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Abstract

In 1985 Asibong-Ibe [1] considered the ∗-bisimple ample ω-semigroups
and proved that they are isomorphic to certain generalised Bruck-Reilly ex-
tensions BR(M, θ) of a cancellative monoid M where θ is a morphism.

In 1993 he also proved in [2] that a similar structure theorem holds for
J ∗-simple ample ω-semigroups. Recently this result has been generalised in
[16] for ˜-bisimple restriction ω-semigroups.

Our objective is to study generalised Green’s relations and restriction
semigroups, together with their properties. Then we show that the ana-
logue of a similar structure theorem for simple inverse ω-semigroups that
was proved in [13] still holds if we replace simple inverse ω-semigroups by J̃ -
simple restriction ω-semigroups. The theory developed here closely parallels
that in [13] and [2].
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Preface

In the first chapter we review some basic notions of semigroup theory,
together with some results connected to Green’s relations. We define a gen-
eralisation of Green’s relations (R∗,L∗,H∗,D∗,J ∗) and their properties that
enable us to study some non-regular classes of semigroups. In the second
chapter we refine these definitions to further generalise Green’s relations,
and we introduce ample and restriction semigroups together with some ba-
sic results connecting them. Then we go on to introduce a generalisation
of the Bruck-Reilly extension and prove that it is a J̃ -simple restriction
ω-semigroup. The third chapter contains our main result which is a struc-
ture theorem characterising J̃ -simple restriction ω-semigroups isomorphic to
these generalised Bruck-Reilly extensions.
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Chapter 1

Preliminaries

1.1 Basic Theory

This chapter is devoted to the study of some elementary properties and
examples of semigroups, and is mostly based on [13]. We assume that the
reader is familiar with basic concepts of set theory and group theory. To fix
notation, we start with some basic definitions regarding maps.

We say a (partial) map φ : A → B is a subset of A × B such that for
every x ∈ A, there exists exactly one (in the case of a partial map, at most
one) element y ∈ B such that (x, y) ∈ φ. The domain of φ is

dom φ = {x ∈ A : ∃y ∈ B such that (x, y) ∈ φ}

and the image of the map is

im φ = {y ∈ B : ∃x ∈ A such that (x, y) ∈ φ}.

We denote the kernel of φ by ker φ and define it by

ker φ = {(x, y) ∈ A : xφ = yφ}.

It is worth reminding the reader that if x ∈ dom φ, then xφ is called the
image of x under φ.

Throughout this thesis, maps are written on the right and composed left
to right. The composition of two maps is the usual composition, namely,
let φ : A → B and ψ : B → C be two maps, then we define a new map
φ ◦ ψ : A→ C by

x(φ ◦ ψ) = (xφ)ψ.

This new map is called the composition of φ and ψ.
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A map φ : A → B is said to be one-to-one (or injective) if different
elements in the domain A have distinct images. A map φ : A → B is said
to be an onto (surjective) map if every element of B is the image of some
element in A, and we say that a map is bijective if it is both injective and
surjective.

Let φ : A → B be a map and A′ ⊆ A then φ|A′ : A′ → B is also a map,
called the restriction of φ to A′.
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1.2 Semigroups

A binary operation on a non-empty set S is a map · : S × S → S. This
operation is associative if for all x, y, z ∈ S

x · (y · z) = (x · y) · z.

Semigroups play an important role in many areas of mathematics and
computer science. The study of semigroups were first considered in the early
20th century. A semigroup is defined as an algebraic structure consisting of
a set together with an associative binary operation. One can formulate the
definition as follows:

Definition 1.2.1. A semigroup is a non-empty set S equipped with an as-
sociative binary operation ‘·’ and usually denoted by (S, ·) or just S.

A subsemigroup of a semigroup S is a non-empty subset T ⊆ S which is
closed with respect to multiplication, that is, if x, y ∈ T then xy ∈ T . We
normally abbreviate this by T ≤ S.

A unary operation is an operation with only one operand, that is, a trans-
formation on S. We define a (2, 1)-semigroup to be a set equipped with an
associative binary operation and a unary operation, and (2, 1, 1)-semigroup
is a set equipped with an associative binary operation and two unary op-
erations. A (2, 1)-subsemigroup or (2, 1, 1)-subsemigroup is a subsemigroup
closed under the binary and unary operations.

Next we introduce two special elements in semigroup theory which are
the identity element and the zero element. Let S be a semigroup. An element
e ∈ S is a right (left) identity of S, if for all x ∈ S

x · e = x (e · x = x).

If e is both a right and left identity of S, then e is called an identity of S. It
is easy to prove that a semigroup S can have at most one identity.

We say an element z is a right (left) zero element in S if for all x ∈ S

x · z = z (z · x = z)

and z is a two-sided zero or just a zero if it is both a right and a left zero.
It is also true that any semigroup contains at most one zero. Moreover, if
every element of the semigroup is a left zero then the semigroup is called a
left zero semigroup; a right zero semigroup is defined dually.
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A monoid is a semigroup S with an identity element. It is worth men-
tioning here that, if S has no identity element, then it is very easy to adjoin
an extra element 1 to S. We form a monoid

S1 =

{
S if S has an identity element
S ∪ {1} otherwise

where the multiplication is defined in the obvious way

1 · s = s · 1 = s (∀s ∈ S1).

We refer to S1 as the monoid obtained from S by adjoining an identity if
necessary. As a consequence, we deduce that each semigroup can be extended
to a monoid by adding at most one element.

Next we give some examples of semigroups and monoids below:

Example 1.2.2. The set N = {1, 2, 3, ...} with the addition operation forms
a semigroup. The set N0 = {0, 1, 2, ...} is a monoid under + and ×.

Example 1.2.3. A ring is a semigroup under ×. If the ring has an identity
then this semigroup is a monoid.

Example 1.2.4. The integers Z form a semigroup under both + , × oper-
ations. The semigroup (Z,+) is a monoid with identity 0, and (Z, ·) is a
monoid with identity 1. In (Z, ·) the element 0 is a zero.

Example 1.2.5. Let I, J be non-empty sets and set T = I × J with the
operation defined by

(i, j)(k, l) = (i, l) (∀i, k ∈ I and ∀j, l ∈ J).

Then · is associative and the semigroup (T, ·) is called a rectangular band.

Example 1.2.6. Let B = N0×N0, and (a, b), (c, d) ∈ B. We define a binary
operation on B by

(a, b)(c, d) = (a− b+ t, d− c+ t),

where t = max{b, c}. The given operation is associative and the resulting
semigroup is called the bicyclic monoid (its identity is (0, 0)).
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Example 1.2.7. [13] Let G be a group with identity element e, and let
I,Λ be non-empty sets. Let P = (pλi) be an I × Λ matrix with entries in
G0(= G ∪ {0} where 0 is a symbol not contained in G), and suppose that P
is regular, in the sense that no row or column of P consists entirely of zeros.
Formally,

(∀i ∈ I)(∃λ ∈ Λ) pλi 6= 0,

(∀λ ∈ Λ)(∃i ∈ I) pλi 6= 0.

Let S = (I ×G× Λ) ∪ {0}, and define multiplication on S by

(i, a, λ)(j, b, µ) =

{
(i, apλjb, µ) if pλj 6= 0,
0 if pλj = 0,

(i, a, λ)0 = 0(i, a, λ) = 00 = 0.

This multiplication is associative. The semigroup we thus defined above is
denoted byM0[G; I,Λ;P ], and will be called the I×Λ Rees matrix semigroup
over the group G with the regular sandwich matrix P .

Idempotents play a central role in semigroup theory. One reason is (as
we will see in Section 1.7) that they locally connect semigroups to groups.
We say an element e of S is an idempotent if

e.e = e (e2 = e).

The set of idempotents of S is denoted by

E(S) = {e ∈ S : e2 = e}.

Surprisingly, E(S) has a very strong influence on the whole structure of S.
Notice that in some cases E(S) may also equal S. In the rectangular band
that we defined in Example 1.2.5, for any (i, j) ∈ T we have

(i, j)2 = (i, j)(i, j) = (i, j),

thus E(T ) = T .
Let A,B be semigroups. Similarly to the corresponding notion in group

theory we say that a map φ : A → B is a morphism (homomorphism) if for
all x, y ∈ A

(xy)φ = (xφ)(yφ).

If A and B are monoids and φ also satisfies

1Aφ = 1B
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(where 1A and 1B are identities of A and B respectively) then φ is called a
monoid morphism. It is easy to see that im φ is a submonoid of B.

Let (A, · ,+ ) and (B, · ,+ ) be (2, 1)-semigroups. A map φ : A → B is a
(2, 1)-morphism if for all x, y ∈ A

(xy)φ = xφ · yφ and (xφ)+ = x+φ.

We define a (2, 1, 1)-morphism similarly.
Similarly to morphisms, the image of a (2, 1)- or a (2, 1, 1)-morphism is a

(2, 1)- or a (2, 1, 1)-subsemigroup respectively.
If (A, ·) and (B, ·) are monoids, and φ sends the identity of A to the

identity of B, then we call it a monoid (2, 1)-morphism (or monoid (2, 1, 1)-
morphism) and in this case its image is a (2, 1)-submonoid (or (2, 1, 1)-
submonoid).

An isomorphism of semigroups is a map φ : A → B which is a bijective
morphism. Embeddings capture mathematically when one semigroup is con-
tained in another. We say that a morphism φ : A→ B is an embedding if it
is injective. We say a semigroup S is embeddable in another semigroup T , if
there exists an embedding φ : S → T . If φ : S → T is an embedding, then S
is isomorphic to im φ, which is a subsemigroup of T , so we can think of S as
being a subsemigroup of T .

Properties that reduce the gap between groups and semigroups are always
important. Now we introduce one of these properties. The semigroup S is
left cancellative if

(∀a, b, c ∈ S) ca = cb⇒ a = b,

right cancellative if

(∀a, b, c ∈ S) ac = bc⇒ a = b,

and cancellative if it is both left and right cancellative. It is clear that groups
(and so also subsemigroups of groups) are cancellative, and on the other hand
a finite cancellative semigroup is necessarily a group. Therefore cancellative
semigroups are considered to be very close to groups. Most semigroups are
not cancellative, for example the full matrix semigroup Z2×2, since(

2 0
0 0

)(
2 2
2 2

)
=

(
2 0
0 0

)(
2 2
0 0

)
.

Note that a cancellative monoid has only one idempotent, namely its identity.
Another important property is commutativity. We say that a semigroup

S is commutative if
ab = ba (∀a, b ∈ S).
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It is worth mentioning that a commutative semigroup can be embedded in a
group if and only if it is cancellative. Evidently, the semigroups defined in
Example 1.2.2 are all commutative semigroups, while a nontrivial rectangular
band defined in Example 1.2.5 is not commutative.
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1.3 Binary Relations

Binary relations are used in many branches of mathematics to model
concepts like ‘smaller than’, ‘equal to’, and ‘divides’ in arithmetic, and so
on. More generally, a binary relation is an arbitrary association between
pairs of elements of a set. Intuitively the concept of a binary relation is
as fundamental mathematically as the concept of a map. We now give the
formal definition.

A binary relation ρ on a set X is a subset of X×X. To simplify notation
we write x ρ y instead of (x, y) ∈ ρ, for any elements x and y in X. A special
relation that is worth mentioning here is the identity relation on X,

idX = {(x, x) : x ∈ X}

that is, two elements are related if and only if they are equal. Also we have
the universal relation X × X, in which everything is related to everything.
We denote the set of all binary relations on X by B(X). An operation of
composition is defined as:

ρ ◦ λ = {(x, y) ∈ X ×X : ∃z such that (x, z) ∈ ρ and (z, y) ∈ λ}.

For each ρ ∈ B(X) the converse of ρ is defined by

ρ−1 = {(y, x) : (x, y) ∈ ρ}.

It is easy to see that the operation ◦ is associative. To see this, let
(x, y) ∈ X ×X then

(x, y) ∈ (ρ ◦ λ) ◦ σ

⇔ (∃z ∈ X)(x, z) ∈ ρ ◦ λ and (z, y) ∈ σ,

⇔ (∃z ∈ X)(∃u ∈ X)(x, u) ∈ ρ, (u, z) ∈ λ and (z, y) ∈ σ,

⇔ (∃u ∈ X)(x, u) ∈ ρ and (u, y) ∈ λ ◦ σ,

⇔ (x, y) ∈ ρ ◦ (λ ◦ σ).

Thus we have proved that (BX , ◦) is a semigroup.
One of the important binary relations that we are interested in is a partial

order. We say that a binary relation ρ on a set X is a partial order if:

1. (x, x) ∈ ρ for all x in X, that , ρ is reflexive;
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2. (∀x, y ∈ X)(x, y) ∈ ρ and (y, x) ∈ ρ⇒ x = y, that is, ρ is antisymmet-
ric;

3. (∀x, y, z ∈ X)(x, y) ∈ ρ and (y, z) ∈ ρ⇒ (x, z) ∈ ρ, that is, ρ is transi-
tive.

A partial order having the extra property

4. (∀x, y ∈ X) x ≤ y or y ≤ x, will be called a total order.

On the other hand, if we have symmetric property,

(∀x, y ∈ X)(x, y) ∈ ρ⇒ (y, x) ∈ ρ

instead of anti-symmetry, and ρ is also reflexive and transitive, then ρ is an
equivalence relation.

If ∼ is an equivalence relation, then the equivalence class of an element
a is denoted by [a] and is defined as:

[a] = {x ∈ X|a ∼ x}.

Given an equivalence relation ∼ on X, the set of all equivalence classes is
denoted by X/ ∼ and is called the quotient set of X by ∼. That is,

X/∼ = {[a] : a ∈ X}.

An important connection between maps and equivalences is given by:

Proposition 1.3.1. [13] If φ : X → Y is a map, then ker φ is an equivalence.

Let X be a non-empty set and let (X,≤) be a partially ordered set, then
we say an element x ∈ X

is minimal if (∀y ∈ X)(y ≤ x⇒ y = x),

is minimum if (∀y ∈ X)(x ≤ y),

is maximal if (∀y ∈ X)(x ≤ y ⇒ y = x),

is maximum if (∀y ∈ X)(y ≤ x).

Evidently a minimum element is also minimal, but the converse is not true.
Semilattices play an important role in this thesis. They can be obtained

either as special semigroups or as special partially ordered sets. We include
both approaches here.
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Definition 1.3.2. Let Y be a non-empty subset of a partially ordered set
(X,≤). We say that an element c of X is a lower bound of Y if c ≤ y for every
y ∈ Y . If the set of lower bounds of Y is non-empty and has a maximum
element d, we say that d is the greatest lower bound, or meet, of Y .

It is easy to see that the element d is unique if it exists, and we write

d =
∧
{y : y ∈ Y }.

If Y = {a, b} then we write d = a ∧ b.

Definition 1.3.3. If (X,≤) is such that a ∧ b exists for all a, b ∈ X, then
we say that (X,≤) is a lower semilattice. Also if

∧
{y : y ∈ Y } exists for

every non-empty subset Y of X, then we say that (X,≤) is a complete lower
semilattice. Analogous definitions are easily given for the least upper bound,
or join ∨

{y : y ∈ Y },

for a ∨ b, for an upper semilattice and for a complete upper semilattice.

It is easy to check that if (X,≤) is a lower semilattice then (X,∧) is a
commutative semigroup where all elements are idempotents.

To define semilattices as semigroups, we need to define a partial order on
idempotents of semigroups. Let S be a semigroup. We define a relation ≤
on the set of idempotents E(S) by

e ≤ f ⇔ ef = fe = e.

We show now that ≤ is a partial order. Certainly it is clear that e ≤ e so
it is reflexive, also, f ≤ e and e ≤ f together imply that e = f so it is
anti-symmetric. To show transitivity, notice that if e ≤ f and f ≤ g, so that

ef = fe = e

and
fg = gf = f

then
eg = efg = ef = e and ge = gfe = fe = e,

and so e ≤ g.

Products of idempotents need not be idempotents in general, however, if
idempotents commute (i.e. ef = fe for all e, f ∈ E(S)), then E(S) forms a
subsemigroup. A semigroup is called a semilattice, if it is commutative and
all elements are idempotents. The following lemma shows that a semilattice
defined this way is a semilattice as a partially ordered set.
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Lemma 1.3.4. Let S be a semilattice. Then ef ∈ S is the greatest lower
bound of the elements e and f of S, that is, (S,≤) is a lower semilattice (as
a partially ordered set).

Proof. Since S is a semilattice, then e ≤ f if and only if e = ef (as S is
commutative) then we have that ef = fe = ffe = eff , which means that
ef ≤ f . Similarly, ef ≤ e holds. Thus ef is a lower bound of e and f . To
show that ef is the greatest lower bound, let g be a lower bound of e and f ,
then g = ge = gf and hence

g(ef) = (ge)f = gf = g,

thus g ≤ ef. Therefore ef is the greatest lower bound of the elements e and
f .

The set of equivalences is partially ordered by set inclusion. In this par-
tially ordered set, both ρ∧σ and ρ∨σ exist. The former simply equals ρ∩σ,
and the latter is described by the following proposition.

Proposition 1.3.5. [13] Let ρ, σ be equivalences on a set S. Then
(a, b) ∈ ρ ∨ σ if and only if, for some n ∈ N, there exist elements
x1, x2, ..., x2n−1 in S such that

(a, x1) ∈ ρ, (x1, x2) ∈ σ, (x2, x3) ∈ ρ, ..., (x2n−1, b) ∈ σ.

As a useful corollary to this we have:

Corollary 1.3.6. [13] Let ρ, σ be equivalences on a set S such that
ρ ◦ σ = σ ◦ ρ. Then ρ ∨ σ = ρ ◦ σ.
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1.4 Congruences

Another important relation that plays a significant role in semigroup the-
ory is a congruence. Let S be a semigroup. A relation ρ on the set S is called
left compatible with respect to the operation on S if

(∀s, t, a ∈ S) (s, t) ∈ ρ⇒ (as, at) ∈ ρ,

and right compatible if

(∀s, t, a ∈ S) (s, t) ∈ ρ⇒ (sa, ta) ∈ ρ.

It is called compatible if it is both left and right compatible.
A left (right) compatible equivalence is called a left (right) congruence.

An equivalence relation ρ is called a congruence if for all a, b, c, d ∈ S

a ρ b and c ρ d⇒ ac ρ bd.

Then we have the following proposition:

Proposition 1.4.1. A relation ρ on a semigroup S is a congruence if and
only if it is both a left and a right congruence.

Proof. Suppose that ρ is a congruence on S. By definition, ρ is an equiva-
lence. If a ρ b and c ∈ S, then as ρ is reflexive, we have that c ρ c. As ρ is a
congruence we deduce that

ac ρ bc and ca ρ cd,

so that ρ is right and left compatible and hence is a right congruence and a
left congruence.

Conversely, suppose that ρ is both a right congruence and a left congru-
ence on S. By definition, ρ is an equivalence. Suppose that a ρ b and c ρ d.
Then ac ρ bc as ρ is right compatible, and bc ρ bd as ρ is left compatible. But
ρ is transitive, so that ac ρ bd and we deduce that ρ is a congruence.

If ρ is a congruence on a semigroup S then we can define a binary oper-
ation on the quotient set S/ρ = {[x] : x ∈ S} in a natural way as follows:

[a][b] = [ab].

The following theorem shows how quotient semigroups and morphisms are
connected:

12



Proposition 1.4.2. [13] Let S be a semigroup, and let ρ be a congruence on
S. Then S/ρ is a semigroup with respect to the operation defined above, and
the map ρ] from S onto S/ρ given by

xρ] = [x] (x ∈ X)

is a morphism. Now let T be a semigroup and let φ : S → T be a morphism.
Then the relation ker φ is a congruence on S, and there is an injective mor-
phism α : S/ker φ→ T such that im α= im φ and ρ] ◦ α = φ.

13



1.5 TX and PT X

While Cayley’s theorem enables us to view groups as groups of permuta-
tions of some set, the analogous result in semigroup theory represents semi-
groups as semigroups of maps from a set to itself.

LetX be a set, then a map fromX to itself is called a transformation ofX.
The set of all maps (with identity idX) α : X → X forms a transformation
monoid under the composition of maps. This semigroup is called the full
transformation semigroup on X and is denoted by TX . Subsemigroups of TX
are called transformation semigroups. We will sometimes use the so-called
double row notation for maps.

Let X be a set, then a map from A to B is called a partial transformation
of X where A,B ⊆ X. We let

PT X = {φ : A→ B | A,B ⊆ X}.

If C ⊆ X and α ∈ PT X then let Cα−1 = {a ∈ dom α : aα ∈ C} and
using this notation we can define composition of partial transformations in
the following way: if α, β ∈ PT X , then

dom αβ = (im α ∩ dom β)α−1,

im αβ = (im α ∩ dom β)β,

and
x(αβ) = (xα)β

for all x ∈ dom αβ. This composition is associative, so PT X is a semigroup,
in fact, a monoid with identity idX .

As an example of composition of partial transformations, let α, β ∈ PT 5

be defined as

α =

(
1 3 4 5
1 1 2 3

)
, β =

(
1 2 5
1 3 4

)
.

That is, dom α = {1, 3, 4, 5}, im α = {1, 2, 3}. Then

αβ =

(
1 3 4
1 1 3

)
.

As we know from group theory, the set of all bijections on X forms a
group under composition, which is called the symmetric group on X and it
is denoted by SX . It is clear from the definitions that

SX ⊆ TX ⊆ PT X .
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Definition 1.5.1. Let S be a semigroup. An injective morphism φ : S → TX
is called a faithful representation of S. The image Sφ of φ is a transformation
semigroup isomorphic to S.

In group theory Cayley’s theorem states that every group G is isomorphic
to a subgroup of the symmetric group acting on G. The next theorem is the
analogue of this in semigroup theory, that is, it shows that every semigroup
is embeddable in TX for some X.

Theorem 1.5.2. If S is a semigroup and X = S1 then there is a faithful
representation φ : S → TX .

Proof. For each a ∈ S, we define a map ρa : S1 → S1 by

xρa = xa (x ∈ S1).

Thus ρa ∈ TX , and so there is a map α : S → TX given by

aα = ρa (a ∈ S).

To show that α is one-one, for all a, b in S, we have

aα = bα⇒ ρa = ρb for all x ∈ S1

⇒ 1a = 1b⇒ a = b.

To show that α is a morphism, for all a, b in S and x ∈ S1,

x(ρaρb) = (xρa)ρb = (xa)b = x(ab) = xρab,

and so (aα)(bα) = (ab)α.
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1.6 Ideals

Ideals of semigroups can be defined similarly to ideals of rings, however
their roles are slightly different in semigroup theory. In ring theory all homo-
morphisms are determined by ideals, but this is not the case for semigroups.
Still, ideals play an important role in semigroup theory. Before we define
ideals, we are going to remind the reader about multiplication of subsets of
a semigroup. If A,B ⊆ S and a ∈ S then we write

AB = {xy : x ∈ A, y ∈ B},

A2 = AA = {xy : x, y ∈ A},

AaB = {xay : x ∈ A, y ∈ B}, etc.

We say that a non-empty subset I of a semigroup S is a left ideal if SI ⊆ I
and a right ideal if IS ⊆ I. If I is both a left and a right ideal then we call
it an ideal. In other words, a non-empty subset I ⊆ S is a left ideal of S. If

∀a ∈ I and s ∈ S, sa ∈ I

and we say I is a right ideal if

∀a ∈ I and s ∈ S, as ∈ I

and an ideal if
∀a ∈ I and s ∈ S, sa, as ∈ I.

We notice from the definition that if I is a left (right) ideal of S, then I
is a subsemigroup of S, since if SI ⊆ I or IS ⊆ I, then certainly II ⊆ I. Of
course not any subsemigroup is an ideal, for example in a non-trivial group
G every subgroup different from G is a subsemigroup but is not an ideal.

Notice that if a is an element of a semigroup S without identity, then Sa
need not contain a. The following facts will be used throughout this thesis:

S1a = Sa ∪ {a},

aS1 = aS ∪ {a},

S1aS1 = SaS ∪ Sa ∪ aS ∪ {a}.

It is easy to see that S1a is the smallest left ideal containing a and we shall
call it the principal left ideal generated by a. The principal right ideal aS1 is
defined dually, and we shall call S1aS1 the principal two-sided ideal generated
by a.
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1.7 Green’s relations

Green’s relations were first introduced and studied by Green in 1951 [12].
They are the most important tools to understand a semigroup. There are
five Green’s relations L,R,H,D and J .

Let S be a semigroup. We define the following relations on S:

a L b if and only if S1a = S1b;

a R b if and only if aS1 = bS1;

a J b if and only if S1aS1 = S1bS1,

where a, b ∈ S. Thus a L b if and only if a and b generate the same principal
left ideal. Similarly a R b if and only if a and b generate the same principal
right ideal, and a J b if and only if a and b generate the same principal
two-sided ideal.

If we need to emphasise on which semigroup these relations are defined,
then we will use the notation LS, RS, etc.

It is easy to see that the relations L,R and J are all equivalence relations.
The following proposition gives an equivalent definition of these relations.

Proposition 1.7.1. Let a, b be elements of a semigroup S. Then

a L b⇔ (∃x, y ∈ S1)(xa = b, yb = a),

a R b⇔ (∃x, y ∈ S1)(ax = b, by = a),

a J b⇔ (∃x, y, u, v ∈ S1)(xay = b, ubv = a).

An important property of L and R is given in the next proposition.

Proposition 1.7.2. The relation L is a right congruence and R is a left
congruence.

Proof. For any a, b, c ∈ S,

a L b ⇒ S1a = S1b ⇒ S1ac = S1bc ⇒ ac L bc,

and so L is a right congruence. Dual reasoning shows that R is a left con-
gruence.

An extremely useful result is:

Proposition 1.7.3. The relations L and R commute.
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Proof. Let S be a semigroup, and suppose that a, b ∈ S, with (a, b) ∈ L◦R.
Then ∃c ∈ S such that a L c R b. That is, ∃s, t, u, v ∈ S1 such that

sa = c, tc = a,

cu = b, bv = c.

Let d = tcu, then we have

au = tcu = d, dv = tcuv = tbv = tc = a;

thus, a R d. Furthermore,

tb = tcu = d, sd = stcu = sau = cu = b,

hence d L b. We have proved that (a, b) ∈ R ◦ L, so L ◦ R ⊆ R ◦ L. The
reverse inclusion follows in a similar way.

As an immediate result of Corollary 1.3.6 and Proposition 1.7.3, we notice
that

L ∨R = L ◦ R.
The intersection of two equivalences is an equivalence. We define

H = L ∧R, D = L ∨R,

which is equivalent to saying:

H = L ∩R, D = L ◦ R.

Namely, for any elements a, b ∈ S we have:

a H b if and only if a L b and a R b

and
a D b if and only if (∃c ∈ S) such that a L c and c R b.

Clearly, L and R are contained in J . Thus we can say J is an upper bound
for the set {L,R} and hence,

D = L ∨R ⊆ J

equivalently,
L,R ⊆ D ⊆ J .

Notice that in any commutative semigroup Green’s relations are all equal,
that is,

H = L = R = D = J ,
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and also in any group G we have

H = L = R = D = J = G×G.

Since for any elementt a ∈ G we have that G1a = G and aG1 = G.
In the following lemmas we characterise the Green’s relations in the full

transformation semigroups, Rees Matrix Semigroups and in the bicyclic semi-
group.

Lemma 1.7.4. [13] In TX

1. (α, β) ∈ L if and only if im α = im β;

2. (α, β) ∈ R if and only if ker α = ker β;

3. (α, β) ∈ D if and only if |im α| = |im β|;

4. D = J .

Lemma 1.7.5. [13] Let M0 = M0[G; I,Λ;P ] be a Rees Matrix Semigroup
over a group G. Then

1. (i, a, λ) L (j, b, µ) if and only if λ = µ;

2. (i, a, λ) R (j, b, µ) if and only if i = j;

3. (i, a, λ) H (j, b, µ) if and only if i = j and λ = µ;

4. D = J and has two classes, {0} and M0 \ {0}.

Lemma 1.7.6. In in the bicyclic semigroup B

1. (m,n) L (p, q) if and only if n = q;

2. (m,n) R (p, q) if and only if m = p;

3. (m,n) H (p, q) if and only if m = p and n = q.

Notation 1.7.7. Let S be a semigroup and let a ∈ S. The L-class (R-class,
H-class, D-class, J -class) containing the element a will be denoted by La
(Ra, Ha, Da, Ja).
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1.8 Simple semigroups

A (left, right) proper ideal I of a semigroup S is an (left, respectively, right)
ideal such that I 6= S. That is, such that I ⊆ S and I 6= S. A semigroup S
is called right simple if it contains no proper right ideals, dually a semigroup
S is called left simple if it contains no proper left ideals, and a semigroup S
is called simple if it has no proper two-sided ideals.

It is easy to see that a semigroup S is right (left) simple if and only if
R = S × S (L = S × S), and simple if and only if J = S × S. A semigroup
S is called bisimple if D = S × S.

Since in a group G we have that L = R = G×G, we conclude that groups
are left and right simple. Thus G is simple.

The following example is crucial for our main result in Chapter 3.

Example 1.8.1. Let B be the bicyclic semigroup. Let I ⊆ B be an ideal,
and (m,n) ∈ I. Then we have (0, n) = (0,m)(m,n) ∈ I. Hence

(0, 0) = (0, n)(n, 0) ∈ I.

Take any arbitrary element (a, b) ∈ B. Then

(a, b) = (a, b)(0, 0) ∈ I

thus, B ⊆ I. Therefore B = I, so B is simple. In fact more is true: let
(m,n), (k, l) ∈ B. Then

(m,n) R (m, l) L (k, l),

so that (m,n) D (k, l). Hence B is bisimple.
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1.9 Regular Semigroups and Inverse Semi-

groups

The concept of regularity in a semigroup was adapted from an analogous
condition for rings, already considered by J. von Neumann. An element a of
a semigroup S is regular if there exists an element x ∈ S such that a = axa,
and a semigroup S is regular if each of its elements is regular.

For instance, all idempotents of a semigroup S are regular, since if

e ∈ E(S) then e = eee.

Also all groups are regular since for every element a ∈ G (where G is a
group) we have a = aa−1a, where a−1 is the inverse of a in the sense of
group theory. A rectangular band T (Example 1.2.5) is regular, since for any
elements (i, j), (k, l) ∈ T we have

(i, j)(k, l)(i, j) = (i, j).

Definition 1.9.1. We say an element a′ ∈ S is an inverse of an element a
of S if:

aa′a = a and a′aa′ = a′.

The set of all inverses of a is denoted by V (a). It is clear that every regular
element has an inverse, since if a is a regular element in S then there exists
an element x ∈ S such that a = axa, and it is easy to see that xax ∈ V (a).

Notice that the inverse of an element need not be unique. For example,
in a rectangular band T , for every (i, j), (k, l) ∈ T we have

(i, j)(k, l)(i, j) = (i, j)

(k, l)(i, j)(k, l) = (k, l)

so every element is an inverse of every element.

Definition 1.9.2. We say that a semigroup S is an inverse semigroup if
there exists a unary operation x→ x−1 on S with the properties:

(x−1)−1 = x, xx−1x = x, (∀x ∈ S)

and
xx−1yy−1 = yy−1xx−1 (∀x, y ∈ S).

Then we have
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Theorem 1.9.3. [13] Let S be a semigroup. Then the following statements
are equivalent:

1. S is an inverse semigroup;

2. S is regular, and its idempotents commute;

3. every L-class and every R-class contains exactly one idempotent;

4. every element of S has a unique inverse.

Examples of inverse semigroups are bicyclic semigroups, semilattices, and
groups. In the following definition we introduce another example of inverse
semigroups which is analogous to a symmetric group.

Definition 1.9.4. Given a non-empty set X, we define IX to be the set of all
partial one-one maps of X. Then IX is a semigroup under the composition
of partial maps.

We have the following theorem (the proof of which can be found in [13]):

Theorem 1.9.5. The semigroup of all partial one-one maps IX of some set
X is an inverse semigroup.

We call IX the symmetric inverse semigroup on X. The unique inverse
of an element α ∈ IX is the usual inverse of an injective partial map. Now
we can state the Vagner-Preston Theorem which is the analogue of Cayley’s
Theorem for inverse semigroups (the proof can be found in [13]):

Theorem 1.9.6. Let S be an inverse semigroup. Then there exists a sym-
metric inverse semigroup IX on some set X, and an injective morphism φ
from S into IX given by

aφ = ρa

where ρa : Saa−1 → Sa−1a, x 7→ xa.
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1.10 Structure of D-classes

Equivalence classes of D are called the D-classes of a semigroup S. Evi-
dently, L,R ⊆ D (since D = L◦R = R◦L), so every D-class is the union of
R-classes (and also of L-classes). There is an alternative way to guarantee
that two elements are D-related, which is

a D b⇔ Ra ∩ Lb 6= ∅ ⇔ La ∩Rb 6= ∅.

We can illustrate a D-class by an “eggbox”, a notion first introduced by
Clifford and Preston (1961). The “eggbox” is a rectangle where the rows
represent the R-classes and the columns represent the L-classes and the
intersections of L-classes and R-classes create the H-classes. The following
eggbox below has 3 R-classes, 4 L-classes, and 12 H-classes:

Figure 1.1: A D-class

Let (a, b) ∈ R then there exist x, y ∈ S1 with

ax = b, by = a.

The right translation ρx : S → S, s 7→ sx maps a to b, in fact maps La into
Lb. Similarly, ρy maps Lb into La. The composition map ρxρy : La → La
is just the identity map from La into La, also ρyρx : Lb → Lb is just the
identity map from Lb into Lb. As a consequence, the maps ρx|La and ρy|Lb

are mutually inverse bijections from La into Lb and Lb into La, respectively.
Dually if x ∈ S then one can define the left translation λx : S → S, t 7→ xt.

Recall from [13] that if S is a semigroup, σ is a relation on S and φ is a
partial transformation of S then we say that φ is σ-class preserving if for all
s ∈ dom φ we have s σ sφ. These observations mentioned above and their
duals are formulated in Green’s Lemmas:

Lemma 1.10.1. Let a, b be R-equivalent elements in a semigroup S, and let
s, s′ in S1 be such that

as = b, bs′ = a.

Then the right translations ρs|La , ρs′ |Lb
are mutually inverseR-class-preserving

bijections from La onto Lb and Lb onto La, respectively.
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Lemma 1.10.2. Let a, b be L-equivalent elements in a semigroup S, and let
t, t′ in S1 be such that

ta = b, t′b = a.

Then the left translations λt|Ra , λt′ |Rb
are mutually inverse L-class-preserving

bijections from Ra onto Rb and Rb onto Ra, respectively.

Now we will present some results from [13] describing the structure of
those D-classes which contain regular elements.

Proposition 1.10.3. If a is a regular element of a semigroup S, then every
element of Da is regular.

A D-class is called regular if all of its elements are regular. Regular D-
classes contain a lot of idempotents as we notice in the following proposition.

Proposition 1.10.4. In a regular D-class, every L-class and every R-class
contains an idempotent.

In a D-class idempotents determine the position of inverses.

Theorem 1.10.5. Let a be an element of a regular D-class D in a semigroup
S.

1. If a′ ∈ V (a), then a′ ∈ D and the two H-classes Ra ∩ La′ , La ∩ Ra′

contain the idempotents aa′ and a′a respectively.

2. If b ∈ D is such that Ra ∩ Lb and La ∩ Rb contain idempotents e, f ,
respectively, then Hb contains an inverse a∗ of a such that

aa∗ = e, a∗a = f.

3. No H-class contains more than one inverse of a.

As a result of this we have the next proposition:

Proposition 1.10.6. Let e, f be idempotents in a semigroup S. Then e D f
if and only if there exist an element a in S and an inverse a′ of a such that
aa′ = e, a′a = f.

Then we have an extremely useful theorem called Green’s Theorem:

Theorem 1.10.7. If H is an H-class in a semigroup S then either H2∩H =
∅ or H2 = H and H is a subgroup of S.

In the following example we are going to determine Green’s relations on
a subsemigroup of T4.
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Example 1.10.8. Let α =

(
1 2 3 4
1 3 1 2

)
, and β =

(
1 2 3 4
3 3 1 2

)
.

The subsemigroup S generated by α and β consists of ten elements α, α2,
α3, β, β2, β3, αβ, α2β, α3β and αβ2.

α2 =

(
1 2 3 4
1 1 1 3

)
, α3 =

(
1 2 3 4
1 1 1 1

)
, β2 =

(
1 2 3 4
1 1 3 3

)
,

β3 =

(
1 2 3 4
3 3 1 1

)
, αβ =

(
1 2 3 4
3 1 3 3

)
, α2β =

(
1 2 3 4
3 3 3 1

)
,

α3β =

(
1 2 3 4
3 3 3 3

)
, αβ2 =

(
1 2 3 4
1 3 1 1

)
.

We use the Cayley table below to compute the Green’s relations.

α α2 α3 β β2 β3 αβ α2β α3β αβ2

α α2 α3 α3 αβ αβ2 αβ α2β α3β α3β α3

α2 α3 α3 α3 α2β α2 α2β α3β α3β α3β α3

α3 α3 α3 α3 α3β α3 α3β α3β α3β α3β α3

β α2 α3 α3 β2 β3 β3 α2β α3β α3β α2

β2 α3 α3 α3 β3 β2 β3 α3β α3β α3β α3

β3 α3 α3 α3 β3 β3 β2 α3β α3β α3β α3

αβ α3 α3 α3 αβ2 αβ αβ2 α3β α3β α3β α3

α2β α3 α3 α3 α2 α2β α2 α3β α3β α3β α3

α3β α3 α3 α3 α3 α3β α3 α3β α3β α3β α3

αβ2 α3 α3 α3 αβ αβ2 αβ α3β α3β α3β α3

Then:
αS1 = {α, α2, α3, αβ, αβ2, α2β, α3β};
S1α = {α, α2, α3};
α2S1 = {α2, α3, α2β, α3β};
S1α2 = {α2, α3};
α3S1 = {α3, α3β},
S1α3 = {α3};
βS1 = {β, α2, α3, β2, β3, α2β, α3β};
S1β = {β, β2, β3, α2, α3, αβ, αβ2, α2β, α3β};
β2S1 = {β2, β3, α3, α3β};
S1β2 = {β2, β3, α2, α3, αβ, α2β, α3β};
β3S1 = {β3, β2, α3, α3β};
S1β3 = {β3, β2, α2, α3, αβ, αβ2, α3β, α2β};
αβS1 = {αβ, α3, αβ2, α3β};
S1αβ = {αβ, α2β, α3β};
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α2βS1 = {α2β, α2, α3, α3β};
S1α2β = {α2β, α3β};
α3βS1 = {α3β, α3};
S1α3β = {α3β};
αβ2S1 = {αβ2, α3, αβ, α3β};
S1αβ2 = {αβ2, α3}.

Hence we have α2 R α2β, β2 R β3, α3 R α3β, and αβ R αβ2.

Similarly one can see that L is the identity relation, so D = L ∨R = R.

α β α2 α2β β2 β3 α3 α3β αβ αβ2

Figure 1.2: The D-classes of a semigroup S
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1.11 Green’s ∗-relations

Green’s ∗-relations were first introduced by Pastijn in [18] and were adopted
by Fountain in [6]. They are useful in investigating non-regular semigroups.
Let a, b be elements of a semigroup S, then we define Green’s ∗-relations as
follows

L∗ = {(a, b) ∈ S × S : (∀x, y ∈ S1) ax = ay ⇔ bx = by},

R∗ = {(a, b) ∈ S × S : (∀x, y ∈ S1) xa = ya⇔ xb = yb},

H∗ = L∗ ∩R∗,

D∗ = L∗ ∨R∗.

Now we study various properties of these relations. Most of these were proved
in [18] and [6], and some of them are folklore.

Proposition 1.11.1. The relation L∗ is a right congruence and R∗ is a left
congruence.

Proof. The proof of the relation L∗ to be an equivalence relation is straight-
forward, so we leave it for the reader to check it. Now let z ∈ S then

(az)x = (az)y ⇔ a(zx) = a(zy)

⇔ b(zx) = b(zy)

⇔ (bz)x = (bz)y.

Therefore, az L∗bz, which proves that L∗ is a right congruence. Dually one
can show that R∗ is a left congruence.

The next proposition shows the connection between L∗ and L.

Proposition 1.11.2. In a semigroup S, L ⊆ L∗ and if s, t ∈ S are regular
and s L∗t, then s L t.

Proof. Let (a, b) ∈ L so there exist u, v ∈ S1 with

ua = b, vb = a.

Suppose that ax = ay for some x, y in S1, then we have

bx = uax = uay = by.
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Conversely, if bx = by then we have

ax = ay,

thus (a, b) ∈ L∗.
Now suppose s L∗ t, and s, t are both regular. Then there exists s′ ∈ S

such that s = ss′s. Fix x = 1 (since x ∈ S1). Then

s · 1 = s · s′s⇒ t · 1 = t · s′s

⇒ t = ts′ · s.

Similarly, if t = tt′t for some t′ ∈ S then

t · 1 = t · t′t⇒ s · 1 = s · t′t

⇒ s = st′ · t

thus s L t.

We have the dual result for R∗:

Proposition 1.11.3. In a semigroup S, R ⊆ R∗ and if s, t ∈ S are regular
and s R∗t, then s R t.

Notice that the above results show that L∗ = L and R∗ = R in a regular
semigroup.

Lemma 1.11.4. Let S and T be two semigroups such that S ≤ T . Then for
all s, t ∈ S

s LT t⇒ s L∗S t

that is, if s and t are L-related in T then s and t are L∗-related in S.

Dually
s RT t⇒ s R∗S t.

Proof. Suppose that s LT t. Then us = t, vt = s, for some u, v ∈ T 1.
Suppose that sx = sy, for some x, y ∈ S1. Then

tx = usx = usy = ty.

Similarly, if tx = ty then we have sx = sy. Hence s L∗S t. Dually one can
prove that s RT t⇒ s R∗S t.

The next proposition explores another useful connection between R∗ and
R .
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Proposition 1.11.5. If S is a semigroup then there is a semigroup T and
an embedding α : S → T, in other words, T is an oversemigroup of S, such
that for every s, t ∈ S we have s R∗ t if and only if sα R tα.

Proof. Let S be a semigroup and set X = S1. We need to define a one-one
morphism S → TX . For s ∈ S, we define ρs ∈ TX by

xρs = xs (∀x ∈ X).

Next we define the map α : S → TX by sα = ρs. By Theorem 1.5.2 the
map α : S → TX is an embedding. Now suppose that s R∗t, that is, for any
x, y ∈ S1

xs = ys⇔ xt = yt.

We have
(x, y) ∈ ker ρs ⇔ xρs = yρs

⇔ xs = ys

⇔ xt = yt

⇔ xρt = yρt

⇔ (x, y) ∈ ker ρt.

Therefore, ker ρs = ker ρt then ker sα = ker tα, so by Lemma 1.7.4 we have
sα R tα. The converse part follows from Lemma 1.11.4.

Note that the proof relies heavily on the fact that R on TX is determined
by the kernels, and R∗ is clearly connected to these on TX . For convenience
we now state the dual of Proposition 1.11.5 with the proof.

Proposition 1.11.6. If S is a semigroup then there is a semigroup T and
an embedding α : S → T such that for every s, t ∈ S we have s L∗ t if and
only if sα L tα.

Proof. Let S∗ = (S, ◦) be defined by

b ◦ a = a · b (∀a, b ∈ S).

It is clear that S∗ is also a semigroup and that s L∗ t in S if and only if s R∗ t
in S∗. By Proposition 1.11.5, there exist a semigroup T and an embedding
α : S∗ → T such that for every s, t ∈ S∗ we have s R∗ t in S∗ if and only if
sα R tα in T . Note that α also maps the underlying set of the semigroup
(S, ·) to the semigroup (T ∗, ◦) (where T ∗ is defined similarly to S∗), so we
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only need to check that α is still a morphism from (S, ·) to (T ∗, ◦). For this
reason, let a, b ∈ S. Then

(a · b)α = (b ◦ a)α = bα · aα = aα ◦ bα.

Hence, S is embedded in T ∗. Furthermore, if s, t ∈ S are such that s L∗ t
in S then s R∗ t in S∗, so sα R tα in T , which implies sα L tα in T ∗. The
converse part follows from Lemma 1.11.4.

The following example shows that it is not always possible to achieve
both of these aims with a single embedding.

Example 1.11.7. Let M be a cancellative monoid which is not embeddable
in a group (such monoids exist, as was shown by Malcev in [17]), and let
a, b ∈M . For any a, b ∈M we have

ax = ay ⇒ x = y ⇒ bx = by.

Similarly,
bx = by ⇒ x = y ⇒ ax = ay,

so we deduce that all elements in M are L∗-related, hence L∗ = M ×M.
Similarly, we deduce that R∗ = M ×M . So H∗ = M ×M . Now suppose
for contradiction that there exists an embedding α : M → S (where S is a
semigroup) such that

a L∗b in M ⇔ aα L bα in S,

a R∗b in M ⇔ aα R bα in S.

Since for any a, b ∈ M we have that a H∗ b in M , we have that aα H bα in
S. In particular, let x ∈M be arbitrary. Then

x H∗x2 ⇒ xα H x2α = (xα)2,

so by Theorem 1.10.7, Hxα is a group. This means that the image of M lies
in a single H-class which is a group . This contradicts the fact that we can
not embed M in a group.

Unlike the relations L and R, the relations L∗ and R∗ need not commute.
The next example shows that in general L∗ ◦ R∗ 6= R∗ ◦ L∗.

Example 1.11.8. We are going to construct a subsemigroup of a Brandt
semigroup for which L∗ ◦ R∗ 6= R∗ ◦ L∗. Brandt semigroups are special
Rees matrix semigroups (see Example 1.2.7), where the non-empty sets I
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and Λ are equal and the sandwich matrix is the identity matrix. That is,
B(G, I) =M0[G; I, I;P ], where P is defined by

pij =

{
e if i = j,
0 if i 6= j.

Let B({e}, 5) be the Brandt semigroup over the trivial group G = {e} ,
where I = {1, 2, 3, 4, 5}. Let

T = {(i, e, j)|i ≤ j} ∪ {0}

be a subset of B({e}, 5). First, we check that T is indeed a subsemigroup of
B({e}, 5). We need to prove that

a, b ∈ T ⇒ ab ∈ T.

Let (i, e, j) and (k, e, l) be arbitrary non-zero elements of T . Then

(i, e, j)(k, e, l) =

{
(i, e, l) if j = k
0 otherwise

if (i, e, j)(k, e, l) = 0, then we are done, on the other hand if

(i, e, j)(k, e, l) = (i, e, l),

then j = k, and so
i ≤ j = k ≤ l⇒ i ≤ l,

hence (i, e, l) ∈ T . Thus T is a subsemigroup of B({e}, 5). Secondly, we
need to characterise R∗ and L∗ in T . It is easy to see that {0} is always an
R∗-class and an L∗-class. For any non-zero (i, e, λ), (j, e, µ) in T we claim
that

(i, e, λ) R∗ (j, e, µ) if and only if i = j;

(i, e, λ) L∗ (j, e, µ) if and only if λ = µ.

Proof. Suppose that (i, e, λ) R∗ (j, e, µ) in T . If

(i, e, i)(i, e, λ) = 1 · (i, e, λ)

then
(i, e, i)(j, e, µ) = 1 · (j, e, µ).

Then i = j, since 1 · (j, e, µ) 6= 0.
Conversely, suppose that i = j, then by Lemma 1.7.5, (i, e, λ) R (j, e, µ)

in B({e}, 5), then by Lemma 1.11.4, (i, e, λ) R∗ (j, e, µ) in T . The proof for
L∗ is dual.
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Finally, let a = (1, e, 1), b = (5, e, 5) ∈ T , we have

(a, b) ∈ R∗ ◦ L∗,

since for c = (1, e, 5) ∈ T we have that

a R∗c L∗b.

On the other hand, (a, b) /∈ L∗ ◦ R∗, since there is no such c′ ∈ T with

a L∗c′ R∗b

(clearly, c′ must be (5, e, 1) /∈ T ). Hence, L∗ ◦ R∗ 6= R∗ ◦ L∗ in T .

In section 1.7 we characterised the Green’s relations of TX . In the fol-
lowing example we are going to characterise the Green’s relations and the
Green’s *- relations in a subsemigroup of TX .

Example 1.11.9. Let X be a set and A ⊂ X (that is, A 6= X) such that
|A|  1. Define

S = {α ∈ TX : im α ⊆ A}.

We are going to determine L,R,L∗, and R∗ in S. To determine L in S, we
know that in TX any two elements are L-related if and only if they have the
same images, however, this is not a sufficient condition in S, so we have to
find extra conditions.

Precisely, for all α, β in S, α L β if and only if α = β or:

1. im α = im β and

2. ∀a ∈ im α = im β, ∃b, c ∈ A such that bα = cβ = a.

Proof. Suppose that α L β in S and α 6= β, then α L β in TX . Therefore by
Lemma 1.7.4, im α = im β. Let γ ∈ S be such that β = γα.

To show that the second condition holds, let a ∈ im α = im β. Then
a = xβ = xγα for some x ∈ X, so if we let b = xγ ∈ A, then bα = xβ = a.

Conversely, suppose that Conditions 1 and 2 hold. For each x ∈ X we
have xβ ∈ im β = im α, so by Condition 2, there exists bx ∈ A such that
xβ = bxα. Then we define γ : X → A by

xγ = bx,

for all x ∈ X. Then γα = β. Similarly, we can define π ∈ S such that
πβ = α. Hence α L β in S.
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To determine R in S, we have the same condition that holds for two
elements to be R-related in TX , that is, for any α, β in S

α R β ⇔ ker α = ker β.

Proof. Suppose that α R β in S then α R β in TX . Therefore by Lemma
1.7.4, ker α = ker β.

Conversely, suppose that ker α = ker β. Let x ∈ im α, and for all y ∈ X
such that yα = x, define xγ = yβ. For each x /∈ im α, let xγ ∈ A be
arbitrary. Then

yαγ = xγ = yβ (∀y ∈ X)

It is clear that xγ is well-defined since, if yα = y′α, then

(y, y′) ∈ ker α ⊆ ker β so yβ = y′β.

Hence αγ = β. Similarly, we can define π ∈ S such that βπ = α. Hence
α R β.

To determine L∗ in S, we claim that

α L∗β in S ⇔ im α = im β.

Proof. Suppose that im α = im β. Then α L β in TX , then by Lemma 1.11.4,
α L∗β in S.

Conversely, suppose that α L∗β. Let γ : X → A be defined by

xγ =

{
x if x ∈ im α,
a0 if x /∈ im α.

where a0 ∈ A is fixed. Then αγ = α ·1 and so as α L∗ β we have βγ = β ·1,
and thus

im β = im (βγ) ⊆ im γ = im α.

Similarly one can show that im α ⊆ im β, so that im α = im β.

Notice that in the previous example, we have L 6= L∗ in S. To show this
let A = {1, 2, 3} be a subset of X = {1, 2, 3, 4, 5}. Let

α =

(
1 2 3 4 5
1 1 2 2 3

)
, β =

(
1 2 3 4 5
2 1 3 1 2

)
.

Obviously im α = im β, so α L∗β. However α and β are not L-related, since
there is no such element γ in S with γα = β, because @c ∈ A such that
cα = 3. So Condition 2 is not satisfied.
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Chapter 2

Ample and restriction
semigroups

2.1 Ample and restriction semigroups

Our plan is to generalise certain results of inverse semigroup theory to
a wider class of semigroups, namely to restriction semigroups, which were
first introduced by Gould (see [10]). In the structure theory of inverse semi-
groups, there are two approaches to build up inverse semigroups. That is,
inverse semigroups can be defined both in structural terms (e.g. semigroups
having unique idempotents in R- and L-classes) and in algebraic terms (e.g.
semigroups having an additional unary operation, and satisfying certain iden-
tities). Similarly, there are two possible ways to define ample and restriction
semigroups. Here we include both ways and indicate how they are related to
each other. We shall provide some more relations to study non-regular semi-
groups. Before defining ample semigroups, we need to say what is meant by
an abundant semigroup. The latter two classes were introduced by Fountain
in [6]. Most of the results in this chapter are folklore.

Definition 2.1.1. A semigroup S is left abundant if every R∗-class contains
an idempotent. A semigroup S is left adequate if it is left abundant and
idempotents commute. In a left adequate semigroup every R∗-class contains
a unique idempotent, and we denote by a+ the unique idempotent in the
R∗-class of a.

We define right abundant and right adequate semigroups dually and for an
element a in a right adequate semigroups we denote the unique idempotent in
the L∗-class of a by a∗. Also we say that a semigroup is abundant (adequate) if
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it is both right and left abundant (adequate). We summarise some properties
of adequate semigroups in the following lemma.

Lemma 2.1.2. For elements a, b of an adequate semigroup S, we have

(i) a R∗b if and only if a+ = b+ (a L∗b if and only if a∗ = b∗);

(ii) (ab)∗ = (a∗b)∗; (ab)+ = (ab+)+;

(iii) aa∗ = a = a+a.

Now we are going to give the structural definition of ample semigroups:

Definition 2.1.3. A left adequate semigroup is left ample if it satisfies the
left ample condition. That is, ae = (ae)+a for every a ∈ S and e ∈ E(S).

Dually we say S is a right ample semigroup if the right ample condition
ea = a(ea)∗ is satisfied.

We say a semigroup is an ample semigroup if it is both a left and a right
ample semigroup.

In the following Lemmas we give an alternative definition of (left/right)
ample semigroups:

Lemma 2.1.4. [10] Let S be a (2, 1)-semigroup satisfying the following iden-
tities: for all a, b, c ∈ S and E = {a+ : a ∈ S} we have

a+b+ = b+a+, a+a = a,

(a+)+ = a+, (ab)+ = (ab+)+, ab+ = (ab+)+a,

and
a2 = a⇒ a = a+,

ac = bc⇒ ac+ = bc+.

Then S is a left ample semigroup.
Conversely, if S is a left ample semigroup. Then for any a, b, c ∈ S, and

E = {a+ : a ∈ S}, S satisfies the following identities

a+b+ = b+a+, a+a = a,

(a+)+ = a+, (ab)+ = (ab+)+, ab+ = (ab+)+a,

and
a2 = a⇒ a = a+,

ac = bc⇒ ac+ = bc+.

35



Proof. Suppose that the identities hold. Then by making use of the implica-
tion ac = bc⇒ ac+ = bc+, one can show that for all a, b ∈ S we have

a R∗b if and only if a+ = b+.

Also it is easy to check that the given identities imply that E(S) is a semi-
lattice. To see that S satisfies the left congruence condition, suppose that
(ab)+ = (ab+)+ and a R∗ b, by Lemma 2.1.2, a+ = b+ and by the given
identities we have (for some c ∈ S)

(ca)+ = (ca+)+ = (cb+)+ = (cb)+,

thus ca R∗ cb. The result follows.
Conversely, the proof is straightforward as one can easily deduce the

identities from the fact that S is left ample. However, we prove the most
complicated one. Let a, b ∈ S. As b R∗ b+, and S satisfies the left congruence
condition we have that ab R∗ ab+. Then by Lemma 2.1.2, (ab)+ = (ab+)+.

For convenience we now state the dual of Lemma 2.1.4.

Lemma 2.1.5. [10] Let S be a (2, 1)-semigroup satisfying the following iden-
tities: for all a, b, c ∈ S and E = {a∗ : a ∈ S} we have

a∗b∗ = b∗a∗, aa∗ = a,

(a∗)∗ = a∗, (ab)∗ = (a∗b)∗, b∗a = a(b∗a)∗,

and
a2 = a⇒ a = a∗,

ca = cb⇒ c∗a = c∗b.

Then S is a right ample semigroup.
Conversely, if S a is right ample semigroup. Then for any a, b, c ∈ S, and

E = {a∗ : a ∈ S}, S satisfies the following identities

a∗b∗ = b∗a∗, aa∗ = a,

(a∗)∗ = a∗, (ab)∗ = (a∗b)∗, b∗a = a(b∗a)∗,

and
a2 = a⇒ a = a∗,

ca = cb⇒ c∗a = c∗b.
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As a consequence of Lemma 2.1.4 and Lemma 2.1.5 one can say that the
(2, 1, 1)-semigroup (S, · ,+ ,∗ ) is ample if (S, · ,+ ) is left ample and (S, · ,∗ ) is
right ample.

We now state a useful corollary of Lemma 2.1.4.

Corollary 2.1.6. Let S be a (2, 1)-subsemigroup of a left ample semigroup.
Then S is also left ample.

Proof. Clearly a (2, 1)-subsemigroup also satisfies the conditions appearing
in Lemma 2.1.4.

The following proposition shows that the notion of an ample semigroup
generalises that of an inverse semigroup.

Proposition 2.1.7. Inverse semigroups are ample semigroups.

Proof. We only prove that inverse semigroups are left ample semigroups, as
the proof that they are right ample is dual.

Suppose that S is an inverse semigroup, then S is regular so R = R∗ and
every R∗-class contains an idempotent. Furthermore, idempotents commute,
so S is left adequate. It remains to show that S satisfies the left ample
condition, that is ae = (ae)+a for all e ∈ E(S) and a ∈ S. It is clear
that a+ = aa−1 is the unique idempotent in R∗a, and since S is an inverse
semigroup we have e = e−1 and a = aa−1a. Then

ae = aa−1ae = a(a−1a)e

= ae(a−1a)

= (aea−1)a

= (ae)+a,

that is, the left ample condition holds.

We know that IX is an inverse semigroup (Theorem 1.9.5). One can see in
the following proposition that every left ample semigroup can be embedded
in IX for some set X. The proof is similar to the proof of Theorem 6.2 in
[10].

Proposition 2.1.8. Left ample semigroups are exactly the (2,1)-semigroups
which are embeddable in symmetric inverse semigroups. That is, S is left
ample if and only if there exists an injective (2,1)-morphism θ : S → IX for
some set X (on IX , α+ = αα−1 = iddom α).
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Proof. Suppose that S is a left ample semigroup. Take X = S, then we
define

θ : S → IS
by

sθ = ρs for s ∈ S

where
dom ρs = Ss+, xρs = xs for all x ∈ dom ρs.

To see that ρs ∈ IS, let x, y ∈ dom ρs. If xρs = yρs then xs = ys so
xs+ = ys+ as s R∗s+

x = xs+ = ys+ = y.

So ρs is one-one. Also we can see the image is

im ρs = (Ss+)ρs = Ss+s = Ss.

We need to show that θ is a one-one (2,1)-morphism.

(sθ)+ = (ρs)
+ = iddom ρs = idSs+ = s+θ,

so θ is a +-morphism. To show that θ is a semigroup morphism, that is, for
all s, t ∈ S

(st)θ = sθtθ,

it is enough to show that dom ρst = dom ρsρt. Since

ρst : dom ρst → im ρst, x 7→ x(st)

on the other hand we have

ρsρt : dom ρsρt → im ρsρt, x 7→ x(st).

Let x ∈ dom ρst. Then x(st)+ = x so that xs+ = x(st)+s+ = x(st)+ = x
and x ∈ dom ρs. Now xρs = xs = x(st)+s = x(st+)+s = xst+ ∈ dom ρt so
that x ∈ dom ρsρt.

Conversely, let x ∈ dom ρsρt. Then x ∈ dom ρs and xρs = xs ∈ dom ρt.
Hence x ∈ Ss+ and xs ∈ St+. Then by using the ample condition we have

x(st)+ = (x(st)+)+x = (xst)+x = (xst+)+x

= (xs)+x = (xs+)+x = x+x = x.
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Hence x ∈ S(st)+ = dom ρst. Therefore dom ρst = dom ρsρt. Finally, to show
that θ is one-one, suppose that sθ = tθ for some s, t in S. Then

dom ρs = dom ρt ⇒ Ss+ = St+

⇒ s+ = t+

since s+L t+ and idempotents commute. Hence

s+ = t+ ∈ dom ρs = dom ρt ⇒ s+ρs = t+ρt

⇒ s+s = t+t

⇒ s = t.

Conversely, suppose that there exists an injective (2,1)-morphism
θ : S → IS. That is, im θ ⊆ IS, and im θ is a (2,1)-subsemigroup of IS, and
S ∼= im θ as a (2, 1)-semigroup. By Lemma 2.1.6 a (2, 1)-subsemigroup of
IX is also a left ample semigroup, so S is left ample.

Notice that one can easily see that the cancellative monoid M, introduced
in Example 1.11.7 is a special ample semigroup with one idempotent. So that
similarly to Proposition 1.11.6 and Example 1.11.7 one can show that it is
not possible to achieve both of the aims with a single embedding. In general
ample semigroups cannot be embedded in IX as (2, 1, 1)-subsemigroups.
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2.2 Relations L̃E and R̃E

There are two ways to introduce restriction semigroups. We are going
to explain both definitions in this section. Here we shall provide and give a
careful definition of the relations L̃E and R̃E that we are going to use instead
of L∗ and R∗. Let S be a semigroup and let E ⊆ E(S). Define the relation

L̃E = {(a, b) ∈ S × S : ae = a⇔ be = b for all e ∈ E}.

The relation R̃E is defined dually. We define

H̃E = L̃E ∩ R̃E and D̃E = L̃E ∨ R̃E.

For convenience we denote the R̃E-class (L̃E-class, H̃E-class, D̃E-class)

of any a ∈ S by R̃a
E (L̃aE, H̃

a
E, D̃

a
E).

Proposition 2.2.1. Let S be a semigroup and E ⊆ E(S), and let a ∈ S,
e ∈ E then the following statements are equivalent:

(i) e L̃E a;

(ii) ae = a and for all f ∈ E, af = a⇒ ef = e.

Proof. (i) ⇒ (ii) Suppose that e L̃E a. We have for all f ∈ E,

af = a⇒ ef = e.

Furthermore, e ∈ E, so
ee = e⇒ ae = a.

(ii) ⇒ (i) Suppose that ae = a and ∀f ∈ E,

af = a⇒ ef = e.

Suppose ef = e. Then
af = aef = ae = a

and so e L̃E a as required.

The dual statement is true for R̃E.

Proposition 2.2.2. Let S be a semigroup, E ⊆ E(S) and let a ∈ S, e ∈ E.
Then the following statements are equivalent:

(i) a R̃E e;
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(ii) ea = a and for all f ∈ E, fa = a⇒ fe = e.

As a result we have the following Corollary:

Corollary 2.2.3. Let a ∈ S, where S is a semigroup and let E ⊆ E(S) be a

semilattice. Then a is L̃E-related to at most one idempotent in E.

Proof. Suppose that we have e, f ∈ E such that e L̃E a and f L̃E a, so
e L̃E f . Then by Proposition 2.2.1, ef = e and fe = f and so

e = ef = fe = f.

In a similar way to the ∗-relations, the ˜ -relations are also related to
Green’s relations as follows:

Proposition 2.2.4. In any semigroup S we have R ⊆ R∗ ⊆ R̃E. If S is
regular, and E = E(S) then R̃E ⊆ R and so R̃E ⊆ R∗.

Dually we have L ⊆ L∗ ⊆ L̃E, and if S is regular, and E = E(S) then

L̃E ⊆ L and so L̃E ⊆ L∗.

Proof. Suppose that (a, b) ∈ R, then ∃u, v ∈ S with au = b, bv = a (for any
e ∈ E) we have

ea = a⇒ eb = eau = au = b.

Similarly,
eb = b⇒ ea = ebv = bv = a.

Therefore (a, b) ∈ R̃E. That is, R ⊆ R̃E.
Suppose that a R∗ b and e ∈ E. Then we have ua = va if and only if

ub = vb. Then by letting u = e and v = 1 in the definition of R∗, we see that
a R̃E b. Then R∗ ⊆ R̃E.

Now suppose that S is regular and that E = E(S). Let a R̃E b, then
since a and b are regular, there exist x, y ∈ S such that a = axa, and b = byb.
It is clear that ax and by are both idempotents in S. Then, since a R̃E b,

a = ax · a⇒ b = ax · b = a · xb

and similarly,
b = by · b⇒ a = by · a = b · ya.

Hence a R b. Thus, R = R̃E. By Proposition 1.11.3 in a regular semigroup
R∗ = R. Thus R̃E = R∗ as required.

The proof for L-relation is dual.
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Note that in the previous proof the fact that E = E(S) was crucial. In

general, the choice of E strongly influences L̃E, and R̃E, for example if M is
a monoid with identity e , then L̃{e} = R̃{e} = M ×M .

Proposition 2.2.5. Let S be a semigroup and let E ⊆ E(S). If e, f ∈ E
then

e R f ⇔ e R̃E f.

Dually,
e L f ⇔ e L̃E f.

Proof. Suppose that e R̃E f , then

e · e = e⇒ e · f = f,

f · f = f ⇒ f · e = e.

Hence e R f. The converse follows from Proposition 2.2.4. The proof for L
is dual.

The relations R∗ and R̃E also turn out to be equal on a left adequate
semigroup.

Proposition 2.2.6. [3] If S is left adequate, then

R∗ = R̃E(S).

Definition 2.2.7. Let S be a semigroup and E be a set of idempotents of
S. Then S satisfies the left congruence condition with respect to E if R̃E is
a left congruence. Dually one can define the right congruence condition. We
say a semigroup S satisfies the congruence condition if it satisfies the left and
right congruence conditions.

Similarly to the ample case, we have two ways to introduce restriction
semigroups. Here is the structural way to define restriction semigroups:

Definition 2.2.8. A semigroup S with a distinguished set of idempotents
E ⊆ E(S) is left restriction if

(i) E is a semilattice;

(ii) R̃E is a left congruence;

(iii) every R̃E-class contains exactly one idempotent (if a ∈ S we denote the

unique idempotent in R̃a by a+, where R̃a is the R̃E-class containing
the element a);
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(iv) the left ample condition is satisfied, that is, ae = (ae)+a for every a ∈ S
and e ∈ E. This is equivalent to ab+ = (ab+)+a for every a, b ∈ S.

Dually we can define right restriction semigroups: we denote the unique
idempotent in L̃a by a∗. We say that S is a restriction semigroup if it is both
a left and a right restriction semigroup with respect to the same semilattice
E ⊆ E(S).

Throughout this thesis we also use an equivalent definition for a restriction
semigroup as it is given in the following lemmas:

Lemma 2.2.9. [10] A (2,1)-semigroup (S, ·,+ ) is a left restriction semigroup
if and only if S satisfies the identities

a+a = a, a+b+ = b+a+, (a+b)+ = a+b+, ab+ = (ab)+a.

Lemma 2.2.10. [10] A (2, 1)-semigroup (S, ·,∗ ) is a right restriction semi-
group if and only if S satisfies the identities

aa∗ = a, a∗b∗ = b∗a∗, (ab∗)∗ = a∗b∗, a∗b = a(ab)∗.

We say that S is a restriction semigroup if it is both a left and a right
restriction semigroup, and also satisfies the identities

(a+)∗ = a+, and (a∗)+ = a∗.

As a result we can see that

E = {a+ : a ∈ S} = {a∗ : a ∈ S}.

Note the connection between the two approaches (Lemmas 2.2.9, Lemma
2.2.10 and Definition 2.2.8): if S is restriction in the first sense (Definition
2.2.8) then it is easy to see that the identities hold. On the other hand, if S is
a (2, 1, 1)-semigroup satisfying these identities in Lemmas 2.2.9 and Lemma
2.2.10 then it is easy to see that if we set

E = {a+ : a ∈ S} = {a∗ : a ∈ S},

then E is a semilattice, and for all a, b ∈ S we have

a R̃E b⇔ a+ = b+

and that a+ is the unique element of E that is R̃E-related to a, and dually
for L̃E.
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Corollary 2.2.11. Let S be a (2, 1)-subsemigroup of a left restriction semi-
group. Then S is also left restriction.

From the definition of restriction semigroups one can formulate the fol-
lowing proposition.

Proposition 2.2.12. Let S be an inverse semigroup. Then S is a restriction
semigroup with respect to the semilattice E(S).

Proof. Let S be an inverse semigroup and let E = E(S) be its semilattice.

Let a ∈ S. We use the fact that in inverse semigroup R̃E = R. Thus
a R̃E aa

−1. Since E is a semilattice, aa−1(= a+) is the unique idempotent in

R̃a. Also by Proposition 1.11.1 R̃E is a left congruence.
Dually, one can use the fact that L̃E = L to deduce the requested condi-

tions. Also in a similar way to the proof of Proposition 2.1.7, one can show
that the ample conditions hold. Then the result follows.

Partial transformation monoids play a similar role in the theory of re-
striction semigroups as the symmetric inverse monoids do in the theory of
inverse (ample) semigroups. To show this, first we need to characterise the˜-relation on them. We claim that for α, β ∈ PT X and E = {idY : Y ⊆ X},

(i) α R̃E β ⇔ dom α = dom β;

(ii) α L̃E β ⇔ im α = im β.

Proof. (i) Suppose that α R̃E β. Let Y = dom α. Then idY · α = α and

so as α R̃E β, idY · β = β which gives dom β ⊆ Y = dom α.

Similarly, one can show that dom α ⊆ dom β. Thus

dom α = dom β.

Conversely, suppose that dom α = dom β = Y, then we have

idY · α = α⇔ dom(idY · α) = dom α

⇔ im idY ∩ dom α = dom α

⇔ im idY ∩ dom β = dom β

⇔ dom(idY · β) = dom β

⇔ idY · β = β.
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(ii) Suppose that α L̃E β. Let Y = im α. Then α · idY = α and

so as α L̃E β, β · idY = β which gives im β ⊆ Y = im α.

Similarly, one can show that im α ⊆ im β. Thus

im α = im β.

Conversely, suppose that im α = im β = Y ⊆ Y, then we have

α · idY = α⇔ im(α · idY ) = im α

⇔ im α ∩ dom idY = im α

⇔ im β ∩ dom idY = im β

⇔ im(β · idY ) = im β

⇔ β · idY = β.

Now we can state the following useful result (note that we cannot apply
Proposition 2.2.4, because E(PT X) 6= {idY : Y ⊆ X}).

Proposition 2.2.13. The partial transformation monoids PT X are left re-
striction semigroups where

E = {idY : Y ⊆ X}.

Proof. Let α ∈ PT X , then obviously iddom α is the unique element of E R̃E-
related to α, so α+ = iddom α. Now let α, β, γ ∈ PT X , and suppose α R̃E β.
Then

dom γα = (im γ ∩ dom α)γ−1

= (im γ ∩ dom β)γ−1

= dom γβ

since dom α = dom β. Therefore γα R̃E γβ, thus R̃E is a left congruence.
Finally, let α ∈ PT X and idY ∈ E. Since (α · idY )+ and idY are both
identity maps, it is easy to see that (α · idY )+α = α · idY if and only if
dom (α · idY )+α = dom α · idY . Then

dom(α · idY )+α = (im (α · idY )+ ∩ dom α)((α · idY )+)−1

= dom α · idY ∩ dom α

= dom α · idY . [since dom α · idY ⊆ dom α]

Thus the left ample condition holds. Therefore PT X is a left restriction
semigroup.
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The following example shows that the partial transformation monoids
PT X are not right restriction if |X| > 1 and E = {idY : Y ⊆ X}.

Example 2.2.14. Let X = {1, 2} and A = {1} be a subset of X. Let
α, β ∈ PT X then

α L̃E β ⇔ im α = im β,

so α∗ = idim α. Now let

α =

(
1 2
1 1

)
, and idY =

(
1
1

)
.

Then idY · α =

(
1
1

)
and (idY · α)∗ =

(
1
1

)
however, α · (idY · α)∗ =

(
1 2
1 1

)
6= idY · α. Hence the right ample condition

does not hold.

Now we state a similar version of Proposition 2.1.8 for left restriction
semigroups. The proof is similar to the proof of Theorem 6.2 in [10].

Proposition 2.2.15. A (2,1)-semigroup S is left restriction if and only if
it is embeddable into a partial transformation monoid, that is, if and only if
there exists an injective (2,1)-morphism θ : S → PT X for some X, where

E = {idY : Y ⊆ X}.

Proof. Suppose that S is a left restriction semigroup. Fix S = X, and for all
s ∈ S we define

θ : S → PTS
by

sθ = ρs

where dom ρs = Ss+, xρs = xs for all x ∈ domρs.

We have
s+θ = idSs+ = iddom ρs = (ρs)

+ = (sθ)+

hence θ is a +-morphism. Similarly to the proof of Proposition 2.1.8, one can
show that θ is a morphism.

If sθ = tθ, then Ss+ = St+ so that s+ L t+ and as E is commutative,
then s+ = t+. Further, ρs = ρt gives

s+ρs = t+ρt
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so that s+s = t+t and s = t. Thus θ is one-one. Therefore S is embeddable
in PT S.

Conversely, S ∼= im θ is a (2, 1)-subsemigroup of PT X , so by Corollary
2.2.11, S is left restriction semigroup.
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2.3 Generalised Bruck-Reilly semigroups

The main result of this thesis is the characterisation of certain J̃ -simple
restriction semigroups as generalised Bruck-Reilly semigroups. In this section
we prove the easier part of this characterisation. First we define the relation
J̃E and Bruck-Reilly semigroups.

Definition 2.3.1. Let S be a restriction semigroup (so it has two unary
operations ∗ and +). An ideal I of S is said to be a˜-ideal if it is the union of

R̃E- and L̃E-classes, that is, if a ∈ I then R̃a, L̃a ⊆ I. The smallest ˜-ideal
containing a which is the union of D̃E-classes is denoted by J̃(a). We define

the relation J̃E on S by

a J̃E b⇔ J̃(a) = J̃(b).

The following useful lemma is essentially derived from Lemma 1.7 in [6].

Lemma 2.3.2. Let S be a semigroup and a, b ∈ S. Then b ∈ J̃(a) if and
only if there are elements a0, a1, ..., an ∈ S, x1, x2, ..., xn, y1, y2, ..., yn ∈ S1

such that a = a0, b = an and ai D̃E xiai−1yi, for i = 1, 2, ..., n.

Proof. Let I be the set of all elements b ∈ S which satisfy the given condition.
If ai−1 ∈ J̃(a), then xiai−1yi ∈ J̃(a), since J̃(a) is an ideal, and hence

ai ∈ J̃(a), since J̃(a) is an˜-ideal. Since a0 = a ∈ J̃(a), we see that ai ∈ J̃(a)

for i = 1, 2, ..., n. In particular, b ∈ J̃(a) and so I ⊆ J̃(a).

Now if b ∈ I, it is clear that sbt ∈ I, for all s, t ∈ S and that D̃b ⊆ I.
Hence I is a˜-ideal and since a ∈ I, we have J̃(a) = I.

For later use we need the following technical observation.

Corollary 2.3.3. If D = D̃E then J̃(a) = S1aS1.

Proof.

Definition 2.3.4. Let T be a monoid and let θ : T → T be a monoid
morphism. We define a multiplication on the set N0 × T × N0 by

(m, a, n)(p, b, q) = (m− n+ t, aθt−nbθt−p, q − p+ t)

where t = max{n, p} and we define xθ0 = x for all x ∈ T . This multiplication
is associative (see [13]) and has an identity, namely (0, e, 0) where e is the
identity of T . We call the resulting monoid the Bruck-Reilly monoid and we
denote it by BR(T, θ).

We are going to investigate three special Bruck-Reilly semigroups “the
ample case, the D̃-simple restriction case, and the J̃ -simple restriction case”.
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2.3.1 The ample case

We are going to study some properties of the ∗-relations in BR(T, θ) and
show that a certain Bruck-Reilly semigroup is ample.

Proposition 2.3.5. [1] Let T be a cancellative monoid with identity e and
θ : T → T a monoid morphism. Let BR(T, θ) is a monoid with identity
(0, e, 0). Then for all (m, a, n) and (p, b, q) ∈ BR(T, θ) we have

1. (m, a, n) R∗ (p, b, q)⇔ m = p;

2. (m, a, n) L∗ (p, b, q)⇔ n = q;

3. (m, a, n) H∗ (p, b, q)⇔ m = p and n = q;

4. (m, a, n) D∗ (p, b, q). That is, D∗ is the universal relation.

Proof. 1. Suppose that (m, a, n)R∗(p, b, q). For (0, e, 0), (m, e,m) ∈ BR(T, θ)
we have

(0, e, 0)(m, a, n) = (m, e,m)(m, a, n)

then
(0, e, 0)(p, b, q) = (m, e,m)(p, b, q)

so we have
(p, b, q) = (t, eθt−mbθt−p, q − p+ t)

where t = max{p,m} = p, so m ≤ p. Similarly one can prove that
p ≤ m. Therefore p = m as required.

For the converse direction, suppose that m = p. For any arbitrary
elements (i, c, j), (l, d, k) ∈ BR(T, θ) we have

(i, c, j)(m, a, n) = (l, d, k)(m, a, n)

if and only if

(i− j + t, cθt−jaθt−m, n−m+ t) = (l− k + t′, dθt
′−kaθt

′−m, n−m+ t′)

where t = max{j,m} and t′ = max{k,m}. From the third components
we get that t = t′, and the second component gives

cθt−jaθt−m = dθt
′−kaθt

′−m ⇒ cθt−j = dθt
′−k

then we multiply both sides from the right by bθt−p, and we get

cθt−jbθt−p = dθt
′−kbθt

′−p.
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Thus

(i− j + t, cθt−jbθt−p, q − p+ t) = (l − k + t′, dθt
′−kbθt

′−p, q − p+ t′)

that is,
(i, c, j)(p, b, q) = (l, d, k)(p, b, q).

Similarly, we can prove the converse implication. Then

(m, a, n) R∗(p, b, q).

2. This is dual to (1).

3. This is a consequence of (1) and (2).

4. (m, a, n) D∗ (p, b, q), since we always have (m, a, q) ∈ BR(T, θ) with

(m, a, n) R∗(m, a, q) L∗(p, b, q).

Proposition 2.3.6. Let T be a cancellative monoid with identity e, and let
θ : T → T be a morphism. Then BR(T, θ) is an ample semigroup.

Proof. Note that E(BR(T, θ)) = {(m, e,m) : m ∈ N0}. Let (m, e,m),
(n, e, n) ∈ E(BR(T, θ)). We know that

(m, e,m)(n, e, n) = (t, eθt−meθt−n, t), where t = max{m,n}

= (t, e, t)

= (n, e, n)(m, e,m).

Thus the idempotents of BR(T, θ) commute. So every R∗-class contains at
most one idempotent and since we have (m, a, n)R∗(m, e,m), that is, every
element in BR(T, θ) is R∗-related to an idempotent. Similarly one can show
that every L∗-class contains exactly one idempotent and every element in
BR(T, θ) is L∗-related to an idempotent. Thus BR(T, θ) is an adequate
semigroup. It remains to show that the ample conditions are also satisfied.

It is clear that (m, a, n)+ = (m, e,m) and (m, a, n)∗ = (n, e, n). Let
(m, a, n) ∈ BR(T, θ), and (l, e, l) ∈ E(BR(T, θ)),

(l, e, l)(m, a, n) = (t, aθt−m, n−m+ t) (where t = max{l,m})

then we have

(t, aθt−m, n−m+ t)∗ = (n−m+ t, e, n−m+ t).

50



Now

(m, a, n)((l, e, l)(m, a, n))∗ = (m, a, n)(n−m+ t, e, n−m+ t)

= (m− n+ s, aθs−n, s)

(where s = max{n, n−m+ t} = n−m+ t, because t ≥ m.)

= (t, aθt−m, n−m+ t)

= (l, e, l)(m, a, n).

So the right ample condition is satisfied. By the same method one can prove
that the left ample condition also holds, that is,

(m, a, n)(l, e, l) = ((m, a, n)(l, e, l))+(m, a, n).

51



2.3.2 The D̃-simple restriction case

We introduce the restriction semigroup version of the Bruck-Reilly semi-
groups. A weaker version can be found in [3].

Proposition 2.3.7. Let T be an arbitrary monoid with identity e and let
θ : T → T be a monoid morphism. Let E = {(m, e,m) : m ∈ N0} so that
E is a subset of idempotents of BR(T, θ). Then for any arbitrary elements
(m, a, n) and (p, b, q) in BR(T, θ) we have

1. (m, a, n) R̃E (p, b, q)⇔ m = p,

2. (m, a, n) L̃E (p, b, q)⇔ n = q,

3. (m, a, n) H̃E (p, b, q)⇔ m = p and n = q,

4. (m, a, n) D̃E (p, b, q). That is, D̃E is the universal relation.

Proof. 1. Suppose that (m, a, n) R̃E (p, b, q). We have

(m, e,m)(m, a, n) = (m, a, n)

so that
(m, e,m)(p, b, q) = (t, eθt−mbθt−p, q − p+ t)

= (p, b, q)

where t = max{m, p} = p, so m ≤ p. In the same method one can
prove that p ≤ m. Then we deduce that m = p as required.

Conversely, if m = p, let (l, e, l) ∈ E be such that

(l, e, l)(m, a, n) = (m, a, n).

Then necessarily l ≤ m, and

(l, e, l)(p, b, q) = (t, eθt−lbθt−p, q − p+ t)

where t = max{l, p} = p (since m = p). Therefore

(l, e, l)(p, b, q) = (p, b, q).

One can use the same trick to show

(l, e, l)(p, b, q) = (p, b, q)⇒ (l, e, l)(m, a, n) = (m, a, n).

Thus
(m, a, n) R̃E (p, b, q).
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2. This is the dual of (1).

3. This is a consequence of (1) and (2).

4. We always have (m, a, q) ∈ BR(T, θ) with

(m, a, n) R̃E (m, a, q) L̃E (p, b, q).

Thus (m, a, n) D̃E (p, b, q).

Proposition 2.3.8. Let T be an arbitrary monoid and let θ : T → T be a
monoid morphism. Let E = {(m, e,m) : m ∈ N0}, so that E is a subset
of idempotents of BR(T, θ). Then BR(T, θ) is a restriction semigroup (with
respect to E).

Proof. To show that BR(T, θ) is a restriction semigroup we shall check that
the conditions of Definition 2.2.8 hold.

By a similar argument in Proposition 2.3.6 we see that idempotents of
BR(T, θ) commute. Clearly then (m, e,m) is the unique idempotent of E

which is R̃E-related to any (m, a, n). We therefore put

(m, a, n)+ = (m, e,m).

Dually, one can show that (n, e, n) is the unique idempotent of E that is

L̃E-related to (m, a, n), that is, (m, a, n)∗ = (n, e, n).

Let (m, a, n) L̃E (p, b, n), and let (k, c, l) be any element in BR(T, θ).
Now

(m, a, n)(k, c, l) = (m− n+ t, aθt−ncθt−k, l − k + t)

where t = max{n, k}. We also have

(p, b, n)(k, c, l) = (p− n+ t, bθt−ncθt−k, l − k + t).

Hence (m, a, n)(k, c, l) L̃E (p, b, n)(k, c, l), so that L̃E is a right congruence.

Dually, one can prove that R̃E is a left congruence.

Again a similar argument in Proposition 2.3.6 can be used here in order to
show that the ample conditions are satisfied, Hence BR(T, θ) is a restriction
semigroup.
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2.3.3 The J̃ -simple restriction case

The Bruck-Reilly semigroups introduced in Proposition 2.3.8 are D̃E-simple,
that is, D̃E is the universal relation on them. In order to characterise J̃E-
simple restriction ω-semigroups, we need a slightly more complicated gener-
alisation. Before we look at our next proposition, we need to define a strong
semilattice of monoids [3].

Definition 2.3.9. Let T be a semigroup which is a disjoint union of monoids
Mi where the indices i form a semilattice Y.

Suppose that for all i, j ∈ Y, MiMj ⊆Mij. Then T is called a semilattice
Y of monoids Mi where i ∈ Y . Furthermore, if for any i, j ∈ Y where i ≥ j,
there exist a monoid morphism φi,j : Mi →Mj such that:

(i) φi,i = idMi
for all i ∈ Y ;

(ii) for i, j, k ∈ Y, where i ≥ j ≥ k, φi,jφj,k = φi,k.

Then φi,j is called a connecting morphism.
Furthermore, if for all a, b ∈ T where a ∈Mi and b ∈Mj we have that

ab = (aφi,ij)(bφj,ij),

then T = [Y ;Mi;φi,j] is called a strong semilattice Y of monoids Mi with
connecting morphisms φi,j.

It is worth mentioning that the operation · is associative and e0 is the
identity of T and the multiplication in T extends the multiplication in each
Mi.

We are going to characterise the relations R̃E, L̃E, H̃E, D̃E, and J̃E on a
certain Bruck-Reilly semigroup, which will be J̃ -simple with finitely many
D̃E -classes.

Proposition 2.3.10. Let T =
⋃d−1
i=0 Mi be a strong semilattice of the monoids

Mi where d ∈ N0, the indices i form a chain 0 > 1 > · · · > d − 1 and the
connecting morphisms are all monoid morphisms. Let θ : T → M0 be a
monoid morphism. Further, let

E = {(m, ei,m) : m ∈ N0, 0 ≤ i ≤ d− 1}

where ei is the identity of Mi. Then -̃relations on BR(T, θ) are characterised
as follows

1. (m, a, n) R̃E (p, b, q)⇔ m = p, and a, b ∈Mi (for some i);
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2. (m, a, n) L̃E (p, b, q)⇔ n = q, and a, b ∈Mi (for some i);

3. (m, a, n) H̃E (p, b, q)⇔ m = p and n = q, and a, b ∈Mi (for some i);

4. (m, a, n) D̃E (p, b, q)⇔ a, b ∈Mi (for some i), so BR(T, θ) has d D̃E-
classes;

5. (m, a, n) J̃E (p, b, q). That is, J̃E is the universal relation.

Proof.

1. Suppose that (m, a, n) R̃E (p, b, q) where a ∈Mi and b ∈Mj (for some
i and j). Then for (m, ei,m) ∈ E,

(m, ei,m)(m, a, n) = (m, a, n)

so that
(m, ei,m)(p, b, q) = (p, b, q).

Thus
(t, eiθ

t−mbθt−p, q − p+ t) = (p, b, q)

where t = max{m, p} = p, saying

m ≤ p. (2.1)

Similarly one can prove that

p ≤ m. (2.2)

So m = p, which implies that eiθ
t−m = ei. We know that ei ∈Mi,

b ∈ Mj, so eib ∈ Mmax{i,j}, which means that max{i, j} = j, that is,
i ≤ j. Similarly eja = a implies that j ≤ i. As a result m = p and
i = j.

Conversely, suppose that p = m and a, b ∈Mi, and let (k, ej, k) ∈ E
be such that

(k, ej, k)(m, a, n) = (m, a, n).

Then k ≤ m, and j ≤ i. So

(k, ej, k)(m, b, q) = (m, ejθ
m−kb, q)

= (m, b, q).

In a similar way one can show that, if for (l, ej, l) ∈ E we have

(l, ej, l)(p, b, q) = (p, b, q),
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then
(l, ej, l)(p, a, n) = (p, a, n).

So that
(m, a, n) R̃E (p, b, q).

2. The proof is a dual of (1).

3. The proof is a consequence of (1) and (2).

4. Suppose that (m, a, n) D̃E (p, b, q). Then there exists an element
(m, c, q) ∈ BR(T, θ) with

(m, a, n) R̃E (m, c, q) L̃E (p, b, q)

obviously, we deduce that a, b, c ∈Mi for some i.

Conversely, suppose that a, b,∈Mi, then clearly we have

(m, a, n) R̃E (m, a, q) L̃E (p, b, q)

therefore
(m, a, n) D̃E (p, b, q).

5. Let (m, a, n), (p, b, q) ∈ BR(T, θ) where a ∈ Mi and b ∈ Mj. Then we
have

(p, ej,m+1)(m, a, n) = (p−(m+1)+ t, ejθ
t−m−1aθt−m, n−m+ t)

= (p, ej(aθ), n+ 1)

where t = max{m+ 1,m} = m+ 1. Clearly ej(aθ) ∈Mj. Then

(p, ej(aθ), n+ 1) D̃E (p, b, q)

Similarly (m, ei, p+ 1)(p, b, q) D̃E (m, a, n), thus

(m, a, n) J̃E (p, b, q).

Then by Lemma 2.3.2 we conclude that BR(T, θ) is J̃E-simple.

Let E = {fi : i ∈ N0} be a set of idempotents of a semigroup S, where
fi ≤ fj if and only if i ≥ j (∀i, j ∈ N0). Then E is called Cω. That is, Cω is
a descending chain

f0 > f1 > f2 > ... .
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Definition 2.3.11. A restriction semigroup S with semilattice of distin-
guished idempotents E is an ω-semigroup if E is isomorphic to Cω.

We show now that BR(T, θ) is an ω-semigroup where T =
⋃d−1
i=0 Mi. Let

(m, ei,m), (n, ej, n) ∈ E where m > n. Then

(m, ei,m)(n, ej, n) = (m, ei(ejθ
m−n),m) = (m, ei,m),

because (ejθ
m−n) is the identity of T , so that (m, ei,m) < (n, ej, n). On the

other hand if m = n, and i ≥ j, then

(m, ei,m)(m, ej,m) = (m, eiej,m) = (m, ei,m).

Altogether we have that (m, ei,m) ≥ (n, ej, n) if and only if m < n, or if
m = n and i ≤ j. So E is the chain

(0, e0, 0) > (0, e1, 0) > · · · > (0, ed−1, 0)

> (1, e0, 1) > (1, e1, 1) > · · · > (1, ed−1, 1)

> (2, e0, 2) > (2, e1, 2) > · · · > (2, ed−1, 2)

> · · ·

Hence BR(T, θ) is a J̃E-simple restriction ω-semigroup.

Now we shall consider some ideas from [11] which generalise important
results on Green’s relations from [13] to Green’s˜ -relations. In [11] these
were stated in a more general form but we are going to rephrase them to suit
our objective.

Definition 2.3.12. Let S be a semigroup and E be a set of idempotents.
An element a ∈ S is E-regular if a has an inverse a◦ such that aa◦, a◦a ∈ E.

The analogues of Green’s Lemmas (Lemma 1.10.1, and Lemma 1.10.2)

hold if we replace R,L by R̃E, L̃E, respectively, if there exists a suitable
E-regular element.

Lemma 2.3.13. [11] Suppose that L̃E is a right congruence and S has an E-
regular element a such that e = aa◦ and f = a◦a. Then the right translations

ρa : L̃eE → L̃fE and ρa◦ : L̃fE → L̃eE

are mutually inverse R̃E-class preserving bijections.

Dually we state the following lemma:
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Lemma 2.3.14. [11] Suppose that R̃E is a right congruence and S has an
E-regular element a such that e = aa◦ and f = a◦a. Then the left translations

λa◦ : R̃e
E → R̃f

E and λa : R̃f
E → R̃e

E

are mutually inverse L̃E-class preserving bijections.

A useful corollary combining the two lemmas is the following:

Corollary 2.3.15. [11] Let S be a restriction semigroup. Let a be an E-

regular element of S such that e = aa◦ and f = a◦a. Then |H̃e
E| = |H̃

f
E|.

In the next lemma we give a condition ensuring that the relations R̃E, L̃E
commute:

Lemma 2.3.16. [11] If S is a restriction semigroup such that every H̃E-

class contains an E-regular element, then R̃E ◦ L̃E = L̃E ◦ R̃E (so that

D̃E = R̃E ◦ L̃E) and if a, b ∈ S with a D̃E b, then |H̃a
E| = |H̃b

E|.

Definition 2.3.17. Let V ⊆ S. We say that V is an H̃E-transversal of S if

|V ∩ H̃a
E| = 1 for all a ∈ S.

Definition 2.3.18. Let U be an inverse subsemigroup of S consisting of
E-regular elements such that E ⊆ U. If U is an H̃E-transversal of S, then U
is called an inverse skeleton of S.

To apply this definition to the semigroup BR(T, θ), one can easily see
that

U = {(m, ei, n) : m,n ∈ N0, 0 ≤ i ≤ d− 1}

is an inverse skeleton of BR(T, θ), since U is an inverse subsemigroup of
BR(T, θ) consisting of E-regular elements, that is, for any (m, ei, n) ∈ U

(m, ei, n)◦ = (n, ei,m)

and clearly
(m, ei, n)(m, ei, n)◦, (m, ei, n)◦(m, ei, n) ∈ E,

furthermore U intersects every H̃E-class exactly once.
To summarise this section, we have shown that BR(T, θ) is a J̃E-simple

restriction ω-semigroup having an inverse skeleton U(therefore satisfying

L̃E ◦ R̃E = R̃E ◦ L̃E).
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Chapter 3

The main result

3.1 A structure theorem

This chapter is devoted to the proof of the converse part of our main result,
which is a structure theorem for certain J̃ -simple restriction ω-semigroups.
The analogous result was proved in [13] for simple inverse ω-semigroups and
in [2] for J ∗-simple ample semigroups. Our objective is to generalise it for

some J̃ -simple restriction ω-semigroups . Now we need to introduce some
concepts before we begin to prove our main result.

Definition 3.1.1. Let E be a semilattice. For each e in E, we say 〈e〉 =
Ee = {i ∈ E : i ≤ e} is a principal ideal (and subsemilattice) of E, and the
uniformity relation U on E is given by

U = {(e, f) ∈ E × E : Ee ' Ef}.

For each (e, f) in U we define Te,f to be the set of all isomorphisms from
Ee onto Ef . Let

TE =
⋃
{Te,f : (e, f) ∈ U},

then TE is a semigroup under composition of partial mappings. We call TE
the Munn semigroup of the semilattice E.

The following example from [13] shows that the Munn semigroup of the
semilattice Cω is isomorphic to the bicyclic semigroup.

Example 3.1.2. Let E = Cω = {e0, e1, e2, ...}, with

e0 > e1 > e2 > ... .

Then
Een = {en, en+1, en+2, ...}.
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For every m,n ∈ N0 we have Eem ' Een. Thus the uniformity relation U is
universal, that is, U = E ×E. The only isomorphism from Eem onto Een is
αm,n given by

ekαm,n = ek−m+n (k ≥ m).

Thus αn,m : Een → Eem is defined by

elαn,m = el−n+m (l ≥ n) is the inverse of αm,n.

If we take any two elements αm,n and αp,q of TE, then

dom(αm,nαp,q) = (im αm,n ∩ dom αp,q)(αm,n)−1

= (Een ∩ Eep)αn,m
= Eet−n+m where t = max{n, p}.

Similarly,
im(αm,nαp,q) = (im αm,n ∩ dom αp,q)αp,q

= (Een ∩ Eep)(αp,q)
= Eet−p+q .

Then the product αm,nαp,q : Eet+m−n → Eet+q−p is given by

αm,nαp,q = αm−n+t,q−p+t (where t = max{n, p}).

Thus we can identify the Munn semigroup of the semilattice Cω with the
bicyclic semigroup that was introduced in Example 1.2.6.

We conclude this discussion by giving the definition of the congruence µ
studied explicitly in [5]. We shall first consider the following definition:

Definition 3.1.3. For each element s of a restriction semigroup S, define
the mapping αs : 〈s+〉 → 〈s∗〉 given by

xαs = (xs)∗ (x ∈ 〈s+〉),

and the mapping βs : 〈s∗〉 → 〈s+〉 given by

yβs = (sy)+ (y ∈ 〈s∗〉).

Notice that it is easy to see that βs is the inverse map of αs, since for any
x ∈ 〈s+〉, by using the ample identities we have

xαsβs = (s(xs)∗)+ = (xs)+ = xs+ = x,

as x ≤ s+, so αsβs is the identity map on 〈s+〉, and similarly, βsαs is the
identity map on 〈s∗〉.
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Then we have the following lemma:

Lemma 3.1.4. The maps αs and βs are isomorphisms, so αs, βs ∈ TE.

Proof. We have already shown that βs is the inverse of αs, so they are bijec-
tive.

To show that αs is a morphism, let e, f ∈ 〈s+〉, then we have

(eαs)(fαs) = (es)∗(fs)∗ = ((es)(fs)∗)∗ = ((ef)ss∗)∗ = ((ef)s)∗ = (ef)αs.

Thus the map αs is a morphism. In a similar method one can prove that βs
is also a morphism.

For our structure theorem we need to determine the maximum congruence
µ contained in H̃E, by using the approach in [7] and [5]. We say

µ = {(s, t) ∈ S × S : s+ = t+, s∗ = t∗ and (xs)∗ = (xt)∗, (sy)+ = (ty)+

for all x ∈ 〈s+〉 and for all y ∈ 〈s∗〉}

= {(s, t) ∈ S × S : αs = αt} = {(s, t) ∈ S × S : βs = βt}.

Let (s, t) ∈ µ. Then
s+ = t+, s∗ = t∗.

That is,
s R̃E t, and s L̃E t.

Thus, s H̃E t, so µ ⊆ H̃E.
The following proposition shows (first proved by Fountain in [7] for ade-

quate and ample semigroups) µ is the kernel of an important morphism.

Theorem 3.1.5. For every restriction semigroup S with semilattice of idem-
potents E, the map φ : S → TE, s 7→ αs is a (2, 1)-morphism whose kernel
is µ such that φ|E : E → TE is bijective with imφ|E = E(TE).

Proof. Let s, t ∈ S. We omit the proof that φ is a (2, 1)-morphism as it is
quite similar to the proof of Proposition 2.1.8. For the second part of the
proof clearly we have

ker φ = {(s, t) ∈ S × S : sφ = tφ} = {(s, t) ∈ S × S : αs = αt} = µ.

Now to show φ|E is injective, let e, f ∈ E. If eφ|E = fφ|E then eαe = fαf
that is, 〈e〉 = 〈f〉, so that e = f. We also have that eφ = αe for all e ∈ E,
and since E(TE) = {αe : e ∈ E}, we conclude that Eφ = E(TE).
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We deduce from the previous theorem the following crucial property of
H̃E.

Lemma 3.1.6. Suppose that S is a restriction ω-semigroup. Then H̃E = µ,
that is, H̃E is a congruence on S.

Proof. We have already noticed that µ ⊆ H̃E.
Conversely, let (s, t) ∈ H̃E, then there exist em, en ∈ E = {e0, e1, ...} such

that
s+ = t+ = em, s

∗ = t∗ = en,

then
〈s+〉 = 〈t+〉 = 〈em〉 and 〈s∗〉 = 〈t∗〉 = 〈en〉.

We know αs, αt ∈ TE, so there is a unique isomorphism from 〈em〉 onto 〈en〉
which is αm,n ∈ TE, that is

αs = αt = αm,n.

This implies that (s, t) ∈ker φ = µ.

Now we recall some definitions from [13] to support our objective.

Definition 3.1.7. A subsemigroup T of a restriction semigroup S is called
full if it contains all the distinguished idempotents of S.

Definition 3.1.8. For d = 1, 2, 3, ... we define the set

Bd = {(m,n) ∈ N0 × N0 : m ≡ n(mod d)}.

Then it is easy to see that Bd is a subsemigroup of the bicyclic semigroup
B = N0 × N0.

Lemma 3.1.9. [13] The subsemigroups Bd are exactly the simple, full inverse
subsemigroups of B.

From now on we fix a J̃ -simple restriction ω-semigroup S with distin-
guished semilattice of idempotents

e0 > e1 > · · · > ed−1 > · · ·

with inverse skeleton I. Then by Lemma 2.3.16, L̃E and R̃E commute. For
m,n ∈ N0 we define

R̃m = {a ∈ S : a R̃E em} and L̃n = {a ∈ S : a L̃E en}

and
H̃m,n = R̃m ∩ L̃n = {a ∈ S : a R̃E em, a L̃E en}.
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Lemma 3.1.10. Let φ : S → TE be defined as in Theorem 3.1.5. By Example
3.1.2 we identify TE with B via the isomorphism αm,n 7→ (m,n) for all

αm,n ∈ TE. Then im φ ∼= Bd where d is the number of D̃-classes of S (in

particular, S has finitely many D̃-classes). As a consequence

H̃m,n 6= ∅ ⇔ m ≡ n (mod d)

and
H̃m,nH̃p,q ⊆ H̃m−n+t,q−p+t

where t = max{n.p}.

Proof. Define ι : I → S/H̃E, i 7→ [i]. It is easy to see that ι is an isomorphism,
which implies that im φ is an inverse subsemigroup of TE, because we have
im φ ∼= S/H̃E

∼= I and by Example 3.1.2 we know that TE is isomorphic to
B. By Theorem 3.1.5, im φ is a full subsemigroup of TE = B. Furthermore,
we want to show that im φ is J̃ -simple, that is, to show that all elements in
im φ are J̃E-related. To see that, we claim that for any s, t ∈ S we have

s R̃E t⇒ sφ R̃Eφ tφ.

Suppose that s R̃E t, so s+ = t+. Then we have that

(sφ)+ = s+φ = t+φ = (tφ)+

thus sφ R̃Eφ tφ. Dually one can show that

s L̃E t⇒ sφ L̃Eφ tφ.

As a consequence

s H̃E t⇒ sφ H̃Eφ tφ and s D̃E t⇒ sφ D̃Eφ tφ.

Let s, t ∈ S such that s J̃E t, using Lemma 2.3.2, there are elements
s0, s1, ..., sn ∈ S, x1, x2, ..., xn, y1, y2, ..., yn ∈ S1 such that s = s0, t = sn then
we have that

x1s0y1 D̃E s1, ... xnsn−1yn D̃E sn = t

implies that

x1φs0φy1φ D̃Eφ s1φ, ... xnφsn−1φynφ D̃Eφ snφ = tφ

and similarly tφ can be connected to sφ, showing that sφ J̃Eφ tφ in im φ.
Again by Theorem 3.1.5 we know that Eφ = E(TE). Since im φ is an inverse

semigroup, this shows that J̃Eφ = J . Thus im φ is a simple full inverse
subsemigroup of TE = B. As a consequence (by Lemma 3.1.9), we conclude

that S has finitely many D̃E-classes, and that im φ = Bd where d is the
number of D̃E-classes.
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From now on S =
⋃

(m,n)∈Bd
H̃m,n, where d is the number of D̃-classes of

S . We define T =
⋃d−1
i=0 H̃i,i. Let 0 ≤ i, j ≤ d− 1. Then we have

H̃i,iH̃j,j, H̃j,jH̃i,i ⊆ H̃t,t

where t = max{i, j}. Thus T is a subsemigroup of S, and H̃i,i is a monoid
with identity ei.

We define ϕi,j : H̃i,i → H̃j,j by mϕi,j = ejm where i ≤ j. For all m ∈ H̃i,i

and ej ∈ H̃j,j we have that mej, ejm ∈ H̃j,j, so that

mej = et(mej)et = etmet = et(ejm)et = ejm.

Moreover one can show that the maps are morphisms, that is,

mn = mϕi,t · nϕi,t

where t = max{i, j}, and they satisfy:

(i) ϕi,i is the identity map ;

(ii) ϕi,jϕj,k = ϕi,k for k ≤ j ≤ i.

Thus T is a strong semilattice of the monoids H̃i,i whose semilattice is iso-
morphic to the chain

e0 > e1 > · · · > ed−1

with the connecting morphisms ϕi,j.

We fix a ∈ H̃0,d ∩ I for the rest of this chapter. The following lemma
establishes some important equations.

Lemma 3.1.11. Take a ∈ H̃0,d ∩ I then a−1 ∈ H̃d,0, and aka−k = e0,
a−kak = ekd.

Proof. Clearly since (0, d)−1 = (d, 0) in Bd
∼= I, we have that a−1 ∈ H̃d,0.

Also we have
a2 = a.a ∈ H̃0,dH̃0,d ⊆ H̃0,2d ,

and more generally by induction we find that

ak ∈ H̃0,kd , a−k ∈ H̃kd,0 (n ∈ N0).

Now
aka−k ∈ H̃0,kdH̃kd,0 ⊆ H̃0,0 ⇒ aka−k = e0,
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since aka−k ∈ I and I intersects each H̃-class exactly once and E ⊆ I.
Similarly one can prove that

a−kak ∈ H̃kd,0H̃0,kd ⊆ H̃kd,kd ⇒ a−kak = ekd.

The following lemma shows that the elements of S can be uniquely ex-
pressed as certain products.

Lemma 3.1.12. Every element s of S can be uniquely written in the form
s = a−mtia

n where m,n ∈ N0, ti ∈ T (ti ∈ H̃i,i).

Proof. Let s ∈ S. First we show that m,n, i are determined by the H̃-class
of s. By Lemma 3.1.11, we have that for any m ∈ N0

am ∈ H̃0,md, a
−m ∈ H̃md,0, a

ma−m ∈ H̃md,md.

Let m,n ∈ N0, 0 ≤ i ≤ d− 1, and ti ∈ H̃i,i, then we have

a−mtia
n ∈ H̃md,0 H̃i,i H̃0,nd ⊆ H̃md+i,nd+i,

so if s ∈ H̃k,l and s = a−mtia
n then i ≡ k ≡ l (mod d) and k = i+md,

l = i+ nd . So m = (k − i)/d and n = (l − i)/d. Hence we can define a map

φ : H̃i,i → H̃md+i,nd+i given by

tiφ = a−mtia
n.

If tiφ = siφ, then

a−mti a
n = a−msi a

n ⇒ ama−mti a
na−n = ama−msi a

na−n

⇒ e0tie0 = e0sie0

⇒ ti = si.

hence the map φ is injective.
The map φ is surjective, since for any x ∈ H̃md+i,nd+i, we have

ti = amxa−n ∈ H̃0,md H̃md+i,nd+i H̃nd,0 ⊆ H̃i,i,

then
a−mtia

n = a−m(amxa−n)an

= emdxend
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= emdemd+ixend+iend

= emd+ixend+i = x.

Hence φ is a bijection from H̃i,i to H̃md+i,nd+i, with the inverse map given by

y 7→ amya−n (y ∈ H̃md+i,nd+i),

showing that s can be uniquely written as a−mtia
n where ti ∈ H̃i,i.

Then we have the following important results:

Lemma 3.1.13. For any t ∈ T there exists a unique t′ ∈ H̃0,0 such that

at = t′a. We also have ta−1 = a−1t′. Let θ be the map θ : T → H̃0,0, t 7→ at′.
Then akt = (tθk)ak and ta−k = a−k(tθk). Then the map θ is a monoid
morphism.

Proof. To see the uniqueness of t′, let at = t′a = t′′a. Then

t′aa−1 = t′′aa−1 ⇒ t′e0 = t′′e0

⇒ t′ = t′′.

Let t′ = ata−1. Then

t′ = ata−1 ∈ H̃0,dH̃i,iH̃d,0 ⊆ H̃0,0.

Since at ∈ H̃0,d and ta−1 ∈ H̃d,0, we have

t′a = ata−1a = ated = at, a−1t′ = a−1ata−1 = edta
−1 = ta−1.

Now let us define θ : T → H̃0,0, t 7→ at′. Then for t, s ∈ T we have that

(ts)θ = a(ts)a−1 = at ed sa
−1 = ata−1asa−1 = (tθ)(sθ)

and
e0θ = ae0a

−1 = e0

since I is an inverse subsemigroup and

ae0a
−1 ∈ H̃0,dH̃d,dH̃d,0 ⊆ H̃0,0.

This shows that θ is a monoid morphism. Furthermore, we have that

(tθk)ak = (tθk−1)θaak−1 = a(tθk−1)ak−1 = a(ak−1t) = akt,

and similarly one can show that

a−k(tθk) = ta−k.
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The following theorem is the analogue of Theorem 5.7.6 in [13].

Theorem 3.1.14. Let T =
⋃d−1
i=0Mi be a strong semilattice of monoids of

length d (≥ 1). If θ is a monoid morphism from T into M0, then the Bruck-

Reilly extension S = BR(T, θ) of T determined by θ is a J̃ -simple restriction
ω-semigroup with inverse skeleton

U = {(m, ei, n) : m,n ∈ N0, 0 ≤ i ≤ d− 1}.

Conversely, every J̃ -simple restriction ω-semigroup S with an inverse skele-
ton I is isomorphic to some BR(T, θ) constructed this way.

Proof. In Chapter 2 we proved the direct part. For the converse part, let S
be a J̃ -simple restriction ω-semigroup with inverse skeleton I. By Lemma
3.1.12 any element s of S has a unique expression in the form a−mtia

n for
ti ∈ H̃i,i where a is the unique element in H̃0,d ∩ I and T =

⋃d−1
i=0 H̃i,i. Thus

we can define a bijection

ψ : S → N0 × T × N0

by
(a−mtia

n)ψ = (m, ti, n)

Also by Lemma 3.1.13, for any ti ∈ T , there exists a unique t′i ∈ H̃0,0 such
that

ati = t′ia, tia
−1 = a−1t′i.

We define θ : T → H̃0,0, t 7→ at′. Then φ is a monoid morphism, and for all
k ∈ N we have

akti = tiθ
kak, tia

−k = a−k(tiθ
k)

Let a−mtia
n, a−psja

q ∈ S where ti, sj ∈ T . So that we have two cases to
study, that is, if n ≤ p, then

(a−mtia
n)(a−psja

q) = a−mtia
−(p−n)sja

q

= a−ma−(p−n)(tiθ
p−n)sja

q

= a−(m−n+p)(tiθ
p−n)sja

q

and if n ≥ p, then

(a−mtia
n)(a−psja

q) = a−mtia
n−psja

q

= a−mti(sjθ
n−p)an−paq

= a−mti(sjθ
n−p)aq−p+n.
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Thus
(a−mtia

n)(a−psja
q) = a−(m−n+t)(tiθ

t−n)(sjθ
t−p)aq−p+t,

where t = max{n, p}. This shows that ψ is a semigroup morphism.
It remains to show that ψ is a +-morphism and a ∗-morphism. Note that

emd+i = a−meia
m,

because
a−meia

n ∈ H̃md+i,nd+i ∩ I.

So emd+iψ = (m, ei,m). Then

(a−mtia
n)+ψ = emd+iψ = (m, ei,m) = (m, ti, n)+ = ((a−mtia

n)ψ)+

and dually we have

(a−mtia
n)∗ψ = end+iψ = (n, ei, n) = (m, ti, n)∗ = ((a−mtia

n)ψ)∗

hence ψ is a (2, 1, 1)-morphism.
That is, we have shown that ψ : S → N0 × T × N0 is an isomorphism from
S onto BR(T, θ).

Corollary 3.1.15. [16] Let S be a bisimple restriction ω-semigroup which

satisfies the condition that every H̃-class contains an element of the set
RegE(S) = {a ∈ S : (∃e, f ∈ E)e L a R f}. Then S ∼= BR(T, θ) where T is
a monoid with identity e and E = {(i, e, i) : i ∈ N0}.

Proof. It is easy to check that if a ∈ RegE(S) ∩ H̃0,1 then I = {a−man :
m,n ∈ N0} is an inverse skeleton of S (isomorphic to B). Furthermore, if
S is bisimple, then d in Lemma 3.1.9 equals 1, so T is just a monoid with
identity e0 = e, and then by Theorem 3.1.5, the result follows.
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