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Abstract 

 

The investigation of the chemical characteristics of siderophores has been of 

interest for many years, for both the understanding of their fundamental 

chemistry and exploiting the design features of these natural compounds for 

novel applications. 

 

Within the present project, the properties of a biomimetic model of the 

tetradentate siderophore known as the enterobactin linear dimer was 

investigated, followed by those of the enterobactin linear dimer itself.  Both 

compounds were chemically synthesised, with an overall yield of 52% in four 

steps for the biomimetic, and 26% in seven-step convergence synthesis for the 

linear dimer.  Investigation of the coordination chemistry, showing both can 

form complexes with a ligand-to-metal ratios of 3:2 and 1:1 in solution.  This 

was followed up by X-ray diffraction investigations of the ferric-complexes with 

the periplasmic binding protein CeuE.  Both ferric-complexes bound to CeuE in 

a novel mode, with conserved tyrosine and histidine residues binding directly to 

the iron(III) centre to complete the octahedral coordination of the metal.  Both 

complexes have a Λ metal centre configuration when bound to CeuE.  The 

dissociation constants of CeuE with ferric-4-LICAM and ferric-linear dimer 

were determined to be 29.3 ± 11.7 nM and 8.4 ± 4.3 nM for the ferric-4-LICAM 

and ferric-linear dimer, respectively. 

 

In addition, selected applications of siderophores were investigated.  Firstly, a 

synthetic route to a novel hexadentate siderophore mimic possessing a chemical 

linking group was developed, in an eight-step synthesis with an overall yield of 

10.5%.  Secondly, the natural hydroxamate siderophore ferricrocin was labelled 

with an Alexa Fluor® 488 fluorophore.  Total internal reflection fluorescence 

microscopy was used to demonstrate that the resulting conjugate binds to E. coli 

cells that possess the ferricrocin outer membrane receptor protein FhuA. 

 

 



         Chapter X 

          3 

Table of Contents 

 

Abstract ............................................................................................................. 2 

Table of Contents .............................................................................................. 3 

Table of Figures, Schemes, Tables and Equations ............................................ 6 

Accompanying Material .................................................................................. 19 

Acknowledgements ......................................................................................... 20 

Declaration ...................................................................................................... 22 

 

Chapter 1: Introduction ................................................................................... 23 

1.1 Overview .............................................................................................. 24 

1.2 Iron in Biology ..................................................................................... 24 

1.3 Siderophores ......................................................................................... 25 

Siderophore Mimics ........................................................................................ 31 

1.4 Siderophore Mediated Iron Uptake ...................................................... 35 

Gram-negative bacteria ................................................................................... 35 

Gram-positive bacteria .................................................................................... 41 

Iron release ...................................................................................................... 41 

Regulation of Iron Uptake ............................................................................... 42 

Campylobacter jejuni ...................................................................................... 44 

1.5 Applications of Siderophores ............................................................... 46 

Siderophores in Supramolecular Chemistry.................................................... 46 

Medicinal Applications of Siderophores ......................................................... 49 

Other Applications of Siderophores ................................................................ 51 

1.6 Project Aims ......................................................................................... 55 

 

Chapter 2: Tetradentate Siderophores, a Biomimetic Approach ................. 56 

Project Aims .................................................................................................... 57 

2.1 Introduction .......................................................................................... 57 

H4-4-LICAM ................................................................................................... 58 

2.2 Synthesis of H4-4-LICAM .................................................................... 59 

2.3 Ligand-Metal Interactions .................................................................... 60 



         Chapter X 

          4 

Stoichiometric Ratio Determination of H4-4-LICAM and Iron(III) using the 

Continuous Variation Method ......................................................................... 61 

Job Plot Analysis of H4-4-LICAM and Iron(III) Nitrate in the Presence of 

NTA................................................................................................................. 66 

1
H NMR Spectroscopic Analysis of H4-4-LICAM and Gallium(III) Nitrate . 70 

2.4 CeuE-Complex Interactions ................................................................. 77 

Expression and Purification ............................................................................ 78 

Crystallisation of apo-CeuE ............................................................................ 81 

Crystallisation of the CeuE, Ferric-4-LICAM Structure ................................. 85 

Circular Dichroism and Fluorescence Biophysical Measurements ................ 98 

2.5 Summary of Chapter 2........................................................................ 105 

 

Chapter 3: Tetradentate Siderophores, a Natural Product Approach ...... 106 

Project Aims .................................................................................................. 107 

3.1 Introduction ........................................................................................ 107 

Previous Synthetic Approaches ..................................................................... 109 

The N-benzoyl Monomer Approach ............................................................. 110 

The Urethane Protection Route ..................................................................... 112 

3.2 Synthesis ............................................................................................. 114 

Initial Approaches to the Synthesis of the Enterobactin Linear Dimer ........ 114 

Synthesis of the Enterobactin Linear Dimer ................................................. 119 

3.3 Ligand-Metal Interactions .................................................................. 122 

Investigation of 17
5-

 to Iron(III) Ratios using the Continuous Variation 

Method .......................................................................................................... 127 

Circular Dichroism Spectroscopic Study of the H4-17 and Iron(III) System 130 

3.4 Interactions of the Ferric Complex with CeuE ................................... 133 

Crystallisation of the CeuE, Ferric-Linear Dimer Complex ......................... 138 

Circular Dichroism and Fluorescence Biophysical Measurements .............. 153 

3.5 Summary of Chapter 3........................................................................ 158 

 

Chapter 4: A Siderophore Mimic for use with Further Functional 

Components ..................................................................................................... 159 

Project Aims .................................................................................................. 160 

4.1 Introduction ........................................................................................ 160 



         Chapter X 

          5 

4.2 Synthesis ............................................................................................. 166 

Synthesis of a Biomimetic Hexadentate Siderophore ................................... 166 

4.4 Summary of Chapter 4........................................................................ 176 

 

Chapter 5: A Natural Siderophore with a Further Fluorescent Component

 ........................................................................................................................... 177 

Project Aims .................................................................................................. 178 

5.1 Introduction ........................................................................................ 178 

5.2 Synthesis ............................................................................................. 184 

5.3 Conjugate-Protein Interactions ........................................................... 192 

5.4 Summary of Chapter 5........................................................................ 195 

 

Chapter 6: Conclusions and Future Work ................................................... 196 

6.1 Conclusions and Future Work ............................................................ 197 

Interactions of Tetradentate Siderophores with CeuE (Chapters 2 and 3) .... 197 

Development of a Siderophore Mimic for use with Further Functional 

Components (Chapter 4) ............................................................................... 198 

Modification of Ferricrocin with a Fluorescent Component (Chapter 5) ..... 199 

 

Chapter 7: Experimental ................................................................................ 200 

7.1 General Remarks ................................................................................ 201 

Materials ........................................................................................................ 201 

Instrumentation ............................................................................................. 201 

7.2 Synthesis ............................................................................................. 202 

7.3 Protein Production and Crystallisation Trials..................................... 245 

7.4 Job Plot Method .................................................................................. 247 

7.5 Circular Dichroism ............................................................................. 248 

7.6 Fluorescence Quenching Titration ..................................................... 249 

 

Appendix I. Fluorescent Quenching Analysis of CeuE ................................ 251 

Abbreviations ................................................................................................ 260 

References ..................................................................................................... 263 

 

 



         Chapter X 

          6 

 

Table of Figures, Schemes, Tables and Equations 

 

Figure 1 - Representative examples of siderophores with different iron chelating 

moieties highlighted.  *Protonation state of citric acid can differ due to different 

binding modes available. ..................................................................................... 26 

Figure 2 - Schematic diagram demonstrating the hydrogen bonding network and 

conformational change of enterobactin upon A) single deprotonation; B) iron 

complexation.  Figure adapted from Proc. Natl. Acad. Sci., 2003, 100, (7), 3584-

3588.  Copyright 2003 National Academy of Sciences, USA. ........................... 28 

Figure 3 - Chemical structures of the enterobactin hydrolysis products. ........... 29 

Figure 4 - Chemical structures of a selection of 'low' dentate siderophores. ..... 30 

Figure 5 - Λ-configuration and Δ-configuration of a tris-bidentate octahedral 

complex. .............................................................................................................. 30 

Figure 6 - A selection of structures of biomimetic hexadentate catecholamide 

siderophores and enterobactin, all possessing high affinity for iron(III).
26-29

 ..... 32 

Figure 7 – Illustration of the preorganised ababab configuration of 

(Et)3MECAM (A) compared to MECAM (B). ................................................... 33 

Figure 8 - Schematic diagram of the iron-uptake mechanism for a Gram-

negative bacterium. ............................................................................................. 36 

Figure 9 - Ribbon representation of the ferric enterobactin outer membrane 

receptor FepA, shown from: A) Side on; B) Top down (from the extracellular 

space); C) Beneath (from periplasmic space)  Key: Barrel domain (light blue), 

Cork domain (red). PDB code: 1FEP.
38

 .............................................................. 37 

Figure 10 - Ribbon representation of PBPs: A) VctP (PDB code: 3TEF)
47

; B) 

FhuD bound to desferral (PDB code: 1K2V)
46

; C) CeuE bound to ferric-

MECAM (PDB code: 2CHU)
35

.  Key: PBP (light blue), ligands shown as 

spheres; grey - carbon, blue - nitrogen, red - oxygen, coral - iron. ..................... 38 

Figure 11 - Ribbon representation of BtuC2D2F (PDB code 2QI9)
49

: A) Dimer 

of BtuC2 (protomers shown in white and grey); B) Dimer of BtuD2 (protomers 

shown in light blue and coral); C) Complex of BtuC2D2F.  Key: BtuC2 (white 



         Chapter X 

          7 

and grey), BtuD2 (blue and coral), BtuF (gold) key docking residues shown as 

spheres; red - arginine, green - glutamate. .......................................................... 40 

Figure 12 - A schematic diagram for a simplified overview of the iron-uptake 

mechanism for Gram-positive bacteria. .............................................................. 41 

Figure 13 - Schematic diagram demonstrating the pH dependence of the 

catecholate and salicylate binding modes of the catecholamide group. .............. 42 

Figure 14 - A schematic diagram demonstrating the general mechanism of 

action of Fur. ....................................................................................................... 43 

Figure 15 - Schematic representation of the three major iron uptake systems of 

C. jejuni. .............................................................................................................. 44 

Figure 16 - The structure of the {CeuE2[Fe2MECAM2]} complex (PDB code: 

2CHU).
35

  A) CeuE chain A (light blue), CeuE chain B (gold), ligands shown as 

spheres; B) The MECAM molecules shown as cylinders.  Key: grey - carbon, 

blue - nitrogen, red - oxygen, coral - iron. .......................................................... 45 

Figure 17 - Schematic diagram of a triple helicate and triple mesocate. ........... 46 

Figure 18 - Example bis(catechol) ligands that have been shown to form triple 

helicates.
76

 ........................................................................................................... 47 

Figure 19 - Structures of the two complexes 2-LICAM
4-

 forms with iron(III), 

[Fe2L3]
6-

 and [Fe2L2OH2]
4-

. ................................................................................. 48 

Figure 20 - Structures of the natural siderophores rhodotorulic acid and alcaligin 

and schematic diagrams of their dinuclear six-coordinate iron complexes. ....... 48 

Figure 21 - Chemical structures of DGE, one of the salmochelins and H6-9 

designed and synthesised by Zheng et al.
112

 ....................................................... 52 

Figure 22 - Chemical structure of fluorescently-labelled Pyochelin.
121

 ............. 54 

Figure 23 - Possible iron(III)-4-LICAM complexes that could form in solution.

 ............................................................................................................................. 61 

Figure 24 - Job plot for the binding of H2-15 to iron (III), obtained by following 

the absorbance at 512 nm in the presence (red diamonds) and absence (blue 

triangles) of NTA.  The absorbance values are averages of two experiments and 

the error bars indicate the differences between the runs.  Plot recorded in 0.1 M 

TrisHCl pH 7.5, 5% DMSO. ............................................................................... 65 

Figure 25 – Selected UV-visible absorbance spectra of H2-15 and Fe
III

(NTA), 

recorded in the presence of NTA.  Spectra recorded in 0.1 M TrisHCl pH 7.5, 



         Chapter X 

          8 

5% DMSO.  Spectra ordered from black (H2-15) to light blue ordered by ligand 

to metal ratio. ...................................................................................................... 66 

Figure 26 - Kinetic traces recorded for 1:2, 1:1 and 3:2 ratios of H4-4-LICAM 

and Fe
III

(NTA), following the absorbance at 498 nm (red diamonds) and 552 nm 

(blue triangles) over 6 minutes.  Spectra recorded every 6 seconds, solution 

containing 0.1 M TrisHCl pH 7.5, 5% DMSO at 5 °C.  Concentration of H4-4-

LICAM; 1.3x10
-4

 M; 2.0x10
-4

 M; 2.4x10
-4 

M for 1:2; 1:1 and 3:2 samples. ...... 67 

Figure 27 - Selected UV-visible absorbance spectra of H4-4-LICAM and 

Fe
III

(NTA), used for the Job plot analysis.  Spectra recorded in 0.1 M TrisHCl 

pH 7.5, 5% DMSO.  Spectra ordered from black (H4-4-LICAM) to light blue 

ordered by ligand to metal ratio; (95:5, 85:15, 78:22, 68:32, 60:40, 50:50, 46:54, 

30:70, 10:90).  [M] + [L] = 0.4 mM. ................................................................... 69 

Figure 28 - Job plot for the binding of H4-4-LICAM and Fe
III

(NTA), obtained 

by following the absorbance at both 498 nm (red diamonds) and 552 nm (blue 

triangles).  The absorbance values are averages of two experiments and the error 

bars indicate the differences between the runs.  Plot recorded in 0.1 M TrisHCl 

pH 7.5, 5% DMSO. ............................................................................................. 69 

Figure 29 - Purposed schematic mechanism of formation of different 

(catechol)iron(III) complexes within samples for Job plot analysis.  Actual 

speciation cannot be determined from these experiments. .................................. 70 

Figure 30 - Aromatic region of the 
1
H NMR spectra of 4-LICAM

4-
 in a mixture 

of d6-DMSO/D2O with varying amounts of Ga(NO3)3 present, with 4 equivalents 

of NaOH with respect to H4-4-LICAM; (●) 4-LICAM
4-

; (○) Complex A; (♦) 

Complex B. ......................................................................................................... 71 

Figure 31 - 
1
H DOSY NMR spectrum of the 1:1 sample recorded after 1 month 

of equilibration in 5:1 d6-DMSO : D2O. Representations: (○) Complex A; (♦) 

Complex B. ......................................................................................................... 74 

Figure 32 - Models of the proposed 3:2 triple helical [Fe2(4-LICAM)3]
6-

 and 1:1 

mononuclear [Fe(4-LICAM)]
- 
complexes, showing the centre of mass calculated 

by Avogadro and distance to the outer most atom. Key; grey - carbon, blue - 

nitrogen, red - oxygen, yellow - sulphur, white - hydrogen, coral sphere - iron, 

light blue - centre of mass. .................................................................................. 76 

Figure 33 - Full sequence of CeuE with the predicted signalling peptide 

highlighted as the black triangles. Image produced using ESPript.
45

 ................. 77 



         Chapter X 

          9 

Figure 34 - SDS PAGE analysis of CeuE protein, after 48 hours at 4 °C with C-

protease in a 100:1 ratio.  Lane 1: Before treatment with C-protease; Lanes 2 and 

3: CeuE after treatment of C-protease; Lanes 4-8: Cut out work not relating to 

this project; Lane 9: Ladder. ............................................................................... 79 

Figure 35 – A) UV-visible trace of final gel-filtration column monitoring at 280 

nm and 254 nm.  B) Final SDS PAGE analysis of CeuE, before and after the gel 

filtration step.  Lane 1: Before Gel filtration column; Lanes 2-8: Fractions from 

gel filtration column; Lane 9: Molecular weight ladder.  Pure CeuE in lanes 6 

and 7 are associated with peak at 65 mL in UV-visible trace. ............................ 80 

Figure 36 - Ribbon representation of apo-CeuE with colours blended from cyan, 

N-terminus, to dark blue, C-terminus. ................................................................ 81 

Figure 37 - Surface electrostatic representation of apo-CeuE, negative charge 

shown in red and positive charge in blue. ........................................................... 83 

Figure 38 - Ribbon representation of apo-CeuE (PDB code 3ZKW) 

superimposed with the dimeric {CeuE2[Fe2MECAM2]} (PDB code 2CHU) 

structure.
40

  ProSMART analysis shows similar regions in yellow and regions of 

difference in red (white for unaligned).
50

 ............................................................ 84 

Figure 39 - Ribbon representation of {CeuE[Fe(4-LICAM)]} with colours 

blended from cyan, N-terminus, to dark blue, C-terminus.  His227, Tyr288 and 

Fe-4-LICAM shown as cylinders.  Key: binding residues, green - carbon, blue - 

nitrogen, red - oxygen; Fe-4-LICAM, grey - carbon, blue - nitrogen, red - 

oxygen; Fe - coral. ............................................................................................... 86 

Figure 40 - Stereoview of the iron chelating ligands in the {CeuE[Fe(4-

LICAM)]} with electron density map shown as 2Fobs-Fcalc, contoured at 1σ and 

chemical representation showing key interactions of Fe-4-LICAM.  Key: 

binding residues, green - carbon, blue - nitrogen, red - oxygen; Fe-4-LICAM, 

grey - carbon, blue - nitrogen, red - oxygen; Fe - coral. ..................................... 87 

Figure 41 - Coordination of [Fe(4-LICAM)] in {CeuE[Fe(4-LICAM)]}.  Key; 

CeuE residues, green - carbon, blue - nitrogen, red - oxygen; 4-LICAM, grey - 

carbon, blue - nitrogen, red - oxygen; Fe - Coral sphere. ................................... 89 

Figure 42 - Ribbon representation of apo-CeuE (PDB code 3ZKW) 

superimposed with the dimeric {CeuE[Fe(4-LICAM)]} (PDB code 3ZK3) 

structure.  ProSMART analysis shows similar regions in yellow and regions of 



         Chapter X 

          10 

difference in red (white for unaligned).
50

 4-LICAM shown as cylinders- Grey, 

carbon - blue, nitrogen - red, oxygen; Fe - coral. ................................................ 91 

Figure 43 - Sequence alignment of selected PBPs: CeuE (C. jejuni), YclQ (B. 

subtilis), VctP (V. cholerae) and FetB (N. meningitidis), performed using T-

coffee.
57

  Red block colours show fully conserved residues; red triangles show 

the position of basic triad of arginine residues; blue stars indicate position of 

coordinating histidine and tyrosine residues.  Image produced using ESPript.
45

 92 

Figure 44 - BLAST+
58

 search results of homologous proteins to CeuE.  Aligned 

using T-Coffee
57

 and image produced using ESPript.
45

  Red block colours show 

fully conserved residues; red triangles show the position of basic triad of 

arginine residues; blue starts indicate position of coordinating histidine and 

tyrosine residues. ................................................................................................. 96 

Figure 45 - Schematic diagram of a potential mechanism for both hexadentate 

and tetradentate binding in the binding pocket of CeuE. .................................... 97 

Figure 46 - Metal centre chirality in cis-bis(bidenate) complexes in comparison 

with the {CeuE[Fe(4-LICAM)]} crystal structure.  Key; CeuE residues, green - 

carbon, blue - nitrogen, red - oxygen; 4-LICAM, grey - carbon, red - oxygen; Fe 

- Coral sphere. ..................................................................................................... 98 

Figure 47 - Circular dichroism spectra of CeuE with {CeuE[Fe(4-LICAM)]} in 

black and ferric 4-LICAM in the absence of CeuE (grey) recorded in 20 mM 

TrisHCl buffer, 10 mM NaCl, 0.6% DMSO, pH 8. ............................................ 99 

Figure 48 - Emission spectra of CeuE at 240 nM in 40 mM TrisHCl pH 7.5 150 

mM NaCl, with various equivalents of Fe-4-LICAM, excitation at 280 nm.  

Each spectrum was recorded after 1 minute (dark), 5 minutes (medium) and 15 

minutes (light), shown as shades of starting colour.  Key; Black, 0 eq - blue, 0.4 

eq - red, 0.8 eq - green, 2 eq - purple, 5 eq.  Emission intensity normalised to 

initial intensity. .................................................................................................. 100 

Figure 49 - Example fluorescence quenching analyses of PBP CeuE with ferric-

4-LICAM.  Titrations were carried out with 240 nM CeuE (red) and 170 nM 

CeuE (blue) in 40 mM TrisHCl pH 7.5, NaCl 150 mM.  Recorded data points 

shown as circles; lines give the non-linear least-squares calculated fits 

(DynaFit).
70

 ....................................................................................................... 101 

Figure 50 - 
1
H NMR spectrum of 22 in CDCl3 shown in the regions between 

4.85-4.70 ppm and 4.00-3.75 ppm.  The J-coupling splitting pattern is shown 



         Chapter X 

          11 

below, explaining the splitting for each of the three resonances.  *The 

assignment of H
b
 and H

c
 can be interchanged. ................................................. 116 

Figure 51 - Upper - Plot of the absorbance at 590 nm for solutions containing 

the DHBS monomer and linear dimer in the presence of increasing equivalents 

of Fe(III).  Solutions were buffered at pH 9 and ferric ion was added as the NTA 

complex.  Lower - UV-visible spectra between 370-800 nm recorded during the 

linear dimer titration.  Reprinted with permission from Inorg. Chem., 1991, 30 

(5), 900-906.  Copyright 1991 American Chemical Society.
8
 .......................... 123 

Figure 52 - Spectrophotometric titration of the 1:1 ferric complex of H4-17 in 

dilution corrected absorbance units.  Reprinted with permission from Inorg. 

Chem., 1991, 30 (5), 900-906.  Copyright 1991 American Chemical Society.
8

 ........................................................................................................................... 124 

Figure 53 - Amonabactins.  Names refer to the aromatic amino acid constituent 

and molecular weight. ....................................................................................... 126 

Figure 54 - Upper - Selected UV-visible absorbance spectra recorded during the 

kinetic run with H4-17 (2.0x10
-4

 M) and iron(III) (1:1 ratio).  Spectra ordered 

from black (0 seconds) to light blue (60 seconds) for selected time intervals.  

Lower - Kinetic trace of upper, following absorbance at 500 nm (red diamonds) 

and 560 nm (blue triangles) over 2 minutes.  Spectra recorded every 3 seconds, 

solution containing 0.1 M TrisHCl pH 7.5, 5% DMSO at 20 °C. .................... 128 

Figure 55 - Selected UV-visible absorbance spectra of H4-17 and Fe
III

(NTA), 

used for the Job plot analysis   Spectra recorded in 0.1 M TrisHCl pH 7.5, 5% 

DMSO.  Spectra ordered from black (H4-17 excess) to light blue ordered by 

ligand to metal ratio; 90:10, 70:30, 60:40, 50:50, 40:60, 30:70, 10:90).  [M] + 

[L] = 0.4 mM. .................................................................................................... 129 

Figure 56 - Job plot for the binding of H4-17 and Fe
III

(NTA), obtained by 

following the absorbance at both 512 nm (red diamonds) and 563 nm (blue 

triangles).  The absorbance values are averages of two experiments and the error 

bars indicate the differences between the runs.  Plot recorded in 0.1 M TrisHCl 

pH 7.5, 5% DMSO. ........................................................................................... 130 

Figure 57 - Circular dichroism spectra of the free ligands (left) and the iron(III) 

complexes (right) of enterobactin and the hydrolysis products in aqueous 

solution at pH 7.5, 0.1 M HEPES buffer. Reprinted with permission from Inorg. 

Chem., 1991, 30 (5), 900-906. Copyright 1991 American Chemical Society.
8
 131 



         Chapter X 

          12 

Figure 58 - Circular dichroism spectra of H4-17 and ferric-17 in key ligand-to-

metal ratios in aqueous 0.1 M TrisHCl buffer, pH 7.5, 150 mM NaCl, 5% 

DMSO.  [L] + [M] = 0.4 mM. ........................................................................... 132 

Figure 59 - Ribbon representation of three monomers of Scn co-crystallised 

with ferric-enterobactin.  Key: Chain A (light blue), chain B (gold), chain C 

(green); ligands shown as cylinders, grey - carbon, blue - nitrogen, red - oxygen, 

coral - iron. PDB code: 1L6M.
39

 ....................................................................... 135 

Figure 60 - Ribbon representation of three monomers of Scn co-crystallised 

with ferric-enterobactin.  Key: chain A (blue), chain B (gold), chain C (green); 

ligands shown as cylinders, grey - carbon, blue - nitrogen, red - oxygen, coral - 

iron. PDB code: 3I0A (unpublished work). ...................................................... 137 

Figure 61 - Ribbon representation of the three independent CeuE chains of 

{CeuE3[Fe(17)]2[Fe]} (form II) with colours blended from cyan, N-terminus, to 

dark blue, C-terminus.  His228, Tyr288 and Fe-17 shown as cylinders.  Key: 

His227 and Tyr288; green - carbon, blue - nitrogen, red - oxygen; Fe-17, grey - 

carbon, blue - nitrogen, red - oxygen; Fe - coral. .............................................. 140 

Figure 62 - Cylinder representation of the binding pockets of 

{CeuE3[Fe(17)]2[Fe]} (form II) with electron density map shown as 2Fobs-Fcalc, 

contoured at 1σ and chemical representation showing key interactions of Fe-17.  

Key: His227 and Tyr288; green - carbon, blue - nitrogen, red - oxygen; Fe-17, 

grey - carbon, blue - nitrogen, red - oxygen; Fe - coral. ................................... 141 

Figure 63 - Ribbon representation of the three independent CeuE chains of 

{CeuE3[Fe(17)][Fe (DHBS)2]2} (form III) with colours blended from cyan, N-

terminus, to dark blue, C-terminus.  His227, Tyr288, Fe-17 and Fe-DHBS2 

shown as cylinders.  Key: His228, Tyr288, green - carbon, blue - nitrogen, red - 

oxygen; Fe-17, grey - carbon, blue - nitrogen, red - oxygen; Fe - coral. .......... 142 

Figure 64 - Cylinder representation of the binding pockets of 

{CeuE3[Fe(17)][Fe(DHBS)2]2} (form III) with electron density map shown as 

2Fobs-Fcalc, contoured at 1σ and chemical representation showing key interactions 

of the two Fe-DHBS environments.  Key: His227 and Tyr288; green - carbon, 

blue - nitrogen, red - oxygen; Fe-17, grey - carbon, blue - nitrogen, red - oxygen; 

Fe - coral. .......................................................................................................... 143 

Figure 65 - Crystal packing diagram showing symmetry related CeuE molecules 

in the {CeuE3[Fe(17)]2[Fe]} (form II) crystal.  Key {CeuE3[Fe(17)]2[Fe]} shown 



         Chapter X 

          13 

in gold, symmetry related molecules shown in grey.  Image created using Coot.
47

 ........................................................................................................................... 146 

Figure 66 - A) Ribbon representation of the crystal packing in the asymmetric 

unit of {CeuE3[Fe(17)]2[Fe]} (form II) with His227, Tyr288, Fe-17 shown as 

cylinders.  B) Ribbon representation of binding pocket of chain C and surface 

(electrostatic representation) of N terminus of chain B, with Fe-17 from chain B 

superimposed into the binding pocket. Key chain A (blue), chain B (gold), chain 

(dark green); Fe-17, grey - carbon, blue - nitrogen, red - oxygen; Fe - coral.; 

electrostatic, red - negative, blue - positive. ...................................................... 147 

Figure 67 - Coordination environment of the three binding pockets of 

CeuE3[Fe(17)][Fe (DHBS)2]2} (form III). Key; CeuE residues, green - carbon, 

blue - nitrogen, red - oxygen; DHBS and 4, grey - carbon, blue - nitrogen, red - 

oxygen; Fe - coral. ............................................................................................. 151 

Figure 68 - Surface electrostatic representation of 

{CeuE3[Fe(17)][Fe(DHBS)2]2}, monomers B (translucent surface) and C (solid 

surface), negative charge shown in red and positive charge shown in blue.  Key: 

DHBS, grey - carbon, blue - nitrogen, red - oxygen; Fe - coral.; Hydrogen bond - 

black dash. ......................................................................................................... 153 

Figure 69 - Circular dichroism spectra of ferric-17 (light grey) with increasing 

increments of 0.2 eq of CeuE, until {CeuE[Fe(17)]} (black) was formed, 

recorded in 0.1 M TrisHCl buffer, pH 7.5, 150 mM NaCl. .............................. 154 

Figure 70 - Example fluorescence quenching analyses of PBP CeuE with ferric-

17.  Titration recorded with 240 nM CeuE (red) and 170 nM CeuE (blue) in 40 

mM TrisHCl pH 7.5, NaCl 150 mM.  Recorded data shown as circles; lines give 

the non-linear least-squares calculated fits (DynaFit).
55

 ................................... 156 

Figure 71 - Schematic design of a biomimetic hexadentate siderophore that 

possesses a chemical linker. .............................................................................. 160 

Figure 72 - Dendritic catecholate-based iron chelator developed by Zhou et al.
11

 ........................................................................................................................... 162 

Figure 73 - Structures of a biomimetic tris-catecholate siderophore and its 

aminopenicillin conjugates.
20

 ............................................................................ 163 

Figure 74 - The chemical structure of the designed biomimetic hexadentate 

siderophore.  Key: catecholamide, red - backbone, blue - linker, black. .......... 165 



         Chapter X 

          14 

Figure 75 - 
1
H NMR spectrum of 43 in d6-DMSO shown between 3.00-2.10 

ppm showing the multiplicity of the resonances assigned to protons H
a
 and H

b
.  

Quintet at 2.50 is the d6-DMSO residual solvent peak. .................................... 169 

Figure 76 - Schematic diagram showing the FRAP experiment. ..................... 182 

Figure 77 - Schematic representation of the TIRFM experimental set-up. A) 

General overview; B) Schematic representation of the evanescent wave 

formation. .......................................................................................................... 183 

Figure 78 - HPLC traces (absorbance at 420 nm) of ferricrocin (20 mM) in 

water, injection volume 5 μL (blue) and 53 (0.5 mg in 350 μL of water) injection 

volume 20 μL (red); 6-40 % (v/v) acetonitrile/water gradient. ......................... 186 

Figure 79 - HPLC traces of 51 (red) after dialysis and Alexa Fluor® 488 (blue). 

A) - Absorbance data measured at 420 nm.  B) Fluorescence data excited at 500 

nm emission measured at 520 nm. .................................................................... 188 

Figure 80 - LC-MS of 51. A) TIC chromatogram; B) UV absorbance (254 nm) 

chromatogram; C) Mass spectrum associated with the peak eluting after 32 

minutes in the chromatogram. Peak at 15 min (dashed black line) is calibrant 

injected into the ESI source used for accurate mass calibration. ...................... 189 

Figure 81 - A) UV-visible absorbance spectra of Alexa Fluor® 488 azide 

(1.3x10
-5

 moldm
-3

), 51 and ferricrocin (2.0x10
-4

 moldm
-3

); B) Emission spectra 

of Alexa Fluor® 488 azide and 51, excited at 488 nm; C) Excitation spectra of 

Alexa Fluor® 488 azide and 51, monitoring at 525 nm.  All spectra recorded in 

water. ................................................................................................................. 191 

Figure 82 - Initial TIFM images.  A) 10 nM 51 and E. coli ΔfhuA cells (sum of 

500 video frames); B) 10 nM 51 and E. coli ΔtonB cells (sum of 5 video frames).

 ........................................................................................................................... 193 

Figure 83 - Repeat TIRFM images containing 10 nM 51, E. coli ΔfhuA, ΔtonB 

cells and ΔtonB cells with 5 μM ferricrocin.  A) sum of 10 video frames; B) sum 

of 200 video frames; C) Profile plot of grey value of pixels across highlighted 

cell (yellow).  Analysis performed using ImageJ.
29

 .......................................... 194 

Figure 84 - Run 1 fluorescence quenching analyses of PBP CeuE with ferric-4-

LICAM.  Titration recorded with 240 nM CeuE (red) and 170 nM CeuE (blue) 

in 40 mM TrisHCl pH 7.5, NaCl 150 mM.  Recorded data shown as circles; 

lines give the non-linear least-squares calculated fits (DynaFit). Kd = 25.1± 1.3 

nM (240 nM), 44.9 ± 2.5 nM (170 nM). ........................................................... 251 



         Chapter X 

          15 

Figure 85 - Run 2 fluorescence quenching analyses of PBP CeuE with ferric-4-

LICAM.  Titration recorded with 240 nM CeuE (red) and 170 nM CeuE (blue) 

in 40 mM TrisHCl pH 7.5, NaCl 150 mM.  Recorded data shown as circles; 

lines give the non-linear least-squares calculated fits (DynaFit). Kd = 30.3± 0.9 

nM (240 nM), 40.8 ± 3.8 nM (170 nM). ........................................................... 251 

Figure 86 - Run 3 fluorescence quenching analyses of PBP CeuE with ferric-4-

LICAM.  Titration recorded with 240 nM CeuE (red) and 170 nM CeuE (blue) 

in 40 mM TrisHCl pH 7.5, NaCl 150 mM.  Recorded data shown as circles; 

lines give the non-linear least-squares calculated fits (DynaFit). Kd = 14.9± 2.7 

nM (240 nM), 19.9 ± 5.3 nM (170 nM). ........................................................... 252 

Figure 87 - Run 1 fluorescence quenching analyses of PBP CeuE with ferric-17.  

Titration recorded with 240 nM CeuE (red) and 170 nM CeuE (blue) in 40 mM 

TrisHCl pH 7.5, NaCl 150 mM.  Recorded data shown as circles; lines give the 

non-linear least-squares calculated fits (DynaFit). Kd = 4.8± 0.9 nM (240 nM), 

9.8 ± 1.9 nM (170 nM). ..................................................................................... 252 

Figure 88 - Run 2 fluorescence quenching analyses of PBP CeuE with ferric-17.  

Titration recorded with 240 nM CeuE (red) and 170 nM CeuE (blue) in 40 mM 

TrisHCl pH 7.5, NaCl 150 mM.  Recorded data shown as circles; lines give the 

non-linear least-squares calculated fits (DynaFit). Kd = 16.4 ± 1.8 nM (240 nM), 

12.3 ± 2.5 nM (170 nM). ................................................................................... 253 

Figure 89 - Run 3 fluorescence quenching analyses of PBP CeuE with ferric-17.  

Titration recorded with 240 nM CeuE (red) and 170 nM CeuE (blue) in 40 mM 

TrisHCl pH 7.5, NaCl 150 mM.  Recorded data shown as circles; lines give the 

non-linear least-squares calculated fits (DynaFit). Kd = 14.9± 3.7 nM (240 nM), 

14.9 ± 3.6 nM (170 nM). ................................................................................... 253 

Figure 90 - Script used for Dynafit v3. ............................................................ 258 

Figure 91 - Script used for Dynafit v4. ............................................................ 259 

 

Scheme 1 – Synthesis of H4-4-LICAM.  (a) i) Benzyl chloride, K2CO3, EtOH  

ii) NaClO2, H3NSO3, acetone/water, 79%; (b) N-hydroxysuccimide, DCC, 1,4-

dioxane, 71%; (c) 1,4-diaminobutane (0.5 eq), NEt3, acetone, 94%; (d) H2, Pd-C 

10%, EtOH, 99%.  Overall yield 52%. ............................................................... 60 

Scheme 2 – Synthesis of H2-15.  (a) 2.0 M ethylamine, NEt3, THF, 72%; (b) H2, 

Pd-C 10%, EtOH, 74%.  Overall yield 53%. ...................................................... 64 



         Chapter X 

          16 

Scheme 3 - Biosynthetic pathway of enterobactin.
2
 ......................................... 108 

Scheme 4 - The N-benzoyl monomer route when using X = DCC, DCC/HOBt 

or DCC and pyridine to activate the carboxylic acid for esterification. ............ 110 

Scheme 5 - The use of HOBt to reduce the deactivation of the O-acylisourea 

mixed anhydride 20. .......................................................................................... 111 

Scheme 6 - Oxazolone-mediated racemisation during esterification. .............. 112 

Scheme 7 - The urethane protection route for the total synthesis of enterobactin 

outlined by Rastetter et al. ................................................................................ 113 

Scheme 8 - Initial synthetic route towards the H4-17.  (a) NEt3; (b) NEt3; (c) 

THP, pyridinium p-toluenesulfonate;  (d) NaOH / NMe4OH; (e) DCC, HOBt, H
+
 

workup; (f) H2, Pd-C 10%. ................................................................................ 115 

Scheme 9 - Second synthetic route towards H4-17.  (a) NEt3; (b) NEt3; (c) 

Esterification, various conditions; (d) H2, Pd-C 10%. ...................................... 118 

Scheme 10 - Third synthetic route towards H4-17.  (a) SOCl2; (b) Boc2O, NEt3; 

(c) Boc-O-benzyl-L-serine, EDC, HOBt, ; (d) TFA; (e) DIPEA; (f) H2, Pd-C 

10%. .................................................................................................................. 120 

Scheme 11 - Synthetic route to H6-41.  (a) i) SOCl2, ii) TMS azide, iii) 80 °C, 

iv) HCl, (b) Boc2O, NEt3; (c) H2, Raney®-Nickel 2800 slurry; (d) Glutaric acid 

monomethyl ester chloride, NEt3 ; (e) TFA; (f) 31, DIPEA; (g) NaOH; (h) H2, 

Pd-C 10%. ......................................................................................................... 167 

Scheme 12 - Synthetic route to compound 43.  (a) SOCl2; (b) TMS azide; (c) 80 

°C; (d) HCl. ....................................................................................................... 168 

Scheme 13 - Reaction mechanism of reaction of 42 to form 43 with key 

intermediates, acyl chloride, acyl azide and isocyanate highlighted within a box.

 ........................................................................................................................... 170 

Scheme 14 - Synthesis of 44 using the methodology of Zhao et al.
23

 .............. 171 

Scheme 15 - Synthesis of 45 using commercially available Raney®-Nickel. . 172 

Scheme 16 - Synthesis of 46 using the modified methodology of Ji et al.
20

 .... 172 

Scheme 17 - Synthesis of 47 by Boc deprotection of 46 using trifluoroacetic 

acid. ................................................................................................................... 173 

Scheme 18 - Synthesis of 48 using the methodology outlined in Chapter 3. ... 174 

Scheme 19 - Synthesis of 49 via methyl ester hydrolysis using the methodology 

of Theodorou et al.
29

 ......................................................................................... 175 



         Chapter X 

          17 

Scheme 20 - Deprotection of 49 via catalytic hydrogenation to yield siderophore 

mimic H6-41. ..................................................................................................... 176 

Scheme 21 - Synthesis of high-molecular weight ferricrocinyl polyethylene 

glycolyl succinate by Coulton et al.
14

 ............................................................... 180 

Scheme 22 - Synthetic route to 53.  (a) DCC, N2; (b) Ferricrocin, N2. ............ 185 

Scheme 23 - Synthetic route to 51. (a) Alexa Fluor® 488 azide, CuSO4, sodium 

ascorbate. ........................................................................................................... 187 

 

Table 1 - Formation constants reported for the ferric complexes of the indicated 

tris-catecholamide ligands. * log10Kf refers to fully deprotonated ligand forming 

a 1:1 complex with iron(III). ǂ The fully deprotonated charge of the linear trimer 

includes the six catechol protons and the carboxylic acid on the backbone. ...... 34 

Table 2 - Selected examples of Fur regulated genes from E. coli with a brief 

description of their function. ............................................................................... 43 

Table 3 - Comparison of 
1
H NMR shifts for the aromatic triplet recorded in 5:1 

d6-DMSO : D2O. * Charge per catechol calculated assuming complex A has a 

3:2 ligand to metal ratio and complex B has a ligand to metal ratio of 1:1, with 

neutral donors in vacant coordination sites. ǂ H4-4-LICAM was recorded in d6-

DMSO. ................................................................................................................ 73 

Table 4 - Primers used for gene amplification. .................................................. 78 

Table 5- Data collection and refinement statistics of apo-CeuE and {CeuE[Fe(4-

LICAM)]} structures. .......................................................................................... 82 

Table 6 - Bond distances between coordinating atoms and the iron centre. ...... 89 

Table 7 - A comprehensive list of bond angles between coordinating atoms to 

the iron centre and their deviation from the ideal octahedral geometry. ............ 90 

Table 8 - Calculated dissociation constants from non-linear regression analysis 

of the fluorescence quenching data of ferric-4-LICAM : CeuE titrations.  Error 

of individual Kd values are calculated from non-linear regression fit, and errors 

of overall and batch calculated from standard deviation of the different Kd values 

within that group. .............................................................................................. 102 

Table 9 - Summary of modelled ligands in the binding pockets of both crystal 

forms, {CeuE3[Fe(17)]2[Fe]} (crystal form II) and 

{CeuE3[Fe(17)][Fe(DHBS)2]2} (crystal form III). ............................................ 139 



         Chapter X 

          18 

Table 10- Data collection and refinement statistics of {CeuE3[Fe(17)]2[Fe]}.and 

{CeuE3[Fe(17)][Fe(DHBS)2]2} structures. ....................................................... 144 

Table 11 - Bond distances between coordinating atoms and the iron centres of 

monomers A and B in the {CeuE3[Fe(17)]2[Fe]} (form II) structure. .............. 148 

Table 12 - Bond distances between coordinating atoms and the iron centres for 

the {CeuE3[Fe(17)][Fe(DHBS)2]2} (form III) structure. .................................. 149 

Table 13 - Calculated dissociation constants from non-linear regression analysis 

of the fluorescence quenching data of ferric-17: CeuE titrations.  Error of 

individual Kd values are calculated from non-linear regression fit, and errors of 

overall and batch calculated from standard deviation of the different Kd values 

within that group. .............................................................................................. 156 

Table 14 - Ordering of synthetic experimental details. .................................... 203 

Table 15 - Raw and normalised fluorescence data for the ferric-4-LICAM CeuE 

titration at 240 nM. ............................................................................................ 254 

Table 16 - Raw and normalised fluorescence data for the ferric-4-LICAM CeuE 

titration at 170 nM. *Note missing data point of Fe-4-LICAM concentration at 

0.4284. ............................................................................................................... 255 

Table 17 - Raw and normalised fluorescence data for the ferric-17 CeuE 

titration at 240 nM. ............................................................................................ 256 

Table 18 - Raw and normalised fluorescence data for the ferric-17 CeuE 

titration at 170 nM. ............................................................................................ 257 

 

Equation 1 - Stokes-Einstein equation. Key;  - viscosity, r - radius of a 

spherical particle, k - Boltzmann constant, T - temperature. .............................. 75 

Equation 2 - Calculation of weighted average dissociation constant. ............. 102 



         Chapter X 

          19 

Accompanying Material 

 

A compact disk with an electronic copy of this thesis, the fluorescence 

quenching data, the DynaFit scripts, and the PDB, MTZ and CIF files associated 

with the X-ray diffraction data is attached at the back of this thesis. 

 



         Chapter X 

          20 

 

Acknowledgements 

 

I would like to thank a number of people, without whom this thesis would not 

have been possible.  Firstly, I would like to thank both of my supervisors, Dr 

Anne K. Duhme-Klair and Prof Keith S. Wilson, for their continued support in 

every aspect of my PhD, and so many varied and interesting suggestions for my 

project.  Not only have you both been great supervisors, but both of you have 

also proved to be great role models to aspire to. 

 

I would also like to extend my recognition to everyone who has been involved in 

this project, including collaborators, Prof James Coulton and Dr Christoph 

Baumann, for their specific help and also for providing me with the experience 

of working within a collaborative network.  In particular, I would like to thank 

Dr Olga Moroz, for her help, patience and expertise in protein expression, 

purification and crystallography.  Importantly, I must also especially thank all 

the students that I have worked with during my PhD at York: Adam, Andy, 

Amy, Bethany, Chris, Emily, Jordan, Laura B, Laura W and Will, for their hard 

work, company and for allowing me to develop my ability as a mentor. 

 

A large thank you to the technical and administration staff in the Department of 

Chemistry, University of York.  So much research activity could not go ahead 

without their help.  I would like to give a special thanks to Heather and Pedro for 

their NMR assistance, Karl and Helen for the MS service provided, Graeme for 

CHN analysis, Johan and Sam for all there help with the X-ray crystallography 

and also the wet lab technicians, in both chemistry and the YSBL. 

 

I would also like to thank all past and present members of the groups I have 

worked with; Abeda, Aurélien, Chris, Ellis, Jenni, Maria, Stephen and Tom, as 

well as a number of great friends I have made during my PhD; the E014 lab, the 

SLUGS, and the pizza night groups; who have been amazing company.  A 

particular thanks must go to Luisa, for your endless supply of Italian grade 



         Chapter X 

          21 

coffee, as well as the great many discussions on all different aspects of 

chemistry throughout the PhD process. 

 

I must thank some of the most important people to me; my family, for all of their 

unwavering support, not only during my PhD but my entire life.  Without the 

belief that my parents have in me, I would definitely not be in the position I am 

today.  Finally I need to thank my fiancée Kim.  You have been amazing during 

my PhD; without your love and support during this section of our life journey 

together, I would not have managed it. 

 

 



         Chapter X 

          22 

 

Declaration 

 

The research presented within this thesis is, to the best of my knowledge, 

original and my own.  The following work was carried out by or with the 

assistance of other researchers: 

 Synthesis and Job plot analysis of H2-15 was carried out by BSc student 

Miss Bethany Peeters; 

 DOSY NMR experiments was conducted by Ms Heather Fish; 

 CeuE protein expression and purification was carried out with the 

assistance of Dr Olga Moroz; 

 Initial attempts towards the synthesis of H4-17 was carried out by 

summer placement student Miss Emily Brooke; 

 The second batch of CeuE used for the dissociation constant 

determination (170 nM) in Chapters 2 and 3 was purified by BSc student 

Mr Adam Hughes with titrations completed with the assistance of Adam. 

 Several synthetic procedures for the compounds 43-48 were carried out 

by summer placement student Miss Amy Scorah; 

 The TIRF microscopy analysis outlined in Chapter 5 was performed by 

Dr Christoph Baumann (Department of Biology, University of York) as 

part of a collaboration with Prof. James Coulton (McGill University, 

Montreal); 

 All mass spectrometry and LC-MS experiments were carried out by Mr 

Karl Heaton or Miss Helen Robinson. 

 Elemental analyses were carried out my Dr Graeme McAllister. 

 Part of the ferric-4-LICAM work outlined in Chapter 2 has been 

published previously in the following reference: D. J. Raines, O. V. 

Moroz, K. S. Wilson, A.-K. Duhme-Klair, Angew. Chem. Int. Ed., 2013, 

52, 4595-4598.  

 

Daniel Raines



 

Chapter 1: Introduction 



         Chapter 1 

          24 

 

1.1 Overview 

 

This thesis is concerned with the synthesis, characterisation and investigation of 

siderophores and analogues, with a view to providing further insight into the 

mechanism by which iron uptake occurs.  This chapter provides an overview of 

the background to the project and puts the work within this thesis into context 

with regard to previous research within the field. 

 

Throughout the thesis, the indicated  protonation states of compounds only refer 

to those protons that dissociate upon iron chelation, protons from other 

functional groups e.g. backbone carboxylic acids, are not included. 

 

1.2 Iron in Biology 

 

Iron is an essential element for nearly all living organisms on Earth.
1
  The redox 

chemistry and high affinity for oxygen make this abundant element ideal for a 

number of biological processes.  In aqueous media, the most common oxidation 

states are iron(II) and iron(III).  The redox potential between these states is such 

that the metal can perform a wide variety of biologically relevant reactions.
1-2

 

 

While iron is vital for most forms of life, it is also toxic in excess, due to its 

ability to perform a redox cycle with molecular oxygen, resulting in highly 

reactive oxygen-derived free radicals.
3-5

  Due to this toxicity, biological systems 

have developed sophisticated solutions for iron uptake, storage, transport and 

distribution.
3
 

 

Despite iron being one of the most abundant elements in the Earth's crust, it is 

predominately found as iron(III), due to the oxidising atmosphere.
6
  This has the 

consequence of the free iron concentration in the environment varying from 10
-

18
 to 10

-24
 mol dm

-3
.
7-8

  As a result micro-organisms in particular have developed 

specialised strategies for the uptake of this crucial element from the surrounding 
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environment.
9
  These can be categorised into two different iron uptake 

mechanisms, direct or indirect.  Direct uptake of iron is the ability of an 

organism to acquire iron from a natural source, e.g. haem when located within 

the human body.  This specialised direct iron uptake mechanism requires a 

specific receptor for each different iron source which is a disadvantage when the 

organism is located in different environments.
1
  This is thought to be the main 

reason why indirect iron uptake mechanisms are more widespread and diverse, 

with the use of siderophores being one of the most common examples.
1-2, 7

 

 

1.3 Siderophores 

 

Siderophores are small strong chelating molecules that are used to bind and 

solubilise iron(III) to aid iron uptake.  They are required to have a selectivity for 

iron(III) over other abundant metal ions found within the environment, achieved 

by matching the preferred coordination characteristics of the metal centre with 

the coordination ability of the siderophore.  Iron(III) is a 'hard' ion with a d
5
 

electronic configuration and thus prefers to coordinate in a octahedral geometry, 

surrounded by charge dense, negatively charged donor atoms.
10-11

  To 

complement this, the donor atoms of the siderophore chelating groups are 

dominated by the presence of negatively charged oxygen atoms, usually 

arranged to form a hexadentate ligand that forms a highly thermodynamically 

stable complex.
11

  While there are not many biologically important 'hard' ions 

that can compete with iron(III), siderophores must also be selective for iron(III) 

in the presence of environmentally abundant trivalent cations such as 

aluminium(III).  The binding moieties of siderophores are generally comprised 

of bidentate units, which are predisposed to have an ideal bite angle for the 

coordination of iron(III) (ionic radius of 0.65 Å) over other abundant metals 

(e.g. ionic radius of aluminium(III) is 0.54 Å).
2, 12

 

 

There are over 500 known siderophores, with a wide variety of different 

structural motifs for the backbone.
2
  Despite this, there is a reliance on relatively 

few coordination groups, presumably due to the limitation of the coordination 

chemistry of iron(III).
2
  Siderophores are classified by these coordinating  
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groups, with the three most common iron-chelating units being catecholates, 

hydroxamates and α-hydroxycarboxylates (Figure 1). 

 

 

Figure 1 - Representative examples of siderophores with different iron chelating 

moieties highlighted.  *Protonation state of citric acid can differ due to different binding 

modes available. 

 

Each of these three coordinating  groups possess the charge dense oxygen atoms 

required for strong iron(III) binding.  Under neutral conditions, the catechol 

group deprotonates twice (pKa values 9.2, 13.0), to form two phenolate atoms 

which coordinate to the metal centre, whereas the hydroxamate (pKa 9.0) and α-

hydroxycarboxylate (pKa 3.0, 14.5) groups are only required to deprotonate 

once, with the latter's carboxylates already deprotonated under neutral 

conditions.
2
  This results in the catecholate complexes being more sensitive to 

pH conditions. 
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As a result of this, the catechol group is often observed in siderophores as the 

related catecholamide group.  When the amide is in the adjacent position to 

provide the 2,3-catecholamide functionality, the resulting hydrogen bonding 

network reduces the pKa of the ortho-phenolate to 7.2-7.4.
13

  The hydrogen 

bonding network around the catecholamide groups also affects the rotation of 

the catecholamide with respect to the backbone of the siderophore.  For 

example, in the fully protonated form, the hydrogen bonding network of the 

ortho-phenolate involves the carbonyl of the amide group, whereas upon 

deprotonation, the network reverses and the proton of the amide group forms a 

hydrogen bond to the ortho-phenolate.
14

  This reversal has the consequence of 

rotating the catecholamide group, which is also observed upon iron(III) 

chelation.  It is postulated that this mechanism is utilised by the tris-catecholate 

siderophore enterobactin for orientating the catecholamide groups in an 

'outwardly' facing direction when fully protonated, and upon iron(III) binding 

the catecholamide group rotates, pulling the metal centre into the central binding 

position (Figure 2).
7
  For many siderophores the amide functionality has been 

shown to be important for recognition by the binding proteins during iron 

uptake.
15
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Figure 2 - Schematic diagram demonstrating the hydrogen bonding network and 

conformational change of enterobactin upon A) single deprotonation; B) iron 

complexation.  Figure adapted from Proc. Natl. Acad. Sci., 2003, 100, (7), 3584-3588.  

Copyright 2003 National Academy of Sciences, USA. 

 

Enterobactin is one of the most widely studied siderophores.  It contains three 

catecholamide moieties connected via a cyclic tri-ʟ-serine backbone (Figure 1).  

Enterobactin comprises of three dihydroxybenzoylserine (DHBS) units, which 

are arranged to form a cyclic ester.  As such, enterobactin is prone to hydrolysis 

under certain conditions and can form three distinct hydrolysis products; the 

linear trimer, linear dimer and DHBS monomer.  Each hydrolysis product has 

been shown to promote bacterial growth, demonstrating that siderophores are 

not required to be hexadentate to function as iron scavengers (Figure 3).
16-17
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Figure 3 - Chemical structures of the enterobactin hydrolysis products.   

 

There are a number of examples of siderophores with 'low' denticity (Figure 4).  

While some of these could be perceived as biological precursors to their 

hexadentate counterparts, e.g. azotochelin and the enterobactin linear dimer are 

formally fragments of protochelin and enterobactin, respectively, others are only 

structurally related and are a siderophore in their own right, e.g. rhodotorulic 

acid and pyochelin.
18

  It is still not clear why some organisms purposely 

synthesise siderophores with a lower denticity.  One possibility is their 

involvement in the uptake of other biologically important ions, and thus the 

selectivity requirement of the siderophore is less strict.
18-20
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Figure 4 - Chemical structures of a selection of 'low' dentate siderophores.   

 

It has been shown that the stereochemistry of siderophores is greatly important 

for iron uptake.
21-24

  As siderophores are usually comprised of three bidentate 

units coordinating to the metal centre in a octahedral geometry, they have a 

metal-centred chirality, in addition to any ligand-based chirality.  This allows the 

possibilty of two alternate configurations; a left-handed propeller (Λ-

configuration), or a right-handed propeller (Δ-configuration, Figure 5).
25

   

 

 

Figure 5 - Λ-configuration and Δ-configuration of a tris-bidentate octahedral complex. 

 

Asymmetric binding moieties also give rise to cis- and trans-complexes, 

depending on the orientation of the binding unit with respect to the other 
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coordinating groups.  If there is no chiral or steric induction from the 

siderophore backbone, these optical isomers form racemic mixtures in solution.  

As the majority of siderophores are derived from amino acids, and hence are 

often optically active, racemic siderophore complexes are rare.  The most 

common isomers formed with siderophores are Λ-cis complexes, although 

enterobactin has been shown to have a preference to form a Δ-cis complex.
2, 21

 

 

Siderophore Mimics 

 

Due to their remarkable iron(III) chelating chemistry, there has been much focus 

on the fundamental study of the iron binding ability and physical properties of 

siderophores.  In order to study different aspects of siderophores and their 

uptake pathways, many siderophore mimics have been synthesised and used in 

various investigations. 

 

While enterobactin is one of the most widely studied siderophores, due to its  

hydrolytically unstable tri-lactone backbone, a number of hydrolytically stable 

mimetic systems have been developed.  The most successful were designed to 

keep the key structural features of enterobactin, namely the three bidentate 

catecholamide units, positioned on a backbone with three-fold rotational 

symmetry, and five-atomic unit spacers between the binding moieties (Figure 

6).
26-29
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Figure 6 - A selection of structures of biomimetic hexadentate catecholamide 

siderophores and enterobactin, all possessing high affinity for iron(III).
26-29
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As with natural siderophores, the preorganisation of the catecholamide 

functional groups correlates with the strength of the iron(III) binding.  

Enterobactin fulfils this requirement for preorganisation via the chirality of the 

tri-serine backbone, as well as the hydrogen-bonding network formed by the 

catecholamide functionality.
7
 

 

Catecholamide preorganisation for iron binding has also been demonstrated with 

siderophore mimics.  Stack et al. have shown that (Et)3MECAM
6-

 binds iron(III) 

with a formation constant of Kf ≈ 10
47 

M
-1

, an increase of 10
4
 compared with 

MECAM
6-

 (Kf ≈ 10
43

 M
-1

).
29

  This increase was attributed to the predisposition 

of the catecholamide rings to be preferentially on one side of the central 

aromatic ring.  This is due the adjacent groups avoiding steric interactions by 

alternating above (a) and below (b) the central ring in a (ababab) conformation 

with three-fold symmetry.  In (Et)3MECAM
6-

, the neighbouring groups of the 

methylene-catecholamide and the ethyl groups are both large enough to form the 

ababab conformation, whereas in MECAM protons occupy the neighbouring 

positions, hence only minimal steric interactions occur, leading to a weaker 

preference for the ababab conformation, (Figure 7).
29

 

 

 

Figure 7 – Illustration of the preorganised ababab configuration of (Et)3MECAM (A) 

compared to MECAM (B). 
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The flexibility of the siderophore backbone has also been investigated.  Tse et 

al. synthesised compounds H6-1-3 (Figure 6) and showed that conformational 

flexibility of the siderophore mimics had a direct impact on the strength of 

iron(III) binding.
27

  Compound H6-1 has a linear backbone, allowing rotational 

freedom, and hence can act as a control compound to highlight the effects of a 

lack of preorganisation in a hexadentate chelator.  Compound H6-2 has a cyclic 

backbone, restricting its rotational freedom, but, its catechol rings are not forced 

into a particular direction.  However, in the most rigid compound, H6-3, the 

catechol rings are all preorganised to be positioned on one side of the 

macrocycle.  Compound 3
6-

 has a formation constant upon binding to iron(III) of 

Kf ≈ 10
49

 M
-1

, rivalling that of enterobactin
6-

, whereas that of the most flexible 

mimic 1
6-

 was Kf ≈ 10
45

 M
-1

, closer to that of the linear trimer (Table 1).
27

 

 

Compound ≈log10Kf
* 

Reference 

Enterobactin
6-

 49 
13

 

Linear Trimer
7- 

ǂ 43 
30

 

MECAM
6-

 43 
29

 

Et-MECAM
6-

 47 
29

 

TRENCAM
6-

 44 
26

 

3,4,3-CYCAM
6-

 40 
31

 

1
6-

 45 
27

 

2
6-

 47 
27

 

3
6-

 49 
27

 

Table 1 - Formation constants reported for the ferric complexes of the indicated tris-

catecholamide ligands. * log10Kf refers to fully deprotonated ligand forming a 1:1 

complex with iron(III). ǂ The fully deprotonated charge of the linear trimer includes the 

six catechol protons and the carboxylic acid on the backbone. 

 

As well as being used in investigations of iron(III) chelation, siderophore 

mimics have also been used to investigate the iron uptake system of various 

micro-organisms, and as biomimetic systems for the investigation of substrate-

protein interactions.
22, 24, 32-37
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Rastetter et al. reported a total synthesis of enterobactin, and its enantiomer, 

enantioenterobactin, which has a ᴅ-serine-based backbone.  The ᴅ-enantiomer 

has been used in iron(III) uptake studies and was shown not to support bacterial 

growth.
24

  While initially the lack of growth was attributed to stereospecificity of 

the outer membrane receptor towards the metal-centred chirality,
21

 it was later 

shown that the stereospecificity must be further along the iron uptake or release 

mechanism.
22

 

 

1.4 Siderophore Mediated Iron Uptake 

Gram-negative bacteria 

 

As well as synthesising siderophores, micro-organisms have developed 

sophisticated iron-uptake systems in order to retrieve iron-siderophore 

complexes.  These uptake systems are specific to each organism.  For Gram 

negative bacteria, such as E. coli, there are two cell membranes that the iron-

siderophore complex must pass through to enter the cytoplasm of the cell.  The 

outer membrane comprises of a lipid bilayer, which contains outer membrane 

receptors that internalise the iron-siderophore complex into the volume between 

the two membranes layers, the periplasm.  Within the periplasm, there are 

periplasmic binding proteins (PBPs) that bind to the iron-siderophore complex, 

allowing it to be transported to an inner membrane ABC transport complex, 

which transfers it into the cytoplasm (Figure 8).
9
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Figure 8 - Schematic diagram of the iron-uptake mechanism for a Gram-negative 

bacterium. 

 

Outer membrane receptors for iron-siderophore complexes generally consist of 

22 β-sheets that form a barrel through which the iron-siderophore complex is 

transported (Figure 9).  The extracellular loops that connect the β-sheets can 

extend up to 40 Å above the membrane surface and have importance in 

preventing the binding of unwanted species, as well as providing the initial 

interaction with the siderophore complex.
38-40

  The second key feature of these 

receptors is the N-terminus occupying the central barrel, known as the 'cork 

domain'.  This domain interacts with the bound complex and the periplasmic 

spanning protein TonB, which provides the energy for internalisation.
40-42

  It is 

still unclear how the complex circumvents this cork domain, but it is generally 

accepted that the domain is partially displaced to allow the iron siderophore 

complex to pass through.  Full displacement of the domain is considered 

unlikely, as this would involve breaking approximately 50 hydrogen bonds, thus 

having an energy barrier too high to overcome.
38, 43-45
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Figure 9 - Ribbon representation of the ferric enterobactin outer membrane receptor 

FepA, shown from: A) Side on; B) Top down (from the extracellular space); C) Beneath 

(from periplasmic space)  Key: Barrel domain (light blue), Cork domain (red). PDB 

code: 1FEP.
38 
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Once the iron-siderophore complex has been transported into the periplasm, it is 

bound by a PBP, which escorts the associated siderophores to the correct ABC 

transport complex.  There are many different PBPs, as a result they are classified 

depending on their ligands.  One class binds organic metal ion complexes.  The 

sequence identity of PBPs varies greatly, and can be as low as 10%, yet they 

retain a similar tertiary structure (Figure 10).
9
  PBPs are bi-lobal in structure, 

with the two domains connected via a long -helix, with the cleft between the 

two lobes acting as the binding pocket. 
9, 35, 46

 

 

Figure 10 - Ribbon representation of PBPs: A) VctP (PDB code: 3TEF)
47

; B) FhuD 

bound to desferral (PDB code: 1K2V)
46

; C) CeuE bound to ferric-MECAM (PDB code: 

2CHU)
35

.  Key: PBP (light blue), ligands shown as spheres; grey - carbon, blue - 

nitrogen, red - oxygen, coral - iron. 
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Once the iron-siderophore complex has bound to the PBP, it must be transferred 

to the ABC transport complex to be shuttled across the inner membrane.  

Conserved glutamate and arginine residues on the PBP and the ABC transport 

complex, respectively, allow the two proteins to dock together, allowing 

exchange of the iron-siderophore complex.  Unlike the outer membrane 

receptors, the ABC transport complexes are usually an assembly of proteins, 

rather than a single polypeptide.  The ferric-enterobactin and the vitamin B12 

ABC transport complexes in E. coli both consist of a dimer of dimers, FepC2D2 

and BtuC2D2, respectively.  In comparison, in the ferric-hydroxamate ABC 

transport complex in E. coli, one of the dimers is fused forming a FhuBC2 

complex.  The only structurally characterised complexes of these transporters 

are BtuC2D2
48-50

 and the molybdate transporter ModB2C2,
51-52

 which are 

assumed to look similar to the ferric-siderophore uptake proteins (Figure 11). 
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Figure 11 - Ribbon representation of BtuC2D2F (PDB code 2QI9)
49

: A) Dimer of 

BtuC2 (protomers shown in white and grey); B) Dimer of BtuD2 (protomers shown in 

light blue and coral); C) Complex of BtuC2D2F.  Key: BtuC2 (white and grey), BtuD2 

(blue and coral), BtuF (gold) key docking residues shown as spheres; red - arginine, 

green - glutamate. 
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Gram-positive bacteria 

 

Compared to their Gram-negative analogues, there is relativity little research 

published for iron-siderophore uptake mechanisms used by Gram-positive 

bacteria, with the majority of research focusing on B. subtilis.
36, 53-55

  Gram-

positive bacteria do not possess an outer membrane, and hence contain no 

periplasm.  The uptake system therefore resembles that of the inner membrane 

transport system for Gram-negative bacteria.  The PBP equivalent, a lipoprotein, 

is bound to the membrane via a membrane anchor.
53

  These lipoproteins are 

structurally similarity to PBPs, and are assumed to interact with an ABC 

transporter in a similar fashion to that of Gram-negative bacteria (Figure 12).  

 

Figure 12 - A schematic diagram for a simplified overview of the iron-uptake 

mechanism for Gram-positive bacteria. 

 

Iron release 

 

As ferric-siderophore complexes are highly thermodynamically stable, specific 

mechanisms for iron release are required.  Bacteria can employ a number of 

different strategies to access siderophore bound iron.  Most involve transporting 

the iron-siderophore complex into the cytoplasm which gives access to enzymes 

capable of removing the iron from the siderophore.  However, the release 

mechanisms for some siderophores, such as pyoverdine, has been shown to 

occur in the periplasm.
56

  One of the most widely used mechanisms is the 

reduction of the coordinated iron(III) to iron(II).
57

  This greatly reduces the 
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stability of the iron complex, allowing iron transfer.  This mechanism is not 

available for the tris-catecholate siderophores, due to the extremely low redox 

potential (enterobactin E½ = -750 mV).
2
  As a result, the release mechanisms 

from these siderophores has been widely debated.  There is now a consensus that 

the major release pathway of the iron is via siderophore degradation.
2, 7, 34, 37, 58-61

  

Studies with siderophore mimics such as H6-MECAM, that are not prone to the 

action of an esterase, have shown that iron is still delivered to the cell, though at 

reduced rates (~5%), thus indicating the possibilty of a secondary release 

pathway.
33

 

 

The secondary pathway has been proposed to be an acid-mediated release via 

change in coordination from the catecholate to the salicylate mode of binding 

(Figure 13).
59

  This mode of binding weakens the affinity of the siderophore for 

the metal centre, and hence raises the redox potential, allowing reduction of the 

iron(III) to iron(II) and extraction of the metal as before.  Details of this 

secondary release pathway are still unclear. 

 

 

Figure 13 - Schematic diagram demonstrating the pH dependence of the catecholate 

and salicylate binding modes of the catecholamide group. 

 

Regulation of Iron Uptake 

 

The accumulation of excess iron can be just as hazardous to biological life as 

iron starvation.  Consequently, the production of iron uptake and related proteins 

is highly regulated by the repressor protein Fur (ferric-iron uptake regulation).
62-

64
  Over 90 genes from different E. coli strains have been shown to be regulated 
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by Fur including siderophore biosynthesis, transporter systems and also 

oxidative-stress response systems (Table 2).
62

 

 

Regulated Genes Function Reference 

fepA-entD Enterobactin synthesis and transport 
65

 

fes-entF Enterobactin synthesis and release 
65

 

fhuACDB Ferrichrome transport 
62

 

iucBCD Biosynthesis of aerobactin 
64

 

sodB Iron-dependent superoxide dismutase 
66

 

acnA Biosynthesis of isocitrate 
67

 

Table 2 - Selected examples of Fur regulated genes from E. coli with a brief 

description of their function. 

 

Fur comprises of two domains; a helix-turn-helix domain, and the carboxy-

terminus domain which contains two metal-binding sites.  In E. coli, one of 

these sites is occupied by a zinc(II) ion, while the other binds to iron(II) and 

regulates activity.
68

  A dimer of iron loaded Fur binds to a specific 19 bp DNA 

sequence known as the 'Fur Box', which is located within the promoter of the 

regulated genes.  The affinity of Fur towards iron(II) is balanced so as to allow 

the accumulation of iron within the cell, but if the intracellular concentration 

becomes too high, Fur becomes loaded with iron, and binds to the Fur Box 

which represses further iron uptake, helping to prevent toxic concentrations of 

iron accumulating within the cell (Figure 14).
63

 

 

Figure 14 - A schematic diagram demonstrating the general mechanism of action of 

Fur. 
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Campylobacter jejuni 

 

C. jejuni is a Gram-negative, microaerobic bacterium.
69

  It is the most prevalent 

cause of gastroenteritis worldwide, and is a major cause of food-borne diarrhoeal 

illness in humans,
70

 with iron acquisition demonstrated to be an important 

virulence determinant.
71-73

  The importance of iron for C. jejuni is suggested by 

the relatively large number of genes associated with iron uptake and regulation 

in the genome.
74

  As a Gram-negative bacterium, it has an iron uptake system 

similar to that discussed above.  C. jejuni is thought to be incapable of 

synthesising its own siderophores, however, most strains have been shown to 

utilise siderophores such as enterobactin, produced by other bacteria.
69, 75

  The 

major iron uptake pathways for C. jejuni are based on enterobactin, haem and 

transferrin proteins (Figure 15).
71, 74

 

 

 

 

Figure 15 - Schematic representation of the three major iron uptake systems of C. 

jejuni.  

 

Currently, the only structurally characterised protein from the enterobactin 

uptake system of C. jejuni is the PBP CeuE.
35

  Müller et al. co-crystallised CeuE 

with ferric-MECAM and found it to form an unusual dimer complex.  The 
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interactions between the two proteins are minimal, suggesting that the driving 

force for dimerisation is due to the ligand.  The overall complexation is 

stabilised by favourable hydrophobic interactions, as the methylene group of one 

of the MECAM ligands is directly above the other MECAMs aromatic ring 

(Figure 16). 

 

Figure 16 - The structure of the {CeuE2[Fe2MECAM2]} complex (PDB code: 

2CHU).
35

  A) CeuE chain A (light blue), CeuE chain B (gold), ligands shown as 

spheres; B) The MECAM molecules shown as cylinders.  Key: grey - carbon, blue - 

nitrogen, red - oxygen, coral - iron. 

 

The formation of dimerised PBP using ferric-MECAM also offers an 

explanation for ferric-MECAM reportedly becoming trapped within the 

periplasm.
33

  Ferric-MECAM has also been co-crystallised with the Gram-
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positive binding protein FeuA, and was found to form the 'usual' 1:1:1 complex, 

thus demonstrating that ferric-MECAM does not dimerise all binding proteins.
36

 

 

1.5 Applications of Siderophores 

Siderophores in Supramolecular Chemistry 

 

As stated above, not all siderophores are hexadentate and hence different 

stoichiometries with metal ions are possible.  By utilising the preferred 

coordination requirements of metals and ligands it is possible to use metal-

ligand interactions to drive the formation of molecular assemblies.
76-78

  One of 

the smallest assemblies is the triple helicate (M2L3), which forms when three 

ligands bridge between two metal centres of the same chirality.  If the chirality is 

reversed at the metal centres, then it is referred as a triple mesocate (Figure 

17).
79

 

 

Figure 17 - Schematic diagram of a triple helicate and triple mesocate. 

 

Both triple helicate and mesocate systems with catechol containing ligands have 

been reported with gallium(III), cobalt(III), aluminium(III), iron(III) and 

titanium(IV).
76, 80-85

  The key design features are a C2 symmetric bis(bidentate) 

ligand and a metal ion with pseudo-octahedral coordination.  The ligands usually 

possess a rigid linker that directs the formation of an M2L3 system, although it is 

still possible to form these systems with flexible linkers (Figure 18).
76
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Figure 18 - Example bis(catechol) ligands that have been shown to form triple 

helicates.
76

 

 

Simple bis(catecholamide) ligands with short spacer units such as H4-2-LICAM, 

which possesses an ethylene, was found to form a dinuclear 3:2 helicate, as well 

as a dinuclear 2:2 hydroxo-bridged dimer (Figure 19).
86

  The naturally occurring 

bis(catecholamide) siderophore, which possesses a spermidine linker, was also 

investigated and shown to also form a 3:2 helicate.  There was no evidence of 

formation of a hydroxo-bridged dimer with this ligand, showing linker length 

and type has a profound affect on complexation.
86
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Figure 19 - Structures of the two complexes 2-LICAM
4-

 forms with iron(III), [Fe2L3]
6-

 

and [Fe2L2OH2]
4-

. 

 

Studies of similar tetradentate ligands with hydroxamate binding groups have 

identified both mononuclear complexes with a ligand-to-metal ratio of 1:1, 

dinuclear, 2:2 complexes and dinuclear 3:2 triple stranded helicates forming 

with a dependence on linker length.
87

  Even 3:2 complexes that adopt a mono-

bridged dinuclear structure have been reported with the bis-hydroxamate 

siderophore alcaligin (Figure 20).
88

   

 

 

Figure 20 - Structures of the natural siderophores rhodotorulic acid and alcaligin and 

schematic diagrams of their dinuclear six-coordinate iron complexes. 
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The ligand H4-3-LICAM was studied with gallium(III) using 
1
H NMR 

spectroscopy, which suggested 3-LICAM
4-

 coordinates to gallium(III) in a 3:2 

triple stranded fashion.
80

  H4-5-LICAM was crystallised with Ni
2+

 forming a 

mononuclear 1:1 complex in a square planar geometry.
89

  H4-5-LICAM was also 

crystallised with a cis-dioxomolybdenum(VI) unit (MoO2
2+

), which also requires 

only four coordinating atoms.  However, unlike nickel, the molybdenum formed 

a dinuclear complex, where two 5-LICAM
4- 

ligands bridged two MoO2 

centres.
90

  A follow-up study using a xylene linker found that a dinuclear system 

could again be formed, which can be converted to the mononuclear system upon 

heating.
91

  Many other ligands have been shown to form triple stranded 

helicates,
92-93

 and larger molecular cages,
76, 79, 94

 which have been widely 

observed and reviewed.
77-78, 95-97

  

 

Medicinal Applications of Siderophores 

 

A major research area for applications of siderophores is the development of 

new chelation therapeutics, particularly for the treatment of iron overload.
3, 28, 98-

99
  Iron overload is the accumulation of iron within the body, which can impair 

organ function and if left unchecked, can lead to multiple organ failure.  This 

condition is either caused by genetic defects, known as haemochromatosis, or as 

an indirect result from other conditions, such as treatment for β-thalassaemia, 

known as siderosis.
100-101

 

 

In designing suitable chelators for clinical applications, many of the design 

principles can be mimicked from siderophores, such as metal selectivity and 

complex stability.  For chelators targeting iron(III), the same binding moieties 

can be used to achieve selectivity over other biologically important ions.  For 

chelation therapies targeting other ions, the coordination chemistry of the ligand 

can be tailored to suit the requirements of the metal centre.  For example, Weitl 

et al. developed actinide chelators based on four catecholamide units, which 

show selectivity for the larger actinide ions over iron(III).
102

  One of the most 

widely used chelators for iron(III) currently in use, is the natural hydroxamate 

siderophore desferrioxamine-B (DFO).
101
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Another consideration required for chelation therapy, is the stability of the iron-

complex towards the uptake systems of micro-organisms.  An adverse side 

effect in the use of siderophores as iron-chelating therapeutics is the increase in 

micro-organism growth, resulting in an increased risk of infection.
103-104

  

Therefore, it would be advantageous to use siderophore mimics which cannot 

transport iron into micro-organisms. 

 

Other areas of research rely on siderophores for targeting, rather than 

exclusively for their metal chelating properties.  The Trojan Horse Strategy, for 

example, involves covalently attaching known anti-microbial agents to 

siderophores to produce siderophore-conjugates.  These conjugates can 

coordinate iron(III), and hence the siderophore uptake system of the targeted 

micro-organism should actively transport the conjugate into the cell.
105-108

  It is 

purposed that this strategy would evade certain aspects of anti-microbial 

resistance mechanisms.  This strategy was inspired by a range of natural 

compounds, known as sideromycins, which operate by the same method.
108

  

Albomycin is the most commonly studied of the sideromycins, and consists of a 

tris-hydroxamate siderophore unit linked via an amide bond to a thioribosyl 

pyrimidine tRNA synthetase inhibitor.
108-109

  In the cytoplasm of E. coli, the 

amide linkage is cleaved by peptidase N, releasing the antibiotic required for 

anti-microbial activity. 

 



         Chapter 1 

          51 

 

 

Since the discovery of sideromycins, synthetic and semi-synthetic Trojan Horse 

conjugates have been made, and their anti-microbial activity evaluated with 

varying degrees of success.
110-116

  Key design features required for all Trojan 

Horse siderophore systems are; recognition of the siderophore group, to allow 

active transport through the iron uptake system, and the availability of a 

chemical linking group to allow the covalent linkage to the anti-microbial group. 

 

Other Applications of Siderophores 

 

An area related to the Trojan Horse strategy is the delivery of chemical 'cargo' 

into micro-organisms using siderophores.  Enterobactin was modified by Zheng 

et al. for evaluation of delivering different cargos.
112

  Interestingly, the point of 

modification to attach the cargo was the C5 position on the catechol ring.  This 

position has been modified by nature through the addition of a glucose ring, 

forming a class of siderophores known as salmochelins.
117

  Salmochelins (mono- 

or di-substituted glucosylated enterobactin and associated hydrolysis products) 

evolved in response to the human immune system recognising and binding 

ferric-enterobactin, using proteins known as siderocalins.
118-120

  While the 

addition of the glucose ring in the C5 position has no adverse effect on substrate 

binding for the iron(III) uptake proteins, it inhibits binding by the siderocalins.  

The structure of these salmochelins inspired the addition of chemical linkers on 

the C5 position, for the study developing H6-9 (Figure 21).
112
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Figure 21 - Chemical structures of DGE, one of the salmochelins and H6-9 designed 

and synthesised by Zheng et al.
112

 

 

The modified enterobactin H6-9 was recognised and transported into E. coli and 

P. aeruginosa.  Small cargos, such as Boc, cyclohexyl, napthyl and 

phenylmethylbenzyl groups, were shown to be recognised and transported into 

the cell.  Conjugates with larger cargos, such as coumarin, were actively 

transported into P. aeruginosa but not E. coli, presumably due to the different 

iron uptake systems.
112

 

 

Modification of a natural siderophore with a fluorescent tag for the development 

of targeted probes has been demonstrated by Noël et al.
121

  Pyochelin is one of 

two major siderophores produced by P. aeruginosa, an opportunistic Gram-

negative bacterium, which cause severe lung infections that can be fatal for 

cystic fibrosis patients.
121

  Pyochelin can either be a tridentate or tetradentate 

siderophore which was shown to bind to not only iron(III) with high affinity but 

also zinc(II), copper(II), cobalt(II), nickel(II) vanadium(IV), molybdenum(VI), 

gallium(III) and terbium(III).
18-20, 45, 122-123

  These metal-chelates are 

predominantly bound in a 2:1 ligand-to-metal ratio.
18

  Only metal complexes of 

iron(III), cobalt(II), nickel(II), gallium(III) and molybdenum(VI) are transported 
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through the pyochelin uptake pathway but at a reduced rate compared to the 

iron(III) complex.
19-20

  

 

 

 

The ferric-pyochelin complex is recognised by the outer membrane protein, 

FptA which transports it into the periplasm of the cell.
18

  Due to the wide range 

of metals that pyochelin is able to chelate and deliver to the bacterium, the exact 

role of this siderophore during infection and its interactions with other biological 

ions remains unclear. 

 

In response to this challenge, Noël et al. designed and synthesised two pyochelin 

conjugates as molecular tools for the investigation of the pyochelin-dependent 

iron uptake pathway.
121

  Pyochelin was covalently linked to the (4-nitro-

benzo[1,2,5]oxadiazole) fluorophore using two different linkers, a short succinic 

linker and a longer spacer to minimise steric clashes with uptake proteins.  The 

conjugates were shown to be recognised by the pyochelin-specific outer 

membrane receptor, by selectivity labelling cells that expressed the receptor over 

cells that did not (Figure 22). 
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Figure 22 - Chemical structure of fluorescently-labelled Pyochelin.
121 

 

Another important application of siderophore chemistry is the development of 

novel sensors.  The most obvious example is the detection of iron(III) utilising 

naturally emissive siderophores such as pyoverdine.
124

 

 

 

 

Pyoverdine is produced by all fluorescent pseudomonads, with the exact 

structure varying between strains.  Pyoverdine is a mixed-type siderophore, 
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forming hexacoordinate complexes with iron(III), binding through one 

catecholate and the two hydroxamate groups.  The unusual catechol group is 

incorporated as part of the dihydroxyquinoline group, which acts as the 

chromophore, with the rest of the siderophore made up of both ᴅ- and ʟ-amino 

acids.
125

  Immobilisation of pyoverdine in a porous structure of either silica or 

sol-gel glass, allowed the development of fluorescent sensors for the 

determination of trace iron(III) levels.
126-128

 

 

1.6 Project Aims 

 

The overall aim of this project was the investigation of interactions between 

iron-siderophore complexes with selected binding proteins involved in iron(III) 

uptake.  The investigations can be divided into three distinct areas.  The first 

involves the study of tetradentate siderophores interacting with iron(III) in the 

absence and presence of the periplasmic binding protein CeuE (Chapters 2 and 

3).  The second is the development of a novel hexadentate siderophore mimic to 

be used for the attachment of secondary chemical functional groups (Chapter 4).  

The third involves the modification of a natural siderophore with a fluorescent 

unit, for use as a novel fluorescent probe for investigating integral membrane 

proteins and their movements with the outer cell membrane (Chapter 5). 

 

 



 

 

 

Chapter 2: Tetradentate 

Siderophores, a Biomimetic 

Approach 
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Project Aims 

 

The aim of this chapter was the investigation of a biomimetic model of the 

enterobactin linear dimer interacting with iron(III) in the absence and presence 

of the periplasmic binding protein CeuE.  Characterisation of possible binding 

stoichiometries of the iron(III)-ligand complex under biologically relevant 

conditions; and the determine of the type and strength of interactions of this 

complex system with CeuE. 

 

2.1 Introduction 

 

As outlined in Chapter 1, enterobactin is comprised of a hydrolytically unstable 

tri-lactone backbone.  Hence, enterobactin is prone to degradation in aqueous 

medium and can form three distinct enterobactin fragments, the linear trimer, 

linear dimer and DHBS, each of which mediates iron uptake into bacteria.
1-2

  It 

was therefore of interest to investigate how hydrolysis products, such as the 

tetradentate linear dimer, interact with iron.  In addition, the binding of the 

resulting iron-complex(es) with their cognate iron-uptake proteins was 

investigated. 

 

Due to the chemical complexity of the linear-dimer derived from enterobactin, a 

simplified biomimetic model was used initially to study the potential 

interactions of the linear dimer with metal ions and the periplasmic binding 

protein CeuE.  The LICAM (LInear Catechol AMide) series of compounds was 

selected for this purpose due to their simple chemical structure, which consists 

of two catechol amide groups attached via a linear alkanediyl linker. 
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A number of ligands of this series, 2-,4-,6-LICAM, was prepared previously by 

Weitl et al.
3
  In addition, 3-,5-,8-,9-,10-,12-LICAM were prepared by Bhargava 

et al.
4
, focusing on metal coordination for chelation therapy.  Subsequently, the 

LICAM series of compounds was used for the investigation of binding modes in 

combination with divalent metal centres, such as nickel(II), cobalt(II) and also 

the cis-dioxomolybdenum(VI) unit (MoO2
2+

),
5-7

 as well as the trivalent metal 

centres gallium(III) and iron(III).
8-9

  In order to mimic the enterobactin linear 

dimer successfully, the alkanediyl linker between the two catecholamide 

functional groups should have a similar length as the linear dimer; therefore a 

butylene linker was used first. 

 

H4-4-LICAM 

 

The bis-catecholamide ligand H4-4-LICAM, is comprised of two catechol-

amides linked via a butylene linker.  Compared with the enterobactin linear 

dimer, H4-4-LICAM avoids the chemically complexity of the functional side 

chains, the chiral centres and the chemically unstable ester backbone. 

 

 

 

H4-4-LICAM was first synthesised by Weitl et al. as a precursor for the 

investigation of actinide sequestering agents based on sulfonated catechol 

ligands.
3
  Subsequently, it was investigated as part of a series of tetradentate 

catechol ligands that form five-coordinate organoarsenic complexes.
10-11

  H4-4-

LICAM, along with other similar ligands, was also investigated for chloride 

binding to demonstrate the importance of the hydrogen bonding network around 

the catechol functionality towards anion binding.
12
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Previous synthetic routes towards H4-4-LICAM involve linking 2,3-

dimethoxybenzoyl chloride to 1,4-diaminobutane, followed by deprotection of 

the methyl ethers using boron tribromide.  In some cases, the deprotection was 

reported to work in excellent yields,
3
 however, yields have also been reported to 

be as low as 15%, suggesting that deprotection and/or purification is not 

straightforward.
12

  In addition to the uncertain yields, boron tribromide is a toxic 

reagent.  To avoid these issues a different synthetic route was devised.  

 

2.2 Synthesis of H4-4-LICAM 

 

The synthesis was carried out according to literature procedures with the 

exception of altering the catechol protecting groups from methyl ethers to benzyl 

ethers.
3, 13-15

  This change was made due to the ease of benzyl deprotection 

utilising benzyl hydrogenolysis compared to methyl ether deprotection requiring 

boron tribromide.  

 

The catechol-amide groups were synthesised from 2,3-dihydroxybenzaldehyde.  

First the phenolate oxygen atoms were protected as benzyl ethers, using benzyl 

chloride,
13

 followed by oxidation of the aldehyde group to the corresponding 

carboxylic acid with sodium chlorite and sulfamic acid.
14

  The carboxylate 

functionality was then activated as a succinic ester for the amide coupling, as 

previously reported.
15

  Compound 13 was then reacted with half an equivalent of 

1,4-diaminobutane, yielding the benzyl protected 4-LICAM.  This novel 

compound was characterised using 
1
H, 

13
C NMR and infra-red spectroscopy, 

mass spectrometry, and elemental analysis.  The benzyl ether protecting groups 

were removed using hydrogen over a palladium catalyst, resulting in the 

formation of the final compound H4-4-LICAM, the characterisation data of 

which are consistent with the literature (Scheme 1).
3, 12
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Scheme 1 – Synthesis of H4-4-LICAM.  (a) i) Benzyl chloride, K2CO3, EtOH  ii) 

NaClO2, H3NSO3, acetone/water, 79%; (b) N-hydroxysuccimide, DCC, 1,4-dioxane, 

71%; (c) 1,4-diaminobutane (0.5 eq), NEt3, acetone, 94%; (d) H2, Pd-C 10%, EtOH, 

99%.  Overall yield 52%. 

 

2.3 Ligand-Metal Interactions 

 

Due to the mismatch between the preferred coordination number of iron(III) and 

the denticity of H4-4-LICAM (six and four respectively), it was of interest to 

investigate the speciation of the complexes formed in solution (see Chapter 1).   

 

The literature suggests that many of these ligands can form a range of complexes 

with different binding stoichiometries.  Based on these literature reports, there 

would appear to be three possible structures in which H4-4-LICAM could 

interact with a iron(III) centre.  These are a mononuclear 1:1 complex, a 

dinuclear 2:2 complex, both with solvent molecules filling the vacant 

coordination sites on the metal centre, or a dinuclear triple standard 3:2 complex 

(Figure 23).   
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Figure 23 - Possible iron(III)-4-LICAM complexes that could form in solution. 

 

Stoichiometric Ratio Determination of H4-4-LICAM and Iron(III) using the 

Continuous Variation Method 

 

In order to determine the composition of the ligand-metal complexes formed in 

solution, the method of continuous variation (Job plot) was applied to H4-4-

LICAM and iron.  This method varies the concentrations of metal ([M]) and 

ligand ([L]) whilst allowing the sum of their concentrations to remain constant.  

The evaluation of a unique signal arising from complexation allows the 

determination of the ratio of components within a complex.
16

  

 

The development of a Job plot based on UV-visible spectra, allows the 

monitoring of catecholamide-iron(III) speciation via the ligand-to-metal charge 

transfer (LMCT) band arising from the catechol-iron(III) interaction, under 

biologically relevant conditions once the system has reached equilibrium.
17-19

  

The measurements required for the Job plot were carried out in buffered aqueous 

solution at pH 7.5. Due to the limited solubility of H4-4-LICAM in water, 

DMSO was added.  To ensure consistency, the concentration of DMSO was kept 

to 5% for all samples under investigation. 

 

Initial studies showed that the ferric iron that was added to the samples resulted 

in the formation of insoluble ferric hydroxide species within eight hours.  Only 

in the presence of excess ligand was the iron held in solution by complexation.  
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However, with excess of iron, a visible precipitate would form, which had to be 

prevented as it would alter the final concentration of iron in solution, and hence 

affect the result of the Job plot.  Measuring the UV-visible absorbance of freshly 

prepared samples, before precipitate formation occurred, would not reflect the 

species distribution at equilibrium. 

 

In aqueous conditions at neutral pH, iron(III) readily hydrolyses and 

precipitates, initiated by the formation of small inorganic polymers.  These 

polymers are able to grow into larger clusters, eventually forming colloidal sized 

hydroxide solids of various compositions (Fe
3+

, Fe(OH)
2+

, Fe(OH)2
+
, 

Fe(OH)3(aq)
0
 and Fe(OH4)

-
).

20
 

 

To avoid iron precipitate formation in the samples where an excess of iron is 

required, a second iron chelating ligand had to be introduced to compete with 

the hydroxide ligand.  Nitrilotriacetic acid, (NTA), has previously been used to 

solubilise iron(III) in solution and was reported not to effect the results obtained 

from spectrophotometric titrations.
21-22

  The first investigation, by Scarrow et 

al., examined the complex formation between iron and enterobactin hydrolysis 

products.  The absorbance arising from the LMCT band due to the iron-catechol 

interaction was plotted against the equivalents of iron per ligand.  The resulting 

plot showed that of the enterobactin hydrolysis products DHBS and the linear 

dimer could coordinate to one and two iron centres per ligand respectively.
21

  

 

 

 

The second investigation by Ma et al. was focused on developing a 

fluorescence-based method for pFe
3+

 determination.  The fluorophore chelated 

iron(III) with a well characterised binding constant, while competing ligands 
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were introduced to remove the iron(III) from the fluorophore.  The removal of 

iron(III) would lead to an increase of the fluorescent signal, which could be used 

to calculate the affinity of the ligands for iron(III).
22

  Both studies reported that 

NTA did not interfere to a significant extent with the results, instead it rapidly 

and completely delivered iron to the ligands with catecholate and 3-

hydroxypyridin-4-ones binding moieties.
21-22

 

 

The formation constants of NTA with various metal cations have been 

previously determined.
23

  The reaction of Fe
3+

 with NTA gives FeL, with only 

limited formation of a FeL2 species.  The 1:1 complex was reported to have a 

logK value of 16, while for the formation constant of the 1:2 complex logK was 

8.5.  However, this value was been questioned due to the formation of ferric 

hydroxide under the experimental conditions.
23

  The formation constant of a 

single catechol towards Fe
3+

 is reported to have a logK of 20.  Therefore it 

would be expected that NTA should have minimal competition with catechol 

binding; however, it would still be able to compete with any hydroxide ions to 

stop precipitate formation.
24

  

 

Additional control experiments were carried out to experimentally establish the 

effect of NTA under the experimental conditions used for the Job plot analysis.  

A catecholamide control compound was used to investigate if NTA is competing 

to a significant extent with the catechol functionality for iron and to ensure that 

NTA inhibits iron precipitation under the chosen conditions. 

 

Thus N-ethyl-2,3-dihydroxybenzamide H2-15 was synthesised to act as the 

control.  The bidentate ligand H2-15 was chosen to investigate if a single 

catecholamide unit can displace NTA under the conditions used to form the 

coordinatively saturated mononuclear 3:1 complex, plus potentially, 

coordinatively unsaturated 2:1 and 1:1 complexes.  The presence of the amide 

functionality should keep the electronic and hydrogen bonding properties of the 

catechol ring similar to that of H4-4-LICAM and other natural catecholate 

siderophores.   
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The synthesis utilised the benzyl protected activated succinic ester catechol unit 

(13), which was coupled to ethylamine.
25

  The benzyl protecting groups were 

removed using catalytic hydrogenation.  The product was purified by 

sublimation, to give product H2-15 in an overall yield of 53%. The 

characterisation data are consistent with literature data (Scheme 2).
26

  The 

synthesis, characterisation and Job plot analysis of H2-15 was completed by BSc 

project student Bethany Peeters under my supervision (2012-2013). 

 

 

 

Scheme 2 – Synthesis of H2-15.  (a) 2.0 M ethylamine, NEt3, THF, 72%; (b) H2, Pd-C 

10%, EtOH, 74%.  Overall yield 53%. 

 

The stoichiometric ratio of compound H2-15 and iron(III) was then determined 

in the presence and absence of NTA, using either a 10 mM Fe(NO3)3 + 10 mM 

NTA aqueous stock solution, or a 10 mM Fe(NO3)3 aqueous stock solution with 

no NTA present as the iron source.  The samples were prepared with the iron 

solution being introduced last to minimise precipitation for the samples with no 

NTA.  The samples were thoroughly mixed, and the absorbance reading taken 

within a minute to minimise precipitate formation in the samples with no NTA.  

Data points are the average of duplicate runs, with the standard deviation used as 

the error of the data points (Figure 24).  
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Figure 24 - Job plot for the binding of H2-15 to iron (III), obtained by following the 

absorbance at 512 nm in the presence (red diamonds) and absence (blue triangles) of 

NTA.  The absorbance values are averages of two experiments and the error bars 

indicate the differences between the runs.  Plot recorded in 0.1 M TrisHCl pH 7.5, 5% 

DMSO.   

 

The maximum of the Job plot obtained indicates a ligand-to-metal ratio of 3:1 in 

both cases, as expected for a bidentate ligand that coordinates to a metal centre 

with a preferred coordination number of six.  Visual inspection of the samples 

confirmed that the presence of NTA prevented the iron from precipitating, which 

together with the similarity between the two plots indicates that NTA does not 

interfere with the coordination of 15
2-

 to a ferric metal centre. It was therefore 

concluded that NTA is a suitable additive.  

 

The formation of more than one species becomes apparent when examining the 

whole set of UV-visible spectra obtained (Figure 25).  The maximum initially 

observed at 512 nm first increases in intensity, then shifts to 560 nm.  The 

maximum at 560 nm is indicative of a bis(catechol)iron(III) species, as reported 

previously.
17, 24, 27

  The bathochromic shift continues until the maximum is 

located at 592 nm, which is still within the quoted range for 

bis(catechol)iron(III) complexes.  There is no evidence of a 

mono(catechol)iron(III) complex, which has a reported λmax of 680-700 nm.
27-28
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Figure 25 – Selected UV-visible absorbance spectra of H2-15 and Fe
III

(NTA), 

recorded in the presence of NTA.  Spectra recorded in 0.1 M TrisHCl pH 7.5, 5% 

DMSO.  Spectra ordered from black (H2-15) to light blue ordered by ligand to metal 

ratio. 

 

Job Plot Analysis of H4-4-LICAM and Iron(III) Nitrate in the Presence of 

NTA 

 

A Job plot investigation with H4-4-LICAM was carried out under analogous 

conditions as H2-15.  However, this time NTA was always present in equimolar 

amounts to iron to allow the solutions time to equilibrate without the formation 

of iron precipitate.  When preparing the samples for the UV-visible 

spectroscopic investigation, it was observed that at close to a 1:1 metal-to-ligand 

ratio the solutions were initially red but then the colour darkened progressively 

over time, giving a final colour of purple.  To characterise the colour change in 

more detail, a kinetic experiment was conducted, monitoring the change in 

absorbance at 498 nm and 552 nm over time.  Samples with H4-4-LICAM to 

iron(III) ratios of 3:2, 1:1 and 1:2 were monitored over 6 minutes at 5 °C (Figure 

26). 
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Kinetic Run of 3:2 H4-4-LICAM and Fe(III) at 5°C

0.4

0.5

0.6

0.7

0.8

0 60 120 180 240 300 360

Time / s

A
b

s
o

rb
a

n
c
e

498 nm

552 nm

Kinetic Run of 1:1 H4-4-LICAM and Fe(III) at 5°C

0.45

0.5

0.55

0.6

0.65

0 60 120 180 240 300 360

Time / s

A
b

s
o

rb
a

n
c
e

498 nm

552 nm

Kinetic Run of 1:2 H4-4-LICAM and Fe(III) at 5°C

0.3

0.34

0.38

0.42

0.46

0 60 120 180 240 300 360

Time / s

A
b
s
o
rb

a
n
c
e

498 nm

552 nm

Kinetic Run of 3:2 H4-4-LICAM and Fe(III) at 5°C

0.4

0.5

0.6

0.7

0.8

0 60 120 180 240 300 360

Time / s

A
b

s
o

rb
a

n
c
e

498 nm

552 nm

Kinetic Run of 1:1 H4-4-LICAM and Fe(III) at 5°C

0.45

0.5

0.55

0.6

0.65

0 60 120 180 240 300 360

Time / s

A
b

s
o

rb
a

n
c
e

498 nm

552 nm

Kinetic Run of 1:2 H4-4-LICAM and Fe(III) at 5°C

0.3

0.34

0.38

0.42

0.46

0 60 120 180 240 300 360

Time / s

A
b
s
o
rb

a
n
c
e

498 nm

552 nm

 

Figure 26 - Kinetic traces recorded for 1:2, 1:1 and 3:2 ratios of H4-4-LICAM and 

Fe
III

(NTA), following the absorbance at 498 nm (red diamonds) and 552 nm (blue 

triangles) over 6 minutes.  Spectra recorded every 6 seconds, solution containing 0.1 M 

TrisHCl pH 7.5, 5% DMSO at 5 °C.  Concentration of H4-4-LICAM; 1.3x10
-4

 M; 

2.0x10
-4

 M; 2.4x10
-4 

M for 1:2; 1:1 and 3:2 samples. 
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Solutions with ratios of 1:1 and 1:2 showed a change from red to purple over 

time, due to the increase of absorbance at 552 nm and a decrease in the 

absorbance at 498 nm, whilst the solution with a ratio of 3:2 showed no colour 

change.  These kinetic runs show that the equilibration of the solution is 

essentially complete after 6 minutes at 5 °C, yet there are clearly at least two 

different chemical species within the solution, possessing different λmax 

absorbance values.  Therefore the Job plot samples are required to stand for a 

minimum of 5 minutes at room temperature in order to ensure that the samples 

are at equilibrium before UV-visible absorbance spectra are recorded. 

 

The Job plot of H4-4-LICAM and iron(III) in the presence of NTA was then 

conducted as previously stated, with the samples now left to reach equilibrium 

before the absorbance values were recorded.  The UV-visible data revealed that 

there are two species present in solution with characteristic λmax values of 498 

nm and 552 nm (Figure 27).  Job plot analysis carried out at these two 

wavelengths indicates two binding ratios.  The absorbance at 498 nm indicates a 

3:2 binding ratio, whilst the absorbance at 552 nm shows 1:1 binding (Figure 

28).  This is consistent with the maximum absorbance values of approx 500 nm 

for a tris(catechol)iron(III) and 550 nm for the bis(catechol)iron(III) 

complexes.
17, 24, 27, 29

  The kinetic data suggests that in samples between the 3:2 

and 1:1 ligand-to-metal ratio that a tris(catechol)iron(III) complex forms prior to 

the bis(catechol)iron(III) complex, before reaching equilibrium (Figure 29). 
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Figure 27 - Selected UV-visible absorbance spectra of H4-4-LICAM and Fe
III

(NTA), 

used for the Job plot analysis.  Spectra recorded in 0.1 M TrisHCl pH 7.5, 5% DMSO.  

Spectra ordered from black (H4-4-LICAM) to light blue ordered by ligand to metal 

ratio; (95:5, 85:15, 78:22, 68:32, 60:40, 50:50, 46:54, 30:70, 10:90).  [M] + [L] = 0.4 

mM. 
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Figure 28 - Job plot for the binding of H4-4-LICAM and Fe
III

(NTA), obtained by 

following the absorbance at both 498 nm (red diamonds) and 552 nm (blue triangles).  

The absorbance values are averages of two experiments and the error bars indicate the 

differences between the runs.  Plot recorded in 0.1 M TrisHCl pH 7.5, 5% DMSO. 
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Figure 29 - Purposed schematic mechanism of formation of different 

(catechol)iron(III) complexes within samples for Job plot analysis.  Actual speciation 

cannot be determined from these experiments. 

 

In conclusion these results suggest that two species can form in solution and this 

process is dependant on relative concentrations of H4-4-LICAM and iron(III).  

One has a ligand to metal ratio of 3:2, with a maximum absorbance for the 

LMCT band at 498 nm, consistent with a tris(catechol)iron(III) complex;  the 

other has a ligand to metal ratio of 1:1 and a maximum absorbance value for the 

LMCT band of 552 nm, consistent with a bis(catechol)iron(III) complex.  These 

results only show that the species present have a ligand to metal ratio of 3:2 and 

1:1, and the speciation cannot be distinguished between species with the same 

stoichiometry, such as an m(M2L3) or an n(M2L3) structure. 

 

1
H NMR Spectroscopic Analysis of H4-4-LICAM and Gallium(III) Nitrate 

 

To study speciation in solution in more detail, 
1
H NMR spectroscopy was 

utilised.  Due to the paramagnetic nature of iron(III), gallium(III) was used as a 

diamagnetic substitute, as it has similar coordination chemistry and physical 

properties to iron(III).
30

  By preparing samples at known ratios of H4-4-LICAM 

and Ga(NO3)3 and by comparing the aromatic region of the 
1
H NMR spectrum 

of H4-4-LICAM, different species were identifiable.  To avoid competition from 

the protons that dissociate upon metal binding, four equivalents of sodium 

hydroxide with respect to H4-4-LICAM were added to each sample.  Due to the 

low sensitivity of the NMR technique, higher concentrations of H4-4-LICAM 
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were required than for the UV-visible experiments.  This required the percentage 

of d6-DMSO to be increased, hence the experiments were conducted in a solvent 

mixture of 5:1 d6-DMSO:D2O.  In order to ensure equilibrations, the spectra 

were recorded after 2 days and again after 30 days from sample preparation; the 

samples were kept at room temperature (Figure 30). 

 

Figure 30 - Aromatic region of the 
1
H NMR spectra of 4-LICAM

4-
 in a mixture of d6-

DMSO/D2O with varying amounts of Ga(NO3)3 present, with 4 equivalents of NaOH 

with respect to H4-4-LICAM; (●) 4-LICAM
4-

; (○) Complex A; (♦) Complex B. 

 

The aromatic region of the 
1
H NMR spectrum of 4-LICAM

4-
 shows the triplet 

(5.93 ppm) and the two doublets (6.24 ppm and 6.73 ppm).  The doublets have 

lost the defined splitting pattern and are observed as two broad signals, 

potentially as a result of delocalisation of charge due to the deprotonated 

catechol moiety.  The 
1
H NMR spectrum of the solution of H4-4-LICAM and 

gallium(III) present in a 3:2 ratio, recorded after two days, show the formation 

of species A (complex A, ○), with the signals arising from free 4-LICAM
4-

 (●) 
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still present.  The signals for complex A are shifted downfield compared to those 

of 4-LICAM
4-

, showing that the aromatic protons are deshielded.  After 30 days, 

the signals due to free 4-LICAM
4-

 are absent, with only the signals due to 

complex A remaining.  In comparison, a solution containing a 1:1 ratio of H4-4-

LICAM and gallium(III) show only signals for complex A after 2 days whereas 

30 days later, a second set of signals appear, which is assigned as complex B (♦).  

The resonances are found further downfield to those of both complex A and free 

4-LICAM
4-

.  In the solution containing a 2:3 ratio of H4-4-LICAM and 

gallium(III) solution, the signal for complex A is still present, and the signals 

associated with complex B are also present, with little change occurring over 30 

days. 

 

The aromatic triplet signals arising from complexes A and B appear upfield 

compared to H4-4-LICAM, and downfield when compared to 4-LICAM
4-

.  This 

is consistent with a shielding effect on the aromatic protons due to additional 

electron density on the ring system, when comparing to H4-4-LICAM.
31-32

  

Therefore it can be concluded that complex A has a higher negative charge per 

catechol than complex B, as it is further upfield compared to complex B.  This 

suggests that complex A is the species with 3:2 ligand to metal ratio and 

complex B is the species with a 1:1 ratio, due to the higher charge density of the 

3:2 complex compared to the 1:1 complex (Table 3). 
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1
H NMR shift of 

aromatic triplet / ppm 

Species Formal Charge per 

Catechol 

5.93 4-LICAM
4- 

-2 

6.09 Complex A, m(M2L3)
6- 

-1* 

6.22 Complex B, m(ML)
- 

-0.5* 

6.67 H4-4-LICAMǂ 0 

 

Table 3 - Comparison of 
1
H NMR shifts for the aromatic triplet recorded in 5:1 d6-

DMSO : D2O. * Charge per catechol calculated assuming complex A has a 3:2 ligand to 

metal ratio and complex B has a ligand to metal ratio of 1:1, with neutral donors in 

vacant coordination sites. ǂ H4-4-LICAM was recorded in d6-DMSO. 

 

The hypothesis that complexes A and B have a 3:2 and a 1:1 ligand to metal 

ratio, respectively, is also supported by the change in the relative ratio of 

complexes A and B over time in both the 3:2 and 1:1 samples.  Complex A is 

shown to slowly equilibrate to form a clean spectrum in the 3:2 sample, 

suggesting that it possesses a 3:2 stoichiometry.  

 

The 1:1 appears to yield a clean spectrum, however, after allowing the sample to 

equilibrate, signals arising from complex B also become apparent.  The resulting 

clean spectrum in the 1:1 sample after 2 days suggests that all the 4-LICAM 

must be bound in the form of complex A as there are no other signals.  This 

suggests there must be 'free' gallium(III) within the sample, however, as the 

gallium source is Ga(NO3)3 it possesses no detectable protons to be observed in 

the 
1
H NMR spectrum.  This 'free' gallium(III) is presumably the driving force 

for the slow equilibration, dissociating some of the complex A to form complex 

B.  The fact that the 2:3 sample possesses signals for both complex A and 

complex B, rather than forming solely a 1:1 complex as the UV-visible data 

would suggest, shows that the equilibrium between complex A and B is clearly 

altered from that of the UV-visible experiment, likely due to the change in the 

solvent and pH of the system. 
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To confirm the assignment of complex A possessing a 3:2 ligand to metal ratio 

and to determine whether complex B is the 1:1 complex or the 2:2 complex, a 

diffusion-ordered spectroscopy (DOSY) experiment was carried out (Figure 31).  

The DOSY NMR experiment is a pseudo 2D technique, which presents 

chemical shifts against diffusion coefficients of the chemical species in solution.  

The diffusion coefficients can be determined from the NMR signal intensity 

decay, in a sequence of 1D spectra recorded with increasing amplitudes of 

pulsed field gradients.  This can be used to map the translational behaviour of 

the species within solution, which can then be used to calculate the diffusion 

coefficients of the species within solution.
33-34

 

 

Figure 31 - 1H DOSY NMR spectrum of the 1:1 sample recorded after 1 month of 

equilibration in 5:1 d6-DMSO : D2O. Representations: (○) Complex A; (♦) Complex B. 

 

The DOSY NMR shows that there are only two species that have a defined 

hydrodynamic radius.  The larger set of peaks, which originates from complex 

A, has a diffusion coefficient of 0.65 x 10
-10

 m
2
 s

-1
, which is approximately half 

the value of the smaller set of signals with a diffusion coefficient of 1.1 x 10
-10

 

m
2
 s

-1
.  As the diffusion coefficient is related to the size of the complex via the 

Stokes-Einstein equation (Equation 1), the diffusion coefficients indicate that 

complex A is approximately double the size of complex B.
35
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D = (1/6r)kT 

Equation 1 - Stokes-Einstein equation. Key;  - viscosity, r - radius of a spherical 

particle, k - Boltzmann constant, T - temperature. 

 

The DOSY spectrum was recorded at 295 K, in a DMSO : D2O 5:1 mixture, 

which has a viscosity () close to 2.6 x 10
-3

 Pa s.
36

  Due to the hydroscopic 

nature of d6-DMSO, the actual ratio of DMSO to D2O may differ from the 

quoted 5:1 ratio and therefore an error of ± 10% on the viscosity value has been 

calculated and the estimated values for the radii of complexes A and B can be 

calculated to be 11.6-14.2 Å and 6.8-8.4 Å, respectively. 

 

For comparison, an estimation of the radii of the proposed complexes can be 

obtained through molecular modelling using the computer program Avogadro 

(Figure 32).
37

  The models were built and energy minimised to get an estimation 

of molecular size.  It is uncertain which ligands are occupying the available 

coordination sites in the 1:1 complex.  DMSO molecules have been modelled in 

to represent coordinating solvent.  Avogadro was then used to calculate the 

centre of mass for the modelled complexes.  The centre of mass can be used to 

estimate the radius of the complexes by measuring the distance from the centre 

of mass to the outer atom, which will correspond to the overall radii of the 

complexes when tumbling in solution.  The estimations for a mononuclear 1:1 

complex and a 3:2 triple helicate are 6.0 Å and 10.5 Å, respectively.  These radii 

are slightly lower than those calculated from the DOSY experiment, as expected 

since the modelling does not account for solvation effects, which have an 

important effect on diffusion coefficients.
38

  The 2:2 complex has an estimated 

radius of 9.2 Å when modelled using Avogadro, which is larger than the DOSY 

experiment for complex B.  This does not include any solvation effects, which 

would increase the complex radius, suggesting that complex B is a 1:1, rather 

than a 2:2 complex. 
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Figure 32 - Models of the proposed 3:2 triple helical [Fe2(4-LICAM)3]
6-

 and 1:1 

mononuclear [Fe(4-LICAM)]
- 

complexes, showing the centre of mass calculated by 

Avogadro and distance to the outer most atom. Key; grey - carbon, blue - nitrogen, red - 

oxygen, yellow - sulphur, white - hydrogen, coral sphere - iron, light blue - centre of 

mass. 

 

In conclusion, the Job plot analysis shows that H4-4-LICAM can adopt two 

binding stoichiometries with iron(III), depending on the relative concentration of 

H4-4-LICAM and iron(III) in solution.  A similar dependence on relative 

concentrations can be seen in the 
1
H NMR spectra with gallium(III), with two 

complexes observed under different conditions.  These complexes are likely to 

be a complex with 3:2 ligand to metal ratio and a complex with 1:1 ligand to 

metal ratio.  The DOSY NMR experiment indicates that the 3:2 complex is 

approximately twice the size of the 1:1 complex, with analysis of the diffusion 

coefficients suggesting that the approximate size of the complexes fit the 

assignment of the complexes as a 3:2 triple helicate and a 1:1 monomeric 

complex. 
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2.4 CeuE-Complex Interactions 

 

As shown previously a range of different ferric-siderophore complexes can be 

formed in solution.  The aim of this study was to clarify which of these 

structures interact with the ferric-siderophore transport PBP’s, and to 

characterise these ferric-siderophore-protein interactions.  As outlined in 

Chapter 1, the PBP for the enterobactin uptake system in C. jejuni is CeuE.
39-40

  

 

The initial sequence identification of CeuE was taken from Uniprot (code 

Q0P8Q4).
41

  As CeuE is located in the periplasm it has a signal peptide at the 

start of the sequence in order to transport the protein into the periplasm of the 

organism.  The signal peptide by signal peptide prediction programs; SignalP 

4.0
42

, Signal-3L
43

 and LipoP
44

 suggest the signalling peptide is 20 amino acids 

long.  Therefore the CeuE sequence numbering relates to the mature protein, 

omitting the first 20 amino acids from the full sequence (Cysfull21 → Cysmature1) 

(Figure 33). 

 

 

 

Figure 33 - Full sequence of CeuE with the predicted signalling peptide highlighted as 

the black triangles. Image produced using ESPript.
45 
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Expression and Purification 

 

In previous work conducted by Axel Müller, it was shown that the first 23 amino 

acids of the mature CeuE are disordered and removal of this disordered region 

via limited proteolysis was required before crystals were able to be grown.
39

  

Therefore a new construct of CeuE was designed to start at Leu24 and was 

successfully amplified from genomic C. jejuni DNA.  The primers used to 

perform PCR are shown in Table 4. 

 

Forward Primer Reverse Primer 

5’CCAGGGACCAGCAATGTTGCCT

ATTAGTATGAGCGATGAG3’ 

5’GAGGAGAAGGCGCGTTATTATT

TTACAGCGTTTTTGATTTC3’ 

Table 4 - Primers used for gene amplification. 

 

The PCR product was then inserted into the pET-YSBLic system yielding a 

recombinant plasmid, which was subsequently transferred and grown in the 

expression strain BL21 E. coli.  Once expressed, purification was completed 

over three steps.  First, CeuE was purified using nickel affinity column 

chromatography utilising the cleavable His-tag that was introduced by the pET-

YSBLic vector.  The His-tag was then removed using C-protease in a 100:1 ratio 

in a dialysis bag for 48 hours at 4 °C to remove any imidazole in the buffer, as 

well as removing the His-tag.  SDS PAGE analysis revealed that only half of the 

His-tags had been removed (Figure 34). 
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Figure 34 - SDS PAGE analysis of CeuE protein, after 48 hours at 4 °C with C-

protease in a 100:1 ratio.  Lane 1: Before treatment with C-protease; Lanes 2 and 3: 

CeuE after treatment of C-protease; Lanes 4-8: Cut out work not relating to this project; 

Lane 9: Ladder.  

 

The protein was therefore subjected to a second C-protease digestion, this time 

in a 50:1 ratio for 18 hours at 4 °C.  SDS PAGE analysis then confirmed the 

removal of almost all of the histidine tags.  This allowed the second step of 

purification to be completed, using nickel affinity column chromatography to 

separate the His-tag free CeuE from other nickel binding proteins.  The final 

step was size exclusion chromatography to yield pure CeuE.  Fractions were 

checked by SDS PAGE analysis and pooled (lanes 6 and 7 in Figure 35).  The 

sample was concentrated to 18 mg/mL, and divided into 50 μL samples and 

flash frozen in liquid nitrogen and stored at -80 °C until required with the total 

protein produced being 19.8 mg from one litre of culture (see section 7.3). 
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Figure 35 – A) UV-visible trace of final gel-filtration column monitoring at 280 nm 

and 254 nm.  B) Final SDS PAGE analysis of CeuE, before and after the gel filtration 

step.  Lane 1: Before Gel filtration column; Lanes 2-8: Fractions from gel filtration 

column; Lane 9: Molecular weight ladder.  Pure CeuE in lanes 6 and 7 are associated 

with peak at 65 mL in UV-visible trace. 
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Crystallisation of apo-CeuE 

 

Initial crystallisation trials were conducted on apo-CeuE, using 96 well, sitting 

drop, PACT and Hampton commercial crystallisation screens.  A suitable crystal 

was selected from well B2 in the PACT screen (0.1 M MIB buffer, pH 5, 25% 

(w/v) PEG 1500), and a data set was collected at Diamond synchrotron beamline 

i03.  The structure was solved by means of molecular replacement with 

MOLREP
46

 using one of the CeuE peptide chains from the ferric-MECAM 

structure as a model (PDB code: 2CHU)
40

.  Refinement was completed using 

REFMAC5
47

 and Coot.
48

  The crystal was in the space group P1, with three 

CeuE monomers in the asymmetric unit.  The structure is that of a typical PBP 

with two domains linked by a -helical backbone (Figure 36). 

 

Figure 36 - Ribbon representation of apo-CeuE with colours blended from cyan, N-

terminus, to dark blue, C-terminus. 
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 CeuE {CeuE[Fe(4-LICAM)]} 

Data collection   

Diffraction Source DLS Beamline i03 DLS Beamline i24 

Wavelength / Å 0.976 0.978 

Temperature / K 100 100 

Crystal Data   

Space Group P1 P212121 

a, b, c / Å 56.95, 62.74, 67.98 60.42, 66.89, 67.30 

α, β, γ / ° 82.19, 76.74, 75.96 90, 90, 90 

Resolution / Å 65.93 - 1.69 44.96 - 1.61 

Unique Reflections 95173 28929 

Completeness / % 96.8 99.5 

Redundancy 2.4 5.7 

Rmerge 0.04 0.05 

Mean [I/σ (I)] 11.1 18.3 

Refinement 

Statistics 

  

Reflections, working 88200 20945 

Reflections, test 4647 1146 

Resolution Range / 

Å 

65.01 - 1.71 33.65-1.89 

R-factor 0.195 0.261 

Rfree 0.227 0.309 

Mean B Factors / Å
2
 29.4 19.5 

RMS deviation 

from ideal 

  

Bond length / Å 0.019 0.016 

Bond angles / ° 2.064 2.011 

PDB Code 3ZKW 3ZK3 

Table 5- Data collection and refinement statistics of apo-CeuE and {CeuE[Fe(4-

LICAM)]} structures. 
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As discussed in Chapter 1, a common feature of PBPs is the presence of two 

domains that are connected through either a long -helix or two or three -

strands, producing a bi-lobal structure.  The apo-CeuE model fits this description 

and has a long -helical backbone.  The cleft between the two lobes of the 

model is the known binding pocket of CeuE, which is dominated by a central 

positively charged electrostatic region (Figure 37).  The long connective -

helical backbone allows PBP’s to move the two domains towards each other for 

substrate binding.
49

  However, superimposition of the apo-CeuE structure with 

{CeuE2[Fe2MECAM2]} (PDB: 2CHU) shows little movement in CeuE upon 

substrate binding (RMS 0.72), possibly due to the main driving force for 

substrate binding being electrostatic, rather than coordinative (Figure 38). 

 

 

 

Figure 37 - Surface electrostatic representation of apo-CeuE, negative charge shown in 

red and positive charge in blue. 



         Chapter 2 

          84 

 

Figure 38 - Ribbon representation of apo-CeuE (PDB code 3ZKW) superimposed 

with the dimeric {CeuE2[Fe2MECAM2]} (PDB code 2CHU) structure.
40

  ProSMART 

analysis shows similar regions in yellow and regions of difference in red (white for 

unaligned).
50

  

 



         Chapter 2 

          85 

 

Crystallisation of the CeuE, Ferric-4-LICAM Structure 

 

The growth of apo-CeuE crystals and X-ray diffraction analysis to afford a 3D 

model structure provided the basis to determining how ferric 4-LICAM interacts 

with CeuE.  Co-crystallisation screens were set up in order to obtain single 

crystals for X-ray diffraction analysis.  A solution of ferric 4-LICAM was 

prepared from H4-4-LICAM and an aqueous solution of FeCl3 in methanol.  The 

solvent was removed to yield a purple solid, which subsequently was dissolved 

in DMF to produce a concentrated stock solution of ferric 4-LICAM.  This stock 

solution was mixed with the CeuE protein, and a purple precipitate formed.  The 

precipitate was removed by centrifugation, leaving a clear lightly purple 

solution, which was used for crystallisation using commercially available PACT 

and Hampton screens. 

 

Crystals grew in many of the crystallisation wells but few produced single 

crystals suitable for X-ray diffraction analysis.  A crystal found in well G5 of the 

PACT screen (0.2 M sodium nitrate, 0.1 M Bis Tris propane pH 7.5, 20% (w/v) 

PEG 3350) diffracted to approximately 2 Å resolution upon in-house testing on 

a Rigaku MicroMax 007HF generator with an MAR 345 imaging plate detector.  

The crystal was sent to the Diamond light source (DLS) synchrotron beamline 

i24 for full data collection.  The structure was solved as described for apo-CeuE 

(Figure 39).  The crystal was in the space group P212121, with one CeuE 

monomer in the asymmetric unit, however, the crystal was found to be twinned. 
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Figure 39 - Ribbon representation of {CeuE[Fe(4-LICAM)]} with colours blended 

from cyan, N-terminus, to dark blue, C-terminus.  His227, Tyr288 and Fe-4-LICAM 

shown as cylinders.  Key: binding residues, green - carbon, blue - nitrogen, red - 

oxygen; Fe-4-LICAM, grey - carbon, blue - nitrogen, red - oxygen; Fe - coral. 



         Chapter 2 

          87 

 

 

 

 

 

Figure 40 - Stereoview of the iron chelating ligands in the {CeuE[Fe(4-LICAM)]} 

with electron density map shown as 2Fobs-Fcalc, contoured at 1σ and chemical 

representation showing key interactions of Fe-4-LICAM.  Key: binding residues, green 

- carbon, blue - nitrogen, red - oxygen; Fe-4-LICAM, grey - carbon, blue - nitrogen, red 

- oxygen; Fe - coral. 

 

The {CeuE[Fe-4-LICAM]} complex is the first to offer structural insights into 

the binding of a tetradentate siderophore to a PBP.  The structure shows that 

ferric-4-LICAM has a 1:1 metal to ligand stoichiometry and binds to a single 

CeuE monomer.  This is in a similar fashion to the binding of ferric-

bacillibactin, ferric-enterobactin and ferric-MECAM to FeuA from B. subtilis.
51-

52
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The remaining two free coordination sites of the iron centre are occupied by the 

side chains of two amino acid residues, His227 and Tyr288.  The iron is bound 

in a distorted octahedral geometry (Figure 41).  The bond lengths are shown in 

Table 6 and range from 1.9 Å to 2.3 Å, consistent with previous known catechol 

iron bond lengths both in the absence of protein,
9
 and when bound to their 

respective proteins.
40, 51-53

  The iron-tyrosine and the iron-histidine bond lengths 

are 1.9 Å and 2.2 Å, respectively, which are typical for iron-complexes
54

 and 

match those in the structure of the ion transporter cFbpA from C. jejuni, in 

which Fe(III) is bound to four tyrosine and one histidine residues
55

 and also 

FbpA from H. influenzae in which Fe(III) is bound to two tyrosine and one 

histidine residues (PDB codes: 1Y4T, 3OD7).
56
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Figure 41 - Coordination of [Fe(4-LICAM)] in {CeuE[Fe(4-LICAM)]}.  Key; CeuE 

residues, green - carbon, blue - nitrogen, red - oxygen; 4-LICAM, grey - carbon, blue - 

nitrogen, red - oxygen; Fe - Coral sphere. 

 

Atom Bond Length / Å 

CatO23 - Fe 1.9 

CatO24 - Fe 2.0 

CatO25 - Fe 2.2 

CatO26 - Fe 2.3 

TyrO - Fe 1.9 

HisN - Fe 2.2 

 

Table 6 - Bond distances between coordinating atoms and the iron centre. 

 

The bond angles in the {CeuE[Fe(4-LICAM)]} crystal, Table 7, deviate from a 

perfectly octahedral geometry, consistent with other ferric-siderophores bound 

to their respective proteins.
40, 52
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Bond Bond Angle / ° Deviation from 

Ideal / ° 

CatO23-Fe-CatO24 113 23 

CatO23-Fe-CatO25 54 -36 

CatO23-Fe-CatO26 104 14 

CatO23-Fe-HisN 92 2 

CatO24-Fe-CatO26 93 3 

CatO24-Fe-HisN 101 11 

CatO25-Fe-CatO26 77 -13 

CatO25-Fe-HisN 94 4 

TyrO-Fe-CatO24 105 15 

TyrO-Fe-CatO25 88 -2 

TyrO-Fe-CatO26 77 -13 

TyrO-Fe-HisN 84 -6 

CatO23-Fe-TyrO 170 10 

CatO24-Fe-CatO25 161 -19 

CatO26-Fe-HisN 159 -21 

 

Table 7 - A comprehensive list of bond angles between coordinating atoms to the iron 

centre and their deviation from the ideal octahedral geometry. 

 

Superimposition of the apo-CeuE model onto {CeuE[Fe(4-LICAM)]}, shows 

that there is minimal structural change upon ligand binding (RMS 0.88), (Figure 

42).  The area of the largest structural change is around His227, which is the 

residue that binds to the iron centre.  His227 is located on a loop, which is not 

surrounded by major α-helices or β-sheets. 
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Figure 42 - Ribbon representation of apo-CeuE (PDB code 3ZKW) superimposed with 

the dimeric {CeuE[Fe(4-LICAM)]} (PDB code 3ZK3) structure.  ProSMART analysis 

shows similar regions in yellow and regions of difference in red (white for unaligned).
50

 

4-LICAM shown as cylinders- Grey, carbon - blue, nitrogen - red, oxygen; Fe - coral. 

 

In the {CeuE2[Fe2MECAM2]} structure the His227 loop is also disordered and 

was therefore excluded from the final model.  Unlike the histidine residue, 

which seems to be flexible, the tyrosine residues of the binding pockets of the 

two structures are found in the same location.  The main difference between the 

two is that in {CeuE2[Fe2MECAM2]}, Tyr288 donates a hydrogen bond to the 

complex, while in {CeuE[Fe(4-LICAM)]}, it coordinates directly to the iron 

centre. 

 

Sequence alignment of CeuE with the related ferric catecholate siderophore 

uptake proteins; YclQ, VctP and FetB, using T-coffee
57

 shows that the 

coordinating histidine and tyrosine residues are conserved among these proteins 

(Figure 43). 
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Figure 43 - Sequence alignment of selected PBPs: CeuE (C. jejuni), YclQ (B. subtilis), 

VctP (V. cholerae) and FetB (N. meningitidis), performed using T-coffee.
57

  Red block 

colours show fully conserved residues; red triangles show the position of basic triad of 

arginine residues; blue stars indicate position of coordinating histidine and tyrosine 

residues.  Image produced using ESPript.
45 

 

The full CeuE sequence can also be queried using a BLAST+
58

 search, which 

results in a large number of homologous proteins from a wide range of bacteria 

(Figure 44).  Both alignments show the histidine and tyrosine residues and the 

basic triad of arginine residues fully conserved.  The glutamic acid residues 

proposed for docking onto the inner membrane protein complex (E123 and 

E254), as outlined in Chapter 1, are present in all but one sequence (B. subtilis, 

YclQ).  In YclQ, the glutamic acid (E123) has mutated to an aspartic acid 

(D123), which presumably should be able to complete a similar role to the 

glutamic acid. 
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Continued… 
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Continued… 
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Continued… 
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Figure 44 - BLAST+
58

 search results of homologous proteins to CeuE.  Aligned 

using T-Coffee
57

 and image produced using ESPript.
45

  Red block colours show fully 

conserved residues; red triangles show the position of basic triad of arginine residues; 

blue starts indicate position of coordinating histidine and tyrosine residues. 
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The His227 loop and Tyr288 positioning can also be compared with the 

structurally related proteins, VctP and YclQ, for which the apo-forms have also 

been structurally characterised.
59-60

  These structures both show the histidine and 

tyrosine in the same topological location as CeuE, with the YclQ structure 

showing reduced electron density around the histidine loop, which also supports 

that this histidine is flexible.  

 

The conservation of the histidine and tyrosine suggests a biological role in these 

proteins and hence could be part of a mechanism that enables certain PBPs to 

bind more than one type of ferric siderophore.  The flexible loop of the His227 

would enable this residue to coordinate if a tetradentate siderophore binds to the 

protein, but would also allow it to fold away from the binding pocket if a 

hexadentate siderophore is bound.  The Tyr288 residue is well placed for either 

hexadetante or tetradentate binding, either acting as a hydrogen bond donor or as 

a directly coordinating ligand towards the metal centre according to the type 

(hexa- or tetradentate) of ligand present (Figure 45).  This adaptor mechanism 

may give a biological advantage if it could enable the uptake of multiple iron-

complexes via a singular system. 

 

 

Figure 45 - Schematic diagram of a potential mechanism for both hexadentate and 

tetradentate binding in the binding pocket of CeuE. 



         Chapter 2 

          98 

 

Circular Dichroism and Fluorescence Biophysical Measurements 

 

Octahedral complexes with two cis-positioned bidentate ligands are chiral.
61

  

The chirality at the iron centre in the {CeuE[Fe(4-LICAM)]} crystal structure is 

Λ, as seen in other ferric siderophore bound proteins, such as 

{CeuE2[Fe2MECAM2]}, {FeuA[Fe(MECAM]}, {FeuA[Fe(enterobactin)]} and 

{FeuA[Fe(baillibactin)]} (Figure 46).
40, 52, 62

   

 

 

Figure 46 - Metal centre chirality in cis-bis(bidenate) complexes in comparison with 

the {CeuE[Fe(4-LICAM)]} crystal structure.  Key; CeuE residues, green - carbon, blue 

- nitrogen, red - oxygen; 4-LICAM, grey - carbon, red - oxygen; Fe - Coral sphere. 

 

To confirm that the Λ-configuration is preserved in solution, circular dichroism 

(CD) was used.  The CD spectra were recorded in the wavelength range of the 

LMCT band arising from the catechol-iron interaction, in aqueous TrisHCl 

buffer solution at pH 8 (Figure 47).  As expected, ferric-4-LICAM in the 

absence of CeuE does not preferentially absorb left or right polarised light, 

showing that there is a racemic mixture of both Λ and Δ-configured complexes 

in solution.  When CeuE is present the CD spectrum contains a broad negative 

band with a minimum at 400 nm and the positive band with a maximum at 595 

nm, giving an overall positive Cotton effect, a feature previously shown for 

catechol systems as being indicative of the Λ-configuration.
31, 63-64

  There is also 

a large negative feature in the spectrum at 320 nm, which is often part of the CD 

spectrum for iron-bound catecholamides, known to be a ligand based, n→ π* 
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transition.
21

  Due to the CD spectra of ferric-4-LICAM showing a racemic 

mixture, the preference of the Λ-configuration in the presence of CeuE must be 

due to the environment within the binding pocket of the protein.   
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Figure 47 - Circular dichroism spectra of CeuE with {CeuE[Fe(4-LICAM)]} in black 

and ferric 4-LICAM in the absence of CeuE (grey) recorded in 20 mM TrisHCl buffer, 

10 mM NaCl, 0.6% DMSO, pH 8. 

 

Taking account of the direct coordination of His227 and Tyr288, it is important 

to characterise the affinity of ferric-4-LICAM towards CeuE.  If binding affinity 

is very strong, it could indicate that this binding mode is not biologically 

relevant, as ferric-4-LICAM needs to dissociate from CeuE, and complex with 

the CeuBCD to be transported through the cytoplasmic membrane. 

 

The binding affinity between ferric-4-LICAM and CeuE was determined 

through the measure of intrinsic fluorescence quenching upon ligand binding, as 

previously for the ferric complexes of various catechol siderophore ligands 

binding to FeuA from B. subtilis
51-52, 65-67

, and FepB from E. coli.
68

 

 

CeuE contains a single tryptophan (Trp287) adjacent to the coordinating Tyr288, 

which can be exploited for fluorescence quenching analysis to determine a 

dissociation constant.  The experiments were all conducted in aqueous 40 mM 

TrisHCl pH 7.5, with 150 mM NaCl.  The sodium chloride ensured biologically 

relevant ionic strength of the solution, which could be an important factor in the 
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binding affinity, especially in the presence of electrostatic contributions.  To 

determine an accurate CeuE concentration, UV-vis absorbance was utilised, 

measuring the absorbance at 280 nm, and comparing it to the predicted molar 

absorbance coefficient (ε = 15930 mol
-1

 dm
3
 cm

-1
) of  the mature proteins 

sequence, using ProtParam.
69

 

 

The tryptophan was excited at 280 nm and the emission signal measured from 

295 to 415 nm.  The ferric-4-LICAM was complexed in situ by combining 

Fe(NTA) with H4-4-LICAM in equimolar amounts in a buffered sample to make 

a concentrated stock solution of complex which was allowed to stand 30 minutes 

before titration.  Control experiments showed that the buffer and the ferric-4-

LICAM stock solution had no detectable fluorescence signal within the relevant 

wavelength range.  A previous study involving the binding of ferric-

siderophores to FepB, showed that binding of a ligand to FepB occurs within 

seconds.
68

  To confirm that CeuE shows a similar kinetic behaviour, an initial 

titration was completed recording each data point at 1, 5 and 15 minutes (Figure 

48). This showed there is little difference on leaving the solution to stand for 

longer than one minute.   
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Figure 48 - Emission spectra of CeuE at 240 nM in 40 mM TrisHCl pH 7.5 150 mM 

NaCl, with various equivalents of Fe-4-LICAM, excitation at 280 nm.  Each spectrum 

was recorded after 1 minute (dark), 5 minutes (medium) and 15 minutes (light), shown 

as shades of starting colour.  Key; Black, 0 eq - blue, 0.4 eq - red, 0.8 eq - green, 2 eq - 

purple, 5 eq.  Emission intensity normalised to initial intensity. 
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A small hypsochromic shift in the emission maximum at 330 nm can be 

observed upon Fe-4-LICAM addition.  This indicates a change in the 

environment of the tryptophan residue, which can be expected due to its vicinity 

to the binding site.  To evaluate the emission quenching effect of Fe-4-LICAM, 

the integrated peak area of the emission band was determined from 305 to 380 

nm, in order to minimise the effect of the hypsochromic shift.  The data were 

recorded in triplicate and at two different concentrations, with each 

concentration originating from a different batch of CeuE.  The result of each 

titration experiment was plotted and fitted using DynaFit to calculate a 

dissociation constant via non-linear regression (Figure 49).
70

  The average 

dissociation constants were calculated using a weighted average using the 

method reported by Lyons (Equation 2, Table 8).
71

 

 

 

Figure 49 - Example fluorescence quenching analyses of PBP CeuE with ferric-4-

LICAM.  Titrations were carried out with 240 nM CeuE (red) and 170 nM CeuE (blue) 

in 40 mM TrisHCl pH 7.5, NaCl 150 mM.  Recorded data points shown as circles; lines 

give the non-linear least-squares calculated fits (DynaFit).
70 
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Equation 2 - Calculation of weighted average dissociation constant. 

 

 Dissociation Constant / nM 

Individual Average of Batch Overall Average 

Batch 1 

(240 nM) 

Run 1 25.1 ± 1.3 

27.7 ± 7.8 

29.3 ± 11.7 

Run 2 30.3 ± 0.9 

Run 3 14.9 ± 2.7 

Batch 2 

(170 nM) 

Run 1 44.9 ± 2.5 

40.5 ± 13.4 Run 2 40.8 ± 3.8 

Run 3 19.9 ± 5.3 

Table 8 - Calculated dissociation constants from non-linear regression analysis of the 

fluorescence quenching data of ferric-4-LICAM : CeuE titrations.  Error of individual 

Kd values are calculated from non-linear regression fit, and errors of overall and batch 

calculated from standard deviation of the different Kd values within that group. 

 

The calculated dissociation constants of the two batches of CeuE were found to 

be 27.7 ± 7.8 nM and 40.5 ± 13.4 nM.  The values are not significantly different 

but have larger error values associated with them compared to most other 

dissociation constants found in the literature for other PBP systems.  However, 

when comparing the same dissociation constant experimentally determined by 

different research groups, there is an inconsistency between the results and the 

level of error that is quoted.  For example, the dissociation constant of ferric-

bacillibactin and FeuA has been independently shown by separate groups to be 

15 ± 4 nM (Abergel et al.)
65

, 26.5 ± 1.4 nM (Miethke et al.)
66

 and 29 ± 22.5 nM 

(Peuckert et al.).
51

  All three of these results were obtained from different 

batches of FeuA, in separate laboratories, using fluorescence quenching to 

determine the dissociation constant.  The dissociation constants obtained by 

Abergel et al. and Miethke et al. both have small errors, however, the 
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dissociation constant obtained by Peuckert et al. shows a larger error.  Clearly 

there must be a larger error value than quoted by Abergel et al. and Miethke et 

al. due to the differences in the values obtained through basically the same 

experimental approach.  Peuckert et al. do not state whether  the results obtained 

in their experiments were results of difference batches of FeuA expressed and 

purified separately, but their dissociation constant appears to have a more 

realistic approximation of the error, given the other two results.  The 

discrepancy between batches is likely to be due to errors in the estimation of the 

true protein concentration, and these differences may provide a more realistic 

estimation of the error in the binding constants.  Therefore the dissociation 

constant of ferric-4-LICAM and CeuE was calculated from the average of all six 

titrations and is found to be 29.3 ± 11.7 nM. 

 

The dissociation constant of 29.3 ± 11.7 nM is comparable to those reported for 

other periplasmic binding proteins and their associated ferric-siderophore 

complexes.  Ferric-enterobactin has a dissociation constant of 19 ± 5 nM and 29 

± 1.4 nM for FeuA and FepB, respectively.
65, 68

  Ferric-bacillibactin has a 

dissociation constant of 15 ± 4 nM
65

, 26.5 ± 1.4 nM
66

 and 29 ± 22.5 nM,
51

 to 

FeuA and a structurally similar serine-glycine-catechol (SGC) found to be 52 ± 

8 nM.
65

  Interestingly, the enantiomers of enterobactin and SGC, which were 

found to form the Λ-configuration in solution rather than the Δ-configuration, 

have also been used for binding studies and show that these bind with a slightly 

increased strength.  Enantioenterobactin was shown to have a dissociation 

constant of 10 ± 2 nM for FeuA and 14.5 ± 1 nM for FepB, whereas ᴅ-serine-

glycine-catechol, was found to have a dissociation constant of 32 ± 4 nM, to 

FeuA, suggesting that both FeuA and FepB, may have a preference for the Λ-

configuration.
65, 68
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In conclusion, the CD spectroscopy shows that the ferric-4-LICAM is bound in 

the Λ-configuration in solution state as observed in the {CeuE[Fe(4-LICAM)]} 

crystal structure.  The observation that ferric-4-LICAM is achiral in the absence 

of CeuE shows that CeuE selectively binds the Λ-configuration.  The 

fluorescence quenching titration shows that the dissociation constant for ferric-

4-LICAM towards CeuE is within the biologically relevant range of similar 

proteins, suggesting that the coordination of the tyrosine and histidine residues 

observed in the {CeuE[Fe(4-LICAM)]} crystal structure may be of biological 

relevance. 
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2.5 Summary of Chapter 2 

 

The siderophore mimic H4-4-LICAM was synthesised, characterised and 

complexed to both iron(III) and gallium(III).  4-LICAM
4- 

forms complexes with 

3:2 and 1:1 ligand to metal ratios with these metal cations.  Which complex 

dominates in solution depends on the relative concentrations of both H4-4-

LICAM and metal.  For intermediate ligand to metal concentration ratios, 

between 3:2 and 1:1, the two complexes are in equilibrium.  With iron(III), 

equilibration occurs within minutes in aqueous buffer solution at pH 7.5.  In 

contrast, the equilibration is slower with gallium(III) in 5:1 d6-DMSO:D2O in 

the presence of sodium hydroxide. 

 

The PBP CeuE was over-expressed, purified and crystallised, both in the apo 

form and also as a co-crystal with ferric-4-LICAM.  Ferric-4-LICAM was found 

to be present in a unique binding mode in the binding pocket of CeuE, with 

residues His227 and Tyr288 coordinating directly to the metal centre.  Sequence 

alignment revealed that these two residues are conserved among related proteins 

from several bacteria, suggesting that they are part of a mechanism allowing 

these proteins to bind ferric-tetradentate as well as ferric-hexadentate 

siderophores, and facilitate the uptake of both species. 

 

The metal-centred chirality of the {CeuE[Fe(4-LICAM)]} structure was found to 

be Λ, both in the solid state (x-ray diffraction analysis) and in solution (CD 

spectroscopy), consistent with the previous {CeuE2[Fe2MECAM2]} structure.  

The dissociation constant was determined using intrinsic fluorescence quenching 

to be 29.3 ± 11.7 nM, consistent with those reported for other ferric-catecholate 

siderophores.  However, this study is the first time a tetradentate catecholate 

siderophore’s binding constant has been determined, and therefore cannot be 

directly compared to other tetradentate catecholate siderophore binding 

constants. 

 

 



 

Chapter 3: Tetradentate 

Siderophores, a Natural 

Product Approach 
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Project Aims 

 

The work outlined within this chapter is a continuation of Chapter 2, following 

on from the biomimetic approach to characterisation of the enterobactin linear 

dimer, moving onto characterisation of the natural product itself. 

 

3.1 Introduction 

 

Following the study of the synthetic derivative H4-4-LICAM, described in 

Chapter 2, the next step in the study of tetradentate siderophores was to 

investigate a naturally occurring enterobactin fragment, namely the enterobactin 

linear dimer H4-17 (the quoted protonation state only refers to the catechol 

protons).  A key aim was to establish the coordination chemistry of a 

biologically relevant tetradentate siderophore both in free solution and in 

complex with an associated uptake protein. 

 

 

The linear dimer H4-17 can be considered as a segment of the hexadentate 

enterobactin molecule, with two catecholamide-based chelating groups on a 

backbone consisting of two L-serine units connected via an ester linkage. 

 

The biosynthesis of enterobactin is carried out by six enzymes, EntA-F, coded 

for by the genes entA-F.
1
  EntA and EntC synthesise 2,3-dihydroxybenzoic acid 
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(DHB) from chorismate, while EntD-F are involved in the assembly of the DHB 

and L-serine units into the trilactone.
1
  EntB is a bifunctional enzyme involved 

in both steps of the biosynthesis (Scheme 3).  

 

Scheme 3 - Biosynthetic pathway of enterobactin.
2
 



         Chapter 3 

          109 

 

It is not clear whether the enterobactin fragments are released from the 

biosynthetic pathway in order to act as siderophores in their own right, or are a 

result of the hydrolysis of enterobactin.
3
  A more detailed investigation of the 

EntF-catalysed elongation and cyclolactonisation step by Shaw-Reid et al. 

showed that only enterobactin was observed as a product when wild-type EntF 

was utilised, with no detectable amount of any enterobactin fragments using 

HPLC.
2
  On repeating the experiment with a mutation in EntF (S1138C), the 

catalytic turnover rate was dramatically reduced (100 min
-1

 to 0.9 min
-1

), and 

detectable amounts of the enterobactin fragments were observed using mass 

spectrometry.  The authors concluded that due to the absence of detectable 

amounts of fragments in the wild-type experiment it is likely that they are 

primarily hydrolysis degradation products.
2
 

 

After its identification and characterisation,
4-7

 the enterobactin linear dimer H4-

17 was used previously for several studies, including its coordination chemistry 

with iron(III)
8
 and gallium(III)

7
, growth studies of E. coli

9-10
 and various marine 

bacteria
11

, and other biological studies.
2, 12-15

  The majority of these 

investigations involved the isolation of H4-17 from growth media, while only 

one involved its synthesis as part of the total synthesis of enterobactin and 

enantioenterobactin.
16

 

 

There has been relatively little research involving the coordination chemistry 

and the biological importance of the linear dimer compared to enterobactin 

itself.  The aim of the work in this Chapter was its synthesis, determination of its 

coordination chemistry with iron(III) and the interactions of the ferric-complex 

of 17
4- 

with CeuE in solution and the crystal.   

 

Previous Synthetic Approaches 

 

The synthesis of enantiomerically pure H4-17 has not been described previously.  

In the total synthesis of enterobactin carried out by Rastetter et al., compound 

H4-17 was synthesised in a diastereomeric form.
16

  These authors encountered a 
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number of problems, including the racemisation of the serine backbone and 

various protecting group issues.  They outlined two approaches towards the total 

synthesis of enterobactin, the N-benzoyl monomer approach and the urethane-

protection route. These served as the basis of the methodology used in this 

chapter. 

 

The N-benzoyl Monomer Approach 

 

This method involves the synthesis of two differently protected N-[2,3-

bis(benzyloxy)-benzoyl]serine monomers followed by formation of the 

trilactone backbone in a step-wise fashion, yielding a protected linear dimer.  

Controlled deprotection and esterification of this dimer, with another N-benzoyl 

monomer yields the linear trimer, which could be cyclised to form enterobactin.  

When investigating the N-benzoyl monomer approach it was found that the 

esterification step yields diastereomeric products, due to racemisation of the 

activated form of the carboxylic acid, 18, when using DCC, DCC/HOBt or DCC 

and pyridine (Scheme 4).
16

   

 

 

Scheme 4 - The N-benzoyl monomer route when using X = DCC, DCC/HOBt or DCC 

and pyridine to activate the carboxylic acid for esterification. 
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The additive HOBt usually aids prevention of racemisation and deactivation by 

rapidly forming an activated aromatic ester with 20 before the competing acyl 

transfer can occur (Scheme 5).   

 

Scheme 5 - The use of HOBt to reduce the deactivation of the O-acylisourea mixed 

anhydride 20. 

 

The generated activated aromatic ester is still active enough to couple with a 

nucleophile, but because of its increased stability compared to the O-acylisourea 

mixed anhydride 20, slows the rate of oxazolone formation and hence, reduces 

racemisation (Scheme 6).
18-19

  Unusually, racemisation still occurred with the 

addition of HOBt in the esterification carried out by Rastetter et al., showing 

that the racemisation must have an extraordinarily high rate, or that the 

generated activated aromatic ester is still active enough to undergo oxazolone 

formation.
17

  Rastetter et al. attributed the high rate of racemisation to the 

electron-releasing nature of the benzyl groups on the catechol ring, which can 

promote the nucleophilicity of the benzamide carbonyl oxygen enhancing the 

rate of oxazolone formation.  Various other coupling reagents (Mitsunobu 

esterification, CDI coupling, N-methyl-2-chloropyridinium iodide) lead to 

dehydration of the monomer alcohol 19.
16

  The synthesis towards the linear 

dimer was continued and deprotection using zinc and acetic acid, followed by 

hydrogen over a palladium catalyst removes all the protecting groups, yielding 

the ʟ, ʟ -dimer and the ᴅ, ʟ -dimer. 
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Scheme 6 - Oxazolone-mediated racemisation during esterification. 

 

The N-benzoyl monomer approach for the total synthesis of enterobactin was 

abandoned due to these initial problems. 

 

The Urethane Protection Route 

 

The urethane protection route involves protection of the amine functionality of 

the serine units as a carbamate, followed by esterification, before urethane 

deprotection and introduction of the N-[2,3-bis(benzyloxy)-benzoyl] monomers.  

This route leads to successful formation of the ester linkage with no evidence for 

racemisation.  Rastetter et al. at this point continued the synthesis towards 

enterobactin rather than completing the synthesis of the linear dimer in an 

enantiomerically pure form.  The synthesis was completed by coupling the 

serine containing the free acid with the protected linear dimer to produce the 

protected linear trimer, which was then cyclised.  The benzyl protected catechol 
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units were added onto the cyclic trimer and subsequently deprotected, yielding 

enterobactin (ʟ-serine) or enantioenterobactin (ᴅ-serine) (Scheme 7).
16

 

 

 

Scheme 7 - The urethane protection route for the total synthesis of enterobactin 

outlined by Rastetter et al. 

 

The two routes towards the synthesis of the linear dimer both have advantages 

and disadvantages.  The N-benzoyl monomer approach is simpler with fewer 

steps, but it suffers from racemisation.  The urethane protection approach has the 

advantage of being proven to form the ester linkage without racemisation, but 

requires more synthetic steps.  Furthermore, the labile ester linkage has to be 

maintained during urethane deprotection, catechol coupling and catechol 

deprotection, whereas in the N-benzoyl monomer approach it only has to be 

maintained during catechol deprotection.  Therefore it was decided to investigate 

the N-benzoyl monomer approach first, as there have been advances in the 

development of peptide coupling reagents since Rastetter et al. published their 
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synthesis; the new reagents available were anticipated to prevent racemisation 

during the esterification step.
18-19

 

 

3.2 Synthesis 

Initial Approaches to the Synthesis of the Enterobactin Linear Dimer 

 

The work in this section was completed with the aid of Emily Brooke, a summer 

placement student working under my supervision (July-September 2012). 

 

As the electron donating properties of the protecting groups were linked to the 

racemisation of the serine during esterification, it was decided to replace the 

benzyl with tetrahydropyran (THP) ether, since this was used successfully by 

Rastetter et al. in the urethane-protection route.  Due to the limited availability 

of the 2-bromomethylanthraquinone (Maq-Br) starting material, the carboxylic 

protecting group had to be changed.  The alternative protecting group was 

required to possess orthogonal deprotection requirements to both the benzyl 

ethers (catalytic hydrogenation) of the catechol protecting groups and the THP 

ether (acid deprotection) of the alcohol protecting group; hence a base-labile 

methyl ester was chosen (Scheme 8).   
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Scheme 8 - Initial synthetic route towards the H4-17.  (a) NEt3; (b) NEt3; (c) THP, 

pyridinium p-toluenesulfonate;  (d) NaOH / NMe4OH; (e) DCC, HOBt, H
+
 workup; (f) 

H2, Pd-C 10%. 

 

Compound 22 was synthesised using commercially available ʟ-serine benzyl 

ester hydrochloride as the starting material.  Compound 13 was used to 

introduce the protected catechol scaffold, yielding amide 22 in a 91% yield.  The 

product was characterised using 
1
H and 

13
C NMR spectroscopy, infra red 

spectroscopy and ESI mass spectrometry.  The mass spectrum shows peaks at 

m/z 512.2063 and m/z 534.1867, corresponding to the protonated [M+H]
+
, and 

sodiated [M+Na]
+
, ions, consistent with a molecule of formula C31H29NO6.  A 

characteristic doublet at 8.86 ppm in the 
1
H NMR spectrum, which could be 

assigned to the amide proton, confirms formation of the amide bond.  The 

resonances due to the serine backbone consist of a doublet of doublet of doublets 

due to the proton on the α-carbon (Ha), and two roofed doublet of doublets 
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which are assigned as the two geminal protons on the β-carbon (Hb and Hc).  

Due to the chirality of the serine, the two geminal protons, Hb and Hc, are 

diastereotopic and both couple with Ha, and to the other geminal proton, arising 

to the two sets of doublet of doublets.  As the chemical shifts of these two 

signals are close, the two signals show a roof effect, which accounts for the 

profile of the signals (Figure 50). 

 

 

 

Figure 50 - 
1
H NMR spectrum of 22 in CDCl3 shown in the regions between 4.85-4.70 

ppm and 4.00-3.75 ppm.  The J-coupling splitting pattern is shown below, explaining 

the splitting for each of the three resonances.  *The assignment of H
b
 and H

c
 can be 

interchanged. 

 

Compound 24 was synthesised using ʟ-serine methyl ester hydrochloride and the 

catechol unit introduced and characterised as described for 22 (78% yield).  

Compound 24 was then treated with 3,4-dihydro-2H-pyran, using pyridinium p-
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toluenesulfonate in dichloromethane to introduce the THP protecting group.  The 

resulting compound 25 was obtained in 86% yield using the same methodology as 

Rastetter et al.16
  Compound 25 was characterised using 

1
H and 

13
C NMR 

spectroscopy, infra-red spectroscopy and ESI mass spectrometry.  The mass 

spectrum showed a peak at m/z 542.2139 consistent with a [M+Na]
+ 

ion for a 

molecule with a formula of C30H33NO7.  The 
1
H and 

13
C NMR spectra 

confirmed the addition of THP, and also showed the doubling of all signals 

associated with the two diastereomers that form upon non-stereospecific 

introduction of the THP group. 

 

Deprotection of the methyl ester of 25 was attempted with sodium hydroxide in a 

methanol:dichloromethane mixture.  Monitoring the reaction via TLC and mass 

spectrometry indicated formation of the desired de-methylated product, however, the 

subsequent analysis of the product revealed that the THP protecting group was also lost, 

either during the reaction or during the work-up procedure.  Changes in solvent, 

reaction conditions, or base (from sodium hydroxide to tetramethylammonium 

hydroxide) did not result in selective deprotection of the methyl ester whilst maintaining 

the THP ether.  Due to these protecting group compatibility issues an alternative route 

that avoids THP as protecting group was developed. 

 

The second synthetic route involved protecting the alcohol and acid groups of 

the two serine backbone units as a benzyl ether or benzyl ester, respectively.  

The starting materials, ʟ-serine benzyl ester hydrochloride 21 and O-benzyl-ʟ-

serine 28, are commercially available (Scheme 9).  The N-benzoyl monomer 29 

was synthesised and characterised as described for compound 22. 
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Scheme 9 - Second synthetic route towards H4-17.  (a) NEt3; (b) NEt3; (c) 

Esterification, various conditions; (d) H2, Pd-C 10%. 

 

Various reaction conditions were investigated in order to obtain compound 30 in 

enantiomerically pure form.  Rastetter et al. reported the use of DCC/HOBt, 

CDI, N-methyl-2-chloropyridinium iodide
20-21

 and ethyl diazodicarboxylate, 

triphenylphosphine (Mitsunobu reaction).
22-23

  In the investigation to form 30, a 

range of conditions were applied in order to form the enantiomerically pure ester 

including DCC, EDC, HBTU, DCC/HOBt, EDC/HOBt, DCC/DMAP, activation 

using thionyl chloride or formation of an activated ester with N-

hydroxysuccinimide.  Of these, only DCC/HOBt gave an isolatable amount of 

product in 16% yield as a diastereomeric mixture of 30 (ʟ, ʟ and ᴅ,ʟ). 

 

Despite the formation of the diastereomeric mixture of compound 30, the 

catalytic hydrogenation for global benzyl deprotection was conducted in order to 

test the reaction and to form the diastereomeric mixture of compound H4-17.  

The reaction was performed and the product characterised in the same manner as 

for H4-4-LICAM described in Chapter 2.  Mass spectrometry showed that the 

ester linkage had been maintained during the reaction, with the peaks found at 

m/z 465.1142 and m/z 487.0985 corresponding to the [M+H]
+
 and [M+Na]

+
 ions 

for a molecular formula of C20H20N2O11 respectively.  The 
1
H and 

13
C NMR 
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spectra again showed the doubling of the signals associated with the two 

diastereomers in the sample, and the 
13

C NMR containing the ester linkage 

carbon signal, confirming the ester had not hydrolysed.  There was no evidence 

of transesterification with ethanol, used as the solvent for the reaction.  The 

reaction yielded a 94% of the diastereomeric mixture of compound H4-17 (ʟ, ʟ 

and ᴅ, ʟ). 

 

This reaction sequence confirmed that compound H4-17 can be synthesised 

using the outlined synthetic route, although the diastereomers would need to be 

separated before catalytic hydrogenation.  However, due to the low yield of the 

esterification reaction step, it was concluded that this route is not a viable option 

for scale-up to access larger quantities.  For this reason the route was abandoned. 

 

Synthesis of the Enterobactin Linear Dimer 

 

Due to the problems described above, the urethane protection approach outlined 

in section 3.2 was attempted.  Rastetter et al. investigated the use of both the N-

tert-butoxycarbonyl, and carboxybenzyl groups for the protection of the amino 

groups.  In both cases the esterification step was reported to proceed without 

racemisation.
16

 

 

Ultimately the carboxybenzyl group was used for amino protection in the 

synthesis of enterobactin, due to difficulties in the cyclisation step of the linear 

trimer when the N-tert-butoxycarbonyl group was used.  However, this issue 

does not need to be considered for the synthesis of the linear dimer.
16

  In the 

synthesis of the linear dimer, it is necessary for the alcohol and the carboxylic 

acid of the serine backbone to be protected to control the esterification step.  In 

order to simplify the deprotection procedure once the benzyl protected catechol 

moieties are coupled to the backbone, and hence to have a global benzyl 

deprotection, the protecting groups selected for the alcohol and the carboxylic 

acid were a benzyl ether and benzyl ester, respectively.  As the serine monomers 

have benzyl protecting groups attached, the amino protecting groups must be 

removed under orthogonal deprotection conditions compared to that of the 
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benzyl groups.  For this reason the carboxybenzyl group cannot be used, and 

therefore N-tert-butoxycarbonyl protecting group were chosen (Scheme 10). 

 

Scheme 10 - Third synthetic route towards H4-17.  (a) SOCl2; (b) Boc2O, NEt3; (c) 

Boc-O-benzyl-L-serine, EDC, HOBt, ; (d) TFA; (e) DIPEA; (f) H2, Pd-C 10%. 

 

Compound 32 was synthesised by reacting ʟ-serine benzyl ester hydrochloride 

with di-tert-butyl dicarbonate in the presence of triethylamine (98% yield).  

Compound 32 showed a characteristic singlet at 1.43 ppm in the 
1
H NMR 

spectrum which integrates to nine protons corresponding to the tert-butyl group.  

A broad doublet at 5.52 ppm of relative integration one, can be assigned to the 

carbamate proton, which couples to the proton on the alpha-carbon of the serine 

unit.  The NMR and mass spectrometry data are consistent with the literature, 

however, a previous synthesis reports the compound as a colourless oil, whereas 

a white waxy solid was obtained here (melting point 66.8-68.2 °C).
24

 

 

Initially, compound 33 was synthesised from 32 and commercially available 

Boc-O-benzyl-ʟ-serine using DCC as the coupling reagent and DMAP as an additive, 
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however, a DCC-derived impurity formed during the reaction.  The impurity could not 

be removed from the product despite numerous purification attempts.  Therefore the 

reaction was repeated using EDC as an alternative coupling reagent, with HOBt 

as the additive.  Compound 33 was easily purified via silica column 

chromatography, with no evidence of racemisation, to give compound 33 in 61% 

yield (characterisation data consistent with the literature).
25

 

 

Removal of the Boc-protecting groups was then achieved using trifluoroacetic 

acid in dichloromethane.
26

  The 
1
H NMR spectrum showed the absence of the 

two tert-butyl and the carbamate proton signals, while mass spectrometry and 

13
C NMR confirmed that the ester linkage had been maintained during Boc-

deprotection. 

 

To introduce the catechol functionality onto diamine 34, compound 13 was 

initially utilised in the same fashion as in the synthesis of H4-4-LICAM (see 

Chapter 2).  The reaction, however, was found to proceed in low yields; 

therefore an alternative method was designed.  Compound 12 was instead 

activated as the acid chloride, compound 31, prepared in accordance with the 

literature and used without isolation.
27

  Compound 31 was then reacted with 34 

in the presence of N,N-diisopropylethylamine in anhydrous dichloromethane 

under a dry nitrogen atmosphere in order to limit hydrolysis of the ester under 

basic conditions.  The coupling of the catechol units to 34 proceeded in 44% 

yield, lower than 61% reported by Rastetter et al. in the synthesis of 

enterobactin.
16

  A peak in the mass spectrum at m/z 1005.3922 was assigned as 

the [M+H]
+
 protonated molecular ion and the 

1
H and 

13
C NMR spectra both 

showed the addition of the benzyl protected catechol units on to compound 34 to 

form compound 30.  There was no evidence of the formation of diastereomers in 

the NMR spectra.  Elemental analysis was also used to confirm the purity of the 

sample. 

 

Compound 30 was deprotected using catalytic hydrogenation under an 

atmosphere of hydrogen in the presence of a 10% Pd-C catalyst, to obtain 

compound H4-17 in a quantitative yield.  Mass spectrometry, 
1
H, 

13
C NMR and 

elemental analysis confirmed the successful synthesis and purity of the product.  
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The characterisation data were consistent with literature data for H4-17 isolated 

from growth media (see section 7.2).
12

  To identify whether the chirality of the 

serine units had been affected during the synthesis, specific rotation of polarised 

light at the sodium line was measured in methanol, and was found to be []D = 

+15, in good agreement with the literature value of []D = +13.
12

 

 

3.3 Ligand-Metal Interactions 

 

As discussed in Chapter 2, the mismatch between the preferred coordination 

number of iron(III) and the denticity of the ligand required investigation of the 

speciation of the complexes formed in solution.  After the study of the ligand-

metal interaction with the biomimetic derivative 4-LICAM, the successful 

synthesis of the enterobactin linear dimer allowed this investigation to be 

completed. 

 

Enterobactin is one of the most widely studied siderophores,
28

 but little research 

has been conducted on the coordination chemistry of H4-17.  Two studies have 

investigated ligand-metal coordination chemistry, one by Scarrow et al. which 

investigated the iron(III) coordination of linear dihydroxyserine compounds 

derived from enterobactin,
8
 and the other by Bergstrom et al. which focused on 

NMR studies of 2,3-dihydroxyserine compounds, which also extended into 

coordination with gallium(III).
7
  

 

Scarrow et al. used UV-visible measurements of the LMCT band in a 

spectrophotometric titration.  Upon titrating H4-17 with iron(III), the absorbance 

at 590 nm increased.  Plotting the absorbance at this wavelength versus 

equivalents of iron(III), a linear change of absorbance was observed, with 

notable breaks at 1.0 and 2.0 equivalents of iron(III).  These changes were 

attributed to the formation of 1:1 and 1:2 ligand-to-metal complexes.  However, 

Scarrow et al. did not discuss an apparent bathochromic shift in the UV-visible 

data shown in the supplementary information.
8
  During the titration, the 

maximum absorption was initially at approximately 500 nm and then shifted to 

approximately 550 nm, between 0.5 and 1.0 equivalents of iron(III).  This 
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bathochromic shift indicates a change in coordination environment, from a 

tris(catechol)iron(III) to a bis(catechol)iron(III) complex (Figure 51). 

 

 

Figure 51 - Upper - Plot of the absorbance at 590 nm for solutions containing the 

DHBS monomer and linear dimer in the presence of increasing equivalents of Fe(III).  

Solutions were buffered at pH 9 and ferric ion was added as the NTA complex.  Lower - 

UV-visible spectra between 370-800 nm recorded during the linear dimer titration.  

Reprinted with permission from Inorg. Chem., 1991, 30 (5), 900-906.  Copyright 1991 

American Chemical Society.
8
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Scarrow et al. also noted that during a spectrophotometric titration of the 1:1 

ferric complex of H4-17 across pH ranges of 8.0-7.0 another bathochromic shift 

is observed from λmax of 500 nm at pH 8.0 to a λmax of 540 nm at pH 7.0 (Figure 

52).  This shift was explained by hydrolysis of one of the two coordinating water 

molecules assumed to be coordinating in the two remaining iron coordination 

sites.  This shift, which is associated with pH change, cannot be the cause of that 

seen in Figure 51, as the iron titration was buffered at pH 9.0, which would only 

allow for minimal pH change during the experiment.  The conclusion that H4-17 

only forms a 1:1 complex in the presence of iron(III) is likely to be an over-

simplification of the system. 

 

 

Figure 52 - Spectrophotometric titration of the 1:1 ferric complex of H4-17 in dilution 

corrected absorbance units.  Reprinted with permission from Inorg. Chem., 1991, 30 

(5), 900-906.  Copyright 1991 American Chemical Society.
8 

 

Another investigation of the coordination chemistry of H4-17 was conducted by 

Bergstrom et al., who explored the change in the 
1
H and 

13
C NMR signals of the 
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linear dimer upon chelation of gallium(III).  They showed that upon chelation of 

gallium by H4-17 (ratio not specified), a simple 
1
H NMR spectrum is observed, 

where the signals of the aromatic protons and the protons situated on the α- 

carbon all shift upfield, while the two diastereotopic, geminal protons situated 

on the β-carbon shift differently to each other, one upfield and the second 

downfield.
7
  The authors stated that it is not clear whether H4-17 forms a triple 

stranded 3:2 complex, similar to that formed by rhodotorulic acid
29

, rather than a 

3:2 mono-bridged dimer, such as that formed by alcaligin
30

 (Chapter 2), 

although the complex is more likely to have formed the triple stranded complex, 

due to the observation of a simple spectrum, indicating that the ligands are 

equivalent.
7
  The possibility of H4-17 forming a 1:1 complex was not addressed, 

assuming that H4-17 must form a 3:2 complex to satisfy the octahedral binding 

geometry of iron(III), although this contradicts the conclusion of Scarrow et al. 

who claim that H4-17 predominantly forms a 1:1 complex.
8
  It is still unclear 

which coordination complex the tetradentate bis(catecholate) ligand H4-17 

preferentially forms under biologically relevant conditions. 

 

The coordination chemistry of a structurally similar bis(catecholate) siderophore 

family known as the amonabactins has also been studied.
31

  The amonabactins 

are a series of bis(catecholate) siderophores that are composed of tri- or 

tetrapeptides with the general formula (gly)-(ʟ)-lys-(ʟ)-lys-(ᴅ)-aro, where the 

aromatic residue is either a tryptophan or phenylalanine (Figure 53).
32-33
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Figure 53 - Amonabactins.  Names refer to the aromatic amino acid constituent and 

molecular weight. 

 

This family of siderophores can interchange their coordination chemistry 

depending on pH and relative concentration of ligand to metal.
31

  At high pH 

with an excess of ligand a 3:2 ligand to metal complex dominates, whereas at 

neutral and low pH, they preferentially form 1:1 bis(catechol)iron(III) 

complexes.
31

  These studies by Scarrow et al.
8
 and Telford et al.

31
 highlight that 

the coordination chemistry of these bis(catechol) siderophores is non-trivial, and 
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a variety of complexes can form under different conditions.  This study will 

focus on the complexes formed by H4-17 with iron(III) at neutral pH and under 

biologically relevant conditions. 

 

Investigation of 17
5-

 to Iron(III) Ratios using the Continuous Variation 

Method 

 

The investigation of the coordination chemistry of H4-17 was carried out under 

the same conditions as those reported for H4-4-LICAM (Chapter 2).  A kinetic 

experiment was set up as for H4-4-LICAM, to investigate the time required for 

the samples obtained by mixing H4-17 with iron(III) in a 1:1 ratio to reach 

equilibrium.  H4-17 exhibited different behaviour to H4-4-LICAM and did not 

show a notable change in colour over time at close to a 1:1 metal-to-ligand ratio.  

The experiment showed a bathochromic shift in λmax (542 nm to 563 nm), with 

the intensity of the LMCT band increasing and then stabilising after 60 seconds 

(Figure 54).  The reason for the bathochromic shift in λmax is not clear.  As the 

system has not reached equilibrium, presumably there are coordination 

complexes with different speciation (particularly solvation) affecting the 

observed absorbance.  This showed that the equilibrium is reached relatively 

quickly which allowed the Job plot to be conducted in the same manner as for 

H4-4-LICAM.   
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Figure 54 - Upper - Selected UV-visible absorbance spectra recorded during the 

kinetic run with H4-17 (2.0x10
-4

 M) and iron(III) (1:1 ratio).  Spectra ordered from 

black (0 seconds) to light blue (60 seconds) for selected time intervals.  Lower - Kinetic 

trace of upper, following absorbance at 500 nm (red diamonds) and 560 nm (blue 

triangles) over 2 minutes.  Spectra recorded every 3 seconds, solution containing 0.1 M 

TrisHCl pH 7.5, 5% DMSO at 20 °C. 

 

The UV-visible spectra of ferric-17 (Figure 55) show two λmax values at 512 nm 

and 563 nm when varying the ligand to metal ratio, as found in the UV-visible 

data for ferric-4-LICAM.   
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Figure 55 - Selected UV-visible absorbance spectra of H4-17 and Fe
III

(NTA), used for 

the Job plot analysis   Spectra recorded in 0.1 M TrisHCl pH 7.5, 5% DMSO.  Spectra 

ordered from black (H4-17 excess) to light blue ordered by ligand to metal ratio; 90:10, 

70:30, 60:40, 50:50, 40:60, 30:70, 10:90).  [M] + [L] = 0.4 mM. 

 

Job plot analysis carried out at these two wavelengths (512 nm and 563 nm) 

indicates two different binding ratios, however, unlike ferric-4-LICAM, the 

ratios for ferric-17 are closer together (Figure 56).  The analysis at 563 nm 

shows the expected 1:1 ratio, however, the analysis for 512 nm shows a 

stoichiometry between the 3:2 and 1:1 ratios.  This shift suggests that 17
5-

 (extra 

charge due to deprotonated carboxylate group at pH 7.5) prefers a ligand-to-

metal binding ratio of 1:1, but is still capable of coordinating in the 3:2 mode if 

an excess of ligand is present.  The preference for the 1:1 complex could be 

influenced by a number of factors, such as the stereochemistry of the backbone, 

prearranging the catechol binding groups away from the linear arrangement 

required for triple helicate formation.  The nature of the backbone could also 

influence the binding ratio, as the linear dimer possesses a polar linker with the 

ester which can form hydrogen bonds in the aqueous solution, rather than a 

hydrophobic one, which could self assemble in order to reduce contact with the 

polar solvent, potentially favouring the 3:2 assembly.  The accumulation of 

negative charge could also disfavour the 3:2 complex for ferric-17, as the free 

carboxylate group on the backbone will also add negative charge to the complex, 
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with the resulting 3:2 complex of ferric-17 formally having a negative charge of 

nine rather than negative six for ferric-4-LICAM. 
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Figure 56 - Job plot for the binding of H4-17 and Fe
III

(NTA), obtained by following 

the absorbance at both 512 nm (red diamonds) and 563 nm (blue triangles).  The 

absorbance values are averages of two experiments and the error bars indicate the 

differences between the runs.  Plot recorded in 0.1 M TrisHCl pH 7.5, 5% DMSO. 

 

The Job plot shows that H4-17 can adopt two binding stoichiometries with 

iron(III), much like H4-4-LICAM, depending on the relative concentration of 

H4-17 and iron(III) in solution.  Unlike H4-4-LICAM, the Job plot of H4-17 

suggests that a 1:1 binding stoichiometry is preferred over 3:2, suggesting it has 

similar solution behaviour to the amonabactins, although they possess a much 

longer linker between the coordinating functional groups.   

 

Circular Dichroism Spectroscopic Study of the H4-17 and Iron(III) System 

 

Due to the chirality of the ligands (amonabactins, enterobactin and the 

enterobactin hydrolysis products), intramolecular chiral induction influences the 

metal-centred chirality of the complexes which can be examined using circular 

dichroism.  Enterobactin is known to form mainly Δ-configured complexes, with 

iron(III),
34

 chromium(III),
35

 vanadium(IV)
36-37

 and rhodium(III).
38
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Scarrow et al. investigated the coordination chemistry of the enterobactin 

hydrolysis products and showed that the linear trimer forms a iron(III) complex 

with Δ-configuration with a CD spectrum similar to that of ferric enterobactin.  

The linear dimer (1:1 ratio with iron(III)) was essentially featureless in the 

visible region, which was attributed to an equilibrium between equal amounts of 

Λ- and Δ-configured complexes (Figure 57).
8
  All three spectra produce a 

positive band due to a n→π* transition at approximately 320 nm, which was 

interpreted as a ligand-based transition that increases in intensity upon metal 

binding.   

 

 

 

Figure 57 - Circular dichroism spectra of the free ligands (left) and the iron(III) 

complexes (right) of enterobactin and the hydrolysis products in aqueous solution at pH 

7.5, 0.1 M HEPES buffer. Reprinted with permission from Inorg. Chem., 1991, 30 (5), 

900-906. Copyright 1991 American Chemical Society.
8
 

 

The CD spectra of the ferric-amonabactins have also been studied and show that 

the 1:1 ferric-amonabactins are present in a racemic mixture of Λ- and Δ-

configured complexes while the 3:2 ligand to metal ratio shows a weak 

preference for the Δ-configuration.
31

 

 

Job plot analysis suggests that the coordination chemistry behaviour of H4-17 is 

similar to that of the amonabactins, showing a change in coordination geometry 
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under different conditions, although the original study by Scarrow et al. did not 

record the CD spectrum of the H4-17 with iron(III) in a 3:2 ligand to metal ratio.  

 

To determine whether H4-17 behaves similarly to the amonabactins, the CD 

spectra of ferric H4-17 were recorded at ligand-to-metal ratios of 3:2, 1:1 and 

2:3.  Samples were prepared in the same manner as for the continuous variation 

experiments, (0.1 M TrisHCl pH 7.5, 5% DMSO).  The samples were given time 

to reach equilibrium before spectra were recorded (Figure 58). 

 

 

Figure 58 - Circular dichroism spectra of H4-17 and ferric-17 in key ligand-to-metal 

ratios in aqueous 0.1 M TrisHCl buffer, pH 7.5, 150 mM NaCl, 5% DMSO.  [L] + [M] 

= 0.4 mM. 

 

The CD spectrum of H4-17 in the near UV region shows a positive feature 

arising from an n→π* transition at approximately 320 nm, which grows in 

intensity upon metal binding.  When the ligand to metal ratio is 1:1 or 2:3, the 

spectra are consistent with that of the ferric linear dimer reported by Scarrow et 

al., with a large positive feature at 320 nm and a weak, broad, positive feature 

between 380-610 nm.
8
  When the ligand to metal ratio is 3:2, the large positive 

feature around 320 nm in H4-17 is shifted to 340 nm, and the intensity of the 

weak, broad feature increases, becoming more positive around 415 nm and more 

negative at 550 nm, with a zero point at 500 nm giving a negative Cotton effect.   
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This change in CD spectra also coincides with a colour change from purple to 

red, consistent with the formation of a tris-catecholate system.  This indications 

a change in mode of binding of H4-17 towards iron(III), with a clear preference 

for the Δ-configuration.   

 

The behaviour of the CD spectra at different to ligand to metal ratios resembles 

that of the amonabactins, but the intensity of the change is more profound with 

H4-17.  This may be due to the distance between the binding catechol groups and 

the stereo-centre in the ligand.  The iron binding catecholamide units of H4-17 

are directly linked to the stereocentre of the siderophore backbone, whereas in 

the amonabactins the catecholamide is linked to the side chain amine of the 

lysine backbone, which has a four carbon spacer between the catecholamide and 

the stereocentre, potentially reducing the influence of the stereocentre upon 

metal binding. 

 

In conclusion, H4-17 binds both in a 1:1 and a 3:2 fashion, with the relative 

concentrations of H4-17 and iron(III) determining the binding mode.  On 

comparison with H4-4-LICAM, the 1:1 binding mode seems to be favoured over 

3:2, influenced by the backbone of the ligand, due to the stereochemistry, or its 

electronic character.  The CD spectra indicate that ferric complexes of H4-17 

preferentially bind in the Δ-configuration, however, when bound in a bis-

catecholate 1:1 ratio, an interchange between the Δ-configuration and the Λ-

configuration is observed.  The coordination chemistry of H4-17 appears similar 

to that of the amonabactins, a family of tetradentate catecholamide siderophores. 

 

3.4 Interactions of the Ferric Complex with CeuE 

 

Following the investigation of the solution behaviour of H4-17 in the presence of 

iron, the aim was to examine how ferric-17 interacts with the ferric-siderophore 

transport PBP CeuE.  No co-crystal structures of enterobactin hydrolysis 

products with a periplasmic binding protein have been determined.  A crystal 

structure of the human protein siderocalin (Scn), a protein associated with the 

innate immune response towards siderophores (but has no structural similarity to 
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CeuE), was co-crystallised with enterobactin and published by Goetz et al. (PDB 

code 1L6M).
39

  The tri-lactone backbone of enterobactin had been partially 

hydrolysed during crystal formation and was therefore modelled as different 

enterobactin hydrolysis products in each of the binding pockets of the three Scn 

chains in the asymmetric unit.  The iron atoms in the binding pocket associated 

with chain A and chain B are fully coordinated with three catechol units, 

modelled as one DHBS and two dihydroxybenzoic acid units, respectively.  The 

binding pocket associated with chain C was modelled as a DHBS and a 

dihydroxybenzoic acid bound as two independent bidentate ligands, leaving two 

free coordination sites (Figure 59).  The nearest amino acid residues are a 

tyrosine and a lysine, which are 4.0 Å and 3.9 Å from the iron centre, 

respectively, therefore too far away from the metal centre for direct 

coordination.  Each of these binding pockets is unique, with different 

arrangements of the three iron(III)-coordinating ligands found in the binding 

pockets of chains A and B.  The cause of the difference in coordination 

geometry of the ferric-complexes for the three different chains in the asymmetric 

unit is unclear.  
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Figure 59 - Ribbon representation of three monomers of Scn co-crystallised with 

ferric-enterobactin.  Key: Chain A (light blue), chain B (gold), chain C (green); ligands 

shown as cylinders, grey - carbon, blue - nitrogen, red - oxygen, coral - iron. PDB code: 

1L6M.
39
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The same research group also deposited a mutant Scn structure in the PDB, 

however, this structure has never been published (PDB code 3I0A).  This 

structure shows ferric-17 and other enterobactin hydrolysis products bound to 

Scn.  This structure is similar to the 1L6M structure as it is found in the same 

space group (P41212), with three Scn monomers in the asymmetric unit, each 

presenting a different ferric-ligand complex in the binding pocket of the protein 

(Figure 60).  To the best of my knowledge, this structure is the only example 

deposited on the PDB which contains H4-17 as a ligand.  Scn has also been co-

crystallised with vibriobactin,
40-41

 carboxymycobatin S and T,
42

 ferric-

dihydroxybenzoic acid,
43

 and ferric catechol,
44

 and a complex of Scn with ferric-

enterobactin has been solved via solution NMR.
45
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Figure 60 - Ribbon representation of three monomers of Scn co-crystallised with 

ferric-enterobactin.  Key: chain A (blue), chain B (gold), chain C (green); ligands 

shown as cylinders, grey - carbon, blue - nitrogen, red - oxygen, coral - iron. PDB code: 

3I0A (unpublished work). 
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The co-crystal structures reported by Goetz et al. highlight difficulties in co-

crystallising ligand prone to hydrolysis under aqueous conditions required for 

proteins, showing that the crystallisation time is required to be shorter than the 

rate of hydrolysis of the ligand in the presence of the protein.   

 

Crystallisation of the CeuE, Ferric-Linear Dimer Complex 

 

Initial attempts to crystallise ferric-17 with CeuE used the same co-

crystallisation method as for ferric-4-LICAM, but crystals of X-ray diffraction 

quality were not obtained.  Soaking was therefore used to introduce ferric-17 

into an apo-CeuE crystal, grown from the PACT crystal screen.  H4-17 and 

iron(III) were added to the crystallisation well, followed by thorough mixing.  2 

μL of the resulting solution containing ferric-17 was added the sitting drop that 

contained the crystal.  The well was re-sealed and time allowed for the ferric-17 

to diffuse through the crystal.  The soaked crystals were collected at a number of 

time points after the introduction of the crystallisation solution containing ferric-

17, frozen in liquid nitrogen, and data collected at the DLS. 

 

Crystals were soaked for 90 minutes (form I, 0.2 M sodium fluoride, 0.1 M Bis 

Tris propane pH 8.5, 20 (w/v) PEG 3350), 24 hours (form II, 0.1 M MMT buffer 

pH 8.0 25% (w/v) PEG 1500) and 11 days (form III, 0.1 M PCB buffer pH 9.0 

25% (w/v) PEG 1500).  As expected each of the crystal structures was in the 

space group P1, with three CeuE chains in the asymmetric unit.  The apo-CeuE 

structure (Chapter 2), excluding water molecules, was used as a starting model.   

 

Form I showed no additional electron density in the CeuE binding pockets, 

indicating that 90 minutes are not enough time for the complex to fully soak into 

the lattice of the apo-CeuE.  In contrast crystal forms II and III, did show density 

in the binding pockets of each of the three independent CeuE chains in the 

asymmetric unit.  Crystal forms II and III were refined using REFMAC5
46

 and 

Coot.
47
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The electron density map of crystal form II clearly shows 17
5-

 bound to the 

iron(III) centre in a 1:1 ratio in CeuE chains A and B.  CeuE chain C was 

modelled with a partially occupied iron centre with no coordinating ligands, due 

to poor electron density in this binding (Figure 61 and Figure 62). 

 

Form III was treated as crystal form II, but the electron density for the backbone 

of H4-17 was weaker than in form II, thus it was not clear whether the di-serine 

backbone had hydrolysed.  Hence, the ligands were initially modelled as 

bidentate DHBS units bound to the iron(III) centres through the catechol 

functionality.  During refinement it was clear that the coordinating groups bound 

to the three iron(III) centres were different.  The binding pocket of chain A 

showed little electron density linking the two DHBS monomers, and as a result 

the modelled coordinating ligands were kept as two DHBS monomers 

representing hydrolysed 17.  Chain B was initially similar to chain A, however 

during refinement, the DHBS monomers showed electron density linking the 

two serine units, and the ligand was re-modelled to be ferric-17.  Chain C was 

similar to chain A, but the coordination of one of the DHBS monomers was 

found in the opposite orientation, with the serine backbone pointing inwards into 

a side pocket of the CeuE chain (Table 9, Figure 63 Figure 64). 

 

The nomenclature of the two crystal forms refers to the number of CeuE 

molecules found within the unit cell, followed by the ligand species bound by 

the three CeuE molecules. 

 

Chain {CeuE3[Fe(17)]2[Fe]} 

Form II 

{CeuE3[Fe(17)][Fe(DHBS)2]2} 

Form III 

A Linear Dimer 2 x DHBS 

B Linear Dimer Linear Dimer 

C Fe 2 x DHBS 

Table 9 - Summary of modelled ligands in the binding pockets of both crystal forms, 

{CeuE3[Fe(17)]2[Fe]} (crystal form II) and {CeuE3[Fe(17)][Fe(DHBS)2]2} (crystal form 

III). 
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Figure 61 - Ribbon representation of the three independent CeuE chains of 

{CeuE3[Fe(17)]2[Fe]} (form II) with colours blended from cyan, N-terminus, to dark 

blue, C-terminus.  His228, Tyr288 and Fe-17 shown as cylinders.  Key: His227 and 

Tyr288; green - carbon, blue - nitrogen, red - oxygen; Fe-17, grey - carbon, blue - 

nitrogen, red - oxygen; Fe - coral. 
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Figure 62 - Cylinder representation of the binding pockets of {CeuE3[Fe(17)]2[Fe]} 

(form II) with electron density map shown as 2Fobs-Fcalc, contoured at 1σ and chemical 

representation showing key interactions of Fe-17.  Key: His227 and Tyr288; green - 

carbon, blue - nitrogen, red - oxygen; Fe-17, grey - carbon, blue - nitrogen, red - 

oxygen; Fe - coral. 
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Figure 63 - Ribbon representation of the three independent CeuE chains of 

{CeuE3[Fe(17)][Fe (DHBS)2]2} (form III) with colours blended from cyan, N-terminus, 

to dark blue, C-terminus.  His227, Tyr288, Fe-17 and Fe-DHBS2 shown as cylinders.  

Key: His228, Tyr288, green - carbon, blue - nitrogen, red - oxygen; Fe-17, grey - 

carbon, blue - nitrogen, red - oxygen; Fe - coral. 
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Figure 64 - Cylinder representation of the binding pockets of 

{CeuE3[Fe(17)][Fe(DHBS)2]2} (form III) with electron density map shown as 2Fobs-

Fcalc, contoured at 1σ and chemical representation showing key interactions of the two 

Fe-DHBS environments.  Key: His227 and Tyr288; green - carbon, blue - nitrogen, red 

- oxygen; Fe-17, grey - carbon, blue - nitrogen, red - oxygen; Fe - coral. 
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 {CeuE3[Fe(17)]2[Fe]} 

Form II 

{CeuE3[Fe(17)][Fe(DHBS)2]2} 

Form III 

Data collection   

Diffraction Source DLS Beamline i04 DLS Beamline i02 

Wavelength / Å 0.976 0.979 

Temperature / K 100 100 

Crystal Data   

Space Group P1 P1 

a, b, c / Å 58.46, 63.02, 67.01 58.07, 63.09, 67.16 

α, β, γ / ° 83.36, 76.57, 78.24 83.09, 76.90, 79.21 

Resolution / Å 65.02 - 1.68 65.2 - 1.68 

Unique Reflections 70279 58556 

Completeness / % 98.1 94.3 

Redundancy 4.4 1.9 

Rmerge 0.09 0.09 

Mean [I/σ (I)] 17.5 5.2 

Refinement 

Statistics 

  

Reflections, working 66562 48582 

Reflections, test 3495 2510 

Resolution Range / 

Å 

65.01 - 1.90 65.19-2.10 

R-factor 0.226 0.223 

Rfree 0.267 0.262 

Mean B Factors / Å
2
 42.3 31.3 

RMS deviation 

from ideal 

  

Bond length / Å 0.015 0.013 

Bond angles / ° 1.782 1.688 

PDB Code - - 

Table 10- Data collection and refinement statistics of {CeuE3[Fe(17)]2[Fe]}.and 

{CeuE3[Fe(17)][Fe(DHBS)2]2} structures. 
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Both crystal form II, {CeuE3[Fe(17)]2[Fe]}, and crystal form III, 

{CeuE3[Fe(17)][Fe(DHBS)2]2}, show that the binding pocket of CeuE chain C is 

distinctly different compared to that of chains A and B.  In crystal form II, there 

is a low occupancy of the iron(III) atom and no clear density to model any other 

coordinating ligands, whereas in crystal form III, two DHBS monomers are 

bound to the iron(III) centre but in a different orientation than expected.  This 

variation reflects different lattice contacts for the three independent binding 

pockets within the crystal.  A crystal packing diagram shows that the apo-CeuE 

crystal lattice is tightly packed, which might suggest that the three binding 

pockets of each of the CeuE chains are likely to have different accessibilities 

(Figure 65).  The binding pockets of chains A and B are open to the surrounding 

solvent, while access to that of chain C is partially blocked by the neighbouring 

N terminus of chain B.  This can be demonstrated by the superposition Fe-17 of 

chain B into the binding pocket of chain C, which demonstrates that 

encroachment of the N terminus of chain B into the binding pocket of chain C 

(Figure 66). 
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Figure 65 - Crystal packing diagram showing symmetry related CeuE molecules in the 

{CeuE3[Fe(17)]2[Fe]} (form II) crystal.  Key {CeuE3[Fe(17)]2[Fe]} shown in gold, 

symmetry related molecules shown in grey.  Image created using Coot.
47 
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Figure 66 - A) Ribbon representation of the crystal packing in the asymmetric unit of 

{CeuE3[Fe(17)]2[Fe]} (form II) with His227, Tyr288, Fe-17 shown as cylinders.  B) 

Ribbon representation of binding pocket of chain C and surface (electrostatic 

representation) of N terminus of chain B, with Fe-17 from chain B superimposed into 

the binding pocket. Key chain A (blue), chain B (gold), chain (dark green); Fe-17, grey 

- carbon, blue - nitrogen, red - oxygen; Fe - coral.; electrostatic, red - negative, blue - 

positive. 
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In both structures, {CeuE3[Fe(17)]2[Fe]} (chains A and B) and 

{CeuE3[Fe(17)][Fe(DHBS)2]2} (chain B) the same binding arrangement of the 

ferric-17 to CeuE is observed, consistent with the {CeuE[Fe-4-LICAM]} 

structure.  Ferric-17 is bound in a 1:1 metal to ligand stoichiometry to a single 

CeuE monomer.  In the {CeuE3[Fe(17)][Fe(DHBS)2]2} chains A and B contain 

the two ferric-DHBS units, which are bound in a 1:2 metal to ligand 

stoichiometry and mimic a tetracoordinate iron centre.  The remaining two free 

coordination sites of the iron centres are occupied by the side chains of two 

amino acid residues, His227 and Tyr288, similarly to the {CeuE[Fe-4-LICAM]} 

structure (Chapter 2). 

 

The bond lengths of the coordinating atoms to the iron centres in CeuE 

monomers A and B in the {CeuE3[Fe(17)]2[Fe]} structure and the bond lengths 

of the coordinating atoms to the iron centres in the 

{CeuE3[Fe(17)][Fe(DHBS)2]2} structure are shown in Table 11 and Table 12 

respectively. 

 

CeuE Chain Atom Bond Length / Å 

A 

 

17O7 - Fe 2.2 

17O8 - Fe 2.1 

17O36 - Fe 2.1 

17O37 - Fe 2.0 

TyrO - Fe 2.0 

HisN - Fe 2.6 

B 

 

17O7 - Fe 1.8 

17O8 - Fe 2.3 

17O36 - Fe 2.0 

17O37 - Fe 2.0 

TyrO - Fe 2.1 

HisN - Fe 2.3 

 

Table 11 - Bond distances between coordinating atoms and the iron centres of 

monomers A and B in the {CeuE3[Fe(17)]2[Fe]} (form II) structure. 
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The bond lengths in both structures range from 1.8-2.4 Å, with the exception of 

the HisN-Fe in monomer A of both structures, which is 2.6 Å and 2.7 Å 

respectively.  These bond lengths are too large to form a formal bond, however, 

the electron density around both histidine residues is poor due to possible 

restricted movement within the crystal upon binding of ferric-17.  The poor 

electron density surrounding the histidine as a result of partial occupancy will 

increase the error on the bond lengths. 

 

CeuE Chain Atom Bond Length / Å 

A 

 

DHBS1O1 - Fe 2.4 

DHBS1O2 - Fe 2.2 

DHBS2O1 - Fe 2.2 

DHBS2O2 - Fe 2.1 

TyrO - Fe 1.9 

HisN - Fe 2.7 

B 

 

17O7 - Fe 1.8 

17O8 - Fe 2.1 

17O36 - Fe 2.1 

17O37 - Fe 2.1 

TyrO - Fe 2.0 

HisN - Fe 2.4 

C DHBS1O1 - Fe 2.1 

DHBS1O2 - Fe 2.4 

DHBS2O1 - Fe 2.0 

DHBS2O2 - Fe 2.4 

TyrO - Fe 2.1 

HisN - Fe 2.4 

 

Table 12 - Bond distances between coordinating atoms and the iron centres for the 

{CeuE3[Fe(17)][Fe(DHBS)2]2} (form III) structure. 
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The ligands in both the A and B chains, in both structures are in a cis, cis 

configuration with regards to the Oortho-Oortho, Ometa-Ometa donor atoms of the two 

catecholate moeities.  The two DHBS monomers in the binding pocket of chain 

C in the {CeuE3[Fe(17)][Fe(DHBS)2]2} structure, are bound in a cis, trans 

configuration, with the serine backbone of DHBS 1 in the opposite direction 

compared to binding pockets A and B (Figure 67). 
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Figure 67 - Coordination environment of the three binding pockets of 

CeuE3[Fe(17)][Fe (DHBS)2]2} (form III). Key; CeuE residues, green - carbon, blue - 

nitrogen, red - oxygen; DHBS and 4, grey - carbon, blue - nitrogen, red - oxygen; Fe - 

coral. 
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The change in coordination environment of the two DHBS monomers in chain C 

has the consequence of directing the serine backbone towards the surface of the 

protein and occupies a pocket adjacent to the binding site of CeuE.  The 

different orientation of the serine backbone in the two DHBS monomers is a 

clear indication that the hydrolysis must have occurred prior to the binding, as 

the carboxylic acid and alcohol groups in the monomers are too far apart to 

linked together by the ester bond. 

 

There are two possible explanations for the change in orientation of the DHBS 

monomers in the CeuE3[Fe(17)][Fe (DHBS)2]2} structure.  The first is the trans 

effect, which can direct certain donor atoms positioning around a metal centre.  

The trans configuration has been shown previously to direct the binding around 

a metal centre due to the different strengths of the trans effect of the ortho and 

meta catecholate oxygen donor atoms.  The difference between these donor 

atoms can direct the binding geometry around a metal centre such as MoO2 with 

catecholamides
48-49

 and 2,3-dihydroxybenzoic acid.
50

  These studies showed that 

the weaker ortho catecholate oxygen would be directed to the trans position of 

the strong oxo ligands on the MoO2 centre in order to minimise the energy of the 

system.  However, the difference in the trans effect between the ortho 

catecholate oxygen and the coordinating tyrosine oxygen is likely to be minimal 

due to their similar pKa values (ortho catecholamide pKa ≈ 7.5, tyrosine pKa ≈ 

10).
51

   

 

The second explanation is the favourable or unfavourable interactions of the 

DHBS serine backbone.  To examine this hypothesis an electrostatic surface was 

generated for CeuE chain C, which shows that the DHBS backbone is positioned 

in a pocket adjacent to the binding site (Figure 68).  The electrostatic surface 

clearly shows the DHBS 1 monomer in the adjacent pocket, with the carbonyl of 

the catecholamide positioned towards a positively charged protein region, while 

the alcohol and carboxylic acid groups of the serine backbone are in a neutral 

region with the alcohol forming a hydrogen bond with the peptide backbone 

Gly117.  As seen in the {CeuE3[Fe(17)]2[Fe]} structure, the surface of chain B is 

found close to the binding pocket of chain C with the surface projecting into the 

region in which the serine backbone of the DHBS monomer would be positioned 
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if orientated in a cis, cis configuration.  It is more likely that the DHBS 

monomer has bound in the cis, trans configuration to avoid this potential steric 

clash to the N-terminus of CeuE chain B, rather than a energy difference 

associated with the change in configuration as a result of the trans effect the iron 

centre. 

 

 

Figure 68 - Surface electrostatic representation of {CeuE3[Fe(17)][Fe(DHBS)2]2}, 

monomers B (translucent surface) and C (solid surface), negative charge shown in red 

and positive charge shown in blue.  Key: DHBS, grey - carbon, blue - nitrogen, red - 

oxygen; Fe - coral.; Hydrogen bond - black dash. 

 

Circular Dichroism and Fluorescence Biophysical Measurements 

 

As outlined in Chapter 2, octahedral complexes with two cis-positioned 

bidentate ligands are chiral.  {CeuE[Fe(4-LICAM)]} adopts the Λ-configuration, 

consistent with the literature for other periplasmic binding proteins and their 

associated substrates.
52-54

  Ferric-17 has a slight preference towards the Δ-

configuration rather than the Λ-configuration, but is able to interchange between 

the two conformations.
8
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In the {CeuE3[Fe(17)]2[Fe]} and {CeuE3[Fe(17)][Fe(DHBS)2]2} in each of the 

occupied binding pockets the ferric-17 and the ferric-DHBS complexes are in 

the Λ-configuration, consistent with the {CeuE[Fe-4-LICAM]} structure.  To 

confirm this behaviour in solution, CD spectra were recorded in the same 

manner as described for {CeuE[Fe(4-LICAM)]} in Chapter 2.  As the previous 

experiments of ferric-17 showed it possessed a preference to bind in the Δ-

configuration, the addition of CeuE was controlled, with spectra recorded every 

0.2 equivalents until 1 equivalent of CeuE was added relative to ferric-17 

(Figure 69). 
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Figure 69 - Circular dichroism spectra of ferric-17 (light grey) with increasing 

increments of 0.2 eq of CeuE, until {CeuE[Fe(17)]} (black) was formed, recorded in 0.1 

M TrisHCl buffer, pH 7.5, 150 mM NaCl. 

 

The spectra recorded show an inversion of configuration and small 

bathochromic shift of the n→π* transition from a positive peak at 320 nm to a 

large negative peak at 330 nm upon addition of one equivalent of CeuE, with an 

isosbestic point at 305 nm.  The weak positive feature between 380-610 nm of 

the LMCT band is also affected, forming a broad negative band with a minimum 

at 395 nm and a positive band with a maximum at 600 nm, giving an overall 

positive cotton effect, with another isosbestic point at 540 nm.  The isosbestic 

points suggest that a simple equilibrium is present in the titration involving the 
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binding of the ferric-17 to CeuE.  The spectrum of {CeuE[Fe(17)]} is 

remarkably similar to that of the {CeuE[Fe(4-LICAM)]} complex.  

Interestingly, the ligand-based n→π* transition also inverts, from a positive 

feature to a negative feature upon binding to CeuE.  This suggests that despite 

ferric-17 being assigned as achiral by Scarrow et al. due to the featureless 

LMCT band showing no clear preference, the strong signal of the n→π* 

transition can be used as an indicator for the metal-centred chirality.  The strong 

n→π* transition therefore suggests that the complex has a preference for the Δ-

configuration, whilst the featureless LMCT band shows that the metal centred 

configuration is able to convert between Δ and Λ-configurations.
8
  The CD 

spectra show that ferric-17 is in the Λ-configuration when bound to CeuE, and 

despite the slight preference for the Δ-configuration of the complex when free in 

solution, CeuE enforces the Λ-configuration.  This is consistent with CD spectra 

of ferric-enterobactin and ferric-enterobactin bound to FeuA, where the Δ-

configuration of free ferric-enterobactin converts to the Λ-configuration when 

the complex is bound to FeuA.
8, 54

  

 

As outlined in Chapter 2, it is important to determine the affinity of ferric-17 for 

CeuE.  The dissociation constant for ferric-17 and CeuE was determined through 

the same experimental procedure as outlined for ferric-4-LICAM (Chapter 2).  

The data were plotted and fitted using DynaFit (Figure 70 and Table 13).
55
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Figure 70 - Example fluorescence quenching analyses of PBP CeuE with ferric-17.  

Titration recorded with 240 nM CeuE (red) and 170 nM CeuE (blue) in 40 mM TrisHCl 

pH 7.5, NaCl 150 mM.  Recorded data shown as circles; lines give the non-linear least-

squares calculated fits (DynaFit).
55 

 

 Dissociation Constant / nM 

Individual Average of Batch Overall Average 

Batch 1 

(240 nM) 

Run 1 4.8 ± 0.9 

7.5 ± 6.3 

8.4 ± 4.3 

Run 2 16.4 ± 1.8 

Run 3 14.9 ± 3.7 

Batch 2 

(170 nM) 

Run 1 9.8 ± 1.9 

11.3 ± 2.6 Run 2 12.3 ± 2.5 

Run 3 14.9 ± 3.6 

Table 13 - Calculated dissociation constants from non-linear regression analysis of the 

fluorescence quenching data of ferric-17: CeuE titrations.  Error of individual Kd values 

are calculated from non-linear regression fit, and errors of overall and batch calculated 

from standard deviation of the different Kd values within that group. 

 

The dissociation constant of ferric-17 was determined for two batches of CeuE 

as described for  ferric-4-LICAM.  The first batch, at a concentration of 240 nM, 

gave an average dissociation constant of 7.5 ± 6.3 nM, whereas the second 
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batch, at a concentration of 170 nM, gave an average dissociation constant of 

11.3 ± 2.6 nM.  The second batch of CeuE (170 nM) had a higher normalised 

fluorescent signal at the end point of the titration than the first batch at 240 nM.  

The repeat runs within the same batches gave reproducible results; however, the 

difference of the response of the two CeuE batches was consistently different.  

The same observation is seen with the ferric-4-LICAM, showing there is a 

difference in response between batches.  As in the case of  ferric-4-LICAM, the 

dissociation constants obtained from the two different batches gave the same 

result within experimental error. 

 

The average dissociation constant of ferric-17 (8.4 ± 4.3 nM) is lower than that 

of ferric-4-LICAM (29.3 ± 11.7 nM) showing that Fe-17 is bound tighter to the 

binding pocket of CeuE.  This difference in the binding affinity is expected as it 

is known that ferric-enterobactin is bound to CeuE primarily through 

electrostatic interactions to the positively charged binding pocket of CeuE.  

Ferric-4-LICAM, if bound in a 1:1 ligand to metal ratio, would present one 

negative charge, while ferric-17 would have a formal negative charge of two, as 

it has the same binding arrangement through the catechol binding moieties and a 

free carboxylate attached to the backbone that is hydrogen-bonded in the crystal 

structure to the neighbouring Arg249 residue.  The extra negative charge on the 

complex may allow the ferric-17 complex to bind with a greater affinity, and 

therefore give rise to a lower dissociation constant.  

 

The calculated dissociation constant of ferric-17 is close to the quoted range of 

dissociation constants outlined in Chapter 2 for hexadentate catecholate 

siderophores binding to their associated PBPs, which vary between 15-52 nM.
54, 

56-59
  The calculated dissociation constant of ferric-17 is lower than the quoted 

range in the literature, however, as discussed in Chapter 2 it is likely that there 

are larger errors within the quoted dissociation constants due to experimental 

error and different batches of protein expressed and purified, which might 

suggest that the ferric-17 has a dissociation constant of similar strength to that of 

other ferric-catecholate siderophores.  This result is somewhat surprising, due to 

the difference in the binding arrangement between the coordinatively saturated 

hexadentate siderophores and the two coordinatively unsaturated siderophores 
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presented here.  This suggests that the direct coordination of the histidine and 

tyrosine residues compensates for the loss of the third catecholamide arm, 

allowing for the dissociation constant for the tetradentate siderophore binding to 

be in a biological relevant range. 

 

3.5 Summary of Chapter 3 

 

The enterobactin hydrolysis product H4-17 was successfully synthesised, 

characterised and complexed to iron(III).  Ferric-17 can form complexes with 

3:2 and a 1:1 ligand to metal ratios, much like 4-LICAM
4-

, but has a preference 

for a 1:1 ratio.  The 3:2 complex possesses a preference for the Δ-configuration, 

whereas the 1:1 complex has a slight preference for Δ, but can interchange 

between the two configurations. 

 

Structures of {CeuE3[Fe(17)][Fe(DHBS)2]2} and {CeuE3[Fe(17)]2[Fe]} were 

obtained through crystal soaking of ferric-17 into apo-CeuE crystals for varying 

lengths of time.  The ferric-17 was bound in the same configuration as ferric-4-

LICAM, in a 1:1:1 fashion (metal:ligand:protein), with the His227 and Tyr288 

completing the octahedral iron ligation.  The ferric-17 structure in 

{CeuE3[Fe(17)][Fe(DHBS)2]2} was partially hydrolysed, with the DHBS units 

in CeuE chains A and C bound differently to each other in a cis, cis, and a cis, 

trans orientation.  The metal-centred chirality of all of the binding pockets of the 

two crystal structures which had ligands bound was Λ. 

 

Circular dichroism spectroscopy showed an inversion of configuration at the 

metal centre from Δ to Λ once a stoichiometric amount of CeuE had been added.  

The dissociation constant was determined for ferric-17 and CeuE by intrinsic 

fluorescence quenching and was found to be 8.4 ± 4.3 nM.  The complex ferric-

17 shows tighter binding to CeuE compared to ferric-4-LICAM, yet would seem 

to be within a biologically relevant range. 

 



 

Chapter 4: A Siderophore 

Mimic for use with Further 

Functional Components 
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Project Aims 

 

The aim of the research outlined in this chapter is the design and synthesis of a 

biomimetic hexadentate catecholamide siderophore that possesses a chemical 

functional group to act as a linker.  This chemical linker can either be used to 

add a second chemical function, e.g. a antimicrobial agent or a fluorescence 

probe, or be left unfunctionalised as a biologically inert group that does not 

affect the ability of the compound to be recognised as a siderophore, e.g. not 

affect the coordination of iron(III) (Figure 71). 

 

 

Figure 71 - Schematic design of a biomimetic hexadentate siderophore that possesses 

a chemical linker. 

 

4.1 Introduction 

 

As outlined in Chapter 1, there are numerous uses for biomimetic models of 

hexadentate siderophores.  Some of these models require chemical linkers, so as 

to introduce a second chemical moiety (e.g. Trojan Horse strategy, or fluorescent 

probes),
1-4

 whilst others only require the strong iron binding function (e.g. iron 

overload therapeutics).
5-7

   

 

The most successful previously reported biomimetic hexadentate catecholamide 

siderophores, were designed as close mimics of enterobactin (see Chapter 1).  

Only four of the many existing biomimetic hexadentate catecholamide 

siderophores contain an obvious chemical functionality that can be reacted 

further in order to covalently attach a chemical tool. 
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The first was reported by Imbert et al. in 2000 and is known as H6-CacCAM.
8
  

The structure is similar to H6-TRENCAM, with an aliphatic three fold 

symmetric backbone.  Instead of connecting through a central tertiary amine, H6-

CacCAM connects through a central quaternary carbon, which is bound to a 

carboxylic acid.  The three iron(III) binding arms possess an extra carbon atom 

in the chain, compared to H6-TRENCAM. 

 

 

 

H6-CacCAM has been linked to an aliphatic carbon linker (C16) to produce an 

amphiphilic iron(III) chelator as a mimic of marine bacterial siderophores.
9
  The 

modified H6-CacCAM(C16) and its ferric complexes are able to self-assemble, 

the iron-free H6-CacCAM(C16) forming micellar assemblies, whilst the ferric-

CacCAM(C16) complex formed spherical assemblies with diameters of 

approximately 130 nm.  This system mimics the behaviour of marine bacterial 

siderophores.
9-10

 

 

The second example is an iron binding dendrimer, synthesised by Zhou et al. as 

a novel approach for the treatment of haemochromatosis (a type of iron 

overload).
11

  Dendrimers are synthetic macromolecules with highly branched 

structures that have been widely studied.
12-17

  The structure of the dendrimer 

allowed the covalent attachment of several hexadentate iron binding moieties to 

one molecule.  For this design, the hexadentate metal binding unit needed a 

functional group to allow a covalent linkage between the metal binder and the 
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dendrimer backbone to be formed.  This was achieved by using compound 35 as 

the branched linker, with the carboxylic acids used for both the growth of the 

dendrimer to the next generation and the attachment of the metal binding 

catechol moieties to give compound H54-36 (Figure 72). 

 

 

Figure 72 - Dendritic catecholate-based iron chelator developed by Zhou et al.
11 

 

The structure of H54-36 uses a primary amine, situated on the quaternary carbon 

atom rather than a carboxylic acid, as seen in H6-CacCAM for covalent linkage.  

Consequently, the catechol binding units are not the preferred catecholamide 

functionality.  H54-36 is still able to bind iron(III), but as described in Chapter 1, 

is not recognised and therefore evades the iron uptake system.
18-19

  This is ideal 

for use as an iron(III) chelator for the treatment of haemochromatosis but is not 

suitable for use as a model siderophore. 

 

The third example was recently developed by Ji et al. and incorporates design 

features of both H6-CacCAM and H54-36.
20

  The structure of 37 is similar to H6-

CacCAM, with an aliphatic backbone with three-fold symmetry, and seven atom 

spacers between the catecholamide units.  Interestingly, the catechol groups 

were left protected as acetate groups.  In vivo, the acylated catechol groups were 

expected to avoid potential methylation by a catechol O-methyl-transferase.  
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Compound 37 acts as a prodrug, with hydrolysis leading to the required catechol 

functionality for iron(III) binding.  Compound 37 also includes a succinic acid 

linker, altering the linking functional group from the original amine to a 

carboxylic acid, which could then be used for covalently linking β-lactam 

antibiotics, as required for the Trojan Horse strategy, giving compounds 38 and 

39 (Figure 73).
20

 

 

Figure 73 - Structures of a biomimetic tris-catecholate siderophore and its 

aminopenicillin conjugates.
20 

 

Both compounds 38 and 39 showed improved antibacterial activity against a 

selection of strains of P. aeruginosa compared to the parent antibiotic.
20

  In 

order to ascertain whether the increased antibacterial activity was as a result of 

increased uptake through the iron uptake system, the antimicrobial activity was 

measured in both iron-rich and iron-deficient media.  There was an increase in 

activity when the compounds were tested in iron-deficient medium, where the 
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iron uptake system plays a greater role in active nutrient uptake. This suggests 

that active transport of the conjugates through the siderophore mediated iron 

uptake mechanism plays a significant role in delivering the drug to the 

bacteria.
20

  

 

The fourth example, H6-40,  was developed by Inomata et al and has a similar 

structure to 37, but it contains no acetyl protecting groups and the succinic linker 

is absent.
21

  A self assembled monolayer of ferric-40 was formed and chemically 

bound to a gold surface.  This allowed the adsorption of E. coli onto the 

substrate which was detectable by a quartz crystal micro-balance chip used for 

detection of micro-organisms with the corresponding siderophore uptake 

protein.
21

 

 

 

None of these four mimetics possess both the five atomic linker between the 

catecholamide binding moieties and the correct orientation of the catecholamide 

required for biological recognition.  Thus, the design of the biomimetic 

hexadentate catecholamide siderophore, forming the rest of this chapter, took 

into account the key features of enterobactin, and also the strategies of the 

previously discussed biomimetic siderophores, which possessed a chemical 

linker.  The key features incorporated were: a) the three fold symmetry of the 

backbone, b) the five atom spacer between the catecholamide units and c) the 

removal of the hydrolytically unstable trilactone backbone (Figure 74). 
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Figure 74 - The chemical structure of the designed biomimetic hexadentate 

siderophore.  Key: catecholamide, red - backbone, blue - linker, black. 

 

In the design of H6-41, the linker choice was inspired by the linker used by Ji et 

al. (compound 37), as it could either be incorporated or not, depending on 

requirements. The inclusion of the linker is determined by the probe to be 

synthesised, accounting for the requirements of either an amino or carboxylate 

group for linkage to a functional tool.  The position of the linker at the central 

quaternary carbon has the advantage of directing it away from the iron(III) 

binding catecholamide moieties, and hence should have minimal impact on the 

iron(III) binding of the compound.  For proof-of-concept, the linker was 

included in the synthesis of H6-41 to demonstrate the feasibility of incorporating 

this functionality. 



         Chapter 4 

          166 

 

4.2 Synthesis 

 

The synthesis of H6-41 can be divided into two sections: firstly the synthesis of 

the catechol units and secondly of the siderophore backbone.  The synthesis of 

the catechol units has been discussed in Chapters 2 and 3 and therefore the 

present Chapter will focus on the siderophore backbone. 

 

Synthesis of a Biomimetic Hexadentate Siderophore 

 

The work outlined within this section was completed with the aid of Amy 

Scorah, a summer placement student working under my supervision (July-

September 2013). 

 

The backbone of H6-41 requires four primary amines in two different 

environments, one located on a central quaternary carbon, whilst the remaining 

three are located on the terminal of each of the three arms. 4-(2-carboxyethyl)-4-

nitroheptanedioic acid, 42, offered a good starting point for the synthesis, as it 

possesses much of the carbon skeleton of the backbone.  The carboxylic acids 

can be converted into the required terminal primary amines via an isocyanate 

intermediate using the Curtius rearrangement.
22

  Once the terminal amines have 

been synthesised, standard protecting group chemistry can be employed to 

enable the reduction of the central nitro group to a primary amine, which can 

then be used to couple a protected linker.  Subsequently, selective deprotection 

of the terminal primary amines allows the introduction of the catecholamide 

moieties onto the backbone.  Standard deprotection chemistry should then yield 

H6-41 (Scheme 11). 
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Scheme 11 - Synthetic route to H6-41.  (a) i) SOCl2, ii) TMS azide, iii) 80 °C, iv) HCl, 

(b) Boc2O, NEt3; (c) H2, Raney®-Nickel 2800 slurry; (d) Glutaric acid monomethyl 

ester chloride, NEt3 ; (e) TFA; (f) 31, DIPEA; (g) NaOH; (h) H2, Pd-C 10%.  
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The backbone of H6-41 was synthesised from 42, using the methodology 

reported by Zhao et al.
23

  The carboxylic acid functional groups were 

transformed into primary amines by conversion to acyl azides, followed by 

Curtius rearrangement to give the corresponding isocyanates.  Next, acid 

catalysed hydrolysis of the isocyanate was carried out to give the required amine 

salt (72% yield) (Scheme 12). 

 

 

Scheme 12 - Synthetic route to compound 43.  (a) SOCl2; (b) TMS azide; (c) 80 °C; 

(d) HCl. 

 

Due to the reactive nature of the intermediates, no attempt was made to isolate 

and characterise these compounds.  However, compound 43 was isolated and 

characterised by mass spectrometry, 
1
H, 

13
C NMR and infra-red spectroscopies.  

Mass spectrometry confirmed the presence of both the [M+H]
+
 and [M+Na]

+
 

ions for a molecular formula of C7H19N4O2 with signals observed at m/z 

191.1499 and m/z 213.1324, respectively.  The 
1
H and 

13
C NMR spectra showed 

that the symmetry of compound 43 had been maintained, with only three signals 
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in the 
1
H NMR spectrum for the three proton environments (including amine 

protons).  The multiplicity of the signals does not resemble the standard triplets 

reported by Zhao et al., possibly due to long range 
14

N coupling as observed in 

ammonium ions (Figure 75).
24

 

 

 

Figure 75 - 1H NMR spectrum of 43 in d6-DMSO shown between 3.00-2.10 ppm 

showing the multiplicity of the resonances assigned to protons H
a
 and H

b
.  Quintet at 

2.50 is the d6-DMSO residual solvent peak. 

 

The 
13

C NMR spectrum shows the expected three signals; one at 89.7 ppm 

consistent with a quaternary carbon atom attached to a nitro group, and two at 

33.8 ppm and 31.8 ppm, respectively for the two aliphatic carbon environments.  

Apart from the unusual 
1
H NMR multiplicity all other characterisation data 

matched that of the literature, and therefore it was concluded that compound 43 

had been successfully synthesised.
23

 

 

Upon repeating the reaction, it became apparent that the reproducibly of the 

yield and purity of compound 43 was difficult to maintain, probably due to the 

nature of the reactive intermediates.  The mechanism of the reaction first 

involves the reaction of the carboxylic acid with thionyl chloride, to give the 

activated acyl chloride, which then reacts with TMS (trimethylsilyl) azide to 
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produce the acyl azide.  Upon heating, acyl azides undergo Curtius 

rearrangement, which involves the evolution of nitrogen gas upon rearrangement 

of the acyl azide into the isocyanate.  Once the isocyanate has formed, acid 

catalysed hydrolysis forms the required amine (Scheme 13).
25

 

 

 

Scheme 13 - Reaction mechanism of reaction of 42 to form 43 with key intermediates, 

acyl chloride, acyl azide and isocyanate highlighted within a box. 

 

The key intermediates in this reaction, the acyl chloride and acyl azide, are 

prone to hydrolysis, creating additional competing side reactions, forming 

undesired by-products.  Due to the three-fold symmetry of the starting material, 

the reaction process must go to completion three times on each molecule to 

produce the target compound.  The procedure was therefore modified to be 

completed under rigorously dry conditions, with a constant nitrogen atmosphere 

utilising a Schlenk line.  This improved the yield to 92%, with characterisation 

data consistent with the previous synthesis, and literature data.
23
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Compound 44 was synthesised by reacting 43 with excess di-tert-butyl 

dicarbonate in the presence of triethylamine using the methodology of Zhao et 

al. (84% yield, Scheme 14).
23

  Compound 44 showed a characteristic singlet at 

1.42 ppm in the 
1
H NMR spectrum, with a relative integration of 27 

corresponding to the three equivalent tert-butyl groups.  Signals in the mass 

spectrum were observed at m/z 491.3068 and m/z 513.2885 consistent with the 

[M+H]
+
 and [M+Na]

+
 ions, respectively, for a molecular formula of 

C22H42N4O8.  All other characterisation data are consistent with the literature.
23

 

 

 

Scheme 14 - Synthesis of 44 using the methodology of Zhao et al.
23 

 

Compound 44 was reduced to the corresponding amine 45 by catalytic 

hydrogenation using Raney®-Nickel 2800 slurry as the catalyst.  There have 

been reports in the literature that many reducing conditions, such as platinum, 

palladium and commercially available Raney®-Nickel, give poor yields for 

aliphatic nitro reduction, and that a specialised T-1 Raney®-Nickel is required to 

be synthesised and utilised in order to complete the reaction.
26-27

  However, 

others have claimed to use commercially available Raney®-Nickel to 

successfully reduce a aliphatic nitro group on a quaternary carbon to give a 

primary amine.
28

  Therefore, commercially available Raney®-Nickel (Raney 

Nickel 2800 slurry in H2O active, Sigma-Aldrich) was tried first and found to be 

successful at reducing the nitro group to the amine under a pressurised 

atmosphere of hydrogen (35 bar, Scheme 15).  Successful reduction was 

indicated by mass spectrometry, with signals observed at m/z 461.3356 and m/z 

483.3164 consistent with the [M+H]
+
 and [M+Na]

+
 ions, respectively, for a 

molecular formula of C22H44N4O6 and an upfield shift in the 
13

C NMR spectrum 

of the signal due to the quaternary carbon from 90.4 ppm to 53.8 ppm. 
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Scheme 15 - Synthesis of 45 using commercially available Raney®-Nickel. 

 

The primary amine of 45 was used to attach the linker unit onto the backbone, 

by reacting 45 with glutaric acid monomethyl ester chloride in the presence of 

triethylamine in anhydrous dichloromethane under a dry nitrogen atmosphere to 

yield 46 (76% yield, Scheme 16).  The additional signal due to the amide proton 

in the 
1
H NMR spectrum at 6.57 ppm, and the amide and ester carbonyl signals 

in the 
13

C NMR spectrum at 174.1 and 173.1 ppm, respectively, confirmed the 

addition of the monomethyl linker via the amide linkage.  Mass spectrometry 

confirmed the presence of both the [M+H]
+
 and [M+Na]

+
 ions at m/z 589.3807 

and m/z 611.3645 ppm, respectively, consistent with a molecular formula of 

C28H52N4O9.   

 

Scheme 16 - Synthesis of 46 using the modified methodology of Ji et al.
20

 

 

Compound 46 represents the protected backbone of the hexadentate siderophore 

with a methyl ester protected linker attached.  The continuation of the synthesis 

of H6-41 first involved the removal of the Boc-protecting groups of 46, which 

was achieved using trifluoroacetic acid in a dichloromethane : methanol (9:1) 

mixture.  The 
1
H NMR spectrum showed the complete removal of the three tert-

butyl signals, while 
13

C NMR confirmed that the ester and amide linkage of 47, 
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173.2 and 172.1 ppm, respectively, had not been affected during the reaction.  

Mass spectrometry gave further confirmation that compound 47 was isolated 

with a signal observed at m/z 289.2247 assigned as the [M+H]
+
 consistent with 

for a molecular formula of C13H28N4O3.  Compound 47 was isolated as a white 

solid in 98% yield (Scheme 17). 

 

 

Scheme 17 - Synthesis of 47 by Boc deprotection of 46 using trifluoroacetic acid.  

 

Compound 31 was utilised for the addition of the catechol functionality to 47, in 

the same manner as in the synthesis of H4-17 (Chapter 3).  The reaction 

proceeded to 48 in 17% yield (Scheme 18), a surprisingly low value, however, it 

was later found that the starting material, 47, was highly hygroscopic, forming a 

clear viscous oil when left open to the atmosphere.  It is believed that this had 

occurred during the set-up of the reaction leading to the introduction of water, 

hydrolysing reagent 31 in a competing reaction, explaining the low yield.  In 

order to confirm this hypothesis the reaction would need to be repeated using 

inert conditions, and the preparation and storage of compound 47 would need to 

be altered to eliminate any water.  Despite the low yield, mass spectrometry 

showed a signal at m/z 1259.5357 assigned as the [M+Na]
+
 ion, consistent with a 

molecular formula of C76H76N4O12.  The 
1
H NMR spectrum shows the addition 

of the aromatic signals between 7.71 and 7.11 ppm, with a total relative 

integration of 39 protons.  Furthermore, two additional singlets at 5.15 ppm and 

5.09 ppm, which both have a relative integration of six protons, are assigned as 

the methylene signals of each of the benzyl protecting groups of the catechol 

moieties. 



         Chapter 4 

          174 

 

 

Scheme 18 - Synthesis of 48 using the methodology outlined in Chapter 3. 

 

The methyl ester protecting group of 48 was removed using base hydrolysis, 

employing the methodology outlined by Theodorou et al. by reacting compound 

48 with sodium hydroxide in a dichloromethane : methanol (9:1) mixture, 

yielding compound 49 (94% yield, Scheme 19).
29

  The 
1
H and 

13
C NMR spectra 

showed the complete removal of the signal due to the methyl  protons (
1
H NMR: 

3.65 ppm, 
13

C NMR: 51.9 ppm), with the rest of the resonances in the spectra 

unaffected.  Mass spectrometry confirmed the amide had not been hydrolysed 

during the reaction with a signal found at m/z 1221.5240 assigned as the [M-H]
-
 

ion. 
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Scheme 19 - Synthesis of 49 via methyl ester hydrolysis using the methodology of 

Theodorou et al.
29

 

 

The free carboxylic acid functionality of 49 at this point could be coupled to a 

addition functional component to functionalise the compound.  However, this is 

beyond the scope of this project, and it was therefore left as the free carboxylic 

acid and the reaction scheme was continued towards the target compound, H6-

41. 

 

The benzyl ethers of compound 49 were removed using the same methodology 

as for H4-4-LICAM and H4-17 (Chapters 2 and 3).  Catalytic hydrogenation 

using 10% Pd-C yielded compound H6-41 (92% yield).  Mass spectrometry 

confirmed the presence of H6-41 with a signal observed at m/z 681.2420 

assigned as the [M-H]
-
 ion, consistent with the molecular formula C33H37N4O12. 

The 
1
H and 

13
C NMR spectra confirmed the complete removal of the benzyl 

protecting groups by absence of the methylene signals, (
1
H NMR, 5.13 and 5.07 

ppm, 
13

C NMR, 76.5 and 71.4 ppm).  Furthermore the aromatic region of the 
1
H 

NMR spectrum simplified to three signals (
1
H NMR, 7.19, 6.91 and 6.70 ppm).  

The rest of the resonances in the spectra were unaffected, confirming the 

successful synthesis of compound H6-41. 
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Scheme 20 - Deprotection of 49 via catalytic hydrogenation to yield siderophore 

mimic H6-41. 

 

4.4 Summary of Chapter 4 

 

A novel catecholamide siderophore mimic that possesses a five-atomic spacer, 

free chemical functionality and a three-fold symmetric axis, was successfully 

designed, synthesised and characterised.  The three carboxylic acid groups 42 

were converted to primary amines via activation with thionyl chloride, followed 

by reaction with TMS azide to produce the acyl azide.  Subsequent 

rearrangement of the acyl azide into the isocyanate allowed for acid catalysed 

hydrolysis to form 43.  Protection of the three terminal primary amines using di-

tert-butyl dicarbonate, allowed the reduction of the nitro group to the central 

primary amine.  This central amine was subsequently coupled to the linker 

completed the synthesis of the protected backbone.  Deprotection, liberated the 

terminal primary amines, and allowed the catecholamide moieties to be 

introduced.  This was followed by deprotection of the methyl ester of the linker 

and benzyl deprotection of the catecholamides to yield the target compound H6-

41 in an overall yield of 10.5% over eight synthetic steps.  All the reactions, 

with exception of the coupling of the catecholamide moieties to the backbone 

proceeded in yields >76%. and therefore if this reaction yield could be improved 

(Section 4.2), to other comparable yields (~60%) then the overall yield to the 

successful synthesis of H6-41 should increase to approximately 30%. 



 

Chapter 5: A Natural 

Siderophore with a Further 

Fluorescent Component 



         Chapter 5 

          178 

The work outlined within this Chapter is an ongoing collaboration with Prof 

James Coulton (McGill University, Montreal) and Dr Christoph Baumann 

(Department of Biology, University of York).  

 

Project Aims 

 

The aim of this collaborative research project was the design and synthesis of a 

small molecule-fluorophore conjugate by the modification of ferricrocin for the 

targeting and labelling of the outer membrane receptor, FhuA.  This should 

allow a targeted approach for fluorescently labelling the protein and allow the 

location and mobility to be and characterised within the outer cell membrane. 

 

5.1 Introduction 

 

Along with the use of siderophore mimics as chemical tools (see Chapter 4), 

natural siderophores can also be utilised either for their iron(III) binding ability, 

e.g. the use of H3-desferrioxamine B for the treatment of iron overload, or be 

modified to introduce an additional functional component, e.g. the attachment of 

antimicrobial agents to natural siderophores for use in  Trojan Horse 

antimicrobials.
1-5

  Other applications of functionalised siderophores include the 

delivery of cargos,
6-7

 targeted fluorescent probes,
8-13

 and the investigation of 

iron(III) uptake (see Chapter 1).
14-15

   

 

Ferrichrome is a cyclic hexapeptide, made up of three glycine units and three 

modified ornithine units that act as the iron binding hydroxamate units.  

Ferricrocin is a naturally occurring hexadentate hydroxamate siderophore, 

structurally related to ferrichrome but with the second glycine residue replaced 

by a serine.
16

  Despite E. coli not synthesising either ferrichrome or ferricrocin, 

both siderophores can act as iron suppliers for E. coli and a range of other 

organisms using the hydroxamate uptake system.
17

  Modification of ferricrocin 

to investigate iron(III) uptake in E. coli was previously reported by Coulton et 

al. .
14
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The free alcohol functional group on ferricrocin makes it an ideal hydroxamate 

siderophore for studying the iron uptake mechanism, as the free alcohol 

functionality allows direct coupling of a fluorescent label to the siderophore 

backbone, away from the iron binding region. 

 

 

 

Coulton et al. used this alcohol functional group to covalently link the 

ferricrocin to poly(ethylene glycol) to form the polymer-ferricrocin conjugate.  

First the alcohol of the ferricrocin was reacted with succinic anhydride to yield 

the monoester, ferricrocinyl succinate.  The free carboxylate was then activated 

by the reaction of N-(chloromethylene)-N-methylmethanaminium chloride 

followed by the addition of poly(ethylene glycol) (Mr 7000-8500) to yield the 

covalently linked ferricrocinyl polyethylene glycolyl succinate, 50 (Scheme 

21).
14
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Scheme 21 - Synthesis of high-molecular weight ferricrocinyl polyethylene glycolyl 

succinate by Coulton et al.
14 

 

Coutlon et al. showed that the polymer-ferricrocin conjugate could act as an iron 

source, although at a reduced rate compared to free ferricrocin.  When either free 

ferricrocin or the polymer-linked ferricrocin conjugate was used as the iron 

source, the TonB system was required for growth.  Control experiments 

indicated that the ester linkage of the polymer-ferricrocin conjugate was not 

simply hydrolysing and acting as a source of free ferricrocin, rather that the 

conjugate could itself act as a iron(III) source for the cells.
14

  These results 
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demonstrate the complex nature of the iron(III) uptake mechanism, with many 

different processes all playing their role in the uptake of this essential element. 

 

The characterisation of the location and mobility of integral membrane proteins 

has become of great interest since the discovery of the complex and non-uniform 

nature of cell surfaces.  The lipids and proteins of a cell surface are not 

homogenously distributed in the membrane, but are separated into biochemically 

and biophysically distinct domains.
18

  Highly ordered domains are known as 

lipid rafts, which have implications for protein distributions, diffusion and 

trafficking.
18-21

  The chemical make-up of the lipid rafts make the 

characterisation of these systems difficult as they comprise of complex dynamic 

systems.  Fluorescence microscopy is an ideal technique for the investigation of 

these systems as it can be applied to cell membranes and avoids the fixation of 

integral membrane proteins which can introduce artefacts in organisation.
18, 22

  

The analysis of the localisation and dynamics of membrane proteins can offer 

good insights into the constitution of these complex systems utilising techniques 

such as fluorescence recovery after photobleaching (FRAP), which allows the 

direct observation of the diffusion of fluorescently-tagged membrane proteins 

(Figure 76). 
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Figure 76 - Schematic diagram showing the FRAP experiment. 

 

Due to the low number of FhuA receptors expressed on the cell surface of E. 

coli, a technique which possesses a high signal to noise ratio is required for 

visualisation of single receptors.  Total internal reflection fluorescence (TIRF) 

microscopy is an analytical technique that utilises this physical property to 

observe a thin region of a specimen at the surface. Laser light is used to excite 

the sample, by shining it onto a quartz prism which refracts it through a quartz 

cover slip onto the sample.  As the beam hits the sample it passes from a 

material of high optical density (quartz) to a material of low optical density 

(aqueous medium).  As the angle of incidence is large the laser light is reflected 

back into the quartz prism, forming a evanescent wave at the interface.  This 

wave has a high intensity at the surface, however decays exponentially, 

generating excited fluorophores close to the TIRF surface.  This principle allows 

the selective excitation of surface fluorophores over bulk fluorophores which 

enhances the signal to noise ratio, giving a high sensitivity of the technique 

(Figure 77).
23-24
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Figure 77 - Schematic representation of the TIRFM experimental set-up. A) General 

overview; B) Schematic representation of the evanescent wave formation. 
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5.2 Synthesis 

 

Due to the TIRF experimental set-up, which utilises an argon ion fixed 

wavelength laser source (488 nm), the fluorophore chosen for the design of the 

conjugate was Alexa Fluor® 488 azide (Life Technologies), which possesses an 

intense absorbance band at 488 nm (ε = 76,000 mol
-1

dm
3
cm

-1
) and efficiently 

emits at 519 nm (ϕ = 0.92).  This fluorophore also has a number of other 

desirable properties such as being water soluble, photostable, and pH 

independent between pH 4-10.
25

 

 

 

The fluorophore possesses a six carbon linker to the azide functionality, which 

reduces the likelihood of adverse steric interactions when the target conjugate is 

bound to the FhuA receptor.  The azide functional group allows reaction with an 

alkyne using a copper catalysed 1,3-dipolar-cycloaddition reaction (‘click-

chemistry’).  The required alkyne functionality can be introduced onto 

ferricrocin by forming an ester linkage using the alcohol of ferricrocin and an 

alkyne containing carboxylic acid.  Compound 51 is the purposed structure of 

the target compound. 
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The synthesis starts with the addition of the alkyne functionality to ferricrocin 

(Scheme 22).  Following the synthetic strategy employed by Coulton et al.
14

 it 

was decided to first activate 4-pentynoic acid as an anhydride.  This was 

synthesised through self condensation using DCC as a coupling reagent, 

following a modified methodology described by Ledin et al.
26

  The 4-pentynoic 

acid was first reacted with DCC in anhydrous dichloromethane under a dry 

nitrogen atmosphere.  The activated 4-pentynoic acid subsequently reacted with 

another 4-pentynoic acid molecule producing anhydride 52 and a DCU by-

product.  The DCU was removed whilst remaining under an inert atmosphere via 

cannular filtration.  The ferricrocin was introduced dissolved in dry pyridine and 

allowed to react as described by Coulton et al.
14

  

 

 

Scheme 22 - Synthetic route to 53.  (a) DCC, N2; (b) Ferricrocin, N2. 
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Due to the small scale of the synthesis (< 1 mg) and the  use of ferricrocin which 

contains iron(III), NMR could not be used to characterise 53.  Therefore semi- 

preparative HPLC and mass spectrometry were utilised to purify and 

characterise the product (Figure 78).   

 

 

Figure 78 - HPLC traces (absorbance at 420 nm) of ferricrocin (20 mM) in water, 

injection volume 5 μL (blue) and 53 (0.5 mg in 350 μL of water) injection volume 20 

μL (red); 6-40 % (v/v) acetonitrile/water gradient. 

 

The HPLC traces show that ferricrocin has a retention time of 13 minutes under 

the experimental conditions, whereas the reaction mixture contained both 

ferricrocin and a more intense new species which eluted at 17 minutes.  The 

sample was purified by HPLC and the fraction eluting at 17 minutes was 

collected.  Mass spectrometry confirmed the presence of 53 with signals 

observed at m/z 851.2705 and m/z 873.2541 consistent with [M+H]
+
 and 

[M+Na]
+
 ions, respectively, for a molecular formula of FeC33H48N9O14. 

 

The next step in the synthesis was the addition of the Alexa Fluor® 488 azide 

fluorophore onto 53, using a copper-catalysed 1,3 dipolar-cycloaddition ('click'-

chemistry) reaction (Scheme 23).  This type of reaction is  well established in the 

literature.  It was discovered by Rostovtsev et al.
27

 and has been used 
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extensively since, due to high yields and the wide range of chemical conditions 

in which the reaction can take place.
28

  The copper acts as a catalyst and is first 

introduced into the reaction as a copper(II) salt, which is reduced in situ by 

sodium ascorbate to produce the catalytically active copper(I) form.  The 

reaction is reported to work in a wide pH range and in a number of different 

solvents from aqueous tert-butyl alcohol to neat water.
27-28

 

 

Scheme 23 - Synthetic route to 51. (a) Alexa Fluor® 488 azide, CuSO4, sodium 

ascorbate. 

 

The reaction was conducted using water as the solvent, due to the water 

solubility of the reagents and requirement for the work-up using dialysis.  The 

reaction was allowed to proceed for 6 hours, at room temperature and in the dark 

in order to reduce potential photobleaching.  The reaction mixture was then 

dialysed using a 0.1-0.5 kDa molecular weight cut off dialysis membrane 

(Dialysis Float-A-Lyzer 5 mL, Spectrum labs) in-order to remove any remaining 

copper salts.  The sample was analysed by HPLC under the same conditions as 

for 53 (Figure 79). 
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Figure 79 - HPLC traces of 51 (red) after dialysis and Alexa Fluor® 488 (blue). A) - 

Absorbance data measured at 420 nm.  B) Fluorescence data excited at 500 nm 

emission measured at 520 nm. 

 

The HPLC traces show that free Alexa Fluor® 488 azide has a retention time of 

12 minutes observed by both the absorbance and fluorescence detectors.  The 

reaction mixture has a strongly absorbing species with a retention time of 13 

minutes, but only shows a weak emission intensity, and a weakly absorbing 

species with a large emission intensity at 16 minutes.  The reaction mixture was 

purified using the same semi-preparative HPLC methodology as with 53, 

collecting the band eluting at 16 minutes and mass spectrometry was utilised to 
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confirm that presence of the conjugate 51.  The broad nature of the emission 

peak in the HPLC trace of 51 demonstrated a need to confirm the purity of the 

conjugate.  Therefore LC-MS with an UV-visible detector was used to identify 

any impurities.  Due to the different experimental limitations for the LC-MS, the 

chromatography procedure was different to that used for the semi-preparative 

HPLC in the synthesis.  Control experiments showed that free ferricrocin could 

be detected using both the UV-visible absorbance detector (254 nm) and 

negative mode ESI mass spectrometry.  Therefore a sample of 51 was 

investigated using the same methodology as for free ferricrocin.  There was only 

one peak in the total ion count (TIC) chromatogram, with three features in the 

UV-visible trace (Figure 80). 

 

Figure 80 - LC-MS of 51. A) TIC chromatogram; B) UV absorbance (254 nm) 

chromatogram; C) Mass spectrum associated with the peak eluting after 32 minutes in 

the chromatogram. Peak at 15 min (dashed black line) is calibrant injected into the ESI 

source used for accurate mass calibration. 
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The band  in the chromatograms eluting after 32 minutes is assigned as 51, due 

to the ESI signals observed at m/z 753.1849 and 1507.3876 consistent with the 

doubly charged, (M
2-

) and singly charged (M
-
) molecular ions for a compound 

of molecular formula FeC60H73N15O24S2, respectively.  The other features in the 

UV-visible trace are a broad peak between 0-5 minutes and a sharp negative 

signal followed by a broad positive peak starting at 11 minutes.  These features 

had no detectable ions in the TIC chromatogram, suggesting that the signal is 

due to the void of the column.  This was confirmed by control blank 

chromatograms, with these features always present.  The only species detected 

by either absorbance at 254 nm or mass spectrometry was conjugate 51 showing 

that the semi-preparative HPLC methodology for the purification was 

successful. 

 

To further characterise 51, the UV-visible, emission and excitation spectra were 

recorded (Figure 81).  The profile of the UV-visible spectrum is similar to that 

of the Alexa Fluor® 488, as it is the most dominate chromophore in the 

molecule.  Conjugate 51 does possess a larger absorbance than that of the Alexa 

Fluor® 488 chromophore between 380-420 nm due to the LMCT band of the 

ferricrocin component of the conjugate.  Ferricrocin was found not to be 

fluorescent and therefore the profiles of the emission and excitation spectra of 51 

match that of the Alexa Fluor® 488 fluorophore. 

 

Due to the small scale of the synthesis an accurate mass could not be obtained 

for 51.  The final yield was therefore calculated from the UV-visible absorbance 

spectrum using the molar absorption coefficient of the Alexa Fluor® 488 azide 

(λ488, ε = 76,000 mol
-1

dm
3
cm

-1
), to be 4.2x10

-9
 mol (6.3 μg). 
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Figure 81 - A) UV-visible absorbance spectra of Alexa Fluor® 488 azide (1.3x10
-5

 

moldm
-3

), 51 and ferricrocin (2.0x10
-4

 moldm
-3

); B) Emission spectra of Alexa Fluor® 

488 azide and 51, excited at 488 nm; C) Excitation spectra of Alexa Fluor® 488 azide 

and 51, monitoring at 525 nm.  All spectra recorded in water. 



         Chapter 5 

          192 

 

5.3 Conjugate-Protein Interactions 

 

The work outlined within this section was conducted by Dr Christoph Baumann, 

Department of Biology, University of York. 

 

To determine if 51 will selectivity bind to the outer membrane receptor FhuA as 

outlined in the introduction, TIRF microscopy was utilised.  Two strains of E. 

coli were grown and used for this experiment, a ΔfhuA strain and a ΔtonB strain.  

The ΔfhuA strain provided a negative control: due to the lack of FhuA receptors 

expressed, conjugate 51 should not bind to these cells.  The ΔtonB strain 

provided the positive control as 51 should bind to the FhuA receptor but not be 

internalised into the cell and hence remains detectable under the TIRF 

microscopy experimental conditions.   

 

A sample of each cell culture was taken and centrifuged, the supernatant was 

removed and the cells subsequently resuspended in M9 medium containing 10 

nM of conjugate 51.  The cells were incubated in the dark for 20 minutes, before 

being centrifuged to remove any supernatant, before resuspended in fresh M9 

medium containing no 51.  The cells where then immobilised onto a poly-lysine 

slip and images recorded under the TIRF microscope (Figure 82). 
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Figure 82 - Initial TIFM images.  A) 10 nM 51 and E. coli ΔfhuA cells (sum of 500 

video frames); B) 10 nM 51 and E. coli ΔtonB cells (sum of 5 video frames). 

 

The TIRFM images show the successful labelling of the E. coli cells that 

contained the FhuA receptor.  To further test the hypothesis of the specific 

labelling of the receptor, the experiments were repeated, but with a third 

experimental condition.  This time the ΔtonB cells were incubated with 5 μM of 

ferricrocin, before the incubation of 10 nM of conjugate 51.  The unlabelled 

ferricrocin, should bind and block the FhuA receptors from 51 resulting in a 

weak fluorescence signal (Figure 83). 
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Figure 83 - Repeat TIRFM images containing 10 nM 51, E. coli ΔfhuA, ΔtonB cells 

and ΔtonB cells with 5 μM ferricrocin.  A) sum of 10 video frames; B) sum of 200 

video frames; C) Profile plot of grey value of pixels across highlighted cell (yellow).  

Analysis performed using ImageJ.
29 

 

The repeat TIRFM images show the ferricrocin block reduces the fluorescence 

of the E. coli cells, showing that conjugate 51 specifically binds to the FhuA 

outer membrane receptor.  The intensity of the fluorescence signal, however, is 

weaker than expected, possibly due to quenching of the fluorophore by the 

ferricrocin moiety.  As a result, the planned FRAP work could not be completed 
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as the conjugate would not be compatible with the confocal microscope 

equipment required for the experiment. 

 

5.4 Summary of Chapter 5 

 

The ferricrocin-Alexa Fluor® 488 conjugate 51 was successfully synthesised in 

a two step procedure.  First ferricrocin was reacted with 4-pentynoic anhydride, 

followed by click-chemistry to react the alkyne group with the commerically 

available Alexa Fluor® 488 azide fluorophore.  Characterisation by LC-MS, 

UV-visible and fluorescence spectroscopies confirmed the successful formation 

of 51.  Due to the small scale of the synthesis yields were not obtainable.  

Conjugate 51 was incubated with two E. coli strains, ΔfhuA and ΔtonB and 

analysed using TIRF microscopy.  The ΔfhuA strain showed a weak 

fluorescence, whereas the ΔtonB strain showed observable fluorescence under 

these experimental conditions, indicating compound 51 is selectivity binding to 

cells which possess the outer membrane transporter FhuA.   

 



 

Chapter 6: Conclusions and 

Future Work 
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6.1 Conclusions and Future Work 

Interactions of Tetradentate Siderophores with CeuE (Chapters 2 and 3) 

 

The simple bis(catecholamide) biomimetic model, H4-4-LICAM was the first 

tetradentate ligand to be characterised, complexed with iron(III) and co-

crystallised with a PBP, leading to the discovery of a novel binding mode of 

CeuE.  Ferric-4-LICAM was found to be present as a 1:1 complex in the binding 

pocket of CeuE, with residues His227 and Tyr288 coordinating directly to the 

iron centre, thus completing its coordination sphere.  Sequence alignment 

revealed that these two residues are conserved among a number of related 

proteins from different bacteria.  In the absence of CeuE, it was found that 4-

LICAM
4-

 is capable of forming complexes with a ligand to metal ratio of both 

3:2 and 1:1 in equilibrium, however, only the 1:1 complex is found bound if the 

complex is co-crystallised with CeuE.  The chirality of the iron centre in the 

{CeuE[Fe(4-LICAM)]} structure was found to be Λ, both in the solid state (X-

ray diffraction analysis) and in solution (CD spectroscopy).  The dissociation 

constant was determined by intrinsic fluorescence quenching to be 29.3 ± 11.7 

nM, which is the first time a ferric-tetradentate siderophores dissociation 

constant has been determined. 

 

To confirm if the binding mode of the mimetic is biologically important, the 

successful total synthesis of the natural siderophore enterobactin linear dimer 

was carried out.  It was shown that the linear dimer preferentially binds iron(III) 

in a 1:1 complex in solution, unlike 4-LICAM
4-

, and that the basic arrangement 

within the binding pocket of CeuE in the crystal is the same.  The dissociation 

constant was determined to be 8.4 ± 4.3 nM.  The similarity between the 

dissociation constants of PBPs with ferric-4-LICAM, ferric-linear dimer and 

other characterised hexadentate siderophores, suggest that the tyrosine and 

histidine residues act as an adapter for the protein, enabling the binding of both 

tetradentate and hexadentate ligands with minimal impact on the binding mode 

(e.g. dissociation constant and metal centred chirality). 
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Future work should first involve determination of the dissociation constant of 

ferric-enterobactin towards CeuE, which would reveal whether the ferric-4-

LICAM and ferric-linear dimer Kd values are within a biologically relevant 

range for CeuE or not.  Selective mutagenesis could be used to confirm the 

importance of the His227 and Tyr288 residues, with determination of the mutant 

dissociation constants indicating the relative contribution to the Kd value for 

each residue.  Beyond these experiments, expanding the research to include 

PBPs from other organisms, as well as other proteins in the uptake system would 

be of great interest. 

 

Development of a Siderophore Mimic for use with Further Functional 

Components (Chapter 4) 

 

The second area of research involved the development of a novel catecholamide 

hexadentate siderophore mimic that possesses a linker for the attachment of a 

secondary chemical functional group.  The successful synthesis used 4-(2-

carboxyethyl)-4-nitroheptanedioic acid as a starting material, in eight synthetic 

steps to produce the final compound, with an overall yield of 10.5%.  

 

Future work would include full optimisation of the synthetic route, particularly 

the coupling of the catecholamide groups to the backbone, which is likely to be 

hampered by hydrolysis of the acid chloride.  After full optimisation, the 

iron(III) binding abilities of H6-41 could be investigated.  In addition, a second 

functional component could be covalently attached via the free carboxylate, to 

enable evaluation of its effect on the iron(III) binding of the siderophore moiety.  

Once the ligand-metal interactions are understood, the interactions between the 

protein and the ferric siderophore could be investigated, using CeuE as a model 

protein.  Determination of the metal-centred chirality and the dissociation 

constant of the CeuE-ferric-41 complex would provide useful insight into the 

protein recognition of ferric-41, and how this compares to ferric-enterobactin 

and other siderophore models.  The second functional component attached could 

be either: a fluorophore, for use as a novel fluorescent probe to target 
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enterobactin receptors or an anti-microbial agent for use in the Trojan Horse 

Strategy. 

 

Modification of Ferricrocin with a Fluorescent Component (Chapter 5) 

 

The final area of research involved modification of a natural siderophore, 

ferricrocin, by the attachment of the Alexa Fluor® 488 fluorophore.  This was 

completed by the attachment of an alkyne to the free alcohol functionality of the 

ferricrocin, followed by a 1,3 dipolar-cycloaddition ('click'-chemistry) reaction 

to introduce the Alexa Fluor® 488 fluorophore via the azide group.  The 

conjugate was characterised by LC-MS, UV-visible and fluorescence 

spectroscopies.  In collaborative experiments conjugate 51 was incubated with 

two strains of E. coli, ΔfhuA and ΔtonB and analysed using TIRF microscopy.  

The ΔfhuA strain showed a weak fluorescence, whereas the ΔtonB strain showed 

a stronger fluorescence signal, indicating selective binding of 51 to cells which 

possess the outer membrane transporter FhuA.  However, the fluorescence 

signal was not considered intense enough for the intended FRAP experiments. 

 

Future work would involve change from the current conjugate 51.  Increasing 

the link length between the ferricrocin and the fluorophore may reduce the 

impact of the quenching, or alternative fluorophores could be coupled with 

ferricrocin using similar synthetic strategies. 



 

Chapter 7: Experimental 
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7.1 General Remarks 

Materials 

All materials were obtained from commercial suppliers (Acros, Alfa-Aesar, 

Fisher Chemicals, Fisher Scientific, Fluka, Sigma-Aldrich) and used as supplied 

unless otherwise stated. 

Instrumentation 

1
H, 

13
C{

1
H}, DEPT 135, HSQC, COSY, HMBC NMR spectra were recorded on 

a Jeol EX and ES 400 MHz instruments (
1
H NMR 400 MHz, 

13
C NMR 100.6 

MHz).  DOSY spectra were recorded on a Bruker 500 MHz instrument (
1
H 

NMR 500 MHz) and the experiments were carried out by Ms. Heather Fish.  

Multiplicity abbreviations are as follows; s for singlet, d for doublet, t for triplet, 

q for quartet quin for quintet, dd for double doublet, td triple doublet, ddd for 

doublet of doublet of doublets, m for multiplet, br for broad and app for 

apparent.  All NMR assignments were aided by  DEPT 135, HSQC experiments, 

with additional COSY and HMBC experiments used as required.  Electro-spray 

ionisation mass spectrometry (ESI-MS) was recorded on a Bruker microTOF 

Electrospray mass spectrometer by Mr. K. Heaton and Ms. H. Robinson.  Infra-

red spectra were recorded on a Thermo Nicolet Avatar 370 FT-IR 

spectrophotometer (KBr), or on a Perkin Elmer FT-IR Spectrum Two 

spectrometer (ATIR) in the region of 4000-500 cm
-1

.  Elemental analysis was 

carried out by Dr. G. McAllister on an Exeter CE-440 elemental analyser and 

results are within ± 0.4 %.  TLC was performed on Merck silica gel 60 F254 

aluminium backed plates and visualised under a Chromato-vue Model CC-10 

UV lamp, unless otherwise stated.  Melting points were recorded on a Stuart 

Scientific SMP3 instrument.  Electronic absorbance spectra were recorded on a 

Shimadzu UV-1800 spectrophotometer, with kinetic data recorded on a Hewlett 

Packard 8452A diode array spectrophotometer with a thermostated cell holder.  

Fluorescence spectra were recorded on a Hitachi F-4500 fluorescence 

spectrophotometer.  The specific rotation was recorded on a Jasco DIP-370 

digital polarimeter.  The circular dichromism spectroscopic measurements were 



         Chapter 7 

          202 

performed on a Jasco J810 CD spectropolarimeter at 20 °C under constant 

nitrogen flush. 

 

7.2 Synthesis 

 

The order of the experimental details of each molecule is shown in Table 14. 
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Compound Number (Target Compound) Chapter of 

Thesis 

Page Number 

12 (Catechol Synthesis) 2 204 

13 (Catechol Synthesis) 2 205 

16 (H2-EBA Synthesis) 2 206 

15 (H2-EBA Synthesis) 2 208 

14 (H4-4-LICAM Synthesis) 2 209 

H4-4-LICAM (H4-4-LICAM Synthesis) 2 211 

22 (H4-17) 3 212 

24 (H4-17) 3 214 

25 (H4-17) 3 215 

29 (H4-17) 3 217 

30 racemic (H4-17) 3 219 

31 (Catechol Synthesis) 3 221 

32 (H4-17) 3 221 

33 (H4-17) 3 223 

34 (H4-17) 3 225 

30 ʟ/ʟ (H4-17) 3 226 

H4-17 (H4-17) 3 228 

43 (H6-41) 4 230 

44 (H6-41) 4 231 

45 (H6-41) 4 232 

46 (H6-41) 4 234 

47 (H6-41) 4 235 

48 (H6-41) 4 237 

49 (H6-41) 4 239 

H6-41 (H6-41) 4 240 

53 (51) 5 242 

51 (51) 5 243 

Table 14 - Ordering of synthetic experimental details. 
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2,3-Bis(phenylmethoxy)benzoic acid, 12 

 

 

 

Prepared as in accordance to the literature.
1
 

 

Yield:  

10.01 g, 29.9 mmol, 80% 

Mp:  

124.1-125.9 °C 

Rf:  

Chloroform : MeOH (8:1) : Rf : 0.51 

m/z (ESI):  

357.1097 ([M+Na]
+
, 97%), 335.1289 ([M+H]

+
, 13%) 

HRMS (ESI): 

Calc for [C21H18O4] + H
+
  = 335.1278 Found 335.1289 (-3.3 ppm error) 

Calc. for [C21H18O4] + Na
+
  = 357.1097  Found 357.1097 (0.1 ppm error)  

1
H NMR: (d6-DMSO, 400 MHz) δH 

12.93 (1H, s, H-9), 7.49 (2H, d, J = 7.3 Hz, Har), 7.42-7.29 (9H, m, Har), 7.22 

(1H, dd, J = 7.8, 1.5 Hz, H-1/3), 7.15 (1H, t, J = 7.8 Hz, H-2), 5.19 (2H, s, H-

11/17), 5.00 (2H, s, H-11/17) 

 

13
C{

1
H} NMR: (d6-DMSO, 100 MHz) δC   

168.2 (C-7), 152.9 (C-4/5), 147.2 (C-4/5), 137.9 (Car), 137.3 (Car), 128.9 (Car), 

128.7 (Car), 128.6 (Car), 128.5 (Car), 128.3 (Car), 128.2 (Car), 124.7 (Car), 121.9 

(Car), 117.5 (Car), 74.9 (C-11/17), 70.3 (C-11/17) 
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IR (KBr cm
-1

):  

3431 weak (O-H), 3032 weak (C-H), 1692 strong (C=O, acid), 1577 strong (C-C 

ar) 

The characterisation data are consistent with those reported. 

 

2,3-Bis(phenylmethoxy)-benzoic acid 2,5-dioxo-pyrrolidinyl ester, 13 

 

 

 

Prepared as in accordance to the literature.
2
 

 

Yield:  

2.58 g, 5.98 mmol, 72% 

Mp:  

115.7 – 116.9 °C 

Rf:  

Chloroform : Ethyl Acetate (4:1) : Rf : 0.47 

m/z (ESI):  

454.1248 ([M+Na]
+
, 100%) 

HRMS (ESI): 

Calc. for [C25H21NO6] + Na
+
 = 454.1261  Found 454.1248 (2.9 ppm error)  
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1
H NMR: (d6-DMSO, 400 MHz) δH 

7.61-7.29 (13H, m, Har), 5.25 (2H, s, H-15/21), 5.04 (2H, s, H-15/21), 2.89 (4H, 

s, H-13) 

13
C{

1
H} NMR: (d6-DMSO, 100 MHz) δC   

171.2 (C-11), 161.5 (C-7), 153.2 (C-4/5), 148.6 (C-4/5), 137.2 (Car), 136.9 (Car), 

129.0 (Car), 128.9 (Car), 128.6 (Car), 128.6 (Car), 128.5 (Car), 128.5 (Car), 125.4 

(Car), 122.6 (Car), 121.0 (Car), 120.5 (Car), 75.3 (C-15/21), 70.6 (C-15/21), 25.5 

(C-13) 

IR (KBr cm
-1

):  

1768 strong (C=O), 1738 strong (C=O), 1499 medium (C-C ar) 

Elemental Analysis: 

Calculated for [C25H21NO6]: %C 69.60, %H 4.91, %N 3.25 

Measured for [C25H21NO6]: %C 69.21, %H 4.92, %N 3.23 

The characterisation data are consistent with those reported. 

 

2,3-Bis(phenylmethoxy)-N-ethylbenzamide, 16 

 

 

 

Compound 13 (0.203 g, 0.47 mmol) was dissolved in 10 mL of THF.  To this 

stirred solution, triethylamine (85 L, 0.6 mmol) was added, followed by 300 

L of a 2.0 M solution of ethylamine in THF.  The solution was stirred at room 

temperature for 4 hours.  The volatiles were then removed in vacuo before the 

residue was taken up in 50 mL of dichloromethane.  The organic layer was 

washed with 15 mL 0.1 M HCl, followed by 15 mL saturated NaHCO3 and 3 x 
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20 mL water.  The organic layer was dried over MgSO4, before the 

dichloromethane was removed in vacuo, to yield the product as an oil. 

Characterisation data consistent with literature.
3
 

 

Yield:  

0.1243 g, 0.34 mmol, 72 % 

Rf:  

Chloroform : Ethyl Acetate (4:1) : Rf : 0.64 

m/z (ESI):  

362.1745 ([M+H]
+
, 100%), 384.1561 ([M+Na]

+
, 37%) 

HRMS (ESI): 

Calc for [C23H23NO3]+H
+
 = 362.1751 Found 362.1745 (1.7 ppm error) 

Calc. for [C23H23NO3]+Na
+
  = 384.1570 Found 384.1561 (2.3 ppm error)  

1
H NMR: (d6-DMSO, 400 MHz) δH 

7.92 (1H, br t, J = 5.0 Hz, H-9), 7.77-7.74 (1H, m, Har), 7.50-7.14 (12H, m, Har), 

5.16 (2H, s, H-14/28), 5.07 (2H, s, H-14/28), 3.32 (2H, dq, J = 7.0, 5.0 Hz, H-

10), 0.99 (3H, t, J = 7.0 Hz, H-11) 

13
C{

1
H} NMR: (d6-DMSO, 100 MHz) δC 

165.3 (C-7), 152.1 (C-4/5), 147.1 (C-4/5), 136.7 (Car), 136.6 (Car), 129.1 (Car), 

128.9 (Car), 128.5 (Car), 127.9 (Car), 127.7 (Car), 124.6 (Car), 123.5 (Car), 116.9 

(Car), 76.3 (C-14/28), 71.2 (C-14/28), 34.2 (C-10), 14.0 (C-11) 

IR (KBr cm
-1

):  

3385 medium (N-H), 2932 weak (C-H), 1652 strong (C=O, amide), 1526 strong 

(C-C ar) 
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N-ethyl-2,3-dihydroxybenzamide, 15 

 

 

 

All glassware used was soaked in 6M HCl for at least 2 hours before use, in 

order to remove iron adsorbed on the surface of the glassware. 

 

Compound 16 (4.1 mmol, 1.480 g) was dissolved in 35 mL of dry ethanol.  To 

the solution, one small spatula tip of Pd-C 10% was added and a balloon of 

hydrogen gas was passed through the solution to purge the system.  After the 

system is purged a second balloon of hydrogen gas was added which allowed the 

reaction to proceed for 3 days under a positive pressure of hydrogen.  After the 

reaction was completed the catalyst was filtered off and the product was isolated 

by removing the solvent in vacuo.  The product was purified by sublimation at 

10
-2

 mbar at 80 °C to yield a white crystalline solid.  Characterisation data 

consistent with literature.
4
  

 

Yield:  

0.547 g, 3.02 mmol, 74 % 

Mp:  

78.2-78.8 °C 

Rf:  

Chloroform : Ethyl Acetate (4:1) : Rf : 0.38 

m/z (ESI):  

182.0810 ([M+H]
+
, 50%), 204.0624 ([M+Na]

+
, 100%) 

HRMS (ESI): 

Calc for [C9H11NO3]+H
+
  = 182.0812 Found 182.0810 (1.2 ppm error) 

Calc. for [C9H11NO3]+Na
+
  = 204.0631 Found 204.0624 (3.5 ppm error)  
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1
H NMR: (d6-DMSO, 400 MHz) δH 

13.94 (1H, br s, H-12/13), 9.13 (1H, br s, H-12/13), 8.80, (1H, t, J = 5.2 Hz, H-

9), 7.27 (1H, dd, J = 8.0, 1.5 Hz, H-1/3), 6.90 (1H, dd, J = 8.0, 1.5 Hz, H-1/3), 

6.66 (1H, app t, J = 8.0 Hz, H-2), 3.31(2H, dq, J = 7.2, 5.5 Hz, H-10), 1.13 (3H, 

t, J = 7.5 Hz, H-11). 

13
C{

1
H} NMR: (d6-DMSO, 100 MHz) δC 

170.3 (C-7), 150.4 (C-4/5), 146.8 (C-4/5), 119.2 (Car), 118.3 (Car), 117.5 (Car), 

115.3 (Car), 38.6 (C-10), 26.3 (C-11). 

IR (KBr cm
-1

):  

3350 medium (O-H), 3223 medium (N-H), 2982 weak (C-H), 1641 medium 

(C=O, amide), 1575 medium (C-C ar) 

Elemental Analysis: 

Calculated for [C9H11NO3]: %C 59.66, %H 6.12, %N 7.73 

Measured for [C9H11NO3]: %C 59.62, %H 6.23, %N 7.69 

 

N,N'-[bis(2,3-bis(phenylmethoxy)benzoyl]-1,4-diaminobutane, 14 

 

 

 

1,4-diaminobutane, 50 μL (0.5 mmol) was dissolved in 5 mL acetone also 

containing triethylamine, 350 μL (2.5 mmol) and stirred.  To this stirred 

solution, compound 13 (0.431 g, 1.0 mmol), dissolved in 5 mL of acetone was 
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slowly added and the resulting mixture was stirred at ambient temperature for 18 

hours.  The solvent was removed in vacuo.  The solid formed was dissolved in 

chloroform and washed with 0.05 M HCl.  The organic layer was washed with 

saturated NaHCO3 and H2O until the aqueous washes were neutral.  The organic 

layer was dried over MgSO4, filtered, and the solvent removed in vacuo to yield 

the crude product.  The crude product was purified via flash column 

chromatography on silica 4:1 CHCl3:EtOAc, with the solvent system changing 

to 9:1 CHCl3:MeOH to elute the product yielding an off white solid. 

 

Yield:  

0.336 g, 0.47 mmol, 94% 

Mp:  

122.1-124.9 °C 

Rf:  

Chloroform : Ethyl Acetate (1:1) : Rf : 0.43 

m/z (ESI):  

721.3268 ([M+H]
+
, 100%), 743.3090 ([M+Na]

+
, 60%) 

HRMS (ESI): 

Calc for [C46H44N2O6]+H
+
  = 721.3272 Found 721.3268 (0.6 ppm error) 

Calc. for [C46H44N2O6]+Na
+
  = 743.3092 Found 743.3090 (0.2 ppm error)  

1
H NMR: (d6-DMSO, 400 MHz) δH 

8.17 (2H, t, J = 6.0 Hz, H-9), 7.51 (4H, d, J = 8.0 Hz, Har), 7.43-7.27 (18H, m, 

Har), 7.14-7.12 (4H, m, Har), 5.20 (4H, s, H-13/19), 5.01 (4H, s, H-13/19), 3.14 

(4H, br q, J = 5.6 Hz H- 10), 1.40-1.36 (4H, br m, H-11) 

13
C{

1
H} NMR: (d6-DMSO, 100 MHz) δC   

166.1 (C-7), 152.2 (C-1/2), 145.7 (C-1/2), 131.5 (Car), 128.9 (Car), 128.7 (Car), 

128.6 (Car), 128.5 (Car), 128.4 (Car), 128.3 (Car), 124.6 (Car), 121.7 (Car), 116.2 

(Car), 75.3 (C-13/19), 70.4 (C-13/19), 38.7 (C-10), 26.4 (C-11) 

IR (KBr cm
-1

):  

3394 medium (N-H), 2933 weak (C-H), 1659 strong (C=O, amide), 1529 strong 

(C-C ar) 

Elemental Analysis: 

Calculated for [C46H44N2O6]: %C 76.64, %H 6.15, %N 3.89 

Measured for [C46H44N2O6]: %C 76.29, %H 6.19, %N 3.83 
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H4-4-LICAM 

 

 

 

Compound 14, 0.0564 g (0.078 mmol) was dissolved in 2 mL of dry toluene 

before 50 mL of dry ethanol was added.  To this stirred solution one small 

spatula tip of Pd-C 10% was added.  The mixture was purged with hydrogen and 

allowed to react for 18 hours under a positive pressure of hydrogen.  After the 

reaction was completed the catalyst was filtered off and the product was isolated 

by removing the solvent in vacuo, to yield a beige solid. Characterisation data 

consistent with literature.
5
  

 

Yield:  

0.0267 g, 0.074 mmol, 95% 

Mp:  

Decomposed approx 195 °C 

m/z (ESI):  

361.1391 ([M+H]
+
, 10%), 383.1216 ([M+Na]

+
, 24%) 

HRMS (ESI): 

Calc for [C18H20N2O6]+H
+
  = 361.1394 Found 361.1391 (0.9 ppm error) 

Calc. for [C18H20N2O6]+Na
+
  = 383.1214 Found 383.1216 (-0.7 ppm error)  

1
H NMR: (d6-DMSO, 400 MHz) δH 

12.88 (2H, br s, H-23/24), 9.14 (2H, br s, H-23/24), 8.81 (2H, t, J = 5.5 Hz, H-

9), 7.29 (2H, dd, J = 8.5, 1.2 Hz, H-2/4), 6.90 (2H, dd, J = 8.0, 1.2 Hz, H-2/4), 

6.68 (2H, dd, J = 8.5, 8.0 Hz, H-3), 3.30-3.25 (4H, m, H-10), 1.59-1.54 (4H, m, 

H-11). 

13
C{

1
H} NMR: (d6-DMSO, 100 MHz) δC   

170.4 (C-7), 150.3 (C-1/6), 146.8 (C-1/6), 119.2 (Car), 118.3 (Car), 117.5 (Car), 

115.3 (Car), 38.6 (C-10), 26.3 (C-11). 
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IR (KBr cm
-1

):  

3415 medium (O-H), 3390 medium (N-H), 1643 medium (C=O, amide), 1590 

medium (C-C ar) 

Elemental Analysis 

Calculated for [C18H20N2O6.0.8H2O]: %C 57.69, %H 5.81, %N 7.47 

Measured for [C18H20N2O6.0.8H2O]: %C 57.78, %H 5.94, %N 7.46 

 

ʟ-Serine-N-[2,3-bis(phenylmethoxy)benzoyl]-O-(phenylmethyl)-ether, 22 

 

 

 

To a stirred suspension of ʟ-serine benzyl ester hydrochloride (0.70 g, 3 mmol) 

in acetonitrile (75 mL), triethylamine (0.50 mL, 3.6 mmol) was added and 

allowed to stir for a short time before, a solution of compound 13 (1.29 g, 3 

mmol) in acetonitrile (25 mL) was added and the mixture and left to stir 

overnight. After 18 hours, the solvent was removed in vacuo and the resulting 

oil dissolved in chloroform 100 mL. This was washed with HCl (50 mL, 0.1 M), 

saturated NaHCO3 (50 mL) and water (4 x 50 mL) until the aqueous layer was at 

neutral pH. The organic layer was then dried over MgSO4, filtered and the 

solvent removed in vacuo, yielding an off white solid. Characterisation data 

consistent with literature.
6
 

 

Yield: 

1.40 g, 2.74 mmol, 91.0% 

Melting point:  

76.4 – 79.6 °C 
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Rf: 

Chloroform : Ethyl Acetate (1:1) : Rf : 0.53 

m/z (ESI): 

534.1874 ([M+Na]
+
, 100 %), 512.2056 ([M+H]

+
, 91.5 %) 

HRMS (ESI): 

Calc for [C31H29NO6] + H
+
  = 512.2068 Found 512.2056 (2.3 ppm error) 

Calc for (C31H29NO6] + Na
+
  = 534.1887 Found 534.1874 (2.4 ppm error) 

1
H NMR: (CDCl3, 400 MHz) δH 

8.86 (1H, d, J = 7.0 Hz, H-9), 7.71 (1H, dd, J = 7.0, 2.5 Hz, H-2/4), 7.47-7.15 

(17H, m, Har), 5.21 (1H, d, J = 10.0 Hz, H-16/22/28), 5.19 (2H, s, H-16/22/28), 

5.15 (2H, s, H-16/22/28), 5.07 (1H, d, J = 10.0 Hz, H-16/22/28), 4.78 (1H, ddd, 

J = 7.5, 4.0, 4.0 Hz, H-10), 3.90 (1H, dd, J = 11.2, 4.4 Hz, H-11/11*), 3.85 (1H, 

dd, J = 11.2, 4.0 Hz, H-11/11*) 

13
C{

1
H} NMR: (CDCl3, 100 MHz) δC   

170.2 (C-13), 165.8 (C-7), 151.9 (Car), 147.2 (Car), 136.4 (Car), 136.4 (Car), 

135.4 (Car), 129.2 (Car), 128.8 (Car), 128.7 (Car), 128.7 (Car), 128.6 (Car), 128.5 

(Car), 128.4 (Car), 128.3 (Car), 127.9 (Car), 126.7 (Car), 124.5 (Car), 123.4 (Car), 

117.7 (Car), 76.4 (C-16/22/28), 71.5 (C-16/22/28), 67.5 (C-16/22/28), 63.7 (C-

11), 55.6 (C-10) 

IR (KBr cm
-1

): 

3358 strong (N-H), 3036 medium (C-H ar), 2956 medium (C-H), 1743 strong 

(C=O, ester), 1627 strong (C=O, amide) 

Elemental Analysis: 

Calculated for [C31H29NO6.0.2H2O]: %C 72.27, %H 5.75, %N 2.72 

Measured for [C31H29NO6.0.2H2O]: %C 72.18, %H 5.66, %N 2.78 
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ʟ-Serine-N-[2,3-bis(phenylmethoxy)benzoyl]-O-methyl ester, 24 

 

 

 

To a stirred solution of ʟ-serine methyl ester hydrochloride (1.74 g, 11.2 mmol) 

in acetonitrile (75 mL), triethylamine (3.83 mL, 27.5 mmol) was added and 

allowed to stir for a short time before, a solution of compound 13 (4.31 g, 9.89 

mmol) in acetonitrile (25 mL) was added and the mixture and left to stir 

overnight. After 18 hours, the solvent was removed in vacuo and the resulting 

oil dissolved in chloroform (100 mL).  This was washed with HCl (50 mL, 0.1 

M), saturated NaHCO3 (50 mL) and water (4 x 50 mL) until the aqueous layer 

was at neutral pH. The organic layer was then dried over MgSO4, filtered and 

the solvent removed in vacuo, yielding an off white solid.  

 

Yield: 

3.40 g, 7.8 mmol, 78%  

Melting point: 

110.3 – 111.2 °C 

Rf: 

Chloroform : Ethyl Acetate (1:1) : Rf : 0.37 

m/z (ESI): 

458.1581 ([M+Na]
+
, 100 %), 436.1766 ([M+H]

+
, 11.3 %)  

HRMS (ESI): 

Calc for [C25H25NO6] + H
+
  = 436.1755 Found 436.1766 (-2.6 ppm error) 

Calc for [C25H25NO6] + Na
+
  = 458.1574 Found 458.1581 (-1.6 ppm error) 
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1
H NMR: (CDCl3, 400 MHz) δH 

8.86 (1H, d, J = 7.3 Hz, H-9), 7.72 (1H, dd, J = 7.0, 2.5 Hz, H-2/4), 7.26-7.48 

(10H, m, Har), 7.14-7.20 (2H, m, Har), 5.26 (1H, d, J = 10.5 Hz, H-

18/18*/24/24*), 5.24 (2H, s, H-18/24), 5.19 (1H, d, J = 10.5 Hz, H-

18/18/24/24*), 4.85 (1H, ddd, J = 7.5, 4.0, 4.0 Hz, H-10), 3.98 (1H, dd, J = 11.5, 

4.5 Hz, H-11), 3.92 (1H, dd, J = 11.5, 4.0 Hz, H-11), 3.80 (3H, s, H-16) 

13
C{

1
H} NMR: (CDCl3, 100 MHz) δC 

171.1 (C-13), 166.0 (C-7), 152.1 (Car), 147.4 (Car), 136.6 (Car), 136.6 (Car), 

129.3 (Car), 128.9 (Car), 128.8 (Car), 128.7 (Car), 128.5 (Car), 128.0 (Car), 126.8 

(Car), 124.6 (Car), 123.5 (Car), 117.7 (Car), 76.2 (C-18/24), 71.3 (C-18/24), 63.4 

(C-11), 55.1 (C-10), 52.4 (C-16) 

IR (KBr cm
-1

): 

3335 strong (N-H), 3064 medium (C-H ar), 2935 medium (C-H), 1747 strong 

(C=O, ester), 1643 strong (C=O, amide)  

 

ʟ-Serine-N-[2,3-bis(phenylmethoxy)benzoyl]-O-(tetrahydro-pyran-2-yloxy)-

O-methyl ester, 25 

 

 

 

Pyridinium p-toluenesulfonate (0.75 g, 3 mmol) was added to a stirred solution 

of 24 (3.34 g, 7.66 mmol) in DCM (100 mL) at room temperature. To this, 3,4-

Dihydro-2H-pyran (1.75 mL, 19 mmol) was added and the solution was left to 

stir.  After 18 hours, the DCM was removed in vacuo to yield an oil which was 

subsequently dissolved in diethyl ether (150 mL) and washed with water (3 x 50 

mL) and saturated NaHCO3 solution (50 mL).  After removal of the solvent in 

vacuo, the product is isolated as a viscous oil of diastereomers in an equal ratio. 
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Yield:  

3.44 g, 6.62 mmol, 86% 

Rf: 

Chloroform : Ethyl Acetate (1:1) : Rf : 0.52 

m/z (ESI): 

542.2139 ([M+Na]
+
, 100 %), 520.2344 ([M+H]

+
, 3.0 %)  

HRMS (ESI): 

Calc for [C30H33NO7] + H
+
  = 520.2330 Found 520.2344 (-2.7 ppm error) 

Calc for [C30H33NO7] + Na
+
  = 542.2149 Found 542.2139 (1.9 ppmq error) 

1
H NMR: (d6-DMSO, 400 MHz) δH 

8.80 (2H, d, J = 7.5 Hz, H-9, 9’), 7.52-7.18 (26H, m, Har, Har’), 5.21 (4H, s, H-

24/30, 24’/30’), 5.12-4.98 (4H, m, H-24/30/24*/30*, 24’/30’/24*’/30*’), 4.85-

4.79 (1H, m, H-10/10’), 4.78-4.73 (1H, m, H-10/10’), 4.50-4.47 (1H, m, H-

13/13’), 4.43-4.41 (1H, m, H-13/13’), 4.00 (1H, dd, J = 10.5, 4.5 Hz, H-

11/11*/11’/11*’), 3.89-3.85 (1H, m, H-11/11*/11’/11*’), 3.74 (1H, dd, J = 10.5, 

4.5 Hz, H-11/11*/11’/11*’), 3.67 (3H, s, H-22/22’), 3.66 (3H, s, H-22/22’), 

3.61-3.53 (3H, m, H-11/11*/11’/11*’, 17/17’), 3.46-3.30 (2H, m, H-17/17’)ǂ, 

1.49-1.28 (12H, m, H-14/14’, 15/15’, 16/16’) 

ǂObscured by water signal 

13
C{

1
H} NMR: (d6-DMSO, 100 MHz) δC 

170.4 (C-19/19’), 170.2 (C-19/19’), 164.6 (C-7/7’), 163.3 (C-7/7’), 151.5 (Car), 

145.7 (Car), 145.6 (Car), 136.4 (Car), 136.4 (Car), 136.4 (Car), 136.3 (Car), 128.4 

(Car), 128.3 (Car), 128.3 (Car), 127.9 (Car), 127.9 (Car), 127.9 (Car), 127.9 (Car), 

127.8 (Car), 127.3 (Car), 124.3 (Car), 124.2 (Car), 121.5 (Car), 121.3 (Car), 116.8 

(Car), 116.7 (Car), 98.2 (C-13/13’), 97.2 (C-13/13’), 93.0 (C), 75.1 (C-

24/30/24/30’), 75.0 (C-24/30/24’/30’), 70.2 (C-24/30/24’/30’), 70.2 (C-

24/30/24’/30’), 66.3 (C-11/11’), 65.9 (C-11/11’), 64.9 (C), 64.7 (C), 61.3 (C), 

60.6 (C), 52.7 (C-10/10’), 52.3 (C-10/10’), 51.9 (C-22/22’), 51.9 (C-22/22’), 

29.9 (C), 29.7 (C), 29.3 (C), 24.8 (C), 24.6 (C), 24.5 (C), 18.9 (C), 18.6 (C), 18.4 

(C) 
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ʟ-Serine-N-[2,3-bis(phenylmethoxy)benzoyl]-O-(phenylmethyl)-ether, 29 

 

 

 

Triethylamine (0.50 mL, 3.6 mmol) was added to a stirred solution of O-benzyl 

ʟ-serine (0.70 g, 3 mmol) in acetonitrile (75 mL). To this, a solution of 

compound 13 (1.29 g, 3 mmol) in acetonitrile (25 mL) was added and the 

mixture left to stir overnight. After 18 hours, the solvent was removed in vacuo 

and the resulting oil dissolved in chloroform 100 mL. This was washed with 

HCl (50 mL, 0.1 M) and water (4 x 50 mL) until the aqueous layer was at 

neutral pH. The organic layer was then dried over MgSO4, filtered and the 

solvent removed in vacuo, yielding an off white solid. Characterisation data 

consistent with literature.
1
 

 

Yield: 

1.28 g, 2.50 mmol, 84% 

Melting point: 

116.2 - 117.9 °C 

m/z (ESI): 

512.2082 ([M+H]
+
, 13 %), 534.1880 ([M+Na]

+
, 100 %) 

HRMS (ESI): 

Calc for [C31H29NO6] + H
+
  = 512.2068 Found 512.2082 (-2.8 ppm error) 

Calc for [C31H29NO6] + Na
+ 

= 534.1887 Found 534.1880 (1.6 ppm error) 
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1
H NMR: (CDCl3, 400 MHz) δH 

9.01 (1H, d, J = 7.0 Hz, H-9), 7.74 (1H, dd, J = 7.0 Hz, 2.5 Hz, H-2/4), 7.48-

7.22 (17H, m, Har), 5.16 (2H, s, H-22/28), 5.11 (1H, d, J = 10.5 Hz, H-

22/28/22*/28*), 5.09 (1H, d, J = 10.5 Hz, H-22/28/22*/28*), 4.87 (1H, ddd, J = 

7.5, 4.0, 4.0 Hz, H-10), 4.37 (2H, s, H-13), 3.86 (1H, dd, J = 9.5, 4.5 Hz, H-

11/11*), 3.66 (1H, dd, J = 9.5, 4.0 Hz, H-11/11*) 

13
C{

1
H} NMR: (CDCl3, 100 MHz) δC 

173.6 (C-18), 166.2 (C-7), 152.0 (Car), 147.3 (Car), 137.4 (Car), 136.4 (Car), 

136.2 (Car), 129.3 (Car), 128.9 (Car), 128.6 (Car), 128.6 (Car), 128.5 (Car), 128.5 

(Car), 128.0 (Car), 127.9 (Car), 127.9 (Car), 126.4 (Car), 124.6 (Car), 123.4 (Car), 

117.8 (Car), 76.4 (C-22/28), 73.4 (C-13), 71.5 (C-22/28), 68.8 (C-11), 53.4 (C-

10) 

IR (KBr cm
-1

): 

3353 strong (N-H), 3060 medium broad (O-H acid), 2919 medium (C-H ar) 

1757 strong (C=O, acid), 1636 strong (C=O, amide)  

Elemental Analysis: 

Calculated for [C31H29NO6]: %C 72.78, %H 5.71, %N 2.74 

Measured for [C31H29NO6]: %C 72.64, %H 5.69, %N 2.80 
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ʟ-Serine-N-[2,3-bis(phenylmethoxy)benzoyl]-O-(phenylmethyl)-ester-O-ʟ/ᴅ-

serine, N-[2,3-bis(phenylmethoxy)benzoyl]-O-(phenylmethyl)-ether, 30 (ʟ/ᴅ, 

ʟ/ʟ) 

 

 

Compound 29 (0.231 g, 0.45 mmol), compound 22 (0.262 g, 0.51 mmol) and 

HOBt (0.122 g, 0.9 mmol) were suspended in 30 mL dry chloroform.  DCC 

(0.138 g, 0.67 mmol) was added slowly over 10 minutes, and the reaction was 

stirred overnight at room temperature.  The solution was then washed with 20 

mL water, 15 mL saturated NaHCO3 solution, 20 mL 0.1 M HCl, followed by 3 

x 20 mL water.  The organic layer was dried over MgSO4 before the solvent was 

removed in vacuo.  The crude product was purified via column chromatography, 

9:1 dichloromethane : ethyl acetate, followed by a second column eluting with 

9:2 dichloromethane : ethyl acetate to yield a colourless oil.  

 

Yield: 

0.072 g, 0.07 mmol, 16 % 

Rf: 

Dichloromethane : Ethyl Acetate (9:2) : Rf : 0.7 

m/z (ESI): 

1005.3917 ([M+H]
+
, 100 %), 1027.3743 ([M+Na]

+
, 6 %) 
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HRMS (ESI): 

Calc for [C62H56N2O11] + H
+
  = 1005.3957 Found 1005.3917 (4.0 ppm error) 

Calc for [C62H56N2O11] + Na
+
 = 1027.3776 Found 1027.3743 (3.2 ppm error) 

1
H NMR: (CDCl3, 400 MHz) δH 

The 
1
H NMR is comprised of two diastereomers in solution.  The ratio between 

the two diastereomers is 5/4. 

8.83-8.76 (2H, m, H-9/31), 7.73-7.66 (2H, m, Har), 7.45-6.92 (34H, m, Har), 

5.22-4.96 (10H, m), 4.65, (1H, ddd, J = 7.6, 3.6, 3.2 Hz, H-10/22)), 4.57-4.53 

(1H, m), 4.34 (1H, dd, J = 11.2, 3.6 Hz, H-11/11*/21/21*), 4.31 (1H, dd, J = 

11.2, 4.0 Hz, H-11/11*/21/21*), 4.20 (1H, d, J = 12.0 Hz, Hbenzyl), 4.16 (1H, d, J 

= 12.0 Hz, Hbenzyl), 3.53 (1H, dd, J = 9.6, 3.6 Hz, H-11/11*/21/21*), 3.44 (1H, 

dd, J = 9.2, 3.2 Hz, H-11/11*/21/21*) 

 

8.83-8.76 (2H, m, H-9/31), 7.73-7.66 (2H, m, Har), 7.45-6.92 (34H, m, Har), 

5.22-4.96 (12H, m), 4.60-4.52 (2H, m), 4.07 (2H, s, Hbenzyl), 3.27 (1H, dd, J = 

9.6, 3.6 Hz, H-11/11*/21/21*), 3.18 (1H, dd, J = 9.6, 3.6 Hz, H-11/11*/21/21*) 

13
C{

1
H} NMR: (CDCl3, 100 MHz) δC 

Certain signals in the 
13

C NMR spectrum overlap 

170.1 (C-18/18*/23/23*), 170.1 (C-18/18*/23/23*), 169.6 (C-18/18*/23/23*), 

169.5 (C-18/18*/23/23*), 165.6 (C-7/7*/32/32*), 165.6 (C-7/7*/32/32*), 165.4 

(C-7/7*/32/32*), 165.4 (C-7/7*/32/32*), 152.3 (Car), 152.2 (Car), 152.1 (Car), 

147.4 (Car), 147.4 (Car), 147.4 (Car), 147.3 (Car), 137.7 (Car), 137.7 (Car), 136.6 

(Car), 136.6 (Car), 136.6 (Car), 136.6 (Car), 136.5 (Car), 136.5 (Car), 136.5 (Car), 

135.5 (Car), 135.4 (Car), 129.6 (Car), 129.4 (Car), 129.4 (Car), 128.9 (Car), 128.9 

(Car), 128.9 (Car), 128.8 (Car), 128.8 (Car), 128.7 (Car), 128.6 (Car), 128.6 (Car), 

128.5 (Car), 128.5 (Car), 128.5 (Car), 128.4 (Car), 128.4 (Car), 128.4 (Car), 128.4 

(Car), 128.3 (Car), 128.2 (Car), 128.1 (Car), 128.1 (Car), 127.9 (Car), 127.7 (Car), 

127.6 (Car), 127.6 (Car), 127.1 (Car), 127.1 (Car), 126.9 (Car), 124.6 (Car), 124.6 

(Car), 124.5 (Car), 123.5 (Car), 123.4 (Car), 123.4 (Car), 117.6 (Car), 117.4 (Car), 

117.3 (Car), 76.1 (Cbenzyl), 76.0 (Cbenzyl), 76.0 (Cbenzyl), 72.9 (Cbenzyl), 72.6 

(Cbenzyl), 71.2 (Cbenzyl), 71.2 (Cbenzyl), 69.1 (Cbenzyl), 68.6 (Cbenzyl), 67.6 (Cbenzyl), 

67.4 (C-11/11*/21/21*), 64.9 (C-11/11*/21/21*), 64.5 (C-11/11*/21/21*), 60.3 

(C-11/11*/21/21*), 52.9 (C-10/10*/22/22*), 52.8 (C-10/10*/22/22*), 51.9 (C-

10/10*/22/22*), 51.5 (C-10/10/22/22*) 
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2,3-bis(benzyloxy)benzoyl chloride, 31 

 

 

 

Prepared as in accordance to the literature and used crude.
7
 

 

ʟ-Serine-N-[(1,1-dimethylethoxy)carbonyl]-O-(phenylmethyl)-ester, 32 

 

 

 

To a stirred suspension of ʟ-serine benzyl ester hydrochloride (1.15 g, 5 mmol) 

in acetonitrile (20 mL), triethylamine (0.60 mL, 6.0 mmol) was added and the 

resulting solution was allowed to stir for 10 minutes.  Di-tert-butyl dicarbonate 

(1.15 g, 5 mmol) was then added and the mixture and left to stir for three hours 

at reflux.  Once the reaction was completed, the solvent was removed in vacuo 

and the resulting oil dissolved in dichloromethane, 50 mL. The solution was 

washed with formic acid (15 mL, 0.1 M) and water until the aqueous layer was 

at neutral pH (3 x 25 mL minimum). The organic layer was then dried over 

MgSO4, filtered and the solvent removed in vacuo, yielding a white solid. 

Characterisation data consistent with literature.
8
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Yield: 

1.382 g, 4.68 mmol, 94% 

Melting point: 

66.8-68.2 °C 

Rf: 

Dichloromethane : Methanol (9:1) : Rf : 0.63 

m/z (ESI): 

318.1305 ([M+Na]
+
, 80 %), 296.1482 ([M+H]

+
, 10 %) 

HRMS (ESI): 

Calc for [C15H21NO5] + H
+
  = 296.1492 Found 296.1482 (3.4 ppm error) 

Calc for [C15H21NO5] + Na
+
  = 318.1312 Found 318.1305 (2.3 ppm error) 

1
H NMR: (CDCl3, 400 MHz) δH 

7.39-7.34 (5H, m, Har), 5.51 (1H, br, d, J = 5.0 Hz, H-6), 5.22 (1H, d, J = 12.5 

Hz, H-13/13*), 5.20 (1H, d, J = 12.5 Hz, H-13/13*), 4.42 (1H, br s, H-7), 3,98 

(1H, dd, J = 11.0, 4.0 Hz, H-8), 3,90 (1H, dd, J = 11.0, 4.0 Hz, H-8) 1.43 (9H, s, 

H-1) 

13
C{

1
H} NMR: (CDCl3, 100 MHz) δC 

171.2 (C-10), 156.1 (C-4), 135.2 (Car), 128.8 (Car), 128.7 (Car), 128.4 (Car), 80.2 

(C-2), 67.5 (C-13), 63.3 (C-8), 55.7 (C-7), 27.9 (C-1) 

IR (KBr cm
-1

): 

3419 medium (O-H), 3365 medium (N-H), 2980 weak (C-H), 1760 strong 

(C=O), 1669 strong (C=O), 1526 medium (C-C ar) 

Elemental Analysis: 

Calculated for [C15H21NO5]: %C 61.00, %H 7.17, %N 4.74 

Measured for [C15H21NO5]: %C 61.14, %H 7.12, %N 4.63 
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ʟ-Serine-N-[(1,1-dimethylethoxy)carbonyl]-O-(phenylmethyl)-ester-O-ʟ-

serine, N-[(1,1-dimethylethoxy)carbonyl]-O-(phenylmethyl)-ether, 33 

 

 

 

Boc-O-benzyl-ʟ-serine (1.89 g, 6.4 mmol), compound 32 (1.72 g, 5.8 mmol) and 

HOBt (1.23 g, 9.1 mmol) were suspended in 10 mL dry acetonitrile and the 

mixture was stirred on ice.  Once the mixture was cooled, EDC (1.41 g, 7.4 

mmol) was added to the suspension, followed by the addition of 15 mL 

acetonitrile and allowed to stir for two hours on ice, followed by 48 hours at 

room temperature.  The volatiles were removed in vacuo, and the remaining oil 

dissolved in 100 mL dichloromethane.  The organic solution and washed with 50 

mL brine and 10 mL sat NaHCO3 solution, followed by 2 x 50 mL brine.  The 

organic layer was dried over MgSO4 before the solvent was removed in vacuo.  

The crude product was purified via column chromatography, 9:1 chloroform : 

acetonitrile to yield a pure white solid.  Characterisation data consistent with 

literature.
6
 

 

Yield: 

2.032 g, 3.55 mmol, 60% 

Melting point: 

80.1-82.2 °C 

Rf: 

Chloroform : Acetonitrile (4:1) : Rf : 0.47 
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m/z (ESI): 

595.2602 ([M+Na]
+
, 100 %), 573.2782 ([M+H]

+
, 62 %) 

HRMS (ESI): 

Calc for [C15H21NO5] + H
+
  = 573.2807 Found 573.2782 (4.4 ppm error) 

Calc for [C15H21NO5] + Na
+ 

 = 595.2626 Found 595.2602 (4.0 ppm error) 

1
H NMR: (CDCl3, 400 MHz) δH 

7.37-7.27 (10H, m, Har), 5.50 (1H, br, d, J = 8.8 Hz, H-6/28), 5.29 (1H, br, d, J = 

8.8 Hz, H-6/28), 5.21 (1H, d, J = 12.4 Hz, H-10/10*), 5.17 (1H, d, J = 12.0 Hz, 

H-10/10*), 4.68-4.56 (3H, m, H-7/19,8/8*/18/18*,23/23*), 4.49-4.43 (2H, m, H-

8/8*/18/18*,23/23*), 4.35-4.31 (1H, m, H-7/19), 3.72 (1H, dd, J = 9.6, 3.6 Hz, 

H-8/8*/18/18*), 3.58 (1H, dd, J = 9.6, 3.2 Hz, H-8/8*/18/18*) 1.43 (9H, s, H-

1/33), 1.40 (9H, s, H-1/33) 

13
C{

1
H} NMR: (CDCl3, 100 MHz) δC 

170.6 (C-15/20), 170.0 (C-15/20), 155.8 (C-4/29), 155.7 (C-4/29), 137.6 (Car), 

135.4 (Car), 128.9 (Car), 128.8 (Car), 128.7 (Car), 128.6 (Car), 128.2 (Car), 128.0 

(Car), 127.8 (Car), 80.2 (C-2/32), 80.1 (C-2/32), 73.2 (C-8/18/23), 69.6 (C-

8/18/23), 67.5 (C-10), 65.0 (C-8/18/23), 53.8 (C-7/19), 53.0 (C-7/19), 28.0 (C-

1/33), 27.9 (C-1/33) 

IR (KBr cm
-1

): 

3459 medium (N-H), 2978 weak (C-H), 1744 strong (C=O), 1713 strong (C=O), 

1505 medium (C-C ar) 

Elemental Analysis: 

Calculated for [C30H40N2O9]: %C 62.92, %H 7.04, %N 4.89 

Measured for [C30H40N2O9]: %C 63.92, %H 7.04, %N 4.86 
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ʟ-Serine-O-(phenylmethyl)-ester-O-ʟ-serine-O-(phenylmethyl)-ether 

trifluoroacetic acid salt, 34 

 

 

Compound 33 (0.1078 g, 0.18 mmol) was dissolved in 4 mL of dichloromethane 

and the flask was purged with nitrogen.  Trifluoroacetic acid (1 mL) was then 

added to the stirred solution and the reaction was allowed to proceed at room 

temperature, monitored by TLC (~2 hours).  The volatiles were removed in 

vacuo to yield a pale yellow oil, which was taken up in 5 mL toluene, which was 

subsequently removed in vacuo.  This process was repeated two more times to 

remove traces of TFA and yield a white solid material. 

 

Yield: 

0.0908 g, 0.16 mmol, 89% 

Melting point: 

64.3.1-67.7 °C 

m/z (ESI): 

373.1753 ([M+H]
+
, 63 %) 

HRMS (ESI): 

Calc for [C20H24N2O5] + H
+
 = 373.1758 Found 373.1753 (1.2 ppm error) 

1
H NMR: (MeOD, 400 MHz) δH 

7.46-7.27 (10H, m, Har), 5.35 (1H, d, J = 11.5 Hz, H-5/5*), 5.27 (1H, d, J = 11.5 

Hz, H-5/5*), 4.63 (1H, d, J = 12.5 Hz, H-19/19*), 4.54 (1H, d, J = 12.5 Hz, H-

19/19*), 4.28 (1H, dd, J = 4.0, 3.2 Hz, H-2/14), 4.17 (1H, dd, J = 4.0, 3.2 Hz, H-

2/14), 4.02 (1H, dd, J = 12.0, 4.4 Hz, H-3/3*/13/13*), 3.95 (1H, dd, J = 12.0, 4.4 

Hz, H-3/3*/13/13*), 3.95 (1H, dd, J = 12.0, 4.4 Hz, H-3/3*/13/13*), 3.83 (1H, 

dd, J = 12.0, 4.4 Hz, H-3/3*/13/13*) 
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13
C{

1
H} NMR: (MeOD, 100 MHz) δC 

168.8 (C-10/16), 168.2 (C-10/16), 138.9 (Car), 136.8 (Car), 130.5 (Car), 130.5 

(Car), 130.3 (Car), 130.2 (Car), 130.1 (Car), 130.1 (Car), 129.8 (Car), 129.8 (Car), 

129.7 (Car), 74.8 (C-19), 69.3 (C-5), 68.1 (C-3/13), 60.9 (C-3/13), 56.3 (C-2/14), 

54.6 (C-2/14) 

IR (KBr cm
-1

): 

3005 weak (C-H), 1764 medium (C=O), 1745 medium (C=O), 1668 strong 

(C=O), 1538 medium (C-C ar) 

Elemental Analysis: 

Calculated for [C24H24F6N2O7.0.5TFA]: %C 47.86, %H 4.29, %N 4.55 

Measured for [C24H24F6N2O7.0.5TFA]: %C 48.16, %H 3.96, %N 4.49 

 

ʟ-Serine-N-[2,3-bis(phenylmethoxy)benzoyl]-O-(phenylmethyl)-ester-O-ʟ-

serine, N-[2,3-bis(phenylmethoxy)benzoyl]-O-(phenylmethyl)-ether, 30 (ʟ/ʟ) 

 

 

 

Compound 34 (0.5779 g, 1.0 mmol) was dissolved in 5 mL anhydrous 

dichloromethane.  Alternating amounts of DIPEA (15 mmol. 2.6 mL) and crude 

compound 31, (3.0 mmol) dissolved in 10 mL dichloromethane was added.  The 

resulting mixture was stirred for 10 minutes.  The mixture was subsequently 

diluted with 30 mL dichloromethane, followed by the addition of 20 mL 0.1 M 
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formic acid (aqueous).  The organic layer was separated, washed with 2 x 20 mL 

water, before drying over MgSO4..  The organic layer was then filtered and dried 

in vacuo yielding a crude product.  The product was purified via column 

chromatography using 9:1 dichloromethane: acetonitrile as the solvent system to 

yield an off white solid material 

 

Yield: 

0.4575 g, 0.455 mmol, 44% 

Melting point: 

45.2-46.9 °C 

Rf: 

Dichloromethane : Acetonitrile (9:1) : Rf : 0.48 

m/z (ESI): 

1005.3922 ([M+H]
+
, 100 %) 

HRMS (ESI): 

Calc for [C62H56N2O11] + H
+
 = 1005.3957 Found 1005.3922 (3.4 ppm error) 

1
H NMR: (CDCl3, 400 MHz) δH 

8.82 (1H, d, J = 8.4 Hz, H-9/31), 8.81 (1H, d, J = 7.6 Hz, H-9/31), 7.73-7.71 

(2H, m, Har), 7.45-6.91 (34H, m, Har), 5.24 (1H, d, J = 12.0 Hz, Hbenzyl), 5.22 

(1H, d, J = 12.0 Hz, Hbenzyl), 5.15-5.08 (7H, m, Hbenzyl, 10/22), 5.02 (2H, dd, J = 

10.4, 3.6 Hz, Hbenzyl), 4.56-4.52 (2H, m, H-11/11*/21/21*, 10/22), 4.35 (1H, dd, 

J = 11.6, 3.6 Hz, H-11/11*/21/21*), 4.08 (2H, s, H-26), 3.28 (1H, dd, J = 9.6, 

3.2 Hz, H-11/11*/21/21*), 3.18 (1H, dd, J = 9.6, 3.2 Hz, H- 11/11*/21/21*) 

13
C{

1
H} NMR: (CDCl3, 100 MHz) δC 

170.1 (C-18/23), 169.6 (C-18/23), 165.5 (C-7/32), 165.4 (C-7/32), 152.2 (Car), 

152.2 (Car), 147.4 (Car), 147.3 (Car), 137.7 (Car), 136.6 (Car), 136.5 Car), 136.4 

(Car), 135.5 (Car),129.6 (Car), 129.5(Car), 129.4 (Car), 128.9 (Car), 128.9 (Car), 

128.8 (Car), 128.8 (Car), 128.7 (Car), 128.7 (Car), 128.6 (Car), 128.5 (Car), 128.5 

(Car), 128.4 (Car), 128.3 (Car), 128.3 (Car), 128.2 (Car), 128.1 (Car), 127.9 (Car), 

127.6 (Car), 127.0 (Car), 126.8 (Car), 124.6 (Car), 124.5 (Car), 123.4 (Car), 123.3 

(Car), 117.4 (Car), 117.2 (Car), 76.0 (Cbenzyl), 75.9 (Cbenzyl), 72.6 (C-26), 71.2 

(Cbenzyl), 71.1 (Cbenzyl), 68.6 (C-11/21), 67.6 (Cbenzyl), 64.9 (C-11/21), 52.8 (C-

10/22), 51.4 (C-10/22) 
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IR (ATIR cm
-1

): 

3362 weak (N-H), 3032 weak (C-H), 1747 strong (C=O, ester), 1658 strong 

(C=O, amide), 1575 strong (C=C) 

Elemental Analysis: 

Calculated for [C62H56N2O11.0.25H2O]: %C 73.76, %H 5.64, %N 2.77 

Measured for [C62H56N2O11.0.25H2O]: %C 73.46, %H 5.51, %N 2.79 

 

Enterobactin Linear Dimer, 17 

 

 

 

Compound 30, 0.359 g (0.35 mmol) was dissolved in 8 mL of dry toluene before 

42 mL of dry ethanol was added.  To this stirred solution one small spatula tip of 

Pd-C 10% was added.  The mixture was purged with hydrogen and allowed to 

react for 18 hours under a positive pressure of hydrogen.  After the reaction was 

completed the catalyst was filtered off and the product was isolated by removing 

the solvent in vacuo, to yield a white solid. Characterisation data consistent with 

literature.
9
 

 

Yield: 

0.165 g, 0.32 mmol, 91% 

Melting point: 

124.4 °C - Foamed; 197.4-200.1 °C - Film melted 

m/z (ESI): 

463.0094 ([M-H]
-
, 100%) 

HRMS (ESI): 

Calc. for [C20H19N2O11]
-
 = 463.0994  Found 463.0994 (0.1 ppm error)  
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1
H NMR: (d6-DMSO, 400 MHz) δH 

9.00-8.96 (2H, m, H-11,23), 7.38 (1H, dd, J = 8.4, 1.6 Hz, H-4/27), 7.34 (1H, 

dd, J = 8.0, 1.2 Hz, H-4/27), 6.96 (1H, dd, J = 4.4, 1.2 Hz, H-2/29), 6.93 (1H, 

dd, J = 4.8, 1.2 Hz, H-2/29), 6.74-6.68 (2H, m, H-3,28), 4.81-4.76 (1H, m, H-

12/19), 4.61 (1H, dd, J = 11.2, 4.4 Hz , H-13/13*/18/18*), 4.58-4.55 (1H, m, H-

12/19), 4.41 (1H, dd, J = 11.2, 6.4 Hz , H-13/13*/18/18*), 3.83(1H, dd, J = 11.6, 

6.4 Hz , H-13/13*/18/18*), 3.77(1H, dd, J = 11.2, 4.0 Hz , H-13/13*/18/18*), 

3.44 (2.79H, q, J = 7.2 Hz, H-EtOH CH2)ǂ, 1.05 (2.75H, t, J = 7.2 Hz, H-EtOH 

CH3) 

ǂObscured by water signal 

13
C{

1
H} NMR: (d6-DMSO, 100 MHz) δC 

171.1 (C-9/15/20/24), 170.7 (C-9/15/20/24), 169.5 (C-9/15/20/24), 169.3 (C-

9/15/20/24), 149.3 (C-1/6/30/31), 148.9 (C-1/6/30/31), 146.7 (C-1/6/30/31), 

146.6 (C-1/6/30/31), 119.4 (Car), 119.3 (Car), 119.1 (Car), 118.7 (Car), 118.7 

(Car), 118.6 (Car), 116.4 (Car), 116.0 (Car), 63.9 (C-13/18), 60.9 (C-13/18), 56.1 

(C-EtOH CH2), 55.4 (C-12/19), 51.8 (C-12/19), 18.4 (C- EtOH CH3) 

IR (ATIR cm
-1

): 

3343 weak broad (O-H), 1737 strong (C=O, ester), 1639 medium (C=O, amide), 

1532 strong (C=C) 

Elemental Analysis: 

Calculated for [C20H20N2O110.9EtOH.1.1H2O]: %C 49.81, %H 5.29, %N 5.33 

Measured for [C20H20N2O11.0.9EtOH.1.1H2O]: %C 49.52, %H 4.94, %N 5.27 

Specific Rotation: 

[]D (Methanol, conc. 0.1 g/100 mL) +15.8 
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3-(2-Amino-ethyl)-3-nitro-pentane-1,5-diamine-trihydrochloride, 43 

 

 

 

A schlenk tube was charged with nitromethane-trispropanoic acid (2.27 g, 8.2 

mmol) and placed under a nitrogen atmosphere.  To this two drops of DMF was 

added, followed by thionyl chloride (15 mL, 77 mmol).  The suspension was 

allowed to stir overnight under a postive pressure of nitrogen.  Once the solution 

was clear the excess thionyl chloride was removed in vacuo, followed by the 

replacement of the nitrogen atmosphere.  The residue was dissolved in 15 mL 

anhydrous 1,4-dioxane, followed by the slow addition of trimethylsilyl azide 

(3.5 mL, 26.6 mmol).  This solution was slowly heated over an hour to 70 °C 

behind a blast shield under an atmosphere of nitrogen.  Gas evolution can be 

observed upon heating (caution: after addition of the trimethylsilyl azide the 

reaction has the capability to form a thermal runaway reaction, producing 

dinitrogen, potentially becoming expolsive).  After the gas evolution slows the 

solution is allowed to cool to 45 °C.  Once at temperature 10 mL of acetone is 

added, followed by the addition of 6 mL of 6M hydrochloric acid dropwise.  The 

solution turns cloudy and gas evolution can be observed upon the addition of the 

acid.  Once all the acid was added the flask was opened to the atmosphere and 

the suspension was stirred for an hour.  The solid was collected by filtration and 

washed with ice cold acetone (100 mL) to yield an off white solid.  

Characterisation data consistent with literature.
10

  

 

Yield:  

2.27g, 7.58 mmol, 92% 

Melting point: 

Decomposed 225 °C 
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m/z (ESI):  

191.1499 ([M+H]
+
, 100%), 213.1324 ([M+Na]

+
, 20%) 

HRMS (ESI): 

Calc for [C7H19N4O2]+H
+
 = 191.1503 Found 191.1499 (1.9 ppm error) 

1
H NMR: (d6-DMSO, 400 MHz) δH 

8.31 (9H, br s, H-4), 2.86-2.77 (6H, m, H-3), 2.35-2.28 (6H, m, H-2) 

13
C{

1
H} NMR: (d6-DMSO, 100 MHz) δC 

89.7 (C-1), 33.8 (C-2/3), 31.8 (C-2/3) 

IR (KBr cm
-1

):  

3437 strong (N-H), 3015 strong (C-H), 1543 medium (NO2asymm), 1457 weak 

(NO2symm) 

 

Tert-butyl-N-(5-{[(tert-butoxy)carbonyl]amino}-3-(2-{[(tert-

butoxy)carbonyl]amino}ethyl)-3-nitropentyl)carbamate, 44 

 

 

 

Prepared as in accordance to the literature.
10

 

 

Yield:  

0.563 g, 1.15 mmol, 84% 

Melting point: 

56.8-57.4 °C 

Rf:  

Ethyl Acetate : Rf : 0.6 (permanganate stain) 

m/z (ESI):  

491.3068 ([M+H]
+
, 7%), 513.2885 ([M+Na]

+
, 100%) 
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HRMS (ESI): 

Calc for [C22H42N4O8]+H
+
 = 491.3075 Found 491.3068 (1.5 ppm error) 

Calc. for [C22H42N4O8]+Na
+
  = 513.2895 Found 513.2885 (1.9 ppm error)  

1
H NMR: (CDCl3, 400 MHz) δH 

4.84 (3H, br s, H-4), 3.18-3.10 (6H, br m, H-3), 2.18 (6H, t, J = 7.5 Hz, H-2), 

1.42 (27H, s, H-7) 

13
C{

1
H} NMR: (CDCl3, 100 MHz) δC 

156.3 (C-5), 90.6 (C-1), 79.7 (C-6), 35.6 (C-2/3), 35.3 (C-2/3), 28.1 (C-7) 

IR (KBr cm
-1

):  

3356 weak (N-H), 2978 weak (C-H), 1696 strong (C=O, carbamate), 1543 

strong (NO2asymm) 

Elemental Analysis: 

Calculated for [C22H42N4O8]: %C 53.86, %H 8.63, %N 11.42 

Measured for [C22H42N4O8]: %C 53.46, %H 8.37, %N 11.32 

 

Tert-butyl-N-(3-amino-5{[tert-butoxy)carbonyl]amino}-3-(2-{[(tert-

butoxy)carbonyl]amino}ethyl)pentyl)carbamate, 45 

 

 

 

Compound 44, 1.651 g (3.36 mmol) was dissolved in 80 mL of ethanol.  To this 

stirred solution one spatula tip of Raney®-Nickel 2800 slurry in water was 

added.  The mixture was first purged with hydrogen before reacting for 18 hours 

under a hydrogen atmosphere of 35 bar.  After the reaction had completed the 

reaction mixture was filtered through Celite and washed with ethanol, ensuring 

the catalyst was never allowed to dry.  The product was isolated from the filtrate 

by removing the solvent in vacuo, yielding an off white solid.  Characterisation 

data consistent with literature.
10

  



         Chapter 7 

          233 

 

Yield:  

1.50 g, 3.26 mmol, 97% 

Melting point: 

61.7-62.9 °C 

m/z (ESI):  

461.3356 ([M+H]
+
, 100%), 483.3164 ([M+Na]

+
, 6%) 

HRMS (ESI): 

Calc for [C22H44N4O6]+H
+
 = 461.3334 Found 461.3356 (-5.0 ppm error) 

Calc. for [C22H44N4O6]+Na
+
  = 483.3153 Found 483.3164 (-2.2 ppm error)  

1
H NMR: (CDCl3, 400 MHz) δH 

5.17-5.12 (3H, br m, H-4), 3.18 (6H, q, J = 6.5 Hz, H-3), 1.62 (6H, t, J = 7.5 Hz, 

H-2), 1.42 (27H, s, H-7) 

13
C{

1
H} NMR: (CDCl3, 100 MHz) δC 

156.3 (C-5), 79.3 (C-6), 53.3 (C-1), (38.8 (C-2/3), 35.8 (C-2/3), 28.1 (C-7) 

IR (KBr cm
-1

):  

3370 strong (N-H), 2978 weak (C-H), 1696 strong (C=O, carbamate), 1521 

strong (N-H) 

Elemental Analysis: 

Calculated for [C22H44N4O60.5H2O]: %C 56.27, %H 9.66, %N 11.93 

Measured for [C22H44N4O60.5H2O]: %C 56.22, %H 9.40, %N 11.80 
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Methyl-4-{[1,5-bis({[tert-butoxy)carbonyl]amino})-3-(2-{[tert-

butoxy)carbonyl]amino}ethyl)pentan-3-yl]carbamoyl}butanoate, 46 

 

 

Compound 45 (1.461 g, 3.17 mmol) was dissolved in 15 mL dichloromethane 

followed by the addition of triethylamine (860 μL, 6 mmol).  The solution was 

cooled on ice before the addition of glutaric acid monomethyl ester chloride 

(750 μL, 5.4 mmol) and allowed to reaction for 1 hour on ice followed by 1 hour 

at room temperature.  The volatiles were subsequently removed in vacuo and the 

resulting oil dissolved in 50 mL ethyl acetate. This was washed with water (3 x 

50 mL).  The aqueous layer was then washed with ethyl acetate (2 x 50 mL), and 

the two organic layers combined.  The organic solution was then dried over 

MgSO4, filtered and the solvent removed in vacuo, yielding the crude product.  

The crude product was purified via column chromatography, 4:1 chloroform : 

ethyl acetate to yield a pure white solid. 

 

Yield:  

1.422 g, 2.42 mmol, 76% 

Rf:  

Chloroform : Ethyl Acetate (4:1) : Rf : 0.39 (permanganate stain) 

m/z (ESI):  

589.3807 ([M+H]
+
, 37%), 611.3645 ([M+Na]

+
, 37%) 
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HRMS (ESI): 

Calc for [C28H52N4O9]+H
+
 = 589.3807 Found 589.3807 (0.1 ppm error) 

Calc. for [C28H52N4O9]+Na
+
  = 611.3645 Found 611.3645 (-3.0 ppm error)  

1
H NMR: (CDCl3, 400 MHz) δH 

6.57 (1H, br s, H-8), 4.84 (3H, t, J = 5.0 Hz, H-4), 3.65 (3H, s, H-14), 3.09 (6H, 

q, J = 6.5 H-3), 2.35 (2H, t, J = 7.5 Hz, H-10/12), 2.20 (2H, t, J = 7.0 Hz, H-

10/12), 1.93-1.88 (8H, m, H-2,11), 1.40 (27H, s, H-7) 

13
C{

1
H} NMR: (CDCl3, 100 MHz) δC 

174.1 (C-9/13), 173.1 (C-9/13) 155.6 (C-5), 79.3 (C-6), 56.2 (C-1),  51.4 (C-14), 

(35.8 (C-2/3), 35.8 (C-10/12) 35.6 (C-2/3), 33.0 (C-10/12), 28.1 (C-7), 20.5 (C-

11) 

IR (ATIR cm
-1

):  

3331 medium (N-H), 2978 medium (C-H), 1690 strong (C=O, carbamate), 1662 

medium (C=O, amide), 1513 strong (N-H) 

 

Tris(trifluoroacetic acid) methyl 4-{[1,5-diamino-3-(2-aminoethyl)pentan-3-

yl]carbamoyl}butanoate, 47 

 

 

 

Compound 46 (1.359 g, 2.31 mmol) was dissolved in 50 mL 9:1 

dichloromethane : methanol and stirred.  To this stirred solution 5 mL of 

trifluoroacetic acid was added and allowed to react.  The reaction was followed 

via TLC (ethyl acetate) and allowed to complete (~24 hours).  The volatiles were 
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removed in vacuo to yield a pale yellow oil, which was taken up in 5 mL dry 

ethanol, which was subsequently removed in vacuo.  This process was repeated 

two more times to remove traces of TFA and yield a white hydroscopic solid 

material. 

 

Yield:  

1.440 g, 2.28 mmol, 98% 

m/z (ESI):  

289.2247 ([M+H]
+
, 100%) 

HRMS (ESI): 

Calc for [C13H28N4O3]+H
+
 = 289.2234 Found 289.2247 (-4.5 ppm error) 

1
H NMR: (d6-DMSO, 400 MHz) δH 

7.89 (9H, br s, H-4), 7.53 (1H, s, H-5), 3.58 (3H, s, H-11), 2.78-2.68 (6H, br m, 

H-3), 2.30 (2H, t, J = 7.5 Hz H-7/9), 2.13 (2H, t, J = 7.5 Hz H-7/9), 1.96-1.88 

(6H, m, H-2), 1.73 (2H, app quin, J = 7.5 Hz, H-8) 

13
C{

1
H} NMR: (d6-DMSO, 100 MHz) δC 

173.2 (C-10), 172.1 (C-6), 158.9 (q, J 35 Hz, C-12), 115.9 (q, J 290 Hz, C-13), 

54.4.6 (C-1), 51.4.1 (C-11), 34.7 (C-7/9), 34.2 (C-3), 32.8 (C-7/9), 31.8 (C-2), 

20.7 (C-8) 

IR (ATIR cm
-1

):  

3059 weak, broad (N-H), 2943 weak, broad (C-H), 1668 strong, broad (C=O, 

amide) 
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4-{[1,5-diamino-3-(2-aminoethyl)-3-amide]butanoate}-N,N,N-[-[2,3-

bis(phenylmethoxy)benzoyl]-methyl ester, 48 

 

 

 

Compound 47 (1 mmol, 0.630 g) was suspended in 10 mL dry acetonitrile and 

placed on ice.  To the stirred solution DIPEA (15 mmol, 2.6 mL) was added, and 

the system was placed under an atmosphere of nitrogen.  Compound 31 was 

dissolved in 6 mL dry acetonitrile and slowly added and allowed to stir 

overnight at room temperature.  The solution was diluted with 50 mL 

dichloromethane and washed with 30 mL water followed by 20 mL 0.1M HCl, 

20 mL; saturated NaHCO3; and H2O until the aqueous washes were neutral.  The 

organic layer was dried over MgSO4, filtered, and the solvent removed in vacuo 

to yield the crude product.  The crude product was purified via flash column 

chromatography on silica 4:1 EtOAc : dichloromethane, yielding an off white 

solid. 

 

Yield:  

0.1902 g, 0.154 mmol, 17% 

Rf:  

Ethyl Acetate : Rf : 0.40 
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m/z (ESI):  

1259.5357 ([M+Na]
+
, 100%) 

HRMS (ESI): 

Calc for [C76H76N4O12]+Na
+
 = 1259.5352 Found 1259.5357 (-0.4 ppm error) 

1
H NMR: (CDCl3, 400 MHz) δH 

8.04 (3H, t, J = 5.5 Hz, H-4), 7.73-7.69 (3H, m, H-14/15/16), 7.50-7.11 (36H, 

m, Har), 5.15 (6H, s, H-19/20), 5.09 (6H, s, H-19/20), 3.65 (3H, s, H-11), 3.18 

(6H, dt, J = 9.6, 6 Hz, H-3), 2.36 (2H, t, J = 7.0 Hz, H-7/9), 2.26 (2H, t, J = 7.5 

Hz, H-7/9), 1.94 (2H, app quin, J = 7.2 Hz , H-8), 1.79-1.73 (6H, m, H-2) 

13
C{

1
H} NMR: (CDCl3, 100 MHz) δC 

174.1 (C-6/10), 172.6 (C-6/10), 165.7 (C-12), 152.0 (Car), 147.2 (Car), 136.7 

(Car), 136.5 (Car), 129.2 (Car), 129.0 (Car), 128.9 (Car), 128.9 (Car), 128.5 (Car), 

127.9 (Car), 127.4 (Car), 124.5 (Car), 123.4 (Car), 117.3 (Car), 76.3 (C-19/20), 

71.2 (C-19/20), 55.9 (C-1), 51.3 (C-11), (35.8 (C-7/9), 35.1 (C-3) 34.9 (C-2), 

33.1 (C-7/9), 20.5 (C-8) 

IR (ATIR cm
-1

):  

3362 weak (N-H), 3031 weak (C-H), 2949 weak (C-H), 1734 medium (C=O, 

ester), 1650 strong (C=O, amide), 1575 strong (C=C) 
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4-{[1,5-diamino-3-(2-aminoethyl)-3-amide]butanoic}-N,N,N-[-[2,3-

bis(phenylmethoxy)benzoyl]-acid, 49 

 

 

 

Compound 48 (46.8 mg, 0.038 mmol) was dissolved in 9:1 mL of dry 

dichloromethane : methanol and stirred.  To this stirred solution, 150 μL of a 2M 

methanolic sodium hydroxide solution was added and the solution.  The reaction 

was followed via TLC (ethyl acetate) and allowed to complete (~18 hours).  The 

solution was then diluted with 40 mL dichloromethane and washed with 2 x 30 

mL 0.1 M formic acid.  The organic layer was dried with MgSO4, filtered and 

dried in vacuo yielding a clear glass foamed product. 

 

Yield:  

43.4 mg, 0.035 mmol, 94% 

Melting point: 

68.9-69.7 °C 

m/z (ESI):  

1221.5240 ([M-H]
-
, 47%) 

HRMS (ESI): 

Calc for [C75H73N4O12]
-
 = 1221.5230 Found 1221.5240 (-0.8 ppm error) 
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1
H NMR: (CDCl3, 400 MHz) δH 

8.08 (3H, t, J = 5.5 Hz, H-4), 7.70-7.66 (3H, m, H-14/15/16), 7.47-7.09 (36H, 

m, Har), 6.96 (1H, br s, H-5), 5.13 (6H, s, H-19/20), 5.07 (6H, s, H-19/20), 3.16 

(6H, dt, J = 9.2, 6 Hz H-3), 2.42 (2H, t, J = 7.0 Hz, H-7/9), 2.29 (2H, t, J = 7.0 

Hz, H-7/9), 1.94 (2H, app quin, J = 6.8 Hz , H-8), 1.72-1.65 (6H, m, H-2) 

13
C{

1
H} NMR: (CDCl3, 100 MHz) δC 

175.4 (C-10), 172.9 (C-6), 165.7 (C-12), 151.8 (Car), 147.0 (Car), 136.5 (Car), 

136.3 (Car), 129.0 (Car), 128.9 (Car), 128.9 (Car), 128.8 (Car), 128.4 (Car), 127.8 

(Car), 127.0 (Car), 124.5 (Car), 123.3 (Car), 117.4 (Car), 76.5 (C-19/20), 71.4 (C-

19/20), 56.4 (C-1), 35.9 (C-7/9), 35.2 (C-2/3) 35.1 (C-2/3), 34.0 (C-7/9), 21.0 

(C-8) 

 

4-{[1,5-diamino-3-(2-aminoethyl)-3-amide]butanoic}-N,N,N-[2,3-

dihydroxybenzamide]-acid, 41 

 

 

Compound 49, (32.4 mg, 0.026 mmol) was dissolved in 5 mL of dry toluene 

before 45 mL of dry ethanol was added.  To this stirred solution one small 

spatula tip of Pd-C 10% was added.  The mixture was purged with hydrogen and 

allowed to react for 18 hours under a positive pressure of hydrogen.  After the 

reaction was completed the catalyst was filtered off and the product was isolated 

by removing the solvent in vacuo, to yield a off-white film. 
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Yield:  

16.6 mg, 0.024 mmol, 92% 

m/z (ESI):  

681.2420 ([M-H]
-
, 26%) 

HRMS (ESI): 

Calc for [C33H37N4O12] = 681.2413 Found 681.2420 (-0.9 ppm error) 

1
H NMR: (CDCl3, 400 MHz) δH 

7.19 (3H, dd, J = 8.4, 1.2 Hz, H-14/16), 6.91 (3H, dd, J = 8.0, 1.2 Hz, H-14/16), 

6.70 (3H, t, J = 8.2 Hz, H-15), 3.55-3.48 (6H, m, H-3), 2.33 (2H, t, J = 7.2 Hz, 

H-7/9), 2.25 (2H, t, J = 7.6 Hz, H-7/9), 2.20-2.13 (6H, m, H-2), 1.88 (2H, app 

quin, J 7.4 Hz, H-2) 

13
C{

1
H} NMR: (MeOD, 100 MHz) δC 

176.1 (C-10), 174.0 (C-6), 170.2 (C-12), 149.0 (C-17/18), 145.9 (C-17/18), 

118.3 (Car), 118.2 (Car), 117.3 (Car), 115.3.9 (Car), 56.4 (C-1), 35.5 (C-7/9), 34.4 

(C-2/3) 34.1 (C-2/3), 33.2 (C-7/9), 21.0 (C-8) 
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Ferric-{8,11,14-tris[3-(N-hydroxyacetamido)propyl]-3,6,9,12,15,18-hexaoxo-

1,4,7,10,13,16-hexaazacyclooctadecan-2-yl}methyl pent-4-ynoate, 53 

 

 

 

To a stirred solution of pent-4-ynoic acid (98.7 mg, 1.01 mmol), in dry 

dichloromethane (10 mL), DCC (107.6 mg, 0.52 mmol) was added and the flask 

and placed under an atmosphere of nitrogen.  The resulting solution was stirred 

for three hours at room temperature.  The solution was then placed in an ice bath 

for one hour, and the resulting precipitation was filtered using a cannula filter, to 

yield crude anhydride in dichloromethane.  Ferricrocin (14.6 mg, 0.019 mmol) 

was dissolved in dry pyridine (3 mL) and added to the solution of crude 

anhydride dissolved in dichloromethane (5 mL), which was stirred for three 

hours at room temperature.  The solution was then dried in vacuo to yield a 

brown solid.  This solid was then purified via LH-20 size exclusion 

chromatography (1:1 CHCl3:MeOH), to yield a brown solid. 

 

HPLC: 

HPLC was performed on a reversed phase column, using MeCN:H2O gradient 

(6-40 %), from 0-20 minutes.  Retention time found to be 17 min. 

m/z (ESI):  

873.2541 ([M+Na]
+
, 33%), 851.2705 ([M+H]

+
, 17%) 

HRMS (ESI): 

Calc for [FeC33H48N9O14]+H
+
 = 851.2743 Found 851.2705 (4.4 ppm error) 

Calc for [FeC33H48N9O14]+Na
+
 = 873.2563  Found 873.2541 (2.5 ppm error) 
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Ferric-2-(6-amino-3-imino-4,5-disulfo-3H-xanthen-9-yl)-5-[(6-{4-[3-oxo-3-

({8,11,14-tris[3-(N-hydroxyacetamido)propyl]-3,6,9,12,15,18-hexaoxo-

1,4,7,10,13,16-hexaazacyclooctadecan-2-yl}methoxy)propyl]-1H-1,2,3-

triazol-1-yl}hexyl)carbamoyl]benzoic acid, 51 

 

 

 

The Alexa488 Azide dye was dissolved in HPLC grade water (2 mL) and added 

to a stirred solution of 53 in HPLC grade water (3 mL).  To this reaction 

mixture, sodium ascorbate (6 μL of 10 mM stock solution) was added, followed 

by CuSO4.5H2O (3 μL of a 5 mM stock solution).  The resulting solution was 

stirred at room temperature for six hours in the dark and then placed in a 5 mL 

0.1-0.5 MW dialysis bag and dialysed for 90 minutes.  The solution was then 

dried in vacuo. 

 

LC-MS 

Synergi Hydro column, 4.6mm x 250mm; Mobile phase solvent A = H2O 

solvent B = MeCN; Gradient Profile (0-30 min 94% A, 6% B to 60% A, 40% B, 

20-40 min held at 60% A, 40% B; Flow rate 0.3 mLmin
-1

; UV wavelength 295 

nm.  

Retention time: 31.5 min 

Calc for [C60H72FeN15O24S2]
2-

 = 753.1839 Found 753.1849 (-1.3 ppm error) 

Calc for [C60H72FeN15O24S2]
-
 = 1507.3749 Found 1507.3876 (-8.3 ppm error) 

m/z (MALDI:  

1478.46111 ([M-Fe+5H+Na]
+
, 100%), 1456.46872 ([M-Fe+6H]

+
, 90%), 

1494.41644 ([M-Fe+5H+K]
+
, 65%), 1500.44920 ([M-Fe+4H+2Na]

+
, 64%), 

1516.42003 ([M-Fe+4H+Na+K]
+
, 50%) 
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HRMS (MALDI): 

Calc for [C60H72N15O24S2] + 6H
+
 = 1456.46872 

Found 1456.46872 (1.79 ppm mean error) 

Calc for [C60H72N15O24S2] + 5H
+
 + Na

+
 = 1478.45995 

Found 1478.46111 (-0.62 ppm mean error) 

Calc for [C60H72N15O24S2] + 5H
+
 + K

+
 = 1494.43389 

Found 1494.41644 (10.63 ppm mean error) 

Calc for [C60H72N15O24S2] + 4H
+
 + 2Na

+
 = 1500.44190 

Found 1500.44920 (-8.38 ppm mean error) 

Calc for [C60H72N15O24S2] + 4H
+
 + Na

+
 + K

+
 = 1516.41583 

Found 1516.42003 (-6.79 ppm mean error) 

UV-vis: 

λmax(H2O) / 494 nm (ε : Not determined: Unable to record a mass) 
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7.3 Protein Production and Crystallisation Trials 

 

The CeuE coding sequence was cloned from genomic DNA.  The PCR 

amplification of the sequence was performed in a 50 μL reaction containing Kod 

Hot start polymerase (1 μL), PCR buffer 10x (5 μL), dNTP’s (5 μL), MgSO4
 
(2 

μL), genomic DNA (0.5 μL, 500 μg / mL), forward primer, (5’-

CCAGGGACCAGCAATGTTGCCTATTAGTATGAGCGATGAG-3’) (1 μL, 

20 μM), reverse primer, (5’-

GAGGAGAAGGCGCGTTATTATTTTACAGCGTTTTTGATTTC-3’) (1 μL, 

20 μM), made up to 50 μL with mQ grade water.  The PCR cycle performed 

consisted of 95 °C for two minutes and 30 cycles of 95 °C for 20 seconds, 48 °C 

for 30 seconds and 72 °C for 37 seconds.  The PCR product was inserted into 

pET-YSBLIC 3C vector.  The CeuE was then expressed in E. coli BL-21 cells.  

Single colonies were used to inoculate 500 mL cultures of Luria-Bertani broth 

containing 30 μg/mL of the antibiotic kanamycin.  When the OD600 reached 

approximately 0.8, CeuE expression was induced with the addition of 1 mM 

isopropyl β-D-1-thiogalactopyranoside.  The samples were then incubated at 37 

°C for four hours and then harvested by centrifugation.  The cells were then 

resuspended in 50 mM TrisHCl pH 7.5, 500 mM NaCl, 10 mM imidazole, with 

C-complete protease inhibitor cocktail EDTA-free present, and sonicated to 

disrupt the cells.  The insoluble portion was separated from the solution phase 

using centrifugation, and the crude supernatant was loaded onto a 5 mL nickel-

agarose affinity column.  The His-tagged CeuE was eluted with an increasing 

gradient (10-500 mM) imidazole in buffer, and fractions analysed by SDS-

PAGE.  Fractions containing CeuE were pooled, and subjected to dialysis at 4 

°C for 48 hours in the presence of C-protease (100:1).  The mixture after dialysis 

was analysed by SDS-PAGE found that all the His-tags had not been removed.  

Therefore the sample was subjected to C-protease again (50:1) and mixed at 4 

°C overnight.  The SDS-PAGE confirmed all of the His-tags had now been 

removed.  The mixture was loaded onto a 5 mL nickel-agarose affinity column, 

and eluted with the same buffer gradient as previous.  The fractions collected 

were pooled and concentrated, then applied to a gel filtration column 
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(equilibrated in 20 mM TrisHCl pH 8.0, 150 mM NaCl).  The fractions  were 

checked by SDS-PAGE, pooled and concentrated to 18 mg/mL.  The protein 

solution was then divided into 50 μL aliquots and shock frozen in liquid nitrogen 

and stored at -80 °C until required. 

 

Crystallisation. The CeuE stock as described above was used for the crystal 

screening.  All initial screening was carried out using a Mosquito Crystal Robot 

and Hampton and PACT commercial crystal screens.  These screens used 150 

nL of protein and 150 nL of screening solution in the crystallisation drop. The 

best apo-CeuE crystals were obtained with 0.1 M MIB buffer, pH 5, 25% (w/v) 

PEG 1500.  

 

For the {CeuE[Fe(4-LICAM)]} complex a stock solution of ferric 4-LICAM 

was prepared by mixing 3 mg of H4-4-LICAM in 1 mL of methanol with 35 μL 

of a 0.16 M stock of FeCl3, and stirring for 2 hours. The methanol was removed 

in vacuo to yield a purple solid.  The solid (1.3 mg) was dissolved in 11 μL 

DMF to yield a 100 mM stock assuming the complex to be a 3:2 triple stranded 

complex.  The CeuE stock (57 μL) was mixed with this solution (3 μL) which 

caused precipitation.  The purple precipitate was removed by centrifugation 

yielding the pale purple ferric 4-LICAM CeuE stock solution used for 

crystallisation.  Initial screening was carried out as described for apo-CeuE.  The 

best crystals were obtained with 0.2 M sodium nitrate, 0.1 M Bis Tris propane, 

pH 7.5, 20% (w/v) PEG 3350. 

 

For the {CeuE[Fe(17)} crystals were obtained through crystal soaking 

experiments.  A crystal was grown from the PACT crystal screen and Fe-17 was 

introduced by the addition of H4-17 (2 μL, 1x10
-2

 M in DMSO) and Fe(NTA) (2 

μL, 1x10
-2

 M, aqueous) to the condition reservoir, followed by thorough mixing.  

2 μL of the resulting solution was added the sitting drop that contained the 

crystal.  The well was re-sealed and time allowed for the ferric-17 to diffuse 

through the crystal. 

 

Data Collection, Structure Solution and Refinement. The {CeuE[Fe(4-

LICAM)]} crystal was coated with a cryoprotectant solution consisting of the 



         Chapter 7 

          247 

mother liquor with 20% PEG 1.5 K before flash-cooling in liquid nitrogen and 

storage for data collection.  All other crystal data collection reported within this 

thesis were flash-cooled in liquid nitrogen without the use of cryoprotectant.  

Crystal X-ray diffraction data was collected at the Diamond Light Source 

synchrotron.  The structure was determined by molecular replacement using one 

domain from the ferric-MECAM structure (PDB code 2CHU) as a search model 

using MOLREP
11

 in the CCP4
12

 software package.  Model building was carried 

out using Coot
13

 and refinement using REFMAC
14

. 

 

7.4 Job Plot Method 

 

A series of aqueous solutions containing the ligand of interest and Fe(NTA) 

were prepared such that the sum of the concentrations of both remained constant 

(400 µM) in 0.1 M TrisHCl pH 7.5, 5% DMSO.  The ratio of ligand and metal 

was varied from 100% ligand to 100% metal.  The absorbance of interest for the 

system was plotted against the ligand-to-metal ratio. 

 

110 mM TrisHCl pH 7.5.  Tris(hydroxymethyl)aminomethane, (27.5 mmol, 

3.334 g) was dissolved in approximately 200 mL distilled water.  The pH was 

adjusted to 7.5 with 2.5M HCl.  The volume of the solution was made up t 250 

mL with distilled water. 

 

Ligand Solution.  A stock solution of 10 mM of each ligand was prepared in 

DMSO. 

 

Fe(NTA) Solution.  Nitrilotriacetic acid trisodium salt (0.1 mmol) was 

dissolved in 0.0179 mol dm
-3

 standard Fe(NO3)3 solution (5.587 mL).  This 

solution was then made up to 10 mL with distilled water, leaving a final solution 

of 0.01 mol dm
-3

 Fe(NO3)3 with 0.01 mol dm
-3

 NTA. 



         Chapter 7 

          248 

 

7.5 Circular Dichroism 

 

Circular dichroism spectra were recorded using a Jasco J-810 spectropolarimeter 

with a Peltier temperature control unit at 20 °C under constant nitrogen flush.  

The instrument was operated with the following parameters: range: 300-700 nm, 

data pitch: 0.5 nm, scanning mode: continuous, scanning speed: 100 nm/min, 

response: 2 seconds, bandwidth: 2 nm, accumulation: 5, pathlength: 1 cm. 

 

{CeuE[Fe(4-LICAM)]}.  The sample consisted of 550 μL of CeuE stock 

solution (18 mg/mL in 20 mM TrisHCl pH 8.0, 10 mM NaCl), 50 μL of a ferric 

4-LICAM (2.55 x 10
-3

 M in 50 mM TrisHCl pH 7.5, 25% DMSO) and 1400 μL 

20 mM TrisHCl pH 8.0. The ferric 4-LICAM spectrum was then recorded with a 

solution containing 50 μL of a ferric 4-LICAM stock solution (2.55 x 10
-3

 M in 

50 mM TrisHCl pH 7.5, 25% DMSO) and 1950 μL 20 mM TrisHCl pH 8.0.  

The blank spectrum was subtracted from both data sets to give the spectra 

shown. 

 

Fe-17.  The samples consisted of a total concentration of [L]+[M] of 0.4 mM, 

recorded in 100 mM TrisHCl pH 7.5, 150 mM NaCl, 5% DMSO, with ligand to 

metal ratios recorded at 1:0, 3:2, 1:1, 2:3, 0:1.  The blank spectrum was 

subtracted from all spectra. 

 

{CeuE[Fe(17)]}.  The samples consisted of 50 μM Fe-17, 0.1 M TisHCl pH 7.5, 

150 mM NaCl (1000 μL) titrating in 20 μL aliquots of a CeuE stock solution 

(17.5 mg/mL in 20 mM TrisHCl pH 8.0, 10 mM NaCl).  The blank spectrum 

was subtracted from all spectra. 
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7.6 Fluorescence Quenching Titration 

 

Intrinsic fluorescence spectroscopy was carried out at room temperature.  The 

excitation slit width of 10 nm and an emission slit width of 20 nm, scan speed 60 

nm/min with an automatic response.  The detector voltage was set at 950 V.  

CeuE was excited at 280 nm and the emission spectrum was recorded from 285 

nm to 415 nm.  For each measurement a protein solution of 240 nM in 2000 L, 

40 mM TrisHCl (pH 7.5) NaCl 150 mM was placed in a 1 cm quartz cuvette, 

and titrated stepwise with concentrated ferric-ligand stock solution.  After each 

addition the solution was thoroughly mixed and allowed to rest for one minute.  

The integrated emission (corrected for PMT response) at from 305 nm to 380 

nm was used for plotting and binding constant calculation, using the fitting 

program DynaFit.
15

  The non-linear regression fit assumes there is no pre-

equilibrium of the ligand and iron(III), and the ferric-ligand complex is a single 

stable molecule.  The scripts for DynaFit can be found in the appendix and on 

the compact disc attached to the thesis.  For each titration, the task and 

mechanism fields of the script remain the same.  The final concentration of 

CeuE in the cuvette is required under the concentraton field and a initial esitmate 

of the Kd value is required in the constant field, both in μM.  The responses are 

required to be changed for each indivual titration, with the CeuE response being 

the initial normallised fluroscent signal divided by the final concentration of 

CeuE in the cuvette, and the CeuE.FeLD response is the end normallised 

fluroscent signal divided by the final concentration of CeuE.  Under the 

equilibria field the location of the .TXT file containing the titration data must be 

located, and the output field must be filled in in order for DynaFit to write the 

output data. 

 

40 mM TrisHCl pH 7.5, 150 mM NaCl.  Tris(hydroxymethyl)aminomethane, 

(0.02 mol, 2.423 g) and sodium chloride (7.5 mmol, 4.383 g) was dissolved in 

approximately 400 mL distilled water.  The pH was adjusted to 7.5 with 2M 

HCl.  The volume of the solution was made up to 500 mL with distilled water. 
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Fe-Ligand Solution.  M stock solution of ferric-ligand was prepared by 

pipetting 2 L of the ligand stock solution and 2 L of the Fe(NTA) stock 

solution into 1696 L of 40 mM TrisHCl pH 7.5, 150 mM NaCl and thoroughly 

mixed. 
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Appendix I. Fluorescent Quenching Analysis of CeuE 

 

Figure 84 - Run 1 fluorescence quenching analyses of PBP CeuE with ferric-4-

LICAM.  Titration recorded with 240 nM CeuE (red) and 170 nM CeuE (blue) in 40 

mM TrisHCl pH 7.5, NaCl 150 mM.  Recorded data shown as circles; lines give the 

non-linear least-squares calculated fits (DynaFit). Kd = 25.1± 1.3 nM (240 nM), 44.9 ± 

2.5 nM (170 nM). 

 

Figure 85- Run 2 fluorescence quenching analyses of PBP CeuE with ferric-4-

LICAM.  Titration recorded with 240 nM CeuE (red) and 170 nM CeuE (blue) in 40 

mM TrisHCl pH 7.5, NaCl 150 mM.  Recorded data shown as circles; lines give the 

non-linear least-squares calculated fits (DynaFit). Kd = 30.3± 0.9 nM (240 nM), 40.8 ± 

3.8 nM (170 nM). 
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Figure 86 - Run 3 fluorescence quenching analyses of PBP CeuE with ferric-4-

LICAM.  Titration recorded with 240 nM CeuE (red) and 170 nM CeuE (blue) in 40 

mM TrisHCl pH 7.5, NaCl 150 mM.  Recorded data shown as circles; lines give the 

non-linear least-squares calculated fits (DynaFit). Kd = 14.9± 2.7 nM (240 nM), 19.9 ± 

5.3 nM (170 nM). 

 

Figure 87 - Run 1 fluorescence quenching analyses of PBP CeuE with ferric-17.  

Titration recorded with 240 nM CeuE (red) and 170 nM CeuE (blue) in 40 mM TrisHCl 

pH 7.5, NaCl 150 mM.  Recorded data shown as circles; lines give the non-linear least-

squares calculated fits (DynaFit). Kd = 4.8± 0.9 nM (240 nM), 9.8 ± 1.9 nM (170 nM). 
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Figure 88 - Run 2 fluorescence quenching analyses of PBP CeuE with ferric-17.  

Titration recorded with 240 nM CeuE (red) and 170 nM CeuE (blue) in 40 mM TrisHCl 

pH 7.5, NaCl 150 mM.  Recorded data shown as circles; lines give the non-linear least-

squares calculated fits (DynaFit). Kd = 16.4 ± 1.8 nM (240 nM), 12.3 ± 2.5 nM (170 

nM). 

 

Figure 89 - Run 3 fluorescence quenching analyses of PBP CeuE with ferric-17.  

Titration recorded with 240 nM CeuE (red) and 170 nM CeuE (blue) in 40 mM TrisHCl 

pH 7.5, NaCl 150 mM.  Recorded data shown as circles; lines give the non-linear least-

squares calculated fits (DynaFit). Kd = 14.9± 3.7 nM (240 nM), 14.9 ± 3.6 nM (170 

nM). 

 



   

          254 

RAW DATA 

Batch 1 - 240 nM 

Conc Fe-4-LICAM/ uM 

Run 1 Run 2 Run 3 

INTEGRATION 
(305-380NM) 

INTEGRATION 
(305-380NM) 

INTEGRATION 
(305-380NM) 

0 1400 1217 857 

0.0476 1206 1030 733 

0.0952 1042 904 634 

0.1428 930 821 558 

0.1904 840 708 494 

0.238 754 649 451 

0.2856 709 597 417 

0.3332 678 554 400 

0.3808 653 525 385 

0.4284 626 517 376 

0.476 606 492 368 

0.5236 596 478 362 

0.5712 587 467 359 

0.6188 574 469 355 

0.6664 572 454 355 

0.714 569 454 350 

0.952 553 442 349 

1.19 549 440 340 

    

NORMALISED 

Conc Fe-4-LICAM/ uM 

Run 1 Run 2 Run 3 

INTEGRATION 
(305-380NM) 

INTEGRATION 
(305-380NM) 

INTEGRATION 
(305-380NM) 

0 1 1 1 

0.0476 0.861428571 0.846343468 0.855309218 

0.0952 0.744285714 0.742810189 0.739789965 

0.1428 0.664285714 0.674609696 0.651108518 

0.1904 0.6 0.581758422 0.576429405 

0.238 0.538571429 0.533278554 0.526254376 

0.2856 0.506428571 0.490550534 0.486581097 

0.3332 0.484285714 0.455217749 0.466744457 

0.3808 0.466428571 0.431388661 0.44924154 

0.4284 0.447142857 0.424815119 0.43873979 

0.476 0.432857143 0.404272802 0.429404901 

0.5236 0.425714286 0.392769104 0.422403734 

0.5712 0.419285714 0.383730485 0.418903151 

0.6188 0.41 0.38537387 0.414235706 

0.6664 0.408571429 0.37304848 0.414235706 

0.714 0.406428571 0.37304848 0.4084014 

0.952 0.395 0.363188168 0.407234539 

1.19 0.392142857 0.361544782 0.396732789 

Table 15 - Raw and normalised fluorescence data for the ferric-4-LICAM CeuE 

titration at 240 nM. 
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RAW DATA 

Batch 2 - 170 nM 

Conc Fe-4-LICAM/ 
uM 

Run 1 Run 2 Run 3 

INTEGRATION 
(305-380NM) 

INTEGRATION 
(305-380NM) 

INTEGRATION 
(305-380NM) 

0 991 965 634 

0.0476 831 809 525 

0.0952 733 698 449 

0.1428 651 639 405 

0.1904 600 594 376 

0.238 545 552 365 

0.2856 525 539 351 

0.3332 503 512 343 

0.3808 490 505 341 

0.476 465 488 331 

0.5236 446 472 321 

0.5712 439 473 323 

0.6188 441 463 317 

0.6664 433 448 315 

0.714 437 457 311 

0.952 419 433 302 

1.19 398 410 297 

    

    

NORMALISED 

Conc Fe-4-LICAM/ 
uM 

Run 1 Run 2 Run 3 

INTEGRATION 
(305-380NM) 

INTEGRATION 
(305-380NM) 

INTEGRATION 
(305-380NM) 

0 1 1 1 

0.0476 0.838546922 0.838341969 0.82807571 

0.0952 0.739656912 0.723316062 0.708201893 

0.1428 0.65691221 0.662176166 0.638801262 

0.1904 0.605449041 0.615544041 0.593059937 

0.238 0.549949546 0.572020725 0.575709779 

0.2856 0.529767911 0.558549223 0.55362776 

0.3332 0.507568113 0.530569948 0.541009464 

0.3808 0.49445005 0.523316062 0.53785489 

0.476 0.469223007 0.505699482 0.522082019 

0.5236 0.450050454 0.489119171 0.506309148 

0.5712 0.442986882 0.49015544 0.509463722 

0.6188 0.445005045 0.479792746 0.5 

0.6664 0.436932392 0.464248705 0.496845426 

0.714 0.440968718 0.47357513 0.490536278 

0.952 0.422805247 0.448704663 0.476340694 

1.19 0.401614531 0.424870466 0.468454259 

Table 16 - Raw and normalised fluorescence data for the ferric-4-LICAM CeuE 

titration at 170 nM. *Note missing data point of Fe-4-LICAM concentration at 0.4284. 
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RAW DATA 

Batch 1 - 240 nM 

Conc Fe-4-LICAM/ 
uM 

Run 1 Run 2 Run 3 

INTEGRATION 
(305-380NM) 

INTEGRATION 
(305-380NM) 

INTEGRATION 
(305-380NM) 

0 1115 1181 813 

0.0476 959 1039 750 

0.0952 851 909 669 

0.1428 742 795 591 

0.1904 627 695 509 

0.238 547 610 434 

0.2856 490 534 386 

0.3332 475 482 356 

0.3808 463 467 339 

0.4284 452 467 341 

0.476 464 449 344 

0.5236 458 450 339 

0.5712 448 444 334 

0.6188 464 439 328 

0.6664 453 439 331 

0.714 451 436 330 

0.952 452 428 332 

1.19 455 428 329 

    

NORMALISED 

Conc Fe-4-LICAM/ 
uM 

Run 1 Run 2 Run 3 

INTEGRATION 
(305-380NM) 

INTEGRATION 
(305-380NM) 

INTEGRATION 
(305-380NM) 

0 1 1 1 

0.0476 0.860089686 0.879762913 0.922509225 

0.0952 0.7632287 0.769686706 0.822878229 

0.1428 0.665470852 0.67315834 0.726937269 

0.1904 0.562331839 0.588484335 0.626076261 

0.238 0.49058296 0.516511431 0.533825338 

0.2856 0.439461883 0.452159187 0.474784748 

0.3332 0.426008969 0.408128704 0.437884379 

0.3808 0.415246637 0.395427604 0.41697417 

0.4284 0.405381166 0.395427604 0.419434194 

0.476 0.416143498 0.380186283 0.423124231 

0.5236 0.410762332 0.381033023 0.41697417 

0.5712 0.401793722 0.375952583 0.410824108 

0.6188 0.416143498 0.371718882 0.403444034 

0.6664 0.406278027 0.371718882 0.407134071 

0.714 0.404484305 0.369178662 0.405904059 

0.952 0.405381166 0.362404742 0.408364084 

1.19 0.408071749 0.362404742 0.404674047 

Table 17 - Raw and normalised fluorescence data for the ferric-17 CeuE titration at 

240 nM. 
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RAW DATA 

Batch 2 - 170 nM 

Conc Fe-4-LICAM/ 
uM 

Run 1 Run 2 Run 3 

INTEGRATION 
(305-380NM) 

INTEGRATION 
(305-380NM) 

INTEGRATION 
(305-380NM) 

0 865 855 707 

0.0476 751 735 643 

0.0952 658 616 571 

0.1428 561 535 501 

0.1904 513 470 451 

0.238 490 455 417 

0.2856 488 435 400 

0.3332 483 444 394 

0.3808 478 438 384 

0.4284 472 415 392 

0.476 459 409 390 

0.5236 466 417 384 

0.5712 451 415 380 

0.6188 455 412 375 

0.6664 454 399 375 

0.714 452 398 386 

0.952 453 390 397 

1.19 433 380 397 

    

NORMALISED 

Conc Fe-4-LICAM/ 
uM 

Run 1 Run 2 Run 3 

INTEGRATION 
(305-380NM) 

INTEGRATION 
(305-380NM) 

INTEGRATION 
(305-380NM) 

0 1 1 1 

0.0476 0.868208092 0.859649123 0.909476662 

0.0952 0.760693642 0.720467836 0.807637907 

0.1428 0.648554913 0.625730994 0.708628006 

0.1904 0.593063584 0.549707602 0.637906648 

0.238 0.566473988 0.532163743 0.589816124 

0.2856 0.56416185 0.50877193 0.565770863 

0.3332 0.558381503 0.519298246 0.5572843 

0.3808 0.552601156 0.512280702 0.543140028 

0.4284 0.54566474 0.485380117 0.554455446 

0.476 0.530635838 0.478362573 0.551626591 

0.5236 0.538728324 0.487719298 0.543140028 

0.5712 0.521387283 0.485380117 0.53748232 

0.6188 0.526011561 0.481871345 0.530410184 

0.6664 0.524855491 0.466666667 0.530410184 

0.714 0.522543353 0.465497076 0.545968883 

0.952 0.523699422 0.456140351 0.561527581 

1.19 0.500578035 0.444444444 0.561527581 

Table 18 - Raw and normalised fluorescence data for the ferric-17 CeuE titration at 

170 nM. 
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[task] 

 data = equilibra 

 task = fit 

 

[mechanism] 

 CeuE + FeLD <==> CeuE.FeLD : Kd dissoc. 

 

[concentrations] 

 CeuE = 0.24 ; Concentration of CeuE in cuvette in uM / approx 5.00 mgmL-1 3 

uL  

 

[constants] 

 Kd = 0.02 ? 

 

[Responses] 

 CeuE = 4.16 ? ; Initial fluorescence divided by amount of CeuE i.e. (1/0.24) 

 CeuE.FeLD = 1.70 ? ; End fluorescence divided by amount of FeLD.CeuE i.e. 

(0.408/0.24) 

 

[equilibria] 

 variable FeLD 

 file ./CeuE/FeLD/FULLDATA/Dan1/FeLD.txt 

 

[output] 

 directory ./CeuE/FeLD/FULLDATA/Dan1/Output 

 

[end] 

 

Figure 90 - Script used for Dynafit v3. 
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[task] 

 data = equilibria 

 task = fit 

 

[mechanism] 

 CeuE + FeLD <==> CeuE.FeLD : Kd dissoc 

 

[concentrations] 

 CeuE = 0.17 ; Concentration of CeuE in cuvette in uM / approx 5.00 mgmL-1 3 

uL 

 

[constants] 

 Kd = 0.02 ? ; uM 

 

[responses] 

 CeuE = 5.88 ? , CeuE.FeLD = 3.3 ? ; Initial fluorescence divided by amount of  

 

CeuE i.e. (1/0.17); End fluorescence divided by amount of FeLD.CeuE i.e.  

 

(0.561/0.17) 

 

[data] 

 variable FeLD 

 file ./CeuE/FeLD/FULLDATA/Adam4/FeLD.txt 

 

[output] 

 directory ./CeuE/FeLD/FULLDATA/Adam4/Output 

 

[end] 

 

Figure 91 - Script used for Dynafit v4. 
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Abbreviations 

 

° degrees 

°C degrees Celsius 

Å Angstroms 

Amo amonabactin 

aro aromatic residue 

B. subtilis Bacillus subtilis 

Boc tert-butyloxycarbonyl 

Boc2O di-tert-butyl dicarbonate 

c (prefix) centi 

C. jejuni Camoylobacter jejuni 

CD circular dichroism 

CDI 1,1'-carbonyldiimidazole 

D2O deuterium oxide 

d6-DMSO  deuterated dimethyl sulfoxide 

Da Dalton 

dATP deoxyadenosine triphosphate 

DCC dicyclohexylcarbodiimide 

DCU dicyclohexylurea 

DFO desferrioxamine-B 

DGE diglucosylated enterobactin 

DHBS  dihydroxybenzolyserine 

DIPEA N-N'-diisopropylethylamine 

DLS Diamond Light Source 

DMAP 4-dimethylaminopyridine 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

DOSY  diffusion ordered spectroscopy 

E. coli Escherichia coli 

EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

Ent enterobactin 

ESI electrospray ionisation 
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EtOH ethanol 

FRAP fluorescence recovery after photobleaching 

Fur ferric-iron uptake regulation 

g grams 

gly glycine 

H. influenzae Haemophilus influenzae 

HBTU N,N,N',N'-tetramethyl-O-(1H-benzotriazol-1-yl)uronium 

 hexafluorophosphate 

His histidine 

HOBt hydroxybenzotriazole 

HPLC high peformance liquid chromatgraphy 

IPTG isopropyl β-D-1-thiogalactopyranoside 

K Kelvin 

L ligand (complexation) 

L litre 

LB lysogeny broth 

LC liquid chromatrography 

LICAM linear Catechol Amide 

LMCT ligand to metal charge transfer 

Lys  lysine 

M metal (complexation) 

m metre 

M molar 

m (prefix) milli 

m/z mass/charge 

Maq-Br 2-bromomethylanthraquinone 

MeOH methanol 

MIB sodium malonate, imidazole and boric acid 

Mr relative molecular mass 

MS mass spectrometry 

MW molecular weight 

n (prefix) nano 

NEt3 triethylamine 
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nm nanometer 

NMR nuclear magnetic resonance 

NTA nitrilotriacetic acid 

OD600 optical density at 600 nm 

P. aeruginosa Pseudomonads aeruginosa 

Pa Pascal 

PBP periplasmic binding protein 

PCR  polymerase chain reaction 

PEG polyethylene glycol 

ppm parts per million 

RMS root mean square 

RNA ribonucleic acid 

rpm revolutions per minute 

s second 

SDS PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SGC serine-glycine-catechol 

TFA trifluoroacetic acid 

THP tetrahydropyran 

TIC total ion count 

TIRF total interal reflection fluorescence 

TLC thin layer chromatography 

TMS trimethylsilyl 

TrisHCl tris(hydroxymethyl)aminomethane hydrochloride 

Trp tryptophan 

Tyr tyrosine 

UV-visible ultra violet-visible 

V potential Difference 

λmax wavelength of maximum absorbance 

μ (prefix) micro 
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