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Abstract
This thesis presents initial work in attempting to understand the class of ‘diamond-free’

3-cs-transitive partial orders. The notion of diamond-freeness, proposed by Gray, says

that for any a ≤ b, the set of points between a and b is linearly ordered. A weak

transitivity condition called ‘3-cs-transitivity’ is taken from the corresponding notion for

cycle-free partial orders, which in that case led to a complete classification [3] of the

countable examples. This says that the automorphism group acts transitively on certain

isomorphism classes of connected 3-element structures. Classification for diamond-free

partial orders seems at present too ambitious, but the strategy is to seek classifications of

natural subclasses, and to test conjectures suggested by motivating examples.

The body of the thesis is divided into three main inter-related chapters. The first of

these, Chapter 3, adopts a topological approach, focussing on an analogue of topological

covering maps. It is noted that the class of ‘covering projections’ between diamond-free

partial orders can add symmetry or add cycles, and notions such as path connectedness

transfer directly. The concept of the ‘nerve’ of a partial order makes this analogy concrete,

and leads to useful observations about the fundamental group and the existence of an

underlying cycle-free partial order called the universal cover.

In Chapter 4, the work of [1] is generalised to show how to decompose ranked diamond-

free partial orders. As in the previous chapter, any diamond-free partial order is covered

by a specific cycle-free partial order. The paper [1] constructs a diamond-free partial

order with cycles of height 1 from a different cycle-free partial order through which

the universal covering factors. This is extended to construct a sequence of diamond-

free partial orders with cycles of finite height which are not only factors but have the

chosen diamond-free partial order as a ‘limit’. This leads to a better understanding of

why structures with cycles only of height 1 are special, and the rest divide into structures

with cycles of bounded height and a cycle-free backbone, and those for which the cycles

have cofinal height. Even these can be expressed as limits of structures with cycles of
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bounded height, though not directly.

A variety of constructions are presented in Chapter 5, based on an underlying cycle-

free partial order, and an ‘anomaly’, which in the simplest case given in [5] is a 2-level

Dedekind-MacNeille complete 3-cs-transitive partial order, but which here is allowed to

be a partial order of greater complexity. A rich class of examples is found, which have

very high degrees of homogeneity and help to answer a number of conjectures in the

negative.
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Chapter 1

Introduction

Homogeneous structures as a field is a meeting point for algebra, combinatorics and model

theory. This dates back perhaps sixty years to the classification of ultrahomogeneous

structures by their families of finite substructures, which form amalgamation classes.

A model-theoretic relational structure (here assumed to be countable) is said to be

ultrahomogeneous if any isomorphism between finite substructures extends to an

automorphism of the whole structure. Naturally this means that the automorphism group

is extremely rich, may contain a lot of ‘information’ about the structure, and has a variety

of interesting properties even as an abstract group. In some cases the original structure

can even be recovered logically from the group in a reconstruction result. A survey of this

is [8].

Ultrahomogeneity (also often referred to just as ‘homogeneity’ for short, for instance in

[2]) is a large-scale property that often requires the diameter of the structure under any

non-empty relation to be bounded. (Though this is not the case for an empty relation.)

For instance, the random graph is the unique countable graph with the property that for

any disjoint sets X and Y there is a point adjacent to all points of X and no points of

Y . This immediately implies that all vertices of the random graph are either adjacent

or that there is a point adjacent to both, putting them at distance 2. More generally, for
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instance in the case of connected partial orders, a pair of two points which are not directly

adjacent necessarily has the same quantifier-free 2-type as any other pair of points which

are not directly adjacent. But since we are assuming that the universe is connected there

is a pair at some finite distance (generally 2), and other pairs with the same type must

be connected in an analogous way. Thus in the case of ultrahomogeneous partial orders

which are not trees, every pair (x, y) of points which are not directly comparable must

have a point z < x, z < y if any do, and similarly a point t > x, t > y if any do. As the

partial order is not a tree, this tells us that every pair of incomparable points is part of a

diamond, namely a partial order consisting of two incomparable points lying in the same

interval.

This means that if we wish to look at structures with a less trivial diameter it is necessary

to restrict the class of substructures over which transitivity should hold. In particular,

such substructures should be connected. In the context of partial orders, the class of

3-cs-transitive (a symmetry condition defined at 2.3) cycle-free partial orders has been

classified in the work of Richard Warren. The motivation for this thesis is to look at

diamond-free partial orders, which are a larger and more general class. In particular from

[11] we know that a partial order is cycle-free iff its completion (as defined in 2.4) omits

both diamonds and crowns. A crown is a finite, alternating path which is a closed cycle

in that it starts and ends at the same point.

There are a number of reasons for looking particularly at suborders of size 3. It is known

from [9] that a countable partial order is ultrahomogenous if and only if it is≤ 4-transitive,

that is n-transitive for n ≤ 4. Connected substructures of size 3 are interesting since 3 > 2

and distances between points do not ‘collapse’ to smaller values: distance complications

arise when substructures of size 4 are considered. For instance, if we assume we are in

the diamond-free case, the two incomparable points of a connected ramification-complete

3-element partial order must be at a distance of 2 and in only one way as there cannot be

a diamond. However, the endpoints of a 4-element alternating path might be at a distance
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of 2 as in the following picture:

• •

• •

◦

A central theme of the thesis is the interaction between digraphs and partial orders. Note

that digraph is used in (at least) two slightly different senses. In [2], saying that (x, y)

is a directed edge, is taken to imply that (y, x) is not also a directed edge so the relation

is antisymmetric, whereas in [6] (x, y) and (y, x) may both be directed edges. Here,

since digraphs will be constructed as irreflexive partial orders much of the time, ours will

be of the former, antisymmetric type with no loops. Note that the two papers just cited

classify classes of ultrahomogeneous digraphs. In the first case, this is all the countable

antisymmetric ones, in the second it is all finite ones.

The above are two celebrated examples of classification. The original classification in

this area [15] was by Lachlan and Woodrow and was of all the countable homogeneous

undirected graphs. Cherlin’s work in [2] was a major extension of this – for instance he

gives 2ℵ0 uncountably many structures whereas all other classifications mentioned here

only have countably many structures up to isomorphism. The last classification relevant

here is Schmerl’s classification in [16] of the countable ultrahomogeneous partial orders.

These fall into essentially three kinds: antichains of chains (including antichains as a

special case), chains of antichains and the generic partial order embedding any finite

partial order.

Now I discuss the relationship between partial orders and digraphs. Any antisymmetric

irreflexive binary relation can be viewed as a digraph. However this comes about most

naturally in the discrete case, and when for any two comparable points x < y, y is ‘finitely
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far’ above x, that is the interval contains a finite maximal chain. In particular, some of

the finite or infinite chain cycle-free partial orders constructed by Warren are of this kind.

For instance, an intuitive construction of a partial order of a kind we envisage (described

precisely at 2.1) can be described thus. We start with a copy of Z, at each point we

would like there to be two incomparable ways to go up and down, so as the point is

part of a chain giving us one way to go up and down, we add a point above and a point

below not part of that chain and extend upwards and downwards so that all maximal

chains are still isomorphic to Z. Repeat this countably many times without identifying

any vertices. As elaborated on later as part of the precise description, this corresponds

to the construction of this partial order as a Cayley graph, and each point is introduced

at the stage corresponding to the number of distinct consecutive blocks of the same letter

in the corresponding word. This is a simple example of a cycle-free partial order with

symmetry and nontrivial ramification, and has a clear existence as a digraph where (x, y)

is an edge iff x is immediately above y. Indeed, this digraph is the unique digraph with in-

and out-degree 2 at every vertex and a unique path between any two vertices. The partial

order can be recovered as the transitive closure of the digraph relation.

Note that products and powers of linear orders are assumed in this thesis to have the

lexicographic order. More complicated partial orders may have different order types of

chains. Some are still discrete, such as Z2. This product order, however, now has infinite

gaps, such as intervals of order type ω + ω∗, so the partial order contains strictly more

information than the digraph as the digraph does not order points in different connected

components, which may be comparable in the partial order. Some, such as Q, are not

discrete at all. A classification of countable 1-transitive linear orders is in [10].

Creed, Truss and Warren ([13], extended in [3] and [12]) give a classification of countable

3-cs-transitive partial orders (as in 2.3). These fall into several main types.

• Skeletal. Here maximal chains have length 2 and these pairs of points when

embedded in the completion (from 2.4) become endpoints of infinite chains. In
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both this and the following case, in general, the alternating chain (ALT) embeds in

the completion (and thus in the original).

• Sporadic. Here maximal chains are finite in the completion.

• Partial orders with infinite chains prior to completion.

• Partial orders where the completion does not embed ALT. ([12])

Skeletal ones are the most interesting ones for our present purposes, and provide a family

of bipartite graphs which are transitive on 2-arcs if one adds a predicate picking out one

half of the bipartition (locally 2-arc-transitive).

The paper by Gray and Truss, [5], is the immediate work preceding this thesis, and

was initially motivated by a desire to find interesting examples of locally 2-arc-transitive

bipartite graphs. A good number of these are given by skeletal or sporadic cycle-free

partial orders, but these provide a limited range of possibilities. It was hard to construct

non-cycle-free examples, until Gray proposed relaxing the ‘cycle-free’ constraint to

‘diamond-free’. In view of the characterisation of cycle-free partial orders (CFPOs), this

was quite a natural idea, and is equivalent to ‘local linearity’ - a requirement that intervals

be chains. Some of the basic theory for CFPOs carries over to this situation, e.g. in 3-

cs-transitive finite chain diamond-free partial orders, for x < y elements of the original

order, intervals of form (x, y) forming a maximal chain consist of two 1-transitive classes

in the completion. These are the upward and downward ramification points, which may

turn out to be the same collection of points.

It is worth emphasising that this apparently unpromising approach actually gives rise to

many rich structures, a theme that will play a prominent role throughout the thesis. The

situation is that such a bipartite graph forms a partial order, such that one part constitutes

the upper points and the other the lower points, with the graph relation interpreted one

way between them as an order relation. This is trivially a partial order as there is no triple
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to check for transitivity (there is no graph triangle). However, the completion may be

highly non-trivial. The bipartite graph with upper part Y and lower part X is thought of

as the ‘skeleton’ and the intermediate points Z of the completion form the ‘flesh’.

To show that such complexity in the completion can actually arise, consider an order Z

of the desired form (cycle-free initially, later diamond-free). As the points of Z arise

as ramification points of the completion, Z must also be ramification complete and each

point of Z must be a ramification point. That is, for each point at least one of its upward

and downward ramification orders (as in 2.1) must be greater than one. One then adjoins

suitable points for Y and X above and below maximal chains in Z, in such a way that

every point z is bounded by some pair of points from X and Y . If there are two convex

chains which have z as their greatest common point, then there are two points of Y which

lie above some pair of such chains, and similarly if there are two convex chains which have

z as their least common point. This means that each point of Z becomes a ramification

point, that is the least upper bound or greatest lower bound in the completion, of two

points in either X or Y . This is obviously possible as one could just adjoin the full set

of chains quotiented by eventually being identical downwards for X and eventually being

identical upwards for Y , but this will be a rather large set, generally being uncountable if

Z is countable. We can do better if Z is countable. The adjoined sets can be chosen to be

countable also, by constructively adjoining a pair of points in X or Y for points z ∈ Z

ramifying downwards or upwards respectively. Finally one can removeZ entirely to reach

the bipartite structure, but it is not really absent as it can be recovered by completion. For

good behaviour here we will generally work with choices of Z that are already complete

in some way defined in 2.4.1.

A classic example of a diamond-free partial order which is not cycle-free is given by

adjoining 6-crowns freely, one lower point of one 6-crown to one upper point of another.

One of Rubin’s motivating examples in [14] was the free group on 2 generators, whose

Cayley graph corresponds to the digraph of the cycle-free partial order constructed earlier
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when we interpret the two generators as the two choices of successor for each point.

It is natural to adapt that construction here, again taking the Cayley graph of a finitely

presented group, in this case 〈a, b|(ab−1)3 = 1〉. Here again there are two generators as

each vertex has two successors and two predecessors, and the word relation corresponds to

adding 6-crowns. Similar presentations of partial orders as presented groups are explored

later in Chapter 3.

•
a

b

•
b

a

•
a

b

• • • • •

• • •

In [5] the principal constructions are carried out in the discrete case, and the interplay

between partial orders and digraphs is exploited. To explain the easiest case, we would

like to construct a locally 2-arc-transitive bipartite graph with the parts thought of as upper

points Y , lower pointsX . This is trivially a partial order where x < y iff x ∈ X and y ∈ Y

are joined by an edge and so one may form its Dedekind-MacNeille completion(2.4.1).

Any additional points lie in-between these two levels, andZ is the set of added completion

points. If X ∪ Y is locally 2-arc-transitive then as a partial order it is 3-cs-transitive, and

from this it follows that the maximal chains of Z are 1-transitive as linear orders.

In the initial case these maximal chains have order-type Z, so the most straightforward

way to violate cycle-freeness is to include 6-crowns having edges corresponding to

consecutive pairs in the partial order Z. This construction is done in [5].

Some work was done in [5] on more general 2-transitive order-types. The order types
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which were discrete at the lowest level are most analogous to digraphs. These are Zα and

Q.Zα for α ≥ 1 but Q, Q.2 and Q2 (the rationals coloured in two interdense colours)

were more problematical. Even in these cases, the crowns or other ‘anomalies’ were

always adjoined on consecutive levels, that is their edges had order type 2. Note that

Morel’s list in [10] of all the countable 1-transitive linear orders comprises Zα and Q.Zα

for countable ordinals α. These ones correspond to where the chains are 1-transitive,

which is typically where each point is both an upward and downward ramification point.

The other two orders (thought of as 2-coloured orders) Q.2 and Q2 are not 1-transitive

as linear orders, but correspond to cases where the upward and downward ramifications

points are distinct and when these are coloured in 2 colours are 1-transitive as coloured

orders. In the Q.2 case, the lower point of each pair ramifies upwards and the upper point

ramifies downwards - otherwise the pair would be indistinguishable from a single point.

Thus Warren’s task in [13] was to deal with certain countable coloured 1-transitive linear

orders, in addition to just monochromatic ones.

In generalising this, various challenges present themselves. The first is to provide

constructions in which anomalies arise with ‘legs’ longer than 1. In the original case an

n-crown which is included as an anomaly has its top points immediately above its bottom

points, but we also wish to consider the possibility in which its top points may have

distance 2 or more above the bottom points. We refer to these as ‘extended’ n-crowns,

composed of ‘legs’ of order-type which may be greater than 1. It isn’t immediately

clear how to do this while retaining sufficient transitivity, one approach through explicit

construction of a Cayley graph is discussed in 3.5.

A ‘leg’ of a cycle is a maximal chain. Another possibility is where dense ‘legs’ arise. One

could consider for instance modifying the previous example to allow legs of order type

1 + Q + 1 (the order type of a closed interval in Q), in a partial order with dense chains.

Another question arising is whether many different choices of substructure with cycles

(referred to as ‘anomalies’) can be included. One might have a small family of
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such structures, which one would like to be joined together in specific ways. In

Chapter 5 I describe a general construction based on a choice of anomaly or family of

anomalies and a concept of ‘compatibility’ which answers most of these questions in

the affirmative, providing 3-cs-transitive partial orders whose completions contain any

compatible anomaly or family of anomalies. A common restriction made however is that

the interior points of the constructed partial orders have infinite ramification order. To

arrange finite ramification order seems harder.

The Reachability digraph, as defined in [1], is a way to recover information from a discrete

partial order by exploring how far one can get from a single point by alternating chains. In

structures where cycles have ‘legs’ of length 1 only, this is a smaller two-levelled partial

order from which the original can be rebuilt. In Chapter 4 I try to extend the use of this

information as far as possible to provide descriptions of diamond-free partial orders, so

long as they are discrete and their connected components are recursively discrete (i.e.

their interior maximal chains have order type Zα). The main result of that chapter is that a

3-cs-transitive 2-level partial order whose completion has maximal chains of order type Z

can be reconstructed from a ω-sequence of 2-level partial orders whose completions have

finite height.

In Chapter 3 we define the concept of ‘covering projection’ which is a type of order

homomorphism which comes up repeatedly in the succeeding chapters, and explore why

it is a meaningful choice of homomorphism in this context. It emerges by examining

the concept of a ‘nerve’ that these covering maps of ordered structures are analogous to

covering maps in topology. I prove that diamond-free partial orders fall into families,

each defined by a cycle-free partial order which is a universal cover for each partial order

in the family. Groups arise in this context, most notably the fundamental group of the

partial order which describes the cycles present. I also give some sufficient conditions in

this chapter which allow the non-extremal points of a partial order to be constructed as a

group presentation.
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Chapter 2 provides definitions of the concepts which arise in this and later chapters.

Among these is enough category theory to power constructions in later chapters, the

model theoretic background to logical arguments, and proper definitions of the completion

operations used throughout the thesis. I also prove some concrete results which illustrate

some observations which can be made about the interior points by observing the extremal

points.
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Chapter 2

Introductory definitions

2.1 Discrete partial orders

A digraph G is a pair (V,E) where E ⊂ V 2 is an irreflexive antisymmetric relation. Here

V is the set of vertices andE the set of edges. A digraph homomorphism is a map between

vertices of digraphs which takes directed edges to directed edges, preserving direction.

Such a map can (and here will) take non-adjacent points to two points connected by an

edge in some cases, and in some others collapse them to the same point. An embedding is

a rather stronger notion; it refers to an isomorphism between the embedded structure and

its image.

In general throughout this thesis arrows will point from higher elements in a partial order

to a lower one, and this will be the case for corresponding directed graphs as well.

Given x, y in a poset, the interval (x, y) consists of all elements z with x < z and z <

y, and will be empty in any case when x < y is not the case. A poset is discrete if

when (x, y) is nonempty there is an immediate successor of x in (x, y) and an immediate

predecessor of y in (x, y). Note that this is true for 2-level partial orders in a trivial

way, which is reasonable. Here by a successor of x we mean an element z ∈ (x, y)
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such that (x, z) is empty and every t ∈ (x, y) satisfies z ≤ t. If the partial order is

not diamond-free the set of successors of x in an interval (x, y) may not be a singleton

- for instance in the diamond itself the top and bottom points form an interval in which

there are two immediate successors to the bottom point. A point x may also have many

sets of successors depending on the interval (x, y), and given an antichain y1, . . . yn of

points above x the sets of successors zi ⊆ (x, yi) for 1 ≤ i ≤ n need not in general be

distinct. The term predecessor is defined dually, which means reversing the direction of

the order relation. Each discrete poset (P,<) gives rise to an adjacency digraph (P,<′)

where a <′ b ⇐⇒ a < b ∧ ∀c(a < c ≤ b =⇒ c = b). If the digraph is connected,

it is possible to recover the poset, so that when < is used for the poset relation, <′ is the

corresponding digraph relation and the two structures are identified.

An n−arc in a digraph (V,E) is a tuple of n + 1 points (x0, . . . , xn) ∈ V n+1 such

that (xi−1, xi) ∈ E for i ∈ [1, n]. For digraphs arising from posets, these correspond

to finite chains which are maximal given their starting and ending points. A digraph is

n−arc-transitive if the automorphism group acts transitively on the set of n−arcs. It is

highly-arc-transitive if n−arc transitive for each n.

In a discrete poset corresponding to a digraph there are no cycles in the usual sense, since

in a chain we cannot have x = x1 <
′ x2 <

′ . . . <′ xn = x, so when the the term cycle is

used, it refers to cycles in the graph which is the symmetric closure of the digraph.

Terminology for bipartite graphs is different, as they do not have non-trivial arcs of the

above form. Instead arcs are taken in the graph sense, but the two parts of the graph are

explicitly labelled as ‘top’ and ‘bottom’. A ‘locally 2-arc-transitive’ bipartite graph ∆

is one which is transitive on 2-arcs whose midpoints are in the same partition, so this

condition implies that a V-shape, that is a 2-arc that starts and ends in the ‘top’ of the

bipartition, may be mapped onto any other 2-arc of this form, but not in general onto an

2-arc that starts and ends in the ‘bottom’. A similar condition applies to the other type

of 2-arc, a Λ-shape. We may define powers of the digraph relation in the obvious way,
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namely x <′n y if for some n-arc x0 <′ x1 <′ . . . xn we have x = x0 and y = xn.

Observe that x <′1 y is equivalent to x <′ y.

A tree in the traditional context of partial orders is a connected partial order P such that

for every x ∈ P the suborder {y ∈ P : y ≤ x} is linear. This implies that for every

x, y ∈ P there is some z ∈ P such that z ≤ x and z ≤ y. The tree P is rooted with root z

if z is the least element. Upside down trees where the points above any point form a chain

will also be referred to as trees. A suborder of a tree which is also a tree is a subtree.

Given a tree P and a point x ∈ P , an upward cone at x is a connected component of

the suborder {y ∈ P : y > x} and is a tree in its own right. If P is discrete then the

cones at any point are rooted subtrees. The branching order of P at x is the number of

distinct upward cones, if this is the same for any choice of x then we call it the branching

order for P itself. In the more general notion of tree described now, the definition for

upward cones is identical and one can define downward cones in the same way. This gives

downward and upward branching orders for points of the tree. However it is also possible

to have branching points not in the tree proper, though they will arise in the ramification

completion defined in 2.4.1. The words branch and ramify are used interchangeably for

trees (as are branching order and ramification order), but the latter will be preferred for

partial orders with cycles.

More commonly in this thesis we will generalise a tree to be a cycle-free partial order

(which will be properly defined later) T defined by a 1-transitive order type Z, an upward

ramification order and a downward ramification order. If one additionally adds that the

tree should only ramify at points of the tree, there is a unique 1-transitive cycle-free partial

order with these characteristics, and can be constructed in a step-by-step fashion as a

union of countably many approximations, starting with T0 equal to a point. If the starting

parameters are all countable then the result will be. At each stage, we need to ensure that

the next approximation gives correct ramification for each point so far adjoined, and all

the maximal chains have the correct order type.
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To do this we define an upward ray to be the order type of [x,∞) for x ∈ Z and a

downward ray the order type of (−∞, x]. This is independent of the choice of x because

Z is 1-transitive. To go to the next approximation one takes all points t ∈ Ti \ Ti−1.

These are newly added so only have upward and downward ramification order of 1 which

is trivial. Then one amalgamates rays at each such point simultaneously equal to 1 less

than the upward ramification order for upward rays and downward ramification order for

downward rays. This process terminates in ω steps. This is equivalent, when upward and

downward branching orders are equal to n and Z is the order type of an ordered abelian

group, to the construction of the free product of n copies of the group Z. This is best

thought of as amalgamating copies of Z which are infinite in both directions rather than

rays, and in this case Ti corresponds to the addition of all words of length at most i. It

is worth noting that [10] shows that each 1-transitive linear order is of the form of Zα or

Q.Zα. These are all linearly orderable abelian groups. This construction has a great deal

of symmetry: it is transitive on points, maximal chains, amalgams of maximal chains, or

indeed any convex suborder, because one can from two copies of such a convex suborder

conduct the amalgamation process to achive the same tree.

Note that a tree has maximal branches or maximal chains (the axiom of choice is assumed

throughout this thesis without comment) and a countable tree has uncountably many such

branches if it branches nontrivially, for instance if it has two incomparable points above

or below any point in the tree.

2.2 Category Theory

Some terminology from category theory will be used in this work. A standard text on

the subject is [7]. In particular, all arrows and (co-)cones are taken in the categorical as

opposed to the digraph sense.

The notion of duality is the same in categories and orders. Intuitively one reverses the
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arrows or order in the definitions. For instance, the dual notion to a set unbounded below

is a set unbounded above.

A category consists of classes P of points and A of arrows, here they will be proper sets,

generally finite or countable. Each arrow has a starting point and an ending point. These

are not necessarily distinct. The set of arrows A is closed under composition between

arrows which link up correctly. There are always the identity arrows 1p : p → p for

each point p with the property that whenever these are composed on the right or left they

have no effect. A subcategory, which may also be called a diagram is a category which

has point and arrows subclasses of the main category, it need not contain all the arrows

between the points chosen.

A category is filtered when it satisfies two properties. The first is that for any two points

x, y one can find a point and arrows satisfying the following, which is analogous to the

joint embedding property in homogeneous structures.

x

''
z

y

88

The second is that for any pair of arrows x → y there is one arrow y → z such that

the composites with the new arrow are equal. Note that in this condition x and y are not

required to be distinct.

x 55
))
y // z

The consequence of all this is that for any finite collection of points and arrows (typically

structures and embeddings respectively), there is a point (indeed, there are many) with
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exactly one arrow from each point of the collection to that point, such that the diagram

commutes around the new point: any two ways to reach it from any other point are equal.

The dual notion is for the category to be cofiltered. In this case for any pair of points

there is a pair of arrows from another point to both of them, and for any pair of arrows

there is one arrow into the pair from the left, rather than out from the right, such that the

composites are equal.

A point in a category is initial if for each point in the category there is a unique arrow

from it to that point. Dually it is terminal if there is a unique arrow from each point to it.

Existence of such points makes a category trivially cofiltered or filtered respectively.

A cone in a category C over a subcategory D consists of a point c and one arrow c → d

for each d ∈ D such that for any arrow d1 → d2 in D, where d1 and d2 are not necessarily

distinct, the composite of c → d1 with that arrow is equal to the arrow c → d2. The

category of cones in C over D is the slice category C/D; there is an arrow between two

cones c/D and c′/D if there is an arrow t : c→ c′ such that for every d ∈ D the composite

of t and the arrow c′ → d is the arrow c→ d.

c

  �� ((
d1 // 66d2 // d3

Dually a cocone in C under D consists of a point with arrows to it from each point in

D, and the collection of cocones for a particular subcategory D form the coslice category

C\D.

A limit in C over D is, should it exist, a terminal object in the slice C/D. When C is

a category of algebraic structures and suitable maps, it is equivalently an inverse limit in

the algebraic sense, that is the unique structure with suitable maps to each structure in D

commuting with the suitable maps in D such that any other structure with this property
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maps to it. The colimit under a subcategory is the initial object in the coslice category.

An isomorphism a : x → y is an invertible morphism. That is to say, if there exists an

arrow a′ such that a and a′ compose one way to give 1x and the other to give 1y, then a is

an isomorphism.

A functor F : C → D is a homomorphism of categories. Namely it is a map which takes

points in C to points in D, arrows in C to arrows in D such that the start point of an arrow

in the image is the image of the start point of an arrow in C and similarly for end points,

it takes the identity arrow for each point in C to the identity arrow for the image of that

point, and the composite of two arrows in C maps to the composite of the images of those

arrows.

2.3 Homogeneous Structures

The language L used here is that of partial orders, either (=, <) or (=,≤); the theory

of partial orders is that of a transitive antisymmetric relation, which is respectively

either irreflexive or reflexive - the two languages are interdefinable and will be used

interchangeably as convenient. Automorphisms on a partial order P are bijections P → P

which preserve the order relation. These form a group, Aut(P ).

If U is a L-structure, any copy of U in P is exactly an embedding f : U → P . If f and

f ′ are copies of U in P , then there is an automorphism taking one to the other if one can

find τ in Aut(P ) such that the following diagram commutes.

U

f
��

f ′

��
P

τ // P

As AutP is a group what we are looking at is its action on the set of embeddings of U into
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P by right composition. Here we are saying that f ′ and f share an orbit of this action. If

for any pair of copies of U there is an automorphism taking one to the other then we say

P is transitive on copies of U . This corresponds to the group action being transitive.

There is an alternative notion: if f, f ′ : U → P are copies of U in P then there is one

taking one to the other setwise if there are automorphisms σ ∈ Aut(U) and τ ∈ Aut(P )

such that the following diagram commutes.

U

f
��

σ // U

f ′

��
P

τ // P

If for any pair of copies of U there is an automorphism taking one to the other setwise

then we say P is homogeneous on copies of U . It is worth noting that ‘transitivity’

and ‘homogeneity’ are always used to mean different things, but may be interchanged

depending on the author. Here transitivity in the case of finite embedded substructures

treats them as ordered tuples, whereas homogeneity treats them as unordered subsets.

P is fully transitive if it is transitive on copies of every finite L-structure. Such

ultrahomogeneous structures are ω-categorical if they are in a finite language L. Indeed,

by the Ryll-Nardzewski theorem, a structure is ω-categorical iff there are only finitely

many orbits of n-element substructures for each n. The finiteness of L ensures that there

are only finitely many possible n-element non-isomorphic L-structures for each n, and

each, if it exists, must correspond to a single orbit.

In this thesis we will not generally be looking at such structures. Instead the transitivity

conditions will be on structures of size n - written n-transitivity. Even this may be too

strong - 2-transitivity requires that any two antichains of size 2 be exchangeable, which

tells us that any two points must be comparable or at the same distance (which might be

one of several notions to be precisely defined later). Preferable to that is n-cs-transitivity,

which is transitivity on connected structures of size n.
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2.4 Dedekind-MacNeille Completions

Recall the notion of the Dedekind completion of a linear order. There one takes the set of

Dedekind cuts, that is the nonempty downward closed subsets which are bounded above.

There is a bit of subtlety here - for instance in Q both {x : x ≤ q} and {x : x < q} for

q ∈ Q fit the description, and for consistency we choose {x : x ≤ q}. These are totally

ordered by inclusion and embed elements of the original order as the downsets generated

by them.

A complete partial order is one where every cofiltered subset (convention here has arrows

go down) has a supremum and every filtered subset has an infimum. Here because we

have no use for the top and bottom elements of a traditional order completion we discard

them by requiring that for a subset to have a supremum it must also be bounded above,

and for it to have an infimum it must be bounded below.

The Dedekind-MacNeille completion of a poset P , written PD, is defined to be the

smallest order-complete suborder of the power set of P , P(P ) (as a boolean algebra,

so ordered by A ≤ B iff A ⊆ B) embedding principal ideals of the form {p ∈ P : p ≤ q}

for q ∈ P .

Definition 2.4.1 Given a partial order P and a subset A ⊂ P define the set A+ to be

{p ∈ P : (∀a ∈ A)a ≤ p} and similarly A− to be {p ∈ P : (∀a ∈ A)p ≤ a}. Such

a subset is an ideal if A = (A+)− and both A and A+ are nonempty. The Dedekind-

MacNeille completion PD is the set of ideals A. The set A+ is the corresponding filter to

A. The original partial order P embeds in PD as the set of principal ideals xD = {p ∈

P : p ≤ x}, and the corresponding filters are called principal filters.

An ideal is finitely generated if it is the smallest ideal containing some finite set A ⊂ U .

Not all finite sets generate ideals as opposed to a pair of sets one of which is empty, and

fewer still generate ideals which are not principal. The ramification completion U+ of
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a partial order U is the suborder of the Dedekind-MacNeille completion which contains

only the finitely generated ideals or ideals corresponding to finitely generated filters.

A+

>

��
A = A−

In the cycle-free and diamond-free cases, it is sufficient to consider just the ideals.

Additionally in these cases the ramification points are just the points which are the

supremum of a pair of points (or the dual notion) – this is immediate because the set

of points at or below that ramification point must form a tree, so it is sufficient to take two

points of P from downward cones of that tree which only meet at the root.

The tree can be partitioned into maximal downward cones meeting each other at the root

and nowhere else; the number of such distinct cones is the downward ramification order

of the point. There is a corresponding notion of upward ramification order which need not

be equal to the downward ramification order. Both the full completion and the restriction

to ramification points are closure operations. The use of such constructions originates in

the paper of Warren [13].

It is worth noticing that in the theory of lattices and complete partial orders, which may

be found described in [4], both empty and unbounded ideals (the latter corresponding to

empty filters) are permitted, which adds to the completion a single maximum and a single

minimum point. There is no further difference.

Remark 2.4.2 Going from an ideal I to I+− is a closure operation, so it does not remove

any elements and I+−+− = I+−. By duality, J−+ is a closure operation on the filter, so

I+− retains all the bounds that it has previously.

Proof
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First, if x ∈ I , then ∀y ∈ I+x ≤ y, so x ∈ I+−. As I ⊆ I+−, I+−+ ⊆ I+, so

I+−+− ⊆ I+−. As we already know I+− ⊆ I+−+−, the two must be equal. 2

Remark 2.4.3 Ideals have some recognisable properties: they are downward closed and,

when an ideal I contained in a partial order P contains a subset S whose supremum s

is in that partial order, I also contains s. However, it is not possible to tell directly from

looking just at a suborder whether or not it is an ideal.

Proof

For any x contained in an ideal I , any y < x is also a lower bound for anything for which

x is a lower bound. For any S with supremum s, s is by definition a lower bound for

anything for which S is a lower bound.

To get a counterexample for the last point, observe that the bottom 2 points of a K2,2

form an ideal, but if a third point is added to the bottom also less than both top points,

they no longer form an ideal although no relation involving them has changed. 2

2.5 Cycle-free and Diamond-free partial orders

It is necessary to consider completions before defining the properties of cycle-freeness

and diamond-freeness for a number of reasons. The classical example is that of the partial

order K2,2 (below left) which does not appear to be cycle-free (being a 4-crown) but has

a completion where paths are unique (right), because prior to completion the infima and

suprema that paths turned at were not present.
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• •

• •

completes to • •

•

• •

A partial order P is diamond-free if all intervals in the completion PD as defined earlier

are chains. Equivalently it does not embed a diamond, which is a specific 4-element

partial order as shown.

•

• •

•

A walk of length n in a ramification complete diamond-free partial order is a sequence

x0, . . . , xn of points such that xi and xi+1 are comparable for i ∈ [0, n) and the intervals

generated by xi, xi+1 and xi+1, xi+2 for i ∈ [0, n−2] meet only at xi+1, so backtracking is

prohibited. If the additional condition that the intervals generated by xi, xi+1 and xj, xj+1

only meet if −1 ≤ i − j ≤ 1 is imposed then the sequence is also a path. A walk

starting and ending at the same point is a crown. A cycle-free partial order is a diamond-

free partial order which has at most one walk between any two points in the Dedekind-

MacNeille completion. An equivalent definition of a cycle-free partial order is that the

Dedekind-MacNeille completion omits both diamonds and crowns.

Definition 2.5.1 Let X be a linear order. A partial order P is X-levelled if there is a

function f : P → X called a level function such that for any x, y ∈ P with x < y the

restriction of f to [x, y] is a bijection with the image of that interval. Level functions are

often also assumed to be surjective. In particular in a 2-level partial order every point is
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either maximal or minimal. The word rank is used synonymously.

It is important to note that ramification completion in general includes both finitely

generated ideals and finitely generated filters - as there may be points which only ramify

upwards or only downwards. An example of such a structure may be seen by taking a

Q.2-ranked cycle-free partial order which ramifies upward at the lower points in each pair

and downward at the upper points only. Of course, vertex-transitivity suffices to give this

but that is not implied by 3-cs-transitivity.

One important example of a 2-level cycle-free partial order is the alternating path Alt,

namely the bipartite version of the graph of a line.

• •

• •

Lemma 2.5.2 A partial order is ramification complete iff any embedding of K2,2,

• •

• •

extends to an embedding of • •

◦

• •

or of • •

◦

◦

• •

, where

in the first case the newly added point is infimum for the top two and supremum for the

bottom two, and in the second case the newly added top point is infimum for the top two

and the newly added bottom point is supremum for the bottom two.

Proof

Suppose the partial order is not ramification complete, so there is a non-principal ideal I

or filter F . If I is non-principal then so is F = I+ and vice versa. Thus both actually
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arise. It is sufficient to pick an antichain of size 2 from the ideal and an antichain of size

2 from the filter to give the copy of K2,2 whose completion does not embed in this way.

Suppose it embeds K2,2, then the ideal generated by those lower elements has an upper

bound set which is not a singleton, and so is non-principal. The filter generated by the

upper elements is similarly non-principal. If they generate the same ideal/filter pair, then

the resulting ramification point arises as in the first case, if not then in the second. 2

Lemma 2.5.3 A 2-level partial order is diamond-free iff it does not contain the following

induced suborder.

• • •

• • •

Proof

Consider a diamond:

a

b c

d

The intermediate vertices b and c of the diamond must be ramification points as they are

neither maximal nor minimal. As such, there are points below and above each which are

extremal. As c is not comparable to b there is a point above c which is not above b – if

every extremal point above c were above b then c ≥ b in the ramification completion as its

ideal would at least contain that corresponding to b. Repeating this argument gives three
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other extremal points in the diagram. The remaining two are simply obtained by taking

an extremal point above a and one below d.

Conversely one can consider a couple of diagrams.

• • •

• • •

completes to • • •

• •

• • •

Diamonds arise here.

2

If an extra edge is added, however, there is no diamond.

• • •

• • •

completes to • • •

•

•

• • •

For that matter, K3,3 simply completes by adding a single intermediate point

Lemma 2.5.4 A diamond-free partial order P is cycle-free iff it does not contain any

induced crowns.

Proof

Recall that P is cycle-free by definition iff PD is diamond-free and crown-free. The
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hypotheses give that PD is diamond-free, so it suffices to prove that crowns in PD

somehow correspond to crowns in P .

Consider the completion PD. If P contains crowns then so does PD. Suppose that PD

is not cycle-free. Then it contains a cycle of minimal length, which is a crown. Each

top element must have an upper bound which is an element of P , similarly each bottom

element must have a lower bound which is an element of P . These form a crown, as in

the following diagram.

◦ ◦ ◦

• • •

• • •

◦ ◦ ◦

To see that they form an induced crown suppose there is some additional relation. This

immediately creates a shorter cycle, contradicting the assumption of minimality. The

minimum length necessarily exists and is attained because any cycle has length which is

a positive integer. 2

The paper [11] provides more detailed proofs.
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Chapter 3

Notes on covering projections

3.1 Introduction

The notion of covering projection between directed graphs arises in combinatorial

contexts, some of which are mentioned in [17]. The concept of nerve originates in

category theory, where one can take the nerve of a category to find an associated

topological space. The usage of the term in this chapter is a specific case of that, as

partial orders can be seen as categories with a unique arrow between any two comparable

elements in the direction of the relation.

Here we define covering projections and describe the universal cover for a diamond-

free partial order. This is the unique cycle-free partial order which contains a unique

representation for each walk in the diamond-free partial order. Universal covers partition

the class of diamond-free partial orders into families. We refer to the known classification

of cycle-free partial orders and make a start on similarly describing diamond-free partial

orders. We describe a small family of diamond-free partial orders which arise as Cayley

graphs of groups.



Chapter 3. Notes on covering projections 36

3.2 Definitions

We will usually work with ramification-complete countable partial orders, but this will

be apparent from the claims. This condition means that any finite non-empty set that is

bounded above or respectively below has a least upper or lower bound. For any point u

in a partial order U let the set of comparable points c(u) be {x ∈ U : u ≤ x ∨ x ≤ u}.

A covering projection f : A → B is a surjective map such that for each x ∈ A the

restriction of f to c(x) is an isomorphism with c(f(x)) ⊆ B. The identity map, for

example, is always a covering projection. When there is such a function f we say A

covers B.

Please note that in this paragraph when indices i, j are used they will range between 0 and

n − 1, including or excluding 0 as necessary so that all expressions refer to points listed

in the sequence. A walk of length n in a ramification-complete partial order is a sequence

x0, . . . , xn of points in that partial order such that xi and xi+1 are comparable and xi is

the meet or join of xi−1 and xi+1. Note that it is therefore alternating: if xi > xi−1 then

xi+1 < xi. The walk is said to be between x0 and xn. A path, or an alternating path, is

a walk such that xi is only comparable with xi−1 and xi+1. This gives that points in two

intervals [xi, xi+1] and [xj, xj+1] can only be comparable if the two intervals are adjacent,

i.e. j = i+ 1 or i = j + 1.

Lemma 3.2.1 If any exist, every walk of minimum length between two points in a

ramification-complete partial order is a path.

Proof

Suppose some walk x0, . . . , xn is not a path, then for some distinct i, j differing by more

than 1, xj is comparable with xi. Without loss of generality j > i. Let i be minimal and

j maximal. Then x0, . . . , xi, xj, . . . , xn is a shorter path. Thus any walk which is not a
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path cannot be of minimum length. 2

Remark 3.2.2 If A covers B, then it is not true that A being Dedekind-MacNeille

complete or ramification complete implies that B is. Nor is it true that an ideal in A

maps to an ideal in B. However, it is true that if B is ramification complete then so is A,

and if B is Dedekind-MacNeille complete then A is Dedekind-MacNeille complete.

Proof

For a counterexample to the first point see that the alternating chain covers the 4-crown.

In the second case, consider the following map.

◦ • • ◦

• •

→ ◦ • •

• •

In the fourth case, suppose there is some ideal/filter pair I ⊂ A, J = I+, I = J−. As

f is a homomorphism, f(I) ⊆ f(J)−, f(J) ⊆ f(I)+, and by completeness of B there

is some x ∈ B such that f(I) ⊆ {x}−, f(J) ⊆ {x}+. As I is nonempty let x′ be the

preimage of x connected to some element of I . As f is a bijection restricted to elements

comparable with x′, we have x′ greater than or equal to all elements of I and less than or

equal to all elements of J , so the ideal and filter were in fact principal.

In the third case, suppose there is some ideal/filter pair as above, each finitely generated.

Then one can pick a generating set and use the images of the generators to generate an

ideal/filter pair such that the ideal contains f(I) and the filter contains f(J). The rest of

the argument follows. 2

An immediate corollary of this is that if B is Dedekind-MacNeille complete then A is as

well, or if B is ramification complete then A is also ramification complete.
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Result 3.2.3 Ramification-complete diamond-free partial orders are exactly the partial

orders covered by cycle-free partial orders.

Proof

If there is a diamond in a partial order then anything covering it must also contain a

diamond, as the diamond will be in the set of comparable points of one of its endpoints.

So anything covered by a cycle-free partial order must be diamond-free. The proof that

there exists a cycle-free partial order covering it is in Theorem 3.2.11. 2

The following lemma shows how covering projections interact with Dedekind-MacNeille

completion and justifies the choice of working most of the time with ramification-

complete partial orders. First recall the construction of the Dedekind-MacNeille

completion as consisting of ideals A with corresponding filters A+ = {p ∈ P : (∀a ∈

A)a ≤ p} obeying the condition that (A+)− = {p ∈ P : (∀a ∈ A+)p ≤ a} equals A.

Lemma 3.2.4 Covering projections extend through Dedekind-MacNeille completion in

some cases, i.e. if f : U → V is a covering projection taking ideals to ideals then there is

a covering projection fD : UD → V D.

Proof

Set fD to be the pointwise application of f to the elements of UD, which are ideals in the

partial order U . First one must check that this map is surjective. Consider then an ideal

V in V D. This (and thus all its elements) is bounded above by some element v ∈ V . Let

u be an element of U such that f(u) = v, so f is an isomorphism f≤u when restricted

to the elements directly below u. Set U to be the pointwise preimage in f≤u of V . Then

fD(U) = V .

It remains to check that U is an element of UD. Set U+ =
⋂
u′∈U{u ∈ U : u ≥ u′}.

Then, as f is an isomorphism on any of the principal filters, it takes U+ isomorphically to
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⋂
v′∈V{v ∈ V : v ≥ v′} = V+. By duality U itself is the set of lower bounds of U+, and

thus an ideal.

It is clear that fD is an order preserving map, so to show that it is a covering projection

one just needs to check, without loss of generality, that for any U ∈ UD, the restriction

of fD to greater elements of UD is an injection. It is sufficient to show that any element

of V D greater than V = fD(U) has a unique preimage greater than U . To see this, let

v ∈ V andW be an arbitrary element of V D greater than V . Then every element ofW+

is greater than v, so the corresponding filter ofW has a unique pointwise preimage from

which one can recover a unique preimage forW . 2

Corollary 3.2.5 Restricting the above fD to the ramification completion U+ gives a

covering projection f+ to the ramification completion V +.

Proof

Observe that a finitely generated ideal contains its generators, which will have some

common upper bound. fD is an isomorphism on all ideals less than (the prime ideal

for) that upper bound, and will take the generators and their supremum (and only this

supremum) to their unique images and another supremum. 2

The path distance is the length of the shortest path between two points in a connected

partial order. In particular any point will have a path distance of 0 from itself, and

comparable points will have a path distance of at most 1.

Lemma 3.2.6 Let f : U → V be a covering projection. Then if x, y ∈ V have a path

distance d(x, y), this is the least path distance of any preimage of the pair.

Proof

No preimage can have a shorter path distance, as the image of this path would be at least
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a walk which could be contracted to a path of not greater length. Given a path realising

the minimum distance, one may pull it back segment by segment to give a path in U . 2

To illustrate this procedure in more detail, let x = x0, . . . , xn = y be a minimal path in

V . If a preimage x′i of xi is fixed, there is a unique preimage of xi+1 which is comparable

with x′i, so there are unique preimages x′j for all the xj . If points on the walk with turns

at x′j were comparable, there would be a shorter walk which is not possible – its image

would be a walk in V shorter than the path distance – so the walk must be a path.

The following corollary is immediate from reversing the process.

Corollary 3.2.7 Let f : U → V be a covering projection. Then any path in U is the

preimage of some walk in V .

Corollary 3.2.8 Let V be a diamond-free partial order, f : U → V be a covering

projection, x a point of V and p a path containing x. Then given a preimage x′ ∈ U

of x there is a unique preimage of the path p, and f is an isomorphism when restricted to

that preimage.

Proof

The preimage is found as in the previous lemma.

In particular the above is true for preimages of paths between points x, y ∈ V given a

choice of preimage for x. 2

The following lemmata and corollary show the existence of a unique universal cover

where they exist (in other words, for any diamond-free partial order).

Lemma 3.2.9 Let f : A→ B and g : B → C be covering projections. Then gf : A→ C

is a covering projection.
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Proof

The composite map is clearly a surjective order-preserving map. As for any a ∈ A

the function f is a bijection from c(a) to c(f(a)) and g is a bijection from c(f(a)) to

c(gf(a)) the composite is a bijection from c(a) to c(fg(a)). 2

Lemma 3.2.10 Any covering projection between connected cycle-free partial orders is

an isomorphism.

Proof

Assume that the cycle-free partial orders in question are complete. It does not matter

whether this means ramification complete or Dedekind-MacNeille complete. If not one

may extend them to either completion by 3.2.4, and this extension can only be injective if

the original map is.

Let f : U → V be such a map. It suffices to show that f is an injection. Let a, b ∈ U be

preimages of some x ∈ V and p a path between them. A covering projection must take

a path to a walk, and as V is cycle-free any walk between x and itself must be trivial, so

a = b. 2

Theorem 3.2.11 For any ramification-complete connected diamond-free partial order V

there are a connected cycle-free partial order U which is unique up to isomorphism and

a covering map f : U → V (which is not unique), such that any covering projection from

a connected space g : W → V gives rise to a unique covering projection g′ : U → W

such that f = gg′.

Proof

We start by constructing this cycle-free partial order U . Let e be an element of V . Let
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U be the set of walks in V starting at e, with an order relation based on extension of

walks, which will be formally described after the diagram. Intuitively, where two walks

x = (x0, . . . xn) and y = (y0, . . . ym) are comparable if they have length differing by at

most 1 and:

• If (y0, . . . ym−1) = x then y < x if ym < ym−1 and y > x if ym > ym−1.

• If y0, . . . ym−1 = x0, . . . xn−1 then y < x if ym < xn and y > x if ym > xn.

This can be illustrated by a diagram. In the following diamond-free partial order, with

the paths as illustrated • // • is incomparable with the others, whereas • // • >

• // • .

• • •

• • e

• •

with paths •

��

•

��

•

•

OO

•

??

e

__

��

OO

• •

This is in fact almost a transitive relation as if (xi) > (yi) and (yi) > (zi) then, if all three

walks have the same length, then the last elements of each are comparable and (xi) > (zi)

by the second rule. If they are not then (yi) cannot be longer than the other two as they

would otherwise be identical. If (xi) is shorter than the other two then (zi) is an extension

of (xi) by an element less than that used to extend (xi) to give (yi), and so is less than (xi).

A similar argument applies if (zi) is shorter than the other two. Because walks alternate, if

(xi) is longer than (yi) then (zi) must have the same length as (yi) and a lower termination

point, and similarly if (zi) is longer than (yi) then (xi) must have the same length as (yi)

and a lower termination point. Adding the relation in these cases is sufficient to make it

transitive, giving the following explicit form: x = (x0, . . . , xn) ≤ y = (y0, . . . , ym) iff

|n−m| ≤ 1 and
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• m = n+ 1, (x0, . . . , xn−1) = (y0, . . . , ym−2), xn ≤ ym−1 ≤ ym.

• m = n, (x0, . . . , xn−1) = (y0, . . . , ym−1), xn ≤ ym.

• m+ 1 = n, (x0, . . . , xn−2) = (y0, . . . , ym−1), xn ≤ xn−1 ≤ ym.

This is a cycle-free partial order: there is a unique path between two walks which is found

by retracing them from the end points towards e until they meet.

Let f : U → V simply take walks to their endpoints in V . This map is surjective as V is

connected. It is an order preserving map because whenever one walk walks in U is less

than another their endpoints must be comparable and the endpoint of the first must be less

than the endpoint of the second. To show that it is a bijection when restricted to points

comparable with an element of U , let (xi) be a walk in U , x its endpoint and x′ its second

last point or last turning point. If the walk has length 0 or 1 we may take the base point as

x′, and in the first case x as well. It suffices to show that there is exactly one element in

U comparable with (xi) corresponding with every element of V comparable with x.

Without loss of generality assume x < x′ and let y ∈ V be comparable to x. If y < x′,

in other words y ∈ (x, x′) or y ≤ x then (xi) with x replaced by y is comparable with

(xi) and maps to y. If y > x′ then (xi) truncated and with x′ replaced by y is comparable

with (xi) and maps to y. Otherwise y is greater than x and not comparable with x′, so the

extension of (xi) by y suffices.

The unique factoring of any other covering projection is a consequence of the universality

property. Given the covering map g : W → V , pick an element e′ ∈ W mapping under

g to e. Having determined this point, every walk in V , that is element of U , has a unique

pull-back to a walk in W . Let then g′ be the map taking the element of U to the endpoint

of the walk in W , giving the required property that gg′ = f . This is a surjection because

W is connected, so every element of W is reachable from e′ by a walk, which is the

unique pull-back of a walk in V .



Chapter 3. Notes on covering projections 44

Applying the previous lemma tells us that if we have another possible universal cover

T , then there are unique covering maps T → U and vice versa such that both possible

composites are isomorphisms. As the maps are surjective, T andU must be isomorphic. 2

Remark 3.2.12 If V is not complete but is connected and diamond-free then one may

obtain the universal cover f : U → V by first completing V and obtaining the universal

cover f ′ : U ′ → V +. Then we take U = f ′−1(V ) and f to be the restriction of f ′ to U ,

which is cycle-free because suborders of cycle-free partial orders are cycle-free. By the

previous lemma and the universal property of the universal cover, this gives us the unique

object with this property.

In fact, one can see that, among diamond-free partial orders, the category of covering

projections is divided into classes determined by the isomorphism type of the cycle-free

partial order covering the class.

Example 3.2.13 If the diamond-free partial order is vertex-transitive then so is the

corresponding cycle-free partial order, as will be shown later. A connected ramification-

complete vertex-transitive cycle-free partial order is determined by the order type of its

maximal chains and the upward and downward ramification orders at each vertex. Since

these are all fixed by any covering projection one can immediately see what the universal

cover for a vertex-transitive diamond-free partial order is.

Remark 3.2.14 For an arbitrary connected partial order, one can take the partial order

of walks, giving a unique cycle-free partial order. The resulting surjection is however

not necessarily a covering projection. If the order is not diamond free intervals are not

chains, so instead of describing a walk by just endpoints one must consider it as an image

of a connected partial order. (Taking just endpoints gives us the diamond if we start with

the diamond.)
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To be precise, a walk is now a map f from a connected cycle-free partial order K with

designated endpoints (points whose connecting path is the entire partial order), which

maps those endpoints to the endpoints of the walk and for an interval I from K the

image f(I) is convex. Two walks are comparable if they are (possibly trivial) upward

or downward extensions of the same walk.

Example 3.2.15 Starting with the diamond gives •

•

•

, an

extended version of the alternating path. Similarly, if we start with any ranked partial

order such as a finite boolean algebra gives a cycle-free partial order with the same linear

order of levels and each point has the same upward and downward ramification order as

its preimages. In the case of the finite boolean algebra which has ramification orders

determined by the level the point is on, the same function determines the ramification

orders of points in the preimage by level.

Define a cycle in a ramification-complete diamond-free partial order to be a walk

x0, . . . , xn such that x0 = xn, (x0, . . . , xn−1) and (x1, . . . , xn) are paths and xn is the

supremum or infimum of x1 and xn−1. Note that n is always even, as sequence elements

are alternately suprema and infima of their immediate predecessors and successors. The

length of such a cycle is n. The cycle length of a ramification-complete diamond-free

partial order is the minimum length of a cycle in the order.

Lemma 3.2.16 The cycle length of a ramification-complete diamond-free partial order is

at least 6.

Proof

A cycle of length 2 is nonsensical. A cycle of length 4 is also impossible as two points,
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if they have a supremum or infimum, have a unique one. They cannot have both a

supremum and an infimum as that would constitute a diamond. So suppose x0, . . . , x4

were a cycle of length 4 then x1 and x3, as the meet or join of x0 and x2, would have to

be equal. 2

Corollary 3.2.17 Let f : U → V be a covering projection between ramification-

complete partial orders. Then the cycle length of U is at least that of V .

Proof

The covering projection f takes cycles to sequences which may be truncated to give

cycles. So, considering a cycle of minimum length in U , there is a cycle in V of length at

most the cycle length of U . 2

The path metric in a connected ramification-complete diamond-free partial order U gives

the distance between two points to be the length of a path of minimal length between

them. If X is a connected suborder of U , one can consider on this suborder both the path

metric given by the order X and that induced from U , whose distances will be less or

equal. The diameter of X in a specified metric is the greatest path-distance attained, if

the distances are bounded. Note that while X is expected to be ramification-complete it

is not expected to be convex as a suborder. One can also talk about the distance between

subsets A,B of a partial order U , in which case it is the minimum over a ∈ A and b ∈ B

of the distance between a and b. A significant part of the following essentially uses the

fact that paths of length less than half the cycle length of the partial order are unique given

the endpoints.

Lemma 3.2.18 Let X and Y be connected ramification-complete diamond-free partial

orders such that X embeds into Y as a suborder. Let n be the cycle length of Y . If X has



Chapter 3. Notes on covering projections 47

diameter less than n/2 then the path distance in X between points a, b ∈ X is equal to

the path distance induced between those points as elements of Y .

Proof

Suppose not. Then consider a counterexample (a, b) in X such that the distance between

a and b is minimal among counterexamples. There is one path between them in X and

another, shorter, path in Y . Reversing the latter path and concatenating it with the earlier

one gives a walk of length less than n with the same start and end point. Where the paths

were joined there may be some duplicated sections. Deleting these gives a cycle of length

less than n, which contradicts the hypotheses. 2

Lemma 3.2.19 Let f : U → V be a universal covering of the connected ramification-

complete partial order V , σ : V → V be an automorphism of V and u, u′ ∈ U points

such that σ(f(u)) = f(u′). Then there is a unique automorphism τ : U → U taking u to

u′ such that fτ = σf , as in the following diagram.

U

f
��

τ // U

f
��

V σ // V

Proof

The map τ is obtained thus: any point in U is connected to u by some path and f maps

this to a walk in V which is possibly moved by σ. This can be pulled back to give a walk

in U . Reading off the endpoint of this walk gives the image of that point. As U is the

universal cover and cycle-free, paths are unique and this is well-defined. The resulting

map is an automorphism, as walks correspond uniquely to points in the universal cover

and σ is a bijection on the set of walks in V .

Pick an arbitrary base point v ∈ V . By the properties so given, a point u ∈ U corresponds



Chapter 3. Notes on covering projections 48

to a unique walk in V from v to f(u). The automorphism σ takes that to σ(f(u)), which

is also the endpoint of τ(u) by definition. 2

Definition 3.2.20 Let f : U → V be a covering projection. The group Aut(f) is the

subgroup of elements g of Aut(U) such that fg is an automorphism of V . Say f is a

regular covering if, for every v ∈ V , Aut(f) is transitive on all elements u ∈ U such that

f(u) = v.

Remark 3.2.21 In some cases there is an intermediate partial order W through which f

factors as a covering projection such that automorphisms are images of automorphisms

of W . If possible, the following diagram arises.

U

f1
��

τ // U

f1
��

W

f2
��

ρ //W

f2
��

V σ // V

The following example illustrates this and the point that whereas a covering

endomorphism to a cycle-free partial order, as shown earlier, is always an automorphism,

this is not always the case for a diamond-free partial order. Consider the following partial

orders. Let T be the Cayley graph of the free group F2 on two generators and V that

corresponding to the quotient of the free group by the word z = (xy−1)3. Let U on the

other hand be the quotient of T by the transitive closure of the equivalence relation that

deems the words u and uz equivalent if the sum of the indices in u is positive. Then the

map that takes a word u to xu is an automorphism both of V and T (it is simply an upward

translation of the graph along a single edge) and an endomorphism onU (but not injective

and so not an automorphism), and the map that takes u to x−1u is an automorphism of
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V and T but ill-defined on U , so no map at all there (as it would attempt to unwind the

cycles on the lowest level and this is not possible homomorphically).

In the event that there is an intermediate partial order W and any automorphism of V

does in fact lift to an automorphism ofW , call the coveringW → V symmetry preserving.

Lemma 3.2.22 Let f : U → V be a covering projection and n be the cycle length of V .

Let X be a connected partial order with diameter less than n. Then f takes copies of X

embedded in U to copies of X embedded in V .

Proof

Let Y ⊂ U be such an embedding. The claim fails only if points in the image of Y under

f are comparable whereas they previously were not in U , but this would give a cycle

shorter than n. 2

Here is an easy application of this lemma.

Corollary 3.2.23 Let f : U → V be a covering projection and n be the cycle length of

V . Then f preserves path distances of at most n/2.

Proof

Take the entire path (that is, the finite points of ramification) to be the connected partial

order X in the previous lemma. This gives a path in V . If there is another path then there

would be a cycle of length less than n. 2

Theorem 3.2.24 Let f : U → V be a regular, symmetry preserving covering and n be

the cycle length of V . Let X be a connected partial order with diameter less than n/2.

Then U is transitive over order embeddings of X if V is.
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Proof

Note that the bound on the diameter of X forces it to be cycle-free.

Given two embeddings a, b of X into U , the previous lemma states that they are

mapped isomorphically to embeddings of X into V . As V is X-transitive, there is a

map exchanging those images. As f is symmetry-preserving this corresponds to an

automorphism of U exchanging embeddings c, d of X into U such that fc = fa and

fd = fb. As f is regular there are automorphisms of U exchanging a and c and b and d,

and composition gives the required automorphism exchanging a and b. 2

Remark 3.2.25 It should not be expected that if V is a diamond-free partial order with

cycle length n and X has diameter greater than n/2 that V can possibly be X-transitive.

In general one may choose X to be a path of length greater than n/2. There will be

embeddings into V such that the endpoints have distance less than the length of the path

and embeddings without this property, and it is not possible to exchange them.

Corollary 3.2.26 If V is a ramification-complete 3-cs-transitive diamond-free partial

order and U is its universal cover, then U is also 3-cs-transitive.

Proof

The choice of three connected points gives a partial order with diameter at most 2. It

is not possible to have a cycle of length 4 or less so the cycle length of a diamond-free

partial order is at least 6. The result follows from the previous theorem. 2

3.3 Categorical connections

Thanks to James Cranch for bringing the following to my attention.



Chapter 3. Notes on covering projections 51

Definition 3.3.1 The nerve of a partial order P , written N(P ) is the simplicial complex

constructed thus:

1. The elements of the partial order are the points of the simplicial complex.

2. The line segments correspond to the pairs of the relation.

3. For every finite n, the n-simplices correspond to suborders of P which are (n+ 1)-

element total orders.

For x ∈ P let the corresponding vertex in N(P ) be N(x).

Remark 3.3.2 If unit intervals are used for the line segments, this is a nicely metrisable

space, with the restriction of the metric to the points bounded by the order metric if P is

connected.

The metric distance does not correspond exactly to the order distance. For instance the

following order

d

��
a

�� ��
b c

has nerve a b

c d

, where there are two triangles, abd and acd. It shares this nerve with the diamond and a

distance between b and c of exactly
√

3, being twice the height of the equilateral triangle.

If there were points above d this distance would be reduced, as for instance the height

of the tetrahedron is less than the height of the triangle. Thus the least possible distance

between two incomparable points is
√

2, twice the vertical height of the ω-simplex. This

can be attained in this example by sticking countably many points between a and d.

Thus, for a point u ∈ P the realisation in the nerve N(P ) of c(u) consists exactly of the

vertices in the 1-ball of u.
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Result 3.3.3 The height of a n-dimensional regular simplex is
√

n+1
2n

, which is bounded

below by
√
2
2

. The circumradius of the same simplex is
√

n
2(n+1)

, which is bounded above

by
√
2
2

.

Proof

The proof is by induction on the dimension. By some elementary calculations, the

ratio of the height to the circumradius of the regular n-simplex is n+1
n

, giving the result

about the circumradius. The circumcentre is the point furthest from the vertices. The

circumcentre of the n-dimensional simplex is also the base of the vertical height of the

(n + 1)-dimensional simplex, so the height h of the n + 1-dimensional simplex satisfies

h2 + n
2(n+1)

= 1. This gives h2 = n+2
2(n+1)

which is the induction step. 2

Remark 3.3.4 Quite a lot of information is lost in going to the nerve from the order. For

instance, all countable linear orders have the same nerve, the previously mentioned ω-

simplex, and the isometries of this space correspond to the full symmetry group on the

countably many points.

This counterexample can be similarly generalised to partial orders. The example of the

countable partial order with the following properties arises frequently in this thesis, it

was used as an example in the introduction.

1. Maximal chains have order type Z.

2. Every vertex has upward and downward ramification orders 2.

3. Every vertex is the base point of a unique 6-crown.

4. Those 6-crowns are the only cycles which do not contain smaller cycles as subwalks.
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This partial order has a nerve which it shares with the other partial orders with the same

properties, but with the order type of the maximal chains replaced with other 1-transitive

linear orders such as Z2 or even Q, because those linear orders have the same nerve and

all the partial orders so created have the same reduct with the comparability relation.

Remark 3.3.5 If one is not considering diamond-free partial orders then the loss

of information means that some partial orders with cycles may have nerves which

they share with cycle-free partial orders. The diamond is an example, a more

complicated example is that the following pair of partial orders have the same nerve

a

~~   
b

��

c

��
d

��
a′

�� ��
b′

��

c′

��
d′

, b

  

c

~~
a

��
d

��
d′

��
a′

�� ��
b′ c′

.

Here the labelling shows that we have simply moved points around without affecting the

comparability relation on the partial order. In this case we are just permuting levels. One

might hope that similar procedures will work for partial orders with cycle-free nerves in

general, but this is not possible.

In fact, it is false that every cycle-free nerve of a partial order is the nerve of some

diamond-free partial order. Consider the nerve of the analogue of the previous two-

diamond partial order with a third diamond below the rest. The diamond-free partial

order with the same nerve for the two-diamond example was unique up to permutation of

the elements present in every chain (a, d, a′, d′) and the two mutually exclusive pairs. This
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leaves no room to add a third mutually exclusive pair.

Lemma 3.3.6 Let P be a partial order and N(P ) its nerve. Then any path f : [0, 1] →

N(P ) between two vertices of N(P ) is homotopic to the embedding in N(P ) of a walk in

P between the vertices.

Proof

The idea here is that where a path lies in one simplex it can be pushed out to one of the

1-dimensional simplices bordering that simplex. Fortunately, [0, 1] is compact. The balls

of radius
√
2
2

around the vertices form an open cover of N(P ), so their preimages form

an open cover of the interval, as do the connected components of their preimages. Take a

finite subcover of this.

This gives a sequence of intervals in [0, 1] labelled by vertices such that any vertices

labelling overlapping intervals are comparable. Shorten intervals as needed until any

overlap is pairwise only. Construct the new map g : [0, 1]→ N(P ) with image restricted

to 1-dimensional simplices thus:

• If t is contained in one interval only labelled by the point x then set g(t) equal to x.

• If t is contained in intervals labelled by points x and y which overlap on the interval

(t1, t2) then set g(t) equal to (t−t1)x+(t2−t)y
t2−t1 .

If t is in the overlap of two intervals then f(t) must be contained in a simplex which

contains both the vertices. If t is in just one interval then f(t) is contained in a simplex

which contains that vertex. Thus, by convexity of individual simplices, the linear

homotopy between f and g can be defined and the two maps are homotopic. 2
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Theorem 3.3.7 If the nerve of a ramification-complete connected diamond-free partial

order P is simply connected then P is cycle-free. Conversely, if P is connected and

cycle-free then N(P ) is contractible and thus simply connected.

Proof

In the previous proof the result that the interval has covering dimension 1 is subtly used

to take a cover where each point is contained in at most two points. Suppose that P is

not simply connected: thus it contains some manner of crown C. There is a path N(C)

corresponding to this crown, which we claim is a nontrivial loop. If it is homotopic to

the identity, then there is a continuous map f : [0, 1]2 → N(P ). Using the fact that the

square has covering dimension 2 one constructs as above a homotopy to the 2-dimensional

simplicial skeleton.

Such a homotopy is only able to rearrange the appearances of chains of length 3 of

elements of P in the path, and cannot remove the cycles induced by crowns in P .

Conversely consider a point x in P . For any other point y in N(P ), set d(y) to be 1 more

than the least order-theoretic distance from x of a vertex of a simplex containing y, and

π(y) to be such a vertex with minimal order-theoretic distance. Let the unique path in P

from x to π(y) be ψ(y), which is a path of length d(y). The object is to find a homotopy

from the map on N(P ) which is constant at N(x) to the identity.

Let the homotopy be constructed in countably infinitely many steps starting from 1. At

step n:

• Points y with d(y) < n are already in the correct position so need not be moved.

• Points y with d(y) = n start at a vertex of a simplex containing y and travel linearly

to y as the simplex is convex.

• Points y with d(y) > n start at the nth point of ψ(y) and travel to the (n + 1)th

point of the sequence linearly along the 1-simplex.
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Squeezing all of those steps into the interval gives the continuous map needed. One

explicit way to do this is to perform step n over the interval [1 − 21−n, 1 − 2n]. In this

case, each point y will be in its correct position at time 1− 2−d(y), which is a time before

1 as d(y) is finite. At time 1, in the pointwise limit, each point will be in its proper

location. 2

Corollary 3.3.8 The nerve of a ramification-complete connected partial order P is

simply connected if P does not embed a crown.

Proof

In a ramification-complete crown-free partial order paths are unique up to replacing an

element by any other element comparable to the two adjacent points in the path, so the

previous proof still works.

The converse is not true. A lattice, for example, probably contains many crowns, but every

path tracing out such a crown can be turned into an insignificance by giving a homotopy

to a constant path as in the example below.

◦

�� ��
•

�� ��

•

{� ��

•

�� ��
• • •

→ ◦

�� ��
◦

�� ��

•

{� ��
• •

→ ◦

�� ��
◦

��

•

��
•
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To see what is happening here observe that when we have a diamond like this

a

�� ��
b

��

c

��
d

then the path from b to c via d is homotopic to the path from b to c via a. To see

this assume without loss of generality that we are talking about the path through the

1-simplices – an earlier lemma permits this. Then one can simply move d where it

appears in that path to a linearly and do the same with the 1-simplices bd and dc, moving

them at the same speed to ba and ac. Doing this once to the six-crown allows us to

exchange the double-lined arrows with the dotted arrows, turning the structure into a

slightly elongated four-crown. Forgetting the intermediate points gives us the four-crown,

and a repetition of the process takes us to the diamond, whose nerve is contractible.

Alternatively, if a lattice has a point greater than all other points one may simply contract

the entire nerve linearly to that point, as every chain either contains it or may be extended

to a chain containing it. 2

Corollary 3.3.9 Let P be a diamond-free partial order. Then any covering projection

f : Q → P corresponds to a topological covering map N(f) : N(Q) → N(P ).

Furthermore, if f is universal so is N(f).

Proof

Let x ∈ P and y ∈ Q satisfy f(y) = x. Then the
√
2
2

-ball around both N(x) and N(y) is

determined by the simplices containing x and y respectively as vertices. These correspond

to chains containing x and y. As f is an isomorphism between c(x) and c(y), N(f) is a
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homeomorphism (indeed, an isometry) between B√2
2

(x) and B√2
2

(y). The balls around

y for different choices of y cannot overlap as preimages of x cannot be comparable, so

must be at distance at least
√

2. Indeed, they must be at a greater distance as two points

at distance 2 in the partial order are in c(z) for some z.

If f is universal thenQ is cycle-free, which corresponds toN(Q) being simply connected.

This means that the topological projection is universal. 2

Remark 3.3.10 This is a functor from the category of diamond-free partial orders and

covering maps to the category of topological spaces and covering maps. As distinct

partial orders may have the same nerve, it is not injective on points. It is however bijective

on arrows between two points.

Formulating the order theory in terms of topology does more than justify the use of

language such as ‘covering projection’. It grants access to the rich theory of topological

coverings.

First it is necessary to recall some definitions from algebraic topology.

Definition 3.3.11 Let T be a topological space. A path is a continuous map p : [0, 1]→ T

and has endpoints p(0) and p(1). Two paths f and g may be concatenated if f(1) = g(0).

Then f + g(t) = f(2t) if t ≤ 1/2 and g(2t− 1) if t ≥ 1/2. If for any a, b ∈ T there is a

path from a to b then T is said to be path-connected. Assume it is so. Let P (T ) be the set

of paths on T . This is a function space.

A homotopy between two paths p, q ∈ P (T ) is a map h : [0, 1] → P (T ) such that

h(0) = p, h(1) = q and h(.)(.) is a continuous map from [0, 1]2 to T . Homotopy is an

equivalence relation.

Let x ∈ T be a base point. The loop space at x is the restriction of the space of paths

to those starting from x and ending at x. Taking the quotient of this space by homotopy
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gives a topological group, the fundamental group at x, π1(T ). If T is path-connected then

this is independent of the choice of x. If the fundamental group of a space is trivial, that

is every cycle is homotopic to the constant path, it is said to be simply connected.

Let f : U → T be a continuous surjection between path-connected spaces. Then x ∈ T is

evenly covered if there is an open set d satisfying x ∈ d ∈ T such that f−1(d) is equal to

ti∈I{di ∈ U} with the restriction of f to di a bijection to d for every i ∈ I . The function

f is a covering projection and U is a covering space for T if every point in the image is

evenly covered. Additionally if U is simply connected then it is the universal cover for T .

The following result is a common example in category theory.

Result 3.3.12 The Galois correspondence subgroups of the fundamental group of a path-

connected space and its path-connected covers are in bijection, with embedded subgroups

corresponding to supercovers. In particular, covering spaces of a space T correspond to

subgroups of π1(T ). Normal covers correspond to normal subgroups, and in the case of a

normal cover f : S → T corresponding to N / π1(T ) the group of deck transformations

is the quotient π1(T )/N .

Remark 3.3.13 The deck transformation group of the universal cover of T is the same as

π1(T ), and that of any intermediate cover is an image of this group via the intermediate

projection and thus a quotient.

One use of this result is to look at the orbits of the deck transformation group of the

universal cover, which are preimages of points in the image. Information about the cycle-

free partial order and equivalence relation will give information about the quotient order

being studied.

Corollary 3.3.14 Let f : Q → P be a universal covering of diamond-free partial

orders. Then the group of deck transformations of f has an explicit isomorphism with

the fundamental group of P .
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Proof

It is possible to prove this result elementarily. Given a base point x ∈ P , walks from x

to itself are in bijection with the elements of the orbit f−1(x). If a canonical element x′

of the orbit is chosen, the orbit consists of translates of x′ via a free action. It suffices to

check that composition is the same in each case, that is that the translation corresponding

to the concatenation of two walks is the product of the corresponding translations. This

is true by construction. 2

Remark 3.3.15 Let f : Q → P be a universal cover of a 3-cs-transitive diamond-free

partial order. Then orbits of the deck transformation group Aut(f) of Q (i.e. preimages

of elements of P ) satisfy:

• They are acted on transitively by (the lifts) of Aut(P ).

• Any two elements are at distance bounded by 2, and indeed by the cycle length of

P .

• The deck transformation group acts freely on Q, thus consists only of translations.

• There is a subgroup of Aut(Q) realising 3-cs-transitivity well-defined on the orbits.

3.4 Constructions via Finitely Presented Groups

Here we are constructing partial orders as Cayley graphs of finitely presented groups. This

is an obvious way in the context of group theory to generate connected partial orders,

which will automatically be 1-transitive and connected, and the elements of the partial

order will naturally be levelled. The challenge is that edges must be exchange-able. While

initially this is used to create partial orders with maximal chains of order type Z, the other

1-transitive countable linear orders are also ordered groups.
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Here are a few preliminary definitions.

Recall that the Cayley graph of a group G with a set of generators X is a directed graph

with labelled vertex set equal to the set of group elements G, each vertex labelled by its

corresponding group element. The edge set of the graph is labelled by the elements of X ,

and there is a directed edge labelled x from the vertex a to b if and only if ax = b.

Given a set of generators X and a set R of words (relators) in those generators, the group

presented by the generating set X with relations from R is the quotient of the free group

on X by the normal closure in this free group of the set R. If both sets are finite this is a

finitely presented group.

The index sum of a word or subword of a word in a group with a specified independent

generating set is the sum of the powers of the generators. A word is balanced if its index

sum is zero. A word is reduced if it does not contain any generator adjacent to its inverse.

A word is trivial if it equals the identity in the free group.

Recall that a partial order is strongly arc transitive if it is transitive on unions of two

maximal chains which overlap on a maximal ray (either upward or downward) starting

from a point which are the same shape (in the infinite case just direction). If a partial order

of finite height is strongly arc transitive is transitive on such structures, in this case it will

depend on how long the ray is as well as whether it is upward or downward maximal.

Given an interval [a, b] typically including zero the [a, b]th alternating closure of a point

specified by a word w is the set of all words v with w as an initial segment such that any

initial segment of v of which w is an initial segment has index sum contained in [a, b]. The

[a, b]th alternating closure of the origin, represented by the empty word, is then the set of

all words such that any initial segment has index sum in [a, b]. The [k, n+k]th alternating

closure of a word w with index sum k will be referred to as the nth alternating closure for

short.

Given a group presentation in which all relators are balanced there is a natural rank
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function to Z on words given by the index sum, this defines a discrete partial order whose

Hasse diagram has the successors of any point (specified by a word w) be the words wg

for g a generator. Edges on the nth level of this diagram are those between words of

n − 1th and nth rank. An upward edge is a non-inverted generator following an initial

subword of rank n− 1, and a downward edge is an inverted generator following an initial

subword of rank n.

If the greatest index sum or height of any subword of a relator in the presentation is

m then the cycle structure in the Cayley graph is the isomorphism class of the mth

alternating closure of a point, which as the group is symmetric under translation (by left

multiplication) does not depend on the point. The word cycle of a word is the suborder

consisting of all the points given by initial segments of the word.

The following theorem makes it possible to break down Cayley graphs resulting from

finitely presented groups into disconnected chunks, which means that a finite amount

of symmetry is sufficient to ensure symmetry at arbitrary heights, namely strong arc-

transitivity in a partial order with infinite chains.

Theorem 3.4.1 Let G be a finitely presented group with generating set X and one

balanced relator r of height n. Then removing the nth alternating closure of a point

is sufficient to disconnect the Cayley graph. In particular, any points with a nontrivial

connecting path whose intersection with the removed section has on any level numbers x

of upward edges and y of downward edges satisfying x−y is not 0 are now not connected.

Proof

Without loss of generality let the point be the origin. Walks in the Cayley graph

correspond to not necessarily reduced words. As such, they are equivalent (in that they

start and end at the same point) if the words are provably equivalent in the group through

a finite number of applications of the relation. As the relation describes a cycle in the
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graph, an application of the relation corresponds to partially superimposing one copy of

this cycle or a trivial word over part of the walk and taking the symmetric difference.

As the relator is balanced, its application at any level has an equal number of upward

and downward edges. To verify this, consider the following cases. If a trivial word was

applied, then the upward edge we are adding corresponds to an identical downward edge.

Otherwise, as the height of the relator is n, the levels taken up by the relator cannot extend

both above and below the levels of the nth alternating closure, and in each component of

the relator which lies in the alternating closure there must be as many upward edges at

each level as downward edges. Consider the following diagram, where the vertical line

at the left corresponds to the levels of the alternating closure, the diagram on the right

indicates the component of the relator meeting the alternating closure, and the level in

question is indicated by wavy lines.

◦ • •

◦ • • •

◦ • • • •

◦ • •

If the relation is applied at the level such that its cycle is entirely included in the removed

section, then if the walk intersected the removed section in a number of edges such

that upward and downward edges have different counts then this is preserved by the

application. 2
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This result can be immediately generalised with the same proof.

Corollary 3.4.2 Let G be a finitely presented group with generating set X and a finite set

R of balanced relators of height n. Then removing the nth alternating closure of a point

is sufficient to disconnect the Cayley graph. In particular, any points with a nontrivial

connecting path whose intersection with the removed section has on any level numbers x

of upward edges and y of downward edges satisfying x−y is not 0 are now not connected.

We may want to apply the lemma to directly produce some examples of Cayley

graphs with crowns with legs of uniform height greater than 1 given by relators in the

presentation, obtaining high symmetry with finitely many conditions to check. Many

more examples are possible with the corollary, however. This lemma provides some such

examples. As these satisfy the conditions to be the ramification points of a two-level

partial order, one may gain from this process a two-level locally 2-arc-transitive partial

order. It may be the case, because of the symmetry of generators involved, that the two-

level partial order may be explicitly given by considering words of the Cayley graph

followed by +∞ and −∞ powers of the generators.

Lemma 3.4.3 Let r be a balanced word of height n where every subword of locally

maximal height attains the global maximum and every subword of locally minimal height

attains the global minimum. Let G be a finitely presented group with generating set X

and r as sole relator. Suppose also that the cycle structure of r in G is strongly arc-

transitive. Finally, observe that Sym(X) acts on balanced words of this kind at each

level by changing only the edges of that level. Suppose that the stabilisers for r at each

level are 1-transitive on X itself. Then the Cayley graph of G corresponding to this

presentation is strongly arc-transitive.

Proof

It is necessary to show that the Cayley graph is strongly arc transitive. Consider a
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Y -structure, which is the union of two infinite maximal chains meeting in a maximal

downward ray. Let there be two of these, J and J ′. Since it is known Cayley graphs are

vertex transitive, one may assume that both have their ‘joining point’ at the origin. The

case for structures meeting in maximal upward rays is dual to this. Let n be the height of

the word.

J is defined by three strings indexed by ω, one D of generators for the ray going

downwards and two U1 and U2 for the rays going upwards. The other structure J ′ will

have strings D′, U ′1 and U ′2. The plan is then, at each level, to choose a permutation of

the generators such that the generator in D or U1 and U2 is mapped to the corresponding

generator in J ′. The nth alternating closure of the origin is strongly arc transitive, so can

be dealt with separately. The remainder of each ray is in a separate component, so one

can, in each component, apply 1-transitivity at each level.

This then defines a permutation of the Cayley graph taking J to J ′. 2

It can be quite difficult to find single words satisfying the conditions, so this corollary,

whose proof is analogous, is more fruitful.

Corollary 3.4.4 Let R be a set of balanced words of height n where every subword of

locally maximal height attains the global maximum and every subword of locally minimal

height attains the global minimum. LetG be a finitely presented group with generating set

X and set of relations R. Suppose also that the height-n cycle structure in G is strongly

arc-transitive. Finally, observe that Sym(X) acts on balanced words of this kind at each

level by changing only the edges of that level. Suppose that the stabilisers for r at each

level are 1-transitive on X itself. Then the Cayley graph of G corresponding to this

presentation is strongly arc-transitive.
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3.5 Examples and Generalisations

Let us find some appropriate words. Fix n to be the desired height of a word and q to

be the number of generators, written 0, . . . , q − 1. A V -shape consists of n downward

edges (the inverses of generators) followed by n upward edges. The dual notion is that

of the Λ-shape. A suitable word must embed every possible V -shape and Λ-shape of the

appropriate height.

Consider the case of q = 2 and n = 2. Here ab is used to represent a−1b−1

Result 3.5.1 No perfect word – that is one that embeds every V - and Λ-shape exactly

once – is possible.

Proof

There are 4 distinct V -shapes (we consider 0011 and 1100 the same V -shape. Exchanging

generators on one level is an operation of order 2, so a perfect word would consist of four

V -shapes, a total of 16 letters in a string. If this string is a line segment, it is necessary for

S2
2 to act faithfully on this, which must be by means of two reflections whose composition

is a translation of order 2. However, there is a V -shape that goes 1101. Exchanging

generators on the lower level takes this to 1011, which is a reflection of itself, and forces

this action to be a reflection at a location 2 mod 4 along the word. By a similar argument

the Λ-shape 1101 forces exchanging generators on the upper level to act on the string by a

reflection at a location 0 mod 4 along the word. But the composition of such reflections

is a translation by a length 4 mod 8, which cannot be of order 2 in a word of length 16. 2

Less perfect words do exist. By a similar argument, if an imperfect word is made

up of V -shapes then exchanging generators on the upper level should be a reflection

and exchanging generators on the lower level the translation of order 2, which forces

exchanging both to be the other reflection.
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Example 3.5.2 An example of such a word is 10101011|01001100|11001101|00101010.

This was formed by observing that there are two orbits of V -shapes under the exchanges,

and including both of them in one of the sections, which ensures that they all arise. One of

the orbits of Λ-shape is reflected over and the other is included in a section. If we conduct

the construction with this word, we find a diamond-free partial order whose height-1

alternating closure is free (so Alt), and which embeds the 16-crown with legs of height

2 corresponding to the word itself. Because each V -shape occurs twice, there is not a

unique 16-crown for each extended V -shape.

This process, however, does not generalise very well to higher ramification orders or

longer extended arcs, as neither S3
2 nor C2

3 act faithfully on the interval. Instead, one can

use the earlier corollaries with finite sets of words.

Example 3.5.3 One way to find such a set is to take some words (such as (0011)4 and

(01001011)2) and extend to their orbits under a subgroup of symmetries of the generators

at each level. In this case, the second word is mapped to itself when exchanging top or

bottom generators, and the first word is mapped to (0101)4. We have a diamond-free

partial order with no cycles of height 1 and a unique extended 8-crown with legs of height

2 for each extended V -shape of legs of height 2.

Finally, we can generalise to give constructions with maximal chains of height greater than

Z. This approach works for powers of Z, but it is not clear how to do similar presentations

for Q, because the cycles must now interact densely and, even if rank is preserved, there

are necessarily infinite many V -shapes which it must be possible to exchange. Once that

is understood, results for order types Q.Zα seem likely to be straightforward.

Remark 3.5.4 It is possible to generalise these presentations to some other order types

which are ordered groups. For instance, suppose that we have incomparable generators



Chapter 3. Notes on covering projections 68

xi and a discrete ordered group G = Zα, with a generating set G′. Then we replace the

xi with incomparable copies of G′, and each occurence of xi in the presentation with its

copy of the least generator of G′.

An example of this, starting with the presentation 〈a, b : (ab−1)3 = 1〉 corresponding

to a Z-ranked partial order with 6-crowns is that if we use Z2, with two generators and

replace the original generators with the smaller lexicographic generator, we get a Z2-

ranked partial order with 6-crowns and no structure at the higher level.

The difficulties with finding more complex presentations of this form are connected with

the problems in Chapter 5 with infinite ramification, but here it is possible to construct

some examples. Suppose we have a connected partial order with finite ramification orders,

expressed as the Cayley graph of some quotient of a finitely generated group. Then

let us assume that there are n generators and we assume each V -shape of height k (of

which there are n2k−1(n−1)
2

) is contained in a unique extended 2m-cycle (and also the dual

condition on Λ-shapes). This tells us that there are left and right bijections f, f ′ from

V -shapes to Λ-shapes, depending on whether the image shares the left-hand side or the

right-hand side of the V -shape. To have the 2m-cycle, we require that (f(f ′)−1)m be the

identity map. This pair of maps now contains enough information to write down a set of

relations for the generators. In particular, there will be n2k−1(n−1)
2m

words, so we observe

that this fraction must be an integer.
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Chapter 4

Finitary decomposition

4.1 Objectives

Here we apply the work of Cameron, Praeger and Wormald [1] on highly-arc-transitive

connected digraphs to describe complete posets with maximal chains of order type Z.

These arise naturally as the poset of ramification points of the completions of two-level

posets with appropriate transitivity properties. Covering projections, as defined earlier,

are frequently used. The notion of DL(∆) is also defined in that paper . The idea behind

this structure is that by local 1-arc-transitivity of ∆, a bipartite graph, it is possible to

create a unique digraph by freely amalgamating copies of ∆.

The standard construction is to take a tree where the upward branching order is equal to

the size of the upper part of ∆ and the downward one is equal to the size of the lower part

of ∆. In this case by tree we mean a directed graph whose underlying graph is connected

and contains no cycles. This tree should be regular with in-degree at each point equal to

the size of the upper part of ∆ and out-degree equal to the size of the lower part. The

points of this tree will correspond to the copies of ∆, and each edge to a lower vertex of

the copy of ∆ corresponding to the source of the edge and an upper vertex of the copy
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corresponding to the end point of the edge. Edges into a point are then identified with the

upper partition of the copy of ∆ corresponding to that point, and edges out with the lower

partition. This gives a natural subgraph of the line graph of that tree where the edges

correspond to the edges in the copy of ∆ for each point. This is DL(∆), which will be

called the connected cover.

4.2 The main theorem

Consider digraphs and surjective homomorphisms. As the identity is a surjection and

the composition of two surjections is surjective, these form a category. The Z-ranked

digraphs are those with an arrow to Z. This corresponds to those digraphs with a rank

function from the vertex set onto Z where if x <′ y the rank of x is exactly 1 less than

that of y. This is exactly the “property Z” of [1].

As usual, we assume that these structures are connected, diamond-free and highly arc-

transitive (which requirement gives regularity of the digraphs via vertex-transitivity).

Note that with this constraint, any arrow, that is one of the surjective homomorphisms,

between two digraphs with the same finite in- and out-degrees is in fact a covering

projection, as the diamond-free condition forces all ancestor and descendant sets to be

trees. For any locally 2-arc-transitive bipartite graph ∆ which is complete as a 2-level

partial order (in other words any two neighbourhoods of points meet in at most one

point), DL(∆) is such a digraph. Later the assumption of completeness is relaxed for

more complex constructions. This does not describe all examples however, there are such

digraphs which are not of the form DL(∆)D and it will be instructive to consider one.

Lemma 4.2.1 There is a digraph Γ, still connected diamond-free and highly-arc-

transitive which is not of the form DL(∆)D where ∆D has finite height.

Proof
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A general example here is to take an arbitrary Dedekind-MacNeille complete diamond-

free finitely (more than 2) ranked partial order and construct the countable free highly-

arc-transitive digraph embedding that order. The idea is to take a starting partial order γ.

Here we use a cycle with three maximal points, three minimal points and edges which are

2-arcs, namely an extended six-crown.

◦

�� ''

◦

ww ��

◦

�� ��
◦
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◦
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◦

**

◦
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◦

��
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We will construct by amalgamation the highly arc-transitive partial order Γ satisfying the

conditions that each point has countable upward and downward ramification orders and

that each 2-arc is contained in countably many copies of γ.

The construction starts with P0, a copy of γ, and enforces the conditions one step at a

time, by adding countably many free rays above and below each point, by freely gluing

countably many copies of γ to each 2-arc and by amalgamating to witness arc-transitivity.

To be precise, for each pair of arcs a and b (finitely many such are introduced at each step)

one would like to be able to map within an approximation µ one glues Z copies of µ such

that the b of each copy is glued to a of the next, giving a witness automorphism taking the

first arc to the second.

At this point a new requirement is added demanding that any future additions be mirrored

in each copy. As new points and arcs are introduced new instructions are added to the

queue, by ordering these instructions correctly the whole process can be completed in

countable time. A precise account of a generalisation of this process can be found in the

next chapter. The outcome here is still ranked, as all amalgamations were free and will

not interfere with a rank function.

The process is thus as follows:
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1. Start with P0 = γ.

2. At each stage designate a future time in ω for each point (including ones previously

chosen for this purpose) such that rays will be freely amagalmated to that point.

3. At each stage designate a future time for each 2-arc (again including those

previously chosen) to attach a copy of γ.

4. For each pair of 2-arcs a and b designate a future time t at which a partial

isomorphism f between a and b will be chosen and used to amalgamate Z copies

of Pt, giving an automorphism taking a to b corresponding to shifting down Z.

5. When such an amalgamation is done add, immediately after every future stage

a stage requiring that any changes made to one copy be mirrored so that this

automorphism may be extended at that stage.

This is not of the form DL(∆)D for a Dedekind-MacNeille complete ∆, as DL(∆)

cannot have cycles ranging over more than 2 ranks of vertices. In fact this has cycles

ranging between arbitrary ranks resulting from simple amalgamations of the original γ -

consider a chain of arbitrary length of the γ, where an edge from a maximal point to a

middle point in an arc of each (non-final) element of the chain is amalgamated with an

edge from a minimal point to a middle point in an arc of the next element of the chain in

a nontrivial manner. This prevents it from being of form DL(∆)D if ∆D has bounded

height, as that bound also bounds the height of possible cycles. 2

Restricting this example Γ to finitely many ranks (n, say) and taking a connected

component gives a structure that is transitive on arcs between the same ranks. Indeed,

it is the free poset on those ranks transitive on arcs over the same ranks where each vertex

not at a maximal rank has countably many vertices above it, each vertex not at a minimal

rank has countably many vertices below it and each 2-arc is part of countably many copies
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of γ. This connected component is the completion of its suborder of elements of maximal

and minimal rank, which is a two-level partial order, call this Γn.

One can therefore say that cycles between ranks g(n) and g(n) + n from Γ are all to be

found in DL(Γn)D, where [g(n), g(n) + n] is the finite interval of ranks restricted to. If

it were possible to construct a family of such Γn with a filtered diagram of embeddings

such that every finite cycle (or every path from an arbitrarily fixed origin point) lay in

some Γn for some n, the colimit of that family would have to be isomorphic to Γ itself, as

every point and cycle would be in its proper place. This general result is outlined in the

following theorem, whose proof is given in the six lemmata that follow.

Theorem 4.2.2 Any connected Dedekind-MacNeille complete Z-ranked diamond-free

highly-arc-transitive digraph with nontrivial upward and downward ramification arises

as the colimit of a filtered diagram, specifically of shape corresponding to the square-free

natural numbers, with internal arrows corresponding to the “divides” relation, which are

the DM-completions of structures of the form DL(Λ) for some bipartite Λ.

The proof proceeds as follows: given such a structure Z = (Z,<′) (with corresponding

partial order (Z,<) the transitive closure of the digraph relation), first construct the

sequenceXi of covering structures and the internal covering maps. Then it is necessary to

add the internal maps between the Xi and check their well-behaviour. Then it is sufficient

to prove that this cocone is initial.

To form Xi the following result is needed:

Lemma 4.2.3 For n > 0 there are Zn ⊆ (Z,≤′n), which are connected Z-ranked highly

arc-transitive digraphs, each of which has Z as its Dedekind-MacNeille completion. Each

Zn will be taken to be one connected component of (Z,≤′n).
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Proof

First claim that there are n isomorphic components of (Z,≤′n) of the form Zn

corresponding to the pre-images of the residues mod n in the rank function.

This requires that such a pre-image be connected. Between two points of the same level

mod n take any path x0, . . . , xm in (Z,<′) by connectedness of (Z,<′). Construct a path

yi in (Z,<′n) thus: yi = xi iff xi is also in the same level mod n as x0. If xi > xi−1 and

xi+1 < xi, so xi is a local maximum, take yi to be a point above xi of minimal rank of

correct residue mod n. If xi is a local minimum take yi to be a point below xi of minimal

appropriate rank. Otherwise omit yi. Collapsing gives a path in (Z,<′n).

It is clear that there is no path in (Z,<′n) between any points of different levels mod

n. The digraph Z is vertex-transitive, so it has level-shifting automorphisms which

shift points to levels 1 . . . n − 1 above themselves, which gives that the components are

isomorphic.

Any arc of finite length s in (Z,<′n) has an extension to an arc of length ns in (Z,<′) by

filling in the gaps (this is unique by the diamond-free assumption), and the automorphism

in (Z,<′) gives one in (Z,<′n).

The fact that ZnD = Z follows from the Dedekind-MacNeille closure property of Z itself.

SinceZ is DM-complete, it suffices to show that each element ofZ arises as a ramification

point of points in Zn. The number of points of Zn directly above any given point of Z

not in Zn is at least equal to the upper ramification order (indeed, the mth power, where

m is the number of levels the next level of Zn is above it, as ancestor sets are trees) and

similarly for the number of points of Zn directly below it, where both ramification orders

are greater than one. It therefore arises as the ideal generated by the points below it and,

if ramification orders are finite, finitely generated by the set of points directly below it,

which is paired with the filter generated by the points above it.

2
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Lemma 4.2.4 There exist bipartite Λn such thatDL(Λn)→ Zn as a covering projection.

This is true by the work in [1]. Note that Λn is constructed thus: take any 1-arc and close

by taking all 1-arcs which are part of alternating walks starting with the 1-arc in question.

The presence of the rank function means this gives a bipartite structure, such that any

connected bipartite structure embedded in Zn is a substructure of an embedding of Λn.

This structure is called the alternating closure.

The desired structures Xn will in fact take the form DL(Λn)D. It is possible to imagine

an X0 as the tree with the same ramification orders as Z, but it will not be considered here

as it adds little to the sequence. It is necessary to show it maps to Z in the appropriate

way.

Lemma 4.2.5 There is a covering projection DL(Λn)D → Z extending the above map.

Proof

It is obviously not generally true that if there is a covering projection between two posets

then it extends to a covering projection between the order completions: consider a tree

covering a non-complete structure, the tree will only complete to itself. Thus some

understanding of the structure of DL(Λn) will be required. Specifically of use is the

property that there are no cycles without repeated points containing directed s-arcs where

s > 1, in other words that the only cycles are of height 1.

Consider this characterisation for the nonprincipal ideals of DL(Λn): each is generated

by some subset of the bottom elements of some copy of Λn.

To prove this, let p be a nonprincipal ideal in DL(Λn) and p+ the corresponding filter. Let

p′ be the set of maximal elements of p. This is nonempty, as the ranks of elements of p



Chapter 4. Finitary decomposition 76

must be bounded above, for instance by the rank of some element of p+. Similar let p+′

be the set of minimal elements of p+.

Now prove that the elements of p′ and p+′ are all of fixed and adjacent ranks. Suppose

not. Then it is possible to find u ∈ p′ and u+ ∈ p+′ not of adjacent rank. So there exists

an element v of DL(Λn) such that u < v < u+, u′ an element of p′ such that u′ 6≤ v

(this exists as v /∈ p+) and u+′ an element of p+′ such that v 6≤ u+
′ (existing as v /∈ p).

Then a walk from u to u+ via v, then to u′, then to u+′ and back to u collapses to a cycle

containing an irreducible arc of length > 2, namely that between v and its immediate

neighbours in the u− v − u+ arc, giving a contradiction.

Thus DL(Λn)D in fact looks like DL(Λn) locally completed over each copy of Λn. Z

arises from a similar local completion, which allows for a concrete characterisation of the

desired map.

Let τn be a covering projection DL(Λn)→ Zn. The extension υn can be defined: it must

map ideals pointwise. Thus for I ⊂ DL(Λn) an ideal, take υn(I) = {τn(x) : x ∈ I}.

It is necessary to check both that this is downward closed and that υn(I) is still an ideal.

Downward closure is immediate: suppose a = τn(b) ∈ υn(I), c < a. Then c is in the

ancestor set of a, but τn is a bijection between the ancestor set of b and that of a, so c has

a pre-image in I . To verify that it is an ideal, set J = {τn(x) : x ∈ I+} where I+ is the

set of upper bounds to I , the filter corresponding to it. By the same argument J is also

upward closed. As J is the pointwise image of the intersection of the descendant sets of

points of I , it is also the intersection of the descendant sets of υn(I), and so it is the set of

upper bounds of υn(I). Similarly υn(I) is the set of lower bounds of J , thus an ideal.

More concretely, the extension agrees with the original map on principal ideals and takes

an ideal generated by a set p to that generated by its image - and it has been shown that

such generating sets live inside single copies of Λn. Thus, when one restricts τn to a

single copy of Λn inside DL(Λn) so that it is a bijection (as shown in [1]), υn must be

a bijection between the closure of that copy and its image, which suffices to show that it
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is a surjective homomorphism, as every element and arc of Z arises in some such image.

Specifically each such element arises from an ideal-filter pair whose extremal points form

a bipartite structure (as constructed in Lemma 4.2.3) and is thus part of a copy of a Λn.

The same argument shows υn to be a covering projection as it is bijective on

neighbourhoods of points: for any point its in-neighbourhood lives inside a single

copy of Λn
D, as does its out-neighbourhood. 2

Recall that Zn is any connected component of (Z,<′n), and that there are n isomorphic

such components, which give n disjoint embeddings of Zn into Z. This gives us a

choice of embeddings Zn ⊂ Z and thus isomorphisms ZD
n
∼= Z. Choose appropriate

projections πn : DL(Λn)D → ZD
n for each n by extending the τn, though with certain

constraints. Specifically ensure that the copy of Zn in the image of DL(Λn) takes ranks

g(n) mod n, where g(n) is a function to be defined in the next lemma. Please note that

these Xn = DL(Λn)D are also Z ranked and the rank function is chosen in such a way

that πn preserves the rank.

Lemma 4.2.6 When S is the set of square-free natural numbers, there exists g : S → Z

with the following properties.

1. For each x ∈ Z and y, z ∈ N defining an interval [x− z, x+ y] around it, we need

p ∈ N not necessarily prime and n ∈ S such that distinct elements of the interval

[x− z− g(n), x+ y− g(n)] have distinct residues mod p, and 0 is not one of the

residues. It is necessary to translate, for instance if 0 is part of the original interval.

2. For each a ∈ S and b ∈ S such that b divides a, g satisfies g(b) ≡ g(a) mod b.

The motivation for the first condition is to ensure (as in Lemma 4.2.8) that all cycle

structures are eventually captured, and the second makes Lemma 4.2.7 true for sufficiently

many pairs in S2 for the diagram to be filtered.
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Proof

Construct g satisfying these properties, first constructing it on primes to satisfy the first

condition, then extending it to composite numbers while ensuring the second condition is

fulfilled.

Since the first condition places countably many constraints and there is room to make

countably many choices, a just-do-it approach is effective.

There are countably many criteria of form 1 for specific x, y, z. Enumerate these with

order type ω, and for each constraint that comes up in order take the least prime p greater

than y+ z+ 2 for which g(p) has not been determined, and set g(p) to be x− z− 1. Then

[x − z, x + y] takes residues a subset of [1, p − 1] mod p, witnessing the constraint of

form 1 in question. Set g arbitrarily on primes for which it has not been defined.

Now to satisfy the second condition invoke the full form of the Chinese Remainder

Theorem: given pairwise coprime natural numbers n1, . . . , nk, integers a1, . . . , ak there

exists x satisfying x ≡ ai mod ni for each i, and x is unique modulo Πni.

All numbers n in S are products of distinct primes pi. Condition 2 states that g(n) ≡ g(pi)

for each such i. Application of the Chinese Remainder Theorem where the ni correspond

to the pi and the ai the g(pi) gives a unique value for g(n), as the pi are coprime and the

result is up to equivalence modulo n = Πpi.

Now check that this satisfies condition 2 when b divides a, that is g(b) ≡ g(a) mod b.

In that case g(a) has the same residue as g(b) modulo every prime factor of b, which

compels it to have the same residue modulo b. So g(a) ≡ g(b) mod b as required. 2

Lemma 4.2.7 There exist fij : Xi → Xj for i dividing j in S such that fjkfij = fik and

πi = πjfij . In other words there is a cocone from a filtered diagram when restricting to

Xi for i ∈ S.
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Proof

Use the familiar notion of path-lifting in the digraph context. Start by fixing base points:

pick t1 in X1, then for other n pick tn in Xn such that πn(tn) = π1(t1).

Now, seek to construct the map fmn. The idea is as follows: identify points of Xm with

paths in Xm from the base point, quotiented by cycles in Xm. These map by πm to paths

in Z, and lift to paths in Xn via πn, which correspond to points in Xn.

The uniqueness of this path-lifting for a particular path is obvious by induction on the

length or number of alternations of the path (at each stage there is a bijection from the

covering projections restricted to the ancestor/descendant tree of the last point on the

path).

The problem is to ensure that it is well-defined, that is paths equivalent up to cycles in

Xm correspond to paths equivalent up to cycles in Xn. Consider what cycles from Z

are represented in Xt: these are exactly the cycles that do not cross a rank of the form

g(t) mod t, as by the construction of Xt as DL(Λt)
D there is a unique path between two

different copies of Λt in DL(Λt). There are no cycles in Xt not in Z, as Xt covers Z. It

suffices then to check that the cycles represented in Xm are all represented in Xn.

Fortunately, this is the case: any cycle inXm lies in a copy of Λm
D, and is thus constrained

to at most m ranks between g(m) + am and g(m) + (a + 1)m for some a ∈ Z. But

by the condition on g(n) from Lemma 4.2.6 that g(m) ≡ g(n) mod m this interval

[g(m) + am, g(m) + (a+ 1)m] is wholly contained in some interval of the form [g(n) +

bn, g(n) + (b + 1)n] for some b ∈ Z. Therefore the copy of Λm
D lies in a single copy of

Λn
D, and thus the cycle is also contained in Xn.

This map is a homomorphism because if a <′ b in Xm then b can be represented by a path

to a extended by one arc to b, which will map to a path to fmn(a) extended by one arc

to fmn(b). It is surjective because points in Xn correspond to paths in Xn from the base

point, which go to paths in Z and can be lifted (non-uniquely) to paths in Xm, and points
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corresponding to these paths will map to the desired point.

These internal maps commute under composition because they are unique given the fixed

choices of base point. 2

Lemma 4.2.8 This cocone is initial: given a Z ′ with π′n : Xn → Z ′ such that π′i = π′jfij

where all indices lie in S, there exists a unique f : Z → Z ′.

Proof

Let Z ′ be the base of another cocone, with projections πn′. It is necessary to find a unique

f : Z → Z ′ . For each point x ∈ Z, consider the sequence of subsets Un of Z ′ given by

{πn′(u) : πn(u) = x}. They are obviously all nonempty. First one needs to show that

these sets are all equal for n ∈ S. Suppose a ∈ Xn, πn(a) = x, πn′(a) = b ∈ Un then

for m a multiple of n it is true that fnm(a) ∈ Xm, πmfnm(a) = πn(a) = x, πm′fnm(a) =

πn
′(a) = b ∈ Um and when m divides n then a′ : fmn(a′) = a by surjectivity of fmn, with

πm(a′) = x and πm′(a′) = b. Transitivity does the rest, as the structure is filtered. Call

that one set U .

Claim that this is a fixed singleton {y}. Observe that because it is the image of a surjective

homomorphism from a connected structure Z ′ must be connected. Suppose then that there

are distinct elements y and y′ in U . There is some path between them. Let the points on

that path span ranks of an interval of width n, such as [0, n]. This path is the homomorphic

image of a path of the same length which spans ranks in an interval of the same width in

each Xi. Trap any such path in Xp, where p is sufficiently large, in a copy of Λp
D, so the

restriction to that copy of πp is a bijection, which means that there can only be at most

one pre-image of x, giving a contradiction.

To ensure that this is possible take the πn so that any rank is arbitrarily far away from

the closest elements of the corresponding Zn. For instance, having the Zn take ranks 0
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mod 1, 0 mod 2, 0 mod 3 and so on would make this not the case for rank 0 (or indeed

any other rank, since one could not ensure arbitrary distance below any positive rank, or

above any negative rank). The criteria are “rank x needs y space above it and z space

below it”, and are satisfied by Lemma 4.2.6.

This ensures that for each x ∈ Z there is a distinguished y ∈ Z ′. This correspondence is

the desired f . By the surjective nature of the π′, f is surjective, and it is a homomorphism

as if x ≤′ x′ then this is preserved by each π and each π′. This f is forced by the choice

of the π′ and the commutativity requirement, so it is unique. 2

This completes the proof of Theorem 4.2.2.

4.3 Remarks

1. At first glance this result is limited to structures with chain type Z, as all other

vertex-transitive countable linear orders are of the form Zα for α ≥ 2 or Q.Zα for

α ≥ 0, which are not DM-complete.

2. Lemma 4.2.6 can be modified so that the diagram uses all the Xn: simply define

g on primes as required, then define it on squares of primes by choosing values

with correct residues modulo the prime. Similarly inductively define it on all prime

powers to obey condition 2, and the extension to composite numbers is forced.

In this case all the Xi are used, indexed by the positive integers and with arrows

corresponding to divisibility. Note however that no new information is added by

the Xn for n 6∈ S.

3. An alternative diagram structure (which is totally-ordered) for the Xi satisfying

the conditions of 4.2.6 is suggested by Nathan Bowler: take S to be the set of

powers of 3 instead of the square-free integers and g(3i) = 3i−1
2

, which determines
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the maps between the Xi : i ∈ S. This satisfies both criteria: if i < j then

g(3j) − g(3i) = (3i)3
j−1
2
≡ 0 mod 3i. Given an interval [x, y] take X3i such that

2.3i > max(|x|, |y|), or indeed any later Xj . The same works for any other odd

prime.

4. It is possible that Z only contains cycles of height 1, that is spanning two adjacent

ranks, and then Z = X1, as seen in [5]. However Z = Xn would mean that not

only cycles were bounded to have height at most n, but that they would not cross the

boundaries which arise every n ranks. This is not possible, as if Z 6= X1 then none

of the Xn are actually vertex-transitive: points embedded in Xn originally from the

Zn used will be contained in no cycles which both go above and below such points

in rank, whereas there will be other points which are contained in such cycles. In

other words, if the sequence Xi is not constant it is not eventually so.

5. The following result ensures that given a diagram of the form used it is meaningful

to discuss the colimit of that diagram without necessarily explicitly identifying its

colimit.

Lemma 4.3.1 The category (Digraphs, homomorphic surjections) has all

nonempty connected colimits.

Proof

The proof is due to Nathan Bowler and reproduced here. Here is a list of useful

facts.

(a) All the legs of any colimiting cocone for a connected diagram of

epimorphisms are again epic.

(b) The category of sets has all small colimits.

(c) Let D be the category with 2 objects and 2 maps in the same direction between

them. The category of digraphs is the category of functors from D to the

category of sets.
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(d) Colimits in such functor categories are computed pointwise.

(e) A map of digraphs is epic iff it is a surjection.

If one specifies a diagram of the appropriate form in the category, then by (e)

this corresponds to a connected diagram of epimorphisms of that shape in the

category of digraphs. By (b)-(d) above this has a colimit (indeed, (Digraphs,

homomorphisms) is a Grothendieck topos), and by (a) the legs of the colimiting

cone are epic and so surjections (by (e) again). It is necessary to check that the

unique map thus resulting between two epic cocones is epic: this is the case

because if two maps are equalised by the leg from the second cocone they are

equalised by its composite with the leg from the colimiting cocone, and that leg is

epic. 2

It is still necessary to check the transitivity conditions in the specific case.

6. A Y -structure consists of a point, two maximal upward rays from it and one

maximal downward ray from it, in a way analogous to a maximal chain which

can be thought of as consisting of any point in it with one maximal upward and

one maximal downward ray from it. A Ȳ -structure is the reversed notion with two

downward and one upward ray. Consideration of these is motivated by thinking

of partial orders as the interiors of the completions of two-level partial orders of

extreme points; whereas choosing two comparable points gives a maximal chain,

choosing three points two of which are comparable to the other one gives one of

these structures.

While the Zi are highly arc-transitive as shown in Lemma 4.2.3, it is not generally

true, even if Z is Y - and Ȳ -structure transitive, that they are Y -structure transitive,

as Y -structures in Zi are different depending on whether the point of amalgamation

of the rays in Z is in the Zi or not, and, if not, on the height mod i at which it occurs.

In particular, the Λi are not locally 2-arc-transitive. Otherwise the following lemma
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could be used along with the converse of Theorem 3.13 of [5] to show that the Xi

are vertex-transitive, which is false.

Lemma 4.3.2 Let D be a connected highly arc-transitive digraph which has the

following properties

(a) D is diamond-free.

(b) D has nontrivial upward and downward ramification.

(c) D is transitive on Y and Ȳ -structures.

Then there is a connected locally 2-arc-transitive bipartite graph corresponding to

a partial order M such that MD = M tDD, and further |M |= |D|.

Proof

The proof of this lemma is a modification of Theorem 3.13 of [5], which further

requires that D be DM-complete and have countable ramification (and thus be

countable). When these conditions are relaxed, the following changes are necessary

to the proof.

(a) M0 has the cardinality of D, and as each extension preserves cardinality so

does M .

(b) Abandoning the intersection property is equivalent to losing DM-

completeness, with the immediate consequence that all completions contain

DD as opposed to D.

2

Suppose then that the Λi are locally 2-arc-transitive. The proof of Theorem 3.14

of [5] can be applied to give that DL(Λi) is transitive on Y and Ȳ structures. The
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previous lemma says that Xi = DL(Λi)
D is the completion of a locally 2-arc-

transitive bipartite graph. As Xi is diamond-free and Z-ranked, any element is the

supremum of two points in that graph, and so Xi is vertex-transitive, which is a

contradiction.

4.4 Generalisation

Here are some attempts to use the same techniques for partial orders with other chain

types. As these are not connected as digraphs, existing definitions must be generalised.

An arrow, or covering projection between partial orders U and V , is a surjective order

homomorphism f : U → V such that, for x ∈ U , f is a bijection between the suborder

of U of points comparable with x and the suborder of V of points comparable with f(x).

Orders remain diamond-free, so these sets are trees.

As previous results were about digraphs, a lemma about colimits in this new environment

is needed.

Lemma 4.4.1 The category (Posets, homomorphisms) is cocomplete and for a filtered

diagram of epimorphisms the legs of the colimiting cocone are epic.

Proof

Use the well-known theorem that a category is (co-)complete if it has (co-)products

and (co-)equalisers. The limit case of this result is found on page 113 of [7]. It is

not easy to work in Posets itself, so instead consider the supercategory (Quasiorders,

homomorphisms). A quasiorder is a transitive relation or alternatively a partial order of

equivalence classes, where any two elements of a single equivalence class are related by

the order relation symmetrically. This does have coproducts, which are disjoint unions.

It also has coequalisers, namely the latter object with the quotients forced by the parallel

pair. Thus (Quasiorders, homomorphisms) is cocomplete.
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Suppose then that one wants the colimit for a diagram in Posets. This is also a diagram

in Quasiorders. Consider the coslice category over this diagram in Quasiorders, that is,

the category of cocones. This is a special case of a comma category. It is known that this

has an initial object, the quasiorder colimit. Every map from this initial object to a poset

must map each isomorphism class in that quasiorder to a single point, as a homomorphism

would preserve the symmetric order relation, which is unacceptable in a poset. Thus such

maps factor uniquely through the poset that is the quasiorder colimit with isomorphism

classes collapsed to points, and this is initial in the subcategory that is the coslice category

in Posets (which, by this observation, is also nonempty). Thus Posets is cocomplete.

These colimits can be described explicitly. The colimit in Quasiorders is the disjoint union

of all quasiorders in the diagram, quotiented by all equivalences forced by morphisms in

the diagram. The colimit in Posets is therefore this quotiented disjoint union with all

isomorphism classes collapsed to points.

Thus, given a filtered diagram of surjective homomorphisms, an object a in that diagram

and a point in the colimit that point originally comes from another object in the diagram,

but those two objects have surjective arrows to a third object, so the point also corresponds

to a point in the third object, and indeed one in a. As this is true for all points in the

colimit and objects all the legs are surjective homomorphisms also. 2

An alternative proof of this result due to Nathan Bowler is as follows: there is an obvious

functor G from Posets to Digraphs, namely interpreting the order relation as a digraph

relation. This is clearly full and faithful because the definitions of homomorphism are

identical. This functor has a left adjoint F defined thus: given a digraph D, there is a

reachability quasiorder on D. This is given by x ≤ y iff there is a path in D from x to y.

Set FD to be the partial order of equivalence classes on that quasiorder. In this way the

category of posets can be identified as a reflective subcategory of the category of digraphs,

so Posets is cocomplete. It is a general categorical fact that the legs of colimiting cocones
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for connected diagrams of epimorphisms are again epic.

In particular, when one can discuss either connected digraphs or posets, the notions are

equivalent, as the explicit constructions line up. This of course fails when the digraph is

not connected and thus does not contain enough information.

A note on order types: Zα here refers to the colexicographic power of functions α → Z

with finite support, as in [10]. Such functions are ordered “from the right”: given f, g

have f < g iff there is β ∈ α with f(β) < g(β) and (∀γ > β)f(γ) = g(γ). These

are considered because they arise in Morel’s classification of countable transitive linear

orders in [10]. Of course any chain of the form (x, y) in the set of ramification points of

X t Y must be transitive if that bipartite graph is locally 2-arc-transitive.

It is possible to widen the scope of Lemma 4.2.5, which extends a covering projection

between posets to a covering projection between their completions, by exploiting the fact

that the structure of the completion is precisely known. In that case the completion was

formed by filling in copies of Λn in an amalgam of copies Λn to give the corresponding

amalgam of copies of (Λn)D. The following lemma extends the previous result with

two main applications. One is that it allows one to compress a Zβ+1-height structure

into a Z-height structure by treating the Zβ blocks as 2-level posets, and be confident of

later recovering the full structure. It also allows the reconstruction of the Z part of the

Z.Zβ structure once the Zβ blocks have been compressed through the method described

earlier in the chapter, but without direct appeal to Dedekind-MacNeille completion, as

that would immediately expand the structure to something of height Zβ+1 and make it

difficult to discuss connectedness or the like.

Here a Z-ranked poset is a discrete poset for which the corresponding directed graph is

connected and has a rank function to Z. Requiring that it be arc-transitive ensures that it

can be moved up and down ranks.

If one partial order is embedded as the extremal elements of another in the way f : κ ≤ µ,
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then suppose an orderX is a gluing of copies of κ, that isX is the transitive closure of Y×κ∼=
for some equivalence relation ∼=, with the partial order of κ preserved, one can embed X

canonically within Y×µ
∼= by simply locally applying f to each copy of κ. The larger partial

order is considered a gluing of copies of µ. In particular, if as in the following lemma we

have Λ ≤ Γ then DL(Γ) is defined to be the outcome of gluing copies of Γ in place of the

copies of Λ in DL(Λ).

Lemma 4.4.2 Let there be given a Z-ranked 1-arc-transitive poset Z ′ and a connected

2-level-poset Λ divided into two levels as Λ+ t Λ− which is the alternating closure of

Z ′. Let there be a poset Γ and an embedding u : Λ ≤ Γ such that the elements of Λ are

exactly the extremal elements of Γ – elements of Λ+ are maximal in Γ, elements of Λ− are

minimal in Γ and every element of Γ is bounded by elements of Λ. Let σ be a covering

projection σ : DL(Λ) → Z ′ as defined in Lemma 4.2.4, existing as Λ is the alternating

closure. Then there is a covering projection σ(∗) extending σ as follows, where Z ′′ is a

gluing of copies of Γ replacing Z ′:

DL(Λ) σ //

��

Z ′

��
DL(Γ) σ

(∗)
// Z ′′

The vertical arrows in the diagram are both extensions, i.e. the restriction to any copy of

Λ is a copy of u.

Before proving this result it is necessary to define the sense in which “glued” is used

here. The motivation comes from looking at DL(Λ), from which the original tree used to

construct DL(Λ) (in which each point is later replaced by a copy of Λ) can be recovered

by identifying each such copy of Λ with its set of lower points. First define an equivalence

relation ∼ on Z ′ as the transitive closure of the relation x ∼ y iff (∃z)x, y <′ z – so [x]

is the set of all points reachable by an alternating path of even length from x, which paths
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must start by going upwards. The set of all points reachable by an alternating path of odd

length from x is [x]+, alternatively this is the set of points y such that (∃z ∼ x)z <′ y.

Then Z ′ is a gluing of copies of Λ if there are maps f+ and f− from Z ′ to Λ+ and Λ−

respectively, such that for each x ∈ Z ′ the maps f−|[x] and f+|[x]+ are bijections, and

f = f−|[x]∪f+|[x]+ is an order isomorphism.

Proof

The idea here is to construct the glued copies of Γ by simply taking a copy of Γ for each

copy of Λ and gluing them at the points in Λ. So first consider (Z ′/ ∼) × Γ with the

order induced on each copy by the order on Γ. Define the relation≡ thus: if a ∈ [b]+ then

([a], f−(a)) ≡ ([b], f+(a)). This is an equivalence relation: the classes are of size 2 and

correspond to identifying each point as part of the copy of Λ for which it is on the bottom

and as part of that for which it is on the top.

This behaviour is evident as the classes can be stated explicitly.

1. ([x], u) is in a class of its own if u ∈ Γ \ Λ.

2. ([x], u), if u ∈ Λ+, is in a class with ([v], f−(v)), where v is the preimage of u in

f+|[x]+ .

3. ([x], u), if u ∈ Λ−, is in a class with ([w], f+(v)), where v is the preimage of u in

f−|[x] and w <′ v.

Then Z ′(∗) = ((Z ′/ ∼) × Γ)/ ≡, with the transitive closure of the order. This is a poset

as if x 6∼ y and ([x], u) ≤ ([y], v) then x has rank lower than y. If Λ = Γ then Z ′

is recovered: x becomes ([x], f−(x)) ≡ ([w], f+(x)), where w <′ x. All such w are

equivalent under ∼ as wxw′ is an even alternating path as required. Indeed, even when

Λ 6= Γ one can see that Z ′ embeds into Z ′(∗) in the same way.

The partial order DL(Λ) is Z-ranked as the connected tree (and thus its line graph) is

ranked. It has functions g+ and g− corresponding to f+ and f− which must be the
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composites of those functions with σ. By the construction of σ in [1], this takes ∼-

equivalence classes to∼-equivalence classes bijectively, which is to say it bijects between

copies of Λ, specifically those copies which are full alternating closures of arcs. Thus

DL(Λ), along with the maps g+ and g−, satisfies the conditions necessary to define

DL(Λ)(∗).

The extension σ(∗) is obvious – ([x], u) must go to ([σ(x)], u) – and is a bijection on

copies of Γ. It is obviously well defined by the above observation that it bijects between

copies of Λ. The covering projection property is inherited from σ: any point comparable

with x ∈ DL(Λ)(∗) is either a copy of Γ with it, in which case it is in the copy of Γ to

which that copy was mapped, or in an interval [y, z] where y <′ z ∈ DL(Λ) and as such

intervals also lie in a single copy of Γ they are mapped bijectively. 2

This can be applied as follows, in results which approximate partial orders by ones of

bounded cycle height. The height of a cycle in a ranked partial order is the order type of

the subset of ranks spanned by the cycle. Where infinite, this is equivalent to the order

type of the subset of ranks spanned by some maximal chain contained in the cycle, as a

cycle is a finite union of such chains. Say the cycle height of a partial order is bounded

by some linear order when all cycles contained in the partial order have heights which are

suborders of the bound.

Lemma 4.4.3 If X t Y is a locally 2-arc-transitive two-level partial order whose set of

ramification points X t Y t N has ranks in 1 + Z2 + 1, then N arises as the colimit of

an ω-sequence of partial orders with maximal chain type Z2 and bounded (infinite) cycle

height, in this case bounded by n.Z, where n depends on the element of the sequence.

Proof

The method here is to derive a Z-ranked poset from N , such posets we know arise as
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a colimit. The shape of the colimit comes from remark 3. The previous lemma lets us

recover the full poset from the Z-ranked abstraction.

The idea is to form the Z-ranked poset by considering the set of points which can be added

and considered to lie at the top of some maximal connected (in the digraph sense, so of

length at most Z) chain and at the bottom of some other chain. Take the set of infinite

connected (in the digraph sense) chains in N with no maximal element and an upper

bound in N (equivalently in X t Y ) and quotient by the equivalence relation that two

chains are equivalent if they are eventually equal (or share the same set of upper bounds)

to give the set Z. This is ordered by u < v iff all points in v are upper bounds for u.

This corresponds to the set of minimal upper bounds of such chains in (X t Y )D, with

the order of the completion. Each point in Z can be identified with a pair of points in N

bounding it, and so Z is countable if N is. As those points in N have elements of X t Y

above and below them, so do the points of Z.

The partial order Z is connected in the digraph sense if N is connected as a poset: as

the maximal chains in N are of type Z2 the length of any interval is bounded by a finite

multiple of Z, and so a finite path in Z can be found.

It is true that Z is highly-arc-transitive: given an arc z1 . . . zn in Z, and a point z0 <′ z1,

this can be distinguished by taking u ∈ N such that z0 < u < z1 in (X tY )D, and taking

a 2-arc in X t Y given by a point above zn, a point below u and a point above u not

above z1. An automorphism switching such an arc will also move the corresponding arc

(indeed, ray) in Z.

This allows the construction of the nth powers of the digraph relation on Z as 1-arc-

transitive digraphs with covering projections as in Lemma 4.2.4, and the previous lemma

replaces Lemma 4.2.5, giving a sequence of covering projections with Z as the colimit.

The connected components of N are isomorphic, and are partial orders bounded by

elements of Z. Adjoining these elements gives a Γ. This allows the translation of the
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previous sequence into a sequence of covering projections with N t Z as the colimit.

Removing the elements of Z from each poset in the digraph removes Z from the disjoint

union which is the colimit, leaving N . 2

This generalises to give the following result.

Theorem 4.4.4 If X t Y is a locally 2-arc-transitive two-level partial order whose set

of ramification points X t Y t N is connected and has ranks in 1 + Zα + 1, N arises

as the colimit of a max(cf(α), ω)-sequence of partial orders with maximal chain type Zα

and cycle height strictly less than Zα and cardinality at most |X t Y |.

Proof

The proof of this result comes in two parts. First consider the case where α = β + 1 is

a successor ordinal. There are canonical embeddings Zβ → Zβ+1, indexed by Z, which

simply add a final coordinate equal to the index. Set Z, as in the previous proof, to be the

set of infinite chains taking ranks exactly the image of such an embedding with an upper

bound ranked outside that embedding. The rest of the argument proceeds identically. The

cardinality bound arises because |Z| ≤ |N |, and |N | = |X t Y | because ramification

points correspond to finitely generated ideals.

Now let α be a limit. Let P be a cofinal subset of α of order type cf(α). Pick an element

x of rank 0 in N , and for each β in P set Uβ to be the connected component of α of

elements with support subset of β containing x. Then each Uβ is included in Uβ′ for

β ≤ β′, and their union is equal to N : as N is connected, for each y in N there is a finite

path from x to y in the poset. Let γ be the greatest coordinate in the supports of the ranks

of the path elements. P is cofinal, so contains elements greater than γ, and so y appears

in some Uβ . 2
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This result is not in itself very enlightening, as the Uβ are not well described. To gain a

better understanding of the situation in certain cases, in particular where the cardinality

of the structure results from its height, consider one motivation for this study.

Lemma 4.4.5 If X t Y is a locally 2-arc-transitive two-level partial order whose set of

ramification points X t Y t N is connected and has ranks in 1 + Zα + 1, where α is a

limit ordinal, and additionally |X t Y | ≤ |α| , then X t Y arises as the colimit of an

α-sequence of connected locally 2-arc-transitive two-level partial orders whose sets of

ramification points are of rank strictly less than Zα.

Proof

Define Uβ as above, with P = α (actually, the greater of the initial ordinal of X t Y

and cf(α) will suffice). The two-level partial orders will take the form Xβ t Yβ , and will

correspond to maximal chains in Uβ with external bounds in X t Y .

Each such structure is connected as Uβ is: given a and b in Xβ t Yβ , supposing without

loss of generality that a is a maximal element and b is minimal, pick a′ and b′ comparable

with a and b respectively, then take a path (xi) in Uβ with x1 = a′ and xn = b′. Write (x′i)

to equal (xi) with added points x′0 = a and x′n+1 = b. Define the path (yi) in Xβ t Yβ
thus: if xi+1 > xi then set yi+1 to be an element in Xβ t Yβ above xi+1, and similarly if

xi+1 < xi then set yi+1 to be an element in Xβ t Yβ below xi+1.

Local 2-arc-transitivity comes from that of X t Y . For instance, take a, b maximal and c

minimal in Xβ t Yβ , with a, b > c. Take a′, b′, c′ in X t Y with a′ > a, b′ > b, c′ < c.

The triple a, b, c can be recovered from these three points by taking the unique greatest

bounded by a′, b′, c′ and taking the component of rank within Zβ around it.

It is necessary to define the inclusions Xβ t Yβ → Xβ′ t Yβ′ for β < β′. To do this, for

each z in Xβ t Yβ that is not comparable with
⋃
γ<βXγ t Yγ , if z is minimal in Xβ t Yβ

pick a point of X t Y below z, and for each γ > β include z as the point of Xγ t Yγ
meeting that ray. Maximal points are dealt with similarly.
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The union of the Xβ t Yβ ramifies to give the ramification points of X t Y : it is not

necessarily isomorphic because it may not be locally 2-arc-transitive. This does however

ensure that it has the correct cardinality, as in each case the set of ramification points

has the same cardinality as the starting bipartite graph. It is not necessarily X t Y by

the natural correspondence: it may be a proper subset. To ensure every point in X t Y

appears in the union, well-order X t Y by its initial ordinal and at each point when

choosing a ray choose that given by the first point in X t Y that will work. Because it is

possible to make α many choices and this is at least that initial ordinal, each point has

been chosen at some stage in the process. The colimit is then exactly X t Y as desired.

2

The cardinality condition in this lemma is satisfied when the size of the partial order is a

consequence of its height rather than its ramification degree and the two-level partial order

to be described is of minimal cardinality, in particular when the partial order is countable.

In cases where the two-level partial order is not of minimal cardinality the statement is

generally not true.
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Chapter 5

Free constructions

5.1 Background

In this chapter we construct partial orders with a range of homogeneity properties. In

general the partial orders under discussion will be subsets of the set of ramification points

of the Dedekind-MacNeille completion of two-level locally 2-arc-transitive partial orders.

The completions will add points in between the points of the original partial order, which

is considered the set of extremal points, divided into minimal and maximal points. It will

be additionally assumed that these are diamond free, with the consequence that intervals

are chains. Here this makes it clearer what is happening when I amalgamate over them.

This builds on previous work by John Truss and Robert Gray discussing such partial

orders and giving examples embedding cycles ‘of height 1’, namely ones which consist

of upper and lower points without intermediates, and which admit level functions, which

are order preserving maps to the linear order of the example in question. Here a fairly

general construction is given which allows one to produce a wide range of examples

demonstrating certain kinds of bad behaviour.
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5.2 Construction

The idea behind the construction is that one takes some suitably compatible suborder

δ, called an anomaly. Having specified the order type of the maximal chains which our

resulting structure will have, these two pieces of information will determine a partial order

embedding δ with suitable symmetries.

It is effective to take a just-do-it approach, as the following result in the case of order type

Z shows. This means that we enforce the desired properties one at a time, and remind

ourselves to keep them enforced.

Result 5.2.1 Given a countable partial order δ which is connected and compatible (to

be defined later in this section) with a connected partial order with maximal chains of

type Z - which will be defined later - and diamond-free, we construct a connected partial

order P (δ) = X t Z t Y such that X t Y is a 3-cs-homogeneous 2-level countable

partial order, P (δ) is ramification complete and countable and Z is a discrete partial

order without endpoints satisfying

1. P = (X t Y )D

2. For x ∈ X, y ∈ Y the interval [x, y] has order type 1 + Z + 1

3. Any 2-arc in Z is contained in a copy of δ.

4. Any point in Z has infinite upward and downward ramification order.

Proof

We take the ‘just do it’ approach to constructing our structure, taking it as a union of

approximations with level functions onto 1 + Z + 1. An approximation Pn will be a

finite union of rays with endpoints and copies of δ. The first approximation P1 will be

an interval of order type 1 + Z + 1 (itself P0 for sake of argument) with a copy of δ

amalgamated at a point. We have the following tasks.
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1. For a point in Z add countably many upward rays terminating in points in X and

downward rays terminating in points in Y .

2. For any pair (u1, u2) of isomorphic connected 3-subsets ofXtY , we take Z copies

of the approximation Pi and choose a map f from the convex closure of u1 to

that of u2 in Pi (these convex closures look like Y-structures or upside-down Y-

structures). This allows us to define an amalgamation of Z×Pi over those structures

and an automorphism τ corresponding to incrementing the integer index. For any

subsequent additions to later approximations Pj we repeat those changes so that τ

may be extended to a more detailed automorphism.

This gives rise to a countable sequence of tasks which thus gives a countable sequence

of approximations, whose union satisfies the conditions. We need to check that at each

step the approximation is diamond free and ramification complete. For the former,

consider the steps in the construction. We start with the union of an interval and δ,

which is diamond-free because δ is. We add rays, which is safe. When amalgamating

a Y-structure, an interval in the amalgam is unchanged from the interval in the starting

structure if not both endpoints are on the path. If both endpoints are on the path then

the entire interval is contained in the path, and the same holds true for the interval in

the amalgam. For the latter, amalgamation of rays preserves ramification completeness.

When we amalgamate over a Y-structure, a pair of points from distinct copies of the

previous approximation will have a common upper bound but not be comparable only if

they are both below some point of the amalgamated Y-structure. The least such point will

be their supremum. 2

It is not clear at this stage that this process will give us a unique resulting object, what we

get might vary depending on the order in which we choose to amalgamate approximations

or freely add rays. With the procedure given all that can be easily proved is that the process

behaves correctly on a finitary level.



Chapter 5. Free constructions 98

Result 5.2.2 Any finite union of intervals contained in some structure A generated by the

above procedure (depending on the choice of order of the operations) is contained in any

other such structure B.

Proof

This is a consequence of two facts, first that any such finite union arises in some

approximation a arising during the construction of A, and this embeds into some

approximation arising during the construction of B, namely when all the tasks involved

in the creation of a have been fulfilled. To prove the latter, let a0 ⊂ . . . ⊂ an = a be an

initial segment of the sequence of approximations whose limit is A and b0 ⊂ . . . be the

sequence of approximations whose limit is B.

We induce over the ai, and for each ai will find a bj and an embedding extending previous

embeddings. a0 = b0. Given an embedding for ak into bl, ak+1 is constructed from ak by

adding a ray or through some free amalgamation, and this task is executed at some bm

with m > l, so ak+1 embeds into bm. 2

A better way to understand what is happening here is to take a much more formal

presentation. Before going into that, note that while the above construction used the

order type of 1 + Z + 1 for maximal chains, it did not use the property that the countable

1-transitive linear order in that particular case was Z. We simultaneously generalise this

to the wider options including Zα and Q.Zα and give a more precise interpretation of

compatibility.

Definition 5.2.3 Let TZ be the free countable tree with maximal chains of order type

1 + Z + 1, where Z is a 1-transitive linear order. This is a clearly understood partial

order and T ′Z be the subset of points which are not extremal in that tree. Recall that a

homomorphism u : V → W between two discrete connected partial orders is a covering

projection if for each x ∈ V u is an isomorphism between the immediate successors of x
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and those of f(x), and similarly with predecessors. In the general case, let us just say that

u is an isomorphism between the set of points comparable with x and those comparable

with f(x). An anomaly δ is compatible with Z if there is a surjective covering projection

f from a convex subset U ⊂ TZ to δ such that the image of U ∩ T ′Z is a connected poset.

This will ensure that there is a full covering projection from TZ to the outcome of the

construction.

For example, any Z-ranked partial order is immediately compatible with Z, but anything

with a diamond is automatically incompatible. Compatibility is much weaker than being

rankable, however. For instance, the following partial order is compatible with Z:

• •

• •

•

This is because its intervals look like intervals in Z. It is also compatible with Z2, but

not Q. Using a variant on it with a 6-crown with Z will give an example of a connected

partial order with maximal chains of order type Z not admitting a rank function. One can

be significantly more exotic. For instance, one can instead of unbalancing with a leg of

length 2 use a leg of order type ω + ω∗.

Result 5.2.4 Given a connected diamond-free anomaly δ and a countable 1-transitive

linear order type Z, if there is a maximally free partial order formed by the construction

with maximal chains of order type 1 + Z + 1 and embedding δ, then this is unique.

Proof



Chapter 5. Free constructions 100

δ can be extended to ramify infinitely and freely at each point, which is done formally by

considering a choice of f as above such that for any point in the domain, arbitrarily many

open intervals directly above and below it are not in the domain, then taking TZ/f , that is

the quotient of TZ by identifying points with the same image under f . Call this a “page”

in the construction, represented by TZ(δ).

Now one can pick a distinguished 3-arc of extremal points in each direction, that is one

with two maximal points and one with two minimal points. Let Q be a set of the 3-arcs

of extremal points which may or may not include the distinguished arcs. We need to

ensure that it is possible to map any element of Q to the distinguished 3-arc in the correct

direction, so letR be a set of bijections from distinguished arcs to elements ofQ, such that

there is a map corresponding to each element of Q. When Z = Z and the resulting orders

are connected in a graph theoretic sense, there can only be one map between two 3-arcs,

but for any other order type there is greater flexibility. For example, if TZ(δ) possesses a

level function mapping to Z, then one may have different results depending on whether

one picks maps which preserve this or not.

For any specific map fromRwe wish to extend to an automorphism, we will amalagamate

a copy of the existing approximation onto the chosen arc using that map. To do this

all at once, let FR be the free group with the elements of R as generators. The final

construction will be a quotient of TZ(δ)× FR, using the symmetric and transitive closure

of the relation (a, w) ∼= (b, v), where w and v are words in the free group, v is an

extension of w by a character r, and r is a map taking a to b. That is to say, if a is an

element of a distinguished arc and b is an element of a distinguished arc q of the same

orientation, then f(a) = b =⇒ (a, w) ∼= (b, wf). 2

Result 5.2.5 The construction described above gives a diamond-free partial order P =

X tM t Y such that X t Y is a 3-cs-homogeneous 2-level countable partial order and
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P is ramification complete and countable, indeed the same as the just-do-it approach

described above.

Proof

Observe that free amalgamations cannot create diamonds, as they cannot create any new

cycles at all. The original approach adds rays with endpoints and free amalgamations,

but as any ray added after an amalgamation must be replicated to the original “page”

containing the starting anomaly, one might simply have chosen to add the ray there

before beginning the amalgamation. Thus one may move all free additions of rays to

before any amalgamation, and that is what has been done here. It remains to observe

that the cyclic subgroups of the free group generated by the generators given correspond

to the amalgamations required to extend the maps corresponding to those generators

to automorphisms, and the rest is forced as those maps are extended. Essentially, any

extremal 3-arc on one page is identified with the designated arc on a page connected to

it. 2

Instead of using the free group itself on those generators it is possible to use quotients of

the free group such as the free abelian group on the generating set, but this will introduce

additional cycles in the constructed structure. The resulting construction from using a

quotient of the free group is a surjective image of the construction using the free group,

via the projection map.

This construction gives plenty of examples of partial orders embedding cycles where the

arcs have lengths greater than one. Indeed, if one takes an unbalanced cycle, such as

one where all arcs have lengths of two except one which has a length of three (and using

Z = Z), one has an example of such an order with maximal chains of order type 1+Z+1

with no level function to that order type.

We get a family of distinct constructions if we consider an invariant. An example of such
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an invariant is the minimum alternation number of any cycle in the partial order. This is

the minimum number of vertices needed to identify the cycle, and the amalgamations

used in the constructions cannot decrease this number, so two constructions starting

from anomalies with different minimum alternation numbers will necessarily be non-

isomorphic. Indeed, any properly new cycles formed must actually have a higher number,

so two constructions can be distinguished by their cycles with the least alternations.

Note that it is now straightforward to show that the construction is well-defined if we have

chosen the automorphisms between Y-structures beforehand.

For the construction to be at all useful for classification purposes it needs to behave in

a sensible fashion. The following result shows that the construction is in some cases

idempotent; that is if we use the output of the construction as the anomaly the new

constructed object is isomorphic to the original object.

Result 5.2.6 Suppose that for each approximation in our class of approximations and

each pair of Y-structures we wish to amalgamate over there is a unique approximation

witnessing this amalgamation which is embedded in each other approximation witnessing

the amalgamation. For instance there may be a level function and a requirement that

maps be level-preserving. Then given an anomaly δ, let R = P (δ) be the outcome of the

construction starting from δ and P (R) the outcome of the construction starting from R.

P (R) and R are isomorphic.

Proof

The basic idea here is that when the construction is done again a “page” of form T (R) is

made by freely extending R, but these free additions can be shifted back to the creation

of the page T (δ) made when first constructing R. Recall that P (δ) is constructed from δ

with some set of maps U .

Suppose we freely amalgamate a tree of the correct form to a point of T (δ) to give T ′(δ)

and apply the construction with the same set of maps. This gives R with some (up to
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countably many) trees amalgamated freely at each point, which, by a back and forth

argument, is isomorphic to T(R). To demonstrate this identify the copies of R and since

all other points are attached freely given a point in either object it is simply identified by

the point of R to which it is attached and whether it is part of a tree from that point with

any previously identified points, if it is the trees are free and infinitely ramifying so it is

possible to find a corresponding point, and if not there are infinitely many trees so one

may pick a fresh one.

Note also that T ′(δ) and T (δ) are isomorphic. P (R) is simply the object constructed

from T ′(δ), which is the same as R, the object constructed from T (δ). 2

5.3 Difficulties with Classification

We would like to show that the construction is in some way universal, at least in a finitary

case. There are a few problems with this. One is that the age of an outcome of the

construction is insufficient to distinguish it up to isomorphism. This is unfortunate, but at

least it is straightforward to give a characterisation of the finite substructures which arise.

Result 5.3.1 For a given anomaly A, the finite substructures of P (A) are exactly

substructures of amalgams of copies of A over Y-shapes and substructures of Y-shapes

(such as points).

Proof

Any finite substructure emerges and is covered by copies of A at a finite step during the

construction (that is, after the application of finitely many maps). The free group on

finitely many maps is infinite but one can find a finite connected component giving every

one of the finitely many relations as a translate of a relation from A. 2
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Result 5.3.2 If A is a free amalgam of connected finite substructures of B including B

itself, P (A) and P (B) contain the same finite substructures.

Proof

Any amalgam of copies of A is a substructure of an amalgam of copies of B, and the rest

is immediate from the previous result. 2

It is fairly straightforward to choose A and B such that P (A) and P (B) are not

isomorphic. Recall that the 8-crown is an 8-cycle of alternating upward and downward

edges, pick two of the maximal points which are distance 4 from each other. Adding

an antenna of length n means to add a path of length 2n starting from one maximal

point and going to the other, which alternate up and down (so these paths lie above the

original 8-crown). Then let B be a 8-crown with an antenna of, say, length 2, and A a free

amalgam of B with an unadorned 8-crown. Then P (A) and P (B) have the same finite

substructures, but while every 8-crown in P (B) will have an antenna this is not the case

for every 8-crown in P (A), so the two are not isomorphic.

This allows the identification of an uncountable class of non-isomorphic structures with

the same finite substructures corresponding to proper subsets of N. Given such a subset u

one can construct an 8-crown C(u) with antennae freely added of lengths corresponding

to elements of u. By D(u) call the free amalgam of C(u) and C(N), then for any choice

of u the construction P (D(u)) is distinct but has the same finite substructures as just

P (C(N)).

The implication of this is that it is necessary not only to know the class of substructures

of a partial order to classify it but also to know how they are embedded. It is difficult

to describe how much data this requires; it is possible, for some finite suborder u, that

it embed into every v in a unique way, that it embed into every v unless it embeds into

some v′ or other, or some other rule. Examples arise quite naturally by choosing subsets



Chapter 5. Free constructions 105

of P (N). This is all visible in the elementary theory of the structure but that may itself

not be enough to determine it – Z2 and Z3 are elementarily equivalent, for instance.

5.4 Amalgamation closure

Remark 5.4.1 A n-levelled partial order W can be given an order-preserving

homomorphism to [0, n]. It is locally amalgamation closed if given two Y-structures

with ramification point at the same level amalgamation of two copies of W over those

structures gives W itself. It is transitive on local Y-structures if given two Y-structures

with ramification point at the same level there is an automorphism of W moving one to

the other.

Result 5.4.2 IfQ is a construction by repeated amalgamation as described in this chapter

and Q(n) is its alternating closure of height n then Q(n) is locally amalgamation closed

and transitive on local Y-structures.

Proof

Consider two Y-structures in Q(n). These can be extended to Y-structures in Q itself,

which must be exchanged by an automorphism of Q, whose restriction to Q(n) will

be an automorphism of that. This gives local transitivity. Similarly, Q will have been

repeatedly amalgamated with itself over those Y-structures and this amalgamation

ensured to preserve Q, so the same will hold for Q(n). 2

Remark 5.4.3 If δ is a finite height partial order which is locally amalgamation closed

and transitive on local Y-structures then a construction arising from δ may not have just

δ as its alternating closure of the appropriate height.
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That alternating closure will of course contain δ. To see a counterexample to the

case that it is δ consider the case where δ has two non-isomorphic cycles of minimal

alternation number, one restricted to lower levels of δ and the other to upper levels. In the

construction those cycles will necessarily arise on all levels of the alternating closure of

the height of δ, but it is possible for δ to satisfy the hypotheses and not contain the cycles

on all levels.

5.5 Many-levelled partial orders

Recall the standard classification of symmetric many-levelled partial orders . First

colour the points of the (ramification-complete) partial order two colours. The blue

points should be the points of the pre-completion partial order satisfying the appropriate

symmetry conditions; these were previously the extremal points. The red points are the

added ramification points. Consider a sufficiently long (in particular, it should not be

monochromatic) maximal chain in this partial order. When the partial order is 3-cs-

transitive, it is transitive on coloured sets of size 2.

The main difficulty added here is that 3-cs-transitivity on blue points will require

considering connected sets that look like chains of length 3, which require for instance

the blue points to form a dense partial order. If we do not require transitivity on chains of

this sort we have the condition of being transitive solely on V - and Λ-shapes. Let us call

that V -transitivity.

We need to expand the definition of compatible for the following result. In this case T is a

cycle-free partial order so compatibility of an anomaly δ just requires that it be the image

of a surjective cover of a connected suborder of T .

Theorem 5.5.1 Let T be a 3-blue-cs-transitive 2-coloured cycle-free partial order. Let

δ be a diamond-free partial order compatible with T . Suppose T has infinite upward
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and downward ramification at each red point and that each red point is bounded above

and below by blue points. Each blue point should also bound infinitely many totally

incomparable chains both above and below. Further suppose that R is a generating

set of partial automorphisms of convex closures of 3-blue-connected sets such that T is

preserved upon amalgamation with itself over such maps, starting with a distinguished 3-

arc for each type of 3-blue-connected set. Then we may construct a 3-blue-cs-transitive 2-

coloured cycle-free partial order embedding δ which is. This will be Dedekind-MacNeille

complete if T is and countable if T and R are.

Proof

The proof is as before, one takes a partial map f : T → δ witnessing the compatibility of

δ, whose domain is distinct from the distinguished connected sets of R and constructs the

page T (δ) given by taking the quotient of T by preimages in f , i.e. T/ ≡ where x ≡ y iff

x = y or x, y ∈ f−1(d) for some d ∈ δ. This is now a projective image of T embedding

δ.

The elements of R then give bijections between the distinguished arcs and all other arcs,

and we conduct the amalgamation exactly as previously, taking a quotient of T (δ)× FR.

If both T and R are countable then so are both sides of this direct product, so the resulting

partial order must be. 2

The demand for infinite ramification everywhere is rather restricting to be honest. It is a

consequence of this technique of creating automorphisms via countable amalgamation

everywhere. While, with ramification orders of 2, amalgamating over a Y -structure

might not change the upward ramification order at the point in the middle, it will add an

additional downward edge which is not identified with another, and the same will occur

at all other points.

The sort of global identification necessary to enable ramification orders to be constrained
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mean that we must start with a partial order with finite ramification, and that the functions

over which we amalgamate must be total covering projections, meaning that instead of

creating a greater structure at each stage we are instead simply taking quotients over

some choice of identifications. This can be done in some cases. As seen with the group

presentations, sometimes it can be done in a very clear fashion. It is not known at present

how this should be done in general, as an identifying map must be found for each pair of

Y -shapes at some intermediate approximation stage.
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Chapter 6

Conclusions

This thesis explores a few approaches to understanding and categorising diamond-free

3-cs-transitive partial orders. Much work remains to be done on each topic.

Chapter 3 establishes categorical relationships between covering projections of partial

orders and those of related topological spaces, showing that the properties of each cycle-

free partial order are invariants for a family of diamond-free partial orders. We observe

that there are many closely related groups in play here: the fundamental group of loops,

symmetry groups witnessing transitivity, and any concrete groups which can actually be

ordered by the partial order. It would be fruitful to investigate how these are connected.

Cayley graphs of discrete groups have been found, giving explicit examples of partial

orders with cycles with legs of extended height. These constitute one motivation for the

decompositions of height greater than 1 in the succeeding chapter. These currently are

only known for discrete orders. Understanding how to get partial orders embedding Q

in this way should enable examples to be found for all countable order-types. Chapter

5 provides a class of constructions with high degrees of homogeneity. Even among the

class of partial orders with this degree of homogeneity, it is not presently clear what data is

sufficient to classify any individual example. It is known that many plausible candidates,
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such as the age, are insufficient. Identifying the data in this case should shed light on the

wider classification problem.
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