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Abstract 

Discoveries of hominid, or apeman, fossils in the twentieth century have brought 

human evolution into the scientific spotlight. It is important that ages are assigned 

to such hominids so that their place in human evolution can be established. South 

African hominids are found in cave sites that are complex in terms of their stratig- 

raphy. Dating methods previously applied at the caves include faunal, palaeomag- 

netic, electron-spin resonance and cosmogenic isotope methods. These have been 

unable to give conclusive ages to the fossils. South African hominids are there- 

fore poorly dated in comparison to their East African counterparts, which lie in 

volcanic deposits that are more simply stratified and more simply dated. 

U-Pb dating is a radiogenic method proven to be applicable to carbonate deposits. 

More recently it has been applied to young speleothem deposits with sufficiently 

high concentrations of U and low levels of common Pb. In this study U-Pb dating 

is applied to speleothern deposits in stratigraphic context with the South African 

hominid fossils. 

Samples were taken from the Silberberg Grotto at Sterkfontein. The hominid fos 

sil, StW 573, was found here in 1998. Three layers of flowstone were sampled, two 

from above the skeleton and one from below. The combined results indicate an 

age for StW 573 of ý-d 2.2Ma. This is considerably younger than previous age esti- 

mates have inferred. Samples from three other caves were analysed - Kromdraai., 

Swartkrans and the Limeworks - but these did not produce reliable ages. 

Within the samples both U and Pb were found to vary spatially over small scales 

in quantity, and Pb in composition too. Published studies in flie area have re- 

vealed -i major "'U excess in groundwater and speleothem. Where conventional 

, ioe ciAculations are used this effect could result in an age much greater than the 



true age. After the sample analyses presented here, 234 U excess analyses of some 

samples became available and these were used to calculate corrected ages. Vari- 

ations in initial Pb composition introduced scatter on the age plots but this was 

not investigated further here. 

The results are presented firstly as maximum ages and following correction for 234 U 

excess, as best estimates. The flowstone layers immediately above - layer 2C - and 

below - layer 2B - StW 573 gave maximum ages of 3.04 ± 0.08-Ma (SK3 result) and b 

2.97 ± 0.13Ma respectively. Layer 2C was corrected for disequilibrium and gave ýi 

best estimate age of 2.17 ± 0.17Ma using a weighted average of three results. The 

corrected age for Layer 2B was 2.24 + 0.09/ - 0.07. 

There are important implications for the U-Pb age of StW 573. Firstly it pro- 

vides evidence as to the age and formation of the Sterkfontein cave and therefore 

other hominid bearing caves with comparable faunal assemblages. The cave sedi- 

ments exhibit complex stratigraphic relationships that render chronostratigraphy 

uncertain. More importantly it lends further information on how South African 

hominids fit into the family tree. At 2.2Ma StW 573 may come under the classi- 

fication of Australopithecus africanus and be contemporaneous with the fossil Sts 

5, also from Sterkfontein, which had previously been considered to postdate StW 

573. It also confirms that the South African branch of this genus is probably not 

as ancient as the East African and that these hominids were not widespread in 

Africa at 4Ma. With the first evidence for the genus Homo at 2.5Ma, StW 573 

is unlikely to be a direct ancestor of modern humans. 

Beyond their implications for human evolution, these results confirm the applica- 

bility of U-Pb dating to carbonates, and more specifically to young carbonates. 
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Chapter I 

Introduction 

1.1 Background to the study 

At some point in the hugely varied and interesting history of the human lineage, 

Homo sapicns, or modern humans, shared a common ancestor with today's pygmy 

and common chimpanzees. This ancestor has not as yet been identified but it is 

thoi to-lit to have existed no earlier than 8 Ma (Johanson and Edgar, 200 1). At this 

time, changes in climate had already led to the divergence of gorillas from the 

flourishing ape lineage that had been established in Africa. What remained of the 

lineage then split further into two evolutionary groups. One half comprised the 

species that went on to become pygmy and common chimpanzees, the other led to 

modern humans (McKie, 2000). 

Long before African hominid discoveries were first made, Darwin predicted the 

origins of modern man lay in Africa in his book The Descent of Man, 1871. However 

at the beginning of the 20th century, fossil remains and popular opinion had led 

scientists to believe that humans had originated in Asia (Tobias, 2000). At the 

same time, South Africa was in the grip of the gold rush. Essential to the processing 

of the rnw material was lime. Limemining was a lucrative industry and the huge 

limestone deposits that (, o\-(, i- the Transvaal area of South Africa attracted the 

miners. In 1924 limeworkers blasting on a site called Taung, Figure (1.1), on the 

ed, o, e of tlie Klalahari discovered the skull of a small apelike creature. The skull 

found its N\-ziy into the hands of skilled anatomist Raymond Dart, who recognised 
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the significance of the discovery. It became known as the Taung Child, see Figure 

(1.2). This find was the beginning of an exciting time in the story of human 

evolution. What unfolded in the next 75 years was the wide and varied story of 

our origins across the African continent. In addition to the excavation of many 
South African hominid sites a wealth of fossil evidence confirming Africa is indeed 

the cradle of humankindwas accumulated from Malawi, Tanzania, Kenya, Ethiopia 

and the Chad Republic (Tobias, 2000). Fossils such as Sts 5 (Figure (1.3)) - also 
known as Mrs Ples - A. L. 288-1, more often known as Lucy and most recently, StW 

573 (Figure (1-4)) - or Little Foot - have helped to paint a picture of the human 

family tree. In turn this has helped us to find out more about who we axe and why 

we are here. 

1.1.1 Timeline of hominid discoveries in South Africa 

Figure (1.1) shows the South African sites relevant to this study and the following 

timeline. 

1920's 

In 1925 Raymond Dart announced the discovery of the Taung Child, see Figure 

(1.2). It possessed small canine teeth and the shape of the skull suggested that 

this creature was bipedal (walked on two legs), although the brain was ape size 

(McKie, 2000). It was thought by many scientists at the time to be a related to a 

chimpanzee or a gorilla (Leakey, 1981). 

After the announcement of the Taung Child, W. I. Eitzman a schoolteacher from 

Pietersburg sent Dart some specimens from a mine in what was the Northern 

Province, called the Limeworks (Tobias, 2000). These samples prompted him to 

describe the site as a "site of early human occupation". 

1930's 

The scientific community would have continued to look at the Taung Child with 

derision had it not been for the discovery of an adult hominid in South Africa in 
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Figure I. I: Map showing positioning of hominid cave sites in South Africa relevailt 

to this study. After Partridge (2000a). 
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Figure 1.2: Professor Philip Tobias holding the juvenile skull of the Taung Child, 

discovered at Taung in 1924. 

Figure 1.3: Photograph of adult Sts 5, Mrs Ples, an ýidult . 
4a,, 5tr(i1opIth(-ciIs 4-) 

africanus cranium found at Sterkfontein in 1947. 
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Figure 1.4: Photograph of StW 573, Little foot, found at Sterkfontein in 1998. P. 

Myburgh Film Pty Ltd., 2001 Palaeo series. 
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Figure 1.5: Photograph of TM 1517, the adult partial cranium and mandible of 

an AustralopAecus robustus found at Kromdraai in 1938. Photographed by I 

Reader, Science Source/Photo Researchers, from Johanson (2001). 

1936. Limernining in the late 19th century led to the discovery of the bone rich 

breccias of a site called Sterkfontein just west of Johannesburg. During the next 

40 years small amounts of bones were collected here by several interested parties, 

but it wasn't until 1936 that palaeontologist Robert Broom obtained the part 

skull and endocranial cast of an adult australopithecine that excavations began 

in earnest (Tobias, 2000). The remains that were found over the next 3 years 

were originally classified as AustralopZthecus transvaalensts then Plestanthropus 

ffansvaalensis (Tobias, 2000; Brain, 1958). Eventually these along with the Tauil,, 
-,, 

Cliild were clissified ýis Aiistmlopithccus africamis ineanincr sotithern , -ipe of Afri(-,, t. 

Scliool I)oY Gcrt Tcrhhmclic wýAs the first to clis(-o%-cr hoiiiiind rciiiain, 'ý itt 
bouring site, Kromdraai, in 1938. Broom was working just clowii the roý, (I "it 

Sterkfontein and he bought an initial fragment of this specimen froin Hic Iiincwoi-k,, 

manager there (Brain, 1958). Broom recognised that the fossil fragments heloi1ged 

to an individual that differed somewhat from the Australoptthecus qfricami. "ý n- 

niahis -, At Sterkfontehi. The iiex find, TNI 1517 (Figure (1.5)), Nwas ckissified ( - iýs 
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Plesianthropus robustus although it is now more often classified under the genus 
Australopithecus, as Australop'thecus robustus (Tobias, 2000). Australopithe-CUS 

Robustus is believed to have evolved from Australop2thecus afficanus (Johanson 

and Edgar, 2001). 

1940's 

Limemining stopped in 1939 at Sterkfontein, and in 1946 excavations were re- 

sumed. Close to the spot where the original Plesianthropus was found Broom 

unearthed a spectacular skull, Sts 5, also known as Mrs Ples after its original clas- 

sification, see Figure (1.3) (Brain, 1958). This fossil was subsequently classified as 
Australopithecus afi-icanus- 

A mile across the Bloubank valley from Sterkfontein was the as yet unexcavated site 

of Swartkrans. Broom had known about Swartkrans since about 1936 when work 
began at Sterkfontein, but excavation was not started there until late 1948 (Tobias, 

2000). Swartkrans was immediately a fruitful site, producing a hominid molar 

within the first blast, and a mandible within the first week (Brain, 1958; Brain 

and Watson, 1992). More remains were quickly revealed and Broom recognised 
these as the same genus as specimen TM 1517 from Kromdraai. The Swartkrans 

robust hominids were originally classified as Paranthropus crassidens, and although 

some researchers still believe them to differ from the robust hominids of Kromdraai 

they are usually classified as the same, that is Australopithecus robustus (Johanson 

and Edgar, 2001). Sterkfontein at this point was closed down so that Broom and 

his student, John T. Robinson, could concentrate on Swartkrans (Tobias, 2000). 

During this period remains of what was later reassigned as Homo erectus were 

unearthed at Swartkrans. Thus, Swartkrans was the first site to produce evidence 

of the coexistence of two types of hominids (Tobias, 2000). By the end of 1949 

the project hit financial problems although the continued blasting had revealed a 

thick layer of very pure basal speleothem. Since this was commercially valuable, 

excavation was forced to cease as limernining took precedence. 

It was 22 years after Dart examined fossil evidence from the Northern Province site 

of the Limeworks before the first pre-hominid and then hominid remains were exca- 

vated there. In 1947 J. Kitching, sent by Dart, recovered part of a hominid skull cap 
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(Tobias, 2000). During the following year hominid discoveries surfaced in the old 

limeminers dumps along with a large collection of associated fauna (Brain, 1958). 

The Limeworks, hominids were primarily classified as Australop2thecus prometheus 
by Raymond Dart, after their black colouration, which he attributed to burning. 

They are now under the heading of Australopithecus afi-icanus (Tobias, 2000). 

1950's 

At the end of 1951 scientific investigations began again at Swartkrans (Brain, 

1958). After the death of Broom in 1951, Robinson continued working there until 
1953, after which the site was left unworked for 12 years (Brain and Watson, 1992). 

At Sterkfontein work undertaken by C. K. Brain in 1956 produced stone artifacts 

from some of the younger deposits. In 1976 a skull of the proposed maker of the 

tools found at Sterkfontein, Homo c. f. habilis, was removed (Tobias, 2000). 

1960's 

In 1965, after a 12 year interval in work, a new excavation was undertaken by C. K. 

Brain at Swartkrans. This ran for 21 years (Brain and Watson, 1992). Swartkrans 

had been extensively mined during the 1930's and a lot of the excavations done 

under the supervision of Brain involved sorting through the miners dumps. 

Today's picture 

Nearly 75 years after the discovery of the Taung Child the most complete hominid 

fossil skeleton ever found was revealed at Sterkfontein. The foot bones of StW 573, 

Little Foot (Figure (1.4)), were originally found in 1980 but were not recognised as 
belonging to a hominid (Tobias, 2000; Clarke and Tobias, 1995). The bones were 

rediscovered in 1994 and a subsequent excavation revealed the in situ skeleton in 

1998 (Clarke, 1998). This included the skull, complete arm and hand bones and 

the most complete hominid foot. The completeness of this fossil is what makes 

it such an important discovery. For the first time osteomorphic paxameters such 

as the ratio of arm length to leg length can be compared, which may be used to 

determine degree of adaptation to bipedalism (Clarke, 1998; Clarke, 2002a). 
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1.1.2 Summary 

The australopithecines were a group of early hominids found in both Southern 

and Eastern Africa between roughly 1 and 4Ma (Johanson and Edgar, 2001). Fol- 

lowing the discovery of the Taung Child, hundreds of hominid fossils have been 

recovered from several cave sites in South Africa including Sterkfontein, Krom- 

draai, Swartkrans and the Limeworks. There are at least 120 Australopithecus 

afficanus individuals known from Sterkfontein, as well as the Taung child and sev- 

eral from the Limeworks (Johanson and Edgar, 2001). Additionally Swartkrans 

has produced the remains of a minimium of 85 Australopithecus robustus and 6 

Homo individuals (Johanson and Edgar, 2001). These are an incredibly important 

group of archaeological sites as recognised by UNESCO who has made "The Fossil 

Hominid sites of Sterkfontein, Swartkrans, Kromdraai and the Environs" a World 

Heritage Site. Sterkfontein alone is the "richest single fossil hominid site in the 

world" (Tobias, 2000). 

1.1.3 Dating horninids 

One of the major differences between the South African and the East African 

hominids is the geological context of the fossils. In East Africa the fossils lie in 

volcanic deposits. The "K_40Ar technique, which was developed in the 1950s has 

been applied throughout the East African hominid deposits as a dating method. 

This technique was refined and now uses 4'Ar and 3'Ar, an artificial isotope created 

to serve as a proxy indicator of the amount of 'OK (Johanson and Edgar, 2001). 

As a consequence of this the East African hominids are extremely well dated. In 

contrast the South African hominids are cemented in cave deposits and a direct 

dating method has not yet been successfully applied. Dating techniques previously 

attempted on these sediments have been able to provide a good estimate of the 

chronology at some of the sites, but multiple tests are required to secure greater 

accuracy. It is vital that these fossils are dated as accurately as possible in order 

to place them within the hominid phylogeny, and to gain a greater understanding 

of how and why we evolved the way we did. 
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1.2 Aims of this project 

The three main aims of this project are: 

1. U-Pb dating of hominid fossils. This was to be achieved by dating speleothem 
deposits at the South African hominid sites of Sterkfontein, Kromdraai, 

Swartkrans, and the Limeworks, that were associated with the hominid fossil 

discoveries made at these sites. Ages were to be assigned where there were 

clear stratigraphic relationships between the fossils and the cave deposits 

being dated. 

2. Assess the implications of any new ages in terms of, (i) what they mean for 

the position of South African hominids in the human family tree, and how 

this position affects the overall picture of human evolution, and (ii) what 

they mean for the formation and evolution of the eaves in which they are 

found. 

3. Further test the feasibility of U-Pb dating on young carbonate deposits. 

Application of U-Pb dating to these kinds of deposits is a technique still in 

its infancy. The objective was to gain further knowledge about applying this 

technique, and to get a greater understanding of the issues arising from the 

use of U-Pb in this context and how these issues can be approached. 

1.3 Thesis structure 

Chapter 2 

On the geology of cave formation and deposits in karst landscapes, but in particular 

on the South African hominid bearing caves. 

This chapter covers the basic geology of the area in which the caves are found and 

then goes on to describe each site individually. The individual descriptions include 

how the cave formed and its depositional history. This is important, as a grasp 

of the stratigraphic relationships was necessary for any U-Pb dates to be assigned 

to the fossils themselves. The description of the type of deposits in the caves also 
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comprises a section on speleothem, the deposit to which the dating technique was 

applied. 

1.3.2 Chapter 3 

On the other dating techniques that have been applied at the South African ho- 

minid cave sites as a precursor to this study. 

This chapter provides a breakdown of four dating techniques which have been 

used at the hominid sites and their results. It also examines the limitations of 
these techniques, and some of the contrasting interpretations of the evidence these 

techniques have provided. 

1.3.3 Chapter 4 

On U-Pb dating theory and contextual issues. 

This chapter charts the history of the mathematical theory behind radiogenic dat- 

ing, before looking at U-series and U-Pb dating. The chapter examines their 

application in dating both hominid remains and speleothem deposits. Lastly con- 

centrating on the method specific to this study, U-Pb, the issues concerned with 

the application of this technique to the South African cave deposits are reviewed 
in detail. 

1.3.4 Chapter 5 

On the methodology of U-Pb dating the South African hominid sites. 

This chapter firstly introduces the sampling methodology in the field specific to 

each site, and the sampling methodology in the lab, specific to each hand sample. It 

goes on to describe the important aspects of the experimental procedure including 

chemistry theory, lab techniques, mass spectrometric analysis, data processing, 

and handling of standards and blanks. The final section of this chapter deals with 

the issues taken into consideration for data evaluation. 
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1.3.5 Chapter 6 

On the results of U-Pb dating of South African hominid sites. 

This chapter covers the results for all four of the sites studied but concentrates 

mainly on Sterkfontein. The individual hand samples and sub-samples are critically 

assessed along with any graphs plotted and ages deduced from these. Where hand 

samples are linked stratigraphically, results are compared and further evaluated. 

Section (6.3) deals with the issue of initial U-series disequilibrium and how to apply 

a correction to the original ages calculated. Original ages and best estimate ages 

are reported for the StW 573 fossil from Sterkfontein. Further samples and results 

are reported from the Limeworks, Kromdraai and Swartkrans. 

1.3.6 Chapter 7 

On the interpretation of the Sterkfontein results, their concordance with other 

methods and the application of U-Pb dating to young carbonate deposits. 

The Sterkfontein results are first considered in terms of their meaning for hominid 

phylogeny and for the formation of the Sterkfontein cave site- The results for the 

dating techniques previously used on these deposits are then critically reviewed in 

view of the U-Pb results and reinterpreted where possible. Further possible work 

in South Africa is then briefly appraised. This is followed by an exploration of 

the wider issues for the U-Pb method. Important lessons that have been high- 

lighted by this study and what they mean for further investigations of this nature 

are discussed. A re-examination of the original aims and objectives precedes the 

concluding statement for the study. 
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Chapter 2 

Geology 

2.1 Cave formation and deposits 

Caves are natural underground openings in rock that originate through the disso- 

lution of limestone by phreatic and vadose waters. Caves develop initially in the 

phreatic region, where cave sizes and shapes are determined. As the water table 

lowers the cave enters into the vadose region which is characterised by a period of 

sediment deposition. Throughout its lifetime a cave will collect large amounts of 

sediment. The arrangement of such sediments is seldom simple, in that the law of 

superposition does not always apply. Deposits accumulated in the interior of the 

cave can be divided into clastic, organic and precipitated. These can be further 

classified according to where they originated from; allogenic for sediments formed 

outside the cave and transported in, authigenic for for those created within the 

cave (Ford and Williams, 1989). 

Speleothem 

The main precipitated material in caves is speleothem. ýVater passing through 

the soil rniy piclý tip significant quantities Of C02 forming carbonic acid. This 

dissolves cýArbonatc rocks forming a sohition of Ca and Nig carbonates (Brain, 

1958). Higher levels of soil C02 will result in a more aggressive dissolution of the 

rock. Speleothem forms wherever such seepage wýiter enters a cave and becomes 

su ersýitiinited with respcct toCýA(703. This inw, - be the result of outgasshi-- of soil ,p0 1-) 1 
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derivedC02 and/or evaporation, although evaporation is usually only important 

in low humidity environments (Latham and Schwarcz, 1992). 

Differences in fluid flow and water chemistry result in the formation of a wide 

variety of speleothems in caves. These include subaerial forms like stalagmites, 

stalactites, and flowstones, and subaqueous forms, such as rimstone pools and 

mammillary calcite (Richards and Dorale, 2003). Flowstones are uniform flows of 

speleothem that run parallel to the host surface (Ford and Williams, 1989). In 

karst regions flowstones are the main precipitated deposits, where they can occur 
in thicknesses of tens of metres. 

Calcite is the main speleothem mineral in caves (Ford and Williams, 1989). Arag- 

onite is often the second most abundant, originating from Mg-rich waters that 

typically inhibit calcite growth. Elevated Mg is found in waters which percolate 
through dolomite bedrock, such as that in the Transvaal (Risia, 1996). The insta- 

bility of aragonite means any formed usually recrystallises to calcite, especially in 

an environment where water is always present (Frisia, 1996). Despite the dolomite 

host rock, in the caves of the Transvaal calcite prevails. Many of the caves contain 

exceptionally pure speleothem (Brain, 1958). 

Speleothems can be used in many ways to explore the past history of a cave. 

They are often used for environmental reconstruction and for dating purposes. 

The presence or absence of speleothem is often the most telling palaeoclimatic 

indicator. Flowstone deposition rates can vary widely depending on environmental 

conditions and the form of the cave. Growth is dependent on a continuous flow 

of water. Growth stops with the cessation of this flow, allowing thin layers of 

detrital sediment to accumulate on the speleothern (Latham and Schwarcz, 1992). 

Deposition rates are therefore greatly affected by seasonality, and the production 

of flowstone in many caves appears to be periodic or even cyclic. Rates have been 

observed to double when summer soil water reaches a speleothern during autumn. 

Temperature also affects speleothern formation. Higher temperatures result in 

greater exsolution Of C02 and increased formation of speleothems (Brain, 1958). 

Mineralogy and fabric are indicative of the suitability of speleothems for chronolog- 

ical analysis. Primary or unaltered samples must be sought (Richards and Dorale, 

2003). Inclusion free calcites and aragonites are colourless and translucent, whereas 
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inclusions give the material a white, opaque appearance. Nslost speleothem formed 

in the inner parts of caves is free of clastic detritus (Latham and Schwarcz, 1992). 

Discrete black, grey, brown and red layers may be attributable to mud, although 

it has been found that most colour in speleothems is the result of humic and fulvic 

acids (Ford and Williams, 1989). Crystals in flowstones typically grow perpen- 
dicular to the growth surface and form columnar or fibrous fabric. These types 

of fabrics are associated with constant flow (Frisia et al., 2000). Speleothems are 

usually composed of massive, non-porous calcite so the problems associated with 
diagenetic modification are rare (Latham and Schwarcz, 1992; Frisia, 1996). 

Clastic sediments 

Clastic sediments are classified according to clast size. Ford and Williams (1989) 

divide clastic cave sediments into three types; gravel to boulder sized material 
from the surrounding area (typical in hilly karst regions); sand (sandstones are 

often found in the same basins as limestone); and silts and clays (most widespread 

clastic deposits in caves). In-cave weathering or winnowing of existing deposits 

may produce authigenic versions of these. 

An important clastic sediment in the South African caves is breccia. This is a 
diamictite of cemented angular material, which can be grain or matrix supported. 

2.2 South African hominid bearing cave sites 

2.2.1 Geology of the area 

The deposits which accommodate the hominid remains are the infillings of kaxst 

caverns and fissures (Partridge, 2000). The caves are located in the Malmani 

Dolomite which crops out extensively in this area. The Malmani Subgroup is part 

of the Chuniespoort Group and the Transvaal Supergroup and lies conformably on 

the Black Reef Series (Wilkinson, 1973). Figure (2.1) shows the stratigraphy of 

the Chuniespoort Group. 

The Malmani Subgroup is formed of massive blue-grey dolomitic limestones. The 
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Dultschland Lacustrine Fon-nation 
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Figure 2-1: Stratigraphic relationships within the Chuniespoort Group of the 

Transvaal Supergroup - After Catuneanu and Eriksson (1999) and Tankard et 

al., (1982). Not to scale. 

base of the sequence is characterised by narrow but abundant chert bands (Brain, 

1958). These insoluble bands contribute to the cave earth deposits which accu- 

mulate at the hominid sites (Partridge, 2000). The dolomite is Pre-Cambrian in 

age and evidence in the form of stromatolites and algal features suggest that this 

deposit formed in a shallow sea (Wilkinson, 1973; Brain, 1958). 

2.2.2 Cave formation in the Týransvaal dolomite 

The following description of cave formation in this region is taken from Brain 

(1958) unless otherwise specified. 

Like other karst cave systems, the caves in the Transvaal originated in a water-filled 

zone where caverns and passages were dissolved out of the dolomite bedrock. Water 

tables in the truest sense do not exist in carbonate rocks such as these since the 

porosity is too low. Instead, water flows via linked, totally water filled or partially 

air-filled conduits, which form along weak points in the rock (Latham et al., 1999; 

Lathain ct al., 2003). When the caves are brought out of the water-filled zones, 

deposits begin forming. At this stage the Transvaal caves were still essentially 
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closed to the surface, so speleothems were the major deposits to form. The first 

openings to the eaves were vertical shafts allowing only small amounts of sediment 

in or acting as death traps (Partridge, 2000). As openings in the caves enlarged, 

surface derived debris entered, mixing with authigenic cave earth and interbedding 

with speleothems which also continued to form. The mixture of surface derived 

debris and cave earths were cemented by the percolating waters forming hardened 

breccias. This slowly accumulating breccia had the potential to be fossil rich and 

at Sterkfontein gave rise to the more complete hominid specimens, such as StW 

573 (Partridge, 2000). These fossil rich breccias were often sandwiched in between 

flowstone formations. With the increased enlargement of openings to the surface, 
large quantities of allogenic material were admitted to the caves, which were now 

serving as shelters or traps for various animals (Partridge, 2000). Speleothems may 

still have been forming at this stage but were subject to contamination. Continued 

enlargement of cave openings eventually resulted in roof collapse and the caves 

became almost completely filled with deposits. After this erosion slowly began to 

destroy the cave formations. Most of the caves which house the australopithecine 

fossils have suffered severely from erosion, which has removed the majority of the 

original roofs and left the cave infilling exposed to further weathering and erosion 

(Brain, 1958). 

In the following cave descriptions the formation and member notation axe from 

(Partridge, 1978); the unit notation from (Partridge, 2000). 

2.2.3 Sterkfontein 

Sterkfontein is found on the southern side of the Bloubank river valley, to the north 

west of Krugersdorp, see Figure (1.1) and Figure (2.2). The Sterkfontein forma- 

tion, after (Partridge, 1978), measures e-1.0 75xl5m at the surface, is 0-Nd 30m in depth 

below the the current surface, and is marked by a dolomite floor (Partridge, 1978; 

Partridge and Watt, 1991). Figure (2.3) shows the the extent of the underground 

and exposed cave system. Over time the cave sediments have been subject to al- 

teration through subsidence into lower cavities, collapse of cave walls and roofs, 

and through the percolation of calcium carbonate rich waters (Partridge, 1978). It 

is thought that there are extensive hiatuses in the clastic deposits, some of which 
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Figure 2.2: View of southern side of Bloubank river valley from Swartkrans (Sterk- 

fontein and Kromdraai not visible). 

are associated with calcite deposition. This indicates periods of deposition where 

the influx of clastic material was severely reduced (Partridge, 1978). Development 

of subsequent caves below the formation has caused some subsidence allowing allo- 

genic material to infiltrate the caves below the hominid bearing deposits (Partridge 

and Watt, 1991). 

The Sterkfontein formation is split into six members, after Partridge (1978), which 

occur in a "continuous succession" (Partridge and Watt, 1991). Partridge (1978) 

seems to suggest that member 5 is the only unconsolidated one. Figures (2.4) and 
(2.5) show these members as represented in the Silberberg Grotto. 

The following descriptions of the deposits are taken from Partridge (1978) and 

Partridge (2000) unless indicated otherwise. 

Member I 

In terms of volume this is the second largest member (Partridge and Watt, 1991). 

It can be found above the dolomite floor in the Silberberg Grotto and is 0.5-2. Om 

thick. It is formed of white and brown banded recrystallised calcite. This was 

deposited during a time when the cave was being enlarged by erosion. It contains 

very little in the way of bones or allogenic material (Clarke, 1994; Partridge, 2000). 
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Figure 2.3: Plan of Sterkfontein showing extent of cave system. BH - bore holes 

(cores of sediment taken for stratigraphic analyses). M4 = member 4, etc. Section 

lines refer to cross-sections in Figures (2.4) and (2.5). From Partridge (2000), after 

Partridge and Watt (1991). 
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Fiaure 2A Cross-section A-B throuuh Sterkfontein deposits (refer to Fiaure 2.3 
tý) 0 ID 

for section position). BH = bore hole, 4A = member 4A,. etc. Refer to Section 

(2.2.3) for full descriptions of each member deposit. New hominid skeleton is that 

of StW 573. NIagnetostratigraphic section shown in Figure (3.4), interpretation A. 

From Pýirtridge (2000), after Partridge and Watt (1991). 

Vertical and horizontal scales equal SECTION A-B0 10 
aa metres 
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Figure 2.5: Cross-section E-F through Sterkfontein deposits (refer to Figure 2.3 
for section position). BH - bore hole, 4A = member 4A, etc. Refer to Section 
(2.2.3) for full descriptions of each member deposit. From Partridge (2000), after 
Partridge and Watt (1991). 
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Member 2 

Member 2 is found in the Silberberg Grotto and yielded the hominid skeleton, 
StW 573, Figure (1.4) and Figure (2.6). The sediments are up to 8. Om thick of 
breccia with broken speleothems and abundant bone near the base. Most of this 

deposit is on the southern face of the cave but it forms a westward sloping debris 

cone in the western end of the grotto. The breecia was deposited at the same 

time as a large speleothem boss that was removed from the Silberberg Grotto by 

the limeminers. The boss is found interlayered with the numerous growth stages 

of the debris cone, which also includes various mudflows. The growth of this 

large speleothern sealed in the StW 573 hominid on the debris cone (Pickering 

et al., 2004). Sediment positions are indicative of a shaft opening above the debris 

cone. Soon after deposition of the breccia containing the skeleton it is believed 

that part of the breccia collapsed into a cavity which formed as water undercut 

the talus cone. Following this collapse, a flowstone layer, known as layer 2C, 

Figure (2.6), formed. Because of the collapse, some of the skeleton is found above 

this layer whilst some is found below (Clarke, 2002a). Fossil remains apart from 

the hominid StW 573, include a hunting hyena, skulls of Cercopithecidael, and 

various cats (Clarke, 1994). The way the fossils are arranged suggests they, like 

the sediments, fell in through an opening in the cave roof, probably accidentally 

as indicated by the completeness of the skeletons (Clarke, 1994; Partridge, 2000). 

Member 3 

Member 3 is the largest of the six deposits. It is divided into units A and B and 

reaches a thickness of -, 9m. The base of member 3 is a 1.2m thick flowstone 

(A) which is topped by 8m of red-brown breccia with scattered large clasts and 

flowstone lenses (B). Member 3 remained unexcavated when Partridge (2000) was 

published. 

'Old world monkeys 
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Figure 2.6: Photograph showing the member 2 deposits. The skull of StW 573 

can be seen in the lower right of the picture, and a layer of flowstone (layer 2C) 

can be seen running through the deposit above and in the lower left of the picture. 

The position of the U-Pb sample STA09 in flowstone 2C is also shown. For further 

information on the stratigraphic relationships in this deposit see Figure (5-1) and 

Figure (6-1). 
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Member 4 

Member 4 is subdivided into units A, B C and D and is found in an area of the 

cave known as the type site. The type site area can be seen in Figures (2.3) and 
(2-7) and has very little associated speleothem according to Brain (1958). 

Unit A is 1-5m of red-brown breccia with chert and dolomite clasts, containing 

occasional bone fragments. It is believed that this resulted from a series of roof 

collapses. 

Unit B is composed of up to 6. Om of mainly red-brown breccia with an abundance 

of large clasts and infrequent bone fragments. 

Unit C is composed of 0.5-2. Om of yellow-red breccia containing occasional large 

clasts and bone fragments. It is found in pockets around unit B. 

Unit D comprises horizontal white-brown laminations of recrystallised calcite lenses. 

Member 4 has produced the majority of the faunal remains at Sterkfontein, in- 

cluding the hominid Mrs Ples, Sts 5, Figure (1.3). It is thought to be a debris cone 

that formed beneath a vertical shaft into which big cats dropped the bones from 

their kills as they ate them in the trees above (Clarke, 1994). Figure (2.7) shows 

the member 4 deposits from which Sts 5 was excavated. 

Member 5 

This member has been subject to several periods of collapse, erosion and infilling 

resulting in some vertical movement of the deposits (Clarke, 1994). The largest 

movements occurred in what is known as the swallow hole. Downwards movement 

of the sediments in this area is estimated at 5m. Despite this the sequence of layers 

has remained almost intact (Partridge and Watt, 1991). 

Member 5 is divided into three units, A, B and C. Unit A is formed of 1-5m of 

red-brown calcite-veined breccia with many large clasts. This unit housed the skull 

of a Homo habilis (Clarke, 1994; Partridge, 2000). 

Unit B is composed of dark red-brown poorly calcified breccia which is part of the 

swallow hole deposit. It has yielded numerous Oldowan artifacts and teeth of an 
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Figure 2.7: Photograph of Ron Clarke standing on the member 4 deposits in the 

type site area, at Sterkfontein. The plaque in the background shows where the Sts 

r- 

5 skull was recovered from. 
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Australopithecus robustus (Clarke, 1994; Partridge, 2000). 

Yellow-red, well calcified breccia, makes up unit C. This unit produced a stone tool 

assemblage accepted to be Early Acheulean. The fragmentary hominid remains in 

unit C are thought to be those of Homo ergaster (Clarke', 1994). 

Member 6 

There is very little of this member remaining except for a few isolated pockets 
in solutional cavities in member 5 (Clarke, 1994; Partridge, 2000). Member 6 is 

subdivided into units A and B. Unit A comprises 25cm of contaminated, recrys- 
tallised basal calcite, with odd bone fragments. Unit B is a dark red-brown breccia 

with infrequent large clasts and some bone. The artifacts and faunal remains are 
believed to be Middle Stone Age. 

2.2.4 Kromdraai B 

Kromdraai is located on the southern side of the Bloubank valley about 1.5km 

east of Sterkfontein, see Figure (1.1) and Figure (2.2) (Partridge, 2000). It formed 

in an east-west orientated joint P-10 46m long, in the Malmani Dolomite (Partridge, 

1982; Partridge, 2000). 

Kromdraai is spilt into two separate sites - Kromdraai A and Kromdraai B. Krom- 

draai A has so far produced only faunal remains, so was not analysed in this 

study. Kromdraai B, however, has produced hominid fossils along with an associ- 

ated fauna. 

The deposits of Kromdraai B take the form of a debris cone which formed be- 

neath a shaft opening, around 12m from the eastern end of the cave (Partridge, 

1982; Partridge, 2000). The height of the roof at that time is thought to have 

been at least 12m above the present surface elevation (Partridge, 1982; Partridge, 

2000). Kromdraai B itself is further subdivided into the Kromdraai and Kromdraai 

West formations. The Kromdraai formation, from which the hominid remains were 

derived, is subdivided into 5 members. Figure (2.8) shows the two different forma- 

tions and the member division. The following member descriptions apply to the 
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Figure 2.8: Cross-section through the Kromdraai B and Kromdraai B West forma- 

tions. MI = member 1, etc. Refer to Section (2.2.4) for full descriptions of each 

member deposit. Rom Partridge (1982). 

Kromdraai formation and are taken from Partridge (1982) and Partridge (2000) 

unless specified otherwise. 

Member 1 

This deposit comprises up to 13m of red-brown breccia with abundant clasts but 

rare bone fragments. Most of the fauna derived from member I is microfauna, 
indicating that the opening to the surface was very small at this time and the cave 

was probably serving as an owl roost. 

Member 2 

Member 2 represents a period of slower sediment deposition. Consisting up to 2m 

of red-brown breccia with scattered clasts, it built up on the side of the debris cone 

formed by member 1. This member has yielded few bone fragments, not enough 

to be effectively analysed. 
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Figure 2.9: Photograph of Francis Thackeray behind a block of member 3 breccia 

(reddish deposits) from the Kromdraai B formation. The white deposit on top is 

a layer of flowstone and the grey blocks in the background are dolomite. 

Member 3 

Up to 4m of pale red-brown breccia makes up this member, which is preserved on 

the western side of the cone. It houses abundant weathered clasts and abundant 
bone fragments. At the base some speleothem growths can be observed interlay- 

ered with the breccia. Member 3 has yielded nearly all of the hominid fossils from 

Kromdraai B, including the type specimen 2 of Australopithecus robustus. The ac- 

cumulation is interpreted as a "death-trap assemblage", much like that of member 

2 at Sterkfontein, where animals fell in through the shaft entrance above. Figure 

(2.9) shows a block of member 3 breccia with a flowstone layer running through it. 

Member 4 

Member 4 comprises up to 3m of red-yellow breccia containing few bone remains. 

This deposit has been severely decalcified in certain areas. 

'A type specimen is the specimen that was first assigned that particular species name. 
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Figure 2.10: View of Swartkrans hill from bottom of Bloubank river valley. 

Member 5 

Member 5 is found west of the member 4 outcrop and consists of up to Im of red- 
brown breccia with abundant weathered clasts. This deposit contains few bones 

and occasional broken speleothems. 

2.2.5 Swartkrans 

Swartkrans is situated on the northern slope of the Bloubank valley on the opposite 

side to Sterkfontein, see Figure (1.1) and Figure (2.10). The two sites are less than 

a mile apart (Brain, 1958). 

The dimensions of the cave are about 45m 2 at the surface (Brain, 1995). Fig- 

ure (2.11) gives an indication of the extent of the cave. The dolomite in which 

Swartkrans formed is extensively faulted and the cave has formed at an intersection 

of two fault lines (Brain and Watson, 1992). As with the other caves, Swartkrans 

is both a feature of solutional activity and subsidence, with the original solution 

cavern resulting in the subsidence cave seen today (Brain, 1958). An integral part 

of this was the removal of the roof over the outer part of the cave by erosion 

(Brain, 1958). The form of the cave and its deposits indicates that it has under- 

gone repeated episodes of deposition and erosion (Brain and Watson, 1992). It 
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is thought that these correlate with interglacial-olacial cycles (Brain and Watson, 

1992). Brain (1995) suggested that at the beginning of interglacials, when the veo'- 0 
etation cover was low but the precipitation levels were increasing, soil was washed 
into the cave in relatively large quantities. During drier glacial periods the amount 
of rainfall was too low to redeposit the soil in the cave, but it was high enough to 

result in periods of erosion (Partridge, 2000). 

Brain (1958) and Brain and Watson (1992), divided the cave site into three parts; 

an inner cave in the north west corner, protected by a dolomite roof; an unroofed 

outer cave; and a lower cave that can be entered via an entrance from the inner cave, 

or via a shaft in the north east corner. The deposits are known as the Swartkrans 

formation and are divided into five members (Brain and Watson, 1992). 

The following description of the Swartkrans formation is taken from Partridge 
(2000) unless indicated otherwise. Figure (2.12) shows how the cave deposits are 

thought to have formed. 

Member 1 

Member 1 is subdivided into units A-C. 

Unit A is the basal flowstone which accumulated prior to an opening to the surface 
being established. The main flowstone layer at Swartkrans was deposited directly 

on to the dolomite floor, with the fossil rich breccia lying on top (Brain, 1958). 

The flowstone reached a maximum thickness of r--o 8m (Brain, 1958). 

The poorly calcified debris cone that is unit B entered the cave through a shaft 

opening post-formation of unit. A. This deposit is known as the Lower Bank deposit 

and contains an abundant fauna including hominid remains, and an Oldowan stone 

tool assemblage. 

Unit C is also known as the Hanging Remnant. This is a pale, red-brown breccia 

with many hominid remains, which are believed to be the result of carnivore ac- 

tivity. Together the deposits of the Hanging Remnant and the Lower Bank have 

produced the largest number of hominid remains so far (Brain and Watson, 1992). 
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Figure 2.11: Plan of Swartkrans with the dark line showing the extent of the 

cm-c system. The grid represents the excavation grid in situ -it Swartkrans. The 

numbers are tourist be,,, icons painted on rocks. From Brain and Watson (1992). 
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Figure 2.12: The stages in the evolution of the Swartkrans formation, showing 

the positions of members 1-3. Refer to Section (2.2.5) for full descriptions of each 

member deposit. From Partridge (2000), after Brain (1992) and Brain (1993). 
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Member 2 
Member 3 
Stratified Member 2 
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Member 2 

The period of erosion which took place post-deposition of member I and pre- 
deposition of member 2 is characterised by a wide gap (several metres) between 

the Lower Bank and the Hanging Remnant. This gap, along with a space behind 

the Hanging Remnant, was then infilled with member 2 red-brown. well calcified 
breccia. With a rich associated fauna this member has produced Au, '; troloj)I'Nýrcloý 

robustus and Homo erectus remains, stone and bone tool assemblages (Brain and 
Watson, 1992; Partridge, 2000). Both hominid and animal activity are thought to 

have produced the finds attributed to member 2. 

Member 3 

Member 3 was deposited in a steep gully in members I and 2. ? vlember 3 has 

produced Australop%thecus robustus remains along with stone and bone tools (Brain 

and Watson, 1992; Partridge, 2000). 

Member 4 

Member 4 is found in the north east corner of the Swartkrans cave and is relatively 

uncalcified (Brain and Watson, 1992; Partridge, 2000). Middle Stone Age artifacts 

are a feature of this deposit. 

Member 5 

This member is found in an erosional channel, which surrounds a stalagmite boss, 

near the north wall of the cave (Brain and Watson, 1992., Partridge. 2000). The 

4m thick deposit is lightly calcified and has yielded springbuck remains that have 

been dated to 11 ka by radiocarbon dating (Brain, 1993). 
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Figure 2.13: View of the Makapansgat, valley to the east of the Limeworks. 

2.2.6 The Limeworks 

Formation 

The Limeworks at Makapansgat is found about 10 miles east of Makopane 3, whose 

grid reference is 24'10'S, 28'59'E, in the Limpopo Province 4, Figure (1.1). 

Of the hominid caves this is the largest. The surface extent of the Limeworks is ^-d 
200 x 115m with an average thickness of 20m (Partridge, 1979; Partridge, 2000), 

Figure (2.15). Columns of speleothern above the cone mouth indicate that the 

roof was considerably higher than the present surface (Latham et al., 1999). The 

maximum height of the original roof is thought to have been -ý' 20m (Partridge, 

1979; Latham et al., 2003) to 50m (Partridge, 2000) above the present height. 

The Limeworks developed in a slightly different environment to Sterkfontein, Swart- 

krans and Kromdraai, in that the karst at the Limeworks was mountainous rather 

than gently sloping (Latham et al., 2003). Figures (2-13) and (2.14) show the Maka- 

pansgat valley looking out from the edge of the Limeworks cave. A solutional cave 

existed originally below the main cave and roof collapses into this space resulted 

in the formation of a large subsidence chamber above it (Brain, 1958). The devel- 

3Forrnerly known as Potgietersrus 

4Fornially known as the Northern Province 
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Figure 2.14: View of the Makapansgat valley to the west of the Limeworks. 

opment of very pure speleothems indicate that this did not lead to an immediate 

opening to the surface (Brain, 1958). The main period of speleothern deposition 

led to an arc of conjoined stalagmite bosses that divided the site into separate 

compartments. The Limeworks is now recognised to represent several repositories 

rather than one stratigraphically linked sequence (Latham et al., 2003). When 

an opening to the surface did develop it remained small in comparison to the 

cave size allowing the slow accumulation of bone-rich breccias and contaminated 

speleothems (Brain, 1958). Early deposition was characterised by a shaft open- 

ing at the northern end of the site (Partridge, 2000). A sudden enlargement in 

the cave entrance resulted in the rapid accumulation of a large breccia deposit 

(Brain, 1958). Hiatuses in clastic deposition, sometimes followed by speleothern 

formation, indicate cycles of allogenic material entering the cave (Partridge, 1979). 

Figure (2.15) shows the plan of the cave as it is today. 

The speleothem deposits in general, as at Swartkrans, lay below the main breccia 

directly on the dolomite floor (Brain, 1958). The cave contained a large amount 

of pure flowstone prior to the arrival of the limeminers. After this was removed a 

gap was left between the overlying breccia and the dolomite. In one area this has 

resulted in the collapse of less consolidated breccia known as the Collapse Cone 

(Brain, 1958). 
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Figure 2.16: Cross-section from the Entrance to the Exit Quarry of the Limeworks 

deposits. Refer to Section (2.2.6) for full descriptions of each member deposit. 

From Partridge (2000). 

Early stratigraphic models for the Limeworks have been put together by Wells 

and Cooke (1956), Brain (1958), and Partridge (1979). In general these agree with 

each other (Latham et al., 1999). Figure (2.16) shows a cross section through the 

entire deposit from the Entrance to the Exit Quarry. 

Member 1 

Member I consists of to 15m of white banded flowstone and massive stalagmite 

bosses, sometimes contaminated, overlaying the dolomite floor (Partridge, 1979). 

The thickest part of this deposit is in two stalagmite bosses in the Main Quarry 

(Partridge., 1979). 

Member I is the first large depositional phase and can be divided into two events 

(Latham et al., 1999). Member 1A is a coating of suba, queously formed mammillary 

speleothein which extended across floors, walls and roofs (Latham et al., 1999). 

Aleniber 1B is t, lie inain subaerial flowstone deposit. This was a substantial deposit 

with two large speleothern bosses situated in the entrance and exit quarries, reach- 

ing in places tip to 30ni in height and width (Latham et al., 2003). The Entrance 

Ll 

Entrance 
Quarry Fyit (It mrrv 
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Figure 2.17: Photograph of Entrance Quarry looking into Main Quarry which was 

occupied by the arc of speleothern. 

Quarry boss is thought to have been. --. 15m high and 20m in diameter (Partridge, 

2000). These existed as an arc in the shape of a horseshoe effectively dividing 

the cave into several closed compartments (Latham et al., 1999; Partridge, 2000; 

Latham et al., 2003). Figure (2.17) shows the Entrance Quarry (looking into the 

Main Quarry) at one end of the flowstone arc and Figure (2.18) the Exit Quarry 

at the other end of the arc. 

Fine sediment contaminates this deposit in some localities, post-formation of mem- 

ber IA (Latham et al., 1999). Partridge (1979) suggests that at this time allogenic 

material was entering through a small opening in the northern end of the cave. 

Member 2 

Member 2 is a deposit of red-purple silts with a maximum thickness of 8m (Par- 

tridge, 2000; Latham et al., 2003). Deposition seems to have occurred in an envi- 

ronment of fluctuating water levels (Partridge, 1979). Evidence of the recurrence 

of pooling and drying of water is left in the form of mud cracks and thin calcite 

deposits (Latham et al., 1999). 

Member 2 was deposited in two separate areas of the cave, which were divided by 

the stalagmite boss (Partridge, 1979). In the Entrance Quarry the fine deposits 
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Figure 2. IS: Photograph of opening into the Exit Quarry through which the arc 

of speleothem lay. The space represents, mostly, the quarried speleothem. 
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Figure 2.19: Photograph of member 3 in the Classic Section at the Limeworks. 

Member is found at same height as person's hand. 

of member 2, containing fragments of bone and broken speleothem, are found 

against the member 1 flowstone (Latham et al., 1999). In the Exit Quarry where 

the deposit formed separately, member 2 appears as 2m of red sediments (Latham 

et al. , 1999). 

Member 3 or Grey bone-rich breccia 

Member 3, better known as the Grey Breccia, is found in the Main Quarry and 

does not exist beyond the Cone deposit (Latham et al., 1999). It consists of 

a contaminated flowstone containing abundant bone fragments, calcite growths 

and small clasts in a pale-brown matrix (Partridge, 1979). The thickness of this 

flowstone is Im (Latham et al., 1999; Maguire, 1980; Partridge, 2000) in the 

area of the cave known informally as the Classic Section, see Figure (2.19). It 

can been seen sandwiched between the overhang of the dolomite roof and the 

underlying member 2 sediments (Latham et al., 1999; Latham et al., 2003). The 

sediment that makes up the Classic Section entered the cave via an opening called 
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the Original Ancient Entrance (OAE) (Latham et al., 2003). 

The majority of the fauna found at the Limeworks derived from the grey bone-rich 

breccias of member 3, as found in the Classic Section. The faunal remains were 

mostly recovered from the limeworker's dumps but were correlated with the in 

situ deposits. The faunal remains are thought to be the result of hyena denning, 

where the bones rolled down a slope and were concentrated at the rear of the cave 
(Latham et al., 1999; Partridge, 2000). 

Member 4 and the Central Debris Pile 

Member 4 is a coarse red-pink breccia that occupies the centre of the site. It 

contains dolomite and flowstone clasts of varying size (Latham et al., 1999). This 

breccia represents a period when the cave opening had dramatically grown by 

roof collapse (Brain, 1958). It is the most extensive deposit covering 75% of the 

surface area of the site and reaching the present surface (Maguire, 1980). This 

member produced the only Australopithecus afficanus not attributed to member 
3 (Partridge, 2000). 

Partridge (1979) split member 4 into Beds A and B. A is a pink-red breccia up to 

2m thick found in the Entrance Quarry and in the Exit Quarry at Rodent Corner; 

although Latham et al. (2003) says that the deposits in the Exit Quarry can not 

be reliably related to the Entrance Quarry ones or assigned to the member system. 

A in the Entrance Quarry is similar to that at Rodent Corner but is more heavily 

calcified (Partridge, 2000). Rodent Corner is a dense accumulation of rodent bones 

in a fine matrix which mark the spot of an owl roost (Partridge, 1979). At Rodent 

Corner this deposit appears as red muds and sands (Latham et al., 1999). 

Bed B is also known as the Central Debris Pile (after Latham et al. (2003)) and is 

composed of up to 20m of red-brown breccia with abundant dolomite and some- 

times chert clasts (Partridge, 1979; Maguire, 1980). The Central Debris Pile takes 

up the entire area in between the Entrance and Exit Quarries and inside the arc 

of speleothem (Latham et al., 1999). Some in situ Awtralopithecus afficanus frag- 

ments5 have been retrieved from this deposit although this deposit is generally 

5SPecimens MLD 37/38 
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Figure 2.20: Photograph looking into the Original Ancient Entrance from the 

opening to the North-West Quarry. 

lacking in fossil remains (Partridge, 2000). 

Member 5 

Member 5 is found around the edges of the collapsed cone at the southern end 

of the cave, where it reaches a thickness of 20m (Partridge, 2000; Partridge, 

1979). This deposit is less well calcified and like member 4 extends to the present 

surface (Maguire, 1980). The Cone Mouth was created by a series of collapses 

after undermining of this member, resulting in a debris cone 15m high and 50m 

broad at its base (Maguire, 1980). The opening to daylight is 25m across, with 

surrounding deposits composed of speleothem, breccia and red sediment (Maguire, 

1980; Latham et al., 1999). 

Original Ancient Entrance (OAE) 

This is an artificially mined entrance but it was once part of a larger passage 

(Latham et al., 2003), see Figure (2.20). A series of flowstones contaminated with 

red niuds are found just inside the entrance. These lie between two subaqueous 

flowstone layers (Latham et al., 2003). Further in, the horizontal red silt layers of 

member 2 have butted up against the huge flowstone boss which came in from the 
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Figure 2.21: Schematic of the OAE, Classic Section and Cone area deposits showing 

how their stratigraphy is linked. From Latham et al. (2003). 

Entrance Quarry above. This boss had formed according to Latham et al. (2003) b 

prior to the subaqueous speleothem, although flowstones continued to form (luring 

the deposition of member 2 and can be seen interbedded with the red sediments 

(Latham et al., 2003). The OAE still has an intact roof so this area was relatively 

well protected from the environment. Figure (2.21) shows how the deposits of the 

OAE are linked with those of the Cone and the Classic Section. 

breccia M4? 
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Chapter 3 

Dating methods 

The setting of the South African hominid sites has meant that they have not been 

as easy to date as their East African counterparts. East African sites are set in 

volcanic deposits and have been relatively easily dated using the K-Ar technique. 

Since this and other traditional radiogenic techniques are not applicable at the 

South African cave sites, other alternatives have had to be found. The techniques 

applied previously are discussed below. 

3.1 Faunal dating 

Faunal dating is a purely qualitative method that looks at the faunal assemblages 

within a deposit, and by comparing them to other confidently dated assemblages, 

attempts to estimate an age. This type of dating has been the most widely used 

at the hominid cave sites in South Africa. 

Refer to Figure (3.1) for a diagrammatic representation of the following faunal 

evidence. 

3.1.1 Faunal dating in the Bloubank and Makapansgat val- 

leys 

Two groups of fauna Nvere initiýilly distinguished in these regions (Tobias, 1973). 

The fitumis of Sterkfontein and Mak-, -ipansgat were assigned to an older group 
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Figure 3.1: Diagram to show how the faunal evidence over the sequence of deposits 

at the South African cave sites is interpreted for the purpose of age determinations, 

and how it is linked across these sites and with other hominid sites in Africa. The 

arrows depict faunal correlations with other sites in Africa. The coloured lines link 

saine species evidence at the four South African sites relevant to this study. Refer 

to Section (2.2) for geological descriptions of deposits at each site. 
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called the Sterkfontein Faunal Span. Swartkrans and Kromdraai were assigned to 

the younger group known as the Swartkrans Faunal Span (Tobias, 1973). Cooke 

(ref. from (Tobias, 1973)) was the first to attempt to correlate the South African 

faunas with the well dated East African ones. He suggested that Sterkfontein and 
Makapansgat might be around 2.5 to 3Ma, based on the evidence of suid' and 

elephant bones (Tobias, 1973). Maglio (ref. from (Tobias, 1973)) agreed with the 

2.5Ma estimate and believed that these two sites correlated well with the middle 
Shungura §2 and lowest Koobi Fora§ formations in East Africa. 

The Limeworks was thought to be of Upper Pliocene age from comparison of its 

bovid' fossils to those from East African sites (Partridge, 1986). Vrba (1985) 

considered the Limeworks member 3 to be c. 3 Ma, and the oldest hominid-bearing 

accumulation in South Africa. Species present at the Limeworks were compared 

with those found at the well dated Laetoli§, Hadar§ and Shungura§ deposits (Vrba, 

1985). Vrba (1974) identified three faunal phases at Sterkfontein from the bovid 

remains. The main site remains 4, which were associated with the australopithecine 

material, were correlated with the Limeworks fauna. The antelope Makapania is 

found only in the Limeworks members 3 and 4, and Sterkfontein members 2 and 

4 and is unknown after this time (Vrba, 1985). 

Vrba (1985) estimated the age of the Sterkfontein member 4 deposits to be 2.4-2.8 

Ma, based on the bovid accumulations. It is possible that member 4 represents 

a death trap assemblage or a place where animals died, as there is minimal evi- 

dence on the bones to indicate carnivore activity (McKee, 1991). According to the 

member 4 faunal remains there were six cercopithecoids 5 in existence at the same 

time alongside the hominids. Such a saturation of primates is an unusual situation 

(McKee, 1991). Whether this is the result of environmental change or a bias in 

the representation of some species is unknown. These species are also found at the 

Limeworks in members 3 and 4, suggesting contemporaneity (McKee, 1991). 

One of the main pieces of evidence for placing member 4 beyond a certain date 

'Pigs. 

2East African sites marked with an §. 

3Family which includes cattle, sheep and antelopes. 
4Known as STS = Sterkfontein type locality. 

Sold world monkeys. 
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is the radiometric dating of Olduvai§ Bed I at c. 1.9Ma (Clarke, 2002b). Olduvai5 
Bed I contains abundant Oldowan stone tools. These are not found at Sterkfontein 

until member 5 times. Therefore it seems reasonable to estimate that member 4 

preceded OlduvaO Bed 1. Vrba (1982) estimated member 5 to be in the order of 
1.5 to 1-8Ma based on the bovid evidence. The bovids from the later faunal span' 
at Sterkfontein (equivalent to member 5) were linked to the Kromdraai A and 
Swartkrans fauna (Vrba, 1974). 

Cooke considered Swartkrans to be as old as Olduvai§ Bed I (c. I-9Ma) at the 

very least (ref. from (Tobias, 1973)). From the bovid evidence at Swartkrans Vrba 
(1985) assigned a date of 1.6 to 1.8Ma to Swartkrans member I and 1.0 to 1.5 
Ma for members 2 and 3 (Vrba, 1982). Brain (1993) believes the Lower Bank 
deposit of member I at Swartkrans is at least 1.7Ma. The Swartkrans member I 
fauna was originally considered to be older than that of Kromdraai (Tobias, 1973; 
Vrba, 1975). However following further research Vrba (1985) placed Kromdraai B 

member 3 in a time period just after Sterkfontein member 4 but before, and closer 
to, Swartkrans member 1. According to Partridge (1986) the dental morphology 

of the hominid fossils from Kromdraai B also suggests that they may be older than 

those from Swartkrans member 1. 

3.1.2 Faunal dating of Sterkfontein member 2 

The member 2 fauna is severely lacking in bovid fossils and so could not be dated 

in the same way as some of the other faunal assemblages. This provides a clue to 

how the Silberberg Grotto must have looked at the time and is indicative of how 

inaccessible the cave was during member 2 formation. The deposit appears biased 

towards animals which were relatively good climbers (primates and carnivores) 

even though these were not necessarily the most abundant creatures on the ground 

at that time (Pickering et al., 2004). In addition to this the fauna is time-averaged 

and represents an evolving ecosystem over a considerable period of time (Pickering 

et al. , 2004). None of the fauna used to date the member 2 two deposits was 

actually near to the hominid skeleton StW 573. All of the fauna came from the 

eastern end of the member 2 deposit. 

6Known as SE = West Pit of the Sterkfontein extension locality 
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The faunal dating of member 2 was based on two pieces of evidence; (i) the faunal 

dating of member 4 and the stratigraphic separation between these two units. (ii) 

the occurrence of a Chasmapo7lhetes 7 specimen. 

The upper contact of member 4 is separated from member 2 by a 15m deep de- 

posit. Partridge (in Clarke and Tobias 1995), estimates that member 3 alone would 
have taken between O-3Ma and 0.5Ma to accumulate. Based on this Clarke and 
Tobias (1995) stated that member 2 could not be dated at less than 3. OMa and 

a preliminary age was given to member 2 of 3.0-3.5Ma (Partridge, 2000). The 

Chasmaporthetes nitidula found in member 2 has also been used to infer an age 
for this deposit. Turner (1997) says that the teeth of this specimen are generally 

similar to the specimen found in member 4, but importantly he also draws a com- 

parison between the dentition of the member 2 C. nitidula and that of a C. australis 

at the Cape Province site of Langebaanweg'. Langebaanweg was dated to c. 5 Ma 

but Turner (1997) stresses that it is not yet clear whether these two specimens are 

conspecific. There are only three such specimens within the Transvaal deposits 

that have been assigned to this genus that display the same dentition formation, 

the third of which was found in member 1 at Swartkrans. Due to its presence in 

both members 2 and 4 at Sterkfontein and at Swartkrans, Berger et al. (2002) do 

not think that this taxon is a sensitive chronological indicator. 

Some researchers disagree with this dating method and these dates. McKee (1996) 

says that the dating of member 2 is "tenuous", as it assumes uniform sedimentation 

rates. McKee (1996) considers the member 2 fauna are suggestive of a more recent 

age and places member 2 just prior to member 4 and after the Limeworks. Berger 

et al. (2002) also do not agree with the current faunal dating of the deposits at 

Sterkfontein, citing the appearance of Equus9 remains as evidence for the maximum 

age for the member 4 deposit'O Berger et al. (2002) also claim that only 4 of the 

taxa assigned to member 4, all of which are endemic to South Africa, are not found 

in other late Pliocene or early Pleistocene sites such as Kromdraai or Swartkrans. 

The rest of the fauna, states Berger et al. (2002), almost completely overlaps with 

7 Hyena 
8South African site. 
9Horse 

IOBerger et al. (2002) say that Equus remains in Africa are unlikely to surpass an age of 2.36Ma. 
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supposedly younger sites. However it has been shown before that species can 

exist relatively unaltered for many thousands if not millions of Years. Due to the 

wide temporal ranges of some of the member 4 species, whilst Berger et al. (2002) 

"tentatively support" the theory that Sterkfontein member 4 is older than the 

member 5, Swartkrans and Kromdraai deposits, they suggest a maximum age for 

member 4 of 2.5 Ma. In view of this Berger et al. (2002) then suggest that the 

minimum age for member 2 and StW 573 should then be set at 1.5Ma and that 

the faunal evidence does not indicate an age in excess of 2.5 Ma. 

Summary 

Faunal dating has certainly been the most widely applied dating technique in 

the South African caves, but it is by no means ideal. Comparing fauna between 

South and East Africa is always going to have its difficulties. The climates are not 

exactly matched and the mode of fossil accumulation is completely different. The 

cave environments in South Africa have often been biased towards certain types 

of animals, just as they are today. Faunal assemblages may further be affected by 

factors such as preservational bias, predation or scavenging by carnivores, and the 

inclination of an animal to enter or climb into a cave (McKee, 1991). These factors 

mean that assemblages are difficult to compare to East African sites and may not 

even provide a true representation of the ecosystem that existed within the South 

African valleys. 

3.2 Palaeornagnetic dating 

The following theory of palaeomagnetic dating is taken from Verosub (2000). 

Over time the earth's magnetic field fluctuates. During formation, magnetic grains 

in rocks and sediments, are magnetised parallel to the earth's magnetic field. These 

deposits then preserve a record of the direction of the magnetic field in which they 

formed. The largest variations in the magnetic field involve complete reversals in 

the polarity. These are known as polarity transitions. The field is termed normal 

when it is orientated in the same direction as the present day and reversed when 

it is orientated in the opposite direction. By measuring the shifts from normal 
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N 

Figure 3.2: Schematic to show the relationship between the Intensity (F), the In- 

clination (I) and the Declination (D) - used to infer directions of polarity preserved 

during rock formation - with the cartesian components North (N), East (E) and 

Vertical (V). From Verosub (2000). 

to reversed over a sedimentary deposit and correlating this with a known Global 

Polarity Timescale (GPTS), see Figure (3-3) a sequence of rocks can be dated. 

The earth's magnetic field is a vector field and can be defined by Intensity (F), 

Inclination (I) and Declination (D), which are related to the cartesian components 

North (N), East (E) and Vertical (V), Figure (3-2). In a normal polarity field the 

inclinations are downward in the Northern hemisphere and upward in the Southern 

hemisphere. Declinations are usually northwards in both hemispheres. When 

the field is reN-ersed the inclinations are upward in the Northern hemisphere and 

(lownward in the Southern hemisphere. The declinations are usually southwards 

in both hemispheres. 
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A normal or reversed polarity state can endure from 50,000 to millions of years 

and it takes a few thousand years to convert from normal to reversed or vice versa. 

The last full-scale polarity transition was 780,000y ago. Figure (3.3) shows the 

GPTS for last 5.7Ma. 

Palaeomagnetic dating of sedimentary deposits is best applied to silts, siltstones, 

muds and mudstones; occasionally sands and sandstones. Limestones are usually 

weakly magnetised but are very reliable when magnetisation can be measured. In 

order to date the sequence it is necessary to have a prior estimate of the age, 

otherwise several possible correlations of polarity transitions to the GPTS could 

be made. A correlation between the pattern of the undated sequence and the 

GPTS can be made if you believe the sedimentation rate to be uniform. However 

this is often an inappropriate assumption. Correlation therefore usually requires 

tight biostratigraphic control or one well dated horizon. Better still would be the 

knowledge that the uppermost horizon is modern, of normal polarity and therefore 

represents the Bruhnes chron. 

The issues for cave dating then are ones of poor magnetisation in limestones, 

growth hiatuses and physical movement of samples after magnetisation. A break 

in the sedimentary record could lead to misinterpretation of the palaeomagnetic 

sequence as could a sample which has been reorientated. 

3.2.1 Palaeomagnetic dating at Sterkfontein 

At Sterkfontein palaeomagnetic dating was applied across the sequence from mem- 

ber I to member 6 by Jones et al. (1986). The samples were often found to be 

unstably or intermediately magnetised, and this was put down to a high level 

of disturbance during deposition, i. e. collapse of cave roofs, walls or collapse of 

sediments into lower chambers (Jones et al., 1986). Samples from the top of the 

sequence, members 5 and 6 were very "confused" and were not considered when 

dating the deposits. Overall the remainder of samples seemed to have been formed 

during a normal polarity event, excepting a couple of reversed periods at the top 

of members 2 and 3. The trouble with such normally magnetised samples is that 

it is sometimes not clear whether this is a relict of their formation, or remagnetisa- 

tion by a modern magnetic field. Members 2.3 and 4 were assigned to the Gauss 
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Figure 3.3: Global Polarity Timescale (GPTS) for the last 5.7 Ma. The black bands 

represent periods where the field was of normal polarity and the white bands when 
it was reversed. The Gauss epoch, for example, was generally a normal polarity 

epoch with two reversed events, the Kaena and the Mammoth. From Verosub 

(2000). 
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normal epoch which stretches from 2.58 to 3.58 Ma", with two alterative interpre- 

tations of the positioning of the reversals. These results seemed consistent with the 
faunal interpretation and revealed that Sterkfontein was probably younger than 

the Limeworks member 3. Nonetheless Jones et al. (1986) recommended further 

palaeomagnetic work at Sterkfontein in order to achieve a "less shadowy result. " 

A study by Partridge et al. (1999) built on the work done by Jones et al. (1986). In- 

stead of using breccia, which does not appear to preserve a stable magnetic signal, 
Partridge et al. (1999) used member 2 flowstone horizons which are interbedded 

with the StW 573 bearing breccia within the Silberberg Grotto. According to the 
faunal evidence, see Section (3.1.2), the limits for the member 2 sequence were set 

at 2.7Ma and 4. OMa. A total of five magnetic reversals were identified within the 

sequence. Following correlation of the observed polarity with the GPTS of Cande 

and Kent (1995) the hominid was placed between 3.22 and 3.58 Ma. By interpolat- 

ing sedimentation rates and assuming uniform deposition in the different flowstone 

layers this age was refined to 3.30 to 3.33 Ma for StW 573. See interpretation A in 

Figure (3-4) 

The negative aspects of the Partridge et al. (1999) study are that a complete 

stratigraphic sequence is not represented as the interlayered breccias have been 

ignored; the law of superposition is assumed to apply; and assumptions have been 

made about the rate of sedimentation. There is also the possibility of magnetic 

remanence caused by drilling of the samples (Partridge et al., 2000). 

Following doubts regarding the faunal dating of members 2 and 4, see Section 

(3.1.2), Berger et al. (2002) have produced an alternative interpretation of the 

palaeomagnetic data, Figure (3.4). If this hypothesis is indeed true this would give 

the hominid StW 573 an age of between 2.15 and 3.04Ma (Berger et al., 2002). 

Berger et al. (2002) present several other interpretations of the palaeomagnetic 

data and conclude that StW 573 is not older than 3.04 Ma and could be as young 

as 1.07 to 1.95Ma. 

'1 Dates of Gauss normal epoch at time of publication were 2.48 to 3.4 Ma. 
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Figure 3.4: Two interpretations of the palaeornagnetic record for member 2 Sterk- 

fontein using the GPTS. Interpretation A is from Partridge et al. (1999). Inter- 

pretation B is from Berger et al. (2002). Figure from Berger et al. (2002). 



55 

3.2.2 Palaeomagnetic dating at the Limeworks 

Preliminary palaeornagnetic studies were undertaken at the Limeworks by Brock 

et al. (1977) and indicated an age of between 2.8 and 3.31%, la for member 2. In 

order to correlate the measured polarity changes with the GPTS they used the 

approximate age calculated for the opening of the cave by Partridge (1973), (used 

as a maximum age for the deposits) and faunal dating by various researchers 
including Cooke (1970) and Vrba (pers. comm. in Brock et al. (1977)). These 

suggested an age of between 2.5 and 3. OMa for member 3, the hominid-bearing 

breccia, and therefore an approximate'younger limit. Brock et al. (1977) admit 

that their date "depends heavily upon the limits provided by the other evidence. " 

Following the preliminary work a more extensive study was published in McFadden 

et al. (1979). Member 2 was sampled from the East and West quarries and an 

equal sedimentation rate was assumed. Member 3 was not able to be sampled. 

Member 4 was sampled in the east and west, although the relationship between 

these deposits is complicated. In the results, only those from the eastern wall of 

member 4 were considered. The member 5 samples were inconsistent and were not 

included in the results. Using the evidence from Partridge (1973) and the presence 

of hominids, McFadden et al. (1979) concluded that the age of the Limeworks 

was less than 5 Ma. From this evidence they correlated their observed polarity 

timescale to the known GPTS. However this still allowed three interpretations of 

the observed polarity changes. These interpretations were made independent of 

the faunal evidence (McFadden et al., 1979). Member 3 was thought to be older 

than 2.90 Ma, but less than 3.32 Ma (McFadden et al., 1979). This study was 

criticised because of the lack of understanding of stratigraphic relationships at the 

Limeworks. It is without a complete uninterrupted polarity sequence. Without 

data for member 3 they have assumed that no polarity shifts have taken place 

during this member's formation. McFadden et al. (1979) state that fairly definite 

conclusions can be made on the ages of members 1 and 2, but the member 1 

samples had a weak magnetic signal and in order to make this assumption they 

have assumed that the geomorphological date is accurate. The GPTS has also 

been updated since this paper was published. 

Subsequently Partridge et al. (2000) took cores of sediment for palaeomagnetic 
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analysis through the entire thickness of the Limeworks deposit. It was found that 

the drilling sometimes affected the magnetic signal. Additional difficulties included 

an absence of horizontal orientation, and in some cases multiple samples from the 

same stratigraphic horizon showed differing directions of magnetisation (Partridge 

et al., 2000). The data from this study were thought to be of poor quality and half 

the data set had to be discarded (Partridge et al., 2000). 

The most recent palaeomagnetic work at the Limeworks was based on a complete 

stratigraphic sequence and found eight reversals over the depth of the deposit 

(Herries and Latham, 2002). Against the GPTS the most probable age span for 

the sequence is thought to be from 2.0 to 4.0 Ma. Further to this, the date for 

the sequence has been refined to between 2.1 and 4.29 Ma, with the A. afficanus 

remains from member 3 being between 2.58 and 3.04Ma (Herries, 2003). 

3.2.3 Palaeornagnetic dating at Kromdraai B 

The first palaeomagnetic study at Kromdraai B was that of Jones et al. (1986). The 

samples indicated a mostly reversed polarity. By comparing the result to the faunal 

estimates of Vrba (1981), they were able to place the Kromdraai B deposit within 

the Matuyama reversed epoch, between 0.73 Ma and 2.48 Ma. In spite of the trend 

of the magnetic field towards a reversed state, the results were not unequivocal. 

Jones et al. (1986) believe that "further study is likely to prove unprofitable" 

as Kromdraai B has few sedimentary remains, suffers from modification by the 

subsidence of cave walls and roofs, and is characteristic of a magnetic field in a 

wholly reversed state. 

The recent palaeomagnetic work at Kromdraai B by Thackeray et al. (2002) seems 

to have been more successful. This used flowstones and calcified sediments as 

opposed to the breccias used by Jones et al. (1986). Through faunal correlations 

with East African sites, the Kromdraai B deposits are thought to be between 

1.5 and 2. OMa. Samples KBM 7 and 8, which came from a flowstone layer that 

overlies the grey breccia associated with the hominids, were thought to relate to a 

reversed polarity event c. 2. OMa. Normally magnetised samples KBM 3,4,5 and 

6 were placed in the following Olduvai interval of 1.95 to 1.77Ma. From these, 

the hominid TM 1517 was inferred as being associated with a period of deposition 



. 57 

w1iich correlates with the beginning of the Olduwii Event 
. c. 1.9 Ma. 

3.2.4 Palaeornagnetic dating at Swartkrans 

The preliminary palaeomagnetic studies by Brock et al. (19-171) at Swartkrans, 

showed that the polarity of the samples was often unstable. Accordingly., it was felt 

that the results were not chronologically meaningful. 'No further palaeomagnetic 

studies have been carried out here. 

3.3 Electron Spin Resonance (ESR) dating 

ESR dating is a radiogenic method that can be applied to a wide range of insli- 

lating solids, varying in age from a few thousand to a few million years (Schwarcz 

and Lee, 2000). Unpaired electrons form in crystals that are exposed to ionising 

radiation (Griin et al., 1987). These pairs can then be detected by an ESR spec- 

trometer, which exposes the samples to a fixed microwave frequency while holding 

them in a varying magnetic field (Schwarcz and Lee, 2000). The amount of energy 

absorbed is a measure of the number of trapped charges. The intensity of the ESR 

signal increases as the sample is exposed to more irradiation over time (Schwarcz 

and Lee, 2000). Where the dose rate (grays per annum) is constant the age may 

be calculated by the formula; 

Age = accumulated dose / dose rate 

Where accumulated dose is the radiation received by the sample since it formed, 

and dose rate is the rate at which the sample was irradiated by radioactive elements 

(Griin et al., 1987). Dose rate is made up of two constituents, the internal dose and 

the external dose. In some samples, such as quartz, the internal dose is negligible 

due to the lack of radioactive components in the material (Schwarcz and Lee, 

2000). It becomes problematic when dealing with samples such as carbonates, 

which commonly contain initial amounts of U, or teeth, which have a tendency to 

uptake U after burial. Both of these affect the dose rate. The age can be corrected 

for U uptake by considering two possible uptake models; linear uptake (LU), where 

U was integrated at a coiistýiiit rate, or eý-ýirly uptake (EU), where U was acquired 
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soon after burial. Disequilibrium within the U-series decay chain can cause further 

problems, and the dose rates of the ... U decay must be corrected where this i': ' 
found (Griin et al., 1987). Events such as heating, stress or recrystallisation. tD IIa Is o 
limit the applicability of ESR, as they can reset the signal to zero (Griin ef al., 
1987). 

3.3.1 ESR dating in South Africa 

In South Africa, teeth from bovids and hominids were sampled for ESR dating. 

Within these it is the mineral hydroxyapatite 12 that is subject to alteration by 

radiation. Tooth enamel, as opposed to dentine or cement, is the favoured material 
because; (i) it has the largest crystals (leaving it less susceptible to recrystallisation 

and therefore resetting of the ESR signal), (ii) it is the least likely to uptake U Is 
it ages, and (iii) the ESR signal appears to remain stable even when samples are 

exposed to light or erosion (Griin et al., 1987). 

3.3.2 ESR dating at Sterkfontein 

An ESR study by Schwarcz et al. (1994) focused on bovid tooth enamel as a means 

of dating the member 4 deposits at Sterkfontein. The tooth enamel was exposed 

to radiation doses from internal and external U sources. These doses are in part 

controlled by the U uptake history of the tooth. Schwarcz et al. (1994) calculated 

both EU and LU ages. The samples were taken from random positions within 

member 4. Separations between the stratigraphic units within this member are 

difficult to differentiate, which made the samples difficult to compare (Schwarcz 

et al., 1994). The spread in age across the results appeared greater than those 

expected for routine experimental errors, and Schwarcz et al. (1994) believe this to 

be the result of varying dose rate within the deposits, which they did not account 

for. it is also possible that diagenetic activity may have partially reset the ESR 

signal in the enamel of the teeth (Schwarcz et al., 1994). Schwarcz et al. (1994) 

found the average ýiges of member 4 were: 

EU = 1.36 ± 0.30 ý Ia. LU = 2.08 ± 0.46 Ma. 

12Cillo(PO4)6(OH)2 
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3.3.3 ESR dating at Swartkrans 

The hominid SKW11, assigned to Australopzthecus robustus (Grine. 1993) was 

excavated from the Hanging Remnant, member 1. Curnoe et al. (2001) applied 
ESR dating to teeth from bovids and the hominid, SKWII, at Swartkrans. Four 

bovid teeth were sampled in total. Two of these were believed to be from the 

Hanging Remnant and two from member 2, although the exact provenance of the 

bovid teeth was unknown (Curnoe et al., 2001). Because it is important to be able 

to estimate the external dose rate from in-situ sediments, this could lessen the 

credibility of the results. The location of the hominid sample SKW11, was much 

better known. A piece of enamel was selected from the SKW11 tooth for analysis 

by the non-destructive ESR technique suggested by Griin (1995). However this 

meant that the U content of the sample could not be measured. The fragments 

were composed of both enamel and dentine (Curnoe et al., 2001). The bovid 

teeth were analysed using conventional ESR procedures (Curnoe et al., 2001). 

Combining ESR with U-Series, the study produced "reasonable" results for these 

deposits. The best age estimate for the Hanging Remnant was 1630 ± 160 ka with 

a maximum age of 2110 ± 210ka (Curnoe et al., 2001). 

3.3.4 ESR dating at Kromdraai B 

A single bovid tooth from a block of breccia known to post-date the layer of 

flowstone dated by palaeomagnetic analyses, Section (3-2.3), was subjected to ESR 

dating by Curnoe et al. (2002). Weighted average dates were achieved of 568 ± 27 

ka for an EU model and 814 ± 32 ka for a LU model. 

3.4 Cosmogenic burial dating 

The following description of cosmogenic burial dating is from Granger et al. (1997) 

and Granger et al. (2001) unless stated otherwise. 

Cosmogenic burial dating is based on the decay of the cosmogenic nuchdeS 26 Al 

and 1OBe in quaxtz grains. In caves where deposits in the range of 0.3 to 5 Ma have 

been buried and shielded from cosmic rays this technique can be applied. 
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At the ground's surface the cosmogenic nuclides 26 Al and IOBe are produced in 

quartz by reactions with secondary cosmic ray neutrons and muons. When the 

quartz grains are subsequently buried, the production of these cosmogenic nuclides 0 
dramatically decreases or ceases altogether. As the radionuclides decay at different 

rates the ratio of 26 Al/1OBe lowers over time, and this can be used to infer the time 

elapsed since the rock was buried. 

In order to determine burial age the ratio of "AI/I'Be prior to burial must be 

calculated. This is estimated by assuming a uniform erosion rate for the exposed 

surface rock; 
1g P26 (, 

+ 
A) 

(N26) 

-- 
Tlo 

(3.2) Nio 0p1+ E) 
10 

( 

l26 A 

Where N26, NlO, P26, and Plo are the concentrations and production rates of 2'Al 

and "Be; E is the erosion rate; A is the cosmic ray penetration depth"; 726 and 

-rjO are the radioactive meanlifes of "Al and 1OBe 14 

Concentrations of "Al and "Be in buried deposits depend on two unknowns; burial 

time and preburial concentrations. Production rates are assumed to be constant 

since any variations in production rates affect the two isotopes the same and should 
have little effect on the ratio. Such variations may however have an effect on the 

erosion rate estimation. 

After production has ceased, the radionuclides will decay according to the follow- 

ing equation; 

Ni = (Ni)oe- tburial/'ri (3-3) 

Where Ni is the concentration of either 26 Al or "Be, (Nj)O is the concentration 

of either initially, -ri is the radioactive meanlife of either MAI or 'OBe, and t is 

time since burial. 16 Al decays faster than "Be so over time the ratio decreases 

exponentially; 
N26 N26 

e- 
tburial (1/726 - 1/TlO) (3-4) 

Nio 
(Nlo)o 

1360cm in a rock of density 2.6g CM-3 
14 T26 - 1.02 ± 0-04my; 7-10 = 2.18 ± 0.09my 
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Granger et al. (1997) solved these equations iteratively. One iteration involves 

inputting a guess for the erosion rate into Equation (3.2), then solving Equation 

(3.4) for tburial before solving Equations (3-3) for initial concentrations of 26 Al and 
10Be. The resulting initial concentrations can be divided to give a new value for 

the initial ratio I 
(N2&) 

. 
This can be input back into Equation (3.2) to obtain Nio 0 

a new estimate of the erosion rate. This process is repeated until convergence is 

achieved, i. e. the difference between consecutive erosion rates is negligible. The 

first iteration is different to subsequent iterations as it assumes a value for E rather 

than ( N2& ) 15 
Nio 0 

These equations can be used to calculate pre-burial erosion rates and estimate 
burial times where the following conditions are satisfied; (i) initial "Al and "Be in 

sample were not subject to previous burial. This technique makes the assumption 

that the sediment was not buried before it was deposited in its current position in 

the cave. If it had been buried for a significant period of time prior to this then 

the burial time would be overestimated. Errors associated with prior burial or 
departure from a steady erosion state are estimated by calculating the burial age 

of modern surface sediment - this should be indistinguishable from zero - and by 

replicate analyses of different but related samples from one or more sites. Although 

replicate samples may have varying "Al and "Be concentrations they should still 

have the same burial age; (ii) the sediment was buried quickly (with respect to 

radioactive decay and total burial time); (iii) sediment was buried deep enough so 

production of cosmogenic radionuclides ceased - for age errors of < 10%, sediment 

buried for 4 my would need to have been buried at a depth of > 26m. Production 

of nuclides after burial will increase ages with increasing burial time and pre-burial 

erosion rate, and decrease ages with increasing burial depth. 

Overall errors on ages are reported in two ways. Initial errors reflect analytical 

uncertainty only. When comparing burial dates between specimens this error is 

sufficient. The second error represents parenthetical uncertainty and encompasses 

15This is the method of calculation assumed from the information given in Granger et al. (1997) 

although the method in the paper is slightly unclear. Granger et al. (2001) and Partridge et al. 

(2003) use the same equations but do not mention iteration. 
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[Sample Location Depth (m) Burial age (Ma)t Burial age (Ma)ý Burial age (Ma)S 

Upper 0.8m above 24 4.72 ± 1.08 4.26 ± 1.08 4.09 ± 1.08 

StW 573 

Middle Adjacent to 25 4.17 ± 0.35 3.88 ± 0.35 3.57 ± 0.35 

StW 573 

Lower 0.7m below 26 3.78 ± 0.44 3.56 ± 0.44 3.19 ± 0.44 

StW 573 

Surface 0 0.01 ± 0.14 N/A 0.03 ± 0.14 

Table 3-1: Table of results of cosmogenic burial dating, member 2 Sterkfontein. 

= Calculated burial age following all corrections; f= burial age if effect of muon 

activity were ignored; §= burial age if alternative 1OBe meanlife were applied. 

Uncertainties on burial ages are total uncertainties. 

the systematic errors in radioactive decay rates, production rates, and uncertainty 

in the Be ratio in the spike. These total uncertainties are applicable when trying 

to calculate a calendar age. 

3.4.1 Cosmogenic dating of StW 573 

Prior to the application of this technique at Sterkfontein, cosmogenic burial dating 

had only been applied twice previously; refer to Granger et al. (1997) and Granger 

et al. (2001). The following information regarding the cosmogenic work done at 

Sterkfontein is taken from Partridge et al. (2003), and the online supporting ma- 

terial for this paper, unless otherwise indicated. 

Three samples were collected from the member 2 calcified breccia near to the StW 

573 skeleton. These were between 24 and 26m below the surface. The burial ages 

were found to agree within analytical uncertainty. Table (3.1) shows the results 

for the three different layers and their connected errors. Also included is a surface 

sample which was taken to test for a modern day burial age of zero. Partridge et al. 

(2003) state that these results indicate that the previous palaeomagnetic results 

sequence was placed two reversals too young. 

Some criticism has been directed at the Partridge et al. (2003) paper. Gibbons 

(2003) writes that many researchers are wary of these results as Sterkfontein has 

a complicated stratigraphy, with collapsed ceilings and open shafts which may 
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have allowed mixing of sediment. In response to this Clarke et al. (2003) state 
that the Sterkfontein stratigraphy is not in fact particularly complex and that 
the overall cave stratigraphy is not important in the validation of these results. 
However there certainly seems to be a real possibility that the sediments used 
for cosmogenic studies may have originated in caves now extinct, where collapse 
or subsidence moved sediments into other chambers. In both Partridge (1978) 

and Partridge and Watt (1991) the modification of the sedimentary sequence at 
Sterkfontein by subsidence into underlying cavities is discussed. In such a case 
the sediments would have already been buried for hundreds of thousands, perhaps 
millions of years, before they became part of the breccia into which StW 573 was 
cemented. 

The depth at which these samples were collected is not beyond the penetrating 
influence of muons according to Partridge et al. (2003). For an accurate age to 

be calculated the effect of muons must also be considered. Partridge et al. (2003) 

made the assumption that the quartz tested, originated in a landscape experiencing 

steady state erosion. This allowed for calculation of a correction for the effect of 

muon activity on the age. This correction however is only applicable if the samples 

were exposed to a constant amount of muon activity since they formed. Most of 

the hominid caves in South Africa had roofs that were considerably higher than 

the present day land surface, so it is possible that their present elevation is the 

closest to the surface these samples have been in a long time. Below such depths 

as these they would not experience enough muon activity to justify correction. If 

the effect of muons was ignored then the burial dates would decrease, as shown in 

Table (3.1). 

Further to this there is some debate as to the meanlife which has been assumed for 

"Be. The meanlife of "Be used by Partridge et al. (2003) of rio = 1.93 ± 0.10 is 

14% lower than that previously accepted by many reseaxchers. Using the previously 

accepted meanlife of rjO - 2.18 ± 0.09 would reduce the calculated burial ages by 

roughly this percentage too, see Table (3.1). 

In view of these issues it is suggested in Gibbons (2003) that this method should 

be tested on a South African cave with a known chronology, and over a sequence 

of sediments to confirm that ages increase in the correct direction. This seems a 
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sensible idea, in that it would ascertain whether this technique is really suitable 
for these deposits, and it would give future results more grounding. 



6.5 

Chapter 4 

Radiogenic Isotope Dating 

4.1 The laws of radioactive decay 

In 1902 Rutherford and Soddy performed a series of experiments that enabled 

them to explain the radioactive decay process. They concluded that radioactive 

decay is a spontaneous process whereby atoms of a certain element dcca. y to atoms 

of another element, and the rate of this decay is directly related to the number 

of atoms present (Faure, 1986). The following equations describe the basics of 

radioactive decay and growth. Sections (4.1.1) to (4.1.4) are based on Faure (1986), 

except where specified. 

4.1.1 Decay of parent to a stable daughter 

If we consider firstly the decay of an unstable parent nuclide to a stable daughter. 

The parent nuclide will decay at a rate that is proportional to the number of atoms, 

present at time, t; 

d_V, 
7 o( A, 

t 
(4.1) 

Where -(12VIdt is the rate of change of parent atoms (this is negative because 

the rate decreases over time). Since each radionuclide decays at a different rate a 

proportionality constant, A. is introduced. that is particular to the radionuclide in 

question. This represents the probability that an atoni will decav within a certain 
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unit of time. Therefore; 

dN 
dt = AN (4.2) 

By integrating and assuming that N= No at t=0 the number of parent atoms 
remaining at any time t can be calculated; 

N= Noe-At (4-3) 

Where there are no daughter atoms present initially, Do = 0, the number of daugh- 

ter atoms, D*, at time t can be calculated; 

D* = No -N (4.4) 

Therefore; 

No(l - e-At) (4-5) 

Where D* is the number is stable daughter atoms produced by the decay of a 

radiogenic parent whose abundance was No at t=0. 

When Do -7ý 0, and since it is more useful to relate the number of daughters at 

time t to the number of parents remaining at that time (because the parents abun- 

dance can be measured), it is necessary to further manipulate this equation. From 

Equation (4.3); 

No = Ne\t (4-6) 

Substituting this into Equation (4.4); 

N(e\t - 1) (4.7) 

The total number of daughter atoms at time t can then be given as; 

Do + N(e\t - 1) (4-8) 

This equation is the basis of geochronological dating. 
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4.1.2 Half life 

The rate of decay of a radionuclide can also be expressed in terms of its half life, 
tl/2. This is the time required for half of the number of atoms to decay. ýVhen 
t= tl/2, then NINO = 1. Substituting these into Equation (4.3) it is found that: 2 

In 2 0.693 tl/2 =-=- 
AA 

4.1.3 Decay series 

(4.9) 

Among naturally occurring U and Th species it is common to find that the daugh- 

ter product is itself radioactive and is subject to decay. Bateman (1910) wrote a 

solution to a system of differential equations that allowed the above calculations 

to be extended to calculate the number of atoms of any radionuclide within a de- 

cay series. For example, the rate of decay of the daughter nuclide, N2, is found 

by calculating the difference between the rate at which the parent, N1, decays to 

produce the daughter, and the rate at which it decays itself; 

dN2 
": -AlNl - 

A2N2 

dt 
(4.10) 

Where N, and N2 are the numbers of atoms at any time, t, and A, and A2 their 

respective decay constants. Combined, Equations (4.3) and (4-10) yield; 

dN2 
+A2N2- AiNjoeAlt =0 dt 

The solution to this equation is given by 

A, 
-ý-Njo(e-Alt - 

e-A2t + Ný2'0 e 
-A2t (4.12) 

2_1 

The first set of terms describe the growth and decay of daughter atoms that origi- 

nated from the parent. The second term describes the contribution of any daughter 

atoms present initially (Faure, 1986; Riedlander et al., 1981). Using the Bateman 

equations it is possible to solve firstly for a series of successive decays where the 

assumption is made that at t= 01 N21 = N30 = ... No, = 0, resulting in (Faure, 

1986; Friedlander et al., 1981); 
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= Cle-Alt + (-'. 
)(--, 

\2t 
... 

IX71 
t 

(4.13) + 

Where; 

A, A2 *'' An-I 
-0 cl - (A2 -Al) (A3- A, ), ** (An - Al) -N I 

C2 = 
A, A2 *** An-1 

No. etc ... (4-15) (Al - 
A2)(A3 

-A2)-(An - 
A2) I' 

Where N20, N31 ... Nno :ý0, a Bateman solution for '-\Tnin an (N - l)-membered series 

can be added where the first daughter acts as the parent and at t-0, N. ) - N. " 2 

and so on for further members of the decay series (Friedlander et al., 1981). 

4.1.4 Secular equilibrium 

In a decay series where the parent isotope is much longer lived than its daughters, 

ie. Al < A2) A3 ** *A., the decay of all daughters will be limited by the decay rate 

of the parent. In time, a state of equilibrium is reached where the decay rate (also 

known as the activity) of each daughter equals that of the parent nuclide. This is 

also true for the rate of growth of the stable daughter product (Dickin, 1997); 

Activity = AoNo = AjNj = 
A2N2 =AnNn (4.16) 

This is known as Secular Equilibrium. Where only the parent nuclide is present ini- 

tially the number of radiogenic daughters that form from its decay can be treated 

as the number of stable daughter atoms; 

(4.17) 
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Isotope I Half-hfe(tl/2, Y) 
I 

Decay Constant( 

238 u 4.47 x 109 1.55125 x 10-10 
235 u 0.704 x 109 9.8485 x 10-10 
232 Th 14.01 x 109 4.9475 x 10-11 

Table 4.1: Half-lives and Decay Constants of Parent U and Th isotopes. Steiger 

and Jdger (1977). 

4.2 Uranium- Thorium-Lead methods of dating 

These methods of radiogenic dating are based on the decay of 238UI235 U and 
232 Th 

to stable isotopes of Pb. 

The actinides U and Th generally have a low abundance in the solar system but 

are enriched in rocks such as granites, shales, sandstones and carbonates. U and 
Th both exist in several oxidation states on the surface of the earth. U is generally 
found in the 6+ state and Th only in the 4+ state. There are three naturally 

occurring isotopes of U- 234U 
7 

235 U and 
238U 

- all of which are radioactive. Th is 

present primarily as "'Th, with five other isotopes acting as intermediate daugh- 

ters within the 238UI 235U 
and 

232 Th decay chains. Of the four stable isotopes of 

Pb, three are the end daughter products of the 238Uý 235 U and 
232 Th decay chains. 

The fourth one, 204 Pb, is the only non-radiogenic Pb isotope occurring naturally. 

The half-lives of all three of these parent isotopes are large relative to their daugh- 

ters meaning secular equilibrium can be readily achieved by each decay series. The 

half-lives of "T and 232 Th are comparable with the age of the earth, and the age 

of the universe, respectively. 135U, however, has a much shorter half-life, meaning 

that most primordial 
235U has by now decayed to 207 Pb. See Table (4.1). 

Ages can be calculated from these radioactive systems by two methods; (i) decrease 

in concentration of a radionuclide from an initial amount, or build-up of a stable 

daughter product (U-Pb or Th-Pb dating); (ii) measurement of return to secular 

equilibrium within a decay series following a disturbance (U-series disequilibrium 

dating) - 

Criteria which must be satisfied for these techniques to be employed axe; 



70 

1. Concentrations of parent and daughter nuclides must be sufficiently high that 

they can be accurately measured. 

2. The decay constants must be accurately known. These were agreed by the 
IUGS Subcommission on Geochronology in 1977 (Steiger and Jdger, 1977). 

3. The sample being analysed must be representative of the rock being dated. 

4. The system must have been closed to parent or daughter nuclides since for- 

mation, or perturbation in the case of disequilibrium dating. 

5. Daughter products have not have been present initially or amounts present 

must be accounted for. 

Where these are all taken into account the three decay series should give a concor- 
dant age. 

4.2.1 Uranium-series disequilibrium dating 

Geological processes such as weathering, transportation and deposition often result 

in elemental and isotopic fractionation of nuclides (Ku, 1976). As a result of this, 

U and Th decay chains in newly formed deposits axe often in disequilibrium. This 

can be used to date a deposit by taking advantage of the relationship between U 

and Th and their relatively short-lived radiogenic daughters. 

U-series disequilibrium dating falls into two categories; daughter excess methods; 
daughter deficiency methods. Reviews of these methods have been covered most 

recently by Bourdon et al. (2003). These methods have proved useful for dating 

Pleistocene carbonates, and more importantly for dating or improving understand- 

ing of dating speleothern and hominid remains. 

Daughter excess methods 

Daughter excess methods are applicable when a deposit is formed with an excess 

of a daughter product which can not be supported by the decay of its parent. 

Providing the initial excess is known, samples can be dated by measuring the 

degree of excess remaining, as the system returns to secular equilibrium. 
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An example of this is the 234U_238U 
method . 

234 U is formed by the rapid decay of 
two intermediate daughters from 238 U. The nature of these decay processes mean 
that 234U 

may be more easily removed from the crystal lattice, or may exist in 

the more soluble 6+ valency (Ku, 1976). Both result in the fractionation of U 

and 
234U/238 U activ 

' 
ity ratios larger than unity in natural waters. The IU-IU 

technique can date deposits back to c. 1.5 Ma depending on the initial 234 U excess 
(Cascoyne et al., 1978). The general equation applied is; 

234U/238U) 
_ 1] = [(234U/238U)o 

- 
I]e-, \234t (4.18) 

Where 234U/238 U and 
234U/238 UO are the current and initial activity ratios respec- 

tively. 

Daughter deficiency methods 

Daughter deficiency methods can be used where a parent nuclide is incorporated 

during the formation of a deposit but the daughter nuclide is not. The age is 

determined by measuring the growth of the daughter towards secular equilibrium. 
This could span up to seven of the daughter's half-lives. 

The131Th- 234U 
method is possible because of the fractionation of U and Th in the 

hydrosphere. In oxidising environments U exists as the highly soluble U02+ ion, 2 

whereas Th remains in the insoluble tetravalent state. Th is almost exclusively ad- 

sorbed onto sediment grains as soon as it is formed, leaving groundwater depleted. 

When deposits form from this groundwater, appreciable U is co-precipitated. The 

deposit will however be essentially free of initial Th. The ingrowth of 23'Th to- 

wards secular equilibrium can then be used as a dating tool. This method along 

with the corresponding nuclides from the 235 U decay chain (23'Pa_235 U dating) can 

be successfully applied to freshwater carbonates such as speleothems up to c. 0.4 

Ma. Such an age limit was possible with the improvement of mass spectrometry 

for this technique. Taking into account the disequilibrium. of 234U/238 U in natural 

waters the 23'Th_234 U relationship can be defined as, 
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230Th/234U 
=I- 

e-A230t 

234U/238U 
-ý230 

, 
ý230 - 

ý234 

1 

(1 234U/23, ýU 

I 

6- 
(A230 - A234) t) 

(4-19N 

Where 23'Th/234U 
and 

234U/238 U are the current activity ratios. 

Dating speleothem with uranium-series techniques 

The concentration of U in speleothems is dependant on the U content of the overly- 
ing bedrock and the duration that the groundwater is in contact with this bedrock. 

U concentrations in speleothem are known to be diverse both spatially and tem- 

porally, and have been found to vary from < 0.01 ppm to > 90 ppm (Thompson 

et al., 1975b; Cascoyne et al., 1978). 

The most successful U-series dating technique, as far as speleothems are concerned, 

is 23'Th_234U 
. 

This technique requires that all 23'Th within the speleothem is the 

result of 238U and 234 U decay. If the speleothern contains any detrital material 

such as sand or clay particles this may not necessarily be the case. Where large 

232 Th signals appear on a spectrum it can be assumed that some detrital material 

was incorporated in the deposit. A correction must then be made to account for 

the non-authigenic 230Th. This is not a simple correction as the 23'Th/232 Th ratio 

in sediments varies. 

234U_238 U disequilibrium. has been used to date speleothems beyond the range of 
230Th dates. In this case it is critical to know the initial 234U/238 U activity ratio. 

Estimating such initial ratios has proven to be extremely difficult. This problem 

can be overcome where there is an overlap between the 234U_238 U range and the 

230Th_234U 
range. If a stalagmite can be reliably dated by 2"Th_234 U and over that 

time range display relatively constant 
234U/238 U activities then these activities 

can be assumed to be true for older sections of the same stalagmite (Gascoyne 

et al., 1978). Thompson et al. (1975b) found that although initial 234U/238 U rat ios 

differed between stalagmites they were fairlv constant throughout the individual 

stala gmite. 

I it- I 2,34U/238U ýwtivities are also important considerat ions for U-Pb dating of Il M C3 
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speleothems and will be discussed further in Section (4-2-3). 

Dating hominid deposits 

Caves and their deposits act as traps for sediment and archaeological materials. 

Deposits that can be related to archaeological remains are ideal for use as a dating 

tool. U-series can provide useful ante or post quem dates for remains which lie in 

between two speleothem layers (Schwarcz and Blackwell, 1992). In such circum- 

stances it is vital to have an understanding of the stratigraphy of the surrounding 

deposits. 

U-series techniques have been used successfully to date speleothem deposits Nvhich 

are related to hominids, for example, the dating of Nanjing -', \Ian (Zhao et al., 2001). 

Unfortunately it is rare to find datable calcite alongside hominid remains (Pike 

and Pettitt, 2: 003). Hominids generally only resided in the outermost chambers 

of cave systems where the speleothems formed are more likely to contain detrital 

material. In such cases care must be taken to sample clean speleothem, in order to 

avoid erroneous 230Th_234 U dates. A good review of this and other archaeological 

applications of U-series is provided by Schwarcz and Blackwell (1992). 

Primary archaeological deposits such as bones and teeth have also been subjected 

to U-series techniques, but there are often problems with these materials. Bones 

and teeth are open-systems, meaning U can move in or out. They contain relatively 

high amounts of U, but most of this appears to accumulate after death. Living 

bone contains only a few ppb of U, whereas fossil bone can contain 1-100 ppm 

(Pike and Pettitt, 2003). There have been new developments in this field, such as 

modelling U uptake and distribution, or combining U-series with techniques such 

as ESR. A good review of these is provided by Pike and Pettitt (2003). Despite 

this the technique is still in its infancy. Zhao et al. (2001) confirmed the merits 

of speleothern and the limitations of teeth and bones when using this method. 

Ages from the teeth and bones came out significantly younger than those from the 

speleothem, suggesting that the U uptake by such artifacts was far more complex 

than present modelling could predict (Zhao et al., 2001). 
0 
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Figure 4.1: ... U decay chain showing important nuclides and their half-lives. After 

Dickin, 1997. Where N- Neutron No. and Z= Proton No. 

In terms of the South African cave deposits the age ranges of U-series techniques 

were the limiting factor. Despite the lack of absolute dates the current chrono- 

logical evidence showed that the caves were all likely to be older than I Ma, and 

Sterkfontein and the Limeworks considerably older than this. However, one of 

the younger hominid bearing caves, Gladysvale, has been successfully dated by 

230Th- 234U methods (Pickering, 2004). 

4.2.2 Uranium-Lead dating of young carbonates 

Figure (4.1) shows the main isotopes of interest in the 238 U decay chain. Where 

a, decay chain is considered to be in secular equilibrium initially, the intermediate 

daughters can be eliminated from age calculations and the parent can be consid- 

ered as liaving decayed directly to its stable daughter- 

206 Pb 206 Pb 
20-1pl) 20-lPb) 

238 Pb 
(e 238t 

204Pb 
(4.20) 

As per Equation (4.8), where 
106 Pb/204 Pb and 

(206 Pb/204 Pb)i are the present day 
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and initial daughter ratios respectively, and 
238U/204 Pb is the present day parem 

ratio. The isotopes are presented as ratios, against the only non-radiogenic isotope 

of Pb, 204 Pb. Ages are then calculated by-, 

1 
In 

206 Pb/204 Pb - 
(206 Pb/204 Pb)i 

+ (4-21) A238 238Pb/204Pb 

If samples have the same initial 206 Pb/204 Pb and different 238U/204 Pb (mu). then 

provided the rock has remained a closed system, a plot of 206pjý/204 Pb against mu 

at any later time will define a straight line, from the slope of which the age can 
be calculated. In order to produce a reliable isochron a sample should disphly a 

good range of mu values, preferably from a couple of thousand up to several tens 

of thousands. The isochron method is advantageous as it calculates the initial Pb 

ratio in plotting the data points. 

The possibilities of using U-Pb dating on carbonates were first explored bY 'Moor- 

bath et al. (1987). They used a Pb-Pb isochron to date the Mushandike stroma- 

tolitic limestones of Zimbabwe. Following on from this Smith and Farquhar (1989) 

used a 238U_206 Pb isochron to date marine carbonates, Israelson et al. (1996) dated 

calcite concretions and Rasbury et al. (1997) paleosol calcite. It was thought that, 

U-Pb dating could not be applied to rocks less than a few million years old due 

to the long half-lives of the parent isotopes and the tiny amounts of Pb that accu- 

mulate from this decay. Carbonates however, may have low Pb contents coupled 

with relatively high U contents. This results in a range of U-Pb ratios and measur- 

able changes in the growth of radiogenic end daughter products (Richards et al., 

1998). A general review of Pb-Pb and U-Pb geochronology is provided by Jahn 

and Cuvellier (1994). 

4.2.3 Uranium-Lead dating of South African flowstones 

Previous work 

This stiidý, follows on from the U-Pb dating of speleothem from ýVinnats Head 

Cave in the Peak District by Richards et al. (1998). They achieved 
238U_206 Pb (I; It C', 

within error of nil o-spectrometric U-Th age, for deposits of c. 250ka. Richards 
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et al. (1998) reported U concentrations of up to 37.1 Mg g-1 and Pb concentrations 

as low as 2.3ng g-'. Mu values for the same samples ranged from 700 to 1,141,000. 

Initial work done at Sterkfontein on flowstone layer 2C of member 2, see Figure 

(5.1), revealed promising results. An age of 3.04 ± 0.08Ma was achieved, Figure 

(4.2). Unfortunately the South African flowstones do not have the benefit of mul- 
tiple tests of concordance like the Winnats Head material as they are too old to 
be dated by U-Th, and do not contain enough 235U for a concordia plot. 

There were several issues to consider when applying this technique to these de- 

posits; 

Closed system behaviour 

The requirement of closed system behaviour sometimes limits the application of 
U-Pb dating where limestones are concerned. Closed systems in nature are rare 
because of the mobility of U and its daughter products (Smith and Farquhar, 

1989). Consequently these techniques are often thought to date early diagenesis 

rather than primary deposition (Jahn and Cuvellier, 1994; Jones et al., 1995). 

When diagenetic alteration occurs, U/Pb ratios may be affected by U or Pb expul- 

sion or incorporation (Jahn and Cuvellier, 1994). U loss is generally deemed to be 

the most likely because of the increased mobility of U in oxidising conditions and 

the insoluble nature of Pb (Jahn and Cuvellier, 1994). U has a low distribution 

coefficient into carbonate, and abundant data shows that it will tend to move out 

of U-rich primary carbonate during alteration events (Winter and Johnson, 1995; 

Jones et al., 1995). U movement has been identified by discordance between the 

two U-Pb schemes but concordance in the corresponding Pb-Pb plots (Israelson 

et al., 1996; Jones et al., 1995). Jones et al. (1995) found that there was more 

scatter associated with a U-Pb isochron than the corresponding Pb-Pb one. This 

confirmed that the dominant cause of the scatter in this case was U loss or gain. A 

study by Israelson et al. (1996) found that U loss had occurred on more than one 

occasion since sediment deposition. This was thought to be the cause of scatter on 

the isochron as Pb gain would have substantially lowered the "Pb/'O'Pb values. 

Pb, in contrast to U, tends to behave like Th, adsorbing onto suspended detrital 
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Figure 4.2: SK3 isochron from initial analyses at Sterkfontein by Cliff, R. A. Full 

data are not included in this thesis. Age calculated is a maximum age. Error 

ellipses are plotted at 2a level. Sample is from flowstone layer 2C. 
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particles (Jahn and Cuvellier, 1994). It does not therefore possess the same mo- 
bility as U. However, Smith et al. (1994) found that the transformation of fossil 

nautiloids from aragonite to low magnesium calcite resulted in a net loss of Pb. In 

spite of this, they found that the ages of samples which had experienced diagenesis 

were in agreement with those samples that hadn't. DeWolf and Halliday (1991) es- 
tablished a case for incorporation of detrital Pb following early diagenesis. Luckily 
the issue of Pb gain can thus be rectified, by simply avoiding samples with detrital 

components. 

Speleothems can also be susceptible to post-depositional alteration and loss or gain 
of radiogenic parents and/or daughter products. There is considerable evidence 
that recrystallisation of primary aragonite to calcite can result in remobilisation of 
U or its daughter products (Smith et al., 1991; Jones et al., 1995). However in the 

study by Richards et al. (1998), stalactites composed of pristine calcite were used. 
These showed no signs of post-depositional dissolution or reprecipitation. Primary 

structures were preserved and secondary mineral growths were absent. In addition 

to this, much research has found that the U-Pb dating system is very robust and 
is not always seriously affected by post-depositional diagenetic processes (Win- 

ter and Johnson, 1995). Rasbury et al. (1997) successfully dated palaeosol calcites 

and found no evidence of post-depositional diagenesis. DeWolf and Halliday (1991) 

studied a limestone with a well known depositional age and later disturbance event. 
Their dates agreed with previous studies and showed that the samples had under- 

gone alteration soon after deposition but had remained a nearly closed system from 

then on. The closed system behaviour was believed to be the result of both U and 
Pb being fully incorporated within the calcite structure (DeWolf and Halliday, 

1991). A study by Winter and Johnson (1995) observed that although mobility 

in isotopes had been initiated through extensive recrystallisation, because of the 

significant U enrichment of the sample this had not affected the age calculation. 

They regarded the age to be geologically meaningful because of the spread in the 

U/Pb values, and the concordance between this and a precursory dating method. 

These studies prove that alteration does not necessarily result in ages which are 

incorrect. 

What is clear from the previous studies is that there is often no way to tell whether 

U or Pb movement has occurred. Partitioning of U and Pb during secondary 
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carbonate precipitation is not well understood (Smith et al., 1994). Even if an 
isochron is produced, this can not provide definitive evidence as to geochemical 
changes during the rocks history. Some diagenetic events have proved to be so 
soon after deposition that they do not affect the calculated ages, whilst other later 

events that have the potential to affect the U-Pb system have not. Jones et al. 
(1995) could not trace U movement with any of the petrographic or geochemical 
studies they undertook to supplement their geochronological research. Neither 

could these studies confirm or disprove the ages calculated. In the absence of any 
other solution to this problem Jones et al. (1995) recommend picking "the solidest, 
freshest looking samples possible. " 

As the only gas in the "'U decay chain, loss of "'Rn is also something to consider. 
However, by measuring the activities of "'Th and "OPo (nuclides either side of 
222 Rn in 238 U decay chain) Richards et al. (1998) showed that 222 Rn loss in dense 

columnar crystal speleothems is negligible. In the present stud y 222 Rn loss was 

not further investigated, but every effort was made to ensure that only dense 

speleothem was analysed. 

Common lead and initial lead ratios 

The U-Pb isochron represents the mixture of radiogenic and common Pb present 
in the sample. To achieve high mu values when dealing with young rocks, low 

initial levels of common Pb are essential. Contamination by common Pb will 

result in lower 'O'Pb/'04Pb ratios and the radiogenic signal will be indistinguishable 

(Israelson et al., 1996). Fortunately due to the ionic size of Pb its incorporation 

into calcite is much less favourable than that of U. However, detrital material, 

which is free of the calcite lattice, is also known to add common Pb to limestone 

and will contribute to its isotopic signature (DeWolf and Halliday, 1991). 

Initial Pb compositions of secondary carbonates are generally determined by the 

fluid from which they precipitated (Smith et al., 1991), which in turn reflects the 

lithology of the aquifer and soil through which the fluid passes (Jahn and Cuvellier, 

1994). If Pb is incorporated from a variety of sources this may result in heterogene- 

ity in the forming deposit. Initial Pb heterogeneity can cause complications when 

isochrons are used as the isochron method assumes initial isotopic homogeneity. 
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Winter and Johnson (1995), Smith et al. (1994) and DeWolf and Halliday (1991) 

all reported variation in initial Pb ratios, which can lead to scatter on the isochron. 
To counteract this, ages should be governed by samples with high mu values, as 
these are less sensitive to the initial isotopic composition and therefore give the 
lowest age uncertainties (Jones et al., 1995). 

Initial 234U/238 U disequilibrium 

The standard calculations of U-Pb ages, as in Equation (4.21), make the assump- 
tion that the 238 U decay series is in secular equilibrium at the time of deposition. 

However, when a sedimentary deposit forms it is normal for a state of disequi- 

librium to exist between 238 U and its daughters (Ku, 2000). In speleothem this 

is the result of radioactive disequilibrium within the meteoric waters forming the 

deposits. 

In using U-Pb dating for such young material, initial U-series disequilibrium must 

be taken into account when calculating ages (Ludwig, 1977; Wendt and Carl, 1985). 

Initial disequilibrium will only affect those daughter nuclides that have a half-life 

within the age range of the sample ie. age is; zzý 6-7 times the half-life. In the 238U 

decay series, where deposits of a few million years are being dated, this includes 

234 U and 23'Th. 

The main causes of 234 U enrichment in groundwater are believed to be recoil of 
2"Th from the alpha-decay of "'U, and preferential leaching of 234 U from areas 

of the lattice which have been damaged by radiation (Porcelli and Swarzenski, 

2003). In freshwater the 234U/238 U activity is usually greater than unity and can 

reach values >10. When excess 
234U is incorporated in cave deposits the resulting 

accumulation of 206 Pb is a product of this as well as the parent isotope 238U. 

Standard age calculations assume that all the accumulated 
206 Pb originated from 

the parent 
238U isotope, and do not account for any additional 

206 Pb produced 

via initial disequilibrium. Where initial disequilibrium. was present (activity of 
234U/238U> 1) the calculated age will be older than the true age and can only be 

treated as a maximum age for the given deposit. 

The accumulation of radiogenic 206 Pb is also influenced by the discrimination 
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against the incorporation of Th in the forming deposit. This results in a defi- 

ciency of IO'Pb from the decay of the intermediate daughter 23OTh, although this 

effect is usually more than cancelled out by the 206 Pb produced from initial 234U 

excess. Some excess 226 Ra will also be incorporated in speleothems when they 

form. Regardless, as it is unsupported by its parent 230Th and only has a half-life 

of 1600 y, it won't significantly affect samples that are older than 200 ka (Richards 

et al., 1998; Faure and Mensing, 2005). 

Ignoring initial disequilibrium can have significant effects on the age estimate. In 

the Richards et al. (1998) study, the results would have yielded an age of 187± 9 ka, 

as opposed to 248±10ka, if disequilibrium had not been considered. The true age 

is higher because the standard age calculations do not take into account the deficit 

in 'O'Pb in rocks as young as these. In the South African flowstones this effect 

would be negligible in comparison to the increase in the true age resulting from 

the initial excess 234 U. Figure (4.3) shows how different degrees of disequilibrium 

alter the outcome of the age calculation. 

A study of the disequilibria present in the Transvaal dolomite aquifer was under- 

taken by Kronfeld et al. (1994). By sampling water from bore holes and conducting 

an isotopic study of speleothem they demonstrated how U isotope fractionation 

occurs and changes over time in this region. Unlike the accepted mechanism for 

alpha-recoil where the aquifer is U rich and the waters reducing, the Transvaal 

aquifer has low U concentrations, below 0.2 ppm, whilst the water is02 rich (Kro- 

nfeld et al., 1994). In the Transvaal dolomite aquifer the disequilibrium is thought 

to be the result of ion exchange processes. Thin coatings of U may form on carbon- 

ate surfaces and act as a medium for alpha-recoil transfer of 234 U. This results in 

progressively higher activity ratios the longer the groundwater remains in contact 

with the aquifer. Evidence of extreme variation in 234U /238 U, and in U concentra- 

tions, between different speleothems and within individual speleothems was found. 

Records from the Wolkberg cave show that this process has been in effect for at 

least the last 350 ka in this area. There is still a great deal of debate about how 

elevated activity ratios such as these come about. Porcelli and Swarzenski (2003) 

doubt this ion-exchange mechanism because the "reservoir would isotopically ex- 

change U with the water" so that high activity ratios must stem from 238U which 

is irreversibly bound in the aquifer. Bonotto and Andrews (2000) also suggest that 
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alpha-recoil can not elevate activity ratios in groundwaters of carbonate limestone 

regions and that chemical etching/leaching is a more important process. 

Correcting for initial disequilibrium is an extremely contentious issue. It has been 

suggested that modern day groundwaters can be used to adjust for initial dise- 

quilibrium. Thompson et al. (1975b) used modern dripwaters to estimate initial 

234U/238 U activity. However there is much evidence to suggest that this method 

is flawed due to the wide temporal and spatial variation of initial 234U/238U in 

groundwater (Thompson et al., 1975a). Gascoyne et al. (1978) state that assum- 

ing that modern dripwater values can be applied to initial 234U/238U is Of "dubious 

validity. ii 234U/238 U ratios vary in both time and space, and Thompson et al. 

(1975b) found that average values for dripwater can vary significantly from the 

values in the stalagmite being produced. Kronfeld et al. (1994) further support 

this apprehension following their results. 

It is clear that groundwaters in the Transvaal dolomite were most likely in dise- 

quilibrium with respect to U, when the flowstones formed in the caves of interest. 

Furthermore, the initial extent of this disequilibrium can not easily be estimated 

for the purpose of age calculations. 

4.2.4 Summary 

There are several issues to take into account when attempting to calculate dates for 

the South African flowstones. Previous work indicates the importance of selecting 

material which is clean, dense, free of detrital contamination and wherever possible 

preserves primary depositional features. This should ensure that the samples do 

not suffer from unwanted incorporation of detrital Th or Pb and that they have 

the least likely chance of post-depositional alteration. With no way of accurately 

modelling movement of parent or daughter isotopes, it was hoped that this method 

of sample selection would guard against open-system behaviour. Furthermore the 

issue of initial Pb heterogeneity and initial 234 U excess would have to be taken into 

account. Without any information regarding initial 234 U excess or a method for 

correction, any ages calculated would serve as maximum ages for a deposit rather 

than best estimates. 
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Chapter 5 

Methodology 

The following chapter deals with the various methods employed in the U-Pb dating 

of speleothem associated with the South African hominid fossils. Section (5.1) deýils 

with sample selection in the field and in the laboratory; Section (5.2) covers the 

chemistry theory and lab methods; Section (5.3) looks briefly at the processing of 

the raw sample data and more specifically at the use of the data from the blanks 

and standards analysed; lastly Section (5.4) covers the methodology applied to the 

critical assessment of results. 

5.1 Sampling techniques 

5.1.1 Sample selection in the field 

Samples were selected according to several criteria-, 

* Proximity to fauna (hominid or other) and clarity of stratigraphic position - 

could sample be reliably linked to position of fauna? 

* Colour, texture, and apparent detrital content of flowstone. 

Ense of reiiiovýil of sample. 

The aim of the study Nvýis to (lifify the dates of homiiiid finds, so the first sampling 0 

criteria Nvas to sample flowstone which Nva,,; within centimetres of the fossil(s). In 
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addition to this, the flowstone had to be suitable for the U-Pb technique. To min- 
imise the issues associated with open-system behaviour and common Pb, samples 
that appear clean and non-porous should be carefully selected. Smith and Far- 

quhar (1989) found that corals which displayed discordant behaviour had a more 

porous structure. They suggest that air pockets may facilitate the movement of 
fluids which can remove U and less frequently Pb. Porous speleothem is also known 

to be susceptible to loss of "'Rn (Richards et al., 1998). Flowstone samples that 

appeared free of detrital material and dense in structure were selected. However, 

no deliberate attempt was made to avoid samples which were on surfaces that were 

exposed to the cave environment. If these criteria were met, sampling was only 

subject to removal. Since most sampling was done only with a rock hammer and 

chisel it was not always possible to remove a first choice sample. 

Sterkfontein sampling 

Sampling at Sterkfontein was concentrated on the member 2 deposits in the Sil- 

berberg Grotto. This was a small, not easily accessible cave, and contained a fossil 

hominid, StW 573, in situ. This meant that sampling was more limited than at 

the other sites, as the cave could not be moved about in freely. The stratigraphy in 

the grotto was the most uniform of all the sites and the easiest to interpret. The 

hominid skeleton was in breccia sandwiched in between two layers of flowstone, 

and a further two layers of flowstone were found either side of these, one above 

and one below; see Figure (5.1), and Figure (6.1) for a cross-sectional view. In 

general the layers followed a layer cake stratigraphy model, with the oldest at the 

base of the sequence and the youngest at the top. If dates could be assigned to 

each of the layers this would give an age gap which would correspond to the age 

of StW 573. Removal of samples was relatively easy as most of the areas being 

sampled were sloping with layers protruding like steps. In certain places a layer of 

flowstone could be approached from above, on top of the growth layer, as well as 

from the side. 

Sixteen samples were taken in total, as shown in Figure (5.1). Seven samples, 

STAOJ-STA07-C, were taken from the top (youngest) layer of flowstone, layer 2D, 

; zzý im above the skull of StW 573. Samples STA08-STA13 were taken from the 
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layer of flowstone which lies directly above the skeleton, layer 2C (Figure (5.2)). 

A further three samples, STA14-STA16, were sampled from the oldest flowstone 
layer ^-ý Im below the skull, layer 2B. 

Additional pictures of layers 2B, 2C and 2D can be seen in Section (A. 2.1) along 
with pictures of the samples taken, in situ. 

Limeworks sampling 

The Limeworks was the largest of the cave sites and had the largest amounts of 
flowstone to choose from. However, it was not possible to sample flowstone that 

was in close proximity to hominid fossils. Most of the hominid finds here were 
retrieved from the mineworkers dumps. A significant amount of the hominid finds 

were traced back to a bone-rich breccia which was part of the member 3 deposit 
(Wells and Cooke, 1956; Brain, 1958; Partridge, 1979). Unfortunately there were 
no suitable areas of flowstone in context with this deposit. 

The area chosen for sampling was the Original Ancient Entrance (OAE). This was 
believed to be one of the oldest areas of the cave. This cavern had a fully intact 

roof and was almost completely enclosed, which meant it had been less exposed to 

weathering than other areas of the site. It also had several areas of dense, detritus 

free flowstone. Nine samples were taken, LAB03-LAB11, along a large section of 
the member 1B speleothem boss which came in from the Entrance Quarry, against 
the side of the cave wall, see Figures (5.3) and (5.4). As these samples were on a 
flat surface, some had to be removed with the help of an angle grinder. 

Further views of the flowstone band from which the LAB- samples were taken and 

an in situ photograph of LAB03 can be consulted in Section (A. 2.2). 

Kromdraai B sampling 

Kromdraai B was the smallest of the cave sites, and the most exposed to external 

weathering. It had no roof remaining at all. Sampling was limited due to the small 

amounts flowstone present at the site, so was concentrated on the deposits which 

could be related to the fauna there. Unlike the Limeworks or Sterkfontein there 

were no easily discernable sequences of strata with which to correlate samples with 
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Figure 5.1: Schematic of STA- sample suite from the Silberberg Grotto, Sterk- 

fontein. Not to scale. Compare with Figure (5.2) for context and Figure (6.1) for 

the view in cross-section. 
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Figure 5.2: Photograph of section of STA- sample suite from Sterkfontein. Po- 

sitions of Flowstone 2C and sample STA09 are shown with respect to fossil StW 

573. Compare also with Figure (2.6). 

fauna. There was however suitable material in very close proximity to the hominid 

remains with a clear association. 

Three samples were taken from here, KBP02-KBPO4, see Figures (5.5) and (5.6). 

Section (A. 2.3) also shows a photo of KBP03 in situ. These were taken from a 

flowstone layer immediately above the member 3 breccia, of the kind associated 

with TM 1517 (pers. comm., J. F. Thackeray, 2002), the type specimen of AU. 8- 

hulopithecus robustus (Johanson and Edgar, 2001). Samples KBM 7 and 8 taken 

for palaeornagnetic dating were also in this flowstone, see Thackeray et al. (2002) 

and discussion in Section (3.2.3). The U-Pb sample, KPB03 was ý-. 12cm from 

KBM 8. 

Swartkrans sampling 

Swartkrans was the second smallest site and was partially exposed. It had a com- 

plex stratigraphy and contained several areas of clean, dense, flowstone, suitable 

for sampling. A flowstone seam at the rear of the inner cave (north wall), adjacent 

to public viewpoint 10, was selected. Three samples, SKFOI-SKFO3 were taken 

froin a flowstone that, lies between members 1 and 2, see Figure (5.7) and Fig- 
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Figure 5.3: Schematic of LAB- sample suite from large speleothem boss in the 

Original Ancient Entrance, the Limeworks. Not to scale. 



90 

Figure 5A Photograph of section of LAB- sample suite from the Limeworks show- 

ing type of material sampled for LAB- suite and position of five of samples after 

removal. Apart from the grey/brown material, which is dolomite, all material is 

flowstone. 
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Figure 5-5: Schematic of KBP- sample suite from Kromdraai B. Not to scale. 

Compare with Figure (2.9) and Figure (5-6) for context with respect to surrounding 

deposits. 
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Figure 5.6: Photograph of KBP- sample suite from Kromdraai B. 

ure (5.8). This overlies a pocket of the Hanging Remnant member 1 breccia that 

yielded the SK23 Australopithecus robustus mandible (Brain and Watson, 1992; 

Brain, 1993; Johanson and Edgar, 2001). 

Refer to Section (A. 2.4) for an in situ photograph of SKFOI and SKF02. 

5.1.2 Sample selection in the laboratory 

Scanning Electron Microscopy (S. E. M. ) and Cathodoluminescence 

Prior to the main period of fieldwork, two samples' were screened by S. E. M. and 

cathodoluminescence to check for detrital content. The results showed that the 

samples were relatively free of detritus. On the basis of this, further work was not 

carried out on samples collected subsequently. Section (A. 1) can be consulted for 

further information and S. E. M images. 

Uranium imaging 

Samples from each site were selected for initial U content assessment. An indication 

of the U content was derived by phosphor imaging. This is a form of digital 

'SK3 from Sterkfontein and LAB03 from the Limeworks 
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Figure 5.7: Schematic of SE'F- sample suite from Swartkrans. Not to scale. Com- 

pare with Figure (5-8) for context in terms of surrounding deposits. 
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Figure 5.8: Photograph of SKF- sample suite from Swartkrans 

autoradiography that utilises a storage phosphor screen to record emitted radiation 

and follows on from the work done by Cole et al. (2003). 

In preparation for imaging, samples were sliced or broken perpendicular to the 

growth layers so that the change in concentration between layers could be mapped. 
The samples were placed on an imaging plate and left for 10-14 days to allow for 

adequate exposure. Because of the very low concentrations of U, the samples and 

plate were placed in a Pb-lined box to shield the plate from natural background 

radiation. The radiation from the samples was detected by photostimulable barium 

fluorobromide 2 on the plate (Cole et al., 2003). The exposed plate was analysed 

on a Fuji BAS1000 scanner. From this an image of U distribution was developed. 

U imaging did give some indication as to which samples had very little U but was 

not always sensitive enough. Often, it could not detect the very small variations 

in U concentrations that made the difference between a good isochron and a bad 

one. On individual hand samples it was possible to select specific areas for sub- 

sampling according to the image. This was a problem however, where samples did 

not have a cut flat face. Where samples had broken randomly and the entire face 

was not in contact with the plate the U content appeared homogeneous within a 

hand sample, even across growth layers. 

2 BaFBr 
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Sub-sampling 

Samples with apparently the highest U content were then sub-sampled using a 
tungsten carbide chisel. Sub-sampling was at times random as it depended on how 

the material broke when force was applied, although some of the samples had been 

cut initially using a rock saw. In general, samples were selected from areas with 

a clean appearance. Sampling from the face which had been exposed in the cave 

was avoided when possible. Each sample was photographed and drawn, and the 

positions of the sub-samples were recorded on the drawings. 

5.2 Experimental techniques 

5.2.1 Chemistry theory 

Samples were analysed by thermal ionisation mass spectrometry (TIMS). This 

requires chemical separation of the elements under observation from the bulk of 
the sample. This was done by; 

e Dissolution of samples 

e Separation of Pb 

" Purification of Pb 

" Separation of U 

In order to understand the lab technique employed the theories behind it must 

first be addressed. 

Anion exchange chromatography 

U and Pb were separated from bulk samples using anion exchange chromatogra- 

phy. In the past Pb and U have been separated from samples, such as zircons, 

simultaneously using anion exchange columns and HCl. Where Fe is present this 

is not possible (Dickin, 1997). An alternative to this is to separate Pb initially 
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from all the elements, on a miniature anion exchange column with dilute HBr. as 
per Chen and Wasserburg (1981), Manhes et al. (1978) and Manhes (1982). 

When Pb in solution is loaded onto a column containing anion exchange resin 
it will display different affinities for the solvent and the resin. The ratio of the 

concentration of Pb in the two phases is known as a distribution coefficient, and 
is affected by the solvent used and its concentration. 

Pb was separated from the bulk samples using HBr. Complexes formed by the 

sample Pb and Br- ions were strongly retained by the resin while other major 

elements, including U, passed through. The distribution coefficient of the Pb 

complexes onto the resin was at a maximum just below 1M. The Pb could then be 

stripped from the column in 6M HCI or water (Korkisch and Hazan, 1965). 

Separation of U can be carried out using the same resin but in a nitrate environ- 

ment. Using 6-8M HN03, U is sufficiently retained by the resin while most other 

elements are not. U can then be eluted using weak acid or water (Carswell, 1957; 

Faris and Buchanan, 1964; Tilton, 1973; Chen and Wasserburg, 1981). 

Isotope dilution 

Sample concentrations of Pb and U were determined by isotope dilution. The 

sample is mixed with a spike that contains known quantities of an element but is 

artificially enriched in one or more isotope. When known quantities of both sample 

and spike are combined, the resulting isotopic composition can be used to calculate 

the amount of the element in the sample (Faure, 1986; Dickin, 1997). The spike 

used was 202 Pb_233U_236U. Using a mixed spike enabled calculation of the amounts 

of both elements simultaneously. The U-Pb ratio can be measured precisely and 

is independent of any weighing errors. 

Blanks 

When attempting to measure amounts of Pb in the ppb region it is necessary to 

minimise sources of contamination wherever possible. Industrial activities mean 

that Pb has a much higher abundance in nature than U. Therefore, U contamina- 

tion is not as important as Pb contamination. Major sources of Pb contamination 
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are; 

Analyst - care and attention to detail was the best way to reduce this source. 

Reagents - contamination from reagents was minimised by using UpA (Romil) 

reagents wherever possible or doubly distilled reagents. The UpA reagents 

guarantee certain levels of purity. In addition to these, 18.2MO water was 

used throughout. Contamination levels in the reagents used can be consulted 
in Table (B. 1). 

9 Equipment - equipment that was reused ie. beakers and columns, was boiled 

in 50% HC1 and filled with a mix of acids or stored in 6M HCL Equipment 

that was used once and then thrown away eg. frits or pipette tips, was stored 

in 6M HCL All equipment was thoroughly rinsed in 18.2MO water before 

using. 

* Atmosphere - All separations were performed in a Class 10 workstation 3 

To accurately quantify contamination a blank was processed for every set of five 

samples. Excluding dissolution the blanks were subjected to the same procedure 

as the samples. 

5.2.2 Lab technique 

A comprehensive description of the following techniques can be found in Appendix 

(B). Texts which can be consulted for reference to these techniques are Carswell 

(1957); Faris and Buchanan (1964); Korkisch and Hazan (1965); Tilton (1973); 

Manhes et al. (1978); Chen and Wasserburg (1981); Manhes (1982); Bourdon 

(1992); Rehkdmper (1995); additionally Smith et al. (1991) and Smith et al. (1994) 

more specifically for the fluoride precipitation step. 

Preparation of reagents 

The HBr used in the Pb separation was prepared from UpA HBr. Immediately 

prior to a separation it was purified further on an anion exchange column of AG1x8 

3This is a larninar flow workstation defined by Federal Standard 209E 
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200-400 resin to further reduce possible Pb contamination. The concentration of 
CPHBr (column-passed) was 0.5-"v'l. 

Sample preparation 

Sub-samples of up to 3g were removed from the hand samples. Superficial contam- 
ination was removed by cleaning in an ultrasonic bath before etching in 3M HCI 

to remove the surface layers. Typically 0.3g was removed by etching. Where 

samples were unusually small (< 0.5g) or unusually large (> 5g), this amount 

could be as little as 0.04g, or as much as 3g. 

For the columns to flow efficiently it was necessary to remove the calcium from the 

samples. This was done by adding HF and discarding the CaF2 precipitate that 

formed. HF was added in amounts that were slightly above what was stoichiomet- 

rically required (Smith et al., 1991; Smith et al., 1994). 

Following some poor U results, yield tests were performed to test the effectiveness 

of the fluoride precipitation and the column chemistry. This was done by spiking a 

sample with two different spikes. Spike one (23613) was added following the fluoride 

precipitation and spike two (MSI) was added following the column separation. 

The results showed that the precipitation step removed 82% of the U, whereas the 

column separation was nearly 100% efficient. It was decided that the precipitate 
fraction should be processed twice for the Pb separation and again for the U 

separation. Prior to this the precipitate was only rinsed once, for the Pb separation, 

after which it was discarded. In the new method, following precipitation and 

removal of the first supernate, the CaF2 precipitate was mixed with CPHBr and 

centrifuged again. The resulting supernate was added to the first one, after which 

the Pb separation was performed as normal. The precipitate was retained and was 

rinsed and centrifuged twice in 8M HN03for the U separation. The two supernates 

produced were added to the U sample eluted from the Pb separation and the U 

separation was then performed as standard. 
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Lead separation 

After the precipitates were rinsed in CPHBr and the resulting supernate Nvas added 
to the sample solution, Pb samples were loaded onto the column in CPHBr and 

rinsed in with the same. The U passed through the column at this stage so the col- 
lective waste eluates were saved for later U separation. The Pb was then collected 

using 6M HCL The Pb sample was purified by repeating the separation procedure. 

Uranium separation 

The fluoride precipitates were rinsed twice in 8M HN03 and the supernates were 

added to the eluates from the Pb separation. Chen and Wasserburg (1981), Bour- 

don (1992) and Rehkdmper (1995) all mention the possible retention of U and Th 

in dissolved rock residues, although Chen and Wasserburg (1981) found that this 

accounted for no greater than 6.5% of the whole sample. 

The U samples (eluate + supernates) were separated using AGIx8 in a nitrate 

environment. The U salt was highly soluble in HN03 and was loaded in 8M 

HN03- Most elements were eluted from the column by rinsing the sample in with 

further 8M HN03- U was then collected with 0.25M HN03- 

Preparing the sample for loading 

Final drying of samples was done with a couple of drops of Aldrich 0.002M H3PO4 

to prevent the samples drying down entirely and to make them more visible in the 

vials, which eased loading (Manhes et al., 1978; Bourdon, 1992). 

A couple of drops of concentrated HN03was then added to the samples and they 

were dried down again. This was intended to reduce the organic content of the 

sample which was a problem when loading. 

Loading samples 

Samples were loaded onto rhenium (Re) filaments. Pb samples, in 11A of 18.2MQ 

water, were loaded onto single filaments that had already been loaded with 1,41 of 

silica gel. U samples were loaded onto double filaments in 1ml of 18.2MQ water. 
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5.2.3 Mass spectrometry 

All samples were run 4 on a TINIS - Finnigan Triton. 
0 

Running techniques for lead samples and blanks 

Pb samples and blanks were measured using a static method. Pb filameiits Nvere 

raised to a temperature that enabled volatilisation and ionisation of the sample ; II 
the same time . 

201 Pb in samples was measured in the centre cup on the ffirýidaý-. or 

the SEM (Secondary Electron Multiplier) where the signal was < 2niV (0.02pA). 

All other isotopes were measured on the faraday. For blanks the 204 p 1) was ahvn. vs 

measured on the SEM. 

Running techniques for uranium samples and blanks 

The U evaporation filament (bearing the sample) was heated to a temperature 

where stable volatilisation of the sample occurred. The ionisation filament was 

raised to a much higher temperature where it acted as a source to ionise the sample 

atoms. U samples were measured using a multidynamic method with the 136U, 

235 U and 233U in the centre cup, measured on the SEM. The 238U was measured 

continuously by switching between three faraday cups. The resulting three ratios 

between the isotopes measured on the SEM and the three 238 U measurements 

meant that any variation in signal intensity could be taken into account. Running 

U samples on a multidynamic method also meant both 233 U and 236U could be 

measured on the SEM. These isotopes were found only in the spike and so the 

ratio was used to correct for fractionation. 

U blanks were measured using a dynamic method where all four of the isotopes - 
238U, 236U, 235 U and 

233U 
_ were measured in the centre cup on the SENI detector. 

. 'Run is used throughout the thesis as the name for a set of measurements taken on the TIMS 

for aU or Pb sample. 
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Calibrations 

Samples were measured using a multi-collection method so a gain calibration was 
done at the beginning of each new set of samples. This tested how each individual 

cup measured the same signal slightly differently, and then corrected for this in 

the raw data. Only samples measured using a dynamic method were unaffected 
by gain as all isotopes were measured in the same cup. This applied to U blanks. 

A yield calibration was done for each sample that was measured on both the fara- 
day and SEM detectors. This calibrated the gain of the SEM relative to a nominal 

value of 60,000cps (counts per second) per mV (millivolt). For Pb, the 208 Pb or 
206 Pb beam was focused into the centre cup and a yield calibration was performed 
by switching between measuring on the SEM and the faraday and comparing the 

difference in signal intensity. The same was done for U, but using a 18'Re beam, 

produced by heating up the ionisation filament only. The result was given as 

a reading of % yield. The TIMS applied this correc. tion to all subsequent mea- 

surements. Yield calibrations for U ranged between 90.5% and 96.8% but were 

generally over 95%. Pb yield calibrations were between 89.7% and 92.1 % and were 

systematically lower than for U under identical conditions. U yield variation was 

further corrected for in the calculations. 238U was the only isotope measured on 

the faraday so the 238U/235 U ratio was used as a correction for bias by comparing 

the accepted value in nature with that measured. 

Following a set of Pb runs which had particularly low signals, additional exper- 

iments were performed to test fractionation, and bias on the SEM (yield and 

non-linearity). Firstly the sample, STA14-B4, was run at varying intensities and 

the fractionation compared. The higher temperatures improved the signal, but the 

ratios were within error, so fractionation was not greatly affected. SRM981 was 

also run at varying intensities. These results showed that there was no basis for 

correcting for non-linearity variations in the yield. 

5.3 Processing results, standards and blanks 

The raw data from the TIMS were exported to a spreadsheet where outliers high- 

lighted by the TIMS were removed. Outliers were further removed by hand with 
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the help of a macro with a window of acceptance based on the mean and the ab- 

solute standard deviation (see Section (B. O. 14)) and the data were prepared for 

importing to an Error Propagation (EP) package. The EP package collated the 

raw Pb and U data (inclusive of errors and correlations) along with the data for 

the blank correction, the spike composition, the fractionation correction for Pb, 

and the values of sample and spike weights. The resulting ratios were suitable for 

plotting isochrons using the Excel add-in Isoplot (Ludwig, 2003). 

5.3.1 Standards 

Standards are firstly a test of instrumental bias. Secondly they test the mass 
fractionation effects on a filament over the duration of a run. Samples have a 

tendency to fractionate, whereby lighter isotopes are preferentially released from 

a hot filament due to their lower bond energies. This results in a discrepancy 

between the measured ratio of two isotopes and the true ratio (Dickin, 1997). Pb 

samples were corrected for isotope fractionation by running the standard, SRM981- 

Two standards were run for each set of Pb samples loaded and mass fractionation 

was averaged over sets of 8-10 results. 

Standards, l/A in volume and containing in the region of 4ng of Pb, were loaded 

onto filaments that had already been loaded with 1til of silica gel. They were run 

using the same technique as that used for Pb samples, with "'Pb in the centre 

cup, but all isotopes were measured on the faraday detector. 

The raw data for SRM981 runs was exported to a spreadsheet in Excel. Mean 
207 Pb/206 Pb 1 

208 Pb/206 Pb and 
206 Pb/204 Pb ratios were collated in another work- 

sheet. The permil fractionation of each of the ratios was calculated by ; 

fractionation %o measured value 'I x 1000 
true value 

The 208 Pb/206 Pb and 
206 Pb/204 Pb ratios were corrected for mass difference by di- 

viding this value by 2. The overall fractionation factor was calculated thus; 

Fractionation factor 
(y 8/6,7/6,6/4 

00 Average fractionation c (5.2) 
1000 
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Date applied from Fractionation factor I Error (lu abs. ) 

04/12/2002 -0.00068 0.00049 

14/10/2003 -0.00084 0.00027 

29/01/2004 -0.00095 0.00036 

11/03/2004 -0.00065 0.00044 

25/03/2004 -0.00062 0.00016 

12/05/2004 -0-00090 0.00011 

02/07/2004 -0-00060 0.00030 

23/08/2004 -0-00085 0.00020 

Table 5-1: Fractionation Factors applied to samples and dates applicable from. 

Around 8-10 fractionation factors were calculated like this and then averaged to 

give a value to the fractionation factor over a certain period of time. Samples run 

during that time period were corrected for this fractionation factor. The error for 

the fractionation factor was the standard deviation of the 8-10 fractionation values. 
Table (5.1) shows the fractionation factors that were applied over the course of the 

study. The full set of standards data can be consulted in Section (C. O. 18). 

5.3.2 Blanks 

A blank was run for each set of samples analysed. However there is no way of 

knowing how representative this was of each individual sample. Blank levels were 

observed to vary in both sample replicates analysed on separate occasions and those 

analysed on the same day. It was felt that it was better to take an average of an the 

blank runs in order to provide a more representative blank. This averaged out the 

scatter between batches and was more indicative of scatter within a batch. Since 

each sample was corrected by the same absolute amount this gave better scope 

for comparing samples which were not analysed contemporaneously. Table (5.2) 

displays the blank results that were used to calculate an average blank size and 

composition; a small number of blanks that were spuriously large were excluded, 

these can be found in Table (C-3). Figure (5.9) shows how the blank size and 

associated error varied over time. 
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5.4 Evaluation of results 

U-Pb ratios are generally normalised by "'Pb as this is the only non-radiogenic 
isotope. In speleothems normalising is not limited to 204 Pb alone. '08Pb can es- 
sentially be considered non-radiogenic because of the insoluble nature of its parent 
232 Th. This is not incorporated in the speleothern as it forms so the initial 208Pb 

does not change significantly over time. Thorogenic ingrowth within these deposits 
is estimated to be < 0.1% (Cliff, R. A. (2005) pers. comm. ). 

Ages were calculated by plotting 206Pb/208 Pb against 238U/208 Pb to produce an 
isochron, a line of equal age. How well the points fit the isochron was inferred 
from a measurement called MSWD (mean square of weighted deviates). This is a 

measure of scatter. MSWD values much greater than 1 indicated that either the 

analytical error was underestimated or that some non-analytical source of error 

was causing the scatter (Ludwig, 2003). There were several possible causes of 

scatter about the isochrons to consider in this study. Firstly, underestimation of 

analytical errors. It is possible, due to certain oversights, that the error estimates 

were too optimistic; 

4o Ractionation factor. This is likely to be greater than that estimated from 

the standard, as the samples are unlikely to behave as ideally as a standard. 

TIMS interference. Background interference can affect samples which have 

low Pb concentrations, in particular those isotopes with low signals. 

Blank composition. If the composition is significantly different from the 

initial Pb composition of the sample this can dislocate the sample on the 

isochron. This may be more exaggerated where the blank correction is large. 

Where the assigned errors are justified this should not affect the scatter. 

Change in analytical technique. Samples that were processed before 18/06/03 

were not subjected to the revised fluoride precipitation step, as per Section 

(5.2.2). This could have affected the quality of the results. 

Contamination due to lapse of time between dissolution and analysis - sam- 

ples not analysed for several months after the original dissolution may have 
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Figure 5.9: Graph showing how blank size varied over time. Blue line shows 

average blank size. Boxes are at 2o, level. 



107 

picked up common Pb from the labware in which they were stored, giving 

the appearance of a higher Pb concentration. 

If the analytical errors were correctly accounted for, then geological factors could 

also cause scatter; 

Movement of U or Pb in situ, following recrystallisation. See Section (4.2.3) 

and Section (7.3.2) for explanation and discussion of this issue with reference 

to sample results from both previous work and this study. 

Initial heterogeneity of Pb isotopes in the deposit. If the true initial isotopic 

signature differs in individual samples then the initial composition calculated 

by the isochron method will be an average of these resulting in samples which 

do not lie on the isochron but have evolved on lines parallel to it. If variations 

in 208 Pb/204 Pb are greater that analytical uncertainty then this suggests more 

than one common Pb source (Romer, 2001). The main Pb sources for the 

samples will have been the aquifer and the surrounding soil. 

Variation in initial 234U/238 U between layers. This ratio may vary temporally 

as the growth rate of the speleothem varies. Taking this into account it is 

quite possible that samples only cm apart may have had differing initial 

ratios. On an isochron these samples would evolve along different age lines 

which, when not accounted for, would cause scatter on the isochron. 

In addition to scatter, errors could move a sample up or down the isochron. This 

should not affect the resulting age unless there is excess scatter already present, 

but these errors are something to be aware of; 

Variation between blank correction and true blank amount. There is no 

way of knowing how close the average blank correction was to the true blank 

value of each sample. Consequently individual samples may suffer from over- 

or under-correction. Such correction can cause problems with scatter when 

combined with one or more of the issues described above. 

Aside from scatter the U or Pb concentrations could be affected by the follow- 

ing issues, therefore it was important to take these into account when comparing 

sample replicates; 
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* The sample amounts were calculated from the volume of the dispensed aliquot. 

The error in the pipette was estimated by measuring out and weighing ten 0 
aliquots of 1.3ml to be on average 6.5Yoo. The EP package only accounts for 

0-25mg error whereas this actually equates to 2.81mg. However when input 

at the EP stage this did not have a great effect on the final concentrations. 

* Spike weights. The error on the spike weight was estimated over 20 spike 

weights to be on average 1%. The error propagation accounts for a 0.25mg 

error so on most samples, which had a spike weight of over 30mg, this is 

slightly lower than the estimated error, although this does not greatly affect 

the final concentrations. 
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Chapter 6 

Results 

Of the hand samples that were analysed, three produced good isochrons' from 

which a maximum age and a best estimate age for the associated deposits could 

be deduced. These samples were from Sterkfontein and were associated Nvith the 

fossil hominid, StW 573. The results are quoted initially as maximum ages, with- 

out taking into account initial disequilibrium. 234 U disequilibrium is dealt with in 

Section (6.3), where the original results are corrected and presented as best esti- 

mates. The results present the age information for this fossil that has long been 

sought. 

Although the remaining 16 hand samples analysed were not chronologically im- 

portant they played a part in producing an interesting picture of the variation in 

chemistry and formation of the speleothem deposits at the sites. The information 

they have presented is extremely useful for any future work that, may be carried 

out. 

6.1 Results selection 

Results Nvere screened for suitability on samples STA07-C. STA09; STAII STA15: 

LAB03. Rejected results were affected by one or more of the following factors: 

e Large blank correction - NN-lien the amount of Pb (ng) analysed was around 

"Flic term Isochron Is used throughout the followlng chapter to denote plotted lines with an 

mswD < 10. 
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the same magnitude as the blank or less than it, it was usually felt that 

confidence could not be placed in the result. Sometimes blank corrections 

on particularly small samples resulted in a large increase in errors relative 
to the original run error. However, providing that the original run error and 

error correlation was good, this only affected the error ellipse by drawing it 

out along the isochron/plotted line. 

Errors relating to mass spectrometry - a) Samples that were subject to large 

errors on one or more than one of their associated measurements, eg. Pb 

or U run errors. b) Samples with runs that had few measurements. c) Low 

"'Pb signal - signals below r-%O 2mV (0.02pA) were generally considered to be 

unreliable. 

Variation from expected ratios - sample results 
207 Pb/204 Pb and 

208 Pb/204 Pb 

ratios were checked against common Pb values and across sample suites. 
Ratios should be relatively uniform within a hand sample otherwise aMU208 

plot could not be applied. Where ratios were spurious, bearing in mind 

possible initial Pb heterogeneity, the result was discounted. 

Variation in U concentration - where there were large variations in U con- 

centrations between repeats of a sub-sample the result with the best errors 

throughout was taken as being more reliable. 

Apparent contamination - this was usually obvious from the Pb concentra- 

tion, and particularly where repeat analyses of the same sample were com- 

pared. 

The rejected results from the above samples can be found in Section (C-0.16). 

Individual descriptions as to why samples were rejected are provided there. 

6.2 Sterkfontein 

Three flowstone layers were analysed from the member 2 deposits at Sterkfontein, 

refer to Sections (5-1-1) and (A. 2.1) for provenance. These and the samples anal- 

ysed from them are discussed below. Table (6.1) displays the accepted results of the 

Sterkfontein samples, including those from which ages were calculated. Rejected 

sample results axe shown in Table (C. 1). 
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6.2.1 Flowstone layers 

Refer to Figure (5-1) and Figure (6-1) for context. 

Layer 2D - upper most layer 

I 
Samples STA03, STA04 and STA07-C came from the uppermost deposit of flow- 

stone, layer 2D. The thickness of the flowstone around STA03 and STA04 is 

;::: ý 70cm. STA07-C was e-%-4 300cm to the left horizontally of STA03 at around the 

same height. STA03 and STA04 were e-N, 35cm apart horizontally and STA03 was 

slightly higher than STA04. These samples were close to the roof of the cave and 

near where the cave opening is believed to have been. Speleothems at the mouths 

of caves often contain higher levels of sediment than those further in (Latham and 

Schwarcz, 1992). 

Layer 2C - middle layer 

Samples STA09 and STA12 originated in the middle flowstone deposit, layer 2C. 

This flowstone is in close proximity to the skeleton. The thickness of the flowstone 

around STA09 is e-%.. 30cm. STA09 was e-%-, 70cm above the skull and slightly to the 

right. STA12 was r-1.0 90cm below STA09 and was 011-0 95cm away from the skull 

(this was measured obliquely down the slope). It is difficult to tell how they were 

positioned in terms of of how high or low they within this flowstone layer, and 

relative to one another. STA12 was almost certainly at the base of this layer but 

it was not as easy to tell if this was true of STA09. 

Layer 2B - bottom layer 

Samples STA14, STA15 and STA16 came from the lowest flowstone deposit sam- 

pled, layer 2B. STA15 was sampled from the very base of the flowstone layer, 

STA16 was, taken from the very top and STA14 taken from the middle. At STA16 

the flowstone is e-%o 30cm thick. STA15 was found -, 110cm to the right of STA16 

and slightly below. STA14 was P, 100cm to the left of STA16 and ozzo 70cm below. 

- 265cm. The distance obliquely downslope from the skull to STA16 was I., 
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Figure 6.1: Schematic of the stratigraphy of the Silberberg Grotto showing flow- 

stone layers 2B, 2C and 2D and the three U-Pb samples, STA09, STA12, and 

STA15, that yielded ages. Not to scale. Area of removed flowstone was excavated 

prior to sampling for the current study. Skeleton is dissected by flowstone layer 

2C due to partial collapse of sediments before formation of this layer. See Section 

(2.2.3) for further information. After Clarke (2002a). 
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6.2.2 STA03 

Petrography 

STA03 is a clean-looking sample with a dark band ^-, 1.5cm thick running through 
the middle, see Figures (6.2), (6.3) and (6.4). This could be of organic or detrital 

origin. The material below this band is slightly darker than that above it. The 

crystals are small and some mm sized cavities can be seen in between. The top 

surface of the sample is very white and powdery. A thin layer of sediment is 

attached to the lower surface of the sample. 

U and Pb concentrations and distribution 

Refer to Figures (6.3) and (6.4) for positioning of STA03 sub-samples. 

There appears to be a higher concentration of U in the centre of the sample on 

the U image, Figure (6.2), although it is not very clear. This could coincide with 

the darker band. U concentrations are uniformly low for this sample, ranging 

from 19.8 ppb to 29.5 ppb, Table (6.1). Unfortunately this is coupled with high 

Pb concentrations of 25.3 ppb to 61.2 ppb. When combined, these result in very 

low MU208 values and a narrow range in MU208, from which a meaningful plot can 

not be constructed. It is evident that this sample had incorporated a significant 

amount of common Pb. It could be that the darker layer present in this sample is 

a layer of detritus, and that the cave at this time was more open and sediments 

were being incorporated with the speleothem as it formed. 

6.2.3 STA04 

Petrography 

STA04 is a very dense sample. Cutting vertically through the sample reveals elon- 

gated crystals, -, 0.5cm in length. The exposed face appears dusty and chalky, 

refer to Figure (6.5) and Figure (6.7). The face of the sample that was not ex- 

posed to the cave environment has large tightly packed crystals, see Figure (6-6). 

Although the material seems pure, some colouration is apparent; in cross-section 
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- If 

Figure 6.2: Photograph of sample STA03 before sub-sampling (a) showing darker 

band of flowstone near the top - scale shown in cm; uranium image of the same 

(b). 
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Figure 6.3: Photograph of STA03-A and STA03-B (a) - scale shown in cm; cor- 

responding schematic of sub-samples taken froni these (b). The arrow shows the 

vertical orientation of the sample in situ. 
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STA03-B2 STA03-B I 

Joins on 

B2-3 
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B2-2 

B 14 

BI-7- B 1-3 

BI-6- B 1-2 
BI-5 

BI-I 

4&5 overlay 3& 2) 

cm Onentation 

Figure 6A Photograph of sample STA03-B with sub-samples BI and B2 detached, 

but ill place (a) - scale shown in cm; schematic of sub-samples BI and B2 following 

further separation (b). Brown shading relates to darker layers of flowstone. The 

arrow shows the vertical orientation of the sample in situ. 
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bands of light brown material can be seen running through the calcite. These 
bands vary in thickness from -, imm. to >1cm. The top surface of the sample has 

a rind of very white, fine-grained material, 3 or 4mm in thickness. 

U and Pb concentrations and distribution 

Refer to Figures (6.6) and (6.7) for positioning of STA04 sub-samples. 

The U image, Figure (6-5) shows a very even distribution of U in slightly lower 

concentration than in STA03. Like STA03, STA04 suffers from very low U con- 

centrations, with a minimum of 12.2 ppb and a maximum of 136 ppb, Table (6.1). 

Pb concentrations are considerably lower than STA03 though. They range from 

1.5 ppb to 3.7 ppb. Despite a wider range inMU208 values than STA03, the data 

do not define a line. 

6.2.4 STA07-C 

Petrography 

STA07-C appears to be a very pure sample. It is composed of large colourless 

columnar crystals, which are densely packed. There is an outer rind of dirt, and 

the material on the exposed faces of the fragments has a slightly different texture, 

see Figure (6.8). 

U and Pb concentrations and distribution 

Refer to Figure (6.8) for positioning of STA07-C sub-samples. 

Despite being in the same flowstone layer as STA03 and STA04 this sample has 

much higher U concentrations. These vary between 0.51 ppm and 1.25 ppm, Table 

(6.1). The visual appeaxance of purity in this sample is confirmed by the Pb 

concentrations, which are as low as 0.53 ppb and peak at 1.7 ppb. C2 has double 

the U concentration of the other sub-samples, although apart from the brown layer 

there is not much visible difference in the material sampled to indicate why this is 

the case. 
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j- oo, 'Pt II ý"- 

Figure 6.5: Photograph of front of sample STA04 after initial dissection but prior 

to sub-sainpling (a) - scale shown in cm; uranium image of STA04 before any 

dissection (b). 
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STAO+ 
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Cut face 
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STA04-7 
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, sTAV+ -A 

Cm 

Figure 6.6: Photograph of reverse side of STA04 after sub-sampling (a). Photo- 

graph of reverse of STA04-A showing divisions into sub-samples (b); schematic 

of the same (c). Scale on (a) and (b) shown in cm. The arrow shows the ver- 

tical orientation of the sample in situ. Brown shading relates to darker layers of 

flowstone. 
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black lines. 
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Figure 6.7: Photograph of front of STA04-A showing sub-sample divisions (a) - 

scale shown in cm; schematic of the same but also showing further sub-sampling 

of STA04-A4 (b). The arrow shows the vertical orientation of the sample in situ. 

Brown shading relates to darker layers of flowstone. 
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Figure 6.8: Photograph of STA07-C prior to sub-sampling (a) - scale shown in cm; 

sclielli, itic showing positions of sub-samples after sample division (b). The arrow 

shows the vertical orientation of the sample in situ. 
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Isochrons 

The STA07-C data are displayed on one plot, Figure (6-9). Due to the positioning 

of the data points no line could be constructed using Isoplot. This is probably due 

to positioning of results C5-A and C6-A either side of where the line would lie. 

Refer to Table (6.1) for numerical results plotted. Rejected numerical results can 
be found in Table (C. 1) in the Appendix. 

Sub-samples C5-A, C5-B, C6-A and C6-B 

On the STA07-C plot these samples show a general alignment along a line but are 

fairly scattered. The scatter of the C5-A and C6-A points either side of this line 

makes it unresolvable. 

C5-A has the lowest U concentration and the second lowest Pb concentration, 

resulting in a relatively highMU208. This sub-sample has a high proportion of 

radiogenic Pb; the corrected 
206 Pb/208 Pb is 2.23 ± 0.37. However, because of the 

small amount of Pb analysed it has a high blank correction. This has a large effect 

on the 206 Pb/208 Pb error. On the graph it has resulted in an elongated error ellipse. 
This is not aligned with the other three. This could be caused by this sub-sample 
being slightly older or by incorporation of a higher initial 234 U excess. 

Sub-sample C5-B was adjacent to C5-A in situ. It has a similar Pb concentration 

but a 30% higher U concentration. The low amounts of Pb analysed mean this sub- 

sample is subject to a high blank correction like its neighbour. But, this sub-sample 

has the most radiogenic Pb out of all the Sterkfontein samples analysed. The 

corrected 206 Pb/208 Pb is 3.26 ± 0.69. Despite what is an average U concentration 

in comparison to the entire Sterkfontein suite, the very low Pb concentrations 

mean this sub-sample also has the highestMU208value of all, 5105 ± 1269. A large 

blank correction has resulted in a correspondingly large error ellipse. 

The C6-A sub-sample was surrounded by all of the other STA07-C sub-samples in 

situ. Like C5-A and C5-B the Pb concentration is very low, and the composition 

of this sample is most comparable to C5-A. However on the graph these two points 

are diverging from each other. 
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Figure 6.9: STA07-C data plot. Error ellipses are plotted at 2or level. Each colour 

represents an individual sub-sample. Sample is from flowstone layer 2D. 
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Although the C6-B sub-sample has a comparable U concentration to its neighbour, 
C6-A, its Pb concentration of 1.73ppb is more than three times higher. This means 
this sub-sample is the lowest point on the graph. 

STA07-C proved to be the most radiogenic sample analysed. But, only five samples 

were analysed, out of which an isochron could not be constructed. The scatter on 

the plot is possibly linked to initial heterogeneity in the Pb composition; see Section 

(4-2-3), (5.4) and Section (7.3.2) for further explanation with regards to scatter. 
Should further analyses be carried out, this particular hand sample appears to 

have the potential to provide a more meaningful result for flowstone layer 2D. 

6.2.5 STA09 

See Figure (5.1) and Figure (6.1) for the stratigraphic context of this sample. 

Petrography 

STA09 is clean in appearance. The crystal structure appears dense and grain sizes 

are o-, o 1mm. There is a rind of very fine-grained material attached to the bottom 

surface of the calcite and a layer of red sediment below this. The photographs in 

Figure (6.10) and Figure (6.11) show the structure of this hand sample. 

U and Pb concentrations and distribution 

Refer to Figures (6-10), (6.11) and (6.12) for the positioning of the STA09 sub- 

samples. 

Uranium imaging indicates a fairly even distribution of U in fragment C of this 

sample, Figure (6.10). Higher concentrations of U can be seen on what is the under 

surface of the sample where the rind and red sediment are attached to the calcite. 
This would seem to suggest that the higher concentrations of U are actually found 

in the areas which contain detrital material. There also appears to be a fine layer 

of higher U concentration running through the middle of fragment C. 

The U concentrations in the sub-samples range from 0.58ppm to 1.35ppm, see 
Table (6.1). The highest concentrations are found in the sub-samples analysed 
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from fragment C2. Concentrations in C2 are > 0.76ppm. Fragments A2, B2 and 

C1, meanwhile, all have concentrations which are < 0.87ppm. Sub-sample CM 

comes from the lower half of STA09 (fragments Al, B1 and Cl) and is the only 

point plotted on the isochron from these fragments. Inspection of the hand sample 

shows that the top half, represented by fragments A2, B2 and C2, is made of 

the larger crystals which are tightly packed, whereas the lower half of the hand 

sample is more fine-grained. The results seem to indicate that the U content of the 

upper half is slightly higher. The highest U concentrations in the main fragment 

analysed, C2, are to be found in the sub-samples, 1B and 1C. Although adjacent 

to each other they had no features to distinguish them from the other sub-samples 

of C2. 

Pb concentrations in the sub-samples are as low as 1.1 ppb, ranging up to 4.8 ppb. 

Isochrons 

The STA09 results are displayed in Figure (6.13). These give a maximum age of 

2.72±0. lOMa. TheMU208values ranged from 441 ±8 to 2472 ± 164. Figure (6.14) 

has been plotted to show how the samples with lowerMU208 values are arranged 

about the isochron. The initial 206 Pb/208 Pb ratio derived from the isochron is 

0.489 ± 0.01 which is as expected from common Pb. The MSWD of 39 indicates 

greater scatter than would be expected from analytical error alone. This could 

be due to incorporation of initial detrital Pb with varying isotopic compositions. 

See Section (4.2-3), (5.4) and Section (7.3.2) for further explanation with regard 

to scatter. 

If an isochron of just C2 is plotted the improvement in the scatter is great, Figure 

(6.15). The MSWD is reduced from 39 to 7.9. The error on the age is also reduced 

by half but the maximum age itself does not alter significantly, 2.749 ± 0.051. 

Sub-samples A2-2 and B2-1 

Figure (6.13) and Figure (6-14). 

Sub-sample A2-2 is one of the three high points on the isochron. The Pb concen- 

tration is very low - 1.1 ppb - and the U concentration is also low - 0.81 ppm. The 
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Figure 6.13: STA09 complete isochron. Age calculated is a maximum age. Error 

ellipses are plotted at 2a level. Each colour represents an individual sub-sample. 

Sample is from flowstone layer 2C. 



133 

C) 
C) CD 
CD 0 C) co +1 C 
U) 2i a) 0) 

04 0 co 

cr) CY) 
Cý 0 +1 

ý<- IN -0 C) CN r'- a- 
0. co 0 C/) CN 
0 

C) 

d) U) 
CD < CN 

ý<- co -Fz 
U) 

-6-4 

E 
C) 

CO 

Cý eln 

Cý r4 
C) 

CD 6 
C) 

Cý U) C) 

co C) 
Cý U) 0 
L) LO 
d) 
0 
U) 

Cý co d) 
CD 
U) 

0 
C 

CY) 00 11- lp 
ce) 

qd8oz /qd9oz 

Figure 6.14: STA09 isochron showing points withMU208< 900. Age calculated is 

a mxximum age. Error ellipses are plotted at 2o, level. Each colour represents an 

individual sub-sample. Sample is from flowstone layer 2C. 



134 

U') 
C) 0 

C) ci 
C) 
C 

Cý +1 CY) 
C) 
6 
CD 

LO 
CY) LO 

c 00 

+1 
CF) 

-0 CL 
co 

0 

C'4 c cli 
-0 

C) 
C) 
C) 04 CN 

Cý 

0 

co 

0 
0 
C) 

C) 

00 (D NT (N 0 00 (D 41 

C; C5 C5 
qd 80Z 

/qd 90Z 

Figure 6.15: STA09 isochron of C2 sub-samples only. Age calculated is a maximum 

age. Error ellipses are plotted at 2o, level. Each colour represents an individual 

sub-sailiple. Sample is from flowstone layer 2C. 



135 

confidence in this result is lessened somewhat by the fact that it has no repeat to 
2 back it up, and because only 42% of the expected U measurements were recorded . 

Despite this the errors pre-blank correction are comparable with the rest of the 
STA09 results. This result does not fit the isochron well. 

Analysis of fragment A in general seems to have suffered because of the lower con- 
centrations of U and Pb coupled with the small sub-samples which were analysed. 
This resulted in large errors which are further magnified by large blank corrections. 
See Table (C. 1) for other fragment A sub-samples analysed. 

The two repeats 3 of 132-1 lie off the isochron along what seems to be a parallel 
line of radiogenic decay. They are quite widely separated along this line. Looking 

at the Pb concentrations this could be due to the 04/10/04 sub-sample picking 

up labware contamination, an insufficient blank correction or a combination of the 

two. However, the Pb and U signals for the 24/05/04 result are much lower and 
the errors associated with this result are much greater. It is therefore difficult to 

tell which of these results is closest to the true value. However they both seem 
to display the same degree of departure from the isochron. This confirms that 

initial Pb ratios in this sub-sample differed from the initial ratio calculated by 

the isochron, and suggests that initial heterogeneity existed in the STA09 hand 

sample. 

Although the A2-2 result is separated from the 132-1 results by quite a distance 

on the isochron, an imaginary line - slightly steeper than the plotted isochron and 
lying not quite parallel to it - can be plotted joining these points together. With 

a higher slope value this may mean that these samples represent an area of the 

hand sample that formed earlier. This is confirmed if a graph of these three results 

is plotted, the maximum age increases to 2.9Ma. However, it seems unlikely that 

these samples formed 200ky earlier, given their proximity to the C2 samples. It is 

possible that A2 and B2 had a different initial 234U/238 U disequilibrium to the C2 

2The TIMS was set up to measure the U signal 50 times for each run. Where there was a 

problem with a run, such as low signal intensity, this number of measurements was not always 

achieved. In this case only 21 measurements were taken; this is 42% of those expected. 
'Where a sub-sample has been analysed more than once the repeats are differentiated from 

one another by being referred to by the date on which they were analysed, e. g. the B2-1 repeats 

of 04/10/04 and 24/05/04. 
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samples, making them appear older. 

Sub-samples C2-1A, C2-1B, and C2-1D 

Figure (6.13), Figure (6.14) and Figure (6.15). 

Excepting the 29/03/04 repeat of C2-ID these results are found in a cluster on the 
lower half of the plot. Two repeats of each of the samples are plotted. 

The results for the C2-1A repeats compare favourably with each other and agree 

within error. The 27/01/04 repeat has the lowest U concentration in the STA09-C2 

suite of sub-samples. In spite of the lower U concentration, the 27/01/04 repeat 
has much better errors than the 29/03/04 repeat, on both the Pb and the U runs. 
The larger analytical errors on the 29/03/04 result are displayed by the much 
bigger error ellipse. 

The C2-1B repeats agree within error, but show varying U and Pb concentrations. 
This could be due to volumetric or weighing errors on one of the samples. The 

blank correction on the 29/03/04 repeat is large but this is inevitable with such a 

small sample amount - 83.2 mg. But, the errors on the Pb run for 29/03/04 are 
better than the 15/10/03 repeat. The 15/10/03 lies just below the isochron on the 

plot, but its error ellipse overlaps that of the 29/03/04 result, which is found on 

the line. 

The Pb and U concentration for the two repeats of C2-1D plotted on the isochron 

do not agree well. However, there is no evidence to reject either of these two. The 

29/03/04 repeat has a 10% higher concentration of U but 50% less Pb than the 

27/01/04 repeat. Pb variation can probably be accounted for by the difference in 

the actual blank level and the average blank applied. The difference in U is not as 

easy to understand, although the 29/03/04 repeat has much higher errors of 1%o 

on the measured 238U/236 U ratio. In Figure (6.14) and Figure (6.15) the 27/01/04 

result is found within the cluster of STA09-C2 results. The 29/03/04 repeat is 

found in Figure (6-13) and Figure (6.15) although it is considerably higher up 

than the 27/01/04 repeat because of its much greaterMU208value. 
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Sub-sample C2-1C 

Figure (6.13) and Figure (6.15). 

Sub-sample C2-1C has the largestMU208 value and displays the largest errors on 

the STA09 isochron. This sub-sample has the second highest U concentration 

of the STA09 results associated with the second lowest Pb concentration. As a 

consequence of the low Pb concentration, the blank correction has had a significant 

effect on the error associated with this sub-sample. 

Sub-samples C1-1 and C2-2 

Figure (6.14) and Figure (6.15). 

These two samples are grouped above the cluster of STA09-C2 results. The position 

of Cl-I slightly above the C2-2 results indicates that this part of the hand sample 

had a slightly different chemistry to that of C2-2- 

CI-1 has one of the lowest U concentrations for STA09,0.58 ppm, and a corre- 

spondingly low Pb concentration, 1.5 ppb. Pb measurements are good, despite 

a low signal intensity. However, the low signal intensity of the U results has re- 

sulted in errors of 4%o on the final 238U/236 U ratio. Since this sub-sample does 

not have a replicate it is impossible to assess how representative this result is of 

this sub-sample. Like the other samples from the lower half of STA09 (AI-I and 

A1-2 - See Table (C. 1)) this sub-sample has considerably lower U concentrations 

in comparison to the upper half results of STA09. 

In contrast to the single CI-1 result, the three repeats of C2-2 confirm this result 

very well. The concentrations, 206 Pb/208 Pb ratios andMU208values of these repeats 

are sometimes, but not always, within analytical error of each other. However, their 

excellent fit on the isochron and close proximity to each other supports the results. 

The associated errors are low and are not severely affected by the blank correction. 

The repeat from 15/10/03 is slightly higher up the isochron than the other two. 

This could be due to over correction for the blank, yet the U concentration is lower 

for this sub-sample too. 
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STA09-C2 results 

The STA09-C2 results compliment each other well and define the isochron. In 

spite of variations in U and Pb concentrations within sub-sample repeats, these 

sub-samples formed with the same initial Pb ratios and can be seen to have evolved 
along an isochron. This is confirmed when these results are plotted on their own 
in Figure (6.15). 

6.2.6 STA12 

See Figure (5.1) and Figure (6-1) for the stratigraphic context of this sample. 

Petrography 

This sample has a white layer of calcite on top of of a dark layer, see Figure 

(6.16). The dark layer appears to be brown flowstone rather than flowstone that 

is contaminated with sediment. When compared with the red sediment attached 

to some of the hand samples this material is crystalline rather than grainy and 

it is translucent, where the red detrital sediment is not. The white material is 

composed of hexagonal shaped crystals of 0.5mm. There is no visible layering 

within the white material. This could mean that this is one layer in itself that 

was deposited rapidly, or it could mean that this material is recrystallised as this 

results in the loss of primary structures such as layering (Murphy, P. (2005) pers. 

comm. ). The darker material appears to be denser than the white and has slightly 

larger grains which can be seen extending down through a growth layer. Some of 

the darker crystals appear quite needle-like in shape. This could be evidence of 

primary aragonite. On fragment A there is a rind of material with a denser texture 

in between the light and dark deposits, suggesting a break in deposition between 

these two. STA12 seems to be slightly less dense than STA09 and small cavities 

can be seen under the hand lens. The bottom of the sample has a thin coating of 

red mud very like that attached to the bottom of STA09. 
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Figure 6.16: Photograph of STA12 after division into three pieces (a) - scale shown 

in clll; scileinatic of the same showing STA12-A sub-samples (b). Brown shading 

relates to darker layers of flowstone. The arrow shows the vertical orientation of 

the sailiple iii situ. 
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and Pb concentrations and distribution 

Refer to Figures (6.16), (6-17) and (6.18) for positioning of STA12 sub-samples. 

The U concentrations are considerably lower than those for STA09 despite the 

fact that they are in the same flowstone layer. They have a narrow range from 

0.31 ppm to 0.54 ppm. The highest U concentration of the samples plotted on the 

isochron is 0.49ppm. Fragment B seems to have low U concentrations whilst those 

of fragments A and C are higher. Pb concentrations are also lower than STA09. 

The lowest value being only 0.43ppb, and the highest 1.4ppb. B3-A was composed 

of mainly white material but did have some of the darker material too. The low 

Pb concentrations in this sample confirm that his darker layer has been coloured 
by organic acids rather than detrital sediment. STA12 has relatively highMU208 

values and an adequate range from 595.1 ± 37.4 to 3276 ± 757. 

Isochrons 

The data are plotted in two figures for STA12. Figure (6-19), shows the full 

isochron and Figure (6.20) focuses just on the low points on the isochron. The 

resulting maximum age is 2.598 ± 0.052 Ma. Scatter on this isochron is better than 

that of STA09, MSWD is 2-8. If an isochron is plotted without the highMU208A2 

result the maximum age is 2.64 ± 0.12 Ma. The two ages are are well within error 

of each other showing that good isochrons can be still achieved with samples of 

lowerMU208values that have a relatively narrow range. 

Sub-samples Al and B3-A 

Figure (6.20). 

These two results lie slightly overlapping at the very bottom of the STA12 isochron. 

The line is seemingly anchored in between these two ellipses. 

Al has the highest Pb concentration of the samples on the isochron. It was ad- 

jacent to A2 in situ, and U concentrations between the two are comparable. Pb 

concentrations, however, are three times higher in Al. Good U and Pb measure- 

ments have resulted in low errors. Being low down the isochron means a relatively 
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Figure 6.17: Photograph of STA12-B showing sub-samples (a) - scale shown in cm; b 

schematic of the same, minus fragment BI (b). Brown shading relates to darker 

layers of flowstone. The arrow shows the vertical orientation of the sample in situ. 
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Figure 6.18: Photograph of STA12-Cl and C2 after removal of sub-samples (a) 

- scale shown in cm; schematic of the same showing sub-samples in place (b). 

Brown shading relates to darker layers of flowstone. The arrow shows the vertical 

orientation of the sample in situ. 
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Figure 6.19: STA12 complete isochron. Age calculated is a maximum age. Error 

ellipses are plotted at 2a level. Each colour represents an individual sub-sample. 

Sample is from flowstone layer 2C. 
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Figure 6.20: STA12 isochron showing points withMU208 <- 1300. Age calculated 

is a maximum age. Error ellipses are plotted at 2a level. Each colour represents 

an individual sub-saniple. Sample is from flowstone layer 2C. 
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high blank correction has had little effect on the ratios. 

B3-A lies on the isochron. and is the lowest point. B3-A has a good Pb run but 0 
one of the poorer U runs. it %ý-as made up partly of the layer of dark material. 
There was clearly a change in environmental conditions between the light and dark 

layers forming. 

Sub-samples B2-AI and CI-A2(s) 

Figure (6.20). 

On the isochron these three points are, collectively, in excellent agreement, with 

error ellipses that merge into each other along the plotted line. 

Sub-sample 132-Al lay just above the dark flowstone layer in situ. It was adjacent 

to CI-A2. On the isochron 132-Al lies between the two CI-A2 points. 132-Al has an 
20% lower U concentration than CI-A2 and an -ý 30% lower Pb concentration. 

The errors are good prior to blank correction but are inevitably increased because 

of the small amount of'Pb analysed. 

CI-A2 sub-sample was analysed twice, on 27/04/04 and on 04/10/04. The repeat 

run on 27/04/04 has slightly lower Pb and U concentrations and a considerably 

lower 208 Pb signal. The CI-A2s sub-sample was separated using a different chem- 

istry technique, see Section (B. O. 15), although this should not have affected the 
-7 

resulting concentrations. The 30% lower Pb concentration of the 2//04/04 repeat 

places it higher on the isochron. The errors on this sample are roughly double 

those of the 04/10/04 repeat and this is reflected by the larger error ellipse. The 

two repeats are not in good agreement. This could be because of the time lapse 

between the two separations - the 04/10/04 repeat may have gained common Pb 

from the labware after dissolution and this has not been accounted for in the blank 

correction. 
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6.2.7 STA 14 

Petrography 

STA14 is composed of very pure very dense calcite, see Figure (6.21). No porosity 

can be seen with the naked eye. The crystals are quite large and elongated - several 

mm long. What appear to be several horizontal growth layers can be seen on the 

cut face. On the bottom of STA14 is a thin, 1-2mm, layer of red sediment shown 

on Figure (6.23). 

U and Pb concentrations and distribution 

Refer to Figures (6.21), (6.22) and (6.23) for positioning of STA14 sub-samples. 

The U image, Figure (6-22) of this sample reveals generally even distribution of U 

with slightly higher concentrations on the bottom right edge of the sample. It is 

hard to tell whether this U is incorporated in the speleothem, or in the layer of 

sediment. U concentrations according to the U image do not differ that much from 

STA09. Rom the analytical data it is known that they are in fact much lower. 

This demonstrates the lack of sensitivity of U imaging to U concentrations at this 

level. Excluding A2, A3 and A4 the STA14 samples have, relatively speaking, very 

low U concentrations and quite high Pb concentrations. U ranged from 38.6 ppb 

to 59.2 ppb in samples excluding A2, A3 and A4 and from 170 ppb to 369.4 ppb in 

A2) A3 and A4. Pb ranged from 1.5 ppb to 22 ppb. With such low U levels, high 

levels of common Pb and a resulting insufficient range inMU208, an age can not be 

determined. 

Sub-samples A2, A3 and A4 

During a visit to Sterkfontein in July 2004 it was noted that the base of STA14 

seemed to overlap with the same material that STA15 is composed of STA15 

had already proved itself to be a promising sample, refer to results in Table (6.1), 

and on the basis of this three samples (STA14-A2, STA14-A3 and STA14-A4) 

were taken from the lowest clean material in STA14. These three samples seemed 

to confirm the theory that the base of STA14 is contemporaneous with STA15. 
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Figure 6.21: Photograph of front and internal structure of STA14 after initial 

&m1ple division (a) - scale shown in cm; schematic of the same from the front view 

The arrow shows the vertical orientation of the sample in situ. 
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Figure 6.22: Uranium image of STA14-B (a); schematic showing sub-sample posi- 

tions (b). Dashed lines show visible growth layers. The arrow shows the vertical 

orientation of the sample in situ. 
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Figure 6.23: Photograph of reverse side of STA14 (a) - scale shown in cm; schematic t-3 0 

of STA14-A wid STA14-C and sub-samples (b). Da-shed lines show visible growth 

hiyers. The arrow shows the vertical orientation of the sample in situ. 
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They have much higher U concentrations than the rest of the STA14 sub-samples 

that came from higher up in the STA14 hand sample, and therefore higher in the 

flowstone layer. The base of STA14 and all of STA15 seem to have formed during a 

period where greater amounts of U were incorporated into the speleothem. The U 

concentrations of these three samples are up to 6.5 times that of the other STA14 

samples. In general they have lower Pb content too. Despite having considerably 
higherMU208 values than the other STA14 samples, a reliable isochron is still 

unresolvable. 

6.2.8 S TA 15 

See Figure (5.1) and Figure (6.1) for the stratigraphic context of this sample. 

Petrography 

This is a dense, clean, sample. The cross-sectional cut across growth layers, reveals 

some small cavities, 1mm in size, dotted randomly across the sample. The 

crystals are very small and it is impossible to make out the average size under 

a hand-lens. There is little evidence of long crystals when looking in a direction 

parallel or perpendicular to the growth layers. This could be evidence of equant 

crystals produced during recrystallisation of the sample, however the cross-section 

of the sample shows a series of quite finely laminated layers, which are commonly 

primary features (Murphy, P. (2005) pers. comm. ). These axe e-1-0 1-2 mm thick'. 

The darker layers appear to include some needle-like crystals. The underside of 

this sample has a layer of red sediment attached which is 1-3 mm thick. A 

photograph of STA15 can be seen in Figure (6.24). 

U and Pb concentrations and distribution 

Refer to Figures (6.24) and (6.25) for positioning of STA15 sub-samples. 

On the U image, Figure (6.24), higher concentrations of U can be seen along what 

is the top of the sample. Initial sampling of STA15-01 to STA15-05 followed this 

4Layers are only visible on the cut faces of the sample and do not appear on the schematics. 



151 

pop 

SfA 
4- STA15-BI 

STA15-B 

(b) - 
... -. - 

- 

"".;. u:;.. 
. 

-- "1. _ r. i. - r- 
.- 

: -' 
: 

-_- 
:. "". 

":. -. 
'' -. 

''R. 
--' . 

'- 
-' . 

(c)] 

STA15-04-1 

STA15-01 STA15-02 

'TA15-05 

Orientation 

Red sediment side 

cm 

Figure 6.24: Photograph of initial division of STA15 (a) - scale shown in cm. 

Uranium iniage of STA15 prior to division (b); schematic of the same showing 

initiýil sub-sa, nipling (c). Dotted lines on (c) show division after these sub-samples 

were taken. The tirrow shows the vertical orientation of the sample in situ. 



1.52 

5-TA 15 

STA 15 -A2 

Red sediment bottom 

STA 

(a) 

Orientation * 

With red sediment side facing 
into page and AI removed 

STA15-A2-D 

STA I 5-A2-A I 

STA15- 

Orientation 

STA I 5-B I (entire slice 
across top) 

STA15-B2-AI, 2 &3 

Cut 
face 

-; TA15-A2-B I 

With red sediment side facing 
into page and BI removed 

: ýý 
STA15-B2 

STA I 5-B3-A, B&C 

STA15-B3 
1 

cm 

Figure 6.25: Schematic of STA15-A and associated sub-samples (a)-, schematic of 

STA15-B and associated sub-samples (b). The arrow shows the vertical orientation 

of tile sample in situ. 

- STA15-Al 

Cut face 

Red mud bottom 



153 

contour, also shown in Figure (6.24). U concentrations vary quite a bit for this 

hand sample. They range from 0.53 ppm to 1.36 ppm. Pb concentrations are 
between 1.76 ppb and 10.2 ppb, but are not as low as the other notably radiogenic 

samples, STA07-C, STA09 and STA12. There does not appear to be any pattern 
to the U distribution. Only the B2 and B3 samples show any uniformity. The B2 

samples were contiguous, as were the B3 samples. The light and dark laminations 

in this sample may represent higher and lower U concentrations, and samples span 

these layers to different extents resulting in such variations. 

Isochrons 

The plot' for STA15 produces a maximum age of 2.97±0.13 Ma, Figure (6.26). Fig- 

ure (6.27) shows the low points on the isochron. The scatter is large, MSWD = 85. 

The scatter associated with the plot is too great to be accounted for by analytical 

errors alone and must be attributed to primary geological conditions. Sections 

(4.2.3), (5.4) and (7-3-2) discuss further the causes and possible implications asso- 

ciated with scatter. 

Sub-samples A2-C and A2-D 

Figure (6.26) and Figure (6.27) respectively. 

These two samples were adjacent to each other in situ. They share the same initial 

isotopic signature, which is shown by their positioning along a line parallel to the 

plotted one. The size of the A2-C ellipse means that this sub-sample sits on the 

plotted line as well, whereas the A2-D ellipse lies just below. 

A2-C has the highestMU208value of the STA15 samples, 1406 ± 63. It also has the 

lowest Pb concentration and is the only STA15 sub-sample to have more206 Pb than 

208 Pb. Although A2-D was adjacent to A2-C it has slightly lower U concentrations 

and slightly higher Pb concentrations. This results in a considerably lowerMU208 

value. 

5The graphed data for STA15 is referred to as a plot rather than an isochron as the scatter is 

too great for it to be labelled as the latter. 
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Sub-samples A2-B, B3-A and 05 

Figure (6-27). 

Like the A2-C and A2-D sub-samples these sub-samples form a line parallel to the 

plotted one. The imaginary line is quite far above the plotted one and these points 
increase the MSWD significantly. 

In spite of having one of the lower U concentrations of the STA15 sub-samples, 

A2-13 has a relatively highMU208 because of its low Pb concentration of 2.4 ppb. 

The Pb run for this sub-sample has a low signal and this, combined with the 

low sample Pb amounts, has resulted in large errors in the 206 Pb/208 Pb ratios in 

comparison to the other STA15 samples. 

133-A has the highest U concentration of the STA15 samples. It also has one of the 

higher Pb concentrations, which means that on the plot, it is the lowest of these 

three samples. 133-A was alongside 133-B in situ but they do not seem to have had 

the same initial Pb ratios. 

Sub-sample 05 was taken from the outer edge of the hand sample. It has a high U 

concentration and a low Pb concentration. In spite of the small sample size the U 

run was good and Pb signal was adequate. 

Sub-samples A2-F, B2-Al, B2-A2, B2-A3 and B3-B 

Figure (6.27). 

The results for these five sub-samples form a cluster of points quite low down on 

the plot. These points really define the lower part of the plot. Of these points 

B2-Al, B2-A2 and B2-A3 form a line. B3-B and A2-F form a line slightly above 

but parallel to these three. 

A2-F was next to A2-B in situ. The U and Pb concentrations are similar. On the 

plot they are relatively close and both lie a little above the line. A2-F is slightly 

lower on the plot than A2-B- 

B2-Al, B2-A2 and B2-A3 were originally one piece and were split into three for 

analysis. They agree well in terms of their position on the plot, suggesting a shared 
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chernical and geological history. 

Sub-sample 132-Al has an average U and Pb concentration, in relation to the other 
STA15 sub-samples, and aMU208of 512.3 ± 7.9. It is positioned slightly below the 

plotted line and has a very similar Pb makeup to 133-13. 

B2-A2 is alongside B2-Al, but it has a 10% lower Pb concentration which has 

shifted it higher up the plot. 

B2-A3 has the lowest U and Pb concentrations of the three B2 samples. The Pb 

signal is low and the errors are higher than the other two samples because of this. 

Its higher position on the plot is the result of a lower Pb concentration. 

Sub-sample 133-13 is very similar in composition to its in situ neighbour B3-A. It 

has a marginally lower U concentration and a lower Pb concentration. 133-B lies 

on the line whereas 133-A doesn't. Whether this is a geological consequence or an 

analytical one is unknown. 

Sub-samples 01,02,03 and 04 

Figure (6.27). 

These four samples are found on the bottom of the plot and are linked by their 

relatively high Pb concentrations and more specifically lack of radiogenic Pb. Sub- 

samples 01,02 and 03 are also linked by the fact that they were subject to a slightly 

different separation technique than the remainder of the STA15 sub-samples. Tak- 

ing into consideration the inexperience of the analyst at the time and the change 

in the fluoride precipitation step, Section (5.2.2), it seems reasonable to be suspi- 

cious of all the STA15 samples from the 25/03/03 analysis. This includes samples 

STA15-01, STA15-02 and STA15-03. When the U runs for these samples are com- 

pared with the next set analysed - STA09-C2 from 15/10/03 - the improvement is 

great. When the two repeats of STA15-05 are compared, again the improvement in 

the U result is noticeable, see Table (6.1) and Table (C. 1). This indicates that the 

discrepancies in the 25/03/03 sub-samples are due to inadequacies in the analysis 

rather than their geological history. 

These low points constitute an important area on the plot giving the mu2o8a wider 
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range, although they also increase the level of scatter. 

Sub-sample 01 has a relatively high U concentration but not a particularly low Pb 

concentration. The result of this is aMU208 value of 430 ±6 with a small blank 

correction. 

02 has one of the largest U. concentrations of the STA15 suite, but also has the 

second highest Pb concentration. The U run was short, only 22.5% of the usual 

number of ratios were recorded. Sub-sample 02 is positioned low on the plot. 

Out of all the STA15 samples, 03 has the lowest U concentration - only 0.55 ppm 

- and the third highest Pb concentration - 5.5 ppb. It is found low on the plot and 

has a poor fit with regards to the calculated line. 

Sub-sample 04 has a large U concentration and the largest Pb concentration. This 

has produced a result where the IO'Pb enrichment is small. 04 appears to come from 

the same layer in the hand sample as 03. However 04 has double the concentration 

of U and of Pb. 

Summary 

The STA15 results seem to indicate there was a fair amount of variation in initial 

Pb composition within this hand sample. On the plot there appear to be several 

groups of points that shared the same initial Pb composition. Each group had a 

slightly different initial composition and the groups evolved radiogenically along 

lines parallel to each other. In such cases this results in a plot with a large scatter, 

which is not necessarily indicative of the applicability of the results. Although the 

groups may not be positioned along the same line, a synchronous decay history 

means that the slopes of the lines they define should be in agreement. Possible 

causes of scatter are discussed further in Section (4.2.3), (5.4) and Section (7.3.2). 
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6.2.9 STA16 

Petrography 

STA16 came from the top of flowstone layer 2B. In appearance STA16 is very 

similar to STA14. It has the same pure, dense calcite, with no visible porosity. 
The crystals are quite large and variable in size. In cross-section, large crystals, 

which are several mm long, can be seen extending through the sample. STA16 is 

darker than STAK in particular near the top of the sample where all the sub- 

samples but A5 were located. The surface of the sample exposed in the cave has a 
layer of red/brown sediment which comes off when rubbed. Refer to Figure (6.28) 

U and Pb concentrations and distribution 

Refer to Figure (6.28) for positioning of STA16 sub-samples. 

STA16 has very low U concentrations ranging from 0.024ppm to 0.045ppm. These 

are lower than the other two hand samples from this flowstone, and are more 

similar to the concentrations of STA03 and STA04 from layer 2D. The low U 

concentrations seem to coincide with the top of flowstone layer 2B, as lower U 

concentrations are seen at the top of STA14. Pb concentrations are between 4.8ppb 

and 11.5 ppb. These are similar to STA14 and much higher than STA15. The 

STA16 sub-samples suffered from too much common Pb and too little U. No plot 

has been constructed from this data set. 

6.2.10 Summary of layer 2D results 

This is the only layer for which an age can not be produced. Out of the three hand 

samples analysed, STA03 and STA04 prove unsuitable for the technique. STA03 

has very high Pb concentrations and very low U concentrations. TheMU208values 

are consequently low and have an extremely narrow range. STA04 has much lower 

Pb concentrations but is hampered by similaxly low U concentrations. Although 

theMU208 values are much higher and have a wider range they are still very low 

in relation to the other Sterkfontein hand samples. In complete contrast to these, 

STA07-C is the most radiogenic sample analysed with atop MU208of 5105 ± 1269. 
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Unfortunately an isochron can not be plotted from these results. 

6-2-11 Summary of layer 2C results 

Flowstone layer 2C is the most successful layer in that it has yielded two hand 

samples which produce dates'; STA09 produces a maximum age of 2.72 ± 0.10 Ma, 

and STA12 a maximum age of 2.598 ± 0.052Ma. Importantly these maximum 

ages agree within error. STA12 produces a significantly better isochron. In terms 

of U and Pb concentrations STA12 has lower U concentrations but it also has 

lower Pb concentrations. TheMU208 values for these samples therefore span a 

similar range. The higher Pb concentrations of STA09 do make resolution of 

radiogenic enrichment more difficult though. Greater U concentrations in STA12, 

and greater variation in U concentrations, could be primary features or a sign of 

subsequent alteration as indicated by the lack of primary features such as growth 
layers, and by visible porosity. Although STA12 was in the same layer as STA09 

it certainly experienced different conditions because it includes a layer of dark 

flowstone that is lacking in STA09- Despite this, STA12 appears to be more 

suited to the U-Pb technique, and it produces an appreciably better isochron than 

STA09. This may be purely down to variable initial Pb compositions in STA09. If 

STA12 has recrystallised this probably occurred early after deposition, after which 

it remained a closed system. Together these samples provide evidence not only 

for the maximum age of this flowstone deposit but for the robustness of the U-Pb 

system in this kind of material. 

6.2.12 Summary of layer 2B results 

Like layer 2D this flowstone produces mixed results. Sample STA14 is like STA04 

in that its Pb concentrations are relatively low but it is U deficient. STA16 has a 

comparable Pb content but is even more deficient of U. Whilst STA14 has some 

MU208 values as high as 311.7 ± 13.1, an isochron can not be determined for this 

hand sample. Regardless of this layer 2B yielded the third hand sample from which 

6There are in fact three results when the preliminary SK3 result is included - See Section 

(4.2.3) 
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a maximum age is inferred; STA15 produced a maximum age of 2.97 ± 0.13. Ma. 

STA15 has a wide range in MU208 values, but does not have as high upper values 

as STA09 or STA12. The STA15 plot, and therefore the hand sample itself, is not 

as robust as those for layer 2C. The scatter and therefore the confidence in the age 

are not as great for those of the layer 2C results either. However it is felt that in 

view of the layer 2C results this scatter can most likely be attributed to initial Pb 

heterogeneity and that confidence can be placed in this maximum age. 

6.3 U disequilibrium corrections 

The following lab work and calculations are credited to Cliff, R. A., (2005). 

Following the laboratory work carried out by the writer, giving the above results, 

the present day 234U/238 U ratios of seven Sterkfontein samples were measured by 

Bob Cliff and Jan Krarners at the University of Bern. They were analysed on 

a Nu-Instruments MC-ICPMS using a sample/standard bracketing routine with 

an equilibrium uraninite solution as standard. Excess 234U was detected in all 

the samples analysed, meaning the initial disequilibrium must have been relatively 

high. Flowstone layers 2C and 2B produced similar present day excesses, giving 

an overall average of 3.9 ± 1.4%o for these two layers. Flowstone layer 2D pro- 

duced significantly higher excesses, and a greater variation in excesses within a 

hand sample. Therefore, it was felt that an average excess for this layer was not 

appropriate. See Table (6.2) for all measured excesses. 

Ages corrected for initial 234 U excess are calculated for each of the Sterkfontein 

samples by assuming a common level of excess 234U 
. The isochron slope from the 

uncorrected maximum age is used as a first approximation. By inputting this into 

the calculation derived by Ludwig (1977)7 and iterating until the results converge, 

a new initial disequilibrium value is established, from which a new age can be 

calculated. The calculations show that initial 234 U excess was as high as 2.5, 

see Table (6.2). The error in the disequilibrium corrected age is the quadratic 

combination of the propagated uncertainty in the disequilibrium correction and 

the error on the isochron slope. 

7 Equations are adapted from Bateman (1910), see Section (4.1-3) 
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Sample Iso -hron Error Corrected Estimated "-%ISNN-D Initial 234U Error 
Slope (2o, ) Age Error (2o, ) Excess (2o, ) 

ýTA09 0.000427 0.000008 2.17 +7/-6 7.9 1.97 --ý-0-16/-0-23 
STA12 0.000403 0.000008 2.11 +7/-5 2.8 1.69 +0.18/-0.22 
SK3 0.000466 0.000009 2.25 +8/-7 5.5 2.46 +0.22/-0.25 
STA15 0.000461 0.000020 2.24 +9/-7 85 2.41 +0.31/-0.35 

Table 6.2: Table of dated Sterkfontein samples with new ages corrected for initial 
234 U disequilibrium. 

The corrected ages are significantly different from the maximum age results, see 

Table (6.2). The new corrected age is the best estimate of the true age of the 

sample taking into account initial U disequilibrium conditions. The best estimate 

ages for flow-stone layer 2C are plotted in Figure (6.29) and give a weighted average 

age for this horizon of 2.17±0.17Ma. This combined with the best estimate STA15 

result of 2.24 + 0.09/ - 0.07Ma for layer 2B, suggests an age for StW 573 of around 

2.2Ma (Cliff, R. A., (2005) pers. comm. ). 

2 36 
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Mean = 2.17 ± 0.17 [7.8%] 95% conf. 
2.32 Wtd by data-pt errs only, 0 of 3 rej. 

MSWD 3.5, probability 0.031 
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Figure 6.29: Weighted age calculation for flowstone 2C using best estimate ages 

for saniples STA09, STA12 and SK3. Cliff, R. A., (2005) pers. comm. 
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6.4 The Limeworks 

The Limeworks hand sample that was analysed. LAB03, was sampled from a inem- 

ber 1B extensive stalagmite boss that N-, -as very clean and dense in appearance. The 

speleothem deposit was several metres thick at this point' and LAB03 NN-ýIs taken 

- 30cm from the lower edge of the deposit. Refer to Sections (5.1.1) and (A. 2-21) 

for provenance. The accepted results for this hand sample are displayed in Table 

(6.3), while the rejected results are shown in Table (C. 2). 

6.4.1 LAB03 

Petrography 

LAB03 spans across several growth layers of speleothem. The layering can be seen 

as variations in colour and texture running across the sample. Overall the sample 

is very dense. At the LAB03-1 end of the sample the texture is much finer. On the 

flat surface it is hard to make out individual crystals. In cross-section, long thin 

tightly packed crystals can be seen. This fine material is layered and appears to 

be part of a stalagmite boss in terms of texture (Murphy, P. (2005) pers. comm. ). 

A third of the way along LAB03-2 the texture changes. This suggests there was 

a change in the environmental conditions, which led to rapid deposition as the 

coarser material that follows has no layering. The crystals are much larger and 

appear flaky. In cross section they are long, like those in LAB03-1, but much 

thicker. Samples 2-3,2-4,2-7 and 2-8, all originate from the finer material in 

LAB03-2. Sub-sample 2-11A was taken from the coarser material. Sub-sample 2-2 

appears to lie on the boundary between the two textures. A photograph of LAB03 

is shown in Figure (6.30). The finer grained material starts in the ývliiter band of 

material in the middle of the sample and extends to the bottom. 
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Figure 6.30: Uranium image of LAB03 (a) and corresponding photograph (b). 
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and Pb concentrations and distribution 

Refer to Figure (6-31) for positioning of LAB03 sub-samples. 

The U image, Figure (6-30) shows some variation in 'U concentration for this sam- 

ple. Higher U concentrations appear to be in LAB03-1 and in two areas of LAB03- 

2. These areas correspond to samples 2-8 and 2-7. These do have two of the higher 

U concentrations by analysis. U concentrations are, for the most part, high. They 

vary between 0.06 ppm and 1.99 ppm but most are well over 1.5 ppm. The high- 

est concentrations are in samples 2-2,2-3, and 2-8. Pb concentrations are very 

variable. Sub-sample 2-1 IA has a Pb concentration of 2.7 ppb whereas 2-7 has a 

concentration of 14.4 ppb. The higher Pb concentrations are in samples 2-3 and 
2-7. There is no obvious physical explanation for this. 

Isochrons 

The plot' for LAB03 gives an age of 7.98 ± 0.29 Ma, but it has a MSWD of 50. 

The scatter of these samples could be the result of real age variation, differences 

in initial U disequilibrium, or initial Pb heterogeneity between the layers. Possible 

causes of scatter are discussed further in Section (4.2-3), (5.4) and Section (7.3.2). 

Sub-samples 2-3 and 2-7, which are plotted on the graph, were analysed prior to 

the alteration in the precipitation step, see Section (5.2.2). 

The following sub-samples are all plotted in Figure (6.32). 

Sub-samples 2-2,2-3,2-4 and 2-8 

These four sub-samples form a cluster near the top of the LAB03 plot. In terms 

of their composition there are similarities between these sub-samples. 

Of the repeats analysed of sub-sample 2-2 the 18/06/03 repeat is considered the 

most reliable as it has much better errors and was analysed with the improved 

fluoride precipitation step. This sub-sample has a high U concentration and a 

relatively radiogenic Pb isotopic signature. Like all the LAB03 results the relatively 

8The graphed data for LAB03 is referred to as a plot rather than an isochron as the scatter 

is too great for it to be labelled as the latter. 
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Orientation 

LAB03-1 
(I large and 2 small chip 

LABO 

LABO. ' 

LAB03- 

LAB03-2- 

LAB03-2- 

LAB03-2-9 

LAB03-2-1 

LAB03-3-1 

ce removed for SEM 
: )rk 

AB03-2-8 

LAB03-2-7 
LAB03-2-6 

B03-2-II(A&B) 

1-2 

cm 

Figure 6.31: Schematic of LAB03 from front, showing sub-sample positions. Brown 

sliziding shows darker layers of flowstone. The arrow shows the vertical orientation 

of the salliple ill situ. 
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high Pb concentrations mean that the error ellipses are small. 

Sub-sample 2-3 has the highest U concentration of all the LAB03 sub-samples. but 

it ýlso has a relatively high Pb concentration. It has a good U run in spite of the 
fact that this sub-sample was analysed using the old precipitation technique. 

The 2-4 sub-sample was adjacent to 2-3 in situ but has 20% less U and P-1.0 35% 
less Pb. This sub-sample is the most radiogenic of the LAB03 results with a mU208 

of 636.2 ± 7.9 and a 
206 Pb/208 Pb of 1.3 ± 0.01. It is therefore the highest point on 

the plot but it doesn't seem to fit on the same line as the other high points. 

In situ 2-3,2-4 and 2-8 appear to come from the same stratigraphic layer. The 

positioning of 2-3 and 2-8 along the line on the data plot is in agreement with 

this. Sub-sample 2-8 has slightly higher U and Pb concentrations than 2-4 but 

not as high as 2-3. After 2-4,2-8 is the next most radiogenic sub-sample with a 
206 Pb/208 Pb of 1.15 ± 0.007. 

Sub-samples 2-7 and 2-11A 

The two low points on the LAB03 plot are 2-7 and 2-11A. 

Sub-sample 2-7 has a much higher Pb concentration than the other sub-samples. 

The large Pb concentration means this sub-sample is low down on the plot. 

Sub-sample 2-1 1A is the least radiogenic of the LAB03 results. It has a very low 

U concentration in comparison to the other samples 30 times less) and the 

U run wasn't particularly good as a result of this. The Pb concentration was 

also the lowest but the isotopic composition was not particularly radiogenic. The 

206 Pb/204 Pb before blank correction was only 19.62. 

Although these sub-samples are relatively unradiogenic, they both lie on the line 

and give weight to the lower end of the plot. 

Summary 

The LAB03 plot suffers from insufficient data, which is partially due to the timing 

of analysis. More than half the results were analysed prior to the alteration to 

the precipitation step, Section (5.2.2), and as a consequence of the poor analytical 
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quality of these results they have not been plotted. The 18/06/03 samples were the 

first to be run on the altered technique with the new precipitation steps. However 

following these separations it was evident that there was still a high level of scatter 

connected with the results and it was felt that pursuing with the analysis of this 

sample may very well prove futile. With such large scatter on the LAB03 plot, and 

without any supporting data plots for this result, it was felt that the maximum 

age produced could not be taken as meaningful. 

6.5 Kromdraai B 

The Kromdraai B sample analysed, KBP03, was removed from a thin band of 

flowstone on a block of member 3 breccia associated with the TM 1517 partial 

cranium and mandible, refer to -Sections (5.1.1) and (A. 2.3) for provenance. The 

results for this hand sample are shown in Table (6.4). 
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Figure 6.33: Photograph of reverse of KBP03 after sub-sampling (a); photograph 

of same showing internal texture (b) - scales shown in cm. 

6.5.1 KBP03 

Petrography 

The majority of this sample appears clean and relatively dense. Some porous 

spaces can be seen under the hand-lens and the crystals are extremely fine. The 

outer surfaces of the samples appear more porous than the inner. This could be a 

primary or a secondary feature. The top surface of this sample has a rind I mm 

thick. This is grey in appearance and seems to be texturally different flowstone, 

rather than a layer of sediment. There is a similar but thinner layer on the bottom 

of the sample. Figures (6-33) and (6.34) show photographs of the different faces of 

KBP03. 

U and Pb concentrations and distribution 

Refer to Figure (6-35) for positioning of KBP03 sub-samples. 

The U image, Figure (6.34), shows that U distribution is uniform. Only five 

Kromdraai samples were analysed, all from KBP03. Unfortunately, two of these 

were loaded with contaminated silica gel; the remaining three were analysed prior 

to the a-Iteration in the fluoride precipitation step, see Section (5-2-2). The U 

concentrations in these three are not particularly high, between 0.37 ppm and 

0.6ppiii. The Pb concentrations are relatively high, in sub-sample Al in particular. 

With only three points, having understandably low MU208 values, the data could 
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(a) 

(b) 

kaPO3 

Figure 6.34: Photograph of front of KBP03 after sub-sampling (a) - scale shown in 

cm; corresponding uranium image (b). U image was taken prior to sub-sampling. 

not be meaningfully plotted. This site is very exposed to erosion and has few 

flowstone deposits so it is unlikely to be ideal for U-Pb dating. 

6.6 Swartkrans 

The Swartkrans sample analysed, SKFOI, was sampled from a band of flowstone 

in the rear north west corner of the inner cave above a pocket of member I breccia 

which produced the SK23 mandible. Refer to Sections (5.1.1) and (A. 2.4) for 

provenance. The results for this hand sample are shown in Table (6.5). 
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Figure 6.35: Schematic of KBP03 showing its progressive breaking up into sub- 
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6.6.1 SKFOI 

Petrography 

. ins This sample is relatively clean, see Figure (6-36). The texture is dense, with grai 

that are easily visible to the naked eye and up to 2 or 3 min long. The exposed 

top and front surfaces of the sample are discoloured by a light coating of sediment. 

There is a thin layer of dark red sediment on the underside and a lamina of the 

same material ý-' 1 cm from the base of the sample. Sub-sample 3 was abreast the 

red lamina. 

U and Pb concentrations and distribution 

Refer to Figure (6.36) for positioning of SKFOI sub-samples. 

Two samples from SKFOI were analysed to assess their potential for dating. Both 

were analysed before the alteration to the fluoride precipitation step, see Section 

(5.2.2). Sub-sample I has a high U concentration of 1.2 ppm and a Pb concentra- 

tion of 7.1 ppb, giving it aMU208 value of 281.5 ± 25.1. Sub-sample 3 has a lower 

U concentration and a high Pb concentration of 24.9 ppb. On the U image, Fig- 

ure (6.36), the U concentration appears slightly higher at the base of the sample. 

Analysis of the samples does not show higher U in this area so it is reasonable to 

think that could be linked to the layer of red sediment there, which was not part 

of the analysed sub-samples. 

Swartkrans results showed that the deposits do not appear to have sufficient quan- 

tities of U for this technique. The flowstone deposits and the fact that these are 

generally well protected from the elements means this site could produce U-Pb 

ages if samples with higher U concentrations could be sought out. However being 

a younger site than both the Limeworks or Sterkfontein could also mean that it 

falls just beyond the limits of this technique. 
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Figure 6.36: Photograph of reverse of SKF01 (a) - scale shown in cm; correspond- 

ing uranium image (b). Schematic of SKFOI, from front and reverse angles, and 

sub-saniples (c). Brown layer in schematic shows darker layer of flowstone and 

corresponds to one shown in photo. 
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Chapter 7 

Discussion and conclusion 

The discussion is split into four sections. Section (7.1) looks at the implications of 

the U-Pb dates for StW 573, critically assesses the other dating techniques, and 

provides new interpretations in view of the U-Pb results; Section (71.2) discusses 

briefly the possibilities and merits of continued U-PI) dating in South African 

hominid caves; Section (7.3) covers the wider issues noted by this study for the 

application of this technique on other speleothem or carbonate deposits, including 

initial disequilibrium, recrystallisation, and Pb heterogeneity; lastly Section (7.4) 

reflects on the original aims of the project and to what extent these have been met. 

The chapter ends with a concluding statement on this study. 

7.1 Interpretation of the dates for Sterkfontein 

The results of the dating techniques previously applied at Sterkfontein have, so 

far, not been able to reach an agreement for the age of the deposit, most notably 

for members 2 and 4, and the important hominid fossil., StW 573. Using the new 

U-Pb dates it is possible for some new interpretations to be made of the previous 

results and to better resolve the age issue for this fossil. 

7.1.1 Uranium-Lead dating 

The U-Pb results for Sterkfontein member 2 have important implications: not only 

for the a,, -(, of StNN' 573. but also for the age and development of the cave 
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The original maximum ages calculated by U-Pb dating for Sterkfontein are ex- 
tremely useful in themselves. Even without disequilibrium correction these results 
improve the resolution of the age of this fossil. By using the results of the previous 
dating techniques as indicators of the possible range in age for StW 573, it was 

apparent from the maximum ages that these deposits had not incorporated excep- 
tionally high 234 U disequilibrium, unlike some other speleothems in the Transvaal 

measured by Kronfeld et al. (1994). See Table (6.2) for calculated initial 234 U 

excess. Following correction for disequilibrium the best estimate ages were lower 

than the maximum ages by < 0.94Ma. 

Implications of the new dates for Sterkfontein 

The corrected U-Pb ages show that StW 573 is not as old as calculated by Partridge 

et al. (1999) and Partridge et al. (2003). This has implications for how this fossil 

fits in with other South and East African hominids, and thus for the origin of 
the human lineage. Firstly, these results confirm that the South African branch 

of the Australopithecus genus, which StW 573 most likely belongs to, is probably 

not as ancient as the East African branch. There is currently no fossil evidence to 

indicate that these early hominids had reached South African by 3 Ma. Secondly, 

the first evidence for the genus Homo appears in East Africa e-%. 0 2.5 Ma (Johanson 

and Edgar, 2001), and therefore, at only 2.2 Ma, it is highly unlikely that StW 

573 is a direct ancestor of modern humans. Whether this rules out all South 

African hominids as ancestral to Homo sapiens is questionable. There is still 

some debate as to whether East Africa is the first home of the later genus Homo. 

According to Pickford (2004), Homo appeared suddenly in East Africa suggesting 

that it evolved elsewhere. Pickford (2004) speculates that because Southern Africa 

suffered aridification much earlier than the rest of Africa, vertebrate species such 

as the Nile crocodile evolved over time in the dry southern environments, and 

having adapted to such conditions, could spread into other areas such as East 

Africa when these became drier. This may also have happened in the case of 

primitive hominids (Pickford, 2004). Until a fuller picture of human evolution is 

gained it is still entirely possible that Homo sapiens evolved via a Homo species 

which originated in South Africa before spreading across the African continent. 
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However at 2.2 Ma it is improbable that these individuals descended from the 

species represented by StW 573, although the two may have shared a common 

ancestor. A further question that arises from these results is, if the species that 

StW 573 represents did not evolve into modern humans, what happened to it? 

Did it simply die out, or did it evolve into other species such as Australopithecus 

robustus, as has previously been suggested? (Johanson and Edgar, 2001) In spite 

of the continued debate on human origins, what is certain is that StW 573 is the 

most complete hominid skeleton ever discovered, and it is vital that an age can be 

assigned in order to further clarify the path of human evolution. 

A U-Pb age for StW 573 also provides interesting information on the history of 

the formation of this cave site. High levels of water flow are typically linked to 

flowstone deposition, and the age results for the two flowstone layers are testimony 

to the rate at which these deposits were forming. The U-Pb ages place flowstone 

layers 2C and 2B at the most 230ka apart, although growth hiatuses in member 

2 may actually account for the greatest proportion of the depositional time of this 

member. If the faunal dates for member 4 are credible, then combining them with 

the U-Pb results reveals that members 2 and 4 are contemporaneous, despite being 

vertically separated by several metres of sediment. This might be explained by 

periods of rapid sedimentation but it probably means that the stratigraphy is not 

as simple as has been assumed by previous dating techniques. The Sterkfontein 

deposits clearly do not conform to a straightforward depositional model, where 

member deposits were laid down sequentially on top of each other. This is an area 

which needs to be researched more thoroughly before using this as evidence for any 

other dating means. What is particularly interesting about the similar timing of 

deposition for members 2 and 4 is that Little Foot (StW 573) and Mrs Ples (Sts 5) 

may in fact turn out to be contemporaries, rather than being separated by several 

hominid generations. 

7.1.2 Faunal dating 

Refer to Figure (3.1) for previous interpretations of the faunal evidence. 

The U-Pb ages agree with the original interpretation of the fauna by Cooke and 

Maglio (ref. from Tobias (1973)) prior to the discovery of StW 573. In spite of 
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this there are still questions over some of the assumptions made by this dating 

technique. 

Comparing South African with East African sites is not necessarily reliable. As 

discussed earlier, the climatic conditions in these two regions were not guaranteed 

to be identical at that time (Pickford, 2004). In addition to this, the environments 

of accumulation are very different. The cave sites in South Africa therefore, evolved 
in entirely different landscapes and potentially different climates. 

Faunal evidence is sometimes completely circumstantial. Is a sample representa- 

tive of a species' actual proportion? Can one sample be taken as good evidence 

of its presence at that time? Turner (1997) notes how the number of specimens 

and number attributable to each species is generally low making faunal dating a 

difficult technique. Currently the faunal evidence for the dating of member 2 is one 

Chasmapo, rthetes fossil which is similar to one found at the 5 Ma site of Langebaan- 

weg. However this same fossil is also likened to one from member 4 at Sterkfontein, 

and is not well represented in the Transvaal deposits. A Dinofelis barlowi' from 

member 4 has also been compared to some specimens from Langebaanweg and to 

a single specimen from the Limeworks member 3 (Turner, 1997). It is apparent 

then that some species and their features may span considerable periods of time. 

All the member 2 species do in fact exist in the member 4 deposits, and/or at 

younger sites. The two that don't appear in member 4, Adnonyx jubatus 2 and 

Felis caracal' are both found in the supposedly younger Swartkrans member 1 

deposits (Brain and Watson, 1992). 

Another factor that may bring faunal dating into question is the possibility of 

sedimentary, and therefore faunal, mixing between different members. If the de- 

posits have been subjected to mixing it raises doubts over the faunal evidence. 

Although Clarke (2002b) asserts that though some of member 4 collapsed, fossils 

from member 4 or member 5 could not have found their way into the member 2 

deposits. 

'Sabre tooth cat. 
2Cheetah. This specimen came from the limeminers dumps so it is uncertain as to whether 

this fossil can be assigned to member 2. 

3Cat family. Caracal resembles a lynx. 
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Despite these problems with the faunal dating technique, this is still the most 

widely used out of all the dating techniques. It is possible that the sparse fauna 

in member 2 has been misinterpreted, for whatever reason. Taking the original 

estimate for member 4 by Vrba (1985), and using the faunal similarities between 

members 2 and 4 as evidence, the faunal date for StW 573 can easily be reconciled 

with the U-Pb result. 

7.1.3 Palaeornagnetic dating 

Palaeomagnetic dating in this context is immediately weakened by the fact that it 

relies on faunal dating for a guide and sedimentation rates as further chronological 

evidence. 

The faunal guide for the palaeomagnetic dating of member 2 was between 2.7 and 
4. OMa (Partridge et al., 1999). This in turn was based on the evidence of one 
fossil and a stratigraphic separation of 15m between members 4 and 2. Partridge 

et al. (1999) identified five reversals within the member 2 deposits and in order 

to assign an age to StW 573 from these results, the sedimentation rate of the 

deposits was interpolated. Whether this is a safe assumption is debateable. The 

U-Pb dates and faunal dating of member 4 imply that the stratigraphy can not be 

interpreted in such a simplistic way, Section (7.1.1). Without precise knowledge 

of both sedimentation rates and how each deposit is related to every other, strati- 

graphic separation does not represent reliable evidence. Neither, for that matter, 

is a single fossil an adequate chronological indicator. 

In spite of these issues, the measured palaeomagnetic sequence can be reinterpreted 

taking the U-Pb dates into account. In Figure (7.1) the palaeomagnetic sequence 

measured by Partridge et al. (1999) is reconsidered taking the U-Pb ages into 

account. The best estimate ages from layer 2C give a weighted average age of 

2.17 ± 0.17Ma, see Figure (6.29), which can easily be matched to the Reunion 1 

normal polarity event. The single STA15 best estimate age of 2.24+0.09/-0.07Ma 

for layer 2B is not so easily resolved with the GPTS. Taking into account the 

polaxity sequence measured by Partridge et al. (1999) the next reversal to which 

the lower portion of this flowstone can be assigned is the Reunion 2 normal polarity 

event (Cande and Kent, 1995). This event is dated at 2.42-2.44Ma, whereas the 
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STA15 best estimate can only accommodate a maximum of 2.33-Ma. Whether thiý 

disparity is due to a poor 'U-Pb result or a mistake in the palaeomagnetic anak-ses 

cannot be determined. 

7.1.4 Cosmogenic burial dating 

Like U-Pb dating, cosmogenic burial dating is a relatively new dating technique 

in this context. However, like the palaeomagnetic and the faunal dating. this 

technique requires some very basic assumptions to be made about the history of 

mixing within the cave deposits. Aside from what the U-Pb dates imply with 

regards to the complex stratigraphy, it has been stated on many occasions pre- 

viously that caves within the Malmani dolomite have all been subject to various 

periods of deposition, erosion, and subsidence of cave walls and roofs (Brain. 1958; 

Partridge, 1978; Jones et al., 1986; Partridge and Watt, 1991; Brain and Watson, 

1992; Clarke, 1994; Partridge, 2000; Clarke, 2002a). It is therefore highly likely 

that sediment was buried not only once but several times over before it reached its 

current location. In Partridge et al. (2003) it is stated that the mixing of the sam- 

ple with older sediment is unlikely because of the "careful stratigraphic control. " 

However other literature disputes this statement, see Partridge (1978), Partridge 

and Watt (1991), Schwarcz et al. (1994) and Gibbons (2003) for example. 

The cosmogenic technique also applies a steady state erosion model in order to 

calculate the burial age. It is arguable as to whether an erosion rate can be pre- 

supposed. This site may indeed have been subject to slow uniform erosion but 

it was also subject to abrupt roof collapses where sediment was buried instanta- 

neously. 

It is stated in Granger et al. (2001) that burial dates "should be strictly considered 

as maximum ages, with the caveat that sediments could have conceiN-ablý- under- 

gone an earlier burial episode. " In light of the U-Pb evidence this rule should also 

be applied to the cosmogenic burial dates for StW 51-3. 
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Figure 7.1: New interpretation of the palaeornagnetic record for member 2 Sterk- 

fontein using the U-Pb ages. The original interpretation from Partridge et al. 

(1999) is shown in A, the new U-Pb based interpretation of this data is presented 

in B (Latham, A. C., (2005) pers. comm. ). Figure is after Partridge et al. (1999) 

and Berger et al. (2002). 
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7.1.5 Summary and Conclusion 

The U-Pb date is important for several reasons. It is the first dating technique to 

produce ages at Sterkfontein that are independent of any other dating evidence, 

or that makes assumptions regarding the formation of the deposits for chronologic 

validation. 

Faunal dating has proved to be a good indicator of ages but is troubled by the 

geographical and very probable environmental separation between the sites of com- 

parison. U-Pb dates seem to agree with the faunal dates suggested by McKee 

(1996) and Berger et al. (2002) with the evidence for member 2 being much older 

than member 4 being neither substantial nor convincing at present. The palaeo- 

magnetic dating provides a snapshot of the magnetic field over the temporal range 

of member 2 but this sequence is too easily reinterpreted to be taken as a certainty, 

as shown by Berger et al. (2002) and in Section (7.1.3). Like cosmogenic burial 

dating dating the U-Pb technique did not rely on any of the other techniques for 

an initial date. However, the cosmogenic dating seems flawed, in that it is heav- 

ily reliant on a steady state model of sedimentary deposition and erosion. It is 

doubtful that this is the case at Sterkfontein, or any of the other cave sites in the 

Transvaal. Cosmogenic dates can be taken as a maximum age for the member 2 

deposits, but not safely as a best estimate for the age of StW 573. 

7.2 ]Future work in South Africa 

There is still much scope for continued U-Pb analysis at hominid cave sites in 

South Africa. 

At Sterkfontein, more work should be focused on all three of the member 2 flow- 

stone layers. Any extra results for layers 2B and 2C would hopefully confirm the 

present results, and improve the scatter on the STA15 isochron for layer 2B. Layer 

2D meanwhile is still undated. The STA07-C results indicate that this layer is 

datable, but a better understanding of "'U disequilibrium would be required in 

order to turn any maximum ages into best estimates. 

The Limeworks, despite being undated by this study has a great deal of potential 
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for further U-Pb dating. It is still believed to be the oldest of the caves and has the 

most extensive speleothem deposits. These deposits also display a wider variety of 
textures and colours. From these it may be possible to get a greater understanding 0 
of what types of material are better for U-Pb dating, and how or if visible features 

are related to U and Pb chemistry. 

At the supposedly younger sites of Kromdraai B and Swartkrans there is less chance 

of success. This is firstly because they are believed to be considerably younger. but 

also because they do not have the same volumes or variety of speleothem available. 
Since this study only analysed very small amounts from these sites further work 

would be advisable to confirm their suitability for U-Pb, or not. 

In addition to the sites studied here there are many other caves in the Transvaal 

that may benefit from this technique. There are several other caves that contain 
hominid remains such as Drimolen and Cladysvale. In addition to these there 

are many caves that are interesting in terms of climate change. Speleothems can 

preserve an excellent record of the environment in which they formed through 

stable 0 and C isotopes. These are all the more useful if dates can be assigned. 
Such studies have been applied at the Limeworks and at several other caves in the 

Makapansgat valley (Hopley, 2004). 

7.3 Examination of the wider issues for Uranium- 

Lead dating 

Having proven on two separate occasions the applicability of this technique, at 

Sterkfontein and by Richards et al. (1998), it is important to clarify any issues 

for further use of this technique either in South Africa or on other speleothem 

deposits. 

7.3.1 Initial disequilibriurn 

At the outset of the project it was not anticipated how important isotopic het- 

erogeneity would be. However this became a major part of the dating procedure, 
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firstly and most importantly for initial U disequilibrium, and secondly for initial 

Pb heterogeneity. 

U compositions differed from those typical in nature, displaying an initial 11U 

disequilibrium of around 2. This is relatively high but not as high as some of 

the values measured by Kronfeld et al. (1994). The high water flows that were 

required to produce the massive speleothem deposits in the 'Iýansvaal caves may 

have prevented such high excesses forming. Despite seemingly high water flows, U 

disequilibrium was still in effect in the aquifer, at that time, and it was important in 

terms of age calculations. Why U disequilibrium. was so large in this context is still 

a mystery. But this is an issue which should be further investigated should more 

U-Pb dating be carried out in this area. In a wider context it is something that 

anyone intending to use this technique should be aware of. Initial disequilibrium 

may actually be useful in terms of palaeoclimate reconstruction. It is thought that 

high 234 U disequilibrium is linked to periods of low rainfall and retention of water 

in the aquifer (Kronfeld et al., 1994). Temporal variations in 234 U disequilibrium 

may thus be demonstrative of changes in climatic conditions. 

It was clear that U was not the only initially heterogeneous isotope when the 

isochrons were plotted. The U-Pb results are proof that Pb isotopic composi- 

tions varied spatially. The isochrons reflect a varied initial Pb composition for 

the forming flowstones. Even over short distances within a hand sample, initial Pb 

compositions were not always in agreement. The complete STA09 isochron, Figure 

(6.13) shows this variation. However some uniformity in the initial Pb signature 

can be seen when the STA09-C2 results axe plotted on their own in Figure (6.15). 

These were samples that were contiguous and preserved initial Pb ratios that orig- 

inated from the same Pb source. Initial Pb heterogeneity is even more apparent 

on the STA15 isochron. This is possibly because some of the STA15 sub-samples 

were more scattered across the hand sample than the STA09 sub-samples. It is 

evident from the STA15 isochron that even sub-samples which were close in situ 

sometimes had varying initial Pb isotopic compositions. Such initial heterogeneity 

is likely to have been caused by incorporation of Pb from a variety of sources. As 

with the U disequilibrium, further studies could be improved by gaining a bet- 

ter understanding of the provenance of initial Pb in speleothems. Certainly it is 

something to take into account when interpreting isochrons. 
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What has been shown by this study, is that initial 234 U excess can be accounted 
for. It was thought that a correction could not be made for the initial disequi- 

librium, but this was in fact possible. Issues such as this would previously have 

limited the capabilities of this technique. However, with continued improvements 

in technology, the measurement of remnant disequilibrium should no longer stand 
in the way of dating. 

7.3.2 Recrystallisation 

One of the initial considerations about the samples was whether they had been 

recrystallised, and if so, would this affect the results? The chronological problems 

associated with speleothem recrystallisation have already been introduced in Sec- 

tion (4.2.3). It is believed that speleothem at Sterkfontein recrystallised within a 
few thousand years of deposition (Partridge, T. C., (2004) pers. comm. ). Early 

recrystallisation such as this would have a negligible effect on the final age. Anal- 

ysis and interpretation of the Sterkfontein samples indicates that any diagenetic 

alteration such as recrystallisation that these samples may have been subjected to 

has not seriously affected the ages. The reasons for this conclusion are; 

9 Samples in general appeared clean and dense in terms of structure and had 

preserved primary depositional features. Sub-samples were carefully selected 

from the areas of material deemed most suitable for this technique. 

The STA09-C2 sub-samples define an isochron, Figure (6.15), with signifi- 

cantly less scatter than the complete STA09 isochron, Figure (6-13), suggest- 

ing that they were not subject to loss and/or gain of U or Pb but that they 

shared the same Pb isotopic signature, an isotopic signature that differed 

slightly from other sub-samples within the STA09 sub-sample suite. Data 

sets from the STA15 isochron, Figure (6.26), also show a similar trend. 

Agreement between results for SK3, STA09 and STA12. The maximum ages 

calculated for STA09 and STA12, which were at least 1m apart in situ, are 

within error of one another. This is in spite of evidence of possible alteration 

in STA12, but preservation of primary features in STA09. Following disequi- 

librium correction, Section (6-3), the best estimate ages for all three samples 
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from flowstone 2C are within error of each other. The consistency of these 

results indicates that these samples were not subjected to a major alteration 

event, such as recrystallisation, long after deposition if at all. 

These confirm that if the Sterkfontein samples were recrystallised then recrys- 

tallisation took place soon after the flowstone layers formed, and consequently 

the scatter associated with the plotted results is most likely related to initial Pb 

heterogeneity. 

7.3.3 Sampling methods 

Like all the other dating techniques U-Pb dating has its limitations. A certain 

type and quality of material was required but this was not always available. At 

Kromdraai B, for example, the amount of flowstone was limited. At Sterkfontein 

too, in member 4, where Sts 5 was removed from, flowstone was practically non- 

existent. It was extremely lucky that StW 573 was in an enclosed cave interlayered 

with flowstone that was often clean, dense, and entirely suitable for this technique. 

What is noted from the work at the South African caves is that the cleanest densest 

samples weren't always the most successful in dating terms. STA12 for example, 

produced a considerably better isochron than STA09, yet STA09 appeared denser 

and had more perceptible primary structures. STA14 also was very clean and very 

dense but was of little use for dating because it had such low U concentrations. 

STA07-C was the most radiogenic sample and it was clean and dense in appearance. 

In spite of this a sensible isochron could not be plotted from the data. 

Following selection of a hand sample it was important to then consider the sub- 

sampling and the position of sub-samples relative to each other. Sub-sampling may 

be improved by preliminary screening for higher U concentrations using phosphor 

imaging. This did not provide much information for this study but this is possibly 

because not all the analysed hand samples had a flat surface. For future reference 

it appears that this is necessary to ensure the strongest signal is received by the 

plate and to prevent interference from background radiation. At first sub-sampling 

was random, but it is clear from the isochrons that the sub-samples which were 

conjoined or in close proximity within a hand sample produced the better isochrons. 
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This can be seen by comparing the full STA09 isochron, Figure (6.13) and the 
isochron with the STA09-C2 sub-samples only, Figure (6-15). The isochron in 

the latter figure displays much better errors and scatter. What is also particular 
to these samples is that they all came from the same stratigraphic layer, as did 

the STA15-A2 suite and STA15-B2 and -B3 suite. Although the STA15-A2 sub- 
samples do not display the same uniformity as the STA09-C2 or the STA15-B2 and 

-B3 suites this is an important criteria for selecting sub-samples. Where there is 

no prior knowledge of sedimentation rate, sub-samples should be as closely related 
in terms of stratigraphy as possible in order that a reliable isochron can be plotted. 

What the speleothems from South African demonstrate is that deposits can often 
be a hit or a miss for dating. Be that as it may, there is a much greater chance 
of producing ages where (i) the speleothem deposits are extensive and display a 
variety of textures and colours and (ii) sub-sampling is not a random procedure 
but is carefully thought out according to stratigraphy and relative sub-sample 

positions. 

7.3.4 Analytical and data manipulation methods 

When dealing with such small amounts of U and Pb it is inevitable that a rela- 
tively high percentage of the results may need to be rejected. In this study around 
50% of analyses were rejected. This was due to a number of reasons such as Pb 

contamination and poor measurement of very small Pb signals. In such circum- 

stances standard lab recipes may need to be adapted to best exploit the particular 

samples available. During this study further steps were added to the lab technique 

to ensure the highest possible U yield. Prior to the alterations the amount of U 

making it onto the column was inadequate for accurate measurement on the TIMS. 

Because of the very low Pb amounts, factors such as the lapse in time between 

dissolution and analysis became important, see Section (5.4). This was only con- 

sidered after lab work had finished, but some of the sample results where Pb 

concentrations can be seen to increase over time, suggest that this may be a prob- 

lem. This is simple for a researcher to resolve; only dissolve what can be analysed 

immediately or within a short period of time thereafter. Although multiple sub- 

sampling and dissolution save time and effort, it is inadvisable to analyse samples 
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after months of storage. During this time they may have accumulated an unknown 

level of Pb contamination. 

Running the TIMS is another area where very small amounts of sample mean extra 

care and attention is required. Despite a new automated Finnigan Triton machine 

a lot of the samples had to be run manually. After several analyses a method 

was decided for the running of Pb samples on the TIMS where the 204 Pb was 

always run on the SEM. An issue which is important to consider here is whether 

the difference in yield between the SEM and the faraday is sufficiently known. 

Providing it is known, a correction can easily be applied. Whether the TIMS is 

in fact the best machine for the job is also under consideration; the disequilibrium 

measurements were made on an ICP-MS. Calibration of the SEM on the TIMS 

was still in progress when this thesis was completed, so that accurate excess 234U 

measurements at the permil level were not possible at Leeds. Choice of machine 

then may be something to investigate for future work. 

The use of "'Pb to normalise was an important part of this study. Using 208 Pb 

resulted in improved errors and therefore improved isochrons and ages. This may 

not be applicable to all speleothem deposits, particularly those that have incorpo- 

rated a detrital component. Nonetheless this is a useful method since it does not 

rely on accurate measurement of 204 Pb which is much lower in abundance. It is 

also fairly simple to check whether 232 Th activity can be assumed to be negligible 

by comparing 208Pb/204 Pb ratios between samples. An exception to this is when 

initial 232 Th activity can be assumed to be zero, and initial Pb is thought to have 

been heterogeneous. Variations were observed in the 208 Pb/204 Pb ratios from the 

Sterkfontein samples, but such variability was also present in the 207 Pb/204 Pb ra- 

tios. Since it was known that these deposits contained insignificant amounts of 

235U to account for the 207 Pb variations it was felt that the 208 Pb variations were 

the result of initial Pb conditions rather than thorogenic ingrowth. 

Once samples have been analysed it is then necessary to consider whether the 

data are suitable for plotting an isochron. The South African samples had in 

general, very low U and Pb concentrations. In comparison to the U concentrations 

measured by Richaxds et al. (1998), those from South Africa were up to 27 times 

smaller. Ideally the U concentrations would have been higher. In spite of this, 
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isochrons were produced and this is promising for further research on material 

which is not exceptionally U rich. In addition to concentration requirements, 

a spread in U-Pb ratios is preferable for producing an accurate isochron. The 

spread on the Sterkfontein isochrons was good. However the STA12 results actually 

showed that the spread in MU208 can be as little as 500 and an isochron can still be 

produced. The difference in the error on the age between the small range isochron, 

2.64 ± 0.12 Ma, and the full range isochron, Figure (6.19), is significant. However, 

the MSWD is nearly identical, and on its own the low range STA12 isochron is 

still adequate evidence for the age of this flowstone. The STA15 results however 

showed that even a large spread inMU208 can not compensate for scatter caused 
by geological effects. 

A final issue to consider when dealing with very small amounts of Pb is the appli- 

cation of a blank correction. There is no way of testing how representative a blank 

is of the Pb accumulated by individual samples during analysis. Blank corrections 
in particular can cause a problem where any common Pb picked up by a sample 
during analysis differs in composition from Pb incorporated in the sample when 
it formed. This can displace the sample, as it is corrected according to the blank 

composition and not according to its initial Pb composition. Where the blank 

correction is perfect this is not a problem, but too great or too small a correction 

will dislocate the sample on the age plot. Comparisons between replicate sam- 

ples analysed simultaneously, and between replicates analysed on separate dates 

showed that the amount of blank Pb incorporated by a sample varied in both 

scenarios. Accordingly, it was felt that the best method for blank correcting the 

South African samples was to take an average of the blank size and composition 

over time. Because all results were treated to the same correction they were much 

easier to compare. A small number of blanks that were spuriously large were not 

included in this calculation. 

7.4 Re-examination of original aims 

Refer to original aims laid out in Section (1.2). 

The primary aim of this study was to assign ages with improved resolution to 
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the hominid fossils at selected sites in South Africa, through the U-Pb dating 

of associated speleothem deposits. Preliminary work done at Sterkfontein, see 
Section (4.2.3), had proved very promising. However it was known that this method 
may not be suitable for all the sites or even for any other material sampled from 
Sterkfontein. The main aim has been met to some degree then. Results have 
been produced for what is currently the most important hominid fossil in South 
Africa, StW 573. This in itself is a huge achievement for this research. It is only 
unfortunate that deposits at the other three sites, the Limeworks, Kromdraai B 

and Swartkrans did not yield dates. 

The secondary aim of the study was to investigate further the applicability of this 

technique in this and similar contexts and to address any issues which arise from 

this. In particular the results have given added insight into the issues of initial 
234 U disequilibrium and initial Pb heterogeneity. This study has also introduced 

new variations in sampling and analytical procedures, as summarised in Section 

(7.3-3) and Section (7.3.4), that future researchers may want to refer to. 

7.5 Conclusions 

The U-Pb ages calculated by this study show that the hominid fossil StW 573 

is, at c. 2.2Ma, considerably younger than previous researchers have estimated. 

This may have implications for the position of South African hominids in the 

evolutionary picture, and for the structure of the human family tree. It has also 

been shown that, like most caves, Sterkfontein has a complex stratigraphy that 

can not easily be determined. Previous dating techniques have relied too heavily 

on stratigraphic assumptions, but can be re-interpreted with the new U-Pb dates 

in mind. It is necessary when dealing with deposits such as these to have several 

dating techniques giving concordant results. With the introduction of the U-Pb 

data this is now possible. 

Since the'pioneering work of Moorbath et al. (1987) U-Pb dating has shown again 

how applicable it is for the dating of caxbonates, and more specifically for dating 

young carbonates in what is a notoriously difficult geological period in geochrono- 

logical terms. 
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Appendix A 

Sampling Methodology 

A-1 Sample screening by Scanning Electron Mi- 

croscopy (S. E. M. ) and Cathodoluminescence 

Initial screening of LAB03 from the Limeworks and SK3' from Sterkfontein I)N- 

S. E. M. showed very subtle differences between the samples and within individual 

samples. The images are shown in Figures (A. 1), (A. 2) and (A. 3). Darker arcas on 

the images are indicative of higher concentrations of magnesium. Banding which 

is easily visible to the naked eye was not translated on the S. E. M. image. In fact 

in LAB03 the lineations which can be seen in Figure (A. 2) are perpendicular to 

those on the hand sample. There were no obvious inclusions apart from odd grains 

of fluorite. Cathodoluminescence revealed that the samples were extremely pure. 

Calcite normally fluoresces as a result of the trace elements present but these 

samples did not fluoresce at all, apart from the fragments of fluorite (Marshall, 

1988). 

'Sample analysed initially by B. Cliff to test suitability of speleotheni for this technique. 
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Figure A. I: S. E. M. image of sample LAB03 from the Limeworks. Scale bar reprc- 

sents 300tim 

Figure A. 2: S. E. M. image of sample LAB03 from the Limeworks. Scale bar repre- 

sents 100jim. White outlined black marks are polishing pits. 
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Figure A. 3: S. E. M. image of sample SK3 from Sterkfontein. Scale bar represents, 

100pm. The white outlined black marks are polishing pits and are not features of 

the sample. 
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A-2 Sample Provenance 

The following photographs provide additional provenance for all the hand-samples 

analysed. 

A. 2.1 Sterkfontein 
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Figure AA: Photograph of flowstone layer 2D showing where samples STA07-C 

and STA06 were removed. 
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Figure A. 5: Photograph of flowstone layer 2D showing where samples STA03, 

STA04 and STA05 were removed. 
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Figure A. 6: Photograph of sample STA04 in situ, after removal. 
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Fig-, ure A. 7: Photograph of flowstone layer 2D showing where sample STA07-C was 

removed. 
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Figure A. 8: Photograph of flowstone layer 2C showing where sample STA09 was 

removed from. This layer also yielded sample STA12. The hand bones of the 

hominid StW 573 can be seen at the very bottom of the picture in the centre. 

Figure A-9: Photograph of flowstone layer 2C showing where sample STA12 was 

removed from. 
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Figure A. 10: Photograph of flowstone layer 2B showing where sample STA14 was 

removed from. This layer also yielded samples STA15 and STA16. 
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Figure A. 11: Photograph of sample STA14 in situ, after removal. 

Figure A. 12: Photograph of sample STA15 in situ, after removal. 
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Figure A. 13: Photograph of sample STA16 in situ, after removal. 
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Figure A. 14: Photograph of sample LAB03 in situ in the OAE prior to removal. 
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Figure A. 15: Photograph showing where samples LAB04, LAB05, LAB06, LAB08 

and LAB II were removed from in the OAE. 

Figure A. 16: Photograph showing where samples LAB07 and LAB09 were removed 

froin in the OAE- 
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A-2.3 Kromdraai B 

Figure A. 17: Photograph of sample KBP03 in situ, after removal. 

A-2.4 Swartkrans 

Figure A. 18: Photograph of sample SKF01 in situ, after removal. 
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Appendix B 

Chemistry Methodology 

B-0.5 Lab Specifications 

All separations were done in a Class 10 workstation - laminar flONv workstation 

defined by Federal Standard 209E. 

B. O. 6 Spike data 

The spike used was 
202 Pb_233U_236U. 

Concentration; 

o 0.157 nM/g 
202 Pb 

9 1.772 nM/g 
236u 

Composition-, 

0 208 Pb/206 Pb = 2.028 

0 207 Pb/ 206 Pb = 0.8303 

o 2"' Pb/206 Pb = 0.06086 

0 202 Pb/206 Pb = 1210.7 
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0 2")8U/236U 
=: 0.001104 

0 23,5U/236U 
= 0.002032 

0 233U/236U 
= 0.38704 

The natural 
238U/235U 

was assumed to be 137.88 

B. O. 7 Beaker Preparation 

7ml and 15ml SavillexIg vials were; 

9 Boiled for 20 minutes in 50% HC1 then washed several times in deioiiis(, (l 

water. 

9 Filled with aqua regia of 8M HN03 and 6"M HCI and left to stand on a w; irni 
hotplate for at least five days. 

e Rinsed thoroughly in 18.2MQ water and dried completely on a hotplate. 

B. O. 8 Resin Preparation 

The resin used for both the U and Pb separation wýis Bio rad AGIx8,200-400 

mesh, in chloride form. This follows the work of Tilton (1973), Manhes (1982) and 
Chen and Wasserburg (1981). This was cleaned with several washes of GM II('l 

and 18.2MQ water and stored in 18.2MQ water for Pb separations and in 0.25NI 

HN03 for U separations. 

B. O. 9 Fýrit preparation 

Frit, s were cut from sheets of polypropylene and stored in 6M HCI. 

B. O. 10 Preparation of Reagents 

The HBr used in the Pb selmnition Nvýis prepared from UpA HBr- Immedl,, it(, I\- 

prior to a separation it Nvzis purified further on an anion exchange colunm of AG lv, ý 
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ýReagent I U content (ppt) T Pb content 
HBr <1 < 20 
HCI < 0.1 <1 
HF <5 < 20 
H3PO4 

HN03 < 0.01 Not applicable 

Table B. 1: Table of contamination level in UpA reagents used. *= content was 
below the detection limits of 0.04ppm used for this reagent. 

200-400 resin to further reduce possible contamination. The concentration of the 
CPHBr (column-passed) was always 0.5M. 

The minor contamination which may be attributed to the UpA reagents is shown 

in Table (B. 1). 

B. O. 11 Sample preparation 

Samples of up to 3g were removed from the hand samples. The positions of these 

were recorded. 

Cleaning 

9 Samples were placed in cleaned and weighed 15ml SavillexID vials. 

Samples and vials were weighed and sample weight calculated by subtracting 

original vial weight. 

Samples were not from a clean environment so were initially washed in 

18.2MQ water in an ultrasonic bath for 15 minutes. This was repeated using 

acetone. This removed any surface dirt (Manhes et al., 1978). 

Samples were etched in 3M HCI for o".., 30 seconds - larger samples were etched 

for longer - to remove the outer layer of the sample chip. 

After etching samples were rewashed in 18.2MQ water and acetone, and dried 

on the hotplate. 
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9 Samples were weighed again. This was the recorded Nveight of sample for 

calculation purposes. 

Dissolution 

Samples were dissolved in Iml/g (of sample weight) of 18.21NIQ water and 2ml/g 

of concentrated HCI (Romil UpA) and were left overnight. Adding the water first 

limits the effervescence which results from this reaction. 

Spiking and Aliquoting 

9 Six 7ml SavilleO vials were weighed, spiked and weighed again. The spike 

used was 
202 Pb_233U_236U. 

9 Spike size was typically 30-40mg. Spike bottle was weighed before and after 

spiking of each vial. Weight difference was taken to be the spike weight. The 

weight changes in the vials were used as a cross check. 

* The sample aliquots were added to five vials, the sixth one being a blank. 

Blanks were subjected to the same process as the samples. 

9 Aliquot volume was usually :51.3ml, which contained a sample of P-s 0.43g. 

The amount analysed was restricted to this so that the sample-spike aliquot 

could be contained in a 1.8ml centrifuge tube for the fluoride precipitation 

step. 

* Sample-spike mixture was left overnight on a warm hotplate to homogenise. 

Fluoride precipitation 

9 For the columns to flow efficiently it was necessary to remove the calcium 

from the samples. This was done by putting the sample-spike aliquots into 

centrifuge tubes and adding 1ml/g (of sample) of HF. Fluorides of the major 

elements such as Ca and Mg are insoluble and form a white residue. Trace 

Pb and U, of which the fluorides are soluble, remain in solution (Smith et al., 

1991; Smith et al., 1994). 
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o These were centrifuged at 30OOrpm for 15 minutes. 

* The supernate was transferred back to the original cleaned vials. 

e The precipitate was processed a second time with 750ml of 0.51M CPHBr to 

ensure all Pb was removed. 

e Supernates were dried down on the hotplate. 

Conversion to bromide 

To ensure the samples were converted to bromide they were dissolved in 250ml of 
CPHBr and dried down again. 

B. O. 12 Lead Separation 

Column preparation 

* Six columns made from four times shrinkfit Teflon tubing with a resin bed 

volume of 50MI were washed in 18.2MQ water and fitted with a polyethylene 

frit. 

o Columns were then washed with acetone, CPHBr, and 18.2MO water, re- 

spectively. 

* AG1x8 resin was added to the columns, and this was cleaned with -^. 4 Iml 

washes of 6M HCI, 18.2MQ water, 6M HCI, 18.2MQ water, 6M UpA HCI, 

and 18.2MQ water. 

e The resin was finally conditioned with 0.25ml of CPHBr. 

Separation 

* The separation was possible because of the complexation of Pb by bromide 

ions. Major elements, such as Al, Fe, Mg, Ca, Ba, K, Na, Ti, within the 

sample do not form these complexes. The Pb complexes were retained by 

the resin while the other elements pass through. 
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9A new set of vials to collect the U fraction were placed under the columns. 
U was not retained by the anionic exchange resin at this stage (Korkisch and 
Hazan, 1965). 

9 The samples were loaded onto the columns in 0.25ml of CPHBr and allowed 
to soak in. 

9 Samples were washed through with 0.25ml of CPHBr twice. This was changed 
to 0.5ml in one wash. 

* To ensure all HBr was flushed out of the column, 0.125ml of TNI HCI was 
loaded. 

9 The cleaned original vials were placed beneath the columns and the Pb frac- 

tion was eluted with 0.5ml of 6M UpA HCI 

e After the Pb samples were dried down they were dissolved in O. Iml of CPHBr 

and put through the separation again to further purify the Pb, with the 

exception that no U fraction was collected as it was assumed it had all eluted 
in the first separation. 

B. O. 13 Uranium Separation 

Column preparation 

* Six columns made from four times shrinkfit Telfon tubing with a resin bed 

volume of 750pl and already containing AG1x8 resin were cleaned with 0.25M 

UpA HN03- 

* Columns were then conditioned with 3ml 8M HN03- 

e After each separation the columns were cleaned with and stored in 0.25M 

HN03. The resin was not replaced. 

Sample preparation 

The fluoride precipitates were reprocessed firstly in preparation for the U separa- 

tion. 
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* Precipitates were mixed with 0.5ml 8M HNI, 03, put in the ultrasonic bath for 

15 minutes, and then centrifuged at 30OOrpm for 15 minutes. 

e The supernate was removed and added to the U fraction from the Pb sepa- 
ration. This was repeated and the collective solutions were dried down. 

9 Samples were converted to nitrate by dissolving in 100pl of concentrated 
HN03, and dried down. Caution was taken when adding concentrated HN03 

as violent reactions could occur if the sample was not cooled sufficiently. 

Separation 

e Samples were loaded onto the columns in 0.25ml 8M HN03 and allowed to 

soak in. This results in the best distribution coefficient for U on AG1x8 
(Carswell, 1957; Faris and Buchanan, 1964). 

* Samples were rinsed in with 0.5ml 8M HN03, followed by 1.75ml 8M HN03 

(equivalent to three times the resin bed volume). In these conditions most 
ions, apart from U, were not retained by the resin and were therefore eluted 
from the column at this stage. 

e Following this U can be easily removed with water or a weak acid (Chen and 
Wasserburg, 1981). U was eluted in 3ml 0.25M HN03 into the cleaned vials. 

e After drying down, samples were redissolved in 0.25ml 8M HN03 and the 

columns were reconditioned with 3ml 8M HN03. The separation was then 

repeated. 

B. O. 14 Loading 

Filament Preparation 

Preparation for both single and double filaments. 

9 Filament holders were stripped of old Re. Posts of filaments were buffed to 

get off any strongly welded fragments. 
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e Filament holders were cleaned with Al-oxide paste and then boiled in deionised. 

water then 18.2MQ water. 

9 New Re ribbon was welded on to the filament posts. 

* Single filaments were outgassed at a maximum of 4-5A. 

9 Double filaments were outgassed at a maximum of 5.5A. 

Sample Preparation 

o Final drying of samples was done with a couple of drops of Aldrich 0.002M 

H3PO4 to prevent the samples drying down entirely and to make them more 

visible in the vials, which eased loading (Manhes et al., 1978; Bourdon, 1992). 

A couple of drops of concentrated HN03was then added to the samples and 

they were dried down again. This was intended to reduce the organic content 

of the sample that was a problem when loading. 

Loading standards 

*A Re filament was heated to e-1.0 1A. 

e Approximately 1MI of silica gel was loaded on to the filament and allowed to 

partially dry down. 

Approximately 1pl of the standard, SRM981, was loaded on top of the silica 

gel, and allowed to dry down. 

e The filament was then heated to P-zw 2A until a white deposit formed, and 

then until it glowed briefly. 

Loading lead samples 

9A Re filament was heated to 1A. 

Approximately 1pl of silica gel was loaded on to the filament and allowed to 

partially dry down. 
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* The sample was dissolved in -, _O 11A of 18.2-AIQ water and loaded on top of 
the silica gel. It was allowed to dry down. 

9 The filament was then heated to t-, ý 2A until a white deposit formed, and 
then until it glowed briefly. 

Loading uranium samples 

*A Re filament was heated to P-, IA. 

* The sample was dissolved in ; zý-, lyl of 18.2MQ water and loaded onto the 
filament. It was allowed to dry down. 

9 The filament was gradually heated to ^-I 2A until a black deposit formed, and 
then until it glowed briefly. 

Running techniques for lead samples and blanks 

Pb samples were measured using a static method with the "Pb in the centre cup. 
204 Pb signals that were below P-1.0 2mV (0.02pA) were measured on the SEM and a 

yield calibration was performed in such cases. All other isotopes were measured 

on the faraday detector. 

9 Filament was gently heated until a temperature of ,:: z 1200'C was achieved. 

e The beam was focused and centred once the signal had stabilised. 

9 The signal was focused at the beginning, and a peak centre was done every 

5 blocks. 

9 The sample signal was measured for 10 blocks of 15 cycles, totalling 150 

measurements. 

Pb blanks were run in the same way as samples, but the "Pb was always measured 

on the SEM. The signal was again recorded for 10 blocks of 15 cycles, with an 

automatic focus before the measuring began, and a peak centre every 4 blocks. 
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Running techniques for uranium samples and blanks 

U samples were run using a multidynamic method. 

e The ionisation filament of the double U filament was heated initially to ý-ý 
4600mA, or until a 187 Re beam of 6mV (0.06pA) was detected. 

9 The Re beam was focused, centred, and measured, to check yield. 

e The evaporation filament was then ramped up to P-. ý 700mA and the ionisation 

to 50OOmA, or until the temperature had reached 1850 - 1900'C. 

9 The detector was then set to scan for U. 

9 When the signal had stabilised the bearn was focused and centred. 

* The signal was measured 50 times in 5 blocks of 10 cycles. 

U blanks were measured using a dynamic method. The measurements were recorded 
in the same way as the U samples. 

Lead Data 

The Pb data was converted into a template in Excel that could be imported into 

the EP package. Raw data from the TIMS was streamlined by highlighting outliers 

using a macro. The macro accepted values within the following calculated value 

and highlighted those outside that value; 

Accept window => (Y + 2.6 x o) and < (Y - 2.6 x or) (B. 1) 

Where T= mean, and a= absolute standard deviation. 

Any highlighted values could then be removed at the discretion of the individual. 

The ratios that were imported and used in the EP package were 202 Pb/"Pb, 
204 Pb/206 Pb 7 

207 Pb/206 Pb and 
208Pb/206Pb. 
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Uranium Data 

The U data was imported into a template in Excel to convert the numbers into a 
template suitable for the EP package. The template used the raw data to make 
the following calculations; 

9 (D (Phi) - the fractionation factor for U. This differs from the Pb fractionation 

factor in that it works on an exponential basis in terms of isotopic weight, 

unlike Pb fractionation which is a linear calculation. Phi was calculated thus-, 

(1) = 
In Q 233U/236U]S/[233U/236U]M) 

ln(233/236) 
(B. 2) 

The 233U/236U 
ratio acts as an independent check as these isotopes were 

found only in the spike. 

e Normalised ratios - the 236U/238U 
and 

235U/238U 
measured ratios were cor- 

rected for fractionation by multiplying by the numerator mass to the power 

of Phi, and dividing by the denominator mass to the power of Phi. 

236U/238 U]n 
236U/238U]m 

x 236"' 
(B-3) 

238`1ý 

0 238U/235 U bias - the correction for yield variations between the faxaday and 

the SEM . 
238U 

was the only isotope measured on the faraday so the 238U/235U 

ratio was used as a correction for bias by comparing the accepted value in na- 

ture with that measured. The bias was calculated by taking the normalised 
238U/235U 

ratio, minus that which was in the spike; 

238U/235U], 
rn_, 

19= 
(1/[236U/238 Uln) _ 

[238U/236U], 
g 

Q 23'U/238U]n/ [236U/23'Uln) - 
[235U/236U]. 

s 

Then dividing by the accepted (minus one) ratio in nature; 

(B. 4) 

238u/235 
P38U/235U]M_s 

(B-5) Ulb 
I 238U/235U] 

nat 
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Bias corrected ratios - the raW 236U/238 U and 235 U/MU ratios were corrected 
for the detector bias by multiplying the raw ratios by the bias (plus one) ratio; 

I 236U/238U]c 
= [236U/238U]m X (I + F38U/235 Ubl) (B. 6) 

9 236U/238 U re-normalised - this ratio was normalised again as described pre- 
viously, taking into account the correction for bias, 

236u/238 
236u/238u]c 

x 2364ý 
(B. 7) Ulr =[ 2MP 

9 238U/236U final - having corrected for fractionation and detector bias the 
238U/236 U ratio was calculated from the reciprocal of the 236U/238 U re-normalised 

ratio, minus the 238U/236U from the spike. This accounts for 238U in the spike. 
This ratio was imported and used by the EP package; 

236U/238U]f 
=I_ [238U/236U)s (B-8) I [236U/238 Ulr 

B. O. 15 Alternative Lead separation technique 

A second separation technique was applied to repeats of certain samples to see if the 

Pb measurements could be improved. The samples and columns were prepared in 

exactly the same way but the columns were made up with AG-MP1 (macroporous) 

resin. The separation was as follows; 

e Resin was cleaned with full column of 1M HN03, and half a column of 

18.2MO water. 

e Resin was conditioned with 270pl 1M HBr. 

9 New vial to collect U fraction was placed under column and sample was 

loaded in 1ml of 1M HBr. 

9 Sample was rinsed in with 270pl 1M HBr- 
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* Sample was rinsed in further and U eluted with two full columns of 0.5M 

HBr. 

Sample was eluted with 270pl 1M HN03- 

As with the main separation technique this separation was done twice for each 

sample. The U separation was performed afterwards as standard. No improvement 

was detected with the Pb results so this technique was not pursued any further. 

Results bearing an 's' symbol on the end of the sample name represent samples 

which were separated by this technique. 
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Appendix C 

Results 

C. O. 16 Rejected samples 

The following tables contain the results from Sterkfonteiii and the Linieworks sýim- 

ples that were felt to be inaccurate Subscripts in the denote the rcýismis 
for rejecting each result. 
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C. O. 17 Rejected blanks 

Rejected blank results are shown in Table (C. 3) that follows. 

C. O. 18 Standards results 

Standards results are shown in Table (CA) that follows. 
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