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Abstract 

Recent evaluations of 2D models have analysed uncertainty in data inputs into 

flood models, but have treated the model code as a black box. In this work, the 

influence of the numerical representation of the model on the results is evaluated. 

The purpose is not only to understand the significance of the physical scheme in 

the model on results, but also the importance of this in respect to other known 

sources of uncertainty, in particular boundary conditions, calibrated parameters 

such as Manning’s friction values, DEM accuracy and other more subjective forms 

of uncertainty associated with the choices used by modellers in constructing 

models, such as building representation. 

To further explore the impact that the level of physical representation has on model 

output, models were also analysed using risk and exposure based measures. The 

methods included vulnerability weighted measures and the use of damage curves 

from the Multi Coloured Manual.  

A series of Monte Carlo tests were undertaken for a range of parameters over 3 

test cases using the LISFLOOD-FP code. The LISFLOOD-FP code was chosen as 

it has several formulations for solving 2D floodplain flow within its framework, each 

with different level of physical representation. 

The test cases included two urban events, a culvert overtopping event in Glasgow 

and canal embankment failure Coventry, and a river overtopping in Mexborough, 

Yorkshire a rural urban domain. The test cases provided a wider range of hydraulic 

conditions and are reflected events typically assessed with inundation models to 

ensure the effect of model bias was removed from the results. 

The results for the test cases indicated that the choice of physical representation 

was the most critical in affecting model results, particularly for the urban test case. 

However, the interaction between factors and parameters also indicated that for 

certain scenarios, this becomes less critical to model results. The use of risk based 

methods also identified areas of variations between parameters sets and numerical 

schemes that are not identified with traditional model evaluation techniques.  
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1. INTRODUCTION 

Flood inundation models are an essential part of analysing risk associated with 

floods. The use of flood models as a component of risk analysis has increased in 

recent years with advances in the computational codes, computational power, and 

an increase in the coverage and resolution of data sets, in particular topographic 

data sets and data which can be used to calibrate computer models, such as 

satellite and airborne images. These developments have allowed 2-dimensional 

modelling to become mainstream, moving away from the traditional 1-dimensional 

modelling based on river cross sections. A number of different 2D model codes, 

have been developed to take advantage of these advances, based on different 

numerical approaches and levels of physical representation. These codes range 

from commercial software (ISIS, TuFlow), through to research based codes, such 

as LISFLOOD-FP (Bates and De Roo 2000), BreZo (Sanders et al 2000) and SFV 

(Horritt 2004). The codes are used in a wide variety of tasks and for different 

purposes from research to consultancy. Consequently a number of different 

approaches are undertaken in the solution of the governing equations to take into 

account computational costs, model output and the level of detail of input data. As 

these model codes have been developed, these models have become an 

increasingly critical component in the development of infrastructure and in risk 

analysis. Consequently the uncertainty in the model and the impact of it on results 

becomes increasingly significant. 

The creation of a model code for a natural phenomenon is based on the following 

processes defined in principle by Gupta et al (2012) and Beven et al (2001), where 

each step provides a level of discretization of the natural process that will eventually 

form the computational code. A basic outline of this process is defined in Figure 1.1 
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Figure 1.1: Conceptual Model of Model code development 

The initial step in the formation of a computational model of a environmental 

process is to form a numerical description of the physical process, based on the 

governing equations of the process. The numerical description, also referred to as 

the conceptual model (Gupta et al 2009.) represents the complete mathematical 

structure of the process. For flood inundation problems, it is the Shallow Water 

Equations, (SWE) a special form of the Navier-Stokes equation, which represents 

the conservation of mass and momentum for 2-dimensional problems, as explained 

in Section 2.  Development of the conceptual model will involve determining which 

aspects of the numerical description, the governing equations, processes and level 

of physics is required to model the phenomena. This choice is critical to the further 

development of the model code, and these decisions should be based on a sound 

understanding of the physics involved and in determining which aspects may be 

considered unimportant in the environmental process being modelled. This is based 

on determining the spatial and temporal scale of the problem and by removing 

components from the governing equations, a level of physical representation for the 

final model code is created. The level of physical representation is defined as the 

total number of equations and terms in the numerical code, and is defined in this 

research as the number of terms used from the conservation of momentum 

component of the shallow water equations. The numerical description  forms the 

basis of the mathematical model (the numerical representation of the conceptual 
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model). This aspect of model development is concerned with producing an accurate 

and computationally tractable solution that is robust in terms of its output and 

solution issues. It will also include the precise numerical structure of the code. From 

this a computational code can be realised into a simulation of the environmental 

problem. In order to do this data collection must be made of the appropriate inputs 

to the model, as well as observed events of the problem, in this case flood extent, 

depth and velocities, in order to calibrate and validate the model. 

Each stage of this process will introduce uncertainty into the model and model 

results, either through simplification of the initial problem, or in data capturing 

methods. Uncertainty in modelling is comprised of two components, aletoray and 

epistemic, where aletoray is the uncertainty associated with the random nature of 

the process. Epistemic uncertainty relates to the inability to accurately capture the 

process and maybe improved upon by refining the data capture process. Both 

manifest themselves in flood inundation modelling, either through the inability to 

provide enough data capture points, the longevity of records relating to this and the 

data capture methods. 

The issue of uncertainty is a critical contemporary area of research in inundation 

modelling (Hall et al 2005, 2009, Pappenberger et al 2009, 2007, 2006, Aronica et 

al 2002, and 2012, Bates et al 2004, Dottori and Todini et al 2013, Leedal et al 

2010, Tusubaki et al 2013, Stephens et al 2012) and a considerable effort is now 

being made to understand the sources of uncertainty, the impact of it on model 

results and methods to reduce and communicate issues surrounding it. The 

sources of uncertainty are varied, from uncertain input parameters such as friction 

value, and determining appropriate grid resolution through to inflow hydrographs, 

and random errors associated with input topography data sets. The input 

uncertainties have been identified as a contributing factor to overall model 

uncertainty. An area that has not typically been assessed within an uncertainty 

context is the level of physical representation in the numerical code. Previous 

efforts have used direct comparison and benchmarking approaches to determine 

the impact of this choice (Hunter et al 2008, EA Benchmarking study 2010 and 

2012), but the impact of this in a wider uncertainty context has not been considered 

before. This is in part related to how to differentiate between different codes that 

use different spatial girds and numerical methods, an issue raised by Hunter et al 

(2008). In these benchmarking studies the level of physical representation has been 

shown to be a significant contributor to variations in simulations. It has also shown 

that the use of simplified approaches, codes which exclude terms from the shallow 

water equations will produce different results from the codes that use all terms 

based on the hydraulic conditions of the test, in particular where transcritical flows 
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are fundamental to the modelling problem. Differences also occurred between the 

different categories of models, in particular between different full SWE models. This 

indicates that not only is the level of physical representation critical to model results, 

but also the precise method of solving the full SWE. 

Uncertainty analysis is a critical area of research in flood inundation  modelling. 

With  has focused on more quantitative methods, and the use of sensitivity analysis 

has allowed the direct impact of an uncertain input to be determined. Hall et al 

(2005) has shown how the use of sensitivity analysis can help to further model 

development by diagnosing inputs that contribute significantly to model variations 

across the distributions of model inputs. The use of sensitivity analysis to progress 

model development and to form an essential part of the model code development 

process has been indicated in wider research (Saltelli et al 2000). The number of 

different approaches has helped further understanding of uncertainty in modelling 

(Pappenberger et al 2008, Hall et al 2009), and demonstrate the need for further 

use of sensitivity analysis in modelling problems.   

A key aspect in model development is to use it in the context to which it has been 

created. Flood inundation models are used to assess the damage related to floods 

on both economic and human scales, through the modelled output. Inundation 

models are typically assessed in terms of comparison with observed flood data. 

Uncertainty is present in this process through a number of areas including the 

evaluation technique, typically undertaken with methods such as goodness of fit 

(F2) or time history comparison (Nash Sutcliffe), the data used to calibrate the 

model (such as satellite data) and issues of equifinality, where multiple models with 

different parameter sets perform equally well for a single model function. Issues 

with these approaches have been considered previously (Stephens et al 2012, 

Mason et al 2009, Aronica et al 2002, Beven et al 2006), but methods based on 

damage may provide further insight into modelling uncertainty. Furthermore, 

estimating damage from floods is a main area of interest in evaluating flood risk 

with these codes. Subjective calibration methods based on vulnerability have been 

pioneered by Pappenberger et al (2007). These approaches include vulnerability 

weighted methods, and regional analysis. Both methods use information, either 

based on decision makers’ knowledge or underlying data to enhance the model 

calibration process towards areas at critical risk from flooding. The concept of 

damage as a means of evaluating models could further be refined by using depth 

damage curves to estimate the cost of the event in terms of direct damage. The 

uncertainty with these approaches has been considered by Apel et al (2009), but 

demonstrates that these approaches could be used to provide information about 

model performance, and in data permitting exceptional cases, be used to calibrate 
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models. The use of these approaches could provide the means for communicating 

model uncertainty, refining the calibration process and provide direct damage 

estimations.  

1.1. Aims and Objectives 

The aim of this research is to provide insight into how significant the level of 

physical representation is to model results, and to determine which inputs should be 

considered by modellers when undertaking a modelling exercise.  

1. To determine the effect of level of physical representation (the numerical 

representation) on model output and results. 

2. To compare this effect with the uncertainty associated with other inputs 

typically considered in flood inundation modelling. 

3. To determine the impact of model evaluation techniques (objective 

functions), and how the significance of the model  inputs changes with 

different evaluation technique. 

4. Determining how financial consequence can be used as a model output, to 

refine the modelling process either through subjective means or cost based 

means, and to determine the impact of module choice on these evaluation 

techniques. 

5. Using sensitivity analysis to quantify which inputs are most critical to model 

output.  

 

To meet these objectives two approaches are used. First, a systematic approach is 

used which uses a Monte Carlo style approach to testing the parameters. Each 

parameter is divided into discrete intervals based on the range of uncertainty of the 

input. This is to reflect values and approaches which might be considered by a 

modeller when undertaking a modelling exercise. Each discrete interval of an input 

is compared to every input interval to provide a model result for each part of the 

parameter space. Each model will be analysed with an evaluation technique, or 

objective function – a quantification of the model results based on how the 

simulation has compared to an observed data set. Each technique is then applied 

to the results to provide a qualitative overview. A second approach, based on 

sensitivity analysis techniques is used to explore the findings of the first section. 

This will be based on a screening method, the Morris Method, and a variance 

based analysis which uses the BACCO GEM-SA software to undertake the analysis 

(Oakley and O Hagan 2002).  
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In order to remove the potential of model bias from results, which is the impact of 

using test cases which may favour one model code, three test cases with different 

hydraulic conditions are used; an urban test case based in Glasgow, a canal 

embankment failure based on a historic event in Coventry, and a river overtopping 

event that occurred in Mexborough in summer 2007. The events when considered 

individually and as a combined data set will provide insight into the impact of 

physical representation, the contribution of other inputs to modelling and the use of 

damage and vulnerability based measures to refine the modelling process.  

Within this work a number of working terms are used. In reference to the input 

parameters of the uncertainty study, all factors including parameters, coefficients 

and modules (defined as being different solutions to the SWE in the modelling 

framework, to distinguish between the model code (LISFLOOD) and the different 

numerical models) are referred to collectively as factors. This is in keeping with the 

terms used by the Sensitivity Analysis community (Saltelli et al 2000). The level of 

physical representation refers to the general problem of the number of terms in the 

model code from the Shallow Water Equations (SWE). This is a relative term, 

explained in more detail in Chapter 2. The LISFLOOD code is divided into separate 

computational sections to solve the numerous approaches to floodplain flow. Each 

section contains different levels of physical representation which are referred to as 

modules. An overview of the literature is provided followed by the methodology 

used to undertake the research. Three test cases are used, Glasgow, Coventry and 

Mexborough, each of which contains a number of different analysis to investigating 

uncertainty in flood inundation models. This is followed by conclusions and points of 

further work. 
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2. LITERATURE REVIEW 

This section provides an overview of the background to this research. It is 

comprised of two sections; the first looks at the flood inundation models, the 

governing equations, creation of the computer model and related issues and 

introduces the LISFLOOD-FP code, which is used in this research. The second 

part, starting at section 2.4, looks in detail at research into issues of uncertainty in 

modelling, the use of exposure methods, and the use of sensitivity analysis. Finally, 

a review of this section identifies what areas of research remain outstanding and 

how the current research fits into this knowledge gap.  

2.1. Modelling Background 

The creation of a flood inundation model is dependent on a number of options 

available to the modeller and code developer. These options occur in both the 

development of the computer code and in the choice of inputs to that model and 

each introduce uncertainty into model results. In the creation of the computer code, 

a hierarchy of options is formed from the initial choice of level of physical 

representation. From this further choices including discretization methods, 

boundary condition representation, and numerical solvers must also be made. The 

level of physical representation is a significant one that can led to variations in the 

model results (Hunter et al 2008). The reasons and for this are examined below, as 

well as descriptions of the options in creating a model code. The LISFLOOD code is 

then described in detail to outline part of the research and examine the implications 

of the choice of physical representation.  

2.1.1. The Shallow Water Equations 

The most common equations in computational flood models, and other 

environmental problems involving free surface flow, are the Shallow Water 

Equations (SWE). These are based on two fundamental principles; the 

conservation of mass and the conservation of momentum. These can be derived 

from the Navier-Stokes fluid dynamic equations. When certain assumptions are 

made in the SWE, the main assumption being that the vertical acceleration is 

negligible and that the pressure distribution is hydrostatic and acceleration is not 

affected in the vertical direction. Therefore, the water is incompressible, and vertical 

acceleration can be ignored (Toro 2001). A further assumption is that the rate of 

change in flow and height elevation along the length of the problem is less than this 

length, leading to the term shallow water equations (Chow, 1988). These 
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assumption essentially creates a two dimensional (in plan) form of the equations, 

that are time dependent and form a quasi linear hyperbolic system (Toro, 2001). 

The SWE in 2D form contain a conservation of mass term and two momentum 

equations in the   and   direction; 
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                (2.2d) 

Where     are the flux terms in the   and   directions,   is the depth of water,   

and   are the velocity components in the   and   direction,      , and      , 

are the discharge per unit width in the   and   direction respectively (where     are 

the depth averaged velocities in   and   direction),   is gravitational acceleration 

and   represents the sources terms of bed slope, and free surface slope term,  and 

losses due to friction, here defined in terms of friction loss due to Manning’s 

coefficient (2.2e). 

      
  

  
     (2.2e) 

     
      

           (2.2f) 

Where     is the bed slope elevation, and   is the cross section area,    is the 

cross section hydraulic radius, defined in rectangular channels as A/P, where P is 

the cross section perimeter. These terms are defined in Figure 2.1; 
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Figure 2.1: Schematic channel cross section . Cross section area (A) is 

represented by the blue area, cross section perimeter (P) by the red line 

2.2. THE CREATION OF THE MODEL CODE 

In developing a flood inundation model, the governing equations must be 

reformulated into a form from which the desired variables, in this case water depth 

and velocity, can be calculated. The most significant steps involve determining the 

level of physical representation, the numerical solution, temporal and spatial 

discretization, and the boundary conditions and formulations. Each step contains a 

number of approaches that have implications for the solutions provided by the code. 

2.2.1 Classification of Models 

Using the notation of Chow et al (1988) the momentum equation for the   direction 

consists of five force components (the same equation is used in the   direction, and 

the complete system requires the coupling of these equations), defined in 

conservative differential form below, in equation 2.3.  
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The local acceleration describes the change in momentum relative to the change of 

velocity in a volume of water over time; the convective acceleration term describes 

the change of momentum relative to the change of velocity in the surrounding 

water. Collectively these two terms represent the effect of transferred momentum 

on the water and account for unbalanced forces terms acting within and against a 

control volume. The pressure force term describes the change in momentum as a 

result of variation in water depth along the channel. The gravity and friction force 

terms are proportional to the bed slope and the friction slope, and describe the rate 

of change of momentum as a result of the bed slope and energy losses due to 

friction.   

By including or excluding terms from Equation 2.3. various forms of the equation 

can be obtained which can be used to model the physics to a greater or lesser 

degree of completeness. Using the above notation again to define these physical 

models, the full momentum equation, comprising all five terms, is alternatively 

known as the dynamic wave model and full SWE model (as in EA 2010 

Benchmarking report). The first level of reduced physical representation models is 

created by removing the convective acceleration term from the mathematical 

model. This creates the acceleration formulation of LISFLOOD (Bates et al 2010), 

first used in an inundation model by Aronica et al (1998). As can be seen from 

Equation 2.3, exclusion of the inertial terms creates the diffusion wave model, used 

in the original LISFLOOD formulation (Bates and De Roo, 2000). The simplest 

model is the kinematic wave model, where the force of motion is caused by 

changes in the bed slope, which excludes the mass and velocity of the water mass 

from the momentum equation. The choice of model is based on modeller 

experience and from determining the dominant hydraulic features to be modelled. 

Each model has some justification for being used in a computational code. The 

kinematic approach, whilst ignoring many of the terms, captures the main properties 

of a large scale flood wave (Cunge 1976). A flood wave will be dominated by 

changes in the channel and floodplain slope, and at larger scales additional 

hydraulic effects which cannot be modelled by this approach, maybe negligible. 

This may be appropriate in modelling large scale events, at the continental scale, 

such as the Amazon basin. The diffusive wave approach, improves on this model 

by including the pressure term which allows for backwater effects to be modelled. 

The impact of backwater effects, where the impact of changes in water level will 

propagate back upstream, are significant in subcritical flows which are typical flow 

conditions in rivers and floods (Chadwick, 2004). The inclusion of one of inertia 

terms has also been suggested (Bates et al., 2010), Aronica 1998). In these 
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models, only the convective term is excluded, which is considered unimportant in 

floodplain flow (Hunter et al., 2007), and allows computational codes to use larger 

time steps. This model can then be used in for similar studies as the diffusion wave 

model, but at a higher resolution and for more detailed studies.  

These methods represent reduced physics approaches, or simplified computational 

models. A review of the use of simplified approaches was undertaken by Hunter et 

al (2007), which determined that the use of simplified approaches was justified 

when the length scale of the problem was significantly greater than the water depth. 

At larger spatial scales the use of fully dynamic model codes became less critical as 

local acceleration terms reduce in significance in coarse resolution models. The 

authors also concluded that these simplified codes have a tendency to be sensitive 

to the topography of the model (and therefore the cell size of the model) and time 

integration and discretization methods. Application of these methods to flood 

inundation problems needs to be evaluated by the requirements of the model 

results. To date this has still not been quantified for 2D problems.  

The full dynamic wave model however includes all these impacts and the inclusion 

of the inertial terms will account for local variations in topography and over time, 

through the local and convective acceleration terms respectively. These terms then 

capture super critical flow and the impact of transcritical flows, as well as including 

shocks and discontinuities. Consequently in urban environments, where 

supercritical, low depth high velocity flows occur in complex pathways (Froude 

numbers greater than 1), this approach has been proved in test cases to capture 

the hydraulic conditions of the observed event (Hunter et al., 2008, Schubert et al 

2008). However, significant computational costs are associated with the 

implementation of full SWE models (Bates and De Roo 2000), as well as an 

increased number of additional code development options, including the choice of 

numerical solver.  

2.2.2. Discretization of the Mathematical Model 

In order to produce a numerical solution, the mathematical model, the product of 

determining the level of physical representation, is formulated to solve for the 

desired unknown variables. Direct numerical methods are commonly used due to 

the ease of implementation and the speed of the solution when applied to 

simulation of real events. In this approach, a computational grid is formed where the 

spatial model domain is divided into sections or cells which represent control 

volumes within which the unknown flow variables are calculated. The governing 

equations are re formulated into a discrete formulation based on variables in the 
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cells or sections of a grid, where the approximate solution to the governing 

equations can be determined at points in the computational grid. These approaches 

produce approximate answers that are highly dependent on the computational grid 

for determining the value of the unknown variables (Toro 2001). Within these 

methods a number of additional modelling discretization factors must be 

considered, such as spatial discretization, and are described in greater detail in the 

following sections. 

Three methods are common in flood inundation modelling, finite volume (FV), finite 

difference (FD) and finite element (FE). The most straight forward method is the 

finite difference method that is based on the differential form of the governing 

equations, using peicewise approximations of the variable to be solved at the cells. 

The original LISFLOOD formulation used this approach (Bates and De Roo 2000). 

FV methods are based on using integral formulation of governing equations, rather 

than differential form used in finite difference methods. The variables in integral 

form are updated as a cell average in each grid volume, which allows more 

complex numerical solutions to be made. The Finite Element method is broadly 

based on dividing the governing set of equations to a series of sub sets (the grid 

cells) where a local approximation to the main equations is calculated. The FE 

approach uses trial and error methods to estimate the local coefficients. 

Consequently, the method has a better approximation to the global equations 

although numerical shocks are difficult to capture with this approach.  By using a 

linear interpolation method, FV provides a more suitable framework for 

incorporating shocks into the solution, which is a critical component of fluid dynamic 

modelling (Horritt et al., 2007). 

The significance of this choice in affecting inundation results was explored in a 

paper by Horritt et al (2007) by comparing a Finite Volume Model (SFV, (Horritt and 

Bates, 2002), and a Finite Element model, TELEMAC 2D. Using an event from the 

River Severn in November 2000 as a test case, and comparing the model with 

validation data, in this case 4 aerial images of the flood, a series of test were 

undertaken with the two models based on an identical parameter space. The paper 

shows that in calibrating to an image associated with the low flow situations both 

models were sensitive to the friction parameters, compared to the higher flow 

images. Both models produce similar model evaluation functions in the calibration 

of the models, but variations were noted in the predictive ability of the models, 

where the SFV model produced a higher, and more sensitive, model evaluation 

function. The TELEMAC code was sensitive to the mesh size, noting that in finer 

resolution the model was unlikely to over predict flows in meanders. In the 
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predictive test, the greater sensitivity of the SFV code to channel friction and 

TELEMAC to floodplain friction values was noted. The findings demonstrate that the 

importance of the numerical solution is difficult to determine, and that each 

approach has a different level of sensitivity to model inputs. The varied response of 

each model to the input space indicates that the significance of uncertainty in inputs 

will be affected by the numerical solution. A further implication is that whilst the 

discretization approach produces variations in model results, method of evaluating 

the results will determine the level to which that impact is significant, for example 

comparison of simulated extent. 

2.2.2.1. Further Code Development Considerations 

The model is discretized spatially and in time. In Temporal discretization, two main 

methods exist, implicit and explicit. The implicit approach is based on a stencil 

approach, where the unknown variables for a cell are updated using information 

from adjacent cells and adjacent time steps. An advantage of this approach is the 

greater stability afforded by the scheme. With variables being based on multiple 

finite difference points, the time step can be increased, relative to the computational 

cheaper explicit approach. Examples of this approach include DIVAST and ISIS 2D 

ADI, but as computational power has increased this method has decreased in use, 

partly as explicit methods are more computationally feasible, and the comprise 

required in the numerical formulation of the implicit approach. Further reasons 

include the increased complication required from the code and additional steps 

required to solve initial and boundary conditions. The scheme is stable at time steps 

larger than explicit methods can allow, but is less accurate than explicit 

approaches, and work best at similar timesteps as explicit approaches, but with 

increased computational cost.  The explicit approach updates values at a cell based 

on values from the known values of the previous time steps. The time step must be 

sufficiently small, however, to ensure that wave celerity (or speed of information) is 

captured within each cell, and is necessary, but not a guarantee of model stability. 

The explicit approach is common and is used across models with different levels of 

physical representation (LISFLOOD, JFLOW). In cases where these two 

approaches have been compared, results indicate that this choice is less significant 

than the choice of physical representation (Hunter et al 2008).  

The Spatial discretization involves dividing the model domain into computational 

cells, which represent control volumes with which to calculate the unknown 

variables. The two main approaches are to represent the spatial domain as a 

regular grid, where computational cells are represented with regular sized volumes, 
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and an irregular grid where the cells are represented as triangles. This approach is 

further divided into structured and unstructured approaches, where cells are not 

based on arrays, but require connectivity calculations to determine adjacent cells. 

Grid cell shape can be square, such as in the LISFLOOD-FP (Bates and De Roo, 

2000) code or triangle such as BreZo (Begnudelli and Sanders, 2006), the variation 

between these two approaches being that whilst a square affords a distinct 

advantage in terms of reduced complexity of the code, the triangle grid allows a 

complex environment to be modelled with fewer cells, as the grid can be refined in 

a way that allows an accurate representation with a limited increase in cell count. 

Further refinement with the triangle method is created by using a unstructured 

gridded method, where computational cell size can be reduced in complex flow 

areas, in particular around buildings (Schubert et al., 2008).The choice of spatial 

discretization method represents a key aspect of model development, as the 

advantage afforded by a simpler code can be overcome by the use of more 

effective grid meshes to represent complex urban areas (Fewtrell et al., 2008). 

Horritt and Bates, (2001) explored the impact of the two approaches, using the 

TELEMAC model, which uses triangular elements and LISFLOOD model which 

uses regular square gridded data. Comparing the two approaches for a test case in 

the upper reaches of the River Thames, with Synthetic Apeature Radar (SAR) flood 

outline data to calibrate the results, the paper found that both methods replicated 

the data equally well, noting that due to the resolution of the data it would be difficult 

to suggest if there was a difference between the two approaches. The use of using 

two different physics models, in TELEMAC and LISFLOOD would also make it 

difficult to compare the two discretization approaches directly.  

Further choices involved in the construction of the flood inundation model include 

the methodology for dealing with the wet/dry boundary. Flow in this region is very 

shallow, and becomes critically close to failing the depth integral assumptions of the 

governing equations causing unrealistically high velocity values, or negative depth 

values in the solution. Approaches include the use of water depth thresholds, where 

the mass and momentum fluxes are set to zero below threshold depth values 

(Bates and De Roo 2000, Sleigh et al., 1998), adding a small quantity of water in 

dry cells adjacent to wet cells, which ensure model stability but include a small 

mass error in the model, and dynamic adaptive meshes at the wet/dry boundary, 

that will evolve over the course of a model realisation (Liang and Borthwick, 2008) 

ensuring the computational effort is focused at the more critical modelling points. 

The wide variety of approaches to this problem are determined in part by the choice 

of physical representation in the numerical model, with simplified models not 
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requiring the same precision to the boundary as a full SWE model. The full SWE 

which will include some semblance of shock capturing or absorbing methodology, 

will potential fail at this point. The simplified model equations do not include shocks, 

and consequently are more robust to these conditions. A number of studies have 

explored this option. The EA benchmarking study (2010) contained a test which 

examined wet dry boundary solutions across a variety of models. This test found 

that fully dynamic models could produce similar flood wave propagation to within a 

few percentage points of each other, but simplified models were more varied in their 

outputs. Horritt (2002) used three different approaches to solving the boundary with 

a finite element model. Each approach reproduced different aspects of a beach 

wetting and drying problem better than the other formulations, indicating that a 

compromise is required in determining the solution to this boundary.  

A common approach in flood inundation modelling is to represent the channel as a 

separate domain from the floodplain. This approach has a number of advantages, 

as it allows existing river channel survey data to be utilised, whilst reducing the 

computational cost of the simulation. A number of approaches have been 

undertaken to solve the flow in this location, from masking river cells in the 2D 

domain, allowing overtopping water to enter the 2D domain directly, conserving 

momentum as well as mass, as in LISFLOOD (Horritt 2001, Bates and De Roo 

2000), to interpolated water levels based at the model boundary of the channel 

floodplain where momentum and mass can be conserved, as in the ISIS code. The 

most comprehensive comparison of linking methods was undertaken in the EA 2D 

model benchmarking report (2010), explained in further detail below. All models 

capable of this approach were used in a valley filling exercise, and produced results 

that varied in modelled water velocities and depths. The valley filling exercise 

allowed for a number of approaches to dealing with the linking method and 

representation of the channel, banks and restrictive flow features, such as bridge 

crossing and culverts. Each approach produced acceptable with no method 

appearing to be superior to another. 

2.2.3 Comparison of Flood Inundation Model Codes 

The wide variety of flood inundation models has led to a number of benchmarking 

studies aimed at highlighting the relative performance of each method. The most 

comprehensive is the 2010 EA Benchmarking study of 2D hydraulic codes (EA 

2010). Eight test cases were devised, with different hydraulic properties to test 

specific facets of the models. A number of codes were evaluated in the study 

ranging from simplified physics models Rapid Flood Spreading Model (RSFM) 
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through to full dynamic wave models with higher order solutions and shock 

capturing methods, such as TUFLOW and ISIS. The test cases provided a wide 

range of methods for examining the code’s performance, including a number of 

idealised experimental cases (i.e. not based on real scenarios or data) involving 

filling of depressions, speed of flooding over an extended floodplain, and 

conservation of momentum over an obstacle. Other test cases were based on more 

realistic applications, such as valley filling and dam failure exercises. These test 

cases were for the most part based on idealised situations and not real flood 

events. The main conclusions of the review were based on evaluating the variations 

between and within full SWE models and simplified models. Full SWE models were 

determined to be appropriate in most flood risk evaluation techniques, providing 

consistently realistic solutions, which compared well with other SWE models and 

highlighted shortcomings with the simplified models. However, the report noted that 

the use of simplified models has advantages in other areas, in particular in 

estimating final water level values, which were comparable to the full SWE models. 

The main area in which the simplified models produced poorer results than the 

dynamic models was in the velocities and conservation of momentum.  For 

example, in the conservation of momentum test, simplified models could not 

capture the overtopping effect, but in valley filling exercises, the methods proved to 

be just as effective as full SWE models. This difference was significant in the dam 

failing exercise, where accurate reproduction of the state of flow just after failure is 

important in capturing the risk associated with this type of event. Furthermore the 

paper highlighted that the use of a simplified approach did not translate into a 

reduction in computational cost, a key factor in the use and development of these 

(Bates and De Roo, 2000). A significant saving is offered by approaches such as 

the RFSM, which provides a final level value for the water across the model 

domain, but at the cost of time varying information. This limits the applicability of 

these models to more detailed problems. The approach also requires a number of 

pre processing steps to determine the flow paths a prior to ensure that they are 

explicitly represented in the model. 

Other test cases of particular interest were 1D/2D linking methods and valley 

spreading methods, which provided significant variations between all code types. 

Whilst all models capable of this approach produced acceptable results, the 

variations between them were not limited to the mathematical approach adopted 

beforehand. A significant point was the variation between full SWE models with a 

shock capturing method (such as ISIS 2D TVD) compared to full SWE models 

without (such as MIKE FLOOD). In test cases where transcritical flow was present 
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and accounted for a significant component of the hydraulics of the location, such as 

the dam break failure, the requirements to accurately depict the shock in the flood 

wave led to a variation in the depth and velocity.  

A further analysis of comparison of model approaches was a benchmarking paper 

undertaken by Hunter et al (2008). This paper focused not only on a comparison of 

different model codes, it also looked at the impact of parameters which are typically 

considered in both a modelling exercise and in wider research. The benchmark 

modelling was performed for the Greenfield area of Glasgow. The inflow boundary 

conditions were a point source, which represented an overtopping culvert. The 

paper highlighted a key variation between simplified and full SWE models, in the 

extents reproduced by the two model types. The area is a residential urban area 

which is comprised of several roads, which act to constrict the flow, in a west-east 

direction, and buildings. The hydrograph input point is an overtopped culvert at the 

top right of the model domain, that creates runoff along the main street, and along 

aback street where the water pools at the lowest elevation point of the model 

domain. A hydrograph input was devised, as well as a number of distributed friction 

value surfaces, based on underlying topography. A further factor in the test case 

considered the error associated with the LiDAR derived DEM. The benchmarking 

study used a wide variety of codes including DIVAST, TRENT, LISFLOOD, JFLOW, 

and TUFLOW, which represent both simplified approaches, and full SWE models.. 

One of the main variations was between simplified approach models and the 

dynamic models, in reproducing a flood extent. The full dynamic models were able 

to produce a wider flood extent as the result of being able to conserve momentum 

down the main flow path slope and overcoming some of the obstacles in the 

domain. These obstacles were unable to be overtopped with the simpler model. 

The depth of this water in the wider flood extent was only 5cm, and similar 

variations of depth at control points throughout the domain was noted, suggesting 

that the change in the vulnerability to flood risks was relatively low. Indeed in the 

more critical areas of the model, where water depths and velocities are high, such 

as down the main flow path, all models produce similar depths. These results 

indicate the importance of the inertia terms in urban areas, where complex 

topographies and flow paths dominate, but that the overall effect on vulnerability 

measures may not be as significant. It is noted however, that the large slopes 

present in the domain may impact the model results, which may not be typical to 

other modelling exercises or case studies. 

From this analysis, the need to determine the impact is essential in reducing 

computational uncertainty associated with model code, and in particular the level of 
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physical representation, which has potentially the most significant impact on model 

results. 

2.3. LISFLOOD-FP 

In order to evaluate the impact of the physics model within a hydraulic 

computational code there is a requirement to chose one code which isolates these 

factors in the model, whist retaining other common features, such as computational 

boundaries, and DTM treatment. Therefore a code was required which provided a 

framework which within it had a number of different codes. The LISFLOOD code, 

developed at the University of Bristol was chosen (Bates and De Roo 2000). The 

LISFLOOD code is a 1D/2D code that represents the channel flow as a nested 1D 

model, and the floodplain as a regular grid 2D domain. The floodplain is 

represented as a series of interlinked regular squares, where the elevation is 

estimated as a piecewise value at the cell-centre. This was designed to take 

advantage of remote sensed digital-elevation data and present a more feasible 

methodology for computing flood inundation. In this section the various modules 

within LISFLOOD-FP responsible for solving the floodplain flow are described. 

2.3.1 LISFLOOD-ATS 

The initial formulation for LISFLOOD was first developed in 2000 (Bates and De 

Roo 2000) and was based on an analytical method for the diffusion wave. The 

concept behind this model was the use of a simplified physics model in order to 

reduce the computational cost compared to a full shallow water equations 

approach. The diffusion wave approach was shown to be a reasonable approach to 

modelling flood inundation at the reach scale (Hunter et al 2007). The use of 

simplified physics models consequently became more popular as increases in data 

allowed more extensive use of 2D approaches. The LISFLOOD formulation is 

however strictly an analytical approach, and does not utilise a numerical approach 

which has been adapted into later diffusion wave based codes, such as the MAST 

code (Arico et al., 2011).  

The equation system for the model is  

  

  
  

  

  
          (2.4) 

For the continuity equation, where Q is discharge, x [m] is cell size, A[m²] is area, 

t[s]  is time and q[m²/s] is lateral inflow. The momentum equation is reduced to 

             (2.5) 
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Where    is the bed slope term and    is the friction slope term, the concept of this 

system is that the friction and bed slope balance, and that further acceleration 

terms can be neglected in the numerical code. The equation system is then 

implemented in the floodplain as an explicit finite difference scheme. Channel flow 

is solved using a 1D Newton Raphson solver. The 2D flood plain cell flow is solved 

using flow values from neighbouring cells, using a finite difference discretization of 

the time derivative term; 

     

  
 

  
     

   
   

   
     

   
   

    
    (2.6) 

Where       represents the water free surface height in a cell, at a point in time. 

This equation relates the variable of depth to the intercell fluxes   
   

 , to complete 

the continuity equation of 2.4. Intercell fluxes are calculated using the Manning’s 

uniform flow equation.  

  
   

 
     

   

 
 

           

  
 
   

      (2.7) 

Where Q = discharge (m/s³), n is the Manning’s friction value, i,j are cell index 

values and Δx Δy represent cell size. The amount of water available between cells, 

     
  is defined as being the difference between the highest elevation of the two 

adjacent cells and the difference in water surface elevations. 

The initial code suffered from numerical instabilities and the creation of a 

‘checkerboard’ failure, where water would move rapidly between adjacent cells over 

timesteps. This was due to the lack of acceleration terms in the numerical model 

which caused the model to overestimate the interval flux (Bates et al., 2010). In 

order to counter this, a number of solutions were tried. Flux limiters were used to 

ensure that the discharge between cells did not exceed a defined value to ensure a 

reasonable flux value (Hunter et al., 2005). This, however, created model results 

that were insensitive to friction parameters but dependent on cellsize and timestep, 

and consequently produced results with limited physical relevance to flood 

inundation. The code and model were analysed to determine a suitable time step 

relevant to diffusion wave models (Hunter et al., 2005). The new formulation for 

estimating the time step and ensuring numerical stability is based on von Neumann 

analysis of diffusion based systems, which defines the stable time step as a 

quadratic of the cell size. As a consequence, cell size has a significant impact on 

model run time. The time step is defined as; 

    
  

 
      

  

     
    

  

  
 
   

 
  

     
    

  

  
 
   

   (2.8) 

The optimal timestep with this method ensured model stability, and was 

implemented in a dynamic way ensuring that the optimal size timestep was 
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determined for each iteration over the physical model domain. It is noted, however 

that the model still displays a general insensitivity to floodplain friction parameters, 

compared to full SWE models. Whilst this method ensured numerical stability and 

retained an efficient solution of flood model problems at large spatial scales(~20m), 

it becomes extremely restrictive in urban areas, where complex topography 

requires a small cell size (~1m) to represent key urban features. As data sets and 

computational power advanced, the ability to model complex urban environments at 

high spatial resolution became more applicable, and reduced the ability to use the 

ATS formulation as a multipurpose flood model.  

2.3.2 LISFLOOD-ACC 

In order to improve the computational costs of the diffusion code, a new form of the 

equations to be used in flood modelling was formulated, which still continued the 

concept of reduced physical representation, but had an approximation to inertia 

terms to allow for a larger time step. The ACC code, which stands for Acceleration, 

was formulated on the removal of the advection acceleration term from the 

governing equation and the inclusion of the local acceleration term from the Saint 

Venant equations. The derivation of the numerical model is based on Bates et al 

2010, and is formulated here in a 1D format. 

Beginning with equation 2.3, the convective term is dropped. Dividing through by 

hydraulic radius R leaves the following inertial equation system 

  

  
 

  

  
        (2.9) 

  

  
   

      

  
 

         

          (2.10) 

Equation (2.9) represents the simplified 1D continuity equation, whilst equation 

(2.10) represents the momentum equation. The system is implemented into a 2D 

model through a simple 2D finite difference method, using a similar storage cell 

methodology as was implemented with the initial LISFLOOD model, where intercell 

momentum flux is calculated with equation (2.11) 

      
    

      
     

  

  
   

      
  

              
     

      (2.11) 

In order to ensure numerical stability, a semi implicit solution was devised, where 

the momentum flux was updated with values from the previous time step and 

current time step for the upstream cell. This formulation is first order in space. The 

acceleration formulation has therefore the advantage of using the CFL condition to 

determine the timestep. 
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Figure 2.2: The mathematical structure of the Acceleration model. The variable to 

update (  
   ) is cell centred with variables estimated from intercell fluxes. The 

figure demonstrates the concept of the semi-implicit approach (from de 
Almeida et al 2012) 

The initial formulation produced numerical instabilities at low friction values (Bates 

et al 2010). Additional work to the formulation was provided by (de Almeida et al., 

2012) which looked at the numerical framework of the model. This work determined 

that the instabilities, which arise from the non linearity of the mathematical model, 

are unable to be diffused at low friction values due to the semi implicit approach 

adopted to ensure numerical stability. These instabilities are naturally diffused by 

the model at higher friction values, but additional terms and approaches would be 

required to ensure that instabilities are dealt with in the numerical model. De 

Almeida et al introduced two methods, a q upwind method that works in a similar 

fashion to a finite volume upwind method, and a q centred method, which used a 

similar approach to the original semi implicit approach, but took it further to include 

information from the neighbouring cells. The explicit formulation of the two methods 

appears as below; 
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        (2.13) 

Where equation (2.12) is the discretized form of the momentum equation for q 

upwind and where θ represents a weighted linear relationship value with the 

intention of creating numerical diffusion to increase stability in areas of sharp 

discontinuities. Equation (2.13) is the discretized form of the momentum equation 

for the q centred method, where value of q are updated with a 3 point weighted 
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relationship with data from upwind and centre values at different time steps. This is 

similar to the Lax Wendroff method, and if θ is set to zero, this equation becomes 

the Lax method. A comparison of the methods is provided in de Almeida et al 

(2012), for a range of test cases, and notes that whilst both methods provide a 

stable and consistent solution to the ACC formulation compared to the original 

approach, there is an over dependency on the value of theta in the upwind method. 

With the q centred approach however, the ability to adjust the amount of diffusion 

improves the applicability of the solution and improves its performance, relative to 

the q upwind solution in low friction solutions. In spite of the additional terms and 

extension to the original ACC methodology, the resultant model still provides an 

efficient compromise between full physical representation and computational 

efficiency. Comparisons between the ATS model and ACC in a high spatial 

resolution urban area model showed improved runtime but with similar depth 

output, and a small variation in the water depth velocity (Fewtrell et al 2011). In this 

study a high resolution DEM was created for a pluvial flood event model, and 

demonstrated both the consistency between the formulations and the computational 

improvement of the ACC method. The ACC formulation therefore has an advantage 

not only of reduced run time compared to both the diffusion wave approximation 

and full shallow water models, which allows for modelling of wider spatial areas, 

particularly in urban areas.  

2.3.3 Godunov Method 

Leveque ( 2002) provides an overview of the Godunov method, defining it in a three 

step process, which describes the basic computations required but allows the detail 

of the solution to be increased at each step, depending on the governing equations 

used. The basic algorithm involves reconstructing the function           based on 

cell averages, evolving of the governing equation to determine the function at the 

next time step, and averaging the function over the each grid cell to obtain a new 

average. The Godunov method is based on FV methods, where the spatial domain 

is discretized into individual volumes, or grid cells, where an average state for a 

conserved variable component is maintained as an initial value problem in a cell, 

which results in piece wise distribution of the data. The conserved variable is 

updated with the following conservation formula 

  
      

  
  

  
  

  
 

 

  
  

 

 

    (2.14) 

Where  
  

 

 

 is the intercell flux value for the boundary between the cells at i and at 

i+
 

 
. This presents a Riemann problem, where two constant states (the conserved 

variable in the adjacent cells) are separated by a discontinuity. The application of 

this method with the LISFLOOD module is based on utilising a regular square grid, 
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with a upwind source term to deal with topography. The method uses a number of 

solutions for the intercell flux. 

2.3.3.1. The LISFLOOD-Roe model  

This example of the Roe solver (Roe, 1981) is based on a conservative non linear 

system of equations, which have similar properties to the SWE, but with fewer 

terms to allow for easier explanation of the solver. This form of the governing 

equations is based on the 1D Toro (2001) example. The 2D form used in 

LISFLOOD-Roe is based on the same formulation, but with an additional term in the 

discrete form of the equation to account for multiple dimensions.  

The Roe solver first approximates the non linear system, 

                    (2.15) 

Where U is the conserved variable, F(U)ₓ is the flux  related to the variable and A is 

the Jacobian matrix, with the linear system 

             (2.16) 

Where,    is the Roe constant coefficient matrix, which approximates the Jacobian 

matrix A in the previous equation.  This matrix is based on values    and   , 

products of the Riemann problem developed at the intercell flux. Average values 

must then be determined for the variables based on this information. The discrete 

upwind form of this system is;  

  
      

  
  

  
       

        
       

  (2.17) 

Where         
  represents the intercell flux for the Roe solver;  

      
  

 

 
   

      
   

 

 
            

 
    (2.18) 

Where     represent the eignvalues of the approximate Jacobian matrix,    

represent the eignvectors, and     represent intercell variables. These components 

represent the linear variables used in the Roe solver. 

The time stepping solution is based on the Courant-Freidrich-Lewy CFL condition; 

  
   

  
  

 

     
   (2.19) 

Where   is a dimensionless number that needs to be less than 1 for stability, and   

is equal to    , the celerity of the wave. This allows the timestep to be determined 

by the equation; 

       
  

    
   (2.20) 

This methodology was originally the TRENT flood inundation programme 

(Villanueva and Wright, 2006), and was compared with the storage cell method 
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used in LISFLOOD. This TRENT model had been used in an extensive 

benchmarking study (Hunter et al 2008). The LISFLOOD module has been further 

used in comparison work with the other LISFLOOD modules, comparing results 

from a range of EA Benchmarking test cases (Neal et al., 2011). The benchmarking 

studies have shown that not only is the Roe solver comparable in terms of model 

output to other full SWE based models, it has also produced model results that vary 

from both the diffusion wave and ACC LISFLOOD approaches.  

2.3.3.2 LISFLOOD-Rusanov 

The Roe solver forms part of this module, which as described above provides a 

robust, linearization method, but other solver provide simpler solutions, with the 

disadvantage of a coarser numerical solution to the intercell flux. The main module 

that will be used in this research is the Rusanov module, which uses an upwind 

method with  

        
     

 

 
   

       
   

 

 
       

    
   (2.21) 

Representing the intercell flux. In this     represents the wave speed and it is the 

estimation of this value that provides a significant reducing in computational costs 

compared to the Roe solver. For the Rusanov flux the simplest method, according 

to Toro (2001), is to evaluate the eigenvalues to determine the max wave speed at 

the interface. As the 2D Shallow Water Equations are a hyperbolic system, the 

initial conditions, and therefore the eigenvalues must be known, in order to 

converge to a solution, and to ensure an appropriate time step is determined. A 

simpler method is to determine maximum wave speed is determined from the time 

step 

           
  

  
    (2.22) 

According to Toro (2001), this method provides a significant reduction in 

computational time as     is part of the eignvalue system that must be known 

beforehand to know if the mathematical structure is hyperbolic in nature. In order to 

ensure numerical stability the timestep    must be related to this value 

   
       

    
     (2.23) 

For each time step there will be a unique value of     
  , which ensures upwind 

local information for each calculation of the flux. If the CFL condition is 1 then this 

reduces to the Lax Friedrich method. This method has significantly reduced costs 

compared to methods that determine eignvalues and appropriate estimations of 

correct wave speeds that are found with other higher order approximations.  
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Another notation utilises the present variables 

                             (2.24) 

Where ; 

   =         (2.25) 

Is the wave celerity for the left and right waves. This wave speed choice is more 

robust than the above notation, and includes estimations taken from relevant grid 

cells. This method can be simplified by removing U left and right values and simply 

taking the left face values. This value is derived locally and ensures smearing is not 

excessive in certain areas, particularly at wet/dry fronts. 

The Rusanov flux has been used in other flood inundation models. Simões 

(Simoes, 2011) introduced a finite volume model, STORM, which uses a unique 

switching technique to solve the flux equation. Using a finite volume framework and 

an irregular grid formation the inviscid flux calculation, formed by the formation of 

the Riemann problem at intercell boundaries, use the Rusanov flux in areas of low 

variation, and an upwinding method developed by Alcrudo and Garcia 

Navarro(1993), which uses a combination of Harten and Roe solutions to solving 

the one dimensional Riemann problem. The solution switches to the Rusanov flux 

when the variation between cell values falls below 0.01%. The advantage of this 

splitting method is a reduced computational effort, as in areas of low water surface 

gradient, without the risk that excessive diffusion of the numerical will adversely 

affect results. Conclusions from a paper presenting this approach (Simoes 2011), 

indicates that, the use of the Rusanov solver in conjunction with a higher order 

Riemann solver, provides a more computationally efficient model whilst still 

providing consistent solutions. It is noted that the choice of switching value is critical 

in maintaining an accurate solution, without increasing runtime. The Rusanov flux 

represents a simplistic approach to solving Riemann problem whilst retaining the 

higher level of physics of the full SWE model. The use of such approaches may 

allow a distinct reduction in computational costs without a corresponding reduction 

in modelling complex hydraulic conditions. Determining the relative impact of this 

choice could provide a distinct insight into potential development of models, as well 

as furthering information on the appropriate numerical structure and complexity of 

the computational code. 

2.3.4 LISFLOOD Comparison Work  

The LISFLOOD framework provides an ideal and unique opportunity to test both 

physical representation and numerical solutions to the importance of model results. 

Individually the codes have been used extensively in research, but Neal et al (2011) 
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explored the impact of the three levels of code across a range of test cases used in 

the Environment Agency 2D benchmarking study. Across the range of test cases, it 

could be determined that in gradually varying flows, the diffusive wave formulation 

produced similar results to the dynamic wave approach. The variation between 

approaches was much more apparent in test cases with complex topography, rapid 

flow changes, and slope transition points and in transitional flows. For coarser 

resolution models, such as the 50m model used in part of a valley filling test case, 

the modules produced similar results, confirming previous results (Fewtrell et al., 

2008) and indicating the reduction in importance of inertial terms at high cell sizes 

and the interaction of parameters. For a test case involving flow over a bump, which 

directly tests model momentum conservation principles, the ATS model was unable 

to clear the obstacle, unlike the ACC and Roe formulations. For the higher 

resolution model in the valley filling exercise (10m resolution) the variation between 

the SWE model and the ACC at critical points in the domain was as great as 1.6m. 

Other variations included the Roe solver producing later arrival times for gradually 

varying flood water, and slower increases in depths. The implication in a 

vulnerability context is not clear from these results, but the overall differences would 

appear to suggest that whilst simpler models can replicate similar results, the 

application of them is case specific and should be carefully considered. Another 

broader point is the approach required in benchmarking studies, where arbitrary 

choices, such as the frequency of recording depths and the control point locations 

can impact significantly on model results, as much as 9%. Determining this factor is 

crucial to producing robust results.  

Each paper highlights not only the applicability of each module to inundation 

problems, but of the advantages of using an intergrated modelling system within 

which modules of varying levels of physical representation. Analysis can then be 

focused on the immediate variations between model types and can be directly 

attributed to the physical representation within it.   
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2.4. UNCERTAINTY ANALYSIS 

Computational models contain a level of uncertainty associated with the process of 

creating a conceptual model and writing a computer code. In flood inundation 

modelling a number of other factors contribute to the overall model uncertainty. The 

next section discusses in detail the sources of this uncertainty and the methods 

used to identify, quantify and reduce it in model results. Contemporary research of 

uncertainty analysis in flood inundation modelling is comprised of two main 

subjects, understanding and quantifying uncertainty, and reducing or explaining 

uncertainty. The main aim is to determine the sources, account for them and 

improve the modelling process, or include them in model results. Broadly, 

uncertainty in computational modelling is described through two basic categories. 

The first category describes the inherent inability to fully capture a natural system 

and the inability to full describe the system we wish to model, due to the number of 

process or variables present in the system. This, however, can be overcome by 

additional research, measurement and so represents a difficult but not 

insurmountable obstacle to be overcome. This type of uncertainty is referred to as 

Epistemic Uncertainty, and relates to inaccuracies with measurement devices and 

processes. The second category relates to the timing of natural events, and the 

inability to determine natural variations within the system. This uncertainty is 

Aleatory Uncertainty, or stochastic uncertainty, that must be accounted for, but may 

not be measured. It consequently represents ‘unknown unknowns’ in the system 

that may not be overcome by simply improving or extending measurement 

processes. Walker et al (2003) defined the areas of uncertainty in three terms; 

dimensionality, which refers to the type and nature of the uncertainty; the regions of 

it, which refer to scale; and location of it in the model and types of uncertainty, 

which refer to the epistemic and aleatory terms above.  

In order to quantify the impact of uncertainty, a statistical approach to analysing the 

data must be made, where the distribution and range of the uncertainty associated 

with all relevant inputs is known or can be accounted for. From this the uncertainty 

can be propagated through model realisations in order to create detailed results 

that represent all possible outcomes for the simulations. A number of studies and 

approaches have been created and utilised in flood inundation modelling in order to 

perform this type of analysis. Typically a calibration process is adopted, where 

model realisations based on multiple parameters are evaluated to observed data. 

Approaches include Monte Carlo sampling where a range of factors are tested 

based on probability distribution (Aronica et al 2002). A number of more 

sophisticated methods have been developed. The Generalised Likelihood 

Uncertainty Estimation (GLUE) methodology, developed by Beven and Bingley 
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(Beven and Binley, 1992), has been popular in hydrology and hydrodynamic 

modelling. It relies on an element of subjectivity in the analysis of results to ensure 

that only realistic model results are considered in the final stage of analysis. 

Broadly, the method relies on some estimation of probability distribution for each 

parameter. This is then used to develop a series of tests that are used in a Monte 

Carlo style but with each model realisation being described with a likelihood 

weighted value, based on the probabilistic values associated with each parameter. 

The results are then evaluated to some model performance criteria, and then 

accepted as being a realistic model or rejected based on this value and a weighting 

applied. A threshold value is required in order to evaluate the realism of model, 

which has been argued as reducing the method’s robustness in providing a method 

to evaluate uncertainty (Mantovan and Todini, 2006). A distinct advantage of this 

approach is that the concept of equifinality is incorporated into the results, which is 

the principle that numerous parameter sets (combination of parameters required for 

a single model realisation) can produce similar model outputs. GLUE  has been 

used extensively in research (Aronica 2002, Hunter et al 2005, Bates et al., 2004, 

Jung et al., 2012, Brandimarte and Woldeyes, 2013, Nott et al., 2012), due in part 

to the Bayesian principles within the methodology that allow for the progressive 

improvement of modelling results and the calibration process. The use of subjective 

threshold values can impact results however. Other methods include Bayesian 

approaches by (Hall et al., 2011), the Hydrological Uncertainty Processor 

developed by Krzysztofowicz (2000), and systematic approaches, such as used in 

benchmarking studies (Hunter et al, 2008). Each approach is based on 

assumptions that must be relevant when considering the overall objectives of the 

research. 

Each approach requires knowledge of the dimensionality and location of 

uncertainty. Using the model construction framework outlined by Gupta et al (2012), 

the key areas of uncertainty in modelling can be defined as Input Uncertainty, 

Computational Uncertainty, and Output Uncertainty. The following section will 

outline the main aspects of these areas and subsequent examples, before 

addressing research that has been done to either explore uncertainty through 

analytical methods and communicating it through model results. A number of terms 

are defined here which will be used throughout this and following sections. The 

term factors will be used to describe model inputs, parameters and boundary 

conditions in a broad sense. This is in keeping with the terminology defined in 

sensitivity analysis and accounts for the number of different inputs required in 
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constructing any computational model, but particularly environmental models 

(Saltelli 2000).  

2.4.1. Input Uncertainty 

This category can be split into 3 specific sub sections; hydrographic uncertainty 

(also boundary condition uncertainty), topographic uncertainty (which relates to 

both measurement data uncertainty and feature representation) and parameter 

uncertainty. Each subsection has received considerable research with varying 

levels of detail and approaches. A few studies have explored all of these factors in 

a single framework, in particular Hunter et al (2008) which will be referred to 

throughout this section.  

2.4.2. Hydrographic Uncertainty 

A critical component of a flood inundation model is the inflow boundary conditions, 

which can be described in terms of discharge, water level and in some chained 

models, rainfall. Each boundary condition provides the forcing data with which to 

run the model and to propagate water through the channel and routed across the 

floodplain. As such it represents an essential factor in modelling, and the 

uncertainty in the data is critical to ensuring accurate model results. It has been 

speculated that the uncertainty in the boundary condition is the most significant in 

all inundation modelling (Hunter et al 2008), but describing the uncertainty in a 

sufficient detail with which to proceed to uncertainty analysis can be difficult. 

Hydrographic uncertainty concerns many areas, from direct water level 

measurements through to conceptual modelling issues, an overview by Di 

Baldassarre and Montanari (Di Baldassarre et al., 2009) provides a detailed 

analysis of the sources of uncertainty in river discharge estimation. 

2.4.2.1. River Gauge Discharge  

This is the input boundary conditions for most flood inundation models. Typically 

river discharge estimations are determined by recording measurements in a river 

using the velocity area equation to determine the discharge; 

                      (2.26) 

Where A is the cross section and v is the recorded mean velocity. This data is 

recorded over a period of time in order to determine a relationship between river 

stage and river discharge. This forms a number of points that allow a rating curve to 

be developed, where a stage value relates to a discharge value, which can then be 
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extrapolated to determine a wider range of flow conditions. The formation of the 

rating curve is based on analytical functions, with the power law relationship being 

the most common. This process is common to practical methods of monitoring 

water levels (Pappenberger et al., 2006), but contains a number of uncertainties. As 

mentioned by Di Baldassarre and Montanari (2009), both the measurement of A 

and v will introduce uncertainty. Research has estimated these uncertainties at 

about 5-6%, of the estimated value, although higher estimates have been made (8-

20% by Pelletier et al (1987)). In the research by Di Baldassarre and Montanari 

(2009), the greatest source of uncertainty is related to the rating curve uncertainty, 

which is a product of interpolation of the rating curve beyond the measured points, 

the presence of unsteady flow conditions during the measurement phase, and 

seasonal changes in the roughness parameters, which will affect the rate of flow. 

Using a case study in the River Po, and the HEC-RAS model, the combined effect 

of the rating curve uncertainty is 21.2%, with a range of 6% and 38%. The total 

uncertainty range of river flow data is calculated at 25%. Further assessment of 

rating curve assessment and how it affect inundation modelling was undertaken by 

Domeneghetti et al (Domeneghetti et al., 2012). This research used a synthetic 

rating curve approach to test model results and then propagating the uncertainty to 

the 2D flood model. It is again noted that the contribution of the rating curve 

function to model uncertainty, and that this uncertainty has a strong influence over 

the choice of Manning’s friction values in inundation modelling.  

2.4.2.2. Hydrological Modelling Uncertainty 

Hydrographic models are used to provide input in to models in scenarios where 

observed data is limited. In this scenario rainfall is used to derive a hydrograph 

through a rainfall/runoff model. The use of these models also contains a number of 

uncertainties from conceptual to simplifying assumptions that will impact on results 

(Romanowicz and Beven, 2003). 

Aronica et al (2012) studied the impact of the influence of rainfall models on 

inundation model results. The study was based on the Glasgow test case first used 

by Hunter et al (2008). Rainfall data was used from a gauge outside of Glasgow, 

which provided a large enough temporal resolution with which to determine the 

magnitude of rainfall for a duration period. This data was analysed to determine the 

probabilistic occurrence of maximum annual rainfall events, the duration and 

associated rainfall levels. This then provided input to a rainfall/runoff model, from 

which a number of synthetic hydrographs were then created and run through a 2D 

hydraulic model, first used in Aronica et al 1998 (Aronica et al., 1998) which ignores 
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the convective term from the shallow water equations. It is therefore analogous to 

LISFLOOD-ACC. A modelling ensemble of 200 realisations with unique hydrograph 

inputs was analysed by using control points and probabilistic hazard extents 

determined by using water depth and velocity functions. The results indicate that 

the rainfall uncertainty has a spatial aspect; where water accumulates the 

uncertainty in the rainfall is more apparent than for control points located in flow 

paths. In these regions parameter choice is more apparent. This highlights the 

complexity of the problem of determining significant parameters, in that a strong 

interaction between parameters exists both spatially and temporally. The research 

also highlights the uncertainty from rainfall/runoff modelling, how it propagates and 

its impact on model results. 

2.4.3. Topographic Uncertainty 

The advent of remote sensing techniques to capture topographic data has allowed 

significant advancements to be made in the field of flood inundation modelling, 

allowing extensive 2D modelling to be undertaken over large spatial scales (Bates 

and De Roo 2000, Marks and Bates, 2000, Sampson 2012). Previous approaches 

to 2D modelling relied on digitised OS data and interpolated 1D model results, 

which were based on surveyed field data. The use of Digital Elevation Models 

(DEM) derived from a number of methods, but in particular the Light and Radar 

Detection method (LiDAR), has allowed detailed modelling to be undertaken 

(Hunter et al 2008,Schubert et al 2008, Fewtrell et al 2008, Wang and Liang, 2011). 

Other remote sensing techniques have been used to create terrain data, such as 

the SRTM (Shuttle Radar Topographic Mission undertaken by NASA) satellite data, 

which provides low resolution data, but at a cheaper cost and with a greater 

coverage of the earth surface. This data set has proved to be useful at large 

continental scales, such as the Amazon as reported by Trigg (Trigg et al., 2009) 

and Wilson et al. (2007).  

Whilst the use of this data has greatly improved modelling, it has distinctive 

uncertainties. Cobby et al. (2001) provides a useful overview and critique of the use 

of LiDAR. In this research, two significant areas of the use of LiDAR are highlighted, 

the introduction of a random error, estimated by the authors as a root mean square 

error (RMSE) of ±15cm for every elevation calculation point made, and the 

interpretation of LiDAR data where vegetation has been encountered. A standard 

algorithm has been created which eliminates the areas of vegetation and urban 

features from the original, raw data to leave a more accurate representation of the 

ground surface (Mason et al., 2007). These digital surface models (DSM) provide 
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the terrain data sets for a large number of flood simulation models in the UK. As a 

result of the improvements in data acquisition and the wide availability of it 

modelling of regions with complex terrain is possible, such as urban areas. As the 

grid resolution has improved, so has the relevance of the LiDAR error to affecting 

model results (Hunter et al 2008).  

Tsubaki and Kawahara  (Tsubaki and Kawahara, 2013) research the impact of 

LiDAR RMSE on hydraulic modelling. The research reviewed the effect of DEM 

error on model results in a idealised urban area, and the effects on a rural domain 

model using comparative model runs of a range of DEMs with varying error, cell 

size and representation. For 3 test cases (an urban, rural and plain topography 

cases), a standard DEM and the same DEM degraded by a randomly generated 

error DEM, based on the RMSE of LiDAR.  The impact of error was found to be 

considerably less in the urban area, where the complexity of the flow path becomes 

more significant. In this scenario it was determined that the random error had little 

impact on dominate topographic features that controlled flow paths. This was 

further confirmed when exploring the resolution of the cell size, where increasing 

cell size reduces the predictive performance of the flood model results. This paper 

highlights the importance of underlying topographical representation as an 

important aspect of inundation modelling, while also highlighting that in model 

domains with reduced complexity, the importance of the LiDAR error becomes 

more significant.  LiDAR error was also studied as part of the Hunter et al (2008) 

benchmarking paper. In this scenario, the error was determined to be a significant 

aspect of affecting model results. This was in part due to the full SWE models 

producing a wider flood extent for the Glasgow benchmark study, but which was 

only 5cm deep. It was highlighted that this was lower than the DEM error, and that 

this could be a contributing factor to the variations shown between model codes. 

Apart from the random error in the data, the issue of topographic feature 

representation is also another area of uncertainty in topographic data The 

importance of representation in topographic data is highlighted in two papers by 

Fewtrell et al (2011) and Sampson et al (2012). Using terrestrial LiDAR Cloud 

Scanners, a high resolution DEM for a location in Alcester, Warwickshire  was 

created. This region had experienced flooding during the 2007 UK summer floods. 

Cloud Scanning techniques create millions of geo-referenced data points to create 

highly detailed surveys of locations, with a point measurement RMSE accuracy of 

±5cm, depending on the surface being scanned. It should be noted that the level of 

accuracy will increase dramatically on glass and metal surfaces so its application to 
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highly built up inner urban areas is yet to be determined. The accuracy of the 

position of the data point is dependent on the control network, determined before 

the use of the cloud scanner. In the case of the papers mentioned above, the UK 

Rinex GPS network was used with SmartNET automatic referencing system, which 

allows for rapid data collection, with a reasonable RMSE of 90mm. The data sets 

were then processed into a 10cm DEM, which could resolve key urban topography 

features such as kerbs, drains and crucially the centre ridge of higher elevation 

present at the centre of roads. This is crucial in the movement of water, and is 

critical in the design of roads and drains. The authors highlight that in representing 

this, a significant alteration is made to the flow of water at the initial stage of flood 

water routing compared to a standard 2m resolution DEM model constructed from 

LiDAR derived data. Four DEMs were created from this high resolution data at 

50cm, 1m, 2m and 5m. Using LISFLOOD-ACC and ATS, several model realisations 

were undertaken. The results indicated the importance and influence of resolving 

elevation at critical points in the road network, and at a sufficient scale. Water flow 

is directed down one side of the main roads in the region, which act as main flow 

paths in the model. Over the course of the model run this creates a small variation 

of +-15cm at some of the highlighted control points. Further analysis of control 

points revealed that in comparison to the higher resolution DEM, the coarse models 

failed to flood certain areas, produced lower depths or different velocity factors. In 

comparison at this scale, the choice of model type was relatively unimportant, 

although the authors note that the use of two simplified approaches may produce 

bias in the results and that a full dynamic model would be required to produce 

significant conclusions. The significance of the cell size is similar to Fewtrell et al 

(2008), in that it must be at a scale to sufficiently resolve the features present. The 

paper by Sampson et al (2012) furthers this, using a range of inflow hydrographs in 

addition to a high resolution DEM (at 10cm) and coarse DEMs (at 1m) from both 

airborne and terrestrial sources in the same case study location. This work also 

compared two different approaches to inundation modelling, the LISFLOOD model 

and ISIS FAST, a formulation based on pre processing of the DEM into sub basin 

units and solving simplified physics intercell flux and mass calculation between 

them. As with the previous work, it was found that model sensitivity was high in 

relation to the underlying topography, particularly with vertical height elevation in 

the road. An important aspect raised, however is the relative computational cost of 

this approach which is significantly higher, and would not create a significant 

change to the vulnerability associated with a flood. 
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The representation of buildings is a important aspect in flood inundation modelling 

as it impacts the choice of cell size and grid formation. In urban based domains, this 

problem becomes particularly acute, where high resolution spatial domains are 

required to solve flow through complex flow paths and highly variable topography. A 

paper by Schubert et al (2008), explored the different methods of representing 

buildings and the variations in the grid cell structure on model results. Four main 

categories of building representation were devised and tested for the same 

Glasgow test case area as had been used by Hunter et al (2008). Each category 

attempted to reflect the range of possible choices of boundary conditions devised 

and used across typical hydraulic models. Building Blocks method (BB) represented 

buildings as physical blocks located within the footprint of OS derived building 

footprints. The block elevation is set at 6m above the Digital surface model (DSM). 

Precise treatment of the buildings is non essential as the depth of flow and quantity 

of water is below 6m of water at any point. A building hole (BH) method was also 

created using the DSM model, and within the footprint of the building, a blank hole 

in the DSM. Using the BreZo code (Sanders 2000), two different boundary 

conditions were invoked by these methods, a slip boundary, and a dry wall 

boundary. In this way, the two physical representation methods provide an insight 

into the mathematical formulations behind the different representation methods. A 

representation method based on using high friction values in the cells that fall in the 

footprint of buildings was also tested. This method known as the Building 

Resistance method has been used previously (Liang et al 2008), and provides a 

computationally simple solution to representing buildings, as well as providing some 

level of representation for water flowing through the footprint of the building. These 

approaches were then tested for different flow conditions, and with different grid 

meshes. It was also tested alongside a range of friction parameters and 

computational models. This benchmarking approach identified that each building 

representation approach did not produce a significant variation in output, but did 

represent a significant trade off between computational costs and pre processing 

options. The additional factors benchmarked suggest small variations, but a 

significant conclusion was that for coarser grid resolution, model types converge in 

terms of flood extent and depths. This indicates that parameter interactions are a 

significant aspect in assessing model types and factors, as well as the fact that cell 

size will form a key part of that.  

Further exploration of this work was conducted in a later paper by Schubert et al 

(2012), in which different topographic representation techniques were compared in 

a test case based on the Baldwin Hills Reservoir Dam Failure event that occurred in 
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California, USA in 1962 (Schubert and Sanders, 2012). An additional methodology 

of building representation based on a concept of representing the buildings as 

porous materials and using porosity equations to solve the free surface equations in 

these areas, was used (Sanders et al., 2008). This Building Porosity method (BP) 

has the advantage of representing part of the flow that moves through the buildings, 

as well as not requiring a high resolution mesh, like the BB method. An additional 

term parameter is added to the model code, φ, which represents the amount of 

space available to the water in the porous material. Sanders et al defined porosity 

in three separate terms, a convective porosity term a capacity porosity term, which 

represented the amount of space available at cell interfaces for the flux, and in the 

cell. The final term defines the cell based frontal area, which contains a drag 

coefficient. These terms are combined to create an additional term in the 

computational model that is then estimated on a cellular basis. In this test case, 

local variations between the methods did not produce a significant change to the 

estimated extent of the outflow. Local changes were restricted to arrival time of the 

wave and some of the flow paths that resulted from the failure. The test case had 

some observed material with which to evaluate model results. This highlights the 

applicability of the methods to a number of approaches, but also highlights that 

methods to analyse the models that contain local information in the evaluation 

technique may produce a different set of conclusion.  

The issue of grid size in urban areas was studied in detail by Fewtrell (2008). Using 

the Glasgow test site used in Hunter et al (2008) paper,  a number of models were 

created using variations in cell size and resampling methods, and compared to a 

high resolution grid model. The results indicated that a grid scale that is equivalent 

to the main building structures and road features is sufficient to produce reliable 

model results. Models run at a coarse 16m and 8m resolution created blockages to 

flow paths that were critical in model performance, where as the 2 and 4m models 

were more accurate. The choices of resampling techniques were less critical than 

the cell size, although methods to resample may have been affected by the steep 

nature of the site. In this respect the grid resolution is a more significant factor than 

friction values, which were also varied in this test, but were less of a sensitive factor 

in affecting model results. An important conclusion is that the choice of cell size is 

strongly location dependent, and must be assessed relative to the buildings and 

topographic features present in the domain. This must be assessed before model 

runs can be undertaken.  
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The significance of river conveyance in affecting flood inundation modelling has 

been noted in several papers (Bates and De Roo 2000, Trigg et al 2009, Wilson et 

al 2007). The values of friction and the physical dimensions of the channel model 

have been shown to be among the most significant factors in modelling 

(Pappenberger et al., 2007b, Pappenberger et al., 2008, Hall et al., 2005). A 

detailed analysis of this factor and the impact on model results has been 

undertaken by Fewtrell et al (2011). Using 3 different methods to represent river 

geometry and channel representation and 2 variations of hydraulic structures in the 

channel, a detailed analysis of the effect of channel representation was undertaken 

for the river Eden in Carlisle, using post event wrack marks surveyed with 

differential GPS to evaluate the model. The river channels were based on 

increasing complexity in representing the longitudinal profile and the cross section 

profile, and two additional models each with simplified representation of bridges. In 

the case of the bridge models, one channel was represented with the measured 

bridge geometry and utilised a head loss function to calculate the impact of the 

bridge on flow and discharge values, whilst the second was a simplified flow 

constriction cross section. Both LISFLOOD and ISIS TUFLOW models were used in 

this test case, with both LISFLOOD and TUFLOW used for the simplified 

approaches, and TUFLOW used for the complex river models. The models and 

river geometry were then compared with a range of constant friction parameters in 

both the river and the floodplain. The authors concluded that the ability to represent 

the channel capacity was a critical aspect in flood inundation modelling, and the 

performance of the model relative level of topographic representation, whilst critical 

to impacting model results, was within the uncertainty boundaries of the observed 

data set. The results indicated that the backwater effect was as great as 10cm 

affected for a great a distance as over 2km from the flow constriction point. In high 

flow conditions, however, this impact may prove to be a critical to the flood 

inundation extent. A clear point from this research is the relative influence of each 

of the factors. Simplified numerical models can produce acceptable results, but the 

full SWE models are more robust and less dependent on calibration processes. 

Channel representation becomes increasingly critical in high flow conditions, and 

that the choice of bridge representation will also impact on downstream and 

upstream flow. 

The issue of representation of hydraulic structure has also been considered in an 

uncertainty analysis framework by Brandimarte et al (2013). In this work, the effect 

of bridge representation on the backwater effect, which is the increase in water 

surface level behind a flow constricting object in sub critical flow typical of rivers, is 
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studied. The reason behind the research was to explore the impact of using a 

deterministic approach to modelling this effect in an engineering context. Using a 

pragmatic approach to the problem, and predetermining the key factors to use in 

the uncertainty analysis, a systematic study of the impact of friction value choice 

and hydrographic input was undertaken. The main results focused on a comparison 

of deterministic approaches vs. an uncertainty approach, and highlighted the need 

to carefully consider the method of uncertainty analysis and the potential drawbacks 

of a deterministic approach. Using a test case from the Tallhalla Creek and the 

HEC-RAS model, an uncertainly analysis was undertaken using a GLUE approach 

to determining the input parameters. 100 inflow hydrographs were created based 

on return period values with a suitable range. It was determined from this that a 

significant cause of uncertainty was from friction values. The research concluded 

that the uncertainty analysis provided a more robust means of evaluating 

downstream flow, but that practical considerations must be accounted for in the 

undertaking of this analysis. 

2.4.4. Parameter Uncertainty 

This sub category represents the most extensively researched area in flood 

inundation modelling uncertainty, in combination with other factors. Here an outline 

of some of the methods and the principles of this issue are covered. Parametric 

uncertainty covers the choice of values of parameters, and in particular the choice 

of roughness coefficient. This type of uncertainty has particular relevance to 

modern approaches to flood inundation modelling and with this research as the 

advancement of simplified codes such as LISFLOOD-ATS and other diffusion wave 

based codes, the roughness parameter is an effective parameter. This is where the 

value taken by the modeller can account for simplifications made in the conceptual 

model, and theoretically produce a model results that replicates full SWE model 

results. Consequently, the value of the parameter may differ dramatically from the 

value related to the land coverage. However increased complexity of the model 

does not reduce the main issues of uncertainty associated with the choice of friction 

value, as the ‘real’ value will vary in both spatial and temporal scales. Furthermore 

the friction value cannot be determined everywhere or measured at sufficient detail 

for modelling purposes. Determining a single value for a model run may represent a 

significant simplification of reality (Aronica et al 2002, Hunter et al., 2007), although 

practical methods for overcoming this sort of issue are almost impossible, due to 

the changing nature of this value over space and time (Beven, 2007, di Baddalesse 

2012).  
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Aronica (2002) undertook a detailed exploration of this issue, using Generalised 

Likelihood Uncertainty Estimation method (GLUE), a Bayesian approach to 

determining the influence of factors on model results(Aronica et al., 2002). The 

work was based on a 1D/2D LISFLOOD model for the Imera river, in Sicily and the 

Thames, UK. The parameters varied are friction parameter for both the floodplain 

and the channel.  The work highlighted the significance of the choice of friction 

parameter in influencing model results, using both model performance gradients 

over parameter space and probabilistic flood inundation extents to display data. A 

key point in this research is the sensitivity of model results to the friction parameter 

and the need for careful consideration of these values in modelling. 

An evaluation of the spatial variability associated with the parameter value was 

undertaken by Hall et al (2005). This research divided a river and floodplain into 3 

sections and explored the relationship between the values of friction parameters for 

the floodplain and the channel, as well as input boundary conditions and channel 

width. Using Sobol’ Indices to quantify which factor contributes most to the variation 

in model results, it was determined that channel friction values and channel 

parameters had the greatest influence over the model results. The work also 

provided further insight into the spatial influence of parameters, noting that the 

inflow had a greater influence at the top of the model, close to the boundary inflow 

point, and decreasing influence further down the model. A significant point, and one 

that has been noted in previous work is the relative lack of importance that can be 

attributed to the floodplain friction parameter, with the model results indicating that 

this factor is of low importance across in any of the floodplain sections.  

2.4.5. Output Uncertainty – Methods of Communication 

Output uncertainty covers both model results and evaluation methods. The 

uncertainty in model results refers more to methods devised to communicating 

uncertainty as this is an important aspect of any modelling exercise, particularly 

where modelling is used to inform decision makers (Beven 2010). 

The issue of communicating uncertainty in hazard estimation has been studied by 

Aronica et al (2012). As well as studying the importance of model input to modelling 

results, model results were displayed in terms of a probabilistic hazard 

classification. Traditional hazard results are displayed simply as an extent, without 

further knowledge relating to the modelled velocity or the combined impact of water 

depth and velocity. This approach not only combines these aspects it also provides 

further information concerning the modelling results. Aronica et al (2012) note that 
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in situations where flood extent is insensitive to inflow boundary conditions, the use 

of hazard as a model output provides a more robust and reliable method for 

communicating risk, as well as highlight specific locations in the flood domain where 

the risk is greater.  Work concerning expert insight into communication has been 

researched (Pappenberger et al., 2013, Warmink et al., 2011). In this work, the 

issue of how to present uncertain data is explored. Both case studies identify the 

need to use ranges of data where at certain thresholds an action or hazard can be 

expected. An important aspect is simply the provision of information, rather than a 

simple binary option. By using probabilistic approaches, more information is 

provided to decision makers concerning the ensemble approach of modelling and 

the potential range of events that could occur. It was felt that this was sufficient to 

allow decisions to be made with greater confidence.  

An important aspect of communication is the use of simple metrics to describe 

uncertain parameters. Sensitivity analysis provides a methodology that allows for 

analysis of the parameters, as well as evaluation criteria, such as importance 

measures, with which to describe model uncertainty. 

2.5. Model Evaluation Techniques 

The need to calibrate models also introduces uncertainty related to the observed 

data and the model evaluation technique used to assess models.  

Satellite and airborne image data is an essential component in determining flood 

extents, and providing data with which to evaluate models. Work by Horritt (Horritt, 

2006), Mason et al (2007) and (Mason et al., 2010) have explored statistical 

methods by which flood extents can be outlined. By using this data in conjunction 

with LiDAR data, depths can also be extracted to enhance the calibration process 

(Mason et al 2012). However, given the uncertain nature of the extraction methods, 

calibration methods may require some knowledge of this uncertainty. Pappenberger 

et al (2007) introduce a fuzzy set methodology, which allows models to be 

evaluated with information about the uncertainty in satellite imagery incorporated 

into the calibration process. The uncertainty related to satellite data has also been 

explored by Stephens et al (2012). Using an example from the River Dee in the UK 

and using ERS-2 SAR image of a 2006 flood, the spatial dependency and sources 

of error associated with not only with the data, but also the evaluation technique. 

The study notes that not only is ‘noise’ associated with satellite imagery a 

significant source of uncertainty, but using binary measures such as F² is also 

significant in not identifying suitable parameter spaces. The use of F² has been 
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questioned in other studies (Prestininzi et al., 2011, Pappenberger et al 2008), and 

its use is often questionable in steep sided valleys.   

Other model evaluation techniques have also been studied for effectiveness, such 

as the Nash-Sutcliffe coefficient. The NS coefficient has long been used as a 

means of model communication, although it has tendencies to award models that 

replicate shapes of curves, rather than peak values (Pappenberger et al., 2005). An 

evaluation of the technique was researched by Gupta et al (2009). In this study, the 

NS coefficient was decomposed into components. It was determined that NS 

consists of three components, representing correlation, bias and variability. In order 

to improve the method, an evaluation technique that incorporates these 3 

components individually is suggested, by using the Euclidian distance of the three 

components. This research highlights not only the imperfect nature of the approach, 

but that methods are required to assess how to improve these approaches, rather 

than to consistently use methods that contain uncertainty, but are well established.  

In the presence of imperfect evaluation techniques, multiple calibration techniques 

present a methodology to evaluate uncertain models. A case study by Dung et al 

(2011) for the Mekong Delta, Vietnam, used both the Nash-Sutcliffe and F² method 

to evaluate the model, and then explored the Pareto front, created from the multiple 

model evaluations (Dung et al., 2011). The results indicated that models with high 

values for one of the functions rarely performed as well for the other function. This 

compromise in parameter still allowed a set of parameters to be correctly identified, 

and highlights model deficiencies. A lack of representation in the dike systems was 

identifiable through this approach. Although this approach is unlikely to be widely 

applied as it requires data that is often not available for all occasions, the uses of 

comparing models across multiple functions is critical to identifying model 

parameters.   

2.6. Sensitivity Analysis 

As outlined above, uncertainty analysis investigates the potential of inputs to affect 

the output. Sensitivity analysis is described as the inverse of this problem that is to 

determine which parameter has contributed significantly to the uncertain model 

outputs (Hall et al., 2009). It represents a key level in determining important and 

influencing parameters to model results. The overall objective of sensitivity analysis 

is to determine which input contributes most to the overall output uncertainty, and 

there are 2 main approaches for dealing with this, local sensitivity analysis (LSA) 

and Global Sensitivity Analysis (GSA). Local Sensitivity Analysis deals with 
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determining the time and spatial derivatives of model results at specific location. In 

this sense it represents a more detailed investigative tool, but lacks the ability to 

deal with the complete model being investigated, due to its analytical nature (Saltelli 

et al 2000). Its use is limited in flood modelling setting, as the scale of the modelling 

problems are often greater and more significant than localised modelling issues. 

The second method, Global Sensitivity Analysis provides the detailed analysis 

required of most environmental models, to determine the impact of inputs over the 

entire model run. The use of these approaches in flood modelling is limited, 

however, due to the computational demand required to perform some of the 

standard sensitivity analysis methods. A key factor in using GSA methods is 

knowledge of the relationships between, and the distributions, of inputs. 

2.6.1 Approaches to Global Sensitivity Analysis 

A number of sensitivity analysis approaches have been developed. An outline of the 

main methods is provided here.  

2.6.1.1 Variance Based Methods 

The most prominent approach for sensitivity analysis is variance based 

approaches, as variance provides a natural indicator of output variation as a 

product of input distribution, and is used in standard statistical analysis methods 

such as Spearman Ranks, Student T tests and Pearson coefficients (Saltelli et al 

2000). Broadly, variance based methods, use information in the model output to 

determine the importance of model inputs. The outputs from these approaches are 

correlation ratio/importance measures. The importance of an input factor x can be 

assessed by considering the conditional probability distribution of y (model output) 

with respect to x, to determine the importance measure of x to output  as in the 

equation; 

                          (2.27) 

Where      is the conditional distribution of output  , with respect to the conditional 

probability of   , the distribution of the input parameter set. This essentially links 

the output from a set of models to the distribution of the input and forms the basis 

for the variance based approaches. Examples of this approach include the Fourier 

amplitude sensitivity test (FAST), (Cuiker et al 1970), the Ishigami function 

(Ishigami and Homma, 1990) and Sobol Indices (Sobol 1990). Of these methods, 

the Sobol method has been used widely in research, as it provides robust results 

with a reduced computational cost compared to the other methods (Hall et al 2005, 

Hall 2009, Pappenberger 2008). The Sobol method is a Monte Carlo approach to 
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solving the integrals of the variance calculation. The total variance is decomposed 

into integrals of increasing dimensionality, from single parameters to combined 

parameters. The contribution of a individual parameter to the total variance of 

model output,   which is based on the total distribution of model results, is 

calculated with the following equation 

First order    
  

 
   (2.28) 

And  

Total      
   

 
   (2.29) 

Where    is the variance attributed to parameter  ,     is the variance attributed to 

all parameters except  .The first order term therefore represents the direct 

contribution of that parameter to influencing the variance, whilst the total is the 

combination of the parameter and all its higher order interactions. Higher order 

interactions occur when 2 or more parameters begin to influence the results as a 

result of their interactions. Results with low first order, but high total indices indicate 

a model with highly interactive parameters.  

The FAST method differs from this approach by converting multiple dimensional 

integrals into a single integral that is based on a search curve that explores each 

individual factor with a different frequency in order to define the parameter space 

(Saltelli et al 2000). The FAST method has the advantage of being computationally 

cheaper than Sobol in calculating total indices. Both approaches have the 

advantage of using indices that rank from 0 to 1, based on the contribution of a 

parameter to output variance, making interpretation of results simple. An additional 

advantage is the model independence of the approach which allow the inclusion of 

dependant parameters that won’t impact model results (Saltelli et al 2000). These 

methods are, however, computationally expensive. The original method for 

determining the total and first order indices for the Sobol method with a parameter 

space of size k, required n  x (2n +1) model evaluations. For a case with 5 

parameters, that can extend to nearly 2000 model runs. Sampling approaches, 

such as Latin hypercube, and winding stairs, which aim to replicate the parameter 

space with fewer model runs, but whilst retaining the same factor as an output. 

The use of variance as the mathematical moment to describe is challenged by 

Borgonovo (2006), who created a moment independence approach to SA. This 

does not rely on using descriptive statistics to determine variation of output relative 

to input, but measures the variations in surface area of the response pdf to 

determine a measure of sensitivity, δ (Borgonov 2006). This method has the 



- 43 - 

advantage of not requiring detailed information about each factors properties and a 

measure of contribution from 0 -1. Use of this approach in an environmental context 

highlights the advantages of reducing the assumptions associated with inputs 

(Hartmann et al., 2013). 

2.6.1.2 Screening Methods 

The computational cost of the variance based method mean that for models that 

have either a high computational cost, or models that contain large number of 

factors, this approach become intractable. Screening methods represent a efficient 

approach to ranking factors, with a reduced computation cost compared to the 

Sobol methods. The principle behind the approach is to short list important factors, 

which control output uncertainty, whilst recurring computational cost through limiting 

the number of model realisations. A number of approaches have been created 

include One At a Time designs (OAT), group screening factorial fraction designs, 

such as the Andreas Iterated Factorial Fraction Design (IFFD) (Andreas and Hajas 

1993) through to supersaturated designs, which use less model runs than factors. 

Examples of the OAT approach include Morris method (Morris 1991), where an 

initial sample of the parameter space is determined to create an initial model run. A 

factor is randomly chosen to be moved through its parameter space by a 

predetermined amount. The model is run again to create an output for the trajectory 

point in the parameter space, hence the OAT terminology applied to each method. 

Once all parameters have been sampled the elementary effect is determined for a 

parameter with the following equation 

 

       
                                  

 
  (2.30) 

 
Where x is any value in the parameters space,   is the predetermined value by 

which the parameter value is evolved, and y is the model output. 

The process is repeated n times, until the parameter space has been sufficiently 

well covered. Research indicates that convergence of the results for a 5 parameter 

space can occur with as few as 10 runs (Saltelli 2002). From the total model runs 

the mean elementary effect can be determined. This is equivalent to the first order 

effect of a variance approach, whilst the standard deviation of the elementary effect 

represents higher order terms. Analysis of these two factors by graphical means 

can identify significant factors, and identify interactive factors. This approach has 

been used previously in modelling studies, and has been shown to identify 

significant parameters and provide similar ranking values to a variance approach 

(Zhan et al., 2013) 
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The Andreas IFFD approach is an example of a group screening design approach, 

a carefully determined trajectory pattern that will determine main interaction effects 

and some higher order effects. The approach is grouping parameters, determine 

high, low and intermediate values and evaluate the models in groups. Results are 

evaluated based on the Stepwise regression which is used to evaluate the models. 

The disadvantage of the method is that in using grouped approaches unimportant 

parameters that coincide with important factors may appear more important. This is 

overcome by using Latin hypercube approaches (Andreas 1997). 

The advantages of a screening approach, with respect to variance based methods 

have been highlighted (Herman et al., 2013), and present a computationally 

efficient means to undertaken sensitivity analysis, albeit qualitative.  

2.6.1.4 Bayesian Methods 

Where knowledge about factors is uncertain, Bayesian analysis can provide a 

framework with which to evaluate the inputs of a model. Bayesian approaches have 

been successfully implemented into uncertainty analysis frameworks (GLUE, Beven 

and Binley 1992). Broadly, a Bayesian approach involves describing prior 

assumption concerning input factors. This approach relies on using prior beliefs 

over the system, inputs and models to determine outputs. These beliefs are 

represented as distribution functions, which can be updated based on information 

with Bayes formula. This approach has the advantage of not requiring absolute 

distribution functions and knowledge for the inputs, as these can be updated. The 

resultant outcome is a likelihood of occurrence, which in modelling terms would be 

that a model represents the physical system. These applications are consequently 

extremely useful in determining uncertainty.  

2.6.1.5 Additional Methods 

Other SA techniques provide alternative insights into model performance, based on 

assessing local rather than global, variations. Derivative or local sensitivity analysis 

methods occur less frequently in analysis of models. The method involves varying 

inputs around a nominal value to determine the local impact on model results. The 

sensitivity factor is then a product of the effects of altering the input on the output. 

This approach is less popular in modelling however, as it tends to explore single 

factor impact rather than combined parameters. An example of a local SA method 

being used in a hydrological modelling exercise was undertaken by Tang et al 

(2007) in a multiple comparison research. This research used the Parameter 

estimation software (PEST, Doherty 2003), to determine the linear effects of factors 

on model outputs. This was compared with GSA methods, and was found to 

provide a less detailed level of analysis, as a result of the lack of information 
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concerning parameter interaction. Given the complexity of the models used, this is 

an essential component in SA of environmental models.  

Generalised Sensitivity Analysis is broader statistical analysis. These techniques 

include correlation measures such as Spearman’s and Pearson’s, regression 

analysis and sample tests such as Mann Witney and Student t tests. These 

methods tend to be used in initial stages of analysis, as they suffer from a lack of 

robustness and some broad assumptions, such as the requirement for linear 

behaviour to describe model parameter relations in the student t- test or the 

requirement for parametric inputs in Spearman’s ranking. Examples in research 

include the use of regression coefficients by Pappenberger et al (2006), which 

included using information about the behavioural aspects of the model to improve 

the robustness of the results associated with the Spearman ranking coefficients.   

 

2.6.2 Applied use of SA with Flood Inundation Models 

Due to the computational cost, the use of sensitivity analysis techniques to explore 

parameter importance in flood inundation modelling is limited.  Hall et al (2005) 

undertook the variance based Sobol Indices method to investigate the significance 

of parameters in model calibration for a typical flood inundation modelling exercise. 

The LISFLOOD-ATS code was used to model a section of the River Thames, 

evaluating the model by using the F² method. A 6 level factor space was 

determined for the test case, including the inflow peak value, land surface elevation, 

channel width, channel elevation, floodplain friction and channel friction. Information 

for the distribution of the uncertainty about each factor was determined from 

previous estimates, however for friction values a set of initial model runs which 

formed the basis of calculating the distributions, using a model performance over 

parameter space figure as a analogue for a continuous distribution.  A replicated 

Latin hypercube was then used to sample the factor space, and to calculate both 

first order and total sensitivity indexes a total of 1,700 model runs was undertaken. 

Further analysis came in the dividing the domain into 4 floodplain regions, and 

undertaking analysis relative to model performance in these regions. The results 

indicate that over the whole domain the channel Manning’s friction value is the most 

significant parameter, with first order indices of 0.46 and a total indices value of 

0.086. Further factors relating to the channel also have significant values, 0.21 and 

0.26 total order values for channel width and elevation respectively. This indicates 

that the majority of variation in the F² value can be attributed to factors relating to 

channel conveyance. The relative insensitivity of floodplain factors can be attributed 

not only to physical properties of overland flow (Knight 2002), but also the 
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insensitivity of the ATS code to variations in floodplain friction (Bates 2010). Each 

subdivision also provides insight into parameter importance and model performance 

with 4 equally sized domains running downstream. There is a noted improvement in 

F² value in the downstream direction, although variance remains the same across 

all the sub domains. The Sobol Indices produce the same order of important 

factors, but with a significant interaction between channel elevation and channel 

Manning’s value in the third sub domain, and an decrease in the relative rank of the 

input further down the model domain. This highlights a spatial structure This 

research details the advantages of these approaches in model development, and 

the advantage of using the Sobol method to quantify importance of modelling 

parameters. The cell size of the domain is relatively coarse (25m), allowing a large 

number of model realisations to be completed at a relatively low computational cost. 

This advantage may not be afforded in urban locations, where high computational 

costs would be expected, thus limiting the applicability of the method. 

The number of GSA methods available creates uncertainty in determining the best 

approach. Direct comparison of GSA methods in hydraulic and hydrological 

modelling have revealed certain advantages of methods, and highlighted where 

methods can complement other results, and be used in conjunction with other 

approaches. A detailed study that used 5 methods was undertaken by 

Pappenberger et al (2008). In this study the Sobol indices, Morris method, 

Regression analysis, regional analysis and Killback-Leibler entropy method (a 

measure of how the model varies from a prior normal distribution), are used. These 

methods represent a range of possible approaches to SA. The case study is a 

10km stretch of the River Alzette in Luxemburg, for a flood event that occurred in 

January 2003 with a peak discharge value of 67m³/s. The event had a recurrence 

probability of 1 in 5 with water depth data available to evaluate model realisations 

using the Nash Sutcliffe efficiency. As with the Hall 2005 paper described above, 

the model domain is divided in sub sectors, this time to coincide with water level 

data. An initial set of model realisation were used in a GLUE uncertainty analysis, to 

narrow the parameter range for the sensitivity analysis. This created a 6 level factor 

parameter space which included Manning’s friction values for channel and 

floodplain, a model weighting value theta, and 20 hydrographs. Downstream 

boundary conditions also formed part of the parameter space, which are a friction 

value and a downstream slope value. The factors were assumed to be independent 

and from a uniform distribution, and for the more computationally complex methods 

a number of bootstrap sample were undertaken to evaluate a smaller number of 

model runs. The results of important factors varied across the different sensitivity 
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analysis. Evaluating the combined ranking results of Sobol and the Killback-Leibler 

entropy method show few occasions of agreement. Both methods rank the inflow as 

the second most significant impact greater, and initial slope as a factor of less 

significance, but agreement with the order and significant of other parameters is 

poor. This highlights the uncertainty associated with the choice of sensitivity 

analysis, and in the definition of sensitivity. Each method makes a different 

assumption about sensitivity, which will impact on the final results and choosing 

appropriate methods is vital in making conclusions. This issue is overcome in the 

paper by creating an average rank for each parameter across the different methods 

and for the each region of the model domain. In Hall et al (2005), this analysis 

revealed a spatial structure to the sensitivity analysis results, with input boundary 

conditions being significant at the top of the model, with downstream boundary 

conditions having a greater impact for the lower sections. An important aspect in 

the research is the importance of interactions, in that parameters have higher total 

effects than individual effects. This not only complicates the analysis, it also 

introduces significant uncertainty about how to analysis parameter sensitivity. A 

significant conclusion is that in determining appropriate SA questions more robust 

conclusions can be made. This last point highlights the difficulties in applying these 

methods to flood inundation modelling.  

The use of Multiple Global sensitivity analysis was explored by (Cloke and 

Pappenberger, 2009), and found similar results. The paper uses Sobol, Morris and 

Killback-Leibler entropy method to investigate the sensitivity of the ESTEL-2D finite 

element model for a stretch of the river Severn. The 11 level factor space was 

applied to the 3 SA methods, and found that Upslope pressure and Air pressure 

featured as a sensitive parameter in all approaches. However, this upslope 

parameter had only first order significance in the Sobol method, whilst higher order 

significance was found with the entropy method. Again, this research highlights the 

careful justification required in determining appropriate SA methods, and that due to 

the different definitions of sensitivity in the different methods, the ranking of 

important factors will also vary compared to other SA approaches.  

A further study into the impacts of different sensitivity analysis methods was 

undertaken for a lumped watershed model by Tang et al (2007). Four methods 

were used, local sensitivity analysis, regional sensitivity analysis, ANOVA 

decomposition, based on model runs sampled with a IFFD approach, and Sobol 

indices, based on bootstraps. Two linked models were used, the SNOW 17 

conceptual temperature block index snow melt model, and the Sacramento rainfall 

runoff model which created a 20 factor level design, including infiltration rates, 
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storage factors, rainfall melt factors and depletion values. The ANOVA and Sobol 

Indices produced similar results, as a result of both approaches being variance 

based methodologies. Both methods also proved more robust than local SA and 

regional SA methods, and could also describe higher order interactions in the 

results. 

The use of multiple methods in an integrated form was undertaken for the DTVGM 

hydrological model in the Huahie River, in China by Zhan et al (2013). The model is 

a time variant hydrological model that is comprised of rainfall runoff model, flood 

routing and evapotranspiration models. As a result, it contains a large number of 

parameters and input factors. In order to create a well posed sensitivity analysis, 

the authors created an integrated approach, using the efficiency of a screening 

method, the Morris method, in order to inform a Sobol SA method. Further 

computational savings were made by using the results from the Morris method to 

create a response surface of the parameters, and use the response surface as the 

input to the Sobol analysis. The response surface could be adapted to fit the data 

availability creating a certain amount of flexibility in the approach to future research. 

In this paper the MSM approach was used. The analysis showed that 6 of the 14 

input factors were considered significant, and that the approach only required 

24hours of computer time, and 2000 model runs. The classic approach may contain 

as many as 100,000 model runs at a cost of 1 month of computer processing time. 

The advantages of using combined approaches are highlighted by this value alone. 

However, in applying this method, the inputs were considered to be of uniform 

distribution, which may limit its extension to other modelling problems. This 

assumption is critical in the use of emulators and many SA techniques. 

The research and methods mentioned above have assumed knowledge of the 

structure of the uncertainty in the modelling inputs. Where this knowledge is itself 

uncertain, Bayesian approaches provide the means to evaluate parameters and 

undertake sensitivity analysis. Hall and Manning (2011) adapted a Bayesian 

approach to a calibration process. This is based around choosing appropriate 

values for parameters based on assessing a range of values against observed data 

to update information. In this way it essentially represents a factor fixing approach 

to sensitivity analysis, i.e. what factors should be fixed to ensure reduced variability 

in model outputs (Saltelli et al 2004). In order to reduce the cost of calculating the 

integrals of the posterior probability, emulators and Monte Carlo methods (MC) 

were used to replicate the model response surface.  A 5 stage evaluation process 

was created, that involved determining prior estimations to factors and parameters, 

calculating regression coefficients, and determining a model inadequacy function. A 
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likelihood value was also required to determine behavioural and non behavioural 

models, a similar concept employed in the GLUE approach of Beven and Bingley. 

The calibration process is extended to include reconstruction of the model response 

by means of a Bayesian emulator. A worked example is undertaken with the 

LISFLOOD model for a stretch of the Thames, using a SAR dataset to evaluate 

model output with the classic F² approach and data from the Buscot weir to act as 

hydrological input. The results, demonstrate the advantage of this technique. Water 

depths and surface profiles were replicated well, and with uncertainty boundaries 

provided as a result of the modelling approach.  In assessing the model, prior 

assumptions were also updated, with the friction value assumptions being made 

more precise after calibration. The paper highlighted several key points. First, that 

Bayes theory provides a sound framework with which to discuss and evaluate 

modelling uncertainty. By extending it to include a measure of model structure error, 

all the major sources of uncertainty in the modelling process are included. 

Secondly, the results are robust, even with a large number of uncertain factors and 

models. This point is an important aspect with future development of determining 

uncertainty in modelling, where determining multiple sources of uncertainty will be 

essential to reducing uncertainty. Furthermore, this method applies a more stringent 

probabilistic basis to derived results. Other methods, such as the cell inundation 

frequency diagrams used in Aronica (2002), and the GLUE methodology present 

results with a informal probability range (Manning and Hall 2011). This method 

improves on this by using formally defined probabilistic parameters to create 

results. Additional advantages also include less sensitivity to threshold values for 

defining behavioural models. Manning and Hall note that results are more sensitive 

to prior distribution values, but reflect that this is a natural aspect of using expert 

knowledge than creating arbitrary values for determining models. The ability to 

account for all sources of uncertainty gives a Bayesian approach a distinct 

advantage over the other SA methods.  

2.7. Risk and Exposure Analysis 

In the previous sections the main methods of model evaluation are based on direct 

model output, such as extent, depth or water surfaces, although determining 

vulnerability and risk associated with a flood event is a key aspect of inundation 

modelling. Many methods have been devised with which to estimate the financial 

risk or risk to life associated with these natural hazards, which are used to 

determine the financial benefit associated with improving flood defences and to 

estimate the reduction in vulnerability associated with new infrastructure. The 
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method is based on applying mathematical models of the relationship between 

depth of water and the damage associated with the level of water, such as 

depth/damage cost curves. The complete assessment therefore requires 

knowledge of water levels, and land coverage/building data for the region. 

In some models, like the UK based Multi Coloured Manual (Penning-Rowsell 2010), 

a number of approaches are provided based on the amount of data and the level of 

detail required or available to decision maker. The assumption is that the data 

provided is the best available to conduct the risk analysis, and that the main source 

of uncertainty lies within estimations for the depth damage curve. In this sense the 

Risk Analysis techniques are deterministic, using a single value with uncertainty 

bounds based on the costing of materials rather than on the modelling process. An 

objective of this research is to explore how financial risk estimation methods can be 

used to evaluate models and to communicate risk. In this way, a more direct 

decision maker based tool can be developed to communicate modelling uncertainty 

and to allow non technical users of flood inundation models a more immediate 

concept with which to understand uncertainty. A number of methods for determining 

vulnerability and financial risk of flood have been developed. These reflect the 

number of definitions of risk and vulnerability, as well as the different requirements 

from decision makers to deal with the consequences of flooding (EA, 2010). For 

example methods range from highly detailed financial models which account for 

individual building material, hydrodynamic characteristics and warning times 

(Penning-Rowsell 2010, Merz 2004, Schwarz and Maiwald 2007, 2008), to more 

direct evaluations of simulated water depths and velocities to determine the hazard 

associated with an event (Defra 2010) 

                          (2.31) 

Where h  is water depth, v is velocity df  is a debris factor, which increases in value 

in increasing depth, to represent the hazard caused by debris entrained in the flood 

waters. 

2.7.1 Methods for determining vulnerability and risk 

Methods for assessing flood vulnerability are based on economic and financial 

losses due to flooding. The losses may cover a range of direct and indirect costs 

(such as immediate loss of property and stock to the disruption of life outside the 

flood limit) as well as tangible and intangible consequences (loss of personal 

possessions through to loss of trust in authorities) (Merz et al., 2010). In assessing 

the consequence of a flood as a hazard with a risk outcome, vulnerability and loss 

must be defined and estimated. A number of approaches have been developed in 
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the literature and in wider research in order to estimate the cost of flooding, and the 

vulnerability of a local community.  

One of the most definitive approaches provided is the MCM method developed by 

Penning-Rowsell et al. that provides a comprehensive approach to determining the 

financial implications of flooding. This methodology developed originally in 1970 

uses a combination of synthetic data and recorded data to derive a number of 

damage depth curves which can be discretized to the level of individual units. This 

approach is similar to the German HYDROTECH and MUR methods (Merz et al 

2004). The approach is flexible, and scale independent allowing the method to be 

used in a wide variety of approaches, depending on the user’s needs and data 

availability. Broadly, each depth/damage function is specific to certain classes of 

building, and can be extended to be based on social classes. It represents a formal 

approach to defining economical vulnerability, that is the combined financial impact 

(the direct tangible consequence of flooding) and the longer economic issues 

associated with major events (indirect and intangible consequences).   

The use of more subjective approaches to evaluating vulnerability has also been 

suggested. The advantage of a subjective approach are not to explore the financial 

and economic impact, but to determine key structures in the study area that are of 

key value to the local community or are determined to be more significant than 

other components of the study area by decision makers. The method, developed by 

(Pappenberger et al., 2007a)involved two approaches, a weighted cell approach 

and a localised model evaluation technique, to improve the process of model 

calibration. The weighted cell involves assigning cells with a weight value based on 

the objects within the cell    , and using this value to enhance the model evaluation 

technique, using the equation; 

     
          

  
     

 
  (2.32) 

Where      is the vulnerability weight,      the similarity factor and   the models in 

the complete ensemble of behavioural models. The vulnerability wieght is 

determined before, and can be altered to reflect temporal considerations (such as 

increasing the weighting value on roads for events that occur during rush hour, or 

decreasing weighting values for offices and schools during evening times) as well 

as reflect valuable assets in the study region. 

A second method developed is using the global model evaluation method extent F² 

for local sub domains. As with the previous method it requires careful consideration 

of the sub domains to be chosen. In the paper, these approaches identified models 
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that had produced high global values that had then failed to provide accurate 

results in the areas of interest, for a case study from the River Alzette in 

Luxemburg. The weighting method identified regions in the model, where the 

estimation of risk changed considerably as a result of the vulnerability measures 

compared to the traditional global method approach. Such techniques provide the 

means to incorporate vulnerability without the requirement for additional information 

relating to population and local building type. 

2.7.2. Applied Risk Modelling in Flood Inundation modelling 

A number of papers have explored not only methods and models for describing risk, 

but also the relationship between these methods. Apel et al (2008) explored the 

major sources of uncertainty in a flood risk assessment, in both the hazard aspect 

of the modelling and the assessment of vulnerability and economic risk. Using a 

linked probabilistic model comprised of process orientated modules, where each 

module represented a physical element of hydrodynamic process and vulnerability, 

uncertainty analysis was undertaken for a section of the Rhine. The chained model 

comprised an inflow hydrological model, using gauged flow information from 

Cologne to determine flood return probabilities, a tributary input value, and a depth 

discharge relationship module. A dike breach failure module was also considered. 

The estimation of vulnerability was undertaken with a depth damage relationship 

module, for residential buildings that occurred with postmark defined parcels of 

land. The damage was determined with the following equation 

                (2.33) 

Where, h is the depth of water. The research only considered residential buildings, 

and based the damage cost on 3 different depth/damage curves, including a square 

root method (HYDROTECH 2001), and a linear depth damage rate (MURL). These 

values were combined with the residential asset value to determine cost. The 

process modules contained uncertain inputs or processes with estimations of the 

uncertainty determined by statistical inference, as in the case of the hydrological 

input, where a GEV approach was used to derive the inflow, or estimated based on 

the nature of the model, for example the use of 3 different damage estimation 

models. Using a Monte Carlo approach to evaluate each component of the model 

generated 105 model realisations with which to determine the significant sources of 

uncertainty. The research identified that uncertainty for the entire model chain was 

greatest with extreme events. When analysing the depth damage risk curves, it 

found that uncertainty in depth damage curves was greater at extreme value 

occurrence events, as a result of the large range of values represented by the 3 
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curves, and also determined that the depth damage curve was the greatest source 

of uncertainty in the modelling chain when considering the annual maximum series 

as an input. This was determined to be a product of the fact that small variations in 

depth will produce a wide range of potential results based on the depth damage 

curves. This sensitivity to depth provides a unique aspect with respect to evaluating 

uncertain models. 

This paper highlights not only the importance of the choice of model in determining 

risk, but also its importance in an uncertainty context, i.e. related to all sources of 

uncertainty in a modelling context. Importantly, the conclusions indicated that the 

module uncertainty was not additive, and that in reducing model uncertainty will 

also require a reduction in all sources of uncertainty.  

This work was extended by a paper by the authors by investigating the level of 

detail required in flood risk analysis (Apel et al., 2009). 3 approaches of varying 

physical and process scale were used to determine the hazard of the flood event 

and the vulnerability of the surrounding area, with the aims of the paper being to 

determine the appropriate level of hazard model and vulnerability model required to 

match flood risk estimates, using a comparative approach. The hazard models were 

a linear interpolation model, using information from river gauges over a spatial 

region to create a water slope, which was then intersected with a DEM to create a 

water depth surface. The second level was the LISFLOOD1D -2D model, followed 

by the finite volume 2D method of Aronica et al (1998) the vulnerability models were 

determined by the scale at which they could resolve vulnerability. The most basic 

model were a set of meso-scale models, using the linear interpolation methods from 

the previous paper. Again as with the 2008 paper, this resolved depth damage 

curves in parcels of land. The next level in the vulnerability model was again based 

at the meso-scale but used a model based on surveyed data from private houses 

affected by flooding to create a Flood Loss Estimation model (FLEMops) model to 

resolve depth damage curve. The model contained data on 5 classes of depth, 3 

building types, and 2 building qualities. A mean damage ratio was then calculated 

for the region based on percentages of building types and quality in land parcel 

regions using the following equation; 

                                         (2.34)  

Where       represent the damage ratio for family homes of average quality 

      is the ratio for semi detached homes, and       is the damage ratio for 

multiple family homes. An additional term was added to include impacts of 

pollutants and contaminates. This model was extended to a micro scale, creating 



- 54 - 

the 3rd level in the vulnerability model. This involved using the macro scale model 

and applying it to individual buildings, which were assigned a mean property value. 

A second approach involved creating unique damage curves for each building type. 

This research contained a unique dataset with which to evaluate the modelling 

approaches. For a flood that occurred in Eilenburg, Germany along the river Mulde, 

a maximum flood extent from both surveyed and satellite data were available. This 

was enhanced with flood depth data from over 380 locations. Datasets were 

available for flood loss estimates from the Saxonian Relief Bank, which dealt with 

the compensation claims for the event. It estimated a total cost of €77.12 million 

Euros, with additional information available concerning general costs for each 

claimant. 

Overall, the choice of hazard model was less critical and produced less variability 

than the choice of vulnerability approach did. All hazard models produced a 

reasonable replication of the flood outline, where as a number of issues, including 

image resolution (to identify building types) and assumptions relating to building 

classification and representation. It was determined that at the meso-scale model 

was more than sufficient to create reasonable flood risk results. An important 

conclusion was that assessment of vulnerability models should be separate from 

hazard models, as issues of equifinality can occur, where poor hazard models can 

produce reasonable risk results, as a result of deficiencies in both approaches.  

The use of Monte Carlo methods in flood risk assessment was investigated by Yu 

et al (2012). This research combined Monte Carlo methods and fuzzy probabilistic 

approaches to create fuzzy flood damage estimates and probabilistic damage 

contour maps. The objectives are similar to the paper by Apel et al (2008), in that it 

is a probabilistic approach to determining the main sources of uncertainty by using 

a modelling chain with different components and inputs to determine the overall 

variability, and attempt to identify the main source of uncertainty. The joint method 

is based on determining the uncertainty for factors relating to the hazard section of 

the model, which forms the Monte Carlo part of the model, and using fuzzy set 

analysis to derive first the water depth and membership function in a cell for all MC 

runs, and then using the depth data to determine damage ratio. A 3 level damage 

value was calculated, based on depth damage model developed by Benning et al 

(2000). A polynomial curve fitting was undertaken to derive a credible depth 

damage curve and a highest and lowest rated depth damage curve. In this way all 

aspects of uncertainty will be captured in the modelling process and propagate 

through to the final results, which are a total damage cost value, with 95% range 
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values and a probabilistic flood map. Using the LISFLOOD code as the 

hydrodynamic model, and a 14 level factor space for the analysis, a test case with 

1,000 model realisations was undertaken. The results for the test case were a 

damage cost of $154,000 with upper and lower values of $266,200 and $104,900 

respectively. The damage contour maps allow the identification of areas at greater 

risk, with relevant probabilistic values attached to them, although it is noted that the 

uncertainty related to the depth damage curve has considerable influence over this 

output. This method allows the uncertainty of the modelling approach to be 

considered in model outputs, and therefore be apparent to decision makers. It is 

noted by the authors that whilst the approach is broad in its process, the use of MC 

methods is potentially restrictive, but improves on the deterministic approach often 

used in economic risk analysis. 

Merz et al (2010) provide a comprehensive analysis of the approaches available to 

determining risk, as well as the issues associated with certain methodologies. The 

paper outlines the main sources of uncertainty in the risk assessment modelling, 

noting that lack of process representation, temporal transformation (the change of 

risk to a region or element over hazard time scales and longer time periods) and a 

lack of validation data all contribute to uncertainty related to the models and the 

application of existing methods. A particular point noted is that small alterations with 

the hydrodynamic conditions may have a significant impact on damage 

calculations. This sensitivity to hydrodynamic conditions represents a counter point 

to issues with classical model evaluation techniques, such as the use of F² in steep 

sided valleys and in valley filling flood events, where the variation of modelled 

extent is small compared to the variation with depth.  

2.8. Conclusions 

A key area of research that has not been addressed is the assessment of physical 

representation as a source of uncertainty in flood inundation modelling. By using an 

integrated platform such as LISFLOOD this can be addressed in a systematic 

manner. Furthermore, by using this model, sensitivity analysis can also be used to 

evaluate the significance of this model. Another aspect detailed in the literature 

review is the methods by which the models are assessed in an uncertainty context. 

Uncertainty communication is an important area of research, and using methods 

normally used to describe financial loss, may provide an effective means of 

communication and a more  In order to assess the research gap the following  

questions must be answered; 
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 How significant is the choice of physical representation in creating 

uncertainty, and how does it relate to other sources? 

 How can model evaluation techniques be advanced to not only provide a 

more stringent analysis of model parameters, but also enhance uncertainty 

communication? 

 How can sensitivity analysis be used to analysis these points in more detail? 

The uncertainty associated with model code represents a significant component of 

modelling uncertainty that has yet to be addressed in an uncertainty analysis 

context. The construction of the mathematical model and specifically the level of 

physical representation represent the most significant aspect of the computational 

code. To date benchmarking studies (Hunter et al 2008, Defra 2010) and direct 

comparison studies (Fewtrell et al 2011, Horritt et al 2002) have explored the 

relative impact of each approach on case studies, but further work is required to 

explore it in a uncertainty context. In order to determine the overall impact of this 

choice, it must be considered in a structured format, comparing other factors 

considered important in modelling exercises and for which the uncertainties are 

better understood, but still to be resolved. Furthermore, in order to explore levels of 

physical representation a modelling framework within which individual modules of 

varying levels of physical representation is required, in order to isolate these 

aspects, and to remove the potential drawback of using codes with different 

discretization techniques, that may impact on model results (Neal et al 2011). 

A current issue also highlighted within the literature review is the uncertainty 

associated with the methods used to assess model outputs, and to determine their 

performance at simulating real events. Typically model analysis uses binary extent 

comparison methods such as F² and Nash Sutcliffe which are favoured for 

assessing models, although they contain drawbacks. F² is based on extent which 

may not be the only appropriate measure of risk associated with floods (Stephens 

et al 2012). The calculation method is also restrictive in locations with steep valley 

sides. In uncertainty analysis and in calibration studies, this would potentially fail to 

provide an adequate description of model response to varying and uncertain 

parameters. In order to explore the appropriateness of these methods and to 

understand the implications of the choice of model evaluation technique, a number 

of methods should be assessed simultaneously. Where this has been undertaken, 

more insight is given to model performance (Dung et al 2011). Furthering this, the 

issues of uncertainty communication could be improved by using methods more 

relevant to decision makers (Pappenberger et al 2012). Depth damage curves and 

vulnerability measures could be used to communicate modelling uncertainty. These 

methods also have some of the advantages of including more implicit information 
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within them (such as water depths in depth damage curves) and being adjusted 

based on local requirements (Pappenberger et al 2008). The use of these 

approaches to determine appropriate levels of modelling has been considered (Apel 

et al 2010), but an extension of this would be to determine how appropriate the 

approaches are to calibration processes and model evaluation. 

Sensitivity analysis forms a effective means of determining what model factors 

contributes to output variance (Saltelli et al 2000). The use of sensitivity analysis 

has also been identified as an essential part of model development (Hall 2009, 

Beven et al 2010), and has already been used to explore and identify key model 

parameters (Hall et al 2005) although the application of these methods is restricted 

by computational considerations. However, determining an appropriate SA 

approach would be essential to help determine questions concerning key model 

parameters.  
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3. METHODOLOGY 

In order to achieve the objectives, the research was designed to compare each 

input in a systematic way and to use multiple objective functions to assess the 

model results. In order to remove model bias from the results, three test cases with 

different hydraulic properties were used. The test cases explore different aspects of 

the models and the significance of the level of physical representation. Two of the 

cases have observed data sets by which the model realisations can be evaluated. 

The main characteristics of each test are outlined in the preceding data chapters. 

This approach, of systematic evaluation of inputs is in keeping with the EA 2D 

benchmarking approach and the benchmarking approach of Hunter et al (2008), 

where each test examined a particular aspect of model performance, and by using 

real life scenarios, ensures the research results relevant to commercial modelling 

practices.  Two approaches were used to meet the main objectives of the research;  

 A Monte Carlo uncertainty analysis approach, which uses a systematic 

approach to determining and testing parameters. This approach is designed 

to use values of inputs that may typically used by modellers, based on the 

range of uncertainty of the input.  

 A Global Sensitivity Analysis approach to quantify the impact of parameters 

and inputs on outputs.  

For the first part, each test case was used as the basis of a Monte Carlo test 

whereby a range of parameters and inputs will be tested in a systematic way, with 

each level of factor (the value of the considered input based on how the input is 

discretized) being tested against the other input levels. This way the parameter 

space will be effectively mapped by comparing each level of parameter across the 

range of parameters. The parameter factors are ranged and discretized to reflect 

values that might typically be considered in a modelling exercise. This allows a 

greater freedom in selecting and creating the parameter space, but at the loss of 

providing a more detailed analysis, which methods such as the GLUE approach 

and direct probabilistic methods may use. This, however, has two advantages; first 

that precise nature of the distribution of the inputs is not required, which in the case 

of the level of physical representation would be difficult to define. The results of this 

research may help to define this. Secondly, the methodology can reflect the 

uncertainty of the inputs (based on the range of the input), whilst maintaining a 

flexible approach to undertaking the analysis for three test cases. The assumption 
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here is that taking into account the full range of the factor is enough to capture the 

uncertainty of the input. The results of this research should be considered in 

relation to this sampling approach. The models are then assessed using various 

objective functions, and assessed with exposure-based methods. The exposure 

methods include regional analysis, subjective vulnerability functions and damage 

cost based on Depth damage curves, which consider relative regional risk and the 

impact on global model results. This investigated the significance of the objective 

function in determining influential factors, and investigates the ability for exposure-

based methods for communicating uncertainty.  

The second stage will involve quantifying the importance of factors in influencing 

model results by using sensitivity analysis, which was undertaken using screening 

methods to provide a qualitative result and quantified using Sobol Indices. However 

in order to achieve a convergence of results for a case with 5 parameters would 

require over 1200 model realisations for a single test case, which with the 

computational cost of the ATS solver would be significant. In order to reduce this 

cost, a Gaussian emulator approach was adopted. 

The main techniques and methods are outlined in the following section. Each test 

case will have specific elements in either the analysis techniques or parameters 

that will be explained in greater detail in the introduction to the data chapters.  

3.1. Input factors 

For each test case, the same principal factors are used in the parameter space. 

Friction values, hydrograph inputs, cell size, the root means square error (RMSE) 

value of the Digital Elevation Model (DEM) and building representation type are all 

considered. These inputs represent the most significant sources of uncertainty in  

inundation modelling, such as the hydrograph and friction value, or values that are 

typically considered in creating a model such as the cell size. The values typically 

used are set in Table 3.1. Each parameter is divided into discrete intervals, and 

described from that  
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Parameter Type Range Levels Notes 

Cell Size 

2m – 4m for 

urban tests, 20m-

40m 

2 levels  
Based on work by 

Fewtrell et al (2008) 

Hydrograph 
20% of calculated 

hydrograph 

5 levels  

(-20%,-

10%,0,+10%,+20%) 

Value based on Di 

Baldassarre et al 

(2012) 

DEM error 0cm - 15cm 

2 levels - 

Original surface and 

15cm degraded  

LiDAR vertical 

RMSE 

Building 

Representation 
BR, BP, BB 

3 levels 

 

Based on Schubert 

and Sanders (2012) 

Friction Value 

Low Friction - 

0.008-0.020 (13 

levels at 0.01 

difference) 

 

High Friction 

0.015-0.075 (13 

levels at 0.05 

difference) 

 

 

Number Low High 

Manning’s n for low 

friction 

Manning’s n for high 

friction 

Uniform friction 

values 

1. 0.008 0.015 

2. 0.009 0.02 

3. 0.010 0.025 

4. 0.011 0.03 

5. 0.012 0.035 

6. 0.013 0.04 

7. 0.014 0.045 

8. 0.015 0.05 

9. 0.016 0.055 

10. 0.017 0.06 

11. 0.018 0.065 

12. 0.019 0.07 

13. 0.02 0.075 

Single Value 

0.01-0.07 

7 Levels for a uniform 

friction value surface. 

Table 3.1: Typical Parameter Space for the test cases. Each parameter is divided 

into discrete intervals (levels) which forms the parameter test space. 

Cell Size; The value for cell size is determined by two factors, minimum feature 

representation and computational runtime.  For the urban areas, this is required to 

be at least 2 meters. This is based on previous studies that have identified 2m as 

being sufficient to represent main flow paths in urban areas (Fewtrell 2008). With 

gaps between buildings being approximately 10m for Glasgow and 8m for 

Coventry, a minimum 2m resolution is more than sufficient to represent the main 

flow paths in the urban areas. A practical consideration is also taken, given that the 

time stepping procedure of the ATS code can significantly increase the runtime of a 

model by an order of magnitude compared to more complex models, a 1m 
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resolution would be restrictive for urban areas, even for the Glasgow test case 

where the grid domain is around 1km². The Mexborough case was modelled at 20m 

and 40m due to the rural nature of the model domain. It also represents a trade off 

between computational costs and topographic representation. Whilst building size is 

less of an issue in determining the cell size, for this case the river, which is around 

40m in width, must be represented in the topographic domain.   

Hydrographic input was varied between a range of ±20% of the estimated value 

(Domeneghetti et al 2012). This value represents an approximate value associated 

with the combined uncertainties of estimating input boundary conditions.  Whilst this 

estimation does not take into account precise details about the measurement 

procedure, it is felt to be sufficiently wide to cover the range of potential 

approaches, including the use of rating curves, power laws and modelling 

assumptions that will be used to estimate inflow.  

DEM Error. The DEM used in the models are all based on LiDAR derived data sets, 

which have a RMSE of the relative true ground rating of ±15cm for elevation and 

5cm for lateral position (Cobby et al 2003). This is incorporated into the input 

parameter space in a similar way to the approach of Hunter et al (2008), by 

degrading the original DEM according to the RMSE value for height and lateral 

position. As knowledge of the precise nature of the true ground value is unknown, 

the degrading process will be random, based on the range of the two RMSE values.  

A two level factor is created, with the original and degraded surfaces representing 

the range of error associated with LiDAR data. 

Building Representation is a key aspect of flood modelling in urban areas. The 

choice of approach may significantly impact both the model results and the run time 

(Sanders et al 2008). In these test cases, 3 approaches are used to represent 

buildings, based on the approaches first suggested in Sanders et al (2008), Building 

block method, (BB), Building resistance method (BR), and Building porosity method 

(BP). The position of the building is determined using OS Landline data. For the 

building block method, the elevation is raised by 6m for all cells that fall within the 

footprint of the building. The building resistance method contains no physical 

representation but a high friction value for all cells in the building footprint, to allow 

for some representation of the flow through the building. The Manning’s coefficient 

is fixed at 0.1 in all test cases, which is high enough to create a significant reduction 

in water discharge levels through the building footprints. The Building Porosity 

method uses a fixed conveyance porosity value of 0.5 for cells in building footprints 

for all test cases. This value represents the amount of cell space available to be 
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occupied by the water, as well as the term used to reduce the intercell discharge 

volume. Additional building representation techniques such as the Building Hole 

method (BH, where the building is removed from the DEM) are not considered in 

the first part of the test case, as the modelled effect would be similar to the building 

block approach, but is incorporated into the Sensitivity Analysis section. 

The Manning’s roughness coefficient is determined by the underlying land 

coverage. Two approaches are taken to represent the friction value. First, a single 

value for the domain is used, from 0.01 to 0.07 at 0.01 intervals. Secondly, the 

value is spatially distributed based on OS Landline vector data, with roads, paths 

and other low friction surfaces being assigned values based on 0.008 to 0.02 at 

0.001 intervals, and higher friction surfaces assigned values from 0.015 to 0.075 at 

0.005 intervals. The larger parameter space, compared to the other inputs is 

justified, as the values represent the range of values that could be used in a 

modelling exercise. It also reflects that this value will most typically be considered in 

a modelling exercise, and has a large uncertainty associated with determining the 

appropriate value. In order to reduce the computational cost of the test, the spatial 

distributed friction values were not cross compared. This would create a model 

sample of 700 realisations comparing only spatially distributed friction values and 

level of physical representation. A more detailed analysis of friction uncertainty 

relevant to modelling exercises can be achieved by comparing spatially distributed 

values versus uniformly distributed values. For each test case, a uniform Manning’s 

value was chosen from the range 0.01 to 0.07 at 0.01 intervals. This range  

represent a wide range of surfaces as well as providing comments to the questions; 

are spatially distributed friction value significant in model results compared to a 

uniform friction value, given the uncertainty associated with this value is both a 

temporal and spatial value (Hall et al 2005)? A potential issue on this research is 

that only two surfaces types are used to create spatially distributed values. A more 

detailed approach, providing several surfaces with appropriate friction surfaces may 

be required to investigate this fully. 

This systematic approach of cross comparison of parameters at discrete levels 

provides a manageable approach to investigating uncertainty from a number of 

different sources. Other approaches, such as GLUE,  may provide more detailed 

analysis.  A more stringent statistical approach, which uses knowledge of the 

probability distribution functions to sample the parameter space, would provide a 

greater insight into the relative performance of each factor, such as the GLUE 

approach (Beven and Bingley 1992). Here, sampling from the extreme edges of 

each of the parameter range to define the factor space of each test case may over 
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estimate the uncertainty. However a probabilistic approach may lack the control of 

data that a systematic approach allows, where by each model run can be attributed 

to its original set of parameters, and allow more detailed analysis of model results. 

3.2. Objective Functions and Model Evaluation 

Model realisations were assessed in two ways; a standard approach which involves 

assessing direct model outputs such as water depth, and a exposure based 

approach which will involve using vulnerability, hazard and financial risk as model 

evaluation techniques (essentially methods that require secondary models or 

further analysis). The standard approach compares in two ways. Firstly, the model 

outputs directly, including water depths, velocities and time series profiles for 

locations within the model domain. This allows a direct and detailed comparison of 

variations between factors on model results. Secondly, it uses the objective 

functions to evaluate the models. Each test case will use the      evaluation 

technique (Bates and De Roo 2000), but each test case will use additional functions 

that are data dependent to provide further insight into evaluation techniques. For 

the Glasgow test case, a Nash Sutcliffe coefficient is used to evaluate the model, 

for Coventry a depth measurement is used, and for Mexborough a comparison of 

observed depths.  

The problems of using the      function are well noted (Beven 2010, Stephens 

2013). The      statistic is a binary performance measure that compares the 

observed extent with the modelled extent, and evaluates it according to equation 

3.1 

     
   

    

  
 
       

 
       

 
    

   (3.1) 

Where    
     represents the sum of pixels flooded in both modelled and observed 

data,    
     represent cells that are flooded in observed and not in the model 

where as    
     represents the opposite group of cells. The function ranges from 

0 to 1,  where a value of 1 represents a perfect fit between observed extent and 

modelled extent. This measure has been used extensively (Bates and De Roo 

2000, Aronica et al 2002, Hall et al 2005,Schumann et al 2011, Prestininzi et al 

2011), and provides a useful indicator of global model performance. The drawbacks 

of this approach include poor differentiation between models in steep sided 

topography, where significant increases in water elevation do not correspond to 

significant increases in extent. This is an issue in valley filling exercises. A number 
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of approaches have focused on extracting water depths from the extent to evaluate 

model performances (Mason et al 2009).  

Each test case also contains a second evaluation method with which to evaluate 

how the significance of a parameter changes according to the method used to 

evaluate simulation outputs. For the Glasgow test case, a comparison of water 

depths over the time of the model domain is made using the Nash Sutcliffe 

coefficient. This method is regularly used to evaluate model outputs, and provides a 

similar evaluation value as the comparison of extent function. The coefficient is 

defined as; 

       
    

    
    

   

    
    

       
 (3.2) 

Where   
  is the observed discharge value at time  , and   

  is the modelled 

discharge at the same time.     is the mean observed depth. The coefficient ranges 

between 1 and -∞, where 1 represents a perfect fit. The method has been noted to 

fit peak values better than the overall model range, but still represents the most 

common evaluation of discharge/time series. 

For the Coventry test case, an observed depth was used to compare model 

outputs. This was evaluated simply as the difference between the model and 

observed. An absolute value was not used – this allows insight into the variations 

attributed to the different inputs. 

The second objective function used for the Mexborough test case is a root mean 

square error of the difference between observed water depths and modelled water 

depths. This method has been used in Stephens et al (2012) as an evaluation 

technique that provides greater detail into model output than an evaluation of 

extent. The method requires using The RMSE is defined as; 

        
  

   
    

   

 
 

 

  (3.3) 

Where   
   

 is the observed water depth in cell     and the   
   

 is the modelled water 

depth in the same cell. A value of zero would represent a model which would be 

close to replicating the observed data exactly (there could be the potential for 

identical errors to cancel out over the model domain). Therefore lower RMSE 

values represent better performing models.  

In addition to objective functions, a number of uncertainty methods are also 

considered to evaluate the models. Uncertainty extent plots (also refered to in the 
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literature as probabilistic extent plots), such as those used by Aronica 2002 and 

Hall 2005, provide important data about model behaviour over a parameter space. 

In this approach the value of a pixel is determined by the frequency of inundation 

occurrence across the parameter space, with a range of 0 to 1, where 1 is flooded 

in all model realisations. By plotting this across the model domain, these figures can 

demonstrate where the modelled extent is most uncertain. It should be noted that 

the output is better described as an uncertainty value due to the sampling nature of 

the inputs, and because the value represents the frequency of the pixel flooding 

across the model ensemble. The output is described as an uncertainty flood extent, 

with a measure of inundation frequency displayed (i.e. a value of between 0 where 

no flooding has occurred and 1 where the pixel has flooded in all test cases) for 

each pixel displayed. Further model evaluation will be using control points to 

compare, water depth, velocities and arrival times over the course of each model 

run. 

3.3. Risk and Vulnerability   

Several methods that represent the range of potential approaches to determining 

risk from model outputs are considered, in order to evaluate models according to 

exposure to risk. The first approach is based on the determining the financial 

consequence of floods using Depth damage functions and the approach described 

in the Multi Coloured Manual (MCM) (Penning-Rowsell et al 2010). This is 

undertaken by first determining the classification of building type based on OS data 

sets. Buildings are divided into groups based on this classification into residential 

units, light and heavy industrial units, workshops, schools, pubs, shops and local 

services (including libraries). Each category has a corresponding depth/damage 

cost curve, to determine the cost per square meter in relation to the depth of water 

in cells located near the buildings. A buffer around the perimeter of the cell defines 

the points where the cell depth value is used to evaluate the cost per square meter 

depth damage functions. This approach is used to allow a comparison between the 

different building representation methods, and ensure that the same cells are used 

for all model runs. This represents a subjective component of this approach and a 

potential source of uncertainty. Each method may cause a variation in how water 

accumulates against the edge of the building, which may impact results. The 

approach is hereafter referred to as the Cost of Damage method.  

In order to derive a Cost of Damage, assumptions must be made about building 

type and susceptibility to flooding in order to identify the correct depth damage 

functions to apply. Here the assumption used is that the properties represent a 
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mean susceptibility range (i.e. the building do not fall in to extreme values of 

vulnerability – neither high or low susceptibility). Consequently there is a certain  

amount of uncertainty in this analysis, based on these assumptions. this can be 

avoided by using the range of potential depth damage curves for a building as a 

reflection of the uncertainty and incorporating it into the overall analysis. Due to 

computational cost this has not been considered but could potentially be included in 

future studies to identify how critical this choice is relative to other sources of 

uncertainty in model evaluation techniques and inputs. The depth damage curve 

was also altered to 2013 levels by applying the CPI index to the 2010 values 

supplied in the Monte Carlo Manual. For each building type, the depth damage 

curve represented the total economic loss to a property. Each test case used a 

short duration damage curve (less than 24 hour inundation duration), which may not 

hold for the Mexborough test case, but ensures consistency between each test 

case. 

Subjective vulnerability approaches were suggested by Pappenberger et al (2008) 

as a means of identifying individual areas of interests and weighting model results 

towards these areas. The two approaches suggested in that research were used 

here and using those methods allows a comparison of qualitative and quantitative 

approaches to be made, if the Cost of Damage method is considered a quantitative 

approach. The first approach is a localised      method using the same approach 

as discussed above, but focusing on smaller sub domains within the model. The 

sub domains were determined by considering the total model domain, and dividing 

it into regions of economic importance, or vulnerable peoples, based on economic 

or census data. This approach allows the classic      approach to be considered in 

the context of important assets and removes the bias typically associated with that 

approach, in particular performance in steep terrain, and focuses it on areas of 

concern. This method therefore represents a standard function approach which is 

enhanced by knowledge of risk in the model domain. 

The second approach is a weighted cell methodology. Regions in the model are 

assigned a risk value between 0 and 1, where 1 represents assets of greater value, 

depending on unique characteristics determined before the modelling process. The 

weighting is applied to the       function, and model results are then evaluated to 

the model function       . This is similar to the      approach of Prestininzi et al 

(2011), but with the weighting being dependent upon subjective vulnerability values. 

The weights were spatially distributed across the model domain into regions 

surrounding the areas determined as vulnerable. The precise distribution is unique 

to each model domain, depending on the case, and is described in more detail in 
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the test case chapters. The previous use of this method concluded that it 

represented a robust method for assessing models and for determining the risk to 

peoples and buildings. By using both methods insight will be gained about the best 

approach to evaluate vulnerability using model results. 

A spatial probabilistic approach to hazard mapping, similar to the probabilistic 

extent method suggested above and utilised by Aronica et al (2012) is also used. 

The method uses velocity data and water depth data for individual cells to 

determine a hazard value. The hazard value for the cell is then divided into 4 

categories which are then assessed in the same way that the frequency of cell 

inundation is assessed above (i.e. a value of 1 represents cells that have flooded in 

all model realisations). This approach is modified here to account for the large 

number of models. First, the maximum depth and velocities of each is cell is 

determined. The hazard value is then determined from these factors, from which a 

hazard value based on Defra flood risk to people hazard level is used, as in 

Equation 2.31 and 3.4 (Defra 2010).  

                          (3.4) 

All cells with hazard values above 0.75 are then determined as hazardous. This 

value is the lowest threshold value in the Defra guidance, above which it represents 

a hazard to people. This assessment is undertaken for all model results individual 

before it is combined to create the final probabilistic outline. The method used here 

is conservative in comparison to the Aronica et al (2012) method. The inclusion of 

all hazard cells removes detail from the analysis and using maximum values of 

velocity and depth rather that the combined maximum means that the precise 

hydraulic nature of the flood is not captured. This however, represents a 

compromise between computational cost and analysis. By assessing risk in this 

way, velocity is included which plays a key factor in determining the risk to humans, 

as well as buildings. Moreover, it also allows insight into how the levels of physical 

representation define flow paths and critical flow regions in the model, as well as 

insight into the hydraulic outputs of the models. Furthermore, assessing this hazard 

uncertainty spatially allows regions of uncertainty to be identified as well as 

identifying where the highest level of hazard is likely to be determined. As with the 

extent outline, the term uncertainty is more appropriate to describe the output, with 

a measure of hazard frequency of 0 to 1 displayed, similar in concept to the 

inundation frequency introduced earlier. This is also similar to the probabilistic 

approaches that have been used to describe this output in other studies (Aronica et 

al 2012), although the terminology is altered here to reflect the difference in 

approach to the parameter sampling. 
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3.3. Sensitivity Analysis 

In order to quantify the impact of factors, Global Sensitivity Analysis (GSA) is 

undertaken on model results. Two approaches were used, a screening method and 

a variance based method, which uses an emulator to replicate the model response 

surface, and then evaluating first order effects and total effects of key factors based 

on the emulator’s response surface. The approach provided an insight into key 

factors in flood inundation uncertainty, whilst reducing the level of computational 

cost associated with this type of analysis. 

3.3.1. Morris Method 

The use of GSA methods is restricted by its computational cost. To compute the full 

range of Sobol Indices requires N(d+2) model runs, where d is the number of 

factors to be considered, and N represents the model runs determined by a 

convergence factor, where the parameter space is sufficiently covered to represent 

all parameter sets to create a model evaluation function. In large parameter test 

cases the number of model runs required can quickly become intractable. Even 

when the number of parameters is low, where complex computational models are 

used, such as environmental models, the computational effort may still be 

significant. In these scenarios the use of screening methods may still provide an 

insight into parameter behaviour. A popular, simple method to implicate is the ‘One 

At a Time’ (OAT) methodology, devised by Morris (1991), which is extremely 

efficient in terms of computational effort and is easily implemented as a result of 

non-restrictive assumptions. The Morris method can determine which factors are 

negligible, linear or additive or non linear and interactive, and was used in this 

research. The main methodology, described by Saltelli et al (2000) is to divide the k 

dimensional input vector X into discrete levels (where k is the number of 

parameters) which can assume integer values based on the set {0,1/(p-1),2/(p-

1),...,1}, where p is the number of levels in the design space. 

Using a random starting point from the vector X, each factor is sampled from its 

range of values, based on the number of levels in the case. This model is realised 

to create a base value. From this, one of the factors is then evolved by  , a 

predetermined multiple of 1/(p-1), that remains within the sampling region. 

The elementary effect describes the impact of varying a factor on the previous 

model realisation or base value, and is defined as  

       
                                  

 
  (3.5) 
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Where ∆ is a predetermined variable of p. X is a selected value in the region of 

experimentation, and the effect of delta describes the variation of factor  . This is 

repeated until all factors have been sampled, from the initial base value, to create 

the first trajectory. A new base value is sampled and realised to create a new 

trajectory through the modelling space. The number of trajectories required to 

sample the model space sufficiently is dependent on the number of model factors. 

The mean, μ, and the standard deviation, σ, of the element effect of each factor 

over the total iterations provide the outputs. A large mean indicates a factor with 

significant first order influence. A high standard deviation indicates that the model 

has a high interactive and non linear influence on model results. 

The efficiency of the method is that each parameter will only require one model run 

per trajectory. Previous studies have indicated that for 5 parameters, approximately 

10 trajectories will be sufficient to determine the mean and standard deviations. In 

this research, this will be explored by using twenty trajectories for each test case to 

test for result convergence. In this research, the factors will be divided into 4 

discrete levels, based on the range values described in table 3.1, producing an 

input space of 6 factors at 4 levels, which includes the level of physical 

representation. The number of levels has been determined in order to include these 

factors, and to include the building representation factor as well. The assumption is 

that the number of levels sufficiently covers the parameter space, and provides an 

adequate description of the inputs. 

This method can only provide qualitative indicators of factor sensitivity, unlike 

variance based methods. It also requires parameter independence, which is 

assumed for the parameters used here. There are also indications that where the 

model parameter space is small the use of a screening method does not provide a 

robust measure of sensitivity (Pappenberger 2006). This however is countered by 

the fact that it requires significantly fewer model runs, and can still identify factors 

with significant contributions to model variations (Herman et al 2013).  

3.3.2. BACCO Sensitivity Analysis 

In order to provide quantitative results, moment based sensitivity analysis, such as 

variance decomposition, is required.  Although the parameter space is small in this 

research, the computational cost associated with the use of flood inundation models 

means using a standard sampling approach for a GSA method, such as Monte 

Carlo sampling, may become prohibitive when dealing with the numerous runs 

associated with variance based methods. In this scenario, emulators provide a 

statistical approximation to the model that can be further assessed with GSA 
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methods, to provide the same output that a standard SA approach would take. The 

use of an emulator in a calibration study has been undertaken for a flood inundation 

model (Hall and Manning 2011).  

The BACCO (Bayesian Analysis of Computer Code Output) methodology used here 

is based on the approach developed by Kennedy and O’Hagan (2001) and Oakley 

and O’Hagan (2002), in which an emulator is created based on Gaussian principles. 

The emulator is a statistical approximation to the computational mode, and is 

designed on training runs of the original model at a number of locations within the 

parameter space. From these training runs, the emulator is then constructed as 

below; 

                                     (3.6) 

Where        is the response of the computational code at points    , where the 

training points have been conducted,         is the emulator mean, and  

                  the emulator variance, which are both solved numerically within the 

Gaussian framework. 

Here, the assumption is that the model code can be represented as a random 

function that can be described in terms of normal distribution. The emulator is 

formally Gaussian because the marginal distribution of all factors, including the 

model function of the computer code, is multivariate normal. The advantage of a 

Gaussian process is replication of the training points in the emulator surface, 

ensuring that model uncertainty is reduced where sufficient knowledge of model 

performance is known. The process provides the mean and variance for points of 

the emulator away from the training assuming the principles of smoothly varying 

functions are maintained from training point to training point. This allows the 

uncertainty related to the emulator to also be defined. In general the uncertainty 

related to this can be reduced by improving the coverage of the parameters and 

increasing the number of training points. The sensitivity analysis undertaken is a 

variance based methodology. Broadly, to determine the first order impact of a 

parameter the variance of the output is decomposed to individual integrals and 

evaluated by: 

    
           

      
   (3.7) 

Where      is the variance conditional expectation of y dependent on x, where x is 

a subset of the total parameter region used to calculate       . The measure is 

therefore the contribution of the parameter where 0 is no contribution, 1 is 

responsible for full impact on model results. In order to estimate the impact of a 
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single parameter or factor, X is varied, whilst the other factors are fixed. In order to 

examine the total impact of a factor, X is fixed, whilst the other factors are varied. 

This methodology explores the contribution of the factor to the total output. 

In this research, the GEM-SA software developed by Kennedy and O’Hagan (2001) 

was used to undertake the construction of the emulator and the variance based SA, 

using the principle described above. The input factors were based on the 

parameters outlined in Table 1, although both the building representation factor and 

level of physical representation were removed, as defining it in terms of a pdf 

function is difficult, as the factor represents only a 4 level input. Instead a 

comparison between a simplified approach (ACC) and a full SWE model (Roe) was 

used to compared the relative contribution of the remaining inputs from the 

parameter space to model output was undertaken. The implications of this are that 

only the relative effect of the input can be explored, and the impact of changing 

physical representation on the importance of inputs can be explored.  A series of 

initial runs revealed that a LP-Tau sampling process (a quasi random sampling that 

covers the entire parameter range in uniform units, similar to a Sobol sample) 

provided a smoother and more accurate emulator approximation of the 

computational code, than a Latin Hypercube MC sampling procedure. The initial 

runs also showed a good approximation between the calculated variance and the 

observed variance based on the training runs. This is essential in determining the 

appropriateness of the method, as well as giving greater confidence in the results. 

For the Morris method, all the standard objective functions were used. However, for 

the BACCO GEM approach, only the      described above will be used to explore 

how parameter importance changes relative to the evaluation criteria. This was due 

to finding the      method a sufficiently smooth function to construct the emulator. It 

also allows a comparison between locations, an approach not possible with the 

other evaluation functions. The exposure based methods also compromised the 

smoothness of the emulator output. 

3.4. Test Case Model Setup 

For each test case a series of initial model runs were undertaken to determine 

which parameters to include in the input parameter space, which aspects of the 

model domain would require adjusting and to determine model run times and model 

convergence.  

Initially, models were run with fixed parameter values to determine model run times, 

model stability and convergence, evaluation of the DTM, and to provide additional 
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data about the flooding process and hydraulic conditions which could be used to 

define an appropriate parameter space.  

Model run times were critical in determining the number of parameters that could be 

considered. The restrictive nature of the ATS time step (Equation 2.14) meant that 

this would be a key factor in determining the parameter space. An indicative 

example of the model runtimes is provided in Table 3.2, which provides an insight 

into model runtimes across the whole model ensemble. All test cases  were 

undertaken on the Leeds ARC1 – HPC system which is a Linux operating system 

operating on two quad core 2.8Ghz Intel Zeon processors with 12GB of memory.  

Test Case ATS ACC Rusanov Roe 

Glasgow 700mins >1min >1min >1min 

Coventry 890mins 3mins 10min 7min 

Mexborough 228mins 4min 12mins 12mins 

Table 3.2: Indicative model runtimes for each LISFLOOD module across the 

parameter space. 

A restriction of this system was a limit of 48 hours computation time. In order to 

ensure each test case could be computed with limited user operation, model 

runtime was restricted to fall within this limit. This was important for both the  

The mass balance of each test was also investigated from these initial runs. Mass 

balance was found to be with 5% error for the Roe and Rusanov solvers, whilst 

ATS and ACC were near 0% error. This was assumed to be an acceptable error 

range for the models. It is important to note in later results that this may impact the 

overall model results, but here it is assumed that this is low enough not to have a 

global impact (i.e. effecting model output and function types that are related to 

model domain wide aspects, such as F²). 

The initial tests also allowed convergence to be determined, and appropriate time 

stepping conditions to be determined for the LISFLOOD modules. It was 

determined that the Rusanov solver required a restrictive CFL condition to ensure 

stability for all test cases(>0.1). The Roe solver also used a low CFL condition (0.2) 

for all test cases. The ACC module used a fixed theta value of 0.8. This ensured 

stability across the whole friction range, although the sensitivity of this module to 

this value has been noted (de Alemida 2012).  Essentially, these limits were chosen 

to ensure model completion. Optimisation of the time stepping was not undertaken 

and these values were fixed early on to allow for the large model ensemble to be 

completed. Focus on the model runtimes has also be excluded from discussion, as 

it is assumed that other numerical solutions to the level of physical representation 
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may be more effective. It also ensures that focus remains on the level of physical 

representation rather than on numerical solutions. 

 

Evaluation of the DTM was undertaken to ensure that no unusual errors occurred in 

the DTM which may affect flowpaths. This was particularly critical for the Coventry 

test case, which was based on a 2008 DTM, but had to be adjusted to represent the 

1978 topography. In addition to this a number of other factors were considered, 

such as boundary conditions and topographical representation. A pragmatic choice 

was made between how critical the results were to model results and the increased 

computational cost. For example, in the Glasgow test case the use of downstream 

boundary conditions was explored. This impact, whilst notable, was essentially local 

however, and was fixed for the test case model realisations.  

From these results a number of parameters were either carried over, or fixed for the 

test case evaluation. For the urban test cases, an identical parameter space was 

chosen. This allowed a certain amount of direct comparison between the two case 

studies despite the different hydraulic conditions of the test. The Mexborough test 

case was originally to be built around the use of 1D channel models but consistent 

mass balance errors and instability with the full SWE models prevented this.  

For the urban test cases, the complete model ensemble was 4800 model runs 

including all 4 LISFLOOD models. For Mexborough, this was reduced based on the 

longer model runtime to 2400 model runs. Again the time taken to run the ATS 

module proved critical to the number of parameters that could be evaluated. Each 

model realisation was then evaluated with the objective functions, which allowed for 

a quality control of the realisations to be undertaken based on the model results. 

Individual model runs could then be evaluated in more detail to determine cause of 

unusual results.  In this case either additional runs could be performed or the 

results could be noted within the analysis.  

A similar process was undertaken for the sensitivity analysis approach, with the 

focus being on convergence in the model results. This was achieved with a 

relatively low number for the Morris test (around 30 realisations) which fits in well 

with previous considerations of this approach (Saltelli et al 2000) 
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4. GLASGOW TEST CASE 

This test case is a culvert blocking event that occurred in the Greenfields region of 

Glasgow, a highly developed urban environment consisting predominantly of 

residential buildings, with small businesses and a school also present. This test 

case has been used extensively in research; Hunter et al used it as the basis of 

their benchmarking case study (2008); Fewtrell et al used it to explore the impacts 

of cell size and grid meshing on model results (2008), Schubert et al used it to test 

building representation (2008) and Aronica et al used it to explore rainfall runoff 

uncertainty and probabilistic hazard mapping (2012). As outlined in the 

benchmarking paper, the nature of the topography, inflow boundary conditions and 

the low friction surface create transcritical flow conditions, with super-critical flow 

developing along the top of the main flow path in the early stages of the model. 

This, as well as the complex urban topography that includes roads, paths, and 

buildings, will provide a rigorous test of model capabilities. A test case with trans-

critical flows will also provide insight into the levels of physical representation in the 

numerical scheme, as specific treatment or inclusion of hydraulic shocks may be 

essential in determining model output.   

 

Figure 4.1: The location of the test case. The red box represents the model 
domain, the cross represents the culvert and the inflow point.  

The modelled event is based on a observed event that occurred at the site. Flow 

from a small river that enters from the top right of the domain enters a culvert, 

identified by the red x in Figure 4.1. This culvert contains a trash screen, which 

when blocked leads to the flow exceeding the channel and over topping at this 

point. Flow moves from right to left across the model domain, in the general slope 

DD
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direction leading to the formation of two main flow paths, the first along the main 

road, the second moves toward the bottom centre of the model domain. Given the 

high level of urban development and the presence of kerbs and roads, the flow 

paths are well defined and constrain the flow in several locations, including the 

main east west flow path, where water depths remain low. The flow paths converge 

at the far left side of the model, whilst water begins to pool at low elevation regions 

at the bottom centre. The main flow path runs down a steep slope (around 6% 

gradient), which creates super critical flow in this region. This represents part of the 

challenge of this test; the modelling of transcritical flows in low friction 

environments.  The flow continues to be high velocity – low depth for the duration of 

the inflow hydrograph, as a result of the slope and the constrained flow path in this 

region.  

In the absence of observed data for inundation extent or water depths, a high 

resolution benchmark model based on a LISFLOOD-Roe realisation provided proxy 

data to assess model output. The resolution was set at 10cm, with distributed 

surface friction values of 0.014 for roads and paths, and 0.045 for other areas. The 

hydrograph was based on the estimated hydrograph value from Hunter et al (2008). 

The output is then used as an observed data set with which to use the goodness of 

fit comparison method F² This approach has been used before (Fewtrell et al 2008), 

and whilst it would not be suitable in a validation study, it provides a means of 

describing model output that is common to other studies and allows the research to 

meet its objectives. Furthermore, as the spatial resolution tends to zero, the 

numerical model begins to converge on the original PDE equation system, and so 

has a level of robustness with which to justify this approach. An additional 

advantage is that the analysis can be extended to evaluate modelled data against 

‘observed’ benchmark discharge data series, and use Nash Sutcliffe coefficient to 

evaluate the model. As with the analysis of extent, the purpose is to use a single 

global output of the model to evaluate in a wider analysis context rather than to 

validate the model.  

The input factor space and files were then constructed from a number of data sets, 

as well as being defined by the main modelling characteristics of the site. The input 

factor space for this test is defined as in Table 4.1 in chapter 3. The DEM is taken 

from the Hunter Benchmark paper. This is based on a 1m resolution LiDAR derived 

Digital Surface Model (DSM), which is then combined with OS Master Map vector 

data, to define the location of the buildings, kerbs, which are set at 10cm raised 

elevation from the surface of the model, and roads. OS data is also used to 
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determine features to be considered in the building representation factor and the 

location of spatially distributed friction values, based on land surface codes. The 

building footprint location was used to construct building blocks by increasing the 

elevation of the cells inside the footprint by 6m to create a digital terrain model of 

the site (DTM). This data was also used to define the cells that would have 

increased spatial friction values, for the building resistance method (BR) or to 

represent porous media cells (BP). The surface was divided into roads and 

vegetation surfaces and was assigned the values in Table 4.1. The hydrograph was 

also based on the hydrograph determined in the Hunter et al paper which is an 

approximate outflow based on an event from July 2002 (Figure 4.3). Using an 

uncertainty range of 20% the input was sampled at the extremes of this range and 

at 10% intervals. Work by Aronica et al (2012) has confirmed that this shape is 

suitable for this test case.  

Figure 4.2: DEM of the test case, with location of control points 

 

A number of locations points are used to evaluate model outputs, and are displayed 

in Figure 4.2. These points are based on control points used in previous papers, 

and represent the key regions in the model that are affected by inundation and 

contain distinct hydraulic conditions relative to other regions in the model.  
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Figure 4.3: Inflow hydrograph for the Glasgow test case, with uncertainty bands of 
20% (determined from Hunter al 2008). 

For example points 1 and 7 are along the main flow path so allow for detailed 

analysis of model flow in this region, whist point 5 and 3 are storage areas, so allow 

for an analysis of water depths between the models. 

4.1.1. Exposure Methods  

In order to evaluate risk, OS data was used to determine the type of building from 

which a weighting value could be made and the most significant locations for 

regional analysis. The location of weighted cells and the values are displayed in 

Figure 4.4a. The values are based on a subjective range between 0 and 1, with 

higher weighting belonging to cells with higher vulnerability levels. The event took 

place during the night of the 30th July, therefore greater weighting is applied to the 

nearby residential buildings rather than the school as this can assumed to be empty 

at the time. However, given the importance of the school to overall region and the 

consequence of the building being damaged to the wider economy, it must still be 

weighted although not to the same level as the residential units. For this test case, 

the impact of the precise weighted value is not considered, although it could be 

considered in further test cases, Figure 4.4b shows the regions to be assessed in 

the regional F² calculation.  
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Figure 4.4: Part a, top, are the cells and weighting values for the vulnerability 
weighted approach (F²VW) and part b, bottom, is the regions used in the 
Regional F²  

The four regions represent two areas of low quality housing (regions 2 and 3), 

region 1 represents higher quality housing, whilst region 4 contains the local 

primary school and other local amenities. 

4.1.2. Sensitivity Analysis 

In order to undertake the Sensitivity Analysis (SA) additional levels for some factors 

were developed which were not considered in the Uncertainty analysis section, for 

reasons of computational costs, but were included in the Morris analysis to ensure 

a 4 level space for each factor. In this case, the building hole (BH) method was 

added to building representation factor, where all elevation data is removed from 

the footprint of the building. The model realisations were then evaluated using Nash 

Sutcliffe, and the goodness of fit F². 
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Factor Parameter Range(low to high) 

Module ATS-ACC-Rusanov-Roe 

Building(type) BH-BR-BP-BB 

Friction(n) 0.015 0.075 

Cell Size(m) 2m-4m-6m-8m 

Hydrograph 
As percent of original hydrograph -20%,-

13.3%, 6.7%, 20% 

DEM error 0cm- 5cm- 10cm- 15cm 

Table 4.1: Factors to be used in the 4 level Morris method analysis 

The BACCO sensitivity analysis provided further insight based on a smaller 

parameter space, and reduced. Issues concerning the use of this approach are 

covered in more detail in the SA analysis section of this chapter.  

4.2. RESULTS 

The results section is divided into 4 sub-sections. Firstly, an overview of direct 

model output, including analysis of depths at control points, and comparison of 

uncertainty extents for the 4 modules. Secondly, evaluation of the traditional model 

functions, F² and Nash Sutcliffe coefficient. Thirdly, an evaluation of the exposure 

based evaluation methods, before a section on the sensitivity analysis and 

conclusions. 

Uncertainty flood extents were calculated for the 4 modules for the entire selection 

of model parameters (Figure 4.5).Each module shows a distinctive pattern which 

indicates that for this test case, the use of physical representation has an impact on 

the model results. Again there are similar patterns in these tests to the 

benchmarking paper of Hunter, in that the simpler diffusion based approach fails to 

overtop the blockage at the end of the main flow paths, unlike the momentum 

based modules. This is perhaps surprising given that some of the simulations would 

contain the extreme value for the hydrograph that may have been expected to 

influence the overall volume in the domain and consequently the extent. The 

relatively small blockage in this area (>10cm), may have been overcome by a 

simple increase in water depth. The momentum based modules manage to clear 

this blockage at the end of the main flow path, but the lower inundation frequency 

values in this region indicates the effects of other parameters in influencing the 

extent in this region. The uncertainty plot for the Roe solver (bottom right, Figure 

4.5) shows higher inundation frequency values, and a wider extent suggesting that 

the increased representation in the Roe solver allows it to overcome the blockage 
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more consistently, and with a greater volume of water. A similar extent pattern can 

be observed between the Roe and Rusanov (bottom left, Figure 4.5) modules, 

although a higher inundation frequency value for the Rusanov solver is observed for 

the wider flood extent region, indicating a relative insensitivity to other parameters. 

Part of the reason for this wider extent relates to the use of Building representation 

methods, where the BR and BP method allow the code to create a wider flood 

extent. This is related to the simplicity of the Rusanov approach, which creates a 

faster moving body of water through the domain. 

A key difference between the models is the flooding of the centre section of the 

flood domain. The ACC module (top right Figure 4.5) appears not to have flooded 

the centre section in any simulation, compared with the SWE modules. The SWE 

modules also have high inundation frequency values in this region indicating 

reduced uncertainty across the parameter space for this region. This difference is a 

product of higher velocities in the ACC module, which appears to prevent the water 

depth increasing in this area to the point that it can overcome the small obstacles 

and flow down the domain, from top to bottom. The ATS module (top left Figure 4.5) 

fails to overcome the urban obstacle and produces the narrowest extent. This is in 

keeping with the results from the Hunter et al benchmarking study. This variation 

provides insight into the complexity between the momentum terms and the 

influence of different aspects of the momentum flux in urban flooding. The high 

inundation frequency values for all uncertainty flood extent plots, would suggest that 

the other parameter factors are of low influence in comparison to the influence of 

the modules. However, a comparison of uncertainty plots for the ACC module taken 

over the 4m and 2m model domains (Figure 4.6) does suggest the importance of 

domain discretization in affecting model results. For the ACC module an increase in 

cell size appears to reduce the extent of the flooded domain to the same level as 

the ATS module. This is explained partly through the increased height in the 

blockage at this point, and highlights the potential sensitivity of reduce momentum 

based approaches to grid cell size and topographic representation. The implication 

of this is that there is a parameter interaction in the input space, where simplified 

physical models and the cell size of the domain is a critical aspect in the 

construction of an urban flood model. 
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Figure 4.5: Uncertainty flood extent plots for the 4 LISFLOOD modules over the Monte Carlo results (top left ATS, top right ACC, bottom left 
Rusanov, bottom right Roe), where dark regions represent cells that have flooded in all model realisations.
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Furthermore, the interior section of the model appears to be the most uncertain in 

terms of flooding for all modules. This can be attributed to the building 

representation techniques used. For all modules, the use of the building porosity 

and building resistance approaches creates a more spread out flow path, and 

allows it overcome some of the additional urban topographic features. This 

indicates that the choice of building technique may have a local impact on flow 

paths that may be critical in the analysis of vulnerability. 

 

Figure 4.6: The uncertainty flood extent plot for the ACC module at 4meters 

 

Further insight into module performance and parameter influence can be obtained 

by comparing the water depths between model realisations at the Control Points 

(Figure 4.2). Point 10 in Figure 4.2 represents the furthest extent of the main flow 

path, and provides insight into module performance for converging flow and 

transcritical flow. It also reflects another aspect critical in determining the 

consequence of the event, which is the time of initial flooding. In this case the depth 

is not of particular concern, as it is around 10cm, but the variations between model 

realisations and the sensitivity of the results, may prove important when taken 

forward into test cases with greater volumes of water.  Point 10 represents the 

location where the flood water last reaches for all model runs, and is the furthest 

point from the source. A direct comparison of the water depths in all tests provides 

insight into variations from the modules, and also the influence of other factors.  

Overall, the Rusanov module provides the earliest arrival of water at around the 

900s point, and the ACC the highest peak of 0.723m. The ATS and ACC module 

produces a narrow range of final depths, which suggests insensitivity to other 

parameter factors. In comparison the Roe results displays large variations of water 
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depth. This highlights the point made in the comparison of flooded extent – that an 

increase in physical representation produces a marked change to module-

parameter response. By comparison, the Rusanov module produces a very low 

depth for all model realisations, which relates to earlier findings concerning the 

Rusanov uncertainty flood extent, that the module will move water through the 

domain rapidly, to the point that it affects how water will pond within the domain. 

This highlights the potential drawbacks of the simplified numerical model, and 

points to the fact that where depths and inundation time are of particular importance 

to the final solution, simple numerical solutions to the full governing equations may 

prove to contain large uncertainties. The peak range values vary considerably 

within each module, which suggests that at this point, the choice of other factors is 

important. Indeed the similarity between high depth values for the Roe and ATS 

seem to suggest that the choice of model factor is of less concern than other 

parameter factors, and reflects the uncertainty in the analysis 

 

Figure 4.7: Water depths for the 4 modules over the range of tests at the control 

point 10(top left ATS, top right ACC, bottom left Rusanov, bottom right Roe), 
all plots scaled to 0 and 0.8m across the entire model run time.  
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The ACC module produces a later peak and a higher range of peak values, and a 

consistent, albeit higher, range of final water depth value. This is explained as a 

product of the higher water velocities down the main flow path, directing water away 

from this converging point. More of the water from the lower flow path finds its way 

to this section in the ACC module. As such there is less converging from two flow 

paths, and a greater quantity being provided from the lower paths. Analysis of the 

control points for regions that store water (CP-3), also reveal similar patterns. 

Arrival time is quickest for Rusanov, but a lower peak value is also recorded. For 

the other modules, the ATS produces the least varied range of depths (from 0.8m to 

1.1m) for all depth cases, whilst the Roe solver and ACC contain greater 

uncertainty in the final level and time. The variation between these water levels 

would indicate the importance in choice of physical representation in modelling local 

flow characteristics, as well as final water depths, although the effect on global 

performance values would appear to be relatively small, based on the uncertainty 

plots of Figure 4.5. 

4.2.1 Evaluation of Model Functions 

Analysis of the measure of fit value, F² the Nash Sutcliffe coefficient and the 

vulnerability weighted measure of fit, F²VW allow a broader comparison of the 

modules and the parameter space. The range of values are summarized in Table 3, 

and show impact of level of physical representation on results where increasing 

representation leads to higher mean values and ranges, for the goodness of fit 

functions. The highest value from any model is 0.963 from a Roe model using a 2m 

non degraded BB DEM, with a distributed friction value of 0.014/0.045 and 

hydrograph 10% below the calculated value. The Rusanov solver produces it high 

value (0.8577) with the same data set but a uniform distribution value of 0.1. The 

ACC module uses a porosity model DEM at 2m and a hydrograph 10% over the 

calculated value in its highest function result (0.8404). The highest ATS fit of 0.78 

uses the highest distributed friction values, the highest hydrograph and a BB DEM. 

The indication from this is that each module has a different response to the 

parameter space. It also indicates that the ATS module produces this higher value 

as a result of extreme values that may be uncertain, and with refinement of these 

parameters may be incapable of producing the same peak value.  By comparison, 

however, the simplified approach produces the highest mean Nash Sutcliffe value 

and the smallest range of results. This indicates that uncertainty in parameters is 

less critical in this measure. Furthermore, the parameters sets that create the 

highest values are similar, but with small variation, which will be discussed in more 

detail later in this section.  
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Model(value) ATS ACC Rusanov Roe 

F² (Mean) 0.66448 0.71524 0.70262 0.76876 

F² (Max) 0.78211 0.84048 0.85777 0.93648 

F² (Min) 0.50399 0.49954 0.47314 0.61426 

Nash Sutcliffe(Mean) 0.85782 0.74928 0.58309 0.79076 

Nash Sutcliffe (Max) 0.99684 0.99183 0.91998 0.99887 

Nash Sutcliffe (Min) -0.69450 -0.03843 -0.16952 -0.15819 

F²VW (Mean) 0.70716 0.70716 0.71852 0.78608 

F²VW (Max) 0.863582 0.86358 0.86786 0.93607 

F²VW (Min) 0.30388 0.30388 0.42439 0.65434 

 

Table 4.2: Summary of F², Nash-Sutcliffe and Vulnerability Weighted F² (F²VW) 
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In order to explore the impact of physical representation on model results, visual 

inspection of the data provides insight into the range of results from each module. A 

visual inspection of the F² result is provided in Figure 4.8. and box whisker plots of 

Figure 4.9 which highlight the key model performance results from the modules. 

Figure 4.8 provides a comparison between friction values, which is typically viewed 

as a key uncertain parameter in modelling exercises, against module choice. In this 

figure, an increase in the both the separation of the lines at each Manning’s friction 

value and differences in the gradient of the lines, which represents variation in 

function performance, is noticeable between each module choice. The variation in 

model performance relative to module choice in Figure 4.8, would suggest this is a 

factor of greater significance in affecting model results.  

For the reduced physical models, the gradient of model performance is very low, 

indicating low significance for the choice of friction value. This is in keeping with 

other issues concerning diffusion based approaches, such as insensitivity to 

parameter values (Hunter et al 2005). At higher friction values, the gradient across 

module choice drops significantly, and convergence between models occurs..  

 

Figure 4.8: A comparison of F2 values against Manning’s friction for each 

LISFLOOD module. 

This indicates that a level of parameter interaction (where a combination of 

parameters influence model results, rather than the a single parameter), and that 

for high friction values, the significance of the level of physical representation 
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decreases. Overall, this figure indicates that the ACC module is insensitive to the 

friction value in a similar manner to the ATS module. The box and whisker plot 

(Figure 4.9) represents the range of function over the entire model ensemble, 

where the red line represents the median, the blue lines of the box, the 25 and 75th 

percentiles and the black lines represent the full range of the results. Single red 

crosses outside this range represent extreme outliers. This figure provides not only 

an insight into the range of results, but also indicates the distribution of results. 

Viewing the box and whisker figure, there is a clear pattern between increasing F² 

value and physical representation; but that the range in the level of uncertainty, 

represented by the box in the diagram, means that the lower level modules are 

capable of replicating the results of the full SWE modules. The increase between 

the ACC and ATS modules is small, and the variations between the two would 

appear to be overcome by a robust calibration process. This represents the level of 

potential uncertainty associated with calibration methods and with the reliance on 

parameter data sets to reduce uncertainty. The improvement in the value of F² does 

not necessarily mean an improvement in the model’s ability to replicate reality; 

rather it reduces the known uncertainty down to an acceptable level. The Rusanov 

module produces a wider range of values in comparison with both the Roe method 

and the ACC module. In comparison with the ACC module as well, a higher mean 

value is achieved which indicates that whilst the model is capable of a higher model 

performance value, a higher level of uncertainty is associated with the use of this 

module. The analysis of the Nash Sutcliffe evaluation technique reveals a different 

pattern. Here, the ATS model produces a far more consistent range of results over 

the parameter range than either of the other codes. This is a product of its 

insensitivity to other parameters, which creates a consistent range of results, 

reflected in the uncertainty extent of Figure 4.5. Not only is the range consistent, the 

peak and mean value are higher than the other modules. This indicates that the 

ATS code has a greater ability to replicate the peak and the time of the peak, which 

is an influential factor in affecting the Nash Sutcliffe value (Pappenberger et al 

2004, Gupta et al 2009). 
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Figure 4.9: Box and Whisker plots of the F² value (top) and Nash Sutcliffe value 
(bottom) for the modules. 

There is a significant variation between the full SWE modules. The Roe produces a 

similar range of results as the ACC module. The Rusanov module, however, 

produces a wide range of model results, with a low peak value in comparison to the 

other modules (Table 4.2). This would emphasis the point made in conjunction with 

the evaluation of the control points, that the Rusanov code becomes more uncertain 

in respect to replicating water depth. Furthermore it indicates that the simpler 

numerical solution may be more susceptible to uncertain parameters. The wide 
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number of outliers for all the modules relates to models the use the BR and BP 

methods of topographic representation. The affect of this has been noted with 

respect to the flood probabilities. This indicates that this factor may have a relatively 

influential impact on model results, and is therefore an area that should be carefully 

considered in model construction. 

In using multiple criteria to evaluate models, a comparison of the objective functions 

is required in order to evaluate the best performing models across all model types. 

(Dung et al 2011). Figure 4.10 is the combined functions of F²  and Nash Sutcliffe, 

where each dot represents a model run and the colour relates to the LISFLOOD 

module choice. 

 

Figure 4.10: Combined results for F² (y-axis) and Nash-Sutcliffe (x axis) 

A number of key points emerge from analysis of these results. The use of two 

methodologies in assessing model performance helps to refine the choice of high 

performance models in comparison to the use of a single function. The top right of 

the graph is the region in which the pareto front of high performing models for both 

criteria would form. In comparison to the single performance criteria approach 

discussed above for both comparison of extent and Nash Sutcliffe, the combined 

approach produces a fewer number of performing models. Analysis of these results 

also indicates the importance of module choice in determining results, with clear 

clustering of module results in certain regions of the domain. The majority of Roe 
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model results appear at the top right of the graph, indicating good combined 

performance. The parameter set for the models at the pareto front are 2m BB 

resolution models, with friction values around 0.045, and hydrograph values 

between 0 and minus 10 of the original. By contrast the Rusanov and ACC 

modules, although able to produce as good F² values fail to provide the same level 

of performance for either module, and produce a wider range of results, suggesting 

a significant amount of uncertainty in the use of these modules. This highlights the 

importance of multiple functions is assessing models. The position of the ATS 

cluster is a product of its excellent Nash Sutcliffe performance level, but a poor 

goodness of fit value. The shape of the cluster is smaller in extent, indicating what 

has been seen in previous figures, that the sensitivity of the ATS module to a range 

of parameters is relatively low compared to the other modules. 

The focus in this analysis has been on the impact of physical representation on 

model results, although the influence of other factors is also noticeable on model 

results. Figure 4.11 is an interaction matrix plot where the columns and rows relate 

to the range of parameters for the labelled input. The mean value of the objective 

function (in this case F²) for a value of a parameter is then calculated, and 

compared to the mean value of the input value for the parameter it is cross 

compared with. Therefore each box represents a comparison between two 

parameters, where the lines displayed relate to a value of parameter, noted on the 

right hand side of the figure. The values along the Y axis represent the mean 

function value of the parameter when used with the second parameter.  For 

example, the matrix box of row 1, column 2 is a comparison of module choice (level 

of physical representation) and Building Representation. The lines relate to the 

module choice, and the position of the line relates to the mean performance level of 

the module, for models that used a particular building representation input (for 

example the middle point of the lines relates to models that used the BP method). 

The gradient of the line indicate the influence of the parameter in the first order 

(direct impact on model results), whilst crossings of the lines indicate higher order 

interaction between the parameters. 
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Figure 4.11: Interaction plot for each input factor comparing mean value of F² per 
level of factor other levels of factors (where F² is the value on the y axis of all 
plots and the x axis in each column is the levels for the named parameter) 

This figure allows the clear dissection of factors that influence the overall results. 

The sharp gradients associated with the module choice (the first column) indicate 

the clear influence of this factor on model variation. The variations between the 

lines of the row relating to module choice (row 1) also indicate that each module 

produces significantly different results to each other.  The variations between rows 

in the first column are also small suggesting that overall, the influence of other 

factors relative to this are small, although a number of additional interactions 

provide insight into the influence of other factors. The building representation factor 

also contains strong variations across the figure (second column and row). A note 

worth making is that the mean performance level for ACC and the porosity 

approach is higher than these modules mean level for either the Building block or 

Building resistance method (top row, second column). This can be accounted for by 

the fact that the highest F² value produced by the ACC model contained the 

porosity model as the building representation factor. By comparison the full SWE 

modules and BP method produces a lower mean value. The influence of cell size 

as a key factor can also be observed in this figure, and its influence as an 

interactive factor relative to the module choice can also be seen at key areas within 
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the graph. For module choice, as cell size increases, the mean level begin to 

converge at a lower point. This indicates that with increasing cell size, the influence 

of the acceleration terms within the SWE equation begin to lose significance, 

although this leads to a drop in overall model performance. This is in keeping with 

other research that indicates at larger gird resolutions, diffusion wave properties 

begin to dominant (Hunter et al 2007). A similar pattern can also be noted for with 

the gradients of the friction parameter. Here, as with cell size, the increase in 

friction value leads to a convergence of mean levels, which has been previously 

noted with the comparison of F² values between friction value and module choice 

(Figure 4.8) By contrast, the influence of the DEM error and the value of the 

hydrograph all appear to be of lower significance than these effects, which can be 

seen by the low gradients of the lines in their related comparison plots.  

4.2.2. Distributed Friction Values vs. Single Friction Values 

A key aspect in the construction of the model is the choice of the friction value, as 

well as the distribution of the friction value across the spatial domain of the model. 

For these cases the choice between using uniform values or spatially distributed 

values based on the underlying surface has been explored. Using the rows that 

relate to the value of Manning’s n from two separate interaction matrix plots, one 

that used distributed values and one that used single values, a comparison of the 

mean level of F² performance across the two approaches can be made (Figure 

4.12). In comparison, the variation between the approaches appears to be small 

and significantly less than the influence of both level of physical representation and 

the representation of the topographic surface. However, small variations between 

the two methods can be observed which influence the uncertainty associated with 

this factor and provide insight into the significance of this factor.  
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Figure 4.12: Comparison of mean level per parameter for spatially distributed 

friction and single value friction. The comparison parameter from left to right is 
model type, building type, cell size, hydrograph, and DEM error.  

Whilst the shape of the interaction lines remains approximately the same across 

each of the factors, the range between each line is larger for the single value than 

the distributed value, indicating an increased uncertainty associated with choosing 

a single friction value.  Furthermore, the value of F² reduces between friction 

representation approaches, where the highest values of 0.8 can be observed for the 

comparison with model type. Partly this can be accounted for by the use of a 

spatially distributed friction value in the creation of the benchmark model, but it also 

indicates that the use of spatially distributed friction values can reduce uncertainty 

in the  model performance.  

Further analysis of friction distribution techniques is taken from a comparison of 

water levels over the duration of a model run for control points along the main flow 

pathways. The change from a friction value of around 0.01 to 0.07, causes a 

dramatic increase in the way water moves through this flow path, creating wider 

storage regions, as water is slowed through the model domain. These affects 

though appear to be localised, and do not affect global model performance values 

in the same way. 

This indicates that where low value friction surfaces are represented explicitly, the 

precise friction value becomes less critical to the overall model uncertainty. 

However, where broader generalisation of friction surfaces is used, the choice 

becomes more influential on results, and consequently become critical to model 

output uncertainty. Given the use of a benchmark model in this test case, that used 

spatially variable results, this may be less of an issue in the following test cases, 

and further analysis will provide insight into how important this is to overall 

modelling practices.  
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4.3. Exposure Based Analysis 

For each module the uncertainty of a certain hazard level being reached (being 

defined as maximum water levels and velocities over 0.7 qumecs) was evaluated 

across the range of model results, and is displayed in Figure 4.13. This uncertainty 

hazard plot approach, similar in principle to the uncertainty flood extent plots of 

Figure 4.5, has first been used by Aronica et al (2012). This approach highlights not 

only the regions where the hazard is likely to occur but also identifies the certainty 

of a region flooding based on the model ensemble. The variation between SWE 

models and simplified approaches is clear, with the full dynamic models producing 

a wider region of hazard. The use of velocity in the definition of hazard has a clear 

impact in the appropriateness of the simplified approach in defining flood risk. In 

this respect, the choice of model would be critical in determining the spatial aspect 

of hazards associated with flooding.  

A comparison of the Rusanov and the Roe flux appears to show that the Rusanov 

flux defines a larger region as being high in hazard and inundation frequency. This 

is in keeping with the analysis in the first part of this section where higher velocities 

were a product of the simplified approach. An interesting point of comparison is that 

whilst the ATS and ACC regions suggest smaller regions of high certainty hazard 

occurrence, they are in the same spatial region, near to the inflow point. The 

extension of the hazard region by the ACC model is highly uncertain, indicating that 

both ATS and ACC produce similar and reliable regions of hazard across the test 

cases. Further insight is also gained into the overall modelling uncertainty. The 

majority of the SWE’s models hazard frequency is around or below 0.6 indicating a 

high level of uncertainty for defining this hazard region. Furthermore, the regions 

are not well defined, particularly for the Rusanov image and between regions of 

high hazard frequency, a number of individual cells appear across the model 

domain. These areas could be removed through a resampling process, but here 

they provide information about how the models behave. This speckled affect 

appears to be the product of instabilities within the model that only occurs for a 

small number of test cases, where low friction values are used. Another insight that 

this approach provides is insight into main flowpaths across the floodplain, as the 

hazard rating allows the identification of where the depth of water and velocity is 

significant. Not only can this help to improve the understanding of the model output 

and the hydraulics of the event, over simple extent comparison methods, it also 

improves the evaluation of models by determining key regions in the model domain 

that could be determined as hazardous. In this test case, the two main flow paths 
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can be determined from the full SWE model results, and the ACC model to a lesser 

extent. The lack of definition of flow paths in the two simplified approaches indicate 

that a potential underestimation of the flow paths and therefore the risk of the event 

have been made. Moreover, it indicates that the simplified approaches provide a 

different hydraulic output to the full SWE that cannot be determined from extent and 

depth comparison points. How this relates to deterministic approaches to evaluating 

exposure and overall risk can be determined from the other exposure methods. 

4.3.1. Cost of Damage Method 

The results from the Cost of Damage method are summarised in Table 4.3, for 

each module. The model output is a total cost of damage, based on water depths in 

cells surrounding the buildings which are then compared to a depth damage curve 

for the property building type. The wide range of results can be attributed to a step 

change in value output between the two cell size values of 2m and 4m. The 

variation in results is not only attributed to variation in the results of the two cell 

sizes, where water depths at key locations can vary between 0.7m and 0.25m 

between the same parameter set models for 2m and 4m 
 

Table 4.3: Results from the Cost of Damage method. 

The results are also potentially affected by the approach used. This represents a 

key component in the use of monetary methods for evaluating results, in that 

consistency between a range of approaches for cell sizes, building representation 

techniques and spatial discretization techniques is critical in drawing significant 

conclusions. A comparison of this method compared to the traditional methods 

identifies a number of similar characteristics between the two approaches as well 

as the similarities between the influences of model parameters on output, as well as 

highlight other parameter interactions.  

Model Mean Value Minimum Maximum 
Standard 

Deviation 

ATS 
£4,614,684 £1,206,528 £9,357,948 £2,297,434 

ACC 
£6,507,373 £3,298,732 £11,211,234 £2,304,670.8 

Rusanov 
£6,147,870.3 £3,281,268 £9,255,382 £1,971,267.9 

Roe 
£6,022,814.2 £3,017,600 £9,328,534 £1,961,454.2 
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Figure 4.13: Uncertainty Hazards plots, where red regions represent high hazard (top left ATS, top right ACC, bottom left Rusanov, bottom right 
Roe). Darker red represents regions of high hazard frequency and areas defined as hazardous in all model runs
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Figure 4.14 is a comparison between F² (blue line, left hand y axis) and Cost of 

Damage method (green line, right hand y axis) for the entire range of Roe model 

results. This allows a broad overview of the change in model results over the range 

of parameters. Each grid line on the x axis is a split between cell size and building 

type to allow for easier comparison. Within each section, the hydrograph and 

friction values increase from left to right. The midpoint of the x axis represents the 

change from 2m grid models, to 4m grid models. At this point, a significant drop in 

calculated cost can be observed, which is also replicated by the F² value, but to a 

smaller extent. This drop is observed for all model types, indicating that the choice 

of cell size is a highly significant parameter in determining cost. 

 

Figure 4.14: Comparison of the Cost of Damage (green line right side axis) and the 

F ² value (blue line left axis) for the Roe model results. Each dot is a model 
run, with the lines to provide an aid to the eye. The x axis represents groups 
of models with the same cell size and topographic representation, which are 
labelled to the left of the marked grid lines. The dashed line in each section 
represents the split of models with non degraded DEM’s and degraded DEM. 
The minor grey lines represent the models with different hydrographic values 
– the first subdivision is -20% moving up to +20%. In each minor section, 
each model  represents increased friction value from low surface value to high 
surface value, although this rise is not marked as a gridline on the figure. 

Within each cell section, the variation between the individual parameters appears to 

be similar to the F² value in that the value of friction is significant. As with the       

and Nash Sutcliffe, the value of the hydrograph appears to be relatively insignificant 

to creating a variation in model results, in comparison to other parameters, which is 

perhaps unusual considering that the depth of water in the cell is critical to the 

Original DEM        Degraded  DEM        

C
o
s
t 

(£
) 



- 98 - 

calculation of the financial cost. This approach allows further insight into the impact 

of the level of physical representation and topographic representation technique. 

The highest value across the total range of model belongs to the ACC model, and 

specifically to 2m resolution model, using the building resistance methodology and 

single value friction across the rest of the domain. These models produce a spike 

above the typical range of cost seen across the rest of the model results (Figure 

4.15). This also relates to a variation in the goodness of fit function, which relates to 

the use of the randomly degraded DEM.  

Figure 4.15: F² (blue line, right axis) vs. Cost of Damage (green line left axis) for a 

range of ACC module results based on a 2m grid resolution. 

For this set of models, the random error increases the resistance to the flow path, 

and reduces the velocities along critical flow paths and therefore the maximum 

flooded extent. This may be a product of the approach used here (randomly 

degrading the DEM), which leads to an uneven surface. This sensitivity to the DEM 

error in association with the building resistance method provides further insight into 

model performance, whereby simplified approaches to both the level of physical 

representation and topographic representation increase the sensitivity of the results 

to the underlying topography. This approach also confirms the importance of using 

multiple methods for evaluating model performance, and some of the advantages of 

using depth/damage curves, whereby modelled depths can be incorporated into a 

single function with which to describe a model realisation. This allows local 

variations in models to be more directly applied to the model output and provides a 

global model output where depths at critical locations can be directly interpreted 

from model results. 
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4.3.3. Regional F² 

A comparison of regional extent fit values compared to the global performance 

value provides an insight into how regional variations contribute to the overall global 

performance value. Using the comparison of different performance measure 

approach used by Pappenberger et al (2006), the performance in each sub-domain 

can be compared to each other and the global performance level. The regions, 

displayed in Figure 4.4 were determined from regions of similar vulnerability based 

on the underlying building type. Analysis of the global method versus the regional 

value (Figure 4.16) provides key insight into how the performance in each region 

compare to the global value as well as how regions perform relative to the other 

region. Each region appears to have similar levels of model performance. The 

strong positive correlation between each sub domain also indicates that in these 

regions model performance similar to other regions. Therefore, in these regions, 

identified as being of critical importance to the vulnerability of the model, model 

performance is similar across the range of parameters, suggesting that the level of 

uncertainty in the global model performance value approach is less critical in 

determining the associated risk. 

 

Figure 4.16: Comparison of regional values of F² versus Global F² value (first 

column). Each dot represents a model run. 
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Figure 4.16 also highlights that all modules are capable of replicating the 

benchmark extent to a high level in these sub domain regions, with F² values being 

over 0.64. These regions also display low levels of variations of model outputs in 

comparison to the global model performance, indicating not only adequate model 

performance for all modules in the regions of significant hazard and vulnerability, 

but also reduced impact of uncertain parameters for this test-case. This is further 

confirmed by examination of the first column which displays the global performance 

against the regional models. Each row appears to be similar to the other rows, 

indicating that each region has a similar impact and model performance level to the 

other regions. This indicates that these regions have a similar contribution, and that 

wider model variation, seen in the original evaluation of F² is from regions which are 

less critical to determining risk (i.e to the west of the model domain).  

This approach can also be used to determine regional modular variations, by using 

the model colour to determine patterns between models. The spread of Rusanov 

models in each region (red dots) confirm the findings of the earlier analysis 

concerning the sensitivity of the Rusanov solver to uncertain parameters and the 

wider range of results seen relative to the other parameters.  The ATS module also 

contains a similar spread across the regions, indicating that this module may have 

more local variations than previously identified with the global model. By 

comparison both ACC and Roe produce narrower extents across the regions 

indicating a similar regional performance level and sensitivity to model inputs. 

Determining the regional variations in a more detailed way and examining the 

parameter space and function response provide a useful additional area of work to 

provide further insight into local model variation, as well as enhance understanding 

of exposure as a critical model evaluation technique. 

4.3.4. Weighted Vulnerability Approach 

The weighted vulnerability approach produces a range of results similar to the 

traditional evaluation F² techniques, although it has increased the peak value of and 

F² decreased the minimum value. This is an important component of model 

evaluation techniques, in that the function should determine a clear set of ‘best 

performing’ parameters to avoid the issues of equifinality (Beven 2002). Although 

the peak value is increased and refined to a smaller set of parameters, the general 

trend is a reduction in the variation between the function of different models, 

creating a larger number of similar performing models.  An example of this is in 

Figure 4.17, which compares the F² weighted function for each module over friction 

value, similar to Figure 4.8  
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 Figure 4.17: The F²VW value plotted over the Manning’s friction parameter space 

for each LISFLOOD module 

A clear reduction in the clarity between the model types, compared to Figure 4.8 

can be seen, particularly with the ACC and Rusanov models, indicating that the use 

of weighted cells will in some cases improve the level of model performance by 

reducing the impact of poorly performing models.  Part of this can be accounted for 

by the subjective approach used to define the cells that are weighted, in that the 

weighted cells are located near the input source and along the main flow paths, and 

are likely to be flooded in most test cases. The majority of cells are also weighted 

with the same value, to reflect the fact that the level of housing is similar across the 

model domain. In more varied economic regions this may prove to be less of a 

defining factor in the application of this approach, and allow for greater variation 

between model output. 

In comparison to the Cost of Damage method, a weighted cell method lacks the 

precision to be able to differentiate at a greater resolution between the parameters 

used here. However, this method does still provide the means to explore model 

results and to see how localised model variations can impact a global model output. 

As with the Regional Vulnerability approach, further test cases will provide more 

information about the approach and the usefulness of it as a appropriate 

methodology for calibration. 
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4.4. Sensitivity Analysis 

In order to quantify the results seen, GSA methods are used. The Morris method is 

used to provide a overview of each model function, whilst the BACCO method uses 

only F² to analyse results. The Exposure and Vulnerability methods have been 

excluded to allow for more direct analysis between parameters and output. For the 

Morris analysis, a wider range of cell sizes were used to further explore this 

parameter, with the parameter range extended to include an 8m and 6m grid 

domain. These values were used to represent the extreme limit of the range of cell 

sizes that could be used. Here an 8m grid cell would be near half the width of the 

road network in this model region, and provides an indication of the sensitivity of 

this factor in model results. This analysis can only be used to rank the input factors 

in terms of significance, and not quantify the impact. The figures below are used to 

provide a visual analysis to how the factors rank and compare 

The results from the Morris method confirm some of the findings identified in the 

previous analysis. For the F² and Nash Sutcliffe objective functions, the choice of 

physical model appears as the most influential factor, with a high mean value, 

which indicates significant first order impact and high standard deviation which 

indicates higher order interaction. The other parameters vary in order of 

significance for each of the objective functions, but a significant aspect of the 

analysis is the influence of higher order effects, which is represented by the 

standard deviation of the mean elementary effect. Where the F² function has been 

used to evaluate the model, the parameters form an approximate linear relationship 

with the exception of the topographic representation factor and the grid cell size, 

which have low first order effect, but a higher interactive effect on model results.  

This is in part due to the response of the ACC model, which for the BP method has 

a higher mean compared to the BR and BB methods. This effect is less pronounced 

across the other module choices, hence the higher interactive influence. The effect 

of the cell size has been less pronounced in the earlier analysis. For this analysis 

the cell size was increased to 8m, and this appears to create a higher order effect. 

This follows from previous results in this section, where increasing cell size 

decreases the performance level of the SWE modules. The use of F²VW as an 

additional means of evaluating the model results produced similar results to Figure 

4.18, indicating that the additional weighting scheme did not provide further insight 

than the traditional function methodology in sensitivity analysis 
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Figure 4.18: Morris Results for F², where the x axis represents the mean 
elementary effect. The values themselves only provide a relative ranking 
position and do not quantify the level of interaction. 

Analysis using the Nash Sutcliffe coefficient reveals a more linear relationship 

between first order and higher order effects. The influence of topographic 

representation is as an interactive factor with other parameters. A variation between 

the two functions is the relative position of cell value relative to the other factors, 

which would be ranked second for the two functions. This is a product of the impact 

of cell size on water depths in cells, which also affected the Cost of Damage 

evaluation technique. The hydrograph has also improved in terms of relevance, 

indicating first that where water depths are critical to model performance, the 

significance of this increases, and also highlights the need to move away from 

simple extent fitting exercises, which can often ignore information critical in affecting 

hazard results. 
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Figure 4.19: Morris Results for the Nash Sutcliffe function. 

The results for the BACCO GSA are summarised in table 4.4. A much reduced 

parameter space was used in this test. The level of physical representation and the 

building representation method were both excluded as input to the analysis. Instead 

a comparison of a simplified approach (ACC) and a full SWE model (Roe) was 

undertaken in order to explore how parameter significance changes across the 

levels of physical representation. Consequently the analysis of these results is 

related to how a parameter varies in its level of significance between the two 

modules. This is partly the product of complications relating to the functions used to 

test and build the emulator. An essential requirement of the use of BACCO 

methods is an output function that varies smoothly with model input. For the ATS 

model, whose function remains relatively in sensitive to model parameters, creating 

an emulator proved to be problematic, and a poor emulator variance was returned. 

A typical way to improve the emulator performance would be to increase the 

number of training points and reducing the spacing between these points. Given the 

additional computational costs associated with it and the potential for not improving 

the results sufficiently, a smaller parameter space was explored, which included 

Cell size, friction and the hydrograph value and used 2 of the LISFLOOD modules 

to represent the simplified approach (ACC) and the full SWE approach (Roe). The 

parameters were sampled between a range of 2m and 4m for cell, 0.015 and 0.075 

for friction and +-20% of the original hydrograph using a LP-Tau sampling method, 

ensuring a good coverage of the sample space. 100 data points were used to train 

the emulator, which gave an adequate fit between the emulator and observed data. 

The results are summarised in Table 4.4; 
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Parameter Total (ACC) Total (Roe) 

Cell 4.42 78.53 

Friction 52.23 2.13 

Hydrograph 30.07 13.02 

Cell Friction >1 0.69 

Cell Hydro >1 3.86 

Friction 

Hydrograph 13.29 1.20 

 

Table 4.4: Contribution of parameters to overall variance as a % of total variance 

The results therefore represent a smaller part of the analysis, but still provide some 

means of quantifying earlier patterns. The influence of the hydrograph appears to 

be significantly higher for the simplified approach compared to the full SWE model. 

The significance of the cell size is also significantly smaller for the ACC module 

than the Roe solver. This counters what had previously been seen in the rest of the 

analysis. This is partly down to the occurrence of ACC flowing over the blockage at 

the end of the main flow path, when the Building Block method is used. As 

suggested by Figure 4.5, the likelihood of ACC flowing over the blockage is 

relatively small compared to the rest of the region, and is smaller still when the 

building block method is used, as the flow path is well constrained, leading to a 

greater volume of water pooling at the south end of the site. In this scenario the F² 

value is likely to be unaffected by cell size as it is for the other parameters. This 

indicates again that parameter interaction is critical in affecting not only results, but 

larger scale trends between parameters and model evaluation techniques. A further 

variation between the approaches is between the Roe solver and the ACC solver 

relating to the significance of the friction value. For the ACC solver this is much 

higher than the Roe solver Overall, the importance of the module choice appears to 

be critical, this can be infered by the variaiton between the results. This test case 

however contains a number of features that favour the level of physical 

reprsentation, such as the occurence of transcritical flow, and the highly 

constrained flow paths that prevent larger flood extents to occur in the middle of the 

model domain. This however maybe inhernt to all urban test flow cases. Further 

test cases will develop this point. 
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4.4. Overview 

The Glasgow test case has shown evidence of the importance of the level of 

physical representation on results. Each module creates different extents that relate 

to variations in the value of the model evaluation function. The overall model results 

indicate the significance of the acceleration terms in replicating hydraulic conditions 

of the urban environment, and in overcoming obstacles. This confirms previous 

findings with this test case in research by Hunter et al (2008). What the research 

here has furthered is that the impact is often local in both space and time, but this is 

often not reflected to the same degree in the model evaluation function. It has also 

indicated that the choice of other input factors are less critical to model results, and 

has further suggested that the uncertainty related to physical representation must 

be considered first. The use of exposure based methods has highlighted this, and 

can potentially provide further insight into the importance of localised model results 

over the entire model domain. The conclusions must be considered in the context of 

the test case. The use of the a high resolution model to evaluate model runs will 

impact results, and the conclusions that can be drawn, but does provide an 

indication of the significance of the model input to model results. The use of this 

benchmark model approach has advantages including reduced uncertainty related 

to assessing model output based on uncertain observed data sets, but overall the 

use of actual data with which to evaluate models helps to validate the conclusions 

drawn.  
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5. TEST CASE COVENTRY 

The Coventry event is based on a canal embankment failure that occurred during 

the night of 15th December, 1978, which was the result of ill considered building 

development by a company adjacent to bank of the Coventry Grand Canal. 

Removal of the towpath bank, by as much as one third of the available material, 

lead to a sudden rotation-slip failure and an outburst event that flooded nearby 

engineering facilities and workshops, local housing and the Coventry General 

Hospital, an area of over 1km². Figure 5.1 is the surveyed outline of the flood, over 

a modern day OS map of the region. The event is unique in terms of the hydraulic 

conditions of the event, the probability/hazards of the event and the data captured 

for model evaluation – there are few examples of observed canal outbursts in urban 

areas. 

 

Figure 5.1: Surveyed extent of the 1978 Coventry Canal failure. Outburst location 
is the green dot, located centre of the image, adjacent to the Canal. 
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5.1. Overview 

A detailed report was made of the event by Halcrow, which identified the key 

causes and highlighted some of the impacts from the outflow. The basic outline of 

the event is as follows; An extension of a factory involved removing material from 

the embankment at the back of a warehouse, and setting down a concrete base at 

the location. This was around a meter below the base of the canal and around 2.5 

meters from the top of the bank. A slip failure then occurred allowing a breach in the 

bank to drain out the canal. Due to the sudden nature of the event the lack of 

knowledge of the workings and the availability of suitable blocking material, to 

prevent water from the entire pound exiting the breach, the event had a larger 

impact then might normally be associated with outburst events. In combination, 

these effects created an event which would last for several hours, caused extreme 

damage to nearby houses and lead to the evacuation of a nearby hospital. The 

nature of the outflow from this event is unknown, but would have been sudden 

following the slip failure. The report of the event in the local newspaper cites 

eyewitness accounts of a wall of water moving down Eagle Street, which was 

powerful enough to move cars. The engineering report notes that the main flow 

paths were in a southern direction, down Springfield road and Eagle Street and 

towards the hospital before discharging into natural systems via the a small pond, 

located at the south of the domain. A smaller amount of water also moved laterally 

down the Foeshill road, inundating several shops, a petrol station and some 

houses, although this flow was smaller in quantity and velocity than the main flow 

path. This test case presents a similar set of hydraulic conditions to a dam failure, 

although the precise nature of the failure creates a slower and lower energy event 

than a typical dam burst event, due to the lower amounts of water, the smaller 

elevation variation between the lowest point of the breach and the ground, and 

specific hydraulic conditions of canal outburst, which are explained in greater detail 

below. (Dun personal communication). The relative slope of the domain is low, at 

around 0.6%. However, a large depression can be observed in both the DEM 

(Figure 5.2) and is noted in the report that this topographical feature provides a 

major control for directing outflow. In comparison to the Glasgow test case, the 

slope of the underlying topography is shallower. Despite the level of flow from the 

initial outburst, and the extent of regions of low friction, transcritical flow is much 

less apparent in this test case. This was confirmed by evaluating the Froude values 

of initial model runs, and indicates that the ability to simulate transcritical flow is 

much less important.  

The region is a combination of industrial units and warehouses, and residential 

buildings with associated amenities including shops, pubs and recreational areas. It 
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is noted in the report that many of the people who lived in the terrace houses along 

the main flow path of Eagle Street were both poor and elderly, and therefore had a 

high level of vulnerability to the hazard. The Coventry Hospital is located to the 

south of the domain, which includes an ambulance facility, to the west of the 

primacies, although located beyond the surveyed flood extent. According to the 

report, the hospital was flooded, although specific depths are not mentioned.  

Disruption was minimal, as only the basement, which contained a store of out 

patients records were kept, was flooded. The lack of impact is noted in the local 

newspaper which notes that less than 10 hours after the event, the hospital is back 

up to full function.  

5.1.1. Inputs 

As both Coventry and Glasgow are urban events, the parameter space was defined 

and discretized in a similar way and are summarised in table 3.2. The friction 

surfaces were again defined by OS data although data from 1978 has been used.  

As with the Glasgow test case, this was divided into road/path and non road 

surfaces, with appropriate levels of friction assigned. As with the Glasgow test case, 

a spatially distributed and spatially uniform friction value was compared. Other 

factors required greater consideration in construction.  

5.1.1.1. Hydrograph 

A key component with this model is the creation of the outflow hydrograph of the 

canal that represents the inflow boundary condition. Hydrographs were calculated 

based on the ISIS/British Waterways hydrograph outflow calculator, and the inflow 

hydrograph used for the test case is displayed in Figure 5.2.  

 

Figure 5.2. The Inflow hydrograph for the Coventry test case, with upper and lower 
uncertainty bands 

This was developed as part of a nationwide report into the risk associated with 

events of this nature (Dun and Wicks 2013). A detailed study of outflow 
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characteristics was undertaken, using ISIS 1D models to simulate an embankment 

failure.  Parameters which are particularly key to developing the volume of the 

hydrograph includes the width of the break, depth of water, length of pound (the 

length between two break points, such as locks, along the canal), and elevation 

difference between top of surface water and elevation below the canal. These 

values can be determined from the detailed survey plans of the event. These 

parameters were determined from the technical report, and as such it can be 

assumed that these parameters can be treated with a high confidence level and in a 

deterministic fashion and are described in Table 5.1. The most critical parameters 

in determining the shape and peak of the outflow are the pound length, which 

determines the volume of water available and the evolution time, which defines the 

phase from initial outflow to peak value).  

The value chosen for evolution time to peak outflow represent the minimum value of 

this parameter allowed in the calculation, and represents the sudden nature of the 

failure. The initial value for the length of pound represents the distance between the 

break and the end of the Coventry canal to the south of the embankment failure 

point. Further values such as roughness are based on the material of the 

embankment and were determined from the Engineers reports, which include 

borehole data for the region. The report also provided the input for channel width, 

pound depth and constriction width. Variations in some of the parameters were 

considered, but affected the hydrograph less than the predefined uncertainty 

bounds in the hydrographic calculator. Therefore the parameters below were used, 

with the knowledge that uncertainty in the parameters would be with the range of 

the uncertainty boundary.  

Pound Length(km) 12km 

Roughness (Manning’s n) 0.02 

Evolution Time to peak (mins) 25mins(minimum value) 

Channel Width(m) 7m 

Initial Pound depth 0.6 

Breach location 0.1 

Constriction distance 0 

Constriction Width 13m 

Embankment Height 1.2 

Embankment Material Sand/Clay 

Table 5.1: Input Parameters for the BWI Hydrograph calculator, for the 1978 

Coventry event 

The calculated input included a peak outflow value of 21 m³/s, with an evolution 

time of over 6 hours (the time from initial outflow to a near zero levels of outflow). 

This is broadly in keeping with the description of the event from local reports. 
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5.1.1.2. Digital Elevation Model 

In order to replicate the 1978 event, an elevation model of the 1978 topography and 

urban layout is required. A comparison of 1970’s OS data and modern day reveals 

a considerable amount of building work and removal has taken place including the 

road network which has also been considerably reworked around the hospital and 

centre area of the domain. In order to create an accurate replication of these 

features, the available LiDAR data, which was captured in 2008, would need to be 

reworked to the 1978 topography. Assuming that the underlying surface topography 

is similar or variation is negligible, the present day LiDAR was sampled at points 

that did not correspond to present day building layout. 450 points were sampled, at 

around 2m resolution, which were then used to create a new digital surface model, 

by using a linear interpolation method between the sampled points.  

 

Figure 5.3: DEM of the test case, with location of control points, used in the 

analysis section of this chapter 

Using the 1976 OS map, the road network was digitised and elevation within the 

footprint was dropped by 10cm. Finally, the 1976 building network was also added 

to model the building block method, using the location of building footprints to 

increasing elevation by 6m. This process is treated as a discrete process, and is not 
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included in the uncertainty analysis. Further analysis could be made of the point 

sampling and the creation of the digital surface model, to determine the uncertainty 

associated with this process, but given that this is a unique test case that requires 

an approach not typically undertaken in most modelling exercises, analysis of this 

pre-processing step may not have much bearing on future modelling processes.  

5.1.1.3. Exclusion of factors 

In order to reduce the computational cost of the uncertainty analysis, a number of 

initial models were realised with variations of physical boundary conditions. The 

representation of the breaching point was tested as multiple points, a 13m gap, and 

a single point input through which the estimated hydrograph was tested. The results 

indicated that this made little variation to either extent or to water depths, so was 

discounted from further analysis. The southern boundary was also investigated with 

variable conditions. A free surface slope boundary and fixed water depth boundary 

were investigated. These were found to influence the depths near the hospital, but 

not the wider flood extent, or global model results. The fixed water depths were also 

found to cause a small backwater effect at these locations, which would be counter 

to the engineering report that determined that once the water had reached the 

nearby pond it quickly moved through natural water courses. Given the subjective 

nature of the water depth boundary, and the potential computational issues with 

using a fixed water depth boundary, this was also excluded from the wider 

uncertainty analysis, and set to a free surface boundary condition. The impact of 

boundary conditions could be included in further work.  An additional factor that 

must be considered in this case is the use of a drainage network. A traditional 

assumption in the use of 2D modelling of urban domains, is that the drains are 

surcharged due to the quantity of water, and therefore do not require representation 

in the model. This assumption does not strictly hold for this case. However, 

examination of the report reveals that one of the initial jobs of the cleanup operation 

was the removal of clay material that had covered up the drains. As a result of this, 

the assumption that the drains do not need to be represented can be carried over to 

this test case.  

5.1.1.4. Output 

Model assessment was made by comparing the surveyed flood extent with 

modelled flood extent. The surveyed extent is taken from a map based on a 1:1250 

Land Ranger map, from 1975. The image was digitised, georeferenced and the 

flood extent extracted. The surveyed data was extended to include the pond that 

the flood waters reached, and then dispersed through. The model boundary was 

located at the southern edge of this pond, and this total area was used to compare 

model extents and evaluate the goodness of fit function, F². The outline of the event 
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is displayed in Figure 5.1, as the black outline. There is little detail in the report 

about the nature of the survey, either the techniques or the observed media (e.g. 

wrack marks or tidal water marks), so a certain amount of uncertainty is to be 

expected. Unlike the techniques used by Fewtrell et al (2009) for the Carlisle 

dataset, where accurate approximations to the uncertainty could be included in the 

model evaluation, this data set lacks the same detail with which to make an 

approximate approach to quantifying it. As with the Glasgow dataset, the need here 

is not to validate the model, but to use a global evaluation technique with which to 

describe model output for further analysis. A number of approximate depths are 

recorded in the engineers report. The depth of water at the junction of Eagle Street 

and Hanwell Road is noted as being 4ft, whilst houses near Hanwell square are 

noted as being around 3 feet deep, which provide an additional, if uncertain means 

of evaluating models. For this test case the depth of water at Hanwell Road is 

assumed to be accurate. A comparison between this and model output in this 

region is then used to provide another model evaluation technique. Whilst this could 

not be used to validate models, it does provide another means to gain insight into 

model performance and parameter interactions. Consequently, conclusions relating 

to this must be considered in this context. 

5.1.1.5. Exposure Based Methods 

The number of at risk properties and regions is considerable given the density of 

residential buildings, industrial units and the Coventry hospital complex. The key 

areas defined in this region for the local F² calculation are displayed in Figure 5.4b 
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Figure 5.4: Part a, left, is the cells and weighting values for the vulnerability 
weighted approach (F² VW) and part b, right, is the regions used in the 
Regional F²  approach 

Using the engineering report, and noting that the event took place at 9P.M, the 

weighting cell approach has been weighted in favour of residential buildings, and 

the hospital buildings. The weighted values assigned cells are noted and displayed 

in Figure 5.4a, which also displays the distribution of these cells. Greater weighting 

has been applied to the hospital region. The large numbers of residential buildings 

are also applied with a high weighting value, not only due to the potential 

vulnerability of the residents, but also as a result of the proximity to the outflow 

point. This highlights the advantage of using such methods, where the nature of the 

event and region can be included into the evaluation process to improve how 

decision makers interact with the process. Further areas where weighting has been 

applied include warehouses and workshops. As with the school in the previous test 

case a lower weighting is applied to recognise that immediate hazard is low but that 

the long term impact of the damage to these units and to the region may be 

significant.  
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5.2. Results 

This section begins with an overview of the hydraulic output of the model and a 

comparison of flooded extent and detailed analysis of water depths at 2 of the 

control points. This is then followed with analysis of the model function results, 

exposure based functions and sensitivity analysis. Each section provides an 

overview of how each module compares and varies and how the precise hydraulic 

output of the models contribute to the model results and uncertainty. 

The model outputs indicate that the key aspects of the event, as reported in the 

engineers report, are simulated here. First, from the initial outburst a main flow path 

is created in a south easterly direction, down a nearby street. This is where the 

majority of damage was reported, and, at the south end of the street, where the 

water was at its deepest. From here the water move towards the hospital and out 

through the southern boundary of the model. Secondary flow paths emerge from 

the breach point, inundating the Foeshill road (the main road, running north south, 

Figure 5.1) and nearby residential and industrial units. 

In comparison to the Glasgow case, this event created smaller flood inundation 

extent variations between the 4 module types, despite the presence of transcritical 

flows and complex topography associated with urban environments, as can be seen 

in Figure 5.5. For each module, a similar extent outline appears, with a maximum 

extent ranging from the junction of Foeshill road and Challenge close, around 200m 

away from the breach point and 75m in the opposite direction. The flow is well 

constrained through the centre section of the model domain. Here, a natural bowl 

formation severely restricts the width of extent for each module, and the results are 

in keeping with the events as reported in the engineer’s report. This region also 

contains the greatest water depths, which then move toward the southern boundary 

which represents the point at which the outburst waters returned to natural water 

catchment systems. Each module approximately captures this series of events, as 

demonstrated in Figure 5.5, and although the variation between each module is 

smaller than Glasgow, and the regions of uncertainty are less defined for each 

module, a number of key point still emerge between each module type. 
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Figure 5.5: Uncertainty flood extent plots for the 4 LISFLOOD modules over the Monte Carlo results (from left to right ATS, ACC, Rusanov, Roe), 
where dark regions represent cells that have flooded in all model realisations. 
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A main variation between the full SWE models and the simplified approach is the 

northerly extent of the flow. For both the ACC module and the ATS module a 

smaller extent with low inundation frequency values are modelled. In comparison 

the full SWE modules create a wider flooded extent, with higher inundation 

frequency value. This region, lies outside of the surveyed flood extent, which 

suggests that the full SWE may over represent the processes of this type of event. 

Investigation into the causes of this indicates that the water flow in this region is 

low in depth compared to the main flow path (>0.6m). It emerges into this region 

through the Foeshill road (at 125m on the lower axis, 600m y axis Figure 5.5), and 

from a gap between buildings along the main flowpath. After the initial inundation 

phase, water returns through this same point and by the end of the model run has 

either returned to dry conditions or shallow water pools. This indicates that 

additional urban representation is needed such as drain systems, or that the 

surveyed extent may have been taken sometime after the initial flood when this 

region may have appeared dry. Further insight into this can be achieved by a 

comparison of F² values, which will identify how critical this is to overall model 

performance and which is undertaken in Section 5.3. 

The centre section of the model domain (around 100 to 200m and 500-600m on 

Figure 5.5) contains a number of industrial and residential units which are critical 

in determining exposure to risk for this event.  The engineers report indicates that 

the majority of units were affected by the flood waters. Here, the flooded extent is 

most uncertain for the simplified modules, in particular for the ATS module, where 

a number of cells value equal to zero, indicating that no flood waters were 

encounted in this area, even at high values of the inflow boundary conditions. This 

provides insight into the relative performance of both the module choice and the 

hydrograph, where the reduced physics approach of the ATS module will 

potentially undervalue the hazard associated with the event as a result of its 

inability to overcome urban obstacles.  

A number of points emerge from the comparison of extents; first that overall 

module sensitivity is low, indicating that in determining the extent, the choice of 

module is relatively insignificant. Secondly, the smaller regions of uncertainty also 

indicate that other module choices are, as with Glasgow, relatively unimportant in 

determining the flood extent. This indicates not only the complexity of modelling 

outburst events, but the significance of extent as a means of evaluating risk and 

therefore models. It also suggests that the underlying topography is a key control 

on model results and the sensitivity of other factors. 
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5.2.1. Analysis of Water Depths 

Comparison of the outputs of the control points provides a greater insight into 

module performance and for some of the other input parameters. Evaluation of the 

Roe solver results indicates that supercritical flow occurs along the main flowpath 

for the initial phase of inundation. After this, lower Froude value conditions (>0.3 

<0.9) prevail for the majority of the control points through the model runtime. A 

variation to this is for the control point located at the southern end of the main 

flowpath (CP-2, Figure 5.3). The control point is located central to the main flow, 

and remains in a state of supercritical flow throughout the model domain with 

Froude values of 1.3 for the majority of the model runtime. The spatial and 

temporal variation of the critical flow level indicates that the correct representation 

of this process may not be essential for an accurate simulation of extent. This 

leads more into how critical representing transcritical flow is to the efficient 

modelling of urban environments. Further analysis of water depths will provide 

more detailed answers. 

5.2.1.1. Control Point 4 

Figure 5.6 is a comparison of the water depths for the modules at CP-4, across 

the whole parameter range. At this point the water flows past the hospital into a 

confined part of the basin (around 300m and 200m point on Figure 5.3). A number 

of points from the analysis of this control point provide insight into the significance 

of the module choice on outputs. First, the time from initial inundation to peak 

value is relatively short, around 2 minutes across the model results for each 

parameter space, but varies considerably between each module. For the 

simplified approaches, the time to peak value from arrival is very short at around 

100-200 seconds, where as the full dynamic wave models are around 200-300 

seconds.  
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Figure 5.6: Water depths for the 4 modules over the range of tests at the control 
point 4, all plots scaled to 0 and 1.8m across the entire model run time. 
(from top left to bottom right ATS,ACC,Rusanov,Roe) 

This is related to the ability of the full modules to overcome critical obstacles and 

to inundate a larger area of the domain, which creates a longer inundating phase 

for the full SWE modules. This is similar to the uncertainty flood extent (Figure 

5.5), and is related to the formation of secondary flow paths in the centre area of 

the model domain, which creates a longer lag time, as water rejoins the main 

flowpath. The value of peak also varies considerably between the modules and 

this can be attributed to the ability to represent transcritical flow in the full SWE 

modules, whereby water is moved through at a greater rate due to the higher 

velocities associated with supercritical flow. Peak depth values for the Rusanov 

and Roe modules are significantly lower than the simplified models, around 0.8m 

lower, which is a product of both the transcritical flow conditions, where high 

velocities for water depths are encountered, and the ability to flood a wider extent, 

providing less water to the main flowpath. 

The timing of initial inundation for this control point also varies considerably 

between each module. This is a critical aspect of determining the risk associated 

with this event, as the moment of initial inundation is essential. In the historic 
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event the impact of the event was high due to the sudden nature of the failure, 

and it is a critical output of the model. The ATS module produces the earliest 

arrival time, and the widest range of arrival times, in comparison to the other 

modules, which produce similar values. The ATS module mean value of 22 

minutes compares to 30 minutes for the ACC module and 28 minutes for the full 

SWE modules. The indication here is that the diffusion wave approach provides a 

well defined main flow path that channels the water effectively through the model 

domain. The inclusion of additional terms from the governing equations reduces 

this defined flowpath by creating additional flood paths for the water to move 

across the domain leading to a long lag time. The increased level of physical 

representation also appears to create more robust solutions where uncertain 

parameters are used, hence the small range of arrival times. Further insight can 

be gained by a comparison of the 2 levels of physical representation (between full 

SWE modules and the simplified approaches). The variation between the two full 

SWE is minimal. Both modules produce similar range and mean value of arrival 

time, the first example across the range of tests cases that indicate that the choice 

of numerical approach is less critical than the inclusion of the full momentum 

terms. The variation between the two simplified approaches is more critical 

however, with the ACC module producing higher mean, minimum and maximum 

values. This is in part, a product of the increased levels of physical representation 

allowing it to overcome some of the obstacles in the model domain. It fails to 

maintain the same level of momentum as the full SWE, causing a slight increase 

in the timing of the flood wave. The increased level of representation relative to 

the diffusion wave ATS approach, also appears to increase the drying phase of 

the model, evidenced by the lower rate of water draining in Figure 5.6, which is 

also critical to the timing and rate of water flow across the domain. 

Each module however produces a wide range of values for the arrival time, with 

minimum arrival times of 13 minutes for the ATS module, 19.5 for ACC, 18 for 

Rusanov and 17 minutes for Roe compared to maximum values of 35 for ATS, 41 

for ACC and 38 for Roe and Rusanov, indicating the choice of other factors and 

parameters has a significant influence on the timing of flood waves. 

The Spread of arrival times and the final depth levels provide information on the 

significance of the other factors within the model sample space. The wide range of 

arrival times for the ATS module indicates that this is far more sensitive to other 

parameters. This has not been seen in relation to the flood extent, which is 

generally insensitive to the range of parameters tested in this study.  By 

comparison, the full SWE modules produce a more consistent range. This 

indicates that where full physics modules are used, the relative uncertainty of 
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other factors become less critical in affecting the level of risk associated with the 

timing of inundation, and are therefore more robust to the influence of uncertain 

parameters. The arrival time is only an indicator of the hazard associated with the 

test case. Further impact of other factors can be seen, however in the final water 

depth level for the full SWE modules, and the peak value. A wide variety of peak 

values are modelled from 0.4m to 1.2m for the Rusanov solver, whilst the Roe 

solver produces a lower maximum value of 1m. Water is then slowly released 

across the duration of the model run. The spread of results from peak to final level 

is similar for both models, although the Rusanov solver creates a narrower final 

range in comparison to the Roe solver. It is also clear that the Roe solver moves 

to a distinct drying phase with very low levels of water value present at the control 

point by the end of the model runtime. By comparison both the simplified 

approaches demonstrate no clear drying phase, and water remains pooled in this 

section for the duration. This indicates that conserving momentum in this test 

makes a critical effect on water flow, even if this not observable in the flooded 

extent values. 

5.2.1.2. Control Point 2 

Control Point 2 also highlights significant variations between the LISFLOOD 

modules. CP-2 is located at the bottom of the main flow path, through Eagle 

Street (Figure 5.3). Here the water is flowing from the main flowpath towards the 

narrow section of the natural bowl that occurs here and on towards CP-4. A 

number of aspects concerning the performance of each module are apparent 

here. The water depths for all the model results are displayed in Figure 5.7. 
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 Figure 5.7: Water depths for the 4 modules over the range of tests at the control 

point 2, all plots scaled to 0 and 1.8m across the entire model run time. 
(from top left to bottom right ATS,ACC,Rusanov,Roe) 

Again the similarity of performance between the two momentum based modules 

and the variation between the Roe and Rusanov solver and the two simplified 

approaches can be observed. The water arrives at around the 600 second mark 

for both Roe and Rusnaov modules, compared to 600-1000 for the ATS approach. 

The peak values are higher for the Roe and Rusanov solvers, between 0.35 and 

0.9 meters, compared with 0.17 and 0.82 for the ATS module. In contrast the ACC 

module, whilst creating a similar arrival time variation to the ATS module, has a 

higher peak value and a longer arrival to peak time than the other three modules. 

The time to peak value is also significantly different across the three levels of 

physical representation. The ATS module produces the shortest arrival to peak 

time. This combined with the lower peak values, indicate that water is being 

moved quickly through this section, in comparison to the other modules. At this 

point the slope associated with the underlying topography is relatively high, which 

creates a greater flow rate in the diffusion wave approach and enhances the 

defined flow path created with the ATS module. This provides some further insight 

into the early arrival time of the diffusion wave module at CP-4. The higher level of 
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physics of the ACC module creates a longer pooling period, indicating that the 

inability to replicate supercritical flows whilst still maintaining the local acceleration 

term can restrict the flow rate value, which has additional impact on flood levels 

and arrival times at further points.  

Other control points also reveal more about the impact of module choice. CP-3 

and CP-7 have lower depth levels for ATS and ACC compared to the full SWE 

modules. For CP-7 the ATS module only produces a limited number of model runs 

capable of inundating this control point. These two control points relate to water 

depth in areas away from the main flow path, and indicate the importance of 

detailed local analysis of model results in determining model performance, and in 

evaluating risk levels for regions and sub regions. The combined analysis of 

control points indicate a strong spatial variation associated with modular choice. It 

also raises significant questions about the use of extent as a means of evaluating 

model performance, which are discussed in greater detail in the following 

sections. 

5.3. Model Evaluation  

Each model result was compared to the surveyed flood extent to produce a 

goodness of fit value. A summary of the main results for this and for other model 

evaluation techniques are summarised in Table 5.2. In comparison to the Glasgow 

test cases, the variation between the modules is significantly smaller, as 

demonstrated by the box and whisker plot of Figure 5.8, which is plotted to the 

same scale as the equivalent figure from the Glasgow chapter. As with the 

Glasgow plot, the box represents the 75 and 25 percentiles, the red line is the 

mean value, and the black lines the total range of data in the normal distribution. 

Outliers are represented as red crosses beyond the range of results.  
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Model(function) ATS ACC Rusanov Roe 

F² (Mean) 
0.635 0.618 0.550 0.601 

F² (Max) 0.710 0.687 0.673 0.687 

F² (Min) 0.511 0.464 0.402 0.332 

Depth(Mean) -0.004 -0.326 0.084 -0.108 

Depth(Max) 0.303 0.002 0.956 0.652 

Depth (min) -0.352 -0.696 -0.463 -4.148 

F² VW(Mean) 0.619 0.590 0.522 0.575 

F² VW(Max) 0.706 0.646 0.644 0.322 

F² VW(Min) 0.503 0.514 0.390 0.675 

 

Table 5.2: Summary of Model Evaluation Results; F² , NS  and Vulnerability Weighted F²  (F² VW) 



- 125 - 

In the previous test cases, an increase in model performance relative to the module 

choice could be determined from the box plot figure. For this test case, there is less 

of a discernible pattern between the levels of physical representation. In fact, the 

opposite effect appears to be occurring. The ATS module has the highest mean F² 

value, and both the simplified physics models produce a higher mean value than the 

full SWE modules. This is perhaps not surprising in the case of the Rusanov solver, 

which produces a wider range of values, and therefore a lower mean value, but is 

interesting in the case of Roe solver, which tends to be a robust to a variety of flow 

types and uncertain parameters. The range of F² values for the ACC module is also 

the smallest, which confirms previous findings in this research about the general 

sensitivity of the ACC formulation to input parameters.  

Figure 5.8: Box and whisker plot of the F² value against module choice 

As with the Glasgow test case, the Rusanov solver produces the widest range of 

results, highlighting the potential drawbacks of using a simplified numerical approach 

to solving the full SWE, which is an increased sensitivity to uncertain parameters, 

leading to a larger model evaluation uncertainty boundary. This is despite the ability 

of the module to produce similar higher peak values to the other codes. When this is 

compared to the Roe solver, which produces a narrower range of results with similar 

maximum value, indicates that the Roe solver is robust to a variety of flow types and 

uncertain parameters. The approximate downward trend in F² value to the module 

choice is related to the wider flood extent modelled by the full SWE. This increase in 

extent leads to the number of incorrect model/observed values increasing, thereby 

LISFLOOD Module 

F
² 
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lowering the overall F² value. For all the modules a similar level of correctly predicted 

inundated cells is returned across the factor, indicating that the reason for the poor 

level of F² is caused by over prediction of flood extent by the full SWE modules in the 

upper region of the model domain. The ACC modules also floods this region, but not 

to the same extent as the full SWE modules. This indicates that the model may 

require additional representation of urban sewerage networks, in order to account for 

additional low level flow paths that emerge from the main flow path. The engineer’s 

report states that the initial outburst contained a large amount of debris from the 

failed bank, which covered drains and blocked sewerage networks, but this might not 

be the case away from the main flowpath. Furthermore, the surveyed flood extent 

may represent only the main flooded region and exclude smaller amounts of water. 

The precise details of the survey were not recorded in the engineer’s report and this 

information can be critical in making further assumptions about the precise nature of 

the flood, which can then be incorporated into the assessment process (Neal et al 

2009). 

The engineer’s report detailed depths of water at locations in the affected region, 

which is reported as an approximate value. A single depth value is used to evaluate 

the models. Given the uncertainty associated with both the location of the 

measurement and the accuracy of the measurement, this value must be considered 

as an uncertain and approximate measure of model performance, due to the 

uncertain nature of the measurement. Here it is used to gain further understanding of 

model performance, and the overall results are summarised in Table 5.2 and 

variations between modules highlighted in the box and whisker plot in Figure 5.9 
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Figure 5.9: Box and whisker plots of the modular choice against the variation of 
depth 

The value of y axis represents the difference of modelled and recorded depth for 

each module, where 0 is the same value as the observed depth, located in the centre 

of the y axis. The ATS module produces the lowest mean value and a narrow range 

of results, with the majority of its results falling within 0.31 meters of the recorded 

value. Both the full SWE modules also produce mean values close to zero, albeit with 

larger ranges. The large range of depth values from the Rusanov solver is consistent 

with previous evidence relating to the sensitivity of it to uncertain parameters. The 

contrast with the Roe solver is also consistent with previous results, in that the Roe 

solver provides a robust solution that is not adversely affected by the parameter 

range.  A small variation between the mean values of Roe and the Rusanov flux, 

relates to the higher velocities of the Rusanov flux that tends to reduce the peak 

depth value. The ACC module consistently over predicts the depth, with a mean 

value of 0.32 above the observed data, a maximum difference of 0.69m and a 

minimum variation of 0.002m. This is in keeping with what had previously been 

observed at CP-2 where, the ACC module produces a higher peak value at a later 

time period than the other modules.  

Using a similar approach as in the Glasgow test of comparing the two objective 

functions and creating a pareto front provides further information about how the 

different LISFLOOD modules behave over the different functions. The two functions 

are compared in Figure 5.10 
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Figure 5.10: Combined results for F² (y-axis) and Depth Error (x axis) 

The pareto front of best performing models across the two parameters is again 

located in the top right of the figure. The depth error is converted to an absolute 

depth error for clear analysis of this space. The patero front is dominated by the ATS 

model results, whilst the ACC produces similar F² values, but due to its over-

prediction of depth, occupies a region behind the pareto front. Both the Roe and 

Rusanov models produce a greater spread of model results across the F² and depth 

functions. The implications here are that increased levels of physical representation 

allow the development of additional flow paths that create a greater variation of 

model results. These models therefore require a robust and detailed calibration 

process in order to reduce uncertainty. Within this aspect, the Roe solver provides a 

solution less susceptible to a wide range of inputs. The conclusions that can be 

drawn from these combined results is limited by the uncertainty associated with using 

a single approximate depth value, but it does emphasis that multiple model 

evaluation techniques enhances the calibration process and reduces the number of 

models that can be termed as adequate, if a GLUE methodology was applied (Beven 

et al 2006). 
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5.3.1. Impact of Inputs on Model Results 

In order to evaluate further the impact of the parameter set on model results a 

comparison is required between the parameters to determine parameters with 

significant contribution to the model function variance.  

 

Figure 5.11: A comparison of F² for each module against each friction value.  

Mapping the F² function over the parameter space of Manning’s friction value and 

each module, provides insight into the relative influence of the parameters. The 

resultant graph is markedly different from the previous graph in the Glasgow test 

case (Figure 4.8). Here the order of the line is reversed, with the highest peak of the 

value belonging to the ATS module, whilst the lowest relates to the Rusanov solver. 

A variation from the Glasgow case is that, with the exception of the ACC code, all 

modules here show some variation relative to the friction parameter. The sensitivity 

of the Rusanov solver to friction values is clear from the variation in gradient across 

the X axis, with a low value of 0.49 occurring with a friction value of 0.07. There is a 

general trend for the F² value to decrease with increasing friction value when using 

the Rusanov solver, as increased resistance reduces the water flow rate through the 

main flow path which appears to increases the simulated extent.  Two key points can 

be determined. Firstly, it should be noted that the variation is much smaller than with 

Glasgow, with the range being within 0.2 from maximum to minimum F² value, in 

comparison with the Glasgow range of 0.38. The implication is that the topography 

and the hydraulic conditions of the event provide the greatest controls on model 

results, and that the smaller variation between module choice and friction choice 

relative to Glasgow indicates the relative low importance of the model factors and 

inputs. Secondly, the level of physical representation appears to have a non linear 
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impact on model results. The Glasgow test case demonstrated an monotonic 

relationship between the output and this factor, whereas here the direct relationship 

between module choice and output is less clear. This can also be determined from 

Figure 5.10 This implies that the choice of physical representation is complex and not 

as clear to determine 

The F² interaction matrix plot (Figure 5.12) further confirms this. In this figure, the 

effect of a parameter on overall model results can be visually assessed, and is the 

equivalent of Figure 4.10 from the Glasgow test case chapter. This figure has been 

scaled to the same level as the Glasgow test case to highlight the relative lack of 

variation between parameters.  

 

Figure 5.12: Interaction plot for each input factor comparing mean value of F² per 

level of factor other levels of factors.  

As with the Glasgow test case, the choice of module appears to be the most 

influential factor based on the gradient of the line, with a clear downward trending 

gradient of mean F² value towards the full SWE (as the line moves from left to right 

across the rows of column 1). The gradient of the lines in the first row and first 

column compared to the other rows and columns highlight this, and again confirm the 

significance of this choice to model results over other factors. The choice of building 
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representation and the choice of friction value also have an influence on model 

results. In the previous test case, the influence of friction proved to be lower in 

relation to other factors, although the overall influence on the results was greater, 

implying low interaction but more critical first order influence on results. The influence 

of both these factors on the Rusanov solver can also be seen. The use of a porosity 

model produces the lowest level mean level for the Rusanov solver (column 2, row 

1), which is not the case for the other solvers, which produce a similar mean level for 

the BR method. The influence of increased friction values and reduced F² level can 

be noticed, in the column relating to this factor and it appears that this accounts for 

the majority of the influence of the friction value.  

A level of interaction can also be observed between the three key parameters. With 

the use of the Building block method the influence of the friction value increases, with 

a distinct peak at the 0.02 level, (column 3) which produced the highest F² level for all 

samples. This can also be seen between the building representation and the module 

choice, which produces a wider variation between the module types. The implication 

is that factors that affect the flowpath either through increasing resistance or defining 

the point appear to have the greatest influence on model results. 

An interesting aspect is the relatively low influence of the hydrograph and cell size. 

Both factors display little variation in gradient in either the related row or column in 

comparison to the other factors. The significance of grid resolution to urban 

inundation modelling has been shown to be critical to model results (Fewtrell et al 

2008, Sampson et al 2012). The levels of grid resolution for this test case provides a 

useful range by which the criticality of this factor can be tested. The fact that the 

influence appears to be low relative to other factors suggests that this measure is 

less critical when transcritical flow and large volumes of water are present, such as in 

these events. A variation that was noted in the previous test case, the influence of 

cell size on ACC model, is also noted here, although not to the same level as had 

previously been noted. The range of hydrograph levels also prove to be less 

influential in affecting the modelled extent. This point to other factors providing a 

greater control on the model results, implying not only that the uncertainty associated 

with the hydrograph is less critical in functions that evaluate extent, but that the use 

of extent as a means of evaluating models may critical underestimate variations in 

depth. Both the low sensitivity of the F² measure to hydrograph, and the higher level 

of sensitivity demonstrated to the cell size point to the influence of underlying 

topography as a controlling influence in model performance, particularly where it 

provides an important factor in controlling the formation of flow paths. This is 

emphasised by the significance of the choice of building representation, which also 

influence the effect and definition of the flow path.  
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5.3.2. Distributed Friction Values vs. Single Friction Values 

As with the Glasgow test case, the method of how to model Manning’s friction has 

been split between a distributed friction value and a single value friction for the model 

domain, and the results from this test case indicate similar findings to the previous 

case. Figure 5.13 is an interaction plot for distributed friction (top) and single value 

friction.  

 

Figure 5.13: Comparison of mean level per parameter for spatially distributed friction 
(top) and single value friction (bottom). The comparison parameter from left to 
right is model type, building type, cell size, hydrograph, and DEM error 

As with the Glasgow test case, the spread of results is greater for the single friction 

value than the distributed friction value, with the mean level of model performance 

also higher for the distributed value. Both plots display the same level of interaction 

with other factors, although a variation can be noted with the choice of building 

representation and friction choice (second box from the left). The small variation is 

caused by the decrease in mean level performance for the porosity model in the 

lowest value of single friction (0.01), which counters the general increase for the 

other levels of friction. In comparison to the distributed value, the porosity method 

has a slightly lower mean value than the Building Resistance method. This implies 

that the choice of friction distribution method and value is far more critical when using 

a porosity method, and that low friction surfaces which are typical in urban areas 

must be explicitly represented when using this building representation approach. The 

overall trend observed for friction values in this case and the Glasgow case are 

similar, in that the use of distributed friction appears not only to reduce the range of 

model results, and therefore reduce uncertainty, but also increase the overall mean 

result. For the Glasgow test case this may have been causal as a result of using a 

benchmark model which used distributed friction values. With the same results 

displayed here, the indications have greater emphasis. 
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5.3.3. Evaluation of Timing of Initial Inundation 

The use of extent as a means of determining risk and differentiating between models 

may underestimate the consequence of the event, and ignore other critical aspects of 

the flood. In this test case, the timing of the flood wave moving through the domain is 

a significant model output. Evaluation of this provides details of the significance of 

parameters on model result. The influence of the parameter set on this output can be 

clearly seen in the interaction plots relating to the time of initial inundation which has 

been used to assess the model choice. Figure 5.14 is an interaction plot for the 

timing to reach the out reaches of the hospital complex (CP-4, Figure 5.3). 

 

Figure 5.14: Interaction plot for each input factor comparing mean value of time of 
arrival for each level of factor against other levels of factors.  

Here a much greater variation can be seen between all inputs and between all levels 

of factors, compared to the measures of extent, However there is little interaction 

between the inputs. Friction appears to be the most critical factor in determining 

arrival time, with a significant increase in arrival times across the range of times, and 

a steeper gradient across the friction levels (column 3). The choice of module also 

appears to be a significant choice and the variation between ACC and ATS, and ACC 
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and Rusanov and Roe modules can be seen. The first row also highlights the large 

variation between the ATS module and the other codes, and also suggests that 

module choice is most significant for describing variation in inundation timing. In 

comparison to the F² interaction plot, both cell size and hydrograph have a clear 

influence of the arrival time of the water. As the grid resolution is refined the arrival 

time increases, and as the hydrograph level increases, the arrival time decreases. 

The use of a porosity model also appears to influence the model results, creating a 

shorter time period to inundation than topography and building resistance method. 

The level of building representation and module choice represents the only evidence 

of parameter interaction across this measure, (column 2, row 1). The Roe model is 

particularly affected by the porosity model, producing a far quicker return time than 

the other modules which remain at similar time levels to the building resistance 

method. Considering the general robustness of the Roe solver to a variety of 

uncertain parameters in comparison to the Rusanov solver, as has been seen in 

previous analysis of control points and extents, this represents a significant sensitivity 

to building representation. Whilst this is less critical than the choice of friction it 

emphasis the need to consider building representation techniques cautiously. 

The variation between the interactions plots for time and F² emphasis the restrictive 

qualities of the F² method for calibrating the model. The variations in times between 

the parameters sets are significantly larger than for goodness of fit. This may be 

critical depending on the future use of the model and the need to which decision 

makers may apply the simulation results. In this case an ensamble approach may be 

more appropriate to account for the large uncertainty associated with the timing of 

inundation, but emphasis the need for more detailed model analysis. As has 

previously been seen the non linear impact of level of physical representation on 

model results can be determined from the gradient of the line in column 1. This 

implication again is that determining the level of physical representation is not a clear 

decision and requires consideration of all model outcomes before determining an 

appropriate approach to represent the governing equations in the model code. 

5.4. Exposure Based Analysis 

With the relative insensitivity of the F² value to alterations in parameters, this 

provides an excellent case study with which to explore whether methods enhanced 

by incorporating vulnerability and exposure can improve the ability to discriminate 

between model and parameter sets. The first method used in the vulnerability 

weighted F² method, summarised in Table 5.2, and is compared to the standard 

approach using the same objective function modelled over a parameter space as 

Figure 5.11. 
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Figure 5.15: The F² VW value plotted against Manning’s n value for each module. 

The pattern is similar to Figure 5.8. 

A clear variation from Figure 5.8 is the smoothing of the parameter space by the 

F²VW method. This however reduces the applicability of the method which seeks to 

increase the spacing between models. Conversely though it also indicates that the 

choice of model is less significant when considering risk in the evaluation process.  

Over all the test cases, the general trend is a reduction in the peak value of the 

function, and a decrease in the lower values that enhances the lower value of the 

function from the mean value. This is an important aspect of using weighted 

methods, to enhance the peak values and produce a clearer analysis of higher 

performing models. The approach adopted here failed to refine the function over the 

parameter space. This is partly due to the high concentration of cells to represent 

vulnerable areas, which is a product of the size of the model domain and the nature 

of the domain. A more defined weighting system, using higher value produced a 

similar range of results, indicating that the precise values are less significant than the 

distribution of weighted cells in the model domain.  

The regional goodness of fit values are summarised in Figure 5.16., where the far left 

column represents the global F² function, and each dot represents a model 

simulation. The colour of the model simulation relates to the module used in the 

simulation. The regions have been divided into sections of vulnerability, where the 

level of vulnerability can be approximately grouped together and can be seen in 

Figure 5.4b.  
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Figure 5.16: Comparison of regional values of F² versus Global F² value (first 
column). Each dot represents a model run, the colour relating to the 
LISFLOOD-module 

The ATS code has returned the highest F² value, and this regional analysis allows 

detailed dissection of the precise regions where the F² value is greatly affected, as 

well as determining how critical module choice is in vulnerable regions. The overall 

trend is for a higher level of model performance and for a much closer range of 

model results for all the modules in the vulnerable regions. The second key trend is 

that each module, identified by the colour range, produces a narrower range of 

results for each subsection. The full SWE modules also produce higher values of 

regional F² than the ATS module. This indicates that the global F² value achieved by 

ATS is related to the fact that it produces a narrower extent with fewer incorrect cells, 

rather than an increase in the number of correctly matched cells. The wider range of 

values for Rusanov can also be identified from this figure. Each region produces a 

correlation between the other sub regions indicating that model performance is 

roughly comparable throughout the critical areas of the model domain. The mean 

goodness of fit value does improve in the lower sub regions (2-4), located near the 

boundary. The top region (column 2) has a lower mean and a wider spread of results. 

This region includes part of the domain where the full SWE modules created a wider 

flood extent, and the impact of this on the overall results can be seen. By comparison 

the ATS module does not contain the highest level of F² for this region, although it 
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was the only module not to produce the wider flood extent previously seen with the 

full SWE modules. The lack of correlation between the main global F² values and the 

sub regions indicate that for each sub region, there is a change in the general 

performance of each model, typically an improvement. This highlights that each 

module is capable of replicating the observed extent in key regions of the modelled 

domain, and that the global value is affected by regions which are less critical to the 

overall risk analysis of the model domain. It can also be determined from this figure 

that it is the regions closest to the inflow boundary that contributes more to output 

variation. This can be determined from column 1 where a comparison of region 1 and 

the global value show a wider variation that a comparison of region 4. This indicates 

that once flow paths have formed variations between modules and parameters 

reduce, and indicate that a critical region of the model is that closest to the inflow. 

Therefore a significant amount of uncertainty in the model is associated locally and 

with close proximity to this point in the model. In order to reduce uncertainty efforts 

should focus on this region of the model domain.  
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Figure 5.17: Uncertainty Hazard Plots, where red regions represent the high hazard areas, from left to right ATS, ACC, Rusanov, Roe, where dark 
regions represent cells that have flooded in all model realisations.
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Figure 5.18: Box and Whisker plot of the Cost of Damage of the event for each of 

the LISFLOOD modules. 

The use of Cost of Damage provides a useful insight into the modular performance 

and provides a method with greater discrepancies between model realisations. A 

visual summary of results shows a similar pattern between the modules that had 

been highlighted in the analysis of the control points. The greater depths simulated 

by the ACC module (Figure 5.6) here translate to a higher total cost, with a 

maximum total cost of £18.28million, with the parameters set of BB method, a 

hydrograph with 20% increase in volume and a distributed friction value of 0.065 for 

vegetated areas and 0.018 for low friction surfaces. The range of cost for the two 

simplified approaches is also similar, as is the range of costs for the two full SWE 

modules. The wide range of both Roe and Rusanov incorporate the entire range of 

the two simplified approaches. This is a noticeable effect of the range of depths 

simulated by these two modules, due to the wider ranges of extents, and indicates 

greater sensitivity to the other factors, a key component in a model evaluation 

technique. The previous case study saw a large variation between the grid 

resolution levels, which has been reduced by using a mask based on the number of 

cells around the footprint of the building, rather than a demarked area. There is still 

a noticeable step, but this is now a product of small variations between the grid 
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resolutions, rather than an issue with the method by which the cost of the event is 

calculated. A key feature for this method is to capture some of the factor influence 

and parameter interaction that has been captured in the standard model evaluation 

techniques.  

 

Figure 5.19: F² value (blue line) against Modelled Cost value (green line, right axis) 

for ACC module result.  Each vertical line represents a different building 
representation method and cell size, going from (left hand side) Building 
resistance, Poroisty model and Building block, with the first 3 sections being 
2m and the final 3 sections 4m grid resolution. The division of results is 
described in detail in the caption for Figure 4.14 

Figure 5.19. is a comparison of the F² value vs. the cost of damage. Similar model 

response to parameters that are noticeable with the F² also appear here. Each 

function creates a series of small increases that appear as a range of spikes across 

this figure space relate to the increase in friction size. A clear variation can also be 

noted between building representation techniques. Each section marked out by the 

vertical lines represent a different cell size and building technique. A clear variation 

can be seen in both functions, but the variation of the cost of damage is significantly 

wider than F². This is confirmed when the cost of damage values are normalised, 

reflected the fact this method can provide a much clearer definition of model types 

and model performance. This combined with the ability to reflect general 

model/parameter response highlight the potential of this method to evaluate 

models, and the sensitivity of the approach to model uncertainty.  
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The hazard maps of Figure 5.17 demonstrates the variation of the regions of 

significant hazard between each module type. The ATS has the smallest area 

defined as being of high risk compared to the other modules. The main flow path is 

clearly highlighted in the ATS figure, and the hazard frequency value is high. This 

has been a particular feature of the ATS code, in replicating the high flow rate of 

this flow path with consistency over the parameter set. The ACC by comparison 

produces a much wider uncertainty extent, with evidence of secondary pathways 

forming adjacent to the main flowpath. This in part describes the variations seen 

between the ACC and ATS and can be attributed to the increase in level in physical 

representation. The wider hazard extent of the ACC solver also has lower hazard 

frequency values and is therefore of increased uncertainty. The main flowpaths and 

secondary flowpaths have high frequency values indicating that these are a 

consistent feature of the simulations involving the ACC. This is further evidence that 

increasing levels of physical representations impact results in key ways, and in 

identifying hazards and regions of high velocity. Both the Roe and Rusanov solver 

produce a much wider hazard extent region. The Rusanov solver also contains a 

high level of hazard frequency, with the majority of the flooded extent being labelled 

as hazardous. This represents an over estimation of the hazard however, as 

regions that had not been affected such as the northern section of the domain are 

calculated by the code as being part of the hazard extent with high frequency 

levels. This is a potential issue with the Rusanov solver and other simplified 

methods, which can prove to be unstable in transcritical conditions where maximum 

wave speeds will increase, and potentially cause the wave front to produce higher 

velocities, which are then used in the calculation of hazard. Typically, the use of 

maximum global wave speed values increases the diffusion of the numerical 

solution, but for this test case it appears to increase the wave front to potentially 

high levels, that increase the calculated hazard level. The hazardous regions are 

more defined with the Roe solver. The main flow path contains high frequency 

values, as does the secondary flow paths indicating that at this level of numerical 

solution and physical representation the main regions of risk are consistently 

replicated across the parameter space, increasing the confidence with which 

conclusions about areas of high risk can be made from this module. The issue of 

the wider flood extent in the middle section of the domain is also not highlighted as 

being critical to overall hazard frequency values. The larger extent for the Roe 

solver in the lower regions of the model domain are caused by low friction value 

models and high hydrograph values (0.015 and +20% of the calculated 

hydrograph). This has not been previously highlighted as the frequency value is 

very low and relates to only 2 model runs within the parameter space. This 

highlights a potential advantage of using the uncertainty hazard approach, as this 
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method helps to refine and identify non performing models. Furthermore, the region 

which had been identified as being inundated for both the full SWE modules and 

part of the ACC module, can be seen in the Roe and ACC figure to be contain 

either low frequency values or to be outside the threshold of the hazard. This again 

highlights the advantage of including risk as a means of evaluating model 

performance, by explaining some of the discrepancies between the modelled output 

and the observed data set. In this test case a region that impacted the F² value for 

these modules can be identified as being of low risk in terms of the impact of the 

flood water to life and in causing structural damage. It also highlights the potential 

drawbacks of simply using F² to evaluate models. The ATS provides better 

goodness of fit, but poorer estimations of the hazard, in terms of cost and in this 

analysis, which may have detrimental effects on decisions made related to a similar 

modelling exercise.  

5.4. Sensitivity Analysis 

The results for the Morris method are presented in Figure 5.20. 210 model 

realisations were used to complete a 4 level 6 factor parameters space, based on 

the same parameters as the Glasgow data set. The function used in this analysis is 

the F² value, chosen to highlight the relative influence of factors for a typical model 

evaluation technique. The other methods evaluated were excluded either due to the 

high uncertainty associated with the function (such as depth comparison) or the 

subjectivity of the method (Exposure based analysis).  

 

Figure 5.20: Morris Results for F², where the x axis represents the mean 

elementary effect. The values themselves only provide a relative ranking 
position and do not quantify the level of interaction. 
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From Figure 5.20, the relative importance of the building representation technique 

can be identified, as well as the relative importance of the level of physical 

representation, represented by the Model choice. Both factors can be ranked as 

being the most influential inputs to the model. The ranking choice of model factor 

again indicates that this factor is highly significant in affecting model results, and 

should be well considered in any modelling exercise. The third highest ranked 

factor is the value of Manning’s friction, which confirms findings from the systematic 

analysis, that the three most influential parameters are model choice, building 

representation method and friction choice. These factors affect the flow rate and the 

ability to define the main flow path which has proved to be critical in the modelling 

of this event. The hydrograph and the cell size are both low ranked factors, which 

confirm findings from the systematic analysis and the visual analysis of model 

interaction in Figure 5.12. This highlights particular aspects of this case study, and 

the appropriateness of using a goodness of measure fit to evaluate models, where 

variations in hydrograph level and cell size appeared not to affect the extent 

considerably, despite the variations in water depth. The error associated with the 

LiDAR DEM is also a low ranked value, which confirms what has been identified in 

the analysis of this test case and the previous test case. It identifies that this factor 

is less influential in affecting model results, although the method by which it is 

examined (a random valued DEM, based on the limits of the RMSE) may also 

impact on the results. 

The level of interaction between parameters is relatively similar to the factors first 

order influence. This is a variation from the quantitative analysis in the Glasgow test 

case, where interaction between parameters accounted for a large amount of the 

total variation of the overall model results. The implication here, as was determined 

from the systematic approach, is that the nature of the event reduces the 

significance of non essential parameters, due to the constricting nature of the 

topography. 

The implications from these results must be considered in a wider aspect. The 

Morris method can be a useful method for identifying the most influential factors, 

but where factors are of similar rank can often fail to differentiate between factors. 

The uncertainty of using this method is reduced by the analysis of the Monte Carlo 

study, and both approaches highlight the significance of the level of physical 

representation and building representation, which increases the confidence in the 

conclusions of the approach. 

The Bayesian emulator approach used a 100-point LP-Tau input space based on 

the ranges of parameters used in the Monte Carlo approach. As with the Glasgow 

test case, the approach has been reduced to the ACC and Roe solvers and the two 
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are compared directly, rather than include them in the factor space. The building 

representation has also been fixed to the Building Block method to reduce the 

parameter space and reduce computational cost. This approach still highlights the 

importance of an input in each approach and reveals details about factor interaction 

over different physical representation levels. The effect of each factor is described 

as a percentage of the total variance. 

Parameter Total (ACC) Total (Roe) 

Cell 83.9 27.21 

LiDAR 0.81 0.8 

Hydrograph 1.86 0.46 

Friction 12.38 69.96 

Cell and Friction 7.13 >1 

Table 5.4: Contribution of parameters to overall variance as a % of total variance 

For each approach the significance of the factors appears to evolve considerably in 

comparison to both the other module and the overall factors. The influence of the 

cell size appears to be considerably greater than has previously been identified. 

This can be explained through the absence of the building representation method in 

the analysis. The factors in combination control the numerical description of the 

main flow path, which is the most influential in determining model output. This factor 

by itself provides the description for this feature and explains the relative high 

significance in the GEM analysis. The factor of grid resolution accounts for the 

majority of the variation seen in the ACC code. This pattern has been noted in this 

test and more significantly in the Glasgow test, where increasing cell size reduced 

the extent of the ACC model output. The level of friction value accounts for most of 

the variation with the Roe solver, and confirms what has been identified in the 

interaction plot. As has been highlighted in the Morris method, the interaction 

between parameters is low, with only one combined factor creating a significant 

variation (cell size and friction for ACC). This combined influence is unsurprising 

considering the high value of the two factors in the first order.  

5.5. Conclusions 

The Coventry test case is a unique type of event, which can be classified as a low 

occurrence probability, high impact event. The restrictive topography, relatively 

small model domain and the unique hydraulic properties provide a useful 

examination of the LISFLOOD-FP code and modules. The highest goodness of fit 

value was returned by the ATS module, while increasing levels of physical 

representation appear to reduce this function. Further examination by the use of 



- 145 - 
 

risk and vulnerability measures have highlighted not only how this value can 

potentially be misleading, it can also lead to an under prediction of the hazard and 

associated cost. It also indicates that a possible requirement of urban modelling is 

he use of a connected sewage networks when modelling outburst events. This can 

be assumed based on the development of a flood pathway to the north of the 

outburst point seen in the full SWE models. A significant assumption made in the 

use of flood inundation models in urban environments is the surcharging of drains. 

This test indicates that for certain scenarios this may not be valid. Overall the level 

of physical representation appears, as with Glasgow to be the most influential in 

determining model results, but that this influence is not monotonically increasing 

with complexity of the physics model in comparison to the previous test case. In this 

test case, the overall trend is for the ATS and ACC results to be markedly different 

than in comparison to each other and the full SWE modules. This indicates that 

assumptions about appropriate levels of physical representation may be difficult to 

quantify, but the impact maybe critical overall. As has previously been seen the 

impact of models with different levels of physical representation tends to be local. In 

this test case, the outputs of each model had a wider range near to the inflow 

boundary, which reduced in distance from this point. This indicates that evaluation 

techniques and model checks should include further detailed checks at this point, or 

use methods such as the regional analysis and depth of cost method which is 

weighted towards this area. In that way these local variations are brought to the 

attention of the modeller in an immediate way.  
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6. TEST CASE MEXBOROUGH 

The final test case is a river overtopping event in Mexborough, South Yorkshire. 

The test case is based on an event from the summer 2007 flood events, and data 

includes RTK GPS surveyed high water marks. The model domain is predominantly 

rural, giving a useful counter point to the two urban test cases, in that theoretically 

the hydraulic conditions could be represented with a diffusion wave approach, and 

the inclusion of additional terms from the governing equation is less critical. The 

model will also require a representation of the river and represents a problem 

typically undertaken with inundation models. The conclusions based on this result 

and the other test cases will reduce model bias from the research conclusions. 

 

Figure 6.1: Map of Mexborough, the model extent and location of buildings 

The Mexborough event was part of the wider UK 2007 flood events, and occurred 

on the 25th June as a result of prolonged rainfall. At the time of the flood water 

levels at the gauge station of Dearne upon Adwick was already recording discharge 

values above the mean value of 3.5m³/s at around 25m³/s. A period of prolonged 

rainfall in the preceding days increased the peak flow to an estimated 280m³/s. The 

test case is based on a 20km² region, south of the village of Bolton upon Dearne 

and north of the town of Mexborough. A series of surveyed wrack marks measured 

by the EA identify the maximum flood extent of the event, and allow some initial 
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identification of key risk regions. Key features within the flood plain include a 

number of business premises and a waste water treatment facility. The village of 

Bolton and Mexborough both fall outside of the flood extent at higher ground than 

the regional floodplain, and consequently the probability of fluvial inundation are 

low. The road system is also less developed than urban test cases with only a few 

A and B grade runs crossing the floodplain. A major north south railway runs 

through the model domain crossing the river south of the village of Bolton, although 

at an elevated height from the flood plain (10meters above the floodplain). The 

event has been modelled in previous research. Beven et al (2009) explored the 

methods of communication of uncertainty in flood extent maps and diagrams using 

this data set. Focus was on a key water treatment facility which fell within the 

uncertainty range of the flooded extent, but which had fallen outside of the extent 

during the event itself. Leedal et al (2010) furthered this work, and further detailed 

modelling work was conducted by JBA consultancy in part of their report to the local 

council. 

6.1. Test Case Design  

In order to model this test case, a representation of the river was required as a 

boundary condition. A 1D channel linked to a 2D floodplain was found to produce 

model instabilities in both the Roe and Rusanov solver that caused the simulation to 

fail. Therefore an explicit 1D channel river model, which is typical to most modelling 

exercises that require a river to be represented, was excluded. The river was 

represented as a series of wetted cells that correspond to bank full level, with the 

hydrograph inflow represented as a point source at the western boundary, with the 

QMED value removed. The DEM is based on a 5m DSM that was resampled to 

20m and 40m scale. Initial model runs revealed that the computational cost was 

significant for LISFLOOD-ATS at 5m and 10m resolution. The grid resolution was 

therefore decreased to 20m and 40m. This approach can be further justified by an 

analysis of the building size within the flood inundation extent. A number of large 

scale buildings with footprints greater than 100m² occupy an area to the south of 

the village of Bolton, which would be sufficiently well resolved at a scale of 20m and 

40m. The majority of smaller, residential buildings are located outside the flood 

extent, and at significantly higher elevation than the floodplain, which would require 

higher levels of representation that can be afforded from the 20m cell size. 

6.1.1. Test Case Factor Inputs  

The Bolton at Dearne gauge, located with the model domain provides input data for 

this test case scenario.  
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Figure 6.2: Digital Surface model of the test case, with location of buildings, Control Points, and outline of River Deane
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The magnitude of the event was greater than the range used to calibrate the gauge, 

which consequently impacted on the predicted discharge value. Initial model runs 

that used the gauge recorded values produced a flood extent far in excess of the 

observed data set. Previous work by Beven and Leedal (2010) had identified that a 

76m³/s discharge value represents a return period of 1 in 100 year event (0.1 AER), 

whilst a 96m³/s discharge represents a 1 in 200 year event (0.05 AER). Given that 

this event was identified as a 150 year event (0.075), it is likely that the event will be 

between these values with a lower peak value of 86m³/s. The inflow is displayed in 

Figure 6.3.  

 

Figure.6.3: Inflow hydrograph for the Mexborough Test Case, with uncertainty 

bounds, based on Return period flow added. The simulation is effectively 
steady state. 

The gauged data indicated that the duration of the event (the time over the mean 

discharge value) was over 5 days, which provided additional computational costs. 

Further model runs were required to reduce this factor, and a final inflow 

hydrograph based on a peak flow of 15 hours was created, with a model runtime of 

17 hours. This provided enough time for the model codes to allow water to flow 

across the model domain to the eastern boundary, with an open boundary condition 

applied. Further evaluation of downstream boundary conditions was excluded due 

to computational cost.  

As with the previous test cases, a compromise between accuracy of simulation 

number of input factors, and computational time was required. The final set of 

factors evaluated in this test case is outlined in Table 6.1.  
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Factor Parameter Range(low to high) 

Module ATS-ACC-Rusanov-Roe 

Building(type) BH -BP-BB 

Friction distributed(n) 0.015 to 0.075 

Friction Single (n) 0.01-0.07 

Cell Size(m) 20m and 40m 

Hydrograph Minus 20 to +20 of 150 year event 

DEM error 0cm -15cm 

Table 6.1: Parameter space for the systematic analysis section 

This input space created a total number of 2020 simulations, 505 for each module. 

The sensitivity analysis section was also based on this with the exclusion of building 

type as an input to both the BACCO GSA method and the Morris method. This was 

due to instabilities with the Rusanov solver when the building porosity method was 

used.  

 

Figure 6.4: Digital Elevation Model (DEM) of Mexborough model, with the surveyed 
wrack mark points and the calculated observed water surface 

The model realisations were evaluated using measured maximum extent data 

points. A water surface was created from this data, using the 5m DEM model to 

determine water depths across the model domain, which provided the means for 

evaluating model results using F² (Figure 6.4). The model simulations were also 

evaluated by comparing output water depths with the observed water surface and 
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depths, and using the Root Mean Square Error (RMSE) of the variations to describe 

the overall model performance similar to the approach by Mason et al (2009) and 

Stephens et al (2012). In order to ensure that the water surface was not affected by 

the error of the LiDAR DEM, the elevation of the wrack marks was based on the 

DEM value rather than the recorded value, which had variations of 10cm to the 

DEM. Further evaluation techniques could be undertaken with this data set, such as 

distance of the model extent to the measured extent points as used by 

Pappenberger et al (2006) and Neal et al (2005), but the use of the RMSE 

evaluation measure is used here as a means of identifying trends between water 

elevations and the F² evaluation technique, as well as investigating calibration 

methods, and the dependency between important parameter sets and model 

evaluation technique. These evaluations methods were carried out for both the 

systematic analysis of parameters and the Sensitivity Analysis techniques. 

6.1.2. Exposure Based Evaluation 

The rural nature of the model domain requires a different approach to the 

application of determining areas of significant risk and vulnerability, and applying 

the risk methods in an appropriate way. The majority of residential units, buildings 

and significant population areas within the model domain are located outside of the 

recorded flood extent, and at an elevation significantly above the flood plain. A 

number of building units to the south of the river are located at the edge of the 

recorded flood extent, which are more likely to be affected by the flood, but the 

main impact of a flood in this region is the potential of travel disruption caused by 

flooded roads, and more significantly damaged bridges. Consequently, the 

weighted vulnerability approach was designed to account for this, with higher 

weighting values assigned to cells that represent roads and to cells adjacent to 

bridges (Figure 6.4). The estimated cost is also anticipated to be lower in this test 

case than either of the urban based test cases, where the key areas that will 

contribute to the estimated cost are located to the south of Bolton upon Dearne that 

include a Water treatment centre, a bridge and a number of residential buildings. 

South of the river at this point include a number of warehouse and office facilities. 

The Water treatment centre has been identified as at risk by previous studies 

(Leedal et al 2010, Beven et al 2009), and depth damage curve relating to Electrical 

Warehouses was used as the means for determining the estimated cost from model 

output. The other categories of building in the model domain identified in the OS 

data, were residential housing and office/warehouse which were evaluated with the 

corresponding depth curves from the MCM manual (Penning-Rowsell 2010).  
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Figure 6.5: Vulnerability Weighted cell values and locations  

Regional F² analysis was based on dividing the domain up into sections based on 

the direction of water flow, and building types. For both Coventry and Glasgow the 

main division had been based on nearby building types, grouping the regions into 

sections based on common proprieties types. Here, this is extended to also explore 

spatial dependency of factors and evaluation functions. 

 

Figure 6.6: Location and value of Regions for Regional F² analysis 
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The F² regional areas, summarised above in Figure 6.6, represent the initial 

inundated regions (1 and 2), the region south of Bolton Upon Dearne, which 

includes a significant number of residential buildings as well as the location of a 

number of critical infrastructure, including a railway bridge, and the Water 

Treatment plant (regions 3). Regions 4 and 5 also a smaller number of buildings 

and bridges, than region 3 but provide more critical insight into model performance 

at the downstream edge of the model domain. Region 3 represents a critical 

component of this modelling exercise, with a significant number of buildings and 

infrastructure components that are essential to the wider region. 

The duration of the model run was restricted for this test case, due to the time 

required for the ATS model to run. Model run time was limited in order to allow the 

ATS simulation to finish simulations within the time requirements of the ARC1 HPC 

system. An adverse effect of this was to bias the results against the ACC code, 

which typically produces a lower arrival time for the flood wave, which become 

accentuated the further away from the inflow point. This impacted the model results 

in this test case, by not providing sufficient time for the flood wave to fully pass 

through the model domain in the ACC model runs. This effect is considered in the 

analysis. 

6.2. Results 

This section provides an overview of the model results for this test case, with an 

evaluation of the immediate model outputs, which include simulated extent and 

depth of water at control points. This is followed by analysis of model evaluation 

functions, analysis of exposure based methods, and Sensitivity Analysis.  

In comparison to the previous test cases, the variation between model codes is 

smaller in terms of model output, function results, and sensitivity to parameters. 

However, there are spatial variations of modelled depths and velocities between 

each code that indicate local impacts related to the level of physical representation 

in the model code. A summary of the model output will be followed by an analysis of 

the model functions and the risk evaluation methods to identify the overall trends of 

this test case. 

The hydraulic characteristics of the Mexborough test case are different to both the 

Coventry and Glasgow cases. Flow across the model domain is typically sub 

critical, although supercritical conditions are apparent in the initial inundation phase 

at locations close to the input boundary. The main process of the event involve a 

flood wave progressing from west to east along the direction of river flow, with the 



- 154 - 
 

depth of water near the channel reaching equilibrium with the inflow hydrograph 

before dispersing during the drying phase at the end of the simulation period. At the 

centre section of the model domain, at the widest point of the flood plain, flood 

water also disperses in a north south direction (CP-10, Figure 6.2). A number of 

additional flow characteristics and process occur which impact the inundation 

extent, including the influence of bridge embankments which redirect flow from the 

main channel and floodplain flow path. The bridges are not explicitly represented in 

the spatial domain, but the influence of the embankments can still be observed. The 

influence of back water effect is not observable at the nearby control points due to 

the absence of detailed representation of the bridge structure. The DEM contains 

part of the embankment related to the bridge within the channel, but not the channel 

remains unconstrained.  A secondary effect on the inundation extent is the 

influence of additional tributary channels and storm drainage channels. These 

secondary channels are significant in directing river flow from the main direction of 

flow, towards the floodplain. This effect is particularly noticeable around CP-3 

(Figure 6.2), which directs channel water towards a number of office and 

warehouse facilities. The impact of these secondary channels changes as a direct 

result of the level of physical representation in the model, as can be seen in the 

uncertainty flood inundation extent plots, based on the ensemble of model runs. 

The final inundation extents for the 4 modules are displayed in Figure 6.7, and 

show broadly similar extents with high frequency values for the extents. This 

indicates that each module can reproduce the flooded extent reasonably accurately 

and consistently, across the parameter range.  

The uncertainty extent plots, Figure 6.7, provide a guide to the impact of physical 

representation on inundation extent. A number of small variations provide insight 

into impact of the level of physical representation on the potential inundation extent. 

The ATS module (top left Figure 6.7) contains very few regions of uncertainty 

(inundation frequency values >0.7), in comparison to the other modules, which all 

display larger regions of low frequency values. The ACC module (top right Figure 

6.7) has produced a region of high uncertainty at the eastern boundary of the model 

domain (at 4500m, 1000m). The elevation of this region rises steeply from the 

direction of the river, before a gradual downhill section and a second small rise in 

elevation, creating a channel, which allows water to flow in a west east direction. 

The area inundated by a small break in an embankment, indicating that a certain 

level of physical representation is required to overcome these obstacles. It is 

noticeable that the other modules contain high inundation frequency values for this 

area. This is caused by the ACC producing a slower flood wave front in comparison 

to the other modules and is explored in more detail in the comparison of depths. A 
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noticeable variation in this region can also be identified in the ATS solver, where a 

small band of high value inundation frequency cells are present, where as the rest 

of this region has a lower frequnecy level. The implication here is that both the 

simplified modules lack either the process required to regularly inundate this region, 

for the ATS it is a product of the lack of representation, where as the slower flood 

wave produced with the ACC module fails to reach the lower level of the module in 

sufficient time. The ACC module has however produced similar extents to the other 

higher level modules over the rest of the model domain, with similar regions of 

uncertainty. The impact of secondary channels and module choice on simulated 

extent is evident by a region of uncertainty at the western end of the model domain. 

The 3 higher level modules have the additional process in the numerical model 

which allows the water from the main channel to flow along the storm channels to 

inundate this region. The low level of inundation frequency values indicate high 

levels of uncertainty and the influence of other parameters in affecting how this 

region is inundated. Typically, models that use lower friction values and higher 

hydrograph values from the parameter set inundate this region. Each module 

produces a distinctive inundation pattern in this region, with the ACC the smallest 

area and higher frequency values (≈0.4), where as the Rusanov produces the 

widest area, with the lowest frequency values (≈0.2), indicating infrequent 

inundation from the model set. The Roe solver produces a similar extent as the 

Rusanov solver but with a similar range of frequency values to the ACC module. 

The indication here is that with increasing representation leads to a significant 

increase in the amount of water able to move along these channels. The higher 

level of numerical solution from the Roe solver creates a region with a higher 

frequency value, although still with a large amount of uncertainty.  

Another variation between all the modules is the flooding of a separate drainage 

channel which is located in the centre of the model domain, at the 2000 to 2750 

meters and at the 1100 meters region (Figure 6.7). For the ATS, ACC and Roe 

modules, a distinct increase in the frequency value can be observed. This channel 

is protected from the main flow path by a ridge of high land. Water inundates this 

region by moving up a drainage channel, and can be observed in the observed 

flood extent as flooded (Figure 6.2). This indicates that increased physical 

representation is a significant factor in modelling smaller scale features even in 

large rural scale events. 
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Figure 6.7. Uncertainty flood extent plots for the 4 LISFLOOD modules over all test case results (top left ATS, top right ACC, bottom left 
Rusanov, bottom right Roe), where dark regions represent cells that have flooded in all model realisations.  
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The Rusanov solver by comparison also records this as flooded, albeit with a lower 

frequency value than any of the other 3 modules. Both the Rusanov solver (bottom 

left, Figure 6.7) and the Roe solver (bottom right Figure 6.7), have produced similar 

flood extents. Similar patterns identified in the previous test cases appear here. 

Firstly, the Rusanov solver produces a wider flood extent than the Roe solver. 

These regions on the edge of the extent tend to be of low frequency value. This 

indicates a strong interaction with other parameters, in particular the value of 

Manning’s friction, which at low values causes the Rusanov solver to create a wider 

flood extent. Secondly, the boundary of the Rusanov uncertainty flood extent is not 

as clearly defined as the Roe solver, with increased fuzziness of the flood extent 

boundary at the edges and between zones of greater uncertainty. This is similar to 

the Coventry test case, indicating that the use of simplified numerical approaches 

increases the potential of uncertain parameters to influence model results. 

Analysis of water depths at key points through the model domain also provides 

insight into model performance, and also the influence of the value of the friction 

parameter as a control on water depths. CP-4 in Figure 6.7 is located near the 

railway bridge and near residential buildings, and the impacts of the flood event on 

these features should be clear from the depths at this location. Figure 6.8 is the 

water depths for each module over the time of the model run, where each line 

represents a model from the parameter set. Each module produces a distinctive 

range of depths for the total model ensemble, which indicate that the relative 

influence of the level of physical representation is important, as well as indicate the 

level of interaction with other parameters for each module. The influence of the 

input hydrograph can clearly be seen in all the water depth graphs, where the inflow 

reaches a peak value which is maintained until the last 2 hours of the simulation 

time. At this control point, each module replicates this effect, with a drying period 

also noticeable at the end of the simulation. The ACC (top right, Figure 6.8) module 

produces a narrow range of maximum depths across the parameter space, which 

indicates a relative insensitivity to other parameters, which has been seen in the 

Coventry test case, and the Glasgow test case. In comparison, the ATS module 

(lop left Figure 6.8) creates a wide range of maximum depth levels. The main 

control of this wide range of depths is the friction value, and the hydrograph, where 

low Manning’s friction results produce the lowest modelled depth values. This 

appears to counter previous evidence that suggests the ATS solver is relatively 

insensitive to floodplain friction parameters (Horritt and Bates 2001). The same 

pattern of sensitivity to other parameters emerges in analysis of the SWE modules, 

although interaction between the value of Manning’s friction, the model code and 
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other factors also appears to influence the maximum depth value and the timing of 

initial inundation. The Roe and Rusanov solvers produce similar hydrographs, 

although the range of depths produced by the Roe solver are larger and feature 

higher peak values, indicating a greater sensitivity to other factors and parameters. 

The depths at this control point indicate not only a significant variation between 

levels of physical representation and interactions between the modules and the 

other input factors; it also indicates a variation between local model outputs and 

global outputs. 

 

Figure 6.8: Water depths for the 4 modules (top left ATS, top right ACC, bottom left 

Rusanov, bottom right Roe) over the range of tests at the control point 4, all plots 
scaled to 0 and 1.4m across the entire model run time. Each line represents a 
model run 

Analysis of control points further into the model domain provides insight into the 

speed of the flood wave front produced by each module, the influence of other 

factors, and the performance of each module with increased distance from the 

inflow boundary. CP-8 (Figure 6.2) is located in the centre section of the model 

domain, and the depths for each module display similar characteristics as had been 

seen at CP-4. The ATS module (top left Figure 6.9) has the widest range of depths 
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across the model ensemble. ACC (top right Figure 6.9) produces the narrowest 

range, and also the highest depths. Both Roe and Rusanov produce similar shapes 

to the depth graphs, a sudden initial inundation phase with a significant depth of 

water, rather than a gradual inundation phase demonstrated by the simplified 

approaches. This is followed by a short inundation to peak time, with a lower 

maximum depth level than the ATS and ACC modules, followed by a gradual 

draining phase until the end of the model simulation, confirming some of the 

findings from analysis of CP-4. 

 

Figure 6.9: Water depths for the 4 modules (top left ATS, top right ACC, bottom left 

Rusanov, bottom right Roe) over the range of tests at the control point 8, all 
plots scaled to 0 and 1.5m across the entire model run time. Each line 
represents a model run from the parameter set 

Both the Rusanov and Roe solvers create an earlier inundation period than either of 

the simplified models, indicating that these produce a faster moving wave front. In 

contrast to CP-4 however, the Rusanov solver now produces a wider range of 

maximum depth values and final depth values in comparison to the Roe solver. The 

final peak level maximum for the Roe solver is approximately 1m compared to 1.3 

meters for the Roe solver. This distinct spatial variation in the module results 
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indicates that each module responds differently with increasing distance from the 

inflow source. In comparison the simplified approaches appear to retain the 

characteristics seen at CP-4, and these compare to what had previously been seen 

in the Coventry test case, that the ACC produces a later arrival time compared to 

either of the other modules and a longer initial inundation to peak value time. As 

with CP-4, a significant control on the water depth level at this control point is the 

value of friction coefficient for all modules, indicating again that the value of water 

depth maybe strongly influence by this factor.  

Control point CP-10 is located at a further distance from both the river and the 

inflow boundary than CP-8, but due to the lower elevation is actually inundated 

before CP-8. The simulated depth is greater than at the previous locations, with a 

peak value of 2.5meters modelled by the ACC module (top right Figure 6.10). 

 

Figure 6.10: Water depths for the 4 modules (top left ATS, top right ACC, bottom 

left Rusanov, bottom right Roe)over the range of tests at the control point 10, 
all plots scaled to 0 and 3m across the entire model run time. Each line 
represents a model run from the parameter set 

Similar patterns are also observable at this location as has previously been 

observed in this test case and the previous test cases. The ACC module produces 

a later arrival time, a longer initial phase to peak value time and a narrower and 
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higher range of final depth values. The ATS module produces a wider range of final 

values that are dependent on the friction value and both Roe and Rusanov produce 

a similar shape depth graph, but the Roe solver produces a narrower range of final 

depth values and maximum depth values. Again this indicates the relative variation 

between the simplified approaches compared to the full dynamic wave approach, 

the sensitivity of the ATS module to friction values, and the relative insensitivity of 

the ACC module to other factors. The arrival time of the flood wave also varies 

across the module range. Both the Roe and Rusanov solver produce earlier arrival 

times, and a wider range of arrival times than the ACC and ATS modules. These 

variations indicate that the choice of physical representation is significant in 

impacting model results.  

Overall, the analysis of stage points indicates that a significant variation is apparent 

between each module and the input factors. This appears to contradict the 

frequency extent results, which indicate that modules are relatively insensitive to 

other parameters. This indicates that the relationship between extent and water 

depths, is not clear, and can impact the evaluation of risk from model results. 

Despite the different hydraulic properties of the Coventry test, including a lower 

underlying slope value and the predominate flow characteristics being sub critical, 

the variations between water depth outputs of the modules is similar to that test 

case, such as the later arrival time and higher peak time of the ACC solver, in 

comparison to the ATS and full SWE modules. The implication is that for modelling 

scenarios where diffusion wave hydraulic conditions predominate and that can be 

modelled with larger cell sizes, the inclusion of additional terms to the 

computational code, can be significant in affecting water depths and the timing of 

the wave front. The similarities between the 2 full dynamic codes also indicate that 

the inclusion of the full terms from the governing equations will provide similar 

results, regardless of the numerical solution to the equations. The main issue in the 

use of a simplified numerical approach to the full governing equations is one of 

uncertainty and the influence of other factors on the final computational solution. In 

order to account for this uncertainty in this and across the input factor space, a 

detailed calibration process with adequate model performance criteria is required.  

6.2.1 Model Evaluation 

Each model is assessed by comparing the model output with observed extent and 

evaluating this comparison with two functions; a comparison of binary extent, with a 

goodness of fit measure, and a comparison of depths with a Root Mean Square 

error measure to generalise this comparison (RMSE). The model evaluation results 
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for the goodness of fit measure (F²), the comparison of depth measure (RMSE) and 

the vulnerability weighted enhanced measure (F²VW) are summarised in Table 6.3. 

Broadly, the ranges of results are similar across the 4 module types, and the values 

could be described as acceptable or behavioural if the use of a GLUE methodology 

approach was used. In this test case, each evaluation technique provides insight 

into both relative module performance, and parameter influence. The highest value 

of goodness of fit (F²) is modelled by the ATS module (0.7896) with the parameter 

set of a 20m grid resolution non degraded DEM, a spatial distributed friction 

surface, represented by the lowest value of friction surface - with the road surface 

0.008 and the vegetation surface a friction value of 0.015, with a peak hydrograph 

value of 98m³/s. Buildings and surface topography are represented with the building 

block (BB) method.  Each module can produce a similar peak value, although with 

different sets of parameters. The ACC module produce a maximum F² value of 

0.78359, with a parameter set of 20m, a single friction value of 0.01 and a peak 

hydrograph value of 86m³/s. Here, the building representation is the porosity model 

(BP). Both the Rusanov and Roe models produce lower F² values, (0.7792 and 

0.7772 respectively), but by a relatively insignificant margin. Again both parameters 

sets are based on a 20m grid resolution model, with the BB building representation 

method. Each uses a single friction value (0.01, 0.02), but different peak values in 

the input factors (0.96m³/s, 0.76m³/s). The similarity between the maximum values 

indicates that the relative significance of the module is perhaps less critical in 

replicating the observed extent. This would appear to confirm previous evidence 

(EA Benchmarking 2010), which indicates that with larger scale model domains, 

and in rural conditions, diffusion wave conditions dominate.  However, a key point in 

the analysis of F² values is the level of equifinality between model results. A number 

of models from across the total factor space are capable of recreating a level of F² 

similar to the maximum values noted above. These higher F² values also contain 

slightly different parameters sets, with different peak hydrograph values, friction 

values and building representation values. This is a good example of the issue with 

calibration methods, the requirement to distinguish between large parameter 

spaces and number of model runs with sufficient clarity to determine a single model 

run as adequate.  
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Model(function) ATS ACC Rusanov Roe 

F² (Mean) 0.7348 0.6908 0.6826 0.7287 

F² (Max) 0.7896 0.5545 0.4176 0.7792 

F² (Min) 0.6325 0.7835 0.7772 0.6691 

RMSE(Mean) 0.3751 0.4714 0.3975 0.3654 

RMSE(Max) 0.5222 0.6336 0.8312 0.5226 

RMSE(min) 0.2437 0.3330 0.2695 0.2956 

F² VW(Mean) 0.7384 0.7180 0.6957 0.7340 

F² VW(Max) 0.7927 0.7866 0.7844 0.7846 

F² VW(Min) 0.6296 0.6007 0.4351 0.6824 

 

Table 6.3: Summary of Objective Evaluation functions for the Mexborough Test Case 
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The range of each module are subtle different, and are summarised visually in a 

box and whisker plot of model type against F² value in Figure 6.11. This Figure is 

scaled to the same degree as the corresponding Figure from the previous test 

cases, to emphasis the relative insensitivity of this test case to the parameter range 

and the level of equifinality in the results in comparison to the other urban test 

cases. A number of distinctive variations from those test cases are noticeable. As 

with the Coventry test case, the highest mean value is produced by the ATS 

module, this module also has the largest range of model results, although the upper 

and lower quartile values are higher than any other module. Analysis of the 

individual results indicates that the ATS module provides a consistent range of 

results regardless of the parameter dataset. This insensitivity increases at the larger 

grid cell size of 40meters. The ACC module has a lower mean value, and a wider 

range of total results and a greater distance between the upper and lower quartile 

than any of the other modules. As with the ATS module, at 20m, the ACC module 

produces a consistent range of results, with fewer model runs with a peak value 

above this range. However, at the larger grid resolution this range increase, leading 

to the relatively high range of model results seen in the box and whisker plot of 

Figure 6.11 indicating that the simplified approaches are relatively sensitive to grid 

cell size.  

 

Figure 6.11: Box and whisker plots of the F² value for the LISFLOOD modules 

LISFLOOD Module 
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The full SWE modules display similar results in comparison to previous test cases. 

The Rusanov solver shows a wide range of results in comparison to the Roe solver, 

but with a similar mean value. The cause of this is the Rusanov codes’ higher level 

of sensitivity to the friction parameter. A reduction of sensitivity to the friction 

parameter is notable at the higher grid cell size, which also indicates a level of 

parameter interaction relative to the grid cell size, and therefore indicates a level of 

uncertainty associated with this factor relative to the use of a simplified numerical 

approach to the full SWE. This again furthers points from this test case and 

previous test cases about the relative benefits of using reduced computational costs 

numerical methods in assessing inundation problems. The Roe solver, by 

comparison, shows a high range of insensitivity to other parameters, and a reduced 

range of uncertainty. Here the conclusion is that, a higher degree of confidence can 

be given to the results from the Roe solver. What is more interesting with this 

module, is the relationship between F² and the uncertainty plot of Figure 6.7, which 

demonstrates that the Roe solver creates larger regions of uncertainty than the ATS 

solver, that do not necessarily impact the goodness of fit measure. This is in part 

explained by a region of the model domain (between 3000 and 4000m, and 1000-

1200m, Figure 6.7, located around CP-12 and CP-13, Figure 6.2), which is 

consistently flooded in the Roe solver (bottom right Figure 6.7), but contains smaller 

regions of low frequency values in the ATS solver.  This region is inundated entirely 

in the observed data set, which in the Roe model results will create a higher 

number of matched observed and modelled cells, which reduced the impact of 

incorrect cells in the F² calculation. Again this brings into question the use of extent 

comparison as a means to evaluate inundation models, where the number of cells 

correctly predicted may have a greater influence on the model results than those 

which are incorrectly predicted, but may be of greater interest to model developers 

and decision makers. A further point to note is the range of depths previously seen 

in the analysis of control points, which does not relate to a wide range of F² values. 

This again indicates not only the implication of using extent comparison methods, 

but also that local effects are not captured with the global model evaluation that 

may be critical to determining consequence of flooding or taking further action from 

model results.  

The role of other factors in controlling model output appears to be greater in this 

test case than other test cases. The relative significance of the friction parameter 

appears to be high in this test case. This is further confirmed by plotting F² against 

Manning’s n for each module (Figure 6.12). The friction value is based on the 

spatial distributed friction parameter set, with the value of friction for the vegetation 

area displayed on the x axis. The other parameters are fixed for this Figure. The 
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scale of the y axis is based on the same scale as the Glasgow test case to 

demonstrate the relative insensitivity of this tests case to the factor space. 

 

 

Figure 6.12: The F² value plotted over the friction value for each module 

The peak values can be seen for ATS and Rusanov. the variation between each 

module is greater between at lower friction values, although this reduces in the 

centre of the figure, before increasing at higher friction values. This indicates that 

both choices are significant in influencing model results, and that some level of 

interaction is occurring between the parameter sets, similar to the Glasgow test 

case. In order to further explore the causes in variations of model results, the use of 

an interaction plot (Figure 6.13) is used to identify the role of other parameters in 

affecting model results. The Figure has been scaled to the same level as in the 

previous two test cases as a point of comparison, and, as with Figure 6.12, shows 

that in comparison to those cases, there is a significant insensitivity to the ensemble 

of parameters in this test case. 
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Figure 6.13: Interaction plot for each input factor comparing mean value of F² per 

level of factor other levels of factors.  

As with the Coventry test case, there appears to be small amount of variation 

across the parameter range. This is caused in part by the large number of easy to 

predict wet cells. The majority of the domain is the inundated valley floor – smaller 

variations produce localised effects that the global objective function of comparison 

of extent ignores. The largest variation is caused by the choice of model (first 

column), although the influence of other parameters is noticeable. The choice of 

building representation appears to be influential as an interactive factor with the 

choice of module (column 1, row 2). The significance of the value of friction is also 

noticeable, particularly in comparison to cell size (column 4, row 3). As cell size 

increases (x axis) the mean value of F² converges for all levels of friction, indicating 

that at increased cell size, the significance of the value of friction reduces. However, 

at the lower cell value, the variation is noticeable greater. Analysis of column 3 

which relates to friction values shows a distinctive gradient for this parameter, with 

reducing levels of model performance with increasing values of friction. This 

indicates a number of higher order interactions between parameters and friction 

value. The significance of these factors is only relative however, in comparison to 

the role of modular choice, which although significantly less responsive than in 
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previous test cases, still demonstrates a significant control on F² based model 

results. 

Both the value of hydrograph and the DEM error are also of low significance and 

display little interaction with other parameters. This is not surprising given that the 

cell size is relatively large in comparison to the DEM error (+-15cm), and the issues 

relating depth of water to flood extent (Mason et al 2009, Stephens et al 2012), 

which impact the significance of the hydrograph in valley filling exercises, such as in 

this test case. The use of model evaluation functions that incorporate depth may 

provide more relevant insight into this aspect of model input.  

6.2.1.1. RMSE 

The use of using observed water depths to evaluate models, and the use of the root 

mean square error RMSE values of the difference between simulated and observed 

water depths has been evaluated previously (Stephens et al 2012). The advantages 

include a broader range of results and a more relevant function to determining the 

risk associated with flood inundation. In this evaluation technique, a value closer to 

zero indicates a better model fit. 

 

Figure 6.14: Box and whisker plots of RMSE of observed depth vs. modelled depth 
for each module 

A number of patterns observed in the analysis of the goodness of fit function, are 

observable here. As with the F² value, the ATS module produces the lowest value, 

the ACC the widest range of results and highest mean, whilst the Roe solver has 

LISFLOOD Module 
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the smallest range of results. The ATS module produces a best value of 0.2437 

RMSE, which relates to parameter sets of a 20m non degraded grid resolution 

using the BP method of building representation. The standard hydrograph value 

was used and the value of friction was based on a distributed range with a low 

value of 0.015 for vegetated areas, the lowest value in the range of parameters. For 

the other 3 modules, the lowest values (0.3303 for ACC, 0.2695 for Rusanov and 

0.2905 for Roe) are achieved using the lower value of hydrograph, a low friction 

surface, although with a distributed value for the Rusanov solver, and a single value 

for ACC and Roe. Both Roe and ACC had BP method as the building 

representation, whilst Rusanov used the Building Resistance (BR) method. The 

issue of equifinality is reduced with this function with a slight increase in the 

difference between absolute peak model, however it still remains an issue that 

other high performing models come from different sections of the parameter space. 

Whilst this again indicates the relative insensitivity of the parameter data set, the 

issue of determining critical factors becomes increasingly difficult. Further analysis 

of this space, does reveal some wider patterns between factors and model 

performance. 

Using the same box and whisker plot as Figure 6.11, but using the RMSE value, 

Figure 6.14 shows the range of results for each module, and provides further insight 

into the relative significance of module performance. The most noticeable variation 

between the modules is that the ACC module has a lower level of performance 

relative to the other modules. This is a product of creating higher water elevations 

across the model domain as a result of the slower moving flood wave front seen in 

the analysis of Control points. The variation between the other modules is 

significantly lower than has been seen with the F² functions, despite the range of 

results greater for each individual module. Despite not being able to produce the 

same high value as the ATS code, the Roe module, produces a narrower range of 

model results, and a higher mean value (ATS 0.373, Roe 0.363). The Roe solver is 

also less sensitive to the value and distribution of friction value, and is also less 

sensitive to choice of cell size. The Rusanov solver follows a familiar pattern of 

providing a similar mean value, albeit with a greater range of water depth results, 

and a higher mean value. The implication of the results related to the Roe solver, is 

that the depths at CP-4 are local, with limited impact on the wider depth values. The 

indication from this Figure is that other parameters maybe more influential in 

determining model results and can be further understood in the interaction plot for 

RMSE (Figure 6.15) 
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Figure 6.15: Interaction plot for each input factor comparing mean value of RMSE 

per level of factor other levels of factors.  

The level of physical representation again appears to be the most significance 

factor in influencing model results, based on the gradients of the line in column 1. 

However, examination of row 1 shows that the large part of the variation in this 

column is caused by the ACC module. The other 3 modules appear to produce 

roughly the same mean value for every level of factor and follow similar interactions 

with other parameters. This indicates that the significance of this choice is being 

affected by the results of one module and not as a result of overall variations 

related to the level of physical representation.  

Based on the gradients and interaction between lines, the level of friction value, cell 

size, and hydrograph all appear to be highly significant in determining the water 

depth value. The value of friction choice, again displays a strong gradient of 

increasing RMSE towards higher friction values (column 3), which confirms the 

significance of the findings from the control point analysis. Analysis of row 3 shows 

that the higher friction line (grey dashed line) is significantly above the rest of the in 

comparison with other factors. This indicates that a large amount of the uncertainty 

of the choice of friction value is determined by this extreme value. As with the F² 

value a strong interaction occurs with increasing cell size, where higher cell size 
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value creates a convergence to a similar mean level for all range of parameter 

(column 3, row 4). The significance of this is that with increasing cell size the 

uncertainty associated with friction value decreases, and therefore requires less 

justification in determining an appropriate value. That this is noticeable in F² also, 

indicates that this a key conclusion for rural based river overtopping models. 

Further analysis of cell size value (row 4) shows that at higher cell size value, a 

significant increase in the mean RMSE occurs, and a level of interaction can also 

be observed. This would indicate the significance of this factor in determining model 

results, and is responsible for the majority of the variation between module types in 

Figure 6.12. This may be in part due to the large increase in cell size between the 

two levels of factor used here, but does indicate that this factor should be well 

considered before modelling is undertaken.  A noticeable gradient can also be 

observed with increasing hydrograph value and increasing RMSE value. 

Interestingly, the mean RMSE value is lowest at the lower peak value, indicating 

that the event may have been closer to a 1 in 100 year event. The linear 

relationship between increasing levels of hydrograph and increasing levels of water 

depth is also a logical one, but demonstrates the need for model evaluation 

methods to consider more than the inundation extent. By comparison with these 3 

factors, the choice of building representation is less significant, although small 

variation do emphasis the significance of this choice. This is not surprising 

considering that a smaller percentage of the surface of the model domain is 

occupied by buildings, with the majority of the buildings occurring outside of the 

observed flood extent. A point that should also be considered in this analysis is that 

the RMSE for all models is outside the range of DEM error, and whilst the 

significance of this factor has proved to be low, indicates that the values of RMSE 

could be improved for this modelling test case. 

The variations between the parameters and the higher peak value of RMSE provide 

a more robust model evaluation tool than the F² approach. The RMSE reduces the 

level of equifinaility between models of different parameter sets to provide an 

enhanced method of evaluating models. What this approach also identifies is the 

increased interaction between level of physical representation and factor choice, 

which is critical to further model development as well as increasing confidence in 

model results, through further understanding of the sources of uncertainty. A 

comparison of the two methods is undertaken in Figure 6.16. This approach has 

helped refine the calibration process and reduce the impact of equifinality across 

both model evaluation techniques. The pareto front of higher performance models 

can be identified at the lower right hand side of the Figure. As with other test cases 
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in this research and previous papers, the best overall model is a compromise 

between the mode functions F² and RMSE (Dung et al 2011).  

Figure 6.16: Combined results for F²(x-axis) and RMSE (y axis), where each dot 

represents a model run. The pareto front occurs in the bottom right section of the 

graph 

The pareto front is not dominated by one particular code, unlike the previous urban 

tests. Each module is represented within this lower portion of the graph and no 

clear pattern between the code emerges. The Rusanov code and the ATS code 

have a number of model runs that occupy this region, although occupy a wide part 

of this graph, further confirming the high level of uncertainty associated with these 

codes, but the ability of both to produce simulations with high model values. The 

relative insensitivity of the Roe solver is apparent with the narrow banding of model 

runs, whilst the wider range of ACC can also be spotted.  Whilst the relative 

positioning of the pareto front is difficult to determine visually, it appears that a 

number of models can produce a high goodness of fit level as well as a low RMSE 

value. This indicates that the use of both approaches in unison can be used to 

refine the modelling calibration approach as well as highlight parameters with 

significant controls on overall results.  
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6.2.1.2 Distributed vs. Single value friction 

The model evaluation techniques indicated that the choice of friction is significant, 

which increases the significance of how this value is implemented in this test case. 

A comparison of interaction plots related to the two methods provides insight into 

this. In the previous test cases, this choice created a wider range of model results, 

although the relative gradients that indicate interaction remain the same.  

Figure 6.17: Comparison of mean F² level per parameter for spatially distributed 
friction and single value friction. The comparison parameter from left to right is 
model type, building type, cell size, hydrograph, and DEM error 

Figure 6.17 is a comparison of spatial distributed friction (top) versus single value 

model domain friction (bottom) for F². Broadly, the same pattern of a wider range of 

results, with similar interactions and lower total function values, evident in the 

previous test cases can be seen here. This indicates that the inclusion of low 

friction surfaces reduces the uncertainty of this factor by reducing the variations 

between the higher friction surfaces, even in scenarios where the low friction 

surface occupy less of the domain, and have less control on the flow paths of the 

flood water. The increase in F² value also suggests that this is significant in 

improving model performance in this test case. However, a small variation can be 

seen on two of the interaction squares; square one which compares module choice 

and friction and square three which compares cell size and module choice. The 

variation for square one is caused by a decrease in the mean F² value associated 

with the lower friction values and the Rusanov solver. This instability at low friction 

surface has been noted in the previous test cases, but indicates that this model is 

particularly sensitive to this factor. The interaction between friction and cell size has 

been noted previously in this test case. Here the variation is a downward trend in F² 

value for a single friction value, rather than a slight increase in value which the 

distributed friction value creates. The indication here is that variations in cell size 

will impact the choice of friction and the distribution technique, leading to a change 
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in how significant this factor is in reducing modelling uncertainty. The impact is 

further noted in a comparison of approaches using the RMSE evaluation method 

(Figure 6.18). 

  

Figure 6.18: Comparison of mean RMSE level per parameter for spatially 
distributed friction and single value friction. The comparison parameter from 
left to right is model type, building type, cell size, hydrograph, and DEM error 

A number of distinct variations of the model evaluation function between the two 

friction distributions are evident in Figure 6.17. Square one represents the 

interaction between model type and friction value. Both the ACC module 

(represented by the second peak) and the Roe module (represented by the third 

point on the x axis) have change between distribution types, with the ACC module 

having a lower mean value and wider range of mean values across the friction 

ranges for single value friction, and the Rusanov code having a small increase in 

mean level for friction values below 0.06. A distinct change also occurs between the 

building representation measure and friction distribution (second square), where for 

all values excluding the maximum range, a increase in mean RMSE value related to 

the porosity model occurs (centre peak, on the x-axis). This is related to the 

Rusanov flux, which at single friction values could not produce stable model runs 

and was consequently excluded from results, but could create a model runs at the 

single friction value, which produced a much higher mean value for this factor.  This 

appears to skew the results at this section, although do not change the relative 

position of the porosity models as significant factor compared to the other building 

representation techniques. 

As has been seen in previous test cases and model evaluation figures, the use of 

single value friction creates a wider range of model performance values, and a 

lower mean value. The key implication here is that explicit representation of low 
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friction surface reduces the uncertainty of the friction value and improving model 

performance.   

6.3. Exposure Based Evaluation Methods  

Considering the rural nature of the test case, the use of vulnerability and 

consequence based measures to evaluate model may not be optimal for model 

development. The three measures used to determine risk as a model output have 

produced results which demonstrate the usefulness of these measures even in 

largely urban areas, and have helped identify approaches that may reduce 

equifinality based across a single model function. Considering the previous two 

methods have demonstrated a level of equifinality, a methodology that could 

demonstrate reduced levels of this affect may be an important approach in future 

calibration approaches and modelling studies. 

6.3.1 Weighted Vulnerability 

The summary of vulnerability weighted goodness of fit measure (F²VW) is given in 

Table 6.3, and the distribution and weighting values of cell in Figure 6.5. In 

comparison to the urban based test cases of Glasgow and Coventry and 

significantly lower portion of the model domain is divided by weighted cells, as a 

consequence of the rural domain, where less of the region is occupied by 

infrastructure and other features that will creating long term and short term impacts 

after the inundation event. As a result, the overall results display little variation 

compared to the original F² method. A key change is a slight increase in all 

maximum values and minimum values, where the maximum value matches the 

same parameter data set that had provided the high F² value for all modules. 

Plotting the F²VW value over the same parameter space as Figure 6.12 and using 

the same scaling as the Glasgow test case, shows very little difference between the 

two methods (Figure 6.19). 
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Figure 6.19: The F²VW value plotted against Manning’s n for all modules.   

A few examples of the F²VW approach in enhancing the overall modelling process 

are evident. A number of ACC modules have been improved with a higher minimum 

objective function value than had been seen with the F² value. This is observed for 

simulations that use the higher grid resolution value of 40m, and has the added 

impact of increasing the mean value to being at a similar level as the other 

modules. This is in part due to the majority of the higher weighted cells being close 

to the inflow boundary, where the ACC produces a consistent flood extent and 

generally has a similar level of performance as the other modules. This enhances 

the overall objective function for the ACC module, which is penalised for a poorer 

model performance at the downstream section of the model domain in the 

evaluation of F². This also confirms other indications of the sensitivity of the ACC 

module to cell size variation, which is here further proved by the impact of higher 

minimum values only occurring for models that use the 20m dataset. The same 

impact is not noticeable for any of the other modules and is caused by a slower 

wave front for the ACC module at 20m in comparison to 40m. For the ATS module, 

realisations using the 20m grid resolution BB methods include a wider range of both 

peak and minimum values, although by a relatively small amount, where the mean 

for the F² value for is 0.722 with a standard deviation of 0.04 compared to 0.725 

and S.D of 0.05 for the F²VW method. This slight variation indicates that this 

method provides some small variations that could be enhanced to improve the 

overall method, but would require a different approach to the weighting values, 

either in the precise weighting values or the distribution of weighting cells. The fact 
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that the range remains similar to the non weighted method indicate that in these 

environments a more detailed approach may be required to create a function less 

susceptible to equifinality. An interesting point is that a slight divergence has 

occurred in the centre of the friction space between each modules, indicating that 

this method could enhance variations of objective function results where results are 

similar.  

6.3.2 Regional F²  

Regional analysis of F² values has provided a key insight into model performance 

and modular performance across the model domain. Here, the regions were 

determined based on direction of flow, and provide not just information into areas of 

higher risk but also local hydraulic properties of the flood wave and model results 

related to this.  

The relationship between regional values and the global F² value, and module type 

are broadly similar, with a convergence towards closer range of values apparent 

with increasing distance from the input boundary. This is evident from column one 

in the regional analysis figure (Figure 6.20), where the similarity of the spread of 

results and the positioning of the modular clusters for each row indicate that the 

relationship between global values and regional value are approximately similar. 

This is also apparent in the histograms of the total model results for each region at 

the top of each column, which display similar Gaussian distributed histograms with 

skewed means. 

Further detailed analysis shows that modular performance is similar for each of the 

regions, hence the linear appearance of each cluster in Figure 6.20. The cluster of 

results for each section is also broadly similar, indicating that the variations in 

extents at the eastern extreme end of the model domain have a significant control 

on F² value. It also reveals further important insight into the significance of modular 

choice. For region 1 (column 2), the ACC module (green points) occupies a similar 

range as the other modules, despite the lower total global value (column 1, row 1). 

The ATS module (dark blue points) also displays wider ranges of points in region 1 

compared to the regions 4 and 5. This indicates that a large proportion of the 

variations in ATS results are a product of variations in region 1, which also includes 

the storm drain channels referred to in the uncertain flood extents analysis. Regions 

4 and 5 also demonstrate a linear relationship for the total range of model results. 

This indicates  that with increasing distance from the boundary conditions, variation 

between model results remain approximately similar, indicating a spatial 

dependency between model performances. 
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Figure 6.20: Comparison of regional values of F² versus Global F² value (first 
column). Each dot represents a model run, the colour relating to the 
LISFLOOD-module 

Regional variations and modular variations converge to a greater extent at the 

higher level of grid resolution, where the majority of model results converge to a 

lower range of results than at the 20m grid resolution. A significant factor in creating 

regional variations is related choice of building representation model, particularly in 

the regions with larger percentages of urban areas such as region 1, 2 and 3. Here, 

the combination of this factor and modular type leads to the greatest variation 

across the input factor ensemble. As these regions contain the most building 

features this is not surprising, but does indicate even at larger model domains, the 

choice of these factors is critical to overall model results and a critical to decision 

makers. The use of this method in evaluating risk helps to focus model 

development and highlight these factors. 

For this test case, the regional analysis has allowed further insight into the 

relationship between global values of F² and level of physical representation. The 

use of it in determining local risk factors has been less critical than in other test 

cases, where the relationship between local risk levels and global risk levels have 

been more varied than evident here. Further work would be required to understand 

if this a particular factor of either the application of the methodology in this test 
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case, or the broader interaction between test cases where varied hydraulic 

conditions are less apparent such as rural test cases with a greater emphasis on 

diffusion wave properties rather than numerical codes that contain momentum 

conserving properties or represent transcritical flows. A conclusion that can be 

made from this is that modular choice and local risk factors are broadly dependent 

on the level of other factors for test cases where the dominant process is diffusion 

based. Essentially, when the level of physical representation is less significant, the 

choice of model is less critical as an uncertain input, even when using the results to 

evaluate risk. 

6.3.3. Analysis of Models using Depth Damage Curves 

The majority of buildings are located at the western side of the model domain, and 

comprise 3 general categories of building type; residential, office and ware house. 

The water treatment facility is modelled with an electric warehouse depth damage 

curve. The results for total cost of damage across the module types are given in 

Table 6.3 

Model Mean 
Min Max Standard 

Deviation 

ATS £5,370,398 £2,473,468 £7,117,214 £1,091,567 

ACC £4,927,666 £3,308,568 £7,270,588 £1,036,229 

Rusanov £5,494,452 £3,190,224 £7,013,866 £880,756 

Roe £5,261,410 £3,023,408 £7,095,962 £1,007,163 

Table 6.3:  Results for analysis of models using depth damage curves 

The variation between the ATS code and the SWE modules is low, with a similar 

means and extreme values. By comparison the ACC has a lower mean value of 

around £5x   less than the other 3 modules. The highest estimated cost of the 

ACC module used a parameter set of the BP building representation, a degraded 

20m grid resolution, with the higher peak value hydrograph and the lowest value 

distributed friction surface. The ATS module uses the same DEM and hydrograph 

value with the BR (building resistance) method and a higher value single friction 

surface, where as the Rusanov solver uses the BB method, the middle value 

hydrograph and a middle ranked distribution factor of 0.055 for the vegetation 

surfaces. The Roe code uses a similar parameter set to the ATS, but with a lower 

friction value of 0.02 (single value). Despite the variation of the ACC module relative 

to the other modules, the other modules produce a similar range of estimated costs, 

as demonstrated in the box plot figure of Figure 6.22. A number of key variations 

occur in further analysis of this evaluation function.  
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Figure 6.21: Uncertaitny Hazard Maps for the 4 modules where red regions represent high hazard, and the grading of the colour is related to the 
hazard frequency of the cell based on the total model ensemble. (Top left, ATS, Top right ACC, bottom left Rusanov, bottom right Roe) 
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Figure 6.22: Box and Whisker plot of the modelled estimate damage cost of the 

event for each of the LISFLOOD modules. 

In comparison to the previous test cases, the Roe solver now demonstrates the 

widest range of results, with a similar mean level to the ATS solver. This is a distinct 

change from the previous evaluation techniques where the Roe solver produced the 

narrowest range of results in both RMSE and F² evaluation techniques. However, 

analysis of CP-4, near the residential area of Bolton, undertaken in Section 6.2, 

revealed that the Roe solver had a wider range of depths than the Rusanov solver 

and the ATS module. The impact of local model results in critical areas becomes 

more apparent with this evaluation technique. Other patterns evident in the analysis 

of CP-4 are also evident here, such as the narrower range of depths the Rusanov 

flux method and ACC module created in comparison to the other two modules, 

reflected here as a narrower range of total costs. The consistent depth levels 

reproduced by the ACC module create a lower quartile range of model results. The 

ACC module does however produce the highest modelled depth values in the 

analysis of control points section. The location of regions evaluated with the depth 

damage curves are located slightly further away from these locations (see Figure 

6.2) What this indicates is that water depth is distributed differently with this code 

leading to lower values at critical points in the model domain.  
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The overall similarity between modules does indicate that other factors are more 

significant in the total estimated cost. Using a similar interaction plot that is used to 

determine the effects of other factors on mean level of factors, further insight can be 

gained into the relevance of factor sets in affecting costs, the interactions between 

parameters, and the usefulness of this methodology in differentiating between 

factors and model runs. 

 

 

Figure 6.23: Interaction plot for each input factor comparing mean value of RMSE 
per level of factor other levels of factors.  

Further analysis shows that the variation of mean cost level for the cell size appears 

to be the most influential factor (column 4 and row 4). At the higher gird resolution, 

a considerable drop occurs with the estimated cost and a reduction in the range of 

cost values estimated by the same parameter sets as the 20m models. This is 

evident through the gradient of the grey line in row 4, which remains relatively 

stable across the other factor levels and indicates that at higher grid resolution the 

significance of all other factors reduces. The sensitivity of cost to cell size has been 

noted before. Whilst here the sensitivity is less extreme than had been observed 

with the Glasgow set, the impact is still clear and indicates that cost based methods 

are sensitive to the methods used to implement them. To elaborate further, the cell 
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based method here used to evaluate cost is affected by the resampling process, 

and leads to increased sensitivity of the gird resolution. Other key interactions 

include the choice of friction value and the modular choice, which also display a 

level of interaction. The general trend for reducing estimated damage cost with 

increasing friction value can be observed in column 3, with the exception of 

increasing cell size which reduces the significance of this value. This implies that at 

higher friction values, less water is distributed to the extents of the flood margin, 

where the buildings that are affected by the inundation occur. Furthermore, the 

interaction with modular choice (square at column 3, row 1) demonstrates that 

these two factors in combination provide significant control over estimated damage 

cost. In this square, the relative insensitivity of the ATS module can be seen (blue 

line), which remains at a low gradient across the range of friction choice (x axis). By 

contrast the other modules display a higher level of interaction with the levels of 

friction choice, which indicates that this factor becomes more critical with increasing 

level of physical representation. These three factors appear to have the greatest 

control on the estimated cost. Interestingly the value of hydrograph appears 

relatively insignificant (column 5), despite the significance of this value to water 

depths as seen with the evaluation of RMSE.  

The advantage of estimated cost as an evaluation method is that it enhances 

aspects of model output that may be undervalued or ignored by using direct model 

evaluation techniques. In this test case, the wide range of depths demonstrated by 

the ATS and Roe codes as a result of friction values at certain points in the domain 

are not critical in the global model evaluation techniques. By using a methodology 

that is based on both local factors and global outputs, more information about the 

simulation can be included in the model output. A key issue with this methodology 

is the sensitivity of it to cell size. Here, as in previous test cases, the level of cell 

size is influential on model result, which may require further development in order to 

ensure that it could be used in a wider application.  

 

6.3.4. Uncertainty Hazard Plots 

The Uncertainty Hazard plots in the previous test cases have provided key insight 

into the different hydraulic characteristics of the flood captured by each LISFLOOD 

module (top left, Figure 6.22). The ATS module produces a similar outline to 

previous test cases, with a narrow hazard extent centred on the main flow path, in 

this test case the River Dearne, with high hazard frequency values. As with the 

previous test cases, this indicates that the immediate hazard level may be under 

predicted by this level of physical representation, which may prove critical 

depending on the decisions taken from these model results. By comparison the 
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modules with higher levels of physical representation capture a similar hazard 

extent to their uncertain flood extents (Figure 6.8) but with lower hazard frequency 

values across the floodplain by comparison. The ACC module contains very few 

regions of high frequency (top right Figure 6.22), indicating a large degree of 

uncertainty across the parameter set. Noticeable regions of high frequency include 

near the margin of the flood plain in the centre of the model domain and the eastern 

extent of the model. This indicates a certain amount of uncertainty in the ACC 

module to predict hazard in terms of spatial analysis, but also highlights that some 

of the characteristics captured by the full SWE modules are also captured here. In 

comparison with the ATS module, it appears that the inclusion of the convective 

acceleration term from the SWE reduces the overall velocity of the flood wave, 

which in turn will impact the associated hazard level, but capture a wider level of 

processes, in that velocity levels are maintained across the flood extent, unlike the 

ATS module. The ACC results represents a key trade off between the reduced 

physics model approaches, and computational efficiency.   

The Rusanov solver by comparison produces a large extent, similar to the flood 

extent plots of Figure 6.8, with high levels of frequency, which relates to the higher 

velocity speed at the point of initial inundation in comparison to the other modules. 

The regions of lowest uncertainty also relate to the regions of uncertainty identified 

by the uncertain flood extent indicating that the frequency values of the two plots 

are related. This is similar to previous test case results, indicating that the Rusanov 

solver may over estimate the level of hazard in all scenarios regardless of the 

hydraulic conditions. The Roe code has also produced a similar outline in 

comparison to the flood extent plot, but like the ACC module produces a wider 

range of frequency values across the model domain, than the Rusanov solver, but a 

greater percentage is of a higher value. A number of regions with greater 

uncertainty are similar to those identified in the flood extent plot, such as the 

western margins of the model domain, and contain similar value indicating that 

these are related. A spatial dependency is also apparent with the Roe solver. 

Increasing distance from the input boundary appears to increase the regions of 

frequency values less than 0.9, indicating a gradual diffusion of water and velocity 

across the site, which is intuitively correct. This same process is not captured by the 

other solvers, which tend to show a more sporadic arrangement of lower hazard 

frequency values. The margins of the hazard extent also demonstrate a lower 

frequency value. This too would appear to be intuitively correct, as water levels and 

velocities reduce with distance from the source. This provides further insight into 

the nature of hazard and vulnerability across the model domain, and also indicates 

the importance of this method in not only determining regions of hazard but also 

how uncertainty in modelling progresses to other decision making processes. 



- 185 - 

6.4. Sensitivity Analysis 

6.4.1. Morris Method 

The F² value and RMSE value are both evaluated using a 4 level, 5 factor 

parameter space, which exclude the building representation factor from the original 

parameter space, due to instabilities with the Rusanov solver and the porosity 

model. Distributed friction values were used instead of single friction values as a 

result of their higher performance level indicated in the systematic analysis section. 

Considering the level of equifinality demonstrated by the F² function the use of a 

screening method may not be able to distinguish between the different factor levels. 

The results for F² are displayed below and show this impact (Figure 6.24), and the 

RMSE effects (Figure 6.25) shows a similar pattern 

 

Figure 6.24: F² Morris Method results. 

The indication from the Morris result is that the whilst the friction and cell factors 

appear to have similar first order influence and are ranked first from the parameter 

space, the small variations indicate that each factor is similar in terms of 

contribution to model results. The ability of the Morris method to discriminate 

between factors of equal significance has been noted before (Pappenberger et al 

2008), and here where the level of equifinaility is relatively high, the same impact is 

noted. The combination of friction and cell size as an influential factor has been 

observed in the interaction plot of Figure 6.12, and the Morris method further 

confirms this factor. The confidence in this result is however reduced by the 

similarity between factors. A key requirement of Sensitivity analysis method is the 

well posedness of the questions (Saltelli et al 2000). Here the indication is that due 

to the level of equifinality, a screening method may not be suitable to distinguish 

between model simulations. 
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Figure 6.25: F² Morris Method results.   

A similar pattern also emerges when the RMSE method is also considered. A 

similar ranking of factors occurs, with both the friction and cell factor indicating high 

first order influence. The hydrograph appears to contain a low first order but very 

high interactive component, which can be observed in the interaction plot of Figure 

6.14. Again a similar issue occurs, considering the equfinality of model results 

creates a small range of results with which to rank the factors. The overall indication 

is that the Morris method may be unsuitable in scenarios where the range of model 

results is low.  

6.4.2. BACCO-GSA analysis 

The results from the BACCO Gaussian emulator based Sensitivity Analysis are 

summarised in Table 6.4. As with previous analysis, a LP-Tau sampling method 

with 100 training provides the best emulator fit in comparison to a Latin Hypercube 

approach. As with previous tests the aim here is to investigate further the influence 

of parameters on a simplified physics model and a full SWE module, rather than the 

influence of the whole parameter and factor ranged used in the systematic analysis 

section.  
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Parameter 
Total effect 

(ACC F²) 

Total effect (ACC 

RMSE) 

Total (Roe 

F²) 

Total (Roe 

RMSE) 

Cell 56.0 24.2 46.7 36.31 

Hydrograph 85.83 91.09 71.2 91.52 

LiDAR error 8.11 11.24 56.8 1.13 

Friction 42.07 36.63 41.23 35.65 

Table 6.5: Results from the BACCO GEM analysis 

Each module displays a similar sensitivity to other factors, again demonstrating that 

each module has a relatively similar output across the parameter range, and is 

therefore less critical by comparison. The hydrograph appears to be the most 

significant input factor with a lowest total effect value of 71.2. This appears to differ 

from the systematic analysis section, which demonstrates a relative lack of 

influence to the mean level of model performance for F² with a higher contribution to 

the RMSE. Both the friction value and cell size also appear to be significant 

contributing factors, which has also been seen in the systematic analysis, and the 

Morris Method analysis. The high level of total effect indicates a strong interaction 

process between factors, which had also been partly identified in the Morris method 

analysis. The overall indication is that these factors all influence the modelling 

output. Reduction of uncertainty for this test case, would require further detail of all 

these parameters, which indicates the complexity of solving inundation problems. 

These results should be considered in relation to variation with the previous test 

case. The different parameter sampling strategy of the two approaches, two 

sensitivity analysis sections, and the exclusion of both building representation and 

physical representation factor would affect the relative significance of the factors. 

Inclusion of these factors would depend on using a means of describing their 

distribution in a continuous means, rather than a discrete method that has been 

used in the analysis in this section.  This represents an area of further development 

for this research. 

6.5. Conclusions 

The Mexborough test case has provided a useful counter point to the two urban 

based test cases of the previous chapters. The results indicate that whilst the level 

of physical representation provides variations in certain aspects of model results, 

the overall significance of the level of physical representation is less than in urban 

environments. This compares with previous results which indicate both the 

dominance of diffusive conditions in rural environments and the similarity in 
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objective functions between the simplified approaches and full SWE models at 

larger cell size (Bates et al 2000, EA Benchmarking 2010). Both model evaluation 

techniques had issues of equifinality. The use of multiple objective function 

approaches and the use of risk based methods provide approaches for reducing 

this impact and refining the calibration approach. The estimated cost approach has 

also highlighted a number of properties displayed by the modules which were not 

captured by the traditional objective functions, mainly the range of depths displayed 

by the Roe solver. This indicates the potential usefulness of this approach as well 

as providing a calibration method with greater differentiation between model results. 

The issue of model runtime duration is clearly highlighted in this test case. This can 

often be an arbitrary value determined by a modeller, but here a clear bias has 

been highlighted against simplified approaches which may have clear implications 

in terms of Cost of Damage and economic loss. Here, the reduced model runtime 

impacted the ACC code by not allowing sufficient time for the model to route the 

flood water and reach the downstream boundary. This is a potential issue which 

should be clarified in future modelling of this region, but a number of points emerge 

from this. First that model runtime is itself an uncertain parameter and second that 

the ACC code requires a longer simulation time in order to replicate the complete 

flood processes. The bias in this test case helps to highlight this point. A further 

implication is that the variation between model codes may be further diminished in 

terms of modelled extent comparison. The results and analysis from this chapter 

consider this implication, but it should be considered further in future modelling 

exercises.  

A number of issue and further modelling exercises could be undertaken. First the 

use of a explicit river model will provide further insight into modelling approaches 

and to further explore methods for modelling these events. This is particularly key 

as previous studies have indicated the importance of these factors in model results 

(Hall et al 2005), and will help determine appropriate approaches to modelling river 

overtopping events. Secondly, the use of hydrographs that approximate the 

recorded values from nearby river gauges. The gauged time at peak value (or 

values over the recorded maximum of 56m³/s was over 3 days). Due to 

computational costs, this was reduced to a 15 hour peak time and a shorter model 

runtime. Although the results indicate a reasonable modelling process has been 

undertaken, further work could help to investigate the importance of this factor. 

Thirdly, the methodology behind creating observed water levels could also be 

explored. Here the methodology was based on a nearest member sampling method 

based on the GPS positions of the extent marks and depths in the DEM. Further 

work could investigate the importance of either the sampling approach, the errors 
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between GPS and DEM elevation and the techniques used to evaluate model 

performance. This test case has removed these issues due to computational 

constraints, but a detailed investigation could identify future issues and 

uncertainties related to the evaluation of modelled depths and observed depths. 

Finally more direct SA methods could also help to identify key factors. The 

sensitivity analysis used here is a combination of computational efficient methods 

and screening based methods. A more detailed approach, that uses direct model 

results and knowledge of the exact distribution of parameters rather than 

approximation of the model response surface, may overcome the equifinality issue 

of the objective functions, to make a clearer distinction between significant factors. 
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7. DISCUSSION AND CONCLUSIONS 

7.1. Overview 

The aim of this research has been to investigate the uncertainty associated with the 

level of physical representation in flood inundation, and to investigate how this 

impacts on model results and evaluation techniques. In order to provide a 

comprehensive analysis of this impact, the level of physical representation was 

compared to parameters and model inputs which are used in inundation modelling 

problems. This input parameter set was then used in three test cases, each of 

which had different topographic feature and hydraulic properties, which has 

reduced the potential of model bias from impacting the results. Each test case used 

a number of evaluation techniques based on two general approaches; traditional 

observed data approaches, and modified approaches based on risk, vulnerability 

and financial consequence. For each test case, the goodness of fit measure F² has 

been used to evaluate the model, which has been consistently used as a evaluation 

function and provides a means of not only identifying trends between model types 

and test cases, but also direct, smaller scale model outputs and other evaluation 

techniques. Finally, two sensitivity analysis techniques were employed to quantify 

the significance of other factors. 

The overall conclusions from each test case indicate that the level of physical 

representation has a significant control on most of the model functions and model 

results. For both the Glasgow and Coventry test cases, this factor controlled most 

of the variance in model results, both in evaluation techniques and model outputs, 

such as depth and extent. The impact is also monotonic in the Glasgow test case, 

where levels of increasing physical representation are matched by alterations in the 

output and evaluation techniques. This confirms previous findings about the 

significance of the level of physical representation to accurately model inundation in 

urban environments (Hunter et al 2008, Neal et al 2011). However, the significance 

of this factor appears to be less in the rural test case of Mexborough, where 

diffusion wave conditions dominate and transcritical flows do not appear in same 

manner as in the previous test cases. The choice of physical representation creates 

numerous local impacts which are often over looked by global model measures, 

and can impact other measures taken from the modelling results such as exposure. 

A key impact of the choice of the level of physical representation is the significance 

of other factors, for example the sensitivity of ACC to cell size, the impact that 

friction has on ATS, and the sensitivity of the Rusanov solver to all parameters. The 
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implication is that with changing physical representation and numerical complexity 

of the code, the significance of other factors changes in a non-linear way. 

7.2. Discussion 

A number of trends are noticeable across the test cases relating to the precise 

impact of factor choice on model output. The choice of building representation 

impacts how well flow paths in the model can be defined, which can impact both 

extent and the modelled hazard level in key locations. As with the variation of 

results caused by the level of physical representation, the impact is often localised 

in the model domain with variations in the water depths and extents occurring near 

the location of buildings. The global impact is often small, compared to other factors 

but can impact the level of hazard associated with individual buildings. For all the 

test case, the use of spatial distributed friction methods and uniform values were 

compared. The explicit representation of low friction surfaces appears to have two 

effects. First, it reduced the level of uncertainty associated with the value of friction 

by reducing the range of model results. Secondly, the model performance was 

higher where low friction surfaces are represented than where a uniform value is 

used. The fact this occurred for all three test cases, including Mexborough, which is 

predominantly rural and contains a lower percentage of surface occupied by road 

networks, indicates that the inclusions of these surfaces is significant in further 

modelling exercises. Further work could be undertaken into determining the precise 

nature of this, and in determining an optimal number of friction surface categories. 

The impact of inflow hydrograph uncertainty also appears to be low in terms of 

global effects and relative to other factors. The comparison of extent often 

displayed little variation to the depth of water in the model and between the different 

inflow hydrographs, but other methods appeared to show greater response to this 

factor, such as the RMSE and Nash Sutcliffe coefficient. Overall though, the impact 

of the inflow appears to be responsible for controlling the shape and hydraulic 

characteristics, rather than the precise distribution of depth values, which is also 

controlled by friction values. The overall indication is that interaction between 

friction, inflow and physical representation is responsible for extent and depths, and 

where depth of water at specific locations is required these factors must be carefully 

considered. A detailed calibration process is required to reduce the uncertainty of 

model results. A further conclusion from this work is the relative insignificance of the 

error associated with the DEM, which showed little signs of significance contribution 

to variations in model output. However, the method to assess this factor may be a 

contributing reason to this, where the error is randomly assigned between the 

maximum value and zero. Further information on this may allow the DEM to be 
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degraded in a non random way, to define spatial patterns between error, surface 

features and measures elevation. This way a further conclusion could be drawn 

about the significance of this error in a spatial context rather than a broader global 

level of uncertainty, than has been made here. 

The model evaluation techniques also provided further insight into the relative 

values of parameter significance. In each test case the use of extent measure 

provided a useful comparison point to previous research, and provides an indication 

of the response of module performance, particularly in urban areas. Methods that 

go beyond the approach of binary comparison of extent are increasingly popular 

(Stephens et al 2012), and provide different properties of the observed data with 

which to test the model outputs. In terms of evaluating uncertainty in modelling, the 

use of alternative evaluation functions has demonstrated two points. First, that the 

method of evaluation has a distinct impact on what factors are identified as critical. 

For example the use of extent indicates the importance of friction for most test 

cases, and less critical is the value of inflow. This however changes where depth 

becomes a key element in the model evaluation technique, such as Nash Sutcliffe 

in the Glasgow test case or estimation of depth in Coventry. Secondly, that 

combined approaches can significantly overcome the issues of equifinality, even in 

scenarios such as Coventry where a single uncertain depth measurement has 

refined the parameter evaluation method. A combined multi objective function 

analysis can also refine the number of best performing models down to a smaller 

selection (as in Dung et al 2011). Using other uncertainty methods could then be 

employed to further understand the relationship between factors and model outputs 

as well as best performing models. A modified GLUE approach could use these 

techniques to create a smaller final sample of behavioural models, which can 

further reduce uncertainty in inundation modelling 

The use of risk based methods to evaluate model output has been undertaken in 

previous research to create functions with greater differentiations between models, 

and to provide more direct communication methods with decision makers 

(Pappenberger et al 2008). In this research, the use of vulnerability weighted 

approaches was mixed in terms of providing a more refined calibration method than 

the traditional method. For the Glasgow test case, a clear distinction was made with 

the overall spread of results, however for both Coventry and Mexborough this was 

reduced, as a result of either too many or too few weighted cells in critical areas. 

The issue is one of how to weight the regions in a model domain where model and 

observed prediction do not match, by using assets which are determined as being 

of higher consequence as the weighting component. A clearer distinction between 
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models is required in order to provide a comprehensive approach to modelling, and 

the subjective nature of the approach may create more uncertainty in the process 

than reduce it. The regional approach provides not only information about model 

performance in critical areas; it also provides the opportunity for decision makers to 

have further input, to the modelling process. In this research this method has 

provided considerable information on local model variations, as well as provides 

information concerning the interaction of global evaluation functions with regional 

results. Finally the use of a cost of damage based approach has provided further 

detail of model performance, wider ranges of model variation with which to evaluate 

the models and a means of communicating uncertainty. In the case of Mexborough 

it provided a form of evaluation that provided more insight than the traditional 

evaluation methods. Moreover, it linked global model performance to local 

variations in critical areas in a method that neither of the direct model calibration 

methods could. Further work could look at where it would be appropriate to use a 

methodology that also included depth damage approaches. 

Broadly, in order to reduce the uncertainty associated with the different levels of 

physical representation depends greatly on the modeller’s ability to determine key 

hydraulic characteristics of the model, and to chose a model that reflects this. A 

broad rule from the conclusion of this research would be to base this on the 

underlying topography and grid resolution. Where complex topography, such as 

urban environments are prevalent, and where the underlying topography is not 

complex, the level of physical representation must be carefully justified and full 

SWE modules should be used. However, where the underlying topography contains 

steep, well defined bed slope such as present in the Coventry test case, the 

significance of this factor lessens. For rural domains this reduces further, indicating 

that underlying topography and not just the representation of surface features is an 

important control on model results and the choice of input factors. 

7.2. Conclusions 

The main conclusions can be summarised as following; 

 The level of physical representation is a significant factor in all scenarios. 

However it is less critical in larger scale rural modelling exercises, where 

the diffusion wave properties common to all the codes tested here become 

dominant. This is similar to conclusions in previous research, but here it is 

demonstrated in a more systematic way, in comparison to other parameters 

that may also contribute to uncertainty.  
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 The level of physical representation will impact the model in a local manner, 

such as urban road networks, where conservation of momentum is 

required. This may not be significant at a global scale. 

 Simplified approaches to the governing equations, such as ATS and ACC, 

and simplified numerical approaches to the full SWE, such as the Rusanov 

code, can provide a useful and potentially computationally cheaper 

inundation model. However, the large variation in results with these codes 

indicates uncertainty, and the reliance upon a reliable calibration process. 

 The method of evaluating model performance is critical to determining the 

significance of parameters, and where possible multiple evaluation 

functions should be used to reduce the level of equifinality of individual 

functions and reduce the number of ‘best performing’ models. 

 The use of subjective vulnerability approaches can enhance the calibration 

process in two ways. First, it can provide more information related to local 

impacts within the modelling domain either through enhancing regions 

designated of greater significance (F²VW) or providing regional breakdowns 

of global factors (Regional F²). Secondly, it could be used to provide more 

direct ways of communicating uncertainty with decision makers whilst 

enhancing the knowledge of local model output (through depth damage 

curves). 

 Interaction between parameters is strong, and the choice of level of 

physical representation will impact on what other factors are critical, but the 

effect is not linear with each code producing a different reaction to the 

parameter set. In particular the practice of adjusting the value of Manning’s 

n friction value to calibrate model may not take into account the insensitivity 

of the underlying model and may be insufficient to account for the 

uncertainty in the modelling process. 

 Sensitivity analysis has shown that the level of physical representation is a 

significant factors, when compared to other factors. This must be 

considered in respect to the assumptions that were made in applying the 

SA methods.  

A number of additional points must be considered with these conclusions. The 

choice of the three test cases was designed to reduce the potential of model bias 

occurring in the results. This is where a single test case with prevalent hydraulic 

conditions may impact the decisions and conclusions made. Here, this has in part 

been avoided, but a number of issues are raised in the analysis and aspects of the 

test cases could be improved to provide a more comprehensive analysis. The grid 
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resolution had been set based on issues of computational costs as well as feature 

representation. For both urban test cases, this could be further refined to a 1m grid 

level, at which level further features can be included such as road crown features  

which impact model results (Fewtrell et al 2008, Sampson et al 2012). This would 

provide insight into how refined the topographic surface needs to be to reduce 

uncertainty related to topographic features. Moreover, the use of a random 

degraded DEM to represent the modelling error could also be improved upon by 

using knowledge about the structure of the DEM to refine how error is attributed to 

the original LiDAR surface. A methodology that uses knowledge of the distribution 

of this error will provide further insight into the importance of this factor (Tsubaki et 

al 2013).   

The sensitivity analysis approach used a number of assumptions. First, in relation 

to the Morris method, the model inputs were divided to create four discrete 

intervals, so as to allow the level of physical representation and the building 

representation type to be included as a model input. Parameter independence was 

assumed, which may not strictly be the case with the grid resolution and DEM error. 

However, the value of the LiDAR RMSE error is not strictly a product of the cell 

size, which is adjusted by the modeller, and can be assumed to be related, but 

independent. Conclusions with this method must be considered within this context. 

Secondly, the assumptions of both the BACCO-GSA and Morris method are based 

on inputs having a Gaussian distribution. Again this is not strictly accurate as 

previous research has found (Hall et al 2005), although calibration methods that 

have used a Bayesian Gaussian approach have proved successful (Hall et al 

2011). As with the Morris method, the conclusions must be appreciated in this 

context. 

Concerning the risk based methods the use of subjective methods to assess model 

output may increase uncertainty rather than remove it. For the vulnerability 

approach and the regional analysis there is a large number of assumptions based 

in defining the weighted areas and values. The concept is to allow decision makers 

an opportunity to engage in the model building process. The methods should be 

seen as assisting the calibration process rather than a definite form of evaluation 

function, a conclusion reached by Pappenberger et al (2007), who developed the 

concept. Here the use of these techniques has been furthered, by using them in 

multiple scenarios, comparing them with other standard techniques, and using 

unique approaches to determining the weight and location of cells that contribute to 

these exposure based calibration methods. These methods have potential to refine 

the calibration process, but further work could enhance this by determining the 



- 196 - 

uncertainty associated with the weighting of cells and the positioning of the cells. 

The estimation of damage is also subjective; the choice of cells that contribute to 

the calculation, the choice of depth damage curves and even the methodology used 

(MCM) are all based on subjective choices. The uncertain boundaries of the depth 

damages curves were not included in the analysis for ease of communication, but 

these values would in some of the test cases exceed the total variance caused by 

the other parameters. Further work could look at using depth damage curves from 

other techniques and other models, such as in Apel et al (2010). The use of these 

methods must be considered in this aspect. 

7.3. Further Work 

Further work could be undertaken by expanding the parameter space. The 

Mexborough test case has provided some insight into the parameter space of the 

floodplain in a river topping exercise. This test case could be expanded to include a 

river channel model, which has shown previous evidence of significantly 

contributing to model variance (Hall et al 2005). This could also include the use of 

sub-grid models (Neal et al 2012) and the use of bridge representation (Sampson et 

al 2012) as well as including channel width and friction as variable parameters. 

Inclusion of these factors may introduce a set of parameters with significant control 

on model results. It will also provide a useful point to determining the level of 

representation required where rivers and channel networks form part of the inflow 

boundary conditions.  

The inflow boundary has been treated with a simple range of error determined from 

the literature (di Baldassare et al 2009). This could be further explored, by 

identifying the structure of the uncertainty in the extrapolation methods of depth 

rating curves, and using that to refine the analysis of uncertainty associated with 

this factor.  

The use of distributed friction surfaces has proved to have a number of advantages 

over uniform values, not only in terms of model evaluation function but also the 

representation of flow in critical low friction surfaces and regions such as road 

networks. In this research the parameter space was based on thirteen friction 

surfaces, with two surface regions. Consequently regional values were fixed 

relatively so that the same Manning’s values were used for each parameter set. 

Given that there is a clear reduction in the range of model function, further work 

could be focused on determining the influence of the relationship between the value 

for the low friction surface and the high friction surface to output, by comparing all 

values of each surface to all values of the other surface. This would have increased 
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the total number of model runs in this research by an order of magnitude, but would 

provide further insight into the précised nature of Manning’s friction and how it 

should be implemented in inundation models.  

In order to provide a comprehensive analysis of the entire flood inundation 

modelling process, the uncertainty related to the observed data should also be 

included. Here, due to the increased computational cost it has not been included, 

but could be included in both the Mexborough test case, and more particularly the 

Coventry test case, where the uncertainty in the digitisation process could be 

included, or assumptions concerning the precise nature of the extent limit could be 

tested. Previous work has introduced the idea of fuzzy extent methodology 

(Pappenberger et al 2006), or a various approaches to determining observed depth 

from either satellite images or recorded depth point (Mason et al 2009, Stephens et 

al 2012). This work would then provide further perspective on how to further reduce 

uncertainty in modelling, and to focus further work on increasing the knowledge of 

the modelling building process or to refine the data capturing process. 

The use of the Morris Method and BACCO approach, were used to reduce the 

computational costs of a full variance based quantitative sensitivity analysis 

method, such as Sobol Indicies. These approaches make a number of assumptions 

about the input distributions and in the case of the Morris method, can only provide 

a qualitative level of analysis. For both Coventry and Glasgow, this level of analysis 

was sufficient to indicate the importance of the level of physical representation 

compared to other factors. But where parameters were similar in significance such 

as in the Mexborough test case, the Morris method proved ineffective at 

differentiating between the factors. The BACCO approach also used a smaller 

parameter space, excluding both building representation and level of physical 

representation allowing only a comparison between the ACC and Roe solver could 

be made in this research. This approach has allowed some further understanding of 

the how the each code is individually affected by factors. In the Mexborough results, 

the similarity between the results indicated that the level of physical representation 

was less critical than in the previous cases. The variation between the significance 

of factors and approaches is indicative of the issues surrounding the application of 

sensitivity analysis methods in that each method provides a slight variation in the 

description of sensitivity. For the BACCO method, this is related to the contribution 

of a factor to the total model variance, and for the Morris method it is related to the 

average effect on model output. The implication is that these different definitions will 

provide variations indentifying key parameters. These conclusions have been made 

before (Pappenberger et al 2007, Tang et al 2007), and indicate that to further 
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understand the role of physical representation qualitative methods are required. 

The role of sensitivity analysis in this research has been to further the findings of 

the initial analysis, but has also shown evidence of contradictory findings to the 

systematic analysis approach, such as increased sensitivity to cell size in the 

Coventry test case and a reduced sensitivity to building representation in the 

Glasgow test  case. A robust sensitivity analysis approach (rather than a split 

analysis approach used here) which used these test cases as a basis would 

overcome these issue. Using the method of Sobol or other moment based analysis 

techniques that evaluate parameter contribution to model output, would provide a 

more detailed approach, with quantitative results). It has been suggested that a 

method to including physical representation would be to include a module selection 

method based on a random switching variable between cells (where the level of 

physical representation used would be determined by the value of a random 

variable, as suggested in Hall et al 2005, Saltelli et al 2000) However, this would 

lead to a parameter space several orders of magnitude greater than the other 

parameters combined. Utilising the regional analysis approach suggested here to 

determine model performance in vulnerable areas, the switching method could be 

employed over model domain regions, thereby reducing the computational cost of 

the switching method and providing insight into regional response to model 

variation. 
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List of Notation 

F   axis flux vector  

G   axis flux vector 

U vector of conserved variables 

S vector of source terms 

  x spatial node  

  y spatial node 

  channel cross section area 

  channel hydraulic radius  

  channel perimeter 

  total discharge 

      bed slope source 

   friction slope source 

  unit discharge 

  flow depth 

  x axis velocity component 

  y axis velocity component 

  Manning’s friction coefficient 

   acceleration due to gravity 

  bed elevation 

      Cell indexes 

     Spatial node indexes 

   Timestep 

   Parameter Variance 

Θ Theta – numerical diffusion coefficient for LISFLOOD-ACC 

  wave celerity 

      CFL condition 

   Wave Speed 

   First order sensitivity factor 

    Total sensitivity factor 

X Parameter set 

Y  Model output in sensitivity analysis 

  number of parameters in sensitivity analysis test 
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  number of iterations in test 

   Conditional Probability distribution of output, dependent on the parameters 

   Unconditional probability distribution of output 

   Probability distribution of parameter set x 

     Likelihood value 

  similarity factor 

   Parameter elementary effect 

   debris factor 

   Damage ratio 

μ  Mean elementary effect 

σ  standard deviation of the elementary effect 
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List of Abbreviations 

BACCO – Bayesian Analysis of Computer Code Output  

BB -Building Block 

BP- Building Porosity model 

BR- Building resistance model 

BH- Building hole 

CFL – Courant-Freidrichs-Lewy number 

GEM – Gaussian Estimation Model 

GSA- Global Sensitivity Analysis 

DTM – Digital Terrain Model 

F² -  Goodness of fit measure 

GSA- Global Sensitivity Analysis 

LIDAR – Light Detecting Aperture Radar 

MC- Monte Carlo Modelling 

MCM – Multi Coloured Manual, a handbook for determining depth damage 

curves 

NS- Nash Sutcliffe 

RMSE- Root Mean Square Error 

SA- Sensitivity Analysis 

SAR- Synthetic Aperture Radar 

SWE – Shallow Water Equations 

 


