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PrPSc  Scrapie prion protein 

PTHrP  Parathyroid hormone related protein  
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RCL  Replication competent lentivirus 

rhBMP-2 recombinant bone morphogenetic protein 

RNA  Ribonucleic acid 

RT-PCR Reverse transcriptase-PCR 

RT-qPCR Reverse transcriptase-quantitative PCR 

ROS  Reactive Oxygen species 

rpm  Rotations per minute 

s  SOX-2  

ss  single stranded 

S  Synthesis phase of cell cycle where DNA replication occurs 

SAHF  Senescence associated heterochromatin foci 

SASP  Senescence associated secretory phenotype 

SDF-1  Stromal-derived factor 1 

SDF  Senescence associated DNA-damage foci 

SDS  Sodium dodecyel sulphate 

SDS-PAGE Sodium dodecyel sulphate-poly acrylamide gel electrophoresis 

SH2  Src homology 2 

shRNA Short hairpin-RNA 

shRNA-ns shRNA-non silencing 

SKY  Spectral karyotyping 

SMA  Smooth muscle active 

SMAD-8 Small mother against Decapentaplegic transcription factor-8 

SOD  Superoxide dismutase 

Sox2+  Early neural progenitor cells  

SPR  Sensor-based PrP
 
binding assay 

SSC  Side scatter 

SVZ  Sub-ventricular zone 

T cells T cells are called T lymphocytes. The B cells leave BM and mature in 

thymus 

TBBMC Total body bone mineral content 

TDD  Trichothiodystrophy 

Terc  Telomerase Ribonucleic acid 
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Tert  Telomerase reverse transcriptase 

Tert-ER Telomerase reverse transcriptase-oestrogen receptor 

TEMED (N,N,N,N)-tetramethly-ethlyenediamine 

TGF-   Transforming growth factor-  

TR-/-  Telomerase knock-out 

TSE  Transmissible spongiform encephalopathy 

TNF   Tumour necrosis factor alpha  

UD  Undifferentiated control 

UV  Ultra-violet 

UT  Untransduced 

VAS  Visual analogue scale 

VTHS  Virtual high throughput screening 

VPA   Valproic acid 

WT  Wild type 
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Human mesenchymal stem cells (hMSCs) have been shown to have potential in 

regenerative approaches in bone and blood. Most protocols rely on their in vitro 

expansion prior to clinical use. However, several groups including our own have shown 

that hMSC lose proliferation and differentiation ability with serial passage in culture, 

limiting their clinical applications. Cellular prion protein (PrP) has been shown to 

enhance proliferation and promote self-renewal of hematopoietic, mammary gland and 

neural stem cells. With this work I tested the hypothesis that PrP decreased with cellular 

ageing of hMSC and was, at least in part, responsible for the loss of proliferation and 

differentiation seen with expansion in culture. Here I showed, for the first time, that 

expression of PrP decreased in hMSC following ex vivo expansion. When PrP 

expression was knocked down, hMSC showed significant reduction in proliferation and 

differentiation. In contrast hMSC expanded in the presence of small molecule 3/689, 

which stabilized PrP expression, extended lifespan up to 10 population doublings. These 

cells showed a 10 fold increase in engraftment levels in bone marrow 5 weeks post-

transplant suggesting they were of superior quality. This was due to enhanced protection 

from DNA damage and enhanced cell cycle progression through upregulation of 

superoxide dismutase-2 (SOD2). The increase in SOD2 was dependent on PrP 

expression and suggested increased scavenging of reactive oxygen species as 

mechanism of action. My data point to PrP as a good target for chemical intervention to 

delay stem cell ageing. 
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1.1 Stem cells 

A stem cell can be defined as an undifferentiated cell that has the ability to renew its 

own cell population by undergoing mitotic cell divisions, a process called as self-

renewal and also has the ability to undergo differentiation into one or more mature cell 

types which are responsible for carrying out specialised functions in the body (Lovell-

Badge 2001; Gardner 2002; Lakshmipathy and Verfaillie 2005).  This dual ability of 

stem cells enables them to act as a repair system for the body and therefore hold 

potential in regenerative medicine. In principle, stem cells can be isolated, expanded in 

culture and administered to the patient for repair of damaged tissues. However, there are 

many important challenges to be addressed before most stem cells could be used 

clinically. This includes identification of unique markers for their isolation, the 

development of in vitro culture conditions to obtain sufficient number of stem cells 

without loss of self-renewal and multi-potent differentiation ability and the advancement 

in designing protocols for transplantation which would result in their functional 

integration within the host tissue (Colman and Kind 2000; Stocum 2001). Stem cells 

from vertebrates can be divided into two major categories: a) Embryonic stem cells 

(ESC) and b) Adult stem cells.  

 

1.2 Embryonic stem cells 

Embryonic stem cells (ESC) are pluripotent stem cells. They can self-renew and 

differentiate into cells of all three germ layers: ectoderm, mesoderm and endoderm 

(Thomson, Itskovitz-Eldor et al. 1998; Wobus and Boheler 2005) and are prime 
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candidates for regenerative medicine. These stem cells have been derived from early 

embryos of several species including fish (Hong, Winkler et al. 1998), birds (Pain, Clark 

et al. 1996) and mouse (Brook and Gardner 1997). The human ESC is derived 

predominantly from the inner cell mass of 4-7 day old embryo called blastocyst 

(Thomson, Itskovitz-Eldor et al. 1998; Donovan and Gearhart 2001). In vitro, these stem 

cells can be expanded indefinitely and differentiate into several cell types (Fig 1.1) upon 

exposure to appropriate culture conditions (Semb 2005). However, there are still 

unsolved problems that prevent the use of ESC for clinical applications. It has been 

reported that injection of undifferentiated ESC give rise teratomas (Amit, Carpenter et 

al. 2000; Reubinoff, Pera et al. 2000; Shih, Forman et al. 2007). Attempts to obtain pure 

population of differentiated cells from ESC have been disappointing due to low 

efficiency of differentiation which resulted in heterogeneous cell populations still 

containing undifferentiated ESC (Bieberich, Silva et al. 2004; Mountford 2008).  This is 

most likely due to the fact that all the signals needed for full differentiation are still 

unknown. Moreover, as ESC come from a different donor, immune-mediated rejection is 

expected following transplantation (Fairchild, Robertson et al. 2005; Gardner 2007).  

Last but not the least  there are hurdles of ethical issues surrounding the use of embryo 

(Rippon and Bishop 2004). embryo and 

this is of ethical concern. It is because for some, human life starts once the oocyte 

fertilises, fundamentally stating that fertilised egg develops into a human being whose 

rights and interest should be protected. For these reasons, further investigations on other 

stem cell types such as induced pluripotent stem cells (iPSC) are also warranted in an 

attempt to overcome some of those hurdles. 

 



 
 

4 | P a g e  
 

  

 

 

 

 

 

Fig 1.1: Pluripotent nature of embryonic stem cell 

(The pictures are adapted and modified from http://www.nlm.nih.gov/medlineplus/) 
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Induced pluripotent stem cells are a type of pluripotent stem cell that is derived from 

adult somatic cells by reprogramming their genome into an embryonic stem cell-like 

state in vitro. There are four specific genes: (Oct-4), Sox-2, Kruppel-like factor ( Klf-4), 

c-Myc (Bilic and Izpisua Belmonte 2012) in particular  that are sufficient enough to 

reprogramme  adult fibroblasts to iPSCs (Walia, Satija et al. 2012). Table 1.1 shows list 

of methods employed and reprogramming factors involved in reprogramming of adult 

somatic cells to iPSCs and their pros and cons (Robinton and Daley 2012).  However, 

the current problem lies in their low efficiency in derivation. Even though rigorous 

pluripotency tests such as teratoma formation, generation of chimeras and germ line 

transmission are performed on many iPSC lines, there are discrepancies observed in the 

outcome of the quality of iPSCs lines obtained  (Bilic and Izpisua Belmonte 2012; 

Robinton and Daley 2012). This is due to the differences in culturing conditions and/or 

differentiation protocols followed in different laboratories. Additionally there are 

chances of genomic mutations which may arise during the reprogramming process (Bilic 

and Izpisua Belmonte 2012). For these reasons adult stem cells are considered 

alternative to embryonic stem cells.  

 

1.3 Adult stem cells 

Adult stem cells are an alternative source of stem cells for tissue repair. The primary 

own tissue avoiding the problem of immune rejection (Stocum 2001) and the ethical 

issues. Comparatively, they are less controversial. However, unlike the ESCs they are  
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Table 1.1: Methods and factors considered important for reprogramming of adult 

somatic cells to induced pluripotent stem cells  

(Adapted and modified from (Robinton and Daley 2012) 

K - Kruppel-like factor (Klf-4), L - Lin28, M - c-Myc, N - NANOG,O - Octamer-binding 

transcription factor-4 (Oct-4) ,s - SOX-2, VPA - Valproic acid 
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multipotent and exhibit a more limited proliferative and differentiation ability.  They 

tend to differentiate mainly in the specialised cells of the tissue where they reside (Jiang, 

Jahagirdar et al. 2002). They function to maintain tissues under homeostatic conditions 

and provide a renewal capacity of cells in response to trauma and disease (Fuchs, 

Tumbar et al. 2004). 

 

Adult stem cells have been reported to exist virtually in all tissues including fat tissue 

(Hawke and Garry 2001), pancreas (Choi, Ta et al. 2004), kidneys (Rookmaaker, 

Verhaar et al. 2004), bone marrow (Weissman 2000), skin  (Watt 2000), gut (Whitehead, 

Demmler et al. 1999; Potten, Booth et al. 2003), liver (Alison 2002), mammary gland 

(Liao, Zhang et al. 2007) and brain (Gage 2000) to name a few.  

 

Two types of adult stem cells that reside in the bone marrow (BM) are the 

haematopoietic stem cells (HSC), which differentiate into mature haematopoietic/blood 

cells, and the mesenchymal stem cells (MSC), which differentiate primarily into bone, 

fat and cartilage. Haematopoietic stem cells are one of the important adult stem cell 

which has been used routinely in the clinic for over 30 years to regenerate blood tissue 

(Kapoor 2001) and they are a proof of principle that adult stem cell can be used for 

tissue repair and thus hold great potential in regenerative medicine (Togel and 

Westenfelder 2007) . However, although other adult stem cells have shown encouraging 

results, their clinical use is still far away due to the lack of basic knowledge of their 

biology. In my thesis, the focus is primarily on mesenchymal stem cells.  
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1.3.1 Mesenchymal stem cell (MSC) 

Mesenchymal stem cells are multipotent adult stem cells that reside within the BM and 

therefore, are easy to access. They have also been isolated from many tissues such as the 

adipose tissue (Gronthos, Franklin et al. 2001) and umbilical cord blood (Kim, Kim et 

al. 2004), amniotic fluid, chorionic villi of placenta (Igura, Zhang et al. 2004), peripheral 

blood (Zvaifler, Marinova-Mutafchieva et al. 2000), teeth (Miura, Gronthos et al. 2003), 

fetal liver (Campagnoli, Roberts et al. 2001) and lung (in 't Anker, Noort et al. 2003). 

About three decades ago, MSCs were identified and characterised in studies by 

Friedenstein A J et al., (1976) who described them as plastic adherent cells that have 

ability to form colonies in vitro (Friedenstein, Gorskaja et al. 1976). They exhibit self-

renewal or proliferation ability and can proliferate up to 40 population doublings (PD) 

(Friedenstein, Chailakhyan et al. 1987; Bruder, Jaiswal et al. 1997). They can also 

differentiate to specliased cell types (Fig 1.2) (Friedenstein, Gorskaja et al. 1976).  

 

The three universal criteria proposed to define human MSC (hMSC) in vitro by the 

universal Mesenchymal and Tissue Stem Cell Committee of the International Society for 

Cellular Therapy (Dominici, Le Blanc et al. 2006) were that hMSCs: 

a) Must be phenotypically identified as spindle-shaped cells that adhere to plastic when 

maintained in standard culture conditions and are capable of forming fibroblast colonies 

(colony-forming unit-fibroblast, CFU-F), 

b) Must express cell surface markers such as cluster of differentiation (CD)105, CD73 and 

CD90, and must lack expression of CD45 (marker of HSC), CD34 (marker of 

endothelial cells), CD14 or CD11b, CD79alpha or CD19 and human leukocyte antigen-

D related (HLA-DR class II) surface molecules and  
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Fig 1.2: Multi-lineage potential of human mesenchymal stem cells (MSC) 

IBMX- isobutyl-methyl xanthine; TGF- - Transforming growth factor- , SMAD-8-, BMP-2-Bone 

morphogenetic protein-2 
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c) Must differentiate to multiple lineages including osteoblasts, chondrocytes and 

adipocytes that give rise to bone, cartilage and adipose tissue respectively, by addition of 

-glycerophosphate, ascorbic acid and dexamethasone for inducing  

osteogenic differentiation (Friedenstein, Gorskaja et al. 1976; Bruder, Jaiswal et al. 

1997; Pittenger, Mackay et al. 1999) and isobutyl-methyl xanthine (IBMX) and 

dexamethasone for inducing adipogenic differentiation (Pittenger, Mackay et al. 1999) 

in vitro (Jaiswal, Haynesworth et al. 1997; Pittenger, Mackay et al. 1999; Barry, 

Boynton et al. 2001).  

 

However, these set of criteria to define hMSCs have been severely criticized (Bianco, 

Cao et al. 2013). The reason for the controversy lies in the limited number of 

retrospective assays used to enumerate and characterize the properties of hMSC. Indeed 

the limited number of non-specific markers detected in vitro and their supposed ability 

to differentiate to osteoblasts, chondrocytes and adipocytes like cells do not sufficiently 

differentiate between stem cells and their descendants, the progenitor cells. Progenitor 

cells also exhibit the potential of undergoing extensive proliferation and differentiation 

ability in vitro, however, unlike stem cell; they contribute very little to long-term tissue 

regeneration in vivo.  Stem cells are by definition, cells with the ability to regenerate a 

tissue in vivo and therefore their identification has to reflect this.  

 

1.3.2 Assays for the identification of MSC  

The most commonly used assay to assess the number of MSC is based on their 

clonogenicity. The colony forming unit-fibroblast (CFU-F) assay determines the number 
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of MSC progenitors based on the ability to generate fibroblast-like cell colonies from a 

single cell. The CFU-osteoblast (O) and CFU-adipocyte (A) determine the number of 

MSC progenitors that have osteogenic and adipogenic potential (Fig 1.3). Even when 

these clonogenic assays are routinely carried out in the laboratory, these assays are not 

ideal to distinguish between the progenitor cells and the stem cells, which by definition 

require the ability to regenerate a tissue upon response to injury or following 

transplantation (Gronthos, Brahim et al. 2002; Bianco, Kuznetsov et al. 2006).  

 

The ectotopic bone formation assay is the best in vivo assay available, known to assess 

the regenerative capacity of MSC. This consists of seeding MSC in an appropriate 

porous scaffold and implanting this under the skin of a mouse.  Five weeks later an 

ossicle is formed with areas of osteogenesis, chondrogenesis and host haematopoiesis 

(Daga, Muraglia et al. 2002), allowing assessment of their ability to undergo osteogenic 

and chondrogenic differentiation and haematopoietic supporting stroma. An alternative 

in vivo assay is transplantation of MSC to their original tissue, the bone marrow. 

However, high and robust engraftment following transplantation to BM has been 

difficult to achieve in MSCs.  The reasons for this are unclear. Migration of MSC to BM 

is certainly a reason as engraftment levels were improved when enhanced green 

fluorescent protein (eGFP)- labelled human MSCs were delivered directly in the murine 

BM cavity by intra-BM transplantation compared to intravenous transplantation 

(Muguruma, Yahata et al. 2006). Another possibility is that the right environmental 

conditions to facilitate engraftment have not been found yet. Alternatively it is possible 

that few of the transplanted cells are bonafide stem cells and therefore they are 

insufficient to form bone in their own micro-environment where they need to compete  



 
 

12 | P a g e  
 

 

 

 

 

Fig 1.3: Schematic representation of functional assays to determine the self-renewal 

and differentiation ability of mesenchymal stem cell in vivo and in vitro 

Bone-marrow derived mesenchymal stem cells (MSC) have the potential to differentiate to osteo-

adipo and osteo-chondro lineage and give rise to mature cells osteoblasts, adipocytes and 

chondrocytes. In vitro, the colony forming unit-fibroblast (CFU-F) assay determines the 

clonogenic potential of bone marrow stromal cells and assays such as the colony forming unit-

osteoblast (CFU-O) and colony forming unit-adipocyte (CFU-A) determine the number of MSC 

progenitors with osteogenic and adipogenic potential respectively. In vivo, the stemness is 

evaluated by transplantation assay whereby a stem cell when administered into a host is able to 

regenerate a tissue and reconstitute a stem cell compartment by the donor cells. 
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with the existing endogenous stem cells. Indeed, it was suggested that following in vivo 

ectotopic transplantation into immunocompromised mouse, only 10% of CFU-F is able 

to give rise to myelosupportive stroma, bone and adipose tissue (Bianco, Kuznetsov et 

al. 2006).  

 

To test for the presence of MSC with long term repopulation ability, a secondary 

transplant assay is important. This consists of re-isolation of cells following primary 

transplant and administration of these cells to a second host. However, this has been 

nearly impossible to achieve with MSC and more work is required as these assays are 

important to define quality of stem cells. 

 

Indeed, functional assays are very important for the validation of surface markers for the 

prospective isolation of MSC. There are several markers that have been proposed to 

phenotypically define hMSCs but few of them have been evaluated in a stringent manner 

considering their ability to regenerate in vivo.  Although no unique surface markers are 

available to identify MSC, they are usually identified by a panel of markers which are 

not specific to MSC but are also expressed by other cell types. Cultured MSCs are 

usually negative for CD45, indicating their non-haematopoietic nature; CD31, indicating 

their non-endothelial nature (Pittenger, Mackay et al. 1999; Jones, Kinsey et al. 2002).  

They also express positive markers for CD105 (endoglin), CD29, CD44, SH3 and SH4 

and STRO-1 (Pittenger, Mackay et al. 1999; Deans and Moseley 2000; Jones, Kinsey et 

al. 2002; Zhou, Huang et al. 2003).  However, these markers are not specific to MSCs. 

For example CD105 is also expressed by endothelial cells. Antigens recognised by SH2 
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antibody are also expressed by fibroblasts (Deans and Moseley 2000). STRO-1 antibody 

also binds to glycophorin positive (+ve) and CD19+ve cells. 

 

Even in the ectotopic bone formation assay, when freshly isolated CD105+ hMSCs 

labelled with cell tracker DIL solution along with recombinant bone morphogenetic 

protein (rhBMP-2) were implanted under the skin of non-obese diabetic/ severe 

combined immunodeficiency (NOD/SCID) mice using collagen sponge carrier, 2-weeks 

post-implantation, the harvested implants showed presence of both cortical and 

trabecular bone formation by micro-computerised tomography (µCT) study (Aslan, 

Zilberman et al. 2006).  Moreover, photomicrographs of stained tissue implants showed 

that DIL-labelled CD105+ MSCs were observed to have morphological characteristics of 

chondrocytes and lining osteoblasts. However, no secondary transplant was performed 

suggesting that more robust assays are required to confirm that these cells are MSCs 

with long term regeneration potential.  

 

More recently, CD45lowCD146high in human have shown to enrich the MSC progenitors 

in vivo (Sacchetti, Funari et al. 2007). Human BM has been shown to contain a 

population of CD45low and CD146high stromal cells. Transplantation of cell 

populations derived from either a limited number of CD45lowCD146high CFU-Fs or single 

CD45lowCD146high CFU-F resulted in the generation of heterotopic ossicle with bone, 

adipocytes, and stromal cells supporting blood, suggesting their multipotent ability.  

Moreover the group was able to re-isolate the CD45lowCD146high stromal cells as CFU-F 

from the heterotopic ossicle, which could be secondarily passaged and assayed, 

suggesting that they were infact self-renewing (Sacchetti, Funari et al. 2007). However, 
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no secondary transplant was performed in the study.  Moreover, Tormin et al.,( 2011) 

had questioned the reliability of CD146 marker as t -

smooth muscle active (SMA) positive cells and its expression on MSC is associated with 

their vascular smooth muscle commitment (Espagnolle, Guilloton et al. 2014).    

 

CD271 is another marker that enriches MSC progenitors (Jones, Kinsey et al. 2002; 

Quirici, Soligo et al. 2002). The populations of CD146+ cells and CD146-/low cells which 

were also Lin-/CD271+/CD45- gave rise to MSCs cultures that were capable of multi-

lineage differentiation and co-expressed markers CD105, CD90, STRO-1, integrin, 

platelet-derived growth factor-  Both sub-populations of cells were 

transplanted into NOD/SCID mice by heterotopic bone formation assay using 

hydroxyapatite/tricalcium phosphate (HA/TCP) carrier particles and by intra-femoral 

injections using GFP-labelled Lin-/CD271+/CD45-/CD146+ and Lin-/CD271+/CD45-

/CD146-/low cells. The engraftment ability was assessed eight weeks post-transplantation. 

This functionally similar sub-population of cells were able to generate bone and support 

HSC in vivo which was detected by the presence of bone, fat, fibroblasts, capillaries and 

invading HSC in heterotopic bone formation assay. Even in the intra-femoral 

transplantations, both sub-populations of GFP+ cells were detected in perivascular 

region surrounding the endothelium of vessels, lining the bone, surrounding the 

adipocytes or as reticular cells in the marrow space. Moreover, bone-lining GFP+ cells 

also expressed N-cadherin and were localised in close proximity (around 20µm, 

corresponding to approximately 2 cells) of the bone surface and vasculature. (Tormin, Li 

et al. 2011). The only difference between these two populations was the location of these 

populations following transplantation. The Lin-/CD271+/CD45-/CD146-/low cells were 
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endosteally located and Lin-/CD271+/CD45-/CD146+ cells were perivascularly localized. 

Although, secondary CFU-Fs were assayed from the primary transplant, no secondary 

transplant was performed in the study to demonstrate whether they were long-term self-

renewing stem cells. A note of caution was mentioned in the study that did not show 

whether all the Lin-/CD271+/CD45-/CD146-/low and Lin-/CD271+/CD45-/CD146+ cells 

identified in situ represented CFU-Fs, as some of the cells could belong to the fraction of 

non-colony forming cells that might still be present even in highly purified cell 

populations. That is why more work is required to be carried out for precise phenotypic 

identification of hMSCs. 

 

Considering CD271 marker alone, there is ambiguity about the reliability of this marker. 

Antibodies for low affinity growth factor receptor (LNGFR), also called CD271, stain 

BM MSCs. The BM cells adherent after 4hours of culture that showed distinctive 

-  D7-FIB marker (a 

fibroblast/epithelial cell marker) along with very low CD45 fluorescence. These D7-

FIB+,CD45low cells expressed LNGFR along with CD105, CD10, CD13, CD90, 

STRO-1 and HLA-DR and also showed multilineage differentiation in culture (Jones, 

Kinsey et al. 2002). However, when D7-FIB+ve, CD45-ve cells were expanded in 

culture for up to 4 passages, the expression of LNGFR, HLA-DR and STRO-1 was lost 

(Jones, Kinsey et al. 2002).  Moreover, Quirici N et al., (2002) reported that LNGFR+ve, 

CD45-ve fraction of MSC were able to successfully show multi-lineage differentiation 

and CFU-Fs in vitro, to the contrary  LNGFR-ve, CD45-ve fraction of MSC failed to 

demonstrate any CFU-F activity, suggesting that its expression is confined to more 

primitive MSC progenitor population and not a MSC-specific marker. 
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The best example is shown in a study by Mendez-Ferrer S et al., (2010) who reported 

the formation of heterotopic ossicles by transplanting single Nestin-green florescent 

protein positive (GFP+) cells explanted from the murine BM into primary recipient 

mice. Nestin-GFP+ MSCs obtained from the primary ossicles 2 months post 

transplantation upon secondary passage in culture generated secondary spheres which 

when transplanted into secondary mice recipients resulted in the generation of secondary 

ossicles 8 months post transplants suggesting that Nestin-GFP+ MSCs are indeed bona 

fide stem cells with long-term self-renewal ability (Mendez-Ferrer, Michurina et al. 

2010). However, such engraftment ability in an exogenic model is difficult to achieve. 

Even transplantation of human HSC in NOD/SCID mice give origin to poor engraftment 

compared to mouse HSC. This is most likely due to differences in homing molecules 

among the two species. To summarise, studies like this will help investigators to better 

understand the phenotypic identification of MSC and how this knowledge could be 

transferred to the human field. A summary of the MSC markers with the type of testing 

conducted is shown in table 1.2. 

 

1.4 Clinical applications of MSC 

Due to their differentiation ability to osteoblast and hematopoietic supporting stroma, 

MSC hold potential in the therapy of bone regeneration especially to correct inherited 

disorders of bone and in strategy requiring improvement of HSC transplantation. 

 

 

 



 
 

18 | P a g e  
 

 

 
 

 
 

 

Table 1.2: Markers used for perspective isolation of human mesenchymal stem cell  

(Adapted from  (Bellantuono, Aldahmash et al. 2009) 

CD-Cluster of differentiation; LNGFR- low affinity growth factor receptor; +-positive; N/D-Not 

done; VCAM-Vascular cell adhesion molecule; SSEA-4-Stage specific embryonic antigen-4 
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1.4.1 Clinical application of MSC in correcting disorders of bone  

One of the first studies, which showed the potential of MSC in the clinical practice, was 

the study by Quarto et al., (2001). MSC have been used to accelerate repair of bone 

fracture. The autologous MSC isolated from the BM of three patients were implanted at 

the site of fracture and to treat large bone fractures (Quarto, Mastrogiacomo et al. 2001). 

Progressive new bone formation and total integration of the implants with the host bone 

was reported in the study for 7 years despite the occurrence of cracks in the implants due 

to bio-ceramic disintegration over the time. However, it was not possible to determine 

whether the accelerated repair was due to transplanted MSC or the endogenous MSC. 

Moreover no control group was present in the study.  

 

When fluorescently labelled MSC were implanted in a rabbit model following fracture at 

the site of fracture or in the bone marrow cavity of the non-affected tibia, a small 

proportion of donor cells have been found in the fracture gap suggesting that they at 

least in part contribute to the tissue repair and can migrate to the site of injury (Shirley, 

Marsh et al. 2005). 

 

Osteo necrosis of femoral head (ONFH) is a progressive degenerative disease associated 

with limited blood supply to the bone, leading to collapse of femoral head and the 

follow-up requires total hip replacement. Randomised clinical study was carried out by 

two research teams involving 8 and 100 patients respectively, who were diagnosed with 

ONFH. Patients with ONFH were subjected to core decompression treatment and 

treatment with autologous MSCs extracted, expanded and implanted into patients. 

Patients treated with ex vivo expansion of autologous MSCs significantly improved in 
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Harris hip score, visual analogue scale (VAS) score and aided in pain relief and showed 

decreased necrotic area in femoral head, post implant at different time points compared 

to core decompression treatment. However, the study did not show complete healing of 

affected hips (Chang, Tang et al. 2010; Zhao, Cui et al. 2012).  

 

MSC have been also used for the correction of inherited disorders of bone. A study by 

Horwitz et al., (1999) focuses on osteogenesis imperfecta (OI). OI is a genetic disorder 

caused by the secretion of a defective form of type I collagen by osteoblasts. It is 

associated with osteopenia, multiple fractures and severe bone deformities resulting in 

shortened stature. The trabecular bones of such patients have few numbers of 

osteoblasts, incomplete calcified area of bone matrix, disorganized formation of new 

bone and abnormal mineralization. In vitro data showed that culture expanded MSC 

from patients with OI were successfully transduced with wild type complementary 

deoxy-ribonucleic acid (cDNA) for collagen I protein to express normal form of 

collagen type I protein (Pochampally, Horwitz et al. 2005).  In vivo, three children with 

OI were transplanted with allogeneic BM from human leukocyte antigen (HLA)-

identical siblings. On day 216 after transplantation florescence photomicrograph of 

tetracycline labelled trabecular bone indicated new bone formation and matrix 

deposition. However, the engraftment levels of donor MSC were very low (1.5%-2%) 

(Horwitz, Prockop et al. 1999; Horwitz, Prockop et al. 2001; Horwitz, Gordon et al. 

2002). A clinical benefit was claimed in the study as in these patients the disease 

progression slowed down post-transplantation and this was a four-fold increase in bone 

mineral content and reported less number of fractures compared prior to transplantation. 

However, it was surprising that 1.5%-2% of osteoblasts could manage to bring about 
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such important clinical benefit and cast doubts on the real benefit of the treatment. No 

data regarding disease progression of untreated patients were presented. The reduction in 

the number of fractures may simply be a physiological process. It is known that the 

fracture rate in OI is highest in the first six months and decreases thereafter (Bishop 

1999). Therefore, although this study was encouraging, it needed to be interpreted with 

caution and highlights the low level of engraftment of MSC to bone marrow and 

questions what levels of engraftment are required to obtain clinical benefit. In a second 

study by Horwitz et al., (2001), the same authors enrolled a pilot clinical trial on five 

children with OI of which three patients received allogeneic BM therapy and two 

patients (control) did not receive transplantation. In this study the follow-up post-

transplantation was for 36 months. The three patients who received BM infusion showed 

accelerated growth rates compared to control patients. Even the total body bone mineral 

content (TBBMC) at the time of treatment was 25%-60% and three months post 

transplantation, it was increased by 45%-77% compared to control patients. However, 

with long-term follow-up the growth rate of OI-treated patients slowed down but was 

still higher than the control groups. It could be suggested that perhaps the integration of 

competent donor MSCs into the recipient were of osteoblastic lineage that developed to 

form bone, however, it was still not clear whether they included long-living osteogenic 

precursors or committed osteoblast with short half-life (Horwitz, Gordon et al. 2001). In 

another recent study involving a female fetus with multiple intrauterine fractures, 

diagnosed as OI, underwent transplantation with allogenic HLA-mismatched male fetal 

liver of a 10 week aborted, first trimester fetus.  The MSCs were expanded and injected 

into the umbellical vein at the 32nd week of gestation. Two year post-transplantation 

reported only 3 fractures and normal psychomotor development and corrected growth 
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tendency. However, the study was also conducted with bisphosphonate treatment after 4 

months post delivery suggesting that it was really unknown whether the corrected 

growth tendency was as a result of MSC or bisphosphonates or combination of both (Le 

Blanc, Gotherstrom et al. 2005). Although these clinical studies are very encouraging, 

however, they lacked proper controls or showed low levels of engraftment in the long-

term follow-up lasting only a few months. 

 

1.4.2 Clinical application of MSC in supporting the maintenance of HSC  

Tissue homeostasis requires a defined balance between stem and progenitor cells and the 

proposed initially by Schofield in the year 1978 (Schofield 1978). 

The stem cell niche comprises of stem cells and heterogeneous population of specialized 

within in a special tissue location. The niche cells 

are commonly the stromal cells, soluble factors, extracellular matrix, neural inputs, 

vascular network and cell adhesion components. Maintenance and regulation of stem 

cell number and stem cell fate decisions are immensely dependent on specific cues, 

molecular cross talk and interactions from hundreds of unique micro-environmental 

protein combinations of the niche (Engler, Sen et al. 2006; Brack, Conboy et al. 2007; 

Brack and Rando 2007; LaBarge, Nelson et al. 2009; Kiefer 2011). The cell adhesion 

and extra-cellular matrix (ECM) molecules of the niche help stem cells to anchor to the 

niche and facilitate their juxtaposition communication and also play a role in their 

maintenance (Kiefer 2011). For example, in a study by Shen et al., (2008), it was shown 

that the endothelial cells in the niche engage Notch signaling pathway to stimulate self-

renewal of neural stem cells within the neural sub-ventricular zone. However, when the 
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adhesion of neural stem cells to endothelial cells was disrupted using integrin receptor 

blocking antibodies, the proliferation of neural stem cells was altered (Shen, Wang et al. 

2008). Suda et al., (2012) suggested that stem cell size is regulated by positive and 

negative feedback factors from the other cellular components of the niche including the 

stromal/progenitor cells by paracrine and autocrine mechanisms (Ema and Suda 2012). 

These interactions can instruct a stem cell to either self-renew in close proximity or 

commit to differentiation at distant location to regenerate damaged tissues, thereby 

maintaining tissue homeostasis in the body (Kiefer 2011). The proliferation signal can 

also come from injured tissue that can activate signaling pathways induced proliferation 

in their respective stem cells cohorts (Conboy, Conboy et al. 2003). Even the endothelial 

cells that line the blood vessels in the niche can regulate stem cell proliferation (Ding, 

Nolan et al. 2010). ECM deposited by endothelial cells promoted endotheliogenesis in 

MSCs (Datta, Holtorf et al. 2005). All these studies suggest that if the niche components 

suffer any damage due to disease state or ageing, the stem cell fate and number will be 

immensely affected, thereby affecting tissue maintenance, repair and regeneration. 

Therefore, it is important to maintain the quantity and quality of stem cells within a 

specific niche to support tissue homeostasis.  

 

Among the various stem cell niches, the HSC niche, intestinal stem cell niche and hair 

follicle stem cell niche are the most well defined niches (Ema and Suda 2012). The BM 

stem cell niche constitutes of niche cells that includes bone cells at different 

developmental stages:  pre-osteoblasts, osteoblasts, osteocytes; stromal cells; endothelial 

cells and extra-cellular matrix proteins in a special tissue location, the BM. It also 

contains stem cells including HSCs and MSCs with a refuge of cell adhesion and 



 
 

24 | P a g e  
 

signaling molecules. The developing HSCs are maintained in the BM where they mature 

and are released into the vasculature. The mesenchymal progenitors (including MSCs 

and stromal cells) in the BM undergo multipotent differentiation into majority of BM 

stromal cell lineages including osteoblasts, adipocytes and chondrocytes. Various studies 

have reported that MSCs localize to perivascular sites (blood vessel wall) (Hirschi and 

D'Amore 1996; Crisan, Yap et al. 2008) which gives them easy access to all tissues and 

lends credence to the notion that MSCs are integral to healing of many different tissues. 

Therefore both HSCs and MSCs share the vascular niche.  

 

 support the maintenance 

and differentiation of HSC. The early studies by Friedenstein A J et al., (1976), showed 

that BM-derived MSC were crucial for the support of HSC (Friedenstein, Gorskaja et al. 

1976); (Majumdar, Thiede et al. 1998). This was subsequently confirmed by the study of 

Mendez-Ferrer et al., (2010), who showed that MSCs, defined as nestin expressing cells 

closely associated with the HSCs in the BM microenvironment and regulated their 

mobilisation by secreting high levels of transcription factors that are considered 

important for the maintenance of HSC (Mendez-Ferrer, Michurina et al. 2010). 

Moreover, in vivo depletion of Nestin+ MSCs rapidly reduced the HSC content in the 

BM while administration of parathyroid hormone doubled the number of Nestin+ MSCs 

and favoured osteoblast differentiation along with renewal of haematopoietic system, 

suggesting that MSC and HSC have a common niche and Nestin+ MSCs are required for 

self-renewal of HSCs (Mendez-Ferrer, Michurina et al. 2010). It has been shown that 

MSC secrete several cytokines such as interleukin  (IL)-6, IL-11, Leukaemia inhibitory 

factor (LIF) and macrophage colony stimulating factor (M-CSF), all of which are 
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important for the survival of HSC (Majumdar, Thiede et al. 2000). Moreover, MSC 

differentiate into osteoblasts, a cell type which has been shown to be involved in 

supporting the proliferation and survival of long-term repopulating stem cells and in the 

regulation of the haematopoietic niche (Calvi, Adams et al. 2003; Zhang, Niu et al. 

2003). Genetically altered mice producing osteoblast-specific, parathyroid hormone 

related protein supported the increase in the number of HSC through the jagged-1-Notch 

signalling pathway (Calvi, Adams et al. 2003). Therefore, it is not unreasonable to 

suggest that co-transplantation of MSC with HSC could improve efficiency of HSC 

transplantation when HSC numbers are low or when the microenvironment is damaged. 

A proof of concept that this may be the case is shown in the study by Muguruma et al., 

(2006) (Muguruma, Yahata et al. 2006). When eGFP-marked hMSC were transplanted 

into the tibia of NOD/SCID mice, although at low levels the GFP-MSCs integrated into 

the functional components of haematopoietic environment and 4-10 weeks later, they 

differentiated into pericytes, myofibroblasts, stromal cells and endothelial cells 

(Muguruma Y, Yahata T et al.2006). More importantly this led to a two-fold increase in 

the number of CD45+ cells when hMSC were co-transplanted with HSC. Moreover, that 

MSC might enhance engraftment was also supported by another study where only 2 out 

of 10 mice engrafted when transplanted with low number of HSCs while 8 out of 10 

mice showed improved engraftment when co-transplanted with umbilical cord blood 

cells and MSC (Maitra, Szekely et al. 2004). Co-transplantation of MSC with HSC has 

been attempted in several clinical trials but with poor results. Autologous MSC were co-

transplanted with HSC in patients with breast cancer undergoing intensive 

chemotherapy. Although patients took less time for haematopoietic uptake, this time was 

only few days shorter than patients that were transplanted with HSC alone (Koc, Gerson 
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et al. 2000), questioning the efficiency of MSC therapy in this context. Subsequent 

studies showed either no engraftment of MSC to BM or very low levels, only detectable 

by polymerase chain reaction (PCR) (Francois, Bensidhoum et al. 2006). This suggests 

that lack of efficacy may be due to low levels of MSC engraftment to bone marrow 

rather than just inefficacy. 

 

1.4.3 Limitations of MSC in clinical application  

The reasons behind the low engraftment of MSCs are unknown. One possibility is poor 

migration. The receptor C-X-C chemokine receptor type-4 (CXCR4) is a specific 

receptor for the chemokine stromal derived factor-1 (SDF-1) and is used by stem cells 

for their migration to bone marrow (Brenner, Whiting-Theobald et al. 2004; Kahn, Byk 

et al. 2004). Indeed low levels of surface receptor CXCR4 (less than 1%) has been seen 

in MSC (Wynn, Hart et al. 2004) and this seems to be down-regulated especially after 

prolonged in vitro culture (Ploemacher and Brons 1989; Ploemacher 1997; Rombouts 

and Ploemacher 2003).  

 

A second possibility is that during in vitro culture MSC lose part of their stemness with 

a decrease in their self-renewal and multipotent differentiation capacity. This would lead 

to decrease frequency of primitive progenitor cells able to engraft in transplantation. 

Indeed, transplantation of HSC that have been expanded in vitro resulted in low level of 

engraftment as opposed to HSC transplanted without ex-vivo expansion. This was shown 

to be the result of cytokine-activation on HSC when grown in culture leading to loss of 

stemness (Ahmed, Ings et al. 2004). In our laboratory, it was shown that expansion of 

hMSC leads to a process of cellular ageing which limits their proliferation and 
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differentiation ability (Baxter, Wynn et al. 2004). Unfortunately expansion in culture is a 

major requirement to generate sufficient number of MSCs for clinical applications. 

Therefore, it is important to understand the mechanisms underlying the loss of 

proliferation and differentiation and ways to prevent it. 

 

1.5 Ageing 

Ageing of cells is primarily characterised by decline in proliferative capacity of the cell 

resulting in impaired cell function and finally leading to either apoptosis (programmed 

cell-death) or arrest of the cells to replicate (cellular/replicative senescence) (Wright and 

Shay 1992; Allsopp, Morin et al. 2003). Although much is known about limited cell 

proliferation through programmed cell death, not much is known about senescence 

which contributes to the process of ageing. Replicative senescence was first studied by 

Hayflick in the year 1961 (Hayflick and Moorhead 1961). The presence of senescent 

cells have been identified in ageing human skin (Dimri, Lee et al. 1995) and liver 

(Paradis, Youssef et al. 2001) in vivo. Senescent cells are metabolically active cells 

arrested in the gap1 (G1) phase of the cell cycle. They exhibit enlarged and flatted 

-galactosidase, higher levels of 

tumour suppressors and hypo-phosphorylated retinoblastoma protein (Dimri, Lee et al. 

1995). Often, they express two major cell cycle cyclin-dependent kinase inhibitors 

(CDKIs): p21 and p16; both of which are also components of tumor suppressor 

pathways and are governed by the p53 and retinoblastoma (pRB) proteins respectively 

(Campisi 2001; Stolzing, Jones et al. 2008). Both these CDKIs are not identical (Figure 

1.4). Senescence-inducing signals, including those that trigger a deoxyribonucleic acid  
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Fig 1.4: Senescence controlled by the p53 and p16 pRB pathways.  

(Adapted from (Campisi and d'Adda di Fagagna 2007) 

Senescence-inducing signals activate either the p53 or the p16 retinoblastoma protein (pRB) 

tumour suppressor pathways or both. p53 is negatively regulated by the E3 ubiquitin-protein 

ligase HDM2, which facilitates its degradation, and HDM2 is negatively regulated by the 

alternate-reading-frame protein (ARF). Activation of p53 enables immediate growth arrest in 

part by inducing the expression of p21, a cyclin-dependent kinase inhibitor (CDKI) that 

suppresses the inactivation of pRB. Senescence signals that engage the p16 pRB pathway 

activates p16, another CDKI and prevents pRB inactivation. pRB halts cell proliferation by 

suppressing the activity of E2F, a transcription factor that stimulates the expression of genes 

required for cell-cycle progression. E2F can also limit proliferation by inducing ARF 

expression, which engages the p53 pathway.  
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(DNA)-damage response (DDR), as well as many other stresses, usually engage either 

the p53 or the p16  retinoblastoma protein (pRB) tumour suppressor pathways or both. 

The levels of p21 is directly elevated which is induced partly as a result of p53 

transactivation (Itahana, Dimri et al. 2001), although p53-independent post 

transcriptional mechanisms can also contribute to increase p21 levels (Burkhart, Alcorta 

et al. 1999). It is reported that senescence induced as a result of p53-p21 activation can 

resume cell division after inactivation of p53 (Beausejour, Krtolica et al. 2003; d'Adda 

di Fagagna, Reaper et al. 2003), suggesting that expression of p21 is a part of immediate 

DDR and occurs during transient growth arrest. This gives time for the damaged cells to 

engage their repairing ability. However, those senescent cells that engage only the p16 

pathway cannot resume cell division even after the inactivation of p16 (Beausejour, 

Krtolica et al. 2003). Moreover it is shown that silencing the activity of p16-pRB 

pathway in mammary epithelial cells upregulates p53-p21 expression in part as E2F, a 

transcription factor that stimulates the expression of genes required for cell-cycle 

progression also stimulates alternate-reading frame (ARF) protein expression (Bates, 

Phillips et al. 1998; Zhang, Pickering et al. 2006). All these studies suggest that 

expression of p16 is not part of immediate DDR and does not occur during transient 

growth arrest. Moreover, not all senescent cells express p16 marker (Beausejour, 

Krtolica et al. 2003; Itahana, Zou et al. 2003; Krishnamurthy, Torrice et al. 2004) and 

what factors dictates the induction p16 is not clearly understood (Gil and Peters 2006). 

The p16-pRB is also important for generating senescence associated heterochromatin 

foci (SAHF), which silence the genes required for cell division. Cytological markers of 

SAHFs (Narita, Nunez et al. 2003) and senescence associated DNA-damage foci (SDF) 

(d'Adda di Fagagna, Reaper et al. 2003; Takai, Smogorzewska et al. 2003) are also used 
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to identify senescent cells. What factors or mechanism causes a stem cell to choose 

between apoptosis and senescence is still not known (Gil and Peters 2006).  However, 

such responses are both initiated by DNA damage due to injury or stress or as a result of 

telomere shortening.  

 

1.5.1 Accumulation of DNA damage independent of telomere sho rtening  

DNA is subjected to various extrinsic and intrinsic insults that lead to accumulation of 

damage. Exposure to reactive oxygen species (ROS) produced by the metabolic activity 

of the cell or ultraviolet rays from sun, ionizing radiations (IR) generated by the cosmos, 

exposure to X-rays and radioactive substances, treatment with specific chemotherapeutic 

drugs can induce single and double stranded (ds) DNA breaks, interstrand crosslinks, 

base modifications leading to genomic instability (Blanpain, Mohrin et al. 2011). 

Although these potential DNA lesions can be repaired by the highly conserved DNA-

repair mechanism pathways such as non-homologous end joining (NHEJ), homologous 

recombination, nucleotide excision repair (NER), base excision repair (BER) and 

mismatch repair (MMR) pathways; the possibilities of having error-prone repair which 

may result in small deletions, mutations, chromosomal translocations or nucleotide 

changes is also unavoidable (Fig 1.5). However, irrespective of the type of DNA lesions 

and the repair mechanism, when a cell senses DNA damage, it triggers an evolutionary 

conserved signalling pathway, collectively called as the classical DDR. Activation of 

DDR, signals the DNA-damage- sensing protein kinases such as ataxia-telangiectasia 

mutated (ATM), ataxia-telangiectasia Rad3 related (ATR) and DNA-damage sensing 

protein kinases (DNA-PK) which through a series of phosphorylation steps and 

stabilization of effector molecule p53 signals a cell to respond to damage by initiating 
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Fig 1.5: The highly conserved DNA-repair pathways triggered upon response to 

DNA damaging agents  

(Adapted and modified from (Blanpain, Mohrin et al. 2011) 

DNA- deoxy-ribonucleic acid, ds-double stranded, ss-single stranded, UV-ultra-violet 
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cell cycle arrest and DNA repair. Depending on the extent of DNA damage, type of cell 

undergoing DNA damage, the strength and duration of p53 activation and the genes 

trans-activated by p53, a cell can either undergo apoptosis or senescence (Fig 1.6) 

(Blanpain, Mohrin et al. 2011). 

 

1.5.2 Telomere-shortening 

Another reason behind limited potential of somatic cells to divide after certain period of 

time was attributed to the length of telomeres. A telomere is a nucleoprotein complex 

consisting of non-

and associated telomere binding proteins. Their primary function is to protect the end of 

the chromosome from damage and fusion, degradation and instability (Blackburn 2001; 

Wright and Shay 2002). Telomere shortening occurs in somatic cells during each cell 

(Harley, Futcher et al. 1990; de Lange 2002), 

until they become critically very short and become dysfunctional. Dysfunctional 

telomeres triggers DDR (d'Adda di Fagagna, Reaper et al. 2003; Takai, Smogorzewska 

et al. 2003) and signal the cells to sense the DNA damage as DNA double stranded 

breaks resulting in the arrest of cell cycle progression. In some cell types such as germ 

cells, stem cells and cancer cells (Kim, Piatyszek et al. 1994; Liu, Snow et al. 2000; 

Wright and Shay 2005) the telomere length is maintained at least part by the enzyme 

telomerase which consists of two vital components: the telomerase RNA component 

(Terc) which serves as a template for telomere synthesis and the catabolic subunit of the 

enzyme which is telomerase reverse transcriptase (Tert). Functionally, the telomerase 

adds telomeric DNA repeats directly to the ends of the chromosome (Wright and Shay 

2005). 
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Fig 1.6: The classical DNA-damage response pathways triggered as a result of DNA 

damage  

(Adapted and modified from (Blanpain, Mohrin et al. 2011) 

DNA-deoxy-ribonucleic acid, ds-double stranded, ATM-ataxia-telangiectasia mutated, ATR-

ataxia-telangiectasia Rad3 related, DNA-PK-DNA-damage sensing protein kinase  
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1.6 Evidences of stem cell ageing 

Evidence of stem cell ageing as a result of intrinsic or extrinsic mechanisms have been 

reported. Haematopoietic stem cell ageing is the most extensively studied because there 

are better assays available to assess their self-renewal and differentiation ability.  There 

are evidences in literature which suggest that HSC lose their self-renewal and 

differentiation capacity with age. Chambers S M  et al., (2007) reported that highly 

purified phenotype-defined HSCs from mice aged 2-21 months old exhibited an increase 

in stem cell number with age accompanied by a loss in stem cells function (Chambers, 

Shaw et al. 2007). Rossi D J et al., (2005) showed that self-renewal and differentiation 

potential of HSC with age resulted in reduced ability to regenerate blood as well as the 

differentiation was skewed to the myeloid lineage. This was the result of changes 

intrinsic to the stem cells rather than the BM micro-environment. Moreover the gene 

expression profiling showed that the genes involved in myeloid commitment were up-

regulated and genes involved in lymphoid commitment were down-regulated (Rossi, 

Bryder et al. 2005). To further support that the skewing to myeloid progenitor was 

crucial to HSC and had nothing to do with the micro-environment, Sudo K et al., (2000) 

demonstrated that young mice transplanted with HSC selected as CD34-/low c-Kit+Sca-1+ 

cells from aged mice donors but not vice-versa, showed blood constitution with strong 

myeloid skewing, suggesting that functional impairment of HSC occurs with age (Sudo, 

Ema et al. 2000). However, Ju Z et al., (2007) demonstrated that when BM from 3rd 

generation aged Terc knockout (Terc-/-) mice, showing signs of impaired B-cell 

development and accelerated myelopoisis were transplanted into young wild-type mice, 

their function was rescued suggesting that the micro-environment may also play a role. 
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Moreover no engraftment ability of HSC was reported when wild type HSC was 

transplanted into aged Terc-/- mice. Such impairment in engraftment was marginally due 

to intrinsic defects in HSC. Mostly it was due to the extreme short telomere lengths of 

mesenchymal progenitor cells in the niche which had minimal ability to support the HSC 

(Ju, Jiang et al. 2007). These data indicates that the function and engraftment potential of 

HSC and progenitor cells are severely compromised due to the environmental defects 

generated by critically short telomeres. However, it is unknown whether such a severe 

phenotype as the one observed in 3rd generation aged Terc-/- mice models may occur in 

humans. 

 

A decline in stem cell function with age as a result of local or systemic environmental 

change was studied by Conboy I M et al., (2005) in muscle stem cells/satellite cell 

(Conboy, Conboy et al. 2005). The study comprised of sharing a circulatory system 

(parabiotic pairings) between a young and an old mouse (heterochronic parabionts) as 

test and between two old mice (isochronic parabionts) as control. Five weeks post 

parabiosis, muscle injury was introduced by injuring the hind limb muscle of all mice. 

Post muscle injury, it was observed that the old isochronic parabionts failed to 

regenerate the muscle, indicated by their poor ability to form myotube and fibrosis at the 

site of injury, as a result of reduced numbers or inability to differentiate in shared 

circulation compared to the heterochronic parabionts which showed expression of 

embryonic myosin heavy chain (a marker of regenerating myotubes) and enhanced 

regeneration of muscle in old mice. Even in in vitro cultures, the regenerative ability of 

old muscle satellite cell was restored when they were exposed to the serum of young 

mice and an inhibitory effect was observed when young satellite cell was exposed to the 
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serum of old mice. These data suggest that factors contained in the systemic circulation 

affected the ability of stem cells to repair a damaged tissue with age and therefore short 

intervention by modulating the systemic factors that change with age may provide an 

insight to maintain tissue homeostasis with increasing age.   

 

Although stem cell express telomerase (Morrison, Prowse et al. 1996), this does not 

seem to be sufficient to prevent the process of ageing. Shortening of telomeres has been 

observed in human HSC with donor age and in situation of stress or following BM 

transplantation (Lee, Kook et al. 1999; Allsopp, Cheshier et al. 2001; Brummendorf, 

Rufer et al. 2001; Ito, Hirao et al. 2006; Rocci, Ricca et al. 2007). Age-related decline in 

telomere length was also reported in purified human stem cells of CD34+CD38low  

phenotype compared to the cells from umbilical cord blood or fetal liver (Vaziri, 

Dragowska et al. 1994). More direct evidence that stem cell undergo damage leading to 

organ failure as a result of ageing was demonstrated by using confocal telomere 

quantitative fluorescence in situ hybridization where murine cells with longest telomeres 

that mapped to the stem cell compartment in several tissues including skin, intestine and 

brain showed a decline in telomere length with age in those compartments, followed by 

a decline in stem cell functionality (Flores, Canela et al. 2008).  Moreover, in vivo 

studies have shown that in telomerase knock outs (KO), telomeres undergo accelerated 

shortening and this is paralleled by a decreased ability to serially transplant the recipient  

(Allsopp, Morin et al. 2003) suggesting that telomere shortening affects HSC function. 

 

Like telomere shortening occurs with age, similarly in murine HSC, accumulation of 

DNA damage with age was demonstrated by increased accretion of gamma-H2AX (a 
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variant of histone 2A protein family) phosphorylation of double stranded breaks in DNA 

from older mice compared to young mice (Rossi, Bryder et al. 2007).  This has been 

reported in human HSC as well where analysis of CD34+ and CD34- stem/progenitor 

cells showed an increase of gamma-H2AX foci levels with advancing donor-age 

associated with age-related decline in telomere length (Chen, Fang et al. 2004). Also 

HSCs from older donors have shown higher amounts of unrepaired DNA damage and 

less efficient repair capacities compared to younger donors (Rube, Fricke et al. 2011). It 

could be proposed that accumulation of DNA damage with age leading to inefficient 

DNA repair ability results in the decline in stem cell function.  

 

There are several examples showing that accumulation of DNA damage leads to loss of 

stem cells function. Nijnik A et al., (2007) reported that mice with DNA ligase IV 

(involved in DNA repair mechanism) mutation, Lig4Y288C showed growth retardation 

and severely affects the stem cell function in vitro and in vivo (Nijnik, Woodbine et al. 

2007). HSCs from mice lacking the end-processing component of NHEJ DNA-repair 

pathway, Ku80 and mice expressing mutated form of XPD helicase, an essential 

component of NER DNA-repair pathway have shown self-renewal defects with poor 

transplantation ability in those mice with decreased proliferation and impaired lineage 

differentiation ability (Rossi, Bryder et al. 2007). The study evaluated the effect of 

deficiencies in NER and NHEJ DNA-repair pathway in young and old mice by knocking 

out the KU80 and mutate XPD component of the pathways respectively, on stem cell 

number and function.  The frequency of phenotype defined long term (LT)-HSCs 

(lineage- cKit+ sca-1+ flk2- CD34-) in the BM of KU80 knockout and XPD mutant mice 

increased significantly with age which was consistent with LT-HSC reserves from wild 
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type mice ageing naturally. However, when LT-HSCs from 26week old XPD mutant 

and XPD mice were competitively transplanted, HSCs from XPD mutant mice showed a 

significant decline in multi-lineage potential accompanied by progressive stem cell 

exhaustion by 16 weeks post transplantation. Likewise competitive transplantation of 

LT-HSCs from KU80 knockout mice were unable to generate mature B and T cells and 

also showed impaired ability to reconstitute myeloid lineages suggesting that stem cell 

activity was severely affected. Moreover, those cells were 26-fold less capable to give 

rise to phenocopies of themselves indicating that even their self-renewal ability was 

severely attenuated (Rossi, Bryder et al. 2007). 

 

Evidence that stem cell undergoing DNA damage and proliferative stress impacts on 

tissue homeostasis are well demonstrated by Ruzankina Y et al., (2007). The study 

showed that conditional depletion of ATR gene (a DNA-damage sensing gene) in mice 

led to defects in tissue homeostasis resulting in tissue atrophy. The mice appeared 

normal and only the small proportion of non-recombining cells expressing ATR 

reconstituted the proliferative tissues one month post-depletion. However, 3 months-post 

depletion, the mice had developed an ageing phenotype including hair loss and graying 

indicated by loss of follicle bulge stem cells, kyphosis, osteoporosis, fibrosis of heart 

and kidney, reduced thymopoiesis and spermatogenesis compared to wild type controls 

(Ruzankina, Pinzon-Guzman et al. 2007). In patients, mutations in another DNA-

damage sensing gene, ATM resulted in plethora of clinical pathologies including neural 

degeneration, high incidence of cancer, accelerated aging, growth retardation, 

telangiectasias and pulmonary diseases (Lavin 2008). This was accompanied by thymic 

and gonadal atrophy, immuno-deficiency, abnormal vasculature and chromosomal 
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fragility (Raz-Prag, Galron et al. 2011). Moreover, ATM-deficient mice are extremely 

sensitive to exposure to IR and present neurological abnormalities, decreased T cell 

numbers, premature hair growing and infertility (Barlow, Hirotsune et al. 1996).  

 

The importance and potential impact of understanding how stem cell age and identifying 

ways to delay stem cell ageing comes from the study by Jaskelioff M et al., (2011). They 

engineered a knock-in allele encoding a 4-hydroxytamoxifen (4-OHT)-inducible 

telomerase reverse transcriptase-oestrogen receptor (Tert-ER) under transcriptional 

control of endogenous Tert promoter in Tert knock-out mice. 4rth generation 

homozygous Tert-ER mice exhibited short dysfunctional telomeres, stem cell depletion 

and signs of tissue atrophy. Telomerase reactivation for only 3 weeks lead to increased 

proliferation of early neural progenitor cells Sox2+, increased number of Dcx+ 

(Doublecortin, neuronal marker) new born neurons in sub ventricular zone and Oligo2+ 

oligodendrocyte populations in the corpus callosum (Jaskelioff, Muller et al. 2011). 

More importantly study showed rescuing of tissue function. Mice lose sense of smell 

with age. However mice where telomerase was reactivated returned to have similar 

sense of smell as that of younger mice. These data establish a strong association between 

tissue impairment and repair by enhanced stem cells function in aging and suggest that 

even short chemical intervention allowing amplification or rejuvenation of stem cells 

may have important impact on tissue function.	
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1.6.1 Evidence of ageing in mesenchymal stem cells  

Whether MSC undergoes a process of ageing, is mainly documented by the evidences 

which point to important changes occurring in their number of proliferating and 

differentiating cells assessed mostly by CFU-F and CFU-O assays. 

 

It is very controversial whether the number of CFU-F decreases with age. There are 

studies which reported no difference in the numbers of CFU-F with age in mice 

(Brockbank, Ploemacher et al. 1983; Xu, Hendry et al. 1983) and at least as many 

indicating the number of CFU-F decreases with age in rats (Tsuji, Hughes et al. 1990; 

Egrise, Martin et al. 1992; Quarto, Thomas et al. 1995). The difference in outcome is 

most likely due to the way in which CFU-Fs were enumerated or due to the strain of 

mice used in those studies. Indeed the number of CFU-F decreased with age in Balb/c 

but not in C57Bl/6 mice. There are even inconsistencies reported in human studies while 

assessing the number of CFU-F and CFU-O. Such differences in studies are mostly due 

and the source of bone marrow use

For example no difference in CFU-F 

-40 years (Stenderup, 

Justesen et al. 2001) as compared to a study where the number of CFU-F decreased 

-18 years (Stolzing, Jones et al. 2008). 

This suggests that majority of changes occur in early days when indices of bone 

formation are maximum (Szulc, Kaufman et al. 2007)  and such changes in the skeletal 

dynamics may be responsible for the decline in CFU-F observed by Stolzing A et al., 

(2008). Also the BM were obtained either from the head of the femur of patients 
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undergoing routine hip replacement or corrective surgery (Oreffo, Bennett et al. 1998; 

Oreffo, Bord et al. 1998) or from the posterior iliac crest of haematologically healthy 

donors (Bruder, Jaiswal et al. 1997; Stenderup, Justesen et al. 2001) and more primitive 

and proliferating MSCs tend to be present in the iliac crest rather than in the periosteum 

or trabecular bone (Sacchetti, Funari et al. 2007). In some studies patients affected with 

osteoporosis or osteoarthritis were used. Moreover, the number of sample used in those 

studies was variable and often small, therefore unlikely to detect a significant difference. 

Also the definition of CFU-F varied among the investigators.  While a cut off of 50 cells 

with a definite centre of origin was considered as CFU-F by Stolzing A et al., (2008) 

(Stolzing, Jones et al. 2008), in studies by Stenderup K et al., (2001) a cut off of 16 cells 

was considered as CFU-F. It could suggested that as stem cells are considered highly 

proliferative cells, colonies with 50 cells or more is probably a more stringent way of 

monitoring and representing a stem cell population. This may be the reason why a 

difference was only found in the study by Stolzing A et al., (2008). 

 

Evidence on decreased differentiation ability of MSC toward osteogenic and adipogenic 

lineage with age has been contradictory too. While Stolzing A et al., (2008) found that 

MSCs derived from older cells showed a decline in alkaline phosphatase (ALP) activity 

upon differentiation to osteogenic lineage compared to younger donors (Stolzing, Jones 

et al. 2008), Stenderup K et al., (2001) showed that MSCs from young, old and 

osteoporotic patients maintained a similar osteogenic differentiation ability (Stenderup, 

Justesen et al. 2001). Bone forming capacity of MSCs has also been assessed by in vivo 

bone formation assays in which subcutaneous implants of MSC were mixed with 

HA/TCP in syngeneic animals with contrasting results. A decreased bone forming 
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capacity was observed in MSCs derived from aged rats compared to younger ones  in the 

study by Inoue K et al., (1997) (Inoue, Ohgushi et al. 1997). Mendes S C et al., (2002) 

demonstrated that when human bone marrow-derived MSC from 53 donors of various 

age were seeded on calcium phosphate scaffolds and implanted under the skin of nude 

mice, the ability of cultures to form bone declined with age with 67% of the culture able 

to form bone at 41-50 years of age, 50% at 51-70 years of age and less that 46% beyond 

70 years of age (Mendes, Tibbe et al. 2002).  In contrast no difference was observed in 

the bone forming capacity of MSC obtained from young and older human donors by 

Stenderup K et al., (2004) (Stenderup, Rosada et al. 2004).  The discrepancies in the 

studies may depend on the passage number when the cells were induced to differentiate 

with culture passaged for longer periods of time being less good at differentiating.  

 

Similar to HSC, MSCs have also shown to undergo telomere loss and accumulation of 

DNA damage. The study by Baxter M et al., (2004) showed two interesting findings 

supporting the notion that MSC undergoes an ageing process. A significant decrease in 

the mean telomere restriction fragment (mTRF) was observed in MSC from young 

donors between the primary passage and the end of the culture (Baxter, Wynn et al. 

2004).Similar data were reported by other studies too (Banfi, Muraglia et al. 2000; 

Bianchi, Banfi et al. 2003; Baxter, Wynn et al. 2004; Bonab, Alimoghaddam et al. 

2006). Most importantly, when MSC were cultured for an equal number of population 

doubling, the telomere length in young donors was significantly longer compared to old 

donors. The average loss in vivo was estimated at 17base pair (bp)/year, suggesting that 

telomere shortening is occurring in vivo with the age of the donor (Baxter, Wynn et al. 

2004). Indeed the fact that telomere length of MSC obtained from fetal blood, liver and 
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bone marrow was significantly high (p<0.01) compared to adult MSC (Guillot, 

Gotherstrom et al. 2007), well support this finding in favour of an ageing process of 

MSC both in vitro and in vivo.  

 

It is controversial whether MSC similarly to HSC, express telomerase to sufficient levels 

to delay the ageing process. In vitro cultures of human MSC lack the telomerase activity 

(Zimmermann, Voss et al. 2003) and hTERT expression (Simonsen, Rosada et al. 2002) 

thus resulting in telomere shortening with serial passaging. Most of the studies showed 

no expression of telomerase in MSC in cultures (Shi, Gronthos et al. 2002; Simonsen, 

Rosada et al. 2002; Wright and Shay 2002; Abdallah, Haack-Sorensen et al. 2005). A 

recent study by Saeed H et al., (2011); demonstrated that Terc-/- mice devoid of 

telomerase activity and with signs of telomere dysfunction showed a decreased bone 

mass, MSC number and ability to differentiate, an intrinsic osteoblastic defect and signs 

of increased senescence following in vitro culture (Saeed, Abdallah et al. 2011). This 

data suggested that MSC may express telomerase in vivo but it is not sufficient to 

maintain telomere with age. It is possible that similar to HSC only very primitive MSC 

express telomerase in vivo that delay telomere shortening with age. Upon isolation in 

culture, MSC lose part 

demonstrated that culture expanded human bone marrow stromal cells committed 

towards osteoblast lineage showed high levels of expression of the osteogenic regulatory 

gene core binding factor alpha (Cbfa). Telomerase activity was repressed by the 

expression of Cbfa1 (Isenmann, Cakouros et al. 2007).  
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Very few studies have reported accumulation of DNA damage in MSCs with age leading 

to decline in their functional ability. The capacity of NER to repair the damage seemed 

impaired in late passage MSCs as there was an increase in DNA damage load over time 

(Alves, Munoz-Najar et al. 2010) which was due to increase in telomere-associated 

DNA damage and led a significant decrease in their differentiation potential. The 

telomere-associated DNA damage was demonstrated by co-localization of 53BP1 (a 

DNA damage marker)  staining with a telomeric probe which detected no signal in late 

passaged MSCs compared to early passage MSCs. Moreover the levels of oxidative 

stress markers were upregulated in late-passage MSCs. The fact that NER could not 

repair the DNA damage in long-term culture expanded MSCs was demonstrated by 

unscheduled DNA synthesis assay. In trichothiodystrophy (TDD) mice, a mutation in the 

Ercc2 DNA repair gene results in the accumulation of DNA damage associated with 

features of accelerated aging. It was reported that decrease in bone strength and lack of 

periosteal apposition in older TTD mice also showed lack of body fat which was due to 

the impairment in the number and differentiation ability of MSCs in those mice 

(Nicolaije, Diderich et al. 2012). However careful experiments need to be conducted in 

MSCs from knock-out models to show how MSC function is diminished if there is DNA 

damage. 

 

As MSC undergo a process of ageing characterised by decreased proliferation and 

differentiation ability with the age of the donor along with time in culture, it is very 

important to understand the molecular mechanisms underlying the process of ageing to 

find target molecules that would facilitate their long-term self-renewal and 
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differentiation ability in vitro and in vivo. One of the possible candidates is the cellular 

prion protein (PrP). 

 

1.7 Cellular prion protein  

Prion protein has been in the limelight over years due to their association with a family 

of neurodegenerative disease called the transmissible spongiform encephalopathy (TSE) 

including bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep and 

Creutzfeldt-

-

The specific protein in prion was thus named as Proteinase-resistant protein (PrP). The 

protein exists in two different isoforms. The normal, non-pathogenic form is called as 

PrPC (C stands for cellular or common). However, the pathogenic and the infectious 

form is called as PrPSc 

sheep). 

 

The human prion (Prnp) gene is located in the short arm of chromosome 20 and encodes 

the complete PrPC of 253 amino acids in length (Puckett, Concannon et al. 1991). PrP is 

synthesized in the rough endoplasmic reticulum and makes its way through the secretory 

pathways in Golgi complex where it is glycosylated and finally traffics to the cell 

surface (Cancellotti, Wiseman et al. 2005). Once on the surface, PrP is internalised and 

degraded very rapidly with a half-life of 3-6 hours (Caughey and Raymond 1991). It is 

an extra-cellular protein and is anchored to the detergent-resistant areas of plasma-

membrane by a glycosylphosphatidyl inositol (GPI) link (Prusiner 1998). This protein is 
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readily digested by the enzyme proteinase K (Weissmann 2004). The best estimate of 

the nuclear magnetic resonance (NMR) structures of PrP studied in different species 

including human, mice, cattle and Syrian hamster shows that structurally, PrP entails one 

flexible N-terminal octa-peptide region in the extra-cellular space, three helices and 

two-stranded anti- sheets flanking helix (Aguzzi, Sigurdson et al. 

2008).  helixes are connected by a large loop with 

structural properties. This N- terminus usually appears unstructured consisting of two 

conserved domains. While the first conserved domain constitutes segment of five repeats 

of an octameric amino acid sequence, mostly associated with copper binding (Hornshaw, 

McDermott et al. 1995; Jackson, Murray et al. 2001) and plays a role in prion 

pathogenesis (Collinge 2001), the second conserved domain is called as the central 

domain (Cd) and it contains a sequence of positively charged residues (termed as charge 

cluster) and a hydrophobic and conserved profile (Prusiner 1998) (Fig 1.7A). The Cd 

domain is the most conserved part of PrP and plays a decisive role in cell homeostasis. 

Mutations in this part of the Cd domain have shown to alter the endoplasmic regulations 

of cell and lead to cell degeneration (Hegde, Mastrianni et al. 1998; Stewart, Drisaldi et 

al. 2001). The last domain is the C- sheets 

of this domain are stably linked via a disulphide bond (Riek, Hornemann et al. 1996; 

Riek, Hornemann et al. 1997; Zahn, Liu et al. 2000). Therefore, PrP presents three 

isoforms based on their orientations with respect to lumen of the endoplasmic reticulum: 

an extra-cellular form and two transmembrane isoforms (Fig 1.7B) (Hegde, Mastrianni 

et al. 1998; (Holscher, Bach et al. 2001). 
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Fig 1.7 Structure of cellular prion protein 

Figure A represents primary structure of N terminal tail of cellular prion protein. Figure B 

represents the tertiary structure of cellular prion protein by NMR spectroscopy. N-terminal tail 

is indicated by grey, helices in red, anti- sheets in turquoise. This figure was 

obtained from (Aguzzi, Sigurdson et al. 2008) and it shows that prion protein is attached to the 

cell membrane by a glycolipid anchor. It contains a globular domain and an unstructured 

flexible amino-terminal tail.   

Cd-core domain, OR-octa-peptide repeats, AA-amino acid, CC-cluster charge, HC-hydrophobic 

core region and H1-3- -helix regions. 

 

 



 
 

48 | P a g e  
 

Although the conversion of the PrPC into its infectious form, PrPSc has been much 

explored, the exact mechanism is yet to be discovered. Several hypotheses have been 

proposed concerning the nature of PrPSc (Aguzzi, Sigurdson et al. 2008). While the 

- C to PrPSc  is due 

C  

hypothesis is a follow up from the studies by Prusiner S B (Prusiner 1982)  and 

Weissmann C et al., (1993) (Weissmann, Bueler et al. 1993; Weissmann, Bueler et al. 

1993) which suggested that the infectious agent that causes TSE is devoid of nucleic 

acid and is identical to PrPSc - translational modificatio

PrPC. A conditional homozygous deletion of Prnp gene that encodes PrPC in mice failed 

to develop disease upon inoculation with infectious brain homogenate and no signs of 

infectivity was reported in the brains of those mice (Bueler, Aguzzi et al. 1993; Sailer, 

Bueler et al. 1994). However, reintroduction of Prnp gene by transgenesis restored the 

disease progression in Prnp knockout mice (Aguzzi and Polymenidou 2004). Indeed, 

there are evidences reporting that PrPSc in vivo is not in itself neuro toxic and that there 

is a lack of co-relation between PrPSc deposition and disease severity (Lasmezas, Deslys 

et al. 1997; Hill, Joiner et al. 2000; Mallucci, Dickinson et al. 2003), suggesting that the 

key substrate in prion pathogenesis is the conversion of PrPC to PrPSc, rather than the 

accumulation of PrPSc only. Hence it is reasonable to suggest that prion disease 

therapeutics can be targeted either to PrPSc or to the conversion of PrPC to PrPSc. 

Although targeting PrPSc would seem logical but it is unlikely to have effect on disease 

progression as it is the end point of a pathogenic conversion process. Alternatively, it is 

thought that targeting PrPC would be more beneficial as it is the initial substrate that 

caused the conversion to the infectious form. By biochemical and/or physiochemical 



 
 

49 | P a g e  
 

intervention or gene knock out using RNA interference or even using compounds/ small 

molecules as anti-prion agents would prove potential intervention to study prion disease 

and might also elicit a clinical application (Bessen, Raymond et al. 1997; Deleault, 

Lucassen et al. 2003; Safar, Kellings et al. 2005). 

 

1.7.1 Function of prion protein  

Although PrPC has been known to play several biological roles, the main function is still 

unknown. The cellular PrP is expressed in several tissues including lymphoid organs 

(Ford, Burton et al. 2002), heart, neural tissue with very low levels found in kidney and 

liver (Miele, Alejo Blanco et al. 2003; Linden, Martins et al. 2008). Across different 

species, they are also found to be expressed in neural populations of hippocampus, 

thalamus, neuro-cortex (Harris, Huber et al. 1993; Harris, Lele et al. 1993; Bailly, 

Haeberle et al. 2004) and in glial cells (Moser, Colello et al. 1995; Laine, Marc et al. 

2001; Ford, Burton et al. 2002; Radovanovic, Braun et al. 2005). Immuno-electron 

microscopy has revealed that this protein in neurons is axonally transported to the nerve 

terminals, thus making its localization in the synaptic regions (Borchelt, Koliatsos et al. 

1994). Light microscopic immuno-histochemistry results have also revealed the 

presence of PrP in the synaptic region of the olfactory bulb, limbic structures and striato-

nigral complex (Sales, Rodolfo et al. 1998). Also when PrP makes it way to the Golgi 

complex as the mono- and di- glycosylated forms and finally traffics to the cell surface 

by the process of glycosylation, a small amount of unglycosylated form of the protein 

remains localized intra-cellularly in the cytoplasm (Cancellotti, Wiseman et al. 2005). 

The reason for intra-cellular localization may be due to re-translocation of the protein to 

the proteosome system for degradation (Harris 1999). Indeed PrP has been shown to 
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undergo sub-cellular trafficking in neuroblastoma cells. Once it reaches the cell surface, 

it is internalised and subjected to undergo constitutive cycles between the endocytic 

compartment and the plasma membrane (Shyng, Huber et al. 1993) facilitating late 

endocytosis of the protein. Prion is known to play a role in numerous functions such as 

cellular localization and trafficking, copper uptake, oxidative stress, signal transduction, 

anti and pro-apoptotic role, neuronal morphology and adhesion (Kurschner and Morgan 

1995; Pauly and Harris 1998; Kim, Lee et al. 2004). 

 

Prion protein may serve as a receptor for any-extracellular ligand, primarily copper ions 

as they are known to play an important role in copper metabolism (Pauly and Harris 

1998). There have been several evidences in light of this. First, although there are five 

copper binding sites in the N-terminal region of the protein (Brown, Qin et al. 1997), 

only two of them serve as highly affinity binders for copper (Jackson, Murray et al. 

2001). Also the extra-cellular ligand of PrP binds to copper and stimulates endocytosis 

via clatherin-mediated pits, which is then imported into the endocytic compartment, and 

the copper ions dissociate from the PrP before they are again being recycled to the cell 

surface (Pauly and Harris 1998; Cheng, Lindqvist et al. 2006). In murine N2a 

neuroblastoma cells, copper ions have been reported to bind to PrP and stimulate 

endocytosis of PrP in a caveolin-dependent pathway (Alves, Munoz-Najar et al. 2010). 

Second, since cerebellar cells from PrP-/- mice contain only 20% copper present in cells 

from WT type animals, it suggests that PrP may be an important copper-binding protein 

in brain (Brown, Qin et al. 1997). Third, PrP knockout mice showed nearly 50% lower 

copper concentration in synaptosomal fractions than that in wild type mice (Herms, 

Tings et al. 1999).  While this was associated with regulations of redox levels to 
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facilitate neural transmission (Herms, Tings et al. 1999), to the contrary Prnp knock-out 

mice showed defects in synaptic transmission suggesting a functional role of PrP in 

regulating copper concentration at synaptic regions. Fourth, the N-terminal domain of 

PrP (Brown, Qin et al. 1997; Pauly and Harris 1998; Cheng, Lindqvist et al. 2006) is 

known to play a role in maintaining the oxidative stress homeostasis by acting as a 

ligand for copper intake into the cells thereby up-regulating superoxide dismutase (SOD) 

activity (Zeng, Watt et al. 2003). The copper-zinc (Cu-Zn) SOD enzyme incorporated 

less radioactive copper and was enzymatically less active in PrP-/- mice while a 

transgenic mice overexpressing PrP showed increased uptake of copper and SOD 

response, suggesting that PrP may have an anti-oxidant role by facilitating the delivery 

of copper ions to SOD (Brown, Schulz-Schaeffer et al. 1997; Brown and Besinger 

1998). Cells that lacked PrP were less viable and more susceptible to oxidative damage. 

Indeed, introducing PrP to PrP-/- cells rescued cells from undergoing apoptosis via 

caspase 3/9 pathway by up regulating SOD activity (Sakudo, Lee et al. 2003). Brain 

lysates from PrP-/- mice showed high levels of oxidative damage to proteins and lipids 

compared to wild type mice (Klamt, Dal-Pizzol et al. 2001); Wong, Liu et al. 2001). 

Prnp knock-out mice showed increased sensitivity to oxidative stress (Collinge, 

Whittington et al. 1994; Herms, Kretzchmar et al. 1995). PrP deficient primary neuronal 

cells are more susceptible to agents inducing oxidative stress, damaging agents such as 

hydrogen peroxide (H2O2) and this was associated with decrease glutathionine reductase 

activity (White, Collins et al. 1999). The reason for such phenomenon was explained as 

a result of decrease Cu/Zn superoxide dismutase-1 (SOD-1) activity (Brown, Schulz-

Schaeffer et al. 1997). Moreover, PC12 cells selected for resistance to copper toxicity 

showed increased PrP expression suggesting that PrP may also be involved in 
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detoxification of copper (Brown, Schmidt et al. 1998). Even, in vivo, the N-terminal 

region of PrP conferred protection against copper neurotoxicity induced by 

intrahippocampal copper injection by reducing neuronal cell loss and astrogliosis 

(Chacon, Barria et al. 2003). All these studies suggest that when PrP is present on the 

cell surface, it acts as a receptor and functions either as a carrier protein for the delivery 

of copper ions to intra-cellular targets or it acts as a sink for chelation of extra-cellular 

copper ions (Pauly and Harris 1998).  

 

There are several studies along with those indicated in the above paragraph that show an 

important role of PrP in protecting cells against reactive oxygen species (ROS)-mediated 

DNA damage (Watt, Routledge et al. 2007). For example, lack of PrP expression in cells 

resulted in increased sensitivity to oxidative stress (Collinge, Whittington et al. 1994; 

Herms, Kretzchmar et al. 1995; (Brown, Schulz-Schaeffer et al. 1997). Manganese 

induced mitochondrial dysfunction and ROS generation was significantly attenuated in 

PrP+/+ cells as compared to PrP-/- cells (Choi, Anantharam et al. 2007). However, it is 

still unclear how exactly PrP might protect cells from oxidative stress. One possibility is 

that PrP directly protects cells from ROS as PrP has been shown to portray a copper-

dependent SOD activity (Brown, Schmidt et al. 1998; Brown, Clive et al. 2001). 

Another possibility is that PrP acts indirectly to protect cells from oxidative stress by 

upregulating Cu-Zn SOD enzyme, that detoxify ROS as mentioned in previous 

paragraph.  

 

PrP is also associated with other proteins such as neuronal nitric oxide synthase (nNOS) 

in lipid rafts, which is involved in neuronal development, synaptic plasticity, 
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regeneration and regulation of transmitter release in wild type mice. nNOS was not 

associated with lipid rafts in cells lacking PrP (Keshet, Ovadia et al. 1999). However, 

how PrP influence endocytosis is still unclear. 

 

PrP plays an important role in cell survival and cell death. The detection of Bcl-2 

homology domain (BH2) like repeats in N-terminal region of PrP was shown to mediate 

Bcl-2 interaction with Bax protein and also responsible for protection against Bax-

mediated apoptosis (Yin, Oltvai et al. 1994).  Additionally, the yeast-two hybrid system 

demonstrated that the C-terminal portion of Bcl-2 protein, a suppressor of apoptosis 

interacts with the cellular prion protein (Kurschner and Morgan 1995). Neurons when 

cultured on Chinese hamster ovary cells transfected to express PrP showed increased 

neurite growth and neuronal survival as a result of activation of signalling pathways 

including p59Fyn kinase activity and PI3 kinase/Akt pathway along with up-regulation 

of Bcl-2 and Bax expression respectively (Chen, Mange et al. 2003). Now Bax-2 is a 

pro-apoptotic protein and is also a member of the Bcl-2 family. Studies from two groups 

demonstrated that injection of primary cultures of human neurons with a plasmid 

encoding Bax gene alone induced Bax-mediated apoptosis within 24 hours of expression 

whereas neuron co-injected with both Bax and PrP encoding plasmids protected the 

neurons from undergoing apoptosis (Bounhar, Zhang et al. 2001; Roucou, Guo et al. 

2003). Conversely deletion of endogenous PrP with antisense RNA enhanced Bax-

mediated apoptosis (Bounhar, Zhang et al. 2001). Moreover, the anti-apoptotic effect of 

PrP was specific for Bax as PrP did not prevent neuronal apoptosis induced by Bak (a 

Bcl-2 antagonist killer1)-, t-bid-, staurosporine- or thapsigargin- mediated cell death 

(Roucou, Giannopoulos et al. 2005), all of which are pro-apoptotic proteins. As PrP 
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interacts with Bcl-2 gene, it could be suggested that the anti-apoptotic effect of PrP is 

probably mediated by inhibiting interactions with pro-apoptotic proteins. In this context, 

Westergard L et al., (2007)  has illustrated several possible mechanisms by which this 

might occur, based on known pathways for Bax-mediated cell death (Fig 1.8)  (Danial 

and Korsmeyer 2004; van Delft and Huang 2006; Westergard, Christensen et al. 2007).  

 

Bax activation involves a series of events including Bax conformational change, 

mitochondrial translocation, cytochrome c release, ultimately leading to cell death. A 

study by Roucou X et al., (2005) has confirmed that PrP only inhibits the event of 

conformational changes in human neurons and in breast carcinoma MCF-7 cells that 

occurs initially during Bax activation and renders protection against Bax-mediated 

apoptosis (Roucou and LeBlanc 2005). Moreover, in serum-deprived immortalised 

hippocampal PrP-null cells, Bax conformational change occurred more rapidly 

compared to PrP-expressing cells. These evidences are supportive of mechanisms 

demonstrated in the figures 1.8A and 1.8B. However, there are studies which have 

shown discrepancies in the mechanisms involving the role of cytosolic PrP in facilitating 

protection against Bax-mediated apoptosis. There are several studies which show that 

cytosolic PrP (CyPrP) produces a toxic effect rather than a protective effect to cells 

(Rambold, Miesbauer et al. 2006). CyPrP produces insoluble aggregates in Chinese 

hamster ovary cells, green monkey kidney COS-1 cells which are resistant to proteinase 

K and resemble to that of PrPSc (Ma and Lindquist 2001; Yedidia, Horonchik et al. 

2001). A transgene expressing CyPrP in the cytosol that lacked N-terminal and C-

terminal signal peptides, in vivo, induced an immense loss of granule cerebellar neurons 

and gliosis (Ma, Wollmann et al. 2002). To the contrary, in a study by Roucou X et al.,  
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Fig 1.8: Possible mechanisms of PrP in inhibiting Bax-mediated apoptosis 

(Adapted from (Westergard, Christensen et al. 2007) 

PrP may inhibit Bax-mediated apoptotic pathways at several different points. When PrP is 

present on the cell surface (GPI-PrP), it may bind to a putative transmembrane receptor and 

trigger a signal transduction cascade that inhibits Bax mitochondrial translocation, 

conformational change, or oligomerization, all of which are involved in Bax activation (A). 

Cytoplasmic PrP may produce similar effects via a direct interaction with Bax (B). PrP may 

prevent pro-apoptotic, BH3-only proteins (C), or enhance an interaction between Bax and anti-

apoptotic, multi-domain proteins such as Bcl-2 and Bcl-XL (D). PrP may suppress downstream 

events in the Bax activation pathway, such as cytochrome c (cyto. c) release, or activation of 

Apaf-1 and caspases (E). Finally, PrP in the endoplasmic reticulum may alter Bax function in 

this organelle, via effects on intracellular calcium and the unfolded protein response (UPR) (F). 
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(2003), it was shown that an engineered form of cytosolic PrP was not toxic to neuronal 

cells and protects those cells from undergoing Bax-mediated apoptosis (Roucou, Guo et 

al. 2003).Even Bounhar Y et al., (2001) reported similar results (Bounhar, Zhang et al. 

2001).  These studies suggest that PrP may interact directly with Bax, in a manner 

similar to Bcl-2 as it inhibits Bax-mediated apoptosis. Moreover, it has four identical N-

terminal octapeptide repeats which share similarity with Bcl-2 homology domain 2. 

However, it is still unclear how Bax and PrP interact with each other. Yeast-two hybrid 

system could not confirm any direct interaction between Bax and PrP (Kurschner and 

Morgan 1995). Moreover, PrP is mostly present on the cell surface or in luminal 

vesicular sites and only a small portion is present in the cytosol both in vitro (Yedidia, 

Horonchik et al. 2001) and in vivo (Stewart and Harris 2003). Therefore more studies are 

required to elucidate exact mechanisms underlying the protective role of PrP against 

Bax-mediated apoptosis. 

 

PrP has been shown to be associated with both intra-cellular and transmembrane 

signaling by their interactions with signaling molecules such as heat shock protein (Hsp) 

60 (Edenhofer, Rieger et al. 1996), stress-inducible protein (Zanata, Lopes et al. 2002), 

Bcl-2 (Kurschner and Morgan 1995), growth factor receptor bound protein 2 (Grb2) and 

synapsin1b (Spielhaupter and Schatzl 2001). Antibody-mediated cross-linking of PrP on 

neuroectodermal cell line (IC11) stimulated P59Fyn signaling by interaction of PrP with 

lipid raft protein caveolin (Mouillet-Richard, Ermonval et al. 2000). PrP is also known 

to interact with stress-inducible protein-1 which us mediated by activating the mitogen 

activated protein kinase (MAPK) signaling pathway which is known to be involved in 

promoting neural development (Lopes, Hajj et al. 2005). When retinal explants from 
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neo-natal rats or mice were kept in vitro for 24hours and cell death was induced by 

anisomycin, a PrP-binding peptide activated the cyclic adenosine monophosphate 

/protein kinase A (cAMP/PKA) and extra-cellular signal related kinase (ERK) pathways 

and prevented cell death induced by anisomycin in explants from wild type rodents but 

not from PrP-null mice (Chiarini, Freitas et al. 2002). Therefore, it could be suggested 

that PrP might act as an unidentified molecule on the cell surface and or presenting it to 

the signaling receptor(s) might protect cells from apoptosis or sustain their long-term 

self-renewal. 

 

The function of PrP in promoting cell cycle regulation in proliferating cells has been 

contradictory. The protein is abundantly expressed on the surface of lymphocytes and its 

expression in vitro promotes lymphocyte activation (Cashman, Loertscher et al. 1990). 

The PrP-gene is up-regulated in CD8+ cells when they undergo proliferation upon 

transferring to lymphopaenic mice (Liao, Zhang et al. 2007). PrP over-expressor (OE) 

mice have also shown to increase cellular proliferation in vivo in the adult neurogenic 

regions of mice compared to the wild type and PrP knock-out mice (Steele, Emsley et al. 

2006). Also PrP promotes self-renewal in human HSC (Zhang, Steele et al. 2006).  It is 

directly involved in tumor cell progression in many studies (Pan, Zhao et al. 2006), 

(McEwan, Windsor et al. 2009).  A specific isoform PrP is highly expressed during G1 

phase in human glioblastoma cell line (T98G) (Kikuchi, Kakeya et al. 2002). Although 

there are as many studies indicating association of PrP with cell proliferation, however, 

there are many studies which do not support this role of PrP. For example, in neo-plastic 

and viral-transformed cell lines PrP expression promotes growth arrest and terminal 

differentiation (Kniazeva, Orman et al. 1997; Gougoumas, Vizirianakis et al. 2001), 
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suggesting that PrP alone is not responsible for promoting cell cycle progression. In this 

context, neural tissue is of particular interest as the expression of PrP is differentially 

regulated in proliferating cells. The proliferating cells in the sub-ventricular zone (SVZ) 

did not express PrP, although in PrP over-expressor mice (Tg20), increasing PrP 

expression levels positively regulated stem cell proliferation in SVZ zone. To the 

contrary, in the hippocampus region of PrP knock-out mice, the hippocampal 

progenitors showed slower proliferation rates but no significant effect of PrP expression 

was observed in proliferation of hippocampal progenitors (Steele, Emsley et al. 2006). 

Moreover a study by Kim et al., (2005) showed higher proliferation rates in PrP 

deficient neural cell lined derived from embryonic hippocampus (Kim, Kim et al. 2005). 

The discrepancies in these studies suggest that PrP has a cell specific function in 

proliferating cells of neuronal tissue and it probabl

modulate cell proliferation and  inhibits 

cell proliferation.  Indeed PrP has been shown to modulate dual role in cell proliferation 

and cell polarization in epithelial cells (Morel, Fouquet et al. 2008).  

 

1.7.2 Cellular prion protein and its role in self -renewal of stem cells  

Very recently a role in stem cell renewal has emerged in several stem cell types. Prion 

protein is described as an important marker for HSC (Zhang, Steele et al. 2006; 

Palmqvist, Pineault et al. 2007). Hox genes are implicated in HSC regulation as well as 

in leukemia development through translocation with the nucleoporin gene NUP98. In 

HSCs, a genetically engineered NUP98-HOX fusion gene known to promote HSC 

expansion ability and block in vitro differentiation and leukemia transformation, was 

able to induce the expression of several genes and especially Prnp gene between 2.1 to 
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2.3 times and was shown to be involved in cell development, cell proliferation and 

signal transduction (Palmqvist, Pineault et al. 2007).  Also in HSCs, it has been shown 

that nearly 40% of adult HSC express PrP on the cell surface (Zhang, Steele et al. 2006). 

Zhang C C et al., (2006) showed that PrP is expressed on the cell surface of bone 

marrow cell populations that are enriched in long term haematopoietic stem cells. The 

study demonstrated that HSC from PrP-null bone marrow cells showed significantly less 

engraftment and impaired self-renewal ability following successive serial 

transplantations in lethally irradiated mouse recipients. However, retroviral infections of 

PrP-null bone marrow cells with a vector expressing PrP protein rescued the impaired 

self-renewal ability of HSC and thus reconstituted the haematopoietic system (Zhang, 

Steele et al. 2006).  This indicated that the self-renewal ability of HSC has been 

compromised in absence of PrP suggesting that PrP is not only present in HSC but has a 

functional role in the self-renewal of HSC. 

 

In mammary gland, a population of freshly isolated mammary epithelial cells was 

fractionated into PrP- (92.5% of total cells), PrPmed (5.1%of total cells), PrPhigh (1.8% of 

total cells) based of PrP staining. CD49f was used as a marker for in vivo repopulating 

mammary gland epithelial stem cells. Freshly isolated mammary epithelial cells in 

which sphere initiating cells are enriched in the CD49f+CD24+PrPmed fraction were 

capable of generating nearly 6.1 mammospheres for every 10,000 cells. To the contrary 

in in vitro culture of organoids PrP expression was significantly reduced (Liao, Zhang et 

al. 2007). This study suggested that PrP may have a role in proliferation of these freshly 

isolated primitive cells.  
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In neuronal stem cell (NSC), PrP increases cellular proliferation in vivo. After 

incorporating pulse labels of thymidine analog, BrdUrd, cellular proliferation in adult 

neurogenic regions (sub-ventricular and hippocampus) of PrP KO, WT and PrP OE mice 

was assessed. Cellular proliferations significantly increased in PrP-OE mice compared to 

PrP-KO and WT mice (Steele, Emsley et al. 2006).   

 

Very recently, the role of PrP in human ESC (hESC) in promoting proliferation and 

deciding the fate of ESC differentiation was studied (Lee and Baskakov 2010; Lee and 

Baskakov 2013). In hESCs where PrP expression was knocked down and subjected to 

undergo spontaneous differentiation for 14 days in presence of tetracycline, it was 

observed that at the end of day 14, markers of ectodermal lineage including growth-

associated protein 43, tyrosine hydroxylase and synaptophysin was supressed while 

markers of endodermal and mesodermal lineage remained unaffected compared to 

untransfected hESCs and hESCs transfected with a scramble vector. However, in hESCs 

where PrP was overexpressed the expression of markers of all three germ layers was 

remarkably down regulated, suggesting that PrP is involved in regulating hESCs 

differentiation fate and that optimal levels of PrP expression is required for such 

differentiation.  

 

It is unknown the precise mechanism by which way PrPC promotes self-renewal in stem 

cells and whether PrP has a role in promoting proliferation and differentiation ability in 

MSC. MSCs, when cultured in vitro have known to decrease their proliferation and 

differentiation potential along with time. In vitro expansion of MSC without loss of self-
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renewal is necessary for any clinical application. As prion protein plays an important 

role in self-renewal of stem cells.  

 

In this project, I will test the hypothesis that: 

of hMSC and that a small molecule modulator of 

PrP can be used to enhance their proliferation and extend their life span in culture, 

while retaining their ability to differentiate and engraft to bone, thereby delaying the 

process of replicative ageing foll  

 

1.8 Aims and Objectives of the project 

To test the hypothesis, I will determine whether: 

1. PrP expression is decreased in hMSC with time in culture and whether this co-relates 

with loss of their proliferation and differentiation ability. 

2. The expansion ability of hMSC is compromised when the expression of PrP is knocked 

down. 

3. There is a small molecule that can be used to preserve PrP expression with cellular 

ageing in hMSC and delay hMSC ageing. 
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2.1 Isolation of MSC from human bone marrow 

Human BM was collected either from the iliac crest of  patients undergoing osteotomy 

for reasons other than metabolic disorders, or patients undergoing diagnostic BM, which 

were subsequently reported normal. The BM was obtained following informed written 

and/or parental consent in accordance with the protocol approved by the South Sheffield 

local research ethical committee. The human ified 

serum (FBS, Hyclone, Thermo Scientific, Northumberland, UK) and 0.01% of 

penicillin/streptomycin (Sigma, Dorset, UK), and 0.1% heparin (Royal Hallamshire 

Hospital Pharmacy). To obtain mononuclear cells (MNC), BM samples were mixed with 

equal amount of phosphate buffer saline (PBS, Gibco) and overlaid on Lymphozyten 

separating medium (density 1.077 g/L; PAA laboratories, Pasching, Austria). The BM 

was centrifuged at 800 gravitational acceleration (g) for 20 minutes without the 

application of brakes. The MNC fraction was then washed twice with PBS and the cells 

were counted in 5% acetic acid using a haemocytometer and were plated at 8000 

MNC/cm2 in MSC medium containing DMEM and 10% FBS (Hyclone). The cells were 

incubated at 37ºC in 5% carbon dioxide (CO2) in air. After 48 hours (hr) the non-

adherent cells were removed and medium was changed twice weekly till cells were 

confluent. A list of BM samples used in the project is enlisted in table.2.1. 
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Donor used Age Gender 

snbm-17 9yrs 2 months N/A 

snbm-24 14 yrs 7 months Female 

snbm-26 15 yrs 7 months Male 

snbm-28 32 yrs 5 months Male 

snbm-61 16 yrs 1 month Male 

snbm-62 9 yrs 11 months Male 

snbm-70 9 yrs 5 months Male 

snbm-78 54 yrs 10 months Male 

snbm-80 70 yrs 5 months N/A 

snbm-82 80 yrs Female 

snbm-83 74 yrs 2 months Male 

snbm-86 73 yrs 10 months Female 

snbm-99 10 yrs 3 months Male 

snbm-101 65 yrs 9 months Male 

snbm-102 13 yrs 6 months Male 

 

Table 2.1: Bone marrow samples used in this study 
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2.2 Culture of hMSC 

Human MSCs were cultured in MSC medium and when they reached confluence, the 

media was removed from the flask and cells were washed once with PBS. The cells were 

detached by addition of trypsin- ethylenediamine tetra-acetic acid (0.5% trypsin, 1mM 

EDTA; Gibco, Paisley, UK) and were incubated at 37oC in 5% CO2 in air for 2 minutes. 

Cells were then harvested using MSC medium and centrifuged at 800g for 5 minutes at 

room temperature. Cells were re-suspended in 1ml of MSC medium. Live cells were 

counted using the trypan blue exclusion method.  

 

For assessment of growth kinetics 1000MSCs/cm2 were plated and incubated at 37oC in 

5% CO2 ubling 

was then calculated using the equation: 

 

 

Number of population doublings = Log N/Log2 

where N = the number of cells at confluence / the number of cells seeded at the start of 

the culture. 

 

 

The rest of the MSCs were re-plated in MSC medium in a larger flask and incubated at 

37oC in 5% CO2 in air to obtain sufficient number of MSCs to be used for further 

experiments. 
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2.3Freezing and defrosting of hMSC 

When storage of MSC cells were required, cells were detached by trypsin-EDTA as 

described in section 2.2 and cells were re-suspended in freezing medium containing 90% 

fetal calf serum (FCS) and 10% dimethylsulphoxide (DMSO) and quickly were 

transferred to 80oC for overnight in cryo-freezing container and the day after 

transferred to liquid nitrogen. 

 

When required, cells were defrosted in a 37oC water bath for few minutes, after which 

they were transferred into a tube containing cold MSC medium. The mixture was 

centrifuged at 800g for 5 minutes at room temperature. The cell pellet was re-suspended 

in MSC medium and counted with 0.4% trypan blue using a haemocytometer and cells 

were seeded at 8000 cells/cm2 incubated in a flask at 37oC in 5% carbon dioxide in air. 

The cells were subsequently fed twice every week. 

 

2.4 Immuno-staining of hMSC and Fluorescent activated cell sorting 

(FACS) 

Human MSCs (105) were incubated in 100 l of PBS plus 5% FCS (Gibco) with the 

recommended amount of antibody or its respective isotype matched control for 30 

minutes on ice (Table 2.2). The cells were then washed twice with 4mls of PBS plus 5% 

FCS and spun at 800g for 5 minutes at 4oC. The cells were fixed with 500 l PBS 

containing 2% paraformaldehyde and 2% FCS and stored at 4oC until FACS analysis 

was performed. Cells were acquired using FACS calibre (Becton Dickinson, Oxford, 
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Antigen Fluorescence Isotype Quantity Company 

CD45 Allophycocyanin 

Allophycocyanin 

conjugated 

Immunoglobulin 

G1 (IgG1) 

1 g/106 cells Caltag, UK 

CD29 R-phycoerythrin 
R-phycoerythrin 

conjugated IgG1 
1 g/106 cells Caltag, UK 

CD31 

Fluorescein- 

isothiocyanate 

(FITC) 

conjugated 

FITC conjugated 

IgG1 
2 g/106 cells 

BD 

Pharmingen 

CD34 R-phycoerythrin 
R-phycoerythrin 

conjugated IgG1 
1 g/106 cells Caltag, UK 

CD105 

Non-conjugated 

monoclonal 

antibody (mAb) 

raised against 

hMSC (produced 

in house-100 l 

hybridoma 

supernatant/106 

cells) plus FITC 

conjugated goat 

anti mouse IgG1 

Secondary antibody 

only 
1 g/106 cells 

Primary 

Antibody- 

BD 

Pharmingen 

 

Secondary 

antibody-

Sigma 

Aldrich, UK 

 

Table 2.2: Antibodies used for the characterisation of MSC 

CD-cluster differentiation 
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UK) and analysed using Cell Quest software. 

 

2.5 Clonogenic Assay - Colony forming unit fibroblast assay (CFU-F) 

The CFU-F assay was carried out on hMSCs from established cultures to determine the 

number of mesenchymal progenitors present in the culture. Cultured hMSCs were plated 

in 6 well culture plates at the densities of 100 and 200 cells per well (10.5cells/cm2 and 

21.05cells/cm2) in duplicates in MSC medium. The plates were incubated for 14 days at 

37oC in 5% CO2 

stain (VWR International, Leicestershire, UK). Briefly, the medium was removed from 

the culture plates and the plates were washed with non-sterile PBS to remove residual 

FBS. The plates were then air-dried and the cells were then fixed with methanol (Fisher 

Scientific, Loughborough, UK) for 5 minutes. The cells were thereafter stained with 

Wrigh

running tap water to wash away any residual stain. The stained colonies appear purple in 

colour. After the plates have dried completely, the stained purple colored colonies were 

counted under inverted light microscope. Those colonies comprising of at least 50 cells 

with a definite centre of origin were considered as CFU-F. 

 

2.6 Clonogenic Assay - Colony forming unit osteoblast assay (CFU-O) 

The number of clonogenic progenitors with ostoegenic potential was obtained by plating 

hMSCs in 6 well culture plates at the densities of 100 and 200 cells per well 
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(10.5cells/cm2 and 21.05cells/cm2) from established hMSC cultures in duplicates in 

MSC medium supplemented with osteogenic supplements composed of 0.05 mM L-

Aldrich, St. Louis, USA) and 100nM dexamethasone (Sigma Aldrich, St. Louis, USA). 

Cells were maintained for 14 days at 37oC in 5% CO2 in air and fed twice every week. 

At day 14 colonies were stained for alkaline phosphatase (ALP) enzymatic activity using 

86R alkaline phosphatase kit (Sigma Aldrich) according to the manual instructions. 

Briefly, the medium was removed and the plates were washed twice with PBS. The cells 

in each plate were then fixed with 500µl of citrate-acetone formaldehyde fixative 

solution prepared by addition of 2.5ml citrate solution, 6.5ml acetone and 0.8ml of 37% 

formaldehyde for 30 seconds. To remove any residual fixative the plates were rinsed 

gently with deionised water. The plates were then incubated with 500µl of alkaline dye 

mix prepared by addition of dizonium salt (prepared by mixing 100µl of sodium nitrate 

solution with 100µl of FRV alkaline solution) to 4.5 ml of de-ionized water followed by 

100µl of Naphthol AS BI solution; incubated in dark for 15 minutes. The wells were 

again rinsed with deionised water for 2 minutes, after which 500µl of the haematoxylin 

(Sigma Aldrich, St. Louis, USA) stain was added for 2 minutes. The plates were finally 

washed under running tap water to remove any residual stain and were observed under 

the microscope for the presence of cells expressing alkaline phosphatase, which would 

appear dark pink in colour. The colonies comprising of at least 40 cells with a definite 

centre of origin was considered as one CFU-O. 
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2.7 Clonogenic Assay - Colony forming unit adipocyte assay (CFU-A) 

The number of clonogenic progenitors with adipogenic potential was obtained by plating 

hMSCs in 96 well plates at limiting dilutions (ranging from 105 to 6.25 x 103 cells, 8 

wells/ dilution) in 100ul/well MSC medium and cultured at 37oC in 5% CO2 in air. After 

2 days in culture, the cells were induced with additional 100µl/well MSC medium with 

adipogenic supplements comprising of 100nM dexamethasone (Sigma Aldrich) and 1 

µg/ml 3-isobutyl-1-methylxanthine (IBMX, Sigma Aldrich). The cells were maintained 

in the adipogenic differentiation medium for two weeks and were fed twice a week. 

After two weeks exposure to adipogenic induction medium, the cells were stained for 

Oil red O to detect lipid vacuoles. Briefly, the Oil red O staining involved removal of 

MSC medium from the wells. The cells were washed with PBS to remove any traces of 

serum (FBS) and fixed with 10% formaldehyde for an hour. After an hour of incubation, 

the plates were washed three times with deionised water to remove any excess 

formaldehyde and incubated with 0.18% Oil Red O solution for 10 minutes, after which 

the plates were again rinsed with deionised water to remove any excess stain. Cells were 

finally counterstained with of Haematoxylin solution for 2 minutes and excess stain was 

washed with deionised water. The plates were viewed under the microscope for the 

presence of cells containing lipid vacuoles, which appeared as red stained droplets. 

 

The number of positive wells containing lipid vacuole in each dilution was scored. A 

well was considered to be positive if it contained more than 20 cells containing red lipid 

vacuoles. The percentage of negative well was then scored at different dilutions of cells. 
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This data was then used to calculate the number of CFU-A following Poisson 

distribution (Wu, Liu et al. 2005) and using the formula: 

  

Fo= e-x 

where Fo = fraction of colony-negative wells at a certain dilution 

 e = constant whose value is 2.71  

x = number of colony forming units per well 

 

2.8 Differentiation Assays  

Osteogenic differentiation of hMSC was achieved by plating 1.2 x 103 hMSCs/cm2 in 

MSC medium supplemented with ostoegenic supplements (0.05 mM L-Ascorbic Acid, 

one). Adipogenic differentiation of 

hMSC was achieved by plating 2.8 x 103 hMSCs/cm2 in MSC medium supplemented 

with adipogenic supplements (100nM dexamethasone and 1 µg/ml IBMX). Cells were 

maintained at 37oC in 5% CO2 in air and fed twice a week. After 2 weeks, total RNA 

was extracted (see section 2.8.1) and protein lysate (see section 2.9) was collected to 

perform polymerase chain reaction (see section 2.8.3) and western blotting (see section 

2.9) respectively. 

 

2.8.1 Total RNA extraction  

Total RNA was extracted using RNAqueous 4PCR kit (Ambion, Warrington, UK) 

500ul of lysis solution was added to a 
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cell density of 107 hMSCs and vortexed vigorously. Equal volume of 64% ethanol was 

added to the lysate and vortexed carefully following which the lysate/ethanol mix was 

poured through a filter cartridge by centrifugation. The filter cartridge was washed once 

with wash solution #1 and twice with wash solution #2. The RNA was finally eluted 

from the cartridge by centrifugation in a microfuge at 13,000 rotations per minute (rpm) 

into a fresh collection tube by adding 60ul pre-heated elution solution. To completely 

remove traces of DNA, the extracted RNA was treated with DNase 1 and incubated at 

37oC for 30 minutes. The RNA was then treated with DNase inactivation reagent and 

mixed thoroughly. Then the mixture was centrifuged for a minute to pellet the DNase 

inactivation reagent and RNA was transferred to a new tube.  

 

The concentration and purity of total RNA obtained was quantified by measuring its 

absorbance (A) at 260nm and 280nm using a Nano-drop 2000c UV-Vis 

spectrophotometer (Thermo Scientific, Northumberland, UK). An A260 of 1 is equivalent 

to 40ugRNA/ml.  The concentration of RNA was therefore calculated using the 

equation: 

 

Concentration of RNA = A260 x Dilution factor x Extinction co-efficient  

where A260 = Absorbance at 260nm 

Extinction co-efficient = 40 (1 A260 = 40ug RNA/ml) 

 

The ratio of A260 to A280 values was used a measure of RNA purity and the sample was 

considered of good quality when the ratio was in the range of 1.8 to 2.1. 
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2.8.2 cDNA preparation 

 Total RNA was used for reverse transcription using the 1st Strand complementary DNA 

(cDNA) kit (GE Healthcare, Amersham, UK). Briefly, 2ug of RNA sample was mixed 

with RNAse-free water to make a final volume of 20ul and heated at 65oC for 10 

minutes and then chilled on ice. To the heat-denatured RNA, 11ul of bulk first strand 

cDNA reaction mix, 1ul dithiothreitol (DTT) solution and 1ul Not I-d (T) 18 primer (1 

in 25 dilution in RNAse-free water) was added and mixed thoroughly by pipetting. The 

mixture was incubated at 37oC for 1 hour. The cDNA was stored at -20oC. 

 

2.8.3 Primer design and real time quantitative PCR  

The Taqman primer design system (Primer express, Applied Biosystems) was used to 

obtain primer sequence in the last 500 base pairs from the polyA tail at the 3` end of the 

gene. All sequences were checked using blast programmes in NCBI for potential 

aspecific binding (Genbank-NCBI BLAST, Nucleotide BLAST) and were found to be 

unique to the gene of interest in humans. The list of primer sequences tested in this 

project is enlisted in table 2.3. All primers were ordered from Invitrogen (Paisley, UK) 

and were stored as a concentrated stock of 1mM in DNase RNase free water (Gibco) at -

20oC and used at a concentration of 1µM.   

 

For the standard curve known concentrations (50ng, 5ng, 0.5ng and 0.05ng) of human 

genomic DNA (Promega) were serially diluted and stored in small aliquots allowing 

only one freeze/thaw cycle per aliquot. Real time- quantitative polymerase chain 

reaction (RT-qPCR) was performed in triplicates in a 10ul volume containing 2ul  
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Primers 
Sequence 

L-32 forward 5'-GGGAGAGACACCGTCTGAACA-3' 

L-32 reverse 5'-GAACCACGATGGTCGCTTTC-3' 

SOD-2 forward -GGAGTTGCTGGAAGCCATCA-3' 

SOD-2 reverse -CAGCCGTCAGCTTCTCCTTAA-3' 

LPL forward -TTGTGAAATGCCATGACAAGTCT-3' 

LPL reverse -CATGCCGTTCTTTGTTCTGTAGA-3' 

RUNX2 forward -CACTATCCAGCCACCTTTACTTACAC-3' 

RUNX2 reverse -TAGTGAGTGGTGGCGGACATAC-3' 

Osteopontin forward -AATTGCAGTGATTTGCTTTTGC-3' 

Osteopontin reverse -GAACTTCCAGAATCAGCCTGTTTAA-3' 

Osteocalcin forward -CAATCCGGACTGTGACGAGTT-3' 

Osteocalcin reverse -CCTAGACCGGGCCGTAGAAG-3' 

PPAR-  -TGGGTGAAACTCTGGGAGATT-3' 

PPAR-  -TTTCTTGTGATATGTTTGCAGACAGT-3' 

ALP forward -CCCGTGGCAACTCTATCTTTG-3' 

ALP reverse -GCCATACAGGATGGCAGTGA-3' 

 

Table 2.3: Sequence of primers used in real time quantitative PCR 
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template DNA, 1ul each of forward and reverse primer at 1 micro molar concentration, 

5ul SYBR GREEN 2x qPCR Mix (Eurogentec, Belgium) and 1ul distilled water. PCR 

amplification was performed under the reaction conditions: 1 cycle of 50ºC for 2 min, 

95ºC for 10 min; 40 cycles of denaturation at 95ºC for 15 seconds and annealing at 

60ºC60ºC for 1 min. This was followed by a dissociation stage where the conditions 

were 95ºC for 15 seconds, 60ºC for 15 seconds and 95ºC for 15 seconds to generate a 

melting curve for verification of specificity of amplification product. All this was carried 

out using 7900HT Real-Time-PCR System (Applied Biosystems) in 384-well PCR-

plates (GBO).  Every qPCR experiment was conducted 3 times. Analysis was performed 

using SDS 2.0 software and threshold was set to lie in the middle of logarithm phase and 

baseline was kept at the default setting of 3-15 cycles. Amounts were calculated using 

the guidelines under ABI prism 7700 Sequence Detection System protocol using the 

standard curve method. Logarithm of the average of the cycle threshold (CT) value was 

calculated using the slope and intercept of the equation generated by the standard curve. 

An anti-log was then performed to determine the input amount. The relative expression 

quantities of all the genes were normalized to housekeeping gene L32 to plot the graphs.  

 

2.9 Protein expression by Western Blotting 

2.9.1 Preparation of protein lysates  

To obtain protein lysates, MSC were trypsinised (section 2.2) and 3 x 106 cells were 

washed with PBS and spun at 2000 rotation per minute (rpm) for 3 minutes in 

microfuge. The cell pellet was re-suspended in 500 l of mammalian cell lysis buffer 

(Mammalian cell lysis kit, Sigma; containing 250mM Tris- 5mM EDTA, 750mM 
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sodium chloride, 0.5% sodium dodecyl sulphate, 2.5% deoxycholic acid and 5% Igepal 

supplemented with 10 l of Proteinase inhibitors cocktail  (Sigma-Aldrich, Dorset, UK) 

containing 4-(2-aminoethyl) benzenesulfonyl fluoride, pepstatin A, bestatin, leupeptin, 

aprotinin and trans-epoxysuccinyl-L-leucyl-amido(4-guanidino)-butane). The lysate was 

incubated for 15 minutes on a rotating shaker at 4oC and then spun at 12,000 rpm for 10 

minutes. The supernatant was collected and stored at -20oC for further use. 

 

2.9.2 Protein assay by Bradford protein assay 

To obtain a standard curve, different concentrations of bovine serum albumin (BSA) 

(Invitrogen Ltd, Paisley, UK) from 0 to 10 g/ml in mammalian cell lysis buffer (Sigma) 

were prepared in duplicates in a 96-well plate. Different dilutions of the protein lysate 

(1:1, 1:2 and 1:5 in mammalian cell lysis buffer in 10 l) were measured in triplicates 

and then 200 l of a solution containing 1 part copper (II) sulphate in 50 parts of 

bicinchonic acid (BCA) was added. The plate was incubated at room temperature for 30 

minutes and the absorption was read at 562nm by spectrophotometer (Revelation 

software, Version 4.25).  

 

2.9.3 Protein separation by SDS-PAGE 

Protein lysate from each sample (20 g) was diluted in equal volume of 2X laemmli 

buffer (Gibco). The samples were heated at 95oC for 5 minutes, after which they were 

quickly transferred on ice and loaded on a 12% Tris-glycine gel. The gel was casted on 

mini protean 3 cell equipment (Biorad Laboratories, Hempstead, UK) (Table 2.4). 

Briefly, separating gel was loaded in gel casting stand and allowed to set for 20-30  
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Separating gel: 

REAGENTS 12% 

Distilled water 3.35 ml 

1.5M Tris-hydrochloric acid (HCL); pH-8.8 2.5 ml 

10% sodium dodecyl sulphate (SDS) 100 µl 

30% Acrylamide 4 ml 

10% Ammonium persulphate (APS) 50 µl 

Tetra-methylethane-1,2-diamine (TEMED) 5 µl 

 

 

Stacking gel: 

REAGENTS 12% 

Distilled water 6.1 ml 

0.5M Tris-HCL; pH-6.8 2.5 ml 

10% SDS 100 µl 

30% Acrylamide 1.3 ml 

10% APS 100 µl 

TEMED 10 µl 

 

Table 2.4: Reagents for 12% Tris-glycine gel 
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minutes followed by the addition of stacking gel. A 10 well comb was inserted to 

prepare wells for loading the samples. The gel was allowed to set at room temperature 

for 10 minutes and samples were loaded and run at 150V for 60 minutes. 

 

2.9.4 Electro-blotting 

Electro-blotting was carried out by wet transfer using nitro-cellulose membrane 

(Amersham Biosciences, UK). The membrane and gel were inserted between 4 sponges, 

3 pieces of 3mm papers (Whatman Schleicher and Schuell, UK) and soaked in transfer 

buffer (0.25M Tris, 150mM Glycine and 10% methanol; pH 8.3). The membrane was 

blotted at 70V for 70 minutes. 

 

2.9.5 Antibody detection 

After electro-blotting, blocking of the membrane was carried out with 5% BSA in PBS-

0.1% Tween 20 (PBS-T; BDH, Poole, UK) for detection of glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) and 5% Casein (Vector Laboratories, California, USA) in 

PBS-T for detection of PrP. The membrane was incubated on a shaker at room 

temperature for 1.5 hour. The anti-prion protein primary monoclonal antibody, SAF32 

(Spibio, Massy, France) was diluted in 5% casein/PBS-T at 1:400 and mouse anti-

human GAPDH antibody (Abcam, Cambridge) was diluted in 5% BSA/PBS-T at 

1:1000. Staining with primary antibody was carried out overnight in blocking solution at 

4oC on shaker. The following day, the membrane was washed 5 times for 5 minutes with 

PBS-T. The membrane was incubated with goat anti-mouse horseradish peroxidase 

(HRP) conjugated secondary antibody (DAKO, immunoglobulin A/S, Copenhagen, 
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Denmark) at 1:3000 in the respective blocker solutions for 30 minutes at room 

temperature on a shaker. The membranes were washed 3 times with PBS-T for 15 

minutes each wash. Detection was carried out using enhanced chemiluminescence plus 

ECL reaction kit (Amersham Bioscience, UK). The membranes were then exposed to 

ECL hyper film (Amersham Bioscience, UK) for 2 7 minutes for PrP antibody and 2 

minutes for GAPDH antibody. The band size was obtained by linear regression analysis 

based on the distance migrated by the bands and co-related to the logarithmic molecular 

weight of the size marker. 

 

2.10 Production of lentiviral particles 

2.10.1 Plasmids 

Initially lentiviral particles were generated by co-transfection of human embryonic 

kidney (HEK) 293t cells with in-house available plasmids pCAG_kGP3R (Fig 2.1), 

pCAG4RTR2 (Fig 2.2), pCAGVSVG (Fig 2.3) and control vector plasmid pCL10.1 

MSCV ires GFP (Fig 2.4, kindly donated by Clive Buckle). Lentiviral particles were 

also generated by co-transfection of human embryonic kidney (HEK) 293t cells with the 

envelope plasmid pMD.G2 (Fig 2.5)  (Fig 2.6), 

(produced by L.Naldini and kindly donated by A Thrasher, appendix-I) and plasmid 

containing the vector of interest as previously described (Thermofisher, Epsom, UK-17). 

, 

appendix-I) was used to express the enhanced green fluorescent protein (eGFP) to label 

hMSCs for transplantation experiments. A set of 4 pGPIZ shRNAmir (Fig 2.8) each 

containing a short hairpin sequence to specifically knock down expression of PrP 
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Fig 2.1:  Vector construct pCAG-kGP3R 

pCAG-kGP3R plasmid contains the structural genes required for replication of the virus. 
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Fig 2.2:  Vector construct pCAG-RTR2 

pCAG-RTR2 plasmid is the helper plasmid that helps in the transcription and translation of 

structural genes responsible for the assembly of a new virus within the packaging cell. 
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Fig 2.3:  Vector construct pCAG.VSVG  

pCAG.VSVG plasmid codes for the viral capsid. 
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Fig 2.4:  Vector construct pCL-10.1MSCV ires GFP  

pCL-10.1MSCV ires GFP  plasmid codes for the expression of green fluorescent protein. 
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Fig 2.5:  Vector construct pMD2.VSVG  

pMD2.VSVG plasmid codes for the viral capsid (image courtesy: 

http://www.addgene.org/12259/). 
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Fig 2.6:  Vector construct pCMV-dR8.74 

pCMV-dR8.74 contains all the important packaging components Gag, Pol, Rev and Tat in one 

plasmid that helps in the transcription and packaging of RNA copy of the expression vector into 

the recombinant pseudo-viral particles. 
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Fig 2.8:  Vector construct pGPIZ shRNAmir 

pGPIZ shRNAmir contains a short hairpin ribo-nucleic acid (shRNA) sequence to specifically 

knock down expression of prion protein. 
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(shRNA-1, shRNA-2, shRNA-3 and shRNA-4), an internal ribosome entry site and 

TurboGFP (Thermofisher, Epsom, UK) were also used. A similar pGPIZ shRNAmir 

containing a non-silencing hairpin sequence (shRNA-ns) was used as control. The 

sequences of the set of 4 shRNAs to knock down PrP expression is enlisted in table 2.5. 

 

2.10.2 Culture of HEK293t cells  

Human embryonic kidney (HEK) 293t cells were cultured in DMEM + 10% FCS and 

incubated at 37°C in 5% CO2 in air. The media was changed twice every week until the 

cells were confluent. Once the cells were confluent, the medium was removed and the 

cells were washed with PBS. The cells were detached using trypsin-EDTA (0.25% 

trypsin, 1mM EDTA) and collected in DMEM + 10% FCS followed by centrifugation at 

2000 rpm for 5 minutes at room temperature. The supernatant was discarded and the cell 

pellet was re-suspended in DMEM + 10% FCS. The resulting cell suspension was 

equally distributed in 3 T175 flasks and DMEM + 10% FCS were added to make the 

total volume up to 20 ml. The flasks were incubated at 37°C in 5% CO2 in air. 

 

2.10.3 Production of viral particle  

2.10.3.1 Production of viral particle using four-plasmid packaging system  

Viral particles were produced by co-transfection of HEK 293t cells with in house 

pCAG_kGP3R, pCAG4RTR2, pCAGVSVG and pCL10.1 MSCV ires GFP plasmids 

using calcium phosphate precipitation method. Briefly, 2 x 106 HEK 293t cells were 

seeded in 10cm2 culture dishes and maintained in D10 medium (DMEM containing 10%  

 



 
 

89 | P a g e  
 

 

 

 

 

 

 

 

shRNAs Sequence 

shRNA-1 TACATGAAACGATTCAGTG 

shRNA-2 ATAAGTATCATGTGGCCTC 

shRNA-3 TAGTTTAAAGAAAGGAATG 

shRNA-4 TGTTCACTGTGAATATGTC 

shRNA-ns ATCTCGCTTGGGCGAGAGTAAG 

 

Table 2.5: Hairpin sequences of shRNA constructs target the PrP gene sequences 

located on chromosome 20 
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(v/v) FBS, penicillin G (50 units/ml), and streptomycin (50 ug/ml)) and incubated at 

370C in 5% CO2 for 24 hours. The four plasmids were mixed at 10ug pCAG_kGP3R, 

2ug pCAG4RTR2, 2ug pCAGVSVG and 10ug pCL10.1 MSCV ires GFP concentrations 

in a total volume of 450ul of double-distilled water, following which 50ul of 2.5M 

calcium chloride (CaCl2) were added. Subsequently, 500 ul  of  2X  HBSS (280 mM 

NaCl, 1.5 mM Na2PO4, 50 mM Hepes, pH 7.05) were added drop wise while vortexing 

the mixture, after which 10 ml D10 medium was added. The culture medium from 

10cm2 culture dishes were then removed and replaced with D10-DNA-CaPO4 mixture. 

The cells were incubated for 18hours at 37oC in 5% CO2. Following which medium was 

replaced with fresh D10 medium after washing with 5 ml of PBS. Twenty four hours 

later the medium containing the freshly produced viral particle (primary viral 

supernatant) was collected and aliquoted into microcentrifuge tubes and stored at -80°C. 

 

2.10.3.2 Production of viral particle using three-plasmid packaging system  

Appropriate amounts of expression plasmids (50µg), envelope plasmid pMD.G2 

 and 5 ml Opti-MEM (Gibco) 

were mixed and filtered through a 0.22µm filter. In a separate tube 0.02% v/v of 

polyethylene imine (PEI, Sigma) was added to 5ml of Opti-MEM and filtered 0.22µm 

filter. The two solutions were mixed and allowed to stand for 20 minutes. At the end of 

incubation, 10ml of the PEI/plasmid solution was added to each flask containing the 

packaging cell line HEK293t and incubated for 4 hours at 37°C in 5% CO2 in air. The 

PEI/plasmid solution was then removed and replaced by DMEM + 10% FCS and the 

cells were incubated for another 24 hours at 37°C in 5% CO2 in air.  Twenty four hours 

later the medium containing the freshly produced viral particle (primary viral 



 
 

91 | P a g e  
 

supernatant) was collected and centrifuged at 3000rpm for 10 minutes. The supernatant 

was collected and filtered through a 0.22 µm filter and aliquoted into microcentrifuge 

tubes and stored at -80°C. The primary viral supernatant of vector construct 

-centrifuged at 19,000 rpm for 2 

hours (established in the laboratory by Master student Taneera Ghate). The primary 

concentrated virus was then aliquoted into microcentrifuge tubes and frozen at -80°C. 

 

2.10.4 Determination of viral transducing units/ml  

The number of viral particles in the primary viral supernatant was determined by 

titration experiment. The HEK293t cells were seeded at a density of 5x104 cells per well 

in a 12 well plate. Viral dilutions of 1:50 and 1:500 of pCL10.1 MSCV ires GFP,  

shRNA-1,   shRNA-2, shRNA-3, shRNA-4 and shRNA-1-2-3-4 were inoculated onto 

the 293t cells and incubated at 37°C in a 5% CO2 in air for 48 hours. A well was 

maintained as an untransduced negative control. The cells were then analysed by FACS 

followed as established in our laboratory (kindly given by Taneera Ghate). Briefly, Forty 

eight hours after addition of the virus, the cells were detached as described in Section 

2.2. The cell pellet was re-suspended in 500µl of 2% paraformaldehyde (VWR) in PBS 

+ 2% FBS. The cells were acquired using FACS calibre (Becton, Dikinson) and 

analysed using the Cell Quest software. The number of viral particles/ml contained in 

the viral supernatant was calculated by the following formula: 

No. of viral particles = (% positive cells) x (dilution) x (no. Of cells seeded)/100 
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2.10.5 Transduction of hMSC 

Human MSCs were seeded at a density of 5x104 cells per well in a twelve well plate in 

MSC medium. Cultures were initially inoculated with dilutions of viral supernatant and 

incubated at 37°C in 5% CO2 in air for 8 hours after which the media was removed and 

fresh MSC medium was added. The cells were further incubated for 48 hours and then 

analysed for the expression of eGFP by fluorescence activated cell sorter analysis 

(FACS). The multiplicity of infection (MOI) was calculated by considering the viral 

dilutions at which 5-30% of cells were positive for eGFP: 

MOI = No. of viral particles seeded/ml / No. of cells seeded 

 

2.11 Small molecule 3000689 (3/689) 

Small molecule 3000689 (3/689) and 3000165 (3/165) (kindly donated by Beining 

Chen, appendix-I, Fig.2.9) are members of the indole-3-glyoxlnapthylamide family of 

anti-prion compounds. Their synthesis and characterisation was described in the study 

by Thompson et al., (2009) and Chen (2010) (Thompson, Borsenberger et al. 2009). 

Small molecule 3/689 and 3/165 were dissolved in dimethylsulfoxide (DMSO) at 

3.89mg/ml and 2.61mg/ml respectively and then diluted further in MSC medium for in 

vitro and in vivo studies.  Cultures were fed twice weekly. 
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Fig 2.9 Chemical structure of small molecule 3/689 and 3/165 
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2.12 Transplantation of hMSC by intra-femoral injection 

Human MSCs were transduced at a multiplicity of infection of 40, followed by FACS 

(previously described in section 2.10) to express eGFP. NOD/LtSz-Prkdcscid 

(NOD/SCID-Non-obese diabetic/severe compromise immuno-deficient) mice aged 5-6 

weeks were injected with 5x105 hMSC expressing eGFP by intra-femoral injection 

according to the approved home office license. Briefly, the mice were anesthetised by 

injecting 100ul ketamine-rompun mix (0.5ml of ketasal, 0.25ml of rompun and 4.3ml of 

sterile distilled water) /10 gram mouse (weight), intra-peritoneally. A small deep 

incision was made using a sterile scalpel blade above the knee joint and the kneecap was 

exposed slowly using sterile forceps by separating the tissue around without damaging 

any blood vessels. Through the groove of the kneecap in the femur about half a 

centimetre deep hole was drilled. Using a Hamilton syringe 5ul hMSCs were gently 

injected (avoiding bubble formation) into the hole. After injecting, the hole was 

immediately closed with bone wax using a sterile scalpel blade and finally sutured 

(appendix-II, Fig.2.10).  Mice were sacrificed 3 days and 5 weeks later and analysed for 

the content of eGFP+CFU-F and eGFP+CFU-O and number of eGFP+ cells 

respectively. 

 

2.12.1 Detection of eGFP+CFU-F and eGFP+CFU-O colonies 

Mice were sacrificed 3 days post-transplant. Using sterile forceps and scissors, the femur 

(DMEM) (Gibco, Paisley, UK) supplemented with 10% Fetal bovine serum (FBS)  
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Fig 2.10: Surgical procedure involving intra-femoral injections of eGFP labelled 

hMSC cells.  

Figure A shows a representative image of area where the fur of the mouse has been shaved at 

the knee joint using an electrical shaver. Figure B shows a 1cm deep incision using a sterile 

scalpel blade aside of the knee joint and Figure C shows the position where the hole is drilled 

gently through the groove of the knee-cap to allow injection of hMSC cells. 
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(Gibco), 10% sodium citrate (Royal Hallamshire Hospital pharmacy, Sheffield, UK) and 

0.25% penicillin-streptomycin (Gibco). The bones were then cleaned using sterile 

forceps, scissors and sterile gauze cloth in a laminar air flow cabinet. Once the bones 

were cleaned, the ends were trimmed to facilitate the flushing of BM cells from the 

bone. Using a sterile syringe and 21G needle, the bone marrow was flushed into mMSC-

CM (Murine-mesenchymal stem cell complete medium, Stem Cell Technologies, 

Vancouver, Canada). Bone marrow cells were counted using 3% acetic acid solution to 

lyse red cells.  For CFU-F and CFU-O assays, BM cells were plated at 2.5 x 105 cells per 

well in human MSC medium for the former assay and MSC medium supplemented with 

osteogenic supplements for the latter assay and incubated for 14 days at 37°C. At day 

14, CFU-F and CFU-O were scored using Leica DMI4000B inverted fluorescence 

microscope where eGFP colonies (green colonies) comprising of at least 50 cells with a 

definite centre of origin were considered as CFU-F and eGFP colonies (green colonies) 

comprising of at least 40 cells with a definite centre of origin was considered as one 

CFU-O respectively. Later, to confirm that eGFP+ CFU-F and CFU-O were colonies, 

(section 2.6) respectively and rescored by overlaying with the imaging visualisation seen 

in the eGFP staining. 

 

 
2.12.2 Immuno staining to access hMSCs expressing eGFP  

For assessing long term engraftment ability of hMSC post-transplantation, mice were 

sacrificed at 5 weeks later and femurs were fixed with 10% formalin. Following rapid 

decalcification in Surgipath decalcifier II (Leica Microsystems, Milton Keynes, UK) for 
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2 hours, tissues were embedded in wax and 3 µm sections were cut using a Leica 

Microsystems microtome (Leica Microsystems) and stained for the detection of eGFP. 

Briefly, sections were fixed with 99% ethanol for 5 minutes and blocked with 3% H2O2 

for 10 minutes. They were then blocked with 10% goat serum (Dako, Ely, UK). The 

primary rabbit anti-GFP antibody (Invitrogen, Paisley, UK) was used at 1:600 overnight 

at 40C and the goat anti-rabbit HRP secondary antibody at 1:400 (Insight Biotech, 

Wembley, UK) for 45 minutes at room temperature. Detection was carried out using 

Vector NovaRED substrate kit (Vector Laboratories Ltd, Peterborough, UK) and 

Eight sections per animal were scored for the presence of eGFP+ cells. A detailed 

description of immuno-staining procedure is mention in appendix-II. 

 

2.13 Cell cycle analysis 

For cell cycle analysis 105 hMSCs were maintained for three days in culture in presence 

of 3/689 or di-methyl sulfoxide (DMSO). After 3 days, hMSCs maintained in presence 

or absence of 3/689 was trypsinised and re-seeded at 4000/cm2. The following day cells 

were washed in PBS and incubated with Carboxyfluorescein succinimidyl ester (CFSE) 

at 1µM using the Cell Trace CFSE Cell proliferation kit (Invitrogen, Paisley, UK) in 

hMSC medium for 15 min. Medium was then discarded and replaced with fresh MSC 

medium. Cells were incubated and analysed for 1 and 5 days at the end of which hMSC 

were harvested and analysed by FACS using Cell Quest software. 
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2.14 DNA damage detection 

For the induction and detection of DNA damage hMSCs (2000 cells/cm2) were 

maintained for three days in culture in presence of 3/689 or DMSO prior to being 

exposed to hydrogen peroxide (H2O2) at 75uM for 1hour. Detection of phosphorylation 

instruction. Briefly, hMSCs were trypsinised (section 2.2) and 105 hMSCs were re-

suspended in 50ul of 1X Fixation solution and incubated on ice for 20 minutes. The cells 

were then washed twice with PBS to remove traces of fixative. Fifty microliter of 1X 

Permeabilization solution was added to 105 hMSCs, followed by addition of 3.5ul of 

either anti-phosho-Histone H2A.X (Ser 139), FITC conjugate or the isotype control 

mouse IgG-FITC conjugate and incubated on ice for 20 minutes. After incubation on ice, 

100ul of IX wash solution per well was added to wash away excess FITC labelled 

antibody. The cells were then pelleted and supernatant was discarded. The cell pellet 

was re-suspended in 150µl of 2% paraformaldehyde in PBS+5%FCS and were analysed 

by FACS using Cell Quest software. 

 

2.15 Microarray 

This was kindly performed by Claire J Cairney and W Nicol Keith, University of 

Glasgow. Total RNA was extracted from hMSC cultures (n=3/group) which were 

expanded in the presence or absence of 3/689 at 10uM and harvested after 2 passages or 

8 passages using the Nucleospin II RNA extraction kit (Macherey-Nagel, Duren, 
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. RNA was amplified and labelled using 

the Agilent Low RNA Input Linear Amplification Kit PLUS, One-Colour and 

hybridised to Agilent whole human genome 4 × 44K gene expression arrays as per 

Claire J Cairney and W Nicol Keith, 

University of Glasgow). Raw data was extracted from scanned images using Agilent 

feature extraction software (Agilent Technologies, Santa Clara, CA). All array data were 

then imported into GeneSpring GX (version 11, Agilent Technologies, Santa Clara, CA) 

and normalised to the 75th percentile. Differentially expressed genes were obtained 

using GeneSpring GX by paired t test with p<0.05. The data have been deposited in 

NCBI's Gene Expression Omnibus and are accessible through GEO Series accession 

number GSE31205 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31205, 

appendix-I). The network analysis was performed using Metacore software (GeneGo 

Inc.). Figure 2.11 shows a schematic representation of the microarray experimental plan. 

 

2.16 Statistical analysis 

All experiments were analysed using  t-tests or one way ANOVA  and 

for multiple comparisons post-test. All results are expressed as the mean ± 

SEM. Significant p values were less than 0.5 with *P<0.05, **P<0.01, ***P<0.001. 
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Fig 2.11: A schematic representation of Microarray experimental procedure 
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3.1 Introduction 

In vitro, during long-term expansion, MSCs have shown to undergo changes which are 

typically associated with cellular ageing. They acquire enlarged morphological 

appearance, show signs of reduced proliferation and differentiation ability and ultimately 

undergo replicative senescence (Baxter, Wynn et al. 2004; Rossi, Bryder et al. 2005; 

Molofsky, Slutsky et al. 2006; Wagner, Bork et al. 2009; Yew, Chiu et al. 2011).  More 

importantly, these changes have been associated with reduced ability to engraft 

following transplantation (Rombouts and Ploemacher 2003). Therefore it is important to 

understand the mechanisms leading to cellular ageing in MSC as this may have 

important clinical implications and lead to new interventions to delay cellular ageing.  

 

Prion protein (PrP) has been shown to promote self-renewal in variety of stem cells 

(Zhang, Steele et al. 2006). However, the functional roles of PrP in hMSCs have never 

been investigated. In this chapter, I have used hMSC aged in culture as a model system 

of cellular ageing to test the hypothesis that hMSC undergoing cellular ageing show 

decreased PrP expression. I have assessed this by determining whether loss of hMSC 

proliferation and differentiation ability is associated with decreased PrP expression and 

whether PrP expression is a unique property of undifferentiated hMSC.  
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3.2 Isolation and characterisation of hMSC cultures 

Human MSCs were derived from human BM from three healthy donors (snbm-24, 

snbm-26 and snbm-28) and the ages of the donors are mentioned in table 2.1. Once the 

hMSC cultures were established ( described in materials and methods section 2.2), at 

passage p2 (equivalent to 12-14 PDs) cells were stained for CD45, CD31, CD29, CD34 

and SH2 antibody (CD105) and were analysed by flow cytometry (section 2.4) to 

determine whether cultures had antigenic profile typical of MSC. As expected all the 

hMSC cultures were negative for the expression of CD45 (haematopoietic), CD31 

(endothelial), CD34 expression and positive for CD29 and CD105 expression (Fig 3.1). 

 

3.3 Differentiation of hMSC cultures to osteogenic and adipogenic lineage 

To determine whether hMSC cultures (n=3) exposed to osteogenic and adipogenic 

supplements for 2 weeks were undergoing differentiation, the cultures were assessed for 

the level of expression of osteogenic markers: osteocalcin and alkaline phosphatase 

staining and adipogenic markers: PPAR- and Oil red O staining in hMSC cultures. 

Analysis of the expression of genes by RT-PCR were normalised to L-32 and the 

calculations were carried out as described in section 2.8. 

 

Cultures not exposed to differentiation supplements served as undifferentiated control 

(UD, Fig 3.2A and Fig 3.3A). Cultures exposed to osteogenic differentiation medium 

(OB) showed up-regulation of alkaline phosphatase staining (Fig 3.2B) and osteocalcin 

(Fig 3.2C) compared to undifferentiated control, confirming that they had undergone  
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Fig 3.1: A representative example of the antigenic profile of human MSC cultures 

isolated from bone marrow 

Purple histogram represents cells stained with isotype controls and green histogram represents 

cells stained with antibodies specific for CD29, CD34, CD105, CD31 and CD45. 
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Fig 3.2: hMSC cultures show signs of osteogenic differentiation 

Figure A and B are representative examples of undifferentiated hMSC and hMSC exposed to 

osteogenic differentiation supplements and stained for alkaline phosphatase activity. Figure C 

shows relative gene expression of osteogenic marker Osteocalcin normalised to L-32 at day 14 

hMSC cultures differentiated to osteogenic lineage (OB) compared to undifferentiated hMSC 

culture (UD) assessed by real-time polymerase chain reaction (RT-PCR) (n=3). Data presented 

as mean ± SEM and analysed by , *p-0.0296. Images were taken using a light 

microscope Leica Leits DMRB at 10x magnification. 

 

B) 

C) 

A) 

100 m 100 m 
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osteogenic differentiation. Similarly, hMSC cultures exposed to adipogenic supplements 

(AD), showed an increased expression of adipogenic marker PPAR- -

PCR and formation of Oil Red O lipid vacuoles (Fig 3.3B) compared to undifferentiated 

control, confirming that they had undergone adipogenic differentiation. 

 

3.4 Detection of PrP expression  

To determine whether hMSC expressed cellular PrP and whether differentiation affected 

its expression, the same hMSC cultures (n=3) established from the BM were assayed for 

the expression of PrP after 19-23 PD and following exposure to adipogenic and 

osteogenic supplements, by RT-PCR and western blotting. 

 

3.4.1 Detection of PrP expression by RT-PCR  

Undifferentiated hMSC cultures expressed PrP. Moreover, after confirming that hMSC 

cultures were differentiated to osteogenic and adipogenic lineage, the level of PrP 

expression was then determined in differentiated hMSC cultures at similar PDs by RT-

PCR. All the differentiated cultures expressed PrP and if anything, an increase in the 

level of PrP expression was seen as compared to undifferentiated hMSC cultures, 

although it was not statistically significant (Fig 3.4). 
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Fig 3.3: hMSC cultures show signs of adipogenic differentiation 

Figure A and B are representative examples of undifferentiated hMSC and hMSC exposed to 

adipogenic differentiation supplements and stained for Oil Red O.  Figure C shows relative gene 

expression of adipogenic marker PPAR- ised to L-32 at day 14 of adipogenic 

differentiation hMSC cultures (AD) compared to undifferentiated hMSC culture (UD) assessed 

by RT-PCR  (n=3). Data presented as mean ± SEM and analysed by , p-non-

significant. Images were taken using a light microscope Leica Leits DMRB at 10x magnification. 
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Fig 3.4: Detection of PrP expression in undifferentiated hMSC and hMSC induced 

to differentiate to osteoblast and adipocyte lineage by RT-PCR 

The graph shows quantification of PrP expression normalised to L-32 in undifferentiated hMSC 

(UD, n=3) and hMSC differentiated to the osteogenic (OB) and adipogenic (AD) lineage and 

assessed by RT-PCR followed by analysis using standard curve method. Data presented as mean 

± SEM and analysed by one way ANOVA with Bonferroni multiple comparison post-test, p-non-

significant. 
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3.4.2 Detection of PrP expression by western blotting  

To determine whether the level of PrP changed with differentiation at protein levels, the 

same hMSC cultures (n=3) were assayed for the expression of PrP by western blotting. 

The expression levels of PrP were normalised to the house-keeping gene GAPDH and 

the band density was evaluated by using ImageJ software. Finally the ratio between PrP 

and GAPDH was obtained. The undifferentiated and the differentiated MSC cultures 

showed only one distinct band in the range of 30-33kilo Dalton (kDa) (Fig 3.5A). All the 

hMSC cultures expressed PrP regardless of the differentiation status and if anything, an 

increase of 30%-61% in level of PrP expression was seen with osteogenic differentiation 

although it did not reach statistical significance. A significant increase of 61%-84% was 

observed with adipogenic differentiation (Fig 3.5B). These data suggest that PrP 

expression is not a unique property of undifferentiated hMSC. 

 

3.5 Detection of PrP expression with cellular ageing  

3.5.1 Changes in properties of hMSC with cellular ageing 

To verify that hMSC in culture underwent changes as previously described with cellular 

ageing, hMSCs were expanded in culture and analysed for their proliferation and 

differentiation ability. All the hMSC cultures exhibited spindle-shaped fibroblast like 

morphology in culture in the early passages (Fig 3.6A). Subsequently, they appeared to 

become more flattened and larger (Fig 3.6B). All the three hMSC cultures showed an 

initial phase of rapid growth followed by slower phase of growth (Fig 3.7A). As 

expected the time taken to undergo PD increased from an average 5 days at p3 
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Fig 3.5: Detection of PrP expression in undifferentiated hMSC, osteoblast and 

adipocyte by western blotting 

Figure A shows a representative example of western blot of hMSC culture labelled with 

antibodies specific for cellular prion protein (PrP, top panel) and glyceraldehydes-3 phosphate 

dehydrogenase (GAPDH, bottom panel). Figure B shows quantification of PrP expression 

normalised to GAPDH in undifferentiated hMSC (UD, n=3) and hMSC differentiated to the 

osteogenic (OB) and adipogenic (AD) lineage and assessed by western blot followed by analysis 

with ImageJ software. Data presented as mean ± SEM and analysed by one way ANOVA with 

Bonferroni multiple comparison post-test, *p<0.05. 

UD OB AD 
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GAPDH 
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Fig 3.6: Morphology of MSC at early and late passage in culture 

Figure A and B shows a representative example of undifferentiated hMSC culture at an early 

passage 3 (p3) and late passage 8 (p8) respectively. Images were taken using a light microscope 

Leica Leits DMRB at 10x magnification for MSC at early passage and at 20x magnification for 

MSC at late passage. 
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(equivalent to 13-16 PD) to 10 days at p8 (equivalent to 19-23 PD) (Fig 3.7B). 

 

As hMSC cultures are heterogeneous and contain a considerable number of highly 

proliferative progenitors, I enumerated the number of CFU-F and the number of 

clonogenic progenitors with osteogenic (CFU-O) and adipogenic (CFU-A) potential at 

p3 and p8 passage in culture. As expected, all the three MSC cultures showed a 

significant reduction of 68.82%±8.80% in the number of CFU-F when comparing hMSC 

cultures at p8 and p3 (Fig 3.8A). The hMSC cultures also showed a significant decrease 

of 85.86%±4.00% in the number of CFU-O (Fig 3.8B) and 29.6%±13.06% in the 

number of CFU-A (Fig 3.8C) at p8 when compared to p3.  

 

3.5.2 Detection of PrP expression in hMSC cultures with time in culture  

To determine whether loss of hMSC proliferation and differentiation potential with 

serial passage in culture co-related with changes in PrP expression, the level of PrP 

expression was measured at early p3 and late p8 passages by RT-PCR and western 

blotting. RNA (section 2.8.1) and protein lysates (section 2.9) were collected and the 

level of PrP expression was normalised to the levels of L-32 and GAPDH expression by 

RT-qPCR and western blotting respectively. In all the three MSC cultures, there was no 

statistical significance in the level of expression of PrP normalised to L-32 by RT-PCR 

(Fig 3.9).   
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Fig 3.7: Growth kinetics and comparison of population doubling time between p3 

and p8 in hMSC cultures 

Figure A shows three hMSC cultures in an initial phase of rapid growth followed by slower 

phase of growth.  Figure B show the time taken for hMSC cultures (n=3) to undergo a 

population doubling (PD) at passage 3 (p3) and passage 8 (p8). 

 

A) 

B) 
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Fig 3.8: The clonogenic potential of hMSC decreases with time in culture 

Figure A, B and C shows decreased frequency of CFU-F, CFU-O and CFU-A respectively at 

passage 8 (p8) compared to passage 3 (p3) in hMSC cultures (n=3). Data presented as mean ± 

, *p<0.05, **p<0.01. 

 

A) 

B) 

C) 
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Fig 3.9: PrP is expressed in hMSC culture and its expression does not change with 

time in culture by RT-PCR 

The graph shows quantification of PrP expression normalised to L-32 in hMSC cultures at early 

passage 3 (p3) and late [passage 8 (p8) by RT-PCR (n=3). Data presented as mean ± SEM and 

, p-non-significant. 
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However, at the protein level, all the three MSC cultures at p3 showed two distinct 

bands. One band was of low molecular weight and was in the expected range of 30-

33kDa and  the other band was of high molecular weight and was in the range of  58-

60kDa for all the three cultures, compatible with dimmer formation (Fig 3.10A). In all 

three cultures at p8, a unique band of 32-36kDa was observed. Densitometry was 

performed to detect the levels of GAPDH and PrP expression using the ImageJ software. 

A significant reduction of 61%-95% was observed in the level of PrP expression 

normalised to GAPDH at p8 when compared to p3 (n=3) (Fig 3.10B). 
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Fig 3.10: PrP is expressed in hMSC culture and its expression significantly 

decreases with time in culture by western blotting 

Figure A shows a representative example of western blot of hMSC culture at passage 3 and at 

passage 8 labelled with antibodies specific for cellular prion protein (top panel) and 

glyceraldehydes-3 phosphate dehydrogenase (GAPDH, bottom panel). Figure B shows 

quantification of PrP expression normalised to GAPDH in hMSC cultures (n=3) at p3 and p8 

and expressed as a percentage of p3, assessed by western blot and analysed using ImageJ 

software. , *p<0.05. 

p3 p8 

PrP 

GAPDH 

B) 

A) 
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3.6 Discussion 

The aim of this chapter was to study the expression of PrP in hMSC culture with cellular 

ageing. To achieve this, I differentiated hMSC to osteogenic and adipogenic lineage; 

characterised hMSC, their morphology and growth kinetics following serial passage in 

culture. The hMSC cultures were derived by plastic adherence (Friedenstein, 

Chailakhjan et al. 1970; Friedenstein, Gorskaja et al. 1976; Bruder, Jaiswal et al. 1997; 

Pittenger, Mackay et al. 1999; Dominici, Le Blanc et al. 2006) and as expected, they 

were devoid of haematopoietic and endothelial contamination and positive for SH2- a 

monoclonal antibody raised against hMSC that recognises the TGF-

(CD105) and CD29, similar to what was reported by several authors (Barry, Boynton et 

al. 1999; Pittenger, Mackay et al. 1999; Deans and Moseley 2000; Zhou, Ma et al. 

2003).  

 

As PrP has been shown to be important for the identification and function of freshly 

isolated mammary gland stem cells and HSC (Zhang, Steele et al. 2006), I wanted to 

determine whether hMSCs expressed PrP and whether differentiation affected its 

expression. To do that  I measured the levels of PrP expression at mRNA and protein 

levels by RT-PCR and western blotting, in hMSC cultures differentiated to osteogenic 

and adipogenic lineage. All hMSC cultures expressed PrP, regardless of the 

differentiation status and if anything, the expression of PrP was upregulated at mRNA 

and protein level in differentiating hMSCs, suggesting that PrP expression is not a 

unique property of stem cells. If PrP expression was a unique property of stem cells, one 

would have expected low or no expression of PrP in differentiated cells. Up-regulation 
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of PrP with differentiation has been seen before in different mature cell types. While 

investigating role of PrP in differentiation of neural stem cells by using differentiating 

murine embryonic stem cell (ES) as a model, Parelta  O A et al., (2011) showed that ES 

cells differentiated over 21 days showed increased levels of PrP expression both at 

mRNA and protein levels by day 9 and continued to increase through day 18 (Peralta, 

Huckle et al. 2011). Indeed, a four-fold increase of PrP mRNA was observed at day 7 in 

rat pheochromocytoma PC12 cells induced with neural growth factor to differentiate into 

cholinergic cells (Lazarini, Castelnau et al. 1994) compared to undifferentiated cells 

Likewise, an in vitro model of human neurogenesis, fetal human GFAP-positive 

astrocytic cells showed low levels of PrP expression when undifferentiated compared to 

differentiated neuronal cells (Witusik, Gresner et al. 2007).   

 

As PrP has been shown to be important in stem cell function, I wanted to investigate 

whether PrP changed expression with time in culture in hMSC and whether this 

correlated with loss of their proliferation and differentiation potential. To verify hMSC 

underwent cellular ageing, I measured changes in their proliferation and differentiation 

capacity with time by CFU-F, CFU-O and CFU-A assays at two time points: early 

passage 3 (p3) and late passage 8 (p8). An early p3 was chosen because it was the 

earliest possible time point when sufficient number of MSC were available to carry out 

all the assays and p8 was chosen as the latest time point when cells started slowing down 

substantially in growth but still had sufficient number of cells to carry out all the assays. 

As expected the number of progenitors in both undifferentiated hMSC cultures and with 

osteogenic and adipogenic potential showed a decrease in their proliferation and 

differentiation ability with time in culture. This was indeed observed in several studies 
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where the number of CFU-F (Digirolamo, Stokes et al. 1999) and the potential to 

undergo osteogenic and adipogenic differentiation had declined in MSC not only with 

time in culture but also from older donors compared to young donors (Digirolamo, 

Stokes et al. 1999; Muraglia, Cancedda et al. 2000; Baxter, Wynn et al. 2004; Stolzing, 

Jones et al. 2008; Zhou, Greenberger et al. 2008). 

 

To determine whether there was a correlation in the level of PrP expression with loss of 

proliferation and differentiation ability, protein lysates at p3 and p8 passage was 

obtained from the three hMSC cultures and western blotting was carried out. When 

quantifying both the bands, all the three cultures showed a reduction of 68%-94% in the 

level of PrP expression between p3 and p8 passages. Our data is similar to Liao M et al , 

(2005) who showed that 10,000 freshly isolated mammary epithelial cells in which 

sphere initiating cells are enriched in the PrPmed fraction generated an average of 6.1 

spheres in vitro, in contrast cultured mammospheres lost PrP expression and generated 

only  4.1 mammospheres from 10,000 pre-cultured mammary gland cells (Liao, Zhang 

et al. 2007). Likewise, during serial expansion of HSCs in culture have shown that the 

expressions of PrP from freshly isolated stem cells are either partially or completely lost 

with time in culture. However, this did not correlate with the marrow repopulating 

ability (Zhang and Lodish 2005).  These studies suggest that decrease in PrP expression 

in stem cell upon long term culture may be a common phenomenon. However, this may 

not be always linked to loss of stem cell function and careful studies needs to be 

conducted to verify this in each stem cell type.   
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There are studies which have shown that PrP mRNA levels were similar in young and 

old animals, despite changes in protein levels. Avrahami D et al., (2009) demonstrated 

the detection of PrP in the brains of aging mice and that these levels were similar in 

young and old mice at the mRNA level (Avrahami and Gabizon 2009). A study in a 

bovine model showed no correlation between age and the amount of PrP expressed at 

mRNA levels indicated by RT-PCR (Didier, Dietrich et al. 2006). All these studies 

indicate that there are differences in PrP protein expression with age and at mRNA PrP 

levels, they remain unchanged.  The reason for such age-related discrepancy at protein 

and mRNA levels was suggested to be due to the fact that PrP is post-transcriptionally 

regulated possibly by differences in their protein trafficking or degradation (Ford, 

Burton et al. 2002). However no clear evidences have been found so far with regard to 

any of those claims.  

 

Of interest is that hMSC cells at p3 showed presence of two bands detected by the PrP 

antibody. One of the bands observed was in the range of 30-38kDa and another in the 

range of 58-60 kDa. Studies show that the expected molecular masses of PrP ranges 

from 25-40 kDa which includes the non- (25-28p kDa), mono- (28-31 kDa) and di-

glycosylated (33-40 kDa) forms of PrP (Mouillet-Richard, Ermonval et al. 2000; Riley, 

Leucht et al. 2002; Segarra, Lehmann et al. 2009), with molecular masses 25-40 kDa are 

most commonly described isoforms (Peralta, Huckle et al. 2012). A predominant band at 

31kDa and a less predominant band at 29kDa was observed, suggesting the presence of 

mono- and non- glycosylated isoforms of PrP. In adult tissues, variable glycosylation of 

the two PrP asparagine linked oligosaccharide sites by N-glycans resulted in three PrP 

bands, representing di-glycosylated, mono-glycosylated and non-glycosylated PrP 
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glycoforms (Stimson, Hope et al. 1999). The less common is the 60 kDa form of PrP, 

which I observed and was also reported by Priola et al., (1995) who identified 60 kDa 

PrP derived from hamster PrP (Priola, Caughey et al. 1995). Peptide mapping studies 

indicated that dimer formation of two 30kDa PrP monomers that were covalently linked 

resulted in this form.  The function of the 60 kDa protein in unknown but could be a 

precursor of the infectious form of PrP (Priola, Caughey et al. 1995).  

 

To summarise, my data from this chapter showed that hMSC have a limited life span 

and that their proliferative and differentiation ability is restricted with time in culture. 

Prion protein expression was shown to decrease with time in culture and was not a 

property unique to hMSC. It will now be interesting to address if PrP has a functional 

role in preserving the proliferation and differentiation ability of hMSC with time in 

culture by knocking down its gene expression.  
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4.1 Introduction 

In the previous chapter, I have shown how expression of PrP is associated with hMSC 

cellular ageing. In this chapter, I want to address the question whether down-regulation 

of PrP is responsible for the functional changes that hMSC undergoes with time in 

culture. To test this I chose lentiviral vectors (LV). They serve as efficient tools for gene 

transfer as they can infect both dividing and non-dividing cells and can also integrate 

stably into the host genome to provide long-term stable gene expression (Zhang, La 

Russa et al. 2002; Van Damme, Thorrez et al. 2006). Since they are human 

immunodeficiency virus (HIV)-1 based vectors, it is important to develop a vector 

system which minimizes the risk of generating replication-competent lentiviruses 

(RCL). In this chapter, I initially tested four-plasmid vector systems (otherwise called as 

3rd generation LV system) but resolved to use the three-plasmid vector system 

(otherwise called as 2nd generation LV system). The 3rd generation LV is generated by 

reducing the lentiviral sequences and splitting the essential genes required for replication 

in four packaging constructs. One construct contains the rev gene responsible for the 

synthesis of viral proteins and another plasmid construct contains gag/pol genes.  

Moreover,  the envelope gene is contained in a third plasmid and a 4rth  plasmid called as 

the transfer plasmid contains the lentiviral backbone with the packaging signal and  the 

gene of interest (Dull, Zufferey et al. 1998). This increases the biosafety as four 

homologous recombinational events are required for the formation of RCL. However, 

the downside of this vector system is that the viral titres are lower than 2nd generation 

packaging system. The 2nd generation LV is generated by incorporating the rev/tat gene 

and gag/pol genes in one single packaging plasmid deleting the accessory genes such as 
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vip, vpr, vpu and nef (that are not essential for viral replication in vitro), and maintaining 

the envelope and the transfer vectors in separate plasmid (Gibbs, Regier et al. 1994). 

Although the level of safety is not as high because only three homologous 

recombinational events are required for RCL formation, the viral titres are higher.  

Therefore to achieve a yield of high transduction efficacy and high viral titres, I tested 

both 3rd and 2nd generation LV packaging system and resolved to use 2nd generation LV 

system for my experiments. 

 

In this chapter, four vectors containing different shRNAs (shRNA-1, shRNA-2, shRNA-

3, shRNA-4) targeting PrP were either tested alone or in combination to determine the 

best condition for an effective knockdown. I then selected the best construct and tested 

its effect on the properties of hMSCs in culture. The vector I have chosen contained not 

only shRNA sequences specific for PrP knock-down but also a sequence expressing 

enhanced green fluorescence protein (eGFP). This allowed assessing the transduction 

efficiency and selecting hMSC expressing the hair-pin loop. 

 

4.2 Production of Lentiviral particles using 3rd generation packaging cells 

4.2.1 Lentiviral transduction using 3 rd generation packaging in HEK293t 

cells 

To optimise the production of lentiviral particles, first, I used the vector shRNA-1 to 

knockdown the expression of PrP and the control vector pCL-10.1 which encodes for the 

expression of eGFP (Buckle, De Leenheer et al. 2012).  I have used a 3rd generation 

packaging system according to the protocol detailed in section 2.10.1 of material and 
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methods. To determine the viral supernatant produced, I initially transduced HEK293t 

cells with different dilutions (250ul, 500ul and 1000ul) of primary viral supernatant. 

Forty eight hours post transduction, the transduced cells were harvested and analysed for 

eGFP expression by FACS analysis. The HEK293t population transduced with pCL-

10.1MSCV ires GFP (n=3, Figure 4.1 C-E) and shRNA-1 (n=3, Figure 4.1 F-H) was 

selected by gating the R1 region on a FSC (forward scatter) Vs. SSC (side scatter) plot 

(n=3, Fig 4.1 A-B) to analyse GFP expression. No eGFP positive HEK293t cells were 

obtained suggesting the viral production was below detection. 

 

4.2.2 Lentiviral transduction using 2nd generation packaging cells  

As 3rd generation LV  packaging systems are known to be less efficient in producing 

viral titre, I produced viral particles using a three-plasmid lentiviral system (otherwise 

called 2rd generation lentiviral system) by co-transfection of HEK293t cells with the 

. Naldini 

and kindly donated by A Thrasher) along with either one transfer plasmids containing 

the hairpin sequence that specifically knock down the expression of PrP (shRNA-

1/shRNA-2/shRNA-3/shRNA-4) or with a vector known to produce high titre virus and 

have high transduction efficiency,  which expresses eGFP. A similar 

shRNA construct containing a non-silencing hairpin sequence (shRNA-ns) was used as a 

control. The primary viral supernatant of the four shRNA constructs along with 

-ns were harvested and HEK293t cells were initially 

transduced at dilutions of 1:500, 1:5000 and 1:50,000 to determine number of virus 

particles contained in the viral supernatant (viral titre). Forty eight hours post 

transduction, cells were analysed for eGFP expression by FACS analysis. 
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Fig 4.1: A representative example of 293t cell line transduced with pcl10.1 and 

shRNA-1 vector and analysed by FACS 

Figure A shows a representative example of FSC Vs SSC plot of 293t cell line  cells gated with 

region R1 were analysed for level of eGFP expression. Figure B shows a purple histogram 

which represents 293t cells not exposed to viral supernatant.  Region M1 was set to determine 

the number of eGFP positive cells. The remaining figures represent 293t cells transduced with 

250ul, 500ul and 1000ul of primary viral supernatant of pCL-10.1 (C-E) and shRNA-1 (F-H) 

respectively and analysed for the level of fluorescence by FACS (n=3). 

SS

FSC-H eGFP 

eGFP eGFP eGFP 

eGFP eGFP eGFP 
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Table 4.1 show the number of eGFP positive cells measured at each dilution of virus. 

The dilutions showing between 5-30% positive cells were considered for calculation of 

the viral titre to maximise the chances that one positive cell corresponded to one viral 

particle. The viral titre was calculated using the following formula detailed in section 

2.10.4. Table 4.2 shows the viral titre of primary viral supernatant in the four shRNA 

constructs, shRNA-  

 

4.3 Determination of expression of PrP following knock-down  

4.3.1 Optimization of lentiviral transduction in hMSC  

Following determination of viral titre, transductions in hMSCs were carried out for all 

The highest transduction efficiency was found in 1:50 dilution (n=8) (Table 4.3). The 

-2 and shRNA-ns 

constructs in comparison with shRNA-1, shRNA-3 and shRNA-4 constructs. In an 

attempt to increase the transduction efficiency, the effect of polybrene was tested. It was 

carried out using the test shRNA-2 construct and the non-silencing shRNA construct 

(shRNA-ns) at 1:50 dilution. Forty-eight hours post transduction, the percentage of 

eGFP positive hMSCs were analysed by FACS. The experiment was conducted in eight 

samples and the average percentage of eGFP positive hMSCs from eight samples is 

summarised in Table 4.4 (n=8). The result indicates that polybrene did not influence 

transduction efficiency and if anything an increase in the percentage of eGFP positive 

cells was seen in absence of polybrene. Therefore, the following transductions in hMSCs 
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Dilution 

 

Vector transduced 

 

Percentage of eGFP positive cell 

(%) 

1:500  87.32 

1:5000  29.63 

1:50,000  5.04 

1:500 shRNA-1 30.20 

1:5000 shRNA-1 7.59 

1:50,000 shRNA-1 2.23 

1:500 shRNA -2 40.02 

1:5000 shRNA -2 24.44 

1:50,000 shRNA -2 5.48 

1:500 shRNA -3 55.15  

1:5000 shRNA -3 7.11 

1:50,000 shRNA -3 1.02 

1:500 shRNA -4 54.44  

1:5000 shRNA -4 8.32 

1:50,000 shRNA -4 1.88 

1:500 shRNA -ns 44.62 

1:5000 shRNA -ns 22.36 

1:50,000 shRNA -ns 5.43 

 
 

Table 4.1: Percentage of eGFP positive 293t cells following transduction with 

primary viral supernatant -1, shRNA -2, shRNA -3, 

shRNA -4 and shRNA -ns vector , using three-plasmid lentiviral system and 

analysed by FACS 
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Vector transduced 

 

Viral titre (Transducing units 

(TU)/ml) 

 108 

shRNA-1 1.326 * 107 

shRNA -2 9.905 * 107 

shRNA -3 1.775 * 107 

shRNA -4 2.08  * 107 

shRNA -ns 9.58 * 107 

 
 

shRNA-1, shRNA -2, shRNA -3, shRNA -4 and shRNA -ns vector in 293t cells 
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Dilution of VSN MOI Percentage of eGFP +ve cells % 
1:50 40 88.63 
1:500 4 60.26 

 
Dilution of 

VSN 
MOI Percentage of eGFP +ve 

cells % 
1:50 5.34 21.22 
1:500 0.5304 5.22 

 
Dilution of 

VSN 
MOI Percentage of eGFP +ve 

cells % 
1:50 39.62 54.46 
1:500 3.962 16.22 

 
Dilution of 

VSN 
MOI Percentage of eGFP +ve 

cells % 
1:50 39.62 14.56 
1:500 3.962 5.66 

 
Dilution of 

VSN 
MOI Percentage of eGFP +ve 

cells % 
1:50 39.62 13.35 
1:500 3.962 3.54 

 
Dilution of 

VSN 
MOI Percentage of eGFP +ve 

cells % 
1:50 38.32 73.50 
1:500 3.832 32.33 

 
 

Table 4.3: Percentage of eGFP positive hMSCs following transduction with 

-1 (B), shRNA -2 (C), 

shRNA -3 (D), shRNA -4 (E) and shRNA-ns (F) at the dilution of 1:50 and 1:500 

n=8 

 

 
 

A) 

B) 

C) 

D) 

E) 

F) 
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Dilution of 

VSN 

Vector 

transduced 

MOI Percentage of 

eGFP +ve 

cells  

with 

polybrene 

(%) 

Percentage of eGFP 

+ve cells  

without polybrene 

(%) 

1:50  40 78.25 88.63 

1:50 shRNA -ns 38.32 69.33 73.50 

 
 

Table 4.4: Percentage of eGFP positive hMSCs following transduction with 

primary viral and shRNA-ns in presence or 

absence of polybrene. 

n=8 
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were carried out without polybrene. 
 

 

4.4 Knock down of the expression of PrP in hMSCs  

To determine which of the four vectors (shRNA-1, shRNA-2, shRNA-3 or shRNA-4) 

was able to knockdown the highest amount of PrP expression, hMSC culture SNBM-17 

was transduced at a similar MOI 40 with either shRNA-1; shRNA-2; shRNA-3; shRNA-

4; or in combination shRNA-1,2,3,4 and shRNA-ns as control. As the transduction 

efficiency was indicated low at MOI 40 (Table 4.3), forty-eight hour post transduction, 

hMSCs were further sorted to obtain an enriched population of eGFP positive cells using 

FACS Aria and were expanded in culture. Post sorting, hMSC cultures were expanded in 

culture for another one passage and analysed for the number of eGFP cells (Table 4.5). 

Protein lysates was then collected to perform western blotting and level of PrP 

expression was determined. The test construct shRNA-2 showed the highest inhibition 

of PrP expression with expression levels at 3% when normalised to GAPDH and 

expressed as percentage of the same ratio in the shRNA-ns transduced MSC culture (Fig 

4.2).  ShRNA-2 primary viral supernatant was therefore selected for further experiments.  

 

To further confirm that shRNA-2 was knocking down PrP expression efficiently hMSC 

cultures (n=8) were then divided into 3 subcultures: a) not exposed to the lentivirus 

(untransduced, UT), b) exposed to lentivirus containing shRNA-2, c) exposed to 

lentivirus containing shRNA-ns. The cultures were transduced with primary viral 

supernatant of shRNA-2 and shRNA-ns at MOI equivalent to 40. Forty-eight hour post  
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Vector transduced 
Percentage of eGFP 

positive cell (%) 

shRNA-1 84.32 

shRNA-2 90.22 

shRNA-3 86.45 

shRNA-4 85.84 

shRNA-1,2,3,4 85.11 

shRNA-ns 94.52 

 

Table 4.5: Percentage of eGFP positive hMSCs post sort following transduction 

with shRNA-1, shRNA -2, shRNA -3, shRNA -4, shRNA-1, 2, 3, 4 and shRNA -ns 

vector, using 2nd generation lentiviral system and analysed by FACS 
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Fig 4.2:  sh-RNA2 viral supernatant shows maximum efficacy in knocking down 

the expression of PrP in MSC by western blot. 

Figure A shows western blot of hMSC culture transduced with primary viral supernatant of 

shRNA-1; shRNA-2; shRNA-3; shRNA-4; or in combination shRNA-1,2,3,4 and shRNA-ns and 

labelled with antibodies specific for cellular prion protein (top panel) and glyceraldehydes-3 

phosphate dehydrogenase (GAPDH, bottom panel). Figure B shows quantification of PrP 

expression normalised to GAPDH and expressed as percentage of non-silencing vector shRNA-

ns in hMSC culture transduced with shRNA-1; shRNA-2; shRNA-3; shRNA-4; or in combination 

shRNA-1,2,3,4 and shRNA-ns. Human MSC not exposed to viral supernatant served as 

untransduced control (UT). 

B) 

A) 
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transduction, hMSCs were further sorted using FACS Aria. Human MSC UT cultures 

were used as a negative control.  By gating the R1 region on a FSC vs. SSC plot, no 

eGFP positive cells were present in hMSC cultures not exposed to viral supernatant (Fig 

4.3A-B).In contrast selecting the same region in shRNA-ns hMSC, (Fig 4.3C-D) and 

shRNA-2 hMSC (Fig 4.3E-F) showed presence of eGFP positive cells. Post sorting 

hMSC cultures were expanded in culture for another one passage and analysed for the 

number of eGFP cells which was found to be 93.26%±3 eGFP+ when transduced with 

shRNA-ns and 86%±9% with shRNA-2 (Fig 4.4). 

 

To confirm whether there was a reduction in the levels of PrP expression following 

transduction with eGFP positive hMSCs containing the shRNA-2 vector (shRNA-2 

hMSC), protein lysates were collected at the first passage and western blotting was 

carried out. When assessed for the levels of expression of PrP expression in shRNA-2 

hMSC cultures, they expressed significantly reduced levels of PrP (93.5%±5.7%) 

compared to shRNA-ns transduced cultures (Fig 4.5A and B, n=4). No significant 

difference in PrP levels was seen when comparing untransduced and shRNA-ns hMSC 

cultures (n=4).  
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Fig 4.3: A representation of selection of eGFP positive hMSCs transduced with 

primary viral supernatant of shRNA-ns and shRNA-2, post sorting by FACS Aria 

 

Figure A, C and E represent FSC Vs SSC plot of hMSC culture  cells gated with region R1 

were analysed for level of eGFP expression. Figure B shows a scatter plot of hMSC culture not 

exposed to viral supernatant. Scatter plot in green represents the number of sorted green cells 

transduced with primary viral supernatant of shRNA-ns (D) and shRNA-2 (E) at MOI 40 (n=8). 

A) 

E) E) 

D) 

B) 

C) 
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Fig 4.4: Transduction efficiency of eGFP positive hMSC transduced with primary 

viral supernatant of shRNA-ns and shRNA-2 virus post selection 

 

Figure A is a representative example of scatter plot. In red represents the number of eGFP 

positive hMSC cells post sort and previously transduced with primary viral supernatant of 

shRNA-ns and shRNA-2 at MOI 40 (n=8). Figure B shows percentage of eGFP positive hMSCs 

in the cultures used in subsequent experiments (n=8). 

 
 

shRNA-ns shRNA-2 
eGFP eGFP 

A) 

B) 
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Fig 4.5: Detection of decreased level of PrP expression in hMSC cultures 

transduced with shRNA-2 virus 

Figure A shows western blot of hMSC culture transduced with shRNA-2and shRNA-ns and 

labelled with antibodies specific for cellular prion protein (PrP, top panel) and glyceraldehydes-

3 phosphate dehydrogenase (GAPDH, bottom panel). Figure B shows quantification of PrP 

expression normalised to GAPDH and expressed as percentage of non-silencing vector shRNA-

ns in hMSC cultures transduced with shRNA-2 and shRNA-ns. Human MSC not exposed to viral 

supernatant served as untransduced control (UT) (n=4). Data presented as mean ± SEM and 

analysed by one way ANOVA with Bonferroni multiple comparison post-test, *p<0.05, 

**p<0.01. 

 

 

A) 

B) 
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4.5 Assessment of growth kinetics and clonogenic potential in PrP 

knockdown hMSC cultures 

Following transduction and selection of eGFP positive cells, hMSC cultures were 

expanded in culture and growth kinetics was examined until proliferation stopped for 3 

weeks, at which point the cultures were considered senescent. ShRNA-2 hMSC cultures 

underwent an average 8.5±1.7 less total number of PDs compared to shRNA-ns hMSC 

cultures (Fig 4.6A-B, n=5). 

 

Moreover, to determine whether knocking down the expression of PrP affected the 

clonogenic potential of hMSCs, I expanded the UT, shRNA-2 and shRNA-ns hMSC 

cultures for 15.4±0.5 days and all the three subcultures were re-plated at low density to 

assess the number of clonogenic progenitors. The result indicated that shRNA-2 hMSC 

cultures contained significantly reduced number of clonogenic progenitors as indicated 

by the number of CFU-F (Fig 4.7A, n=8), CFU-O (Fig 4.7B, n=8) and CFU-A (Fig 

4.7C, n=8) compared to shRNA-ns or UT cultures, suggesting that expression of PrP is 

important to maintain the proliferative capacity of hMSCs. 
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Fig 4.6: Human MSC cultures transduced with shRNA-2 virus show decreased 

expansion capacity 

Figure A shows a representative example of growth kinetic of hMSC culture, not exposed to 

viral supernatant (untransduced, UT, filled diamonds) transduced with shRNA-ns (filled 

squares) or shRNA-2 (filled triangle). Figure B shows total number of population doublings 

accomplished by hMSC cultures transduced with shRNA-2 compared to the same cultures 

transduced with the shRNA-ns or not transduced (n=5). Data presented as mean ± SEM and 

analysed by one way ANOVA with Bonferroni multiple comparison post-test, *p<0.05, 

**p<0.01, ***p<0.001. 

 

A) 

B) 
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Fig 4.7: The number of clonogenic progenitors decreases in hMSC cultures 

transduced with shRNA-2 virus  

Figure A, B and C shows the quantification of the number of CFU-F, CFU-O and CFU-A 

respectively, obtained upon re-plating at low density of shRNA-2, shRNA-ns and untransduced 

hMSC cultures (UT). (n=8). Data presented as mean ± SEM and analysed by one way ANOVA 

with Bonferroni multiple comparison post-test, *p<0.05, **p<0.01, ***p<0.001. 

 

 

 

A) 

B) C) 
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4.6 Assessment of differentiation potential in PrP knockdown hMSC 

cultures 

To determine whether reduced PrP expression affected differentiation of hMSCs, 

cultures were also exposed to osteogenic and adipogenic differentiation supplements for 

2 weeks and assessed for markers of osteogenic and adipogenic differentiation 

respectively by quantitative RT-PCR. As expected an increase in all markers of 

differentiation was observed after two weeks exposure to differentiation stimuli in UT 

cultures or shRNA-ns hMSC cultures (Fig. 4.8A-F n=4). In contrast a significant 

decrease in all markers of differentiation was seen in cultures exposed to differentiation 

supplements and transduced with shRNA-2 compared to the undifferentiated controls 

(Fig 4.8A-F, n=4), suggesting that low PrP expression reduces hMSC differentiation. 

 
 



 
 

144 | P a g e  
 

 
 

Fig 4.8: Human MSC cultures transduced with shRNA-2 inhibits differentiation of 

hMSC cultures 

The graphs shows real-time qPCR of shRNA-2, ShRNA-ns and untransduced hMSC cultures 

exposed to osteogenic and adipogenic differentiation supplements for 14 days and assessed for 

the expression of osteogenic differentiation marker (A) core-binding factor subunit alpha-1 

(CBFA-1), (B) alkaline phosphatase (ALP), (C) osteocalcin (OC) and (D) osteopontin (OP) and 

adipogenic differentiation marker (E) peroxisome proliferator-activat -

and (F) lipoprotein lipase (LPL) (n=4). All markers were normalised to ribosomal protein L-32 

and assessed by RT-PCR. Data presented as mean ± SEM and analysed by one way ANOVA 

with Bonferroni multiple comparison post-test,*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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4.7 Discussion 

This study was designed to investigate the functional role of PrP in maintaining the 

proliferation and differentiation ability of hMSCs following expansion in culture. To 

achieve this, firstly I have identified a shRNA sequence which knockdowns PrP 

expression effectively using lentiviral vectors. Secondly, I determined the growth 

kinetics, clonogenic ability and ability to differentiate to osteogenic and adipogenic 

lineage in hMSC cultures where the PrP expression was knocked down.  

 

Genetically modified hMSCs have been produced by incorporation of various viral 

vectors such adenovirus (Lou, Xu et al. 1999; Kumar, Mahendra et al. 2004), lentivirus 

and even non-viral vectors (Kyriakou, Yong et al. 2006) for the delivery of shRNAs. 

However lentiviral vectors stand an advantage owing to their ability to stably transduce a 

wide range of different cell types and especially promote transduction of non-dividing 

cells (Blomer, Naldini et al. 1997; Kafri, Blomer et al. 1997; Naldini 1998; Gasmi, 

Glynn et al. 1999), including stem cells (Zhang, La Russa et al. 2004; Van Damme, 

Thorrez et al. 2006). Most lentiviral supernatants are produced by a 3rd or 2nd generation 

lentiviral vector system. In this study, I initially used the 3rd generation lentiviral vector 

system because it was considered safer and was available in a collaborating group in the 

department. However, no transduction of HEK293t cells, usually easier to transduce 

than hMSC was seen. The reasons for the absence of transduction are not clear but most 

likely are to do with a very low viral titre. In a very recent study McGinley L et al, 

(2011) showed that using a three-plasmid lentiviral system, at MOI 100, transduction 

efficiency in rat MSCs over a span of 7-28 days were in the range of 90%-98% 
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compared to four-plasmid system which generated only 1-5% GFP positive MSCs 

(McGinley, McMahon et al. 2011), suggesting that a three-plasmid lentiviral system 

could generate high transduction efficacy compared to four-plasmid lentiviral system. I 

therefore decided to switch to 2nd generation lentiviral vector system where I found that 

the transduction efficiency in HEK293t cells were higher.  

 

eGFP) showed a transduction efficiency of approximately 88% with single exposure of 

virus for 8 hours at MOI 40, transduction of hMSCs with shRNA-2 and shRNA-ns was 

much lower. One possibility is that the transfer vector shRNA-2 and shRNA-ns were not 

compatible with the packaging system (materials and methods section 2.10.1) as the 

vectors were produced by the company, Autogen bioclear UK Ltd and they advised the 

use of their own packaging system.  Alternatively, this may have been to do with the 

specific sequence used to knockdown PrP. Indeed I have shown that different construct 

showed different levels of transduction. The use of same control vector 

in murine MSCs at MOI 50 reported by Anjoso-Afonso et al, 2004  

lead to similar transduction efficiency as I have obtained (Anjos-Afonso, Siapati et al. 

2004) suggesting that the protocol I was using was appropriate and that the particular 

vectors I was using to knockdown may be the cause of lower transduction efficiency.  

 

In an attempt to increase the transduction efficiency, I tested the use of a cationic 

polymer, polybrene (4µg/ml) as this has been shown to increase transduction efficiency 

in some studies (Zhang, La Russa et al. 2004). If anything, the transduction efficiency 

was lower in the presence of polybrene. This is not surprising as some reports have 
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suggested no difference in the outcome of transduction efficiency in presence or absence 

of polybrene (Zielske and Gerson 2002; Mostoslavsky, Kotton et al. 2005). To ensure 

that the knock-down occurred in a high number of hMSC, selection of eGPF positive 

hMSCs was performed by fluorescent activated cell sorting. Following selection of 

eGFP positive hMSCs, the cells were expanded in culture in order to obtain sufficient 

numbers to determine whether the clonogenic and differentiation potential of shRNA-2 

transduced hMSC cultures was affected in absence of PrP in those cultures. I showed a 

reduction in both proliferation and differentiation of hMSC, suggesting an impairment in 

stem cell properties similar to what was observed in the study by Zhang C C et al, 2006 

which demonstrated that PrP-null bone marrow cells showed less engraftment and 

impaired self-renewal ability in HSC (Zhang, Steele et al. 2006). 

 

To determine whether the proliferation ability of hMSCs was compromised when 

expression of PrP was knocked down, growth kinetics was carried out in hMSC cultures 

in presence or absence of PrP. I showed that shRNA-2 transduced hMSC cultures 

stopped proliferating much earlier than UT and shRNA-ns hMSC cultures.  It is possible 

that proliferation in shRNA-2 hMSC cultures was disrupted because the cells either 

underwent more apoptosis or they became more senescent. The former occurrence is 

unlikely to happen as I did not observe any dead cells floating in the culture medium; 

rather the cells would have become senescent. However, to confirm whether 

proliferation ability was indeed compromised or enhanced, future studies involving a 

Brdu (bromoxyuridine) staining assay could be conducted to determine the number of 

proliferating cells in hMSCs cultured in presence or absence of PrP, as Brdu is 

incorporated into the newly synthesized DNA of only proliferating cells. Similarly, cell 
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viability assay such as an apoptosis assay involving caspases could be carried out to 

determine the number apoptotic cells in hMSCs cultured in in presence or absence of 

PrP. Also, to determine whether cells cultured in absence or presence of PrP were 

senescent or not, senescent mar -galactosidase could be used.  

  

The mechanism for reduced proliferation and differentiation ability in absence of PrP 

may be multiple and studies on several actions of PrP are available but data are not very 

strong.  One possibility is that  like any GPI-anchored protein, as PrP localises in lipid 

rafts in the plasma membrane, it is possible that PrP might interact with certain 

signalling proteins in these domains to facilitate cell-surface signalling and cell adhesion 

(Naslavsky, Stein et al. 1997).  For example PrP has been reported to interact with 

several adhesion molecules including laminin (LM) and its receptor (Graner, 

Mercadante et al. 2000). PrP specifically binds to the -1carboxyterminal domain of LM. 

Laminins are known to play an important role in promoting adhesion and regulating 

osteogenic differentiation in MSCs (Klees, Salasznyk et al. 2005; Hashimoto, Kariya et 

al. 2006). For example LM-5 stimulated osteogenic differentiation of hMSCs by 

interacting with LM receptor, mediated activation of extra-cellular 

signal related kinase (ERK) pathway (Klees, Salasznyk et al. 2005; Hashimoto, Kariya 

et al. 2006). ERK is a member of mitogen-activated protein (MAP) kinase family which 

stimulates differentiation of hMSC into osteoblasts via phosphorylation of osteogenic 

transcription factor RUNX-2/CBFA-1 (Jaiswal, Jaiswal et al. 2000). Indeed, hMSCs 

coated on LM-5 stimulated differentiation of hMSCs to osteoblasts by phosphorylation 

of RUNX-2/CBFA-1 by 2.5 times more and expressed osteogenic markers such as 

alkaline phosphatase, osteopontin and osteocalcin compared to hMSCs plated on poly-L-
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lysine control surfaces. Addition of ERK inhibitor PD98059 reduced phosphorylation by 

nearly 50% and also reduced expression of osteogenic markers significantly (Klees, 

Salasznyk et al. 2005). Recently, Mruthyunjaya S et al., (2010) reported that LM-1 

promoted induction of neurite outgrowth in hMSCs in serum-deprived and 

differentiation free conditions by interaction with LM-1 specific integrin receptor-

This interaction subsequently activated the MAPK pathways which were confirmed by 

the elevated levels of phosphorylated-MEK and ERK from cells plated on LN-1 coated 

surfaces compared to poly-L-lysine coated control surfaces (Mruthyunjaya, Manchanda 

et al. 2010). All these studies suggests that PrP could promote differentiation by 

enhancing LM signalling which is important in regulating differentiation of stem cells to 

osteoblasts by activating MAP kinase pathway. This might explain the block in 

differentiation that I see in my study.   

 

Another possibility is that PrP has been reported to interact with glycosaminoglycans 

(GAG) (Pan, Wong et al. 2002) which is a major constituent of ECM. One particular 

member of GAG family that seems to associate stronger was heparin. The binding of 

PrP with heparin was specific to N-terminal region of PrP and was shown to be 

enhanced in presence of Cu+2 and Zn+2 (Pan, Wong et al. 2002, (Gonzalez-Iglesias, 

Pajares et al. 2002). Heparin sulphate (HS) is an important GAG family member whose 

function is to control the activity of several growth factors; primarily fibroblast-growth 

factor-2 (FGF-2) produced by osteoblast and modulates MSC and osteoblast 

proliferation through autocrine/paracrine mechanisms (Jackson, Nurcombe et al. 2006).  

MSCs supplemented with HS-2 triggered significant production of FGF-2 and increased 

the cell number by stimulating a population of quiescent cells to enter into cells cycle 
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and sustain their proliferation (Helledie, Dombrowski et al. 2012). Moreover hMSCs 

expanded for over 15 population doublings had significantly longer telomeres in 

presence of HS-2 compared to control media (Helledie, Dombrowski et al. 2012). Also 

GAG mimetic compound such as OTR4120 stimulated the proliferation, migration and 

osteogenic phenotype of MSC in vitro and such effects were FGF-2-dependant 

interactions as the effects were mitigated in presence of a FGF receptor-1 signalling 

pathway blocker (Frescaline, Bouderlique et al. 2012). All these studies suggest that PrP 

could promote proliferation by enhancing GAG signals which were important to 

maintain the proliferation and telomere length of MSC in an autocrine loop.  

 

A third possibility is that PrP has been also proposed to act against reactive oxygen 

species (ROS)-mediated DNA damage.  Indeed following exposure of ROS by either 

hydroxyl radicals following exposure to Cu2+ or Fe2+ or singlet oxygen following 

exposure to photosensitizer methylene blue and white light, human neuroblastoma SH-

SY5Y cells transfected with PrP showed significantly lesser DNA damage compared to 

untransfected SH-SY5Y cells (Watt, Routledge et al. 2007). Mice brains devoid of PrP 

also showed increased levels of oxidative stress markers compared to wild type mice 

(Wong, Liu et al. 2001). Moreover lack of PrP expressions resulted in a phenotype that 

was more sensitive to oxidative stress (Brown, Schulz-Schaeffer et al. 1997). ROS levels 

may act in two ways by increasing DNA damage and reducing stem cell function both 

proliferation and differentiation or as signalling molecule mediator. In a very recent 

study it was shown how ROS levels may modulate the regeneration ability of stem cells 

by acting as a signalling mediator and directing the self-renewal or differentiation of 

stem and progenitor cells. In drosophila multipotent hematopoietic progenitors displayed 
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increased levels of ROS under in vivo physiological conditions, which were down 

regulated on differentiation. However, scavenging ROS from these progenitors by 

increasing the expression of catalase retarded their differentiation into mature blood 

cells. Conversely increasing hematopoietic progenitors ROS beyond the basal levels by 

mutating SOD2 gene triggered precocious differentiation into all 3 mature blood cell 

types which was mediated through a signalling pathway involving JNK and FoxO 

activation (Owusu-Ansah and Banerjee 2009). This suggested that an optimal level of 

ROS may be necessary to maintain stem/progenitor cells and any further ROS increase 

or decrease away from the wild type basal levels may enhance or suppress 

differentiation. There is evidence that this may happen in hMSC too and lend an 

explanation to the reduction in differentiation to the osteogenic and adipogenic lineage 

which I have observed when PrP expression was knocked down. Indeed ROS have been 

seen to increase during osteogenic differentiation with concomitant increase of SOD2 

but excess ROS levels by exogenous addition of H2O2 inhibited osteogenic 

differentiation (Chen, Shih et al. 2008).  From my data, it is also probable that the 

differentiation of hMSCs transduced with shRNA-2 could have been more differentiated 

to osteogenic and adipogenic lineage at the start of differentiation (day 0). Since ROS 

levels are crucial to the shift between self-renewal and differentiation and that there is an 

optimal level of ROS required to promote differentiation (Chen, Shih et al. 2008), it 

could be speculated that when PrP is knocked down in hMSC cultures, there is less 

buffering of ROS and the cells start undergoing more differentiation at the start of 

differentiation itself. Future studies are warranted in attempt of this to measure ROS 

levels at day 0 and day 14 of hMSC cultures differentiated to osteogenic and adipogenic 

lineage in absence or presence of PrP. 
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To summarise, my data showed that lack of PrP expression resulted in dysfunctional 

stem cell pool with signs of accelerated ageing. It will be now interesting to understand 

how this occurs and to determine whether chemical intervention using a small molecule 

that targets PrP will delay cellular ageing. This was extensively studied in the next 

chapter.  
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5.1 Introduction 

As knocking down the expression of PrP in hMSC cultures showed reduced clonogenic 

and differentiation ability, I wanted to determine whether stabilizing the expression of 

PrP levels using a small molecule modulator of PrP would preserve their clonogenic and 

differentiation ability following expansion in culture. Small molecules can modulate 

stem cell fate and could be used to identify new mechanisms that regulate stem cell 

behaviour (Gambardella, Nagaraju et al. 2010). A number of small molecules have been 

identified which modulate the proliferation and differentiation ability of stem cells by 

interfering with signalling pathways such as the Wnt signalling pathway (Ding, Wu et al. 

2003; Gambardella, Nagaraju et al. 2010), hedgehog mediated signalling (Wichterle, 

Lieberam et al. 2002) and BMP/SMAD signalling pathway (Park, Waki et al. 2009). 

Administration of small molecule inhibitors of glycogen synthase kinase (GSK-3) have 

shown to augment haematopoietic repopulation into recipient NOD/SCID mice, which 

have been transplanted with human HSCs, suggesting that the small molecule acts as 

regulator in HSC repopulation in vivo (Trowbridge, Xenocostas et al. 2006). Indeed, in 

our previous studies we have shown that another small molecule inhibitor of GSK-

was able to increase the number of endogenous MSC progenitor and induce their 

differentiation to the osteogenic lineage at the expense of adipogenesis in vitro and in 

vivo (Gambardella, Nagaraju et al. 2010). Similarly, small molecule modulators of PrP 

are also available (Thompson, Borsenberger et al. 2009; Thompson, Louth et al. 2011). 

However, use of those small molecules to modulate hMSC proliferation and 

differentiation in vitro and in vivo has not yet been identified. 
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The small molecule modulator of PrP, I have selected was obtained from a virtual high 

throughput screening (VHTS) carried out to select binders of PrP from a library of 1.3 

million compounds designed to target PrP. A sensor-based PrP
 
binding assay (SPR, 

Biacore) was validated and used as a primary screening tool to identify affinity ligands 

to PrP (Touil, Pratt et al. 2006).  The Biacore screening had revealed 100 binders. Four 

hundred analogues were synthesized and screened using embryonic carcinoma stem 

cells. The screening was carried out on embryonic carcinoma stem cells because they 

were easier to culture in large numbers.  The small molecules were tested on these cells 

for their ability to proliferate by fluorescence imaging. Two potential hits were obtained 

(3/165 and 3/689). In this chapter, I have tested both molecules and chose to study the 

effects of 3/689 in more detail. I have tested whether 3/689 was able to enhance the 

proliferation of hMSCs and extend their lifespan in culture, while retaining their ability 

to differentiate and engraft to bone marrow. I have also investigated the mechanism of 

action of the PrP binder 3/689 by whole genome expression arrays and functional 

assays. 

 

5.2 Small molecule modulators of PrP (3/165 and 3/689) increase the 

number of clonogenic progenitors  

To determine the best dose at which small molecule modulators of PrP showed activity 

on mesenchymal progenitors, previously established hMSC cultures were seeded at low 

density and exposed to 3/689 and 3/165 at varying concentrations.  The hMSC cultures 

exposed to 3/689 and 3/165 were fed twice a week in culture for 14 days and assessed 

for the number of CFU-F. A significant increase in the number of CFU-F was observed 
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when cells were exposed to 3/689 at 10µM and 5µM (Fig 5.1A, n=7). But no significant 

effect was observed with 3/165.  However, when I extended the dose of 3/165 further to 

concentrations of 0.001uM and 0.0001uM, the number of CFU-F was found to be 

significantly increased at 0.001 µM (Fig 5.1B and C, n=6).  As the effect with 3/689 was 

more pronounced, I decided to carry out the rest of the work with this compound.  

 

To determine whether 3/689 showed activity on the clonogenic progenitors with 

osteogenic and adipogenic potential, previously established hMSC cultures were 

exposed to 3/689 at concentration from 10µM to 1µM in presence of osteogenic and 

adipogenic supplements and the number of CFU-O and CFU-A were assessed.  A 

significant increase in the number of CFU-O was observed when cells were exposed to 

3/689 at 10µM, 5 µM and 1 µM (Fig 5.2A, n=6). A similar response was also seen when 

measuring the effects on mesenchymal progenitors with adipogenic potential at 10µM 

(Fig 5.2B, n=6). 
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Fig 5.1: Small molecule modulators of PrP increases the number of CFU-F in 

hMSC cultures  

Figure A shows the effect of 3/689 on the number of colony forming unit-fibroblast (CFU-F, 

n=7). Figure B and C show the effect of 3/165 on the number of CFU-F (n=6). The CFU-F was 

obtained by plating hMSC from established cultures at low density. Data presented as mean ± 

SEM and analysed by one way ANOVA with Bonferroni multiple comparison post-test, *p<0.05, 

**p<0.01, ***p<0.001. 

A) 

B) 

C) 
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Fig 5.2: 3/689 increases the number of CFU-O and CFU-A in hMSC cultures 

Figure A and B show the effect of 3/689 on the number of colony forming unit-osteoblast (CFU-

O) and -adipocyte (CFU-A) obtained by plating hMSC from established cultures (n=6) at low 

density. Data presented as mean ± SEM and analysed by one way ANOVA with Bonferroni 

multiple comparison post-test, *p<0.05, **p<0.01, ***p<0.001. 

 

A) 

B) 
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5.3 3/689 has higher activity with cellular ageing  

During the analysis of the effect of 3/689 on the clonogenic progenitors, I noticed that 

there was a significantly positive strong correlation between the increase in the number 

of CFU-F obtained following exposure to 3/689 at 10µM and the time hMSC had been 

in culture prior to clonogenic assay (Fig 5.3A, n=7, r2=0.7127, p=0.02) compared to 

untreated hMSC (Fig 5.3A, n=7, r2=0.1428, p=0.40). The hMSCs that had been 

expanded for longer periods of time had an enhanced response. This prompted us to test 

whether this was also true when hMSCs were derived from older donors compared to 

younger donors. Human MSC cultures were isolated from the bone marrow of donors 

aged 9-14 years old (n=6) and 55-80 years old (n=5) and allowed to proliferate for 

similar numbers of PD (passage 2) prior to exposure to 3/689. A significant increase in 

the number of CFU-F was seen in cultures derived from older donors in presence of 

3/689 compared to younger donors (Fig 5.3B, n=5, p=0.03). These data suggests that 

3/689 has more potent effect with cellular ageing. 

 

5.4 3/689 requires PrP expression for its activity  

To determine whether 3/689 required PrP expression for its action, hMSC cultures 

untransduced, transduced with shRNA-2 vector (expressing low levels of PrP) or 

transduced with a shRNA-ns vector (non-silencing vector)  were seeded at low density 

in presence or absence of 3/689 and assessed for the number of CFU-F and CFU-O. As 

expected untransduced (Untrans) and shRNA-ns hMSC cultures showed a significant 

increase in the number of CFU-F (Fig 5.4A, n=8) and CFU-O (Fig 5.4B, n=8). In  
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Fig 5.3: 3/689 has higher activity on hMSC cultures with cellular ageing 

Figure A shows the percentage increase in the number of colony forming unit-fibroblast (CFU-

F) in presence (black circle) or absence (black square) of 3/689 (compared to DMSO control) 

with time in culture (n=7). Figure B show the percentage increase in the number of CFU-F in 

hMSC cultures derived from older donors (n=5) compared to younger donors (n=6) in presence 

of 3/689 (Data represented as percentage of DMSO control). Data presented as mean ± SEM 

s t test, p-0.03. 

B) 

A) 
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Fig 5.4: 3/689 requires PrP expression for its activity 

Figure A and figure B show hMSC cultures untransduced, transduced with shRNA-ns and 

shRNA-2 in presence or absence of 3/689 and assessed for the number of colony forming unit-

fibroblast (CFU-F) and osteoblast (CFU-O) respectively. (N=8). UT- hMSC cultures expanded 

in medium alone. Data presented as mean ± SEM and analysed by one way ANOVA with 

Bonferroni multiple comparison post-test, *p<0.05, **p<0.01, ***p<0.001, ns-non-significant. 

A) 

B) 
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contrast, no significant increase was seen when 3/689 was administered to shRNA-2 

hMSC cultures, suggesting that 3/689 requires PrP for its activity. 

 

5.5 3/689 extends the lifespan of hMSC cultures  

To determine whether 3/689 extended the lifespan of hMSC following in vitro 

expansion and delayed the loss of proliferative and differentiation ability, cultures were 

isolated and maintained in presence or absence of 3/689. Briefly, human mononuclear 

cells from each bone marrow sample were divided into three equal parts: one part was 

used to derive hMSC cultures in presence of 3/689 at 10uM, one part in presence of 

DMSO and one part which was cultured with medium alone. The cultures were 

maintained and fed twice a week with or without 3/689 until they stopped proliferating 

for at least 3 weeks, when they were considered to have reached senescence. There was 

no difference in the number of population doublings in the first 19-24 PD. However, 

after this, cultures exposed to 3/689 underwent an average 7±3 PD more than hMSC 

cultures exposed to DMSO (Fig 5.5A, n=5). This was equivalent to a significant 300-

fold increase in total cell numbers generated from each culture (Fig 5.5B, n=5). 

 

To determine whether hMSC cultures treated with 3/689 contained higher number 

clonogenic progenitors, at 90.4±17 days in culture, I replated the cells at low density and 

assessed the number of CFU-F, CFU-O and CFU-A. Human MSC cultures grown in 

presence of 3/689 contained significantly higher numbers of CFU-F, (Fig 5.6A, n=5), 

CFU-O (Fig 5.6B, n=5) and CFU-A, (Fig 5.6C, n=4) compared to DMSO control 

cultures. 
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Fig 5.5: 3/689 extends hMSC lifespan in culture 

Figure A shows a representative example of growth kinetic of hMSC cultures (n=5) expanded 

in :  medium only (green diamonds), in presence of DMSO (red squares) or in presence of 3/689 

at 10µM (blue triangles). Figure B shows total number of cells generated from the expansion of 

hMSC cultures (n=5) isolated and maintained in medium only (UT), DMSO or in presence of 

3/689. Data presented as mean ± SEM and analysed by one way ANOVA with Bonferroni 

multiple comparison post-test, *p<0.05. 

 

B) 

 

 

 

A) 
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Fig 5.6: 3/689 increases the content of highly proliferative clonogenic progenitors of 

hMSCs in culture. 

Figure A, B and C show the percentage increase in the number of colony forming unit-fibroblast 

(CFU-F, n=5), -osteoblast (CFU-O, n=5) and adipocyte (CFU-A, n=4) respectively (compared 

to DMSO control) obtained by replating hMSC cultures expanded in medium alone (UT), in 

90.4±17 days in culture. Data presented as mean ± 

SEM and analysed by one way ANOVA with Bonferroni multiple comparison post-test, *p<0.05, 

**p<0.01. 

A) 

B) 

C) 
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5.6 3/689 enhances differentiation of hMSC cultures  

To determine whether hMSC cultures expanded in presence of 3/689 retained their 

differentiation ability, hMSC cultures previously expanded in presence of medium 

alone, DMSO or 3/689 were exposed to osteogenic and adipogenic differentiation 

supplements for 2 weeks in absence of the small molecule. RNA was isolated and 

assessed for the expression of markers of osteogenic and adipogenic differentiation by 

RT-PCR. 3/689 hMSCs showed a significant increase in the expression of late 

osteogenic markers, osteopontin and osteocalcin (Fig 5.7 A-D, n=4) compared to DMSO 

controls. Similarly, an 

lipoprotein lipase (LPL) was also seen in cultures previously expanded in presence of 

3/689 and exposed to adipogenic differentiation supplements although it did not reach 

significance compared to DMSO treated cultures (Fig 5.7E-F, n=4). 
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Fig 5.7: 3/689 enhances differentiation of hMSC cultures towards osteogenic and 

adipogenic lineage 

The graphs shows real-time qPCR of hMSC cultures (n=4) expanded in medium alone (UT), in 

presence of DMSO or 3/689 and exposed to osteogenic and adipogenic differentiation 

supplements for 14 days and assessed for the expression of osteogenic differentiation marker (A) 

core-binding factor subunit alpha-1 (CBFA-1), (B) alkaline phosphatase (ALP), (C) osteopontin 

(OP) and (D) osteocalcin (OC) and adipogenic differentiation marker (E) peroxisome 

proliferator-activat - ipoprotein lipase (LPL). All the markers 

were normalised to ribosomal protein L-32. Data presented as mean ± SEM and analysed by 

one way ANOVA with Bonferroni multiple comparison post-test, *p<0.05, **p<0.01, 

***p<0.001. 

A) B) 

C) D) 

E) F) 
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5.7 3/689 stabilizes the expression of PrP in MSC cultures with time in 

culture 

To confirm that exposure of hMSC cultures to 3/689 resulted in retention of PrP 

expression with time in culture, cultures were analysed for PrP expression at passage 2 

and 8. As expected, western blotting data showed that hMSC cultures exposed to DMSO 

showed lower levels of PrP expression with serial passage in culture (Fig 5.8A, n=3). In 

contrast 3/689 hMSC cultures retained similar levels of PrP expression (Fig 5.8B, n=3), 

suggesting that exposure of hMSCs to 3/689 led to retention of the levels of PrP 

expression with time in culture.     

 

5.8 hMSC cultures derived in presence of 3/689 showed increased 

engraftment ability 

It has been shown that the ability of hMSCs to engraft to bone marrow is severely 

affected following serial passage in culture (Kyriakou, Rabin et al. 2008). To determine 

whether hMSCs expanded in presence of 3/689 showed enhanced engraftment potential, 

hMSC cultures were transduced with a lentiviral vector expressing eGFP (93.26%±3 

eGFP+) and expanded in presence of 3/689 or DMSO for 5 passages, prior to 

transplantation in NOD/SCID mice by intra-femoral injection (Fig 5.9). During this time 

they showed an average two fold expansion in cell number in presence of 3/689 

compared to cultures exposed to DMSO (Fig 5.10A, n=3). Prior to transplantation 

studies, I wanted to confirm whether 3/689-derived hMSCs were karyotypically normal 

and did not show any genetic abnormalities. All the hMSC cultures showed a normal  
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Fig 5.8: hMSCs retains PrP expression in presence of 3/689 with time in culture 

Figure A shows a representative example of western blot of hMSCs (n=3) cultured in presence 

or absence of 3/689 at passage 2 (p2) and passage 8 (p8) labelled with antibodies specific for 

glyceraldehydes-3 phosphate dehydrogenase (GAPDH, top panel) or cellular prion protein 

(PrP, bottom panel). Figure B shows quantification of PrP expression normalised to GAPDH of 

hMSCs (n=3) cultured in presence or absence of 3/689 at p2 and p8, assessed by western blot 

and analysed by ImageJ software. Data presented as mean ± SEM and analysed by one way 

ANOVA with Bonferroni multiple comparison post-test, *p<0.05. 

 

A) 

B) 
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Fig 5.9: Schematic representation of experimental plan for assessing the 

engraftment ability of hMSCs cultured in presence of 3/689 in NOD/SCID mice 
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Fig 5.10: 3/689 enhances expansion ability in vitro and exhibits a normal 

karyogram 

Figure A shows the total number of hMSCs (n=3) expanded for 5 passages in presence of 3/689 

or DMSO. Figure B shows a representative example of karyogram of hMSC culture derived and 

grown in presence of 3/689 at 10uM at the time of transplant. Data presented as mean ± SEM 

*p<0.05. 

A) 

B) 
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karyotype at the time of transplantation (Fig 5.10B). 

 

Human MSCs expanded in presence of 3/689 or DMSO was injected into NOD/SCID 

mice by intra-femoral injections and engraftment ability was assessed at 3 days and 5 

weeks post-transplant. Three days post-transplant, engraftment ability was assessed by 

measuring the number of eGFP+ CFU-F and CFU-O and 5 weeks post-transplant was 

assessed by counting the number of eGFP+ cells detected by immuno-staining. A 

significant average 3 fold increase in the number of eGFP+ CFU-F (Fig 5.11A, n=6) and 

CFU-O (Fig 5.11B, n=6) was observed in the bone marrow of NOD/SCID mice 

transplanted with 3/689 treated hMSC cultures compared to DMSO controls, 3 days post 

injection. 

 

Interestingly, even five weeks post injection an average 10 fold increase in the number 

of eGFP+ hMSC was seen in the bone marrow of NOD/SCID mice by immuno-

histochemistry (Fig 5.12, n=9). In mice transplanted with 3/689 expanded hMSC 

cultures, cells with morphology and locations resembling pericyte, stromal cells, 

osteocyte and adipocyte were seen (Fig 5.13A, n=9 and Fig 5.13B). In contrast mice 

injected with hMSCs in absence of 3/689 showed only morphology of pericytes and 

stromal cells. These data suggest that hMSC cultured in presence of 3/689 are able to 

engraft to bone marrow and are superior in quality both in vitro and in vivo. 
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Fig 5.11: Human MSC cultures derived in presence of 3/689 showed increased 

engraftment ability, 3 days post injection 

Figure A and B shows the number of human eGFP+ colony forming unit-fibroblast (CFU-F) 

and osteoblast (CFU-O) respectively recovered from the bone marrow of NOD/SCID mice 

(n=6) transplanted with hMSC cultures derived in presence of 3/689 at 10uM or DMSO, 3 days 

post intra-femoral injection. 

t test, *p<0.05, **p<0.01, ***p<0.001. 

 

A) 

B) 
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Fig 5.12: Human MSC cultures derived in presence of 3/689 showed increased 

engraftment ability, 5 weeks post injection 

Figure shows the number of eGFP+ hMSCs in the femur of NOD/SCID mice (n=9) transplanted 

with hMSC cultures derived in presence of 3/689 at 10uM concentration or DMSO, 5 weeks post 

intra-femoral injections. 

test, *p<0.05. 
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Fig 5.13: Morphology and anatomical locations of eGFP positive hMSC in the bone 

marrow of NOD/SCID mice, 5 weeks post injection 

Figure A shows a wide distribution of several cell types in the femur of NOD/SCID mice 

transplanted with hMSC cultures expanded in presence of absence of 3/689 at 10uM 

concentration (n=9). Figure B shows a representative example of eGFP+ hMSC transplanted in 

NOD/SCID mice and immuno-stained for eGFP expression. The figure shows example of (i) 

pericyte, (ii) stromal cells, (iii) bone lining cells (iv) osteocyte and (v) adipocyte based on 

morphology and anatomical location. Images were taken using a light microscope Leica Leits 

DMRB at 10x magnification for pericytes, stromal cells, bone line cells and adipocytes; and 5x 

magnification for osteocyte. 

A) 

B) 
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5.9 Mechanism of action of 3/689  

To determine the mechanism of action of 3/689, changes in gene expression profiling of 

hMSC cultures exposed to 3/689 or DMSO at passage 2 (p2) and passage 8 (p8) were 

examined by whole genome expression arrays using the Agilent whole genome chip. A 

list of differentially expressed genes was obtained using Gene Spring GX by paired t-test 

at p<0.05 significance. These differentially expressed genes were mapped to existing 

networks using the software GeneGo Metacore and revealed statistically over-

represented networks in several processes (Fig 5.14). Of interest were the processes 

related to cell cycle (26%) and DNA damage (8%) which were significantly 

dysregulated in hMSCs with serial passage in culture in the absence of 3/689, consistent 

with cellular ageing (Fig 5.14A). These processes were no longer significantly 

overrepresented with time in culture when hMSC were cultured in the presence of 3/689 

(Fig 5.14B). Moreover there were more networks, which were related to stem cell and 

development, immune responses and cytoskeletal development in hMSC exposed to 

3/689 with time in culture compared to DMSO controls (Fig 5.14A-B). 
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Fig 5.14: 3/689 prevents dysregulation of gene expression of networks related to 

DNA damage and cell cycle  

Graphical representation of the categories of networks containing a significant number of 

differentially expressed genes, obtained by comparing gene expression profiling of hMSC 

cultures at passage 2 and 8 cultured in absence (A) or presence of 3/689 (B). 

A) 

B) 
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As processes related to DNA damage and cell cycle are important in stem cells and 

cellular aging, I wanted to explore in more details the list of differentially expressed 

genes in those processes (Fig. 5.15). The DNA damage response gene ATM was up 

regulated and the DNA repair genes Bard1, Brca1 and Bloom were down regulated in 

hMSCs with time in culture. Genes such as Cdc25a, Cyclin E and Cyclin A which are 

involved in cell cycle progression were significantly down regulated in hMSC cultures 

with increased passage number. These were no longer differentially expressed in hMSCs 

cultured in presence of 3/689. While Cdc25a was up regulated, other cell cycle 

regulators such as Cyclin E and A were within the normal range and only Cyclin D was 

down regulated. The data suggests that 3/689 prevents accumulation of DNA damage 

with time in culture and lead to slower cell cycle progression with expansion. The up 

regulation of SOD2 gene in the presence of 3/689 was of utmost interest.   This gene 

acts as an important defence against oxidative damage.  SOD2 has been associated with 

PrP as it requires Mn+2 for its function. PrP is known to bind and transport Mn+2 and 

have SOD-like activity (Brown, Hafiz et al. 2000). These data led to the hypothesis that 

3/689 may prevent DNA damage and promote cell cycle progression by enhancing 

SOD2 reactive oxygen species scavenging activity. 
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Fig 5.15 Network representation containing a significant number of differentially 

expressed genes related to DNA damage and cell cycles in hMSC cultures with 

cellular aging  

Figure shows representation of the network containing differentially expressed genes related to 

Cell cycle  DNA damage obtained using the software GeneGo Metacore. The genes represented 

with a red thermometer were found to be upregulated while those with a blue thermometer were 

down regulated with serial passage in culture. Thermometer labelled 1 and 2 represent 

differentially expressed genes in hMSC cultures expanded in absence or presence of 3/689 

respectively. 
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5.9.1 Validation of microarray data  

To test whether 3/689 prevented occurrence of DNA damage and promoted cell cycle 

progression, first, I determined whether exposure of hMSC cultures to 3/689 in presence 

of DNA damaging agent H2O2 for 1 hour prevented damage. This was achieved by 

an hour later. Cultures exposed to H2O2 in the presence of 3/689 showed reduced levels 

to cultures exposed to H2O2 in presence of DMSO 

(Fig 5.16Ai-iv, 5.16B, n=3). Secondly, to confirm whether hMSC cultures exposed to 

3/689 showed an increase in cell cycle progression, cells were labelled with CFSE and 

the levels of fluorescence were tested 1 and 5 days after labelling. CFSE is a colourless 

dye that passively diffuses into cells and is equally divided between the daughter cells 

during cell division and as a result high resolution tracking of cell division can be 

monitored by the reduction in fluorescence seen using flow cytometry. Human MSC 

treated with 3/689 underwent a significant reduction in levels of CFSE compared to 

DMSO cultures (Fig 5.17Ai-ii, 5.17B, n=3), suggesting that exposure to 3/689 resulted 

in enhanced cell cycle progression.  

 

To determine whether SOD2 was important for the action of 3/689, real time qPCR 

expression was carried out in the presence or absence of PrP expression.  A significant 

up-regulation in SOD2 expression was seen in the presence of 3/689 (Fig 5.18A, n=3). 

More importantly SOD2 expression was not increased in cultures exposed to 3/689 

when PrP expression was knocked down (Fig 5.18B), suggesting that 3/689 requires PrP 

to up regulate SOD2.     
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Fig 5.16 3/689 protects hMSCs from DNA damage 

Figure A is a representative example of flow cytometry profile of hMSC culture stained for the 

2O2 (75uM) for 1h. Human MSC 

exposed to (i) medium only (ii) H2O2 (iii) 3/689 and (iv) to H2O2 plus 3/689. Purple and green 

histogram represent hMSC culture stained with the isotype control and phosphorylated 

specific antibody respectively. Figure B shows quantification of the mean fluorescent intensity of 

hMSCs (n=3) stained with phosphorylated 2O2 for 1h in 

presence or absence of 3/689. Data presented as mean ± SEM and analysed by one way ANOVA 

with Bonferroni multiple comparison post-test, *p<0.05. 

H2O2 

H2O2 + 3/689 3/689 

 

 

 

 

 

A) 

B) 
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Fig 5.17 3/689 enhances cell cycle progression in hMSC cultures 

Figure A is a representative example of hMSC labelled with CFSE and cultured in presence of 

3/689 (blue histogram), DMSO (red histogram) or medium alone (green histogram) for 1 day (i) 

and 5 days (ii). The purple histogram represents unlabelled hMSC cultures. Figure B shows 

quantification of the mean fluorescent intensity of MSCs (n=3) stained with CFSE at day 5 in 

presence or absence of 3/689.UT represents untreated hMSC cultures stained with CFSE. Data 

presented as mean ± SEM and analysed by one way ANOVA with Bonferroni multiple 

comparison post-test, *p<0.05. 

 

 

 

d1 
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B) 
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Fig 5.18 Small molecule 3/689 acts by up regulating SOD2 expression 
 

Figure A shows the expression of SOD-2 in hMSC cultures maintained in culture for 2 and 8 

passages in presence or absence of 3/689 by real time PCR. Figure B shows the expression of 

SOD-2 in hMSC cultures (n=3) transduced with a non-silencing vector (shRNA-ns) or a vector 

to knock down the expression of PrP (shRNA-2) and exposed to DMSO control or 3/689. Data 

presented as mean ± SEM and analysed by one way ANOVA with Bonferroni multiple 

comparison post-test, *p<0.05, **p<0.01. 

A) 

B) 
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5.10 Discussion 

Previously I showed that the lack of PrP expression in hMSC reduced their proliferative 

capacity with time in culture (Chapter-4). Hence, I wanted to test whether a small 

molecule capable of modulating PrP activity was able extend their proliferation 

following expansion in vitro. The exposure of 3/689 at 10uM concentration to 

previously established hMSC cultures increased the number of mesenchymal 

progenitors. Cultures isolated and maintained in presence of 3/689 underwent an extra 6-

10PD, showed an average two fold expansion over five passages, contained 40-175% 

more highly proliferative progenitors, including those capable of differentiation to 

osteoblasts and enhanced differentiation ability to the osteogenic lineage in presence of 

3/689. Integral to the definition of stem cells is their ability to regenerate the tissue in 

which they reside through their ability to self-renew and differentiate. The best in vivo 

assay known to assess the regenerative capacity of MSC is the ectotopic bone formation 

assay (Daga, Muraglia et al. 2002). However, this assay does not test the ability of 

hMSC to regenerate and contribute to tissue maintenance and repair in the appropriate 

environment. For this reason I have transplanted eGFP labelled hMSC exposed 3/689 

directly in the femur of immuno-deficient mice and assessed their engraftment potential 

5 weeks post-injection. 3/689 derived MSC cultures showed a 10-fold increase in the 

number of donor cells in bone marrow 5 weeks post-transplant. Infact transplanted cells 

showed morphology and anatomical location of pericytes, stromal cells, bone lining cells 

and osteocytes in contrast to their DMSO controls, suggesting that the cultures were not 

only superior in quality in vitro but also enhanced the preservation of their stemness in 

vivo. These findings are in agreement with studies that have demonstrated that the 
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ancestral origin of hMSC is associated with blood vessel wall and belongs to a subset of 

perivascular cells, pericytes (Hirschi and D'Amore 1996; Crisan, Yap et al. 2008). In fact 

cultured human perivascular cells from bone marrow expressed markers of hMSC and in 

presence of suitable differentiation supplements gave rise to chondrocytes, osteocytes 

and adipocytes (Crisan, Yap et al. 2008; (Sacchetti, Funari et al. 2007; Mendez-Ferrer, 

Michurina et al. 2010). 

 

As much as this chapter demonstrated that the lifespan and function of hMSC can be 

manipulated by modulating PrP expression and provide new strategies for using stem 

cells for clinical practise in regenerative medicine, the safety of this small molecule 

requires thorough evaluation. In this study, although, I have not seen changes in 

chromosomal integrity and tumorigenic potential following hMSC expansion with 

3/689; routine karyotyping that has been used in the study is the most basic and is 

relatively a crude and quick assay to measure tumorigenic potential.  However, if one 

has to thoroughly monitor and measure long term tumorigenic potential, more in depth 

studies are required. For example, time-point karyotype analysis is a widely 

recommended technique to monitor quality control chromosomal integrity (Catalina, 

Cobo et al. 2007). This method allows for careful monitoring of cells cultured with drug 

for signs of any disrupted chromosomal integrity which are subjected to extensive 

-point driven and is more labour intensive. 

Increasing interests to monitor chromosomal instability in human ESC and human IPSCs 

in vitro is developing microarray-based techniques such as comparative genomic 

hybridization (CGH), single nucleotide polymorphism analysis and transcriptional 

profiling (Moralli, Yusuf et al. 2011). For rapid chromosomal assessment even 



 
 

185 | P a g e  
 

fluorescence in situ hybridisation (FISH) based protocols for karyotyping such as 

multiplex-FISH (M-FISH) and spectral karyotyping (SKY) are used to detect recurring 

aneuploidies by means of chromosome specific probes (Moralli, Yusuf et al. 2011). 

While most of these techniques including M-FISH, SKY and CGH can refine complex 

karyotypes, they cannot detect chromosomal balanced translocation, small 

intrachromosomal re-arrangements such as deletions, duplications or inversions. 

Moreover, they can be performed mostly on metaphasic spreads of cells and are highly 

expensive techniques. The most robust cost-effective technique that can provide quick 

results would be to conduct a FISH experiment as it is a very sensitive technique and can 

detect both numerical and structural chromosomal abnormalities in both interphase and 

metaphase nuclei. FISH can be even performed in frozen tissue samples (Catalina, Cobo 

et al. 2007) unlike other techniques.  

 

Understanding that 3/689 enhances the proliferative and self-renewal ability of hMSC 

both in vitro and in vivo, it was now important to address the mechanism by which 3/689 

confers its activity on hMSC cultures. To determine the molecular pathways leading to 

ageing of hMSC in presence or absence of 3/689, gene expression profiling was carried 

out. From the microarray studies four major areas seemed to be affected with cellular 

aging including cytoskeletal remodelling/ adhesion, inflammation, DNA damage/cell 

cycle and processes related to stemness. Adhesion molecules play a very important role 

in maintaining the proliferation and differentiation ability of stem cells. Differentially 

expressed genes that are essential to cytoskeletal remodelling/adhesion processes 

included the extra-cellular matrix (ECM) proteins laminin-1, epithelial (E)-cadherin; 

growth factors such as fibroblast growth factor (FGF); cell-adhesion molecules such as 
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melanoma cell adhesion molecule (MCAM) were upregulated in hMSC cultures with 

cellular ageing in presence of 3/689 and were no longer differentially expressed in 

hMSCs cultured in absence of 3/689. The possible role of PrP in promoting proliferation 

of MSCs by enhancing glycosaminoglycans signalling, another major constituent of 

ECM, by regulating the activity of FGF is discussed in chapter-4. Another cell adhesion 

molecule that was upregulated in presence of 3/689 was MCAM. Expression of MCAM, 

otherwise called as CD146 in hMSCs has been shown to regulate proliferation, 

differentiation and maintenance of haematopoietic stem and progenitor cell (HSPC) 

through direct cell-cell contact (Stopp, Bornhauser et al. 2013).  In the study, knocking 

down of MCAM expression in MSCs not only impaired proliferation, osteogenic 

differentiation and migration of hMSC but also stimulated HSPC proliferation and 

reduced the formation of long-term culture initiating cell formation significantly. 

Moreover, MCAM-overexpressing hMSCs resulted in providing a microenvironment 

conducive for HSPC and increased adhesion of HSPC to hMSCs. It is not known how 

PrP may interact with MCAM and aid in the maintaining the stemness of hMSCs and 

further studies are warranted to attempt this.  

 

Dysregulation of processes related to inflammation is not surprising when looking at 

cellular ageing (Freund, Orjalo et al. 2010; Campisi 2011). The senescence associated 

secretory phenotype (SASP) with pro-inflammatory phenotype has also been described 

(Behrens, van Deursen et al. 2014); (Parrinello, Coppe et al. 2005); (Coppe, Patil et al. 

2008). However, surprisingly, the microarray data in my study showed the secretion of 

pro-inflammatory cytokines including IL-6, tumor necrosis factor- -  IL-1

IL-8 to be upregulated with age in presence of 3/689. Apart from their pro-inflammatory 
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role, these cytokines have recently been shown to be involved indirectly in MSC-

mediated immunosuppression by the secretion of soluble factors including inducible 

nitric oxide synthase (iNOS), indoleamine 2,3-deoxygenase (IDO), prostaglandin E2 

(PEG2) (Ghannam, Bouffi et al. 2010). For example in murine MSCs, activation of pro-

inflammatory cytokines such as interferon- (IFN- TNF- , IL- -

secretion of iNOS in MSCs and inhibited T-cell proliferation (Ghannam, Bouffi et al. 

2010). Moreover, MSCs from iNOS-/- and IFN- -/- mice were unable to supress T-cell 

proliferation (Ren, Zhang et al. 2008). Similarly, IL-6 dependent PEG2 secretion by 

murine MSCs inhibited local inflammation in collagen-induced arthritis (CIA) model of 

auto-immune disease (Bouffi, Bony et al. 2010). The study showed that injection of IL-

6-/- MSCs in the allogeneic CIA model was less efficacious in decreasing paw swelling 

in arthritic mice compared to wild-type MSCs due to PGE2 secretion (Bouffi, Bony et 

al. 2010). The study suggested that MSC-mediated immuno-suppression was regulated 

by PEG2 secretion that inhibited proliferation of immune cells at the vicinity of MSCs. 

Also PEG2 secreted by MSCs as a result of stimulation of TNF-  during sepsis has 

shown to reprogramme monocytes and macrophages to produce IL-10 which is an anti-

inflammatory cytokine (Nemeth, Leelahavanichkul et al. 2009). The production of IL-10 

prevented neutrophils to migrate to tissues and cause oxidative damage, thereby 

alleviating damages to multiple organs. Moreover PGE2 secretion by MSCs has reported 

to block differentiation of monocytes towards dendritic cells (Spaggiari, Abdelrazik et 

al. 2009), resulting in accumulation of immature dendritic cells and providing immune 

tolerance (Djouad, Charbonnier et al. 2007). Prion disease has been linked to an enhance 

inflammatory state (Crespo, Roomp et al. 2012), however the exact mechanisms by 

which cellular prion protein induce a dysregulated immune function is unknown.  
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The most striking effect in the microarray study was related to cell cycle, protection 

from DNA damage and how PrP may play a role in scavenging ROS through 

upregulation of SOD-2. DNA damage has been shown to have a role in the loss of 

function of stem cell with age (Vaziri, Schachter et al. 1993) There are several other 

studies, which suggest that cells lacking PrP or PrP knockout cells are more sensitive to 

DNA damage via oxidative stress (Kim, Lee et al. 2004; (Brown, Nicholas et al. 2002; 

Senator, Rachidi et al. 2004)

induced DNA fragmentation in mouse neural cells line expressing PrP by 152% and 

224% not expressing PrP (PrPKO) (Anantharam, Kanthasamy et al. 2008).  To 

understand whether prevention of DNA damage by 3/689 enhanced cell cycle 

progression of MSC cultures exposed to 3/689, an increase in the loss of CFSE was seen 

in hMSC cultures treated with 3/689 suggesting that exposure to 3/689 results in 

enhanced cycling and expansion of hMSC. PrP has shown to promote proliferation in 

gastric cancer cells by activating genes such as Cyclin D1 and E2F that are related to 

regulation of cell cycle G1/S transition via the p13K/Akt pathway (Liang, Pan et al. 

2007). Skin fibroblast cell lines from PrP knock-out mice showed reduced levels of 

Cyclin D1 by northern blotting (Satoh, Kuroda et al. 2000). 

 

PrP has been reported to confer enhanced resistance to stress by contributing to cellular 

SOD activity (Brown, Schulz-Schaeffer et al. 1997; Brown and Besinger 1998). Indeed 

my data shows that in presence of 3/689, there is up-regulation of SOD-2 and this up-

regulation is annulled in the absence of PrP expression. Although the role of SOD2 in 

controlling aging and extending lifespan through its scavenging activity of ROS is 

debatable, the effect observed in the data is in agreement with the data reported on the 
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effect of SOD2 in connective tissues. Heterozygous SOD2 knock-out mice showed 

reduction in SOD activity with increased DNA damage and no signs of accelerated 

ageing and extension in lifespan compared to the wild type controls (Van Remmen, 

Ikeno et al. 2003). To the contrary, a conditional SOD-2 knock-out in connective tissues 

(from which MSCs originate) conferred selective loss of redox balance in the fibroblast 

cells which facilitated accelerated ageing phenotype in mice and shorten their life-span 

(Treiber, Maity et al. 2011). Modulation of ROS may explain also why the effect was 

prominent with passage number or in cells from older donors. It is quite possible that 

PrP is useful only at times of proliferative stress.  Indeed PrP gene was up-regulated in 

CD8+ lymphocytes only when they underwent intense proliferation upon transferring 

into lymphopaenic mice (Goldrath, Luckey et al. 2004).   Alternatively with age there an 

increase in ROS (Ito, Hirao et al. 2004; Ito, Hirao et al. 2006);(Schubert, Erker et al. 

2004) and when ROS levels are increasing beyond a certain threshold it is possible that 

PrP is there to buffer any excess. 

 

 There are several reasons why ROS levels may require tight regulation. As mentioned 

earlier, ROS has been associated with modulating the regeneration ability of stem cells 

and directing the self-renewal or differentiation of stem and progenitor cells, which 

suggests that an optimal level of ROS is required to maintain stem/progenitor cells 

(Chen, Shih et al. 2008; Owusu-Ansah and Banerjee 2009).  

 

Another most obvious reason is the ability to cause genetic damage. Although stem cells 

are equipped with properties that minimise acquisition of damage (Bunting 2002; 

Scharenberg, Harkey et al. 2002; Sung, Cho et al. 2008), adult stem cells remain at risk 
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of acquiring mutations that could lead to cancer or to a robust DNA damage response 

leading to apoptosis or senescence (Mandal, Blanpain et al. 2011). This has been shown 

to diminish their regenerative capacity and lead to tissue aging (Rossi, Bryder et al. 

2007). To what extent stem cells undergo DNA damage as a consequence of ROS 

exposure remains unclear, but there is evidence that increased ROS affects stem cell 

regenerative capacity. Increased ROS, even at low levels led to a depletion of the 

hematopoietic stem cell pool and inhibition of their repopulation capacity (Ito, Hirao et 

al. 2006). Elevation of ROS due to loss of ATM led to depletion of HSC pool and bone 

marrow failure in old mice in a ROS dependent manner (Ito, Hirao et al. 2004). 

Activation of p38MAPK has been seen to increase in response to increasing levels of 

ROS and this has been shown to limit HSC lifespan in vivo (Ito, Hirao et al. 2006). In 

contrast prolonged treatment with an inhibitor of p38MAPK extended their lifespan in 

serial transplantation (Ito, Hirao et al. 2006).  

 

In conclusion, in this chapter I have shown that expansion of hMSCs in presence of PrP 

led to delay in cellular ageing. This molecule needs further characterization for safety 

and refinement of structure. However, it does open up new opportunity for their use in 

vitro and in vivo to expand the stem cell pool. 
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Human mesenchymal stem cells have been shown to have potential in regenerative 

approaches in bone and blood. In principle, hMSC could be isolated from the bone 

marrow, expanded in culture until sufficient numbers are obtained to be used for clinical 

application. Most protocols rely on their in vitro expansion prior to clinical use. 

However, generating sufficient numbers of hMSC in vitro is associated with cellular 

ageing with loss of proliferation and differentiation capacity (Stenderup, Justesen et al. 

2001); (Mendes, Tibbe et al. 2002).  Therefore, it is necessary to study how hMSC 

undergo a process of ageing and identify target molecules which would facilitate their 

long-term self-renewal and differentiation ability. In my project, I have identified a 

small molecule, 3/689 which delayed hMSC cellular ageing by targeting PrP. However, 

there a number of issues to be addressed before this molecule can be used clinically.  

 

As much as the current study demonstrated that the lifespan and function of hMSC can 

be manipulated by modulating PrP expression and provide new strategies for using stem 

cells for clinical practice in regenerative medicine, it is now important to consider how 

3/689 can be used as a potential drug both in vitro and in vivo for it to be considered for 

clinical purposes.  For in vitro application, first, the safety of the drug is of utmost 

importance and requires thorough evaluation which has been discussed in chapter 5. 

Secondly, the possible involvement of PrP in cancer cannot be completely ruled out. 

Although there is no direct evidence confirming the role of prion in establishment or 

progression of cancer, yet, PrP has been shown to be over-expressed in many cancers 

including gastric, colorectal, breast cancers. Studies indicate that over-expression of PrP 

promoted metastasis in colon cancer lines (McEwan, Windsor et al. 2009) and gastric 

cancer lines (Pan, Zhao et al. 2006) through the activation of MEK/ERK pathway and 
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subsequent transactivation of matrix metalloproteinase (MMP)-11 which is associated 

with extra-cellular matrix degradation, a key step involved in tumor invasion and 

metastasis (Pan, Zhao et al. 2006). Also increased PrP expression in gastric 

adenocarcinomas co-related with histopathological differentiation and tumor 

progression.  Loss of increased PrP expression inhibited cancer cell growth (Li, Cao et 

al. 2009) and restored the sensitivity of cells towards chemotherapeutic drugs (Du, Pan 

et al. 2005) and suggested a requirement for PrP over-expression in rapid-cell 

proliferation and/or enhanced cell survival.  In contrast mice where PrP has been over-

expressed (tg20, tg35), they have not been reported to have higher incidence of cancer 

(Fischer, Rulicke et al. 1996).  Such studies provoke question whether cancer phenotype 

is a consequence of PrP expression or whether PrP can stimulate cancer formation only 

in cells that are already predisposed to develop cancer.  It is also possible that the short 

exposure of 3/689 required during expansion and the prevention of DNA damage offset 

the possibility of developing cancer. However, this needs to be carefully evaluated 

involving large in vivo studies, where cells cultured with PrP are transplanted and the 

animals are observed for longer periods of time for signs of any cancer phenotype in 

syngeneic animal models. 

 

From a clinical perspective, 3/689 may also have potential in vivo by protecting directly 

the cells in vivo.  It is known that the normal haematopoietic system and the 

gastrointestinal tract (GI) are the most affected tissues in patients undergoing 

radiation/chemotherapy (Mauch, Constine et al. 1995; Yu 2013).  As 3/689 is shown to 

protect hMSCs from DNA damage, one possible application could be to administer 

3/689 to cancer patients prior to undergoing radiation or chemotherapy. This approach 
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might prove to be strictly selective in rendering radio-/chemo-protection of normal and 

healthy hMSCs and indirectly play a role in generating a better functional cell type and 

rejuvenating the haematopoietic compartment and GI in those cancer patients. Of course 

this is subject to tests that 3/689 does not improve cancer development.  

 

In this study, 3/689 was shown to enhance SOD2 ROS scavenging activity and 

suggested a possible role in preventing DNA damage. However, there are other 

mechanisms which have not been looked into in detail. For example, DNA repair genes 

were down-regulated with age which were no-more differentially expressed in presence 

of 3/689, suggested that the small molecule may also be involved in DNA repair 

mechanisms. Provided 3/689 is also involved in DNA repair mechanism, this molecule 

can also be of potential use in patients with myelodysplastic syndrome (MDS). MDS 

occurs mostly in elderly people or in more than 15% of cases post 

radiation/chemotherapy in cancer patients.  MDS patients suffer from bone marrow 

disorders characterized by initial impaired haematopoiesis followed by acute 

myelopoisis and ultimately leading to increased risk of leukemia (Mufti 2004). Most of 

these patients require red blood cell transfusions for anaemia and develop iron overload. 

The iron overload in cells can catalyse the generation of ROS leading to DNA damage in 

cells (Greenberg, Koller et al. 2010; Kikuchi, Kobune et al. 2012).  In this regard, 3/689 

could be administered in early stages of MDS to help prevent DNA damage and delay 

the development of leukemia in the patients. Of course this is subject to tests that 3/689 

also mediates repair mechanisms. With so many possible applications, there are major 

drawbacks before 3/689 can be considered for clinical applications. It is not known if the 

administration of 3/689 could promote cancer in vivo as there is dearth of evidences 
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suggesting that PrP may play a role on cancer development. Although 3/689 is a lead 

molecule in the study, however it shows a functional effect at a very high concentration 

of 10µM with high degree of aspecificity. It can pose to be highly toxic when 

administered in vivo and is highly unlikely to work effectively. Therefore, designing of 

analogues of 3/689 needs to be warranted.  

 

In order to design better analogues of 3/689, it is important to understand the pathway 

leading the DNA damage which would possibly target the increase DNA repair function 

of MSCs or render protection from DNA damage with age without the risk of cancer. 

This could be achieved by knocking in and out each element of the pathway and check 

whether the anti-ageing activity of hMSCs still exists or not without signs of cancer.  

The pathway studies would also aid in designing better assays to screen more 

functionally effective analogues. This will be needed to reduce the side effects due to 

toxicity and reduce aspecificity of the molecule. The initial screening carried out in my 

study was a very crude screening test conducted on embryonic carcinoma stem (EC) 

cells which was based on ability of EC cells to proliferate by fluorescence imaging. For 

example from my data, the pathway involving protection from DNA damage by 

upregulation of SOD2 gene can be a more specific and stringent assay to consider for 

effective screening of analogues. To this end, a reporter MSC line could be constructed 

which could fluoresce when SOD2 gene is upregulated. Also intensive structure activity-

relationship (SAR) studies involving techniques such as molecular modelling, x-ray 

crystallography and NMR would be conducted to discover new and specific binding 

sites on PrP based on the information available about the structure of PrP. Once this is 

established, a dose-response curve is mandatory to fine-tune the dose at which the 
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activity of molecule is at its peak functional ability both in vitro and in vivo. This way a 

much better and efficient screening of analogues could be performed which could be 

more specific in its function and less toxic. Once a lead molecule is obtained, the 

pharmacokinetics (PK) properties of 3/689 analogue such as ADME (adsorption, 

distribution, metabolism and excretion) properties, human ether-a-go-go-related gene 

(hERG) inhibition cannot be ignored. Also pharmacodynamics of the molecule is 

essential to understand how the molecule interacts with PrP in vivo. A bio-marker to PrP 

will enable to study how this interaction occurs in vivo. This is quite a lot of work to 

achieve. Achieving all of the above parameters would eventually lead to clinical trials. 

 

In conclusion, my study has investigated the potential role of a small molecule, 3/689 by 

interacting with prion protein. It essentially amplifies the stem cell pool and its 

differentiated progenies suggesting that the cells are better in quality and highlights the 

novel idea of promoting long term self-renewal of culture expanded hMSC, which can 

be implicated for clinical applications in regenerative medicine. However, a lot more in-

depth studies are required prior to its clinical application.  
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ABSTRACT

Human mesenchymal stem cells (hMSCs) have been shown
to have potential in regenerative approaches in bone and
blood. Most protocols rely on their in vitro expansion prior

to clinical use. However, several groups including our own
have shown that hMSCs lose proliferation and differentia-
tion ability with serial passage in culture, limiting their

clinical applications. Cellular prion protein (PrP) has been
shown to enhance proliferation and promote self-renewal of

hematopoietic, mammary gland, and neural stem cells.
Here we show, for the first time, that expression of PrP
decreased in hMSC following ex vivo expansion. When PrP

expression was knocked down, hMSC showed significant
reduction in proliferation and differentiation. In contrast,

hMSC expanded in the presence of small molecule 3/689, a
modulator of PrP expression, showed retention of PrP

expression with ex vivo expansion and extended lifespan up
to 10 population doublings. Moreover, cultures produced a
300-fold increase in the number of cells generated. These

cells showed a 10-fold increase in engraftment levels in bone
marrow 5 weeks post-transplant. hMSC treated with 3/689
showed enhanced protection from DNA damage and

enhanced cell cycle progression, in line with data obtained
by gene expression profiling. Moreover, upregulation

of superoxide dismutase-2 (SOD2) was also observed in
hMSC expanded in the presence of 3/689. The increase in
SOD2 was dependent on PrP expression and suggests

increased scavenging of reactive oxygen species as mecha-
nism of action. These data point to PrP as a good target for

chemical intervention in stem cell regenerative medicine.
STEM CELLS 2012;30:1134–1143
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INTRODUCTION

Bone marrow (BM) mesenchymal stem cells (MSCs) are
thought to have clinical potential in the regeneration of tis-
sues, such as bone, cartilage, and BM stroma, thanks to their
ability to proliferate and differentiate to osteoblasts, chondro-
cytes, and hematopoietic supporting stroma [1]. However,
MSCs require expansion in culture prior to clinical use [2].

Regardless of the protocol used during this process, they lose
proliferative and differentiation ability with serial passage in
culture and undergo replicative senescence, limiting their
clinical applications [3–5].

Cellular prion protein (PrP) has been shown to enhance
proliferation and promote self-renewal of stem cells [6–8].
Hematopoietic stem cells (HSCs) from PrP-null mice showed
diminished engraftment in successive serial transplants. The
defect was rescued when PrP-null HSCs were genetically
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modified to express PrP [6]. Similarly in the mammary gland,
only those cells expressing PrP were able to form mammo-
spheres and regenerate the mammary gland when implanted
into the mammary fat pad [8]. In adult neurogenic regions,
cellular proliferation was increased in mice overexpressing
PrP compared to wild-type and PrP knockout mice [7]. It is
unknown whether human MSCs (hMSCs) express PrP and
whether PrP enhances their proliferation ability.

Small molecules are attractive tools to manipulate stem
cells and understand the signaling pathways regulating their
self-renewal and differentiation. Canonical Wnt signaling is a
prime example. Progress is well underway for the manipulation
of both ESCs and adult stem/progenitor cells using inhibitors of
glycogen synthase kinase 3 (GSK-3) [9–11]. Our group has
shown that a novel selective inhibitor of GSK-3 was able to
amplify mesenchymal progenitors and induce their differentia-
tion to the osteogenic lineage in vitro and in vivo [12]. Admin-
istration of another GSK-3 inhibitor was shown to enhance the
self-renewal ability of human HSC following transplantation
[10]. Small molecules targeting PrP are available [13, 14], but
their effect on MSC is unknown. In this study, we hypothesize
that PrP is required for proliferation of hMSC and that a small
molecule modulator of PrP can be used to enhance their prolif-
eration and extend their lifespan in culture, while still retaining
their ability to differentiate and engraft to BM.

MATERIALS AND METHODS

Isolation and Culture of hMSC from Human BM

hMSCs were derived from BM harvested from the iliac crest of
patients undergoing osteotomy for reasons other than metabolic
disorders, or patients undergoing a diagnostic BM, which were sub-
sequently reported normal. BM was obtained following informed
written consent in accordance with the protocol approved by the
South Sheffield local ethical research committee, and hMSCs were
isolated and cultured as previously described [15]. ‘‘Briefly bone
marrow mononuclear cells (MNC) were isolated by density gradi-
ent separation medium (1.077 g/l, PAA laboratories, Pasching,
Austria; http://www.paa.com/the_cell_culture_company.html) and
plated at 8,000 MNC/cm2 in hMSC medium composed of Dulbec-
co’s modified Eagle medium (DMEM) and 10% fetal calf serum
(Hyclone, Fisher, Scientific, Loughborough, UK, http://www.fish-
er.co.uk/) and incubated at 37�C in 5% carbon dioxide in air. Non-
adherent cells were removed 48 hours later. Thereafter the medium
was changed weekly until the cells were confluent. At confluence
hMSC cultures were detached by incubation with 0.5% trypsin/1
mM EDTA (Gibco, Paisley, U.K., http://www.lifetechnologies.-
com/uk/en/home.html) and plated at 1000/cm2.’’ The number of
progenitor MSCs was determined by the colony-forming unit fibro-
blast (CFU-F) assay as previously described [3]. For assessment of
growth kinetics, the number of CFU-F at the start of the culture
was used to determine the number of population doublings (PDs)
that cells have undergone to reach primary confluence. Thereafter,
the number of PD was calculated as log N/log 2, where N is the
number of cells at confluence divided by the number of cells at the
start of the culture. Small molecule 3000689 (3/689) is a member
of the indole-3-glyoxylnaphthylamide family of antiprion com-
pounds, which was selected for this study from an early screening
programme (a separate publication is in preparation). It was synthe-
sized and characterized as previously described [13,16]. 3/689 was
dissolved in dimethylsulfoxide (DMSO) at 3.89 mg/ml and then
diluted further in MSC medium for in vitro and in vivo studies.
Cultures were fed twice weekly.

Clonogenic and Differentiation Assays

CFU-F. The number of clonogenic progenitors contained in
hMSC cultures was obtained by replating hMSC at 10 and 20

cells per square centimeter in DMEM plus 10% fetal calf serum
(FCS) (Hyclone, Fisher) (hMSC medium) for 14 days at 37�C.
Colonies were visualized by Wright’s Giemsa staining (VWR,
Leicestershire, U.K., https://uk.vwr.com/app/Home). Colonies
with a minimum of 50 cells by visual inspection were consid-
ered as one CFU-F. Colonies were scored from plates seeded
with 10 cells per square centimeter, unless growth was not
observed. In this case, wells seeded with 20 cells per square
centimeter were scored and frequency adjusted accordingly.

CFU Osteoblasts. The number of clonogenic progenitors with
osteogenic potential was obtained by seeding 10 and 20 hMSCs
per square centimeter from established cultures in hMSC medium
supplemented with osteogenic supplements 0.05 mM L-ascorbic
acid (Sigma-Aldrich, St. Louis, USA, www.sigmaaldrich.com),
10 mM b-glycerophosphate (Sigma-Aldrich), and 100 nM dexa-
methasone (Sigma-Aldrich). Cells were maintained for 14 days at
37�C and fed twice a week. Colonies were stained for alkaline
phosphatase (ALP) activity using the 86R alkaline phosphatase
kit (Sigma-Aldrich) according to manufacturer’s instructions. Col-
onies with a minimum of 40 cells positive for ALP were consid-
ered as one CFU osteoblasts (CFU-O).

CFU Adipocyte. The number of clonogenic progenitors with
adipogenic potential was determined by plating hMSC at limiting
dilutions (range 105–6.25 � 103 cells, eight wells per dilution in
96-well plate) in hMSC medium and cultured at 37�C as previ-
ously described [17]. After 2 days in culture, the cells were
induced to differentiate by adding adipogenic supplements
100 nM dexamethasone and 1 lg/ml 3-isobutyl-1-methylxanthine
(Sigma-Aldrich) for 2 weeks and then stained with Oil red O to
detect lipid vacuoles. A well was considered positive if it con-
tained more than 20 cells with red lipid vacuoles. The number of
CFU adipocyte (CFU-A) was obtained following the Poisson dis-
tribution and using the formula Fo ¼ e�x, where Fo is the fraction
of colony-negative wells, e is the constant whose value is 2.71,
and x is the number of CFUs per well.

Differentiation of hMSC Cultures. Osteogenic differentiation
was induced by plating 1.2 � 103 hMSCs per square centimeter in
hMSC medium supplemented with osteogenic supplements. Adipo-
genic differentiation was induced by plating 2.8 � 103 hMSCs per
square centimeter in hMSC medium supplemented with adipogenic
supplements. Cells were maintained at 37�C and fed twice a week.
After 2 weeks, total RNA was extracted using RNAqueous 4PCR
Kit (Ambion, Warrington, U.K., http://www.invitrogen.com/site/
us/en/home/brands/ambion.html) according to manufacturer’s
instructions. Two micrograms of total RNA was used for reverse
transcription using the first Strand cDNA Synthesis Kit (GE
Healthcare, Amersham, U.K., http://www.gehealthcare.com/uken/
about/about_amersham.html). Quantitative real-time polymerase
chain reaction (PCR) was performed using SYBR green PCR Mas-
ter Mix (Eurogentec, Romsey, U.K., http://www.eurogentec.com/
eu-home.html) and the primers (Supporting Information Table S1)
were used at 0.1 lM. PCR amplification was carried out according
to the following conditions: 1 cycle of 50�C for 2 minutes, 95�C for
10 minutes; 40 cycles of 95�C for 15 seconds, 60�C for 1 minute.
The data were analyzed using SDS 2.0 software.

Western Blotting

Protein lysates (20 lg) were separated using 12% tris-glycine gels.
Membranes were blocked by incubation for 2.5 hours in 5% bovine
serum albumin in phosphate-buffered saline (PBS) containing 0.1%
Tween 20 (PBS-T) for the detection of glyceraldehyde-3 phosphate
dehydrogenase (GAPDH) and 5% casein in PBS-T for the detection
of PrP. Membranes were then incubated overnight at 4�C with ei-
ther the primary antibody mouse anti-human prion protein SAF32
(Spibio, Massy, France, http://www.bertinpharma.com/about.aspx)
at 1:400 or mouse anti-human GAPDH (Abcam, Cambridge, U.K.,

Mohanty, Cairney, Chantry et al. 1135

www.StemCells.com



http://www.abcam.com/) at 1:1,000. Goat anti-mouse horseradish
peroxidase (HRP)-conjugated secondary antibody (DAKO, immu-
noglobulin A/S, Copenhagen, Denmark, http://www.dako.com/uk/
index.htm) was then used at 1:3,000 for 1 hour at room tempera-
ture. Detection was carried out using enhanced chemiluminescence
plus ECL reaction kit (GE Healthcare, Little Chalfont, U.K., http://
www.gehealthcare.com/uken). Quantification of protein expression
was carried out using Image J Software.

Lentiviral Vectors

Lentiviral particles were generated by cotransfection of
HEK293T cells with the envelope and packaging plasmids
pMD.G2 and pCMVDR8.91 (produced by L. Naldini and kindly
donated by A. Thrasher), and plasmid containing the vector of in-
terest as previously described [18]. p’HRsincpptSEW (kindly
donated by A. Thrasher, University College London) was used to
express enhanced green fluorescent protein (eGFP) to label hMSC
for transplantation experiments. pGPIZ shRNAmir contained a
hairpin sequence to specifically knock down expression of PrP
(shRNA-2, TGCTGTTGACAGTGAGCGCGCACTGAATCGTT

TCATGTAATAGTGAAGCCACAGATGTATTACATGAAAC

GATTCAGTGCATGCCTACTGCCTCGGA), an internal ribo-
some entry site and eGFP (Thermofisher, Epsom, U.K., https://
www.openbiosystems.com/default.aspx). A similar pGPIZ
shRNAmir containing a nonsilencing hairpin sequence (shRNA-
ns TGCTGTTGACAGTGAGCGATCTCGCTTGGGCGA GAG-
TAAGTAGTGAAGCCACAGATGTACTTACTCTCGCCCA
AGCGAGAGTGCCTACTGCCTCGGA) was used as control.
hMSCs were transduced at a multiplicity of infection of 40 based on
3T3 transducing units by fluorescent-activated cell sorting (FACS).

Transplantation of hMSC

NOD/LtSz-Prkdcscid (nonobese diabetic severely combined immu-
nodeficient [NOD/SCID]) mice aged 5–6 weeks were injected with
5 � 105 hMSC-expressing eGFP by intrafemoral injection accord-
ing to the approved home office license. Mice were sacrificed 3
days and 5 weeks later and femurs were fixed with 10% formalin.
Following rapid decalcification in Surgipath decalcifier II (Leica
Microsystems, Milton Keynes, U.K., http://www.leica-microsys-
tems.com/) for 2 hours, tissues were embedded in wax and 3-lm
sections were cut using a Leica Microsystems microtome (Leica
Microsystems) and stained for the detection of eGFP. Briefly, sec-
tions were fixed with 99% ethanol for 5 minutes and blocked with
3% H2O2 for 10 minutes. They were blocked with 10% goat serum
(DAKO, Ely, U.K., http://www.dako.com/uk/index.htm). The pri-
mary rabbit anti-GFP antibody (Invitrogen, Paisley, U.K., http://
www.lifetechnologies.com/uk/en/home.html) was used at 1:600
overnight at 4�C and the goat anti-rabbit HRP secondary antibody
at 1:400 (Insight Biotech, Wembley, U.K., http://www.insightbio.-
com/) for 45 minutes at room temperature. Detection was carried
out using Vector NovaRED substrate kit (Vector Laboratories Ltd.,
Peterborough, U.K., http://www.vectorlabs.com/uk/default.aspx)
and counterstained by Gill’s hematoxylin stain (VWR Interna-
tional, Lutterworth, U.K., https://uk.vwr.com/app/Home). Eight
sections per animal were scored for the presence of eGFPþ cells.

Cell Cycle Analysis and DNA Damage Detection

For cell cycle analysis, 105 hMSCs cultured in the presence or
absence of 3/689 were seeded at 4,000/cm2. The following day,
cells were incubated with carboxyfluorescein succinimidyl ester
(CFSE) at 1 lM using the Cell Trace CFSE Cell proliferation kit
(Invitrogen) for 15 minutes, after which they were incubated in
fresh MSC medium and analyzed after 1 and 5 days in culture by
FACS using Cell Quest software. Cells are labeled with the fluo-
rescent dye and cell division results in sequential halving of fluo-
rescence. For the induction of DNA damage, hMSCs (2,000 cells
per square centimeter) grown in the presence or absence of 3/689
were exposed to H2O2 at 75 lM for 1 hour. Phosphorylation of
histone H2AX on Ser 139 (cH2AX) was carried out using the
cH2AX phosphorylation assay kit (Millipore, Watford, U.K.,

http://www.millipore.com/) according to manufacturer’s instruc-
tion. Cells were analyzed by FACS using Cell Quest software.

Microarray

Total RNA was extracted from hMSC cultures (n ¼ 3 per group)
expanded in the presence or absence of 3/689 at 10 lM and har-
vested after two passages or eight passages using the Nucleospin II
RNA extraction kit (Macherey-Nagel, Duren, Germany) following
manufacturer’s instructions. RNA was amplified and labeled using
the Agilent Low RNA Input Linear Amplification Kit PLUS, One-
Color and hybridized to Agilent whole human genome 4 � 44 K
gene expression arrays as per manufacturer’s instructions. Raw
data were extracted from scanned images using Agilent feature
extraction software (Agilent Technologies, Santa Clara, CA). All
array data were then imported into GeneSpring GX (version 11,
Agilent Technologies) and normalized to the 75th percentile. Dif-
ferentially expressed genes were obtained using GeneSpring GX by
paired t test with p < .05. The data have been deposited in NCBI’s
Gene Expression Omnibus and are accessible through GEO Series
accession number GSE31205 (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc¼GSE31205). The network analysis was per-
formed using Metacore software (GeneGo Inc.).

Statistical Analysis

All experiments were analyzed using t tests or one-way
ANOVA—Bonferroni’s for multiple comparisons. All results are
expressed as the mean 6 SEM. Significant p values were less
than .5 with *, p < .05; **, p < .01; ***, p < .001.

RESULTS

PrP Is Expressed in hMSC and Its Expression
Decreases with Serial Passage in Culture

To determine whether hMSC expressed cellular PrP and
whether differentiation affected its expression, three cultures
were established from the BM of donors aged 14–32 years
and hMSCs were assayed for the expression of PrP after 19–
23 PD and following exposure to adipogenic and osteogenic
supplements. As expected, hMSC exposed to osteogenic dif-
ferentiation supplements showed upregulation of osteocalcin
and ALP expression (Supporting Information Fig. S1A, S1B,
n ¼ 3) compared to undifferentiated cultures, and hMSC cul-
tures exposed to adipogenic supplements showed increased
expression of peroxisome proliferator-activated receptor c
(PPARc) and formation of Red oil O lipid vacuoles (Support-
ing Information Fig. S1C, S1D, n ¼ 3), confirming they had
undergone differentiation. All cultures expressed PrP regard-
less of the differentiation status and, if anything, an increase
was seen (Fig. 1A, 1B). These data suggest that PrP expres-
sion is not a unique property of undifferentiated hMSC.

To determine whether loss of hMSC proliferation and dif-
ferentiation capacity with serial passage in culture was associ-
ated with decreased PrP expression, the same cultures were
expanded and replated at low density to assess the content of
clonogenic progenitors together with PrP expression at pas-
sage 3 (equivalent to 13–16 PD) and after a further 6–7 PD
(passage 8). As expected, a significant decrease in the number
of CFU-F (Fig. 1C-a, n ¼ 3, p ¼ .004), CFU-O (Fig. 1C-b,
n ¼ 3, p ¼ .013), and CFU-A (Fig. 1C-c, n ¼ 3, p ¼ .008)
was observed in hMSC cultures at passage 8 compared to pas-
sage 3. This correlated with a significant 61–95% decrease in
PrP expression (Fig. 1D, 1E, n ¼ 3, p ¼ .018), suggesting
that PrP expression is downregulated upon serial passage.
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PrP Expression Is Required for hMSC Proliferation
and Differentiation

To verify whether PrP was required for the proliferation and
differentiation of hMSC, PrP expression was knocked down
using pGIPZ lentiviral vector shRNA-2. A similar vector con-
taining the nonsilencing shRNA-ns sequence was used as con-
trol. Following isolation, each hMSC culture was divided into
three subcultures: (a) not exposed to the lentivirus (untrans-
duced), (b) exposed to lentivirus containing shRNA-2, and (c)
exposed to lentivirus containing shRNA-ns. Cultures (n ¼ 8)
were found to be 93.26%63 eGFPþ when transduced with
pGIPZ shRNA-ns and 86%69% with pGIPZ shRNA-2.
hMSC transduced with pGIPZ shRNA-2 expressed signifi-
cantly reduced levels of PrP (93.5%65.7%) compared to
pGIPZ shRNA-ns transduced cultures (Fig. 2A, 2B, p < .01,
n ¼ 4). No significant difference in PrP levels was seen when
comparing untransduced and pGIPZ shRNA-ns transduced
cultures (n ¼ 4).

Following transduction, hMSCs were expanded in culture
and growth kinetics examined until proliferation stopped for 3
weeks, at which point the cultures were considered senescent.
pGIPZ shRNA-2 hMSC cultures underwent an average 8.5 6
1.7 less total number of PDs compared to pGIPZ shRNA-ns cul-
tures (Fig. 2C, 2D, p < .005, n ¼ 5). Moreover, pGIPZ shRNA-2
hMSC cultures were replated at low density after 15.4 6 0.5
days from the time of transduction and contained a significantly
reduced number of clonogenic progenitors as shown by the num-
ber of CFU-F (Fig. 2E-a, p < .01, n ¼ 8), CFU-O (Fig. 2E-b, p
< .01, n ¼ 8) and CFU-A (Fig. 2E-c, p < .05, n ¼ 8) compared
to pGIPZ shRNA-ns or untransduced cultures, a loss which was
similar to that seen in cultures with serial passage.

To determine whether reduced PrP expression affected
differentiation of hMSC, cultures were also exposed to osteo-
genic and adipogenic differentiation supplements for 2 weeks
and assessed for markers of osteogenic and adipogenic differ-
entiation, respectively. As expected, an increase in all markers

Figure 1. Cellular PrP is expressed in undifferentiated human mes-
enchymal stem cells (hMSC), osteoblasts, and adipocytes and signifi-
cantly decreases with time in culture. (A): A representative example
of Western blot of hMSC culture hybridized with antibodies specific
for cellular prion protein (top panel) and GAPDH (bottom panel).
(B): Quantification of PrP expression normalized to GAPDH in undif-
ferentiated hMSC (UD, n ¼ 3) and hMSC differentiated to the OB
and AD lineage and assessed by Western blot followed by analysis
with imageJ software. (C): Analysis of the number of clonogenic
mesenchymal progenitors (a) CFU-F, (b) CFU-O, and (c) CFU-A
obtained by replating hMSC from cultures at passage 3 (p3) and pas-
sage 8 (p8) at low density. (D): A representative example of Western
blot of hMSC culture at passage 3 and at passage 8 detecting prion
protein expression (top panel) and GAPDH (bottom panel).
(E): Quantification of PrP expression normalized to GAPDH in
hMSC at p3 and p8 assessed by Western blot and analyzed using
ImageJ software. All data are presented as mean 6 SEM and ana-
lyzed by paired t test or one-way ANOVA and Bonferroni for multi-
ple comparison post-test with *, p < .05; **, p < .01. Abbreviations:
AD, adipogenic; CFU-A, colony-forming unit fibroblast adipocyte;
CFU-F, colony-forming unit fibroblast; CFU-O, colony-forming unit
osteoblast; GAPDH, glyceraldehyde-3 phosphate dehydrogenase; PrP,
prion protein; OB, osteogenic; UD, undifferentiated.

Figure 2. Knockdown of PrP expression decreases human mesenchy-
mal stem cell (hMSC) expansion. (A): A representative example of
Western blot of hMSC culture UT, transduced with the lentiviral vector
pGIPZ shRNAmir containing the short hairpin sequence to specifically
knock down the expression of PrP (shRNA-2) or containing a short
hairpin nonsilencing sequence (shRNA-ns) and hybridized with a rabbit
polyclonal anti-human PrP (top panel) or mouse anti-human GAPDH
(bottom panel) antibody. (B): Quantification of PrP expression normal-
ized to GAPDH of UT hMSC cultures, transduced with shRNA-2 or
shRNA-ns and assessed by Western blot followed by analysis with
imageJ software. (C): Total number of population doublings performed
by hMSC cultures transduced with shRNA-2 compared to the same cul-
tures transduced with the shRNA-ns or not transduced. (D): A represen-
tative example of growth kinetic of hMSC culture, UT (filled diamonds)
transduced with shRNA-ns (filled squares) or shRNA-2 (filled triangle).
(E): Quantification of the number of (a) colony-forming unit fibroblast,
(b) colony-forming unit osteoblast, and (c) colony-forming unit adipo-
cyte obtained upon replating at low density of shRNA-2, shRNA-ns,
and UT hMSC cultures after 15.4 6 0.5 days of culture. All data are
presented as mean 6 SEM and analyzed by one-way ANOVA and
Bonferroni multiple comparison post-test with *, p < .05; **, p < .01;
***, p < .001. Abbreviations: GAPDH, glyceraldehyde-3 phosphate de-
hydrogenase; PrP, prion protein; UT, untransduced.
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of differentiation was observed after 2 weeks exposure to
differentiation stimuli in untransduced cultures or cultures
transduced with pGIPZ shRNA-ns (Supporting Information Fig.
S2A–S2F, n ¼ 4). In contrast, a significant decrease in all
markers of differentiation was seen in cultures exposed to dif-
ferentiation supplements and transduced with pGIPZ shRNA-2
(Supporting Information Fig. S2A–S2F, n ¼ 4), suggesting that
reduced PrP expression blocks hMSC differentiation.

Small Molecule Modulator of PrP Enhances
Proliferation of Mesenchymal Progenitors and
Has Increased Activity with Cellular Ageing

To ascertain whether targeting PrP delayed loss of hMSC pro-
liferation and differentiation ability with serial passage in cul-
ture, we exposed hMSC cultures to the small molecule 3/689.

This was obtained from a library of compounds with antiprion
activity and it was previously shown to enhance embryonic
carcinoma cell proliferation [13, 16]. Previously established
hMSC cultures were seeded at low density and exposed to
3/689 at concentrations ranging from 10 to 0.01 lM to assess
the effects on the number of the clonogenic progenitors CFU-
F and CFU-O. A significant increase in the number of CFU-F
(Fig. 3A, p < .001, n ¼ 7) and CFU-O (Fig. 3B, p < .05,
n ¼ 6) was observed when cells were exposed to 3/689 with
maximum response at 10 lM. A similar response was also
seen when measuring the effects on mesenchymal progenitors
with adipogenic potential at 10 lM (Fig. 3C, p < .0001,
n ¼ 6). To verify that 3/689 required PrP expression for its
action, hMSC cultures transduced with pGIPZ shRNA-2 and
expressing low levels of PrP were also exposed to the compound.
As expected, a significant increase in the number of CFU-F
(Fig. 3D, p< .001, n¼ 8) and CFU-O (Fig. 3E, p< .001, n¼ 8)
was observed when untransduced and pGIPZ shRNA-ns
transduced hMSC cultures were exposed to 3/689. In contrast,
no significant increase was seen when 3/689 was administered
to hMSC cultures transduced with pGIPZ shRNA-2, suggesting
that 3/689 requires PrP for its activity.

While carrying out those experiments, we noticed a signif-
icant positive strong correlation between the increase in the
number of CFU-F obtained following exposure of hMSC to 3/
689 at 10 lM and the time hMSC had been in culture prior to
the clonogenic assay (Fig. 3F, n ¼ 7, r2 ¼ .7127, p ¼ .02).
hMSC that had been expanded for longer periods of time had
an enhanced response. This prompted us to verify whether
this was also true for hMSC derived from older donors com-
pared to younger donors. hMSC cultures were isolated from
the BM of donors aged 9–14 years old (n ¼ 6) and 55–80
years old (n ¼ 5) and allowed to proliferate for similar num-
ber of PD (passage 2) prior to exposure to 3/689 at 10 lM. A
significantly higher increase in the number of CFU-F was
seen in cultures derived from older donors in the presence of
3/689 compared to cultures obtained from younger donors
(Fig. 3G, p ¼ .03, n ¼ 5). These data suggest that 3/689 has
a more potent effect with cellular aging.

To establish whether 3/689 extended the lifespan of hMSC
following in vitro expansion, each human BM sample was di-
vided in three equal parts; one part cultured in the presence of
3/689 at 10 lM, one part in the presence of an equivalent
amount of DMSO, and one part in standard culture conditions.
Cultures were maintained until they stopped proliferating for at
least 3 weeks, when they were considered to have reached se-
nescence. No difference in proliferation rates was seen in the
first 19–24 PD (n ¼ 5). However after this, cultures isolated
and maintained in the presence of 3/689 showed a significantly
decreased PD/t (data not shown) and underwent an average 7
6 3 PD more than hMSC cultures exposed to DMSO (n ¼ 5,
Fig. 4A). This was equivalent to more than 300-fold increase
in the total number of cells generated from each culture (Fig.
4B, p ¼ .03, n ¼ 5). More importantly, hMSC cultures
expanded in the presence of 3/689 were assayed for their con-
tent of clonogenic progenitors by replating the cells at low den-
sity after 90.4 6 17 days in culture. hMSC cultures grown in
the presence of 3/689 contained significantly higher number of
CFU-F (Fig. 4C-a, p < .05, n ¼ 5), CFU-O (Fig. 4C-b, p <
.001, n ¼ 5), and CFU-A (Fig. 4C-c, p < .05, n ¼ 4) com-
pared to DMSO control cultures. Moreover, their differentiation
ability to the osteogenic lineage was enhanced as shown by the
increased expression levels of osteopontin and osteocalcin
(Supporting Information Fig. S3A–S3D, n ¼ 4), used as late
markers of osteogenic differentiation. These levels were signifi-
cantly increased in 3/689 treated cultures compared to DMSO.
An increase in the expression of markers of adipogenic

Figure 3. Small molecule 3/689 enhances the number of clonogenic
mesenchymal progenitors and requires prion protein (PrP) expression
for its action. (A): Dose-response analysis of the ability of 3/689 to
increase the number of CFU-F upon replating of human mesenchymal
stem cell (hMSC) cultures at low density. (B): Dose-response analysis
of the ability of 3/689 to increase the number of CFU-O upon replat-
ing of hMSC cultures at low density. (C): Graph showing the number
of CFU-A obtained upon replating of hMSC cultures at limiting dilu-
tion in the presence of 3/689 at 10 lM. (D, E): Untransduced hMSC
cultures, transduced with shRNA-ns and shRNA-2 were replated at
low density in the presence or absence of 3/689 and assessed for the
number of CFU-F and CFU-O. (F): A significant correlation was
found between the percentage increase in the number of CFU-F in the
presence of 3/689 at 10 lM (compared to DMSO control) and the
time in culture at which hMSCs were replated at low density for this
assay. (G): Number of CFU-F obtained upon replating of hMSC cul-
tures at low density in the presence or absence of 3/689. Cultures
were established from the bone marrow of donors aged 1–14 years
and 55–80 years and expanded in culture for two passages prior to
the assay. All data were analyzed by one-way ANOVA and Bonfer-
roni multiple comparison post-test with *, p < .05; **, p < .01; ***,
p < .001. Abbreviations: CFU-F, colony-forming unit fibroblast;
CFU-O, colony-forming unit osteoblast; CFU-A, colony-forming unit
adipocyte; DMSO, dimethylsulfoxide.
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differentiation PPARc and lipoprotein lipase was also seen in
cultures previously expanded in the presence of 3/689 and
exposed to adipogenic differentiation supplements but was not
significantly different from DMSO-treated cultures (Supporting
Information Fig. S3E, S3F, n ¼ 4). To confirm that cultures
exposed to 3/689 retained PrP expression with serial passage,
cultures were analyzed for PrP expression at passage 2 (equiva-
lent to 14–16PD) and passage 8 (equivalent to 21–30PD). As
expected, cultures exposed to DMSO lost PrP expression with
time in culture. In contrast, no difference in levels of PrP
expression was seen in cultures exposed to 3/689 following
expansion (Fig. 4D, n ¼ 3). These data suggest that enhanced
expression of PrP using the small molecule 3/689 is associated
with increased hMSC proliferation and delayed loss of mesen-
chymal clonogenic progenitors with serial passage in culture.

hMSC Expanded in the Presence of 3/689 Showed
Increased Engraftment Ability

hMSC engraftment to BM has been difficult and very low at
best. It has been shown that serial passage in culture affects
hMSC ability to engraft to BM [19]. To determine whether
expansion of hMSC in the presence of 3/689 enhanced engraft-
ment ability, hMSC cultures were transduced with a lentiviral
vector expressing eGFP and grown in the presence of 3/689 or
DMSO for five passages prior to transplantation in NOD/SCID
mice by intrafemoral injection. During this time, cultures
expanded in the presence of 3/689 showed an average twofold
increase in cell number compared to control cultures and a nor-
mal karyotype (Fig. 5A). Engraftment was assessed 3 days af-
ter transplantation by measuring the number of eGFPþ CFU-F
and eGFPþ CFU-O and 5 weeks after by counting the number
of eGFPþ cells present in the femurs. A significant increase in
the number of eGFPþ CFU-F (Fig. 5B, p < .0001, n ¼ 6) and
eGFPþ CFU-O (Fig. 5C, p ¼ .040, n ¼ 6) was observed in

the BM of NOD/SCID mice transplanted with hMSC cultures
expanded in the presence of 3/689 compared to DMSO con-
trols, 3 days postinjection. More importantly, 5 weeks postin-
jection, an average 10-fold increase in the number of eGFPþ
cells was seen in the BM of NOD/SCID mice by immunohisto-
chemistry (Fig. 5D, p ¼ .025, n ¼ 9). Cells with morphology
and locations resembling pericyte, stromal cells, osteoblast, and
osteocyte were seen in mice transplanted with 3/689 expanded
cultures (Supporting Information Fig. S4 and Fig. 5E, n ¼ 9).
In contrast, mice injected with DMSO-expanded cultures
showed only morphology of pericytes and stromal cells. These
data suggest that hMSCs cultured in the presence of 3/689
have enhanced engraftment ability.

hMSC Treated with 3/689 Showed Increased
Superoxide Dismutase-2 Expression and
Are Protected from DNA Damage

To determine the mechanisms of action of 3/689, changes in
gene expression profile of hMSC cultures exposed to 3/689 or
DMSO at passage 2 (p2) and passage 8 (p8) were examined
by whole genome expression arrays. Analysis of the shortlist
of differentially expressed genes in terms of biological func-
tion using the manually curated pathway analysis software
Metacore revealed statistically over-represented networks in
processes related to cell cycle (26%) and DNA damage (8%)
occurring in hMSC with serial passage in culture in the
absence of 3/689 (Supporting Information Fig. S5A). These
processes were no longer significantly overrepresented when
hMSCs were cultured in the presence of 3/689 with time in
culture (Supporting Information Fig. S5B). Moreover, there
were more overrepresented networks related to stem cell and
development, immune responses, and cytoskeletal develop-
ment in hMSC exposed to 3/689 compared to DMSO controls
(Supporting Information Fig. S5A, S5B).

Figure 4. 3/689 extends human mesenchymal stem cell (hMSC) lifespan and retains PrP expression with time in culture. (A): A representative
example of growth kinetic of hMSC cultures expanded in medium only (filled diamonds), hMSC cultures expanded in the presence of DMSO
(filled squares) or in the presence of 3/689 at 10 lM (filled triangle). (B): Total number of cells generated from the expansion of hMSC cultures
isolated and maintained in medium only (NT), medium plus DMSO, or in the presence of 3/689 (n ¼ 5). (C): The number of CFU-F (a), CFU-O
(b), and CFU-A (c) obtained by replating hMSC cultures expanded in medium alone, in the presence of DMSO or 3/689 at 10 lM for 90.4 6 17
days. (D): A representative example of Western blot of hMSC cultured in the presence or absence of 3/689 at passage 2 (p2) and passage 8 (p8)
hybridized with an antibody specific for GAPDH (bottom panel) or cellular prion protein (top panel). Data are presented as mean 6 SEM and
analyzed by one-way ANOVA and Bonferroni multiple comparison post-test with *, p < .05; **, p < .01. Abbreviations: CFU-F, colony-forming
unit fibroblast; CFU-O, colony-forming unit osteoblast; CFU-A, colony-forming unit adipocyte; DMSO, dimethylsulfoxide; GAPDH, glyceralde-
hyde-3 phosphate dehydrogenase.
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Figure 5. Human mesenchymal stem cell (hMSC) expanded in the presence of 3/689 showed increased engraftment ability. (A): A representa-
tive example of karyogram of hMSC culture derived and expanded in the presence of 3/689 at 10 lM performed at the time of transplant.
(B): The number of human eGFPþ CFU-F and (C) eGFPþ CFU-O recovered from the bone marrow (BM) of NOD/SCID mice transplanted
with hMSC cultured in the presence of 3/689 at 10 lM concentration or DMSO 3 days postinjection. (D): The number of eGFPþ hMSC detected
in the BM of NOD/SCID mice 5 weeks postinjection following transplantation of hMSC cultures expanded in the presence or absence of 3/689.
Number of eGFPþ cells detected in the BM of NOD/SCID mice transplanted with hMSC cultures expanded in the presence or absence of 3/689
and classified based on their morphology and anatomical location (iv). All data are presented as mean 6 SEM and analyzed by unpaired t test
with *, p < .05; ***, p < .001. Abbreviations: CFU-F, colony-forming unit fibroblast; CFU-O, colony-forming unit osteoblast; DMSO, dimethyl-
sulfoxide; eGFP, enhanced green fluorescent protein; NOD/SCID, nonobese diabetic severely combined immunodeficient.

Figure 6. Network representing enrichment in differentially expressed genes related to DNA damage and cell cycle is important in stem cells
and aging. A representation of the network containing a significant number of differentially expressed genes related to cell cycle—DNA damage
as obtained from the analysis using GeneGo Metacore software. The genes represented with a red thermometer were found to be upregulated
with serial passage in culture while those with a blue thermometer were downregulated. Thermometer labeled 1 and highlighted in pink represent
differentially expressed genes in human mesenchymal stem cell (hMSC) cultures expanded in absence of 3/689, whereas thermometer labeled as
2 and highlighted in yellow represents differentially expressed genes in hMSC cultures expanded in the presence of 3/689 relative to controls.
Abbreviation: SOD2, superoxide dismutase-2.



As processes related to DNA damage and cell cycle are
important in cellular aging, networks with enrichment in dif-
ferentially expressed genes related to these processes were
examined in more detail (Fig. 6). The DNA repair genes
Bard1, Brca1, and Bloom were downregulated in hMSC with
time in culture and the DNA damage response gene Atm was
upregulated. Moreover, genes involved in cell cycle progres-
sion such as Cdc25a, Cyclin E, and Cyclin A were signifi-
cantly downregulated in hMSC cultures with increased
passage number. These data suggest that accumulation of
DNA damage may lead to slower cell cycle progression with
expansion. In contrast, in hMSC expanded in the presence of
3/689, genes related to DNA damage response or repair were

no longer differentially expressed. Cell cycle regulators such
as Cyclin E and A were within the normal range, whereas
Cdc25a was upregulated and only Cyclin D was downregu-
lated, suggesting an overall enhanced cell cycle progression
compared to untreated cultures. Of interest was the upregula-
tion of Sod2 in the presence of 3/689, an important defense
against oxidative damage. Superoxide dismutase-2 (SOD2)
has been associated with PrP as it requires Mn2þ for its func-
tion. PrP is known to bind and transport Mn2þ and have
SOD-like activity [20]. These data suggest that 3/689 may
prevent DNA damage by enhancing SOD2 reactive oxygen
species (ROS) scavenging activity and, by doing this, prevent
DNA damage and allows faster cell cycle progression.

Figure 7. Small molecule 3/689 acts by upregulating SOD2, protects from DNA damage, and enhances cell cycle progression. (A): A represen-
tative example of flow cytometry profile of human mesenchymal stem cell (hMSC) culture stained for the presence of phosphorylated cH2AX
following exposure to H2O2 for 1 hour. hMSC exposed to (a) medium only, (b) H2O2, (c) 3/689, and (d) to H2O2 plus 3/689. Filled histogram
represents hMSC culture stained with the isotype control and open histogram hMSCs stained with phosphorylated cH2AX specific antibody. (e)
Quantification of the MFI of hMSC stained with phosphorylated cH2AX following exposure to H2O2 for 1 hour in the presence or absence of 3/
689 (n ¼ 3). (B): A representative example of hMSC labeled with CFSE and cultured in the presence of 3/689 (open dotted histogram) DMSO
(open single line histogram) or medium alone (open single lined histogram) for 1 day (a) and 5 days (b). The filled histogram represents unla-
beled hMSC cultures and open histograms cultures labeled with CFSE and treated with 3/689 (gray large dotted line), DMSO (black line), and
medium alone (gray small dotted line). (C): Real-time quantitative PCR to detect the expression of (a) SOD-2 in hMSC cultures maintained in
culture for two passages and eight passages in the presence or absence of 3/689. (b): SOD-2 in hMSC cultures transduced with shRNA-ns or
shRNA-2 and exposed to DMSO or 3/689. Column data are expressed as mean 6 SEM and analyzed by one-way ANOVA and Bonferroni for
multiple comparisons post-test *, p < .05; **, p < .01. Abbreviations: CFSE, carboxyfluorescein succinimidyl ester; DMSO, dimethylsulfoxide;
H2O2, hydrogen peroxide; MFI, mean fluorescent intensity; SOD2, superoxide dismutase-2.
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To verify whether 3/689 prevented occurrence of DNA dam-
age, hMSC cultures were exposed to H2O2 for 1 hour in the
presence or absence of 3/689 and levels of phosphorylated
cH2AX were determined as a measure of double-stranded breaks
an hour later. hMSC cultures exposed to H2O2 in the presence
of 3/689 showed reduced levels of phosphorylated cH2AX com-
pared to control cultures exposed to H2O2 (Fig. 7A-a–e, n ¼ 3).
To confirm that hMSC cultures exposed to 3/689 showed an
increase in cell cycle progression, they were labeled with CFSE
and the levels of fluorescence were tested 1 and 5 days after
labeling. hMSC treated with 3/689 underwent a significant
reduction in levels of CFSE after 5 days compared to control
cultures (Fig. 7B-a–c, p < .001, n ¼ 3), suggesting that expo-
sure to 3/689 results in enhanced cell cycle progression.

To determine whether Sod2 was important for the action of
3/689, real-time quantitative PCR was carried out. A signifi-
cant upregulation in Sod2 expression was seen in the presence
of 3/689 (Fig. 7C-a, n ¼ 3, p < .05). More importantly Sod2
expression was not increased in cultures exposed to 3/689
when PrP expression was knocked down (Fig. 7C-b, p < .001),
suggesting that 3/689 requires PrP to upregulate Sod2.

DISCUSSION

MSCs play an important role in maintenance and repair of
bone and blood tissue. In principle, hMSC can be isolated from
the patient and expanded in culture until the large numbers
required for clinical application are obtained. However, gener-
ating sufficient numbers without loss of proliferation and differ-
entiation capacity has been challenging and prolonged expan-
sion is one of the causes of low engraftment [19]. Here, for the
first time, we identify the importance of PrP expression for the
expansion of hMSC and how hMSC lose its expression with
serial passage in culture. We also demonstrate how addition to
the cultures of a small molecule able to prevent loss of PrP
expression enhances hMSC proliferative capacity and lifespan
with an average 300-fold increase in the total number of cells
generated. In addition, engraftment to BM increased an average
10-fold compared to the untreated counterpart.

While there is a consensus that the expression of cellular PrP
enhances the proliferative of stem cells in vitro and in vivo, no
data are available as to how this may be achieved. Our data go
some way to support the notion that PrP is involved in cellular
protection from oxidative stress, especially at times of intense
proliferative stress. Although the specificity of the small mole-
cule we have used to modulate PrP expression requires further
investigation, our data suggest that, when PrP expression is
retained, cells are protected from DNA damage and expression
of DNA repair genes such as Brca1 remains within normal range.
Moreover, DNA damage is prevented and this seems to occur
through the enhancement of ROS scavenging activity mediated
by SOD2. Our data are in agreement with studies showing that
lack of PrP expression results in a phenotype that is more sensi-
tive to oxidative stress [21]. PrP has been reported to confer
enhanced resistance to stress by contributing to cellular SOD ac-
tivity [22]. Our data show upregulation of Sod2 in the presence
of 3/689 and this upregulation is abrogated in the absence of PrP
expression, suggesting a link between SOD2 and PrP.

Although the role of SOD2 in controlling aging and extend-
ing lifespan through its scavenging activity of ROS is contro-
versial, the effect we have observed is well in line with data
reported on the effect of SOD2 in connective tissues. Indeed,
while heterozygous SOD2 knockout mice did not show an
accelerated ageing phenotype and extension in lifespan [23],
specific deletion of SOD2 in connective tissues showed selec-
tive loss of redox balance in tissue resident fibroblasts cells,

and this was sufficient to drive an accelerated ageing phenotype
in different organs and shorten lifespan [24].

Of interest is that the benefit of administering 3/689 to the
cultures is seen only in cells that have undergone several cell
divisions in vitro or in cells derived from older donors. This may
be due to the fact that PrP is active only in situations of cellular
stress due to extensive proliferative demands as a fine tuning
mechanism to ensure ROS levels remain tightly controlled.
Indeed PrP gene was upregulated in CD8þ lymphocytes only
when they underwent intense proliferation upon transferring into
lymphopaenic mice [25]. Indeed, MSCs have been shown to be
particularly sensitive to oxidative stress compared to other cell
types such as fibroblasts and undergo DNA damage [26, 27].

There are several reasons why ROS levels may require tight
regulation. The most obvious is the ability to cause genetic
damage. Although stem cells are equipped with properties that
minimize acquisition of damage, adult stem cells remain at risk
for acquiring mutations that could lead to cancer or to a robust
DNA damage response leading to apoptosis or senescence [28].
This has been shown to attenuate their regenerative capacity
and lead to tissue aging [29]. To what extent stem cells undergo
DNA damage as a consequence of ROS exposure remains
unclear, but there is evidence that increased ROS affects stem
cell regenerative capacity. Increased ROS, even at low levels,
led to a depletion of the HSC pool and inhibition of their repo-
pulation capacity [30]. Elevation of ROS due to loss of ATM
led to depletion of HSC pool and BM failure in old mice in a
ROS-dependent manner [31]. Activation of p38MAPK has
been seen to increase in response to increasing levels of ROS
and this has been shown to limit HSC lifespan in vivo [30]. In
contrast, prolonged treatment with an inhibitor of p38MAPK
extended their lifespan in serial transplantation [30]. An alter-
native reason why ROS requires tight control may be found in
more recent data that show how ROS levels modulate the
regeneration ability of stem cells by acting as signaling media-
tor and directing the self-renewal or differentiation of stem and
progenitor cells. In drosophila, multipotent hematopoietic pro-
genitors displayed increased levels of ROS under in vivo physi-
ological conditions, which were downregulated on differentia-
tion [32]. Scavenging ROS by increasing the expression of
catalase retarded their differentiation into mature blood cells.
Conversely, increasing hematopoietic progenitors ROS beyond
the basal levels by mutating SOD2 gene triggered precocious
differentiation into all three mature blood cell types [32] sug-
gesting that there is an optimal level of ROS to maintain stem/
progenitor cells and any further ROS increase or decrease away
from the wild-type levels enhances or suppresses differentia-
tion. There is evidence that this may happen in hMSC too and
lend an explanation to the block in differentiation to the osteo-
genic and adipogenic lineage we have observed when PrP
expression was knocked down. Indeed, ROSs have been seen to
increase during osteogenic differentiation with concomitant
increase of SOD2, but excess ROS levels by exogenous addi-
tion of H2O2 inhibited osteogenic differentiation [33].

CONCLUSIONS

Enhancing stem cell proliferation and differentiation is impor-
tant for tissue maintenance and regeneration. The current
results demonstrate that the lifespan and function of hMSC can
be manipulated by modulating PrP expression. It is important to
further understand the mechanism of action by which PrP medi-
ates its effects, especially in relation to ROS production and
induction of cellular senescence. Moreover, the safety of this
target requires thorough evaluation. In this study, we have not
seen changes in chromosomal integrity and tumorigenic poten-
tial following hMSC expansion with 3/689. However, this is a
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relatively crude measure of long-term tumorigenic potential
and more in depth studies are required. Nevertheless, these
studies provide promising evidence that modulation of PrP
expression enhances stem cell proliferation and differentiation.
These findings have substantial potential clinical utility to
enhance stem cell therapy and regenerative medicine.
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Chapter 10

Intra-femoral Injection of Human Mesenchymal Stem Cells

Sindhu T. Mohanty and Ilaria Bellantuono 

Abstract

In vivo transplantation of putative populations of hematopoietic stem cells (HSC) and assessment of their 
engraftment is considered the golden standard to assess their quality and degree of stemness. Transplantation 
is usually carried out by intravenous injection in murine models and assessment of engraftment is performed 
by monitoring the number and type of mature blood cells produced by the donor cells in time. In contrast 
intravenous injection of mesenchymal stem cells (MSC), the multipotent stem cells present in bone mar-
row and capable of differentiating to osteoblasts, chondrocytes and adipocytes, has not been successful. 
This is due to limited or absent engraftment levels. Here, we describe the use of intra-femoral injection as 
an improved method to assess MSC engraftment to bone and bone marrow and their quality.

Key words Mesenchymal stem cells, Marrow stromal cells, Intra-femoral injection, Gene marking, 
Lentiviral transduction, Enhanced green fluorescent protein

Integral to the definition of stem cells is their ability to regenerate 
the tissue in which they reside through their ability to self-renew 
and differentiate. Stem cells are thought to play a role in mainte-
nance and repair of tissues. Studies in murine models have high-
lighted the importance of testing the regenerative capacity of stem 
cells by transplantation in the context of ageing to determine the 
changes they undergo with in vivo or during expansion in culture 
and how this impact on tissue homeostasis. For example HSC from 
22–24-month-old mice have been shown decreased engraftment 
ability following transplantation compared to younger mice and a 
skewed regeneration of the myeloid lineage at the expense of the 
lymphoid lineage (1).

Mesenchymal stem cells (MSC) reside in bone marrow and are 
able to differentiate to osteoblasts, adipocytes, chondrocytes and 
hematopoietic supporting stroma (2, 3). They have an important 
role in repair and maintenance of bone and the bone marrow 
microenvironment. Moreover, loss of proliferation and differentiation 
ability has been reported with age in vitro (4). However, robust 

1 � Introduction
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evidence of reduced regenerative capacity in vivo is scant. This is 
due to the limitation of the current transplantation methodologies 
available. The best in vivo assay to assess MSC regenerative capac-
ity and quality is the ectotopic bone formation assay. This consists 
of seeding MSC in an appropriate porous scaffold and implanting 
this under the skin of a mouse. Five weeks later an ossicle is formed 
with areas of chondrogenesis and host hematopoiesis (5), allowing 
assessment of their ability to undergo osteogenic, adipogenic, and 
chondrogenic differentiation. However, this assay does not test 
the ability of MSC to regenerate and contribute to tissue mainte-
nance and repair in the appropriate environment. To test this we 
describe a method where labelled human MSC are injected directly 
in the femur of immunodeficient mice and their engraftment is 
assessed 5 weeks later.

The culture of human MSC and the preparation of all reagents 
require sterile conditions and are carried out in a class II biological 
safety cabinet. The intra-femoral injection is a regulated procedure 
and requires a licence according to the regulations for animal 
procedures imposed by the country where the procedure is taking 
place. Lentiviral work will require appropriate genetic modified 
organism risk assessment and approval according to the regulations 
of the country where the work takes place. Follow waste disposal 
regulations when disposing of materials.

	 1.	Human mesenchymal stem cell medium: Dulbecco’s modified 
eagle medium (DMEM, Life technologies, Paisley, UK) con-
taining 10% fetal calf serum (Hyclone, Fisher Scientific, 
Loughborough, UK). Store at 4°C.

	 2.	MSC isolated from human bone marrow and expanded in cul-
ture (see Note 1).

	 3.	Lentiviral particle containing a vector expressing enhanced 
green fluorescent protein (eGFP) at a concentration of 106 vp/
ml minimum (see Note 2).

	 4.	0.05% Trypsin–0.53 mM EDTA (Ethylenediaminetetraacetic 
acid) (Life technologies) store at 4°C.

	 5.	Sterile phosphate buffered saline (PBS).
	 6.	Sterile Dulbecco’s modified eagle medium (DMEM). Store  

at 4°C.

	 1.	A pair of sterile scissors, forceps, artery forceps, scalpel blade, 
scalpel holder, and surgical drapes (see Note 3).

	 2.	Cork sheet.

2  Materials

2.1  Cell Preparation

2.2  Surgical 
Components and 
Reagents
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	 3.	Surgical electric shaver.
	 4.	Three 1 ml 27 g × ½ inch syringes with needles (see Note 4).
	 5.	Hamilton syringe and removable needles (RN) (Hamilton, 

Bonaduz, Switzerland) (see Note 5).
	 6.	Needles 25 g to position the mouse and keep it steady.
	 7.	Blue monofilament adsorbable suture 45  cm (Ethicon, 

Edinburgh, UK).
	 8.	Ketaset and Rompun (see Note 6).
	 9.	Bone wax (Ethicon).
	10.	Sterile ethanol wipes.
	11.	Sterile distilled water and PBS.
	12.	Temperature controlled incubators set at 37°C.
	13.	NOD/LtSz-Prkdcscid (NOD/SCID) mice 5–6 weeks old.

	 1.	10% neutral buffered formalin: Weigh 8 g Sodium dihydrogen 
orthophosphate dehydrate, 13  g Disodium hydrogen 
orthophosphate dehydrate. Add 200 ml concentrated formal-
dehyde (i.e., 37–41%) and 200 ml warm tap water (helps to 
dissolve buffers). Mix to dissolve buffers and top up with tap 
or distilled water to a final volume of 2 l. Store at room tem-
perature (see Note 7).

	 2.	Neutral EDTA: Weigh 250 g Ethylenediaminetetraacetic acid 
(disodium salt), 25 g Sodium hydroxide and mix with 1,750 ml 
Distilled water. The solution will be cloudy until the addition 
of sodium hydroxide which will also neutralize it to pH 7. Mix 
well by stirring and store at room temperature.

	 3.	SuperFrost Plus slides (VWR International Ltd, Lutterworth, 
UK).

	 4.	Xylene (VWR International Ltd).
	 5.	99% absolute industrial methylated spirit (ethanol) (Thermo 

Fisher UK Ltd, Loughborough, UK).
	 6.	Leica decalcifier II (Leica Microsystems, Milton Keynes, UK).
	 7.	Leica RM2265 rotary microtome (Leica Microsystems).
	 8.	Leica TP1020 carousel tissue processor (Leica Microsystems).
	 9.	Histology wax (Leica Microsystems).
	10.	3% hydrogen peroxide: add 3 ml of hydrogen peroxide (VWR 

International Ltd) in 97 ml of PBS.
	11.	PBS.
	12.	Normal Goat serum (Dako UK Ltd, Ely, UK).
	13.	Anti-GFP, rabbit IgG fraction (polyclonal) (Life Technologies).
	14.	Goat anti-rabbit horseradish peroxidase (HRP) (Insight 

Biotechnology Ltd, Wembley, UK).

2.3  Immuno-Staining 
Reagents
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	15.	Vector staining kit (Vector laboratories Ltd, Peterborough, 
UK).

	16.	Gill’s hematoxylin stain (Merck chemicals Ltd, Nottingham, 
UK).

	17.	Di-n-Butyl Phthalate in Xylene (DPX) (VWR International 
Ltd).

All procedures are carried out in a Class II biological safety 
cabinet.

	 1.	Human MSCs previously isolated and expanded in MSC 
medium and devoid of any hematopoietic contamination are 
plated at a density of 10,000/cm2 in MSC medium

	 2.	The day after, MSC are incubated with MSC medium contain-
ing viral particles at a multiplicity of infection of 40–60 and left 
at 37°C in 5% carbon dioxide (CO2) in air for 8 h

	 3.	The media is then removed and fresh MSC medium is added 
to the cells which are further incubated for 5 days at 37°C in 
5% CO2

	 4.	Cells are washed once with PBS (10 ml/T25) and incubated 
with Trypsin/EDTA (1 ml/25 cm2) for 2 min at 37°C in 5% 
CO2 in air (see Note 8)

	 5.	Cells are then detached from the flask and harvested using 
MSC medium (10 ml/T25 flask).

	 6.	An aliquot of the cells is removed to determine the transduction 
efficiency by assessing the expression of eGFP by fluorescent 
activated cell sorting (FACS).

	 7.	Human MSC showing greater than 90% eGFP expression are 
suitable for transplantation and are replated in MSC medium 
for expansion until the correct number of cells required for 
transplantation is obtained.

	 1.	Use human MSC culture which are 80–90% confluent for 
transplant

	 2.	Detach the cells from the flask as described in Subheading 3.1, 
steps 4 and 5

	 3.	Centrifuge at 800 × g for 5 min.
	 4.	Discard the supernatant and resuspend the cell pellet in 1 ml of 

DMEM
	 5.	Count the cells using hemocytometer and trypan blue to 

exclude dead cells

3 � Methods

3.1  Labelling of 
hMSC to Express eGFP 
by Lentiviral 
Transduction

3.2  Preparation  
of hMSC for Injection
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Transplantation of Mesenchymal Stem Cells

	 6.	Transfer the 1  ml of cell suspension into an eppendorf and 
centrifuge at 800 × g for 5 min.

	 7.	Discard the supernatant (see Note 9) and resuspend the cells 
in DMEM at a final concentration of 5 × 105 cells/5 ml (see 
Note 10). Keep cells on ice until injection.

Wear lab coats, surgical gloves and masks. Clean all the working 
areas with ethanol wipes. Maintain aseptic conditions throughout 
the procedure.

	 1.	Place the cork sheet and cover it with a sterile drape.
	 2.	Open sterile distilled water, PBS and fill 1 ml syringe with each 

and label the syringes.
	 3.	Open 2 × 25 g needles. These will be used to pin the mice leg 

and to drill a hole in the femur.
	 4.	Open the sterile suture material, the sterile scissors, artery for-

ceps, blades and scalpel holder from sterile pouches.
	 5.	Weigh the mouse and intraperitoneally inject it with the ket-

amine–Rompun mix (see Note 6). Use 100 ml/10 g in weight 
of mouse

	 6.	Leave the mouse in the 37°C incubator covered with a sterile 
drape and allow 5 min for the anesthetic to act (see Note 11)

	 7.	Pin the leg of the mice where injection is intended to the cork 
sheet with the 25 g needle and shave off the hairs using the 
electrical shaver (see Note 12) (Fig. 1a)

	 8.	Make a small deep incision using the sterile scalpel blade above 
the knee joint and expose the kneecap slowly using sterile for-
ceps by separating the tissue around without damaging any 
blood vessels (see Note 13) (Fig. 1b)

	 9.	While holding the top part of the femur with sterile forceps, 
drill a hole gently through the groove of the kneecap in the 
femur about half a centimeter deep (see Note 14) (Fig. 1c)

	10.	Resuspend the cells gently (avoiding bubble formation) and 
aspirate 5 ml using the Hamilton syringe. Gently, place the nee-
dle of the Hamilton syringe in the hole and slowly inject 5 ml 
pushing the piston very slowly and gently (see Note 15)

	11.	While removing the needle, immediately close the holes with 
bone wax using a sterile scalpel blade

	12.	Finally, wash the surgical area with sterile distilled water. Wipe 
the excess water using ethanol wipes and close the wound using 
the appropriate suture

	13.	Leave the mice in 37°C incubator and monitor for recovery. 
Once the mice have recovered from the anesthesia, transfer 
them to sterile cages and monitor for infection until the date of 
sacrifice (5 weeks or longer)

3.3  Surgical 
Procedure
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To detect the levels of engraftment animals are sacrificed and bones 
are processed to assess the number of cells expressing eGFP by 
immuno-staining.

	 1.	The femurs of mice are collected in 10% neutral buffered 
formalin and kept for 16 h on shaker at 4°C

3.4 � Immuno-Staining

Fig. 1 Surgical procedure involving intra-femoral injections of eGFP labelled 
hMSC cells. (a) A representative image of area where the fur of the mouse has 
been shaved at the knee joint using an electrical shaver. (b) shows a 1 cm deep 
incision using a sterile scalpel blade aside of the knee joint and (c) shows the 
position where the hole is drilled gently through the groove of the kneecap to 
allow injection of hMSC cells

198

199

200

201

202



Transplantation of Mesenchymal Stem Cells

	 2.	Following 16 h bones are decalcified in Leica decalcifier II at 
room temperature on a shaker for 2  h. Add 10–20 times 
volume of decalcifier to volume of bone

	 3.	On completion of decalcification, bones are transferred to 
labelled tissue cassettes in 70% ethanol. The tissues are imme-
diately processed on the Leica TP1020 carousel tissue proces-
sor for paraffin embedding (Table 1)

	 4.	After 22 h of processing, the femur is orientated longitudinally 
and embedded in molten wax and trimmed very slowly on the 
Leica RM2265 rotary microtome at 3 mm until the full head of 
the femur is exposed

	 5.	The exposed paraffin block surface is cooled for 30–60 min on 
an ice block stored at 4°C

	 6.	25 serial sections of 3 mm thickness are cut and transferred to a 
45°C distilled water bath and allowed to float for up to 30 min 
to avoid contraction of the bone marrow and endocortical bone

	 7.	The serial sections are mounted on SuperFrost Plus slides
	 8.	Slides are placed on a tray and dried on a hotplate at 45°C for 

30 min before further drying at 37°C overnight

Table 1 
Processing of tissue section on the Leica TP1020 carousel tissue 
processor

Station Solution Time Vacuum

2 70% Ethanol 2 h No

3 70% Ethanol 2 h No

4 70% Ethanol 2 h No

5 95% Ethanol 2 h No

6 95% Ethanol 2 h No

7 100% Ethanol 2 h No

8 100% Ethanol 2 h No

9 Xylene 2 h No

10 Xylene 2 h No

11 Histology wax melting point 
56°C

2 h Yes

12 Histology Wax  
(as above)

2 h Yes

Total 22 h plus  
15 min drain time
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	 9.	Cooled slides are stored at 4°C before performing anti-GFP 
staining (no longer than 2 weeks)

	10.	The slides containing tissue sections are first dewaxed in xylene 
two times for 5 min each

	11.	The tissue sections are rehydrated in 99% ethanol two times for 
5 min each following which endogenous peroxidase is blocked 
using 3% hydrogen peroxide for 10 min (see Note 16)

	12.	The slides are then washed in distilled water for three times for 
1 min each

	13.	Wash the slides in PBS for three times for 2 min each
	14.	Prepare 10% normal goat serum in PBS and incubate the tissue 

sections by covering the surface for 30 min at room temperature
	15.	Incubate the tissue section with 200 ml primary antibody (anti-

GFP, rabbit IgG fraction) overnight (see Note 17) at 4°C
	16.	Wash the slides with PBS twice for 5 min each
	17.	Incubate the tissue section with 200  ml secondary antibody 

(Goat anti-rabbit horseradish peroxidase) for 45 min at room 
temperature (see Note 18)

	18.	Wash the slides with PBS twice for 5 min each
	19.	Prepare the reagents in the vector kit solution (see Note 19), 

add the solution (enough to cover the tissue surface) and incu-
bate for 15 min

	20.	Rinse the slides in distilled water and wash for 5 min under 
running tap water

	21.	Counterstain nuclei in Gill’s Hematoxylin for 20 s and then 
wash the stain with running tap water for 4 min

	22.	Dehydrate the tissue sections in the order of 70, 95 and 99% 
industrial methylated spirit for 1 min each

	23.	Finally to remove any excess trace of water the tissue sections 
are washed in xylene for 1 min each

	24.	Clean any remaining xylene surrounding the slide using a soft 
tissue paper. Place a drop of DPX on a coverslip and gently invert 
the slides on top of it and press it gently to remove any trapped 
air bubble and allow the slides to dry at room temperature

	25.	The eGFP stained cells will appear brown in color (see Fig. 2) 
and can be evaluated microscopically

	 1.	This procedure can also be carried out with freshly isolated 
human MSC (e.g., Lin− CD45− LNGFR+ bone marrow cells), 
murine MSC or HSC when numbers are small. The strain of 
mice used will depend on the type of cells injected

4 � Notes
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Transplantation of Mesenchymal Stem Cells

	 2.	If an in-house system for producing lentiviral particle is not 
available, lentiviral vectors expression eGFP can be purchased 
from a number of vendors including Thermo Scientific, Sigma-
Aldrich, CellBio Labs and viral particle produced according to 
manufacturer instructions. Lentiviral vectors are recommended 
over other systems due to the higher efficiency of transduction 
and integration of the expression vector in the genome of the 
cells for long term monitoring. Alternatively, other ways to 
detect transplanted cells can be used depending on the type of 
cells transplanted. For example to detect human MSC trans-
planted in mice an antibody to human nuclei can be used

	 3.	All the surgical equipments should be autoclaved at 121°C for 
20 min

	 4.	Those needles are used to administer the anesthetic to the ani-
mals, and to clean the surgical field with PBS.

	 5.	Syringes needs to be clean and sterilized by aspirating water 
first and discarding it. Repeat the operation 3 times. Then wash 
with ethanol 95% three times and then with PBS three times

	 6.	Ketaset and Rompun are anesthetics which are delivered by 
intraperitoneal injection. Ketaset is a regulated drug and there-
fore should be kept out of reach when not in use. 1 ml of Ketaset 
contains 100  mg/ml (equivalent to ketamine hydrochloride 
115.36 mg/ml) with 0.01% benzethonium chloride as a pre-
servative. Rompun is a concentration of 2% w/v and each ml 
contains xylazine hydrochloride (equivalent to 20 mg xylene) as 
active substance and 1.5  mg methyl-4-hydroxy-benzoate 
as  preservative. The Ketaset and Rompun mix is prepared 

Fig. 2 eGFP+ cells in the femur of mice 5 weeks after transplantation. 
Representative examples of eGFP positive cells located around the vessels 
(resembling pericytes)
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at  a  volume of 0.5  ml of Ketaset, 0.25  ml of Rompun, and 
4.3 ml of sterile distilled water.

	 7.	Wear gloves and mask and prepare in containment hood.
	 8.	Do not incubate the cells in trypsin/EDTA for longer time. 

After 2  min observe the cells under the microscope and if 
MSC are circular in morphology gently brisk the flask and col-
lect the cells

	 9.	Ensure that when discarding the supernatant, the cell pellet is 
devoid of any medium. Any excess medium is removed using a 
sterile pipette. Avoid bubble formation while gently mixing 
the cell suspension in the small volume. Transfer the contents 
into a sterile eppendorf and store it on ice to reduce clumping 
of cells.

	10.	Prepare cells in excess of the number of mice to inject, at least 
106 hMSC in excess to account of loss while pipetting. 
Moreover, if injecting cells from different donors, take into 
consideration that engraftment levels decrease with increasing 
numbers of population doublings.

	11.	To ensure the mouse is under the effect of the anesthetic, pinch 
the tip of one of the legs. If the mouse twitches, leave the 
mouse for few more minutes before starting the surgical pro-
cedure. Only when the mouse becomes unresponsive to the 
pinching, the procedure can be initiated

	12.	Shave half a centimeter above and below the knee joint
	13.	While making incision, if the blood vessels are cut pour sterile 

PBS and wipe the excessive blood using ethanol wipes and wait 
for a while for the blood flow to stop and then continue with 
the procedure

	14.	Once the hole has been drilled, let pressure to ease and bone 
marrow to ooze out. Use sterile PBS to drain off excessive 
blood/marrow and use ethanol wipes to clean the blood. 
Always maintain aseptic conditions and keep as clean as possi-
ble to avoid infection.

	15.	Injecting the cells will create high pressure in the bone marrow 
cavity. To avoid cells leaking out, and therefore introducing 
greater variability in engraftment rates, cells need to be injected 
very slowly over 30  s. At the end of the injection leave the 
syringe and needle in position for 5 s before withdrawing it to 
stop cells exiting the bone marrow cavity.

	16.	Place the microscopic slides in an immuno-tray and use a 
Pasteur pipette to add hydrogen peroxide enough to cover the 
surface of the tissue section in the microscopic slide.

	17.	Primary antibody is prepared at a dilution of 1:600 in 5% nor-
mal goat serum. 5% normal goat serum is prepared by dissolv-
ing 1 ml of goat serum in 4 ml of PBS.
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Transplantation of Mesenchymal Stem Cells

	18.	Secondary antibody is prepared at a dilution of 1:400 in PBS.
	19.	Vector kit solution is prepared for immediate use: to 5 ml of 

distilled water add three drops of reagent 1 (mix well), add 
two drops of reagent 2 (mix well), add two drops of reagent 
3 (mix well), and then add two drops of hydrogen peroxide 
and mix well.
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