 

markers of OB differentiation, then blocking the effect of SOSTDC1 would reverse this 

suppressive effect.    

 

Quantitative RT-PCR was used to determine whether blocking SOSTDC1 in 

5TGM1MM-OB progenitor co-cultures had an effect on Runx2 and CTNNB1 gene 

expression. OB progenitor cells were harvested from a near confluent flask by 

trypsinisation and cell pellets were counted using a haemocytometer as described in 

section 2.1.3. OB progenitor cells were resuspended in MEM-Alpha medium at 57,000 

cells per well in 6 well culture plates containing 1.5ml of media within each well. 

Following 72 hours in culture, the media was removed from the adhered OB progenitor 

culture and cells were washed with PBS. Cells were differentiated in 1500µl/well of 

standard osteogenic media for up to 8 days. On day 8 of differentiation, 5TGM1MM 

myeloma cells were counted and co-cultured on the differentiating OB progenitors at a 

cell density of approximately 100,000 cells per well. Myeloma cells were co-cultured 

with the OB progenitors for 24 hours in 1ml of RPMI. In the same experiments, OB 

progenitors cultured alone, 5TGM1MM cultured alone and 5TGM1MM-OB progenitor 
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co-cultures were also incubated with 1.5µg/ml anti-SOSTDC1 polyclonal antibody from 

Abcam for the 24 hour duration.  

 

RNA was isolated from the OB progenitor cultures using the RNA mini Prep kit and 

quantified with a Nanodrop as described in section 2.13. The expression of Runx2, 

CNTTB1 and housekeeper B2M gene were quantified using TaqMan® Assays for qRT-

PCR analysis. Relative quantification of gene expression were performed by normalising 

to the house keeping B2M gene using the formula ΔCT = CT target – CT housekeeping as 

described in section 2.13.3.  
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6.4 Results  

 

6.4.1 The level of immunofluorescent SOSTDC1 staining in myeloma and OB 

progenitor co-cultures increased in both cell types 

 

Using HK-2 cells as a SOSTDC1-producing positive control, immunofluorescent 

microscopy was used to determine the presence of SOSTDC1 protein in OB progenitor 

cells, 5T33MM and 5TGM1MM cells cultured on their own. Images obtained from 

immunofluorescent microscopy of permeabilised HK-2 stained with anti-SOSTDC1 

antibody showed that HK-2 cells were positive for SOSTDC1 throughout the culture 

period (Figure 6.4.1.1 A). The red staining representing SOSTDC1 protein was apparent 

in both the nucleus and membrane of cells. HK-2 cells stained with isotype control 

antibody were negative for SOSTDC1 staining (Figure 6.4.1.1 B). 

In the same experiments, immunofluorescent microscopy of permeabilised OB 

progenitors stained with either anti-SOSTDC1 antibody or isotype control showed that 

OB progenitor cells were negative for SOSTDC1, indicated by the lack of red staining 

(Figure 6.4.1.2 A and B). Permeabilised 5T33MM and 5TGM1MM cells stained with 

anti-SOSTDC1 antibody showed variable SOSTDC1 staining (Figure 6.4.1.3 and 

6.4.1.4) in that in some experiments, some of the cells were positive for SOSTDC1 and in 

others no staining was visible. In summary, immunofluorescent microscopy data 

indicated that 5T33MM and 5TGM1MM cells produced low levels of SOSTDC1.  

 

Co-culture of 5T33MM or 5TGM1MM myeloma cells with OB progenitor cells for the 

duration of 24 hours resulted in some myeloma cells adhering to the OB progenitors, 

whilst other myeloma cells that were not bound were washed off during the 

immunocytochemistry procedure. In contrast to the variable staining associated with the 

5T33MM and 5TGM1MM cells cultured on their own, the immunofluorescent images 

taken from the co-culture cells showed clear and strong SOSTDC1 staining compared to 

the isotype controls (Figure 6.4.1.5 and Figure 6.4.1.6).  The SOSTDC1 staining 

appeared to be both intracellular and membrane bound. Furthermore, the red staining 

representing the SOSTDC1 protein was highly distinct and intense where there was direct 

contact between a myeloma cell and a OB within both 5T33MM and 5TGM1MM 

experiments. Both the OB progenitors and myeloma cells appeared to be positive for 

SOSTDC1 red fluorescence when in contact.  
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Figure 6.4.1.1 - SOSTDC1 was detected in HK-2 cells by immunofluorescent 

microscopy: (A) The red colour in the images indicated SOSTDC1 could be detected 

throughout permeabilised HK-2 cells using 1ug/ml of anti-SOSTDC1 antibody. (B) No 

staining was detected in HK-2 cells incubated with 1ug/ml isotype control antibody. Images 

of phase contrast, DAPI, CD138 and SOSTDC1 staining were visualised simultaneously. 

Images are representative of at least two replicates across three independent experiments 

(N=3). 
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Figure 6.4.1.2 - SOSTDC1 could not be detected in OB progenitors cultured on 

their own using immunofluorescent microscopy: (A) Red staining for SOSTDC1 

could not be detected in permeabilised OB progenitors stained with anti-SOSTDC1. (B) No 

staining was detected in OB progenitor cells incubated with isotype control antibody. 

Images of phase contrast, DAPI, CD138 and SOSTDC1 staining were visualised 

simultaneously. Images are representative of at least at least two replicates across three 

independent experiments (N=3) 
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Figure 6.4.1.3 - SOSTDC1 could be detected in low levels in 5T33MM cells 

cultured on their own using immunofluorescent microscopy: (A) 5T33MM cells 

were CD138+ and red staining representing SOSTDC1 was detected in some permeabilised 

5T33MM cells. (B) No SOSTDC1 staining was detected in 5T33MM cells incubated with 

isotype control antibody. Images of phase contrast, DAPI, CD138 and SOSTDC1 staining 

were visualised simultaneously. Images are representative of at least two replicates within 

three independent experiments (N=3). 
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Figure 6.4.1.4 – SOSTDC1 could be detected in 5TGM1MM cells cultured on 

their own using immunofluorescent microscopy:.(A) 5TGM1MM cells were CD138+ 

and red staining representing SOSTDC1 was detected in permeabilised 5TGM1MM cells. 

(B) No SOSTDC1 staining was detected in 5TGM1MM cells incubated with isotype control 

antibody. Images of phase contrast, DAPI, CD138 and SOSTDC1 staining were visualised 

simultaneously. Images are representative of at least two replicates within three independent 

experiments (N=3). 
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Figure 6.4.1.5 – The levels of SOSTDC1 immunofluorescent staining in 

5T33MM and OB co-cultures increased in both cell types: (A) SOSTDC1 staining 

was detected in permeabilised 5T33MM and OB progenitor co-cultures (B) The SOSTDC1 

staining detected in 5T33MM-OB progenitor co-cultures appeared intense where there was 

direct contact between 5T33MM and the OB progenitor.  Images of phase contrast, DAPI, 

CD138 and SOSTDC1 staining were visualised simultaneously. Images are representative of 

at least two replicates within three independent experiments (N=3).   
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Figure 6.4.1.6 - The levels of SOSTDC1 immunofluorescent staining in 

5TGM1MM and OB progenitor co-cultures increased in both cell types: (A) 

SOSTDC1 staining was detected in permeabilised 5TGM1MM and OB progenitor co-

cultures. (B) The SOSTDC1 staining detected in 5TGM1MM-OB progenitor co-cultures 

appeared to be more intense within both OB progenitor and 5TGM1MM cells that were in 

direct contact compared to cells that were not in contact. Images are representative of at 

least two replicates within three independent experiments (N=3). 
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6.4.2 The population of SOSTDC1-positive cells detected by Flow cytomtery 

increased in co-cultured myeloma and OB cell populations compared to either 

population cultured alone 

 

Data obtained from immunofluorescent microscopy showed that SOSTDC1 was not 

produced by OB progenitors but was produced at low levels in 5T33MM and 

5TGM1MM myeloma cells when cultured on their own. There was evidence that co-

culture of OB progenitors and myeloma cells stimulated SOSTDC1 production. The 

immunocytochemistry results were qualitative and therefore flow cytometric analysis was 

used to quantify SOSTDC1 production in individual OB progenitors and myeloma cells 

cultured on their own compared to cells co-cultured together.  

 

Scatter plots obtained from flow cytometric analysis of permeabilised HK-2 stained with 

anti-SOSTDC1 antibody showed that on average approximately 40% of HK-2 cells were 

positive for SOSTDC1. Less than 1% of the HK-2 cell population were positive for 

SOSTDC1 when stained with isotype control antibody (Figure 6.4.2.1 C). A population 

of the permeabilised 5T33MM-GFP and 5TGM1MM-GFP cells that were cultured on 

their own and stained with anti-SOSTDC1 antibody were SOSTDC1+ (Figure 6.4.2.1). 

This data confirms that myeloma cells do produce SOSTDC1 and this production can be 

seen using a more sensitive assay such as flow cytometry. Data also showed that in the 

population of OB progenitor cultured alone and stained with either anti-SOSTDC1 

antibody or isotype control, there was no significant right shift (<1%) on the scatter plots 

suggesting no specific staining. This flow cytometry data was confirmatory of the 

immunofluorescent microscopy data, suggesting that OB progenitor cells cultured on 

their own do not produce SOSTDC1 (Figure 6.4.2.2).  

 

Flow cytometry scatter plots obtained from myeloma-OB progenitor co-cultures showed 

that some cells within the 5T33MM/5TGM1MM myeloma population as well as within 

the OB progenitor population were SOSTDC1+ compared to their respective isotype 

controls (Figure 6.4.2.3 and Figure 6.4.2.4). Findings showed that 5T33MM-OB 

progenitor co-culture resulted in the ‘switch on’ of SOTSDC1 in the OB progenitor 

population. However, the percentage of SOSTDC1+ 5T33MM cells from the co-culture 

did not increase compared to percentage of SOSTDC1+ 5T33MM cells cultured on their 

own (Figure 6.4.2.2). Flow cytometry data from the 5TGM1MM co-culture experiments 

also showed that that 5TGM1MM-OB progenitor co-culture resulted in the ‘switch’ on of 
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SOTSDC1 in the OB progenitor population (Figure 6.4.2.3 A, B). Interestingly, the 

proportion of SOSTDC1+ 5TGM1MM cells from the co-culture increased in comparison 

to the proportion SOSTDC1+ 5TGM1MM cells cultured on their own. This data provides 

evidence for the rational that if SOSTDC1 has a key role in OB progenitor suppression, 

then its upregulation by myeloma cells is dependent on contact between tumour and the 

bone microenvironment. This data suggested that interaction between myeloma-OB 

progenitors stimulated the OB progenitor cells to produce SOSTDC1, illustrated by the 

right shift in the OB progenitor population in the scatter plots. 
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Figure 6.4.2.1 – SOSTDC1 was detected in 5T33MM and 5TGM1MM myeloma 

cells by Flow cytometry: HK-2 cells were used as a positive control. The percentage of 

SOSTDC1 positive cells was determined by setting gating threshold at <1% for the isotype 

control. (A) A population of 5T33MM-GFP cells were positive for SOSTDC1 protein in 

comparison to the isotype control (B) A comparably sized population of 5TGM1MM-GFP 

cells were also positive for SOSTDC1 protein in comparison to the isotype control. (C) 

SOSTDC1+ cells are represented by a right shift in Hk-2 and myeloma cell populations. 

N=8, Man-Whitney, ***P<0.001, ****P<0.0001) 
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Figure 6.4.2.2 - SOSTDC1 was upregulated in OB progenitor cells that were co-

cultured with 5T33MM cells as detected by flow cytometry: (A) OB progenitors 

cultured on their own were not SOSTDC1+ (<1%). OB progenitors co-cultured with 

5T33MM-GFP cells were positive for SOSTDC1 protein. Some 5T33MM-GFP cells cultured 

alone produced SOSTDC1. (B) SOSTDC1+ cells are represented by a right shift in OB 

progenitors and 5T33MM -GFP populations in the scatter plots. N=4 independent 

experiments, Man-Whitney, **P<0.01. 
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Figure 6.4.2.3 - SOSTDC1 was upregulated in both OB progenitor and 5TGM1 

populations co-cultured together as detected by flow cytometry: (A) OB 

progenitors cultured on their own were not SOSTDC1 positive (<1%). SOSTDC1 was 

switched on in OB progenitors that were co-cultured with 5TGM1-GFP cells. Some 

5TGM1MM-GFP cells cultured alone were positive for SOSTDC1. Compared to 

5TGM1MM-GFP cells cultured alone, a larger proportion of 5TGM1MM-GFP cells that 

were co-cultured with OB progenitors produced SOSTDC1. (B) SOSTDC1+ cells are 

represented by a right shift in OB progenitor and 5TGM1MM populations on the scatter 

plots. N=3 independent experiments, Man-Whitney, *P=<0.05, **P<0.001. 
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6.4.3 SOSTDC1 protein and RNA levels increased in myeloma/OB progenitor cells 

sorted from co-cultures 

 

To confirm that SOSTDC1 levels were upregulated in both individual myeloma and OB 

progenitor cell populations from co-cultures, whole co-cultures were sorted into separate 

OB and myeloma cell populations using FACS Aria technology. Western blotting was 

used to detect SOSTDC1 protein levels in sorted 5T33MM-GFP and 5TGM1MM-GFP 

myeloma cells co-cultured with differentiating OB progenitors. Similar to results obtained 

from flow cytometric analysis, western blot analysis confirmed SOSTDC1 detection in 

the OB progenitor population sorted from both 5T33MM-OB progenitor and 

5TGM1MM-OB progenitor co-cultures in comparison to an absence of SOSTDC1 in OB 

progenitors cultured alone. Furthermore, there was no difference between the SOSTDC1 

levels in 5T33MM cells co-cultured with OB progenitors compared to 5T33MM cultured 

on their own (Figure 6.4.3.1 A). However, there was an increase in SOSTDC1 protein in 

the 5TGM1MM cells sorted from the co-cultures compared to 5TGM1MM cultured on 

their own (Figure 6.4.3.1 B).  

 

End-point RT-PCR was performed to assess the expression of SOSTDC1 as an RNA 

gene transcript.  End-point PCR confirmed SOSTDC1 expression in the OB progenitor 

population sorted from both 5T33MM-OB progenitors and 5TGM1MM-OB progenitors 

co-cultures (band was visible) in comparison no SOSTDC1 expression in OB progenitors 

cultured alone (no band detected). In addition, the PCR product band representative of 

SOSTDC1 expression in myeloma cells sorted from myeloma-OB progenitor co-cultures 

appeared stronger suggesting a higher level of SOSTDC1 expression compared to 

myeloma cells cultured on their own (Figure 6.4.3.2 A, B). Sequencing of the end-point 

RT-PCR products were used to verify that the myeloma and co-cultured cells did express 

SOSTDC1. The sequence of bases obtained from the sequencing analysis of OB 

progenitors cultured alone showed that these cells did not have a similar homology to any 

form of SOSTDC-specific nucleotide collection using the BLAST software (Appendix 

4). However, data did show that the 5T33MM, 5TGM1MM, OB and 

5T33MM/5TGM1sorted from myeloma-OB progenitor co-cultures did have between 98-

100% homology to the Mus musculus Sostdc1, mRNA (NM_025312.3) sequence (Figure 

6.4.3.3).  
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Figure 6.4.3.1 – SOSTDC1 protein levels detected by western blotting were 

upregulated in osteoblast and myeloma cell populations sorted from osteoblast-

myeloma co-cultures: Protein was extracted from sorted samples and non-adherent 

5T33MM cells obtained from co-culture media. HK-2 cell lysates were used as a positive 

control for SOSTDC1 protein production. The western blot image is representative of three 

independent experimental repeats. (A and B) SOSTDC1 was detected in the OB population 

sorted from OB-5T33MM and OB-5TGM1MM co-culture in comparison to an absence of 

SOSTDC1 in OB cultured alone (*P<0.05). (B) SOSTDC1 protein levels obtained from 

adherent 5TGM1MM cells increased compared with no-adherent 5TGM1MM. N=3 
independent experiments, Man-Whitney, *P<0.05.  
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Figure 6.4.3.2 - SOSTDC1 expression was detected by end-point RT-PCR in 

sorted OB progenitor and 5T33MM/5TGM1MM cells that had been co-

cultured together: (A, B) SOSTDC1 was expressed in the OB progenitor population 

sorted from 5T33MM/5TGM1MM-OB progenitor co-cultures in comparison to no 

SOSTDC1 expression in OB progenitors cultured alone. SOSTDC1 expression was 

detectable in 5T33MM and 5TGM1MM cells cultured on their own. N=3 independent 

experiments. The HK-2 was used as a positive control for SOSTDC1 expression at 200pb. 

The gel image is representative of three independent experimental repeats. 
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Figure 6.4.3.3 - SOSTDC1 cDNA sequencing of 5T33MM and 5TGM1MM cells: End-

point RT-PCR products obtained from 5T33MM/5TGM1MM myeloma cells were sequenced 

for SOSTDC1 using SOSTDC1-specific primers. The (A)5T33MM and (B) 5TGM1MM had 

>98% homology with the SOSTDC1-specific sequence identified in BLAST (NCBI Reference 

Sequence: NM_025312.3). Images are representative of one sequencing assay with the 

reverse primer for SOSTDC1 (5’-TGTGGCTGGACTCGTTGTGC-3’). N=3 independent 

experiments. 

 

Score Expect Identities Gaps Strand 

241 bits(130) 1e-60 131/132(99%) 0/132(0%) Plus/Minus 

Query 1    TTTGTAGGTGCGCGTGCTGCCGTCCTGACACTGCAGCTGGNTCCTCTGGGTGCGCGTCTT  60 

           |||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||| 

Sbjct 593  TTTGTAGGTGCGCGTGCTGCCGTCCTGACACTGCAGCTGGATCCTCTGGGTGCGCGTCTT  53 

 

Query 61  GTCGTTGACACACCGCCACTCCTGAGAGCTCCTCCGGCTCCAGTACTTTGTTCCATAGCC  120 

          |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct 533 GTCGTTGACACACCGCCACTCCTGAGAGCTCCTCCGGCTCCAGTACTTTGTTCCATAGCC  474 

 

Query 121 TCCTCCGATCCA  132 

          |||||||||||| 

Sbjct 473 TCCTCCGATCCA  462 

 

 

5T33MM 

Score Expect Identities Gaps Strand 

165 bits(89) 7e-38 106/118(90%) 0/118(0%) Plus/Plus 

Query  1    CGTACCCAGAGAATCCAGCTGCAGTGCCNTTANGGCAGCACACGCACCTACAAAATCACA  60 

            ||||||||||||||||||||||||||||   | ||||||||||||||||||||||||||| 

Sbjct  606  CGTACCCAGAGAATCCAGCTGCAGTGCCAAGATGGCAGCACACGCACCTACAAAATCACA  665 

 

Query  61   GTANTCCCTGCCTGCCAGTGCAAGANGTACACCCGGCAGCanaannaGTCCAGCCACA  118 

            ||| || |||||||| ||||||||| ||||||||||||||| ||  ||||||| |||| 

Sbjct  666  GTAGTCACTGCCTGCAAGTGCAAGAGGTACACCCGGCAGCACAACGAGTCCAGTCACA  723 

5TGM1MM 

A 
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OB from 5TGM1MM Co-culture 

Score Expect Identities Gaps Strand 

130 bits(70) 2e-27 74/77(96%) 0/77(0%) Plus/Minus 

Query  2    TTTTGTCATTGACACACCGCCACTCCTGGNANCTCCTCCTGCTCCAGTACTTTGTTCCAT  61 

            ||||||||||||||||||||||||||||| | |||||||||||||||||||||||||||| 

Sbjct  603  TTTTGTCATTGACACACCGCCACTCCTGGGAGCTCCTCCTGCTCCAGTACTTTGTTCCAT  544 

 

Query  62   AGCCTCCTCCGATCCAG  78 

            |||||||||| |||||| 

Sbjct  543  AGCCTCCTCCAATCCAG  527 

Figure 6.4.3.4 - SOSTDC1 cDNA sequencing of 5T33MM/5TGM1MM sorted 

from myeloma-OB progenitor co-cultures: End-point RT-PCR products obtained 

from myeloma cells sorted from OB progenitor co-cultures were sequenced for SOSTDC1 

using SOSTDC1-specific primers. The co-cultured (A) 5T33MM and (B) 5TGM1MM cells 

had 100% homology with the SOSTDC1-specific sequence identified in BLAST 

(NM_025312.3).Images are representative of one sequencing assay with the reverse primer 

for SOSTDC1 (5’-TGTGGCTGGACTCGTTGTGC-3’). N=3 independent experiments. 

 N=3.  

 

Score Expect Identities Gaps Strand 

113 bits(61) 1e-22 66/70(94%) 0/70(0%) Plus/Minus 

Query  1    GTCATTGACACACCGCCACTCCTGGNANCTCCTCCTGCTCCAGTACTTTGTTCCATANCC  60 

            ||||||||||||||||||||||||| | ||||||||||||||||||||||||||||| || 

Sbjct  599  GTCATTGACACACCGCCACTCCTGGGAGCTCCTCCTGCTCCAGTACTTTGTTCCATAGCC  540 

 

Query  61   TCCTCCGATC  70 

            |||||| ||| 

Sbjct  539  TCCTCCAATC  530 
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Figure 6.4.3.5 - SOSTDC1 cDNA sequencing of OB progenitors sorted from 

myeloma-OB progenitor co-cultures: End-point RT-PCR products obtained from OB 

progenitors sorted from 5T33MM/5TGM1MM myeloma co-cultures were sequenced for 

SOSTDC1 using SOSTDC1-specific primers. The OB progenitor cells collected from (a) 

5T33MM and (B) 5TGM1MM co-cultures had 100% homology with the SOSTDC1-specific 

sequence identified in BLAST (NM_025312.3). Images are representative of one sequencing 

assay with the reverse primer for SOSTDC1 (5’-TGTGGCTGGACTCGTTGTGC-3’). N=3 

independent experiments. 

 

Score Expect Identities Gaps Strand 

241 bits(130) 1e-60 131/132(99%) 0/132(0%) Plus/Minus 

Query  1    TTTGTAGGTGCGCGTGCTGCCGTCCTGACACTGCAGCTGGATCCTCTGGGTGCGCGTCTT  60 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  593  TTTGTAGGTGCGCGTGCTGCCGTCCTGACACTGCAGCTGGATCCTCTGGGTGCGCGTCTT  534 

 

Query  61   GTCGTTGACACACCGCCACTCCTGANAGCTCCTCCGGCTCCAGTACTTTGTTCCATAGCC  120 

            ||||||||||||||||||||||||| |||||||||||||||||||||||||||||||||| 

Sbjct  533  GTCGTTGACACACCGCCACTCCTGAGAGCTCCTCCGGCTCCAGTACTTTGTTCCATAGCC  474 

 

Query  121  TCCTCCGATCCA  132 

            |||||||||||| 

Sbjct  473  TCCTCCGATCCA  462 

OB from 5T33MM Co-culture 

Score Expect Identities Gaps Strand 

148 bits(80) 4e-33 80/80(100%) 0/80(0%) Plus/Minus 
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Sbjct  542  GCGCGTCTTGTCGTTGACACACCGCCACTCCTGAGAGCTCCTCCGGCTCCAGTACTTTGT  483 
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6.4.4 Assessing the dependency of SOSTDC1 production on direct OB-myeloma 

interaction 

 

In section 6.4.3 I observed an increase in the proportion of SOSTDC1+ 5TGM1MM cells 

that were co-cultured with OB progenitors. To test the concept that SOSTDC1 is 

upregulated in myeloma cells as a result of direct interaction between the myeloma and 

OB progenitor cell, co-culture experiments were set up as previously described in section 

6.2. In these experiments, co-culture of 5T33MM-GFP/5TGM1MM-GFP with OB 

progenitor resulted in some myeloma cells adhering to the OB progenitors. From these 

co-cultures, the media that contained the non-adhering myeloma population was removed 

and maintained as a separate sample ready for flow cytomtery analysis. Flow cytomteric 

analysis was used to compare the proportion of SOSTDC1+ myeloma cells from adherent 

and non-adherent populations, I showed that there was no difference between the 

proportions of SOSTDC1+ non-adherent 5T33MM cells compared to adherent 5T33MM 

cells sorted from 5T33MM-OB progenitor co-cultures. Flow cytometric analysis of 

adherent and no-adherent 5TGM1MM showed a significantly higher number of adherent 

5TGM1MM cells sorted from the myeloma-OB progenitor co-cultures were SOSTDC1+ 

compared to the non-adherent 5TGM1MM population (Figure 6.4.4.1 A, B). 

 

In other experiments, co-cultures were set up and sorted by FACS Aria into separate 

populations prior to protein extraction as previously described in section 6.3. Western blot 

analysis was performed to assess SOSTDC1 protein level in adherent and non-adherent 

myeloma cells. Densitometry, normalised to GAPDH protein levels  showed that the 

average density of bands representing SOSTDC1 protein did not differ between the non-

adherent population and adherent 5T33MM cells sorted from 5T33MM-OB progenitor 

co-cultures (Figure 6.4.4.2 A).  Similar to the flow cytomtery data, western blotting 

showed adherent 5TGM1MM cells sorted from the myeloma-OB progenitor co-cultures 

had higher SOSTDC1 protein levels compared to the non-adherent 5TGM1MM cells that 

were floating the media of co-cultures (Figure 6.4.4.2 B).  
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Figure 6.4.4.1 – The proportion of SOSTDC1+ 5TGM1MM cells increased as a 

result of direct myeloma-OB progenitor interaction: (A) There was no difference in 

the proportion of SOSTDC1+ cells from non-adherent 5T33MM-GFP cells compared to the 

5T33MM-GFP adherent population. (B) The proportion of SOSTDC1+ 5TGM1MM-GFP 

cells was higher in adherent myeloma cells compared to non-adherent cells floating in the 

co-culture media. N=3 independent experiments, Man-Whitney, *P<0.05. 
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Figure 6.4.4.2 - Direct 5TGM1MM-OB progenitor interaction upregulated 

SOSTDC1 protein levels: Following co-culture, 5T33MM-GFP/5TGM1MM-GFP cells that 

had adhered to the OB progenitors were sorted by FACS Aria into separate populations. Western blot 

images are representative of three independent experimental repeats. (A) There was no difference in 

SOSTDC1 levels in 5T33MM cells co-cultured compared to 5T3MM cells cultured alone (B) 

SOSTDC1 protein levels obtained from 5TGM1MM cells adherent to OB progenitors increased 

compared to non-adherent 5TGM1MM cells. N=3 independent experiments, Man-Whitney, *P<0.05. 
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6.4.5 SOSTDC1 was present in tibea bearing myeloma tumour and not naïve 

animals determined by immunohistochemical analysis  

 

Immunohistochemical analysis of mouse tibiae sections infiltrated with 5T33MM and 

5TGM1MM myeloma in-vivo was used to detect SOSTDC1 staining in diseased mice 

compared to naïve animals. 5T33MM and 5TGM1MM tibiae sections were stained with 

anti-SOSTDC1 rabbit or isotype control antibody to detect the presence of SOSTDC1 

protein. Immunohistochemical staining showed that SOSTDC1 protein was present in 

both 5T33MM and 5TGM1MM sections compared to their respective isotype controls. 

This staining appeared mainly focused in the myeloma cells/colony vicinity, strongest 

within the myeloma cells themselves. The staining appeared around the myeloma cells as 

well as within the cells themselves; correlating with the fact that SOSTDC1 is a secreted 

protein (Figure 6.4.5.1 A, B). Naïve tibiae sections that were did not have myeloma did 

not appear to have SOSTDC1 present. Some light brown staining did appear around the 

megakaryocytes but this staining was also present in some of the isotype controls (Figure 

6.4.5.1 C). 

 

In immunohistochemical analysis of mouse tibiae sections infiltrated with myeloma, it 

was difficult to identify many OB cells in close proximity of myeloma colonies. The OB 

cells that were identified appeared to be more morphologically similar to bone lining 

cells.  Immunohistochemical analysis showed a lack of OB cells in close proximity to 

5TGM1MM myeloma cells which were stained positive for SOSTDC1 (Figure 6.4.5.2 

A). In the same 5TGM1MM section where no myeloma colony was present OB/bone 

lining cells were present (Figure 6.4.5.2 B).  
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5T33MM+ Isotype CT 
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5T33MM+ SOSTDC1 Ab 

5TGM1MM + Isotype CT 5TGM1MM+ SOSTDC1 Ab 

Naive+ Isotype CT Naive+ SOSTDC1 Ab 

Figure 6.4.5.1 - SOSTDC1 was detected using immunohistochemistry in 

5T33MM and 5TGM1MM tibia in vivo: (A) SOSTDC1 staining was present in 

5T33MM sections compared to the isotype antibody and this staining was mainly confined to 

the myeloma cells/colony area. (B) SOSTDC1 staining was present in 5TGM1MM sections 

compared to the isotype CT and this staining was specific in regions the myeloma 

cells/colonies were present. (C) Naïve tibia sections did not appear to produce SOSTDC1. 

Images are representative of at 3 slides from N=6.   
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Figure 6.4.5.2 - There were few OB/bone-lining cells in proximity of SOSTDC1-

positive myeloma colonies: Images are representative of different areas within the same 

slide. (A) There were few OB cells or bone- lining in close proximity of myeloma colonies 

that were positive for SOSTDC1 staining. (B) In the same 5TGM1MM section , where no 

myeloma colony was present, more OB cells were present.  
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6.4.6 Lytic 5TGM1MM myeloma cells express more SOSTDC1 compared to non-

lytic 5T33MM myeloma cells   

 

As mentioned previously, mice injected with 5TGM1MM cells developed lytic bone 

disease similar to that observed in MM patients. However 5T33MM mice did not develop 

bone disease associated with tumour burden. To test the hypothesis that SOSTDC1 

expression was upregulated in lytic 5TGM1MM myeloma cells compared to non-lytic 

5T33MM cells, the data obtained from the SOSTDC1 western blot and end-point RT-

PCR experiment outlined in section 6.4 were re-analysed. 

 

Western blotting analysis of the average density calculated for SOSTDC1 protein levels 

(normalised to GAPDH), was upregulated in lytic 5TGM1MM cells produced compared 

to non-lytic 5T33MM myeloma cells (*P<0.05, Figure 6.4.6.1 A). End-point RT-PCR 

analysis was used to determine whether lytic 5TGM1MM myeloma cells had higher 

SOSTDC1 expression in comparison to non-lytic 5T33MM myeloma cells. The average 

density of SOSTDC1 PCR product bands were normalised to GAPDH. Lytic 5TGM1MM 

cells expressed more SOSTDC1 compared to non-lytic 5T33MM myeloma cells 

(*P<0.05, Figure 6.4.6.1 B).  
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Figure 6.4.6.1 - 5TGM1MM cells produced more SOSTDC1 than 5T33MM 

cells: (A) Western blot analysis showed that lytic 5TGM1MM cells produce more SOSTDC1 

protein compared to non-lytic 5T33MM myeloma cells (B) End-point RT-PCR analysis 

showed that lytic 5TGM1MM cells express higher level of SOSTDC1 compared to non-lytic 

5T33MM myeloma cells. N=3 independent experiments, Man-Whitney, *P<0.05.  

5T33MM 5TGM1MM
0

5

10

15

SOSTDC1 Gene expression
in 5T33MM vs 5TGM1MM

S
O

S
T

D
C

1
 E

x
p

re
s
s

io
n

 (
A

v
e
ra

g
e
 D

e
n

s
it

y
/G

A
P

D
H

)

*

5 T 3 3 M M 5 T G M 1 M M

0

1

2

3

4

5

S O S T D C 1  P ro te in  in

5 T 3 3 M M  v s  5 T G M 1 M M

A
v

e
r
a

g
e

 D
e

n
s

it
y

 r
e

la
ti

v
e

 t
o

 G
A

P
D

H

*



232  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Average CT values 

 

Sample  CT Value 

5TGM1 

 

37.0 

5TGM1 + anti-

SOSTDC1 

antibody 

31.2 

OB  

 

25.8 

OB + anti-

SOSTDC1 

antibody 

26.3 

Average CT values 

 

Sample  CT Value 

OB 

 

25.8 

OB+5TGM1 

 

26.4 

OB + 5TGM1 + 

anti-SOSTDC1 

antibody 

26.7 

A n ti-S O S T D C 1  A n tib o d y  h a d  n o  e ffe c t

o n  5 T G M 1  o r  O B  P ro g e n ito r

R u n x 2  e x p re s s io n

R
e

la
ti

v
e

 E
x

p
r
e

s
s

io
n

 o
f

R
u

n
x

2
 (

B
2

M
)

0

5 0

1 0 0

1 5 0

n s

n s

5
T

G
M

1

O
B

+

a
n

ti
-S

O
S

T
D

C
1

1
.5


g
/m

l 5
T

G
M

1
+

a
n

ti
-S

O
S

T
D

C
1

1
.5


g
/m

l
O

B

A n ti-S O S T D C 1  a n tib o d y  re v e rs e d

5 T G M 1 -in d u c e d  s u p re s s io n

o f R u n x 2  e x p re s s io n  in   O B  p ro g e n ito rs

R
e

la
ti

v
e

 E
x

p
r
e

s
s

io
n

 o
f

R
u

n
x

2
 (

B
2

M
)

0

5 0

1 0 0

1 5 0

2 0 0

* *

O B O B +

5 T G M 1

O B +

 5 T G M 1

+  a n ti-S O S T D C 1

1 .5  g /m l

A 

B 

Figure 6.4.6.2 – Anti-SOSTDC1 antibody reversed 5TGM1-induced 

suppression of Runx2 expression in OB progenitors: (A) 5TGM1MM cells cultured 

alone did not produce detectable levels of Runx2. Runx2 was detected in differentiating OB 

progenitors cultured alone. (B) Runx2 gene expression in OB progenitors was reduced in 

the presence of 5TGM1MM myeloma cells and treatment of 5TGM1MM-OB progenitor co-

cultures with anti-SOSTDC1 antibody reversed this effect restoring Runx2 levels.  N=3 

independent experiments, Students t-tes (A). One-Way Anova, with Holme-Sidak’s adhoc test 

(B) *P<0.05.  
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6.5 Discussion  

 

MM is associated with the suppression of OB activity leading to osteolytic bone disease. 

In recent years it has been suggested that myeloma and OB interaction may be involved 

in the regulation and promotion of osteolytic bone disease via suppression of 

osteoblastogensis. The molecular mechanisms by which myeloma cells inhibit OB 

activity and the consequences of myeloma-OB interaction on myeloma cell growth and 

OB suppression are unclear. In previous chapters I showed that SOSTDC1 had more of 

suppressive effect on OB progenitors when they were in the stages of differentiation (day 

8-11 in culture). This provided the rational for assessing SOSTDC1 expression during the 

early phase of OB progenitor differentiation. The aim of this study was to determine 

whether myeloma cells and OB progenitors express SOSTDC1 and to also establish the 

conditions under which SOSTDC1 is expressed with reference to the question; is 

SOSTDC1 expression dependent on myeloma-OB progenitor interaction? Thus the main 

aim of this study was to determine the conditions under which myeloma and OB 

progenitor cells produced SOSTDC1, testing the hypotheses that the 5TMM and OB 

progenitors produce SOSTDC1 and that the direct interaction between myeloma and OB 

progenitors upregulates the production of SOSTDC1 in both myeloma and OB progenitor 

cells. Interestingly my data support the hypothesis that myeloma cells produce SOSTDC1 

and refute the hypothesis that OB progenitors produce SOSTDC1. Additionally, my 

findings from this study also support the hypothesis that myeloma-OB progenitor 

interaction upregulates SOSTDC1 expression in both cell types.   

 

Due to the heterogeneity associated with myeloma disease, cell cultures originating from 

both 5T33MM and 5TGM1MM C57BL/KaLwRij mice were tested separately in this 

study. In preliminary experiments, the presence of SOSTDC1 was tested qualitatively by 

immunofluorescent microscopy. Originally, 5T33MM-GFP and 5TGM1MM-GFP 

myeloma cells were used to verify the presence of myeloma cells in 

immunocytochemistry experiments, particularly so that the myeloma cells could be 

distinguished from the OB progenitor cells when in co-culture. However, the GFP in 

myeloma cells was difficult to detect following fixation (live cells were tested to 

compare). One possible reason for this may have been the cell fixation process in 4% 

formalin (pH 6.8) in PBS resulted in some degradation of the GFP on the myeloma cells. 

Studies have shown that GFP is more stable in a hypotonic solution with a pH range of 
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7.5 - 8.5 and shifts in structure/stability outside this pH range (Tavare, Fletcher et al. 

2001). An alternative would have been to use Paraformaldyhye (PFA). However all 

aspects of the immunostaining protocol had been optimised using the anti-SOSTDC1 

antibody which only stained using 4% formalin as a fixative. As an alternative, CD138 

plasma cell protein was used to verify the presence of myeloma cells.  

 

In my studies, a known density of myeloma and differentiated OB progenitor cells 

cultured on their own were fixed with 4% formalin and stained with the commercial anti-

SOSTDC1 rabbit polyclonal antibody overnight. To further determine that the myeloma 

cells were positive for the plasma cell marker CD138, the cells were co-stained with an 

anti- CD138 rabbit antibody. These immunofluorescent experiments were consistent in 

showing that differentiating OB progenitor cells did not stain positive for SOSTDC1 

compared to the HK-2 cell positive controls, which were strongly positively stained for 

SOSTDC1.  

 

On the other hand, the immunofluorescent staining for SOSTDC1 in the 5T33MM-GFP 

and 5TGM1MM-GFP myeloma cells showed myeloma cells produced SOSTDC1 in low 

levels. The problem with using immunofluorescent microscopy as a method of SOSTDC1 

detection in myeloma cells was that non-adherent myeloma cells has to be artificially 

attached to the culture plate surface. The main issue was that although Poly-L-Lysine was 

used to facilitate the adherence of the myeloma cells to the culture plate wells, the 

washing steps throughout the immunoassay resulted in many of the myeloma cells 

detaching. In some experiments SOSTDC1 was detected in a few of remaining attached 

myeloma cells, whilst in others no SOSTDC1 was detected. Flow cytometry was used to 

verify the data obtained from the immunofluorescent microscopy analysis using the same 

experimental setup. This time when myeloma cells were screened for the presence of 

SOSTDC1 using flow cytometry, GFP could be detected using the same method as 

immunofluorescent microscopy. Although the reason for this is unclear, a possible 

explanation is that various studies looking at protein detection in cells using both flow 

cytometry and immunofluorescent microscopy have shown that flow cytometry is more 

sensitive of the two methods (Jenson, Grant et al. 1998, Muratori, Forti et al. 2008).  

 

Flow cytometric analysis showed that between 5-10% of the 5T33MM and 5TGM1MM 

myeloma cells were positive for SOSTDC1, suggesting that variability seen in the 
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immunofluorescent microscopy may have been due to technical issues. The low number 

of myeloma cells that were adherent to the plate surface by the end stage of the 

immunofluorescent assay and the small percentage of myeloma cells that were positive 

for SOSTDC1 as detected by flow cytometry, could mean that many SOSTDC1 positive 

cells were detached and washed off during the immunofluorescent assay. This may 

explain why in immunofluorescent microscopy experiments, some myeloma cells 

produced SOSTDC1 whilst in others SOSTDC1 could not be detected. 

 

Initially, co-culture conditions were tested to determine the minimum time required for 

SOSTDC1 to be produced and the optimal media conditions that both the OB progenitor 

and myeloma cells required for growth. This pilot data determined that in order to 

produce SOSTDC1, OB progenitors and 5T33MM cells required co-culturing overnight 

and SOSTDC1 was still present at 48 hours following co-culture. To maintain minimum 

variability between experiments, all co-cultures were carried out for 24 hours. In addition, 

it was determined that although OB progenitors could be maintained for up to 48 hours in 

RPMI myeloma media, the 5T33MM cells started to die and would not adhere to the OB 

progenitors at 24 hours in co-culture when in OGM. Therefore, differentiated OB 

progenitor cells were co-cultured with 5T33MM or 5TGM1MM cells for 24 hours in 

RPMI.  

 

Flow cytometry and immunofluorescent microscopy data were clear in showing that 

compared to cells cultured on their own, OB progenitors and myeloma co-cultured 

together produced SOSTDC1. The immunofluorescent analysis of co-cultures showed 

that SOSTDC1 appeared to be present within both the myeloma cells and also the OB 

progenitors. This staining was focused where the OB progenitor and myeloma cells were 

physically interacting.  Flow cytometric data was able to confirm this quantitatively 

where the myeloma-GFP-population could actually be distinguished from the OB 

progenitor population. The proportion of SOSTDC1 positive myeloma cells were 

compared to the proportion of SOSTC1 positive OB progenitor cells. I showed that where 

OB progenitors did not produce detectable levels of SOSTDC1 when cultured on their 

own, SOSTDC1 production was induced in the OB progenitor as a result of interaction 

with the myeloma cells. Interestingly, although SOSTDC1 levels did not vary in 

5T33MM that were co-cultured with OB progenitors compared to 5T33MM cells that 
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cultured on their own, a significant difference could be seen in the same experiments 

using 5TGM1MM cells.  

 

Although flow cytometry data indicated that SOSTDC1 production was induced as a 

result of OB progenitors and myeloma cell co-culture, there was a need for a more 

sophisticated method of separating the two cell populations for analysis of SOSTDC1 

expression.  Myeloma-GFP-OB progenitor co-cultures were sorted by FACS Aria in a 

similar method to the one outlined by C. Edwards et al (Edwards, Lwin et al. 2009). 

Western blot analysis and End-point PCR showed that the sorted GFP positive myeloma 

cells and GFP-negative OB progenitor, as individual populations, were positive for 

SOSTDC1 expression. Both western blot and End-point RT-PCR data correlated with the 

flow cytometry analysis, in that SOSTDC1 production was switched on in OB progenitor 

cells following co-culture with myeloma cells. Western blotting further determined that 

SOSTDC1 protein levels increased in 5TGM1MM cells that had been co-cultured with 

OB progenitor cells compared to 5TGM1MM cells cultured on their own. 

 

The hypothesis that SOSTDC1 expression is dependent on myeloma-OB physical 

interaction is important in understanding role of SOSTDC1 in osteolytic bone disease in 

MM. To test this hypothesis, I determined the levels of SOSTDC1 protein present in the 

myeloma cells that were co-cultured with OB progenitors but had not adhered to the OB 

progenitor cells. Western blot and flow cytometry analysis showed that co-cultured 

5TGM1MM cells that had adhered to OB progenitors contained higher SOSTDC1 protein 

levels compared to those myeloma cells that had not adhered to the OB progenitors. 

Identical experiments with 5T33MM showed that there was no difference between 

adherent and non-adherent 5T33MM cells co-cultured with OB progenitors.  

 

Immunohistochemical analysis of 5T33MM and 5TGM1MM tibiae sections stained with 

anti-SOSTDC1 antibody confirmed that SOSTDC1 was present in bone that was 

infiltrated with myeloma disease. There was a lack of SOSTDC1 staining in naïve bone 

sections, indicating that SOSTDC1 was only expressed in sites associated with myeloma 

bone disease. The presence of SOSTDC1 appeared most focused where the myeloma cell 

colonies were located. As the myeloma sections were obtained 10 days post-injection, 

some OB/bone-lining cells were still present within the myeloma-infiltrated bone. In parts 

of these 5T33MM/5TGM1MM sections, where myeloma colonies were stained for 
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SOSTDC1, no OB/bon-lining cells could be identified. However in parts of the same 

5T33MM/5TGM1MM sections where no myeloma colonies were present, there was a 

lack of SOSTDC1 staining and some OB/bone-lining cells were present.  

 

Western blotting and end-point RT-PCR data indicated that 5TGM1MM cells expressed a 

higher level of SOSTDC1 compared to 5T33MM cells. The 5T33MM myeloma model is 

an aggressive form of myeloma with evident signs of morbidity at 4 weeks. Reports vary 

on the development of osteolytic bone disease in 5T33MM models. Although some 

laboratories have reported diffuse osteolytic bone lesions in their 5T33MM mice, in our 

laboratory the C57BL/KaLwRij mice injected with 5T33MM cells did not develop bone 

disease. This variability could be explained as mice are injected with in-vitro growing 

variants rather than parental cells. In the literature the 5T33MM model is now used more 

for investigating myeloma cell homing and proliferation the more recently developed 

5TGM1MM model is preferred for the study of bone disease related to tumour burden 

(Croese, Vas Nunes et al. 1987, Vanderkerken, De Raeve et al. 1997). These data support 

the rational that SOSTDC1 is a molecule that may be involved in the induction of 

osteolytic bone disease in myeloma. Therefore would be predicted that SOSTDC1 would 

be more of a regulator role in the lytic 5TGM1MM model in comparison to the non-lytic 

5T33MM model. Furthermore, the Taqman gene expression assays showed that Runx2 

expression levels decreased in OB progenitors co-cultured with 5TGM1MM myeloma 

cells and treatment with anti-SOSTDC1 antibody reversed this effect. This data is 

compelling in that is suggests that SOSTDC1 in fact does module the suppression of OB 

differentiation induced by myeloma cells.  

 

Although the 5TMM series are reproducible and an excellent model for MM studies, 

there is a constant need for the development of these animal models to further enhance 

our understanding of MM as well as the limitations associated with them. In humans, MM 

is heterogeneous as a disease and this poses a problem in that no single animal model can 

constitute of all MM features. This study would benefit from looking into SOSTDC1 

expression in human myeloma cell lines and human BM samples so as to move into 

translational research for potential therapeutic purposes.  

  



238  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5T33MM 5TGM1MM
0

5

10

15

SOSTDC1 Gene expression
in 5T33MM vs 5TGM1MM

S
O

S
T

D
C

1
 E

x
p

re
s
s

io
n

 (
A

v
e
ra

g
e
 D

e
n

s
it

y
/G

A
P

D
H

)

*



239  

 

 

 
 

 

 

 

Chapter 7 – General Discussion  
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7.1 Discussion  

 

To better understand the molecular mechanism involved in osteolytic bone destruction 

associated with MM, the biochemical pathways and soluble factors involved need to be 

identified. Until recently, research has focused on identifying the mechanisms resulting in 

increased osteoclastogenesis and OC activation, with particular interest in the role of the 

RANK/OPG signalling axis (Pearse, Sordillo et al. 2001). The current therapies that are 

administered to MM patients suffering from bone disease target increased osteolysis 

mainly caused by osteoclasts-induced bone resorption . Bisphosphonates such as 

pamidronate, zoledronic acid and clodronate form the foundations of the management of 

myeloma-related bone disease on an international scale (Terpos, Roodman et al. 2013). 

However, in the past few years, it has become apparent that the impairment of bone 

formation is key to the uncoupling of bone remodelling in MM. As a result there is an 

essential need for therapeutic agents that also target the OB suppression observed in MM 

bone disease.  

 

Myeloma cells themselves have been implicated in the inhibition of bone formation by 

preventing OB differentiation (Oshima, Abe et al. 2005, Giuliani, Rizzoli et al. 2006). 

However, functional data is limited and little is known about the causal roles of the 

suppression of bone formation in MM bone disease. A number of extracellular molecules 

have been implicated in the reduced osteoblastogensis observed in patients with MM, 

including the Dkk and SFRP family of proteins (Tian, Zhan et al. 2003, Giuliani, Morandi 

et al. 2007). In the last decade studies have linked increased Dkk1 protein levels in MM 

with decreased OB activity in bone remodelling (Tian, Zhan et al. 2003). Further to this, 

our group has shown that blocking Dkk1 impedes suppression of bone formation and 

prevents osteolytic bone disease from developing in MM. Nevertheless, data also show 

that Dkk1 levels are not up-regulated in the serum of all MM patients (Heath, Chantry et 

al. 2009). Consequently, MM patients with normal Dkk1 levels cannot be treated with the 

current  

 

Based on these findings, we can assume that other molecules, either produced by the 

myeloma cells, or produced by other cells within the bone microenvironment, are 

involved in suppression of bone formation. In our search to identify other molecules that 

that could have a potential causal role in the suppression of osteoblastogenesis in MM, we 
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identified SOSTDC1 (data unpublished), as a gene that was highly upregulated in the 

murine 5T2MM myeloma model compared to naïve animals using Affymetrix 

GeneChip™, TaqMan™ gene expression assays and immunohistochemistry (Buckle et 

al, 2014). The identification of SOSTDC1 in the 5T2MM model was particularly 

interesting due the fact that mice which are injected with 5T2MM cells develop osteolytic 

bone disease that is similar to that observed in human MM patients. With the exception of 

the present study, SOSTDC1 has previously not been associated with myeloma-related 

bone disease.  

 

Within the literature there is evidence for the expression of SOSTDC1 and its orthologues 

in various tissues including embryos, teeth, hair follicles, breast and kidney, with 

particular focus on a  modulatory role for SOSTDC1 in Wnt and BMP signalling 

(Laurikkala, Kassai et al. 2003, Yanagita, Oka et al. 2004, Beaudoin, Sisk et al. 2005, 

Clausen, Blish et al. 2010).  There is less known in regards to the effect of SOSTDC1 on 

osteoblastogenesis with the exception of a few key studies that have shown the mouse 

orthologue (Wise) of SOSTDC1 to be an inhibitor of BMP2, -4, or -7 induced bone 

differentiation in MC3T3-E1. Similarly recombinant SOSTDC1 was found to bind 

directly to specific BMPs and suppress BMP2, -4 and -7 stimulated ALP activity in the 

mouse myoblast cell line, C2C12 (Yanagita, Oka et al. 2004). The antagonistic effect on 

BMP signalling is apparently through its ability to bind directly to the BMP ligands 

themselves (Laurikkala et al., 2003 and Yanagita et al., 2004). Other studies have also 

shown that SOSTDC1-Wnt signalling is regulated via interactions with Wnt co-receptors 

LRP5/6, with data suggesting SOSTDC1 consists of separating binding domains for the 

BMP ligands and Wnt receptors (Lintern, Guidato et al. 2009). This information provided 

some insight into the interactions of SOSTDC1 with its BMP ligands and LRP receptors 

on a molecular level.  

 

The compelling data from our group showing that SOSTDC1 was upregulated in the lytic 

5T2MM myeloma model compared to naïve mice, combined with other reports indicating 

SOSTDC1 may modulate BMP signalling in OB-like cells, encouraged the rational that 

SOSTDC1 could have a fundamental role in the suppression of OB differentiation in 

MM. In a clinical setting, SOSTDC1 could potentially be targeted as a therapeutic agent 

reversing the suppression in osteoblastogenesis, which ultimately leads to osteolytic bone 
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disease in MM. In particular, in cases where MM patients do not exhibit elevated levels 

of Dkk1, targeting SOSTDC1 could be the ideal Dkk1-substitute therapy in MM.  

 

In the first part of the present study I characterised an in-vitro culture system using OB 

progenitor cultures derived from the calvaria of naïve neonatal C57BLkawRij mice. This 

system reflected the different stages of osteogenic maturation during cell differentiation. 

These primary cells exhibit a wide range of OB phenotypic changes, making them the 

preferable murine OB model which is used widely in the literature (Wang, Christensen et 

al. 1999, Fernandes, Harkey et al. 2007). Characterisation of the OB progenitor model 

was fundamental to understanding experimental data obtained from studying the 

molecular mechanisms involved in OB differentiation. The primary OB progenitor 

cultures had a clear OB phenotype, including ALP enzymatic activity, extracellular 

matrix mineralisation, Runx2, Collagen and β-catenin expression, which were in line with 

the literature (Ecarot-Charrier, Glorieux et al. 1983, Prince, Banerjee et al. 2001, Komori 

2006).  

 

In this model, the exponential differentiation period of OB progenitor cultures started at 

approximately day 8 and cells become mature at around day 15. This data agreed with 

existing reports with the literature demonstrating that ALP of MC3T3-E1 and murine 

primary calvarial cells increased up to 14 and 15 days in culture, respectively (Yazid, 

Ariffin et al. 2010, Birmingham, Niebur et al. 2012).  Furthermore, the mineralisation 

assays showed by day 15 of culture, OB progenitors had produced matrix nodules visible 

to the eye and these results were similar to the studies carried out by other groups 

(Hasegawa, Shimada et al. 2008, Kawazoe, Katoh et al. 2008). From the data in chapter 1, 

I established that the primary OB progenitors had differentiation profiles that were 

specific to progenitor/pre-osteoblasts up to day 11 of differentiation and beyond this time 

point amplified into mature functional OB cells.  

 

Using the OB progenitor characterisation data from Chapter 1 as an experimental 

platform, I investigated the effect of rhSOSTDC1 on Wnt/BMP-induced differentiation 

and intracellular signalling in OB progenitor cells in-vitro. The hypothesis was; 

SOSTDC1 antagonises Wnt and BMP-induced differentiation and acute signalling in OB 

progenitors. Any regulatory effect of SOSTDC1 was assessed throughout the various 

stages of OB progenitor maturation established during the earlier characterisation of the 



244  

 

OB progenitor model. In these studies, the effect of SOSTDC1 on Wnt and BMP 

signalling in OB progenitors was compared simultaneously to that of well characterised 

Wnt antagonist Dkk1 and BMP antagonist noggin.  

 

The data from these studies showed that SOSTDC1 alone did not have any effect on OB 

progenitor differentiation markers ALP and Runx2 or OB mineralisation.  It is unclear 

whether the levels of BMP and Wnt proteins which are known to be present within the 

FCS (Sasse, Lengwinat et al. 2000) or produced by the OB progenitor cells (Zhang, 

Oyajobi et al. 2013), were impeding the physiological effect of SOSTDC1. Although in 

this study it was not possible to use serum-free media, it may be that elimination of the 

Wnt/BMP proteins from culture serum or from within the cells themselves could magnify 

the suppressive effect of SOSTDC1. Continuous exposure of OB progenitor cultures to 

recombinant Wnt3a, BMP2 and BMP7, induced ALP enzyme activity and an antagonistic 

effect of SOSTDC1 was evident in BMP2 and not BMP7 or Wnt-induced ALP activity. 

The inhibitory effect of SOSTDC1 was only significant on the first analysed day 8 time-

point of OB progenitor differentiation. These findings were partially similar to 

Laurikkala, Kassai et al study which found the mouse orthologue of SOSTDC1 inhibited 

both Wnt and BMP-induced ALP activity of MC3T3-E1 cells (Laurikkala, Kassai et al. 

2003; Rawadi et al. 2004). Although unclear, the differences between the present study 

and those of Laurikkala may be due to the phenotypic differences observed between cell-

lines and primary OB progenitor cultures as well as differences in methodology.  

 

Based on the literature, Runx2 seems to be a transcription factor that is mutually 

important in both the Wnt and BMP signalling in OB cells. In fact, studies showing that 

mice deficient in LRP5 express Runx2 normally, suggest that Runx2–regulated OB 

differentiation also occurs through the BMP pathway (Kato, Patel et al. 2002; Ducy 2000; 

Gong, Slee et al. 2001). As a result, Runx2 expression was used as the second marker of 

OB progenitor differentiation to assess any modulatory effect of SOSTDC1 on both Wnt 

and BMP signalling. Interestingly, in these experiments SOSTDC1 did exert a 

suppressive effect on OB progenitor differentiation when in the presence of Wnt3a, 

BMP2 or BMP7. The Runx2 Taqman gene expression assays suggest that SOSTDC1 

inhibits Runx2 expression when in the presence of recombinant Wnt3a, BMP2 or BMP7 

proteins. Similar to the ALP data, the suppressive effect of SOSTDC1 was again 
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observed on the earliest day 8 time point, when Runx2 expression is known to be high in 

immature differentiating OB progenitor cells (Prince, Banerjee et al. 2001).  

 

Measurement of mRNA is thought to be a more sensitive approach of detection compared 

to protein assays such as ALP analysis (Sperisen, Wang et al. 1992), however, any effects 

of SOSTDC1 on Wnt and BMP-induced mineral deposition would establish a clearer 

insight. Alizarin red staining showed that OB progenitors cultured continuously with 

recombinant SOSTDC1 protein suppressed Wnt3a, BMP2 and BMP7-induced OB 

progenitor mineralisation. The detrimental effect of SOSTDC1 when in the presence of 

Wnt and BMP ligands was again only evident during early OB progenitor differentiation. 

In all the latter experiments performed in which SOSTDC1 exerted inhibitory effects on 

Wnt3a-induced differentiation and mineralisation significantly, Dkk1 appeared less 

effective in general. This is interesting as Dkk1, similar to SOSTDC1, is known to block 

β-catenin/Wnt-signalling by forming a complex with Wnt- LRP receptors (Brott and 

Sokol 2002). One possibility that has not been tested is comparing the affinity of LRP5/6 

for SOSTDC1 in comparison to Dkk1. BMP antagonist noggin also had variable 

suppressive effect on the differentiation and mineralisation activity of OB progenitor 

cultures. Noggin inhibited BMP-induced ALP activity and Runx2 expression throughout 

early OB progenitor differentiation. This is consistent with other reports which have 

shown noggin to inhibit differentiation in BMC and pre-osteoblastic UAMS-33 cell 

cultures (Lecka-Czernik, Gubrij et al. 1999, Abe, Yamamoto et al. 2000). The negative 

effect of noggin on OB progenitor mineralisation was not significant at any time point 

throughout differentiation compared to SOSTDC1 in the same experiments. This may 

have been due to the dosage of noggin used in these studies; i.e. higher dosage of noggin 

may have suppressed BMP-induced OB progenitor mineralisation.  

 

To establish a  clearer understanding of the molecular mechanisms by which SOSTDC1 

interfered with Wnt and BMP signalling,  protein levels downstream of activated Wnt and 

BMP signalling pathways were quantified following acute treatments with recombinant 

SOSTDC1 protein. In Wnt signalling, the activation of the LRP5/6 receptors results in β-

catenin stabilisation, phosphorylation and its translocation into the nucleus inducing the 

transcription of target genes (Miller, Hocking et al. 1999). Wnt-induced stabilisation of β-

catenin is central to the effect of Wnt ligands on proliferation and differentiation in OB 

cells. Studies have shown that loss of function in LRP5 causes reduced bone formation in 
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postnatal humans and mice (Gong, Slee et al. 2001, Kato, Patel et al. 2002) and point 

mutations in the LRP5 receptor increase bone mass (Boyden, Mao et al. 2002), 

highlighting the crucial role of Wnt-LRP signal transduction in bone development. It is 

not known whether SOSTDC1 has any influence on β-catenin/Wnt signalling in 

differentiating OB cells. The western blot data in the present study showed that 

SOSTDC1 in the presence of Wnt3a, reduced protein level of β-catenin phosphorylation. 

Similarly, western blotting was also used to quantify phosphorylated levels of regulatory 

Smad complexes downstream of the BMP signalling pathway following treatment with 

recombinant SOSTDC1 protein in the presence of BMP2 or BMP7. The Addition of 

SOSTDC1 in the presence of BMP ligands reversed BMP-induced Smad phosphorylation 

in OB progenitor cells of an early lineage. Consistently throughout the present studies it 

was apparent that SOSTDC1 antagonised Wnt/BMP signalling in OB progenitors that 

were still in the early phase of differentiation. This is interesting as data from in-vitro 

studies have suggested that Dkk1 mainly affects the function of mature OB cells and 

drives pluripotent cells to an OB linage (Morvan, Boulukos et al. 2006). It may be that 

Dkk1 targets mature OB cells and SOSTDC1 targets immature osteoprogenitors in an 

MM setting.   

 

It is interesting to note that the suppressive SOSTDC1 effects within the present study 

were only observed when OB progenitors were in the presence of excess Wnt or BMP 

ligand. Immunohistochemical and in situ hybridization analyses carried out as early as the 

1970’s demonstrated that OB express BMPs and their receptors at high fracture repair 

(Helder, Ozkaynak et al. 1995, Lyons, Hogan et al. 1995, Yamaguchi, Komori et al. 

2000). The canonical Wnt proteins are also known to be upregulated at the sites of bone 

fractures, inducing osteoblastogensis. Hadjiargyrou et al reported increased mRNAs for 

Wnt ligands, LRP5 receptors and β-catenin at bone fracture sites. There data suggests that 

Wnts have an essential role in the early stages of bone healing which involve the 

upregulation of OB activity (Hadjiargyrou, Lombardo et al. 2002). On the basis of the 

above data, it could be hypothesised that SOSTDC1 antagonises Wnt and BMP-induced 

signalling when the OB is under stress and producing high levels of Wnt and BMP 

molecules. In osteolytic bone disease in MM, where fractures are common, there may be 

high levels of Wnt and BMP ligands providing the optimal molecular environment for 

SOSTDC1 activity. This hypothesis can be supported by reports that Dkk1 also prevents 
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the activation of the Wnt/β-catenin/Tcf reporter during early fracture healing and 

supresses bone regeneration (Kim, Leucht et al. 2007).  

 

Studies by Lintern and Guidato et al addressed the notion that SOSTDC1 may have 

separate domains for Wnt and BMP interaction. Immunoprecipitation analysis revealed 

the independent binding capabilities of SOSTDC1 to LRP6 and BMP4, as SOSTDC1-

LRP6 binding was not disrupted by the addition of BMP4. Conversely, addition of LRP6 

impeded the effect of BMP4 suppression by SOSTDC1, implicating that SOSTDC1 

bound to LRP6 loses its full potential as a BMP antagonist (Lintern, Guidato et al. 2009). 

It is not known whether BMP2 and Wnt3a interactions occur independently, 

synergistically or competitively. Crosstalk between the β-Catenin/Wnt signalling and 

BMP signalling is poorly understood. There is a lack of functional for identifying 

downstream target genes of Wnt-BMP signalling intracellular molecules involved in Wnt-

BMP dependency. A few recent in-vitro studies have demonstrated a synergic 

relationship between BMP2 and β-catenin during OB differentiation (Rawadi, Vayssiere 

et al. 2003, Mbalaviele, Sheikh et al. 2005). Although BMP and WNT signalling have 

been shown to have opposing effects in osteoprogenitors, it seems that they primarily 

function cooperatively in OB cells (Baron and Kneissel 2013). As an example, Bain and 

colleagues showed that BMP2 may regulate OB function via modulation of β-

catenin/Wnt signalling (Bain, Muller et al. 2003).  

 

The crosstalk between Wnt and BMP is thought to be context dependent, where 

exogenous BMP ligands have been shown to induce bone regeneration and ectopic bone 

formation, suggesting differences in the effects of BMP signalling. Exogenous BMPs are 

thought to be inducers in bone induction and repressors of β-catenin/Wnt signalling in 

bone homeostasis (Baron and Kneissel 2013). This could provide an explanation for why 

Baud'huin et al found that in a preclinical rodent model, 
 
inhibition of BMPRIA-

dependent BMP signalling by the soluble BMPRIA receptor–Fc fusion protein was bone 

anabolic (Baud'huin, Solban et al. 2012). In the same study, deletion of noggin resulted in 

a reduction in BMD and bone formation in mice (Baud'huin, Solban et al. 2012). 

Therefore, BMP activation in the mature skeleton reduces bone formation/mass and this 

could be regulated through inhibition of Wnt signalling.  

 



248  

 

Extracellular secreted molecules such as Cerberus and Sclerostin that have a OB-

inhibiting function as SOSTDC1, can bind to both BMP/Wnt ligands (Silva, Filipe et al. 

2003) and receptors (Ellies, Viviano et al. 2006). There are currently no studies that have 

investigated the regulatory role of SOSTDC1 on Wnt-BMP crosstalk on differentiating 

OB progenitors.  In the present study I investigated the effect of Wnt3a ligand on Smad 

phosphorylation downstream of the BMP pathway. This effect was assessed in the 

presence and absence of SOSTDC1. Western blotting analysis showed Wnt3a induced 

phosphorylation of Smad1,5&8 protein in OB progenitors and SOSTDC1 reversed this 

effect during the early stage of differentiation. Furthermore, I found that both BMP2 and 

BMP7 upregulated phosphorylation β-catenin protein and gene (CTNNB1) expression and 

again SOSTSDC1 supressed this effect in the early stages of OB progenitor 

differentiation. 

 

Rawadi et al previously studied the crosstalk between Wnt-BMP signalling. This group 

demonstrated that blocking Wnt/LRP5 signalling with Dkk1 in MSC inhibited of BMP2-

induced ALP activity (Rawadi et al, 2003). In the present crosstalk studies, I also 

demonstrated that SOSTDC1 reduced Wnt3-induced Smad phosphorylation 

differentiating OB progenitor cells on a similar level to Dkk1. Dkk1 has been shown to 

targets the BMPRIA BMP receptor in OB and mediate suppression of BMP signalling in 

mature bone (Kamiya 2012). Furthermore, the data by Liu et al suggested that 

overexpression of Dkk1 in tooth blocked tissue development and this was associated with 

the down-regulation of BMP and Msx1/2 expression domains. The BMP-induced Msx1/2 

expression was unaffected in Dkk1-overexpression suggesting that Wnt/β-catenin signals 

are required upstream of BMP to function (Liu, Chu et al. 2008). SOSTDC1 and Dkk1 

both target the LRP/Frz Wnt receptors, blocking Wnt ligand interaction with the receptor 

complex. Based on these similarities between the antagonistic role of SOSTSDC1 and 

Dkk1 in Wnt-BMP crosstalk in differentiating OB progenitors, it may be assumed that 

both molecules have a similar detrimental effect in osteolytic bone disease. One 

possibility for this similarity may be that in osteolytic bone disease, if one molecule is not 

in abundance, then the other is produced at high levels to compensate.  

 

Papathanasiou et al in showed that BMP2-induced LRP-5 expression was mediated 

through Smad1/5/8 binding on the LRP-5 promoter (Papathanasiou, Malizos et al. 2012). 

Fukuda et al study a elaborated on the Wnt-BMP regulation of OB differentiation at the 



249  

 

early stages of differentiation in preosteblastic cells, suggesting that crosstalk occurred 

through a GSK3β-dependent but β-catenin-independent mechanism (Fukuda, Kokabu et 

al. 2010). This data contradicted Zhang et al, who showed Lrp5 expression was BMP-

induced and BMP2 also upregulated nuclear β-catenin protein levels (Zhang et al, 2009). 

This data suggested that the interaction between Wnt and BMP signalling during OB 

differentiation is β-catenin-dependent. Similar to the data that I have presented, Zhang e t 

al also reported that Wnt3a increased transcriptional activity of BMP/Smad reporter and 

noggin inhibited this effect (Zhang, Oyajobi et al. 2013). In light of the data in the present 

study and reports within the literature, it can be deduced that the corporative action 

between Wnt-BMP is mediated by β-catenin-and the regulatory Smad complex within OB 

progenitors and SOSTDC1 antagonises this interaction. This data also supports findings 

within the literature showing SOSTDC1 having the molecular ability to bind to both BMP 

ligands and Wnt LRP receptors. However, it is unknown whether SOSTDC1 binds to 

LRP6 with a higher affinity than with to BMP2, -4 or -7.  

 

Determining the potency of this molecule for its ligands and receptors allows for a better 

understanding of the mechanisms involved between SOSTDC1 and Wnt-BMP signalling 

in OB progenitors. Although no studies have investigated the binding affinity of human 

recombinant SOSTDC1 protein for LPR6, BMP2 and BMP7,  Laurikkala et al did 

examine the binding of recombinant mouse SOSTDC1 (Ectodin) to BMP2, BMP4, 

BMP6, and BMP7 ligands using the BIAcore system. Although they showed Ectodin 

bound to BMP2, BMP4, BMP6, and BMP7 with high affinity (Laurikkala, Kassai et al. 

2003), they have not quantified the binding affinity to LRP6. In my study, the affinity of 

rhSOSTDC1 for BMP2, BMP7 and LRP6 were determined using BLItz technology, 

which works on a similar principle to Biacore technology. The recombinant SOSTDC1 

had a highest binding affinity for BMP7, followed by LRP6 and lastly BMP2. These 

findings are compelling in that in osteolytic bone disease, SOSTDC1 has a preference for 

BMP signalling and yet antagonises both the canonical Wnt pathway and BMP signalling 

pathways in OB differentiation through the Wnt-BMP dependency.  

 

With the exception of breast and renal cancers, the role of SOSTDC1 as a BMP and Wnt 

antagonist in cancer is not well established. In breast cancer, SOSTDC1 is under-

expressed, yet increases Wnt3a and decreases BMP7 signalling (Clausen, Blish et al. 

2010). Similarly, in kidney tumours, SOTSDC1 is down-regulated and restoration of 
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SOSTDC1 expression impairs carcinoma cell proliferation. Both Wnt3a signalling and 

BMP7 induced phosphorylation of Smads are found to be suppressed by SOSTDC1 

(Blish, Wang et al. 2008). There is very little data on the effect of either BMP or Wnt 

signalling, in myeloma. Nevertheless, Yamaguchi et al did show that BMP2 and -4 induce 

apoptosis and suppress proliferation of human myeloma cells Yamaguchi, Komori et al. 

2000). This data is of interest in the context of the present study findigs: perhaps 

SOSTDC1 binds to BMP7 competitevely and therefore prevents the BMP from exerting 

its supressive effects on the myeloma cell. The effect of Wnt3a on MM associated bone 

disease is variable. Qiang et al investigated in-vitro and in-vivo effects of Wnt3a on bone 

disease and MM cell growth. Their data show that Wnt3a had no effect on MM cell 

growth in-vitro. However, bones engrafted with Wnt3a-expressing NCIH-929 MM cells 

and mice carrying primary disease, treated with recombinant Wnt3a, exhibited increased 

OB number and reduced tumour burden (Qiang et al, 2008). Along with the findings from 

this report, these data suggest that both the Wnt and BMP are necessary for bone 

formation, and that they can potentially interact with each other to induce OB 

differentiation, in line with the findings from my study.  

 

With this concept in mind, I wanted to further explore the role of SOSTDC1 in the well-

characterised mouse 5TMM myeloma models and determine whether this molecule had 

the potential to contribute to the suppression in osteoblastic activity observed in 

myeloma. The aim of the final part of the study was to determine whether myeloma and 

OB progenitor cells expressed SOSTDC1 and to then reveal the conditions under which 

SOSTDC1 was expressed. Previously, the ‘seed and soil’ theory has been the 

predominant concept in myeloma bone disease, in that the myeloma cells use the bone’s 

fertile microenvironment to flourish and exert their detrimental effect on the bone (Guise 

and Mundy 1998). In this study I considered a new dimension to the ‘seed and soil’ 

theory in respect to SOSTDC1 in that myeloma cells may require a direct interaction with 

the OB cells in order to supress OB differentiation optimally.  

 

Unpublished gene array data from our group had previously shown that SOSTDC1 was 

upregulated in the 5T2MM myeloma model. This model was no longer available, and as a 

substitute the 5TGM1MM and 5T33MM models were used. The C57BL/KaLwRij mice 

injected with 5T33MM myeloma cells did not develop bone disease, so were used to 

compare any variance in SOSTDC1 with the osteolytic 5TGM1MM model. The data 



251  

 

obtained from immunofluorescent microscopy, flow cytometry, western blotting, end-

point PCR and sequencing all showed that 5T33MM and 5TGM1MM cells produced 

SOSTDC1, in line with the gene array analysis previously performed on 5T2MM cells. 

However, SOSTDC1 was not detectable in OB progenitor cells under the same 

experimental conditions used for SOSTDC1 detection in myeloma cells and HK-2 cell 

positive control.  

 

To determine whether interaction between the myeloma cells and OB progenitors had any 

effect on SOSTDC1 expression, the myeloma cells were co-cultured with the 

differentiating OB progenitors. Using cells cultured on their own, the level of SOSTDC1 

was also determined. The data from this study showed that SOSTDC1 was upregulated in 

the co-cultured 5TGM1MM cells but not 5T33MM cells. Interestingly, OB progenitors 

that had been co-cultured with myeloma cells and then sorted now expressed SOSTDC1 

detectable on a protein and gene level. This ‘switch on’ in SOSTDC1 expression was 

further confirmed by sequencing the end-point PCR reaction products obtained from 

sorted OB progenitor cells. The SOSTDC1 levels in myeloma cells that were co-cultured 

with OB progenitors but had not adhered to the OB progenitor cells were semi-

quantitatively measured to compare with SOSTDC1 levels in adherent myeloma cells. 

This experiment addressed the question of whether SOSTDC1 production in myeloma 

cells was dependent on the cells physically adhering to OB progenitors. The 5TGM1MM 

cells that had adhered to OB progenitors expressed a higher level of SOSTDC1 compared 

to cells that had not adhered to the OB progenitors. Interestingly, in experiments with 

5T33MM cells there were no differences SOSTDC1 levels of adherent and non-adherent 

5T33MM cells. The fact that SOSTDC1 seemed to have more of a role in the lytic 

5TGM1MM-OB progenitor interactions compared to the non-lytic 5T33MM model in 

general was important. Direct comparison of the SOSTDC1 levels in 5T33MM versus 

5TGM1MM showed that 5TGM1MM cells expressed a higher level of SOSTDC1. This 

is perhaps not surprising as in the literature the 5T33MM model is commonly used for 

investigating myeloma cell homing and proliferation whereas the 5TGM1MM model is 

preferred for the study of bone disease (Croese, Vas Nunes et al. 1987, Vanderkerken, De 

Raeve et al. 1997). If SOSTDC1 is indeed upregulated in myeloma-OB interaction and 

exerts its antagonistic effects on osteoblastogensis, then it would be expected that 

SOSTDC1 would have more of a regulatory role in the lytic 5TGM1MM cells.  
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Immunohistochemical analysis of 10 days post-injection 5T33MM and 5TGM1MM 

tibiae sections stained confirmed that SOSTDC1 was present in bone that was infiltrated 

with myeloma disease compared to an absence of SOSTDC1 in naïve bone sections. This 

data complemented the in-vitro results in that SOSTDC1 staining was mainly observed in 

sites were myeloma cells formed colonies. In areas of the 5T33MM/5TGM1MM sections 

were myeloma colonies were stained for SOSTDC1, OB/bon-lining cells could be 

identified. However, in the same 5T33MM/5TGM1MM sections, in areas were no 

myeloma colonies were present, there was little SOSTDC1 staining and some OB/bone-

lining cells could be identified.   

 

Finally, my studies have linked  concept that SOSTDC1 is upregulated as a result of 

myeloma-OB progenitor interaction to the proposed hypothesis that excess SOSTDC1 

available in the bone microenvironment then has a detrimental effect on the OB-

progenitor differentiation. The myeloma-OB progenitor co-cultures were treated with 

1.5µg/ml of commercial anti-SOSTDC1 antibody, previously determined to be specific 

for SOSTDC1 by western blotting.  

 

Detection of Runx2 gene expression, known to have a pivotal role in OB differentiation 

(Philip, Bulbule et al. 2001), was detected in OB progenitor cultures and 5TGM1MM 

cells cultures alone and together in the presence and absence of the anti-SOSTDC1 

antibody. Runx2 was detectable in OB progenitor cultures but not in 5TGM1MM cells in 

context with the literature, with the exception of a study by Colla et al, demonstrating for 

the first time the expression and of Runx2/Cbfa1 in human myeloma cells (Colla, 

Morandi et al. 2005). The co-culture of 5TGM1MM and OB progenitors resulted in 

reduced levels of Runx2. Furthermore, treatment of myeloma-OB progenitor co-cultures 

with the anti-SOSTDC1 antibody resulted in reversal of this myeloma-induced Runx2 

suppression. Taken together this compelling data provides a clearer insight into the role of 

SOSTDC1 in myeloma-bone disease, which is best summarised diagrammatically as 

illustrated in Figure 7.  
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Figure 7 - Schematic diagram of the potential antagonistic effect of myeloma 

induced SOSTDC1 expression on Wnt and BMP signalling pathways. 
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7.2 Future Studies 

 

Despite the high incidence of bone related complications secondary to MM, there is an 

obvious need for improved preventative regimes and drug treatments (Roodman 2011). 

Although we now have a relatively clear insight into the mechanism by which myeloma-

induced bone resorption is up-regulated, our understanding of the mechanism responsible 

for OB suppression is not so clear. SOSTDC1 expression and its role within both Wnt and 

BMP signalling, has been implicated as a mechanism in various tissues (Lintern, Guidato 

et al. 2009). However, to date no data has been published on the role of SOSTDC1 in the 

suppression of bone formation in MM. Determination of SOSTDC1 effect if any, on OB 

differentiation and proliferation in-vitro is key to understanding the role of this novel 

protein in myeloma-induced suppression of bone formation and perhaps bone resorption. 

 

We have raised monoclonal antibodies against SOSTDC1 in rats. Western blot analysis 

will be used to characterise the specificity of these anti-SOSTDC1 antibodies. The 

monoclonal anti-SOSTDC1 antibody will be a more useful tool due to its specificity, 

particularly when used in in-vivo investigations. Currently there are no available 

manufactured monoclonal antibodies against SOSTDC1. Therefore, characterisation of 

in-house antibodies is potentially a very important tool in both the detection and blockade 

of SOSTDC1 expression MM experimental models. The next step is to determine the 

effect of administrating rhSOSTDC1 as well as blocking SOSTDC1 on of bone formation 

in experimental models of myeloma in-vivo. We have already carried out a pilot study in 

investigation the ability of SOSTDC1 to inhibit bone formation in-vivo. C57BLkawRij 

mice were injected locally with rhSOSTDC1 on one side of the calvaria and vehicle (rh-

GST) on the condralateral side. MicroCT analysis revealed significantly reduced OB 

number. The next pilot study will involve administration of systemic injection to mouse 

tibia and vertebrae and then in the presence or absence of the BMP and Wnt ligands. The 

effect on bone structure will be determined by microCT analysis as well as static and 

dynamic bone histomorphometry.  To look at blocking SOSTDC1 in MM models, 

C57BLkawRij mice will be injected with 5T2MM murine myeloma cells and treated with 

antibodies to SOSTDC1. The effect of treatment on the development of myeloma bone 

disease will be determined by microCT analysis, as well as static and dynamic bone 

histomorphometry. Although the 5TMM series are reproducible and an excellent model 

for MM studies, there is a constant need for the development of these animal models to 
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further enhance our understanding of MM as well as the limitations associated with them. 

In humans, MM is heterogeneous as a disease and this poses a problem in that no single 

animal model can constitute of all MM features. This study would benefit from looking 

into SOSTDC1 expression in human myeloma cell lines and human BM samples so as to 

move into translational research for potential therapeutic purposes.  

 

From the data in this study, it has become apparent that interaction between myeloma and 

the OB cell is a requirement in stimulating the production of SOSTDC1 in both myeloma 

and OB cells. Previously, the ‘seed and soil’ theory has been the predominant concept in 

myeloma bone disease, in that the myeloma cells use the bone’s fertile microenvironment 

to flourish and exert their detrimental effect on the bone (Guise and Mundy 1998). The 

data presented in this study could add a dimension to this concept, in that not only do the 

myeloma cells select the environment that best suits their requirements to thrive, but they 

may also switch on OB-signalling antagonists by interacting with the OB cells directly. It 

would be interesting to determine whether myeloma interact with any other cells within 

the bone marrow as there no data within the literature. The role of SOSTDC1 has not 

been investigated in myeloma-OC interaction. It would be valuable to determine whether 

SOSTDC1 role is specific to OB-mediated osteolytic bone disease or also regulates the 

increased OC activity observed in MM. This theory is based on Pederson et al data 

showing that stimulation of human MSC nodule formation by OC conditioned media was 

diminished by Dkk1 and a BMP6-neutralizing antibody (Pederson, Ruan et al. 2008).  

 

Therapeutic neutralising antibodies against Sclerostin and Dkk1 are currently in late 

preclinical/early clinical development for the treatment of osteolytic lesions in MM. 

Although these therapeutic antibodies are a good starting point for the modulation of Wnt 

signalling pharmacologically, the ultimate objective would be to develop orally active 

compounds that target both OC and OB activity (Ke, Richards et al. 2012). Future 

projects could focus on combining Dkk1 and SOSTDC1 as one treatment to determine 

whether the two together could be a more effective form of therapy.  
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Appendix 1 - GST had no effect on Wnt or BMP-induced ALP activity and 

rhSOSTDC1 suppressed BMP2-induced ALP activity in differentiating OB 
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GST had no effect on Wnt or BMP-induced ALP activity in OB: To determine 

whether the GST protein tag attached to the SOSTDC1 protein had any effect on OB 

differentiation, OB cells were treated with Wnt3a, BMP2 or BMP7 in the absence or 

presence of 250ng/ml GST. ALP activity of OB were determined and normalised to total 

DNA contents. (A, B amd C) The 250ng/ml GST, at the same concentration as SOSTDC1 

used in experiments, had no effect on ALP activity of OB when in the presence of Wnt3a, 

BMP2 or BMP7.Unpaired t-test. Data are displayed with mean ± SEM. P=ns. 
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Appendix 2 – SOSTDC1 had no effect SAOS2 cell differentiation in the presence of 

BMP and Wnt 
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Figure 4.4.3.1 - SOSTDC1 had no effect on Wnt-induced or BMP-induced ALP 

activity in SAOS2 cells: Differentiating SAOS2 cells were treated with vehicle or 250 ng/ml 

rhSOSTDC1 and also separately with 50ng/ml rmWnt3a, 30ng/ml rhBMP2 or 30ng/ml 

rhBMP7 in the presence or absence of rhSOSTDC1. (A) Wnt3a and SOSTDC1 had no effect 

on SAOS2 ALP activity. (B, C) BMP 2, BMP7 and SOSTDC1 had no effect on SAOS2 ALP 

activity. N=3 independent experiments, One way ANOVA and Holme-Sidak’s post-test. Data 

are displayed with mean ± SEM.  
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Appendix 3 - Recombinant GST protein did not bind to recombinant LRP, BMP2 

and BMP7 proteins with high affinity  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

100µg/ml GST interaction with LRP-6, BMP2 

and BMP7 
Sample Concentration 

(µg/ml) 
kD (M) 

Buffer n/a - 

LRP-6 100 - 

BMP2 100 1.096e-4 

BMP7 100 - 

Recombinant GST protein did not bind to recombinant LRP, BMP2 and BMP7 

proteins: The affinity kD (M) of rhGST for purified carrier-free rmLRP-6, rhBMP2 and 

rhBMP7 proteins were determined using the Blitz Analysis system as control for the GST-

tagged SOSTDC1 binding assays. Binding (nm) association showed 100ug/ml of rhGST did 

not bind at detectable levels to rmLRP-6 or rhBMP7 proteins. The high kD value calculated 

for rhGST and rhBMP2 interaction suggest any interaction would be of low affinity and not 

biologically relevant.  

. 
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Appendix 4 - SOSTDC1 was not upregulated in myeloma-endothelial cell co-culture  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Upregulation of SOSTDC1 levels was specific to myeloma-OB progenitor co-

culture and not myeloma-endothelial co-culture: Immunofluorescent microscopy was 

performed to detect production of SOSTDC1 in 5T33MM/5TGM1MM-STR10 and 

5T33MM/5TGM1MM-OB progenitor co-cultures. Permeabilised myeloma cells were co-cultured with 

endothelial cells or OB progenitors for 24 hours and stained with 1μg/ml primary anti-SOSTDC1 

antibody or isotype control antibody. Co-cultures were also co-stained with anti-CD138 antibody and 

mounted with DAPI reagent. Images of phase contrast, DAPI, CD138 and SOSTDC1 staining were 

visualised simultaneously. Images are representative of at two replicates within 2 independent 

experiments. (A) STR10 cells did not produce detectable levels of SOSTDC1 compared to HK-2 

control.(B)SOSTDC1 was upregulated in myeloma-OB progenitor co-cultures compared to myeloma-

STR10 co-cultures. SOSTDC1 that was present in myeloma-STR10 co-cultures appeared to be 

specific to myeloma cells and not STR10 cells. 

 

A 

B 

HK-2 

STR-10 

STR-10+5T33MM 

OB + 5T33MM 

STR-10 + 

5TGM1MM 

OB + 5TGM1MM 
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Appendix 5 - OB progenitors did not have a SOSTDC1-specific nucleotide sequence 

compared to HK-2 positive control determined by sequencing  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

OB Progenitors 

SOSTDC1 cDNA sequencing of OB progenitor cells cultured alone compared to 

HK-2 positive control: End-point RT-PCR products obtained from OB progenitor cells and HK-

2 cells cultures were sequenced for SOSTDC1 using SOSTDC1-specific primers. (A) The OB 

progenitor did not have detectable SOSTDC1-specific nucleotide sequences identified by BLAST 

software. (B) The HK-2 cells had 97% homology with the SOSTDC1-specific sequence identified in 

BLAST (NCBI Reference Sequence: NM_025312.3).  

 

A 

B 

Score Expect Identities Gaps Strand 

124 bits(67) 6e-26 71/74(96%) 0/74(0%) Plus/Minus 

Query  1    TGTCATTGACACACCGCCACTCCTGGNANCTCCTCCTGCTCCAGTACTTTGTTCCATAGC  60 

            |||||||||||||||||||||||||| | ||||||||||||||||||||||||||||||| 

Sbjct  600  TGTCATTGACACACCGCCACTCCTGGGAGCTCCTCCTGCTCCAGTACTTTGTTCCATAGC  541 

 

Query  61   CTCCTCCGATCCAG  74 

            ||||||| |||||| 

Sbjct  540  CTCCTCCAATCCAG  527 

HK-2 
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List of Abbreviations 

 

1,25(OH)2D3  1,25-Dihydroxyvitamin D3  

ALP Alkaline phosphatise 

APC adenomatous polyposis coli protein 

BCA Bicinchoninic  

Bcl-2 B-cell lymphoma-2   

BLC bone lining cell 

BM bone marrow  

BMP bone morphogenetic protein  

BMSC  Bone Marrow Stromal Cells   

BSA Bovine serum albumin  

BSP bone sialoprotein  

c-fms colony stimulating factor  

C-Smad common mediator Smad  

CBFA1 core-binding factor-1  

CD138 Syndecan 1 

CK1γ serine/threonine kinase  

 CuSO
4
  Copper II sulphate   

Dkk1 Dickkopf-1  

DMSO Dimethyl Sulfoxide  

dsDNA PicoGreen® double-stranded DNA  

Dsh Dishevelled  

EDTA  trypsin-ethylene-diaminetetraacetic acid  

FCS Fetal Calf Serum  

FGF fibroblast growth factors  

Fz frizzled  

GAPDH glyceraldehyde 3-phosphate dehydrogenase 

GSK-3β glycogen synthase kinase-3β  

GST Glutathione-S-transferase 

HGFs  hepatocyte growth factors  
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HK-2 Proximal tubule epithelial cell line  

HRP Horse Radish peroxidase   

HMCL Human myeloma cell lines 

I-Smads inhibitory Smads  

IFN-γ interferon-gamma  

IGF-I insulin-like growth factor –I   

IGFs insulin-like growth factors  

Ihh Indian hedgehog   

IL-11 interleukin-11   

IL-1β interleukin-1β   

IL-4 interleukin-4   

JNK c-Jun N-terminal kinase  

KSFM Keratinocyte serum free medium 

LEF/TCF lymphoid enhancer-binding factor 1/T cell–specific 

transcription factor 

LIF leukaemia inhibiting factor  

lLRP5/6 lipoprotein receptor–related protein 5/6   

m-1α  macrophage inflammatory protein-1α  

M-CSF Macrophage colony-stimulating factor 

MAPK mitogen-activated protein kinase   

MEM Minimum Essential Medium   

MGUS Monoclonal Gammopathy of Undetermined Significance  

MIP-β macrophage inflammatory protein-1β 

MMTV mouse mammary tumour virus  

MSC mesenchymal stem cells  

OAF OC activating function   

OB osteoblasts   

OC  osteoclasts   

OPG  osteoprotegerin  

PAGE polyacrylamide gel electrophoresis  

PBS Phosphate Buffered Saline  

PDGF Platelet-derived growth factor   
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PenStrep Penicillin: Streptomycin  

PgE2 TNF-α or prostaglandin E2   

PI3K phosphatidylinositol-3 kinase   

PIC protease inhibitor cocktail  

PMSF Phenylmethylsulfonyl Fluoride  

pNPP p-Nitrophenyl phosphate  

PVDF Polyvinylidene fluoride  

R-Smads Regulatory Smads  

RANK Receptor Activator of Nuclear Factor κ B   

RANKL receptor activator of nuclear factor-κB ligand  

RUNX2 Runt-related transcription factor 2   

SDF-α stromal derived factor-1α 

SDS sodium dodecyl sulfate  

sFRPs   secreted Frizzled-related proteins 

SMM  Smouldering Multiple Myeloma  

SOSTDC1 Sclerostin Domain Containing 1  

Src  tyrosine kinase  

TGF-β  Transforming growth factor β   

TNF Tumour Necrosis Factor  

TRAFs TNFR-associated factors  

TRAIL Tumour necrosis factor-related apoptosis inducing ligand  

USAG-1 uterine sensitisation-associated gene-1 

VCAM-1 vascular cell adhesion molecule-1   

VEGF  vascular endothelial growth factor  

Wg Wingless  

Wnt Wingless-type  
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