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Abstract

With the growing amount of data generated in large heterogeneous repositories (such
as the Word Wide Web, corporate repositories, citation databases), there is an increased
need for the end users to locate relevant information efficiently. Text Classification (TC)
techniques provide automated means for classifying fragments of text (phrases, paragraphs
or documents) into predefined semantic types, allowing an efficient way for organising and
analysing such large document collections. Current approaches to TC rely on supervised
learning, which perform well on the domains on which the TC system is built, but tend to
adapt poorly to different domains.

This thesis presents a body of work for exploring adaptive TC techniques across hetero-
geneous corpora in large repositories with the goal of finding novel ways of bridging the gap
across domains. The proposed approaches rely on the exploitation of domain knowledge
for the derivation of stable cross-domain features. This thesis also investigates novel ways
of estimating the performance of a TC classifier, by means of domain similarity measures.
For this purpose, two novel knowledge-based similarity measures are proposed that capture
the usefulness of the selected cross-domain features for cross-domain TC. The evaluation of
these approaches and measures is presented on real world datasets against various strong
baseline methods and content-based measures used in transfer learning.

This thesis explores how domain knowledge can be used to enhance the representation
of documents to address the lexical gap across the domains. Given that the effectiveness of
a text classifier largely depends on the availability of annotated data, this thesis explores
techniques which can leverage data from social knowledge sources (such as DBpedia and
Freebase). Techniques are further presented, which explore the feasibility of exploiting
different semantic graph structures from knowledge sources in order to create novel cross-
domain features and domain similarity metrics. The methodologies presented provide a novel
representation of documents, and exploit four wide coverage knowledge sources: DBpedia,
Freebase, SNOMED-CT and MeSH.

The contribution of this thesis demonstrates the feasibility of exploiting domain knowl-
edge for adaptive TC and domain similarity, providing an enhanced representation of docu-
ments with semantic information about entities, that can indeed reduce the lexical differences
between domains.
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Chapter 1

Introduction

1.1 Motivation

A vast amount of electronic information is available in an unstructured format. Large
corporate enterprises typically keep records of enormous historical data about their products
in various company-wide repositories. In the case of the aerospace industry, the lifecycle of a
jet engine model, covering up to 50 years of design, maintenance, tests and service data are
all documented in textual format, which can easily sum up to several terabytes. Other classic
examples for large textual repositories are the biomedical journal repositories published on
the Web, serving as important resources for biomedical practitioners aiming to keep abreast
with current research. Pubmed1, the largest biomedical repository, comprises over 22 million
articles, having a rapid rate of publishing, which can reach 1 paper per minute2. Nowadays,
with the rise of social media, large enterprises are also interested in mining information
about important events (e.g., emergency landings) concerning their products (e.g., aircrafts
or engines) from social media websites. Popular social media platforms such as Twitter3

and Facebook4, provide up-to-date information about events happening in the world on a
wide range of topics. They also constitute primary sources of information, often distributing
information faster and earlier than traditional news sources [Blanchard et al., 2012]. The
estimated rate of messages posted (called tweets) in Twitter, for example, can hit half billion
of tweets per day5.

To handle and organise this large unstructured heterogeneous document collection, there
is a need for automatic techniques to extract and organise the information and assign se-
mantic meaning to it. Automatic text classification (TC) (also called text categorisation)
is a suitable approach for organising large amounts of data, providing automated means
to categorise documents (or text fragments) into predefined semantic categories (or classes
or topics). TC can be performed at different granularity levels, depending on the appli-
cation at hand, ranging from fine-grained within-document text classification (e.g., aimed
at assigning semantic classes to text fragments, such as paragraphs or phrases) to more
coarse-grained whole-document text classification (e.g., aimed at assigning semantic classes

1http://www.ncbi.nlm.nih.gov/pubmed
2http://duncan.hull.name/2010/07/15/fifty-million/
3https://twitter.com
4https://en-gb.facebook.com
5http://news.cnet.com/8301-1023_3-57541566-93/report-twitter-hits-half-a-billion-tweets-a-day/

1

http://www.ncbi.nlm.nih.gov/pubmed
http://duncan.hull.name/2010/07/15/fifty-million/
https://twitter.com
https://en-gb.facebook.com
http://news.cnet.com/8301-1023_3-57541566-93/report-twitter-hits-half-a-billion-tweets-a-day/


2 Chapter 1. Introduction

to documents). A typical example of the former TC case could be, when an engineer is seek-
ing enhanced knowledge to resolve a technical issue on a particular product (e.g., engine) of
the company. This task involves identifying the root causes of the issue that occurred on the
product (e.g., cracks generated by a specific cause on a specific part of an engine), as well as,
finding problems encountered on other similar product types. Assuming that these product
names (e.g., engine or component names) are already extracted from the documents, the
goal of a TC system in this scenario is to analyse the documents mentioning these prod-
ucts, and to recognise text fragments (e.g., paragraphs) that provide additional contextual
information about these products (e.g., being involved in the investigation, specific methods
used to solve the problem, the investigation results and conclusions). In other situations,
however, identifying the main topic of the documents could be useful in revealing existing
cases of problems which have occurred. For instance, knowing that the topic or class of the
document is accident/maintenance/failure/repair/service (e.g., engine fault), could allow to
further generalise the problem space, and reach out to documents discussing problems oc-
curred on products (car engine) different to the one under investigation (jet engine). In
such situations, thus the role of a TC system is to provide a semantic categorisation of the
documents as a whole, based on the topics discussed in them (e.g., fault).

Single domain TC systems are typically based on supervised machine learning algorithms
that require a large amount of human annotated data that is often time consuming and
expensive to obtain. These approaches can achieve good performance, when the source data
(on which the system is trained) and target data (on which the system is tested) follow
the same underlying word distribution. When this assumption is violated, however, the
performance of a TC system can dramatically decrease [Raina et al., 2007].

The scale of these large repositories and their dynamic nature - new documents and
text types6 being created continuously - presents a clear motivation for the application of
advanced TC techniques, i.e., adaptive TC techniques, which can deal with the variations
in the language, vocabulary and style between the domains. These techniques are based
on a new learning paradigm called transfer learning [Pan and Yang, 2010], which helps in
transferring the knowledge acquired from the source data to the target data by designing
cross-domain pivot features that are stable across domains. These approaches thus typically
make use of large amount of data from a source domain to train the transfer learning clas-
sifier for the target domain. However, producing such annotated data may require domain
expert knowledge, which can be costly and time consuming. The success of these approaches
furthermore rely only on the similarity between the source and target domain data, and
the usefulness of the cross-domain features employed. The language used in the domains
can also pose additional challenges for adaptive TC systems. For example, when dealing
with technical domains present in corporate environments, the language used is quite com-
plex and the problem of TC becomes much more difficult [Guo et al., 2006; Wang, 2009].
On the other hand, when dealing with informal social media posts, the frequency of the
misspellings, jargons and abbreviations makes TC challenging.

In order to address these challenges, this thesis investigates the use of domain knowledge
sources for building adaptive text classifiers and designing domain similarity measures for
TC. In particular, it investigates the extent to which the lexical representation of domains
can be enhanced by leveraging the information present in domain knowledge sources.

6An example for different text types are technical documents written in different format.
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Domain knowledge sources (KS) are important resources which provide a formal rep-
resentation of domains, containing rich information and knowledge about domain-specific
concepts. Over the past decade, significant advancements have taken place in developing
domain knowledge sources and their underlying domain ontologies. For instance, in the
biomedical domain, the Unified Medical Language System (UMLS)7 has been developed,
which encapsulates many different biomedical sub-domains and provides a mapping be-
tween their vocabularies. Furthermore, thanks to the Linked Open Data (LOD) Project8, a
set of multi-domain9 KSs (e.g., WordNet10, Wikipedia, Wikibooks11, Freebase12) have been
made freely available and interconnected with DBpedia13 KS.

Two of the main advantages of exploiting these KSs is that they are freely available
and they contain rich semantic information about concepts in a wide range of domains.
This thesis thus proposes a range of novel techniques that aim at exploiting this semantic
information about concepts with the goal of creating a set of stable cross-domain features
for transfer learning. It furthermore proposes a novel set of domain similarity measures,
which make use of the enhanced KS-based representation of domain documents.

1.2 Research Questions

The above problem setting motivates the research within this thesis. As mentioned earlier,
TC can be performed at multiple granularity levels, depending on the real world scenario
of interest. This thesis focuses on transfer learning approaches for adaptive TC systems,
considering two different TC settings: fine-grained within-document text classification aim-
ing to identify and classify text fragments (e.g., paragraphs) into predefined categories (e.g.,
zones); and coarse-grained whole-document text classification aiming to assign a particular
label (e.g., topic) to individual documents. In particular, this thesis examines the usefulness
of domain knowledge sources for bridging the distributional gap between domains. The main
research question explored in this thesis is the following:

How can document classification be performed across multiple domains and text types?

In light of the presented problem setting, this research question can furthermore be
divided into the following questions:

1. Is it possible to define automated techniques of text classification that are able to port
across domains and text types?

2. Can labelled data be gathered inexpensively to build adaptive text classifiers?

3. Is it possible to define a measure for quantifying the adaptability of a text classifier?

4. Is the effectiveness of adaptive methods comparable to in-domain supervised machine
learning methods?

7http://www.nlm.nih.gov/research/umls/
8http://linkeddata.org
9According to http://lod-cloud.net, the “Media”, “Life Science”, “Geographic” and “Publications” do-

mains represent over 44% of the LOD.
10http://semanticweb.cs.vu.nl/lod/wn30/
11http://en.wikibooks.org
12http://www.freebase.com
13http://dbpedia.org

http://lod-cloud.net
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1.3 Claims of this Thesis

Traditional approaches for TC represent the content of the documents using simple shallow
techniques [Sebastiani, 2005]. A typical example is the bag-of-words (BoW) model, which
represents the documents as a collection of words presented in the documents. Although
this simple BoW representation has been successful for many applications, it can introduce
additional challenges for transfer learning, given that different domains can exhibit large
variations in the language and vocabulary used.

Further, the content of these documents commonly discusses about well-defined concepts
within domains (e.g., person, location, engine type), which are also contained in knowledge
sources (such as domain ontologies (SNOMED-CT), taxonomies (MeSH), encyclopaedias
(DBpedia, Freebase)). These knowledge sources provide a large amount of information
in machine readable format about the concepts (e.g., engine or person) within a domain
(e.g., aerospace or biomedical domains), together with various semantic structures describing
the relationships between the concepts (e.g., topical relatedness or concept hierarchies).
Using domain knowledge sources, documents could be enhanced with rich information about
the concepts, providing a generalisation over the entities discussed in them. This thesis
claims that the lexical gap between domains can be reduced by inducing a new conceptual
representation for the domain documents, based on the available background knowledge
about concepts in knowledge sources. This claim is explicitly made as follows:

• Domain knowledge sources contain useful semantic structures from which pivot features
can be obtained for adaptive text classification

Existing supervised transfer learning approaches assume that a large amount of anno-
tated data is available in the source domain [Pan and Yang, 2010; Jiang, 2008a]. This
annotated source domain data is then used to train a transfer learning classifier for labelling
the target domain examples. However, it has long been recognised that creating and main-
taining high quality annotations is time consuming and expensive [Ciravegna et al., 2002;
Zhang et al., 2010]. Depending on the TC task, the creation of high quality annotations
may require multiple domain experts working on the task, which can be laborious and costly.
More importantly, given the drastic increase in the size of large repositories, creating these
annotations may be infeasible. Data leveraged from domain knowledge sources, on the con-
trary, provides background information without the burden of annotated data construction.
Domain knowledge sources such as DBpedia14 and Freebase15 constitute some of the largest
repositories published online, containing an abundant amount of data on a large number of
topics16. This thesis claims that KS data reflects the topics of the documents in the target
domain:

• Data found in domain knowledge sources can be used to train an adaptive text classifier

Quantifying the similarity and dissimilarity between the source domain data and the
target domain data provides an important insight into the applicability and success of a text
classifier. It is expected that the closer the two domains are the better the performance of the
text classifier is [Pan and Yang, 2010]. Designing such metrics is therefore potentially useful

14http://dbpedia.org
15http://www.freebase.com
16These knowledge sources will be presented in more details in Chapter 6.

http://dbpedia.org
http://www.freebase.com
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when wanting to apply an existing text classification model on a new text type (e.g., blogs);
or when wanting to collect new training data for a text classifier. Previous approaches for
measuring transfer adaptability (or domain similarity) mostly focus on content-based lexical
similarity measures, making use of features derived solely from the content of the documents
(e.g., employing the simple BoW model). However, by exploiting the rich information about
concepts in KSs, a new higher level concept abstraction can be created for domains, which
could essentially improve the generalisation between domains. This thesis claims that the
enhanced document representation can provide a better estimate on the transfer adaptability
of a text classifier:

• The accuracy of a text classifier can be measured as a function of conceptual represen-
tation of the domain documents

For many Natural Language Processing (NLP) tasks including TC, transfer learning has
been found to be a successful technique for building classification methods across multiple
domains and text types. One of the main strength of these approaches is that they try
to automatically learn the generalisation patterns between domains, aiming to bridge the
distributional gaps across domains. However, research has shown that despite of the success
of domain similarity measures aimed at estimating the performance of a classifier, to date,
it is not very clear whether these approaches always perform better than in-domain ma-
chine learning approaches [Pan and Yang, 2010]. Situations when applying transfer learning
worsens the performance of the learner are referred to as negative transfer, which is still
considered an open issue [Pan and Yang, 2010]. This thesis claims that domain knowledge
sources contain the necessary background information to enrich the documents within the
domains, which can indeed improve the generalisation between domains:

• Adaptive text classification techniques exploiting domain knowledge sources are able to
achieve comparable results to in-domain machine learning approaches

1.4 Contributions

This thesis presents a body of work exploring the benefit of using domain knowledge for
adaptive text classification across multiple domains and text types. As a consequence, novel
techniques and domain similarity measures are proposed, each addressing the corresponding
text classification task:
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• techniques and domain similarity measures for within-document TC:

– Supervised transfer learning algorithm: A transfer learning technique is presented
for within-document text classification. This technique extends the well known
Easy Adapt [Daumé, 2007] transfer learning approach by incorporating back-
ground knowledge into a within-document text classifier. The novel contribution
of this technique lies in the use of domain knowledge structures for the generation
of pivot features. In addition, several augmentation strategies are presented for
incorporating these features into a supervised transfer learning classifier.

– Novel unsupervised domain similarity measure: A new domain similarity measure
is presented, which functions in a fully unsupervised fashion, requiring no label
information about the documents. In order to achieve this, probabilistic graphical
models are exploited. These models discover the within-document zone segments
of the documents by clustering the paragraphs of the documents using only lexical
information (words) present in the documents. Following this, the similarity be-
tween domains is computed using different corpus-based and KS-based statistical
measures between the discovered paragraph clusters.

• techniques and domain similarity measures for whole-document TC:

– Supervised transfer learning algorithm: A novel transfer learning algorithm is
presented for whole-document text classification, which relies on a simple feature
augmentation strategy. The novel contribution of this approach lies in the pro-
posal of a set of pivot features from domain knowledge sources and new weighting
strategies for these features which take into account the relevance of each feature
in the KS. Different feature augmentation strategies are furthermore exploited
for incorporating these features into a supervised transfer learning classifier.

– Novel domain similarity measure: Various entropy-based similarity measures
are proposed for measuring the adaptability of a whole-document text classifier.
These measures make use of the enhanced KS-based document representation of
the domain documents.

In order to enable the evaluation of the proposed TC techniques in different cross-domain
scenarios, several resources have been compiled:

• A corpus of technical documents in the aerospace domain annotated with the novel
document zone annotation schema

• A corpus of scientific documents in the biomedical domain annotated with IMRAD
(Introduction-Method-Results-Abstract-Discussion) annotation schema

• A corpus of KS data (DBpedia and Freebase) annotated with topics related to Emer-
gency Response

• A corpus of tweets annotated with topics related to Emergency Response

The effectiveness of the explored techniques is furthermore validated conducting a de-
tailed evaluation which compare the performance of these techniques over various well-known
baseline methods used in transfer learning, such as a classifier built on the target domain
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data (which is called TGT_ONLY), a classifier built on the source domain data (which is
called SRC_ONLY), as well as the classifier built on the joint source and target domain
data (called SRC_TGT):

• An extensive evaluation of text classification techniques using real world data

This thesis further provides a comprehensive literature review on transfer learning ap-
proaches for text classification.

1.5 Thesis Structure

The remainder of the thesis is divided into three main parts and structured as follows.

1.5.1 Part I - Background

Chapter 2 introduces the task of TC and describes different applications of TC in Nat-
ural Language Processing, ranging from within-document TC (e.g., document zoning) to
whole-document TC (e.g., topic classification). A detailed description is then provided of
the existing transfer learning approaches and settings for TC, together with the existing
evaluation approaches, summarising the related work to TC. A discussion is also presented
specifically on the role of domain knowledge sources for TC, and the possibility of exploiting
these sources for adaptive TC.

1.5.2 Part II - Methodology

Chapter 3 proposes the use of domain knowledge sources for adaptive TC. It presents the
requirements that adaptive TC techniques must fulfil when dealing with large heteroge-
neous repositories spanning multiple domains and text types. Following this discussion, an
overview of the different stages of the approach is also presented, by discussing the processes
of content modelling and context generation and incorporating both into an adaptive TC
system. The concept of semantic meta-graphs derived from domain knowledge sources is
also introduced. This serves the basis for creating pivot features for adaptive TC.

Chapter 4 starts by investigating the unsupervised transfer learning scenario for the
within-document TC task, when there are no annotated data available for the source and
target domains. For this case, probabilistic graphical models are proposed (the first such
approaches for this tasks). These can flexibly model the content of documents and recognise
the intra-document segments (zones) in them in a fully unsupervised fashion. Further, these
approaches do not require any domain knowledge information for modelling the content of
the documents, making them more practical for real world applications (e.g., document
zoning in the aerospace industry), when such resources are not available, and creating them
is a difficult task. These graphical models will also serve an important role for predicting
the performance of a within-document TC classifier described in Chapter 5. In addition,
this chapter also presents a detailed case study in the aerospace domain to investigate
whether existing TC classification schemas capture the inta-document (zone) segments of the
documents present in this domain, revealing the need for a novel document zone annotation
scheme for the aerospace domain.
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Chapter 5 continues the presentation of supervised transfer learning approaches for
within-document TC, assuming that a large amount of annotated data is available in the
source domain, and a small amount of annotated data is available in the target domain.
A transfer learning algorithm is presented, which employs a feature augmentation strategy
that explicitly models the domain-specific and domain-independent characteristics of the
domains. In order to guide the adaptation, different semantic meta-graphs are exploited
from biomedical KSs (such as SNOMED-CT and MeSH) and a set of new pivot features are
created and incorporated into the text classifier. The feasibility of this approach is evalu-
ated by comparing the proposed adaptive TC model against various strong transfer learning
classifiers trained without semantic enrichment. In addition, a novel domain similarity mea-
sure is also proposed, which measures the similarity between domains based on the different
zone clusters created by a probabilistic graphical model. This measure combines different
lexical and semantic information present in these zone clusters, achieving superior results to
previous content-based similarity measures.

Chapter 6 turns to the presentation of supervised transfer learning approaches for whole-
document TC. In particular, this chapter proposes the use of social knowledge sources (such
as DBpedia and Freebase) for building adaptive text classifiers of social media posts. The
feasibility of this approach is evaluated by building several adaptive text classifiers, which
make use of the data, knowledge and structure of these KSs, comparing their performance
against text classifiers built on microposts data only. Firstly, these adaptive TC models are
trained on the KSs data. Next, different semantic meta-graphs are exploited from these KSs
for creating cross-domain features. For these cross-domain features then novel weightings
are introduced, and different techniques proposed for incorporating them into the adaptive
text classifiers. A detailed study on predicting the performance of a TC classifier is also
conducted. Novel entropy-based measures are proposed, which make use of enhanced KS-
based representation of the documents. These measures are also evaluated against state-of-
the-art content-based lexical similarity measures.

1.5.3 Part III - Conclusions

Chapter 7 presents the conclusions drawn from this thesis. In particular it discusses how the
requirements presented in Chapter 3 have been met, and how the techniques and approaches
explored in the previous chapters have contributed to the claims presented in Chapter 1. In
addition, possible future directions for adaptive text classification are discussed.
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Chapter 2

Background on Text Classification

2.1 Introduction

The multitude of documents present in large databases, including organisation archives and
social media platforms, provide a heterogeneous environment comprising documents belong-
ing to multiple domains and text types. Building TC systems in such environment poses
challenges, as the lexical variation between domains can deteriorate the performance of the
system. This thesis proposes novel TC techniques based on transfer learning, which provide
automatic means for categorising and analysing the content of such large collections, ac-
counting at the same for the lexical variations and differences between these documents. In
particular, this thesis claims that the use of domain knowledge can be beneficial for reducing
the lexical gap between domains, thus improving the performance of a TC classifier across
domains.

This chapter presents the theoretical foundation of this thesis, providing background on
TC and presenting a comprehensive literature review on transfer learning for different TC
tasks. The structure of this chapter is as follows: Section 2.2 reviews the task of TC as
defined in the literature, providing examples of different domains and applications to which
TC has been applied. Section 2.3 highlights the main differences between in-domain machine
learning approaches and transfer learning. Section 2.4 then presents different transfer learn-
ing settings and approaches proposed for TC. Following this, Section 2.5 presents a critical
analysis of the limitations of current transfer learning approaches for TC. In Section 2.6, a
discussion of the usefulness of domain knowledge for TC is given, emphasizing the need to
incorporate this information into adaptive TC systems.

2.2 The Task of Text Classification

This section starts by formally describing the task of text classification (TC) (also called text
categorisation, document categorization, document classification or topic detection), intro-
ducing the main notations and definitions commonly used in the machine learning [Mitchell,
1997; Theodoridis and Koutroumbas, 2009], and transfer learning literature [Pan and Yang,
2010]. To illustrate the notations, the task of topic classification is considered, which follow-
ing the definition in Muñoz García et al. [2011], is the task of deciding whether a document
belongs to a predefined set of semantic categories (or classes or topics) (e.g., Accident,

10
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Disaster, etc.).

Given a set of documentsX = {d1, d2, . . . , dm} and a fixed set of topics Y = {t1, t2, . . . , tn},
the task of TC is thus to determine the topic of document x = di, t(di) ∈ Y , where
t(x) : X → Y is a classification function (target function or scoring function), whose do-
main is X ⊆ D and range (possible categories, classes or labels) is Y . From a probabilistic
viewpoint, this means to assign a probability p(y|x) to an instance x of belonging to y. The
outcome of the classifier hence is a hypothesis h : X → Y which is the approximation of t
[Mitchell, 1997]. The optimal classifier (hERM ) is often obtained by employing the Empiri-
cal Risk Minimization (ERM) method [Vapnik, 1999], which aims to minimise the expected
error (also called risk or loss) of the classifier over the test data1. Namely, given a loss
function l(x, y, ŷ) : X × Y × Y → < measuring the difference between the actual (y) and
predicted ŷ = h(x) value of an instance x, the optimal classifier can be obtained as follows

hERM = arg min
h∈H

l(xi, yi, h(xi))

where H denotes the set of all possible classifiers. A typical example of a loss function
is l(x, y, h(x)) = (y − h(x))2, which is called least squares approximation [Mitchell, 1997].
Each observed document x = di (also called instance, example, observation or covariate)
then is described by a vector of features or attributes denoted by d = (f1, . . . , fk), fj ∈ F ,
where F denotes the corresponding feature space. In the running example, each instance
x contains various lexical (e.g., the presence of a word within a dictionary), semantic (the
presence of a named entity in the document, e.g., Barack Obama) and syntactic features
(the part-of-speech tag of a word mentioned in the document) [Muñoz García et al., 2011].

From a probabilistic point of view, a domain D can also be described as a tuple D =

(F, P (X)), having two components: the feature space (F ), and a marginal probability dis-
tribution P (X) [Pan and Yang, 2010]. Given a specific domain D, a task can also be
defined as a tuple T = (Y, t(·)), consisting of two components: the label space (Y ), and the
classification function (t(·)).

Considering the multi-domain TC scenarios studied in this thesis, additional notations
are provided for the domains used in the learning process. The source domain used to
build a TC system is denoted by DS , and the learning task in the source domain by TS .
Correspondingly, the target domain, on which the TC system is evaluated is denoted by
DT , and the learning task in the target domain by TT . Furthermore, the two domains
are considered related if there exists any relationship between the feature spaces of the two
domains. Although transfer learning allows the leveraging of knowledge from multiple source
domains, for simplicity in the following definition only a single source domain is considered
from which to learn.

Definition 1 Given a source domain DS and learning task in the source domain TS, a
target domain DT and a learning task in the target domain TT , the objective of the transfer
learning is to improve the learning performance of the classifier in DT by leveraging the
knowledge acquired in DS, where DS 6= DT or TS 6= TT [Pan and Yang, 2010].

The first condition DS 6= DT includes the following different situations:

1It is also worth mentioning that in other cases one might be interested in quantifying the precision,
recall, F-measure, or accuracy (measuring the proportion of instances correctly classified) over the test data.
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1. the feature spaces are the same (FS = FT ) and the marginal probability distributions
differ (PS(X) 6= PT (X)) (e.g., considering documents written in different formats)

2. the feature spaces are different (FS 6= FT ) and the marginal probability distributions
differ (PS(X) 6= PT (X))

3. the feature spaces are different (FS 6= FT ) and the marginal probability distributions
are the same (PS(X) = PT (X)) (adaptation across different features spaces)

It also worth mentioning, that there is a slight difference between the above definition
and the one given in Pan and Yang [2010]. That is, in Pan and Yang [2010] all the three cases
are considered as adaptation across domains, however, in this thesis this case is regarded as
adaptation across different features spaces.

The second condition TS 6= TT includes the following different situations:

1. the label spaces are the same YS = YT , and the conditional probability distributions
differ (PS(Y |X) 6= PT (Y |X))

2. the label spaces are different YS 6= YT , and the conditional probability distributions
differ (PS(Y |X) 6= PT (Y |X))

3. the label spaces are different YS 6= YT , and the conditional probability distributions
are the same (PS(Y |X) = PT (Y |X))

2.2.1 Applications of Text Classification

Having defined the main task of TC, this section now turns to the main applications of TC
studied in the NLP community. In particular, this section provides a short summary of the
most widely used TC tasks, which will be discussed in the context of transfer learning in
Section 2.4. Among these tasks, two special instances of TC are also presented: an instance
of within-document TC (called document zoning) and an instance of whole-document TC
(called topic classification), which are both explored in this thesis.

An overview of the discussed tasks is presented in Table 2.12. According to Sebastiani
[2005], these tasks can broadly be classified according to the following dimensions:

1. the unit of text : including words, text fragments (such as sentences, paragraphs or
phrases) and whole documents,

2. the structure of the classification schema: ranging from simple flat structure (such as
the ones used in topic classification) to more sophisticated hierarchical structures (e.g.,
the ACM classification schema),

3. the nature of the task: such as single-label or multi-label TC, and

4. the nature of the document : ranging from traditional text type (such as newswire) to
informal text genre (e.g., Twitter messages (tweets), cell phone messages (SMS)).

Focusing on the unit of classification, the smallest unit of classification, words, are used
for instance in word sense disambiguation (WSD). In WSD the goal of the task is to detect
the correct sense of an ambiguous word given its occurrence in the text and its meaning

2Further example tasks of TC in speech recognition fields can also be found in [Aggarwal and Zhai, 2012].



2.2. The Task of Text Classification 13

defined in a knowledge base (e.g., WordNet). For instance, considering the word bank, the
aim is to detect whether bank refers to financial institution as in the sentence “he cashed
a cheque at the bank” or a hydraulic engineering artifact as in the sentence “he was at the
bank of river Thames”.

In another TC task, document zoning (also called within-document TC), the goal of clas-
sification is to assign a semantic class to larger text fragments (called zones) such as phrases,
sentences or paragraphs. For example, one of the most widely used applications of zoning
is to recognise the different sections of scientific articles and thus classify sentences as be-
longing to one of the following following zone categories: Introduction, Method, Discussion,
Results, etc.

Among the approaches taking the whole document as a classification unit (referred to as
whole-document TC), text topic classification aims to detect the main topic(s) discussed in a
document. For instance, a tweet discussing the impact of Twitter in the Egyptian revolution
could be labelled with the following topics: “technology”, “politics”, and “war conflict”.

Problem Unit of Text (x) Semantic Classes

w
it
hi
n-
do
cu
m
en
t
T
C word sense disambiguation (WSD) word the word senses

part-of-speech tagging (POS) word POS tags: {N, V, etc.}

named entity recognition (NER) word entity classes: {PER, LOC,
ORG, MISC, etc.}

document zoning (DZ) text fragment zone types: {Introduction,
Method, Discussion, etc.}

w
ho
le
-d
oc
um

en
t
T
C spam filtering document {spam, not spam}

language identification document languages:{en, ro, hu, etc.}

sentiment mining document sentiments: {+,-}

text topic classification document topics: {Disaster, Crime, etc.}

Table 2.1: Example applications of TC in Natural Language Processing. The TC tasks
highlighted in italic correspond to the two main TC tasks explored in this thesis.

Regarding the classification schema, certain TC tasks have a well established schema
associated to the TC task, such as a knowledge base in the case of WSD, or a flat list of
POS tags as in POS tagging. For other TC tasks, however, the classification schema largely
depends on the application domain at hand. For instance, for document zoning, there has
been a large number of different document zone annotation schemas defined for different
genre and scenarios. The next section provides a summary of these different schemas.

2.2.1.1 Classification Schemas for Intra-document Text Classification

This section describes different classification schemas proposed for within-document docu-
ment zoning, aiming to capture the information structure of the documents. A summary of
the schemas are also given in Table 2.2.

Applied to scientific literature, the main differences between these schemas are the spe-
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cific principle (theory or framework) they employ to classify the zones, and the type of
granularity they consider, ranging from the most simple 4-way classification schema to the
more fine-grained 7-way or even hierarchical classification ones.

The widely used classification schemas therefore are: section name based classification,
argumentative zoning (AZ) aiming to encode the rhetorical structure of the documents, Core
Scientific Concepts (CoreSC) concept-driven and ontological-driven classification schema
and meta-knowledge classification schema.

The simplest classification schema is based on classifying the sentences to the most
frequent section names which appear in scientific articles. One such schema, originally
developed for biomedical abstracts, consists of a 4-way classification schema, aiming to
categorise sentences into the Objective, Method, Results and Conclusion (OMRC) zone types
[Lin et al., 2006; Hirohata et al., 2008]. The goal of these categories are as follows. The
Objective zone aims to provide the background and describes the goal of the research; the
Method zone describes the way in which this goal was achieved; the Result zone aims to
summarise the findings of the research; and finally the Conclusion zone typically contains
the analysis, discussion and main conclusion of the research. Another example of such
schema consists of the Introduction, Methods, Result, and Discussion (IMRAD) zone types
[Agarwal and Yu, 2009].

The Argumentative Zoning I [Teufel and Moens, 2002] schema aims to model the argu-
mentative and rhetorical structure of the scientific articles. The main motivation behind this
schema is that a scientific paper follows the knowledge claims (KC) of the authors. There-
fore it aims to recover the rhetorical structure and the relevant stages in the argumentation,
providing a 7-way classification schema capturing the paper’s main KC in the AIM zone;
the generally accepted background knowledge in the BACKGROUND zone; the description
of existing KC in the OTHER zone; the description of the aspects of the new KC in the
OWN zone; the comparison with the related work in the BASIS and CONTRAST zones;
and finally a description of the structure of the paper in the TEXTUAL zone. An extension
of this schema called Argumentative Zoning II [Teufel et al., 2009] was also proposed allow-
ing a much fine-grained classification aiming to better capture the relationship between the
paper’s main KC and previous research.

The Core Scientific (CoreSC) annotation schema [Liakata et al., 2010], on the other
hand, looks into a different aspect of the scientific writing, assuming that a paper is the
human-readable representation of scientific investigation. Therefore it aims to identify the
components of this investigation as expressed in the paper according to its 3-layer annotation
schema. The first layer is ontology-motivated and aims to capture the core concepts in the
scientific investigation, the second layer aims to capture the properties of the concepts (for
e.g. “old”, “new”), while the third layer aims to group instances of the same concepts together.

The meta-knowledge annotation schema [Nawaz et al., 2010] was designed for providing
context to biomedical events. It aims to capture the rhetorical intent and level of cer-
tainty associated to a particular biomedical event providing a multi-dimensional annotation
schema: the first dimension called Knowledge type aims to describe the general informal
content of the event, the second Certainty Level aims to capture the confidence in the truth
of the event, the third Source dimension aims to distinguish between new and previously
reported knowledge, the fourth Lexical Polarity dimension aims to identify the events which
are negated, the fifth Manner dimension aim to capture the manner of the event, and the
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last Local Type indicates whether an event is propositional or not.
Furthermore, Shatkay et al. [2008] proposed a multi-dimensional classification schema

aiming to model the different user needs thus allowing a more user-centric retrieval. The
proposed classification schema thus aims to capture the characteristics of the statements
in the literature among six dimensions: the focus dimension aims to capture the type of
information conveyed by the statement (e.g. methodology), the polarity dimension indicates
the polarity of the statement (positive or negative), other dimensions capture the certainty
of the statement, and the type of the evidence supporting the statement, and finally the
trend dimension indicates an increase or decrease in a specific phenomenon.

An important observation regarding these classification schemas is that although they
were proposed separately, based on separate principles or views, an overlap or complementary
relationship among the categories of different schemas can often be found. For e.g. Guo et al.
[2011a] conducted a comparison evaluation concerning three annotation schemas: section
name based, AZ, CoreSC in the context of cancer risk assessment and revealed a subsumption
relationship among the categories of these schemas.

2.2.2 Related Natural Language Processing Tasks

There exists a wide range of applications of TC employing different unit of classification and
classification schemas.

Further it is also worth noting, that certain applications of TC share some similarities
to other NLP tasks, such as text segmentation and discourse processing. For the sake of
completeness, in what follows, the main similarities and differences between these tasks and
TC are discussed.

Text segmentation is often regarded as a pre-processing step in many NLP tasks. It
involves the partitioning of the text into distinct textual units, such as words, sentences or
topics. In addition to previously discussed applications, text segmentation is topic segmen-
tation [Hearst, 1997], in which the goal is to segment the text into coherent topics. In this
approach, the text is split into pseudo-sentences containing words of fixed size, and the shift
in topics is detected by measuring the similarity between the different pseudo-sentences. As
a result, consecutive segments with a high score will be considered topically coherent. The
main difference to TC is thus that the extracted textual segments do not have a semantic
class associated to them.

Discourse processing [Stede, 2011], on the other hand, attempts to divide the text into
meaningful units that are related to one another through discourse relations. One of the
most notable discourse theory is the Rhetorical Structure Theory (RST) [Mann and Thomp-
son, 1988], which assumes the existence of a hierarchical structure within the text, providing
an explanation of its coherence. Examples of discourse relations defined in RST3 includ-
ing Background, Evidence, Elaboration, Condition, Interpretation, Summary, etc. These
relations are typically defined over small discourse units, such as closes, ranging from min-
imally a noun phrase to maximally a sentence. The goal of discourse processing is then
to automatically recognise textual units and assign the corresponding rhetorical class to
them. In this respect, discourse processing is closely related to document zoning, following
the schema of Argumentative Zoning by Teufel and Moens [2002]. In contrast, however,

3http://www.sfu.ca/rst/01intro/definitions.html
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the AZ schema, as well as most document zoning schemas is not hierarchical, is less fine-
grained, and as opposed to the local-RST relationships it models the rhetorical moves from
a more global perspective, examining longer discourse units. For instance, considering the
sentence “Unfortunately this work does not solve the problem X”. This sentence may refer
to the shortcomings of previous research described in the related work of the paper, and
thus would be labelled as CONTRAST zone; or if mentioned in the future work, than it
may describe the weaknesses of the current paper, and would be labelled OWN [Teufel and
Moens, 2002].

2.3 Machine Learning Approaches and Main Differences

to Transfer Learning

Before moving to the presentation of transfer learning approaches for the various TC tasks
discussed, this section provides a short summary of the in-domain machine learning ap-
proaches and highlights their differences to transfer learning.

In-domain machine learning approaches are the state-of-the-art solutions for most TC
systems. They can be classified into three categories: supervised, unsupervised and semi-
supervised approaches depending on the available resources.

Supervised machine learning algorithms rely on large amount of labelled in-domain data,
which are often limited or labour-intensive to build in many domains. This major bottleneck
of insufficient in-domain labelled data is addressed by the unsupervised and semi-supervised
methods, which assume that a large amount of unlabelled in-domain data is cheap to obtain.

The unsupervised methods are based on clustering algorithms that automatically parti-
tions data into groups, so that data in the same groups are relatively similar, while data in
different groups are relatively dissimilar.

The semi-supervised (SSL), also called weakly supervised or bootstrapping techniques try
to learn from a limited set of labelled in-domain examples (labelled seeds) and a large amount
of unlabelled in-domain examples. There are various types of semi-supervised methods,
such as self-training [Zhu, 2006], co-training [Blum and Mitchell, 1998], and active learning
[Settles, 2010].

In the self-training setting, a classifier is incrementally learnt based on the labelled in-
domain seed set and a set of unlabelled in-domain examples that are labelled with the current
classifier until the trained classifier reaches a certain level of accuracy on the test set.

In co-training two or more classifiers are trained using the same seed set of labelled in-
domain examples, but each classifier trains with an independent set of features. At each
iteration the classifiers label few unlabelled examples. The examples that are then labelled
with the current classifiers and the ones on which the classifiers agree with most confidence
are added to the pool of labelled examples. The classifiers are then retrained and the process
iterates until it reaches a certain level of accuracy on the test set.

In active learning all the in-domain examples are labelled by humans, but the limited
number of examples to be labelled are carefully selected by the classifier. The key hypothesis
is that if a classifier is allowed to choose the data from which it learns, it will perform better
with less training.

As described in the previous subsection, transfer learning allows the domains, tasks and



18 Chapter 2. Background on Text Classification

distributions used in training and testing to be different. However, if the source and target
domains are the same (DS = DT ), and their learning tasks are the same (TS = TT ), one
is facing the in-domain machine learning problem [Pan and Yang, 2010]. Further, there is
also a small difference between transfer learning (domain adaptation) and semi-supervised
learning. SSL tries to learn a good classifier from a small amount of labelled data, while in
transfer learning the labelled data is large [Jiang, 2008a].

The next sections presents the various transfer learning settings and approaches proposed
in the literature, focusing mostly on the employed techniques. The description of base
classifier used in the the transfer learning scenarios is however outside the scope of this
thesis4.

2.4 Transfer Learning Approaches for Text Classification

This section discusses the main approaches to TC that fall under the transfer learning
paradigm. It provides a more general perspective on TC, including coverage of a number of
transfer learning scenarios and important transfer learning techniques.

There have been several transfer learning sub-settings studied in the literature under
different names (see Figure 2.1): such as Domain adaptation setting (Subsection 2.4.1)
where the learning tasks are the same, Multi-task learning setting (Subsubsection 2.4.1.4),
where the source and the target tasks are different but related and also learnt simultaneously,
and Unsupervised Transfer learning setting (Subsection 2.4.2), where there are no labelled
source and target data available. A combination of transfer learning with active learning,
called Active Transfer learning (Subsection 2.4.3), has also been recently proposed.

The existing approaches to transfer learning fall into the following categories:
instance-based, feature-representation based, parameter-based and relational-knowledge trans-
fer approaches. All these separate approaches aim to identify the relevant knowledge from
the source domain which can be beneficial for learning in the target domain, thus addressing
the first research issue in transfer learning, that of “what to transfer ”.

Instance-based approaches [Shimodaira, 2000; Zadrozny, 2004; Jiang and Zhai, 2007a]
assume that there are certain instances in the source domain which are relevant for the target
domain. Therefore, these approaches aim to re-weighting these source domain instances in
order to maintain the same distribution in the source and target domains.

The feature-representation approaches [Ando and Zhang, 2005; Blitzer et al., 2006; Satpal
and Sarawagi, 2007] assume that there is a common feature representation under which the
two domains are more similar. In contrast to instance-based methods, these approaches can
be more effective in situations when a few features cause the domains to differ. For example,
if one has a feature called “Is capitalized word” in the source domain, while in the target
domain none of the names are capitalised.

Parameter-based approaches [Chelba and Acero, 2004; Ciaramita and Chapelle, 2010]
assume that the source and target domains share some common parameters or prior distri-
butions. These parameters aim to encode the prior knowledge acquired in the source domain

4The reader is referred to [Mitchell, 1997] or [Theodoridis and Koutroumbas, 2009] for more details about
the base classifiers.
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Figure 2.1: Comparison of transfer learning settings.

for improving the learning in the target domain.

Finally, the relational-knowledge transfer approaches [Mihalkova, 2009] assume that cer-
tain relationships between the instances in the two domains are similar. Therefore these
approaches aim at finding a mapping between these relations in the source and target do-
mains.

After the relevant knowledge from the source domain has been identified, the next re-
search issue to consider is “how to transfer ”, which asks how to develop learning algorithms
for transferring this knowledge to the target domain.

In the next sections these algorithms are reviewed, which is followed by a discussion
about the third main research issue of “when to transfer” in Subsection 2.4.4.

2.4.1 Domain Adaptation

The first domain adaptation setting [Jiang, 2008b; Blitzer, 2008] refers to the case commonly
present in NLP, where the source and the target tasks are the same, while the source and
the target domains are different.

Following the definition of transfer learning, the objective of domain adaptation is
to improve the learning performance of the classifier in DT by leveraging the knowledge
acquired in DS , where the domains are different but related (DS 6= DT ) and the tasks in
the two domains are the same (TS = TT ) [Pan and Yang, 2010]. In addition, a large amount
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of labelled source data (LS >> 0) is available at training time. When there is no labelled
target data (LT = 0) available the problem is generally referred to as unsupervised domain
adaptation in the literature, while when a small amount of labelled target data (LT > 0)
is available, the problem is generally referred to as supervised domain adaptation [Jiang,
2008a].

2.4.1.1 Unsupervised Domain Adaptation Approaches

In what follows, instance-based, feature-representation based and parameter based ap-
proaches successfully applied to unsupervised domain adaptation are presented. A com-
parison of the methods reviewed is also given in Table 2.3.

Instance-based Approaches
The two major techniques for instance-based methods are re-sampling and instance-

weighting methods. Re-sampling methods aim at re-sampling the source domain instances
so that the re-sampled data roughly has the same class distribution as the target data.
In contrast, instance-weighting methods differently weight the source and target domain
instances in order to maintain the same distributions.

The main motivation behind instance-weighting method is to employ ERM to learn the
optimal classifier for the target domain. But, as in domain adaptation the distributions in
the source and target domains are different (PS(X,Y ) 6= PT (X,Y )), ERM is not generally
consistent anymore according to Shimodaira [2000].

However, as it was pointed out in [Jiang, 2008a; Shimodaira, 2000], the following impor-
tance weighting is consistent:

hERM ≈ arg min
h∈H

nS∑
i=1

PT (xi, yi)

PS(xi, yi)
l(xi, yi, h(xi))

Therefore the optimal classifier can be learned by weighting the loss function with α =
PT (x,y)
PS(x,y) [Jiang, 2008a]. However, there are cases when we don’t have any labelled target
domain instances, so we are not able to compute the exact value of α.

In order to address this problem, several special cases of domain adaptation problem
have been studied: including class imbalance [Japkowicz and Stephen, 2002], covariate shift
[Shimodaira, 2000] and sample selection bias [Zadrozny, 2004].

In the class imbalance problem, although the distribution of the two domains differ
(PS(X,Y ) 6= PT (X,Y )), it is assumed that PS(X|Y = y) = PT (X|Y = y) for all y ∈ Y , but
PS(Y ) 6= PT (Y ). In this case we only need to weight the instances with α = PT (y)

PS(y) .
The effect of class imbalance problem on various classifiers, including decision trees

(C5.0), neural networks (multi-layer perceptron), and SVM (hard margin SVM), was stud-
ied in Japkowicz and Stephen [2002]. They showed that the effect of the class imbalance
problem on these classifiers is different and it is influenced by the number of the training
examples, the degree of the class imbalance, and the complexity of the target function. Their
experiments reveal that the most sensitive classifier is the decision tree classifier, followed
by the multi-layer perceptron and finally SVM was shown to be unaffected by the problem.

In the covariate shift and sample selection bias settings, although the distribution of the
two domains differ (PS(X,Y ) 6= PT (X,Y )), it is assumed that PS(Y |X = x) = PT (Y |X =
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x) for all x ∈ X, but PS(X) 6= PT (X). Sample selection bias is a special case of covariate
shift, where each training instance is sampled from the test distribution according to a
boolean selector variable s. When the value of the s is 1, the instance is moved to the
training set, otherwise when the value is 0, the instance is moved to the test set.

Under these settings the optimal classifier for the target domain can be learned by
weighting each training instance with β = PT (x)

PS(x) . However, estimating the distribution
through the examples is difficult, as in general we have high dimensional feature spaces.
Various methods to estimate β have been proposed.

Shimodaira [2000] proposed to re-weight the log likelihood of each source domain example
with β to minimize the loss of the classifier on the target domain data. This was theoretically
shown to lead to the optimal model for the target domain. However, this approach is not
practical because we don’t have a probability distribution over the examples in each domain.

Similarly, Zadrozny [2004] proposed to use a selection ratio as a weight for each source
domain example to correct the distributional difference between the domains. She analyti-
cally studied the effect of sample selection bias on several classifiers, including local learners
(Bayesian classifier, logistic regression, hard margin SVM [Joachims, 2000]) and global learn-
ers (Naive bayes, decision trees, and soft margin SVM [Schölkopf and Smola, 2001]). Their
experiments show that global learners are affected by sample selection bias, while local
learners are not.

As mentioned above, estimating probability distributions though examples is difficult,
especially in high dimensional spaces, therefore, a number of methods have been proposed to
estimate the probability ratio directly, without first estimating the probability of instances
in each of the domains [Huang et al., 2007; Bickel et al., 2007].

Huang et al. [2007] proposed to directly estimate the probability ratio using a non-
parametric kernel mean matching (KMM) method. This way, the mean of the weighted
source domain instances and target domain instances become close in a reproduced Hilbert
space [Dinuzzo and Schölkopf, 2012]. Experimental results on regression and classification
problems show that this method outperforms the un-weighted method, and match or exceed
the performance of the method proposed in Zadrozny [2004]. Similarly, Bickel et al. [2007]
proposed to directly estimate β with the classification model parameters deriving a kernel-
logistic regression classifier. This classifier estimates the probability that an instance is from
the target domain as against the source domain. In training this classifier, the instances
in source domain are treated as negative examples, while instances in target domain are
treated as positive examples. Experimental results on classification problems showed that
the proposed method together with the kernel mean matching [Huang et al., 2007] and
logistic regression classifier perform well.

In addition to sample re-weighting methods, there has been work extending semi-supervised
learning for domain adaptation [Dai et al., 2007a; Jiang and Zhai, 2007a; Wu et al., 2009a;
Ponomareva and Thelwall, 2012b].

Dai et al. [2007a] proposed an extension of the traditional EM-based Naive Bayes [Nigam
et al., 2000a] classifier for domain adaptation. They first set the initial probability parame-
ters using the source domain data, and next they revise them using the target domain data.
The KL-divergence measure was used to measure the distributional difference between the
two domains and to estimate the trade-off parameters for EM. Empirical results on text
classification show that the proposed method outperforms SVM and Naive bayes on binary
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text classification problems.
Jiang and Zhai [2007a] proposed an instance weighting framework which minimizes the

empirical loss of the classifier not only on the weighted labelled target domain instances
but also considering the weighted source domain instances and unlabelled target domain
instances. They introduced some weighting parameters and gave several heuristic methods
to set them using semi-supervised methods. Therefore, it might be an interesting research
direction to study how to estimate the parameters more accurately.

Similarly, Wu et al. [2009a] proposed a bootstrapping approach for domain adaptation
which aims to identify the bridge instances from the target domain, which are instances
that contain both domain specific and domain independent examples. First they train a
source domain classifier on the labelled source domain instances and use this classifier to
label the target domain instances. Next they build a target domain classifier on these
labelled target domain instances. Then, at each iteration the algorithm selects the most
informative examples such that they are classified more confidently by the target classifier
and adds them to the source classifier. This procedure repeats until there are no more bridge
instances in the target domain, or when the source classifier is more confident about labelling
the instances than the target classifier. Experimental results on named entity recognition
on the ACE corpora show that this approach outperforms standard bootstrapping and the
balanced bootstrapping proposed in Jiang and Zhai [2007a].

Ponomareva and Thelwall [2012b] studied two different graph-based approaches for cross-
domain sentiment analysis. The first approach, named RANK [Wu et al., 2009b], uses rank-
ing to assign sentiment scores to the target domain documents, while the second approach,
named OPTIM [Goldberg and Zhu, 2006], solves an optimisation problem for labelling docu-
ments with sentiments labels. In both cases, the graph is built between the labelled instances
of the source domain and unlabelled instances of the target domain, and the weights between
the edges are computed according to various document similarity measures. These similar-
ity measures fall into two categories: feature based similarity, consisting of uni-grams and
bi-grams weighted by inverse document frequency; and lexicon based similarity employing
different sentiment resources (e.g. SentiWordNet and SO-CAL dictionaries) for assigning
scores to words and sentences (for e.g. number of positive words versus. number of nega-
tive words). Experimental results on benchmark sentiment dataset show promising results,
RANK with the combined feature and lexicon based similarity measure consistently outper-
forming Structural Correspondence Learning (SCL) [Blitzer et al., 2006].

Feature-representation Approaches
The feature-representation based approaches to domain adaptation rely on finding a good

feature-representation by discovering features that have similar distribution across domains.
In some works additional new features are added to the original feature spaces of the

two domains using unlabelled data [Ando, 2004; Ando and Zhang, 2005; Blitzer et al., 2006;
2007b; Blitzer, 2008; Blitzer et al., 2011; Guo et al., 2009; Nallapati et al., 2010; Kadar and
Iria, 2011; Arnold and Cohen, 2008], while in other works a subset of features are considered
[Satpal and Sarawagi, 2007].

Blitzer et al. [2006] proposed Structural Correspondence Learning (SCL) which extends
the semi-supervised Alternative Structural Optimization (ASO) from [Ando and Zhang,
2005], which is based on canonical correlation analysis. SCL focuses on finding a common
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representation for features across domains using unlabelled source and target instances.
Firstly it selects the so-called “pivot features” that occur frequently in the unlabelled data of
both domains. Next, linear predictors for those features are learned on all the other features.
And finally singular value decomposition (SVD) is performed on the collection of learned
linear predictors corresponding to different pivot features. At training stage the original
feature spaces of both domains are augmented with these new features. Experimental results
on POS tagging show that SCL consistently outperforms both supervised [Ratnaparkhi,
1996] and semi-supervised learning (ASO) methods. SCL was also tested on a sentiment-
classification task [Blitzer et al., 2007b]. They showed that by choosing pivot features with
high Mutual Information with the source labelled instances can further reduce error on the
target domain.

More recently, Blitzer et al. [2011] proposed a coupled learning algorithm which aims to
create two domain-specific sub-spaces from the low dimensional shared space created by SCL
between the domains. Experimental results on sentiment analysis and POS tagging show,
that when the shared space is small this coupled learning algorithm outperforms SCL. On
the other hand, when the shared space is large and the coupled space misses part of it, then
SCL outperforms the coupled learning algorithm. Although, Blitzer et al. [2007a] showed
that the representation created by SCL decreases the distance between the distributions in
the two domains, the selection of pivot features is still domain dependent.

Ando [2004] proposed another SCL-like approach to derive new features which are more
stable across domains. However, they performed SVD on the feature-token matrix, where the
matrix contains all the sentences from the unlabelled source and unlabelled target domain
instances.

Arnold and Cohen [2008] proposed to use additional intra-document structural features
for the problem of extracting protein names across the different sections of biomedical journal
articles, considering the abstracts of the articles as the source domain and the captions and
full text of the articles as the target domains. These new features therefore can be created
using only unlabelled data, by considering the frequency of each word in the separate sections
and the conditional frequency of each word across the sections (for e.g. the probability of
the word appearing in the caption of the article, given that it appeared in the abstract),
thus allowing to explicitly model the differences between the sections. In addition they
proposed to augment the original training set of the source domain with positive and negative
examples, called snippets, gathered from the target domain. Experimental results on Genia
abstracts and Pubmed Central full articles show promising results outperforming the baseline
classifier trained only with lexical features.

Another approach for generating additional features from unlabelled data rely on apply-
ing unsupervised Latent Dirichlet allocation topic model [Guo et al., 2009; Nallapati et al.,
2010; Kadar and Iria, 2011].

Guo et al. [2009] employed Latent Dirichlet Allocation (LDA) topic model to learn the
topic assignments among the unlabelled examples in the source and target domains, result-
ing in new features for adaptation. These learned features are then used to augment the
labelled source domain examples and build a supervised classifier to make predictions on
the unlabelled target domain examples. Experimental results on NER show that the pro-
posed model significantly outperform the base classifier built without semantic association
features.
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Similarly, Nallapati et al. [2010] proposed to augment the labelled source domain in-
stances with LDA features, created by another LDA model, called NER-LDA, which models
the words as being conditioned over the named entity (NE) labels and topics. Furthermore
this NER-LDA model also allows different distributions of NE labels for different topics.
The new LDA features therefore consist of the topic id’s assigned to each word and to the
surrounding words together with their corresponding NE labels. Moreover, the generation
of the topics can be considered using additional unlabelled data from New York Times.
Experimental results on NER from six different domains from the ACE 2005 corpora show
promising results for the NER-LDA model, outperforming the basic CRF classifier trained
without these features.

Instead of requiring labelled instances from the source domain, Kadar and Iria [2011]
proposed TransferLDA and TransferzLDALF models which both employ a new feature la-
belling paradigm [Druck et al., 2008a], thus further reducing the annotation time and costs.
The first TransferLDA model aims to minimize the distribution gap between the domains by
measuring the KL-divergence. While the second TransferzLDALF model further employs an
zLDA model to first cluster the features from both domains and then augment the original
labelled features from the source domain with the most probable labelled features from the
target domain in each cluster. Experimental results on document classification problems
using 20 news group and SRAA corpus show that using only a few labelled features, on
average 18 labelled features per topic, TransferLDA consistently outperforms the baseline
supervised Maximum Entropy classifiers, while TransferzLDA performs comparable with the
supervised Transductive SVM (TSVM) classifier.

In contrast to the above approaches, Satpal and Sarawagi [2007] proposed to select a
subset of features by assigning a weight to each feature that is equal to the difference in the
expected value of the feature in the two domains. Experimental results on entity extraction
show significant accuracy gain with varying training and test size, outperforming SCL and
SSL.

Gupta and Sarawagi [2008] proposed to use domain independent properties for a bib-
liographic information extraction task. For example, a property might be ’Does the title
appear after the author’ in a bibliographic record. The regularities between domains thus
can be captured by using the classifier trained on the source domain to jointly annotate all
the records in the target domain such that the output labels are regular with respect to
the affected set of properties. One drawback of this approach is that the properties are still
application specific.

In other works the usage of background knowledge has been explored [Ciaramita and
Yasemin, 2005; Mika et al., 2008; Wang et al., 2008; Xiang et al., 2010].

Ciaramita and Yasemin [2005] proposed a Semi-Markov model (SMM) trained with av-
erage perceptron algorithm for the task of NER. They used an external domain-independent
dictionary (called SEMCOR) to improve the generalisation across domains. Namely, addi-
tional dictionary features about the extracted entity segments (for e.g."George Duffield")
were added to the model. One such feature is the Jacard distance between the dictionary
entries and the extracted entity. The length of the entity (length("George Duffield") = 2)
is considered a separate feature as well. The comparative results show that the SMM model
supported by the external dictionary outperforms HMM [Collins, 2002] without external
knowledge. It would be therefore interesting to further explore the impact of different dic-
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tionaries or other external sources, such as ontologies.
As the semantic annotation for many IE tasks, including NER is limited to few public

data sets, and acquiring training data is often expensive, Mika et al. [2008] explored the
possibility to generate additional training data using Wikipedia and DBPedia to improve
a NER tagger. In their scenario, a NER tagger trained on CoNLL corpora is applied to a
collection of Wikipedia articles in order to enrich the metadata information present in the
infoboxes. This step also involves mapping the vocabulary of CoNLL tags to the more fine-
grained vocabulary of Wikipedia’s infobox properties. For instance, in an article describing
Pablo Picasso, the place of birth (Spain) annotated with the LOCATION CoNLL tag is
mapped to placeOfBirth infobox property. Next these semantic annotations are linked with
the structured knowledge from the DBpedia, which is a lightweight ontology consisting of
extracted information from Wikipedia infoboxes. They then apply this mapping to the
corpus and generate additional training instances for the tagger. One limitation of this
approach is that the distribution of entities can be skewed, because the set of training
sentences are not a random sample of Wikipedia text.

Wang et al. [2008] proposed a co-clustering based approach, which exploits additionally
information from Wikipedia. The approach functions by first extracting the Wikipedia
concepts inside the domain documents from both source and target domains. After that a
proximity matrix is defined, which captures the closeness between any two terms, according
to several relationships defined in Wikipedia: synonymy, hyponymy and associative concepts
relationships. This matrix can thus be used to project instances of both domains into a
semantic space where the instances are closer to one another. Following this the original
lexical feature spaces of both domains are extended with the projected semantic features,
and a co-clustering of the instances of both domains are performed according to the approach
presented in Dai et al. [2007a]. Experimental results on both Newsgroups and SRAA datasets
showed promising results outperforming its counterpart model without semantic enrichment.

Xiang et al. [2010] proposed a novel approach for domain adaptation, which employs
semi-supervised learning and knowledge fromWikipedia to guide the adaptation between do-
mains. In the first step of this approach, candidate documents are retrieved from Wikipedia,
based on a similarity (relatedness) measure computed between these knowledge source doc-
uments and both source and target domain documents. In order to achieve this the LDA
topic model is run over the documents of the source domain, the documents of the target
domain, and the Wikipedia articles separately. Then the similarity between the domain doc-
uments and knowledge source articles are computed by summing over each document and
taking the product of the document topic probabilities. As a result a set of related domain
documents are created, which are used to iteratively train a Transductive SVM (TSVM)
classifier in a semi-supervised fashion. Experimental results on 20 Newsgroup data and
Sentiment Reviews show promising results, outperforming various baseline transfer learning
approaches such co-clustering based adaptation approach [Dai et al., 2007a] or Transductive
SVM [Joachims, 1999].

Parameter-based Approaches
The parameter-based approaches to domain adaptation assume that the source and target

domains share some common parameters (e.g., class prior distributions) [Ciaramita and
Chapelle, 2010], which can be beneficial for transfer learning.
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Ciaramita and Chapelle [2010] proposed an adaptive extension of the perceptron trained
Hidden Markov model (HMM) for the task of NER, where the adaptive components are
parameters estimated from the unlabelled source and target domain data combined with
background knowledge. Assuming that the distribution of source and target domains differ
partly due to difference in the class prior distributions, at decoding time they adjust the class
labels by considering the estimated class frequencies in the source and target domains. The
estimation of class frequency is done by using a list of words from an independent third source
(gazetteers from GATE5), and computing the frequency of each word in the corresponding
domain. The gazetters and WordNet are also used to create additional features for the
model, such as membership in a gazetter or capturing the most frequent supersense in
WordNet. Experimental results on two newswire datasets (BBN-ConNLL) show that the
proposed model performs as well as the SCL model when adapting from BBN to CoNLL,
and outperforms all the baseline methods (including self-training, SCL) when adapting from
CoNLL to BBN. Their results also show that adapting from specific to general (BBN-
ConNLL) is harder than in the opposite direction.

2.4.1.2 Supervised Domain Adaptation

This subsection continues by describing the models proposed for supervised domain adapta-
tion, which refers to the situation when there is also a small amount of target domain data
available (LT > 0). In the following, feature-representation and parameter-based approaches
applied for this setting are presented. A comparison of the methods reviewed is also given
in Table 2.4.

Feature-representation Approaches
The feature-representation approaches assume that there exists a representation under

which the two domains look more similar. Therefore, with this new representation the per-
formance of the classifier on the target domain is expected to improve significantly [Daumé,
2007; Daumé III et al., 2010; Jiang and Zhai, 2007b].

Daumé [2007] proposed a simple algorithm called EasyAdapt (EA), which tries to over-
come the domain difference, by extending the original feature space with a domain-specific
copy of the original features for each of the domain. In other words, the original features are
extended by features specific to the source domain and features specific to target domain.
The augmented source domain instances therefore contain original and source-specific fea-
tures, while the augmented target domain instances contain original and target-specific fea-
tures. Next, a supervised classifier is trained on the labelled source and target instances with
these new features and used to make prediction on the unlabelled target domain instances.
Experimental results on NER, POS tagging, shallow parsing, show that this simple method
outperforms several state-of-the-art methods (they are called SRCONLY, TGTONLY, ALL,
PRED, LININT) on a range of datasets. SCRONLY refers to the classifier trained on the
source domain instances only; TGTONLY refers to the classifier trained on the target do-
main instances only. ALL trains a classifier on both source and target domain instances.
PRED uses the output of the source classifier as features in the target classifier. And LIN-
INT linearly interpolates the predictions of the SRCONLY and TGTONLY classifiers. One

5http://gate.ac.uk/
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drawback of EASYADAPT, however is that it does not make use of the unlabelled target
domain data which is usually plentiful in most practical problems.

This problem has been addressed in a recently proposed method, called
EASYADAPT++ (EA++). EASYADAPT++ [Daumé III et al., 2010] creates an aug-
mented feature space for the unlabelled target instances also, in a way that the source and
the target classifiers agree on the unlabelled target instances. Furthermore, the augmented
unlabelled instances are added to an augmented training set used to train the supervised
classifier. Each unlabelled instance is added with all the possible class labels. For exam-
ple, for a binary classification problem, two copies are added, one that assigns +1 label to
the instance and another one that assigns -1. Empirical results on sequence labelling tasks
(NER, POS tagging) show improved accuracy over the EA.

Jiang and Zhai [2007b] proposed a two-stage approach to domain adaptation considering
multiple source domains. In the first generalisation stage, they identify a set of generalisable
features learned from multiple source domains and set the appropriate weights for them.
They proposed two ways for the identification of these features, namely an alternating
optimisation procedure and domain cross validation, the latter one being observed to be more
effective in their experiments. While in the second adaptation stage they select the features
that are specific to the target domain using semi-supervised methods. One limitation of this
framework is that it requires at least two source domains. An interesting research direction
therefore would be to study whether a single domain and target examples with pseudo labels
can also be used to identify the generalisable features.

Parameter-based Approaches
The parameter-based approaches assume that the source and target domains share some

common parameters or prior distributions. The encoding of these parameters or priors can
be done using labelled source domain instances as shown in [Arnold et al., 2008; Finkel and
Manning, 2009].

Arnold et al. [2008] extended the original model proposed in Chelba and Acero [2004],
which relies on a Maximum a posterior (MAP) adaptation through Gaussian priors of a
Maximum Entropy (MaxEnt) model. That is, the model uses labelled source domain to find
optimal weight parameters of a MaxEnt model, and then it set these parameters as a prior
on the values of a model trained on the target domain. The novel extension then lies in
assumption that the source and target domains share a common tree hierarchy. The leaves in
the hierarchy correspond to these weight parameters which are also connected with hyper-
parameters to form the tree. This method therefore first applies MAP estimation of the
parameters and hyper-parameters using labelled source domain data, and next it set these
parameters as Gaussian prior on a CRF model trained on the target domain. Experimental
results on NER show that the hierarchical prior model outperforms several baseline methods,
including the non hierarchical Chelba and Acero [2004] model.

Similarly, Finkel and Manning [2009] employed a hierarchical Bayesian prior model for
domain adaptation, in which each of the domain has its own domain-specific prior, a Gaus-
sian prior on the mean and variance of its weight vector. Also these parameters are connected
via a hyper-prior thus forming a hierarchy. The goal of the learning is then to maximise the
performance of the classifier over all the domains. Experimental results on named entity
recognition and dependency parsing show that this model outperforms Daumé [2007] and
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several baseline systems.

2.4.1.3 Combining Multiple Models

There has been some work on using ensemble methods for domain adaptation by employing
boosting [Dai et al., 2007b; Al-Stouhi and Reddy, 2011].

Dai et al. [2007b] proposed a transfer learning framework called TrAdaBoost, which
extends the Adaboost boosting-based algorithm. TrAdaBoost assumes that because of the
distributional difference between the source and target domains, some of the source domain
instances will be relevant in learning in the target domain but others will not be relevant and
could even be harmful. The key idea, therefore, is to filter out instances that are irrelevant for
the target domain by automatically adjusting the weights in each iteration as in Adaboost.
Thus, it assigns less weight on the wrongly classified source domain instances, and more
weight on the wrongly classified target domain instances, as the objective of the learning
is to improve the performance of the final classifier on the target domain. Experimental
results on several classification tasks show that TrAdaBoost has better transfer ability than
in-domain learning techniques (SVM) and the error rate on the target domain depends on
the similarity between the two domain (as measured by KL-divergence). The framework
could be extended to deal with multiple different distributions.

Al-Stouhi and Reddy [2011] further presented an extended version of the TrAdaBoost
approach, called Dynamic-TrAdaBoost, which aims to address the bias induced by the com-
bined normalization of source and target instances. For this purpose a dynamic instance
weighting function is employed, which combines the benefit of AdaBoost and Weighted Ma-
jority Algorithm. In particular the weighted majority algorithm being used for updating
the source domain weights, and the Adaboost approach for weighting the target domain
instances. Empirical results demonstrated the superiority of Dynamic-TrAdaBoost over
TrAdaBoost on three benchmark datasets (20 Newsgroups, Abalone, Wine).

2.4.1.4 Multi-task Learning, Self-thought Learning

Unlike domain adaptation, where the learning tasks we wish to perform are the same,
in multi-task learning [Caruana, 1997] these tasks are different but related and learned
simultaneously.

Following the definition of transfer learning, the objective of multi-task learning is to
improve the learning performance of the classifier in DT by leveraging the knowledge in DS ,
where the domains are the same (DS = DT ) and the learning tasks are different but related
(TS 6= TT ) [Caruana, 1997; Pan and Yang, 2010]). The first condition implies that the
feature spaces of the two domains are the same FS = FT and there is a single distribution
of the instances PS(X) = PT (X). The second TS 6= TT condition implies that either (i) the
label spaces differ (YS 6= YT ) or (ii) the conditional probability distributions are different
(PS(Y |X) 6= PT (Y |X)). In addition, a large amount of labelled source data (LS > 0) is
available at training time.

The intuitive idea behind multi-task learning is that learning the tasks simultaneously
improves the learning performance on the target task relative to learning each task inde-
pendently. Another related approach called self-taught learning [Raina et al., 2007] has
been studied in the literature, which makes the same assumption that labels in the source
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and target domains may be different. In the following we review two feature-representation
methods proposed for this settings6. The methods reviewed are also presented in Table 2.7.

To learn a common feature representation for the two domains, in some work labelled
source data is used [Daumé, 2009; Al-Stouhi and Reddy, 2014], while in others only the
unlabelled source data is considered [Raina et al., 2007].

Daumé [2009] proposed a non-parametric Bayesian latent hierarchical model for both
multi-task and domain adaptation settings. This model creates a tree structure over the
data by employing Kingsman’s coalescent prior [Kingman, 1982] and estimates the model
parameters (such as the structure of the tree and the hyperparameters) using the EM algo-
rithm. The leaves of the tree then corresponds to the domain-specific weight vectors, while
the root of the tree corresponds to the global(common) weight vector. Experimental re-
sults on sentiment classification, landmine detection and text classification show significant
improvement over EA [Daumé, 2007] and other baseline systems.

Al-Stouhi and Reddy [2014] proposed a multi-task clustering framework which combines
multi-task learning with non-negative matrix factorisation (NMF) to support cross-domain
clustering. For this purpose a multi-task affinity kernel is introduced, which allows to capture
the intra-task and inter-task dependencies between domains. As a first step a multi-task
graph is created over the instance and feature pairs of both source and target domains, where
each edge being associated with a weight. Further various transformations are performed
on this graph, which aims to reduce the distance between tasks by decreasing the weights
which connects them (thus controlling the inter-task dependencies between domains). Then
a symmetric NMF is employed for discovering clusters such that the clustering solution
forces intra-task solutions. Experimental results on text classification showed promising
results outperforming k-means, normalised N-Cut and standard symmetric NMF.

Raina et al. [2007] proposed a transfer learning algorithm called self-taught learning
(STL) which can be used to learn from unlabelled source domain data, having different
class labels than the target domain data. For example, in a text classification task of
classifying Usenet articles into four predefined category (real auto, real aviation, simulated
auto, simulated aviation) Reuters newswire articles were considered as unlabelled source
data. First, the algorithm learns a high-level feature representation from the unlabelled
source data by solving an optimisation problem. In particular, it learns a set of basis vectors
and the corresponding weights for them. Next, it applies this representation to the labelled
target data and trains a supervised classifier on the labelled data. Experimental results show
that the algorithm significantly outperforms the classifiers built only on raw features and
PCA features. However, one limitation of this algorithm is that the basis vectors learned on
the source domain data may not be optimal for use in the target domain data.

2.4.2 Unsupervised Transfer Learning

In the previous two sections learning algorithms that require labelled source data were
considered. In this section we review methods that don’t require any labelled source and
target data.

Following the definition of transfer learning, the objective of the unsupervised transfer
learning is to improve the learning performance of the classifier in DT by leveraging the

6For a summary of other methods proposed for these settings we direct the reader to a recent survey on
transfer learning Pan and Yang [2010].
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knowledge acquired in DS , where the two domains are different but related (DS 6= DT ),
and the learning tasks are also different but related (TS 6= TT ), and YS and YT are not
observable [Pan and Yang, 2010].

The majority of the work proposed for unsupervised transfer learning focuses on unsu-
pervised tasks such as clustering [Huang and Yates, 2010; Martín-Wanton et al., 2013] and
dimensionality reduction [Tong et al., 2013]. The methods reviewed are presented in Table
2.8.

Huang and Yates [2010] proposed the I-HMM algorithm, which uses unsupervised HMM
model to induce clustering of words for POS tagging. The algorithm also creates several
copies of the produced clusters, resulting in a multi-dimensional representation for transfer
learning. Next these clusters are used to create new features for a supervised classifier (CRF)
employed to make prediction on the unlabelled target domain data. Experimental results
show that the proposed HMM features are more stable across domains than the purely
lexical features. Also the model outperforms several state-of-the-art methods including self-
training, SCL. However, one limitation of this method is that the number of layers is not
determined automatically.

Similarly, Martín-Wanton et al. [2013] proposed a graphical model to transfer knowledge
across domains for topic classification in the context of reputation management involving
multiple companies. In this scenario, documents related to a particular company being
considered as individual domains, and thus a small collection of documents related to that
company is regarded as a target domain. For compiling the source domain data further three
different cases have been exploited: considering a large collection of documents about a com-
pany of interest, considering a large collection of documents about a different company, and
creating a joint set of documents comprising of the previous two collections. The employed
graphical model, called TwitterLDA, then aims to cluster the target domain instances into
topics while making a distinction between domain specific and domain independent words.
Experimental results indicate that the modified TwitterLDA model exploiting all the three
different source domain data significantly outperforms the TwitterLDA model using only
target domain instances.

Tong et al. [2013] studied the problem of dimensionality reduction for transfer learning.
Their approach relies on exploiting the labelled information from multiple source domains
to perform dimensionality reduction on the unlabelled target domain instances. For this
purpose a Gaussian process model, named Gaussian process for dimensionality reduction
in Transfer learning (GPDRTL), is employed, which relies on the transformation of the
original dimensionality problem into a regression problem. In order to achieve this, a spectral
regression algorithm is first applied, which creates a low dimensional space for the multi
source domains and the target domain also. Following this a GP model is constructed on
the labelled source domain data exploiting two different regularisation terms. The first
such regularisation term aims to capture the similarity between the target domain data and
source domain data in a specific dimension of the reduced space using a smoothing function.
The second regularisation term on the other hand, aims to capture the relationship in both
the data and task between the source and target domains. Experimental results on text
classification show that GPDRTL outperforms various state-of-the-art approaches such as
Principal component analysis (PCA), transfer dimensionality reduction [Pan et al., 2008],
and transfer component analysis [Pan et al., 2009].
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2.4.3 Active Transfer Learning

As described in the previous sections (2.3, 2.4) when labelled data is scarce, transfer learning
and active learning are separate solutions to obtain labelled data for the target domain,
however both have some practical constraints.

Transfer learning can leverage the knowledge acquired from a related domain without
incurring labelling cost, but there is no guarantee that the transferred knowledge will help
improve learning performance in the target domain. While active learning asks domain
experts to label a small set of examples, but there is an implicit cost associated with obtaining
the labels.

To avoid domain transfer risk and reduce labelling cost, a combination of the two methods
have been recently proposed, called active transfer learning [Shi et al., 2008]. The methods
reviewed are presented in Table 2.9.

In some work the transfer learner requires an initial pool of labelled target domain data
[Shi et al., 2008; Xiao and Guo, 2013], while in other work only labelled source domain data
are necessary [Rai et al., 2010].

Shi et al. [2008] proposed an active transfer learning algorithm called AcTraK (Actively
Transfer Knowledge) which first applies a traditional active learning algorithm (called Error
Reduction Sampling method (ERS) [Roy and Mccallum, 2001]) to select an example from
the unlabelled target data. Next, this selected example is labelled by a transfer classifier
(SVM) trained on the labelled source data (LS) and small amount of labelled target data
(LT ). When the transfer classifier’s labeling confidence is low, domain experts are asked to
re-label the example. Experiments on text classification and remote sensing problems show
that AcTrak significantly outperforms the TrAdaBoost transfer learning algorithm and the
ERS active learning algorithm. However, one drawback of AcTraK is the requirement of a
small amount of labelled target domain data (LT ) used to train the transfer classifier.

Xiao and Guo [2013] proposed a framework which combines multi-task learning with
active learning in a cost sensitive way, considering the situation when annotated data in
both domains are available and further querying labels for the target domain is cheaper
than for the source domain (quantified as a cost ratio). As the base active learner, the
Cesa-Bianchi approach [Cesa-Bianchi et al., 2003] is employed which uses the perceptron
algorithm. First, an initial supervised classifier is built on the annotated instances of both
domains. Then the instances of both domains are randomly split into two distinct views, and
the active learner is iteratively executed querying labels for them considering two different
multi-task strategies: multi-view uncertainty strategy and multi-view disagreement strategy.
In the first uncertainty strategy, the cost ratio is used to select the instance to be labelled
from either source domain or target domain. For the selected instance then the prediction
confidence values of the learner are computed, and in the case the labels for the two views
disagree then a new label is queried. In the second multi-view disagreement case, the
prediction confidence of both instances and views are first computed and compared. Then,
if the disagreement of the views occurs for only one of the instances, then a new label is
queried for only that instance, otherwise the predicted labels for each instance is compared,
and if the labels are different than labels are queried for both instances, while if the labels
are the same (indicating that the two instances contain similar information concerning the
label) then a new label is queried only for one instance. Experimental results on sentiment
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analysis using the Amazon products review domain showed promising results outperforming
various approaches exploiting labelled strategies from a single domain, as well as an approach
using single view uncertainty strategy.

Rai et al. [2010] proposed the Active Online Domain Adaptation (AODA) algorithm,
which first learns the optimal weights for a transfer learning classifier (such as SCL or
KLIEP) using labelled source (LS), unlabelled source (US), and unlabelled target data
(UT ). Next the learned weights are set to an active learner, which employs the Cesa-
Bianchi approach [Cesa-Bianchi et al., 2003] to iteratively query labels for the unlabelled
target examples. A version of AODA, called Domain-Separator based Active Online Domain
Adaptation (DS-AODA) was also proposed, which uses the domain divergence information
between the domains to select the examples to be labelled. The domain divergence measure
used is called proxy A-distance, which is computed similarly to A-distance [Ben-David et al.,
2006]. Namely, a linear classifier is trained on the unlabelled source and target data by
treating each source domain example as negative example, and each target domain example
as positive example. And the value of proxy A-distance is then the average per-example
hingle-loss of the classifier subtracted from 1. Experiments on sentiment classification show
that AODA outperforms several state-of-the-art supervised domain adaptation methods,
such as EASYADAPT [Daumé, 2007], TGTONLY in-domain classifier, and DS-AODO leads
in further reduction in label complexity. An interesting future direction would be to precisely
quantify the amount by which the label-complexity is expected to reduce.

2.4.4 Mistake Bounds and When to Transfer

The transfer learning models presented in previous sections address the research issues of
“what to transfer ” and “how to transfer ”. This section now turns to the discussion of the
third research issue of “when to transfer ”, which asks in which situations should transfer
learning be applied.

As presented in the previous sections, transfer learning has been successfully applied
for many learning problems, however there is no guarantee that it improves the learning
performance on the target domain. Situations when applying transfer learning worsens the
performance of the learner are referred to as negative transfer, which is still considered an
open issue [Pan and Yang, 2010].

However, there have been a few theoretical studies of the problem of transfer learning,
giving mistake bounds on the target domain, by considering the performance of the model
on the source domain and the divergence information between the domains. In some work
learning from a single source domain [Ben-David et al., 2006] is studied, while in others
learning from multiple source domains[Blitzer et al., 2007a; Ben-David et al., 2009] is con-
sidered.

Ben-David et al. [2006] gave an upper bound on a classifier’s error in the target domain in
terms of its error in the source domain and a divergence measure between the two domains:

εT (h) ≤ εS(h) + β + dA(US , UT ) + λ,

where εT (h) is the expected error of the classifier in the target domain, εS(h) is the expected
error of the classifier in the source domain, dA(US , UT ) is the A-distance measure between
the two domains (computed as in [Rai et al., 2010, Section 2.4.3]), λ is the sum of the error
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of the optimal classifier in the source and target domains, and β is a constant parameter.
Their analysis show that the SCL finds a good feature representation resulting both in small
empirical classification error and small A-distance between the domains.

Ben-David et al. [2009] gave an error bound on the target error of a classifier which min-
imizes the weighted combination of its error in the source and target domains, in situations
when there is a large amount of labelled source data available from multiple source domains,
and a little or no labelled data from the target domain. They also studied the conditions
under which such classifier is expected to perform well on the target data. Their obvious
observations were as follows: if the source and target domain data are the same, than the
best performance is achieved by uniformly weighting the source and target data. If there
is only a small amount of target domain data available, than it might be the case that the
source data is not enough to justify it, and in this case the best is to ignore the source data.
And finally, if there is enough target data, then no source data is required, and actually
using this source data will worsen the performance.

In addition, there have been some empirical studies conducted in the literature, which
looked at domain similarity measures which correlate well with the performance of a classifier
across domains for a given NLP task, such as POS tagging [Van Asch and Daelemans, 2010]
or sentiment analysis [Ponomareva and Thelwall, 2012a].

Van Asch and Daelemans [2010] showed that computing the similarity between the source
and target domains can help to predict the performance of a classifier across domains. They
conducted experiments on POS tagging using several frequency based similarity measures,
which can be computed from unlabelled source and target data (including Renyi, L1, Eu-
cledian, Cosine, KL divergence). They concluded that the best similarity measure to choose
for the target task is the one which gives the best linear correlation between the similarity
measure and the accuracy of the classifier applied across domains. If such measure is found,
we can take annotated data from a related source domain and assume that this yields to
best accuracy on the target domain. Using such measure for clustering the domains, may
also help to measure transferability across domains.

Ponomareva and Thelwall [2012a] proposed a domain divergence metric for sentiment
analysis, which takes into account the contribution of two different factors which can influ-
ence the performance of a classifier across domains: domain similarity and domain complex-
ity. For measuring the domain similarity between domains different information theoretic
measure were exploited such as KL divergence, Jenson-Shannon divergence, Jacard coeffi-
cient, cosine similarity, and χ2. While for quantifying the domain complexity the percentage
of rare words, word richness (measured as the ration of vocabulary size to the corpus size)
and relative entropy (measured as the ratio of corpus entropy to the maximum entropy)
were considered. Experimental results in the context of Amazon product reviews revealed
χ2 as being the best domain similarity measure, and the percentage of rare words as being
the best domain complexity measure. Further the linear combination of these two domain
characteristics showed a high correlation, over 88%, with the accuracy loss of a sentiment
classifier across domains.

Another interesting perspective of analysing different domain difference types was studied
in Jiang [2008b]. She proposed four domain difference types and gave recommendations
on the transfer learning techniques to apply based on these types. All the four domain
difference types consider the properties of the features in the two domains. The first two
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types distinguish between a set of features which are frequent in one domain but infrequent in
the other domain. The next two types distinguish between features which are discriminative
in one domain but non-discriminative in the other domain. Empirical results reveal that the
different domain difference types require different transfer learning techniques. Her findings
were as follows: when the domain difference comes from the domain specific characteristics
in the target domain, then the best performance is achieved by increasing the contribution
of the labelled target domain examples rather than applying instance-weighting or feature-
selection methods on the source domain. If the domain difference comes from the domain
specific characteristics in the source domain, than if there is a small amount of labelled
target domain data, then they can be used to remove the irrelevant examples from the
source domain using either instance-weighting or feature selection methods or to increase
the contribution of the target domain examples. An interesting future direction would be to
propose other measures of domain difference and study whether recommendations of transfer
learning techniques can be given based on these measures.

2.5 Limitations of Current Approaches

The previous sections reviewed the current state-of-the-art approaches for adaptive TC. The
majority of these approaches employed various content-based lexical pivot features (bag-of-
words, POS tags) for transfer learning. That is, these approaches extracted pivot features
from the textual content of the domain documents only, and also computed the weights for
these features based on some content-based statistics. In the same vein, existing domain
similarity measures apply content-based statistical measures to estimate the performance of
a text classifier.

Despite of the success of existing approaches, they still suffer from several limitations.
Firstly, the majority of work still relies on labelled source data [Jiang and Zhai, 2007a;

Blitzer et al., 2006; Guo et al., 2009] and target data [Dai et al., 2007b; Daumé III et al.,
2010; Arnold et al., 2008]. However, it has been shown that creating labelled data is both
time consuming and expensive [Ciravegna et al., 2002; Zhang et al., 2010]. Also, the rapid
rate of document publication in large repositories makes it infeasible to collect annotated
data for every domain. Although some methods leveraged unlabelled data in unsupervised
[Dai et al., 2008; Huang and Yates, 2010] and semi-supervised [Dai et al., 2007a; Jiang and
Zhai, 2007a] manner, most of these methods were tested on specific TC tasks (such as part-
of-speech-tagging, sentiment classification), and it is unclear whether these approaches are
generalisable to other TC tasks, such as document zoning and text topic classification.

Secondly, a rich type of resource for text classification is background knowledge. Often,
a large amount of information already exists in certain types of formats (e.g., knowledge
bases, databases, unlabelled corpora). Research has shown that using background knowledge
can indeed enhance the adaptation of TC systems across domains (Ciaramita and Yasemin
(2005), Ciaramita and Chapelle (2010)). However, these methods are limited to exploiting
simple background knowledge structures such as gazetters, and dictionaries. A systematic
and generalisable methodology is required to harness the diverse and rich background knowl-
edge, which is believed to be largely beneficial to domain adaptation of TC systems.

Thirdly, most of the previous work on transfer learning has focused on relatively small-
scale applications using publicly available datasets (e.g., newswire) [Daumé, 2009; Finkel
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and Manning, 2009]. The adaptation of TC systems to highly heterogeneous technical do-
mains has been scarcely studied. This problem is much more complex, due to the intrinsic
complexity of the language within these documents [Guo et al., 2006; Wang, 2009]. There-
fore, it is unclear whether the existing transfer learning techniques are applicable to more
complex text classification tasks.

In order to address these limitations, this thesis explores the use of domain knowledge
sources for both building adaptive TC systems and designing better domain similarity mea-
sures for TC. Before proceeding to the presentation of these approaches, however, in the
next section a discussion is given on the main roles of domain knowledge in TC.

2.6 The Role of Domain Knowledge in Text Classification

It has been largely agreed that content-based lexical features play an important role in text
classification. These features are usually generated based on the terms (words or other larger
textual units such as phrases) present in the documents, and their contexts. Research has
shown that these features are not always sufficient. Typical examples are short, ill-formed
texts, such as social media posts, where the correct interpretation and classification of text
is very challenging due to the lack of contextual clues, and presence of abbreviations and
misspellings. For instance, the following text “Microsoft and Apple are long-time rivals.”,
may refer to a text written about sports, politics or the financial situations.

The annotation of such short text by a human reader would be a challenging task, if the
reader is not provided with any labelled examples on this topic. In such cases the reader
will use his/her background knowledge to interpret the text. Further, if the annotator is
unfamiliar with the domain, then s/he would rely on some background knowledge, such as
a dictionary or an encyclopaedia to assign an appropriate topic label. For instance, s/he
may exploit the Wikipedia encyclopaedia, and find “Microposts” and “Apple” as instances
of “Software companies”, and thus reveal that this text refers to financial situation between
the two companies.

In similar situations, incorporating domain (or background or external or prior) knowl-
edge has been found to provide additional contextual information for the documents, and as
a result to lead to better TC performance. As the term domain knowledge has been vaguely
defined in the literature, in this thesis the definition from [Zhang, 2013] is employed, which
considers domain knowledge any additional learning evidence used for text classification.

There has been various domain knowledge types explored in the TC literature. In the
coming section, the most frequently used domain knowledge types are presented, and a
classification of their type is given.

2.6.1 Domain Knowledge Types used in Text Classification

The main domain knowledge types used in TC can be divided into three main classes:
domain-specific lexicons, unlabelled data and external knowledge sources.
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2.6.1.1 Domain-specific Lexicons

Much work on TC employs domain-specific lexicons in the form of gazetteers or lookup lists.
These lexicons often contain a list of representative words for the corresponding document
classes.

Sentiment classification approaches typically make use of subjectivity lexicon: for in-
stance, one consisting of words describing positive polarity, and one containing negative
polarity words. Barbosa and Feng [2010] implemented a two-stage approach for sentiment
detection of tweets. The first stage distinguishes between subjective and non-subjective
tweets, while the second step takes the subjective tweets previously identified, and labels
them to positive or negative classes. To build the subjectivity classifier, the bag-of-word
features are extended with subjectivity information for each word (e.g., weak or strong sub-
jectivity) from a lexicon [Wiebe and Riloff, 2005]. For the polarity classification step multiple
off-the-self sentiment extractors are combined, which make also use of their own sentiment
lexicons.

Specifically for social media posts, it is also common to employ emoticon lexicons consist-
ing of a list of emoticon signs bearing both positive and negative sentiments. For instance,
the lexicon of positive sentiments would contain “:)”, and the lexicon of negative sentiments
would contain “:(”. Go et al. [2009] used a pre-compiled emoticon lexicon to automatically
collect tweets with positive and negative sentiment. For this purpose the Twitter API is
queried for the different emoticons. Following that, a supervised classifier is built on the
labelled instances using both uni-gram and bi-gram features.

For text classification, there is a recent trend of incorporating prior knowledge in the form
of lexicons provided by human annotators, consisting of features associated with a particular
class. Druck et al. [2008b] proposed a semi-supervised approach for text classification,
making use of prior knowledge in form of labelled features. For instance, when building
a classifier distinguishing between topics such as baseball and hockey, instead of providing
labelled instances to the classifier, this approach requires as input a list of words related
to baseball (such as “ball”, “baseball”, “pitching”, hitter etc.) and a list of words related to
hockey (such as hockey, period, shots etc.). These labelled features are then used to obtain
predictions on the unlabelled instances. For this purpose the generalised expectation criteria
is used with the Maximum Entropy discriminative classifier, allowing to put constraints on
the classifier’s expectations for certain class-word combinations.

Although the exploitation of domain-specific lexicons seems to improve the performance
of a text classifier, their application still faces several limitations. First, the vocabularies
of lexicons are constantly changing, as new words are continuously created for describing
a particular domain. For instance for the domain of internet computing words such as
“Pinterest”, “Instagram”, “Google+”, have been introduced in the last four years. Second,
the meaning of a particular word can also evolve with time. For example, the word “owl”
has been used to refer to a type of nocturnal bird, however with the advent of semantic web,
it has been assigned new meaning (Word Ontology Language).

2.6.1.2 Unlabelled Corpora

Another source of valuable background knowledge for TC is a large collection of unlabelled
documents. In such situations clustering based approaches are typically employed. These
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approaches use classical clustering assumption that two documents which are in the same
cluster have the same label.

Liu et al. [2004] proposed an approach which makes use of a large pool of unlabelled
examples for TC. This approach relies on the combination of clustering and feature selection.
First the documents from the pool are clustered using k-means, resulting in each document
being associated with a category. Next, entropy-based feature selection is performed on
the clusters to identify a ranked list of representative words. Following this process, the
selected words are labelled by human annotators and used to create a list of representative
documents for each class, serving as labelled data for TC. After that, the Expectation-
Maximization (EM) algorithm with a Naive Bayes classifier [Nigam et al., 2000b] is built on
the representative examples and the remaining unlabelled data.

Sindhwani and Melville [2008] proposed a semi-supervised approach for sentiment clas-
sification which exploits the information present in both sentiment lexicons and unlabelled
data. The information present in the sentiment lexicon is used to label a few documents with
sentiment labels. Further, this model constructs a document-word bipartite graph contain-
ing both labelled and unlabelled instances, where the values of the edges correspond to the
inverse document frequency of terms in a document. On this partially labelled graph, then
different regularisation operators are applied which conceptually implement a co-clustering
approach, enforcing terms which are in the same cluster dominantly supported on positive
(negative) sentiment documents, to be most likely positive (negative) sentiment words.

One of the main advantages of exploiting background knowledge from unlabelled cor-
pora, as compared to domain-specific lexicons, is that unlabelled corpora is typically much
easier to obtain and maintain. However, the existing approaches for mining knowledge from
unlabelled corpora typically rely on semi-supervised or unsupervised approaches, which may
produce inaccurate results, introducing noise information into learning, which can lead to a
performance loss for TC.

2.6.1.3 External Domain Knowledge Sources

The third type of domain knowledge exploited in TC is external domain knowledge sources
(KSs) (also called knowledge bases), which typically define information and knowledge about
concepts, which is not present in the training and unlabelled data. Such information about
concepts is present in KSs via various graph structures surrounding concepts. These graph
structures connect concepts to one another using links and edges that represent a certain
type of semantic relatedness.

In the literature, there have been several different terms used to refer to KSs: such as
taxonomy, ontology or semantic network. In a taxonomy the concepts are grouped into a
hierarchical structure according to the is-a (generalisation/superclass) and has-a (speciali-
sation/subclass) relationships. In an ontology, the concepts are organised into hierarchies
according to several other semantic relationships, such as synonymy, antonymy or class prop-
erties. An ontology can thus be viewed as an enriched taxonomy. A semantic network or
semantic graph is regarded as a concept graph in which the concepts are connected by any
type of semantic relationships.

Over the past few decades, a large number of KSs have been developed. These knowl-
edge sources can broadly be classified into domain-specific knowledge sources (such as the
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ones developed for the biomedical domain, e.g., Unified Medical Language System UMLS,
SNOMED-CT), and domain-independent knowledge sources (which cover a wide range of
different domains, e.g., WordNet, Wiktionary, DBpedia, etc.).

Figure 2.2: A fragment of the UMLS domain-specific ontology from Bodenreider [2004].

Among the domain-specific knowledge sources, an example of the most widely used
biomedical ontology in NLP is UMLS. This ontology organises the biomedical concepts and
knowledge into hierarchies and associated relations. There are three main components in
UMLS: the Metathesaurus, the Semantic Network and the Specialised Lexicon. These con-
cept have been added and maintained by the US government with the help of domain experts
since 1984. The Metathesaurus is a taxonomy of biomedical concepts. The Semantic Net-
work provides a broad classification of Metathesaurus concepts considering categories such
as organisms, biologic functions or chemicals, and further connects these semantic categories
through relations (such as hypernymy, meronymy or synonymy relation). The Specialised
Lexicon is a lexicon of both English common words and biomedical terms. The main benefit
of UMLS is that it interlinks several biomedical ontologies, and provides a mapping between
their vocabularies. A partial list of these interlinked ontologies is shown in Figure 2.27:

• Medical Subject Headings (MeSH) [Rogers, 1963]8: is a taxonomy of biomedical terms
and concepts, which is used to categorise biomedical literature for indexing purposes.
These concepts are manually selected by experts and then used to index the biomedical
articles through the Medline9/Pubmed10 article databases.

• Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) [IHTSDO,
2010]11: is a comprehensive taxonomy of clinical healthcare terminology, covering
terms related to clinical findings, symptoms, diagnoses, procedures, body structures,
organisms, etc.

7The full list of interconnected ontologies can be found at http://www.nlm.nih.gov/research/umls/
knowledge_sources/metathesaurus/release/source_vocabularies.html

8http://www.nlm.nih.gov/mesh/
9http://www.nlm.nih.gov/pubs/factsheets/medline.html

10https://www.ncbi.nlm.nih.gov/pubmed/
11http://www.ihtsdo.org/snomed-ct/

http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/source_vocabularies.html
http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/source_vocabularies.html
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• Gene Ontology (GO) [Ashburner et al., 2000]: is an ontology for the functional an-
notation of gene-products. It connects each term to other terms within and across
sub-domains using various relations (such as synonymy, hypernymy, meronymy, and
domain-specific relations such as regulation).

• National Center for Biotechnology Information (NCBI) Taxonomy: is a taxonomy
covering terms related to organisms, mostly those described in GenBank12, a database
of nucleotide sequences for organisms.

Concerning the domain-independent knowledge sources, the most widely used KSs in TC
are the following:

• Wordnet [Fellbaum, 1998]: is a lexicalised ontology for the English language, which has
been manually developed by the Cognitive Science laboratory at Princeton University.
This KS serves the role of a dictionary and thesaurus, aiming to group words together
into sets of synonyms (called synsets), providing a short definition of each word (called
gloss), and defining several semantic relationships among them (e.g., hypernymy, hy-
ponymy, coordinate terms, synonymy and antonymy).

• Wikipedia13: is a KS built in a collaborative manner, providing a network of articles
on a wide range of different topics and domains. In this KS, the articles can thus be
regarded as the entities and concepts of the domains. There are several properties
and useful graph structures defined for an article. Concerning the properties, the first
paragraph of the articles provides a description (short definition) about the article;
and additional metadata information (such as the place-of-birth for a person) is pro-
vided in an infobox template, using a tabular format. With regard to semantic graph
structures, the Wikipedia concept graph assigns classes to articles based on their type
(e.g., Person, Book, etc.), while the Wikipedia category graph associates articles to
category labels (general concepts) capturing the topic of the articles. Both of these
semantic graphs form a hierarchical structure, capturing the broader/narrower rela-
tionships. In addition, the synonymous relationships among articles are defined using
redirects, and polysemous article names are grouped together under disambiguation
pages.

• DBpedia [Auer et al., 2007]: is a KS derived from Wikipedia, consisting of structured
information extracted from Wikipedia infoboxes. This extracted information is then
used to define properties and relationships among the articles, which are stored using
Semantic Web standards in RDF triples, in the form of subject-property-object pairs.

• Freebase [Bollacker et al., 2008]: is another knowledge source built in a collaborative
manner, harvesting information from multiple sources such as Wikipedia, ChefMoz,
NNDB and MusicBrainz14, along with data individually contributed by users. Freebase
has its own ontology, where the classes form a hierarchical structure according to the
generalisation/specialisation relationships. The classification of articles in Freebase is,
however, slightly different. For a given Freebase article, a domain denotes the topic of
the article; a type defines a particular kind of entity such as person or location (e.g.,

12https://www.ncbi.nlm.nih.gov/genbank/
13http://www.wikipedia.org/
14http://wiki.freebase.com/wiki/Data_sources

http://www.wikipedia.org/
http://wiki.freebase.com/wiki/Data_sources
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“Barack Obama” is a Person); and properties describe an entity (e.g., “Barack Obama”
has a “place of birth”).

• OpenCyc: is a broad coverage ontology built in the context of the Cyc artificial in-
telligence project [Lenat, 1995], capturing common sense knowledge of everyday life.
The content of the ontology is divided into two main ontological categories: collections,
corresponding to the classes of the ontology (e.g., people, books, etc.), and individuals,
which are instances of the collections. This KS thus contains a network of concepts
and their relationships (mostly taxonomical relations).

As a great achievement of the Semantic Web community, the above mentioned cross-
domain KSs have been interlinked to each other, as well as to other KSs (such as Geonames,
Linked MDB) as part of the Linked Open Data (LOD) project15. This provides a uniform
approach to interlink entities which have a unique dereferentiable URI, a URI which is acces-
sible online. According to the latest LOD cloud16 statistics, the cross-domain dataset (e.g.,
encyclopedias mentioned above) constitute 13% of the LOD cloud, and further 44% covers
a wide range of domains including “Media”, “Life Science”, “Geographic” and “Publications”
domains.

Knowledge Sources and Knowledge Representation
In the majority of the KSs, the information and knowledge present in a KS is classified

into its own consistent ontology, providing means to formally describe the knowledge of their
covered domains. A formal definition of the ontology is given as follows:

Definition 2 (Ontology) An ontology O is a tuple, O = (Cls, P,R, T, Y,A) where
• Cls, P, R are finite sets whose elements are classes(or concepts), properties and entity
resources(facts) of the ontology;

• T is a set of relationships between concepts, T ⊆ (Cls × Cls) (e.g., Mother is a kind-of
Person)

• Y is a set of relationships between an ontological element and its instances, Y ⊆ (R ×
Cls) ∪ (R × P) ∪ (R × R) (e.g., “Barack Obama” is a President; “Barack Obama” wasborn
on 4/08/1961; “Michelle Obama” is the wife of “Barack Obama”)

• A = {condition => conclusion(cls1, . . . , clsn),∀i, ci ∈ Cls} a set of axioms, rules that
allow checking the consistency of an ontology and infer new knowledge through some in-
ference mechanism. (e.g., if two daughters have the same mother then they are sisters.)

An ontology typically consists of classes (also called types or categories), e.g., concepts that
represent entities, which describe a set of objects (for example, “Mother” ∈ Cls, or “Presi-
dent of United States” ∈ Cls); individuals (or entity resources) which are instances of classes
(e.g., http://dbpedia.org/resource/Barack_Obama); properties (or attributes) that en-
tities may have (e.g., “birthDate”); relations which connect concepts and other ontological
elements together, and axioms, a set of rules defined over the ontological classes. It is worth
noting that the literature often makes a distinction between classes and concepts, consid-
ering concepts to be the instances of classes, representing more fine grained information
[Butters and Ciravegna, 2010]. For instance, given the DBpedia ontology, one may consider

15http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
16http://lod-cloud.net

http://dbpedia.org/resource/Barack_Obama
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
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“President of United States“ as a concept, and “Person” as a class. Within the context of
this thesis, however, no distinction is made between concepts and classes, and thus these
terms are used interchangeably.

In order to describe ontologies, several formal ontology languages have been designed.
These different languages differ by their level of complexity (and specificity) ranging from
thesaurus level to description logics (using e.g., OWL Lite17, OWL DL, RDF18), full first-
order logics (e.g., OWL Full,) or higher order logic (e.g Cyc). For describing the instances,
RBF triples are typically used following a subject-predicate-object syntax. For instance,
having an entity resource in an ontology, and considering its relations to other entities,
one can consider the wrote-novel or president-of and attributes, such as population-size or
date-of-birth (e.g., Obama wasborn on 4/08/1961).

Domain Knowledge Sources and Text Classification
The broad information coverage of KSs, their structural properties and continual updates

have made KSs appealing for TC. In addition to these advantages, certain KSs (mostly the
collaborative KS such as Freebase and DBpedia) have the advantage of associating textual
data (called definition or abstract) with its entities and concepts.

This wealth amount of domain knowledge has been exploited for the following benefits:
improving the coverage of domains [Garla and Brandt, 2012; Li et al., 2009; Saif et al.,
2012; Hulpus et al., 2013], enhancing the representation of documents [Saif et al., 2012] or
providing a broader classification of document classes based on the KS ontological classes
[Hulpus et al., 2013].

Garla and Brandt [2012] explored UMLS for clinical text classification aimed at detecting
whether a document discusses a particular disease or not (e.g., Hypertension, Hypercholes-
terolemia). In order to achieve this a novel feature selection approach is proposed, which
aims at representing the documents by their most discriminative features. The proposed fea-
ture ranking method is a modified version of the Information Gain measure, which takes into
account the taxonomical structure of UMLS (specifications (children)) and hypernymyms
of a concept), and the similarity between concepts (as measured by the Lin measure [Lin,
1998]). The intuition underlying this feature selection is that, if a concept is not relevant to
a classification task, then the similarity between this concept’s children is also not relevant.

Li et al. [2009] exploited WordNet for the topic classification of documents. Given a name
of a topic (e.g., “computing”), the first step in this approach consists of performing a word
sense disambiguation approach for mapping this name to its correct WordNet sense. Based
on the selected word sense, Wordnet is used to retrieve the synonyms, hypernyms, hyponyms,
meronyms and holnyms of the word and create a “pseudo document” (expanded feature set)
for that topic. Next, a probabilistic labelling approach is applied, which represents the
unlabelled documents and the pseudo document using a vector space model, and computes
the cosine similarity between these two vectors to decide if a document belongs to a topic or
not. Following this a discriminative classifier is built on the labelled documents and applied
on the unlabelled documents.

Gabrilovich and Markovitch [2006] exploited Wikipedia for creating an enhanced rep-
resentation of documents for TC. Their approach relies on mapping the content of the

17http://www.w3.org/TR/owl-features/
18http://www.w3.org/RDF/
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documents to Wikipedia articles (called concepts), and derive additional semantic features
about these concepts, complementing the original bag-of-words features. In order to achieve
this, an inverted index is built on the Wikipedia articles, in which each word is associated
with the Wikipedia articles they appear. Given an input document, then the system com-
bines the vectors associated with each of its words, incorporating two different semantic
features: concepts and categories derived from the Wikipedia category graph, weighted by
term frequency-inverse document frequency.

Saif et al. [2012] exploited DBpedia for sentiment analysis of tweets. Their approach
aimed at addressing the sparsity of tweets’ content by enhancing the representation of the
documents with additional semantic features. For this purpose, a named entity extractor
is first employed which identifies the entities and concepts within the tweets. Then the
original bag-of-words representation of the tweets is augmented with additional features
about concepts, and the expanded feature set used to train a Naive Bayes model on the
labelled instances.

Another successful application of DBpedia has been proposed by Hulpus et al. [2013],
addressing the problem of topic classification. Their approach relies on mapping the words
inside the documents into DBpedia concepts. In order to achieve this, an off-the-self word
sense disambiguation approach is employed. Once the best concept for each words is ex-
tracted, several graph centrality measures are applied. These assume that words which
co-occur in text are likely to refer to concepts that are close in the DBpedia graph. The
benefits of this approach are better corpus coverage and the ability to model very broad
topic labels.

2.7 Summary

This chapter presented an introduction to the task of text classification, describing the main
instances of text classification explored in this thesis. It also provided a systematic compar-
ison of state-of-the transfer learning approaches for building adaptive text classifiers across
domains. The analysis of the literature revealed that these approaches enable the creation
of stable features for adaptation, making use of the sole textual content of documents.

Following the critical review of state-of-the-art approaches, this chapter presented a
discussion on the available domain knowledge types and their benefits for text classification.
It has been noted that knowledge sources (e.g., the biomedical Unified Medical Language
System knowledge source or the Linked Open Data cloud knowledge sources) provide a broad
coverage of concepts for a wide range of domains, and due their structural properties and
continual updates, they are valuable resources for enhancing the representation of documents
for text classification.

Inspired by the success of exploiting these knowledge sources for traditional text clas-
sification, this thesis proposes the use of domain knowledge sources and Semantic Web
technologies to enrich the content of documents and thus guide the adaptation across do-
mains.

This chapter concludes the background discussion regarding the literature on transfer
learning and the usefulness of domain knowledge for text classification. The next part of
this thesis presents the methodology to investigate the use of domain knowledge sources
for building adaptive text classifiers, providing novel ways of performing text classification
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across domains.
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Chapter 3

Requirements and Design for
Adaptive Text Classification

3.1 Introduction

The previous chapter described the main problems in building adaptive text classification
systems in large repositories spanning multiple domains and text types. One of the major
challenges in designing such systems lies in the distributional differences between the training
and test data, which arise as a consequence of the differences in vocabulary, language and
style between domains. The second main challenge is to deal with the constantly growing
size of these large repositories, making it extremely difficult to collect annotated data for
every new domain and text type. In order to make sense of the information present in such
large heterogeneous environments, therefore, there is a need for automated techniques which
can extract and locate relevant information, and also deal with the multitude of domains.
Adaptive text classification is a suitable approach for making sense of the information present
in such large repositories by, at the same time handling, the variations between domains. It
aims to classify the documents within these repositories into semantic classes, allowing an
effective way to organise and explore the information.

This chapter proposes a knowledge-driven approach for adaptive text classification, which
exploits the data, knowledge and structure within domain knowledge sources to support
adaptive text classification approaches across different domains and text types. It first
presents the requirements which adaptive TC approaches must fulfil. Following this, a
unified framework is presented for TC at multiple granularity levels (corresponding to the
two TC tasks studied within-document and whole-document TC), which distinct transfer
learning approaches can investigate in a modular way, -exploiting annotated data from a
source (KS) domain to categorise documents (or text fragments) into semantic categories.

The remainder of this chapter is structured as follows: Section 3.2 describes the re-
quirements imposed by the environment which adaptive TC must fulfil. Section 3.3 then
describes a unified approach for performing adaptive TC, providing a detailed description
of the individual steps of the approach.

53



54 Chapter 3. Requirements and Design for Adaptive Text Classification

3.2 Requirements

As detailed previously in Section 2.4, adaptive TC techniques can be divided into two
main classes: supervised TC approaches (encompassing domain adaptation and multi-task
learning techniques), and unsupervised TC approaches. Supervised approaches require a
sufficient amount of annotated data from a source domain for classifying documents in the
target domain - corresponding to the initial prior knowledge about the TC task. In contrast,
unsupervised approaches do not rely on any annotated data from the source and target
domains. In this case the common and domain-specific patterns are identified by discovering
groupings of instances in the two domains (using for example k-means clustering). Both
approaches have their advantages and disadvantages: supervised approaches may be more
appropriate for related domain pairs, but may suffer from the uncertainties and ambiguities
in the supervision (or labels), while unsupervised approaches may be applicable for any
domain pairs, but require further parameters to be set (e.g., the number of clusters k).
Previous research has also demonstrated that for most TC tasks supervised approaches
achieve superior results to unsupervised approaches [Pan and Yang, 2010]. In light of these
findings, this research also focuses on the investigation of supervised approaches for adaptive
TC. However, in order to apply these techniques in large repositories, a set of requirements
needs to be identified, which the chosen adaptive TC techniques must fulfil, ensuring efficient
and effective TC in these repositories.

3.2.1 Requirements for Adaptive Text Classification

The requirements for the adaptive text classification techniques are as follows:

• Perform adaptive text classification with a minimal amount of target domain anno-
tated data:
For most domains, gathering annotation for every new domain may require domain ex-
pert knowledge, which could be an expensive and laborious process. The adaptive TC
system thus must be able to classify documents of new domains with minimal super-
vision, requiring fewer annotations than in-domain machine learning approaches. Fol-
lowing the provision of annotated data, the system must perform in a fully automated
fashion without any human intervention, enabling efficient knowledge management in
these large repositories.

• Achieve classification accuracy comparable to supervised machine learning approaches:
The promise of adaptive TC systems lies in capturing the distributional differences
between domains, with the goal of being easily portable to new domains and text types.
In order to achieve effective and efficient text classification in new domains, therefore,
these approaches must also perform better than in-domain supervised machine learning
approaches, thus providing an efficient and effective alternative to them.

• Enable the creation of pivot features from knowledge sources:
One of the key components contributing to the success of an adaptive text classifier
is the pivot features used to bridge the lexical gap between domains. Knowledge
sources present an abundant amount of semantic information for a large number of
domains, serving as potential sources for the creation of pivot features for transfer
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learning. However, in order to ensure that the TC systems can fully exploit the
benefit of semantic information within a particular domain KS, the employed KS
must be representative of the domain under investigation, providing broad coverage of
its concepts. Further, the adaptive text classifier incorporating the created KS pivot
features must perform better than in-domain supervised machine learning approaches.

• Be able to predict the performance of an adaptive text classification:
In order to ensure that the application of text classifier is successful on a target domain,
it is important to provide automated means for quantifying its performance. For this
purpose domain similarity measures must be applied which provide an estimation on
the usefulness of KS pivot features for the target domain. These domain similarity
measures further must achieve high correlation with the performance of an adaptive
TC system, providing strong evidence for its predictive power.

• Comply with the limitations and constraints posed by real-world application scenarios:
The adaptive text classifier must take into account the limitations and constraints of
real world scenarios, such as application domains where the formatting of documents
is lost. This situation can arise in heterogeneous repositories where multiple docu-
ment formats are used. Restricting the text classifier to utilise the lexical information
(words) from the documents only, ignoring the formatting of the documents, allows the
system to integrate with other tools used by largest majority of search engines (e.g.,
the FAST Enterprise Search Platform1, which has a very large adoption in corporate
environments).

3.3 Overview of Approach

This thesis proposes a unified framework for performing supervised adaptive TC across
domains. The use of domain knowledge sources is exploited at each stage of the approach
in order to provide additional labelled data for learning, to facilitate a better representation
of the domains, as well as to create a set of good pivot features for transfer learning.

The main stages of the proposed knowledge-driven approach are summarised as follows:

1 Content Modelling

2 Context Modelling

2.1 Concept Enrichment

2.2 Semantic Meta-graph Generation

3 Pivot Feature Derivation

4 Adaptive Text Classification

In the first stage, Content Modelling, an initial feature representation is constructed for
the source and target domains, making use of the content of the domains, e.g., by employ-
ing a simple BoW model. The second stage, Context Modelling, involves the extraction of
domain concept mentions from within the source and target domains, and the generation

1www.fastsearch.com
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of various semantic meta-graph models from domain knowledge sources surrounding these
concepts, to provide an enhanced representation of the domains. The third stage, Pivot
Feature Derivation, exploits these semantic meta-graph models and identifies a set of pivot
features for transfer learning. The final step Adaptive Text Classification then applies vari-
ous semantic augmentation strategies for incorporating these pivot features into a transfer
learning classifier.

In the following subsections, the various stages of this modular framework are described
in more detail.

3.3.1 Content Modelling

This initial step of the framework deals with the formal representation of the domain con-
tent, serving as input to the supervised adaptive text classifier. In order to enable supervised
transfer learning, firstly, annotated data from a source domain needs to be provided. The
collection of such annotated data, however, may impose difficulties for certain repositories,
for example social media platforms, due to the high topical diversity and rapid publication
rate of the documents. In such cases, data from the Linked Open Data (LOD) cloud is
leveraged. For instance, DBpedia and Freebase LOD KSs contain a large number of doc-
uments (articles) on a range of different domains. These articles are exported and used as
annotated source domain data for learning.

Once the annotated data needed for training a supervised transfer learning classifier
is compiled, the next step consists of constructing an initial feature representation of the
domains comprising various state-of-the-art features used for the studied TC tasks. For
instance, for the within-document content zoning tasks, lexical features are considered [Hi-
rohata et al., 2008], while for the topic classification task, a combination of lexical, syntactic
and semantic features are considered [Muñoz García et al., 2011].

3.3.2 Context Modelling

The second step of the framework aims to enrich the lexical representation of the domains, by
exploiting the contextual information about concepts present in the documents. This stage
comprises two main tasks: concept enrichment employing various online concept extraction
tools, and semantic meta-graph construction exploiting the semantic structures surrounding
concepts in KSs.

3.3.2.1 Concept Enrichment

Entity or concept extraction from documents has been long researched in the Natural Lan-
guage Processing (NLP) and Semantic Web (SW) communities. In the NLP community,
various named entity recognition challenges have been organised over the years, such as the
Message Understanding Conferences (MUC) [Grishman and Sundheim, 1996], Automatic
Content Extraction (ACE)2, CoNLL3 challenges for the news-wire domain, or the BioCre-
AtIvE4 and BioNLP Shared Tasks5 for the biomedical domain, resulting in the development

2http://www.itl.nist.gov/iad/mig//tests/ace/
3http://ifarm.nl/signll/conll/
4http://biocreative.sourceforge.net/
5https://sites.google.com/site/bionlpst/
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of various entity extraction systems. The majority of these systems aimed to recognise a
small set of named entities specific to a domain, e.g., person (PER), location (LOC) or
organisation (ORG) in the newswire domain; or gene and protein names in the biomedical
domain. The SW community has also contributed to the development of entity extractors,
providing web services (OpenCalais6 and Alchemy7), which in addition to extracting the en-
tity mentions in the documents, also assign a unique URI to them according to different LOD
KS ontologies. Recent evaluation campaigns, comparing the performance of state-of-the-art
entity extractors showed relatively high performance in F-measure, achieving accuracy be-
tween 71% and 91% on well formatted news documents [Rizzo and Troncy, 2011], and a
slightly lower accuracy on informal social media posts, in the range of 59%-70.6% [Cano
et al., 2013; Cano Basave et al., 2014]. As an example, consider the tweet presented in Fig-
ure 3.1, highlighting the main entities extracted together with their DBpedia URI obtained
using OpenCalais API.

Figure 3.1: Entities and concepts extracted using OpenCalais API.

The corresponding concept enrichment document model is described in Definition 3.

Definition 3 (Concept Enrichment) Given a domain D = (F (W ), P (X)), consisting
of a set of documents X = {d1, . . . , dn}, and a domain ontology O = (C,P,R, T, Y,A), a
concept enriched representation of the domain is Denriched = (F (W ∪C), P (X)), where W
stands for the initial lexical features of the domain, C = {c1, . . . , cm} denotes a set of unique
concept types (classes) extracted from the domain, and ck refers to the unique URI assigned
from R.

3.3.2.2 Semantic Meta-Graph Generation

Following the process of recognition of domain-specific concepts within the documents, se-
mantic meta-graphs are created from KSs exploiting the semantic information about con-
cepts. The main role of these semantic meta-graphs is to provide a new conceptual rep-
resentation of the domains, which can bridge the lexical gap between domains. A formal
definition of a semantic meta-graph is given as follows:

Definition 4 (Semantic Meta-Graph) Given a domain Denriched = (F (W ∪C), P (X))

enhanced with concepts, and a domain ontology O = (C,P,R, T, Y,A), a semantic meta-
graph (semantic concept graph) is a sequence of tuples G := (R,P,C, Y ) where
• R, P, C are finite sets whose elements are
resources, properties and classes ;

6http://www.opencalais.com
7http://alchemyapi.com/
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• Y is the ternary relation Y ⊆ R× P× C representing a hypergraph with ternary edges. The
hypergraph of a Semantic Meta Graph Y is defined as a tripartite graph H (Y) = 〈V, D〉
where the vertices are V = R ∪ P ∪ C, and the edges are:
D = {{r, p, c} | (r, p, c) ∈ Y }.

Figure 3.2: Example semantic meta-graph constructed from the DBpedia and Freebase
knowledge sources about the entity “Barack Obama”.

This definition will be used to define different variants of the semantic graphs explored
for the individual TC tasks and domain ontologies in Chapter 5 and Chapter 6.

3.3.3 Pivot Feature Derivation

The next step of the framework makes use of the generated semantic concept graphs to
identify a set of pivot features, aiming to improve the generalisation between domains.
The adaptation of a TC classifier is thus guided by the knowledge and structure of the
KS’s surrounding concepts. The main benefits of this approach are that the generalisation
(hierarchies) between concepts is explicitly defined in the ontologies, and more importantly,
in contrast to previous approaches, the selection of pivot features does not require the
computation of any corpus-based statistics (e.g., word frequencies) from the source and
target domains.

3.3.4 Text Classification using Semantic Augmentation

The final stage of the framework aims to build a supervised adaptive text classifier, which
makes use of the large amount of annotated data from the source domain, and a small
amount of labelled data from the target domain to classify documents (or text fragments)
in the target domain into semantic classes. For modelling the domain-specific and domain-
independent characteristics of the domains, the derived pivot features are employed, creating
a new induced semantic feature space for the domains. This new semantic space is then used
to extend the original feature spaces of the domains to build the supervised adaptive text
classifier. In order to perform adaptive TC at multiple granularity (documents, phrases)
levels, covering different domains and text genre, different semantic augmentation techniques
and KSs are exploited. These techniques are briefly described below.
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3.3.4.1 Semantic Augmentation using Feature Duplication

This semantic augmentation technique employs a special feature augmentation strategy
called EasyAdapt [Daumé, 2007] for explicitly modelling the general (domain-independent)
and domain-specific features of the domains. A modified version of this approach (OntoEA)
is proposed, which makes use of the cross-domain pivot features to model the general and
domain-specific characteristics of the domains at a conceptual level. In this approach, the
feature weights for the pivot features are assigned using simple corpus-based statistics (e.g.,
TF-IDF).

3.3.4.2 Semantic Augmentation using Knowledge Source Feature Weights

The main idea behind this semantic augmentation strategy is to capture the domain-specific
and domain-independent weights for the cross-domain pivot features, by comparing different
semantic meta-graphs generated from surrounding features in the KSs. In this case, unlike
the OntoEA approach, the feature weights for the pivot features were computed solely
from the KSs. This allows to capture the importance of the features from a more global
perspective (exploiting the relationships between different sub-graphs in the KSs), which is
only dependent on the KS structure, providing a principled way for assigning weights for
both seen and unseen features.

3.4 Summary

This chapter presented a knowledge-driven approach to adaptive text classification. A mod-
ular architecture, consisting of three main steps was introduced, enabling the application of
different transfer learning techniques for text classification. The first step consists of mod-
elling the content of the domain data, creating the initial base features space for learning.
Following this step, different semantic meta-graphs from KSs are exploited to create a range
of cross-domain pivot features. The newly created features are then used to expand the
original feature spaces of the domains. The proposed approach follows a supervised transfer
learning setting, utilising a large amount of labelled data in the source domain, and a small
amount of annotated data in the target domain to categorise document in the target domain
into topics or semantic classes.

After the careful revision of state-of-the-art approaches, this chapter also enumerates
the main requirements which the adaptive text classification techniques must fulfil. These
requirements were imposed by the heterogeneous nature of the environment, characterised
by the continuous growth of documents and text types. In order to address these chal-
lenges, Chapter 5 and Chapter 6 will present different adaptive techniques which incorpo-
rate background knowledge from KSs. Before that, however, the next chapter proposes a
representation of the domains which goes beyond the simple BoW representation.



Chapter 4

Unsupervised Domain Content
Modelling for Document Zoning

4.1 Introduction

For many real-world application scenarios and domains (e.g. the aerospace domain), it is
very difficult to obtain the annotated data necessary for building high accuracy supervised
TC systems for new domains. Having insufficient or no prior information about examples
belonging to the predefined semantic classes raises the question of learning text classification
models in purely unsupervised manner.

This chapter exploits different unsupervised approaches for modelling the content of the
domains for the task of within-document TC (referred to as document or content zoning),
aiming to recognise the information content (or zones) of long documents. The proposed
approaches are based on probabilistic text modelling techniques (called probabilistic graphical
models), which go beyond the typical bag-of-words representation, providing a flexible way
to model the documents as a mixture of multiple zones (or categories). Further, these models
do not rely on any annotated labelled data or domain knowledge information, which makes
them practical in many applications.

The main focus of this chapter is to study and evaluate the proposed graphical models for
identifying the zones of the documents in different domains. The next chapter (Chapter 5)
will investigate the benefit of exploiting these models for quantifying the similarity between
domains.

The remainder of the chapter is organised as follows: Section 4.2 presents the state-of-the-
art approaches on unsupervised within-document zoning. Section 4.3 describes the proposed
graphical models for modelling the content of the documents. In Section 4.4, the datasets
used in the experiments are presented together with the novel document zone classification
schema proposed for the aerospace domain. Section 4.5 then presents the experimental
results obtained. Possible future extensions are further discussed in Section 4.6.

60
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4.2 Related Work on Unsupervised Document Zoning

There has been little work on applying unsupervised machine learning approaches to docu-
ment zone classification [Barzilay and Lee, 2004; Kagan et al., 2008; Reichart and Korho-
nen, 2012]. These approaches have mostly been evaluated on specific domains, such as the
newswire domain [Barzilay and Lee, 2004] or the biomedical domain [Kagan et al., 2008;
Reichart and Korhonen, 2012].

In the former case, Barzilay and Lee [2004] proposed an unsupervised approach for mod-
elling the content structure of the documents, with the aim of improving two complemen-
tary tasks: information ordering and extractive summarisation. They introduced a Hidden
Markov Model (HMM) to document zoning with the states corresponding to topics from
the documents, and used a state-specific language model to generate the sentences relevant
to the topics. They first applied clustering to compute the similarity between sentences as
measured by the cosine metric and then they estimated the parameters for the HMM.

For the latter biomedical domain, the approaches have mostly tackled a specific document
zone annotation schema, such as the Argumentative Zoning (AZ) annotation schema.

Kagan et al. [2008] proposed an unsupervised approach, which constructs a Huffman
decision tree from the content of the full biomedical journal articles according to the AZ
classification schema. Their approach aims to classify each sentence as belonging to one
of the seven AZ zone categories by creating a grammatical argumentative zone structure
in which the leaves of the tree correspond to the AZ zone types. In order to build the
tree, different features are first constructed for each sentence, capturing the probability of
mentioning a particular phrase (or expression) referring to one of the zone types, as well as
the position of the sentence in a paragraph. Then the final probabilities for each features
are computed using the Perron-Frobenius theory, by building a graph between the sentences
and features, and computing the Perron eigenvalues, serving as the final argumentative tree.

Reichart and Korhonen [2012] recently proposed an unsupervised graphical model based
on Markov Random Fields, a generalised version of the Conditional Random fields model,
allowing the representation of a full joint distribution over its variables, to recognise the
information structure of full journal articles in biomedicine. Their model allows the in-
corporation of different document- and corpus-level information, such as within-document
discourse patterns (e.g., verb tenses, or position of the sentence within the document) and
cross document sentence similarity (according to various features such as POS, location of
the sentence within a document, and words that appear as verb objects in the sentence),
showing superior results to other clustering algorithms such as k-means clustering and hid-
den topic markov model topic models [Gruber et al., 2007].

Despite of the success of these models, current approaches still suffer from some limita-
tions. Firstly, these approaches have been evaluated on well written scientific documents.
The application of unsupervised approaches to technical domains, such as the aerospace do-
main, has also not been addressed yet. These domains can pose additional difficulties for
a document zone classifier due to the intrinsic complexity of the language in them [Butters
and Ciravegna, 2008]. Secondly, the majority of the approaches [Barzilay and Lee, 2004;
Kagan et al., 2008] take into account the order of the sentences when discovering the zones of
the documents. This can, however, restrict the possibility of flexibly modelling the content
of the documents, and account for the heterogeneous nature (reflected in variations in the
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format and style) of the documents in large repositories.
In order to address these limitations, this thesis proposes a generic approach for modelling

the content of the domain documents which is based on probabilistic graphical models.

4.3 Probabilistic Graphical Models for Document Zoning

This section describes two probabilistic graphical models for document zoning which are
refined versions of the Latent Dirichlet Allocation (LDA) [Blei et al., 2003a] model1. Both
models can flexibly model the zones categories of the documents by ignoring the order in
which the sentences occur in them, thus allowing the zones to repeat after each other. The
first model (described in Subsection 4.3.2), called zoneLDA aims to cluster the sentences
into zone classes using only unlabelled data. An extension of zoneLDA, called zoneLDAb
(introduced in Subsection 4.3.3), furthermore makes distinction between common words
and non-common words within the different zone types when clustering sentences into zone
categories.

Before presenting these models in details, the next section (Subsection 4.3.1) starts by
formally introducing the task of document zone identification.

4.3.1 Problem Setting

The role of document zoning is to identify certain portions of documents which can play
important roles in the text and to assign a semantic class to them. There have been various
document zone annotation schemas introduced in the literature for different genre and TC
tasks (as discussed in Subsubsection 2.2.1.1).

For the purpose of describing the notations and graphical models, the widely used 5-
way Abstract-Introduction-Method-Results-Discussion (IMRAD) classification schema will
be employed, where Z ∈ {Introduction, Methods, Results, Abstract, Discussion} and |Z| =
NZ = 5. Example documents in the biomedical and aerospace domains annotated with
different zone types are shown in Figure 4.1 and Figure 4.2.
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Proposed Graphical Models 

Experiments 

Unsupervised Document Zoning using Probabilistic 
Graphical Models 

State-of-the-Art 
Supervised approaches using widely known classifiers:  
SVM (McKnight and Srinivasan, 2003), CRF (Hirohata et al., 2008), 
HMM  (Li et al., 2010), Naïve Bayes (Teufel and Moens, 2002), MaxEnt 
(Merity et al., 2009) 
Active learning: (Guo et al., 2011) 
Unsupervised approaches: (Barzilay and Lee, 2004) proposed an 
HMM model for zoning, which in contrast to our approach takes the 
order of the sentences into account  

Andrea Varga, Daniel Preotiuc-Pietro, Fabio Ciravegna        

Contact   Andrea Varga   a.varga@dcs.shef.ac.uk www.dcs.shef.ac.uk/~andrea/  

Datasets 
Domains  
• scientific domain:  1,106 PLOS journal articles published between 
January 2006 and June 2011 (www.dcs.shef.ac.uk/˜daniel/plos.ids, 
www.dcs.shef.ac.uk/˜daniel/pubmed.py) 
• technical domain: two corpora (Corpus A consisting of  317 reports, 
Corpus B consisting of  372 reports) in the aerospace domain 
compiled within the Samulet research project. 

Conclusions and  Future work 

Document zoning – automatically classifies sequences of text-spans 
(e.g. sentences) within a document into predefined zone categories 
e.g. Introduction-Method-Results-Abstract-Discussion (IMRAD) or 
Metadata-Problem description-Decision-Instructions-
Acknowledgement-Attachment (our proposed document zone 
annotation schema). 

Current approaches for document zoning mostly rely on supervised 
machine learning methods, which require a large number of annotated 
data 

However, in many domains the format and the style of the 
documents changes rapidly, which could cause the supervised 
approaches to achieve sub-optimal results 

Graphical models –generative models, extensions of the widely used 
unsupervised Latent Dirichlet Allocation (LDA) (Blei et al.,2003) 
model, which can flexibly model the structure of the document without 
taking the order of the sentences into account. 

zoneLDA model: takes the assumption of assigning one zone type to 
each sentence 

zoneLDAb model: takes the assumption of assigning one zone type 
to each sentence and furthermore distinguishes between zone-specific 
and background words 

• We obtained promising results for both zoneLDA and zoneLDAb 
models outperforming the baseline LDA model 
• In the majority of the cases the zoneLDA model consistently 
outperforms the zoneLDAb model 
• For the technical domain, the results are also comparable with the 
supervised approach  
• Future work will consist in building more elaborate graphical models 
for zoning 

Proposed Annotation Schema for the  

Technical Domain 
Metadata: introduces the entities (e.g. engine type) under 
investigation 

Problem description:  describes the problem encountered on a 
specific engine or component (e.g. crack) 

Decision:  summarises the decision taken after investigation 

Instructions: describes the general procedure to follow in a certain 
situation  

Acknowledgement: formal part of the reports  

Attachment: contains further evidence (pictures and emails) 
attached to the investigation 
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Figure 1: Graphical models of zoneLDA (left) and zoneLDAb models (right). The words w are observed, while the per
document zone distributions ⌅ and per zone word distributions ⌃ are hidden variables.
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Document zone identification aims to automatically classify sequences of text-spans (e.g. sentences) within a
document into predefined zone categories. Current approaches to document zone identification mostly rely on
supervised machine learning methods, which require a large amount of annotated data, which is often difficult
and expensive to obtain.
In order to overcome this bottleneck, we propose graphical models based on the popular Latent Dirichlet
Allocation (LDA) model.

In many practical tasks there is a need to extract and access certain types of information from a large collection
of textual documents. For example in corporate environments, such as manufacturing, there are a huge
amount of unstructured historical data generated during the lifecycle of a product. In such environments,
engineers wanting to resolve an issue on a particular product are often interested in finding out the cause of
the issue, problems encountered on other similar product types and the conclusion drawn after each investigation.

We propose two generative models zoneLDA and zoneLDAb for document zoning which are refined versions of
the Latent Dirichlet Allocation model. The zoneLDA model is based upon the assumption that documents are
mixture of zones, where a zone is a probability distribution over words.
Compared to the original LDA model, thus zoneLDA models the documents as mixture of zones and furthermore
it makes the assumption that every word in a sentence has the same zone type assigned.

Figure 2 shows the results obtained in terms of F1-measure over the biomedical corpus. As we can observe, the
accuracy of the zoneLDA model slightly increases with the number of zone types learned.

Method-F1 measure Plos Corpus A Corpus B
Random baseline 20, 00% 20, 00% 14, 28%

LDA(baseline) 35, 08% 37, 65% 32, 79%

zoneLDA 35, 22% 64, 03% 47, 25%

zoneLDAb 32, 08% 57, 34% 46, 29%

When we compare the zoneLDA and zoneLDAb models with the baseline LDA model we can furthermore
notice that having the number of word distributions relatively small (e.g. equal to the number of predefined zone
classes: 5 for the scientific corpus, and 7 for the technical corpora), the baseline LDA model outperforms both
models. These results are not surprising, because in such cases, both zoneLDA and zoneLDAb models discover
coherent topics, rather than zone types.

Figure 2 shows the results obtained in terms of F1-measure over the aerospace Corpus A. As we can see, the
zoneLDA model is more sensitive to the number of zone types learned. The best F1-measure of 64.03% was
achieved with 100 zone categories using a symmetric Dirichlet prior (case ”100/3” in Figure 2.
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Figure 4.1: Example biomedical document annotated with zones.

1An introduction on probabilistic graphical model can be found in Section A.1.
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Figure 4.2: Example aerospace document annotated with zones. (Please note that this
diagram describes structure, not the content of an actual report).

Formally, let us assume a domain D consisting of a set of documents D = {d1, . . . , dNd
},

where each document di in D is decomposed into a sequence of sentences of size Ns denoted
by di = {si,1, . . . , si,Nsi

}, and each sentence contains a sequence of Nsi,j ,n words (in the
more general case a sequence of n-grams) si,j = {w1, . . . , wNsi,j ,n

}, where the words are
taken from the vocabulary V .

The goal of document zoning is then to learn the parameters of the models from a set
of unlabelled training documents US = {(dS1

), . . . , (dSn
)|di ∈ D}, and perform inference on

the unlabelled test documents UT = {(dT1
), . . . , (dTn

)|di ∈ D} by assigning to each sentence
si,j in document Di a zone category z ∈ Z.

4.3.2 zoneLDA model

This subsection describes the first LDA-based model, zoneLDA, depicted in Figure 4.3, which
assumes that the domain documents are a mixture of zones, where a zone is a probability
distribution over words. In contrast to the original LDA model, zoneLDA thus models the
documents as mixture of zones, rather than as a mixture of topics, and furthermore it makes
the assumption that every word in a sentence has the same zone type assigned.

The generative process of zoneLDA (as shown in Algorithm 1) can be viewed as a pro-
cedure describing how documents are written based on the available zone types Z. That is,
first, the distribution over the mixture of zones (θd) is chosen for the document. Then, for
each sentence a zone type is randomly selected from the zone distribution, and the corre-
sponding words from that sentence are generated according to the corresponding word-zone
distribution (φz).

Similar to the original LDA, Gibbs sampling is applied to estimate the posterior distri-
bution of hidden variable z for sentence i in document d:
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Figure 4.3: Graphical models of zoneLDA (left) and zoneLDAb models (right). The words
w are observed, while the per document zone distributions θ and per zone word distributions
φ are hidden variables.

Algorithm 1 Generative process of zoneLDA. Z denotes the number of zones, Nd denotes
the number of documents, Ns denotes the number of sentences, Ns,n denotes the number of
words in sentence s, α refers to a vector for Dirichlet prior for the document zone distribu-
tions, θd refers to the document zone distribution for document d, wd,s,n denotes the word
at the position n of the sentence s in document d, β refers to the word probability vectors
as Z × V for the Dirichlet prior for each zone.
1: for all document d = {1, . . . , Nd} do
2: draw θd ∼ Dir(α)
3: for all zone type z = {1, . . . , Z} do
4: draw φz ∼ Dir(β)
5: for all sentence zd,s, where s ∈ {1, . . . , Ns} do
6: draw a zone class zd,s ∼ Multinomial(θd)
7: for all word wd,s,n do
8: draw wd,s,n ∼ Multinomial(φzd,s)
9: When running the model with the number of zone types(Z) greater than the number

of predefined zone classes, perform k-means clustering with distributions of words as
features to obtain |Nz| of zone categories

P (zd,i = k|z−d,i, w) ∝
nkd,−i,· + αk

nd,·,· + Zαk

∑V
v=1(nkd,i,v) + β

nk·,·,v + V β
,

where nkd,−i,· denotes the number of sentences assigned to zone k for document d, nd,·,·
denotes total number of zone types assigned to document d, nk·,·,v denotes the number of
times word v is assigned to zone k, and nkd,i,v is the number of times word v from sentence
i of document d is assigned to zone k.

The last step in the zoneLDA process is then to reduce the number of zone types (Z) to
the number of predefined zone classes (NZ). In order to achieve this, the k-means clustering
algorithm [MacQueen, 1967] is employed over the word distributions of each zone. K-means
partitions zones such that each zone belongs to a cluster with the nearest mean. For com-
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puting the distance between the zones, k-means uses the Euclidean distance between the
distributions.

4.3.3 zoneLDAb model

The second LDA-based model, zoneLDAb model (presented in Figure 4.3), is an extended
version of the zoneLDA. The main extension compared to the zoneLDA model is that
zoneLDAb tries to distinguish between common words and non-common words within the
different zone types. For this reason, an additional zone cluster called background zone is
created. The background zone cluster contains common words (e.g. “use”, “determine”, “in-
dicate”, “cell”) present in multiple zone types, allowing the other zone clusters to capture
only zone specific words. The intuition behind this approach is that multiple zone categories
are likely to introduce noise (e.g. zone types with incoherent words), and thus those words
are not discriminative for a zone category.

As described in Algorithm 2, the generative process of zoneLDAb also differs from that of
zoneLDA, in that for each sentence a word distribution is chosen either from the background
zone distribution or a selected zone distribution. In zoneLDAb thus it is necessary to infer
the zone distribution for each document (θd), the word distributions for each zone type (θz)
and the word distributions for the background words (θB). Furthermore, the π variable has
the role of determining whether a word is a background word or a zone specific word.

Algorithm 2 Generative process of zoneLDAb. Z denotes the number of zones, Nd denotes
the number of documents, Ns,n denotes the number of words in sentence s, α refers to a
vector for Dirichlet prior for the document zone distributions, θd refers to the document
zone distribution for document d, wd,s,n denotes the word at the position n of the sentence
s in document d, β refers to the word probability vectors as Z × V for the Dirichlet prior
for each zone, indd,n,s indicates whether a word is a background word or not
1: draw φB ∼ Dir(β), π ∼ Dir(γ)
2: for all zone type z = {1, . . . , Z} do
3: draw φz ∼ Dir(β)
4: for all document d = {1, . . . , Nd} do
5: draw θd ∼ Dir(α)
6: for all sentence zd,s, where s ∈ {1, . . . , Ns} do
7: draw a zone class zd,s ∼ Multinomial(θd)
8: for all word wd,s,n do
9: draw indicator indd,s,n ∼ Multinomial(π)

10: draw word wd,s,n ∼ Multinomial(φB) if indd,s,n = 0
and wd,s,n ∼ Multinomial(φzd,s) if indd,s,n = 1

11: When running the model with the number of zone types(Z) greater than the number
of predefined zone classes, perform k-means clustering with distributions of words as
features to obtain |Nz| of zone categories

To estimate the posterior distribution of the hidden variable z for sentence i in document
d, again Gibbs sampling is employed:

P (zd,i = k|z−d,i, w, ind)) ∝
nkd,−i,· + αk

nd,·,· + Zαk

×
Γ(nk·,·,· + V β)

Γ(nk·,·,· + nkd,i,· + V β)

V∏
v=1

Γ(nk·,·,v + nkd,i,v + β)

Γ(nk·,·,v + β)
,
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where nkd,−i,· denotes the number of sentences assigned to zone k for document d, nd,·,·
denotes total number of zone types assigned to document d, nk·,·,· denotes the number of
times any word is assigned to zone k, nkd,i,· is the number of times any word from sentence i
of document d is assigned to zone k, nk·,·,v denotes the number of times word v is assigned to
zone k, and nkd,i,v is the number of times word v from sentence i of document d is assigned
to zone k.

4.4 Compiling a Gold Standard

In order to assess the effectiveness of the proposed graphical models, two different domains
are considered: the scientific domain and the technical domain. For the former domain, the
biomedical domain is considered, due to the availability of a large collection of biomedical
journal articles in on-line database repositories such as Pubmed2. For the technical domain,
the aerospace domain is considered, having access to a collection of technical reports col-
lected as part of the SAMULET research project, which provided partial funding for this
research3. Considering the lack of annotated (multi-domain) corpora publicly available for
both domains, the following subsections (Subsection 4.4.1, Subsection 4.4.2) describe the
process of compiling and annotating these corpora.

4.4.1 Constructing a Corpus for the Scientific Domain

The biomedical domain has long been researched for document zoning, using annotation
schemas such as AZ, or IMRAD [Agarwal and Yu, 2009], however, most of these corpora
are small in size (less than 100 documents), or aren’t publicly available.

In order to establish a gold standard of large size for the IMRAD annotation schema, the
Pubmed repository was crawled, which stores a large amount of biomedical journal articles
indexed by different biomedical journals. From this collection, the PLoS Pathogens journal4

was selected, due to its wide coverage spanning multiple years.
From this journal, a total of 1,106 articles were selected, being published between January

2006 and June 20115. The selection criteria was that each article had to contain all five zone
categories of IMRAD.

In the pre-processing stage, further, some of the zone categories were also ignored, for e.g
“References”, “Supporting Information”, “Synopsis”, etc., as they do not belong to the IM-
RAD categorisation schema. In addition, other zone names which would give away valuable
information such as figures, the text in tables or captions were also eliminated.

Additional pre-processing steps aiming to reduce the sparsity of the data include: re-
moval of numbers, words made out of special characters, citations, references; stemming
(using Porter stemming); elimination of sentences containing less than 5 words and words
which occur in less then 10 documents; removal of stop words and one-character words.
The final corpus, thus consists of only stemmed content words that are not particularly
document-specific, a typical procedure when training topic models. Following the execution

2http://www.ncbi.nlm.nih.gov/pubmed
3SAMULET research project was funded by Rolls-Royce and the Technology Strategy Board.
4http://www.ncbi.nlm.nih.gov/pmc/journals/349/
5The IDs of the Plos journals articles can be found at https://sites.google.com/site/

missandreavarga/resources/document-zoning

https://sites.google.com/site/missandreavarga/resources/document-zoning
https://sites.google.com/site/missandreavarga/resources/document-zoning
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of the pre-processing steps, the size of the vocabulary was reduced from the initial 46,698
words to 6,843 words. For downloading the journal articles, the Pubmed Central Open Ac-
cess API6 was accessed, following which the articles were annotated with the different zone
types by executing a Python script written for this purpose7.

The average number of sentences for the zones in the corpus is presented in Table 4.1.

Abstract Introduction Methods Results Discussion
11 27 64 88 53

Table 4.1: Average number of sentences for each IMRAD zone in the PLOS journal corpus.

4.4.2 Constructing a Corpus for the Technical Domain and a Novel
Document Zone Annotation Schema

The aerospace domain is a new area of research for document zoning. Within the context of
the SAMULET research project, a collection of four different corpora, referred to as Corpus
A, Corpus B, Corpus C and Corpus D8, have been compiled and manually analysed with
the purpose of understanding and identifying the commonalities between them, which is
necessary when building automatic document zone classifiers. These corpora contain several
unstructured and semi-structured PDF documents, containing a mixture of natural language
sentences, images and tables. They were written at different stages of an investigation
process, which is typically initiated by a customer raising a request regarding an issue about
a particular engine.

The corpus analysis revealed that the different corpora are related as they all discuss
various service and maintenance operations conducted on an engine due to some issues or
problems which occurred on that engine. Six zone types were identified, which are common
in the reports as they follow a problem-solving perspective of an investigation. For example,
these reports typically contain the Metadata zone, which introduces the main entities (e.g.,
engine, component) under investigation, then they continue with a Problem description
zone, which describes the problems that occurred on these entities; next the Instructions
zone gives typical instruction regarding what procedure should be taken, finally the Decision
contains the decision taken after investigation. In addition, two other zones were found in
these reports: the Acknowledgement zone, which is the formal part of the document, and
the Attachment zone, which includes information about the further evidence taken during
investigation (e.g., in the forms of images). These zone categories are also summarised in
Table 4.2.

Comparing the proposed annotation schema to the existing zone classification schemas
from the literature, it can be noted that some of the zone categories are unique to the
proposed schema, and others share some similarities with the existing ones. For instance, the
new zone categories are the Instructions and Acknowledgement zones, as they are not typical

6http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/
7The Python script can also be found at https://sites.google.com/site/missandreavarga/resources/

document-zoning.
8As the analysed documents belong to Rolls-Royce, due to confidentiality reasons these corpora have

been anonymised.

http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/
https://sites.google.com/site/missandreavarga/resources/document-zoning
https://sites.google.com/site/missandreavarga/resources/document-zoning
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Zone Category Description
1. Metadata (Meta) Contains general information about the report:

the title of the report, the entities (e.g., engine,
component) under investigation, and other
entities (e.g., agents) participating in the

investigation
2. Problem description (Prob) Aims to describe the problem encountered on a

specific entity (e.g., engine, component)
3. Decision (Inv) Summarises the decision taken after

investigation (e.g., the conclusion drawn)
4. Instructions (Ins) Describes the general procedure to follow in a

certain situation (e.g., a given problem)
5. Acknowledgement (Ack) Denotes the formal part of the document,

consisting of the details of the agents (e.g. name)
and their signature

6. Attachment (Attach) Contains further evidence attached to the
investigation (mostly pictures, email, faxes)

Table 4.2: Proposed meta-knowledge annotation schema.

in scientific articles. The Instructions zone aims to describe the step-by-step procedure which
should be followed to solve the problem or complete a procedure. These instructions are
typically split into tasks and subtasks, and may make reference to some manuals (e.g., the
engine manuals). The Acknowledgement zone also typical to these reports acknowledges the
conclusions drawn from the report, and contains the signatures of the responsible agents.

The remaining categories share some commonalities with the zone categories already
proposed in the literature, e.g., with the 4-way (OMRC) sentence classification schema [Lin
et al., 2006]. The Metadata zone maps to the Metadata information of the research articles,
(e.g., title of the article, authors of the article). The Problem description zone corresponds
to the Objective zone category. The Decision zone serves the role of Result and Conclusion
zones. The Attachment zone maps to the figures, and images describing the experiments in
the articles. Furthermore, in this context it may also consists of other documents (such as
emails, faxes) attached in support of the evidence collected during investigation.

Zone categories

Pe
rc

en
ta

ge
 %

Figure 4.4: Distribution of zone categories across the different corpora.

Figure 4.4 shows the percentage of the zone types in each of the corpus. As can be
observed, the majority of the zone categories (such as Problem description, Decision, In-
structions) appear in each corpus. However, the Metadata and Acknowledgement zones are
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only present in Corpus A, Corpus C and Corpus D .

Corpus name Meta Prob Inv Ins Ack Attach
Corpus A 36 3 22 76 17 35
Corpus B 30 49 13 107 13 25

Table 4.3: Average number of lines for each proposed zone category in the technical corpora.

Two of these corpora (Corpus A and Corpus B) were selected for evaluating the proposed
graphical models. Two independent annotators annotated them, achieving an inter annota-
tor Kappa agreement of 85%. The most common mistake made by the annotators was to
omit several sentences from the beginning and end of the zones. This mistake was mostly
due to the annotators annotating the plain text version of the documents, thus missing the
layout and formatting information, which posed difficulties for them. The average length
(number of lines) of the zones in the corpora is presented in Table 4.3.

During the the pre-processing step all the PDF documents were converted into plain
text9 and thus all the formatting information and figures were removed. Similar to the
biomedical corpus, all numbers and stop words were also removed. Furthermore, due to
the diverse format of the documents, consisting of tables and natural language text, the
smallest unit of classification was considered to be the lines of the documents, as opposed to
sentences. After the execution of the pre-processing steps, including the removal of words
which occur in fewer than 5 documents, the size of the vocabulary of Corpus A was reduced
from 4,153 to 1,023. For Corpus B, the initial vocabulary was reduced from 2,964 words to
1,340 words.

Corpus statistics for the two domain corpora are presented in Table 4.4.

Domain Corpus name Number of
documents

Average
number of

sentences per
document

Average
number of

distinct words

scientific domain PLOS journal
articles

1,106 241± 59 966± 174

technical domain Corpus A 317 226± 295 329± 241
Corpus B 372 394± 405 518± 273

Table 4.4: Corpus statistics of documents in the scientific and technical domains.

4.5 Evaluation

This section presents the empirical evaluation of the proposed graphical models on docu-
ment zoning using two different domains, the biomedical domain and the aerospace domain,
comparing the performance of these models to an alternative baseline model. In the next
section, the experimental set-up is presented, followed by a discussion of the results. The
main research question addressed in these experiments is the following: Can probabilistic
graphical models be used to recognise the structure of the documents?

9The Apache PDFBox library available at http://pdfbox.apache.org/ was used for converting the Pdf
documents into plain text format.

http://pdfbox.apache.org/
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4.5.1 Baseline Model

Considering that the zoneLDA and zoneLDAb models are the first two graphical models
for zoning, the baseline model used to evaluate their performance, is also an LDA model.
This baseline LDA model relies on the original LDA model described in Blei et al. [2003a],
with the modifications that at inference time, for each sentence the topics of the words are
examined, and the most likely topic among the words of the sentence is considered as the
zone type for that sentence.

4.5.2 Evaluation Measures

In order to evaluate the efficacy of the proposed models, the pairwise clustering F1 measure
was employed.

Pairwise clustering measures the overlap between the generated clusters and the gold
standard. To compute this metric, the implementation in Mallet10 is used. Taking into
account the gold standard for each pair of sentences, this computes the false positives and
false negatives in order to decide whether the pair should be in the same cluster or not:

Precpair =
|clustered sentence pairs which should be clustered|

|sentence pairs which are clustered|

Recpair =
|clustered sentence pairs which should be clustered|

|sentence pairs which should be clustered|

F1pair = 2×
Precpair × Recpair
Precpair + Recpair

4.5.3 Experimental Set-up

When evaluating the models in the scientific domain, the experiments were repeated 10
times using 60%-10%-30% split, considering 60% of the original corpus as training, 10%
as development, and the remaining 30% as testing. For the case of technical domain, the
original Corpus A and Corpus B were split into 45% training, 10% development and 45%
testing. In each case the performance of the unsupervised graphical models was compared to
the baseline LDA model on the same held-out test data. In particular, for all the graphical
models, Gibbs sampling was run for 10,000 number of iterations and a burn-in of 500.

10http://mallet.cs.umass.edu/

http://mallet.cs.umass.edu/
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4.5.3.1 Hyper-parameter Setting

Given that the values of the parameters can have different effects on the performance of the
proposed models, both zoneLDA and zoneLDAb models were evaluated with different values
for their parameters. First, the number of the word distributions were varied, considering
Z ∈ {5, 50, 100} for the biomedical domain, and Z ∈ {7, 50, 100} for the aerospace domain.
Furthermore, for varying the number of zone types both asymmetric and symmetric values
were tried for α. This lead to a number of six different values for α.

In the first case, a symmetric Dirichlet prior is chosen with α = 0.1, which discovers zone
types that are sparse. In the second case, a symmetric Dirichlet prior is chosen with α = 1.
In the third case, a symmetric Dirichlet prior is chosen with α = 10, which discovers zone
types which are dense.

When considering asymmetric Dirichlet priors, the α values were initialised such that the
αi, i ∈ {1, . . . , Z} values for the different zone categories were based on the development set.
As such, in the fourth setting, the αi, i ∈ {1, . . . , Z} were set such that

∑
i∈{1,...,NZ} αi = 0.1.

In the fifth case the αi, i ∈ {1, . . . , Z} were set such that
∑

i∈{1,...,NZ} αi = 1. And finally,
in the sixth case αi, i ∈ {1, . . . , Z} were set such that

∑
i∈{1,...,NZ} αi = 10. For the β

parameter the same value of 0.01 was assigned in each case.

4.5.4 Results and Discussion

This subsection evaluates the proposed graphical models according to the measure intro-
duced in Subsection 4.5.2. The results obtained for the three corpora using F1 pairwise
clustering measure are presented in the Figure 4.5, Figure 4.6 and Figure 4.7.

Starting with the results obtained for the biomedical domain, shown in Figure 4.5, it can
be observed that the accuracy of the zoneLDA model slightly increases with the number of
zone types learned. The zoneLDA model achieves an F1-measure over 30% for 50 and 100,
having the best F1-measure of 35.22% for 50 zone types with an asymmetric Dirichlet prior
(case “50/6” in Figure 4.5). In contrast, when looking at the results of the zoneLDAb model,
the improvement obtained with different number of zone types is less significant. The best
F1-measure of 32.08% is achieved with 5 zone types and an asymmetric Dirichlet prior (case
“5/6” in Figure 4.5). Compared to the baseline LDA model it can be seen, that with a
small number of number of zone types (e.g., 5), the baseline LDA model outperforms both
zoneLDA and zoneLDAb models, but as the number of zone types increases the performance
of the zoneLDA model becomes superior in most cases.

An explanation for the relatively low performance of these LDA based models can be
that the selected PLOS journal articles cover a large range of sub-topics, exhibiting a large
variations in vocabulary and topic, making the recognition of zones a very challenging task.
Examining the errors made by the zoneLDA model, it can be noted, that the most difficult
zone to identify was the Abstract zone, for which the zoneLDA model achieved an F1-
measure of 1%. The second most difficult zone type was the Introduction zone, for which
the performance was 8%. For the Discussion zone type the F1-measure was 21.4%, for the
Methods zone 30.00% and for the Results zone 66.8%. Similar trends can be observed for
the zoneLDAb model. The Abstract zone type still being the most difficult zone type to be
discovered with an F1-measure of 2%. For the Introduction the zoneLDAb model achieved
an F1-measure of 13.1%, and for the Discussion zone type it achieved an F1 of 25.1%. The
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Figure 4.5: The performance of zoneLDA and zoneLDAb models over the biomedical corpus
varying the number of zone types/alpha values. Z ∈ {5, 50, 100}, “/1” case denotes α = 0.1,
“/2” denotes α=1, “/3” denotes α = 10, “/4” denotes

∑
i∈{1,...,NZ} αi = 0.1, “/5” denotes∑

i∈{1,...,NZ} αi = 1, “/6” denotes
∑

i∈{1,...,NZ} αi = 10. The different values are connected
by lines to help readability.

two best performances were achieved for the Methods zone type, with an F1-measure of
38.9%, and for the Results zone type an F1 of 41.5%.

When examining the results obtained by the baseline LDA model, however, the results
look different. The worst results were obtained for the Discussion zone, with an F1-measure
of 2%, the Methods zone type, with an F1-measure of 3.4%, and the Abstract zone type, an
F1-measure of 5.6%. For the Introduction, the baseline model an F1-measure of 34.8%, and
for the Results zone type an F1-measure of 43.2% was achieved.

The results obtained for aerospace Corpus A are presented in Figure 4.6. As can be
seen, the zoneLDA model is more sensitive to the number of zone types learned. The best
F1-measure of 64.03% was achieved with 100 zone categories using a symmetric Dirichlet
prior (case “100/3” in Figure 4.6). Similar trends can be seen for the zoneLDAb model,
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Figure 4.6: The performance of zoneLDA and zoneLDAb models over Corpus A vary-
ing the number of zone types/alpha values. Z ∈ {7, 50, 100}, “/1” case denotes α = 0.1,
“/2” denotes α=1, “/3” denotes α = 10, “/4” denotes

∑
i∈{1,...,NZ} αi = 0.1, “/5” denotes∑

i∈{1,...,NZ} αi = 1, “/6” denotes
∑

i∈{1,...,NZ} αi = 10. The different values are connected
by lines to help readability.

whose performance improves with the number of zone types learned, achieving the best
F1-measure of 57.33% using 100 zone categories with an asymmetric Dirichlet prior (case
“100/4” in Figure 4.6). Compared to the baseline LDA model, it can also be noted that both
zoneLDA and zoneLDAb models perform consistently better when having a large number
of word distributions and clustering.

Finally, Figure 4.7 shows the results obtained in terms of F1-measure over the aerospace
Corpus B. The performance of the zoneLDA model slightly increases with the number of
zone types learned. The best F1-measure of 47.25% was achieved using 100 zone categories
with an asymmetric Dirichlet prior (case “100/3” in Figure 4.7). The performance of the
zoneLDAb model is also very similar, being over 40% for all the different cases when 50 or
100 zone categories are used, with highest values of 46.29% (case “100/4” in Figure 4.7) being
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Figure 4.7: The performance of zoneLDA and zoneLDAb models over Corpus B varying
the number of zone types/alpha values. Z ∈ {7, 50, 100}, “/1” case denotes α = 0.1,
“/2” denotes α=1, “/3” denotes α = 10, “/4” denotes

∑
i∈{1,...,NZ} αi = 0.1, “/5” denotes∑

i∈{1,...,NZ} αi = 1, “/6” denotes
∑

i∈{1,...,NZ} αi = 10. The different values are connected
by lines to help readability.

obtained for 100 zone types with an asymmetric Dirichlet prior. Compared to the baseline
LDA model, it can also be noticed that both zoneLDA and zoneLDAb models perform
consistently better when having a large number of word distributions and clustering.

Overall, these results indicate that in general the performance of the zoneLDA and
zoneLDAb models increases with the number of word distributions learned. For the ma-
jority of the cases, when the number of word distributions is more than 50, the zoneLDA
model consistently outperforms the zoneLDAb model. This is because the background words
discovered by the zoneLDAb model actually seem to contain zoning information.

When comparing the zoneLDA and zoneLDAb models with the baseline LDA model, it
can furthermore be noted that when the number of word distributions relatively small (e.g.
equal to the number of predefined zone classes: 5 for the scientific corpus, and 7 for the
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technical corpora), the baseline LDA model outperforms both models. These results are not
surprising because in such cases, both zoneLDA and zoneLDAb models discover coherent
topics rather than zone types. On the other hand, when the number of word distributions
learned increases these models exhibit a significant improvement over the LDA model. In
this case, the discovered word distributions are less sensitive to topic information, allowing
the zone information to be found.

These findings can be summarised as follows:

1. Probabilistic graphical models are useful for discovering the structure of the docu-
ments: both zoneLDA and zoneLDAb models perform better than a baseline LDA
model in terms of F1 pairwise clustering performance.

2. The performance of the graphical models depends on the value of their hyper-parameters:
increasing the number of zone clusters leads to higher performance.

4.6 Possible Future Directions

The proposed zoneLDA and zoneLDAb probabilistic graphical models have several advan-
tages. First, they are unsupervised, requiring no annotated data for discovering the infor-
mation structure of the documents. Second, they do not rely on any domain or language
specific tools (e.g. part-of-speech tagging) to model the zones of the documents. Third, they
allow flexible modelling of the content of the documents ignoring the order of the sentences
in them.

Indeed, these models rely only on the lexical features (words) to discover the zones in the
documents, making them more practical for many real word domains (such as aerospace),
where there are no domain-specific resources (e.g., domain ontologies) available, or where
the coverage of the ontologies is low. Given the simplicity of these models, several possible
extensions could be explored:

• Investigating more sophisticated graphical models:
The main assumption underlying the graphical models presented is that the order of
the sentences in the domains is exchangeable, and the problem of document zoning is
purely lexical (making use of only word features to model the zones).
However, for certain documents in the domains, the order of the sentences may provide
additional clues for the identification of zone types. For instance, in scientific articles,
the first zone type is typically the Background, which is followed by the Introduction; in
the technical aerospace domain also the first zone type to be presented is typically the
Metadata zone. There have been different variants of LDA proposed in the literature
which capture the transition between the different topics [Griffiths et al., 2004; Du
et al., 2012]. One possible future direction could be to investigate the usefulness of
such models for zoning. Another appealing future direction could be to investigate
purely non-parametric graphical models [Teh et al., 2006], which allows the discovery
of an arbitrary number of zone types.

• Cluster labelling :
The main goal of the graphical models presented is to organise the sentences within the
documents into different clusters, such that sentences within the same clusters are as
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similar as possible, while sentences from different clusters are dissimilar. The created
clusters are then considered as zones. In some applications, e.g. content filtering,
however, the label (or zone type) of the cluster would also be directly needed in order
to successfully complete the task. In such cases, cluster labelling approaches could be
applied [Carmel et al., 2009], which rely on employing different statistical methods to
map the important words from a cluster to a KS category or ontological concept (e.g.
Wikipedia).

• Incorporating graphical models with supervised machine learning approaches:
The graphical models presented provide an alternative (standalone) solution for discov-
ering the information structure of the documents in a given domain. They also create
a new latent semantic space for the documents, allowing to represent their content as
a mixture of zone distributions. A possible future application of these models could be
to apply them in a multi-domain scenario. For e.g., by learning the zone assignments
between the sentences of the source and target domains (for e.g. as already used in
NER adaptation [Guo et al., 2009; Nallapati et al., 2010] or text classification [Kadar
and Iria, 2011]) and then using the newly learned zone assignment features to build a
supervised transfer learning classifier by augmenting to augment the original feature
spaces with these features.

Finally, another promising future direction could be to incorporate knowledge from KSs
into graphical models.

4.7 Summary

This chapter addressed the problem of within-document TC in the absence of any annotated
data. For this purpose, two unsupervised graphical models were examined for modelling the
content of the domains. The zoneLDA and zoneLDAb models introduced, rely on clustering
the sentences (or lines) in the documents based only on the lexical information about words
in the domains. The main advantages of these models are that: i) they do not require any
annotated examples or domain information; and ii) they ignore the order of the sentences in
the documents, thus providing a more flexible way to model the content of the documents.

Experimental results on both scientific and technical domains showed promising results,
outperforming a strong baseline graphical model, which first discovers the topics of the words
within the sentences, and then infers the most likely zone for each sentence. The results
further demonstrate that the performance of these models depends on the nature of the
documents. The results obtained on the aerospace technical domains, consisting of regular
documents with a restricted vocabulary, were reasonably higher (achieving an F1 measure
up to 64%) than the results obtained on the biomedical journal articles spanning multiple
sub-domains (yielding an F1 measure of 35.22%).

The next chapter continues the discussion of within-document TC, considering the sit-
uation when annotated data is available from a source domain. A range of adaptive TC
models are presented, which can exploit the prior background information within the source
domains. A set of domain similarity measures are also presented, which makes use of the
graphical models presented.



Chapter 5

Supervised Transfer Learning for
Document Zoning

5.1 Introduction

The previous chapter has shown that probabilistic graphical models can be used to automat-
ically generate the within-document segments of long documents in large repositories. These
unsupervised models exploit the lexical information within the domains, with the aim of
inducing a new representation of the documents in which each document is represented by
a probability distribution over zones and the zones as a probability distribution over words.
These models are thus of great importance in situations where one can only make use of
the lexical information within domains as domain information and domain ontologies are
scarce or under-represented, as in the case of aviation maintenance domain or car crash
management domains.

However, over the years, several advancements have been made in creating and maintain-
ing linked knowledge sources, providing abundant amounts of information and knowledge
about particular domains, such as Life Science, Geographic, Publications, etc. (as described
Section 2.6). The most common examples are the biomedical ontologies, for example the
overarching UMLS ontology, which encapsulates a broad spectrum of the biomedical sub-
domains, such as human anatomy, diseases, psychology, health care and microbiology. These
knowledge sources can be used to enrich the representation of documents, exploiting seman-
tic information about the concepts discussed in them.

This chapter presents different supervised transfer learning approaches, which can exploit
the semantic information from KSs for within-document TC. For this purpose, a semantic
meta-graph is generated from KSs. This meta-graph provides novel semantic features for
transfer learning, aimed at reducing the distributional differences between domains. Further,
this chapter also proposes novel unsupervised domain similarity measures for predicting the
performance of an adaptive document zone classifier. The proposed measures are computed
based on the lexical and semantic features of the zone segments in the source and target
domains, with the zone segments being discovered by unsupervised graphical models.

The remainder of this chapter is organised as follows: Section 5.2 summarises the state-
of-the-art approaches to supervised document zoning. Section 5.3 presents an adaptive TC
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framework for within-document TC. Section 5.4 describes a novel set of domain similarity
measures for document zoning . Section 5.5 presents the gold standard dataset used in the
experiments. Section 5.6 then evaluates the proposed adaptive text classification models
and domain similarity measures on a large number of domain pairs in the scientific domain.
Possible future extensions are finally discussed in Section 5.7.

5.2 Related Work on Supervised Document Zoning

The classification of document zones into semantic classes has been proved to be valuable
in many NLP tasks, including Information Extraction (IE) [Mizuta and Collier, 2004], In-
formation Retrieval (IR) [Tbahriti et al., 2005], summarisation [Teufel and Moens, 2002],
[Barzilay and Lee, 2004] and question answering [Caporaso et al., 2006]. For example, IE
systems may target specific zones which contain evidence-rich results as opposed to other
evidence-lean zones. Summarisation systems may produce summaries for each zone sep-
arately. Question answering systems may consider a specific zone from which to extract
the correct answer. IR systems may filter out irrelevant documents based on whether they
contain any zone relevant to the user query.

This section provides an overview of the traditional supervised and semi-supervised ap-
proaches to document zoning, which constitute the state-of-the-art solutions to document
zoning. To remind the reader, the unsupervised approaches were reviewed in the previous
chapter (Chapter 4).

5.2.1 Supervised Learning Strategies

The first class of approaches, supervised approaches make use of a large number of annotated
data to build a document zone classifier for a particular domain, using widely known classi-
fiers such as Naive Bayes [Teufel and Moens, 2002], Hidden Markov Model [Li et al., 2010],
Maximum Entropy [Merity et al., 2009], SVM [Guo et al., 2011a; McKnight and Srinivasan,
2003] and CRF [Hirohata et al., 2008].

Most of these approaches have been applied to scientific articles in the context of com-
putational linguistics [Teufel et al., 2009; Merity et al., 2009], biology [Mullen et al., 2005;
Miyao et al., 2006; Lin et al., 2006; Caporaso et al., 2006; Settles and Craven, 2005; Liakata,
2010; Nawaz et al., 2010; Guo et al., 2011a; Agarwal and Yu, 2009; Hirohata et al., 2008]
and chemistry [Liakata, 2010; Teufel et al., 2009], focusing on either the full text or abstract
of the articles.

Teufel and Moens [2002] showed the usefulness of document zoning in producing execu-
tive summaries of scientific articles based on the Argumentative zoning (AZ) classification
schema. This approach employed the supervised Naive Bayes classifier with various sen-
tential features for the sentences, such as location features (capturing the position of the
sentence), sentence length features, verb syntax features, citation features, meta discourse
features (e.g. agent, action). Taking the rhetorical status of the sentences into account,
this approach enables the creation of task-oriented, user-tailored summaries. Teufel et al.
[2009] further extended the AZ classification schema and showed its applicability to both
life sciences and computational linguistics.

Mullen et al. [2005] employed zoning to enable pinpointing and organising the factual
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information extracted from a large number of full biomedical text articles. For this purpose a
supervised SVM model was employed with various lexical (n-gram) and syntactical features
(part of speech). They also showed that considering the context of the extracted information
enables a much better interpretation of the extracted facts.

Miyao et al. [2006] used zoning to enable accurate retrieval of relational concepts, such
as associations between protein-protein or gene-disease, from a large number of biomedical
Medline abstracts.

Settles and Craven [2005] proposed a two-tier approach to information retrieval based on
zoning using biomedical abstracts. In the first preprocessing step they used zoning to identify
the different information zones of the articles, such as title, abstract, introduction, methods,
results, and discussion. Then in the second stage, they performed zone level classification
to make final document-level predictions.

Caporaso et al. [2006] used automatic document zoning as a pre-processing step in a
question answering system. They used zoning to filter out parts of the documents which
were likely to be irrelevant to user queries, thus enabling a more efficient retrieval.

Similarly, Lin et al. [2006] showed the important role of document zoning in building a
clinical system, aiming to provide access to the information essential to particular patient
treatment process. Their experiments revealed that using HMM with lexical and semantic
features created by the LDA graphical model achieves good results for zoning, and these
results are also competitive with those obtained by an SVM model.

Liakata [2010] highlighted the importance of automatically recognising negations and
speculations from chemistry and biomedical articles. They used the Core Scientific Concepts
(CoreSC) classification schema to capture this information, thus allowing to distinguish
between the positive and negative outcome of the results influencing the conclusions drawn
after an experiment.

Nawaz et al. [2010] considered annotating complex biomedical events from the Genia
corpus using the meta-knowledge annotation schema, thus allowing to better distinguish
between the various ambiguous interpretation of these events.

Guo et al. [2011a] applied document zoning to cancer risk assessment, aiming to estimate
the probability of developing cancer from exposure, based on biomedical abstract articles
available online in Medline. In their experiments they compared the Naive Bayes, SVM
and CRF models using a range of different lexical and syntactic features. Their results
revealed that the SVM model with lexical (uni-gram, bi-gram) and verb features consistently
outperforms the CRF and Naive bayes models.

Li et al. [2010] showed the usefulness of zoning for classifying clinical patient notes
into some predefined section names, such as history of present illness (HPI), family history
(FHX), past medical history (PMH), past surgery history (PSH), allergies (ALL), medica-
tions (Meds), etc., thus enabling a better understanding of the notes. This means that the
information relevant to the user queries can be answered more efficiently, for example when
searching for information about a given patient, the family history zone should be ignored.

Subsequent work has also focused on comparing the performance of an IR system on
abstracts and complex full texts [Lin, 2009]. Experimental results on Medline abstracts
and full text articles from the TREC 2007 genomics evaluation show that IR based on full
text articles does not allow more effective retrieval than that performed only on abstracts.
Furthermore, IR based on document zones consistently outperforms approaches performed
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on abstracts. A better solution, however, consists in combining the evidence from both
document zones and full text.

5.2.2 Semi-Supervised Learning Strategies

In contrast to the supervised approaches discussed above, the second class of approaches,
semi-supervised approaches require only a small amount of annotated examples, which are
used to incrementally learn the document zone classifier. These approaches have only started
to gain attention very recently [Guo et al., 2011b; 2013].

Guo et al. [2011b] proposed a semi-supervised approach for document zoning, which
employs an active SVM classifier using active learning and self-training strategies. The
active SVM classifier is built on a small amount of annotated data, and iteratively queries
for unlabelled data for which the SVM has less confidence about its label. Further, the self
training strategy ensures that both labelled and unlabelled data are efficiently exploited by
training the classifier on both labelled and unlabelled examples annotated with the current
classifier until a certain level of accuracy is reached. The proposed SVM classifier was
evaluated for a variety of different features: such as location (location of a sentence within
the text), words, bi-grams, part-of-speech, voice of the verb, etc. Experimental results on
biomedical abstracts annotated with argumentative zones showed promising results. The
best classifier, utilising all the features, outperformed the supervised SVM classifier.

Guo et al. [2013] presented a semi-supervised approach which employs the Maximum
Entropy model with the Generalised Expectation (GE) criterion. This model makes use of
several discourse and lexical constraints on the sentences for which labelled information is
provided, thereby avoiding in this way the provision of labelled information about the zones
itself. The discourse constraints contain features such as the location of the sentence, while
the lexical constraints include features such as citations, references to tables, lists, tenses of
verbs, etc. Experimental results on biomedical journal articles using the AZ zone schema
showed that using both discourse and lexical constraints, the proposed classifier outperforms
supervised approaches.

The main limitation of the above models is that they still rely on in-domain machine
learning approaches, which only perform well when the distribution of the data remains
the same across domains and text types. However, in many practical scenarios it is often
necessary to extract zones from significantly different corpora/domains.

In order to address these limitations, this chapter proposes the use of transfer learning
for document zoning. For this purpose different transfer learning techniques are presented,
which make use of KSs to bridge the gap between the domains (described in Section 5.3).
In addition, a set of novel domain similarity measures are proposed. These measure the
similarity between multiple domains, serving as a proxy for the performance of a cross-
domain document zone classifier (described in Section 5.4).

5.3 Ontology-driven Adaptive Document Zone Classifi-

cation

This section describes a transfer learning framework for adaptive document zone classifica-
tion of long documents, which is based on the framework introduced in Section 3.3. This
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framework follows the scenario in which a large amount of annotated source domain docu-
ments and a small amount of annotated target domain documents are available.
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Figure 5.1: Architecture of the adaptive document zone classification framework using se-
mantic features.

An overview of the individual components of the framework using biomedical domain
ontologies (SNOMED-CT and MeSH) and datasets (from the Pubmed repository1) is pre-
sented in Figure 5.1, which can be summarised as follows: 1) provision of annotated examples
and content modelling ; 2) concept enrichment using domain ontologies; 3) semantic concept
graph generation; 4) pivot feature creation; 5) building adaptive document zone classifiers
by employing different transfer learning techniques 6) evaluation of the adaptive document
zone classifiers on held out documents.

In the next subsection (Subsection 5.3.1), the motivation behind the biomedical domain
ontologies employed is explained, together with an overview of their main characteristics.
This is followed by a detailed description of each component of the framework.

5.3.1 Motivation

UMLS [Bodenreider, 2004] is the largest knowledge source for the biomedical domain, de-
veloped and maintained by the US government since 1986. This KS has been manually
built by domain experts, covering a large amount of biomedical terms, which are organised
in a metathesaurus, a repository of biomedical terminology and relationships. The main
goal of this metathesaurus is to group names for the same concepts together from different
biomedical knowledge sources. In order to achieve this, each concept is assigned a unique
identifier (Concept Unique Identifier (CUI)), one or more concept names, and pointers to
the other knowledge source vocabularies.

Over the years UMLS has been continually updated with new concepts and, thus, its size
has significantly increased. According to Woods et al. [2006], the number of new concepts
added to UMLS exceeded 300,000 between 1998 and 2002, and it further increased with
100,000 new concepts added between 2002 and 2003. The number of concepts to date are
over two million2.

1www.ncbi.nlm.nih.gov/pubmed
2http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.

html

http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html
http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html
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The most widely used UMLS taxonomies in NLP are SNOMED-CT and MeSH. The
main statistics about these KSs are summarised in Table 5.1.

SNOMED-CT [IHTSDO, 2010]3 serves as one of the largest parts of UMLS. It covers a
wide range of clinical terms, from clinical findings, to symptoms, to diagnoses, to procedures,
to body structures, to organisms. SNOMED-CT organises its concepts into its own ontology
(sct), having each concept associated with several “descriptors” - names used to refer to the
concept - such as a unique “Fully Specified Name (FSN)”, a “preferred term”, and one or
multiple synonyms. The concepts are further connected to one another through the hyponym
relation and other domain-specific relationships such as (“due to”, “causative agent”). The
number of unique classes in sct is 401,200, the maximum depth of the ontology is 28 and
the maximum number of children is 2,712.

The MeSH taxonomy [Rogers, 1963]4 has been used to index biomedical journal articles.
This indexing task is performed manually by a small group of highly qualified experts at
the U.S. National Library of Medicine (NLM), who first read the full text of the journal
article, and then assign the main concepts discussed within the articles as indexing terms to
the articles. These main concepts are often refereed to as MeSH Headings or “descriptors”,
being associated with a definition and a list of synonyms for these descriptors. The MeSH
controlled vocabulary (msh)5 contains 245,885 classes which are organised into hierarchies
representing subtopics (sub-hierarchies). Among these, 26,581 are main headings, which
are grouped into 83 topical Subheadings (SHs). In addition, there are 203,658 Supplemen-
tary Concepts (formerly Supplementary Chemicals), which are structured in an almost flat
structure, where most of the classes do not have any children assigned.

Semantic Features SNOMED-CT (sct) MeSH (msh)
Resources 0 0
Class (Cls) 401,200 245,885
Property (P) 0 0

Table 5.1: Statistics about sct and msh KS ontologies.

The goal of the trial was to assess coronary heart disease and congestive heart failure ...

NER

<http://purl.bioontology.org/ontology/SNOMEDCT/Coronaryatherosclerosis>

NER

<http://purl.bioontology.org/ontology/SNOMEDCT/Congestiveheartfailure>

Figure 5.2: Example sentence mentioning different entities.

Overall, the main benefits of exploiting these domain ontologies (sct, msh) are that
3http://bioportal.bioontology.org/ontologies/SNOMEDCT
4http://www.nlm.nih.gov/mesh/
5http://bioportal.bioontology.org/ontologies/MESH

http://bioportal.bioontology.org/ontologies/SNOMEDCT
http://bioportal.bioontology.org/ontologies/MESH
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they provide a broad coverage of the biomedical domain and also allow the exploitation of
semantic information about their concepts. Considering the example sentence depicted in
Figure 5.2, one could exploit the semantic information about the entity resource
<http://purl.bioontology.org/ontology/SNOMEDCT/Coronaryatherosclerosis> to provide
additional information about the entity, e.g. being a type of Heart disease or Disorder of
coronary artery. Given that each entity resource is associated to several ontological classes
or concepts, thus additional contextual information can be provided for these resources,
enabling the exploitation of various semantic structures related to these resources. The
use of semantic structures within these domain ontologies could therefore help to provide a
conceptual representation of the domain documents by incorporating additional contextual
information about the concepts identified in them.

5.3.2 Provision of Annotated Data and Content Modelling

The initial step of the framework consists of the provision of annotated data for both source
and target domains, and the creation of an initial feature space for modelling the content of
these domain documents.

In order to compile a corpus of annotated documents for both source and target domains,
the PubMed Central6 repository was used, which provides a vast number of journal articles
belonging to a range of different biomedical sub-domains. Following the process described in
Mihăilă et al. [2012], for a particular biomedical sub-domain (e.g. health), the PubMed API7

was employed for retrieving journal articles written in English, whose Broad Subject Term
contains only the name of the sub-domain. The compiled biomedical corpora were further
pre-processed and split into zones using the methodology described in Subsection 4.4.1.

Considering the supervised transfer learning scenario employed by this framework, thus
the source domain consists of an abundant amount of labelled data from one biomedical
sub-domain (e.g. health), while the target domain contains a small number of annotated
documents and a large amount of unlabelled documents from another sub-domain (e.g.
biology).

To construct an initial feature set for the domains, the simple BoW representation is used,
where each word is weighted by TF-IDF (term frequency-inverse document frequency)8. This
representation allows the zones to be represented based on what is discussed in them.

5.3.3 Concept Enrichment using Domain Ontologies

The next step of the framework relies on enhancing the representation of the documents
in the source and target domains. In order to achieve this, the entities and concepts are
extracted from the documents using the BioPortal REST API9 according to different UMLS
KSs. BioPortal [Salvadores et al., 2013] is a community-based ontology repository which
provides access to all the UMLS KSs10 via its public SPARQL endpoint11. The data in

6http://www.ncbi.nlm.nih.gov/pmc/
7http://www.ncbi.nlm.nih.gov/pmc/tools/oai/
8It also worth noting that the purpose of this thesis is to evaluate the added value of incorporating

semantic features into cross-domain document zone classifiers. The incorporation of other state-of-the-art
features such as part-of-speech into this framework thus serves the goal of future work.

9http://purl.bioontology.org/mapping/rest
10The list of all ontologies within BioPortal is enlisted at https://bioportal.bioontology.org/

ontologies.
11http://sparql.bioontology.org/

http://www.ncbi.nlm.nih.gov/pmc/
http://www.ncbi.nlm.nih.gov/pmc/tools/oai/
http://purl.bioontology.org/mapping/rest
https://bioportal.bioontology.org/ontologies
https://bioportal.bioontology.org/ontologies
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BioPortal has been populated by researchers and practitioners, and stored in RDF format,
consisting of ontologies and vocabularies, as well as data instances.

This framework exploits the SNOMED-CT and MeSH UMLS KSs for enrichment. These
KSs are employed alone as well as in combinations, resulting in three different concept en-
richment scenarios: i) sct - linking concepts to the SNOMED-CT ontology; ii) msh - linking
concepts to the MeSH ontology; and iii) sct+msh - linking concepts to both SNOMED-CT
and MeSH KSs.

5.3.4 Semantic Meta-graph Generation

In this step, the concepts within the documents are mapped into SNOMED-CT and MeSH
URIs, allowing the incorporation of rich semantic information about concepts into document
zone classifiers.

SNOMED
sct:coronary heart disease

sct:Coronary atherosclerosis

rdf:type

sct:Heart disease

rdf:type

sct:Disorder of coronary 
artery

rdfs:subClassOf

MESH

msh:Coronary disease

owl:sameAs

msh:coronary heart disease

msh:Cardiovascular disease

Semantic Meta-Graph (extract)

rdfs:subClassOf

msh:Diseases

sct:coronary heart 
disease

sct:Coronary atherosclerosis

sct:Heart disease
msh:Cardiovascular disease

sct:Structural disorder of heart

sct:Hypertensive left ventricular hypertrophy

rdf:typerdf:type

MESH

Figure 5.3: Deriving a semantic meta-graph from multiple biomedical KSs.

Figure 5.3 presents an extract of the semantic classes for the entity “coronary heart dis-
ease”. For this entity resource, this framework retrieves all the <subject, predicate, object>
instance triples associated with it, and exploits the semantic structure created from these
triples at a meta-level using a semantic meta-graph, Resource meta-graph, constructed ac-
cording to Definition 4. To remind the reader, let G := (R,P,C, Y ) denote the resource
meta-graph employed in this framework.

This resource meta-graph contains the complete information present in KS ontologies
about a given resource. Given the entity e, the G(e) represents a set of tuples G(e) =

(R,P,C, Y ′), consisting of the aggregation of all resources, properties and classes associated
with this entity.

Taking into account the two different UMLS KSs exploited in this framework, three
different Resource meta-graphs are considered: i) one from SNOMED-CT using sct ontology;
ii) one from MeSH using msh ontology; and iii) another one from the sct+msh combined
ontologies.



5.3. Ontology-driven Adaptive Document Zone Classification 85

au
gm

en
ta
ti
on

st
ra
te
gy

fe
at
ur
e
na

m
e

fe
at
ur
e
va
lu
e

F
B
as
el
in
e

B
oW

co
ro
na

ry
,h

ea
rt
,d

is
ea
se

F
′ A
1

C
ls

C
ls
_
1

f T
F
I
D

F
(s
ct
:H

ea
rt
D
is
ea
se
)

C
ls

C
ls
_
2

f T
F
I
D

F
(m

sh
:C
ar
di
ov
as
cu
la
rD

is
ea
se
s)

C
ls
(s
ct

+
m
sh

)
C
ls

1
+

C
ls

2
f T

F
I
D

F
(s
ct
:H

ea
rt
D
is
ea
se
),

f T
F
I
D

F
(m

sh
:C
ar
di
ov
as
cu
la
rD

is
ea
se
s)

C
ls
(s
ct

+
m
sh

C
C
A
)

C
ls

1
+

C
ls

2
C
C
A

f C
C
A
(s
ct
:H

ea
rt
D
is
ea
se
,m

sh
:C
ar
di
ov
as
cu
la
rD

is
ea
se
s)

F
′ A
2

pa
re
nt
(C

ls
)

pa
re
nt
(C

ls
1
)

f T
F
I
D

F
(s
ct
:D

is
or
de

rO
fC

ar
di
ov
as
cu
la
rS
ys
te
m
)

pa
re
nt
(C

ls
)

pa
re
nt
(C

ls
2
)

f T
F
I
D

F
(m

sh
:D

is
ea
se
s)

T
ab

le
5.
2:

E
xa

m
pl
e
se
m
an

ti
c
au

gm
en
ta
ti
on

st
ra
te
gi
es

fo
r
th
e
en
ti
ty

co
ro
na

ry
he
ar
t
di
se
as
e
us
in
g
se
m
an

ti
c
fe
at
ur
es

de
ri
ve
d
fr
om

th
e
re
so
ur
ce

m
et
a-
gr
ap
h.

T
he

fir
st

co
lu
m
n
st
an

ds
fo
r
th
e
au

gm
en
ta
ti
on

st
ra
te
gi
es

us
ed

to
in
co
rp
or
at
e
se
m
an

ti
c
fe
at
ur
es

in
to

a
do

cu
m
en
t
zo
ne

cl
as
si
fie
r,
th
e
se
co
nd

co
lu
m
n
pr
ov
id
es

ex
am

pl
e
fe
at
ur
es

to
w
hi
ch

th
e
au

gm
en
ta
ti
on

st
ra
te
gi
es

ar
e
ap

pl
ie
d,

w
hi
le

th
e
th
ir
d
co
lu
m
n
gi
ve
s
ex
am

pl
es

of
po

ss
ib
le

va
lu
es

fo
r
ea
ch

su
ch

fe
at
ur
e.

T
he

ex
am

pl
e
se
m
an

ti
c
fe
at
ur
es

co
ns
id
er
ed

he
re

ar
e
C
ls

1
,C
ls

2
,r
ef
er
ri
ng

to
se
m
an

ti
c
cl
as
s
fe
at
ur
es

de
ri
ve
d
fo
r
co
ro
na

ry
he
ar
t
di
se
as
e
fr
om

th
e
sc
t
an

d
m
sh

on
to
lo
gi
es

re
sp
ec
ti
ve
ly
.
Fo

r
th
e
sa
ke

of
co
m
pl
et
en
es
s,
in

th
e
fir
st

ro
w
,t
he

or
ig
in
al

fe
at
ur
e
sp
ac
e
de
no

te
d
by

F
,c

on
si
st
in
g
of

B
oW

fe
at
ur
es
,i
s
al
so

pr
es
en
te
d.

Fo
r
th
is

fe
at
ur
e
re
pr
es
en
ta
ti
on

no
au

gm
en
ta
ti
on

st
ra
te
gy

is
ap

pl
ie
d.

Fo
r
th
e
se
m
an

ti
c
fe
at
ur
es

fu
rt
he
r
tw

o
di
ffe

re
nt

au
gm

en
ta
ti
on

st
ra
te
gi
es

ar
e
pr
es
en
te
d:

F
′ A
1
ex
te
nd

in
g
th
e
F

fe
at
ur
es

w
it
h
se
m
an

ti
c
fe
at
ur
es
,
an

d
F
′ A
2

au
gm

en
ti
ng

th
e
F

fe
at
ur
es

w
it
h
se
m
an

ti
c
fe
at
ur
es

de
ri
ve
d
fr
om

th
e
cl
as
s
hi
er
ar
ch
ie
s
of

K
Ss

(e
.g
.
co
ns
id
er
in
g
th
e
pa

re
nt

cl
as
se
s
of

a
cl
as
s
(p
ar
en
t(
C
ls
))
).

In
ad

di
ti
on

,f
or

th
e
F
′ A
1
au

gm
en
ta
ti
on

st
ra
te
gy

tw
o
di
ffe

re
nt

on
to
lo
gy

co
m
bi
na

ti
on

st
ra
te
gi
es

ar
e
al
so

pr
es
en
te
d:
C
ls

1
+
C
ls

2
co
ns
is
ti
ng

of
a
na

iv
e
co
m
bi
na

ti
on

of
th
e
tw

o
se
m
an

ti
c
cl
as
s
fe
at
ur
es

w
ei
gh

te
d
w
it
h
T
F
-I
D
F
,a

nd
C
ls

1
+
C
ls

2
C
C
A
co
ns
is
ti
ng

of
se
m
an

ti
c
fe
at
ur
es

ob
ta
in
ed

af
te
r
pr
oj
ec
ti
ng

th
es
e
fe
at
ur
es

in
to

a
la
te
nt

sp
ac
e
us
in
g
C
C
A

di
m
en
si
on

al
it
y
re
du

ct
io
n
te
ch
ni
qu

e.



86 Chapter 5. Supervised Transfer Learning for Document Zoning

5.3.5 Pivot Feature Derivation and Combination

Having the semantic concepts graphs extracted, the following step consists of deriving se-
mantic pivot feature from them, as follows:

Cls: Semantic class features: This feature set consists of a set of all the classes asso-
ciated with an entity from a Resource meta-graph. For instance, for the entity “coronary
heart disease”, these features would be sct :HeartDisease, msh:Cardiovascular Diseases, and
msh:Coronary Disease. The main intuition here is that entity classes can be characteris-
tics of a zone type, serving as trigger words for that zone segment. For instance, the
entity class “Symptom Finding” is more likely to be used in the “Results” zone, than in the
“Introduction” zone.

Given that this framework exploits semantic concepts graphs from multiple ontologies
(sct+msh), the combination of this semantic information is achieved by applying different
ontology combination strategies:

sct+msh - Naive Combination: This strategy provides a simple approach for the com-
bination of the semantic features of two ontologies by creating a joint feature set of the
features obtained from the individual ontologies. The main idea behind this approach is to
represent the content of the documents using the complete semantic information obtained
from the two ontologies. Considering that the two ontologies only contain a partial overlap
of the concepts discussed in them, this strategy provides complementary information and
knowledge about concepts, resulting in a more complete and comprehensive view of the
content/subject of the documents.

sct+mshCCA - Dimensionality Reduction: While the previous strategy utilises all the avail-
able information from the employed ontologies, this information may often contain partial
inconsistencies or noise (such as duplicate entities or concepts), due to the open nature of
these resources. In order to avoid this, a more principled way for the combination of these
ontologies is to apply canonical correlation analysis (CCA), which aims to remove the noise
from the data by ignoring the irrelevant dimensions. This technique has been successfully
applied for a variety of different problems dealing with multiple modal [Trivedi et al., 2011]
or multi-domain data [Blitzer et al., 2007b].

CCA computes a low-dimensional shared embedding of both sets of features such that
the correlation among the features of the two ontologies is maximised in the embedded
space. Let Dsct ∈ RD1×N denote a dataset consisting of a set of pivot features from the
sct ontology, and DD2×N

msh denote a dataset comprising a set of pivot features from the msh
ontology for the joint source and target domain dataset D. CCA seeks to find a linear
projection wfsct ∈ RD1 and wfmsh

∈ RD2 , such that after projecting, the corresponding
instances of the domains are maximally correlated (similar) in the embedded space. The
correlation coefficient between these two datasets can be computed as follows:

ρ = max
wfsct ,wfmsh

wT
fsct
·Dsct ·DT

msh · wfmsh√
(wT

fsct
·Dsct ·DT

sct · wfsct) · (wT
fmsh

·Dmsh ·DT
msh · wfmsh)

.

Considering that the correlation is not affected by the rescaling parameters wfsct and wfmsh
,

CCA is posed as an optimisation problem:
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max
wfsct ,wfmsh

wT
fsct ·Dsct ·DT

msh · wfmsh
, subject to

wT
fsct ·Dsct ·DT

sct · wfsct = 1, wT
fmsh

·Dmsh ·DT
msh · wfmsh

= 1.

Hardoon et al. [2003] showed that the above formulation is equivalent to solving following
generalised eigen-value problem:(

0 ΣDsct,Dmsh

ΣDmsh,Dsct
0

)
×

(
wfsct

wfmsh

)
= λ

(
ΣDsct,Dsct

0

0 ΣDmsh,Dmsh

)
×

(
wfsct

wfmsh

)
,

where ΣDsct,Dmsh
stands for the cross-covariance between Dsct and Dmsh, while ΣDsct,Dsct

and ΣDmsh,Dmsh
stands for the covariances of the Dsct and Dmsh datasets respectively.

5.3.6 Building Adaptive Document Zone Classifier

After the extraction of the pivot features, the next step in this framework consists of the
incorporation of these features into the TC framework. For this purpose, the framework
employs different semantic augmentation strategies, which provide alternative ways for the
combination of the original lexical feature space and newly inferred semantic feature space.

5.3.6.1 Semantic Augmentation and Feature Duplication

The key idea behind the semantic augmentation strategies employed is to allow the explicit
modelling of the general (domain-independent) and domain-specific characteristics of the
source and target domains, which can both contribute to the performance of a document
zone classifier. In order to achieve this, a modified version of the widely used Easy Adapt
(EA) [Daumé, 2007] transfer learning approach is presented. EA has proven success on a
range of problems, including sentiment classification, named entity recognition and part-of-
speech tagging.
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Figure 5.4: A diagram representation of the original EA and modified OntoEA transfer
learning strategies.

An overview of the original feature duplication strategy underlying the EA approach, as
well as its extension, named OntoEA, is presented in Figure 5.4. Algorithm 3 and Algorithm
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Algorithm 3 Adaptive within-document TC using the original EasyAdapt (EA) approach.
1: Input : LS labelled source domain documents (e.g. articles related to health), LT

labelled target domain documents (e.g. articles related to biology), UT unlabelled target
domain documents, FS feature set of the source domain documents, FT feature set of
the target domain documents.

2: Merge the lexical feature set of the first domain (FS) with the lexical feature set of the
second domain (FT ) into a common lexical feature set (FLex = FS ∪ FT )

3: Augment the examples x =< xlex > from LS with a source-specific copy of the original
lexical features < xlex, xlex, 0 > according to F

4: Augment the examples x =< xlex > from LT , UT with a target-specific copy of the
original lexical features < xlex, 0, xlex > according to F

5: Train a supervised classifier (e.g. SVM) on the annotated examples from both domains
(LS ∪ LT )

6: Output : Annotated UT target domain documents.

4 further summarise the main steps of EA and OntoEA, respectively. As can be observed, the
extension in OntoEA is to perform feature duplication on both lexical (Lex) and semantic
(Sem) features by applying the same EA feature augmentation strategy twice. The intuition
here is that performing feature repetition on the semantic feature space could allow further
reducing of the gap between domains, as domains which are distant in the lexical feature
space, may become closer in the newly created semantic feature space.

Before the execution of feature duplication, first the lexical (FLEX) and semantic (FSEM )
features are augmented together into a merged feature set F = FLEX ∪ FSEM . For this
purpose, two different semantic augmentation strategies are investigated. Examples for the
various semantic features and semantic augmentation strategies employed for the entity
coronary heart disease are provided in Table 5.2.

Semantic augmentation: This strategy augments the original lexical features (e.g BoW)
with additional semantic information extracted for the entities appearing in a document.
Given the Cls (i.e. semantic class features) feature set introduced in Subsection 5.3.4, the
feature set F is extended into F ′A1−Cls by adding the class features extracted from the
aggregation of the semantic meta-graphs of those entities appearing in the document x.
Therefore, the expanded feature vocabulary size is |F ′A1−Cls| = |F | + |Fcls| where |Fcls|
denotes the total number of these class features.

Semantic augmentation with concept generalisation: This augmentation strategy
aims to further improve the generalization of a document zone classifier by exploiting the
subsumption relation among classes within the SNOMED-CT or MeSH ontologies. Therefore
in this strategy, instead of using the typeOf class cls of an entity, a more generic class of cls
is considered, namely the set of parent classes of cls(parent(cls)). In this case the feature
set F is enhanced with the set of parent classes of cls where cls ∈ Cls. Therefore the size
of the augmented feature set F ′A2−Cls is computed as |F ′A2−Cls| = |F |+ |Fparent(cls)|, where
|Fparent(cls)| denotes the total number of unique parent classes of cls.

Having the final augmented feature set F ′ created (step 7 in Algorithm 4), the main steps
of OntoEA can be summarised as follows. For each instance x =< xlex, xsem >∈ F ′ an aug-
mented feature vector is created < xlexgeneral

, xlexsource , xlextarget , xsemgeneral
, xsemsource ,

xsemtarget > consisting of a general, source-specific and target-specific version of both lexical



5.4. Measuring the Similarity between Domains for Cross-domain Document Zoning 89

Algorithm 4 Adaptive within-document TC using the proposed OntoEasyAdapt(OntoEA)
approach.
1: Input : LS labelled source domain documents (e.g. articles related to health), LT

labelled target domain documents (e.g. articles related to biology), UT unlabelled target
domain documents, FS feature set of the source domain documents, FT feature set of
the target domain documents.

2: Merge the lexical feature set of the first domain (FS) with the lexical feature set of the
second domain (FT ) into a common lexical feature set (FLex = FS ∪ FT )

3: Extract entities and concepts from both source and target domains
4: Exploit different semantic meta-graphs for the extracted concepts in both domains
5: Create semantic features from the semantic meta-graphs for both source FSC

and target
FTC

domains
6: Merge the semantic feature set of the source domain (FSC

) and target domain (FTC
)

into a common semantic feature set (FSEM = FSC
∪ FTC

)
7: Merge the original common lexical feature space (FLex) with the semantic feature space
FSEM , (F = FLEX ∪ FSEM )

8: Augment the examples x =< xlex, xsem > from LS with a source-specific copy of the
original lexical and semantic features < xlex, xlex, 0, xsem, xsem, 0 > according to F

9: Augment the examples x =< xlex, xsem > from LT , UT with a target-specific copy of
the original lexical and semantic features < xlex, 0, xlex, xsem, 0, xsem > according to F

10: Train a supervised classifier (e.g. SVM) on the annotated examples from both domains
(LS ∪ LT )

11: Output : Annotated UT target domain documents.

and semantic features. Step 8 creates the augmented feature vectors for the source domain
documents. Then, step 9 creates the augmented feature vectors for the target domain doc-
uments. In step 10 a classifier is trained on the augmented labelled instances, and tested on
the remaining unlabelled target data in step 11.

5.4 Measuring the Similarity between Domains for Cross-

domain Document Zoning

This section proposes various measures for quantifying the distributional differences between
domains. Designing such a domain similarity measure can be extremely important, as it can
serve as a proxy for the performance of a cross-domain document zone classifier. It is
expected that the closer the two domains, the better the performance of a cross-domain
document zone classifier [Pan and Yang, 2010]. In order to quantify this similarity, the
documents are decomposed into bag-of-zones, and further into bag-of-words and bag-of-
entities, as follows:

Definition 5 Let
−→
ds = (zs1 , zs2 , . . . , zs|Z|) define the bag-of-zones representation of the

source domain DS, where zsi contains all the paragraphs which were assigned to cluster
si; and

−→
dt = (zt1 , zt2 , . . . , zt|Z|) the bag-of-zones representation of the target domain DT ,

where ztj contains all the paragraphs which were assigned to cluster tj. Further, each zone
is split into bag-of-words and bag-of-entities, where the entities were obtained follow-
ing the entity enrichment process: −→z sjBOW

= (ws1 , . . . , wsm), −→z sjBOE
= (es1 , . . . , esn)

corresponding to the representation for the source domain, and −→z tjBOW
= (ws1 , . . . , wsm),

−→z tjBOE
= (es1 , . . . , esn) corresponding to the representation for the target domain. The

weight for each features in −→z BOW , and −→z BOE is TF-IDF.
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Given that gathering annotation for every domain is difficult, this section proposes un-
supervised domain similarity measures, which rely only on the lexical and conceptual in-
formation present in the domains. That is, the proposed measures disregard any of the
label information about the documents. In order to create the bag-of-zones representation
of the domain documents, the unsupervised probabilistic clustering approach zoneLDA (see
Subsection 4.3.2) is employed12. The main idea behind zoneLDA is to model the generative
story in which the documents were created and assign each paragraph to one of the clusters.

Once the paragraphs are clustered, the similarity between two domains is measured by
computing the lexical and ontological closeness of the paragraphs belonging to the indi-
vidual zone types. The novel document similarity derived for cross-domain document zone
classification can be computed as follows:

simintradoc(
−→
ds,
−→
dt) = sim((zs1 , zs2 , . . . , zs|Z|), (zt1 , zt2 , . . . , zt|Z|))

=
∑

zs,zt∈z1,...,z|Z|

lexica_sim(zs, zt) + onto_sim(zs, zt).

To compute the lexical similarity (lexica_sim(zs, zt)) between the source and target
zone pairs, classical corpus similarity measures are employed [Kilgarriff, 2001], including χ2

statistics, a symmetric KL divergence metric, and cosine similarity:

• Chi-squared (χ2) test : The χ2 test measures the independence between the lexical
feature sets (FSLEX

and FTLEX
) of the zones in the training and test datasets. Given

the −→z sBOW
and −→z tBOW

vectors, the χ2 test can be computed as

χ2 =
∑ (O − E)2

E
,

where O is the observed value for a feature, while E is the expected value calculated
on the basis of the joint corpus.

• Kullback-Leibler symmetric distance (KL): Originally introduced in Bigi [2003], the
symmetric KL divergence metric measures how different the −→z sBOW

and −→z tBOW
vec-

tors are on the joint set of features FSLEX
∪ FTLEX

:

KL(−→z sBOW
||−→z tBOW

) =
∑

f∈FSLEX
∪FTLEX

(−→z sBOW
(f)−−→z tBOW

(f)) log
−→z sBOW

(f)
−→z tBOW

(f)

• Cosine similarity measure: The cosine similarity represents the angle that separates
the train and test vectors −→z sBOW

and −→z tBOW
:

cosine(−→z sBOW
,−→z tBOW

) =

∑FSLEX
∪FTLEX

k=1 (−→z sBOW
(fSk

)×−→z tBOW
(fTk

))∑FSLEX
∪FSLEX

k=1 (−→z sBOW
(fSk

))2 ×
∑FSLEX

∪FTLEX

k=1 (−→z tBOW
(fTk

))2

It can also be noted that while the cosine measure captures the actual similarity
between domains, the other two measures (KL, χ2) measure the distance (inverse

12The motivation behind the selection of zoneLDA is that in the previous experiments it was shown to
perform better than other probabilistic models for document zoning. The proposed similarity measures are,
however, general and allow the incorporation of any other probabilistic graphical model suitable for this
task.
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similarity) between domains.

To capture the ontological similarity (onto_sim(zs, zt)) between the domains, the bag-
of-entities representation of the zones is used. Given two zones zsj and ztj , the ontological
similarity is defined as follows [Mihalcea et al., 2006]:

sim(zsj , ztj ) =
1

2
(

∑
e∈zs(max(e, zt) ∗ idf(e))∑

e∈zs
+

∑
e∈zt(max(e, zs) ∗ idf(e))∑

e∈zt
).

That is, for each entity e in the source zone (e ∈ zsj ), an entity from target zone (e ∈ ztj )

is found, such that the two entities have the highest similarity (max(e, zt)) according to
one knowledge-based similarity measure13. For this purpose, two different knowledge-based
similarity measures are investigated: path-based similarity measures (simlch, simwup), and
information content-based similarity measures (simlin, simjnc), both using sct and msh as
reference ontologies:

• Leacock & Chodorow’s path-based similarity measure [Leacock and Chodorow,
1998]: This measure uses the normalised path between two concepts, which is com-
puted as :

simlch = −log length(c1, c2)

2 ∗MAX
,

where length is the number of edges on the shortest path in the ontology between two
concepts and MAX is the depth of the taxonomy.

• Wu & Palmer’s path-based similarity measure [Wu and Palmer, 1994]: This measure
takes into account the depth of the individual concepts c1 and c2 in the ontology, as
well as depth of the least common subsumer (LCS):

simwup =
2 ∗ depth(LCS)

depth(c1) + depth(c2)

• Jiang & Conrath’s information content-based similarity measure [Jiang and Con-
rath, 1997]: This measure compares the sum of the information content of the indi-
vidual concepts with that of their lowest common subsumer

simjnc =
1

IC(c1) + IC(c2)− 2 ∗ IC(LCS)
,

where IC(c) is the information content [Patwardhan et al., 2003] of a concept, and
LCS denotes the lowest common subsumer, which represents the most specific concept
that the two concepts have in common.

• Lin’s information content-based similarity measure [Lin, 1998]: This measure scales
the information content of lowest common subsumer with the sum of information
content of two concepts:

simlin =
2 ∗ IC(LCS)

IC(c1) + IC(c2)

13For the computation of various similarity measures, the UMLS-Similarity package was employed, avail-
able at http://search.cpan.org/dist/UMLS-Similarity/utils/query-umls-similarity-webinterface.pl

http://search.cpan.org/dist/UMLS-Similarity/utils/query-umls-similarity-webinterface.pl
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5.5 Compiling a Gold Standard Dataset for Cross-domain

Document Zoning

In order to evaluate the effectiveness of the proposed transfer learning framework for docu-
ment zoning, a list of biomedical sub-domain corpora has been compiled. Considering that
to date there is no publicly available multi-domain dataset for document zoning, the dataset
compiled by Mihăilă et al. [2012] is employed. This dataset was initially used for studying
biomedical sub-domain variation on the full text of journal articles.

The original multi-domain dataset comprises of articles belonging to 20 biomedical sub-
domains, which were selected from Pubmed by taking into account the subject heading asso-
ciated with the documents, corresponding to the sub-domain of the documents14. For each
such sub-domain a total of 400 documents were considered. These were further split into the
IMRAD zones (Z = {Abstract, Introduction, Methods, Results, Discussion}) using the same
methodology described in the previous chapter (Section 4.4). That is, the documents were
first pre-processed by removing all the tables, figures, mathematical formulas, references,
and metadata information (authors, affiliations, publication history), thereby disregarding
additional clues which could help in the recognition of zones. Following this, additional pre-
processing steps were performed, including the removal of stopwords and stemming of words
(using Porter stemmer). When creating the lexical features for the classifiers, the feature
spaces were further reduced to the top-1000 words weighted by TF-IDF for each domain.

Zone Name Equivalent section labels
Introduction Introduction, Background, Objectives, Review, Aims, Context
Method Design and Method, Experimental Design, Materials and Methods,

Experimental Design, Algorithm
Results Result, Results, Main Results
Discussion Discussion, Conclusion, Conclusions, Implications

Table 5.3: Zone name variations across multiple sub-domains.

The most challenging step in the creation of the final gold standard was the normalisation
of the zone names for the documents. As illustrated in Table 5.3, there exists a large
variation in the expressions used to refer to a particular zone type. In order to address
these challenges, a list of manually tailored rules were fired. These rules were also manually
validated to ensure the correctness of the resulting zone annotations.

For the purpose of the experiments conducted in this chapter, the number of sub-domain
corpora was narrowed down to seven sub-domains: Biology (Biol), Cell Biology (Cell-
Biol), Communicable Diseases (Communi), Health Services Research (HealthS ), Medicine
(Medicin), Public Health (PublicH ), and Tropical Medicine (Tropica). CellBiol is a sub-
area of biology, which studies cells (their structure and properties) and their interaction
with the environment. Communi focuses on research findings related to clinically evident
illness resulting from an infection, including, for instance, HIV disease, Diarrheal diseases,
and Malaria. HealthS studies methods and concepts related to the financing, organisation,

14The complete list of biomedical sub-domains covered in the original dataset are: Allergy and Im-
munology, Biology, Cell Biology, Communicable Diseases, Critical Care, Environmental Health, Genetics,
Health Services Research, Medical Informatics, Medicine, Microbiology, Neoplasms, Neurology, Pharmacol-
ogy, Physiology, Public Health, Pulmonary Medicine, Rheumatology, Tropical Medicine, Virology.
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Zone name Biol CellBiol Communi PublicH HealthS Tropica Medicin
Abstract 1,043 461 1,418 1,613 1,639 1,478 1,754

Introduction 2,146 1,159 1,596 2,212 2,285 1,880 2,581
Method 4,287 4,881 3,210 4,455 5,400 3,819 3,971
Results 8,333 7,333 2,827 4,240 5,008 3,507 3,875

Discussion 3,349 3,777 3,220 4,060 3,681 3,041 3,302

Table 5.4: The total number of paragraphs for each IMRAD zone in the seven biomedical
sub-domain corpora analysed.

delivery, evaluation, and outcomes of health services. The articles belonging to the Medicin
sub-domain, cover all aspects of the medicine, including diagnosis, treatment, and prevention
of illness. PublicH is concerned with research findings related to public health (including
biostatistics and epidemiology) and health care (focusing on nursing and medicine). Finally,
Tropica is a branch of medicine, which deals with health problems (e.g., tropical disease
such as malaria) which occur in tropical and subtropical regions.

General statistics for the analysed biomedical sub-domains are provided in Table 5.4 and
Table 5.5. As expected, the shortest zone type is the Abstract, followed by the Introduction.
Concerning the other three zone types, it can be seen that in the majority of the cases the
Discussion is shorter than the Results and Methods, while the length of the Results and
Methods largely depends on the corpora. In the Biol and CellBiol domains the paragraphs
within the Results zone are longer than in the Methods zone, while in the rest of the domains
the opposite trend can be observed.

Statistics Biol CellBiol Communi PublicH HealthS Tropica Medicin

L
ex
ic
al AvgW/Para 131.31 130.47 102.00 98.11 89.77 111.95 110.78

BoW 152,269 121,924 80,297 85,996 77,666 90,673 107,905
BoE 2,155 1,644 2,058 2,084 1,629 1,755 2,423

Se
m
an

ti
c SMDcls 1,691 1,207 1,591 1,543 1,221 1,357 1,804

MSHcls 2,465 1,747 2,153 2,105 1,703 1,796 2,517

SMDcls/ent 2.40 2.33 1.91 1.79 1.80 1.83 2.01
MSHcls/ent 2.15 2.11 1.55 1.35 1.80 1.52 1.64

Table 5.5: General statistics about the analysed biomedical sub-domain corpora, consisting
of 400 documents/sub-domain. With regard to the lexical features: AvgW/Para stands for
the average number of words per paragraph (zone), BoW denotes the unique number of
words in the corpus, BoE refers to the unique number of entities in the corpus. Concerning
the semantic features: SMDcls is the average of number of unique class features derived
from sct , and MSHcls is the average number of unique class features created from msh.

Regarding the semantic features, the number of unique msh classes is higher than the
number of sct classes in each sub-domain corpora. This indicates that a larger number
of msh classes are used to enrich the domain documents. Further, concerning the average
number of classes per entities, the values are very similar for the two KSs ontologies. On
average, most entities have two sct and msh classes associated with them.
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5.6 Evaluation

This section presents a series of experiments to evaluate the proposed adaptive document zone
classification framework and unsupervised domain similarity measures using the different
semantic pivot features and augmentation strategies described in Section 5.3.

Before discussing these experiments in detail, the baseline methods used in the experi-
ments are presented in Subsubsection 5.6.1.1, and the evaluation measures are introduced
in Subsection 5.6.2. Following this, the experimental setup is described in Subsection 5.6.3,
and a discussion of the results is provided in Subsection 5.6.4.

5.6.1 Baseline Methods

5.6.1.1 Baseline Methods for Adaptive Document Zone Classification

The proposed adaptive text classification framework has been evaluated using different se-
mantic features and augmentation strategies against several baseline models corresponding
to state-of-the-art approaches for document zoning. These baseline models consist of the
following features:

Bag-Of-Unigrams (BoW) Features: The uni-gram features captures the natural in-
tuition to utilise what it is known about a particular zone segment, so that the features
which are most indicative of a zone segment can be detected and the appropriate label(s)
assigned. The BoW features consist of a collection of words weighted by TF-IDF (term
frequency-inverse document frequency), capturing the relative importance of a word in a
document with respect to its use on the whole corpus.

Bag-Of-Entities (BoE) Features: This feature set extends the lexical BoW features
with entities extracted using available entity annotation services, e.g. BioPortal API,
weighted by TF-IDF. In this case the value of the BoE features thus captures the oc-
currence of the entity and concept pairs fBoE(′coronaryheartdisease′ ∧ sct:HeartDisease),
where sct:HeartDisease corresponds to the most likely concept returned by BioPortal.

Considering the above baseline features, four strong baseline supervised machine learning
models are employed:

• SRC_ONLY: a source only document zone classifier, in which an SVM model is built
only on the source domain documents,

• TGT_ONLY: a target only document zone classifier, in which an SVM model is built
only on the target domain documents,

• SRC_TGT: a source-target document zone classifier, in which an SVM model is built
on both source and target domain documents,

• EA: the original easy-adapt document zone classifier, in which an SVM model is built
on both source and target domain documents.

5.6.1.2 Baseline Domain Similarity Measures for Document Zoning

Given that to date there are no domain similarity measures proposed for document zoning,
the baseline domain similarity measures used in the experiments are counterpart measures
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of the proposed ones, which make use only of the lexical information in the domain docu-
ments15. That is, first the bag-of-words and bag-of-entities are merged into a singe vector
−→z sBOW

∪−→z sBOE
for the source domain, and −→z tBOW

∪−→z tBOE
for the target domain. Next,

the cosine, χ2 and KL-divergence measures are computed over these vectors, as follows:

simbaseline(
−→
ds,
−→
dt) = cosine|KL|χ2(−→z sBOW

∪ −→z sBOE
,−→z tBOW

∪ −→z tBOE
)

5.6.2 Evaluation Measures

The measures used to evaluate the performance of the different document zone classifiers
were the standard precision, recall, and F1-measure.

The precision (Precz) for a given zone z is computed as the ratio of the number of cor-
rectly annotated paragraphs to the total annotated:

Precz =
|correctly annotated paragraphs for zone z|

|annotated paragraphs for zone z|

The recall (Recz) for a given zone z is the ratio of the number of correctly annotated
paragraphs to the total number that should have been annotated:

Recz =
|correctly annotated paragraphs for zone z|

|paragraphs which should have been annotated for zone z|

The evaluation is based on macro-averaged values in which the precision and recall values
for the individual zone types are averaged. That is, the macro-average precision is computed
as Prec = (

∑
z∈Z Precz)/|Z|, and the macro-average recall as Rec = (

∑
z∈Z Recz)/|Z|.

The macro-average F1-measure then provides a weighted combination of the two mea-
sures, defined as

F1 = 2× Prec×Rec
Prec+Rec

5.6.3 Experimental Set-up

Two different document zone scenarios were analysed and contrasted in the experiments: a
single domain (or in-domain) case, in which case the baseline SVM document zone classifier
trained on in-domain data only is employed (using the TGT_ONLY classifier), and a cross-
domain scenario, in which case an SVM document zone classifier is trained on either out-of
domain data alone (using the SRC_ONLY classifier) or combined with in-domain data
(using the SRC_TGT, EA or OntoEA classifiers).

The experiments were performed using 80%-20% split for the target domain. For the
TGT_ONLY document zone classifier 80% of the target domain documents is used. The
same 80% is added to the 100% of the source domain documents for the cross-domain
classifiers (SRC_TGT, EA and OntoEA). The SRC_ONLY classifier uses 100% of the

15In addition, it also worth noting that all the state-of-the-art domain similarity measures would require
the domain documents to be annotated with zoning information, which is outside of the scope of the pro-
posed measure. For this reason these measure are not directly comparable with the state-of-the-art domain
similarity measures, e.g. A-distance [Rai et al., 2010].
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source domain documents. Each of these document zone classifiers were evaluated on 20%
of the target domain documents, using 5-fold cross-validation.

In light of the two document zone scenarios analysed, a series of experiments were con-
ducted. The first set of experiments aims to assess the benefit of incorporating semantic
pivot features into a document zone classifier. For this purpose the performance of the
single-domain (SVM TGT_ONLY) and cross-domain (SVM SRC_TGT, EA and OntoEA)
document zone classifiers are evaluated using two different resource meta-graphs, one de-
rived from sct and one from msh. The main research question addressed are “Do semantic
meta-graphs built from KSs contain useful semantic features about entities for document
zoning?” “Which KS ontology provides more useful information for document zoning?”

In the second set of experiments, the effectiveness of the proposed adaptive OntoEA
document zone classifier is compared against the baseline models in terms of annotation
efficiency. The main research questions under investigation are “To what extent does the
OntoEA classifier exceed the performance of the baseline classifiers?” “How many annotated
in-domain examples are required to build a reliable adaptive document zone classifier?”

Finally, the third set of experiments examines different domain similarity measures for
quantifying the accuracy of a document zone classifier. For this purpose, the correlation
between the proposed domain similarity measures and document zone classifiers is computed.
The goal of this analysis being to investigate the research questions “Is it possible to predict
the performance of a document zone classifier?” “Which domain similarity measure presents
the highest correlations with the accuracy of a document zone classifier?”.

5.6.4 Results and Discussion

5.6.4.1 The Usefulness of Semantic Meta-Graphs in Cross-domain Document
Zoning

In-domain Scenario The goal of this first set of experiments is to investigate the impact
of incorporating semantic KS-based features into an in-domain document zone classifier.
For this purpose the SVM TGT_ONLY classifier built on in-domain data is assessed using
semantic pivot features derived from resource meta-graphs and compared against two base-
line features: BoW and BoE. The employed resource meta-graphs are generated from two
biomedical KSs: sct and msh ontologies.

Considering that the proposed framework aims to investigate the usefulness of KS on-
tologies both independently and jointly, four different SVM TGT_ONLY classifiers have
been created. The first two TGT_ONLY classifiers make use of individual KS ontologies:
TGT_ONLY(sct) using semantic features from sct, and TGT_ONLY(msh) using semantic
features from msh. The two other TGT_ONLY classifiers were using the combined KS
ontologies: TGT_ONLY(sct+msh) and TGT_ONLY(sct+msh CCA).

The results obtained for the semantic features using different feature augmentation and
ontology combination strategies (as described in Subsubsection 5.3.6.1) in terms of F1 mea-
sure are summarised in Table 5.616. For the sake of completeness it is mentioned here, that
the results obtained for the upper class features are presented in the Section B.2, as they did
not show a significant improvement compared to the semantic class features (the differences
between the two features were less than 1% for F1.).

16The results obtained in terms of precision and recall are further presented in Section B.1.
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TGT Domain Semantic Baseline

sct+msh
CCA

sct+msh sct msh BoW BoE

Biol 0.718 0.700 0.708 0.706 0.705 0.709
CellBiol 0.815 0.800 0.804 0.804 0.799 0.805
Communi 0.663 0.629 0.643 0.643 0.636 0.641
HealthS 0.622 0.592 0.603 0.603 0.606 0.604
Medicin 0.711 0.671 0.694 0.693 0.683 0.693
PublicH 0.644 0.619 0.632 0.627 0.619 0.629
Tropica 0.653 0.619 0.634 0.633 0.625 0.633
Average 0.689 0.661 0.674 0.673 0.668 0.673

Table 5.6: The performance of the SVM TGT_ONLY classifier in terms of F1 measure
using semantic class (Cls) features extracted from two KS ontologies (sct and msh) and
various baseline lexical features (BoW , BoE ). The employed KS ontologies are evaluated
both independently and jointly: sct and msh referring to the case when the individual KSs
are used; sct +msh referring to the naive combination of semantic feature from the two
KSs; and sct +mshCCA corresponding to the scenario in which dimensionality reduction is
applied over the semantic features of the two KSs. The best results obtained for the semantic
and baseline features are shown in bold.

Inspecting the results obtained for the TGT_ONLY classifier using the baseline lexi-
cal features (BoW, BoE ), it can be observed that the BoE features outperform the BoW
features for most of the domains, although by a small margin. The best overall results
further were obtained using semantic features. In particular, the TGT_ONLY classifier
employing semantic class features from the sct and msh ontologies combined with dimen-
sionality reduction (TGT_ONLY(sct+mshCCA)) achieved the best results. The highest
improvement of 2.8% over the BoW features was achieved for the Medicin and the Tropica
sub-domains (t-test, p < 0.01), while the smallest improvement of 1.3% was observed for
the Biol (p < 0.05). Compared to the BoE features, the biggest gain of 2.2% was obtained
for the Communi (p < 0.01), and the smallest gain of 1% for the CellBiol (p < 0.05).

Concerning the results obtained for the individual KS ontologies, the TGT_ONLY(sct)
and TGT_ONLY(msh) classifiers achieved comparable results. The improvement of these
classifiers on the baseline BoW features was also very small, less than 1% for F1.

Regarding the ontology combination strategies, it can be observed that the naive combi-
nation of domain ontologies did not perform very well. The performance of the TGT_ONLY
(sct + msh) classifier achieved inferior results to the classifiers using individual KS ontolo-
gies (TGT_ONLY(sct), TGT_ONLY(msh)), and baseline features. An explanation for this
may be that the two ontologies contain inconsistencies, which may well be addressed using
CCA, confirming the superiority of the TGT_ONLY(sct+msh CCA) classifier.

Cross-domain Scenario This section continues the discussion by describing the results
obtained using semantic KS-based features in cross-domain document zone classification.
In this case, the performance of the proposed SVM OntoEA cross-domain document zone
classifier is compared against the SRC_TGT, TGT_ONLY, SRC_ONLY and EA baseline
classifiers.

According to the different KSs and enrichment strategies employed, four different On-
toEA classifiers were built: two using individual KS ontologies (OntoEA(sct) making use of
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sct ontology and the OntoEA(msh) making use of msh ontology), and two using combined
KS ontologies (OntoEA(sct+msh) and OntoEA(sct+msh)CCA). In the same vein, four dif-
ferent versions of SRC_TGT and SRC_ONLY were created. These classifiers are evaluated
against the SRC_TGT, EA and SRC_ONLY baseline models using lexical features in Table
5.717.

Analysing the results obtained for the baseline lexical features, it can be observed that the
BoE features significantly outperform the BoW features for most domain pairs, considering
all the SRC_TGT, EA and SRC_ONLY baseline classifiers (p < 0.05). These results
are in agreement with the results obtained for the TGT_ONLY classifier. The biggest
improvement on the BoW features can be observed for the SRC_ONLY classifier. In this
case, a gain of over 10% is achieved in the majority of domain pairs (for 26 out of 42 domain
pairs), and the highest gain of 55.9% is obtained for the Medicin->Biol domain pair. In the
case of the SRC_TGT classifier, an improvement of over 5% can be seen for 20 domain pairs,
and the highest improvement of 16.6% was observed for the Biol ->Medicin pair. For the
EA classifier, 23 domain pairs reached an improvement of 1.0-4.3% over the BoW features.
The biggest improvement of 4.3% was obtained for the Biol ->HealthS domain pair.

Looking at the semantic class features, similar to the TGT_ONLY classifier, the best
results were achieved using semantic class features derived from multiple KS ontologies,
combined with the CCA ontology combination strategy18.

For all the three OntoEA, SRC_TGT, SRC_ONLY cross-domain classifiers, the (sct+
msh)CCA ontology combination strategy significantly outperformed the sct+msh strategy,
as well as the feature augmentation strategies employing a single KS ontology (sct and
msh) (p < 0.05). The OntoEA (sct+msh)CCA classifier significantly outperformed the
SRC_TGT(sct+msh)CCA classifier with an improvement of 2.4-7.5% (over 4% for 32 domain
pairs), the EA(BoE ) classifier with an improvement of 2.6-8.4% (over 4.0% for 38 domain
pairs), the TGT_ONLY (sct + msh)CCA classifier with a gain of 1.1-6.3%, (over 3% for
28 domain pairs) and the SRC_ONLY(sct+ msh)CCA classifier with an improvement of
6.3%-32.8% (over 15% for 19 domain pairs). Further, the OntoEA (sct+msh)CCA classifier
significantly outperforms the OntoEA classifiers using a single KS; an improvement of 2.8-
7.2% can be observed against the OntoEA (sct) classifier, and of 3-7% against the OntoEA
(msh) classifier.

Regarding the sct+msh ontology combination strategy, it can be seen that the perfor-
mance of the cross-domain classifiers did not improve on the individual KS features (compare
column 4 with 5 and 6; column 8 with 9 and 10, and column 16 with 17 and 18 in Table
5.7). These results are also in light of the results obtained for the TGT_ONLY classifier,
indicating that the two KS ontologies may contain repetitions and redundant information
about the concepts.

Comparing the individual KS ontology features, it can be noted that the performance
of all three OntoEA, SRC_TGT and SRC_ONLY cross-domain classifiers is comparable
using different sct and msh ontologies (compare column 5 with 6; column 9 with 10, and
column 17 with 18 in Table 5.7). These results indicate that the two KS ontologies provide
similar semantic information about biomedical concepts. However, when comparing the

17The results obtained in terms of precision and recall are further presented in Section B.1.
18For the sake of completeness, it is mentioned, that similar to the TGT_ONLY case, the results using

upper-level concepts were only comparable to the results obtained using semantic class features, and for this
reason those results are presented in Section B.2 only.



5.6. Evaluation 99

T
ab

le
5.
7:

T
he

pe
rf
or
m
an

ce
of

O
nt
oE

A
,S

R
C
_
T
G
T
,E

A
an

d
SR

C
_
O
N
LY

cl
as
si
fie
rs

in
te
rm

s
of

F
1
m
ea
su
re

us
in
g
se
m
an

ti
c
cl
as
s
(C

ls
)
fe
at
ur
es

ex
tr
ac
te
d

fr
om

tw
o
K
S
on

to
lo
gi
es

(s
ct

an
d
m
sh
)
an

d
va
ri
ou

s
ba

se
lin

e
le
xi
ca
l
fe
at
ur
es

(B
oW

,
B
oE

).
T
he

em
pl
oy
ed

K
S
on

to
lo
gi
es

ar
e
ev
al
ua

te
d
bo

th
in
de
pe

nd
en
tl
y

an
d
jo
in
tl
y:

sc
t
an

d
m
sh

re
fe
rr
in
g
to

th
e
ca
se

w
he
n
th
e
in
di
vi
du

al
K
Ss

ar
e
us
ed
;s
ct

+
m
sh

re
fe
rr
in
g
to

th
e
na

iv
e
co
m
bi
na

ti
on

of
se
m
an

ti
c
fe
at
ur
e
fr
om

th
e

tw
o
K
Ss
,
an

d
sc
t
+
m
sh

C
C
A

co
rr
es
po

nd
in
g
to

th
e
sc
en
ar
io

in
w
hi
ch

di
m
en
si
on

al
it
y
re
du

ct
io
n
is

ap
pl
ie
d
ov
er

th
e
se
m
an

ti
c
fe
at
ur
es

of
th
e
tw

o
K
Ss
.
T
he

be
st

re
su
lt
s
ob

ta
in
ed

fo
r
th
e
in
di
vi
du

al
cl
as
si
fie
rs

ar
e
sh
ow

n
in

bo
ld
.



100 Chapter 5. Supervised Transfer Learning for Document Zoning

performance of the OntoEA(sct) and OntoEA(msh) classifiers with the baseline EA(BoW )
and EA(BoE ) models, an improvement of 0.8-5.7% can be observed over EA(BoW ), and
0.4-4.9% over EA(BoE ) (except when porting to CellBiol). These results thus indicate that
employing semantic class features from individual KS ontologies can also be beneficial in
some scenarios, outperforming baseline models using lexical features.

Overall, considering the results obtained for both single-domain and cross-domain ex-
periments, the following conclusions can be drawn:

• Resource meta-graphs built from KSs contain useful semantic features about entities
for document zoning. In particular, incorporating semantic class features (Cls) from
multiple KSs into both single-domain (TGT_ONLY) and cross-domain classifiers (On-
toEA) gave a significant improvement over various state-of- the-art approaches.

• Combining the evidence about the semantic features from multiple biomedical KS
taxonomies (SNOMED-CT and MeSH) via dimensionality reduction is beneficial for
document zoning (OntoEA(sct+mshCCA)), showing a significant improvement over
approaches considering a single KS (OntoEA(sct) and OntoEA(msh)).

5.6.4.2 Gain of the Proposed Model (OntoEA) over the Baseline Models

This section aims to investigate the gain obtained by the best adaptive classifierOntoEA(sct+
mshCCA) against the baseline classifiers (TGT_ONLY (sct+mshCCA), SRC_TGT (sct+
mshCCA), SRC_ONLY (sct+mshCCA) and EA(BoE )), considering the performance of
these models over the full performance curve19.

Starting the comparison with the SRC_ONLY classifier, it can be seen that for all 42
adaptation scenarios, OntoEA consistently outperforms the SRC_ONLY classifier over the
full performance curve. Using as little as 10% of the annotated in-domain data (correspond-
ing to 32 annotated documents, under a 5-fold cross-validation setting), the biggest gain of
32.28% in F1 was obtained for the HealthS→CellBiol scenario (p < 0.05) (see Figure 5.5).
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Figure 5.5: Performance of OntoEA on the HealthS → CellBiol domain pair. OntoEA
consistently outperforms SRC_ONLY over the full performance curve.

19This section only reports some representative performance curves from the analysed 42 scenarios. The
full list of performance curves are presented in Section B.3.
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Concerning the other three baseline classifiers, three main trends were observed. In the
first, OntoEA significantly outperforms all the three baseline models (SRC_TGT, TGT_ONLY
and EA). This behaviour can be observed for most domain pairs: 31 out of 42 pairs20. An
example for such a domain pair is shown in Figure 5.6.
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Figure 5.6: Performance of OntoEA on the Communi→HealthS domain pair. OntoEA
significantly outperforms all the three baseline classifiers over the full performance curve.

The second most common trend corresponds to the situation when OntoEA performs
as well as the SRC_TGT, TGT_ONLY and EA classifiers over the full performance curve.
This case occurs for 8 domain pairs21. An example of such a domain pair is given in
Figure 5.7.

Finally, the third trend represents a continuous gain of OntoEA classifier over the
SRC_TGT, TGT_ONLY and EA models after a cutting point. This situation occurs for 3
domain pairs22. In such cases, the performance of OntoEA recovered using less than 50%
of the annotated training data, showing a consistent improvement on all baseline models.
For instance, for the Medicin → CellBiol pair only 30% of the annotated data was needed
(see Figure 5.8), and for the HealthS→CellBiol pair, 40% was sufficient for OntoEA to
outperform the baseline models.

In conclusion, considering the results obtained, the following conclusions can be drawn:

• The OntoEA classifier consistently and significantly outperforms the SRC_ONLY
model over the full performance curve for all the adaptation scenarios.

• The OntoEA classifier is more effective than the TGT_ONLY, SRC_TGT and EA

20The complete list of domain pairs are the following: Biol→CellBiol, Biol→Communi, Biol→Medicin,
Biol→Tropica, CellBiol→Biol , CellBiol→Medicin, CellBiol→Tropica, Communi→Biol , Com-
muni→HealthS, Communi→Medicin, Communi→PublicH, Communi→Tropica, HealthS→Communi,
HealthS→Medicin, HealthS→PublicH, HealthS→Tropica, Medicin→Biol, Medicin→Communi,
Medicin→HealthS, Medicin→PublicH, Medicin→Tropica, PublicH→ Biol, PublicH→Communi,
PublicH→HealthS, PublicH→Medicin, PublicH→Tropica, Tropica→Biol, Tropica→Communi, Trop-
ica→HealthS, Tropica→Medicin, Tropica→PublicH. The corresponding performance curves are presented
in Appendix B.

21The complete list of domain pairs are: Biol→HealthS, Biol→PublicH, CellBiol→Communi, Cell-
Biol→HealthS, Communi→CellBiol, HealthS→Biol, PublicH→CellBiol, Tropica→CellBiol. The corre-
sponding performance curves are presented in Appendix B.

22The complete list of domain pairs are the following: CellBiol→PublicH, Medicin→CellBiol,
HealthS→CellBiol. The performance curves for the domains are provided in Appendix B.
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Figure 5.7: Performance of OntoEA on the Tropica → CellBiol domain pair. OntoEA
achieves comparable results to SRC_TGT, TGT_ONLY and EA over the full performance
curve.
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Figure 5.8: Performance of OntoEA against on the CellBiol→PublicH domain pair. OntoEA
outperforms the baseline models after a cutting point.

classifiers, requiring a smaller number of annotations to achieve better results than
these baseline models.

5.6.4.3 Evaluating Domain Similarity Measures for Document Zoning

As presented in the previous subsection, there is variation in performance levels between
domains, suggesting that differences between the source and target domains affect the per-
formance of a document zone classifier. In order to understand these variations, this subsec-
tion aims to investigate the similarity between the source and target domains at both lexical
and conceptual levels, and to compute the correlation values between the similarity values
and the performance in terms of F1 obtained by the OntoEA and TGT_ONLY classifiers.
To assess the similarity measures, the content-based lexical measures and hybrid measures
presented in Subsection 5.6.2 are employed. For the document zone classifiers, the best
performing OntoEA(sct+ mshCCA) and TGT_ONLY(sct+ mshCCA) models are used.
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Single-domain Scenario Figure 5.9 shows the correlations obtained for each domain
between the similarity scores and the performance of the TGT_ONLY classifier at the end
of the performance curve, utilising the full annotated training data. A positive correlation
indicates that the performance of the classifier increases as the divergence decreases (the
distributions are closer), while a negative correlation means that the performance increases
as the divergence increases (the distributions are less similar). These figures show that among
the content-based similarity measures, the KL divergence metric yields the best correlation
scores. These scores exceed 60% for four domains. The second best score is the χ2, followed
by the cosine measure.

Among the hybrid measures, the combination of content-based KL and knowledge-based
lch measures was found to achieve the highest correlation scores. The correlation scores in
this case are relatively high, over 70% for all domains, lying between 71% and 84%. The
second best correlation was obtained forKL+wup. This was followed byKL+lin andKL+

jcn measures. Another important observation about these results is that, on average, all the
four hybrid measures consistently outperform the three content-based similarity measures
(with an improvement of 7.82-55.18% in absolute values). These results demonstrate that
knowledge-based similarity measures play an important role in estimating the performance
of an in-domain document zone classifier using KS-based features.
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Figure 5.9: Pearson correlation values between the similarity measures and the performance
of the TGT_ONLY (sct + mshCCA) in-domain classifier using content-based (left), and
hybrid measures (right).

Cross-domain Scenario The results obtained for the OntoEA model are presented in
Figure 5.10. Of the content-based similarity measures analysed, the KL measure achieved
the highest correlation values on average. This was followed by the χ2 measure, and then
the cosine measure. These results are thus in agreement with the results obtained for the
TGT_ONLY classifier. The correlation values in this cross-domain scenario, however, are
smaller: the values exceed 50% (in absolute terms) only in half of the adaptation scenarios
(around 22 cases). One of the reasons for this behaviour could be that the different domains
exhibit large lexical variations.

Focusing on the results obtained for the hybrid measures, however, the ranking of the
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measures is slightly different to the results obtained for the TGT_ONLY classifier. In this
case, the combined KL+wup measure yields the best results. This is followed by the KL+

lch, theKL+lin andKL+jcnmeasures. The correlation values for theKL+wup values are
reasonably high, over 70% (lying between 71% and 93%). Similar to the TGT_ONLY case,
on average, all the hybrid measures outperformed the content-based similarity measures (with
an improvement of 3.06-75.8% in absolute values). This further validates the importance
of capturing the differences between domains over both the lexical and conceptual features.
Another interesting observation is that, in the cross-domain scenario, it seems that the depth
of the concepts plays a more important role than the path between the two concepts (resulted
from the wup > lch) in capturing the closeness and similarity between domains. Further,
the information content (IC) between concepts was also found to be less informative: both
jcn and lin achieved inferior results to the wup and lch measures.

Given the above observations, the general findings about the hybrid measures are as
follows:

• The performance of a document zone classifier can accurately be measured using hybrid
measures, combining content-based and knowledge source-based measures defined over
the concept graphs created from multiple KSs.

• These hybrid measures consistently and significantly outperform content-based lexical
measures in both in-domain and cross-domain scenarios. The highest correlation values
are obtained by the KL measure combined with path based-knowledge measures.

5.7 Possible Future Directions

The proposed adaptive document zoning framework has several advantages. Firstly, it ex-
ploits the knowledge within domain-specific KSs to enrich the representation of the domains,
which is shown to reduce the lexical gap between domains. Secondly, it makes use of the
linked structure between KSs, allowing the incorporation of complementary information from
KSs. Thirdly, it presents a principled way for the combination of multiple KSs.
Despite of the success of this framework, several possible extensions could be explored:

• Applying a different biomedical entity extractor:
The current transfer learning framework employs a particular entity extractor (the
Bioportal API) for enriching the representation of the domain documents. The main
advantages of this extractor are that it has a broad coverage of UMLS concepts and it
provides semantic information about these concepts following linked data principles.
The accuracy of this entity extractor largely determines the performance of the trans-
fer document zone classifier, as it affects the number of correctly extracted entities,
and the number of documents enriched with information about these entities.
To date there have been different entity extractors developed for the biomedical do-
main, capturing specific biomedical entity types. The Open-Source Chemistry Analy-
sis Routines (OSCAR) [Corbett and Copestake, 2008] specialised in four entity types
including chemical molecule, chemical adjectives, enzymes and reaction. WhatIzIt23

23http://www.ebi.ac.uk/webservices/whatizit/info.jsf

http://www.ebi.ac.uk/webservices/whatizit/info.jsf
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captures six entity types: gene, protein, gene/protein, disease, drugs, metabolite. Ne-
Mine [Sasaki et al., 2008] covers more entity types such as phenomena, processes,
organs and symptoms24. Despite of the popularity of these extractors, it is not very
clear how do the performance of these different extractors compares, and whether Bio-
Portal performs better than these extractors. A possible future direction in this regard
could therefore be to conduct a systematic comparison of these different extractors to
reveal the best performing one, and then to use that extractor within the proposed
transfer learning framework.

• Addressing the inconsistencies in biomedical knowledge sources:
Due to the manual process involved in the creation and maintenance of biomedical
UMLS KSs, these KSs encounter some inconsistencies, as noted by the National Li-
brary of Medicine. For instance, Rector et al. [2011] pointed out that in the SNOMED-
CT KS, diabetes is classified as a disease of the abdomen, while arteries of the foot is
placed in the pelvis and myocardial infarction instead of being classified as ischemic
heart disease. Similar topological inconsistencies concerning the MeSH KS were dis-
cussed by Antonio Jimeno Yepes [2013]. These inconsistencies affect the generalisation
patterns learned between domains, and thus the performance of the cross-domain doc-
ument zone classifier, as entities which should have been considered together are not
grouped together. One possible solution to address this issue is to apply some pre-
processing steps aimed at resolving these cases. For instance, the identification of
MeSH concepts could be aided by considering the output of medical term indexers
[Antonio Jimeno Yepes, 2013], while for correcting the inconsistencies in SNOMED-
CT KS, different structural indicators could also be examined (such as the number of
parents or the length of the concept’s word).

• Exploiting additional semantic structures and features for TC :
The proposed framework employs a particular semantic graph structure surrounding
concepts in KSs, which makes use of the class information associated with concepts,
and the is-a hierarchy among them. The analysed biomedical KSs, however, contain
additional semantic information about concepts too, such as synonymy relationships
or other domain-specific relationships (e.g. “due to”, “causative agent”). Future work
in this direction will thus consist of investigating whether these additional semantic
relationships among concepts can further boost the performance of a cross-domain
document zone classifier.
Another possible future direction could also be to employ additional state-of-the-art
features such as part-of-speech tags or cue phrases for enhancing the representation
of domain documents for zoning. These features have been shown to improve the
identification of zones for particular applications of document zoning within the same
domain [Teufel and Moens, 2002]. However, to date no analysis has been conducted to
investigate whether these features also help to recognise zones across multiple domains.

24A comparison of entity types covered by the different extractors is provided in Mihăilă et al. [2012].
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5.8 Summary

This chapter presented a novel approach for the within-document TC of long documents,
aimed at partitioning the documents into zone segments. The proposed approach introduced
a modified version of the Easy Adapt (EA) algorithm, named OntoEA, which exploits the
semantic information present in semantic concepts graphs derived from KSs, with the goal
of reducing the distributional gap between domains. The feasibility of this approach was
demonstrated by implementing document zone classification models that make use of se-
mantic graph structures in multiple knowledge sources (SNOMED-CT and MeSH).

By exploring the research question “Do semantic meta-graphs built from KSs do indeed
contain useful semantic features about entities for document zoning?”, it was found that
resource meta-graphs created from both SNOMED-CT and MeSH KSs contain useful infor-
mation for document zoning. The semantic class features extracted from these graphs serve
as stable cross-domain features for adaptation. The best overall results were obtained by the
combination of semantic features from these KSs using CCA dimensionality reduction. The
proposed OntoEA(sct+mshCCA) model showed significant improvement upon the OntoEA
model using a single KS, as well as several baseline models such as SRC_TGT, TGT_ONLY
and SRC_ONLY models, and the EA model built on lexical features.

Through addressing the question “How many annotated in-domain examples are required
to build a reliable adaptive document zone classifier”, it was demonstrated that the per-
formance of OntoEA(sct+mshCCA) can reduce the human effort in annotating documents
required for recognising zones in the target domain. For instance, in the case of the Comuni-
cable Disease to HealthServices adaptation scenario, having 32 annotated documents (10%
of the annotated data), OntoEA significantly outperformed the SRC_TGT, TGT_ONLY
and EA baseline models over the full performance curve, achieving an F1 score of 67.6%.

These insights have provoked the final question “Is it possible to predict the performance of
a document zone classifier?”. To address this question, several hybrid unsupervised domain
similarity measures were introduced and evaluated over the concepts graphs. These results
showed that the performance of OntoEA can be predicted with reasonably high accuracy
(with a correlation above 70%) using the combination of KL divergence and wup path-based
KS measure, significantly outperforming corpus-based similarity measures.

While classifying long documents from historical data can be useful for many applications,
in order to obtain the big picture about an event, information often needs to be mined from
other information sources as well. For instance, social media platforms have been found
to provide up-to-date information about emerging events (e.g., emergency landings, natural
disasters). The following chapter moves on to the presentation of knowledge-driven adaptive
TC and domain similarity approaches for short length social media posts.



Chapter 6

Supervised Transfer Learning for
Topic Classification of Social
Media Posts

6.1 Introduction

The emergence of social media platforms (such as Twitter and Facebook) has allowed users
to communicate news about emerging events (e.g., emergency landings, natural disasters
and crimes) in a much faster way than traditional news sources. For instance, on April 29
2014, the first message about the emergency landing of Cobham Aviation flight appeared
on Twitter1. Being informed about such events as they occur could be extremely impor-
tant to authorities and emergency professionals as this would allow such parties to respond
immediately.

While the previous chapters studied various adaptive text classification models for mining
information from long documents archived in large repositories (e.g. corporate or scientific
repositories), the main focus of this chapter is to mine information from short documents
from social media platforms2.

Dealing with short microposts to build supervised topic classification systems is a chal-
lenging task, due to the special characteristics of the messages: i) the limited length of
microposts (limited to 140 characters), restricting the contextual information and cues that
are available in normal long document corpora; ii) the noisy lexical nature of microposts,
where terminology differs between users when referring to the same thing and abbreviations,
misspellings and jargon are commonplace; iii) the large topical coverage of microposts, as
the messages written by different users can cover a wide range of topics; iv) the exponential
increase in the rate of publication of microposts, making the labelling of microposts difficult.

Linked Open Data cloud knowledge sources such as DBpedia and Freebase, however,
provide an abundant source of structured data for a large number of topics which could
potentially aid the topic classification of microposts. In particular, these sources exhibit

1http://www.theguardian.com/world/2014/apr/29/emergency-landing-at-perth-airport-after-suspected-
engine-fire

2This framework has been designed in collaboration with Amparo E. Cano; all the experiments presented
have been computed and analysed by the author of this thesis.
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the following important characteristics: i) they are constantly updated ; ii) they cover a large
number of topics; and iii) they provide a plentiful amount of annotated data for those topics.

This chapter presents different transfer learning approaches which can exploit the infor-
mation from KSs to build accurate topic classifiers of microposts. Firstly, these approaches
make use of the data within these KSs as additional training data for building supervised
topic classifiers, reducing the number of annotated tweets required. Further, due the short
length of microposts, these approaches also exploit several graph structures surrounding
concepts present in KSs to provide additional contextual information for microposts. In
addition, this chapter also presents a study on the adaptability of a topic classifier, where a
novel set of entropy-based measures are proposed for estimating the adaptability of a topic
classifier making use of the enhanced document representation.

The remainder of the chapter is organised as follows: Section 6.2 reviews the state-of-the-
art approaches in topic classification of microposts. Section 6.3 presents a novel framework
for topic classification of short text messages using multiple KSs. Section 6.4 introduces a set
of novel adaptability (or similarity) measures for topic classification. Section 6.5 describes
the gold standard dataset used in the experiments. Section 6.6 evaluates the proposed
adaptive topic classification models and domain similarity measures on a real-world dataset
in the context of Emergency Response (ER) and Violence Detection (VD) domains. Finally,
possible future extensions are described in Section 6.7.

6.2 Related Work on Topic Classification of Microposts

State-of-the-art approaches on topic classification of microposts can be divided into two
main strands: approaches utilising a single data source (data from Twitter or blogs only)
for topic classification (Subsection 6.2.1) and approaches utilising knowledge sources (such
as DBpedia or Freebase) for topic classification (Subsection 6.2.2).

6.2.1 Single-domain Topic Classification of Microposts

The first class of approaches leverage information solely from the micropost content. They
can be divided into the following sub-classes: probabilistic graphical models and classification
models.

The first sub-class of approaches are based on topic models, which rely on the popular
probabilistic Latent Dirichlet Allocation (LDA) model introduced in [Blei et al., 2003b].
Zhao et al. [2011] proposed an extended version of the LDA model, called TwitterLDA, which
aims to detect the topics of short messages using only unlabelled data. Their approach relies
on distinguishing between background words (words which occur in every topic), and content
words (words specific to a topic). Experiments comparing TwitterLDA with traditional news
media (e.g. New York Times) showed promising results, outperforming various other topic
models.

Mehrotra et al. [2013] proposed various pooling schemas for improving the performance
of the original LDA model for topic classification. These pooling strategies aim to aggregate
microposts into longer documents (called “macro-documents”), which are more suitable for
training LDA-based models. The pooling strategies evaluated were: author-wise pooling
(pooling microposts according to an author), burst-score wise pooling (pooling microposts
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according to a burst-score), temporal pooling (pooling microposts which are posted during
major events by a large number of users), and hashtag-based pooling (pooling microp-
osts according to a hashtag). Experimental results on three different datasets suggest that
hashtag-based pooling leads to drastically improved topic modelling over unpooled schemes.

[Ramage et al., 2009; 2010], on the contrary, utilised annotated data for topic mod-
elling. Ramage et al. [2009] introduced the LabelledLDA model, which extends the original
LDA model by defining a one-to-one correspondence between LDA’s latent topics and social
media tags. Experimental results on a credit attribution problem, extracting tag-specific
snippets from del.icio.us, were promising, outperforming supervised classifiers such as SVM.
Ramage et al. [2010] further performed an extrinsic evaluation of the LabelledLDA model
on a user recommendation task. In this case, the microposts were classified according to
several dimensions including, e.g., style, substance, status, and other social characteristics of
posts. Experiments showed promising results, achieving a performance comparable to those
obtained using term frequency-inverse document frequency (TF-IDF) feature vectors built
on tokenised microposts.

The second sub-class of approaches, classification models, are based on discriminative
machine learning algorithms. Lin et al. [2011] proposed the combination of a language
model with a supervised classifier for predicting the hashtags characterising a Twitter post.
The features used for classification consisted of the perplexity of the unseen microposts.
Tao et al. [2012] studied different topic-dependent and topic-independent features for topic
classification. The topic-dependent features aimed to capture the relevance of the features
to a topic (using keyword-based (lexical) and semantic-based relevance features). While the
topic-independent features exploited various syntactic (e.g., hashtag) and semantic (number
of entities, number of distinct entity types) micropost characteristics. Experimental results
in the context of microblog search revealed that the topic-dependent features (the semantic
relevance features) play an important role in this task, outperforming approaches which do
not consider them.

6.2.2 Cross-domain Topic Classification of Microposts

The second branch of approaches exploit the information present in individual KSs (such as
Wikipedia/DBpedia, Freebase and Probase) to detect the topic(s) of a tweet. The major-
ity of these approaches employ lexical features (e.g.bag-of-words (BoW) or bag-of-entities
(BoE)) extracted solely from the content of the documents (KS documents and micropost
content).

Focusing on the approaches utilising the Wikipedia or DBpedia KS alone, Genc et al.
[2011] proposed a model for mapping microposts to the Wikipedia articles most similar
to them, employing a simple BoW representation for the text content. Their approach
comprises two steps: mapping microposts to Wikipedia pages; and computing the semantic
distance between microposts. For the computation of the semantic distance, a new measure is
proposed, which approximates the distance between microposts by the link distance measure
computed between the corresponding Wikipedia pages. Experimental results showed that
this new distance measure outperforms the String Edit Distance [Levenshtein, 1966] and
Latent Semantic Analysis [Dumais, 2004].

Shin et al. [2013] proposed a graph-based approach for detecting persistent topics (PT)



6.2. Related Work on Topic Classification of Microposts 111

in microposts, which correspond to topics of long-term, steady interest to a user. For their
graph based approach they introduced two novel scoring functions that measure the prop-
erties inherent to PT terms: regularity and topicality. They allow to distinguish between
terms that represent persistent topics and terms which appear in static documents. Exper-
iments showed that this approach outperformed other existing alternatives (including LDA
and keyword extraction models).

Muñoz García et al. [2011] proposed an unsupervised approach for assigning topics to
entities within microposts written in Spanish. Their approach first employs the Sem4Tags
POS tagger [Garcia-Silva et al., 2010] to assign POS tags to a micropost. Following this
process, a list of key phrases are identified, and the corresponding topics (DBpedia resource
URIs) are assigned to them. This topic recognition phase exploits only local metadata, such
as BoW features extracted from the keywords and contextual information in the form of
neighbouring words to the keyword.

Vitale et al. [2012] proposed a clustering-based approach which enriches the BoW rep-
resentation of the micropost using named entities extracted by the proposed Tagme system.
The main idea behind Tagme is to assign the most likely topic to an entity, by taking
into account the similarity between the topics returned by Tagme and Wikipedia categories
for top-few categories. Experimental results showed that the approach incorporating these
new BoE features into topic classification significantly outperformed approaches using BoW
features only.

Pablo Mendes and Sheth [2010] proposed the Topical Social Sensor system, which allows
users to subscribe to hashtags and DBpedia concepts to receive updates regarding these
topics. Their approach relies on linking a micropost to DBpedia concepts derived from the
entities contained with it. One of the main applications of the system is to detect the peak
of a topic defined a priori.

Michelson and Macskassy [2010] proposed a model that discovers topics of interest of
Twitter users based on their microposts. Their approach relies on first extracting and
disambiguating the entities mentioned within a micropost. Following this process, a sub-tree
of Wikipedia categories is retrieved for each entity and the most likely topic assigned.

Milne and Witten [2008] proposed an approach for assigning Wikipedia resources to
key concepts within microposts. In their approach, a Wikipedia article is considered as a
concept. Following this representation, a machine learning approach is presented, which
employs different Wikipedia n-gram and Wikipedia link-based features.

Xu and Oard [2011] proposed a clustering-based approach which maps terms in micro-
posts to Wikipedia articles. Their approach leverages the linking history of Wikipedia and
the textual context information of terms to disambiguate the meaning of terms.

Meij et al. [2012] assign resources to microposts. In their approach, they make use of
Wikipedia as a knowledge source, and consider a Wikipedia article as a concept. Their
task then is to assign relevant Wikipedia article links to a tweet. They propose a machine
learning approach which makes use of Wikipedia n-gram and Wikipedia link-based features.

Tao et al. [2012] studied various Twitter dataset-specific features (including whether a
tweet contains a hashtag, or whether a tweet contains a URL) to identify whether a tweet
is relevant to a topic, and showed that incorporating these features can help TC.

Looking at the approaches exploiting Freebase KS, Kasiviswanathan et al. [2011] pro-
posed a clustering-based approach for topic detection, which makes use of entities and their
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types gathered from Freebase. Subsequent work, classifying blog posts into topics [Husby
and Barbosa, 2012], also demonstrated that selecting data from Freebase using distant su-
pervision, in addition to incorporating features about named entities, is beneficial for topic
classification.

There has been also work utilising Probase KS for topic classification. Song et al. [2011]
proposed a probabilistic approach for mapping the terms within microposts to the most
likely resources in Probase KS [Wu et al., 2012]. These resources were furthermore used as
additional features in a clustering algorithm, achieving superior results to the simple BoW
approach.

Although previous approaches have achieved a high level of success, they do still suffer
from some limitations. Firstly, the vast majority of approaches still employ simple lexi-
cal features (BoW or BoE) derived solely from the content of the documents. Moreover,
existing approaches [Muñoz García et al., 2011] consider the metadata of entities when de-
tecting topics in microposts. The information is constrained by the NER service used (e.g.,
OpenCalais or Tagme), which often returns generic entity types [Rizzo and Troncy, 2011],
ignoring more fine-grained semantic information described in external KSs. Secondly, these
approaches still exploit a single KS when detecting topics in tweets, ignoring the possibility
that multiple KSs may complement each other. Thirdly, these approaches often ignore the
special characteristics of Twitter (such as URLs and hashtags). These Twitter-specific fea-
tures could, however, provide additional information necessary for understanding the content
of the messages.

Addressing the above limitations, the following section presents a cross-domain topic
classification of microposts (Section 6.3), which exploits the information in multiple linked
KS. Following this a novel set adaptability measures are also examined in Section 6.4.

6.3 Adaptive Topic Classification using Linked Knowl-

edge Sources

This section describes a transfer learning framework for adaptive text classification of micro-
posts, which is based on the framework introduced in Section 3.3. This framework follows
a supervised transfer learning setting, in which a large amount of annotated source domain
documents, and a small amount of annotated target domain documents are available. Com-
pared to the case of long documents discussed in the previous chapter, the collection of
annotated data for microposts constitute a very challenging task, due to the exponential
rate of publication of these messages and the large coverage of topics discussed in them. In
order to address these challenges and provide annotated data for training the classification
models, in this framework, additional data from KSs (such as DBpedia and Freebase) is
exploited.

The main stages of this framework can thus be summarised as follows: 1) gathering
of annotated data from KSs and domain content modelling (Subsection 6.3.2); 2) concept
enrichment using KS ontologies (Subsection 6.3.3); 3) semantic meta-graph generation (Sub-
section 6.3.4); 4) pivot feature creation (Subsection 6.3.5); 5) building adaptive topic classi-
fiers by employing different transfer learning techniques (Subsection 6.3.6), 6) evaluation of
the adaptive topic classifiers on held out microposts, depicted in Figure 6.1.
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Figure 6.1: Architecture of cross-domain topic classifier using semantic features.

Before describing each of these individual steps in details, however, the motivation be-
hind the selected KSs as well as an overview of their main characteristics are provided in
Subsection 6.3.1.

6.3.1 Motivation

The Linked Open Data cloud consists of a large number of interlinked KSs, covering a range
of different topics. Among these KSs, DBpedia and Freebase constitute some of the largest
datasets built on a collaborative manner. These KSs contain factual information about a
large number of entities of different domains, which is structured according to their own KS
ontology. The relevance of these sources to Twitter is apparent, considering that both KSs
and Twitter exhibit similar characteristics including for example that: i) they are constantly
edited by Web users; ii) their creation is done in a collaborative manner ; and iii) they present
a coverage on a large number of topics.

Figure 6.2: Tweets exposing different contexts involving the same entity.

Some descriptive statistics about the DBpedia and Freebase KSs are depicted in Ta-
ble 6.2. The first KS studied, DBpedia (dbKS )3 is derived from Wikipedia4. In DBpedia
[Bizer et al., 2009] each resource is harvested from a Wikipedia article which is semantically
structured into a set of DBpedia5 (dbOwl) and YAGO26 (yago) ontologies, with the pro-

3DBpedia, http://dbpedia.org
4Wikipedia, http://wikipedia.org
5http://wiki.dbpedia.org/Ontology
6http://www.mpi-inf.mpg.de/yago-naga/yago/



114Chapter 6. Supervised Transfer Learning for Topic Classification of Social Media Posts

vision of links to external knowledge sources such as Freebase, OpenCyc7, and UMBEL8.
The Wikipedia articles are furthermore grouped into categories, which are represented us-
ing SKOS vocabulary9. The DBpedia dump version 3.810 classifies 2.35 million resources
into DBpedia’s ontology classes (dbOwl). These classes comprises 359 distinct classes, and
740,000 SKOS categories (dbCat), which form a subsumption hierarchy and are described
by 1,820 different properties. Conversely, the yago ontology [Hoffart et al., 2012] is a much
bigger and fine grained ontology. It contains over 447 million facts about 9.8 million entities
which are classified into 365,372 classes, and 104 manually defined properties.

In contrast to DBpedia, Freebase11 (fbKS ) is a large online knowledge base which users
can edit in a similar manner to Wikipedia. In Freebase [Bollacker et al., 2008], resources are
harvested from multiple sources such as Wikipedia, ChefMoz, NNDB and MusicBrainz12

along with data individually contributed by users. These resources are semantically struc-
tured into Freebase’s own ontology (fbOnt), which consist of 1,450 classes and more than
7,000 unique properties.

Figure 6.3: Deriving a semantic meta-graph from multiple KSs.

In summary, these ontologies (i.e. dbOwl, yago, fbOnt) enable a broad coverage of en-
tities in the world, and allow entities to bear multiple overlapping types. One of the main
advantages of exploiting these KSs is that each particular topic (e.g. http://dbpedia.

org/page/Category:Violence) is associated to a large number of resources (e.g. <http:

//dbpedia.org/page/Counter-terrorism>), allowing to build a broad representation of a
topic. In addition each resource is related to different ontological classes or concepts which
provide additional contextual information for that resource, enabling in this way the exploita-
tion of various semantic structures of these resources. The use of this structured knowledge
enables the contextual enrichment of a micropost’s entities by providing information that
can help to disambiguate the role of a given entity in a particular context. Considering
the tweets in Figure 6.2, although the entity Obama has different roles such as president,
Nobel laureate, husband ; the role of this entity will be defined by the contextual information

7OpenCyc, http://sw.opencyc.org/
8UMBEL, http://www.umbel.org/
9http://www.w3.org/2004/02/skos/

10This dataset was generated in 2012.
11Freebase, http://freebase.org
12Freebase Datasources, http://wiki.freebase.com/wiki/Data_sources

http://dbpedia.org/page/Category:Violence
http://dbpedia.org/page/Category:Violence
<http://dbpedia.org/page/Counter-terrorism>
<http://dbpedia.org/page/Counter-terrorism>
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provided on the content of each tweet. Section 6.3.4 introduces the approach for leveraging
this semantic contextual information by proposing the use of semantic meta-graphs.

6.3.2 Gathering Labelled Data from Knowledge Sources

The first step in the proposed framework consists of collecting annotated data for construct-
ing the source domain data, and creating an initial feature space for topic classification.

For compiling a source domain, data is gathered from DBpedia and Freebase KSs. In
particular, three different scenarios are investigated for building the source domain: i) DB
- considering data from DBpedia only; ii) FB - considering data from Freebase only; and
iii) DB+FB - considering data from both DBpedia and Freebase.

The data collection process consists in querying each KS for resources on specific topics,
by accessing their publicly available APIs. In the case of DBpedia, for each analysed topic
(e.g. Accident and Crime), SPARQL13 queries are performed, which queries for all resources
whose categories (dcterms:subject) and sub-categories (skos:narrower) correspond to the
topic of interest. Table 6.1. shows some examples of the categories derived for the Accident
and Crime topics.

Topic DBpedia category
Accident dcterms:subject Category:Accidents
(DisAcc) skos:narrower Category:Aviation_accidents_and_incidents

skos:narrower Category:Accidents_and_incidents_involving_airliners
skos:narrower Category:People_involved_in_aviation_accidents_or_incidents
. . .

Crime dcterms:subject Category:Crime
(Cri) skos:narrower Category:Violent_crime

skos:narrower Category:Crime_by_country
skos:narrower Category:Crime_by_year
. . .

Table 6.1: Mappings between Topics of Microposts and DBpedia categories for some example
topics.

Semantic Features DBpedia (dbKS ) Freebase (fbKS )

dbOwl dbCat yago fbOnt

Resource 2.35× 106 447× 106 3.6× 106

Property (P) 1,820 104 7,000
Class (Cls) 359 NA 365,372 1,450
Category (Cat) NA 740,000 NA NA

Table 6.2: Statistics about dbOwl, dbCat, yago, fbOnt KS ontologies.

In the case of Freebase KS, the Freebase Text Service API14 is used to download the
articles of the resources. The selection of resources being done, such that the domain name
(the term used to describe topics in Freebase) of the resources matches the name of the topic
of interest15. For some topics, such as Accident and Crime, for which there is no predefined

13http://www.w3.org/TR/rdf-sparql-query/
14http://wiki.freebase.com/wiki/Text_Service
15The collection of domains are enumerated at http://www.freebase.com/.

http://wiki.freebase.com/wiki/Text_Service
http://www.freebase.com/
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domain in Freebase, the selection of the articles is done based on the title of the article,
ensuring that the selected articles’ title contain these topics.

The Twitter dataset, serving as the target domain in this framework, furthermore consists
of a set of tweets labelled with topics, which were collected between November 2010, and
January 2011 [Abel et al., 2011].

Having both source and target domain data compiled, a simple BoW representation is
employed for creating an initial feature space for topic classification. This representation
allows both domains to be represented based on what it is discussed in the particular doc-
uments. In order to capture the importance of each word mentioned in these documents,
furthermore, the TF-IDF weighting schema is applied.

6.3.3 Concept Enrichment

The second step of this framework aims to enrich the representation of both KS and Twitter
documents using information about the entities and concepts mentioned in these documents.

In order to achieve this, two main steps are first performed: (i) entity extraction -
employing the OpenCalais16 and Zemanta17 services for extracting the named entities in
the documents; and (ii) semantic mapping - where the obtained named entities are mapped
to their KS resource counterpart if it exists18.

6.3.4 Semantic Meta-graph Generation

The mapping of entities to DBpedia and Freebase URIs allows the incorporation of rich
semantic information into a topic classifier. In particular, the presented DB and FB KSs
provide a rich source of information about concepts, and the exploitation of many useful
structures about concepts.

Figure 6.3 presents an overview of the semantic features extracted for the entity “Barack
Obama”. Compared to the state-of-the-art approaches, rather than focusing on the <subject,
predicate, object> instances associated with a resource, this framework focuses on each
triple’s semantic structure at a meta-level, and for that two meta-graphs are introduced:
the resource meta-graph and the category meta-graph.

The first resource meta-graph exploits semantic information about an entity’s KS re-
source. This semantic graph provides course-grained classification of entities by their types.
The second graph is the category meta-graph, which exploits the semantic information ex-
tracted from the Wikipedia categories to which an entity belongs. This second graph can
be effectively considered as a subset of the first one, as it groups similar entities belonging
to the same topic under the same label. The category meta-graph thus categorises entities
into more granular taxonomies.

Following the definition of resource meta-graph from Definition 4, let G := (R,P,C, Y )

denote the resource meta-graph employed in this framework. The remainder of the reader,
a resource meta-graph provides information regarding the set of ontologies, and properties
used on the semantic definition of a given resource. The meta-graph of a given entity e can
be represented as the sequence of tuples G(e) = (R,P,C, Y ′), which is the aggregation of

16OpenCalais, http://www.opencalais.com
17Zemanta, http://zemanta.com
18Following this process, the percentage of entities without a deferenced URI is 35% in DBpedia, 40% in

Freebase, and 36% in Twitter.
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all resources, properties and classes related to this entity. In addition, two further notations
can be introduced: R(c) = {e1, . . . , en} for referring to the set of all entity resources whose
rdf:type is class c; and R′(c) = {e1, . . . , em} for denoting the set of entity resource whose
type are specialisations of c’s parent type (i.e. resources whose rdf:type are siblings of c).

Definition 6 (Category Meta-Graph) A Category Meta-graph Gcat represents a quali-
fied subset of the Resource meta-graph G in which all classes are of type skos:concept. This is
defined as follows: Gcat := (R,P,C ′, Y ), where C’ is a finite set whose elements are classes
of type skos:Concept.

Class Category
dbOwl :Person dbCat :Presidents_of_the_United_States
dbOwl :Author dbCat :Obama_family
dbOwl :OfficeHolder dbCat :Harvard_Law_School_alumni
yago:LivingPeople dbCat :Democratic_Party_Presidents_of_the_United_States
yago:President dbCat :United_States_presidential_candidates,_2012

Table 6.3: Top 5 features extracted from the DBpedia KS for the entity Obama of type
Person.

For the sake of comparison, Table 6.3 and Table 6.4 present the top few class and category
features derived from these graphs for two different entity types (Obama of type Person, and
Syria of type Country). As it can be observed, the dbCat features group entities by topic,
while the dbOwl features group entities by type19.

Class Category
dbOwl :Place dbCat :Countries_of_the_Mediterranean_Sea
dbOwl :PopulatedPlace dbCat :Arabic-speaking_countries_and_territories
yago:Country dbCat :Eastern_Mediterranean_countries
yago:YagoGeoEntity dbCat :Member_states_of_the_United_Nations
yago:MiddleEasternCountries dbCat :Western_Asian_countries

Table 6.4: Top 5 semantic features extracted from the DBpedia KS for the entity Syria of
type Country.

In light with the proposed three KS scenarios, three different Resource meta-graphs are
constructed: (i) one from DB using the dbOwl and yago ontologies; (ii) one from FB using
the fbOnt ontology; and (iii) another one from DB+FB using the joint ontologies. For
the joint scenario the concepts from dbOwl ontology are used together with the the classes
obtained after mapping the yago and fbOnt ontologies20. For the Category meta-graph a
concept graph from DBpedia is derived, given that there is no category structure defined
in Freebase. The three category concept graphs in this case correspond to (i) one from
DB using the dbCat categories; (ii) one from FB using the dbCat categories obtained after
mapping the FB URIs to DB URIs (iii) another one from DB+FB using dbCat categories.

19Further statistics about these semantic features are provided in Table 6.6.
20The mapping of Freebase entity classes to the most likely Yago classes was done by a combined ele-

ment and instance based technique (www.l3s.de/~demidova/students/master_oelze.pdf) and is available
at http://iqp.l3s.uni-hannover.de/yagof.html.

www.l3s.de/~demidova/students/master_oelze.pdf
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6.3.5 Pivot Feature Creation

Once a semantic meta graph has been constructed for a given entity, three main seman-
tic features can be derived from it: class, category and property features. Among these
features the class and category features are particular to a semantic meta-graph: class be-
ing extracted from the resource meta-graph, and category being derived from the category
meta-graph; while the property features are common to both meta-graphs.

A description of each semantic feature can be given as follows:

Semantic class (Cls) features: Extracted from the Resource meta-graph, this feature
set consists of all the classes an entity refers to. This set captures fine-grained information
about this entity. E.g., for Barack Obama these features would be yago:LivingPeople,
yago:PresidentsOfTheUnitedStates, freebase:/book/author, and dbpedia:Person. The main
intuition here is that the relevance of an entity to a given topic could be inferred from
an entity’s class type. For example the class yago:PresidentsOf-TheUnitedStates could be
consider more relevant to the topic “Politics” , than the class yago:Singer.

Semantic category (Cat) features: Extracted from the Category meta-graph, this fea-
ture set captures the Wikipedia categories an entity is related to. Similarly to the se-
mantic classes, these categories provide additional fine-grained information about the en-
tities, as entities about similar topics are grouped together in categories. For e.g. for
Barack Obama these category features would be cat:American_political_writers, cate-
gory:People_from_Honolulu,_Hawaii.

Semantic property (P) features: Common to both semantic meta-graphs, this feature
set captures all the properties an entity is associated with. The intuition here is that given a
context, certain properties of an entity can be more indicative of this entity’s relevancy to a
topic than others. For example, given the role of Tahrir Square in the Egyptian revolution,
properties such as dcterms:subject could be more topically informative than geo:geometry.
The relevance of a property to a given topic can be derived from the semantic structure of
a KS graph by considering the approach proposed in Subsection 6.3.6.1.

6.3.5.1 Exploiting Twitter Specific Indicator Features

The above pivot features were derived by considering entities extracted from the sole content
of the KS and Twitter documents. However, tweets can contain different Twitter specific
indicators to external data sources (e.g. URL), which can provide additional background
information necessary for understanding the content of the messages.

In order to exploit this additional background information, thus, two additional indica-
tors are considered: i) links indicators, which consists of URLs posted within the tweets,
ii) hashtags indicators (HSH), which are user generated markers (words or multi-word ex-
pressions) used to describe the topic of the tweets (e.g. #Egypt, #Obama). An example
tweet highlighted with entities, links and hashtags is presented in Figure 6.4.

Corresponding to these indicators, two main indicator features can derived from the
Twitter documents:

Bag-of-Links (BoL): The main rationale behind this feature set is to reduce the sparsity
of microposts by incorporating lexical features derived from the external sources pointed
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President #Obama warns Syria's President Bashar al-Assad the use of chemical weapons
would be totally unacceptable http://on.cnn.com/VgzNYt ..

world, watching, fight, 
rebel, forces

<http://dbpedia.org/resource/Barack_Obama>

Figure 6.4: Enriching tweet content by using hashtags and links as indicators of external
sources.

out by the link indicators. For this reason, a bag-of-links (BoL) is first constructed from
the URIs mentioned within a tweet. Next each URI from the BoL is resolved and the
content of the referenced web page parsed using the Jsoup API21. For each link then
the following lexical features are created: i) the title of the page (BoL(T)): containing a
concise description of the external URI content; ii) the first paragraph of the page (BoL(1)):
introducing the main idea of the external URI content; and iii) the last paragraph of the
page (BoL(L)): summarising the conclusions of the external URI content.

Bag-of-Hashtags (BoH): This feature set is viewed in a similar way as the entities
mentioned within the documents. The main intuition here is that hashtags may refer to
entities, which are described in the KSs, for e.g. #Egypt or #Obama. For this reason, first
a bag-of-hashtags (BoH) is constructed from the hashtags mentioned within a tweet. Then
for each hashtag, a semantic meaning is assigned. In order to achieve this, the output of the
OpenCalais and Zemanta services is checked for potential DBpedia and Freebase URIs (e.g.
#egypt will be associated with dbpedia.org/resource/Egypt and freebase:Egypt). If
this process does not return any KS URI, then a series of SPARQL queries and regular
expressions are fired, which are also manually revised and corrected if needed22. Once a
KS URI for a hashtag is assigned, the new features for topic classification correspond to
the class (BoH(Cls)), category (BoH(Cat)), and property (BoH(P )) features.

6.3.6 Building Adaptive Topic Classifier of Microposts

The final stage of the framework aims to build supervised topic classifiers corresponding
to the different cross-domain scenarios, which make use of the generated KS pivot features.
The Support Vector Machine (SVM) with polynomial kernel was selected as a base classifier,
which will be detailed in Subsection 6.6.3.

For incorporating the presented pivot features into an adaptive topic classifier, this frame-
work employs different weighting strategies for the pivot features and feature combinations
(described in Subsubsection 6.3.6.1), as well as different semantic augmentation strategies
for extending the initial feature spaces of both source and target domains (described in
Subsubsection 6.3.6.2).

The goal of the feature weighting strategies is to capture the domain-dependent (specific)
and domain-independent (generalisation) properties of the features, computed based on the
structure of the KS ontologies. The augmentation strategies on the other hand provide
alternative ways for the combination of the original lexical feature space and newly inferred

21http://jsoup.org
22Following this process, the percentage of hashtag entities without a dereferenced URI is 32.73% in

DBpedia, and 32.79% in Freebase. The percentage of hashtag entities manually corrected is 5%.

dbpedia.org/resource/Egypt
freebase:Egypt
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semantic feature space.

Before describing each of these steps in details, for the sake of completeness, the Algo-
rithm 5 provides an overview of the mains steps of the framework.

Algorithm 5 Adaptive whole-document topic classification exploiting multiple linked KSs
1: Input : LS labelled source domain (SRC) documents (consisting of DBpedia and Free-

base articles), LT labelled target (TGT) domain documents (e.g. microposts), UT unla-
belled target documents, FS initial feature set of the source domain, FT initial feature
set of the target domain.

2: Merge the lexical feature set of the first domain (FS) with the lexical feature set of the
second domain (FT ) into a common lexical feature set (FLex = FS ∪ FT )

3: Extract entities and concepts from both source and target domains
4: Exploit different semantic meta-graphs for the extracted concepts in both domains
5: Create semantic features from the semantic meta-graphs for both first FSC

and target
FTC

domains
6: Merge the semantic feature set of the source domain (FSC

) and target domain (FTC
)

into a common semantic feature set (FSEM = FSC
∪ FTC

)
7: Exploit Twitter specific features indicators for the target domain
8: Create indicator features from these indicators FTIND

of the target domain
9: Merge the common lexical feature set (FLex) with the semantic feature spaces FSEM

and FTIND
, (F = FLEX ∪ FSEM ∪ FTIND

),
10: Augment the examples x from LS with newly created semantic features according to F
11: Augment the examples x from LT , UT with newly created semantic features according

to F
12: Train a supervised classifier (e.g. SVM) on the annotated examples from both sources

(LS ∪ LT )
13: Output : Annotated UT target data.

6.3.6.1 Semantic Pivot Feature Weighting

This framework proposes different weighting strategies for the semantic features derived from
the entities and indicators: two of the weighting strategies capturing the importance of the
features in the KS semantic meta-graphs; while the third one aiming to capture the relative
importance of the features in the corpus. In addition to using these weights for quantifying
the importance of pivot features for topic classification, these weights serve also another
important role, that of filtering out irrelevant features for topic classification. This is done,
by considering only the top few features with the highest weights for the incorporation into
the classifier, as detailed in Section 6.523.

W-Freq: Semantic Feature Frequency: This weighting strategy provides a light-weight
approach for weighting the ontological class, category and property features derived for both
entities and Twitter specific hashtag indicators. It aims to enrich the feature space of a
document (i.e KSs’ article, or micropost) x by considering all the semantic meta-graphs
extracted from the entity resources appearing in this document.

Formally, the frequency of a semantic feature f in a given document x with Laplace smooth-

23It is worth noting that this feature selection strategy also largely differs from state-of-the-art feature
selection techniques [Forman et al., 2003] used in text classification, as they typically make use of the scores
obtained for the features based on the text content only (e.g. occurrences of a feature in training positive-
and negative-class training examples separately).
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ing can be defined as follows:

W − Freqx(f) =
Nx(f) + 1∑

f ′∈F Nx(f ′) + |F |
, (6.1)

where Nx(f) is the number of times feature f appears in all the semantic meta-graphs
associated to document x; and F is the semantic features’ vocabulary. This weighting
function captures the relative importance of a document’s semantic features against the
rest of the corpus; while the normalisation prevents bias towards longer documents.

While the W-Freq (semantic feature frequency) weighting function depends on the occur-
rences of features in a particular document, other generalised weighting information can
be derived from a KS semantic structure to characterise a semantic meta-graph. To derive
a weighted semantic meta-graph the following W-SG weighting strategy is proposed.

W-SG: (Class/Category)-Property Co-Occurrence Frequency: The rationale be-
hind this weighting strategy is to model the relative importance of a property p (e.g. dbOwl :
leader) to a given class cls (yago:President) or category cat (dbCat : United_States _pres-
idential_candidates,_2012), together with the generality of the property in a KS’s graph.

This weighting function computes how specific and how general a property is to a given
class or category based on a set of semantically related resources derived from a KS’s graph.

In particular, given the semantic meta-graph of an entity e (i.e. G(e)), the relative im-
portance of a property p ∈ G(e) to a given class cls ∈ G(e) in a KS graph GKS can be
computed by first defining the specificity of p to cls as follows:

specificityKS(p, cls) =
Np(R(cls))

N(R(cls))
, (6.2)

where Np(R(cls)) is the number of times property p appears in all resources of type cls
in the KS graph GKS , and N(R(cls)) is the number of resources of type c in GKS . This
measure captures the probability of the property p being assigned to an entity resource of
type cls.

For example for theObama entity, considering the dbOwl :leader property and yago:President
class, the specificity value of dbOwl :leader in the DBpedia graph GDB is computed as fol-
lows:

specificity_DB(dbOwl:leader, yago:President)

= {| <?headofstate, dbOwl : leader, ?leader >,

<?headofstate, rdf : type, yago : President >∈ G_DB|}/

{| <?headofstate, rdf : type, yago : President >∈ G_DB|} (6.3)

As indicated in Equation 6.2, the computation of the specificity value is independent of the
entity e and differs according to the KS graph from which it is derived24. Higher specificity
values indicate that the property p occurs frequently in resources of the given class cls.

Conversely, the generality measure captures the specialisation of a property p to a given
class cls, by computing the property’s frequency within other semantically related classes
24It might be worth mentioning that for each entity resource the specificity values for the properties are

the same, capturing in this way the generalisation of the property for the same concept type.
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R′(cls). The generality measure of a property p to a class cls in a KS graph GKS is defined,
as follows:

generalityKS(p, cls) =
N(R′(cls))

Np(R′(cls))
, (6.4)

where N(R′(cls)) is the number of resources whose type is either cls or a specialisation
of cls’s parent classes. This measure captures the relative generalisation of a property
p to a broader set of specialised sibling classes derived from cls, and its computation is
independent of the entity e. In this case the generality of property dbOwl :leader given the
class yago:President for the DB graph is computed as:

generality_DB( dbOwl:leader, yago:President ) =

{| < yago : President, rdf:subClassOf , ?parent >,

<?group, rdf : subClassOf, ?parent >

<?agroup, rdf : type, ?group >

∈ G_DB|}/

{| < yago : President, rdf:subClassOf , ?parent >,

<?group, rdf : subClassOf, ?parent >

<?agroup, rdf : type, ?group >

<?agroup, dbOwl : leader, ?leader >∈ G_DB|} (6.5)

Higher generality values indicate that a property spans over multiple classes, and is less
specific to a given class cls. These two measures (generality and specificity) of a property
p to a given class cls are combined as follows:

W-SG(p, cls) = specificity(p, cls)× generality(p, cls) (6.6)

6.3.6.2 Semantic Augmentation

This section provides an overview of the semantic augmentation strategies supported by the
framework. Examples for the various semantic features, feature combinations and semantic
augmentation strategies employed for the entity Obama are provided in Table 6.5.

Semantic augmentation: This strategy (F ′A1) augments the initial lexical features (e.g
BoW and BoE features) of the datasets with additional semantic information extracted for
the entities appearing in them.

In the case of the resource meta-graph, for both Cls and P features, the original lexical
feature set F has been extended with a set of unique Cls (including e.g., dbOwl :Author)
and P (including for e.g. dbOwl :writer) features derived from this graph. In this case, the
expanded feature space vocabulary size becomes |F ′A1Cls

| = |F |+ |Fcls| for the Cls features
and |F ′A1P

| = |F |+ |Fp| for the P features, where |Fcls| denotes the total number of unique
class features added and |Fp| denotes the total number of unique property features added.
Furthermore, for the combined Cls+ P feature set this augmentation strategy creates the
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novel feature set F ′A1Cls+P
, in which the feature set F is expanded with the properties’

< p, cls > tuple features derived from the semantic meta-graphs. In this case, the size of
the expanded feature set is: |F ′A1Cls+P

| = |F |+ |Fp| × |Fcls| (see the Cls1+P2 and Cls2+P1

examples in Table 6.5).
Similarly, for the category meta-graph, the expanded feature set becomes |F ′A1Cat

| =

|F | + |Fcat| for the Cat features, and |F ′A1P
| = |F | + |Fp| for the P features. In this case,

|Fcat| refers to the total number of unique category features and |Fp| denotes the total number
of unique property features derived from this graph. Furthermore, for the combined Cat+P
feature set this augmentation strategy creates the novel feature set F ′A1Cat+P

, in which the
feature set F is expanded with the properties’ < p, cat > tuple features derived from this
semantic meta-graph. In this case, the size of the expanded feature set is: |F ′A1Cat+P

| =

|F |+ |Fp| × |Fcat|.

Semantic augmentation with generalisation: This augmentation strategy (F ′A2) aims
to further improve the generalisation of a topic classifier by exploiting the subsumption
relation among classes within the DBpedia or Freebase ontologies.

In the case of the resource meta-graph, the feature set F is enhanced with the set of
parent classes of cls where cls ∈ Cls. Therefore the size of the enhanced feature set F ′A2Cls

is computed as |F ′A2Cls
| = |F | + |Fparent(cls)|, where |Fparent(cls)| denotes the total number

of unique parent classes of cls. Similarly, the enhanced feature set F ′A2Cls+P
which uses the

Cls+P features is built by adding the < p, parent(cls) > tuple features. The size of the
F ′A2Cls+P

is therefore: |F ′A2Cls+P
| = |F |+ |Fp|× |Fparent(cls)|, where |Fparent(cls)| denotes the

total number of unique parent(cls) classes derived from this graph.
When applying this strategy over the category meta-graph, however, the subsumption

relations among the SKOS categories are considered. In this case, the expanded feature set
size for the Cat features is |F ′A2Cat

| = |F | + |Fparent(cat)| and for the combined Cat+P
features is |F ′A2Cat+P

| = |F | + |Fp| × |Fparent(cat)|. In this case |Fparent(cat)| stands for
the number of unique parent SKOS classes of cat, and |Fp| denotes the number of unique
properties extracted from this category meta-graph.

6.4 Measuring the Topical Adaptability of Topic Classi-

fiers

This section continues by investigating the benefit of employing the enhanced representation
of the domains for measuring the adaptability of a topic classifier.

Understanding which semantic structures can improve the performance of an adaptive
topic classifier could help in providing an estimation of the semantic adaptability of a KS
graph to previously unseen lexical data. One such example could be, when wanting to
apply the proposed framework on a different genre, longer posts e.g. blogposts or Facebook
comments. Another situation could be, when wanting to build a topic classifier for a new
topic (e.g. Politics), in which case one wants to have an a priori estimate about the similarity
between KS data and Twitter data.

In light of the semantic features (f = {Cls, P, Cat}) and feature combinations (f =

{Cls+P, Cat+P}) introduced in Subsection 6.3.5 a set of entropy-based measures are pro-
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posed for topic similarity.
Entropy is an information theoretic measure which defines a probability distribution p25 over
a random variable X, capturing the dispersion of the variable f among the different classes
in a given dataset T : HT (f) = −

∑
f∈X p(f) log p(f). In the context of this framework, this

measure was introduced as it allows to capture the semantic ambiguity and uninformative-
ness of a topic based on the entities mentioned in the documents and the KS structure26.
That is, entities that are evenly distributed over multiple KS concepts/categories will have
high entropy and thus topics mentioning these entities are less focused (more ambiguous) in
the subject(s) they discuss.

A summary of the proposed measures can be given as follows:

1. Topic-Class bag entropy (Cls-Entropy): This was computed by taking the bag-
of-classes for each topic derived from the resource meta-graphs, and measuring the
entropy of that class bag, capturing the dispersion of classes used for a particular
topic. In this context, low entropy indicates a focused topic, while high entropy indi-
cates an unfocused topic, which is more random in the subjects that it discussed. This
measure is defined as follows:
HT (Cls) = −

∑|ClsT |
j=1 p(clsj) log p(clsj), where p(clsj) denotes the conditional proba-

bility of a concept clsj , within the topic’s concept bag ClsT .

2. Topic-Category bag entropy (Cat-Entropy): This was computed by constructing
the bag-of-categories for each topic derived from the category meta-graphs, and mea-
suring the entropy of that category bag, capturing the dispersion of categories used
for a particular topic. In this context, low entropy indicates a focused topic, while
high entropy indicates an unfocused topic which is more random in the subjects that
it discussed. This measure is defined as follows:
HT (Cat) = −

∑|CatT |
j=1 p(catj) log p(catj), where p(catj) denotes the conditional prob-

ability of a category catj , within the topic’s category bag CatT .

3. Topic-Property bag entropy (P-Entropy): This was computed by considering the
bag-of-properties for each topic derived from the KS graphs, and measuring the entropy
of that property bag, capturing the dispersion of properties used for a particular topic.
In this context, low entropy indicates a focused topic, while high entropy indicates an
unfocused topic which is more random in the subjects that it discussed. This measure
is defined as follows:
HT (P ) = −

∑|PT |
j=1 p(pj) log p(pj), where p(pj) denotes the conditional probability of a

property pj , within the topic’s property bag PT .

4. Topic-Entity bag entropy (Entity-Entropy): This was computed by taking the bag-
of-entities for each topic extracted by the named entity recogniser, and measuring the
entropy of that entity bag, capturing the dispersion of entities used for a particular
topic. In this context, low entropy indicates a focused topic, while high entropy indi-
cates an unfocused topic which is more random in the subjects that it discussed. This

25In this thesis the shorthand notation p is used for Pr(X = f). The capital P is reserved for the property
features.

26Compared to previous content-based similarity measures (e.g. cosine), these measures can explicitly
measure the informativeness of a topic by capturing the dispersion of the entities among different KS
classes/categories according to the various semantic meta-graphs presented.
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measure is defined as follows:
HT (Ent) = −

∑|EntT |
j=1 p(ej) log p(ej), where p(ej) denotes the conditional probability

of an entity ej , within the topic’s entity bag EntT .

5. Entity-Class entropy (EntityCls-Entropy): This measure is computed for each topic,
by considering the bag-of-classes for each entity mentioned in a topic based on the
extracted resource meta-graphs, capturing the dispersion of the entities in each classes.
That is, low entropy indicates that the topic is less ambiguous, consisting of entities
belonging to few classes, while high entropy refers to higher ambiguity at the level of
entities.
HT (Cls|E) = −

∑|ET |
j=1 p(ej)HT (Cls|E = ej), where p(ej) denotes the conditional

probability of an entity ej within the topics’ entity bag ET , and HT (Cls|E = ej)

refers to topic class entropy given the entity ej .

6. Entity-Category entropy (EntityCat-Entropy): In an analogy with the Entity-Class
entropy, this measure is computed for each topic, by considering the bag-of-categories
for each entity mentioned in a topic based on the extracted category meta-graphs. In
this case, low entropy indicates that the topic is less ambiguous, consisting of entities
belonging to few categories, while high entropy refers to higher ambiguity at the level
of entities.
HT (Cat|E) = −

∑|ET |
j=1 p(ej)HT (Cat|E = ej), where p(ej) denotes the conditional

probability of an entity ej within the topics’ entity bag ET , and HT (Cat|E = ej)

refers to topic category entropy given the entity ej .

7. Entity-Property entropy (EntityProperty-Entropy): Similarly, the bag-of-properties
is taken for each entity mentioned in a topic based on the extracted KS graphs. In this
context, low entropy indicates that the topic is less ambiguous, consisting of entities
being associated to few properties, while high entropy refers to higher ambiguity at
the level of entities.
HT (P |E) = −

∑|ET |
j=1 p(ej)HT (P |E = ej), where p(ej) denotes the conditional prob-

ability of an entity ej within the topics’ entity bag ET , and HT (P |E = ej) refers to
topic property entropy given the entity ej .

8. Class-Property entropy (ClsProperty-Entropy): This was measured by taking the
bag-of-properties for each class appearing in each topic derived from the resource
meta-graphs. In this context, low entropy indicates that a topic is less ambiguous,
few properties spanning over multiple classes, while high entropy reveals high property
diversity. The corresponding measure is defined as followed:
HT (P |Cls) = −

∑|ClsT |
j=1 p(clsj)HT (P |Cls = clsj), where p(clsj) denotes the condi-

tional probability of a class clsj within the topics’ class bag ClsT , and HT (P |Cls =

clsj) refers to topic property entropy for the class clsj .

9. Category-Property entropy (CatProperty-Entropy): The category property en-
tropy for each topic was computed in a similar way. In this context, low entropy
indicates that a topic is less ambiguous, few properties spanning over multiple cate-
gories, while high entropy reveals high property diversity. The corresponding measure
is defined as followed:
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HT (P |Cat) = −
∑|CatT |

j=1 p(catj)HT (P |Cat = catj), where p(catj) denotes the condi-
tional probability of a category catj within the topics’ class bag CatT , andHT (P |Cat =

catj) refers to topic property entropy for the category catj .

Considering that the goal is to estimate the performance of a topic classifier on a new
unseen test dataset, the entropy difference (DE) measure is furthermore defined for capturing
the differences between a training dataset -used to train a topic classifier-, and a test dataset
-used to test a topic classifier. Let Ttrain and Ttest be the probability distributions estimated
from the training and test datasets. For instance, given the Cri topic, and the cross-domain
topic classifier built on DBpedia KS data, the Ttrain training dataset corresponds to a dataset
collected for the Cri topic from DBpedia, while the Ttest dataset corresponds to the dataset
collected from Twitter. According to the above entropy measures, for each semantic feature
(e.g. f = P ) and feature combination (e.g. f = Cat+ P )27, the entropy difference measure
is defined as follows:

DE(f, Ttrain, Ttest) = |HTtrain
(f)−HTtest(f)|. (6.7)

Intuitively, having features (e.g. Cls or Cat) with low DE values means that the features
have similar values with respect to the train and test datasets. It is also expected that the
lower the DE values are, the better the performance of a topic classifier.

These measures will be examined in Section 6.6.4.4 by correlating them with the perfor-
mance of different topic classifiers. The proposed framework was evaluated on the Emergency
Response and Violence Detection domains. The following section introduces the datasets in
which the proposed framework and topic adaptability metrics were tested.

6.5 Compiling a Gold Standard for Cross-Domain Topic

Classification of Tweets

To analyse the impact of utilising semantic features in building adaptive topic classifier of
microposts, the performance of the proposed strategies is evaluated using a large corpus of
microposts and two large coverage linked KSs, namely DBpedia and Freebase. For evaluating
the topic classification framework the Emergency response (ER) and Violence detection (VD)
domains are considered, and thus relevant dataset to these domains are compiled.

The Twitter dataset (TW) was derived from Abel et al.’s dataset [Abel et al., 2011],
comprising microposts collected from over a period of two months starting on November
2010. This dataset has been topically annotated with 17 OpenCalais topics28, including
e.g., the following topic labels: “War & Conflict” (War), “Law & Crime” (Cri) and “Disaster
& Accident” (DisAcc). This collection has been manually re-annotated, ensuring to have
1,000 microposts for each of these topic labels. These microposts served as positive examples
for each topic in this dataset. In order to mimic the imbalance issue posed on the detection

27For clarity it is mentioned here that for the feature combinations (e.g. f = Cat + P ) is employed the
conditional entropy measure (e.g. HTtrain

(f = P |Cat)), as this provides a natural way for capturing the
relationships among multiple semantic features.

28The full list of topics include: Business & Finance, Disaster & Accident, Education, Entertainment &
Culture, Environment, Health & Medical & Pharma, Hospitality & Recreation, Human Interest, Labor,
Law & Crime, Politics, Religion & Belief, Social Issues, Sports, Technology & Internet, Weather and War
& Conflict.
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Figure 6.5: The multi-label distribution of the three gold standard datasets: DBpedia,
Freebase and Twitter datasets. The numbers on the x axis represent the number of topics
assigned to a document, ranging from 1 topic to 9 topics. The numbers on the y axis
correspond to the percentage of documents labelled with different topics.

of microposts in this domain, in which a large proportion of microposts in a stream might
be irrelevant to the topic of interest; a negative dataset was also built comprising a large
collection of microposts which do not bear any relation to these three topics (i.e. War,
DisAcc and Cri).

The Twitter dataset comprises 10,189 microposts annotated with up to six topic labels.
The distribution of the examples belonging to multiple topics in each dataset is shown in
Figure 6.5. In the Twitter dataset the majority of microposts are annotated with only one
topic. In the case of the Freebase dataset, due to the nearly flat hierarchical structure of the
domains, the majority of the articles belong to a single topic. In the case of the DBpedia
dataset the majority of the articles belong to a single topic, and less than 1% of the articles
are annotated with 3,4,5,6,7 or 9 topics.

Some notable events related to violence and ER discussed within these datasets include
among others the “Mexican drug war”, “Egyptian revolution”, “Iranian Stoning Sentence”, and
“Indonesia Volcano Eruption”. The DBpedia and Freebase topic datasets have been created
as described in Subsection 6.3.2, by SPARQL querying these endpoints for all resources
belonging to categories and subcategories of the skos:concepts of War, DisAcc and Cri
respectively; keeping the resource’s abstract or title as a document labelled with the given
topic. Following this process, the final DBpedia dataset comprises of 9,465 articles, and the
Freebase dataset consists of 16,915 articles.

Figure 6.6, 6.7 and 6.8 present the distribution of the top 15 entity types in the three
datasets. As it can be observed the most frequent entity types are Country, Person, Orga-
nization, Natural Feature, Position and City.

In the pre-processing step, different steps were applied for both lexical and semantic
features. When considering the lexical features, in order to obtain the BoW feaures for
each document (i.e KS-derived article or micropost) the following steps were performed:
removal of stopwords, lovercasing of words, stemming using Lovins stemmer [Lovins, 1968].
In addition, all Twitter-specific hashtags, mentions and URLs were removed, allowing to
reduce the vocabulary differences between the KSs and TW datasets. The feature spaces
were also reduced to the top-1000 words weighted by TF-IDF for each topic, which was
found to perform better than using all the words.

When obtaining semantic features, using the BoE features derived from a document,
SPARQL queried were fired for each entity’s resource in DBpedia and Freebase. From these
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Figure 6.6: The distribution of top 15 entity types in the three gold standard datasets:
DBpedia (DB), Freebase (FB) and Twitter (TW) datasets for the Crime (Cri) topic.

resources different semantic meta-graphs were built from each KS graph (i.e. GDB and
GFB) as indicated in Subsection 6.3.5. In addition, from both DBpedia and Freebase KS
graphs some properties were disregarded containing general information about an entity (i.e
common to each instance) e.g. rdfs:comment, abstract, wikiPageExternalLink from DbPedia
and type/object from Freebase. These feature spaces were also reduced by considering for
each entity type defined by OpenCalais (e.g. Person) the top 5 entity classes and top 5
properties derived from the different KS graphs. The same strategy is used for reducing the
number of the category features, by selecting the top 5 for each OpenCalais entity type.

The statistics of the lexical and semantic features derived for these datasets are sum-
marised in Table 6.6.

The BOW and BOE represents the size of vocabulary of the BOW and BOE features.
dbClass, yagoClass and fb stand for the unique number of classes extracted from the DB,
FB and DB+FB knowledge graphs; dbCat refers to the unique number of categories ex-
tracted from DB. dbprop counts the number of unique dbOwl properties, correspondingly
fbprop counts the number of unique fbOnt properties. cls/ent refers to the average num-
ber of dbOwl and yago classes per entity; cat/ent stands for the average number of dbOwl
categories, while fbcls/ent denotes the average number of fbOnt classes per entity. Simi-
larly prop/ent denotes the average number of dbOwl and yago properties per entity, and
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DB FB TW

Statistics DisAcc Cri War DisAcc Cri War DisAcc Cri War

L
ex BoW 8,837 8,837 8,504 2,078 4,596 2,574 3,218 3,197 2,781

BoE 18,247 18,247 18,167 1,172 2,715 1,822 1,818 1,816 2,146

Se
m
an

ti
c

dbCls 119 119 124 39 47 48 80 85 68
yagoCls 3,865 3,865 3,864 351 834 922 1,480 1,795 1,275
fbCls 1,289 1,289 1,215 394 713 641 881 915 772
dbCat 9,275 9,275 8,796 783 1,844 1,807 3,252 3,878 3,087

dbprop 4,105 4,105 4,215 1,229 1,849 1,871 2,544 2,457 2,422
fbprop 1,090 1,090 1,065 420 586 554 834 869 696

cls/ent 4.56 4.56 4.48 5.55 4.21 6.33 5.73 6.02 5.80
cat/ent 5.45 5.49 5.34 7.76 5.80 8.89 7.49 8.20 8.72
prop/ent 26.56 26.56 26.29 39.65 33.97 41.78 36.99 32.62 36.17
fbcls/ent 7.30 7.30 7.12 15.89 12.68 15.57 11.98 11.66 12.49
fbprop/ent 10.08 10.08 9.76 23.44 17.06 23.05 16.93 16.65 17.97

In
di
ca
to
r

%HSH 1.85% 2.78% 2.10%
#HSH 233 220 198
%URL 2.59% 6.41% 2.65%
#URL 154 411 139
dbCls(HSH) 29 23 20
yagoCls(HSH) 150 169 171
fbCls(HSH) 316 312 215
dbCat(HSH) 29 23 20

Table 6.6: General statistics for the DBpedia (DB), Freebase (FB) and Twitter (TW)
datasets used in the context of ER and VD for the two semantic meta-graphs analysed
(resource meta-graph and category meta-graph). The rows labelled as BoW and BoE rep-
resent the size of the vocabulary of the BoW and BoE (without BoW ) features. Statistics
about the resource meta-graph: dbCls, yagoCls and fbCls stand for the unique number of
classes extracted from the DBpedia and Freebase knowledge graphs. dbprop counts the num-
ber of unique DBpedia properties, and correspondingly fbprop counts the number of unique
Freebase properties. Considering the category meta-graph: dbCat refers to the unique num-
ber of categories extracted from DBpedia knowledge graph.
cls/ent refers to the average number of dbOwl and yago classes per entity; cat/ent quantifies
the average number of dbCat categories per entity, while fbcls/ent denotes the average num-
ber of fbOnt classes per entity. Similarly prop/ent denotes the average number of dbOwl and
yago properties per entity, and fbprop/ent refers to the average number of fbOnt properties
per entity.
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Figure 6.7: The distribution of top 15 entity types in the three gold standard datasets:
DBpedia (DB), Freebase (FB) and Twitter (TW) datasets for the Disaster (DisAcc) topic.

fbprop/ent refers to the average number of fbOnt properties per entity.

Comparing these statistics, it can be observed that the frequency of dbOwl categories
(dbCat) are generally higher than those of dbOwl and yago classes. In addition, the average
number of distinct categories (cat/ent) for an entity is mostly double the number of distinct
classes per entities (cls/ent), indicating that the categories form much larger clusters than
the classes.

In addition, it can be mentioned here that the DBpedia dataset contains the most num-
ber of entities for each topic, on average 22.24 entities per articles; while the number of
documents without any entity is 69 (0.72%). In the case of Freebase, the average number of
entities per article is 8.14, and the percentage of articles without any entity is 19.96% (3,377
articles). Lastly, the Twitter dataset consists of informative microposts mentioning at least
one entity, the average number of entities per tweet is 1.73. In addition, it can observed
that in all the three datasets the number of unique categories is higher than the number of
unique classes, indicating that the datasets are more diverse in terms of categories than in
terms of classes.

After concept generalisation, the number of unique dbClass classes reduces by 76%, the
number of unique yagoClass classes reduces by 92%, and the number of unique fbClass
classes by 88%. While in the case of category generalisation, the number of unique dbCat
classes reduces by 42%.

Looking at the statistics about the Twitter specific indicators summarised in Table 6.6,
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Figure 6.8: The distribution of top 15 entity types in the three gold standard datasets:
DBpedia (DB), Freebase (FB) and Twitter (TW) datasets for the War (War) topic.

Topic Example Hashtags
DisAcc #haiti

#pakistan
#israel
#oilspill
#travel

Cri #imigrants
#illegal
#jobless
#topnews
#cnn

War #afganistan
#iraq
#alaska
#nato
#security

Table 6.7: Some example hashtags appearing in the analysed Twitter datasets.

it can observed that in the TW dataset the frequency of hashtags (HSH) and URLs is
relatively low, indicating that only a small number of tweets contain external data source
specific information. In total 2,386 (23,41%) microposts contain at least one hashtag; and
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3,348 (32.85%) microposts contain at least one URLs. The number of unique hashtags is
1,784; while the number of unique URLs is 1,902. Some example hashtags mentioned in the
Twitter datasets are illustrated in Table 6.7.

6.6 Evaluation

This section presents a series of experiments to evaluate the proposed adaptive topic clas-
sification framework and topical adaptability measures using the different semantic pivot
features introduced in Subsection 6.3.5.

Before describing the experiment in details, however, first the baseline methods used
in the experiments are introduced in Subsection 6.6.1, then the evaluation measures pre-
sented in Subsection 6.6.2. This is followed by the description of the experimental setup in
Subsection 6.6.3, and a discussion on the results in Subsection 6.6.4.

6.6.1 Baseline Methods

6.6.1.1 Baseline Methods for Topic Classification

The proposed text classification framework has been evaluated using different semantic fea-
tures, augmentation strategies against several baseline models corresponding to state-of-the-
art approaches for TC. These baseline models consist of the following features:

Bag-Of-Unigrams (BoW) Features: The unigram features captures the natural intu-
ition to utilise what it is known about a particular topic, so that the features, which are
most indicative of a topic, can be detected and the appropriate label(s) assigned. The
BoW features consist of a collection of words weighted by TF-IDF (term frequency-inverse
document frequency) capturing the relative importance of a word in a document to its use
on the whole corpus.

Bag-Of-Entities (BoE) Features: This feature set extends the lexical BoW features
with entities and concepts extracted using available annotation services, e.g. OpenCalais
API, weighted by TF-IDF. These web services annotate each entity with generic types. For
example in the case of Obama, rather than recognise it as being of type dbOwl :President
the majority of these services will annotate this entity with the label Person [Rizzo and
Troncy, 2011]. In this case the value of the BoE features thus captures the co-occurrence
of the entity and concept pairs fBoE(BarackObama ∧ Person).

Bag-Of-Concepts (BoC) Features: This feature set extends the lexical BoW features
with concepts extracted with the OpenCalais API. The API provides one single (often
generic) concept type for each entity. For example assuming that Barack Obama is anno-
tated as Person by OpenCalais, this feature set captures the presence of the Person class
type fBoC(Person)29. This new baseline feature set provides an alternative comparison be-
tween the newly proposed semantic meta-graph derived features (Cls) and those obtained
from the OpenCalais service.

29This comparison also allows us to investigate whether modelling each entity with more than one KS
concept (in particular 5) is more suitable for TC than with a single one.
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Part-of-Speech (POS) Features: Similar to the BoE feature set, this feature set aims to
capture some generalisation patterns for the words. For this reason, the syntactical patterns
within the documents are considered and used to extend the lexical BoW features. In this
work the Ritter et al.’s Twitter NLP Tools [Ritter et al., 2011] is used, whose PoS tagger
has been trained on short text messages.

Considering the above baseline features, two typical baseline supervised machine learning
models are employed:

• TW (also called TGT_ONLY) single-domain topic classifier, in which an SVM topic
classifier is built on microposts only (TW), and

• KS (also called SRC_ONLY) cross-domain topic classifier, in which an SVM topic
classifier is built on sole KS (DBpedia and/or Freebase) data.

6.6.1.2 Baseline Content-based Measures of Topic Adaptability

The proposed topic adaptability measures (presented in Section 6.4) are also compared to
various content-based domain similarity measures, which make use of the lexical represen-
tation of the domains.

Formally describing, let
−→
d represent a vector consisting of the BoW features weighted

with TF-IDF occurring in each domain. Then for the corresponding two domains,
−→
ds denotes

the vector for the source domain and
−→
dt denotes the vector for the target domain. Based on

this lexical representation, the baseline content-based statistical measures employed are the
χ2 test, the symmetric Kullback-Leibler symmetric distance (KL) and the cosine similarity
measures (cosine). The reminder of the reader these measures are described in details in
Section 5.4.

6.6.2 Evaluation Measures

The evaluation metrics used to compare the performance of the different topic classifiers
were the standard precision, recall, and F1-measures. The precision (Prec) is computed as
the ratio of the number of correctly annotated microposts to the total annotated:

Prec = |correctly annotated Tweets|
|annotated Tweets|

The recall (Rec) is the ratio of the number of correctly annotated microposts to the total
number that should have been annotated:

Rec = |correctly annotated Tweets|
|Tweets which should have been annotated|

The F1-measure provides a weighted combination of the two measures, defined as

F1 = 2× Prec×Rec
Prec+Rec
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6.6.3 Experimental Set-up

Two different topic classification scenarios were analysed and compared in the experiments:
a single-domain topic classification case, in which case the baseline SVM topic classifier
trained on microposts only (TW) is employed (TGT_ONLY), and a cross-domain topic
classification scenario, in which case an SVM topic classifier is trained on either the KS data
alone (which is referred to KS or SRC_ONLY) or combined with Twitter data (which is
referred to KS + TW or SRC_TGT).

For evaluating these classifiers, the commonly used one-vs-all approach was employed
[Bishop, 2007], in which the multi-label problem was decomposed into multiple independent
binary classification problems. Following this approach, each TC system was evaluated using
5-fold cross-validation. The training dataset for the TW topic classification system consisted
of 80% of the original Twitter data. For the KS classifier the training set consisted of the
full KS data. For the KS+TW classifier the full KS data was combined with 80% of Twitter
data.

Each of these topic classifiers is evaluated on 20% of Twitter data, using 5-fold cross-
validation. Furthermore, considering that the distribution of Twitter specific indicators is
very sparse (as shown in Table 6.6), two different cases have been considered for the creation
of Twitter test dataset: the Full (default) setting, in which case the complete Twitter data
has been used (10,189 microposts), and a Filt setting (used mostly in the experiments
evaluating the impact of Twitter specific indicators), in which only those microposts were
considered which have at least one HSH or URLs (in total 4,778 microposts).

Considering the two different topic classification scenarios, a series of experiments were
conducted. In the first set of experiments, the usefulness of the KS data is first evaluated,
by comparing the performance of KS topic classifiers built on the individual KS (DB, FB)
and joint KS data (DB+FB) against the performance of the TW topic classifier trained on
microposts only. The main research questions addressed are “Do KSs contain useful labelled
data for building adaptive topic classifiers of microposts?” “Which KS data provides more
useful information for topic classification?”

In the second set of experiments the usefulness of semantic pivot features is evaluated,
using different semantic meta-graphs and weighting strategies for the features.

In this case, the main research questions addressed are “Do semantic meta-graphs built
from KSs contain useful semantic features about entities for the topic classification of mi-
croposts?” “Which semantic meta-graph provide more useful semantic features for topic
classification?”

The next set of experiments then investigates the impact of Twitter specific indicators,
answering the question of “Does information derived from external data sources’ indicators
play an important role in topic classification of microposts?”

Finally, the fourth set of experiments looks at the roles of the semantic features in pre-
dicting the adaptability of a topic classifier. For this reason various entropy-based measure
were computed and correlated with the performance of SVM topic classifier. In this case the
questions under investigation are “Is it possible to predict the adaptability of a topic classi-
fier?” “Which semantic feature can better represent the adaptability of a topic classifier?”
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6.6.4 Results and Discussion

6.6.4.1 The Usefulness of Knowledge Source Data in Cross-Domain Topic Clas-
sification

The goal of this first set of experiments is to investigate the usefulness and the relevance of
the KS data alone for topic classification of microposts.

For this purpose the performance of three KS topic classifiers built on KS data alone
is compared against the TW topic classifier built on microposts only, according to the two
baseline feature sets: BoW and BoE feature sets.

The results obtained over the full performance curve (considering up to 80% of microp-
osts) are presented in Figure 6.930. As it can be observed, the TW topic classifier requires
a sufficient amount of annotated microposts in order to significantly outperform the three
KS classifiers. In the case of DisAcc, at least 993 annotated microposts were required for
the TW classifier to significantly outperform DB + FB (p < 0.01). For the Cri and War
this number is 640 (see Table 6.8) (p < 0.05).
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Figure 6.9: The performance in terms of F1-measure of the single-domain TW classifier and
cross-domain DB, FB and DB + FB classifiers over the full learning curve, using lexical
features.

The comparison of the performance of the DB + FB classifier against DB and FB has
furthermore revealed that in the majority of the cases, the DB + FB classifier outperforms

30The precision and recall curves are presented in Appendix C.
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the individual DB and FB classifiers, indicating that the KSs complement each other.

DisAcc Cri War
993∗∗ 640∗ 640∗∗

Table 6.8: Number of annotated tweets required for the Twitter classifier to beat the DB,
FB and DB + FB cross-domain classifiers. Significance levels: p-value < 0.01∗∗ 0.05∗.

Considering these results, the following general conclusions can be drawn:

1. In the absence of any or large amount of annotated microposts, the application of KS
topic classifiers is beneficial.

2. The DBpedia and Freebase KSs contain complementary information about a specific
topic, resulting in that the joint DB + FB model significantly outperforms both DB
and FB topic classifiers in the majority of the cases.

6.6.4.2 The Usefulness of Semantic Meta-Graphs in Cross-Domain Topic Clas-
sification

This section evaluates the usefulness of the semantic meta-graphs derived from KS first for
the single-domain scenario, then for the cross-domain scenario.

Single-domain Scenario This section details the results obtained for the single-domain
TC case. In these experiments three different single-domain TW classifiers were employed.
These classifiers make use of single KS ontologies: TW(dbKS ) and TW(fbKS ); and the
combined KS ontologies: TW(dbKS+fbKS ). In particular, in the case of the resource meta-
graph, dbKS denotes the dbOwl +yago ontologies, while in the case of the category meta-
graph, dbKS stands for the dbCat ontology. These classifiers are evaluated against several
baseline models, as presented in Table 6.10.

Looking at the performance of the baseline models, it can be observed that the best
performance was achieved by the BoE features, which performed better than the BoC and
BoW features. Further, the POS features did not improve on the baseline model using
only BoW features. An explanation for this could be that the language in Tweets is quite
complex, and exhibits less regularity than longer texts used from KSs (KS abstracts).

Comparing the results obtained for the best baseline feature -BoE feature- with those for
the semantic features derived from the two semantic meta-graphs, it can be observed that the
best results were obtained for the resource meta-graph for the combined TW (dbOwl+yago
+fbOnt) scenario using the P features with theW-SG weighting strategy, which significantly
outperforms the baseline lexical features (t-test with p < 0.05). In the case of the War
category, the F1 measure increases by 2.8% with respect to the BoW features and 2.2%
with respect to the BoE features; in the case of the Cri category the F1 measure increases
by 2.3% with respect to the BoW feature and 0.6% with respect to the BoE features, while
in the case of DisAcc an improvement of 1.5% over the BoW features can be observed.
Further, for both semantic meta-graphs, the novel class–property co-occurrence weighting
schema (W-SG) for the properties (P(W-SG)) shows a significant improvement over the
feature frequency strategy (P(W-Freq)) (t-test with p < 0.01). These results demonstrate
that capturing the importance of the property within a given semantic meta-graph (with
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Dataset Semantic graph Features TW(dbKS+fbKS) TW(dbKS TW(fbKS)

F1 F1 F1

War

Baseline

BOW 0.800 0.800 0.800
POS 0.798 0.798 0.798
BOE 0.806 0.806 0.806
BOC 0.784 0.784 0.784

Resource

Cls(W-Freq) 0.790 0.796 0.803
parent(Cls)(W-Freq) 0.792 0.791 0.803
P(W-Freq/Cls) 0.803 0.800 0.800
Cls+P(W-SG) 0.803 0.808 0.804
parent(Cls)+P(W-SG) 0.803 0.802 0.809
P(W-SG/Cls) 0.828 0.817 0.816

Category

Cat(W-Freq) 0.818 0.820 0.817
parent(Cat)(W-Freq) 0.824 0.822 0.820
P(W-Freq/Cat) 0.811 0.811 0.809
Cat+P(W-SG) 0.811 0.811 NA
parent(Cat)+P(W-SG) 0.816 0.816 NA
P(W-SG/Cat) 0.823 0.818 0.821

Cri

Baseline

BOW 0.602 0.602 0.602
POS 0.597 0.597 0.597
BOE 0.619 0.619 0.619
BOC 0.590 0.590 0.590

Resource

Cls(W-Freq) 0.597 0.599 0.605
parent(Cls)(W-Freq) 0.604 0.603 0.607
P(W-Freq/Cls) 0.604 0.604 0.606
Cls+P(W-SG) 0.601 0.599 0.604
parent(Cls)+P(W-SG) 0.604 0.601 0.607
P(W-SG/Cls) 0.625 0.612 0.616

Category

Cat(W-Freq) 0.613 0.613 0.609
parent(Cat)(W-Freq) 0.613 0.613 0.605
P(W-Freq/Cat) 0.610 0.610 0.608
Cat+P(W-SG) 0.610 0.610 NA
parent(Cat)+P(W-SG) 0.616 0.616 NA
P(W-SG/Cat) 0.613 0.606 0.614

DisAcc

Baseline

BOW 0.709 0.709 0.709
POS 0.696 0.696 0.696
BOE 0.728 0.728 0.728
BOC 0.680 0.680 0.713

Resource

Cls(W-Freq) 0.705 0.707 0.703
parent(Cls)(W-Freq) 0.705 0.706 0.706
P(W-Freq/Cls) 0.690 0.706 0.703
Cls+P(W-SG) 0.704 0.710 0.708
parent(Cls)+P(W-SG) 0.708 0.709 0.704
P(W-SG/Cls) 0.724 0.718 0.715

Category

Cat(W-Freq) 0.712 0.714 0.710
parent(Cat)(W-Freq) 0.716 0.716 0.716
P(W-Freq/Cat) 0.715 0.715 0.711
Cat+P(W-SG) 0.715 0.715 NA
parent(Cat)+P(W-SG) 0.719 0.719 NA
P(W-SG/Cat) 0.715 0.718 0.709

Table 2: The performance of the single-source TW SVM topic classifiers using di↵erent KSs ontologies (DBpedia dbKS’s ontologies, and Freebase fbKS’s
ontology) and two semantic meta-graphs derived from these KSs (resource meta-graph (Resource) and category meta-graph (Category)). The results obtained
for the semantic features derived for the resource meta-graph (reported in [? ]) using the W-Freq weighting schema correspond to: class (Cls(W-Freq)), upper-
class (parent(Cls)(W-Freq)) and property (P(W-Freq/Cls)); while using the W-SG weighting schema are: class–property co-occurrence (Cls+P(W-SG)), upper-
class–property co-occurrence (parent(Cls)+P(W-SG)) and property (P(W-SG/Cls)). The results obtained for the semantic features derived for the category meta-
graph using the W-Freq weighting schema are: category (Cat(W-Freq)), upper-category (parent(Cat)(W-Freq)) and property (P(W-Freq/Cat)); while using the W-
SG weighting schema are: category–property co-occurrence (Cat+P(W-SG)), upper-category–property co-occurrence (parent(Cat)+P(W-SG)) and property (P(W-
SG/Cat)).
The baseline models (Baseline) employed are bag-of-words (BOW), bag-of-entities (BOE), part-of-speech (POS) and bag-of-concepts (BOC).
The results marked with † correspond to the new results obtained for the newly introduced category meta-graph.

meta-graph structures for TC we conducted a series of exper-
iments. In the first set of experiments, we compared the perfor-
mance of the topic classifiers using the resource meta-graph
and category meta-graph. First, the results obtained for the
single-source TC case are discussed in Subsection 3.1.1. Then
we discuss the results obtained for the cross-source TC case in
Subsection ??. The main research questions that we aim to
address are How does the performance of a topic classifier vary
using di↵erent concept graphs? Which concept graph provides
the most useful semantic features for TC of Microposts?

Next, our second set of analyses aim to investigate whether
there are any di↵erences in the roles (generalisation patterns) of
semantic features derived from the two semantic concept graphs
in TC. In this case, we address the research question Are there
di↵erences in the roles of the concept graphs in the di↵erent TC
scenarios?

Finally, in the third set of experiments, we look at the roles of
the semantic features in predicting the performance of a topic
classifier. For this reason we proposed and compared vari-

ous entropy-based measures using the semantic features which
characterise a topic. We then correlated these entropy-based
measures with the performance of SVM topic classifiers. In
this case we investigate the questions of Can we predict the
performance of a topic classifier? Which topic similarity mea-
sure provides a better estimate on the performance of a topic
classifier?

3.1. Comparison of Multiple Semantic Structures for Topic
Classification

We start our analysis by assessing the usefulness of the dif-
ferent semantic meta-graphs in both single-source TC (Section
3.1.1) and cross-source TC (Section ??) scenarios.

3.1.1. Evaluation of Semantic Concept Graphs in Single-
Source Topic Classification

This section details the results obtained for the single-source
TC case. In particular, it compares and contrasts the results
reported in our previous work for the resource meta-graph ([?

4

Table 6.10: The performance of the single-domain TW SVM topic classifiers using different KSs on-
tologies (DBpedia dbKS ’s ontologies, and Freebase fbKS ’s ontology) and two semantic meta-graphs
derived from these KSs (resource meta-graph (Resource) and category meta-graph (Category)). The
best results for the baseline, resource meta-graph and category meta-graph features for each topic
and classifier are shown in bold.

respect to concepts in the resource meta-graph or to categories in the category meta-graph),
improves the generality of the properties and the performance of the topic classifier for each
topic.

While employing the P features has been shown to provide a positive gain over the base-
line features for most of the topics, the usefulness of the semantic features and augmentation
strategies merely depend on a number of factors. For instance, one of the factors which influ-
ences the performance of a topic classifier is the number of entities identified in a micropost.
For instance, in the case of the War topic, a higher number of entities have been extracted
than for the other two topics. This can explain the higher gain achieved for this topic,
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resulted from a larger number of microposts being enriched. Further, the lower performance
achieved by the Cls features, could be due to the level of ambiguity (measured as cls/ent)
of the Cls features and their discriminative power for a given topic. Looking at the Table
6.6, it can be observed that there are a larger number of property features defined in KSs
for an entity (prop/ent) than for a class (cls/ent, fbcls/ent). This allows the incorporation
of very fine-grained information into TC, which indeed seems to improve the performance
of the classifier upon the baseline features. In order to capture these factors and provide
an insight into the usefulness of these features for topic classification, the reminder of the
reader, a set of topic similarity measures are employed which will be evaluated in Subsection
6.6.4.4.

Inspecting the results obtained for the different taxonomies, similar trends were observed
for the resource meta-graph and category meta-graph. That is, for both semantic graphs the
dbKS ontologies (dbOwl+yago for resource meta-graph; and dbCat for category meta-graph)
provide a significant improvement over the semantic features derived from fbKS ontology for
the War and DisAcc topics, except for Cri (t-test with p < 0.05). This could be explained
by the fact that in the Cri topic the entities extracted from the dbKS graph are more
ambiguous than those found within the War and DisAcc topics (see cls/ent values in Table
6.6). Similarly, the entities extracted from the fbKS are less ambiguous in the Cri topic
than in the other two topics (see fbcls/ent values in Table 6.6). The best overall results
were obtained by the combined dbOwl+yago+fbOnt and dbCat+fbOnt ontologies using the
property features, indicating that the three ontologies contain complementary information
(properties) about the entities.

Further, it was found that the augmentation strategies are beneficial for both seman-
tic graphs. In the case of the resource meta-graph, different trends were found for the
fbOnt and dbOwl + yago ontologies. When using fbOnt ontology, both (parent(Cls)(W-
Freq) and parent(Cls) + P(W-SG)) showed a consistent improvement over the initial non-
generalisation case (Cls(W-Freq) and Cls+ P(W-SG)) for each topic. However, when using
the dbOwl + yago ontology encoding the very specific classes of the entities were found to
be more beneficial for some topics (e.g. War). These results are understandable because
after generalisation, the entities which have the same parent class in the KS graphs will
be unified to the same semantic concept type, losing as a result the very specific meaning
of the entity. In the case of yago ontology, the number of unique classes reduces by 92%
after generalisation, while in fbOnt , the number of unique classes becomes 88% less. In the
case of the category meta-graph, further, it was found that the parent(Cat)(W-Freq) and
parent(Cat) + P(W-SG) features significantly improved over the Cat(W-Freq) and Cat+
P(W-SG) features for each topic (t-test with p < 0.05).

Cross-domain Scenario In this section the performance of the cross-domain topic clas-
sifiers is examined using the different semantic concept graphs and compared with the per-
formance of the single-domain topic classifier.

Based on the three scenarios analysed, in these experiments six different cross-domain
topic classifiers were employed. Among these cross-domain classifiers, four make use of indi-
vidual KS ontologies: DB making use of dbKS ’s ontologies, FB making use of fbKS ’s ontol-
ogy, DB+TW exploiting dbKS ’s ontologies, FB+TW employing fbKS ’s ontology. The re-
maining two cross-domain topic classifiers make use of the combined KS ontologies: DB+FB
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and DB+FB+TW. In particular, in the case of the resource meta-graph, dbKS denotes the
dbOwl +yago ontologies, while in the case of the category meta-graph, dbKS stands for the
dbCat ontology. These classifiers are evaluated against several baseline models, as presented
in Table 6.9.

Looking at the performance of the baseline models, a different trend can be observed
compared to the TW only scenario. The syntactic classes provided by the POS taggers, in
this cross-domain scenario, were found to be more beneficial, compared to the BoW cases.
While for the BoE and BoC features, no improvement was observed upon the baseline BoW
features. An explanation for this could be that the entities which appear in the TW dataset
could be quite different from the entities appearing in the KS data for each topic, in which
case exploiting the semantic information from KSs seems to be more beneficial.

Inspecting the best overall performance for the various features, feature weighting strate-
gies and augmentation strategies, it was noticed that the resource meta-graph achieved the
best results using the DB(dbOwl+ yago) +FB(fbOnt) +TW topic classifier.This classifier
significantly outperformed the baseline single KS classifiers: by 11.9-30.7% (over DB+TW )
and 13.4-31.4% (over FB + TW ) (t-test with p < 0.05). Considering the category meta-
graph, the improvements were slightly smaller, a significant improvement of 11.5-30.2% was
observed over DB + TW and 13-30.9% over FB + TW (t-test with p < 0.05). Comparing
the results against the TW baseline models, a significant improvement of 9.3%-28.2% can
be observed over the TW (dbOwl+ yago+ fbOnt) when using the resource meta-graph, and
8.9%-27.7% over the TW (dbCat + fbOnt) classifiers when using the category meta-graph.
Furthermore, the superiority of the TW topic classifier over the DB, FB and DB+FB topic
classifiers are in light with results obtained in Subsubsection 6.6.4.1, which demonstrated
that outperforming the TW topic classifiers is extremely difficult using KS data alone.

Comparing the different enrichment strategies, similar trends can be observed for both re-
source meta-graph and category meta-graph. The best enrichment that consistently improved
over the baseline for both concept graphs was the W-SG for P, indicating that encoding the
specificity of a property for each semantic concept graph is beneficial for TC. For the W-Freq
features, however, it was found that in the case of the resource meta-graph, the semantic
augmentation by feature frequency (Cls(W-Freq)) and by generalisation (parent(Cls)(W-
Freq)) worked consistently better than the baseline models. However, in the case of the
category meta-graph, the performance of the Cat(W-Freq) and parent(Cat)(W-Freq) were
only comparable to those of the baseline models.

Despite of the accuracy gain obtained with the P and Cls features for theDB+FB+TW

classifier, an interesting observation about these results is however, that the semantic features
do not always improve upon the baseline models. For instance in the case of DB+FB topic
classifier, the results are comparable or slightly worst than those obtained by the BoW
feature set ignoring semantic augmentation. An explanation for this could be that the
distribution of entities in the DB and FB datasets may slightly be different to the one in
Twitter. Further given that these classifiers do not make use of any microposts data, this
mismatch provides challenges for the topic classifier. A possible reason for this could be the
level of ambiguity of the entities in the different datasets. In order to capture the differences
between the datasets and provide an estimation on the usefulness of the different semantic
features, the reminder of the reader, a set of topic similarity measures were employed which
will be examined in Subsection 6.6.4.4.
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Contrasting the results for all three topics, it can be observed, that the biggest overall
improvement was achieved for the Cri topic using the resource meta-graph. In particular,
the DB+FB+TW achieved an improvement of 31.4% over FB+TW . For the case of the
category meta-graph, the DB+FB+TW achieved an improvement of 30.9% over FB+TW .

Also for the Cri topic, it was observed, that the FB+TW single KS classifier using BoW
features performed better than the DB+TW single KS classifier. However, when looking at
the results obtained for the BoE features, the opposite trend was observed, the DB + TW

performed better than the FB + TW . An explanation for this could be that a relatively
large number (3,377) of articles do not contain any entity, and thus are not semantically
enriched.

Further, it was noticed that the coverage of entities is lower in the Freebase than in
DBpedia. For example from the total number of entities extracted by OpenCalais a large
proportion (40%) of the entities were not found in the Freebase KS, while in the case of
DBpedia 35% of the entities were not assigned any URI. Regardless of this, an improvement
in F1 measure was obtained for both semantic graphs when combining the two linked KSs.
This thus indicates that the two linked KSs complement each other well. In one hand,
Freebase brings its strength in content coverage for the topics, while DBpedia brings useful
semantic evidence about the entities which are covered.

In conclusion, considering the results obtained for both single-domain and cross-domain
scenarios for the various semantic features derived from the three KS graphs the main
findings are as follows:

1. Semantic meta-graphs (both resource meta-graph and category meta-graph) built from
KSs contain useful semantic features about entities for topic classification. In par-
ticular, incorporating semantic features about properties (P) using the novel class-
property co-occurrence weighting schema (W-SG) proved a significant improvement
over previous state-of-the-art approaches.

2. Combining the evidence about the semantic features from multiple linked KS tax-
onomies (TW (db+yago+fb)) is beneficial for TC, showing a significant improvement
over approaches considering a single KS (TW (db+ yago), TW (fb)).

The Role of Semantic Concept Graphs in Single-domain and Cross-domain Topic
Classification
In the previous section the overall performance of a topic classifier was compared using

semantic features derived from two semantic meta-graphs (resource meta-graph and category
meta-graph). In this section, the discussion focuses on the differences in roles of these
semantic features in different TC scenarios.

Looking at the results obtained for the individual semantic features (Cat, Cls, P) dif-
ferent patters can be observed for the single-domain and cross-domain topic classification
scenarios.

Inspecting the results obtained for the single-domain topic classifier, it can be noticed,
that the performance of SVM topic classifier was consistently higher using the Cat features
than using the Cls features for both Freq and SG weightings (see Table 6.10) (t-test with
p < 0.05). These results indicate that the information about the category features seems to
be more beneficial than the information about the classes in the single-domain TC scenario.
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However, for the P features, it was found that the weights obtained from the resource meta-
graph are better than those obtained from the category meta-graph. This behaviour could be
understood by the fact that the category meta-graph consists of a larger number of Cat than
the number of Cls in the resource meta-graph, and in addition the Cat are more ambiguous
(less focused) than the Cls in terms of the number of properties associated to them.

In contrast to these observations, in the cross-domain topic classification scenarios differ-
ent trends were found for the Cat and C features (t-test with p < 0.05). While for the TW
only scenario, the Cat features worked better than the Cls features, in the cross-domain
scenario the opposite trend was observed: the Cls features are more useful than Cat fea-
tures. An explanation for this could be that, that the different datasets contain a larger
number of Cat features than the C features (compare dbCat with dbClass, yagoClass
and fbClass in Table 6.6), making it harder for the cross-domain classifiers to generalise
over the Cat features, than for the C features.

In conclusion, considering the results obtained for both single-domain and cross-domain
scenarios the main findings are as follows:

1. The semantic features derived from the two resource meta-graph and category meta-
graph exhibit different roles (generalisation patters) in the different TC scenarios.
The class features derived from the resource meta-graph exhibit better generalisation
patterns in the cross-domain setting, while the category features derived from the
category meta-graph are better suitable to encode the specificity of a topic in a single-
domain setting

2. Despite of the differences in roles of the semantic features derived from the two semantic
meta-graphs, incorporating semantic features from both semantic graphs is beneficial
for TC, achieving performance superior to previous approaches utilising lexical features

6.6.4.3 The Usefulness of Twitter Specific Indicator Features in Topic Classifi-
cation

This section continues by discussing the results obtained by incorporating the Twitter specific
indicator features into a topic classifier. First the results obtained for the single-domain topic
classification are presented. This is followed by the results obtained for the cross-domain
topic classification case.

Single-domain Topic Classification Table 6.11 summarises the results obtained for the
single-domain topic classification case using the indicator features alone, and combined with
the previously presented semantic entity features. Considering the results obtained on the
the Full TW corpus using the indicator features alone, it can be observed that the classifier
built using BoL and BoH features improve upon the baseline classifier considering words
only (BoW), except for the DisAcc topic using BoL(T ) feature. The best overall results were
obtained by the BoH (Prop), achieving an improvement of 1.6% over the baseline for the
DisAcc, 2.6% for the Cri , and 2.1% for the War topic. These results are in agreement with
the results obtained in the single-domain topic classification case for the semantic entity
features (in Subsubsection 6.6.4.1), which also showed that the property features provide
useful information for topic classification, and also incorporating them into a topic classifier
is more beneficial than utilising concept features.
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For the case, when the indicator features are combined with the semantic entity fea-
tures, a slight improvement can be observed against the results obtained over both indica-
tor features alone (Table 6.11), and semantic features alone (Subsubsection 6.6.4.1) (t-test
p < 0.05). The improvement against the BOW features becomes 2.1% for DisAcc, 2.8% for
the Cri , 3.0% for the War . For the property features, overall, it was again found that the
resource meta-graph contain more useful information than the category meta-graph graph.

Inspecting the results on the Filt TW corpus, it was found that the BoH(P ) features
perform the best. The improvement over the baseline classifier, however, was much bigger
in two of the cases: 9.5% for the Cri topic, and 5.8% for the War topic. The improvement
for DisAcc is 1.4%. An explanation for the small improvement for the DisAcc topic can
be understood by the fact that the microposts belonging to the DisAcc topic contain the
less number of HSHs and URLs, and therefore less number of microposts are semantically
enriched. As in the case of the Full TW corpus, the best overall results were obtained
using the resource meta-graph. Furthermore, the performance of the TW classifier slightly
improvements when combining the indicator features with the semantic entity features.

Case Semantic graph Features DisAcc Cri War

P R F1 P R F1 P R F1

Full

Baseline BOW 0.800 0.637 0.709 0.715 0.521 0.602 0.867 0.743 0.800
BoL(1) 0.801 0.654 0.720 0.738 0.540 0.623 0.880 0.737 0.802
BoL(L) 0.806 0.650 0.720 0.734 0.543 0.623 0.975 0.829 0.815
BoL(T) 0.788 0.636 0.704 0.741 0.525 0.614 0.881 0.741 0.805

Resource

BoH(Cls) 0.783 0.654 0.713 0.705 0.558 0.623 0.870 0.754 0.808
BoH(P/Cls) 0.793 0.659 0.719 0.713 0.562 0.628 0.891 0.761 0.821
Cls+BoH(Cls) 0.785 0.656 0.715 0.707 0.561 0.625 0.869 0.761 0.814
P(SG/Cls)+BoH(P/Cls) 0.847 0.665 0.730 0.721 0.561 0.630 0.907 0.795 0.830

Category

BoH(Cat) 0.777 0.657 0.712 0.700 0.555 0.619 0.872 0.753 0.808
BoH(P/Cat) 0.806 0.654 0.722 0.718 0.557 0.627 0.882 0.766 0.820
Cat+BoH(Cat) 0.783 0.663 0.718 0.702 0.557 0.621 0.882 0.763 0.818
P(SG/Cat)+BoH(P/Cat) 0.812 0.660 0.728 0.718 0.558 0.628 0.892 0.776 0.830

Filt

Baseline BOW-Filt 0.877 0.498 0.635 0.749 0.400 0.522 0.955 0.624 0.755
BoL(1-Filt) 0.801 0.509 0.623 0.725 0.474 0.574 0.839 0.698 0.762
BoL(L-Filt) 0.801 0.509 0.623 0.727 0.474 0.574 0.839 0.698 0.762
BoL(T-Filt) 0.813 0.497 0.617 0.766 0.488 0.596 0.874 0.714 0.786

Resource

BoH(Cls-Filt) 0.810 0.523 0.636 0.733 0.488 0.586 0.868 0.724 0.790
BoH(P-Filt/Cls) 0.796 0.515 0.625 0.747 0.526 0.617 0.892 0.746 0.813
Cls+BoH(Cls-Filt) 0.811 0.526 0.638 0.733 0.488 0.586 0.868 0.724 0.790
P(SG/Cls)+BoH(P-Filt/Cls) 0.817 0.538 0.649 0.769 0.517 0.618 0.887 0.756 0.817

Category

BoH(Cat-Filt) 0.755 0.528 0.621 0.664 0.435 0.525 0.840 0.688 0.756
BoH(P-Filt/Cat) 0.754 0.570 0.649 0.695 0.516 0.592 0.856 0.680 0.758
Cat+BoH(Cat-Filt) 0.835 0.523 0.643 0.719 0.482 0.577 0.867 0.727 0.791
P(SG/Cat)+BoH(P-Filt/Cat) 0.824 0.543 0.655 0.755 0.512 0.610 0.866 0.749 0.803

Table 9: The performance of the SVM TC using extrenal data source indicators.

Case Semantic graph Features DisAcc Cri War
F1 F1 F1

Full

Baseline BOW 0.709 0.602 0.800
BoL(1) 0.720 0.623 0.802
BoL(L) 0.720 0.623 0.815
BoL(T) 0.704 0.614 0.805

Resource

BoH(Cls) 0.713 0.623 0.808
BoH(P/Cls) 0.719 0.628 0.821
Cls+BoH(Cls) 0.715 0.625 0.814
P(SG/Cls)+BoH(P/Cls) 0.730 0.630 0.830

Category

BoH(Cat) 0.712 0.619 0.808
BoH(P/Cat) 0.722 0.627 0.820
Cat+BoH(Cat) 0.718 0.621 0.818
P(SG/Cat)+BoH(P/Cat) 0.728 0.628 0.830

Filt

Baseline BOW-Filt 0.635 0.522 0.755
BoL(1-Filt) 0.623 0.574 0.762
BoL(L-Filt) 0.623 0.574 0.762
BoL(T-Filt) 0.617 0.596 0.786

Resource

BoH(Cls-Filt) 0.636 0.586 0.790
BoH(P-Filt/Cls) 0.625 0.617 0.813
Cls+BoH(Cls-Filt) 0.638 0.586 0.790
P(SG/Cls)+BoH(P-Filt/Cls) 0.649 0.618 0.817

Category

BoH(Cat-Filt) 0.621 0.525 0.756
BoH(P-Filt/Cat) 0.649 0.592 0.758
Cat+BoH(Cat-Filt) 0.643 0.577 0.791
P(SG/Cat)+BoH(P-Filt/Cat) 0.655 0.610 0.803

Table 10: The performance of the SVM TC using extrenal data source indicators.

that the three ontologies contain complementary information
(properties) about the entities.

Further, we found that the augmentation strategies are benefi-
cial for both semantic graphs. In the case of the resource meta-
graph, we found di↵erent trends for the fbOnt and dbOwl+yago
ontologies. When using fbOnt ontology, both (parent(Cls)(W-
Freq) and parent(Cls) + P(W-SG)) showed a consistent im-
provement over the initial non-generalisation case (Cls(W-Freq)
and Cls+ P(W-SG)) for each topic. However, when using the
dbOwl + yago ontology encoding the very specific classes of
the entities were found to be more beneficial for some topics
(e.g. War). These results are understandable because after gen-
eralisation, the entities which have the same parent class in the
KS graphs will be unified to the same semantic concept type,
losing as a result the very specific meaning of the entity. In the
case of yago ontology, the number of unique classes reduces
with 92% after generalisation, while in fbOnt, the number of
unique classes becomes 88% less. In the case of the category
meta-graph, further, we found that the parent(Cat)(W-Freq) and

parent(Cat) + P(W-SG) features significantly improved over the
Cat(W-Freq) and Cat+ P(W-SG) features for each topic (t-test
with ↵ < 0.05).

4. Discussion and Future Directions

Our three-stage approach for topic classification analysis of
microposts functions by i) context modelling; ii) topic classifi-
cation and iii) topic similarity analysis.

We now discuss the issues and findings from each stage.

4.1. Context modelling

The presented semantic meta-graphs (both resource meta-
graph and category meta-graph) are capable of providing con-
textual information about concepts in short text. Our method for
TC makes use of various semantic features that are constructed
from these semantic meta-graphs. By extracting the named
entities we were able to enhance the lexical feature space of

11

Table 6.11: The performance of the single-domain SVM TW topic classifier using external
data source indicators. The best results for the baseline, resource meta-graph and category
meta-graph features for each topic are shown in bold.

Comparing the performance obtained for the different BoL features, it was observed,
that in the Filt case, when most of the tweets have a URL inside them, the Title of the
articles was found to be more informative of a topic. However, in the Full case, both the
first and the last paragraphs of the webpages were found more beneficial than the title of
the webpages.
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Cross-domain Topic Classification The results obtained for the cross-domain scenario
using the DB + FB + TW classifier are presented in Table 6.12. For the Full TW case,
the best overall results were obtained using the BoH(P ) features, similarly to the single-
domain scenario. In this case, however, the BoH(P/Cat) features achieved better results
than the BoH(P/Cls) features (t-test, p < 0.05). Furthermore, combining the indicator
features with the semantic entity features, showed no significant improvements over the sole
indicator feature case. The highest improvement over the baseline BoW features was 6.0%
for the DisAcc, 6.3% for the Cri , 6.9% for the War topic. Compared to the best TW single-
domain classifier, further an improvement of 24% was achieved for the DisAcc, 33.1% for
the Cri and 14.4% for the War topic.

Comparing the two indicator feature, it was noticed that the results obtained for the
BoH(P ) features outperformed the results obtained by the URL features. These results
indicate that incorporating semantic information derived from KSs is very important in
reducing the lexical gap between KSs and TW. In particular, the addition of new words
derived from the external URL websites were found worst or achieved little improvement
over the baseline BoW case (for DisAcc, Cri). With respect to the URL features, it was
noticed that the performance of the classifier does not change drastically when utilising the
first, last or the title of external URL websites. The difference in the performances is less
than 1%.

Case Semantic graph Features DisAcc Cri War
P P P

Full

Baseline BOW 0.800 0.715 0.867
BoL(1) 0.801 0.738 0.880
BoL(L) 0.806 0.734 0.975
BoL(T) 0.788 0.741 0.881

Resource

BoH(Cls) 0.783 0.705 0.870
BoH(P/Cls) 0.793 0.713 0.891
Cls+BoH(Cls) 0.785 0.707 0.869
P(SG/Cls)+BoH(P/Cls) 0.847 0.721 0.907

Category

BoH(Cat) 0.777 0.700 0.872
BoH(P/Cat) 0.806 0.718 0.882
Cat+BoH(Cat) 0.783 0.702 0.882
P(SG/Cat)+BoH(P/Cat) 0.812 0.718 0.892

Filt

Baseline BOW-Filt 0.877 0.749 0.955
BoL(1-Filt) 0.801 0.725 0.839
BoL(L-Filt) 0.801 0.727 0.839
BoL(T-Filt) 0.813 0.766 0.874

Resource

BoH(Cls-Filt) 0.810 0.733 0.868
BoH(P-Filt/Cls) 0.796 0.747 0.892
Cls+BoH(Cls-Filt) 0.811 0.733 0.868
P(SG/Cls)+BoH(P-Filt/Cls) 0.817 0.769 0.887

Category

BoH(Cat-Filt) 0.755 0.664 0.840
BoH(P-Filt/Cat) 0.754 0.695 0.856
Cat+BoH(Cat-Filt) 0.835 0.719 0.867
P(SG/Cat)+BoH(P-Filt/Cat) 0.824 0.755 0.866

Table 12: The performance of the SVM TC using extrenal data source indicators.

Case Semantic graph Features DisAcc Cri War
F1 F1 F1

Full

Baseline BOW 0.910 0.898 0.905
BoL(1) 0.908 0.898 0.913
BoL(L) 0.908 0.900 0.911
BoL(T) 0.905 0.897 0.911

Resource

BoH(Cls) 0.969 0.960 0.974
BoH(P/Cls) 0.927 0.920 0.929
Cls+BoH(Cls) 0.969 0.960 0.974
P(SG/Cls)+BoH(P/Cls) 0.928 0.925 0.930

Category

BoH(Cat) 0.967 0.960 0.973
BoH(P/Cat) 0.970 0.961 0.974
Cat+BoH(Cat) 0.969 0.960 0.973
P(SG/Cat)+BoH(P/Cat) 0.970 0.961 0.974

Filt

Baseline BOW-Filt 0.550 0.500 0.885
BoL(1-Filt) 0.716 0.862 0.887
BoL(L-Filt) 0.895 0.856 0.886
BoL(T-Filt) 0.892 0.863 0.886

Resource

BoH(Cls-Filt) 0.969 0.945 0.973
BoH(P-Filt) 0.914 0.879 0.912
BoH(Cat-Filt) 0.969 0.941 0.971
BoH(P-Filt/Cat) 0.970 0.941 0.972

Category

Cls+BoH(Cls-Filt) 0.970 0.953 0.973
P(SG/Cls)+BoH(P-Filt/Cls) 0.883 0.858 0.881
Cat+BoH(Cat-Filt) 0.969 0.938 0.969
P(SG/Cat)+BoH(P-Filt/Cat) 0.962 0.941 0.962

Table 13: The performance of the SVM TC using extrenal data source indicators.

those found within the War and DisAcc topics (see cls/ent val-
ues in Table ??). Similarly, the entities extracted from the fbKS
are less ambiguous in the Cri topic than in the other two top-
ics (see f bcls/ent values in Table ??). The best overall results
were obtained by the combined dbOwl+yago+fbOnt and db-
Cat+fbOnt ontologies using the property features, indicating
that the three ontologies contain complementary information
(properties) about the entities.

Further, we found that the augmentation strategies are benefi-
cial for both semantic graphs. In the case of the resource meta-
graph, we found di↵erent trends for the fbOnt and dbOwl+yago
ontologies. When using fbOnt ontology, both (parent(Cls)(W-
Freq) and parent(Cls) + P(W-SG)) showed a consistent im-
provement over the initial non-generalisation case (Cls(W-Freq)
and Cls+ P(W-SG)) for each topic. However, when using the
dbOwl + yago ontology encoding the very specific classes of
the entities were found to be more beneficial for some topics
(e.g. War). These results are understandable because after gen-
eralisation, the entities which have the same parent class in the

KS graphs will be unified to the same semantic concept type,
losing as a result the very specific meaning of the entity. In the
case of yago ontology, the number of unique classes reduces
with 92% after generalisation, while in fbOnt, the number of
unique classes becomes 88% less. In the case of the category
meta-graph, further, we found that the parent(Cat)(W-Freq) and
parent(Cat) + P(W-SG) features significantly improved over the
Cat(W-Freq) and Cat+ P(W-SG) features for each topic (t-test
with ↵ < 0.05).

4. Discussion and Future Directions

Our three-stage approach for topic classification analysis of
microposts functions by i) context modelling; ii) topic classifi-
cation and iii) topic similarity analysis.

We now discuss the issues and findings from each stage.

12

Table 6.12: The performance of the DB+FB+TW cross-domain SVM topic classifier using
various external datasource indicators. The best results for the baseline, resource meta-graph
and category meta-graph features for each topic are shown in bold.
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Examining the results obtained for the Filt case, a different trend can be observed, the
BoH(Cls) features achieves the best results in the majority of the cases (for the Cri andWar
topics). While for the DisAcc the BoH(Cat) and BoH(Cls) achieved comparable results.
Furthermore, similarly to the Full case, there was no big improvement when combining the
indicator features with the semantic entity features, except for the Cri topic. Considering
the URL features, however, it can be noticed that the title of the websites seems to be more
beneficial for TC, than the first or the last paragraphs. An explanation for this could be,
that in this Filt scenario more microposts are affected by feature augmentation than in the
Full scenario. In light with the results for the single-domain scenario, bigger improvement
can also be observed over the baseline (up to 42% for DisAcc, 45.3% for Cri) in the Filt
case than in the Full case.
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Figure 6.13: Performance curves in terms of F1 measure for the single-domain TW classifier
and cross-domain DB+FB+TW classifier using lexical (BoW) and semantic features (P
features from the category meta-graph).

Having the best TW single-domain and DB + FB + TW cross-domain topic classifiers
identified, an additional analysis was also conducted examining the performance of these
classifiers over the full learning curve, utilising all the target domain data (Full case). Fig-
ure 6.13 shows the performance of the DB+FB+TW (P (SG/Cat)+BoH(P/Cat)), DB+

FB + TW (BoW ) cross-domain classifiers against the TW (P (SG/Cat) + BoH(P/Cat)),
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TW (BoW ) single-domain classifiers. It can be observed, that using as little as 10% of anno-
tated tweets (815.12), theDB+FB+TW (P (SG/Cat)+BoH(P/Cat)) classifier consistently
and significantly outperforms the other classifiers over the full learning curve, for all the three
topics. The baseline DB + FB + TW (BoW ) classifier was also found to be very effective,
the number of annotated tweets required to outperform the TW single-domain classifiers
was 10% for the DisAcc and Cri topics, and 20% for the War topic. These results thus
demonstrate that the proposed adaptive DB+FB+TW (P(SG/Cat)+BoH(P/Cat)) classi-
fier can drastically reduce the human effort of annotating tweets, being more effective than
the baseline models. .

In conclusion, considering the results obtained for both single-domain and cross-domain
scenarios the following findings can be drawn:

1. The Twitter specific indicator features provide useful information for topic classifi-
cation. Incorporating the BoH(P ) features from the resource meta-graph into the
single-domain TW classifier, and the BoH(P ) features from the category meta-graph
into the cross-domain KS+TW (DB + FB + TW ) classifier showed significant im-
provement over baseline models.

2. The combination of the hashtag indicator and semantic entity features was found
beneficial for both scenarios. In the single-domain scenario, the combination of these
two features achieved superior results to the classifiers using sole hashtag and sole
entity features. In the case of cross-domain scenario, a significant improvement can
be observed over the classifier using semantic entity features only, and the results are
comparable to the classifier using only hashtags features.

6.6.4.4 Evaluating Topic Adaptability

The previous sections analysed the benefit of using semantic features derived from KS graphs
for the topic classification task in both single-domain and cross-domain scenarios. These re-
sults have shown that there is variation in the performance levels between topics, suggesting
that differences between the KS and Twitter datasets affects the performance levels.

In order to understand these variations, this last set of experiments aims to analyse
and compare different topic adaptability measures, which can be used to estimate the per-
formance of a topic classifier. First a series of content-based adaptability measures are
compared, correlating their value with the performance of the DB + FB and TW topic
classifiers. Following this, the newly proposed entropy-based adaptability measures are
compared against the best content-based adaptability measure found.

Content-based Adaptability Measures Figure 6.14 shows the correlations obtained
using KL, cosine and χ2 values and the performance in F1 of the DB + FB and TW clas-
sifiers. A positive correlation indicates that the performance of the topic classifier increases
as the divergence decreases (the distribution are more similar); while a negative correlation
indicates that the performance increases as the divergence increases (the distributions are
less similar).

As it can be observed, for the single-domain case, the Chi-TGT achieved the highest
correlation values (in absolute terms) for all the three topics: in particular Chi-TGT(BoE)
for the DisAcc, Chi-TGT(BoW) for the Cri , and Chi-TGT(BoE) for the War . A similar
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Figure 6.14: Pearson correlation values between the content-based adaptability measures
and the performance of the DB + FB cross-domain (left), and TW (dbKS + fbKS) single-
domain (right) topic classifiers.

trend can be observed for the cross-domain scenario, in which case, Chi-DB+DB(BoE)
obtains the best correlation for the DisAcc, while Chi-DB+DB(BoE) for the Cri and Chi-
DB+DB(BoE) War topics.

The second best values were achieved by the cosine measure for both single-domain and
cross-domain TC scenarios, achieving higher correlation scores than the KL measure for Cri
and DisAcc.

These results thus indicate that the χ2 provides the best correlation scores for the adapt-
ability of a topic classifier31.

KS-based adaptability measures For examining the KS based adaptability measures,
the entropy difference values were computed to capture the difference between the train and
test datasets for each topic as introduced in Section 6.4.

In order to assess the relevance of a semantic feature type to the performance of a topic
classifier, these metrics were analysed by considering the following cases:

1. Measuring entity dispersion (Entity-Entropy) - Since this metric captures only the
entity dispersion in topics, it was correlated against topic classifiers build on BoE
features;

2. Measuring class dispersion (Cls-Entropy, EntityCls-Entropy) - In this case the topic
classifiers trained using Cls features was employed;

3. Measuring category dispersion (Cat-Entropy, EntityCat-Entropy) - In this case the
topic classifiers built using the Cat features was employed; and

4. Measuring property dispersion (P-Entropy, EntityProp-Entropy, PropertyCls-Entropy,
and PropertyCat-Entropy) - the topic classifiers using P features was considered.

31As χ2 measure distance, the inverted value of (χ2)−1 was used to measure the similarity between
domains.
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Figure 6.15: Pearson correlation values between entropy difference measures and the perfor-
mance of the DB + FB cross-domain (left), and TW (dbKS + fbKS) single-domain (right)
topic classifiers.

Figure 6.15 presents the Pearson correlation values obtained for each topic between the
entity difference scores and the performance of the cross-domain (DB + FB + TW ) and
single-domain (TW (DB + FB)) classifiers in terms of F1 measure obtained using 80% of
TW data for training (in addition to the KS data), and 20% TW data for test.

These figures show that in the cross-domain (DB+FB+TW ) scenario, the EntityProp-
Entropy yields the best correlation scores, over 70% in two out of three topics. When
looking at the values obtained for Cls-Entropy, Cat-Entropy, P-Entropy and Entity-Entropy
measures, it was observed that the Cls-Entropy showed the highest correlation values with
the performance of the cross-domain topic classifiers. For the DisAcc and War these values
were higher than 54%, however, for the Cri topic the correlation values were 11%. When
examining the class dispersion measures, it can furthermore be noticed, that the Entity-Cls
Entropy showed higher correlation than Cls-Entropy. In the case of the category dispersion
values, for some topics (e.g. DisAcc) the EntityCat-Entropy was found better, while for
others (e.g. War) the Cat-Entropy was more beneficial. Moreover, among the property
dispersion values the EntityProp-Entropy values showed the highest correlation values.

Considering the results obtained for the single-domain TC (TW (DB+FB)) case, the Cls-
Prop Entropy yields the best correlation value, over 60% for all the three topics. Among the
Cls-Entropy, Cat-Entropy, P-Entropy and Ent-Entropy measures, however, the P-Entropy
values were found the best. As opposed to the cross-domain case, among the class dispersion
measures the Cat-Entropy values were higher than the Entity-Cls Entropy values. For the
category dispersion measures, furthermore the Cat-Entropy values were higher than the
EntityCat-Entropy values in two out of three topics.

These results indicate that in the single-domain case analysing a single-semantic feature
(e.g. P, Cls or Cat) can provide a good estimate of the performance of the TC, while
in the cross-domain scenario the representation of the topics seems to be more complex,
requiring to model the entropy of two semantic features (in form of conditional entropy
values). Nonetheless, among the property dispersion values, the best results were obtained
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by the ClsProp-Entropy values.
A comparison was also made with the results obtained in the previous section using the

χ2 measure for both BOW and BOE features. According to these results, in the single-
domain case the best correlation values obtained were: 21% (BOE) for DisAcc, 58% (BOW)
for Cri , and 23% (BOE) for War ; while in the cross-domain case, these values were 14%
(BOW) for DisAcc, 45% (BOE) for Cri , and 20% (BOE) for War . As it can be observed,
the novel entropy based-adaptability measures (EntityProp-Entropy for cross-domain topic
classification and ClsProp-Entropy for single-domain topic classification) achieve better cor-
relation with the performance of the topic classifier (an improvement above 30% in absolute
values for the Cri and DisAcc topics), showing the usefulness of incorporating semantic
features from KSs for enhancing the representation of a topic.

Given the above observations, the general findings about the entropy-based measures are
as follows:

1. The adaptability of a topic classifier can accurately be measured by entropy-based
measures defined over the concept graphs created for a topic from multiple linked
KSs, outperforming previous content-based similarity measures derived from the sole
text content

2. The usefulness of these entropy based measures varies among different topics and topic
classification scenarios, however, the property based dispersion measures achieved best
correlation values in both single-domain and cross-domain topic classification scenarios

6.7 Possible Future Directions

The proposed adaptive topic classification framework has several advantages: first: it makes
use of already existing KS data for training a topic classifier of microposts; second it exploits
the structure and the knowledge from KSs to improve the generalisation between domains,
and thirdly it can make use of the linked structure between the KSs through LOD for pro-
viding a principled way for the combination of multiple KSs.
Despite of the success of this framework, several possible extensions could be explored:

• Employing other NER extractors:
The presented semantic meta-graphs (both resource meta-graph and category meta-
graph) have been shown to be both capable of providing contextual information about
concepts in short text. The proposed topic classification framework makes use of var-
ious semantic features that are constructed from these semantic meta-graphs. By ex-
tracting the named entities the lexical feature space of a topic classifier is enhanced with
additional contextual information about these concepts. In addition, this approach
takes into account the information about concepts (e.g. resource type-hierarchies,
resource properties) present in multiple semantic concept graphs of multiple linked
KSs.

One of the main factors which influences the performance of this approach is the
performance of the named entity recogniser (NER) used to extract the named entities
from short text messages. In this framework one of the most popular entity recogniser
(e.g. OpenCalais and Zemanta) is employed for this purpose. Although there has
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been several NER available [Rizzo and Troncy, 2011] for extracting entities for textual
data, these approaches were built on newswire corpora, and therefore to date it is not
well understood which one provides the best performance on microposts. Ritter et al.
[2011] also showed that applying a generic NER tool yields a performance of 29% (in F1
measure) on tweets, while an NER tailored for tweets performs much better, achieving
an F1 of 59%. Future work will thus concentrate in evaluating the framework using
other NERs.

• Improving the assignment of hashtags to DBpedia and Freebase URIs:
The assignment of hashtahs to DBpedia and Freebase URI uses a simple word match-
ing approach. This however encountered various challenges, given that hashtags
can often contain: 1. abbreviations (e.g. #nkorea http://dbpedia.org/resource/

North_Korea); 2. contain compound words (e.g. #flightdelay http://dbpedia.org/

resource/Flight_delay); and 3. some of the hastags may contain new abbrevia-
tions not present in KSs (e.g. #emfrmf) . For those cases no semantic meaning was
assigned to them. In addition, one hashtag as any other word (#beirut) may have
multiple meanings (e.g. the capital city of Lebanon; or a Lebanese governorate), and
thus in order to assign the correct DB and FB URI one may apply a word sense disam-
biguation algorithm [Tatar, 2004] first, which takes into account not only the lexical
form of a hashtag but also the context of the hashtag.

Future work will thus aim at improving the automatic assignment of hashtags to
DBpedia and Freebase URIs.

• Accounting for the incompleteness and inconsistencies in KSs:
A second factor which have some drawback to the performance of this approach is
the incompleteness and the inconsistencies within the KSs. For e.g. in Freebase the
/crime/crime_accuser class is derived from a very generic /common/topic class, while
another related class type /crime/convicted_criminal extends the /people/person
class. One possible solution to overcome this problem could be to perform a cross-
consistency validation, by investigating the overlapping properties between the entities
assigned to the same entity classes, and consider the most likely entity classes [Dolby
et al., 2009].

• Investigating more sophisticated features: balancing the contribution of uni-grams and
bi-grams by:
The proposed topic classification framework models the content of text using simple 1-
gram (unigram) features. A possible extension of this approach could be to incorporate
other ngram features into these models also, for e.g. 2-grams or a combination of 1-
grams with 2-grams [Lampos, 2012].

• Investigating the impact of different tweet normalisation approaches:
Given the vocabulary differences between KS data and microposts, one of the chal-
lenges faced by these models are the frequent usage of ungrammatical English words
in microposts. Due to the restricted size of short messages, entities such as country
names (nkorea) are often abbreviated, as in the following tweet: “nkorea prepared nu-
clear weapons holy war south official tells state media usa”. These irregularities results

http://dbpedia.org/resource/North_Korea
http://dbpedia.org/resource/North_Korea
http://dbpedia.org/resource/Flight_delay
http://dbpedia.org/resource/Flight_delay
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in that current annotation services (including OpenCalais API) will ignore these en-
tities, and therefore no semantic information will be exploited for these entities by
the TC. A possible solution to address these challenges is to apply lexical normalisers
especially developed for tweets [Han and Baldwin, 2011] to normalise these words to
standard English terms32.

6.8 Summary

This chapter explored the use of social knowledge sources (DBpedia and Freebase) for topic
classification of short text messages, aimed at detecting the topic(s) of social media posts.
The feasibility of this approach was demonstrated by implementing supervised classification
models, which i) make use of the abundant amount of data within these sources as additional
training data, and ii) exploit the semantic information present in KS concept graphs to
enhance the representation of the documents.

Exploring the question “Do KSs contain useful labelled data for building adaptive topic
classifiers of microposts?” it was found that both DBpedia and Freebase KSs provide valu-
able annotated data for training an adaptive topic classifier, and these KS data contain
complementary information. The DB+FB classifier built on the joint KS data proved to
be a competitive baseline, which can only be exceeded provided that sufficient amount of
annotated microposts is available (more than 640 annotated posts for the Crime and War
topics, and more than 940 labelled posts for the Disaster topic). Further the proposed adap-
tive DB+FB+TW classifier built on KS and Twitter data was shown to be very effective,
achieving reasonably high accuracy against several baseline models, including TGT_ONLY
(TW), SRC_TGT (DB+TW, FB+TW), and SRC_ONLY (DB+FB, DB, FB) models.

For enriching the documents, this chapter introduced and evaluated various semantic
features derived from two distinct semantic concept graphs (resource meta-graph and cat-
egory meta-graph). These enrichments were applied over the entities found in both KS
documents and microposts. In addition to this, two other Twitter specific indicators (hash-
tags and URL) were also employed to further enrich the representation of tweets. For the
hashtag features the concept graph enrichment strategies were applied, while for the URLs
a list of keywords retrieved from the webpages were added to the lexical features of tweets.
Experimental results revealed that the DB+FB+TW classifier using features from both se-
mantic concept graphs improves upon the baseline models. The best overall results were
obtained by employing the semantic property features extracted from the category meta-
graph for both entities and hashtags, achieving significant improvement over various baseline
models, including approaches considering sole lexical features (considering the SCR_TGT,
TGT_ONLY and SRC_ONLY models), and approaches using semantic KS features about
entities only (SRC_TGT). These experiments thus addressed the questions “Do semantic
meta-graphs built from KSs contain useful semantic features about entities for the topic clas-
sification (TC) of microposts?” and “Does information derived from external data sources’

32Some initial experiments in this direction were already performed, employing a dictionary based ap-
proach for tweet normalisation. A lexicon from http://www.noslang.com/ website was built, consisting of
5,407 abbreviation word pairs, and used to replace all abbreviations found in tweets with standard English
terms. The initial results, however, showed no improvement upon the baseline model without normalisation.
This indicate that further study needs to be conducted to investigate looking at other tweet normalisation
approaches too.
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indicators play an important role in TC of microposts?”.
These observations have raised the final question “Is it possible to predict the adaptability

of a topic classifier?”. To answer this question, this chapter introduced and evaluated var-
ious entropy-based measures defined over the semantic concept graphs. These experiments
demonstrated that the performance of a topic classifier can be predicted with reasonably
high accuracy using the property dispersion entropy measures. These results also showed a
significant improvement over previous content-based lexical similarity measures.
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Chapter 7

Conclusions and Outlook

The research presented in this thesis has examined how text classification can be better
supported by harnessing knowledge from domain knowledge sources to enable the categori-
sation of documents in large heterogeneous repositories, spanning multiple domains and text
types. A range of different repositories was explored, each capturing specific fragments of
information related to events happening in the word (e.g. emergency landing). In order to
provide a more complete and comprehensive picture about such events, this thesis presented
techniques which extract information from these different repositories, performing text clas-
sification at multiple granularity levels. Intra-document text classification (a.k.a. document
zoning) was used to recognise the structure of documents from historical data stored in
organisational archives and large scientific (biomedical) repositories, and whole-document
text classification (a.k.a. topic classification) was used to detect the topics of messages from
social media repositories, providing up-to-date information about these events.

Chapter 2 introduced the task of text classification, and reviewed the state-of-the-art
approaches on adaptive text classification using transfer learning techniques. Chapter 3
discussed the requirements of an adaptive text classification system, and presented an outline
of a knowledge-driven approach for text classification. This approach relies on identifying a
set of pivot features from the knowledge sources for adaptation, and then applying various
augmentation techniques for incorporating these features into the adaptive text classifiers.
First, adaptive text classification techniques for document zoning were studied. Chapter 4
discussed knowledge-poor approaches for document zoning which can be applied in the
absence of any domain knowledge. Chapter 5 then presented methods for incorporating
pivot features from domain knowledge sources into adaptive document zone classifiers in
order to enhance the content of these documents. Finally, Chapter 6 described adaptive
topic classification methods for Social Media posts making use of both data and knowledge
from social knowledge sources. This chapter presented methodologies for gathering data
from KSs for a particular topic/text class, serving as additional training data for building
adaptive topic classifiers. In addition, a set of pivot features was derived by exploiting the
underlying structure of KSs.

The current chapter summarises the main findings of this thesis and presents some future
research directions. Section 7.1 returns to the research questions and claims presented in
Chapter 1. Section 7.2 discusses the techniques and methodologies employed in this thesis
with respect to the requirements set. Following this, Section 7.3 enumerates some possible
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future directions on the overall research direction of transfer learning. Section 7.4 presents
the closing statement to this thesis.

7.1 Research Conclusions

7.1.1 Analysis of Research Questions

The research conducted in this thesis centres around the main research question:

How can document classification be performed across multiple domains and text types?

In addressing this question, research was conducted on a range of repositories comprising
documents belonging to different domains and text types. This lead to the development of
novel approaches and methodologies for processing the vast amount of text within these
repositories, producing as a result a semantic categorisation of their documents. The un-
derlying text classification task involves the processing and analysis of document content,
which may contain keywords, entities (instances of domain concepts) and special symbols,
and mining this content in order to assign the correct semantic class(es) to the documents.

The analysis of different repositories revealed the main challenges in performing docu-
ment classification across multiple domains. It was noted that the differences in vocabulary,
style and language used in the different domains largely affect the performance of a text
classifier. For instance the vocabulary used in documents about tropical medicine is very
different to the vocabulary used in cell biology documents. Also, when dealing with social
media repositories, the content of the documents can be very short, which restricts the con-
textual information of the documents, and can contain keywords, as well as special symbols
such as hashtags, or links to external information.

In addressing these challenges it was highlighted the need for consistently representing
the content of the documents across domains. For this purpose this thesis explored the use
of semantics for document content enrichment. In order to achieve this, the use of knowledge
sources was explored, and Semantic Web technologies applied as means for representing the
knowledge within knowledge source ontologies. Further, besides exploiting the knowledge
within knowledge source ontologies for enriching the content of the documents, this thesis
also makes use of the textual data in knowledge source for providing additional training
examples for transfer learning.

The main research question was further split into several research questions, as described
in Chapter 1. These questions are the following:

1. Is it possible to define automated techniques of text classification that are able to port
across domains and text types?

Current approaches for building an adaptive text classification system rely on the se-
lection of a set of pivot features for text classification, and application of different
transfer learning strategies over these features to reduce the gap between domains.
Traditional text classification approaches represent the content of the domain doc-
uments using the lexical information (words) found in them, and thus only consider
lexical features as pivot features for adaptive text classification. This representation is,
however, limited as it does not take into account any additional contextual information
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about the documents. For instance, this representation ignores the entities mentioned
in the documents, which could serve as potential pivot features for adaptation.

This thesis proposed the use of semantic meta-graphs for providing an alternative
representation of the domain documents. This semantic meta-graph, introduced in
Chapter 3, enables the exploitation of rich semantic information present in knowl-
edge sources about entities and concepts found in the documents. This rich semantic
information is then used to create novel pivot features for adaptation.

Throughout this thesis different semantic meta-graphs have been used for building
supervised adaptive text classifiers. In particular, Chapter 5 and Chapter 6 presents two
distinct adaptive text classification techniques, each creating semantic pivot features
from different semantic meta-graphs.

OntoEA (Chapter 5) employs the resource meta-graph for document zoning, captur-
ing the class information (type) associated with entities in knowledge sources. From
this graph, OntoEA derives the semantic class features as pivot features for adap-
tive document zoning. Following this, OntoEA augments the original lexical feature
spaces of domains with new semantic pivot class features using a feature duplica-
tion technique, which allows to automatically learn the domain-specific and domain-
independent weight for the features. Experimental results comparing the performance
of OntoEA with four baseline models, showed the superiority of this model: (it achieved
an improvement in F1 measure of 2.4-7.5% against the classifier built on the joint source
and target domain data (SRC_TGT), 2.6-8.4% against EasyAdapt, 6.3-32.8% against
the classifier built on the source domain data (SRC_ONLY) and 1.1-6.3% against the
classifier built on target domain data (TGT_ONLY)). These results demonstrate that
this enhanced document representation provide a novel way for performing adaptive
document zoning.

The adaptive topic classifier (Chapter 6) makes use of multiple semantic meta-graphs
as well as data found in knowledge sources for topic classification. As an initial step an-
notated documents are retrieved from knowledge sources, corresponding to the source
domain documents. Next two different semantic meta-graphs are employed for content
enrichment: the resource meta-graph capturing the classification of entities based on
their types, and the category meta-graph capturing the categorisation of concept based
on their topics. From these graphs, three different semantic pivot features were consid-
ered: class, property and categories. This classifier then augments the original lexical
feature spaces of domains with these new semantic pivot features, and also uses these
graphs to assign appropriate weights for the features. Experimental results comparing
the performance of topic classifier with two baseline models, showed the superiority of
this model (achieving an improvement in F1 measure above 6% against the classifier
built on the joint knowledge source data and microposts (SRC_TGT) and 14% against
the classifier built on microposts (TGT_ONLY)). These results demonstrate that this
enhanced document representation provide a novel way for performing adaptive topic
classification.

2. Can labelled data be gathered inexpensively to build adaptive text classifiers?
One of the main bottlenecks of applying supervised transfer learning for text classifica-
tion, is the need for a considerable amount of annotated data, which is often expensive
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and time consuming to obtain. Instead, this thesis explores the use of data leveraged
from knowledge sources to support such techniques. Chapter 5 proposed a method-
ology for topic classification which gathers annotated data for a particular topic from
multiple social knowledge sources (DBpedia (DB) and Freebase (FB)). The collected
data is then combined following linked data principles, and used to build several SVM
topic classifiers: a baseline topic classifier using knowledge source data alone (called
DB+FB classifier), and another adaptive topic classifier using both knowledge source
and target domain data (called DB+FB+TW classifier). When comparing different
classifiers, the results revealed that the DB+FB classifier is difficult to beat, a consid-
erable amount of annotated target domain data is needed to outperform it (more than
640 annotated tweets for the Crime and War topics, and above 940 labelled posts for
the Disaster topic). Further, the combined adaptive topic classifier DB + FB + TW

also outperforms the topic classifier built on the target domain data. These results
demonstrate that social knowledge sources can be used as background knowledge for
topic classification.

3. Is it possible to define a measure for quantifying the adaptability of a text classifier?
(when to transfer)
This thesis presented two domain similarity measures for providing an estimate on
the performance of an adaptive text classifier. In contrast to previous content-based
domain similarity measures, these measures make use of the enhanced document repre-
sentation exploiting contextual information about entities from semantic meta-graphs.

Chapter 5 described an effective approach for measuring the similarity between domains
for document zoning, requiring no labelled data. As an initial step, a graphical model
introduced in Chapter 4 is employed for partitioning the paragraphs of the documents
into zone clusters. Following this, the final similarity score is computed by the com-
bination of statistical content-based and knowledge-based measures on the generated
zone segments. The statistical measures are computed over the lexical representation
of the zones, while the knowledge-based measures are computed over the concepts
found in the zones. The experimental results correlating these similarity values with
the performance of an adaptive document zone classifier showed superior results to
the values obtained by content-based similarity measures (achieving an improvement
of 3.06-75.8% in absolute value). These results demonstrate that the performance of
an adaptive document zone classifier can be predicted using the enhanced document
representation.

Chapter 6 proposed entropy-based measures for quantifying the similarity between
domains for topic classification. These measures aim to capture the informativeness
of the source and target domains, by considering the entities discussed in them, and
computing the entropy of each such entity over the employed semantic meta-graphs.
The final similarity score is then computed by subtracting the entropy scores of the
two domains. In doing so, lower entropy difference values indicate that the domains
are close to one another, having features with similar values in the two domains. Ex-
perimental results showed that these entropy-based similarity measures achieved an
improvement in correlation values (above 30% in absolute values for two out of three
topics) compared to baseline measures. These results demonstrate that the perfor-
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mance of an adaptive topic classifier can be predicted using the enhanced document
representation.

4. Is the effectiveness of adaptive methods comparable to in-domain machine learning
methods?
This thesis presented two adaptive text classification techniques, each exploiting the
semantic information from different semantic meta-graphs.

In order to evaluate the effectiveness of these supervised adaptive text classifiers,
extensive experiments have been conducted considering real world data spanning a
range of different domains. When comparing the performance of the OntoEA to four
strong baseline methods (EasyAdapt, the classifier built on the source and target data
(SRC_TGT), the classifier built on the source domain data (SRC_ONLY), and the
classifier built on the target domain data (TGT_ONLY)) in Chapter 5, experimen-
tal results demonstrated that OntoEA consistently outperforms existing models (as
mentioned above). These results demonstrate that adaptive document zone classifiers
outperform traditional machine learning models. When comparing the performance of
the adaptive topic classifier to strong baseline methods (SRC_TGT, TGT_ONLY) in
Chapter 6, experimental results demonstrated that this approach outperforms exist-
ing models. These results demonstrate that adaptive topic classifiers are superior to
traditional machine learning models (as mentioned above).

7.1.2 Analysis of Claims

Chapter 5 and Chapter 6 presented the evaluation of adaptive text classification techniques
using different semantic meta-graphs derived from multiple knowledge source ontologies.
These results revealed that using certain pivot features from these semantic meta-graphs
together with special feature combination strategies outperform baseline approaches. For
instance, the adaptive document zone classifier presented in Chapter 5 explores semantic
meta-graphs from complementary biomedical knowledge source ontologies (SNOMED and
MESH). In this case, using semantic class pivot features from both ontologies combined with
CCA dimensionality reduction strategy consistently outperform the classifier built on the
joint source and target domain data (SRC_TGT), the classifier built on the target domain
data (TGT_ONLY) and EA approaches in terms of precision, recall and F1 measure for all
the analysed domain pairs. This ontology combination strategy was also found superior to
the results obtained for the individual ontologies and the ad-hock (naive) combination of
ontologies, which only achieved comparable results to baseline approaches.

The adaptive topic classification technique from Chapter 6 explored several pivot features
created from two different variants of semantic meta-graphs constructed from complementary
social knowledge sources (DBpedia and Freebase). Of the evaluated pivot features, the
semantic property features exploited from the combined knowledge source ontologies were
found to consistently outperform the SRC_TGT and TGT_ONLY classifiers, achieving high
F1 measure, over 96% for all the analysed domain pairs. Comparing the results obtained
using individual knowledge source ontologies, however, the property features only show
improvement in terms of recall. Nonetheless, these results indicate that adaptive topic
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classification techniques return accurate results, supporting the following claim:

• Domain knowledge sources contain useful semantic structures from which pivot features
can be obtained for adaptive text classification

One can conclude that the explored knowledge sources provide valuable semantic in-
formation from which pivot features can be created for adaptive text classification. These
sources support the contextual enrichment of domain documents, using these pivot features,
which were found to decrease the gap between domains, yielding promising results for both
document zoning and topic classification of microposts.

Besides exploiting the semantic information present in knowledge sources, another key
contribution of this thesis is the use of data from knowledge sources to support adaptive
text classification. In the introduction of this thesis it has been highlighted the importance
of providing a large amount of annotated data for building high accuracy cross-domain text
classifiers. Chapter 6 proposed an approach for collecting such labelled data from multiple
social knowledge sources (DBpedia and Freebase) for building topic classifiers of microposts.
This approach relies on exploiting the structure of these knowledge sources, and retrieving
a set of documents whose topic correspond to the domain (or topic) of interest. This data is
then used to build two topic classifiers of microposts: a baseline SRC_ONLY topic classifier
on knowledge source data alone, and an adaptive text classifier which utilises this data as
additional training examples to micropost data. The results from the evaluation quanti-
fied the performance of these classifiers against several baseline models, including the topic
classifier built on microposts only. This evaluation revealed that the SRC_ONLY classifier
yields very competitive results which is difficult to beat, and further the adaptive topic
classifier outperforms the in-domain classifier with a large margin (as mentioned above).
These results demonstrated that data obtained from social knowledge sources provides topic
classification techniques with the necessary background information about a particular topic
or domain. These results therefore support the following claim:

• Data found in domain knowledge sources can be used to train an adaptive text classifier

One of the key contribution of this thesis is the proposal of domain similarity measures
for predicting the performance of an adaptive text classifier. By quantifying the similarity
between the source and target domains an insight can be provided into the degree to which
the classifier built on the source domain data performs well on the target domain. Designing
a domain similarity measure which achieves high correlation with the performance of an
adaptive text classifier, having a predefined threshold for the correlation, could thus predict
the relevance of source domain data for the target domains. This could also be enable one to
select a representative sample of source domain data for creating an adaptive text classifier
for the target domain.

Chapter 5 and Chapter 6 have presented two domain similarity measures computed over
the enhanced document representation: one for document zoning, and another one for topic
classification. These measures both achieved correlation values above 70%. In particular,
in the case of document zoning, the correlation figures were consistently higher than 70%,
while in the case of topic classification only two out of the three domains obtained high
correlation values. In order to understand the reasons behind the variations in correlation
values for the topic classification task, future work will be conducted. Considering that
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these correlation scores indicate a strong agreement with the performance of an adaptive
text classifier - following the agreement scores found in the literature [Mihalcea et al., 2006],
this suggest that the following claim is supported:

• The accuracy of a text classifier can be measured as a function of conceptual represen-
tation of the domain documents

For each of the proposed adaptive text classification technique this thesis presented an ex-
tensive evaluation using different domains, and knowledge sources. For instance, Chapter 5
evaluated the adaptive document zone classifier using seven biomedical sub-domains (corre-
sponding to 42 adaptation scenarios), and two broad coverage and widely used biomedical
knowledge sources (SNOMED and MESH). Applying the F1 measure, the proposed classifier
consistently outperformed several baseline machine learning models with a gain between 1.1-
6.3% (over TGT_ONLY) and 2.4-7.5% over SRC_TGT, which was shown to be statistically
significant using the t-test (p < 0.05).

Similarly, Chapter 6 used three different emergency response domains to evaluate the pro-
posed adaptive topic classification approach, considering two other broad coverage popular
social knowledge sources (Freebase and DBpedia) for domain content enrichment. Experi-
mental results over strong baseline models also showed a consistent improvement above 7%
for each domain pairs. Despite of the limited number of domains, these results empirically
demonstrated that adaptive topic classification techniques perform well when supported by
semantic information from knowledge sources. These results thus validated the following
claim:

• Adaptive text classification techniques exploiting domain knowledge sources are able to
achieve comparable results to in-domain machine learning approaches

7.2 Analysis of Methodology Requirements

Chapter 3 has presented the state-of-the-art work for performing text classification across
domains. Following the analysis of such techniques, a set of requirements were created, which
adaptive text classification must fulfil. These requirement were presented in Chapter 3,
together with the design of a knowledge-driven approach to adaptive text classification.

The proposed approach is divided into four main steps: annotated data gathering and
content modelling, semantic meta-graph generation from knowledge sources, pivot feature
creation and text classification. As discussed in Chapter 3, this approach follows a supervised
transfer learning setting, which was found to be most suitable to the problem setting of this
body of work. In light of this decision, several requirements which supervised techniques
must fulfil were derived. These requirements are now analysed in relation to the presented
work:

7.2.1 Requirements for Adaptive Text Classification

• Perform adaptive text classification with minimal supervision:
Chapter 6 has presented an approach which alleviates the need for manually annotated
data for topic classification of social media posts. This approach generates annotated
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data from social knowledge sources (DBpedia and Freebase) for a particular domain
(or topic), by exploiting the structure of these knowledge sources and selecting articles
whose topic correspond to the domain of interest. This data is then used as additional
training data for building an adaptive text classifier. Experimental results have shown
that this adaptive text classifier outperforms the in-domain TGT_ONLY classifier
with a large margin of up to 33.1% in terms of F1 measure.

Chapter 5 has presented an analysis for examining the performance of proposed adap-
tive document zone classifier. In these experiments several baseline models are com-
pared against the adaptive classifier enhanced with KS pivot features. As discussed in
the results section of Chapter 5, in the majority of the domain adaptation scenarios,
the performance of this classifier was better than that of TGT_ONLY and SRC_TGT
classifiers, requiring less number of annotated in-domain examples (less than 50% of
annotated training data). These results thus revealed that this approach is feasible to
reduce the number of annotated examples needed to build a document zone classifier.

• Achieve classification accuracy comparable to supervised machine learning approaches:
The evaluation of the proposed adaptive text classifiers has provided an empirical evi-
dence on the performance of the explored techniques against several baseline supervised
machine learning approaches. These results presented in Chapter 5 and Chapter 6 in-
dicate a comparable level of performance with supervised approaches.

The adaptive supervised document zone classifier explored within Chapter 5 which
combines multiple semantic meta-graphs via dimensionality reduction achieves com-
parable results in terms of F1 to supervised TGT_ONLY and SRC_ONLY classifiers
for half of the analysed domain scenarios (around 20 domain pairs), but perform much
better for the other half of the domain pairs (achieving an improvement of over 5% in
F1 measure).

For the adaptive topic classifier presented in Chapter 6, which combines multiple KS
semantic meta-graphs in an ad-hoc manner and also makes use of twitter specific pivot
features (about hashtags), the results obtained in terms of F1 measure were better than
those of the baseline models, with a consistent improvement of 6% over SRC_TGT,
and over 14% compared to TGT_ONLY. This improvement is also considerable higher
to the results obtained without incorporating twitter specific pivot features, in which
case the improvement over the SRC_TGT classifier were only comparable (around 2%
in F1 measure). These results demonstrate that the twitter specific semantic features
about hashtags play an important role, and the final classifier incorporating them is
suitable for detecting the topics of microposts.

• Enable the creation of pivot features from knowledge sources
The adaptive document zone classifier used in Chapter 5 enables the creation of pivot
features from two biomedical knowledge sources (SNOMED and MESH). These fea-
tures are used to augment the original feature spaces of both source and target domains.
Employing the semantic class features as pivot features for transfer learning, the ex-
perimental results revealed that both knowledge source ontologies provide useful pivot
features for text classification, and further these ontologies complement each other
well, outperforming several baseline models. These results thus demonstrate that the
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employed knowledge sources are representative of the biomedical domain and support
adaptive document zoning.

Chapter 6 proposed strategies for the creation and weighting of pivot features from
two social knowledge sources (DBpedia and Freebase). Of the evaluated pivot features,
the semantic property features have been found the most effective, for which a novel
feature weighting strategy was also presented capturing the importance of this feature
for a given domain (topic). Experimental results revealed that DBpedia has a broader
coverage of entities than Freebase for the analysed emergency domains, resulting in a
larger number of pivot features being added to the adaptive topic classifier. Nonethe-
less both knowledge source ontologies have been found to provide useful pivot features
which improve upon different baseline models. In addition, these knowledge sources
were also found to complement each other well, the best overall results being achieved
by the joint ontologies.

• Be able to predict the performance of an adaptive text classification:
Chapter 5 presented a domain similarity measure for document zoning, which com-
bines statistical corpus-based similarity measures with knowledge-based measures. The
evaluation results correlating these values to the performance of the proposed adaptive
document zone classifier showed relatively high correlation, above 70%, indicating the
effectiveness of this measure in predicting the performance of an adaptive document
zone classifier.

Chapter 6 presented a domain similarity measure for topic classification, which com-
putes the entropy difference between the source and target domain for a particular
feature. Of the evaluated entropy measures, the entity-property entropy difference
measure achieved the highest correlation values with the performance of an adaptive
topic classifier, above 70% for two out of three domains, demonstrating the applica-
bility of this measure to detect the performance of a text classifier.

• Comply with the limitations and constraints posed by real-world application scenarios:
The presented text classification approaches rely on the application of shallow NLP
techniques, employing simple lexical BoW features and semantic feature about enti-
ties, making them easily applicable to real-world scenarios imposing constraints. For
instance, the lack of use of any formatting features by these techniques allows the
application of tools used by largest majority of search engines, including corporate
engines like FAST Enterprise Search Platform, which have a very large adoption in
corporate environments.

The approaches presented in Chapter 5 and Chapter 6 make only use of lexical BoW
features as initial feature space, and semantic features about entities as semantic pivot
features for adaptation. The extraction of entities being done by off-the-self entity
recognition tools. Both models achieved superior results to several baseline models.

The documents used in the zoning experiments reported in Chapter 4 were pre-
processed using the FAST engine pipeline. As a result, only the textual information
(words) were kept from the documents, ignoring any additional information such as
tables and figures. The presented graphical models then employed a simple BoW rep-
resentation over these documents for the identification of zones within the documents,
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showing promising results over a baseline graphical model.

7.3 Future Directions

The research presented within this thesis covers a broad spectrum of work, however in certain
cases the presented methods could further be extended. This section thus provides some
possible future research directions on the general transfer learning problem, resulted from
the detailed revision of state-of-the-art approaches and general observations obtained from
this research:

• Reducing the number of annotated examples needed for learning:
The majority of the work still rely on labelled data from the source [Jiang and Zhai,
2007a; Blitzer et al., 2006; Guo et al., 2009] and target domains [Dai et al., 2007b;
Daumé III et al., 2010; Arnold et al., 2008]. However, it has been shown that creat-
ing and maintaining labelled data is both time consuming and expensive [Ciravegna
et al., 2002; Zhang et al., 2010]. Although some methods leveraged unlabelled data
in unsupervised [Dai et al., 2008; Huang and Yates, 2010] and semi-supervised man-
ner [Dai et al., 2007a; Jiang and Zhai, 2007a], most of these methods were tested on
specific IE tasks (such as part-of-speech-tagging, sentiment classification), and it is
unclear whether these approaches are generalisable to other text classification tasks.
A promising avenue of research in this direction could therefore be to investigate semi-
supervised approaches which makes use of only a small amount of annotated data from
the source domain and no annotated data from the target domain [Zhu, 2005].

• Combining different transfer learning approaches into a unified framework:
Chapter 2 presented distinct transfer learning techniques which have been success-
fully applied to many Natural Language Processing tasks, including instance-based or
feature-representation-based learning. While these individual approaches have been
successfully applied on a variety of different problems, it is not very clear whether
combining the advantages of the individual approaches could furthermore boost the
performance of a transfer learning classifier [Jiang, 2008b; Japkowicz and Stephen,
2002].
Previous efforts on combining these approaches in a straightforward manner [Jiang,
2008b] did not show consistent improvement, suggesting that a systematic and gen-
eralisable methodology would be required to investigate whether combining these ap-
proaches in beneficial for transfer learning.

• Harnessing multiple knowledge sources:
The majority of transfer learning approaches exploit an individual knowledge source
for learning [Pan and Yang, 2010]. These approaches can be beneficial when the
selected knowledge source provide large enough coverage of the entities and data for a
particular domain. When this situation does not hold, however, an appealing solution
could be to exploit alternative knowledge sources for the domain at hand, for example
from linked data [Bizer et al., 2009].

Harnessing information from multiple knowledge sources, however, can pose further
challenges in learning. One of the challenge arises when the same information about
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an entity is represented in different ways, for example by using distinct names for
the same property in the different knowledge sources: such as inhabits and vote in
Freebase, while resident and elect in DBpedia. Without considering these repeti-
tions, the same information could be represented twice, resulting in a much larger
feature space. Another challenge comes from the incompleteness and the inconsisten-
cies within the knowledge sources. For instance, in Freebase /crime/crime_accuser
class is derived from a very generic /common/topic class, while another related class
type /crime/convicted_criminal extends the /people/person class. In the case of the
category structure of Wikipedia, it can also noticed that the category tree is not a
strict taxonomy and does not always contain an is-a relationship [Gabrilovich and
Markovitch, 2006].

Investigating alternative approaches for the combination of data and knowledge from
multiple knowledge sources, (e.g. resolving redundancies and inconsistencies) are thus
of increased importance when dealing with multiple complementary knowledge sources
[Zhang et al., 2013].

• Investigating multi-domain transfer learning scenarios:
The majority of transfer learning approaches have been designed for a single domain
pair, using one source domain to learn from, and one target domain to evaluate the
approach on [Pan and Yang, 2010]. However, for many real world application scenarios,
e.g. corporate or large environments, there may be more than one annotated domain
corpora available. A possible avenue of research could thus be to investigate multi-
domain scenarios for transfer learning, when more than one source domain is used.

7.4 Closing Statement

This thesis explored the use of domain knowledge for text classification across multiple
domains and text types. Three main research questions have been investigated concern-
ing adaptive text classification: what to transfer, which identifies a set of pivot features
from knowledge sources for reducing the distributional differences between domains; how to
transfer, which studies various augmentation strategies for incorporating the pivot features
into the text classifiers, and when to transfer, which quantifies the transfer ability of a text
classifier as a function of pivot features.

A number of experiments have been conducted on two different text classification tasks
(document zoning and topic classification) considering a large number of domains, contribut-
ing to a series of methods and findings which address these research questions. Empirical
evidence from the evaluation of the explored adaptive text classification methods indicates
that knowledge sources are valuable resources for reducing the gap between domains, achiev-
ing results superior to traditional supervised machine learning techniques.

Overall, the presented approaches demonstrated that knowledge sources: i) provide a
rich set of semantic features which are stable across domains, ii) contain useful data which
can provide additional training data for building adaptive text classifiers, and iii) provide
an enhanced semantic representation of the documents, which can be used as a measure for
predicting the adaptability of a text classifier, outperforming previous content-based lexical
similarity measures.
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Appendix A

Probabilistic Graphical Models

A.1 Background on Probabilistic Graphical Models

Probabilistic graphical models provide a powerful framework for content modelling which
combines uncertainty (probabilities) and logical structure (independence constraints) to com-
pactly encode and manipulate high dimensional distributions common to many text clas-
sification (TC) tasks. By recognising patterns of word use and grouping documents that
are similar, probabilistic graphical models have emerged as a powerful technique for discov-
ering useful structures in documents. One of the simplest and most widely used graphical
model for content modelling was introduced by Blei et al. [2003a]: Latent Dirichlet Allo-
cation (LDA) provides a new, semantically consistent model for representing the topics of
a document. This model has since been extended and successfully applied to many other
tasks, such as sentiment analysis [Lin and He, 2009], topic modelling [Zhao et al., 2011]
and entity resolution [Dai and Storkey, 2011]1. It is also widely accepted [Blei et al., 2003a]
that mixture models are superior compared to simple clustering models (e.g. k-means) for
modelling text documents, especially long documents such as research papers.

The basic idea behind these models is to efficiently represent the text as a joint probability
distribution P (X ) over a set of random variables (X = (x1, . . . , xn)) (e.g. word), and to
provide an elegant way of representing the interactions between these variables using a
graphical structure (e.g. words belonging to different topics, or zone types). An illustration
of the graphical representation of LDA using plate notations is given in Figure A.1, where
each node refers to a random variable (the hidden or unobservable variable being shaded,
and the observable variable being unshaded), each edge represents the direct probabilistic
interactions between the nodes, and the replications of nodes are represented by boxes, called
plates. For instance, the outer plate represents documents, while the inner plate denotes the
repeated choices of words and topics within a document.

The underlying assumption behind these models is that the data is generated accord-
ing to a generative process, which defines the joint probability distribution over both the
observed and hidden random variables. That is, the documents come from a generative
process that includes T hidden topics, allowing the documents to be represented as a prob-
ability distribution over hidden topics (θ), while the topics are represented as a probability

1A more complete list of applications is provided at: http://www.cs.princeton.edu/~mimno/topics.
html.
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distribution over words (φ).
The key strengths of these models are the conditional independence assumption and

exchangeability. The conditional independence assumption ensures that the variables inside
a plate are conditionally independent of all the other variables. For instance, the number
of words in a document (Nw) is independent on all the other variables (t hidden topics, θ
document-topic distributions). The exchangeability property holds for a sequence of random
variables whose joint probability distribution is invariant to any permutation. This allows the
words in the documents to be interchangeable with one another, which can be particularly
useful when dealing with multi-genre text in large repositories.

Following the topic modelling terminology [Blei et al., 2003a], the following definitions
can be introduced:

• T denotes the number of topics

• V denotes the size of vocabulary in the corpus or domain

• α is a positive vector, consisting of the hyper-parameters of the Dirichlet distribution
(Dir(α))

• Dir(α) is a V -dimensional Dirichlet vector with parameter vector α

• β is a scalar, consisting of the hyper-parameters of the Dirichlet distribution (Dir(β))

• Dir(β) is a T -dimensional symmetric Dirichlet with scalar parameter β (each compo-
nent of the parameter having the same value)

• θd represents the per-document topic proportions (topic mixture proportion)

• td,n refers to the topic index

• φt,w represents the per-word topic assignments (topic mixture component)

• wd,n denotes the term indicator for the nth word in document d.

In light of these notations, the generative story for creating the data can be described as
follows:

Algorithm 6 Generative process of original LDA model. T denotes the number of topics,
Nd denotes the number of documents, α refers to a vector for Dirichlet prior for the document
zone distributions, θd refers to the document zone distribution for document d, td,n stands
for the topic index for the word at the position n in document d, wd,n denotes the word
at the position n in document d, β refers to the word probability vectors as Z × V for the
Dirichlet prior for each zone.
1: for all topics t = {1, . . . , T} do
2: draw mixture components φt ∼ Dir(β)
3: for all document d = {1, . . . , Nd} do
4: draw mixture proportion θd ∼ Dir(α)
5: for all word wd,n do
6: draw topic index td,n ∼ Multinomial(θd)
7: draw term for word wd,n ∼ Multinomial(φtd,n)

As shown in Algorithm 6, the corpus-level parameters α, β are sampled once; the doc-
ument level parameter θd is sampled once per document, and the td,n and wd,n word-level
parameters are sampled once for each word in the document.
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θ t w φ

α β

Nw

T

Nd

Figure A.1: Graphical representation of the Latent Dirichlet Allocation probabilistic graph-
ical model: shaded nodes representing observed variables, and unshaded nodes referring to
hidden variables, boxes (plates) representing replications of nodes, w corresponds to words,
t refers to topics, α, β are hyperparameters, θ stands for the document-topic distribution,
and Θ refers to the topic-word distribution.

During the training phase, the model is provided with a set of unlabelled training doc-
uments from which the posterior distribution of the hidden variable t needs to be com-
puted. Given the complex nature of LDA model, however, this posterior distribution
(P (t(d,i) = k|t−(d,i), w)), the probability of assigning topic k to the word at position i

in document d, given the word w), is intractable. For this reason an approximate inference
algorithm called Gibbs sampling [Griffiths, 2002] is generally employed, which uses Markov
chain, that upon convergence, approximately generates samples according to the posterior
distribution [Wallach et al., 2009]. Using Gibbs sampling, the posterior distribution of topic
mixtures, can be computed as follows [Griffiths and Steyvers, 2004]:

P (t(d,i) = k|t−(d,i), w) ∝
nkd,−i + αk

nd,−i + Tαk

nkv,−i + β

nk·,−i + V β
,

where nkd,−i denotes the number of times topic k is assigned to document d, nd,−i denotes
the total number of topics assigned to document d, nkv,−i refers to the total number of times
topic k is assigned to word v, and nk·,−i denotes the total number words assigned to topic k.
(The notation −i means that when computing these counts, the current topic assignment is
disregarded.) During testing, the posterior distribution is used to assign topics on previously
unseen (held-out) documents.

The core distribution behind the LDA model is the Dirichlet distribution, which is a
member of the exponential family, providing useful properties for inference. One of these
important properties is that the distribution has a conjugate prior, which is the multinomial
distribution. And this conjugate prior can be used for factorising the posterior distribution.

The values of the Dirichlet parameter can significantly influence the performance of the
LDA model. For instance, smaller values of α, β will result in sparser distributions for θ, φ.
By controlling the document topic proportion θ to be sparse, the model prefers representing
the documents by fewer topics. By having sparse distribution for the mixture components
φ, the model tries to assign few terms to each topic. Very often a symmetric Dirichlet prior
is employed in LDA, which assumes that all topics have the same chance of being assigned
to a document and all words (frequent and infrequent ones). Alternatively, an asymmetric
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Dirichlet prior can be employed, in which case only specific topics will have the chance of
being assigned to each document (those with high α values), and also only specific words
will have the same chance of being assigned to a topic (those with high β values). These
values are typically set and evaluated experimentally.

As previously mentioned, LDA-based graphical models have gained popularity in many
TC tasks such as sentiment analysis or topic modelling. However, the application of graphical
models to other TC tasks such as document zoning has not yet been studied. In order to
address this limitation, this thesis proposes two variants of the LDA model for the task
of within-document zoning. This allows flexible modelling of the domain documents as a
mixture of zone distributions, at the same time ignoring the order of the sentences in the
documents.



Appendix B

Additional Experimental Results
on Adaptive Document Zoning

This appendix contains additional experimental results obtained for the adaptive document
zone classifiers introduced in Section 5.3.

B.1 Results Obtained using Semantic Class Features

B.1.1 Single-domain Scenario

This section presents the precision and recall values obtained for the single-domain (TGT_ONLY)
classifier using semantic class (Cls) features. Table B.1 shows the results obtained in terms
of precision, while Table B.2 shows the results obtained in terms of recall.

TGT Domain Semantic Baseline

sct+msh
CCA

sct+msh sct msh BoW BoE

Biol 0.727 0.710 0.718 0.716 0.700 0.704
CellBiol 0.823 0.806 0.812 0.812 0.795 0.801
Communi 0.666 0.635 0.647 0.647 0.635 0.640
HealthS 0.631 0.598 0.611 0.612 0.605 0.599
Medicin 0.713 0.671 0.697 0.696 0.683 0.693
PublicH 0.652 0.624 0.635 0.639 0.616 0.625
Tropica 0.657 0.621 0.637 0.640 0.626 0.630

Table B.1: Precision results for the SVM TGT_ONLY classifier using semantic class (Cls)
features extracted from two KS ontologies (sct and msh) and various baseline lexical features
(BoW, BoE).

B.1.2 Cross-domain Scenario

This section presents the precision and recall values obtained for the OntoEA, SRC_TGT,
EA and SRC_ONLY cross domain classifiers. The results for the precision are shown in
Table B.3, while those for the recall are shown in Table B.4.

187
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TGT Domain Semantic Baseline

sct+msh
CCA

sct+msh sct msh BoW BoE

Biol 0.713 0.698 0.703 0.701 0.700 0.704
CellBiol 0.811 0.797 0.800 0.801 0.795 0.801
Communi 0.663 0.628 0.642 0.642 0.635 0.640
HealthS 0.617 0.592 0.598 0.598 0.605 0.599
Medicin 0.711 0.674 0.693 0.693 0.683 0.693
PublicH 0.641 0.617 0.623 0.628 0.616 0.625
Tropica 0.650 0.620 0.630 0.630 0.626 0.630

Table B.2: Recall results for the SVM TGT_ONLY classifier using semantic class (Cls)
features extracted from two KS ontologies (sct and msh) and various baseline lexical features
(BoW, BoE).

B.2 Results Obtained using Semantic Upper-Class Fea-

tures

B.2.1 Single-domain Scenario

This section summarises the results obtained for the single-domain (TGT_ONLY) classifier
and the cross-domain classifiers using upper-class (parent(Cls)) features. Table B.5 shows
the results obtained for the TGT_ONLY classifier in terms of F1 measure. Table B.6
presents the results in terms of precision. Table B.7 shows the results obtained in terms of
recall. As it can be observed, the TGT_ONLY (sct+mshCCA) performs the best overall
results.

B.2.2 Cross-domain Scenario

This subsection presents the results obtained for the cross-domain classifiers using upper-
class features (parent(Cls)). The results are displayed on Table B.8 for F1, on Table B.9
for precision and on Table B.10 for recall.

B.3 Results for the Adaptive Document Zone Classifiers

This section presents additional learning curves for the OntoEA, SRC_TGT, TGT_ONLY
and EA classifiers in terms of F1 measure for all the seven biomedical sub-domains analysed.
The results obtained for the Biology source domain are shown in Figure B.1, for the Cell
Biology are shown in Figure B.2, for the Communicable Disease are presented in Figure B.3,
for the Health Services are displayed in Figure B.4, for the Medicine are shown in Figure B.5
Public Health are shown in Figure B.6, for Tropical Medicine are displayed on Figure B.7.
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TGT Domain Semantic Baseline

sct+msh
CCA

sct+msh sct msh BoW BoE

Biol 0.717 0.700 0.706 0.703 0.705 0.709
CellBiol 0.814 0.799 0.805 0.804 0.799 0.805
Communi 0.661 0.630 0.646 0.645 0.636 0.641
HealthS 0.624 0.595 0.604 0.606 0.606 0.604
Medicin 0.711 0.672 0.689 0.695 0.683 0.693
PublicH 0.641 0.621 0.631 0.631 0.619 0.629
Tropica 0.655 0.617 0.632 0.633 0.625 0.633

Table B.5: F1 results for the SVM TGT_ONLY classifier using upper-class (parent(Cls))
features extracted from two KS ontologies (sct and msh) and various baseline lexical features
(BoW, BoE).

TGT Domain Semantic Baseline

sct+msh
CCA

sct+msh sct msh BoW BoE

Biol 0.718 0.700 0.708 0.706 0.700 0.704
CellBiol 0.815 0.800 0.804 0.804 0.795 0.801
Communi 0.663 0.629 0.643 0.643 0.635 0.640
HealthS 0.622 0.592 0.603 0.603 0.605 0.599
Medicin 0.711 0.671 0.694 0.693 0.683 0.693
PublicH 0.644 0.619 0.627 0.632 0.616 0.625
Tropica 0.653 0.619 0.633 0.634 0.626 0.630

Table B.6: Precision results for the SVM TGT_ONLY classifier using upper-class
(parent(Cls)) features extracted from two KS ontologies (sct andmsh) and various baseline
lexical features (BoW, BoE).

TGT Domain Semantic Baseline

sct+msh
CCA

sct+msh sct msh BoW BoE

Biol 0.713 0.698 0.700 0.698 0.700 0.704
CellBiol 0.810 0.797 0.801 0.800 0.795 0.801
Communi 0.660 0.628 0.645 0.644 0.635 0.640
HealthS 0.619 0.595 0.600 0.600 0.605 0.599
Medicin 0.711 0.675 0.689 0.695 0.683 0.693
PublicH 0.637 0.619 0.626 0.627 0.616 0.625
Tropica 0.652 0.618 0.629 0.629 0.626 0.630

Table B.7: Precision results for the SVM TGT_ONLY classifier using upper-class
(parent(Cls)) features extracted from two KS ontologies (sct andmsh) and various baseline
lexical features (BoW, BoE).
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Figure B.1: F1 curves for the OntoEA, SRC_TGT, EA and SRC_ONLY classifiers, having
Biology as source domain.
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Figure B.2: F1 curves for the OntoEA, SRC_TGT, EA and SRC_ONLY classifiers, having
Cell Biology as source domain.
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Figure B.3: F1 curves for the OntoEA, SRC_TGT, EA and SRC_ONLY classifiers, having
Comunicable Disease as source domain.
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Figure B.4: F1 curves for the OntoEA, SRC_TGT, EA and SRC_ONLY classifiers, having
Health Services as source domain.
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Figure B.5: F1 curves for the OntoEA, SRC_TGT, EA and SRC_ONLY classifiers, having
Medicine as source domain.
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Figure B.6: F1 curves for the OntoEA, SRC_TGT, EA and SRC_ONLY classifiers, having
Public Health as source domain.
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Figure B.7: F1 curves for the OntoEA, SRC_TGT, EA and SRC_ONLY classifiers, having
Tropical Medicine as source domain.
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Figure C.1: Precision results for the single-source TW classifier and cross-source DB, FB
and DB+FB classifiers over the full learning curve using lexical features.

This appendix contains additional experimental results obtained for the adaptive topic
classifiers introduced in Chapter 6. It presents the results obtained for the single-source
TW classifier and cross-source DB, FB and DB+FB classifiers over the full learning curve
using lexical features (BoW and BoE ). Figure C.1 shows the results in terms of precision,
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and Figure C.2 shows the results for recall.
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Figure C.2: Recall results for the single-source TW classifier and cross-source DB, FB and
DB+FB classifiers over the full learning curve using lexical features.

C.1 Results Obtained using Semantic Meta-graph Fea-

tures in Single-domain Scenario

This subsection presents the results obtained using Semantic Meta-graph Features in single-
domain scenario. The results in terms of precision can be seen in Figure C.3 and in terms
of recall in Figure C.4.

C.2 Results Obtained using Semantic Meta-graph Fea-

tures in Cross-domain Scenario

This subsection presents the results obtained using Semantic Meta-graph Features in cingle-
domain scenario. The results in terms of precision can be seen in Table C.1 and in terms of
recall in Table C.2.
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Dataset Semantic graph Features TW(dbKS+fbKS) TW(dbKS TW(fbKS)

P P P

War

Baseline

BOW 0.867 0.867 0.867
POS 0.844 0.844 0.844
BOE 0.857 0.857 0.857
BOC 0.839 0.839 0.839

Resource

Cls(W-Freq) 0.864 0.867 0.873
parent(Cls)(W-Freq) 0.859 0.862 0.874
P(W-Freq/Cls) 0.874 0.872 0.869
Cls+P(W-SG) 0.869 0.880 0.868
parent(Cls)+P(W-SG) 0.871 0.868 0.873
P(W-SG/Cls) 0.885 0.885 0.881

Category

Cat(W-Freq) 0.882 0.882 0.879
parent(Cat)(W-Freq) 0.887 0.876 0.885
P(W-Freq/Cat) 0.871 0.871 0.871
Cat+P(W-SG) 0.871 0.871 NA
parent(Cat)+P(W-SG) 0.879 0.879 NA
P(W-SG/Cat) 0.880 0.877 0.878

Cri

Baseline

BOW 0.715 0.715 0.715
POS 0.667 0.667 0.667
BOE 0.736 0.736 0.736
BOC 0.677 0.677 0.677

Resource

Cls(W-Freq) 0.705 0.714 0.715
parent(Cls)(W-Freq) 0.716 0.723 0.724
P(W-Freq/Cls) 0.711 0.712 0.718
Cls+P(W-SG) 0.709 0.712 0.717
parent(Cls)+P(W-SG) 0.716 0.709 0.716
P(W-SG/Cls) 0.729 0.716 0.731

Category

Cat(W-Freq) 0.694 0.700 0.702
parent(Cat)(W-Freq) 0.698 0.698 0.693
P(W-Freq/Cat) 0.701 0.701 0.704
Cat+P(W-SG) 0.701 0.701 NA
parent(Cat)+P(W-SG) 0.710 0.710 NA
P(W-SG/Cat) 0.690 0.686 0.691

DisAcc

Baseline

BOW 0.800 0.800 0.800
POS 0.746 0.746 0.746
BOE 0.798 0.798 0.798
BOC 0.772 0.772 0.798

Resource

Cls(W-Freq) 0.790 0.800 0.792
parent(Cls)(W-Freq) 0.793 0.799 0.795
P(W-Freq/Cls) 0.779 0.793 0.797
Cls+P(W-SG) 0.799 0.804 0.797
parent(Cls)+P(W-SG) 0.810 0.804 0.797
P(W-SG/Cls) 0.808 0.811 0.800

Category

Cat(W-Freq) 0.786 0.798 0.800
parent(Cat)(W-Freq) 0.788 0.788 0.788
P(W-Freq/Cat) 0.796 0.796 0.796
Cat+P(W-SG) 0.796 0.796 NA
parent(Cat)+P(W-SG) 0.805 0.805 NA
P(W-SG/Cat) 0.777 0.795 0.786

Table 4: The performance of the single-source TW SVM topic classifiers using di↵erent KSs ontologies (DBpedia dbKS’s ontologies, and Freebase fbKS’s
ontology) and two semantic meta-graphs derived from these KSs (resource meta-graph (Resource) and category meta-graph (Category)). The results obtained
for the semantic features derived for the resource meta-graph (reported in [? ]) using the W-Freq weighting schema correspond to: class (Cls(W-Freq)), upper-
class (parent(Cls)(W-Freq)) and property (P(W-Freq/Cls)); while using the W-SG weighting schema are: class–property co-occurrence (Cls+P(W-SG)), upper-
class–property co-occurrence (parent(Cls)+P(W-SG)) and property (P(W-SG/Cls)). The results obtained for the semantic features derived for the category meta-
graph using the W-Freq weighting schema are: category (Cat(W-Freq)), upper-category (parent(Cat)(W-Freq)) and property (P(W-Freq/Cat)); while using the W-
SG weighting schema are: category–property co-occurrence (Cat+P(W-SG)), upper-category–property co-occurrence (parent(Cat)+P(W-SG)) and property (P(W-
SG/Cat)).
The baseline models (Baseline) employed are bag-of-words (BOW), bag-of-entities (BOE), part-of-speech (POS) and bag-of-concepts (BOC).
The results marked with † correspond to the new results obtained for the newly introduced category meta-graph.

proves the generality of the properties and the performance of
the TC classifier for each topic.

While employing the P features have been shown to provide
a positive gain over the baseline features for most of the topics,
the usefulness of the semantic features and augmentation strate-
gies merely depend on a number of factors. For instance, one of
the factors which influences the performance of a TC classifier
is the number of entities identified in a Micropost. For instance,
in the case of the War topic, a higher number of entities have
been extracted than for the other two topics. This can explain
the higher gain achieved for this topic, resulted from a larger
number of Microposts being enriched. Further, the lower per-
formance achieved by the Cls features, could be due to the level
of ambiguity (measured as cls/ent) of the Cls features and their
discriminative power for a given topic. Looking at the Table
??, it can be observed that there are a larger number of prop-
erty features defined in KSs for an entity (prop/ent) than for
a class (cls/ent, f bcls/ent). This allows the incorporation of
very fine grained information into TC, which indeed seems to

improve the performance of the classifier upon the baseline fea-
tures. In order to capture these factors and provide an insight
into the usefulness of these features for topic classification, the
reminder of the reader, we employed a set of topic similarity
measures which we will evaluate in ??.

Inspecting the results obtained for the di↵erent taxonomies,
we observe similar trends for the resource meta-graph and cat-
egory meta-graph. That is, for both semantic graphs the dbKS
ontologies (dbOwl+yago for resource meta-graph; and dbCat
for category meta-graph) provide a significant improvement
over the semantic features derived from fbKS ontology for the
War and DisAcc topics, except for Cri (t-test with ↵ < 0.05).
This could be explained by the fact that in the Cri topic the en-
tities extracted from the dbKS graph are more ambiguous than
those found within the War and DisAcc topics (see cls/ent val-
ues in Table ??). Similarly, the entities extracted from the fbKS
are less ambiguous in the Cri topic than in the other two top-
ics (see f bcls/ent values in Table ??). The best overall results
were obtained by the combined dbOwl+yago+fbOnt and db-

6

Table C.3: Precision results for the single-domain TW topic classifiers using different KSs
ontologies (DBpedia dbKS ’s ontologies, and Freebase fbKS ’s ontology) and two semantic
meta-graphs derived from these KSs (resource meta-graph (Resource) and category meta-
graph (Category)).

C.2.1 Results Obtained using Twitter Indicators in Single-domain
Classification

This subsection presents the results obtained using Twitter indicator features in single-
domain classification. The results in terms of precision can be seen in Figure C.5 and in
terms of recall in Figure C.6.
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Dataset Semantic graph Features TW(dbKS+fbKS) TW(dbKS TW(fbKS)

R R R

War

Baseline

BOW 0.743 0.743 0.743
POS 0.757 0.757 0.757
BOE 0.761 0.761 0.761
BOC 0.735 0.735 0.735

Resource

Cls(W-Freq) 0.727 0.736 0.744
parent(Cls)(W-Freq) 0.734 0.730 0.743
P(W-Freq/Cls) 0.743 0.739 0.742
Cls+P(W-SG) 0.746 0.748 0.749
parent(Cls)+P(W-SG) 0.745 0.745 0.754
P(W-SG/Cls) 0.777 0.759 0.759

Category

Cat(W-Freq) 0.763 0.767 0.763
parent(Cat)(W-Freq) 0.770 0.775 0.764
P(W-Freq/Cat) 0.759 0.759 0.756
Cat+P(W-SG) 0.759 0.759 NA
parent(Cat)+P(W-SG) 0.762 0.762 NA
P(W-SG/Cat) 0.773 0.767 0.771

Cri

Baseline

BOW 0.521 0.521 0.521
POS 0.541 0.541 0.541
BOE 0.534 0.534 0.534
BOC 0.523 0.523 0.523

Resource

Cls(W-Freq) 0.518 0.516 0.525
parent(Cls)(W-Freq) 0.523 0.518 0.523
P(W-Freq/Cls) 0.525 0.524 0.524
Cls+P(W-SG) 0.521 0.517 0.522
parent(Cls)+P(W-SG) 0.522 0.521 0.526
P(W-SG/Cls) 0.547 0.534 0.532

Category

Cat(W-Freq) 0.549 0.545 0.538
parent(Cat)(W-Freq) 0.547 0.547 0.536
P(W-Freq/Cat) 0.541 0.541 0.535
Cat+P(W-SG) 0.541 0.541 NA
parent(Cat)+P(W-SG) 0.543 0.543 NA
P(W-SG/Cat) 0.551 0.542 0.553

DisAcc

Baseline

BOW 0.637 0.637 0.637
POS 0.652 0.652 0.652
BOE 0.670 0.670 0.670
BOC 0.608 0.608 0.644

Resource

Cls(W-Freq) 0.636 0.632 0.631
parent(Cls)(W-Freq) 0.634 0.632 0.635
P(W-Freq/Cls) 0.620 0.636 0.628
Cls+P(W-SG) 0.629 0.636 0.637
parent(Cls)+P(W-SG) 0.629 0.635 0.630
P(W-SG/Cls) 0.656 0.644 0.646

Category

Cat(W-Freq) 0.651 0.646 0.639
parent(Cat)(W-Freq) 0.655 0.655 0.655
P(W-Freq/Cat) 0.649 0.649 0.642
Cat+P(W-SG) 0.649 0.649 NA
parent(Cat)+P(W-SG) 0.650 0.650 NA
P(W-SG/Cat) 0.662 0.655 0.647

Table 3: The performance of the single-source TW SVM topic classifiers using di↵erent KSs ontologies (DBpedia dbKS’s ontologies, and Freebase fbKS’s
ontology) and two semantic meta-graphs derived from these KSs (resource meta-graph (Resource) and category meta-graph (Category)). The results obtained
for the semantic features derived for the resource meta-graph (reported in [? ]) using the W-Freq weighting schema correspond to: class (Cls(W-Freq)), upper-
class (parent(Cls)(W-Freq)) and property (P(W-Freq/Cls)); while using the W-SG weighting schema are: class–property co-occurrence (Cls+P(W-SG)), upper-
class–property co-occurrence (parent(Cls)+P(W-SG)) and property (P(W-SG/Cls)). The results obtained for the semantic features derived for the category meta-
graph using the W-Freq weighting schema are: category (Cat(W-Freq)), upper-category (parent(Cat)(W-Freq)) and property (P(W-Freq/Cat)); while using the W-
SG weighting schema are: category–property co-occurrence (Cat+P(W-SG)), upper-category–property co-occurrence (parent(Cat)+P(W-SG)) and property (P(W-
SG/Cat)).
The baseline models (Baseline) employed are bag-of-words (BOW), bag-of-entities (BOE), part-of-speech (POS) and bag-of-concepts (BOC).
The results marked with † correspond to the new results obtained for the newly introduced category meta-graph.

]) with the results obtained for the category meta-graph intro-
duced in this paper.

In our experiments we employed three di↵erent single-source
TW classifiers. These classifiers make use of single KS ontolo-
gies: TW(dbKS) and TW(fbKS); and the combined KS ontolo-
gies: TW(dbKS+fbKS). In particular, in the case of the resource
meta-graph, dbKS denotes the dbOwl +yago ontologies, while
in the case of the category meta-graph, dbKS stands for the db-
Cat ontology. These classifiers are evaluated against several
baseline models, as presented in Table 15.

Looking at the performance of the baseline models, we ob-
serve that the best performance was achieved by the BoE fea-
tures, which performed better than the BoC and BoW features.
Further, the POS features did not improve on the baseline model
using only BoW features. An explanation for this could be that
the language in Tweets is quite complex, and exhibits less reg-
ularity than longer texts used from KSs (KS abstracts).

Comparing the results obtained for the best baseline feature
-BoE feature- with those for the semantic features derived from

the two semantic meta-graphs, we observe that the best results
were obtained for the resource meta-graph for the combined
TW(dbOwl+yago+fbOnt) scenario using the P features with
the W-SG weighting strategy, which significantly outperforms
the baseline lexical features (t-test with ↵ < 0.05). As re-
ported in our previous work [? ], in the case of the War cat-
egory, the F1 measure increases with 2.8% with respect to the
BoW features and 2.2% with respect to the BoE features; in the
case of the Cri category the F1 measure increases with 2.3%
with respect to the BoW feature and 0.6% with respect to the
BoE features, while in the case of DisAcc an improvement of
1.5% over the BoW features can be observed. Further, for both
semantic meta-graphs, our novel class–property co-occurrence
weighting schema (W-SG) for the properties (P(W-SG)) shows
a significant improvement over the feature frequency strategy
(P(W-Freq)) (t-test with ↵ < 0.01). These results demonstrate
that capturing the importance of the property within a given
semantic meta-graph (with respect to concepts in the resource
meta-graph or to categories in the category meta-graph), im-

5

Table C.4: Recall results for the single-domain TW topic classifiers using different KSs
ontologies (DBpedia dbKS ’s ontologies, and Freebase fbKS ’s ontology) and two semantic
meta-graphs derived from these KSs (resource meta-graph (Resource) and category meta-
graph (Category)).

C.2.2 Results Obtained using Twitter Indicators in Cross-domain
Classification

This subsection presents the results obtained using Twitter indicator features in cross-domain
classification. The results in terms of precision can be seen in Figure C.7 and in terms of
recall in Figure C.8.
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Case Semantic graph Features DisAcc Cri War
P P P

Full

Baseline BOW 0.800 0.715 0.867
BoL(1) 0.801 0.738 0.880
BoL(L) 0.806 0.734 0.975
BoL(T) 0.788 0.741 0.881

Resource

BoH(Cls) 0.783 0.705 0.870
BoH(P/Cls) 0.793 0.713 0.891
Cls+BoH(Cls) 0.785 0.707 0.869
P(SG/Cls)+BoH(P/Cls) 0.847 0.721 0.907

Category

BoH(Cat) 0.777 0.700 0.872
BoH(P/Cat) 0.806 0.718 0.882
Cat+BoH(Cat) 0.783 0.702 0.882
P(SG/Cat)+BoH(P/Cat) 0.812 0.718 0.892

Filt

Baseline BOW-Filt 0.877 0.749 0.955
BoL(1-Filt) 0.801 0.725 0.839
BoL(L-Filt) 0.801 0.727 0.839
BoL(T-Filt) 0.813 0.766 0.874

Resource

BoH(Cls-Filt) 0.810 0.733 0.868
BoH(P-Filt/Cls) 0.796 0.747 0.892
Cls+BoH(Cls-Filt) 0.811 0.733 0.868
P(SG/Cls)+BoH(P-Filt/Cls) 0.817 0.769 0.887

Category

BoH(Cat-Filt) 0.755 0.664 0.840
BoH(P-Filt/Cat) 0.754 0.695 0.856
Cat+BoH(Cat-Filt) 0.835 0.719 0.867
P(SG/Cat)+BoH(P-Filt/Cat) 0.824 0.755 0.866

Table 12: The performance of the SVM TC using extrenal data source indicators.

ues in Table ??). Similarly, the entities extracted from the fbKS
are less ambiguous in the Cri topic than in the other two top-
ics (see f bcls/ent values in Table ??). The best overall results
were obtained by the combined dbOwl+yago+fbOnt and db-
Cat+fbOnt ontologies using the property features, indicating
that the three ontologies contain complementary information
(properties) about the entities.

Further, we found that the augmentation strategies are benefi-
cial for both semantic graphs. In the case of the resource meta-
graph, we found di↵erent trends for the fbOnt and dbOwl+yago
ontologies. When using fbOnt ontology, both (parent(Cls)(W-
Freq) and parent(Cls) + P(W-SG)) showed a consistent im-
provement over the initial non-generalisation case (Cls(W-Freq)
and Cls+ P(W-SG)) for each topic. However, when using the
dbOwl + yago ontology encoding the very specific classes of
the entities were found to be more beneficial for some topics
(e.g. War). These results are understandable because after gen-
eralisation, the entities which have the same parent class in the
KS graphs will be unified to the same semantic concept type,
losing as a result the very specific meaning of the entity. In the
case of yago ontology, the number of unique classes reduces
with 92% after generalisation, while in fbOnt, the number of
unique classes becomes 88% less. In the case of the category
meta-graph, further, we found that the parent(Cat)(W-Freq) and
parent(Cat) + P(W-SG) features significantly improved over the
Cat(W-Freq) and Cat+ P(W-SG) features for each topic (t-test
with ↵ < 0.05).

4. Discussion and Future Directions

Our three-stage approach for topic classification analysis of
microposts functions by i) context modelling; ii) topic classifi-
cation and iii) topic similarity analysis.

We now discuss the issues and findings from each stage.

4.1. Context modelling
The presented semantic meta-graphs (both resource meta-

graph and category meta-graph) are capable of providing con-

textual information about concepts in short text. Our method for
TC makes use of various semantic features that are constructed
from these semantic meta-graphs. By extracting the named
entities we were able to enhance the lexical feature space of
a topic classifier with additional contextual information about
these concepts. In addition, our approach takes into account the
information about concepts (e.g. resource type-hierarchies, re-
source properties) present in multiple semantic concept graphs
of multiple linked KSs.

The current framework employed two large coverage LOD
KSs for demonstrating the usefulness of structured data in the
TC task. However, LOD contains many other KSs interlinked
with DBpedia, such as Geonames5 or MusicBrainz6. A new
LOD KS can easily be integrated into the current framework, by
exploiting the data (if available) for training a topic classifier,
and the semantic information present in the KS’s ontology as
additional semantic features.

For other KSs, which are not part of the LOD cloud (e.g.
Wikidata7), the proposed framework could still be applied pro-
vided that a mapping between the DBpedia KS and the newly
explored KS exists. A possible future direction could be to
utilise the data from DBpedia, and derive contextual informa-
tion about entities from the semantic meta-graph of the new KS.

One of the main factors which influence the performance of
our approach, is the performance of the named entity recog-
niser (NER) used to extract the named entities from short text
messages. In this paper we employed one of the most popular
entity recognisers (OpenCalais and Zemanta) for this purpose.
Although there have been several NER available ([? ]) for ex-
tracting entities from textual data, these approaches were built
on newswire corpora, and therefore to date it is not well under-
stood which provides the best performance on Microposts. Our
future work will thus concentrate in evaluating our framework
using other NERs ([? ]).

5http://www.geonames.org
6http://musicbrainz.org
7http://www.wikidata.org
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Table C.5: Precision results for the single-domain SVM TW topic classifier using external
data source indicators.
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Case Semantic graph Features DisAcc Cri War

P R F1 P R F1 P R F1

Full

Baseline BOW 0.800 0.637 0.709 0.715 0.521 0.602 0.867 0.743 0.800
BoL(1) 0.801 0.654 0.720 0.738 0.540 0.623 0.880 0.737 0.802
BoL(L) 0.806 0.650 0.720 0.734 0.543 0.623 0.975 0.829 0.815
BoL(T) 0.788 0.636 0.704 0.741 0.525 0.614 0.881 0.741 0.805

Resource

BoH(Cls) 0.783 0.654 0.713 0.705 0.558 0.623 0.870 0.754 0.808
BoH(P/Cls) 0.793 0.659 0.719 0.713 0.562 0.628 0.891 0.761 0.821
Cls+BoH(Cls) 0.785 0.656 0.715 0.707 0.561 0.625 0.869 0.761 0.814
P(SG/Cls)+BoH(P/Cls) 0.847 0.665 0.730 0.721 0.561 0.630 0.907 0.795 0.830

Category

BoH(Cat) 0.777 0.657 0.712 0.700 0.555 0.619 0.872 0.753 0.808
BoH(P/Cat) 0.806 0.654 0.722 0.718 0.557 0.627 0.882 0.766 0.820
Cat+BoH(Cat) 0.783 0.663 0.718 0.702 0.557 0.621 0.882 0.763 0.818
P(SG/Cat)+BoH(P/Cat) 0.812 0.660 0.728 0.718 0.558 0.628 0.892 0.776 0.830

Filt

Baseline BOW-Filt 0.877 0.498 0.635 0.749 0.400 0.522 0.955 0.624 0.755
BoL(1-Filt) 0.801 0.509 0.623 0.725 0.474 0.574 0.839 0.698 0.762
BoL(L-Filt) 0.801 0.509 0.623 0.727 0.474 0.574 0.839 0.698 0.762
BoL(T-Filt) 0.813 0.497 0.617 0.766 0.488 0.596 0.874 0.714 0.786

Resource

BoH(Cls-Filt) 0.810 0.523 0.636 0.733 0.488 0.586 0.868 0.724 0.790
BoH(P-Filt/Cls) 0.796 0.515 0.625 0.747 0.526 0.617 0.892 0.746 0.813
Cls+BoH(Cls-Filt) 0.811 0.526 0.638 0.733 0.488 0.586 0.868 0.724 0.790
P(SG/Cls)+BoH(P-Filt/Cls) 0.817 0.538 0.649 0.769 0.517 0.618 0.887 0.756 0.817

Category

BoH(Cat-Filt) 0.755 0.528 0.621 0.664 0.435 0.525 0.840 0.688 0.756
BoH(P-Filt/Cat) 0.754 0.570 0.649 0.695 0.516 0.592 0.856 0.680 0.758
Cat+BoH(Cat-Filt) 0.835 0.523 0.643 0.719 0.482 0.577 0.867 0.727 0.791
P(SG/Cat)+BoH(P-Filt/Cat) 0.824 0.543 0.655 0.755 0.512 0.610 0.866 0.749 0.803

Table 9: The performance of the SVM TC using extrenal data source indicators.

Case Semantic graph Features DisAcc Cri War
F1 F1 F1

Full

Baseline BOW 0.709 0.602 0.800
BoL(1) 0.720 0.623 0.802
BoL(L) 0.720 0.623 0.815
BoL(T) 0.704 0.614 0.805

Resource

BoH(Cls) 0.713 0.623 0.808
BoH(P/Cls) 0.719 0.628 0.821
Cls+BoH(Cls) 0.715 0.625 0.814
P(SG/Cls)+BoH(P/Cls) 0.730 0.630 0.830

Category

BoH(Cat) 0.712 0.619 0.808
BoH(P/Cat) 0.722 0.627 0.820
Cat+BoH(Cat) 0.718 0.621 0.818
P(SG/Cat)+BoH(P/Cat) 0.728 0.628 0.830

Filt

Baseline BOW-Filt 0.635 0.522 0.755
BoL(1-Filt) 0.623 0.574 0.762
BoL(L-Filt) 0.623 0.574 0.762
BoL(T-Filt) 0.617 0.596 0.786

Resource

BoH(Cls-Filt) 0.636 0.586 0.790
BoH(P-Filt/Cls) 0.625 0.617 0.813
Cls+BoH(Cls-Filt) 0.638 0.586 0.790
P(SG/Cls)+BoH(P-Filt/Cls) 0.649 0.618 0.817

Category

BoH(Cat-Filt) 0.621 0.525 0.756
BoH(P-Filt/Cat) 0.649 0.592 0.758
Cat+BoH(Cat-Filt) 0.643 0.577 0.791
P(SG/Cat)+BoH(P-Filt/Cat) 0.655 0.610 0.803

Table 10: The performance of the SVM TC using extrenal data source indicators.

Case Semantic graph Features DisAcc Cri War
R R R

Full

Baseline BOW 0.637 0.521 0.743
BoL(1) 0.654 0.540 0.737
BoL(L) 0.650 0.543 0.829
BoL(T) 0.636 0.525 0.741

Resource

BoH(Cls) 0.654 0.558 0.754
BoH(P/Cls) 0.659 0.562 0.761
Cls+BoH(Cls) 0.656 0.561 0.761
P(SG/Cls)+BoH(P/Cls) 0.665 0.561 0.795

Category

BoH(Cat) 0.657 0.555 0.753
BoH(P/Cat) 0.654 0.557 0.766
Cat+BoH(Cat) 0.663 0.557 0.763
P(SG/Cat)+BoH(P/Cat) 0.660 0.558 0.776

Filt

Baseline BOW-Filt 0.498 0.400 0.624
BoL(1-Filt) 0.509 0.474 0.698
BoL(L-Filt) 0.509 0.474 0.698
BoL(T-Filt) 0.497 0.488 0.714

Resource

BoH(Cls-Filt) 0.523 0.488 0.724
BoH(P-Filt/Cls) 0.515 0.526 0.746
Cls+BoH(Cls-Filt) 0.526 0.488 0.724
P(SG/Cls)+BoH(P-Filt/Cls) 0.538 0.517 0.756

Category

BoH(Cat-Filt) 0.528 0.435 0.688
BoH(P-Filt/Cat) 0.570 0.516 0.680
Cat+BoH(Cat-Filt) 0.523 0.482 0.727
P(SG/Cat)+BoH(P-Filt/Cat) 0.543 0.512 0.749

Table 11: The performance of the SVM TC using extrenal data source indicators.
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Table C.6: Recall results for the single-domain SVM TW topic classifier using external data
source indicators.
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Case Semantic graph Features DisAcc Cri War
P P P

Full

Baseline BOW 0.800 0.715 0.867
BoL(1) 0.801 0.738 0.880
BoL(L) 0.806 0.734 0.975
BoL(T) 0.788 0.741 0.881

Resource

BoH(Cls) 0.783 0.705 0.870
BoH(P/Cls) 0.793 0.713 0.891
Cls+BoH(Cls) 0.785 0.707 0.869
P(SG/Cls)+BoH(P/Cls) 0.847 0.721 0.907

Category

BoH(Cat) 0.777 0.700 0.872
BoH(P/Cat) 0.806 0.718 0.882
Cat+BoH(Cat) 0.783 0.702 0.882
P(SG/Cat)+BoH(P/Cat) 0.812 0.718 0.892

Filt

Baseline BOW-Filt 0.877 0.749 0.955
BoL(1-Filt) 0.801 0.725 0.839
BoL(L-Filt) 0.801 0.727 0.839
BoL(T-Filt) 0.813 0.766 0.874

Resource

BoH(Cls-Filt) 0.810 0.733 0.868
BoH(P-Filt/Cls) 0.796 0.747 0.892
Cls+BoH(Cls-Filt) 0.811 0.733 0.868
P(SG/Cls)+BoH(P-Filt/Cls) 0.817 0.769 0.887

Category

BoH(Cat-Filt) 0.755 0.664 0.840
BoH(P-Filt/Cat) 0.754 0.695 0.856
Cat+BoH(Cat-Filt) 0.835 0.719 0.867
P(SG/Cat)+BoH(P-Filt/Cat) 0.824 0.755 0.866

Table 12: The performance of the SVM TC using extrenal data source indicators.

Case Semantic graph Features DisAcc Cri War
F1 F1 F1

Full

Baseline BOW 0.910 0.898 0.905
BoL(1) 0.908 0.898 0.913
BoL(L) 0.908 0.900 0.911
BoL(T) 0.905 0.897 0.911

Resource

BoH(Cls) 0.969 0.960 0.974
BoH(P/Cls) 0.927 0.920 0.929
Cls+BoH(Cls) 0.969 0.960 0.974
P(SG/Cls)+BoH(P/Cls) 0.928 0.925 0.930

Category

BoH(Cat) 0.967 0.960 0.973
BoH(P/Cat) 0.970 0.961 0.974
Cat+BoH(Cat) 0.969 0.960 0.973
P(SG/Cat)+BoH(P/Cat) 0.970 0.961 0.974

Filt

Baseline BOW-Filt 0.550 0.500 0.885
BoL(1-Filt) 0.716 0.862 0.887
BoL(L-Filt) 0.895 0.856 0.886
BoL(T-Filt) 0.892 0.863 0.886

Resource

BoH(Cls-Filt) 0.969 0.945 0.973
BoH(P-Filt) 0.914 0.879 0.912
BoH(Cat-Filt) 0.969 0.941 0.971
BoH(P-Filt/Cat) 0.970 0.941 0.972

Category

Cls+BoH(Cls-Filt) 0.970 0.953 0.973
P(SG/Cls)+BoH(P-Filt/Cls) 0.883 0.858 0.881
Cat+BoH(Cat-Filt) 0.969 0.938 0.969
P(SG/Cat)+BoH(P-Filt/Cat) 0.962 0.941 0.962

Table 13: The performance of the SVM TC using extrenal data source indicators.

Case Semantic graph Features DisAcc Cri War
P P P

Full

Baseline BOW 0.955 0.944 0.955
BoL(1) 0.955 0.943 0.958
BoL(L) 0.955 0.945 0.958
BoL(T) 0.953 0.944 0.959

Resource

BoH(Cls) 0.959 0.946 0.964
BoH(P/Cls) 0.955 0.947 0.958
Cls+BoH(Cls) 0.960 0.947 0.964
P(SG/Cls)+BoH(P/Cls) 0.976 0.973 0.989

Category

BoH(Cat) 0.958 0.946 0.962
BoH(P/Cat) 0.959 0.948 0.962
Cat+BoH(Cat) 0.959 0.946 0.962
P(SG/Cat)+BoH(P/Cat) 0.959 0.948 0.962

Filt

Baseline BOW-Filt 0.842 0.711 0.956
BoL(1-Filt) 0.766 0.917 0.956
BoL(L-Filt) 0.957 0.914 0.958
BoL(T-Filt) 0.958 0.917 0.961

Resource

BoH(Cls-Filt) 0.953 0.920 0.964
BoH(P-Filt) 0.956 0.919 0.960
BoH(Cat-Filt) 0.954 0.918 0.964
BoH(P-Filt/Cat) 0.955 0.918 0.962

Category

Cls+BoH(Cls-Filt) 0.956 0.935 0.964
P(SG/Cls)+BoH(P-Filt/Cls) 0.956 0.923 0.962
Cat+BoH(Cat-Filt) 0.954 0.920 0.957
P(SG/Cat)+BoH(P-Filt/Cat) 0.947 0.918 0.945

Table 14: The performance of the SVM TC using extrenal data source indicators.
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Table C.7: Precision results for the DB+FB+TW cross-domain SVM topic classifier using
various external datasource indicators.
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Case Semantic graph Features DisAcc Cri War
R R R

Full

Baseline BOW 0.869 0.857 0.861
BoL(1) 0.867 0.857 0.871
BoL(L) 0.866 0.859 0.868
BoL(T) 0.862 0.854 0.868

Resource

BoH(Cls) 0.979 0.974 0.984
BoH(P/Cls) 0.900 0.895 0.902
Cls+BoH(Cls) 0.979 0.973 0.984
P(SG/Cls)+BoH(P/Cls) 0.885 0.882 0.896

Category

BoH(Cat) 0.978 0.975 0.984
BoH(P/Cat) 0.980 0.974 0.986
Cat+BoH(Cat) 0.979 0.975 0.984
P(SG/Cat)+BoH(P/Cat) 0.980 0.975 0.986

Filt

Baseline BOW-Filt 0.409 0.386 0.823
BoL(1-Filt) 0.673 0.813 0.827
BoL(L-Filt) 0.841 0.805 0.824
BoL(T-Filt) 0.834 0.814 0.822

Resource

BoH(Cls-Filt) 0.986 0.972 0.981
BoH(P-Filt) 0.876 0.842 0.868
BoH(Cat-Filt) 0.985 0.965 0.979
BoH(P-Filt/Cat) 0.986 0.966 0.982

Category

Cls+BoH(Cls-Filt) 0.985 0.972 0.981
P(SG/Cls)+BoH(P-Filt/Cls) 0.820 0.801 0.813
Cat+BoH(Cat-Filt) 0.983 0.956 0.980
P(SG/Cat)+BoH(P-Filt/Cat) 0.978 0.966 0.980

Table 15: The performance of the SVM TC using extrenal data source indicators.

for category meta-graph) provide a significant improvement
over the semantic features derived from fbKS ontology for the
War and DisAcc topics, except for Cri (t-test with ↵ < 0.05).
This could be explained by the fact that in the Cri topic the en-
tities extracted from the dbKS graph are more ambiguous than
those found within the War and DisAcc topics (see cls/ent val-
ues in Table ??). Similarly, the entities extracted from the fbKS
are less ambiguous in the Cri topic than in the other two top-
ics (see f bcls/ent values in Table ??). The best overall results
were obtained by the combined dbOwl+yago+fbOnt and db-
Cat+fbOnt ontologies using the property features, indicating
that the three ontologies contain complementary information
(properties) about the entities.

Further, we found that the augmentation strategies are benefi-
cial for both semantic graphs. In the case of the resource meta-
graph, we found di↵erent trends for the fbOnt and dbOwl+yago
ontologies. When using fbOnt ontology, both (parent(Cls)(W-
Freq) and parent(Cls) + P(W-SG)) showed a consistent im-
provement over the initial non-generalisation case (Cls(W-Freq)
and Cls+ P(W-SG)) for each topic. However, when using the
dbOwl + yago ontology encoding the very specific classes of
the entities were found to be more beneficial for some topics
(e.g. War). These results are understandable because after gen-
eralisation, the entities which have the same parent class in the
KS graphs will be unified to the same semantic concept type,
losing as a result the very specific meaning of the entity. In the
case of yago ontology, the number of unique classes reduces
with 92% after generalisation, while in fbOnt, the number of
unique classes becomes 88% less. In the case of the category
meta-graph, further, we found that the parent(Cat)(W-Freq) and
parent(Cat) + P(W-SG) features significantly improved over the
Cat(W-Freq) and Cat+ P(W-SG) features for each topic (t-test
with ↵ < 0.05).

4. Discussion and Future Directions

Our three-stage approach for topic classification analysis of
microposts functions by i) context modelling; ii) topic classifi-

cation and iii) topic similarity analysis.
We now discuss the issues and findings from each stage.

4.1. Context modelling

The presented semantic meta-graphs (both resource meta-
graph and category meta-graph) are capable of providing con-
textual information about concepts in short text. Our method for
TC makes use of various semantic features that are constructed
from these semantic meta-graphs. By extracting the named
entities we were able to enhance the lexical feature space of
a topic classifier with additional contextual information about
these concepts. In addition, our approach takes into account the
information about concepts (e.g. resource type-hierarchies, re-
source properties) present in multiple semantic concept graphs
of multiple linked KSs.

The current framework employed two large coverage LOD
KSs for demonstrating the usefulness of structured data in the
TC task. However, LOD contains many other KSs interlinked
with DBpedia, such as Geonames5 or MusicBrainz6. A new
LOD KS can easily be integrated into the current framework, by
exploiting the data (if available) for training a topic classifier,
and the semantic information present in the KS’s ontology as
additional semantic features.

For other KSs, which are not part of the LOD cloud (e.g.
Wikidata7), the proposed framework could still be applied pro-
vided that a mapping between the DBpedia KS and the newly
explored KS exists. A possible future direction could be to
utilise the data from DBpedia, and derive contextual informa-
tion about entities from the semantic meta-graph of the new KS.

One of the main factors which influence the performance of
our approach, is the performance of the named entity recog-
niser (NER) used to extract the named entities from short text
messages. In this paper we employed one of the most popular

5http://www.geonames.org
6http://musicbrainz.org
7http://www.wikidata.org
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Table C.8: Recall results for the DB+FB+TW cross-domain SVM topic classifier using
various external datasource indicators.
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