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ABSTRACT 
The early Mesolithic site of Star Carr (approximately 11 ka BP) is widely acknowledged as one 

of the most important wetland sites in Northern Europe. It has provided some of the most 

informative archaeological evidence for hunter-gatherer lifestyles in Britain at that time. 

However, recent observations suggest that the site is no longer providing the conditions 

necessary for such remarkable archaeological preservation. In 2007 and 2008, excavations at 

the site uncovered artefacts displaying alarming levels of diagenesis, suggesting that current 

conditions may be leading to the destruction of any organic material yet to be uncovered. 

Geochemical and hydrological investigations suggest that this is closely linked to changes 

occurring due to drying out of the site. However, scientific data regarding the rates and 

mechanisms of decay in such acidic environments are severely lacking.  

The aim of this thesis is to apply an experimental approach to investigate the observed 

deterioration, in order to answer some key questions: Is Star Carr undergoing accelerated 

deterioration, and if so, how are the changing site conditions contributing to this? Ultimately, 

by learning more about the key factors facilitating degradation in the specific burial 

environments at Star Carr, strategies to slow or stop the deterioration can be recommended, 

both for Star Carr and other wetland archaeological sites.  

A suite of appropriate analytical methods have been tested and applied to assess deterioration 

in both bone and wood. It has been shown that as different techniques provide 

complementary and sometimes contradictory information, a multi-analytical approach is 

needed. Using these techniques it has been shown that bone mineral rapidly dissolves in acidic 

solutions, buffering the acidity. As a result, collagen is left exposed and also breaks down 

leading to the loss of bio-archaeological information. The effects of pH on wood degradation 

are more subtle, but burial experiments show that drying out of the burial environment can 

have a severely detrimental effect on the survival of structural polymers in wood.  

Analysis of material excavated from Star Carr has shown that preservation differs across the 

site. For bone this is closely related to the geochemical conditions. It seems likely that bone in 

the current state of preservation would quickly deteriorate further at the low sediment pH 

recorded. Due to the localised differences in geochemistry and organic preservation across the 

site, any mitigation strategies aimed at slowing organic decay need to carefully consider all 

material that may yet be buried, and their varying states of diagenesis. Rapid changes in both 

materials (bone and wood) following excavation have also been observed. It is recommended 

that post-excavation strategies be designed to slow or stop these changes.   
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1.1 Star Carr: The Stonehenge of the Mesolithic 

1.1.1 Introduction 

Star Carr is an archaeological site located in North Yorkshire (UK), dating from the early 

Mesolithic period (approximately 9300 - 8700 BC; Mellars & Dark, 1998). Its importance for the 

understanding of life in Northern Europe during this time cannot be understated. The wealth 

of organic remains uncovered during initial excavations between 1948 and 1952 is unrivalled 

for sites of this age in Britain (Figure 1.1, Clark, 1954). Most spectacular of the artefacts were 

21 red deer antler frontlets and 191 well preserved barbed points carved from deer antler – 

the most barbed points that have ever been found at a single Mesolithic site in Europe.  The 

large quantities of animal bone recovered from Star Carr have provided extensive evidence for 

dietary practises, with a wide range of animal bones displaying cut marks and deposition 

patterns indicative of butchering (Caulfield, 1978). In addition, artefactual evidence of bone 

being utilised for other uses has been uncovered in the form of several tools manufactured out 

of bone (Clark, 1954). An abundance of well-preserved worked wood was also found, including 

what was interpreted as a ‘brushwood platform’ extending into the lake, potentially providing 

a living or working area (Clark, 1954). Later excavations also revealed evidence for 

woodworking, including an extensive platform made from split timbers: evidence for the 

earliest carpentry in Northern Europe (Mellars & Dark, 1998). Most recently, in 2008 evidence 

for a timber structure was uncovered, quite possibly the oldest structure, or ‘house’ ever to be 

found in Britain (Milner et al., 2013a).  

 

Figure 1.1: Organic finds excavated from Star Carr. From left to right: an expanse of worked wood during 
excavations in 1952; a red deer antler barbed point uncovered during most recent excavations; an 
example of the iconic 'antler frontlets,' uncovered in 1952. Images reproduced with permission from 
Scarborough Archaeological and Historical society and ‘Postglacial’ project, University of York. (Originally 
in colour). 
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Interpretation of the Star Carr site and the wealth of organic evidence uncovered has 

contributed greatly to how archaeologists have thought about the Mesolithic period in Europe, 

and stimulated much academic analysis (e.g. Caulfield, 1978; Wheeler, 1978; Conneller, 2004; 

Lane & Schadla-Hall, 2004). No Mesolithic sites discovered in Britain since have yielded the 

range and quantity of organic remains found at Star Carr, thus cementing its reputation as a 

site as important as Stonehenge is to our understanding of life in the past (Milner et al., 

2013a).  

However, recent excavations at the site have uncovered artefacts in an alarming state of 

diagenesis, suggesting that conditions may no longer be conducive to such excellent 

preservation of organic remains (Milner et al., 2011a; Section 1.1.2.4). In particular, 

observations of high acidity (pH < 2; Boreham et al., 2011) in 2009 raised concerns for the 

future of the site; the effects of such high acidity on organic remains (specifically bone, wood 

and antler) are not well understood. This lack of scientific data regarding the decay of organic 

materials severely limited the confidence with which appropriate mitigation strategies could 

be implemented at the site.  

This study investigates current site conditions and correlates these with the observed organic 

deterioration in bone and wood. An informed assessment of the rapidity of organic 

degradation at the site has been made through experimental studies and analysis of 

archaeological material, with the eventual aim of recommending potential mitigation 

strategies. This research is applicable not only to Star Carr, but to other archaeological sites 

that are undergoing similar changes. 

1.1.2 Archaeological excavation at Star Carr 

1.1.2.1 Wider context 

Star Carr is one of several archaeological sites located on the banks of Lake Flixton, a shallow 

prehistoric lake in the Vale of Pickering, North Yorkshire (National Grid Reference TA 02864 

80976). The location of Star Carr in relation to a number of other sites is indicated in Figure 1.2 

(reproduced from Milner et al., 2011b). At the beginning of the Holocene (approximately 9,000 

years BC) the lake became gradually filled in with marl and organic mud over thousands of 

years. The edges of the lake have been established by extensive auger surveys carried out by 

the Vale of Pickering Research Trust (Milner et al., 2011b). The surrounding flora (birch 

woodland, along with dense reed beds and wetland flora at the edges of the lake) has formed 

a thick blanket of organic-rich peat covering the muds and underlying gravels (Milner et al., 

2011a; 2011b; 2013a). Archaeological material has been uncovered from areas of the site that 
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were dry during the Mesolithic (dryland) as well as areas that extend into the edge of the lake 

(wetland)  (Milner et al., 2013a).   

 

Figure 1.2: Location of Star Carr (yellow circle) in the Vale of Pickering, on the edge of prehistoric Lake 
Flixton. Red circles indicate the location of other Mesolithic sites around the lake (reproduced with 
permission from Milner, 2011b). (Originally in colour). 

Archaeological excavations have taken place at Star Carr in a number of phases since its 

discovery in 1948. Major trenches excavated over the 65-year period are illustrated in Figure 

1.3 and described in further detail below. 
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Figure 1.3: Schematic of main trenches excavated during the three excavation phases at Star Carr. 
Trench SC34 was excavated in 2013 and discussed in further detail in Chapter 7. (Originally in colour). 

1.1.2.2 Early excavations 

Star Carr was discovered by local archaeologist John Moore in the 1940s, although the first 

large scale excavations were carried out between 1949 and 1952 and led by Graham Clark 

(Clark, 1954). The excavations spanned a large area incorporating both wetland and dryland 

contexts (Figure 1.3, grey coloured trenches).  

A large array of birch branches were excavated and interpreted as a platform that had been 

laid down at the edge of the lake. Within this brushwood was a vast quantity of well preserved 

animal bone, antler and wood, as well as more delicate remains such as wads of moss and 

bracket fungus. Perhaps the most important finds were a rare series of 21 worked antler 

frontlets. Carved and perforated for wearing, these are still the only examples of their kind in 

Britain, and only a handful of similar objects have ever been encountered from the Mesolithic 

across Europe (Milner et al., 2013a). In addition to the organic remains, a large amount of flint 

tools and amber and shale beads were found across the excavations, another rarity in 

Mesolithic archaeology.  

The sheer abundance of organic artefacts found in the 1950s excavations suggests that across 

the majority of the excavated area, conditions were largely conducive to organic preservation. 

Unfortunately, few records regarding the exact burial location of specific organic artefacts 
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exist, making a comparison of preservation in different parts of the site difficult. A plot of the 

location of a number of barbed points (constructed from red deer antler) discovered in the 

original excavations however, illustrates that organic material was found across the wetland 

areas of the excavations (Figure 1.4).  

Visual analysis of most of the antler barbed points discovered in the wetland parts of the 

trench, as well as many of the bone tools, declared them to be “firm” (Clark, 1954, pg 7). In 

contrast, in the northeast corner towards the dryland deposits they were softer, and in the 

dryland itself, no barbed points were recorded despite the lithic evidence for occupation being 

abundant. This perhaps indicates that the dryland parts of the site were less conducive to the 

preservation of organic material even in the early excavations. Clark himself notes some less 

well-preserved fragments of bone found further away from the lake edge and reports that 

degrees of organic preservation varied across the site. He describes some pieces of bone and 

antler as “dark in colour and soft as leather” (Clark, 1954, pg 1). He also noted that the 

brushwood platform did not extend into the dryland area and was better preserved where the 

site was waterlogged (Clark, 1954).  

 

 

Figure 1.4: Plot of Clark’s original excavation showing the location of barbed point finds. Those classified 
by Clark as ‘firm’ are shown in red and those classified as ‘soft’ shown in blue. Figure adapted from Clark 
(1954). (Originally in colour). 
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1.1.2.3 Research by the Vale of Pickering Research Trust 

Further excavations in 1985 and 1989 were on a smaller scale and aimed primarily at 

understanding the environmental context of Star Carr (Mellars & Dark, 1998). It was 

discovered during excavation of a trench some distance to the east of Clark’s excavations 

(VP85A; coloured blue in Figure 1.3) that the site was much larger than previously thought. 

Further organic remains were uncovered, including a large worked timber platform and an 

additional barbed antler point, as well as an abundance of flint material. The platform, made 

from timbers split by stone tools, is considered the earliest evidence for carpentry in Europe.  

Evidence for controlled burning, and more detailed radiocarbon dating, also indicated that the 

site had been occupied for much longer than previously thought (Dark, 1998).  

During the 1980s excavations, some fragments of bone and antler were reportedly in a poor 

state of preservation. Similarly to Clark, Rowley-Conwy reported that organic preservation was 

better in the peat nearest the wooden platform, i.e. near the lake edge (Rowley-Conwy, 1998). 

Despite this, excavations yielded a wealth of organic environmental evidence, suggesting that 

even delicate plant remains were still reasonably well preserved in parts of the site.  

1.1.2.4 Recent excavations 

Further excavations were carried out between 2006 and 2010, again spanning both wetland 

and dryland parts of the site. Large trenches were newly dug as well as re-excavation and 

extension of previous trenches, notably Cutting 2 from Clark’s excavations (Figure 1.3, 

extension is shown in red). In addition, test pitting was carried out further away from the main 

site with the aim of establishing the extent of the archaeology. Excavations established that 

the site extended even further than estimated by Mellars & Dark (1998); in particular the 

worked timber ‘trackway’ uncovered in 1985 was found to extend into the lake edge (Milner et 

al., 2013a).  

Whilst large numbers of lithic materials were uncovered, organic artefacts were noticeably 

sparse, even in the waterlogged parts of the site, which had previously yielded a huge array of 

material. Two clusters of severely compressed worked antler were found and had to be 

excavated on a layer of peat. Others were in such advanced states of degradation that they 

have been described as “only tentatively identifiable as antler” (Milner et al., 2011a, pg. 2823). 

In 2007, only two certain pieces of bone were found and these were observed to be spongy in 

texture. The only bone discovered in 2008 has been termed the ‘jellybone’ due to the fact that 

it seems to have completely lost any mineral content, leaving only the collagen matrix (Milner 

et al., 2011a). In the dryland areas (Trench SC23), fragments of unidentified bone were found, 

but were largely chalky and brittle. 
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The wood material was better preserved than the bone and antler; analysis by I. Panter 

showed wooden artefacts to be degraded, but comparable to other waterlogged 

archaeological wood (Panter, 2009). Much of it was severely flattened however; M. Taylor (in 

Milner et al., 2011a) reported difficulties in establishing the peat/wood interface in the 

wetland part of Trench SC24.   

1.1.3 Evidence for site deterioration 

Following the discovery of the ‘jellybones’ and flattened antler in 2007/2008, a review of the 

organic material from each stage of excavation was carried out, and resulted in the hypothesis 

that the burial conditions had severely deteriorated since the initial excavations (Milner et al., 

2011a). It became clear that the organic artefacts found in the 1985 excavations were both 

less abundant and considerably less well preserved than those found by Clark in the 1950s, 

whilst organic remains recovered in the most recent excavations were often barely 

identifiable.  

There was however a clear difference in organic preservation between the wetland and 

dryland areas of the site; a fact acknowledged even in the first excavations (Clark, 1954). In the 

northern end of the trenches where the deposits constituted gravelly sand instead of peat, 

“leathery” pieces of bone and antler were reported, with better organic preservation observed 

towards the lake. Barbed points were also observed to be more flattened in some parts of the 

trench than others, highlighting the spatial variability across the site (Clark, 1954). This spatial 

variation must therefore be considered when assessing preservation across the site. 

Despite this, there is clear evidence that the site has altered in recent years. Evidence for the 

peat having shrunk due to drying out was first observed during excavations in 1985 and 1989 

(Mellars & Dark, 1998). Between 2002 and 2005, further concerns were raised following field 

walking and test pitting, during which it was noticed that the previously invisible contours of 

the lake edge could now be observed (Milner et al., 2011a). Furthermore, photographic 

comparison of the re-excavation of Clarks’ Cutting 2 Trench in 2010 with photographs from the 

original excavations appears to show further evidence of the extent of peat shrinkage; the 

trench wall extends much further above the height of the excavator in the photograph from 

1952 compared to in 2010, suggesting that the depth of the trench has significantly decreased 

(Figure 1.5).  
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Figure 1.5: Image of the excavation of Cutting 2, taken from Clark (1954), compared to a reconstruction 
of the scene taken during re-excavation of the trench in 2010. The extent of the peat shrinkage is evident 
from the much smaller distance between the base of the trench and the ground surface in the later 
excavations. (Originally in colour). 

In 2009, metrical analysis was carried out on antler recovered from all three phases of 

excavation (Milner et al., 2011a). Results showed that whilst antler excavated by Clark had 

largely preserved its original shape and texture, those excavated in the 80s were visibly more 

flattened in comparison, and those from most recent excavations even more so. This was 

taken as further evidence that peat shrinkage had occurred, possibly resulting in compression, 

or flattening, of the organic remains.   

The most compelling evidence for extreme site conditions has been provided by an extensive 

geochemical survey carried out in 2009, where high sediment acidity was observed (< pH 2 in 

parts of the site) in association with high levels of sulfur, indicating that sulfuric acid formation 

may be occurring (Boreham et al., 2011; Chapter 2). As no geochemical survey had previously 

been carried out at the site, it is difficult to determine whether this has occurred recently, or if 

site conditions have always been acidic. A key aim of this study is to assess organic (bone and 

wood) deterioration at Star Carr in light of the observed geochemical conditions, and to 

determine the time frame in which these changes may have occurred. In order to do so, the 

current state of preservation and potential degradation mechanisms of the organic remains 

must first be considered.  
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1.2 Bone deterioration 

1.2.1 Introduction 

Some of the most important artefacts excavated at Star Carr have been bone or antler, 

including the iconic antler frontlets. For the purposes of this study, the discussion has been 

limited to bone, as it is the most abundant material, allowing a more thorough assessment of 

material from across the site. However, as antler is similarly composed of type 1 collagen and 

hydroxyapatite (although in different relative proportions) it can be expected to deteriorate 

via similar mechanisms (e.g. O’Connor, 1987). The rate and mechanisms by which bone decays 

in archaeological sites has been an important area of research, particularly as bone artefacts 

are often utilised for methods such as radio carbon dating (e.g. Child, 1995; Hedges et al., 

1995; Collins et al., 2002).  

1.2.2 The structure of bone 

Bone has a highly complex hierarchical structure that is still not entirely understood (e.g. 

Weiner & Traub, 1992; Rho et al., 1998). However, for the purposes of discussing bone 

diagenesis it may be somewhat simplified into two major components: an organic fraction 

(primarily type 1 collagen) and an inorganic fraction (hydroxyapatite). In addition to these, 

bone contains a range of non-structural proteins and lipids (e.g. Glimcher & Katz, 1965; Currey, 

2002). Although these components could still be present in archaeological bone, they are 

found in low abundance in comparison to the collagen (e.g. Evershed et al., 1995).  

Collagen provides bones with their mechanical strength and composes approximately 22 % by 

mass, depending on the age, species and type of bone (e.g. Aerssons et al., 1998; Hedges, 

2002). Type 1 collagen is composed of triple helices of protein chains, held together by 

hydrogen bonding (e.g. Rich & Crick, 1961). In two of these protein chains, glycine represents 

every third residue, resulting in an amino acid concentration profile that is dominated by 

glycine (e.g. Shoulders & Rains, 2009). These helices are arranged into fibrils where they are 

axially staggered (Figure 1.6; Orgel et al., 2001). This staggered pattern manifests as a 

characteristic banding at a width of ~ 67 nm that can be seen under electron microscopy (e.g. 

Rho et al., 1998). These fibrils are then arranged in a series of concentric lamellae, making up 

osteons, which are packed longitudinally to form the bone macrostructure (Figure 1.6). The 

highly organised and stable structure of collagen means that it can survive extremely well in 

the archaeological record (e.g. San Antonio et al., 2011).  This, along with its high natural 

abundance, means that collagen is one of the most commonly utilised proteins in 
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archaeological research, for example in radio-carbon dating (e.g. Hedges & Law, 1989) and 

isotope analysis for dietary reconstructions (e.g. Ambrose & DeNiro, 1986).  

 

Figure 1.6: Schematic illustrating the structure of bone on various hierarchical levels. Adapted from Rho 
et al. (1998) and Orgel et al. (2001). (Originally in colour). 

Bone collagen is mineralised by an impure, non-crystalline form of hydroxyapatite (HA; 

Ca10(PO4)6(OH)2) containing a number of imperfections such as carbonate, magnesium and 

fluoride (Brown & Chow, 1979). The HA is deposited in the collagen matrix in plate-like crystals 

as an animal grows; the way in which this occurs is poorly understood (Weiner & Traub, 1992). 

The level of mineralisation differs with animal age as well as bone type; for example, load 

bearing bones (such as long bones) are composed of more heavily mineralised cortical bone, 

compared to flat bones (such as ribs) which consist mainly of less dense cancellous bone (e.g. 

Rho et al., 1998). However, as a general rule HA typically accounts for approximately two 

thirds of the total mass of bone (Green & Kleeman, 1991; Aerssons et al., 1998). 

Whilst the exact relationship between the two fractions of bone is not well understood, it is 

clear that they are intimately associated. This means that the deterioration of one is effected 

by deterioration of the other (e.g. Collins et al., 2002; Hedges, 2002).    
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1.2.3 Bone deterioration 

Collins et al. (2002) summarise the modes of bone deterioration as: “chemical deterioration of 

the organic phase; chemical deterioration of the mineral phase; and biological attack of the 

composite.” Which process dominates is dictated by the burial environment, as well as the 

condition of the bone when it enters the burial environment (for example, whether the bone is 

cooked or uncooked, fleshed or defleshed) (e.g. Nicholson 1996; 1998; Dixon et al., 2008).  

HA is relatively vulnerable to chemical deterioration; at low pH it can rapidly dissolve to buffer 

the acidity of the environment, leading to its destruction in a relatively short space of time 

(Gordon & Buikstra, 1981; Margolis & Moreno, 1992). Due to its highly cross-linked and 

constrained structure however, collagen is generally not soluble except at extremes of pH 

(Glimcher & Katz, 1965) or high temperature (Koon, 2006). Under these conditions, collagen 

can undergo ‘denaturing’, or loss of the strong cross-links between the protein strands, 

allowing the fibrils to swell and melt, eventually turning to gelatine (Glimcher & Katz, 1965; 

Neilsen-Marsh et al., 2000; Koon, 2006). It is understood that in an archaeological context 

these processes can be prevented by the presence of the HA, both by buffering of the acidity 

and stabilising the fibrils by physically constraining them (Covington et al., 2008).  Chemical 

deterioration of the collagen is therefore unlikely to occur without prior loss of the mineral 

fraction (Collins et al., 2002), although the exact conditions at which sufficient HA is lost to 

allow collagen degradation by chemical means are unclear (Child, 1995). 

Biological deterioration of both phases can occur in the burial environment, and is most likely 

to occur immediately following deposition (Child, 1995). Hedges et al. (1995) predict that 

biological attack can lead to the complete destruction of bone within 500 years. Experimental 

studies such as those by Dixon et al. (2008) and Nicholson (1996; 1998) support this, showing 

that processes such as tunnelling by erosion bacteria and surface damage to the bone mineral 

do proceed quickly under certain conditions. Collagen degradation by biological means is also 

largely prevented by the HA however, as the small size of the crystals restricts the extent to 

which collagen-digesting enzymes (collagenases) can access the collagen (Nielsen-Marsh et al., 

2000).   
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1.2.4 Analysis of bone deterioration 

An understanding of bone deterioration is important not only in archaeology but in 

biomedicine, and as such a range of analytical methods are routinely employed. Different 

analytical approaches are often required to determine levels of deterioration in the organic 

and inorganic fractions. In addition, multi-analytical approaches are often utilised (e.g. Nielsen-

Marsh & Hedges, 2000; Turner-Walker & Peacock, 2008).  

1.2.4.1 Chemical analysis 

Analysis of the collagen fraction of bone often focuses on the quantification of the amino acid 

content (Ezra & Cook, 1957; Bada, 1972; Collins et al., 2009). For estimating the relative 

concentration of collagen, simple measurements such as nitrogen: carbon values or total 

amino acid content can be utilised (e.g. Dobberstein et al., 2009). Relative increases or 

decreases in bulk collagen content can inform on the levels of HA and/or protein loss (e.g. 

Roberts et al., 2002). Furthermore, enrichment of aspartic and glutamic acids (due to their high 

abundance in non-collagenous proteins) can also signify degradation of the collagen or an 

inclusion of microbes into the structure, suggesting that biological deterioration may be 

occurring (Dennison, 1980; Child et al., 1993).  

When the chiral forms of each amino acid can be separated, for example by reverse phase high 

performance liquid chromatography (HPLC), the extent of racemisation for each amino acid 

can be quantified (e.g. Kaufman & Manley, 1998). Due to the highly stable nature of collagen, 

racemisation is not expected to occur unless collagen is significantly broken down, increasing 

the number of terminal amino acids (e.g. Child et al., 1993).  The degree of racemisation in 

each amino acid can therefore be used as a proxy indicator for the degree of damage within 

the collagen helix, and has been applied as an indicator of biomolecular preservation (e.g. 

Dobberstein et al., 2008). Most amino acids racemise very slowly, even when terminally bound 

(for example alanine racemisation has a half-life of 12,000 years at 25oC), and as such, 

significant racemisation is not likely to be observed in samples from a Mesolithic site, where 

low temperatures may further slow racemisation (e.g. Bada & Schroeder, 1975). However, 

aspartic acid (Asp) is a fast racemiser, and is therefore most commonly applied as a diagenetic 

indicator in archaeological bone (Child et al., 1993; Collins et al., 1999; Dobberstein et al., 

2008). It is also able to racemise in-chain, so can indicate an increase in conformational 

freedom, for example by loss of cross-link between protein chains (Collins et al., 2009). Recent 

studies show that serine (Ser) may also be able to racemise in-chain and relatively quickly 

(Demarchi et al., 2013), and may also be able to serve as a diagenetic indicator.   
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Other methods of analysis of the protein fraction of bone include spectroscopic methods. 

Examples include Fourier transform infrared spectroscopy (FTIR) (e.g. Pleshko et al., 1991) and 

Raman spectroscopy (e.g. Timlin et al., 2000; Ragahavan, 2011). Spectroscopic methods are 

useful for the analysis of archaeological or fossil samples as they are potentially non-

destructive, and probe alteration on a molecular level, revealing changes such as a loss of 

cross-linking. An advantage of spectroscopic methods is that they often allow the simultaneous 

analysis of the HA.  

Loss of collagen also results in an increase in porosity of the bone. Quantification of this using a 

method such as mercury intrusion porosity, where mercury is introduced to a sample under 

vacuum and the volume taken up is recorded, can therefore also be an indicator of diagenesis 

(e.g. Nielsen-Marsh & Hedges, 1999). This method has a major disadvantage in that it requires 

a large sized sample to gain a reliable result.  

Analysis of the HA content is achieved in part by quantification of the protein content, as it 

indicates the relative composition of the bone; however, several methods of analysing the 

deterioration in HA in more detail and independently of the collagen fraction are possible. 

Many of these focus on the phenomenon of increased HA crystallinity with diagenesis (Pleshko 

et al., 1991; Hiller & Wess, 2006). The reasons for this increase in crystallinity occurring are not 

well understood, but are possibly due to preferential dissolution of the smallest crystals 

(Surovel & Stiner, 2000) or recrystallisation of dissolved HA in a stagnant environment (Hedges 

& Millard, 1995). This manifests as a sharpening of peaks in X-ray techniques, as shown by 

Hiller & Wess (2006) for small angle X-ray scattering, and by Bonar et al. (1983) for powder X-

ray diffraction (p-XRD). Diffraction methods are used to probe long-range crystallinity of the 

HA structure, obtaining an ‘average’ assessment of the properties of a crystal. This is in 

contrast to spectroscopic methods which detail molecular changes only on the surface of the 

sample, and as such can be more influenced by sample preparation techniques (e.g. polishing 

or grinding samples) (e.g. Surovell & Stiner, 2001).  

As diagenetic alteration often involves exchange with the burial environment (Lee-Thorp & van 

der Merwe, 1991), analytical techniques such as emission spectroscopy (Reiche et al., 1999; 

Zapata et al., 2006) may be employed to investigate trace element inclusions. Uptake of, for 

example carbonate, can also be identified using spectroscopy, most often FTIR (Lee-Thorp & 

van der Merwe, 1991). Often however, these techniques require advanced equipment, such as 

a synchrotron radiation source, to achieve resolution appropriate for the analysis of 

archaeological bones. Other advanced methods include 2 D spectroscopies, where Raman or 
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FTIR spectra are taken across the surface of a sample, providing analysis of spatial variations in 

preservation (e.g. Penel et al., 1998; Paschalis et al., 2001).  

1.2.4.2 Histological and bulk analysis 

Macroscopic preservation of archaeological bone is often evaluated using a scoring system 

from 1 to 5, where 1 represents well preserved bone and 5 indicates a highly degraded bone 

(Gordon & Buikstra, 1981; Hedges et al., 1995). However, this can be subjective and cannot 

assess small diagenetic changes (Jans et al., 2002).  

The most common methods of detecting small levels of histological alteration are microscopic 

techniques. Thin-sectioning in combination with optical microscopy is often employed to 

observe characteristic changes to bone histology due to microbial activity (e.g. Jans, 2005; 

Dixon et al., 2008). In thin-section, characteristic bone features such as osteons should be 

observable if HA is still present, as well as features such as cracking, tunnelling characteristic of 

biological deterioration, or the incorporation of extraneous material into the bone structure 

(Jans et al., 2002). If used with cross-polarised light, the presence of protein can be indicated 

by the presence of birefringence (alternating patterns of light and dark); this occurs due to the 

orientation of the collagen fibres (Giraud-Guille, 1988).   

Scanning electron microscopy (SEM) (which achieves a much higher magnification than optical 

microscopy with minimal sample preparation) can also be used to look at histological 

alteration of bone during burial and is often used to complement studies that also apply 

quantitative chemical methods (e.g. Bell, 1990; Turner-Walker & Peacock, 2008). Nicholson 

(1993) shows how SEM can reveal changes to the surface texture of bone when it has 

undergone alteration due to burning. When used in back-scattered electron mode, where 

changes in bone mineral density can be observed, variations in diagenesis across a sample can 

be better assessed (Turner-Walker, 2008).  

Under transmission electron microscopy (TEM) using uranyl acetate stain, the characteristic 

banding of collagen fibrils can be observed (Giraud-Guille, 1988). Koon (2006) developed a 

method to isolate the fibrils from the HA so that they can be observed in isolation; using this 

method, swelling or distortion of collagen fibrils can be identified. TEM can also be utilised for 

the observation of HA crystals, allowing the identification of changes to crystallinity (Nudelman 

et al., 2010). As with all microscopic methods however, this assessment can be subjective and 

user dependent.  
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1.3 Wood deterioration 

1.3.1 Introduction 

Wood is often found in high abundance in wetland archaeological sites (Caple, 2004). At Star 

Carr, some important examples of wooden artefacts have been uncovered, including the 

timber ‘trackway’ and several smaller artefacts such as a birch-wood paddle (Milner et al., 

2013a).  

1.3.2 The structure of wood 

Wood can be broadly considered a complex composition of two types of biological polymer: 

lignin and polysaccharides (cellulose and hemi-cellulose) (e.g. Jane et al., 1970; Figure 1.7). The 

exact relative composition is dependent on a range of factors such as species, age and type of 

wood (i.e. trunk or branch) (Pandey & Pitman, 2003), but fresh wood is considered roughly 70-

80 % celluloses and 15-35 % lignin (Fengel & Wegener, 1984). A small amount of non-structural 

components, such as pectic acid, proteins and metal ions, can compose up to 10 % by mass of 

fresh wood (Hedges, 1990; Martinez et al., 2005).  These can easily be extracted however, and 

are unlikely to survive in any great abundance in archaeological wood (Hedges, 1990). In 

addition, these non-structural components can be replaced by material from the burial 

environment such as metals and minerals, particularly those containing iron (Hedges, 1990). 

This uptake can result in a higher ‘ash content,’ that is, the material left behind when the wood 

is burnt at 650oC (e.g. Panter & Spriggs, 1996). 

The inner cell walls (or secondary cell walls) are composed mainly of very long sugars 

(cellulose; up to 15,000 glucose units) and shorter branched chains (hemi-celluloses) (e.g. 

Hoffman & Jones, 1990). These are organised into fibrils, which also contain some lignin (Jane 

et al., 1970). Celluloses are readily broken down by both biological and chemical processes and 

are often lost in an archaeological context, with the order of stability being lignin > cellulose > 

hemi-cellulose (Florian, 1990).  
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Figure 1.7: Schematic showing the hierarchical structure of wood. Major sub units for lignin (red) and 
celluloses (blue) are indicated. (Adapted from Jane et al., 1970 and Hoffman & Jones, 1990). (Originally 
in colour). 

Lignin is mainly located within the outer primary cell walls and middle lamellae; the interfaces 

between the cells (Jones & Eaton, 2006). Lignin is composed of three main phenol sub units: 

non-methoxylated (phenol, P), monomethoxylated (guaiacol, G), and dimethoxylated (syringol, 

(S) (Martinez et al., 2005; Figure 1.7). These are present in different proportions depending on 

the wood species (softwood for example, has no syringyl units).  These sub units form a large 

three-dimensional network containing a large variety of types of chemical bonds and cross-

links, resulting in a highly stable structure (Martinez et al., 2005).  

1.3.3 Wood deterioration 

Both cellulose and hemi-cellulose break down relatively easily via biological activity, primarily 

due to hydrolase and oxidase enzymatic activity from both microbes and fungi (Blanchette et 

al., 1991; Jones & Eaton, 2006). In addition to biological activity, celluloses can undergo 

chemical hydrolysis; for example they can be dissolved in strong acids or 10 % sodium 

hydroxide (Fengel & Wegener, 1984; Kamide et al., 1984). This is often preceded by swelling of 

the cellulose fibres (Kamide et al., 1984). This swelling process may be accelerated by the 

presence of certain chemical species, or prevented in the cell walls that are more lignified 

(Fengel & Wegener, 1984). In most circumstances in archaeological wood, chemical 
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deterioration is insignificant in comparison to the levels of biological deterioration (Jones & 

Eaton, 2006).  

Lignin degradation is much slower due to the complexity of the types of chemical bond that 

hold it together (Jones & Eaton, 2006) and occurs primarily by fungal attack (Blanchette et al., 

1990; Kim & Singh, 2000). Chemical deterioration of lignin is much less likely; indeed its 

resilience to acid hydrolysis is illustrated by the commonly applied method of isolating lignin 

from wood by dissolving cellulose in 72 % sulfuric acid without loss of the lignin (TAPPI 

standard T 222 om-88). Lignin therefore tends to survive more readily than cellulose; however 

certain fungi (soft rot fungi) do preferentially decay lignin before cellulose (Pandey & Pitman, 

2003; Martinez et al., 2005). This mode of biological degradation occurs by enzymatic 

oxidation of the phenol-type units, causing a number of breakdown reactions including 

aromatic ring cleavage and demethoxylation of the G and S units. Degraded lignin therefore 

has altered ratios of P: G: S (Hatcher, 1984; Martinez et al., 2005; Figure 1.8).  

 

Figure 1.8: Scheme showing how demethoxylation by fungal activity creates higher concentrations of 
phenol type sub-units in lignin. 

As many classes of both microbes and fungi are aerobic, and therefore not active in a 

waterlogged context, wood can survive for long periods in wetland environments (e.g. Hedges, 

1990; Section 1.4.3.1). Despite this, low levels of deterioration do occur via the activity of small 

numbers of anaerobic organisms (Section 1.4.3.2), although the exact level of oxygen tolerance 

of such species is relatively unknown (Caple, 1994). Due to the faster loss of cellulose, 

archaeological wood deterioration is often characterised by an increased lignin: cellulose ratio 

(e.g. Bjordal et al., 1999; Gelbrich et al., 2008) and waterlogged wood can sometimes be found 

as a lignin rich skeleton consisting of only the primary cell walls (Hedges, 1990).  

Aside from polymer degradation, the chemical composition of archaeological wood can also 

alter due to the incorporation of various minerals into the highly porous structure; in 

particular, iron (III) is actively chelated by cellulose (Jones & Eaton, 2006). As some anaerobic 

Guaiacyl type unit 
within lignin structure

Phenol type unit 
within lignin structure

Fungal 
alteration

Fungal 
alteration

Complete 
defunctionalisation



48 

 

bacteria utilise inorganic iron as an electron donor in their metabolic processes (Postgate, 

1965), this may in turn lead to an increase in biological activity within the cell walls. Another 

major problem with archaeological wood is a build-up of sulfates, particularly in material from 

marine environments (e.g. Almkvist, 2008). These sulfates can then undergo oxidation upon 

exposure to air to form sulfuric acid, which may cause chemical hydrolysis of the celluloses 

(Jones & Eaton, 2006). Upon exposure to air, an increase in biological activity can also lead to 

accelerated degradation of both cellulose and lignin. This presents problems for the storage of 

wood post-excavation, or when a site becomes no longer waterlogged (see Flag Fen, Section 

1.4.5.1).  

1.3.4 Analysis of wood deterioration 

The assessment of the condition of archaeological wood is a large area of research due to its 

importance in informing conservation processes. Celluloses and lignin deteriorate very 

differently, but are much more closely associated than bone protein and mineral, making them 

difficult to physically separate (Fengel & Wegener, 1984). Therefore, many analytical 

techniques involve the simultaneous analysis of both polymers.  

1.3.4.1 Chemical analysis 

Deterioration of wood, although mainly driven by biological factors, is characterised by 

alterations in the chemical composition of the wood, primarily alteration of the lignin: cellulose 

ratios, as well as P: G: S ratios in lignin (Gelbrich et al., 2008; Martinez et al., 2005).  

Lignin: cellulose ratios in wood are routinely analysed in the paper and pulp industry using bulk 

wet chemical methods that have been adopted for the analysis of archaeological wood (e.g. 

Hoffman, 1981; TAPPI standards). These involve a series of dissolution steps using solvents 

including 72 % sulfuric acid and strong sodium hydroxide, from which the relative composition 

of different wood components can be calculated. However, it has often been found that this 

presents yields of over 100 %, suggesting error in the methods (Fengel & Wegener, 1984). In 

addition, it requires large amounts of sample, making it not ideally suited to the analysis of 

archaeological materials.  

Spectroscopic methods present a solution to the problem of the large quantities of sample 

required for wet chemical methods; these can also often be non-destructive. FTIR in particular 

is commonly used to investigate changes in the lignin: cellulose ratios of degraded wood 

(Pandey, 1998; Gelbrich et al., 2008; Pandey & Pitman, 2008). The development of FTIR 

spectrometers fitted with an attenuated total reflectance unit (ATR) removes the necessity to 

prepare wood samples in a potassium bromide matrix, making it ideal for the rapid screening 



49 

 

of wood deterioration (e.g. Gelbrich et al., 2008). Whilst most FTIR absorption bands contain 

contributions from each polymer, some can be attributed to only lignin (e.g. 1507 cm-1 relating 

to the aromatic ring; 1240 cm-1 relating to the ether bond) and only cellulose (1325 cm-1 

relating to a CH2 wagging; 1375 cm-1 relating to OH deformations) (Pandey, 1998). Changes in 

the relative heights and integrations of these four peaks are interpreted as degradation of the 

polymers (e.g. Gelbrich et al., 2008). In addition, Pandey & Pitman (2008) show how FTIR can 

reveal alterations to the lignin structure: changes such as peak splitting, peak shifting or a 

reduction in the intensity of the peaks relating to methoxy groups in lignin can indicate a 

change in the chemical environments in which they are present, or a reduction in their 

abundance. Loss of aromatic rings can also be identified by a reduction of characteristic 

absorption, and this is another key indicator of fungal decay of lignin (Faix et al., 1991).  

Although widely used to qualitatively assess the condition of archaeological wood, FTIR is not 

ideally suited to quantitative analysis. Gas chromatography using pyrolysis (py-GC) in the 

absence of oxygen provides a more detailed analysis of wood degradation products (e.g. 

Vinciguerra et al., 2007), and has the potential to provide an absolute measure of composition 

if an internal standard is used (Bocchini et al., 1997). Pyrolysis breaks down polymers into 

small fragments, which can then be separated using GC. When used in conjunction with mass 

spectrometry, peaks can be confidently assigned to different sub-units of both cellulose and 

lignin, giving an overview of the ratio of the different monomeric units present in the starting 

material (e.g. Vinciguerra et al., 2007; Alves et al., 2006).  In addition, it requires minimal 

sample preparation and a very small amount of sample (Martinez et al., 2005). Alves et al. 

(2006) show how even without an internal standard, py-GC can reliably reveal P: S: G ratios, 

signifying chemical changes to the lignin itself. This may be particularly indicative of biological 

decay, where demethoxylation due to enzymatic activity will result in a higher P content. The 

presence of smaller, carbohydrate-derived molecules can also confirm the presence of 

cellulose (e.g. van Bergen et al., 2000). 

Solid-state 13C NMR has been shown as an alternative method for the analysis of 

archaeological wood (Wilson et al., 1993; Gilardi et al., 1994; Almkvist, 2008). Similarly to FTIR, 

alteration of the peak areas and chemical shift indicate alteration of the chemical 

environments, although NMR has the advantage of distinguishing between G or S lignin 

subunits (Wilson et al., 1993). NMR can also be quantitative with the use of an internal 

standard (Alkmvist, 2008); however the limitation of this technique is mainly in the lack of 

availability of appropriate NMR instruments (samples will be in the solid state) as well as the 

expertise required to run them (Hedges, 1990).  
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In many cases, a multi-analytical approach is taken (e.g. Faix et al., 1991; Wilson et al., 1993; 

Almkvist, 2008). Due to the complexity of the composition of wood, it is acknowledged that 

this application of complementary techniques, rather than relying on an individual measure, 

provides a more reliable assessment of the levels of deterioration.  

1.3.4.2 Histological and bulk analysis 

Many studies on biological degradation of wood focus on microscopic analysis, both optical 

(e.g. Bjordal et al., 2000) and SEM (Blanchette, 2000). In thin-section (and in more detail in 

SEM), it is often possible to identify the separate cell walls (Fengel & Wegener, 1984).  

Characteristic microbial decay patterns and fungal hyphae are identifiable, as well as features 

such as shrinking and collapse of the cell walls (Bjordal et al., 2000; Powell, 2011). The use of 

biological stains such as astra-blue and chrysoidine red in thin-section can further reveal 

biological activity (e.g. Hoffman, 1986; Humar et al., 2008).  

A range of standard decay-assessment tests are often applied to archaeological wood prior to 

conservation, providing a measure of the bulk condition of the wood. These include 

measurements such as wood density and maximum water content (umax) (Panter & Spriggs, 

1996). An increase in umax suggests greater levels of damage to the wood structure, primarily 

loss of cellulose, creating larger voids within the structure, which allows a greater uptake of 

water (Hoffman, 1986). In experimental degradation experiments, mass loss has also been 

shown to correlate with levels of degradation measured using chemical methods (Faix et al., 

1991). Due to the high porosity of wood however, it can be difficult to obtain the mass of 

absolutely dry samples, leading to high levels of error in such measurements (Fengel & 

Wegener, 1984). In addition, the values can be altered by the presence of non-structural 

components, such as iron and minerals (Panter & Spriggs, 1996).  

The inorganic components of archaeological wood can be determined by burning a sample at 

650 oC to remove all organic components, leaving behind an ash composing minerals such as 

iron and sulfur (Hedges, 1990). Increased ash content is often taken to be indicative of 

increased diagenesis as a result of interaction with the burial environment. The presence of 

inorganic components can also cause error in measurements such as wood density, maximum 

water content and chemical composition as measured by wet chemical methods, as they 

contribute to the total mass (Hedges, 1990).  
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1.4 Summary of organic deterioration  

There are a range of analytical techniques that provide both qualitative and quantitative 

information regarding the deterioration of bone and wood. Each of these have merits and 

downfalls, and therefore considering the most appropriate technique will be driven in part by 

the degradation mechanisms that need to be studied. 

Degradation mechanisms for organic archaeological materials are driven primarily by the 

nature of the burial environment. Degradation of bone and wood in peatland environments 

can occur via a number of different pathways driven by the specific conditions of such 

environments. 
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1.5 Organic archaeological materials in wetlands 

1.5.1 Introduction 

Bone and wood can deteriorate by both chemical and biological means (Sections 1.2.3 and 

1.3.3). The rate by which organic degradation proceeds depends almost entirely on the 

chemical and biological nature of the burial environment (e.g. Hedges, 1995; Caple, 2004). The 

reasons that wetlands preserve such vast amounts of organic material are complex; anaerobic, 

waterlogged and slightly acidic conditions are often cited as the major requirements as they 

suppress biological activity and provide a chemically stagnant environment (Gearey et al., 

2010).  

Wetland peat deposits are formed when plant material decomposes in situ in an area where 

waterlogging means that microbial decomposition is slow to occur, leaving an organic rich peat 

(Bain et al., 2011). Star Carr is located on the bank of a prehistoric lake, where the original reed 

beds and wetland fauna have resulted in the formation of a reedy peat blanket bog covering 

the area (Milner et al., 2011b). In places, this peat layer is relatively thin, for example areas of 

the site away from the banks of the lake, which were previously dryland in the Mesolithic. In 

other parts of the Star Carr site the peat can be metres thick (Boreham et al., 2011). The 

Mesolithic archaeology is almost all contained within these peat layers.  

Gearey et al. (2010) suggest that an estimated 22,500 archaeological sites are preserved in 

peat in Britain alone.  As such, these environments have been extensively studied. Although 

their complex and vulnerable nature is often acknowledged (e.g. Kenward & Hall, 2000; Caple, 

2004), the major factors contributing to organic preservation in peatland sites can be broadly 

categorised into chemical and biological components, although there is much overlap between 

the two.    

1.5.2 The chemistry of wetland sites 

The most important factors affecting soil chemistry can be briefly summarised: water content, 

oxygen content, cation/anion identity, pH, soil density and redox behaviour; all of which are 

closely interlinked (e.g. Caple, 2004; Lillie & Smith, 2007). Characterisation of the chemical 

nature of the burial environment can to some extent allow the prediction of the potential for 

organic archaeological remains to survive (Caple, 2004).  

The water content of peat environments is often high (up to 95 %), due to the high density of 

the peat restricting water movement (e.g. Chapman & Van de Noort, 2001). Drainage of the 
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peat therefore leads to severe shrinkage, which is often irreversible (Schwarzel et al., 2002). 

Waterlogging also leads to an anaerobic environment; often cited as the main factor 

promoting organic preservation. This is because fungal and bacterial growth will be suppressed 

in the absence of oxygen, leading to a reduction in biological degradation (Holden et al., 2006; 

Section 1.4.3).  

The restricted movement of water also means that any reactive chemical species do not move 

through the sediment as quickly as, for example, in environments where rainwater rapidly 

percolates (Bartlett et al., 2010). This results in a stagnant chemical environment. Experimental 

studies such as those by Crowther (2002) and Nicholson (1996; 1998) show that the rate at 

which dissolved components of deteriorated bone are washed away is a key factor 

determining the rate at which it decays. Hedges & Millard (1995) suggest that interaction with 

groundwater is the one major underlying feature that dictates the rate at which organic decay 

proceeds. The hydrology of a wetland site is also influenced by the underlying geology which 

may further restrict its movement, as well as the source of groundwater, which determines its 

chemical composition (Welch & Thomas, 1996; Holden et al., 2006).  

A variety of organic and inorganic species may be mobilised in a waterlogged environment, 

originating from minerals, agricultural activities and decayed organic matter (Faulkner & 

Richardson, 1989). Although the environment is stagnant, the presence of water allows a 

closer interaction of these species with any buried archaeological material (e.g. Pollard, 1996). 

A fluctuating water-table has been shown by Nicholson (1996) and Williams et al. (2006; 

Section 1.4.5.3) to be even more destructive, as it causes the constant movement of reactive 

species. If this fluctuation occurs through an archaeological layer, this can exacerbate the rates 

of degradation as it constantly bring new species into contact with the archaeological material. 

The identity and movement of reactive chemical species within a burial environment define 

properties such as pH and redox potential (Pollard, 1996; Caple, 2004). As such, measurements 

of these parameters can indicate the propensity of an environment to preserve organic matter 

(e.g. Mattheisen, 2004). Peat bogs are often slightly acidic (pH < 6) due to the high 

concentrations of organic acids such as humic acids, which are formed from the decay of plant 

material. These humic acids and tannins often cause severe discolouration by staining, which 

normally characterises archaeological finds from peatland areas (Clark, 1954; Mellars & Dark, 

1998; Hedges, 2002).  

Whilst low pH can have a beneficial effect on delicate organic remains, as it restricts biological 

deterioration (Section 1.4.3), it often has a negative effect on the preservation of bone, as HA 

can rapidly dissolve to buffer the acidity of the surrounding environment (e.g. Gordon & 
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Buikstra, 1981). The extent to which it does this is not well understood (Child, 1995). In 

addition, low pH may be detrimental to the preservation of wood as cellulose can undergo acid 

catalysed hydrolysis, causing break down of the long polysaccharides (Fengel & Wegener, 

1984).  

Redox potential is a measure of the tendency of sediments to cause oxidation or reduction, 

and is strongly influenced by pH and the availability of oxygen, which is in turn influenced by 

the degree of waterlogging (Caple, 1994). With regards to a burial environment, a more 

positive redox potential indicates a higher tendency for the sediments to gain electrons, thus 

causing oxidation of mobilised reactive species or buried remains (Atkins et al., 2006). Acids 

are often highly oxidising as they readily gain electrons (Luder, 1942).  

Sediments with low redox potential (low oxygen content; reducing) are often considered the 

most likely to preserve archaeological materials; peatland sites often display low redox (e.g. -

200 to -400 mV) (Caple, 1996). Redox measurements are often interpreted as proxy indicators 

of biological activity of a burial environment, as this is likely to be higher in more aerobic 

sediments (e.g. Lillie & Smith, 2007). An increase in redox potential can occur when oxygen 

becomes available and sediments oxidise; often this has been seen to correlate to an increase 

in organic degradation (Caple, 1996). In addition, environments with a fluctuating water-table 

may undergo cyclic changes in redox potential (Pollard, 1996).    

The concentrations of reactive species that can participate in electron transfer reactions have 

important impacts on both the chemical and biological (Section 1.4.3) nature of a burial 

environment (Caple, 2004). High sulfur content in peat is often seen due to the high levels of 

decomposed organic material, resulting in the formation of sulfates (Price & Casagrande, 1991; 

Sposito, 2008). However, in a number of wetland sites (e.g. Yoxall Bridge, described further in 

Section 1.4.5.4), the sulfur concentrations are too high to be explained by this and have 

instead been attributed to underlying sulfur containing mineral deposits (Brown et al., 2010). 

This inorganic sulfur can exist in minerals (e.g. pyrite, FeS2; gypsum, CaSO4), or dissolve to form 

H2S. When this comes into contact with oxygen (i.e when redox potential is high) it can form 

sulfates (SO4
2-; Brown, 1985). High levels of sulfur have been hypothesised by previous studies 

as a serious factor in the altered site conditions at Star Carr (e.g. Boreham et al., 2011; Brown 

et al., 2011). A full review of these studies is given in Chapter 2.  

Other important reactive species include metals such as iron and copper (Faulker & 

Richardson, 1989), which can as serve as indicators of redox potential as well as influence the 

biological nature of the burial environment. In reducing (anaerobic) environments, ions are 
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often present in a reduced form, whilst in oxidising sediments more of the oxidised form will 

be present (Hong & Kester, 1986). This is illustrated for iron in Equation 1.1.  

Equation 1.1: redox states of iron in different environments. 

 

Other chemical species can add to the complexity of the chemistry of a burial environment. 

Examples include clay particles, which may act as cation exchange sites to buffer acidity, or 

aluminium which may buffer by forming chelated complexes (Caple 1996; Holden et al., 2006). 

Elements such as calcium are able to form complexes with a multitude of other species, thus 

altering the chemical environment (Pollard, 1996).  

The presence of a number of chemical species such as methane, phosphate and nitrogen 

containing compounds are dictated by the biological activity occurring within the burial 

environment (e.g. Caple, 1994).  

1.5.3 The biology of wetland sites 

Biological activity (enzymatic decomposition by microbes and fungi) is generally accepted as 

the primary cause of degradation of organic materials in archaeological sites, particularly with 

regards to wood (e.g. Hopkins, 1996). Many studies have attempted to look closer at the effect 

of microbial degradation specifically on bone (e.g. Child et al., 1993; Section 1.2.3) and wood 

(e.g. Blanchette, 2000; Section 1.3.3).  

Traditionally, biological deterioration of organic remains in wetland archaeological sites has 

been assumed to be negligible, and this is often cited as the main reason that so many wetland 

sites yield vast numbers of organic remains (e.g. Hedges, 1990, Bjordal et al., 1999). However, 

recent research shows that this is rather a simplistic view of the complicated nature of wetland 

environments (e.g. Kim & Singh, 2000; Caple, 2004). The biological activity of wetland sites is 

controlled by a multitude of factors; the number and variety of microbes present in soil have 

been shown to be vast, and the decomposition methods of each of these varied and not well 

understood (Hamilton, 1985; Sanchez, 2009).  

Biological activity can both be influenced by and influence the chemical nature of the burial 

environment; for example, some inorganic compounds such as copper may contribute 

Reductive environment 
(low redox potential; 

anaerobic)

Oxidative environment 
(high redox potential; 

aerobic)

Fe2+ - e- Fe3+

Fe3+ + e- Fe2+ Iron in reduced form

Iron in oxidised form
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favourably to organic preservation as they can inhibit some microbial decay processes (e.g. 

Zevenhuizen et al., 1979). Biological activity can itself cause fluctuations in pH and redox as 

well as alter concentrations of organic compounds such as sulfates and nitrates (Pollard, 1996; 

Section 1.4.3.2) 

In addition, seasonal fluctuations in biological activity may occur due to changes in moisture 

content and temperature, making it difficult to predict (e.g. Bandick & Dick, 1999).  

Broadly, two types of biological deterioration can occur: aerobic and anaerobic; however, 

research also shows that when an environment alternates between the two (i.e. a fluctuating 

water-table) biological activity is stimulated (Reddy & Patrick Jr, 1975).  

1.5.3.1 Aerobic decomposition 

Aerobic decomposition is the primary mode of natural decay of organic materials. It eventually 

results in the total oxidative breakdown of organic material into carbon dioxide, nitrates and 

methane via the metabolic processes of microbes and fungi (Caple & Dungworth, 1998).  

Wood is particularly susceptible to aerobic decay by fungi, resulting in the demethoxylation of 

phenolic sub units and aromatic cleavage (Section 1.3.3; Blanchette, 2000). However, bone 

protein is somewhat protected from deterioration by collagenase enzymes, as these are too 

big to access the small gaps between HA crystals (Section 1.2.3; Dixon et al., 2008).   

In waterlogged environments aerobic decomposition is assumed to be severely suppressed as 

the high water content prevents the sediments from becoming aerated. Fungi, particularly 

those which cause the rapid breakdown of lignin in wood (brown rot and wet rot) are observed 

to exist only in very limited numbers in anaerobic environments (Holt & Jones, 1983). Although 

some species of aerobic bacteria (specifically erosion bacteria which cause cavities in the 

cellulose rich secondary cell walls) can be active at very low concentrations of oxygen, these 

facilitate degradation at very slow rates (Blanchette et al., 1990; Bjordal et al., 1999).  

Another factor causing the suppression of aerobic decomposition in peatland sites is the high 

concentration of toxic compounds, such as the polyphenols from plant remains, which causes 

the de-activation of the digestive mechanisms of many aerobic micro-organisms (Rosswall, 

1975). In addition, many peatland environments are slightly acidic (generally < pH 6); many 

species of fungi in particular are less able to thrive at extremes of pH (Kim & Singh, 2000).  

1.5.3.2 Anaerobic decomposition 

Although aerobic decomposition is often restricted in peatland sites, certain classes of 

microbes can survive in these anaerobic environments. In peat in particular, sulfate-reducing 

bacteria have often been identified (Postgate, 1965). These utilise sulfate as an alternative to 
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oxygen in their metabolic processes, causing its oxidation to sulfides (Equation 1.2). Sulfate 

reducing bacteria tend to be most active in environments with low redox potential (< -20 mV) 

and can survive at relatively low pH, being observed to thrive between pH 4.1 and 9.9 

(Cappenberg, 1974).  

Equation 1.2: Mechanism of sulfate reduction by bacterial metabolism (Singleton & Sainsbury, 1991). 

 

Other anaerobic bacteria can utilise a variety of other electron donrs, for example NO3- or 

inorganic iron. Often, the metabolic processes of these bacteria contribute to altering the 

chemical environment (Holden et al., 2006). Whilst this may further suppress the activity of 

some microbes, others can adapt to increasingly extreme environments.  

Aside from bacteria, certain types of fungi have been shown to be more tolerant to anaerobic 

environments than other types and are generally more destructive to wood than other 

degrading species (Highley & Kirk, 1979). 

1.5.4 Summary of organic deterioration in wetland sites 

A number of factors (biological and chemical) contribute to determine whether organic 

material is preserved in an archaeological site. In wetland sites, waterlogging is considered the 

major factor contributing to the excellent preservation often seen; exclusion of oxygen leads 

to the suppression of aerobic microbial decay, one of the main degradation pathways for 

organic material (e.g. Pollard, 1996; Caple, 2004; Mattheisen, 2004).  

Wetland sites are also incredibly vulnerable to alteration and destruction via changes such as 

alteration of the water-table and changes to the groundwater chemistry (e.g. Buckland, 1993; 

Kenward & Hall, 2000). This vulnerability can be illustrated using a few important case studies.    

  

SO4
2- + 2e- +  2H+ SO3

2- +  H2O

SO3
2- + 6e- +  6H+ S2- +  3H2O
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1.5.5 Organic remains in wetland sites: Case studies 

Examples of peatland sites preserving a vast array of organic material can be found all over the 

world. Examples of Mesolithic sites are most common in countries with large wetland areas 

such as Denmark and the Netherlands (e.g. Coles, 1998; Van de Noort & O’Sullivan, 2006). In 

Britain, areas such as the Somerset Levels (Cole & Coles, 1986), the East Anglian Fenlands 

(Pryor, 1991) and the Humber Wetlands (Van de Noort, 1998) have provided archaeologists 

with a wealth of environmental and material information.  

A review by Bain et al. (2011) underlines the risks that peat deposits are facing, as processes 

such as land drainage, peat cutting and agricultural activities put them increasingly at risk. The 

detrimental effect that this has on the archaeology contained within them is well documented; 

indeed the fact that so many archaeological sites are now known is testament to the risk that 

they face, as they often become visible only when they become desiccated, or are revealed by 

farming activities (e.g. Buckland, 1993). The effects of changing burial conditions on organic 

archaeology are illustrated by several examples that have relevance to the situation at Star 

Carr, outlined below.    

1.5.5.1 Flag Fen, UK  

Flag Fen, near Peterborough (National Grid Reference TL 22841 991144) is an Iron Age site 

discovered in 1982, in which both organic and inorganic material has been well preserved 

within a waterlogged peat land environment. In recent years, extensive drainage and peat 

cutting has led to an extreme level of peat shrinkage across the Fens, with documented 

shrinkage of several metres occurring over the last century (Pryor, 1991).   

The impact of this changing environment on the archaeology is clear; originally, the wood 

excavated from Flag Fen in 1982 was so well preserved that tool marks, wood species and 

wear marks were all easily identifiable (Taylor, 1992). Recently however, in parts of the site 

wood has been excavated in much poorer condition (Powell et al., 2001). This has been 

attributed to the recorded land drainage, and resulting peat shrinkage. This has had the 

combined effect of increasing the compression factor of the peat (causing compression of the 

delicate archaeological wood) and creating an oxygenated environment in which aerobic 

bacteria may thrive, causing increased degradation of both the lignin and cellulose 

components of wood. A programme of in situ preservation is now in place at the site, and a 

large-scale investigation of microbial decay is being carried out in conjunction with this (Powell 

et al., 2001). A number of modern wood samples have been buried across the site and have 
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been removed periodically for analysis by SEM, in order to identify any increase in biological 

activity (Powell et al., 2001). 

1.5.5.2 Sweet Track, UK 

Perhaps one of the most well-known archaeological wetland areas in Britain is the Somerset 

Levels (Coles & Coles, 1986; National Grid Reference ST 42133 40079). Some unique examples 

of woodworking have been discovered there, such as Neolithic arrow shafts and bows (Coles & 

Coles, 1986). In contrast to the well-preserved archaeological wood, faunal remains have only 

ever been found where pH is slightly elevated due to alkaline mineral deposits, illustrating the 

tendency for bone to dissolve in low pH environments (Gordon & Buikstra, 1981).   

One of the most remarkable finds on the levels is a long track of carved wood dating to the 4th 

millennium B.C. – the ‘Sweet Track’, a raised walkway of oak, ash and lime timbers, reaching 

for approximately 2 km. SEM analysis of the wood in the 1980s by Coles & Coles (1986) found 

that the condition of the wood was variable from section to section, depending on the depth 

of the overlying peat.  

Studies of the Levels in the 1980s aimed to establish the factors affecting preservation and led 

to a long term project of monitoring and in situ preservation, which continues today under an 

English Heritage initiative (Brunning et al., 2000). The main objective is to monitor water-levels 

along the track and maintain these via a water pumping system if necessary. With the system 

currently in place, the water-table has been successfully kept above the Sweet Track since 

1993. Research in 2000 by the Royal Holloway Institute for Environmental Research showed 

that the height of this was more or less stable (Brunning et al., 2000). In recent years, peat 

extraction has also been tightly controlled and tree felling undertaken to prevent root damage 

to the archaeology.   

In the wider region however, recent intensification of drainage of the wetlands for agricultural 

purposes could be putting undiscovered wooden artefacts at more risk (e.g. Brunning et al., 

2000; Geary et al., 2010). Cox et al. (2001) compared the Sweet Track site to the nearby site of 

Abbot’s Way (National Grid Reference ST 4180 4278) where the water-table had not been 

maintained. It was found that wood still present was in extremely poor condition, with some 

of it being impossible to identify, illustrating the negative impact that land drainage can have 

on the preservation of wood.  
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1.5.5.3 Fiskerton, UK 

A large timber causeway, along with other organic and inorganic artefacts, was uncovered at 

the Iron Age site of Fiskerton, Lincolnshire in 1981 (Field & Parker-Pearson, 2003). During later 

years, the site underwent an extended period of drainage and intensive farming before the 

threat to the archaeology was recognised and re-watering of the site instigated (Fell, 2005).  

The effects of re-watering were closely studied by implementing a series of in situ burial 

experiments and programme of hydrological monitoring (Williams et al., 2006). Prior to the 

rewetting of the site, pieces of archaeological and modern animal bone (cooked and 

uncooked) were suspended using plastic tubes, at different depths in the peat for a period of 

three years, and the water chemistry and level of the water-table monitored during this time. 

Some pieces were suspended at a depth that was permanently water saturated (anaerobic 

conditions) and some were permanently dry (aerobic conditions), but others were situated in 

an area of alternating wet/dry conditions as the water-table moved vertically seasonally. 

Deterioration of bone was measured by mass loss and assessment of damage to the collagen 

structure carried out using TEM. Within three years significant degradation of the bone was 

observed. The worst affected pieces were those in the region of the fluctuating water-table, 

illustrating the important role that the water-table plays in preserving organic materials 

(Williams et al., 2006). 

1.5.5.4 Yoxall Bridge, UK 

An accumulation of Bronze Age timbers was found in 1994 at Yoxall Bridge, Staffordshire 

(National Grid Reference SK 13120 17748). Archaeological investigations at the site have 

consisted mainly of sediment, pollen and macrofossil analysis with the aim of understanding 

the wider regional context (Smith et al., 2001).  

Routine soil analysis revealed pH values of < 2 at Yoxall Bridge as well as another site in the 

region (Brown et al., 2010); this is of a similar pH to areas of Star Carr (Boreham et al., 2011). A 

sulfur content of over 3.5 % was recorded (soils typically have a sulfur content of 0.005 – 0.05 

%; Steinburgs et al., 1961), leading to the hypothesis that the acidity had been caused by 

underlying gypsum deposits causing sulfuric acid formation upon oxidation (Brown et al., 

2010). Despite the high acidity at Yoxall Bridge, wooden artefacts were well preserved and it 

was concluded that such acidity may even be conducive to this level of preservation (Brown et 

al., 2010). However, little further research was undertaken into the effects this high acidity 

may have had on any other archaeological remains, particularly bone. 
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1.5.5.5 Nydam, Denmark 

The site of Nydam in Jutland, Denmark is an Iron Age site located on the banks of a prehistoric 

lake, where it is believed that sacrificial offerings were deposited. As a result, an abundance of 

organic and inorganic remains have been found (e.g. Rieck, 1997). Due to the quantity of 

artefacts present, it was decided in 1997 to preserve the site in situ.  

Over a 7-year period following the decision to stop excavations, thorough in situ monitoring of 

geochemical parameters (water-levels, pH, redox, and chemical composition) was carried out 

in order to establish the stability of the site (Mattheisen 2004; Mattheisen et al., 2006). The 

study illustrated the importance of long term monitoring in determining future management 

of the site (e.g. whether to continue to preserve the site in situ). Throughout the monitoring 

period, it was deemed essential to maintain a neutral pH and a high water-table, a strategy 

which enabled the continued survival of both organic and inorganic remains.  

1.5.6 Summary 

These case studies serve to illustrate the importance of gaining an understanding of a burial 

environment and the impact that changes within it might have on the survival of organic 

archaeological materials. Through successful monitoring (e.g. Nydam), chemical and biological 

changes can be quickly identified and mitigation strategies put in place to ensure the 

continued preservation at the site (e.g. Sweet Track).  

The research undertaken in this study, whilst focused on Star Carr, is applicable to other 

archaeological sites that are at risk of undergoing similar processes. Gaining an understanding 

of the threshold conditions at which organic materials can survive is critical to informing the 

management of wetland sites.  
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1.6 Conclusions and aims 

The site of Star Carr has recently revealed potential evidence for accelerated organic 

deterioration (Milner et al., 2011a; Section 1.1.3). Geochemical analysis strongly indicates that 

this is due to changing site conditions, primarily site drainage and a resulting increased acidity 

(a full review of this is given in Chapter 2). A review of several other wetland archaeological 

sites illustrates how changing burial conditions can have adverse effects on the survival of 

organic remains (e.g. Powell, 2001; Williams et al., 2006). The example of Flag Fen illustrates 

the detrimental effect of a lowering water-table on the survival of wooden artefacts in 

particular (Section 1.4.5.1), whilst the studies at Fiskerton showed that a water-table which 

fluctuates through the archaeological layer may lead to the loss of bone in a relatively short 

period of time (Section 1.4.5.3).  

Although a great deal of research has previously been carried out regarding bone and wood 

deterioration, both in archaeological and other contexts, the current conditions at Star Carr 

present some unknowns. In particular, archaeological sites with acidity as high as observed at 

Star Carr (< pH 2; Boreham et al., 2011) that still contain bone, antler and wood are not known. 

In addition, experimental diagenetic studies do not consider the effects of as low pH as has 

been observed at Star Carr, and as such our understanding of organic preservation under these 

conditions is very limited.  

The aim of this study was to generate relevant data to further understand the preservation of 

organic materials at Star Carr. This has been achieved by following several key objectives: 

 To assess the current geochemical conditions at Star Carr 

 To determine whether these conditions could be solely responsible for the observed 

organic decay 

 To assess the state of preservation of archaeological material excavated from the Star 

Carr site, and compare this to experimental data 

By achieving this greater understanding, questions raised following observations reported by 

Milner et al. (2011a; Section 1.1.2.4) and Boreham et al. (2011; Chapter 2) could be assessed; 

primarily, whether deterioration at Star Carr had indeed occurred recently, and whether 

increased acidity was the major cause of this. By answering these questions, the aim was to 

provide the scientific evidence to enable the appropriate authorities to assess whether 

anything can be done to mitigate against the deterioration. This study has important 

archaeological implications of these results on both the unexcavated archaeology at Star Carr 

and for preservation at other wetland sites, particularly acidic sites. 
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An experimental approach has been taken, with the aim of answering these questions. A 

review of the current burial conditions at Star Carr was first carried out (Chapter 2) and 

appropriate methods of analysis of deterioration established (Chapter 3). Following that, the 

effects of high acidity alone on the degradation of bone and wood has been considered 

(Chapter 4). However, as burial conditions are more complex than can be estimated by one 

parameter, burial experiments have been carried out alongside this controlled study. To begin 

with, these were performed under semi-controlled conditions in a lab (Chapter 5). In situ burial 

experiments were then carried out, in order to represent true site conditions as close as 

possible (Chapter 6).  

Comparison of results from these experiments has been made with archaeological material, 

both from Star Carr and other sites, through the application of a suite of appropriate analytical 

techniques (Chapter 7). This has expanded the understanding of the deterioration of organic 

remains not only at Star Carr but other archaeological sites that have similar burial conditions, 

or are at risk of undergoing similar alterations in site conditions. 
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2 CHAPTER 2 
 

 

A REVIEW OF GEOCHEMICAL 
OBSERVATIONS AT STAR CARR 
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2.1 Introduction 

The mechanisms and rate by which any archaeological material deteriorates is heavily 

dependent on factors such as local hydrology, pH and microbial activity of the burial 

environment (Caple, 1994; Nicholson, 1996; Turner-Walker, 2008; Chapter 1, Section 4). 

Several studies show how important it is to characterise and understand these factors when 

making decisions regarding the management of an archaeological site; for example whether to 

preserve the site in situ (e.g. Williams et al., 2006) or whether to implement long-term 

management strategies such as artificially increasing the water-table (e.g. Brunning et al., 

2000). In recent years, as more and more archaeological sites are preserved in situ (e.g. 

Mattheisen et al., 2006; Pollard, 2006) it has also become more important to closely monitor 

any alterations in the burial conditions and anticipate the effects these might have on any 

remaining archaeology (e.g. Kars, 1998; Mattheisen, 2004).  

Examples of monitored sites are now found across the UK and Northern Europe, where 

policies of in situ preservation are regularly advised (Mosely, 1996; Oxley, 1996). Water-table 

depths and variations in site hydrology are often surveyed adjacent to an archaeological site, 

either continuously, using automatic data loggers, or by regular manual measurements (e.g. 

Davis, 1996; Brunning, 2006). Alongside this, recording of pH and redox can serve as a proxy 

for preservation potential; redox in particular can indicate potential levels of biological activity. 

In addition, changes to pH and redox serve as a marker for changing chemical conditions of the 

burial environment (e.g. Pollard, 1996; Mattheisen, 2006). Characterisation often goes further 

than this, constituting analyses such as total organic carbon, calcium, phosphate and sulfur 

content to provide a detailed understanding of the chemical nature of the burial environment 

(Nicholson, 1996; Crowther, 2002).  

Until recently, no prolonged period of hydrological or geochemical analysis had taken place at 

the Star Carr site. However, there were indications that deterioration of organic remains at the 

site was linked to changes within the burial environment, although much of this evidence 

could be considered largely anecdotal. During field walking in 2002 and 2003, the presence of 

large numbers of lithics on the ground surface, and the observation of a previously hidden 

contour led to the hypothesis that peat shrinkage had occurred (Boreham et al., 2011). In 

addition, comparison of water levels in the trenches during excavations in 2007 and 2008 with 

photographic records of original excavations (Clark, 1954), suggested that the water-table had 

lowered (Chapter 1, Section 1.1.2).  
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Following these observations, a small-scale survey of pH across the site was carried out and 

results showed that parts of the site were highly acidic, reaching < pH 3 in places (Needham, 

2007). Between 2009 and 2012, a number of larger scale projects were implemented, in order 

to more fully understand the site conditions. More specifically, it was hoped to ascertain 

whether changes were recent, and how the changes were linked to the observed organic 

decay (Boreham et al., 2011; Brown et al., 2011; Milner et al., 2011a; Bradley et al., 2012).  

As part of this study, the results of these previous assessments have been compiled and used 

as a starting point from which to investigate organic deterioration at the site. While these 

studies have provided a great deal of geochemical and hydrological data, they still span a 

relatively short period. Therefore, in order to slightly extend the time-scale of the geochemical 

assessment and determine whether data from those studies represent current site conditions, 

further small-scale measurements have been recorded as part of the current study. In most 

cases, these measurements have been taken alongside the excavation of organic remains, and 

therefore cover only a small area of the site.  
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2.2 Summary of previous studies 

The following discussion is compiled from results published by Needham (2007), Boreham et al. 

(2011), Brown et al. (2011) and Bradley et al. (2012).  

2.2.1 Background (wider context) 

Star Carr is located within the Vale of Pickering, which is bordered by Cretaceous chalk to the 

south and Jurassic limestone to the north (Figure 2.1). The base of the vale, in which Star Carr 

is situated, is primarily sand and gravel post-glacial alluvium, surrounded by Cretaceous and 

Jurassic clay and chalk outcrops. Above this bedrock lie more gravel, glacial sands and Speeton 

and Kimmeridge clays; both types of clay are very low in permeability and high in pyrite 

concentrations (Dypvik, 1984). Above these formations are the Mesolithic reedy and wood 

peats.  

 

Figure 2.1: Geological map of the Vale of Pickering, showing Star Carr located on alluvium bedrock. Inset 
shows detail of the site, bordered by the Hertford cut to the north and field drains to the east and west. 
Adapted from Brown et al. (2011).  

The majority of the Mesolithic archaeology is located within these peats at a depth of between 

~ 0.8 and 1.2 m below ground level, which has probably contributed to the preservation of 

organic materials (Chapter 1, Section 1.4). A high-resolution auger survey conducted by 

Boreham et al. (2011), consisting of three transects across the site established that the 

sediments directly underlying the peats vary locally (Figure 2.2, bottom). Speeton or 

Star Carr

Field drains
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Kimmeridge clay outcrops of varying thickness lie between the peat and the alluvium gravels in 

places. These may cause local variations in soil chemistry and hydrology (Welch & Thomas, 

1996). 

Upwelling groundwater at the site is believed to originate primarily from a calcium-rich local 

aquifer, and the nearby river Derwent may also have an effect on local hydrology. Both water 

sources are neutral or slightly alkaline, due to the influence of the local chalk and limestone. A 

man-made channel, the river Hertford, closely borders the site to the north, and field ditches 

extend down the east and west side of the field in which Star Carr is contained. The Hertford 

cut is fed mainly from a nearby chalk spring. In addition, in 2000 AD underground field drains 

were installed across the field for agricultural purposes, running parallel to the Hertford cut 

and discharging into the east and west ditches.  
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Figure 2.2: Diagram showing the extent of the geochemical survey carried out in 2009 (top). Detailed 
stratigraphy through a transect of the site illustrates the local variability of the sediments underlying the 
archaeological deposits (bottom). Reproduced with permission from Boreham et al. (2011).(Originally in 
colour). 
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2.2.2 The geochemistry of Star Carr 

2.2.2.1 Scope of previous study 

In 2007, pH values recorded during excavations at Star Carr were found to be lower than pH 3 

in the southern end of Trench SC24 (located in the wetland area of the site; see Chapter 1, 

Figure 1.3) (Needham, 2007). Although peat is often slightly acidic (pH <6), values this low are 

unusual, and the effects of such high acidity on organic archaeological remains not well 

understood (Chapter 1, Sections 1.2 and 1.3). This led to the hypothesis that the organic 

deterioration observed in the material from the 2007 and 2008 excavations was likely to be 

linked to geochemical changes, primarily increased acidity. In addition to this, a number of 

observations made during excavations were judged to be indicative of unusual geochemical 

activity; for example, orange residues forming in the flotation tank (used to sieve the 

excavated sediments for small finds) were characterised by their colour as iron oxide 

(Schwertmann & Cornell, 2000; Needham, 2007). An extensive survey carried out in 2009 

aimed to build upon this initial evidence, and ascertain the extent of the potential acidification 

(Boreham et al., 2011).  

The 2009 survey involved analysis of a series of cores, encompassing the three transects across 

the site indicated in Figure 2.2. Two of these transects cut through previous trenches, with the 

aim of establishing any influence of excavation on the chemistry of the sediments. The 

sequences were measured for pH and redox at 10 cm depth intervals, and cores taken at 

approximately 2 m intervals, providing high resolution analysis of spatial variations in pH. In 

addition, identical analysis was carried out on archive auger cores, removed during excavations 

in 1985 and stored at the University of Cambridge in the intervening years. The aim of this was 

to determine whether any post-excavation alteration of the sediments had occurred. Further 

time-dependent pH tests were carried out on a number of fresh sediment samples, with pH 

and redox recorded at intervals on samples left exposed to the air (Boreham in Milner et al., 

2010).   

In addition to pH and redox analysis, measurements such as total organic content, iron II: iron 

III ratios and sulfate: sulfide ratios and aluminium and manganese concentrations were carried 

out at each sampling point to provide a more detailed survey of the site chemistry.  

2.2.2.2 pH and redox analysis 

The pH of sediments analysed in the field differed hugely, spanning between pH < 2 and 8.43; 

similar variability was observed upon analysis of the archive cores. Sediments tended to 

become more acidic with depth, with the region of the archaeology displaying the lowest pH 
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(Figure 2.3). Below the archaeology, pH tended to rise again. This could be due to the presence 

of groundwater, resulting in less oxidation of sulfides to acidic sulfates (Boreham et al., 2011).  

Correlation with the stratigraphy of the sediments indicated that these local variations could 

be the direct result of the variations in the underlying sediments (Figure 2.3). In particular, the 

presence of thin clay lenses underlying the peats in areas of the site seems to correlate with 

increased acidification. In areas where the peat is underlain by thick gravel, pH tended to be 

higher; this is likely to be explained by the absence of pyrite-rich clays resulting in a lower 

sulfate concentration. Closer to the lake edge, an increase in pH was also observed, attributed 

to carbonate-rich lake marls causing buffering (Boreham et al., 2011) 

 

Figure 2.3: Plot of measured pH values of the transect illustrated in Figure 2.2, showing the variability in 
pH across the site; pH is lower directly above clay outcrops. Reproduced with permission from Boreham 
et al. (2011).(Originally in colour).  

Where the survey transected through previously excavated trenches, some evidence for a 

‘halo’ effect was observed; pH was increased in the backfill and extending horizontally into 

fresh sediments, compared to the surrounding sediment. A possible explanation for this is the 

mixing up of less acidic plough soil with the peats during backfilling of the trench.  

Time-dependent analysis, where measurements of pH were taken at intervals of several 

minutes following exposure to air, revealed evidence for rapid alteration upon exposure to 

oxygen. The response differed in different samples however; in samples already displaying 

acidity, pH decreased logarithmically indicating a tendency to undergo oxidation rapidly upon 

exposure to air (e.g. Patrick & Mahaptra, 1968). In more neutral samples (closer to the surface) 

however, pH increased slightly. These changes in pH indicate that the sediments are 

‘vulnerable’ and can easily oxidise on contact with air (Boreham et al., 2011).  
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A wide range of redox potentials (- 44mV to + 600 mV) were also measured across the site, 

further indicating that different chemical processes may be occurring in different parts of the 

site. A high redox potential indicates a tendency of sediments to become reduced, catalysing 

oxidation reactions (e.g. Patrick & Mahaptra, 1968). Redox measurements recorded by 

Boreham et al. (2011) at Star Carr were most elevated in regions where pH was low (+400 mV 

to +600 mV); sediments with redox values > 400 mV are generally described as highly oxidative 

(Patrick & Mahaptra, 1968). As well as indicating the presence of oxygen, high redox potential 

can be attributed to high concentrations of acid, as acids readily accept electrons, facilitating 

oxidation (Atkins et al., 2006). In the more neutral topsoil, redox potential was lower (< 200 

mV). Changes in redox potential between the field and lab further confirmed the vulnerability 

to oxidation displayed by the sediments at Star Carr.  

2.2.2.3 Elemental analysis 

Elevated levels of total iron were determined in the base and top of most boreholes. The 

oxidation state of iron serves as an indicator of the state of oxidation of the sediments 

(Boreham et al., 2011); low levels of iron III present indicated that much of the sediment was 

not completely oxidised at the time of analysis.  

The concentrations of sulfur were found to be elevated throughout each transect. High 

concentrations were often associated with elevated iron concentrations, leading to the 

hypothesis that both originated from pyrite (FeS2) in the underlying Speeton and Kimmeridge 

clay deposits. In addition, sulfur concentrations tended to be higher towards the base of the 

sequences, indicating the source of the sulfur as from below the sequence. The high 

concentrations of sulfur indicate that high acidity across the site is likely to be caused by the 

formation of high levels of sulfuric acid due to oxidation of the sediments.    

Comparison of the sulfide: sulfate ratios revealed increased levels of sulfate in archive 

boreholes compared to those taken as part of the study. This suggests that oxidation of the 

sulfide had occurred in the archive boreholes over time, and is likely to explain the increase in 

acidity through sulfuric acid formation. The overall reaction is shown in Equation 2.1. 

Equation 2.1: Oxidation of sulfide to sulfuric acid. 

 

This rapid oxidation of sulfides to sulfates further indicates that sediments from parts of the 

site have the potential to undergo redox reactions once exposed, further illustrating their 

vulnerability.  

H2S + 2O2 H2SO4
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2.2.3 The hydrology of Star Carr 

2.2.3.1 Scope of previous study 

During excavations in 2006 and 2007, it was noticed that the level of water in excavated 

wetland trenches appeared a lot lower than indicated by photographic evidence of the original 

excavations, reported by Clark (1954). Concerns were raised that this may have been the direct 

result of the land drainage undertaken for agricultural purposes. Hydrological assessment of 

the area surrounding Star Carr was therefore carried out in order to determine the source of 

groundwater at the site and infer the effects that drainage may be having on the land (Brown 

et al., 2011). This was done using computer modelling as well as by collating existing 

hydrological data from the British Atmospheric Data Centre, the Environment Agency and the 

British Geological Survey.  

Between September 2010 and September 2011, a series of dipwells across the Star Carr site 

and surrounding area was monitored monthly, in order to provide realistic data on the height 

of the water-table and complement the previous modelling-based study conducted by Brown 

et al. (2011). In one of these dipwells, an automatic data logger was placed to record a higher 

time resolution of water level data.  

Isotopic analysis of hydrogen and oxygen present in groundwater can be used to identify the 

source of the groundwater, as processes occurring during the water cycle cause the relative 

proportions of heavy and light isotopes to alter (Bradley et al., 2007). Isotopic analysis was 

therefore carried out during both studies, on water samples taken from the dipwells, the 

Hertford cut, the bordering field ditches and a nearby chalk spring that is believed to come 

directly from the local limestone aquifer.  

2.2.3.2 Summary of hydrology results 

It was hypothesised from the computer modelling survey and field data that the insertion of 

the underground drainage system in 2000 AD may have lowered the water-table by as much as 

0.5 m, and as such resulted in the Star Carr site effectively being isolated from any regional 

hydrological influences. Data obtained for water levels in the Hertford cut revealed no 

reduction in water levels since 1989, further confirming that changes in hydrology of the Star 

Carr site are localised. Over the period from 2000, since the insertion of the field drains, data 

from the British Atmospheric Data Centre shows that the area was predominantly wetter than 

average, suggesting that any drainage of the land was not climate driven. Hydrogen and 

oxygen isotopic analysis of groundwater from in and around the Star Carr site indicated that 

residence times of the groundwater were short, confirming the hydrological isolation of the 
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site. This suggests that groundwater is likely to originate from precipitation, rather than any 

local aquifers.  

Measurements of water levels in the series of dipwells between September 2010 and 

September 2011 confirmed these findings, further suggesting that recent drainage at the Star 

Carr site has occurred, and is the result of field drainage rather than wider hydrological 

influences. 

Boreham et al., (2011) had also hypothesised that Star Carr is hydrologically isolated, based on 

the stark differences in groundwater chemistry between acidic water at the site and the 

neutral to alkaline local chalk spring and Hertford cut. The formation of sulfuric acid due to 

oxidation of sulfides was also hypothesised to be linked to the reduction of the water-table 

(see Section 2.4 for discussion). 
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2.3 Further geochemical analysis 

2.3.1 Introduction 

Previous geochemical analysis afforded a wealth of information regarding the geochemistry 

and hydrology of the Star Carr site. Rapidly altering pH values and high redox potential in 

sediment samples from parts of the site following exposure to air demonstrated that 

sediments in parts of the Star Carr site are highly vulnerable, and that further exposure to air 

may cause oxidation of these sediments, increasing their acidity even more (Boreham et al., 

2011). For these reasons, it was decided that a further extensive geochemical investigation (for 

example by conducting an auger survey) would not add sufficiently to previous surveys to 

justify the possible damage to the archaeology, and would therefore not be carried out as part 

of this study.  

Despite this, opportunities for limited geochemical analysis were undertaken during 

archaeological excavations. This minimised the impact of further analysis, as well as allowing 

the direct correlation of the geochemical data with the preservation of archaeological 

material; the majority of samples were taken in association with bone artefacts and from the 

surface of exposed trenches. The aim was to supplement existing data, and test whether 

conditions at the site had significantly altered since analysis in 2009, rather than carry out an 

independent survey. 

2.3.2 Methodology 

2.3.2.1 pH and redox analysis 

Sediment pH and redox potential were measured, using a method developed by Needham 

(2007) and based on that described by Nicholson (1996). Approximately 50 cm3 of soil was 

mixed with 20 cm3 of deionised water and agitated. pH and redox values of the resulting 

suspension were recorded using a hand held pH probe (Hanna Instrument). An adjustment of 

the values due to the addition of water is not necessary (e.g. Boreham et al., 2011).  

For groundwater samples, measurements were taken directly, using a hand held field probe 

(HI-98121 pH and ORP pocket probe, Hanna Instrument) calibrated using pH 4 and pH 7 

reference solutions.  

2.3.2.2 Elemental analysis 

Total sulfur, hydrogen, carbon and nitrogen content analysis of soils was carried out on freeze-

dried sediment samples. A Thermo Flash 2000 Elemental Analyser fitted with a MAS200R 
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autosampler, chromatographic column and thermal conductivity detector was used with 

helium as a carrier gas (Green, in prep). Soil samples (10-15 mg) were weighed into tin foil 

capsules and the capsules folded to exclude air. Samples were introduced for combustion, with 

a pulse of oxygen (250 ml min-1, 5 s) into a quartz reactor tube, packed with copper oxide 

granules and electrolytic copper wires, held at 900°C. Sulfanilamide and cystine were used as 

standards.   

2.3.2.3 Sampling strategy 

2.3.2.3.1 Sediment analysis 

The majority of geochemical analysis undertaken as part of this study was carried out in a large 

trench excavated in 2013 (SC34; Chapter 1, Figure 1.3) that extended into both the wetland 

and dryland areas of the site. Further analysis was carried out at nearby Flixton Island and a 

small test pit located to the North of Star Carr as part of in situ burial experiments; however, 

the discussion here has been limited specifically to the Star Carr site, and therefore only 

analysis from SC34 is presented. Results from the in situ experiments are discussed in Chapter 

6. 

In order to assess the vertical variation in pH, two series of samples were taken down the 

exposed wall of Trench SC34 during excavation (Figure 2.4). The first series was located at the 

interface between the backfill of VP85 (first excavated in 1985) and the unexcavated 

sediment). It was expected, based on the hypothesis of a ‘halo’ effect caused by excavation, 

developed by Boreham et al. (2011) that the previous exposure of the sediments may have 

had a localised impact on the surrounding sediments. The second series was located entirely 

within newly excavated sediment. The locations of both ‘column’ samples are indicated by a 

blue box in Figure 2.5.  

Samples for these series down the trench were taken by clearing approximately 3 cm of 

sediment from the exposed surface and removing ~50 cm3 of new sediment for analysis at 

regular intervals down the profile. pH and redox were recorded for each sample.  
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Figure 2.4: Schematic showing how column samples were taken into the virgin sediment from the trench 
face. In SC34 this trench face was newly exposed, whereas in VP85 the trench had been re-excavated, 
following previous excavation in 1985. The base of each trench represents the start of the archaeological 
zone (100 cm for SC34; 60 cm for VP85). (Originally in colour). 

Additional samples were taken across the exposed surface of Trench SC34 during excavations, 

mainly in association with recovered organic artefacts. To minimise the effects of oxidation, 

immediately prior to sampling the exposed surface was cleared and fresh sediment removed 

for analysis. These samples were analysed for pH and redox, and summarised in Table 2.2.  

2.3.2.3.2 Groundwater monitoring  

A series of dipwells were installed around the perimeter of the Star Carr field by Brown et al. 

(2011) and monitored between September 2010 and September 2011 as part of the study by 

Bradley et al. (2012). In order to slightly expand the monitoring period and confirm that the 

current situation at the site is represented by the previous study, additional measurements 

and groundwater samples were taken from these on four occasions (October 2011; May, June 

and July 2012). The opportunity was also taken to record pH and redox values for groundwater 

in each dipwell, and make a comparison with the Hertford cut, field ditches and nearby spring. 

This was done by removing a ~20 mL sample of groundwater using a syringe after the water 

level had been recorded. The pH and redox of the water were measured immediately using 

hand held field probes (HI-98121 pH and ORP and HI-98130 EC pocket probes, Hanna 

Instrument).  
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2.3.3 Results  

2.3.3.1 pH and redox 

Sediment samples measured down the profile of the trench (column samples) reveal the 

vertical variation in the geochemistry of the Star Carr site (Table 2.1). Samples taken close to 

the backfill of a previously excavated trench (VP85) were much less acidic than those in a 

newly excavated trench. An explanation for this could be that neutralised topsoil was mixed 

into the peat during backfilling in 1985, further supporting the proposal by Boreham et al. 

(2011) that excavation of the site may alter the burial environment.  

Table 2.1: pH recorded in the field and after 24 hours, and redox measurements for samples measured 
vertically down an exposed trench (Figure 2.4). Red values indicate where the pH decreased by more 
than 0.1 pH units after 24 hours. (Originally in colour). 

 

In the sediments adjacent to the backfilled trench (VP85), the soil becomes more neutral with 

depth, whereas adjacent to the new excavations it becomes more acidic. This is potentially due 

to differences in the underlying sediments, although it could also be due to oxidation occurring 

in the sediments close to VP85 following the original excavation in 1985. The diverse pH values 

in SC34 are comparable to those observed during the auger survey carried out in 2009, where 

pH also decreased in the region of the archaeology (Boreham et al., 2011). 

Low redox values (< 200 mV) in the region of the archaeology near VP85 shows that sediments 

are reduced, despite displaying low pH. This suggests that they are no longer as ‘vulnerable’ as 

Column samples

SC34 (fresh sediment) VP85 (Backfill)

Depth (cm) pH
pH + 24 
hours

Redox (mV) pH
pH + 24 
hours

Redox (mV)

Surface 3.92 3.82 364

10 6.41 5.98 214 3.97 3.72 314

20 4.00 3.78 220

30 4.85 4.33 310 5.34 4.86 123

40 6.06 5.57 -20

50 3.41 3.36 384 6.11 5.96 -4

60 6.30 5.88 -84

70 2.60 2.58 440

90 2.93 2.66 276

100 3.23 2.99 198
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those from SC34, which are highly oxidising. However, differences in pH after 24 hours were 

observed in the backfill samples as well as those adjacent to fresh sediment (Table 2.1). This 

suggests that some oxidation post-excavation has occurred, signifying that the sediments were 

not completely oxidised prior to excavation.  

Values of pH and redox recorded in the field across Trench SC34 (as well as pH after 24 hours 

for some samples) are shown in Table 2.2. Where sediment samples were taken alongside 

organic artefacts, the artefact sample number is given (left hand column), and additional 

sediment samples, that were not associated with artefacts, are numbered sequentially (right 

hand column).  

Table 2.2: Geochemical data for soil samples taken from surface of excavated Trench SC34 in 2013. An 
asterisk indicates samples that were also analysed for sulfur content. When pH changed by more than 
0.1 pH unit after 24 hours this is indicated by red for a negative change and blue for a positive change. 
(Originally in colour). 

 

Soil samples adjacent to organic 
artefacts

Soil samples from across surface of trench

Sample 
number

pH
Redox
(mV)

Sample 
code

pH
pH + 24 
hours

Redox
(mV)

99342* 2.92 425 KH-S-01* 1.98 2.12 383

99755 2.24 365 KH-S-02* 2.13 2.24 385

99760 3.22 328 KH-S-03 2.36 2.20 430

99762* 2.22 369 KH-S-04 2.06 2.14 420

99790 2.29 306 KH-S-05 2.13 2.17 375

99876* 2.09 333 KH-S-06 3.21 3.14 287

99871* 2.30 322 KH-S-07 3.27 2.79 345

103369 3.98 240 KH-S-08 2.12 1.83 420

103423* 5.60 102 KH-S-09 2.86 2.83 238

103425 4.87 154 KH-S-10 4.58 4.76 191

103426* 4.44 190 KH-S-11 3.57 3.30 380

103639 6.58 84 KH-S-12 3.94 3.75 375

103644 6.58 20 KH-S-13 3.18 3.03 426

103645* 6.57 26 KH-S-14* 3.08 2.96 315

103646 6.48 135

103648 4.49 282
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Measurements of pH and redox across the surface of Trench SC34 further confirmed that 

spatial variability in the geochemistry is significant. Even within the wetland areas of the 

trench, pH ranged from approximately neutral to less than 2. 

In Figure 2.5, pH values have been plotted spatially. For these purposes it has been assumed 

that the pH measured at a point is broadly representative of the pH for approximately 0.5 m 

around the sample. This illustrates clearly the variability in sediment pH across the surface of 

Trench SC34: pH varies between 2.2 and 6.57 within metres in the southwest corner of the 

trench. This is therefore likely to have a localised impact on organic preservation.  

Where high acidity (low pH) was recorded, sediments also displayed high redox (> 400 mV), 

which is to be expected due to the oxidising nature of acid (Atkins et al., 2006). High redox also 

indicates a tendency for further redox reactions to occur, again supporting observations by 

Boreham et al. (2011) that sediments across the site are ‘vulnerable.’ Indeed, in all samples 

where pH was measured after 24 hours, pH had altered suggesting that oxidation had 

occurred.   

 

Figure 2.5: Plot of pH values measured across surface of SC34. Locations of column samples are indicated 
by a blue box, and black-outlined circles represent samples taken in association with organic artefacts. 
(Originally in colour). 
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2.3.3.2 Sulfur content 

Percentage sulfur and carbon content was analysed for a small number of the samples in Table 

2.1, with the aim of determining whether the high levels of sulfur across the site reported by 

Boreham et al. (2011) persist.   

Soils typically range from 0.005 – 0.05 % sulfur content (Steinburgs et al., 1961), meaning that 

sulfur content is elevated in all samples analysed from SC34, ranging from 1.4 – 20 % (Table 

2.3). It is also highly variable however. This corroborates what was found in the larger scale 

investigation in 2009 (Boreham et al., 2011). No correlation is seen between pH and sulfur 

content, although there does seem to be a lower level of carbon present in samples with a 

higher pH. This could be the result of higher clay content of the soil, as clay is less carbon rich 

than peat (e.g. Dypvik, 1984).  

Table 2.3: Result of elemental analysis on selected sediment samples. 

 

  

% Sulfur and carbon in analysed samples

Sample pH % Sulfur % Carbon

KH-S-01 1.98 7.3 34.3

KH-S-01 2.13 6.4 35.3

99342 2.92 1.4 46.5

99762 2.22 9.5 24.2

99876 2.09 10.0 33.2

99871 2.30 20.0 14.6

103423 5.60 6.1 2.9

103426 4.44 8.6 4.2

103645 6.57 7.6 2.2
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2.3.3.3 Dipwell monitoring 

Groundwater samples were collected from 11 dipwells around the Star Carr site in October 

2011, May, June and July 2012, as well as from the field ditches, Hertford cut and the local 

spring, expected to originate from the limestone aquifer (Bradley et al., 2012) (Figure 2.6). 

Data from the pH analysis is shown in Table 2.4. 

 

Figure 2.6: Location of dipwells (indicated by circles) around the Star Carr site, along with the depth of 
the dipwells. Reproduced with permission from Bradley et al. (2012). 

All dipwell samples were slightly acidic or neutral, ranging from pH 5.4 to 7.5 (Table 2.4). 

Analysis of water from both the Hertford cut and local spring showed that both potential 

water sources were slightly more alkaline, reading pH 7.3 to 8.3. This is in agreement with the 

hypothesis proposed by Brown et al. (2011) that Star Carr is hydrologically isolated from 

regional water sources, and that the observed acidity originates from chemical conditions 

within the site itself. Slightly lower values in the field ditches support this, as these contain 

groundwater that has originated from the site itself, which may have increased their observed 

acidity.   

Water levels remained at similar levels to those in 2010/11 reported by Bradley et al. (2012) 

indicating that data obtained during the earlier study is representative of site conditions a year 

later. No clear correlation was observed between water-table depth and pH. However, the 

time-scale of the period of monitoring was not long enough to establish long term trends.  
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Table 2.4: pH values of selected groundwater samples analysed on four occasions from 2011-2012. 
Where no value is given, the dipwell was dry.  

 

Evidence for high levels of iron oxide was noted during water sampling, in the form of orange-

brown deposits in and around the field ditches (Schwertmann & Cornell, 2000).  

pH of groundwater samples

Dipwell
October 

2011
May 2012 June 2012 July 2012

DW-1 5.43 6.37 6.49

DW-2 6.31 6.63 6.62 7.00

DW-3 7.35 7.47 7.71

DW-7 7.27 7.02 6.96

DW-9 7.42 6.98 7.27 7.48

DW-11 7.35 7.37 7.55 7.81

West field 

ditch
6.57 7.99 7.94 8.03

East field 

ditch
7.17 7.94 7.52 7.57

Local spring 7.54 7.54 7.62 7.88

Hertford Cut 7.35 8.32 7.54 7.95
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2.4 Discussion and review  

From geochemical analysis carried out by Boreham et al. (2011), it is clear that parts of Star 

Carr are highly acidic. High levels of sulfur present across the site suggest that this is likely to 

be due to the formation of sulfuric acid. Further analysis as part of this study confirmed those 

observations, indicating that the conditions observed in 2009 are representative of current 

conditions at Star Carr.  

Both Boreham et al. (2011) and Brown et al. (2011) suggested that this high acidity is likely to 

be a major factor stimulating organic decay at the site. Evidence closely links this high acidity 

to alterations in the hydrology of the site; oxidation of sulfides to sulfate occurs following 

introduction of oxygen into the sediments. Archive hydrological data suggests that this 

alteration has occurred recently (compiled in Brown et al., 2011). This is in agreement with the 

hypothesis that organic decay has occurred recently and is caused primarily by alterations of 

burial conditions at the Star Carr site, as proposed by Milner et al. (2011a).  

The complex underlying stratigraphy of the site, reported by Boreham et al. (2011), combined 

with changes in the water-table appears to have contributed to altering the specific chemical 

environment of the Star Carr site. Importantly, it appears to have resulted in highly localised 

spatial variations in the acidity of the site, and although parts of the site are highly acidic, areas 

remain that are almost neutral.  

The complex geochemistry observed across the site is likely to be caused by a number of 

contributing and conflicting factors. Several are summarised below.  

2.4.1 Acid rock drainage (ARD) 

Evidence for high levels of iron and sulfur indicate that a process similar to acid rock drainage 

(ARD) may be occurring at the Star Carr site (e.g. Robb & Robinson, 1995; Warren, 2011). This 

is a process often seen in association with some mining activities, where the exposure of 

sulfide-containing minerals to both air and oxygen results in the formation of sulfuric acid. The 

most common geological source of sulfide is pyrite (FeS2). The exact mechanism of its 

oxidation is not fully understood; the process is likely to involve a series of oxidation and 

reduction steps, driven by both chemical and biological influences (Egiebor & Oni, 2007). 

However, the overall conversion can be simplified according to Equation 2.1.   

Equation 2.2: Formation of sulfuric acid from pyrite. 

 
FeS2 (s) + 3O2 (g) + 2H2O (l) Fe2+ + 2SO4

2- + 4H+
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Pyrite had been hypothesised to be the main source of high levels of sulfur at the Star Carr site 

(Boreham et al., 2011; Brown et al., 2011). It is likely to originate from the underlying Speeton 

and Kimmeridge clay deposits, sediments characterised by high pyrite content (Dypvik, 1984). 

Indeed, the proposed hydrological isolation of the site strongly indicates that the sulfur must 

originate from within the site. Although agricultural activities such as fertilisation may also 

have some contribution (Needham, 2007), hydrogen and oxygen isotope analysis and the 

pattern of sulfate concentrations in the sediments suggest that the source of the sulfur lies 

primarily below the archaeology (Brown et al., 2011; Boreham et al., 2011).  

The alterations in pH and redox potential in the sediments following exposure to air reported 

by Boreham et al. (2011) strongly supports the hypothesis that the presence of sulfides and 

sulfates are responsible for the high levels of acidity at the site. Three different scenarios were 

noted:  

 Where sediments that were already acidic became more acidic and underwent an 

increase in redox potential 

 Where acidic sediments underwent little or no change in pH or redox potential  

 Where near neutral sediments underwent an increase in pH and decrease in redox 

potential.   

This third scenario has been attributed to the presence of calcium in the topsoils, causing the 

reaction of sulfate to gypsum following exposure to air. All three processes and explanations 

are summarised in Figure 2.7. 

 

Figure 2.7: Proposed mechanisms of changes in acidity and redox potential upon exposure to oxygen. 
(Originally in colour). 

H2SO4 + H2S                         2H2SO4

Scenario 1:

Scenario 2:

Scenario 3: 

Sediment is already acidic, 
but not all sulfide is oxidised

Sediment is already acidic, 
all sulfide is oxidised

Sediment is near neutral 
and contains calcium

H2SO4 H2SO4 + O2

H2S                H2SO4 + Ca2+ H2 + CaSO4

pH decreases

No change

pH increases

2O2

O2

2O2

Increase in redox potential

reductive

No change in redox potential

Reduction in redox potential
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2.4.2 Biological implications 

It is normally assumed that under anaerobic (i.e. waterlogged) conditions, microbial activity is 

supressed and thus biological activity can be considered a minor factor in the deterioration of 

wood and bone (e.g. Kim & Singh, 2000; Chapter 1 Section 1.4.3.1).  It is possible however, that 

anaerobic bacteria are present (Chapter 1, Section 1.4.3.2). The formation of sulfuric acid from 

pyrite is likely to be catalysed by certain strains of anaerobic bacteria which oxidise iron as part 

of the metabolic process, assisting in the initial breakdown of pyrite (Eigebor & Oni, 2007). 

Such bacteria are often acidophilic, surviving or indeed flourishing at low pH, meaning that 

high levels of acidity do not necessarily lead to the absence of biological activity.  

Conversely, the presence of sulfate-reducing bacteria may mitigate the sulfuric acid formation 

by reducing the sulfates to sulfides via Equation 2.3 (Robb & Robinson, 1995). These bacteria 

are also strictly anaerobic (Postgate, 1965). Hydrogen sulfide (H2S) can be identified by its 

characteristic smell and has frequently been noted during recent excavations at Star Carr 

(various excavators, pers. comm.), suggesting that this process is occurring.  

Equation 2.3: Bacterial reduction of sulfates. 

 

In areas of the site where pH is higher, it is possible that increases in acidity caused by the 

metabolism of pyrite by some anaerobic bacteria is therefore mitigated by the co-existence of 

sulfate reducing bacteria. In other areas however, it appears that the lowered water-table 

allows ARD to proceed at a rate that is not mitigated by the reduction of sulfates to hydrogen 

sulfide by microbial activity.  

2.4.3 Underlying geology 

The spatial variations in pH and redox potential across the Star Carr site are more difficult to 

justify; regions of high acidity lie in close proximity to almost neutral sediments. In trench 

SC34, this variability was most obvious in the southwest corner of the trench, where pH values 

ranged between 2.2 (sample 99762) and 6.57 (sample 103645) within metres (Figure 2.5). 

Boreham et al. (2011) discuss the role played by differences in the sediments directly 

underlying the peat deposits in causing these inconsistencies. Where thin layers of clay lie 

between the peat and the gravelly bedrock, movement of the water-table is likely to be more 

restricted, meaning that when the water levels drop below the level of the archaeology, they 

take longer to rise again, resulting in more oxidation of sulfides. Boreham et al. (2011) suggest 

that if the water-table was constantly above this clay lens, the effects would be benign or even 

2CH2O + SO4
2- H2S + 2HCO3

-
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beneficial, as the proposed ‘sulfur pump’ system, which causes an accumulation of acid above 

the clay, could not occur; however, when this clay is thicker the presence of carbonates may 

be causing a buffering effect, mitigating the acidification.  

2.4.4 Hydrology 

A lowered water-table appears to be the most significant event instigating the formation of 

sulfuric acid in the archaeological zone at Star Carr, and has been attributed to the insertion of 

field drains in 2000 AD (Brown et al., 2011). Monitoring of water levels showed that at dry 

periods, the water-table was at more than 1 m below ground level. As the recognised 

archaeological zone exists between approximately 0.8 and 1.2 m below ground level, this 

indicates that there are periods of time where parts of the archaeology in previously 

waterlogged parts of the site lies dry. It also suggests that the archaeology could lie within a 

zone of seasonal fluctuation of the water-table. High redox potential (> 400 mV) was measured 

by Boreham et al. (2011) in parts of the site, further indicating that sediments have become 

oxygenated due to the site no longer being waterlogged. The potential effects of this are 

illustrated in Figure 2.8, showing a proposed mechanism by which sulfuric acid forms in the 

archaeological zone.  

 

Figure 2.8: Schematic illustrating a proposed mechanism of sulfuric acid formation due to alteration of 
the water-table. (Originally in colour). 
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2.5 Conclusions 

Geochemical observations at Star Carr in recent years have indicated that areas of the site are 

highly acidic. Furthermore, the observation of a potential ‘halo’ effect, causing oxidation of 

sediments extending horizontally from previously excavated trenches, along with the rapid 

oxidation of sediment within 24 hours, illustrates that sediments are vulnerable to redox 

reactions which may further increase the levels of acidity (Boreham et al., 2011). Further 

drainage of the land is therefore likely to lead to further oxidation and the formation of more 

sulfuric acid. Indeed, the proposed mechanism of sulfuric acid formation is likely to continue 

even under current conditions, and it is not impossible that acidity will increase even without 

any further modification. This highlights the care that must be taken during management of 

the site, and suggests that research into the effects of this acidity must account for the 

possibility of sediments becoming even more acidic.  

In addition, the changing hydrology of the site may have wider implications than simply 

increasing the acidity. Assessment by Brown et al. (2011) indicated that artefacts could be 

located in the region of dynamic hydrology, potentially putting them at further risk of 

deterioration (Hedges et al., 1995; Williams et al., 2006). Furthermore, biological activity is 

widely acknowledged to be suppressed in waterlogged, or anaerobic, environments (e.g. 

Blanchette, 2000). With a lowering water-table, oxygen will be introduced into the sediments 

and microbial activity may flourish. In addition, the high concentration of iron and sulfur 

present in the peat indicate that even in the absence of oxygen, anaerobic bacteria which 

instead utilise iron and sulfur in their metabolic processes, could survive. Biological 

degradation may therefore be another major factor facilitating the decay of organic remains. 

However, no direct evidence for biological degradation (for example fungal hyphae or surface 

damage characteristic of tunnelling bacteria; Nicholson, 1996) has been reported on artefacts 

excavated from the site.  

Based on the geochemical assessment of Star Carr, it was proposed that the investigation of 

organic decay at the site should focus initially on the effects of acidification, specifically high 

concentrations of sulfuric acid. In order to do this, methods for the analysis of deterioration of 

bone and wood have first been investigated, to ensure that appropriate methods are utilised 

in order to elucidate the information relevant to the research questions posed (Chapter 3).   
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3 CHAPTER 3 

 
 

DEVELOPMENT OF METHODS 
FOR THE ANALYSIS OF ORGANIC 

DETERIORATION 
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3.1 Introduction 

A number of methods for the qualitative and quantitative analysis of organic deterioration are 

available, and each has its merits and disadvantages. The information provided by these 

different analytical methods ranges from structural to chemical, and microscopic to bulk 

changes. A number of applicable analytical techniques have been briefly reviewed in Chapter 

1.  

Previous studies have often highlighted the importance of applying a suite of complementary 

techniques for the analysis of organic archaeological materials. For example, analysis of wood 

degradation in the Vasa shipwreck utilised methods ranging from SEM to detect microscopic 

changes, to NMR to detect chemical alteration of the polymers (Almkvist, 2008). Analysis of 

bone deterioration commonly utilises microscopic methods (e.g. Jans et al., 2002; Turner-

Walker & Peacock, 2008), although measurements such as calcium and phosphate ratios, and 

amino acid content provide more detailed information on the overall chemical composition of 

a bone sample (e.g. Bada, 1972; Dobberstein et al., 2008; Turner-Walker & Peacock, 2008).  

Given the range of potential methods, in order to assess organic preservation at Star Carr, 

appropriate methods of determining the extent of deterioration were first investigated. 

Several important requirements were identified; firstly, that the methods chosen were 

appropriate for the analysis of both archaeological and modern materials (used for 

degradation experiments), and provided a broad overview of deterioration. It was also 

important that they were minimally destructive, and readily available at minimal cost, as this 

makes it possible to apply these protocols to other archaeological material and research 

questions in future.  

In this study, a range of different techniques applicable to the research questions posed in 

Chapter 1 were first explored, and assessed with respect to the utility of the information they 

were able to provide. For the preliminary assessment of techniques, a series of modern 

material (bone & wood) at different levels of degradation was created in a short method 

development experiment (MDE), using sulfuric acid solutions comparable to the pH observed 

at Star Carr. The aim was to provide 4 samples of each material in progressing states of 

degradation. Where necessary, additional archaeological samples were also analysed as part of 

this assessment in order to determine whether the methods are applicable to materials that 

may have already undergone diagenesis. Where alternative samples were used, this is 

indicated.  



91 

 

3.2 Analysis of bone deterioration 

3.2.1 Introduction 

Many of the most important artefacts uncovered at Star Carr are bone and antler. Examples 

include bone tools, barbed hunting points crafted from red deer antler, and a series of 

frontlets, interpreted as headdresses, comprising both bone and antler (e.g. Clarke, 1954; 

Mellars & Dark, 1998). Both materials are forms of mineralised collagen, although antler 

contains a much higher proportion of collagen (approximately 34 % compared to 22 % in bone; 

Landete-Castillejos et al., 2007). This study has been limited to the investigation of bone 

degradation, although it is expected that antler would degrade in a similar way (e.g. O’Connor, 

1987).  

The rates and different modes by which bone deteriorates are complex, and have been 

discussed in Chapter 1 (Section 1.2.3). Due to the differences between the mineral (HA) and 

collagen fractions, some analytical techniques provide information on only one component, 

whilst others can detect changes in both.  

3.2.2 Experimental 

For bone, a modern sheep long bone was obtained from a butcher (M&K Butchers, York). This 

was de-fleshed by gentle warming in biological washing powder, and the epiphyses removed 

with a hacksaw and discarded, allowing removal of marrow from the mid-section of cortical 

bone (according to Turner-Walker & Peacock, 2008). This was sliced into approximately 3 mm 

thick slices using a water-cooled diamond edged band saw.  

Solutions of pH 2, 3, and 5 sulfuric acid were made by diluting 12 M sulfuric acid (Fisher 

Scientific) with MilliQ water. Slices of bone were sealed into separate glass vials containing a 

solution of the appropriate pH, or MilliQ water (approximately pH 7) as a control. These were 

incubated at 80oC for 10 days, thereby providing a set of four samples heated at different pHs. 

At 1, 3 and 8 days the pH of the surrounding solution was recorded and readjusted to the 

starting pH using 1 M sulfuric acid. At each of these points, an aliquot of the surrounding 

solution was also removed.  

After 10 days, the samples were removed from solution and left to dry at room temperature 

for approximately 2 weeks.  
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3.2.3 Bulk assessment methods 

Alongside chemical methods to characterise molecular change, it can be useful to apply 

methods to assess changes to bulk (macroscopic) properties of the samples. Although often 

less quantitative than chemical methods, they can provide an immediate comparison between 

different samples. Three methods of bulk assessment were carried out during the Method 

Development Experiment (MDE): visual, mass loss and pH analysis.  

3.2.3.1 Methods 

3.2.3.1.1 Visual analysis  

Photographic recording of samples was carried out before and after experimentation using a 

10 MP digital camera, as well as during the experiment where possible.  

3.2.3.1.2 Mass loss analysis 

Mass loss occurs by dissolution of material into the surrounding environment, and provides a 

semi-quantitative method of directly comparing experimental samples. Mass loss is reported 

as a percentage of the starting mass and was calculated by recording dry masses of the 

samples before and after experimentation.  

3.2.3.1.3 pH analysis 

Any change to the pH of the surrounding solution could be the direct result of dissolution. In 

experimental samples, monitoring of the surrounding pH may therefore provide a time 

dependent analysis of dissolution. pH was recorded throughout using a temperature sensitive 

calibrated glass pH probe (Denver instrument) unless otherwise stated.  

3.2.3.2 Assessment of bulk analysis techniques 

Mass analysis of the four bone samples from the method development experiments showed 

that in pH 3, pH 5 and water (pH 7), only 5 % mass was lost after 10 days, compared to 28 % at 

pH 2. Similarly, no apparent visual alteration occurred in the samples apart from that at pH 2, 

where a chalky texture was observed after the 10 days.  

Analysis of the pH of the surrounding solution showed that the acidity was rapidly buffered, 

presumably by dissolution of HA, releasing carbonate and phosphate ions and increasing the 

pH of the surrounding solution (e.g. Green & Kleeman, 1991; Collins et al., 1995) (Figure 3.1). 

At pH 2 a much larger amount of bone mineral would have to dissolve to buffer the acidity due 

to the logarithmic nature of the pH scale. In the region of 10 times more HA would be required 

to facilitate a change from pH 2 to 5, than pH 3 to 8. Although an accurate calculation of the 
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mass of HA required to dissolve was not possible due to readjustment of the pH throughout 

the experiment, this may explain why a greater mass loss was seen at pH 2 despite an 

apparent lower capacity to neutralise the surrounding solution.   

 

Figure 3.1: Measured pH of solutions during the method development experiment, demonstrating that 
bone has a large capacity to buffer surrounding acidity.  At each sampling point the solutions were 
readjusted to the starting pHs.  The lines showing the increase in pH between the measured points are 
therefore indicative only as buffering is likely to have occurred more rapidly (Margolis & Moreno, 1992). 
(Originally in colour). 

3.2.3.2.1 Conclusions 

Bulk assessment methods applied to samples from the MDE suggest that they are useful tools 

for the broad assessment of experimental diagenesis. Although mass loss analysis cannot be 

applied to archaeological material, comparison of mass loss can provide an easy comparison of 

deterioration in modern samples. Buffering of the pH of the solution, along with the mass loss, 

suggests that bone mineral is dissolving under acidic conditions. In this case, pH analysis 

provides a suitable method of quantifying the bone mineral deterioration as a function of time 

under experimental conditions.  

3.2.4  Amino acid analysis 

Amino acid analysis is a well-established technique for the assessment of the preservation of 

archaeological and fossil bone (e.g. Bada, 1972).  

The total amino acid concentration can indicate loss of the HA and/or protein, by alteration of 

the relative composition of a bone sample. As type 1 collagen accounts for 85-90 % of protein 

in bone, the amino acid content can be considered to be primarily collagen (Currey, 2002).  

In addition to this, racemisation of amino acids may be indicative of collagen damage, as 

racemisation in bone is very slow, unless the triple helix is disrupted (e.g. Collins et al., 1999; 

Orgel et al., 2001). Aspartic acid (Asp) and serine (Ser) are both relatively fast racemising 
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amino acids (e.g. Smith & Evans, 1980; Collins et al., 1999) and can also racemise in-chain (e.g. 

Clarke, 1987; Demarchi et al., 2013). Therefore, an increase in racemisation of these two 

amino acids within collagen is likely to reflect an increase in both the levels of conformational 

freedom (for example by loss of cross-linking within the helix; Vitagliano et al., 1993) and 

degree of protein breakdown. Racemisation in other amino acids would only occur upon 

significant breakdown of the collagen helix, although many are very slow to racemise even 

when in a terminal position in the peptide (e.g. free alanine racemisation has a half-life of 

12,000 years at 25oC; Bada & Schroeder, 1975). 

3.2.4.1 Method 

3.2.4.1.1 Analysis of solid samples 

Analysis of the 4 MDE samples was first carried out on unpowdered material, with sub samples 

taken both from the inner cortical bone and thin outer layer (periosteum). In an archaeological 

context bone samples are often small fragments, and it is often not possible to distinguish 

between these layers. Therefore, in order to create samples that are representative of both 

layers, samples were also powdered using an agate pestle and mortar, or a freezer mill (SPEX) 

if manual powdering was not possible, and homogenised before analysis.  

The method of analysis of amino acid racemisation has been developed over the course of 

several decades and has been adapted for application to a range of biomaterials, (e.g. 

Penkman et al., 2008; Crisp et al., 2013). The analysis of bone used here is based on a method 

reported by Buckley et al., (2008). Dissolution of the HA and hydrolysis of the collagen was 

achieved by heating the sample in excess acid (7 M HCl) for 18 hours. The acid was then 

evaporated under vacuum, and the sample rehydrated with 500 L per mg of sample with a 

weak acid solution containing an internal standard of L-homo-arginine (L-hArg). Each sample 

was analysed using reverse phase high-performance liquid chromatography (RP-HPLC) using a 

C18 HyperSil BDS column (5 mm x 250 mm) at 25oC, using o-phthaldialdehyde (OPA) as a 

derivatising agent (2 µl  of sample mixed online with 2.2 µl of a derivatising agent containing 

260 mM n-Iso-L-butyryl L-cysteine (IBLC) and 170mM o-phthaldialdehyde in 1M poatassium 

borate buffer). Separation was achieved using three solvents: sodium acetate buffer (23 mM 

sodium acetate tri-hydrate, 1.5 mM sodium azide and 1.3 µM EDTA, adjusted to pH 6.00), 

methanol and acetonitrile on an Agilent 1100 HPLC using fluorescence detection (xenon-arc 

flash lamp at a frequency of 55 Hz, with an excitation wavelength of 230 nm and emission 

wavelength of 445 nm) over a 2 hour elution period (adapted from Kaufman & Manley, 1998).  

Standards and blanks were analysed routinely. 
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Asparagine and glutamine undergo rapid deamidation to aspartic acid and glutamic acid 

respectively during the hydrolysis preparation step. As asparagine and glutamine cannot be 

distinguished from aspartic acid and glutamic acid using RP-HPLC, they are therefore reported 

as Asx and Glx, where Asx includes contributions from asparagine, and Glx includes 

contributions from glutamine. In order of elution, the amino acids detected were: L-Asx, D-Asx, 

L-Glx, D-Glx, L-Ser, D-Ser, L-Thr, His, Gly, L-Arg, D-Arg, L-Ala, L-hArg, D-Ala, L-Tyr, L-Val, L-Met, 

D-Met, D-Val, L-Phe, L-Ile, D-Phe, L-Leu, D-Ile and D-Leu. The concentrations of each isomer of 

each amino acid were used to derive a D/L value.  

3.2.4.1.2 Estimation of error in solid samples 

Racemisation (expressed by a D/L value) induced by the preparation steps was determined by 

analysis of a powdered untreated modern sheep bone sample and was found to be 

approximately 0.06 in Asx and 0.03 in Ser, with a standard deviation of less than 1 % and 7 % 

respectively, measured by analysis of three replicates. Total amino acid concentrations were 

approximately 1.33 mmol/mg, with a standard deviation of 0.32 (18 %), thus illustrating that 

assessment of total amino acid concentrations should account for a higher level of error than 

measurements of D/L values. The error in concentration measurements is likely to arise due to 

the high degree of sample dilution prior to analysis, as well as the small mass of sample used. 

This is unlikely to affect the D/L measurements, as preparation error is cancelled out when the 

concentrations of both D and L isomers are considered.  

3.2.4.1.3 Analysis of liquid samples 

As it may be useful to quantify any proteins leaching into solution during experimental 

diagenesis, analysis of the solution aliquot samples was also carried out. A short study to test 

the ideal conditions for hydrolysis was carried out here, using the supernatant removed from 

the pH 2 sample at the end of the method development experiment. Solutions of 2, 6 and 7 M 

HCl with 12, 18 and 24 hour hydrolysis times were compared. It was found that hydrolysis in 2 

M acid yielded much lower concentrations of amino acids, and as such probably did not 

achieve full hydrolysis. Solutions of 6 M and 7 M HCl yielded similar concentrations (Figure 3.2, 

left) and therefore 6 M HCl has been used in order to avoid catalysing racemisation (Kaufman 

& Manley, 1998). Although differences in amino acid concentration were seen between 

replicate samples, these differences did not appear to be dependent on the hydrolysis time 

and were within the margins of error (calculated as the standard deviation of three replicate 

analyses). High levels of error are likely to occur in analysis of liquid samples due to high levels 

of dilution employed along with the small sample sizes.  Although a slight increase in 
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racemisation was observed with increased hydrolysis time, the increase was minimal. 

Therefore, for convenience a 24 hour heating has been applied.  

 

Figure 3.2: Total amino acid concentrations (left) and Asx racemisation (right) in solution samples 
treated in 6 and 7 M HCl for a range of hydrolysis times. Alterations in concentration lie within the error 
(standard deviation calculated from two replicates of each sample) whilst Asx racemisation slightly 
increases with increased hydrolysis times. (Originally in colour). 

For the analysis of all aliquot samples a 100 L sample of the solution was hydrolysed at 110oC 

for 24 hours with 100 L 6M HCl and then dried under vacuum. Samples were rehydrated with 

100 L of rehydration fluid and further diluted in L-hArg if required, before analysis by HPLC as 

described for solid samples (Section 2.3.1.1). 

3.2.4.1.4 Estimations of error in liquid samples 

Error in concentration measurements was determined by three replicate analyses of the liquid 

sample. Using the 24 hour, 6M HCl hydrolysis, total amino acid concentration values varied by 

up to 58 %. Therefore concentrations of amino acids in solution have been interpreted with 

caution, as error is likely to be high due to the high order of dilutions and small mass of original 

sample. In addition, evaporation may have occurred from the samples during the experiment, 

resulting in an altered concentration.  Errors in racemisation were less; 8 and 12 % for Asx and 

Ser respectively. Replicate analysis of all aliquot samples was not possible, as the minimal 

amount of liquid was removed from the ‘stagnant’ samples during the experiment. The error 

calculated here has therefore been applied throughout.  
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3.2.4.2 Assessment of amino acid analysis technique 

3.2.4.2.1 Application to solid samples 

Both powdered and un-powdered sub samples from the MDE were analysed. Results showed 

differences in amino acid concentrations between the inner layer, outer layer and powdered 

samples. In most cases, the differences between the three samples are greater than the 

standard deviation calculated in Section 2.3.1.1 (0.32) (Figure 3.3) suggesting that sample 

preparation needs to be consistent. Due to the variability between subsections of the bone 

(inner and outer un-powdered samples), it is likely that milling and homogenising the samples 

provides a better analysis of the whole bone and should therefore be done throughout. In 

addition, for archaeological samples it may be difficult to identify the periosteum. Although 

total concentrations differed, Asx racemisation was consistent between the powdered and 

inner samples (Figure 3.4, right) suggesting that avoiding analysis of the outer surface alone 

provides a better measure of racemisation across the bone.  

 

Figure 3.3: Comparison of the three different sub-samples for the method development experiments: 
total amino acid content (left) and Asx racemisation (right). Error bars for the concentrations are one 
standard deviation derived from measurement of three replicates of a modern sheep long bone (0.32 
mmol/ mg). Error bars for Asx racemisation are negligible. (Originally in colour). 

In both powdered and non-powdered samples, an increase in Asx racemisation was seen at pH 

2, indicating significant collagen breakdown within the 10 days (Figure 3.3, right). Racemisation 

was considerably higher in the ‘outer’ sample at all pHs. As the samples were longitudinal 

slices, this is not likely to be due to greater contact with the solution, and it is possible that 

analysis of the periosteum is not representative of the behaviour of the whole bone, possibly 
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because of higher mineral density in the outer layers (e.g. Gong et al., 1964). This again 

suggests that milling and homogenising samples is the best method of sample preparation.  

3.2.4.2.2 Application to liquid samples 

Analysis of the amino acids present in the aliquot samples required adapting the dilution 

factors prior to analysis by HPLC dependent on the conditions of the experiment. Therefore, no 

standard dilution factor can be proposed. 

Detectable concentrations of amino acids were present in all solutions (Figure 3.4), and an 

increase in both concentration and racemisation is seen over time. This is somewhat expected; 

increased levels of amino acids leach out of the sample as degradation proceeds. At pH 2, 

there is increased leaching of amino acids into solution, and interestingly these are less 

racemised than those leaching out into the higher pH solutions, which might be because the 

leached collagen is more intact at lower pH. The difference between the pH 2 sample and 

samples at higher pH corroborates results from the bulk analysis.  

 

Figure 3.4: Total amino acid concentrations (left) and Asx racemisation (right) in solution over the course 
of the reaction period. Error bars are one standard deviation calculated from three replicate analyses of 
a sample. (Originally in colour). 

3.2.4.2.3 Conclusions 

Amino acid analysis of the four samples from the MDE suggests that it is an appropriate 

method for analysing the levels of degradation in solid samples, and levels of leaching by 
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outer layers of bone when comparing material, powdering and homogenising the bones may 

offer the best method of sample preparation. Error in the concentration data must be taken 

into account when interpreting analysis of the bone samples. Despite this, an obvious 

difference has been seen here in the sample treated at pH 2, suggesting that degradation is 

accelerated at lower pHs.     

3.2.5 Powder X-ray diffraction 

Several studies show that increased HA crystallinity can be a marker of bone diagenesis 

(Pleshko, 1991; Hiller & Wess, 2006), although the reasons for the increase are not well 

understood. Potential explanations have been proposed as preferential loss of the smallest 

crystals, or dissolution of the HA followed by rapid recrystallisation; as the HA would not be 

biologically constrained during recrystallisation, it is likely to do so in a more crystalline form 

than when originally laid down in the bone (Hedges & Millard, 1995). It has been shown that 

an increase in HA crystallinity cannot be directly related to the age of archaeological bone, but 

rather indicates the extent of diagenetic transformations (Person et al., 1995).  

Powder X-ray diffraction (p-XRD) analysis of bone material provides a general measure of 

crystallinity of the HA, with characteristic diffraction peaks sharpening with increased 

crystallinity (e.g. Bonar et al., 1983; Boskey, 2003). The peak characteristic of HA that appears 

at approximately 32 o2 is normally broad as it is actually two coalescing peaks. When a 

sample is extremely degraded, the band resolves into two peaks, appearing at around 32 and 

33 o2  (Person et al., 1995). p-XRD can also allow the identification of mineral inclusions 

within the HA, for example quartz or fluoride which indicate exchange with the burial 

environment (Person et al., 1995).  Unlike spectroscopic methods, p-XRD provides an average 

characterisation of the HA crystallinity rather than focussing on a small area, allowing 

assessment of structural changes throughout the bone (e.g. Wess et al., 2001).  p–XRD also has 

the potential to be applied in a minimally destructive manner, for example by using 

synchrotron X-ray sources (Wess et al., 2001), although this was not carried out here.  

As mass loss and amino acid content already provide a quantitative measure of HA loss, p-XRD 

was assessed as a possible complementary qualitative method of analysing structural changes 

to the HA fraction.  

 

 

 



100 

 

3.2.5.1 Method 

All p-XRD analysis was carried out using a Bruker-AXS D8 diffractometer fitted with a copper 

anode (1.54 ) and a rotating position sensitive detector. Powdered bone samples were 

packed into an aluminium plate with a shallow circular well, and loaded onto a rotating sample 

holder. For analysis, the X-ray generator was set to 40 KV and 30 mA and samples scanned 

between 24-36 o2θ using a scan rate of 0.3 seconds/step and an increment of 0.025 degrees 

(adapted from Person et al., 1995).  

In order to ascertain the diffraction pattern of pure HA, a commercially produced standard was 

purchased (Aldrich) and analysed using the same parameters.  

3.2.5.1.1 Investigation into sample preparation methods 

Most modern samples (e.g. the MDE samples) could not be powdered by hand-milling as they 

were too robust, and a method such as freeze-milling using a ball mill had to be used; 

however, this has the potential to introduce contamination into a sample, and therefore for 

degraded archaeological samples, hand-milling may present a better option.  

Previous studies applying p-XRD have used different milling methods, for example drilling 

(Bartsiokas & Middleton, 1992), freeze-milling, (Bonar et al., 1983) and hand-milling using a 

pestle and mortar (Person et al., 1995). However, whilst it is recognised that sample 

preparation techniques have implications for FTIR analysis of bone (Surovell & Stiner, 2001), 

the effects of different milling methods in p-XRD studies have not been compared previously.  

Here, a small study was conducted to compare the effects of hand-milling using an agate 

pestle and mortar, and freeze-milling using a pulverising mill in liquid nitrogen (SPEX). As the 

MDE samples were small in size and too robust for hand-milling, an archaeological sample 

excavated from Star Carr in 2008 was used for this comparison (sample 92105; see Chapter 7 

for further detail). Diffraction patterns for the unsieved hand and freeze-milled fractions are 

shown in Figure 3.5.  
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Figure 3.5: Comparison of diffraction patterns for hand-milled vs freeze-milled sample excavated from 
Star Carr in 2008 (sample 92105). (Originally in colour). 

The sharp peak at 26.5 o2θ in the freeze-milled sample is likely to be a quartz inclusion, which 

is commonly found in fossil samples (Person et al., 1995). Visual analysis of the spectra shows 

that different milling methods do not impact on the intensity or position of the HA peaks, and 

no difference in the degree of peak splitting can be discerned. This suggests that the milling 

method has no impact on the crystallinity of the sample.  

In several literature sources, particle size fractionation of bone is carried out by sieving prior to 

analysis by p-XRD (e.g. Bonar, 1983; Very & Baud, 1984). However, more recently studies have 

been carried out where bone samples were not sieved prior to analysis, resulting in no 

increased error (e.g. Piga et al., 2009). The use of sieves may introduce a source of 

contamination as well as create the potential to lose significant amounts of small samples, and 

therefore size fractionation was not carried out in this study.   

3.2.5.2 Assessment of p-XRD for the analysis of bone mineral 

The four MDE bone samples were powdered using a freezer mill (SPEX). Analysis by p-XRD 

shows no difference in crystallinity between the bones at pH 3, pH 5 and in water. Slight 

resolution of the peak characteristic of HA into its two component peaks can however be 

determined at pH 2. This indicates increased crystallinity of the sample at this higher acidity 

(Figure 3.6).  

100

300

500

700

900

1100

1300

24 26 28 30 32 34 36

In
te

ns
it

y

Freeze milled

Hand milled

Angle (Degrees 2-Theta)



102 

 

 

Figure 3.6: Comparison of diffraction patterns for samples from the MDE. The position of the diffraction 
peaks in pure HA, determined by analysis of a commercially purchased standard, are marked with 
dashed lines. (Originally in colour). 

Clear separation of the broad peak at 32 o2 does not occur even at pH 2, making it difficult to 

apply statistical assessment, as has been done in previous studies on archaeological material 

(e.g. Bartsiokas & Middleton, 1992). Person et al. (1995) also show that unambiguous splitting 

of the peaks occurs only in severely degraded bone. To investigate this, analysis was also 

carried out on a rib bone excavated from Star Carr in 2010 and a cow metatarsal from the late 

Roman site of Tanner Row (York), which may be expected to display a greater degree of HA 

alteration. Further sample information is provided in Chapter 7 (Section 7.2.2). Neither bone 

displayed unambiguous splitting of the peak characteristic of HA (Figure 3.7).  

In light of these results, it is proposed that p-XRD is utilised as a non-quantitative method to 

detect major changes in the bone mineral, rather than use statistical assessment of the data to 

provide quantitative results. It was expected that p-XRD would allow the identification of 

samples where HA alteration is significantly progressed. 
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Figure 3.7: Comparison of diffraction pattern for archaeological bones with modern fresh bone, showing 
no major alteration of diffraction patterns. Dashed lines indicate the position of diffraction peaks for 
pure HA, determined by analysis of a commercially purchased standard. (Originally in colour). 

3.2.5.3 Conclusions on the application of p-XRD 

As it is possible that milling methods can alter the crystallinity of the bone sample, it is 

recommended that preparation methods for p-XRD are standardised. The best option is 

therefore freeze-milling, as this is done for a standard period of time and conditions such as 

time, temperature and milling rate can be controlled. As sieving introduces the possibility of 

contamination as well as the potential loss of sample, this has been discounted as a necessary 

sample preparation step.  

It has been shown that minor differences between samples may be attributed to the sample 

preparation steps. This further suggests that p-XRD analysis is better considered a qualitative 

rather than quantitative technique. However, information provided regarding alteration of the 

HA in the four MDE samples is in agreement with results from other analysis techniques; the 

bone at pH 2 is the only sample to display significant alteration of the HA structure, consistent 

with the significant mass loss observed in Section 2.2.2.  
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3.2.6 Raman spectroscopy 

Studies such as those by Timlin et al. (2000) and Raghavan (2011) have shown that Raman 

microscopic analysis is effective in the analysis of bone, as changes in the bonding and 

structure of the bone mineral translate into changes in the Raman spectrum. Sharpening of the 

peak identified as characteristic of bone phosphate at approximately 950cm-1 is primarily 

caused by an increase in crystallinity of the bone mineral, reducing the vibrational modes of 

the mineral lattice (Timlin et al., 2000). Changes in the association between the collagen and 

bone mineral are signified by changes in the position of this phosphate peak, as well as a 

number of peaks identified as relating to collagen (Raghavan, 2011). The ability to analyse both 

bone mineral and collagen simultaneously gives Raman spectroscopy a potential advantage 

over analytical techniques that focus only on one component.  

3.2.6.1 Method 

Although no sample preparation is typically needed in Raman spectroscopy, focus of the 

microscope proved impossible without a flat sample surface. For bone samples this was 

achieved by setting a small sub-sample in epoxy resin and polishing the surface until the bone 

was revealed. Raman spectra were collected using an HORIBA XploRa Raman microscope with 

a 532 nm laser applying a 50 % filter and 2400 g/mm grating, between 400 and 1800 cm-1 

(adapted from Raghavan, 2011).  16 spectra were collected over a small area of the bone 

surface using a 1s laser exposure and averaged, according to Timlin et al. (2000).  

3.2.6.2 Assessment of Raman spectroscopy for the analysis of bone 

Once a flat surface was achieved, spectra were obtained that displayed the peaks 

characteristic of HA phosphate groups (950 cm-1) and carbonate imperfections (1100 cm-1). In 

addition, very low intensity peaks at higher wavenumbers are possibly attributable to collagen 

(Figure 3.8).  

No differences between the pH 2 and pH 3 samples from the MDE were discerned, despite the 

obvious increase in degradation detected by other methods (Sections 2.2, 2.3, & 2.4). The 

theoretical benefits of Raman spectroscopy (non-destructive analysis, ability to detect both the 

HA and collagen) were difficult to achieve in practise. This is potentially because of the 

wavelength of the laser available (532 nm); both Timlin et al. (2000) and Raghavan (2011) 

showed that a 785 nm laser resulted in good peak resolution. For these reasons, it was decided 

that the Raman spectroscopic techniques available were not suitable for the analysis of bone 

in this study.  
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Figure 3.8: Raman spectra obtained from MDE bone samples treated at pH 2 (top) and pH 3 (bottom), 
showing peaks characteristic of both HA and collagen, although no difference is observed between the 
two samples. (Originally in colour). 

3.2.7 FTIR spectroscopy 

FT-Infrared spectroscopy (FTIR) is an established method of detecting molecular changes 

within archaeological bone, with advanced technologies such as FTIR imaging and synchrotron 

FTIR exposing more detailed information (e.g. Pleshko et al., 1991; Reiche et al., 2003). The 

potential benefits of FTIR are that it can be applied non-destructively, and can be combined 

with microscopy, allowing spatial variations to be detected (Reiche et al., 2010). Alterations of 

the HA can be indicated by increased splitting of the characteristic phosphate absorption peak 

at 950 cm-1, signifying alteration of crystal size; or increased intensity of the carbonate peak at 

1350-1550 cm-1 (an increased carbonate: phosphate ratio), suggesting exchange with the 

burial environment (Lee-Thorp & van der Merwe, 1991; Piga et al., 2011). Further information 

regarding the protein fraction may be discerned; Paschalis et al. (2001) show how molecular 

information obtained from absorption characteristic of collagen can even reveal the extent of 

cross-linking.   

3.2.7.1 Method 

Analysis was carried out on a Vertex 70 FTIR spectrometer fitted with an ATR (attenuated total 

reflectance) unit. A resolution of 4 cm-1 was used to scan between 600 and 3600 cm-1 using an 

averaged 16 scans (adapted from Surovell & Stiner, 2001). Minimum sample preparation is 

necessary for FTIR-ATR measurements; however it was found that a better resolution of peaks 
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was achieved when samples were powdered. This was achieved by milling in a freezer mill 

(SPEX).  

3.2.7.2 Assessment of FTIR for the analysis of bone 

Four bone samples from the MDE were analysed and the key peaks in the fingerprint region of 

the spectra identified according to Reiche et al. (2010) (Figure 3.9). Analysis indicated that 

samples treated at pH 3, pH 5 and in water are identical. This is in agreement with analysis by 

p-XRD and mass loss analysis. Slight alteration of the spectra for the sample at pH 2 can be 

discerned; broadening of the amide peak at approximately 1650 cm-1 and disappearance of the 

peak at 1250 cm-1 suggests alteration of the collagen (Reiche et al., 2003). Increased resolution 

(manifesting in an altered peak shape) of the phosphate peak at approximately 900 cm-1 

(indicated in Figure 3.9) indicates an increase in crystallinity of the HA (Reiche et al., 2010), in 

agreement with p-XRD analysis. In general, alterations of the ratio between collagen and HA 

peaks indicates that there is a change in relative composition in the bone treated at pH 2, 

again corroborating analysis using other methods.  

 

Figure 3.9: Comparison of FTIR spectra for the four MDE samples. Key peaks relating to bone mineral and 
collagen are indicated, labelled according to Reiche et al. (2010). (Originally in colour). 
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In archaeological samples, an increase in the levels of carbonate may signify diagenetic 

alteration, through exchange with the burial environment (e.g. Lee-Thorp & van der Merwe, 

1991). In order to assess whether this is discernible using FTIR, a sample excavated from Star 

Carr in 2010 was also analysed. The carbonate peak appeared small in the archaeological 

sample, although the amide peaks appeared at much higher absorption (Figure 3.10, top), 

suggesting that the sample had undergone extensive demineralisation (e.g. Very et al., 1997). 

Comparison with both an untreated bone and bone demineralised in 0.6 M HCl (assumed to be 

only collagen) suggests that the relative composition of the bone from Star Carr lies 

somewhere between fresh bone and ‘collagen.’  

Preliminary FTIR analysis suggests that it provides a semi-quantitative measure of the extent of 

demineralisation, although alteration of the HA fraction alone is more difficult to discern. 

 

Figure 3.10: Comparison of FTIR spectra obtained from a sample excavated from Star Carr with an 
untreated modern bone and demineralised bone (collagen). (Originally in colour). 
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3.2.7.3 Conclusions 

FTIR analysis of the MDE samples indicates that degradation is only seen at pH 2, in agreement 

with amino acid and p-XRD analysis. In addition, comparison of a sample from Star Carr with 

fresh and demineralised bone suggests that it could be a complementary technique to amino 

acid analysis for determining the extent of bone demineralisation.  

The aim of applying FTIR was primarily to determine HA crystallinity. The alteration of the 

phosphate peak in FTIR is only very slight, in comparison to p-XRD where splitting of the HA 

peak was more obvious, suggesting that FTIR is a less sensitive technique for this purpose. In 

addition, Surovel & Stiner (2001) show that FTIR can be affected by sample preparation 

techniques. A method such as FTIR imaging may be more appropriate as it does not involve the 

analysis of such a small area of sample as conventional FTIR and is therefore less likely to be 

affected by sample preparation methods (Paschalis et al., 2001).  However, this is not a 

technique that is readily available.  

For these reasons, FTIR has been applied only on selected samples throughout this study, 

where the extent of demineralisation has been examined, rather than has a routine technique 

for the analysis of HA crystallinity.  

3.2.8 Microscopy methods 

Microscopic methods of analysing bone deterioration provide information on histological 

deterioration, and have often been reported as complementary to chemical analysis 

techniques (e.g. Nielsen-Marsh & Hedges, 2000; Turner-Walker & Peacock, 2008).  

Thin-section optical microscopy has a long history of application to the analysis of 

archaeological bones (e.g. Stout & Teitelbaum, 1976; Jans et al., 2002). If the bone is 

mineralised, osteons should be observable in thin-section (Jans, 2005). In addition, collagen 

can be identified when plane-polarised light is used to view a thin-sectioned bone, as collagen 

demonstrates birefringence due to the alignment of fibrils (Girouad-Guille, 1988). Different 

classes of microbe may also be detected by characteristic tunnelling (Jans et al., 2002; 2004), 

and fungal activity signified by characteristic porosity of the bone (Stout & Teitelbaum, 1976). 

Such features can also be seen using scanning electron microscopy (SEM) alongside other 

diagenetic features such as cracking, mineral inclusions and changes in mineral density (e.g. 

Bell, 1990; Turner-Walker & Syversen, 2002).  

Koon (2006) developed a method of demineralisation and reverse staining using 

phosphotungstic acid and uranyl acetate that allows the visualisation of individual collagen 
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fibrils under transmission electron microscopy (TEM). Using this method, it is possible to 

visualise alteration of collagen as a result of degradation.  

3.2.8.1 Method 

3.2.8.1.1 Light microscopy  

Samples were prepared for optical microscopy in thin-section by setting a small (3 mm x 3 mm) 

sub sample in epoxy resin using a cylindrical plastic mould. The resin was cured under vacuum 

and sliced using a water-cooled saw to expose the sample. This was affixed to a microscopy 

slide using more resin. Once dry, this was sanded to approximately 30-50 m (e.g. Jans et al., 

2002) and polished.  

Samples were viewed using a Zeiss AxioScope binocular microscope with a motorised stage, 

using both plane-polarised and cross-polarised light.  

3.2.8.1.2 SEM imaging 

Minimal sample preparation was carried out for SEM. A sub-section of each sample 

(approximately 3 mm x 3 mm) was fixed to aluminium pin stubs and earthed using silver glue. 

Samples were sputter-coated with a 7 nm layer of gold/palladium and images obtained under 

vacuum using a JEOL JSM-6490LV SEM.  

3.2.8.1.3 TEM imaging 

Samples were prepared for TEM using the reverse staining method developed by Koon (2006).  

Bone samples were fragmented using a hammer, and fragments of approx 3 mm picked out. 

These were demineralised over a 2 week period in 0.5 M EDTA, replaced every 2-3 days. 

Samples were washed thoroughly with MilliQ water and homogenised for a total of 3 minutes 

in 3 mL of a 1% w/v solution of phosphotungstic acid (PTA). Samples were then centrifuged at 

3000 g and 4oC for 15 minutes. The supernatant was removed and the sample re-suspended in 

1 mL PTA. A drop of this solution was then pipetted onto a formvar film TEM grid with a carbon 

coating (Agar Scientific) and allowed to settle for 5 minutes. The grids were then dried with 

filter paper and stained with uranyl acetate (Agar Scientific). Grids were thoroughly washed 

with a 50:50 solution of ethanol: water and allowed to air dry.  

TEM imaging was carried out using a Tecrai 12 TEM with a beam setting of 100 kV.  
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3.2.8.2 Assessment of microscopy techniques 

All four samples from the MDE were prepared for thin sectioning and SEM imaging. Bone 

histology was clearly visible using both techniques, confirming the presence of HA (Figure 

3.11). Collagen was also identified by birefringence in both bones, shown by regions of light 

and dark in Figure 3.11.  

In the sample heated in water, the appearance under both optical and SEM is what would be 

expected for fresh bone (e.g. Hedges, 1995; Jans et al., 2004), with no damage observable. In 

comparison to this, deep cracks are seen in the sample treated at pH 2. This damage is much 

clearer under SEM imaging, where it can be seen that the cracking follows the histological 

structure of the bone.  

 

Figure 3.11: Comparison of images obtained using light microscopy with a cross-polarised light source 
(top) and SEM (bottom), for bones treated in water and at pH 2. 

TEM analysis was not carried out on the MDE samples, but was tested on modern untreated 

bone and a bone excavated from Star Carr in 2010. In both cases, collagen fibrils were 

observed, although they were far less abundant in the Star Carr sample (Figure 3.12).  

pH 7 pH 2

100 μm 100 μmpH 2pH 7
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Figure 3.12: TEM images of collagen from a modern cow bone (left) and a sample excavated in 2010 
from Star Carr (right). 

Collagen is easily identified by its characteristic banding - a result of the regular organisation of 

collagen fibrils (e.g. Rho et al., 1998). This banding is less obvious in the archaeological sample 

(Figure 3.12, right). Along with apparent ‘fraying’ of the fibrils at the end, this may signify 

collagen damage (Koon, 2006; Koon et al., 2010).  

3.2.8.2.1 Conclusions on microscopy methods 

It was noted that during the preparation of thin-sections for optical microscopy, pieces of the 

bone treated at pH 2 tended to flake away from the slide very easily. It is possible therefore 

that the preparation could be causing additional damage to the bone. For SEM analysis, 

preparation techniques are minimal, and alteration of the histological structure at pH 2 was 

clearer. SEM was therefore recommended for future analysis.  

TEM analysis successfully revealed collagen microstructure, whereas SEM and optical 

microscopy cannot. However, the preparation method requires a large amount of sample to be 

destroyed, and TEM is not a technique that is readily available. This makes it more suitable for 

providing further information on selected samples after other chemical techniques have been 

applied.  

500 nm 1 μm
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3.2.9 Conclusions on bone analysis methods 

Several methods of analysis have been tested and shown to provide complementary 

information. Whilst mass loss and visual analysis provide a quick and easy comparison 

between samples, determination of the amino acid content and the racemisation of Asx 

provides more detailed information regarding loss of HA and degradation of the collagen. 

Differences between bones in different states of deterioration are easily elucidated by 

application of all methods combined. With archaeological samples, the mass loss and pH 

buffering methods are not possible, but they are useful for assessing degradation in laboratory 

experiments.  

Several methods of analysing changes in the HA fraction of the bones have been discussed and 

each have advantages and disadvantages. The use of Raman spectroscopy proved in this study 

to be largely unsuccessful, possibly due to the lack of availability of a laser with an appropriate 

wavelength. Both p-XRD and FTIR provide suitable alternatives, although without further 

method development both have been concluded to be only qualitative. FTIR is most applicable 

to measuring the extent of demineralisation; however this is achieved more qualitatively by 

assessment of the relative amino acid content using RP-HPLC. In contrast, p-XRD reveals 

independent information on the HA crystallinity, which may be more useful as protein 

degradation is determined by amino acid analysis.  p-XRD provides an overview of the bulk of 

the sample, in comparison to spectroscopic techniques, which focus on a very small area of a 

sample. This may be overcome by powdering and homogenising samples; however, several 

studies raise concerns over the effects of sample preparation techniques for FTIR (e.g. Surovell 

& Stiner, 2001). It was proposed that in this study p-XRD should be utilised as the major 

routine method of characterising the overall crystallinity of bone samples, with FTIR being 

applied in selected cases, for example to confirm the extent of bone demineralisation.  

Microscopic methods have provided additional information, although the preparation 

methods can be time consuming and expensive. The value of that information can also be 

dependent on sample preparation techniques used (for example, thin-sectioning may cause 

cracking of delicate archaeological samples), and interpretations are user dependent. 

Throughout the study, SEM and TEM have been applied selectively when additional 

information is required, rather than being used as a primary means of analysis.  
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3.3 Analysis of wood deterioration 

3.3.1 Introduction 

Wood excavated from Star Carr (such as the extensive split-timber structure at the lake edge) 

has provided perhaps the earliest evidence for carpentry in Europe (e.g. Clark, 1954). Upon 

analysis of wood fragments excavated in 2010, it was found that wooden artefacts from 

different parts of the site were less well preserved. SEM analysis revealed a completely 

collapsed cell structure in several of the samples, possibly the result of cellulose loss, and 

standard decay assessment tests confirmed the poor preservation (Milner et al., 2011a).  

Wood is composed of a number of closely interlinked organic polymers: lignin, cellulose and 

hemi-cellulose (Hedges, 1990). Analysis of deterioration normally focuses on assessment of the 

relative composition, and applied techniques often consider both lignin and celluloses (e.g. 

Almkvist, 2011). 

3.3.2 Experimental 

For the MDE, an approximately 2 cm diameter branch was taken from a young birch tree and 

sliced into 3 mm thick sections using a band saw.  

Solutions of pH 2, 3, and 5 sulfuric acid were made by diluting 12 M sulfuric acid (Fisher 

Scientific) with MilliQ water. Slices of wood were sealed into separate glass vials containing a 

solution of the appropriate pH, or MilliQ water (approximately pH 7) as a control. These were 

treated identically to the bone samples, as described in Section 3.2.2.  

3.3.3 Bulk assessment 

3.3.3.1 Methods 

Visual assessment, mass loss and pH analysis was carried out as for bone during the MDE, 

using the methods described in Section 3.2.2.1.  

3.3.3.1.1 Maximum water content 

For wood, maximum water content (umax) provides additional assessment of the bulk condition 

of a sample and is commonly used prior to conservation of wood to assess its preservation 

(e.g. Panter & Spriggs, 1996). The method used here was adapted from that described by 

Hoffman (1981). Samples were immersed in water in an open glass vial. This was then put 

under vacuum for 30 seconds and then the vacuum slowly released. The process was repeated 
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a total of three times, ensuring maximum saturation. After drying the surface of the sample on 

a tissue, saturated mass was recorded immediately, and the sample left to dry at 105oC until a 

constant mass was reached. The dry mass was recorded and umax reported as a percentage of 

the dry mass.  

3.3.3.2 Assessment of bulk analysis techniques 

No visual alteration of the samples was observed in the MDE, although the surrounding 

solution darkened in all samples, with the less acidic samples appearing slightly darker. This is 

likely to be caused by water soluble ‘extractives’ such as tannins and humic acids leaching out 

of the wood (e.g. Hedges, 1990).   

Mass losses in all of the method development samples were approximately 15%, which is 

possibly accounted for by the loss of non-structural components such as simple sugars and sap 

(Jane et al., 1970). No significant difference in deterioration was observed at the different pH 

values. Similarly, umax was around 200 % for all samples, which is slightly higher than that of 

fresh wood (90-120 %, Hoffman, 1981). Hoffman (1986) defines degraded wood as having a 

higher umax than 300 %, suggesting that the experimental samples may have only lost non-

structural components. However, it must be noted that as wood is a very porous material, 

obtaining an accurate dry mass is difficult, reducing the reliability of measurements both for 

mass loss and umax analysis (Jensen & Gregory, 2006). The pH of the surrounding solutions was 

found not to alter by more than ~ 0.5 pH units, signifying the much lower buffering ability of 

wood compared to bone. The implication of this is that the wood samples would have been 

exposed to low pH throughout the experiment.   

3.3.3.2.1 Conclusions 

Visual and mass loss analysis provides a fast and easy method of comparing deterioration 

between samples, although no alteration was observed for the method development samples. 

Whilst pH analysis of the surrounding solution did not show as much alteration as for bone, it 

is useful to monitor the conditions to which the wood samples are exposed compared to 

equivalent bone samples. umax should be used only as a rough guide of deterioration, and was 

not able to identify differences between the four experimental samples. Despite this, it is an 

established technique that has often been reported with regard to the assessment of 

archaeological wood. This means that it allows comparison with reported values for 

archaeological samples both from Star Carr and other sites.  
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3.3.4 FTIR spectroscopy 

FTIR analysis of wood can provide molecular information regarding both the lignin and 

cellulose fractions of wood (e.g. Pandey, 1998; Gelbrich et al., 2008). With the use of an ATR 

unit, where no sample preparation is required except for drying, it can also potentially be non-

destructive. Direct analysis of the surface of the sample reveals a number of peaks 

characteristic of functional groups present in both polymers. In addition, the position of these 

peaks is often characteristic of the species of wood (Pandey & Pitman, 2003). A number of the 

characteristic absorption bands contains contribution from each of the two polymers; 

however, several key peaks can be identified as being the result of absorption of groups 

specific to cellulose (1375 and 1325 cm-1, which relate to O-H and C-H bonds respectively) and 

lignin (1507 cm-1, specific to the aromatic ring; 1240 cm-1, specific to the C-O-CH3 group) 

(Pandey, 1998). In this assessment, these four peaks have been focused upon. 

3.3.4.1 Method 

Minimum sample preparation is necessary for FTIR measurements, except for drying. A sub-

sample of wood was sliced with a scalpel along the tangential plane. Analysis was carried out 

on a Vertex 70 FTIR spectrometer fitted with an ATR unit. A resolution of 4 cm-1 was used to 

scan between 600 and 3600 cm-1 using an averaged 16 scans (adapted from Gelbrich et al., 

2008).  

3.3.4.2 Assessment of FTIR for the analysis of wood 

Three readings were taken from each of the four MDE samples described in Section 1.3.2.1. 

Visually, little or no difference was seen between spectra. Intensities of the four key peaks 

(1507, 1375, 1325 and 1240 cm-1) were calculated, as illustrated in Figure 3.13 (following the 

protocol of Gelbrich et al., 2008).  
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Figure 3.13: FTIR spectra for the four MDE wood samples, showing calculation of peak heights from the 
four key absorption peaks (following the protocol of Gelbrich et al., 2008). (Originally in colour). 

It has been suggested that an increase in the lignin: cellulose ratios derived from the FTIR 

spectra can be indicative of wood decay (Gelbrich et al., 2008) as bacterial decay of cellulose 

often occurs before lignin loss in archaeological wood (e.g. Blanchette, 2000). However, 

Pandey & Pitman (2003) demonstrate that certain bacteria preferentially decay lignin, which 

may distort this ratio. As the phenolic group in lignin is also likely to be more resilient to decay 

than the functional methoxy group, comparison with only the phenolic absorption (1507 cm-1) 

might also therefore be useful.  

Peak height were calculated for the four key peaks indicated in Figure 3.14, by subtracting the 

minimum intensity to the right of the peak from the maximum intensity, according to Gelbrich 

et al. (2008). Based on the estimated order of decay (cellulose > methoxy lignin group > phenol 

lignin group) (Faix et al., 1991; Pandey & Pitman, 2003), three ratios were then calculated from 

these peak heights. These were: total lignin: total cellulose (an increase in which indicates 

cellulose loss); 1507: total cellulose (again indicating cellulose loss, using only the most stable 
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lignin peak); and 1507: 1240 (an increase in which would indicate loss of the C-O-CH3 

functional group of lignin).  

Although on initial inspection it appears that increased cellulose loss at low pH is indicated by 

an increase in the lignin: cellulose and 1507: cellulose ratios, consideration of the error in the 

results suggests that the differences are not significant. Mass loss and umax analysis also 

showed that very little difference was seen between the four samples, and it is possible that 

degradation due to acid alone has simply not occurred in this short time-frame.  

 

Figure 3.14: Comparison of ratios derived from FTIR peak heights for the four MDE wood samples. Error 
bars represent 1 standard deviation of three repeat readings for each sample. (Originally in colour). 

In order to further test whether these ratios could be useful for directly comparing levels of 

degradation between wood samples, the analysis was expanded to include a number of 

archaeological samples. Further details of each of these are provided in Chapter 7, but in 

summary include:  

 a sample from Star Carr excavated in 2007 and stored under aerobic conditions prior 

to analysis, visually assessed to be in an advanced state of decay  

 an ash sample from the Bronze Age site of Must Farm, visually assessed as reasonably 

robust 

 a sample from the Iron Age site of Fiskerton, also described as robust 

Inspection of the FTIR spectrum from the Star Carr sample shows that the sample is degraded 

to such an extent that cellulose signals are very low and the peak at 1240 cm-1 is not present 
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(Figure 3.31). This indicates that any lignin still present in the sample may be completely 

defunctionalised. As a result of this, the derived 1507: 1240 ratio is not comparable to the 

other samples and has therefore been omitted. Other ratios derived from FTIR spectra for the 

archaeological samples are compared to a fresh birch sample in Figure 3.32. 

 

Figure 3.31: Comparison of FTIR spectra for untreated modern wood (bottom) and the wood sample 
excavated from Star Carr (top). (Originally in colour). 

 

Figure 3.32: Ratios calculated for a series of archaeological samples compared to a modern birch sample. 
(Originally in colour). 

As expected, both the Bronze Age and Iron Age samples have elevated 1507: C and 1507: 1240 

ratios compared to the modern samples, indicating increased deterioration.   
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3.3.4.3 Conclusions of FTIR for the analysis of wood 

Analysis of the four MDE samples showed very little difference between samples, with 

difference in the calculated ratios being within the margins of error (calculated by replicate 

analysis of an untreated sample). Whilst this supports analysis by bulk assessment methods, it 

is possible that FTIR analysis is not suitable for detecting very small chemical changes in wood.  

FTIR analysis of archaeological wood showed that differences between archaeological samples 

could be more easily elucidated; in particular, the defunctionalisation of lignin in a sample 

excavated from Star Carr was detected by disappearance of the characteristic absorption at 

1240 cm-1 (Figure 3.16). Analysis of the archaeological samples showed that by evaluation of 

three defined ratios, it is possible to compare samples directly although analysis must also be 

approached with caution. Ratios can be distorted by the absence of peaks, and therefore each 

spectrum should also be analysed individually. Alterations in the spectra such as peak splitting 

may also be indicative of decay (Pandey & Pitman, 2003).   

3.3.5 Py-GC 

FTIR analysis has been shown to be only semi-quantitative, with a relatively large degree of 

error between replicate readings of samples. Studies show that a more detailed analysis of 

polymer breakdown may be achieved by py-GC (e.g. Vinciguerra et al., 2007; Colombini et al., 

2007).   

The advantages of using py-GC analysis are primarily the small sample size (approximately 1 

mg) and the lack of sample preparation required (Alves et al., 2006). During pyrolysis, the 

major sub units of both lignin and cellulose are broken up into sub units, without 

fragmentation or alteration, due to the inert environment in which the sample is combusted. 

Studies using py-GC-MS have identified cellulose related products eluting first, followed by 

products relating to lignin (van Bergen et al., 2000). The composition and relative abundance 

of these lignin related products reflect the chemical nature of the lignin prior to pyrolysis; for 

example, an increase in the number of lignin sub units containing double bonds on the side 

chain or complete loss of the methoxy substituents indicates that chemical alteration of the 

lignin has occurred (e.g. Faix et al., 1991).      

Py-GC has been assessed, as it is potentially more sensitive than FTIR for determining minor 

structural changes. Although FTIR is useful for determining parameters such as lignin: cellulose 

ratios, no differences between the four samples from the preliminary experiment were 

elucidated using FTIR. It is possible that this is because differences were very small over such a 

short time scale.  
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3.3.5.1 Method 

Cross sections of the MDE wood samples were cut, dried and ground to a powder using an 

agate pestle and mortar. Approximately 1 mg sub samples were weighed into a quartz crucible 

and placed into a heated filament pyroprobe unit (CDS pyroprobe 5150, Chemical Data 

Systems). Samples were cleaned by heating to 290oC for 15 seconds in the presence of helium, 

to remove non-structural components (thermal desorption) followed by pyrolysis by heating at 

610oC for 15 seconds. This was coupled to a trace GC Ultra gas chromatograph (Thermo Fisher) 

fitted with a flame ionisation detector and a fused silica capillary column (Thermo Trace TR-5; 

30 m x 0.25 mm). The valve oven, transfer line and GC inlet were held at 310oC, and the oven 

temperature at 50oC for 5 minutes, and separation achieved using a ramp rate of 4oC/min to 

320oC, with a helium carrier gas at 2 mL/min (adapted from van Bergen et al., 2000).  

Retention times of key structural compounds were confirmed by analysis of commercially 

purchased standards (Aldrich). Solutions of the standards were made by appropriate dilution in 

HPLC grade hexane (Fisher Scientific) and injected onto the quartz crucible whilst inside the 

pyroprobe, prior to pyrolysis. Approximate retention times are summarised in Table 3.1. These 

known standards were analysed periodically to confirm retention times, and these times used 

to assign chromatograms based on published mass spectrometry data (e.g. van Bergen et al., 

2000).  
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Table 3.1: Approximate retention times in applied GC method for important lignin related compounds.  

 

3.3.5.2 Assessment of py- GC technique  

The four samples from the MDE were analysed by py-GC. Chromatograms from the samples 

treated at pH 2 and pH 7 (water) are shown in Figure 3.17. Identification of key lignin related 

peaks was carried out by comparison to the retention times of the standards listed in Table 

3.1. 

Bulk analysis and analysis by FTIR revealed only minimal differences between samples treated 

at different pH, and in the py-GC chromatograms, the intensity of cellulose and lignin peaks 

also appear similar in each sample (Figure 3.17).  This confirms that degradation is minimal, or 

indeed absent.  

  

Compound Structure Notation Retention time 

(minutes)

Phenol P 11

Guaiacol G 15

2-Methoxy-4-methylphenol 1 19

4-Ethylguaiacol 2 22

Isoeugenol (cis/trans) 3/4 25/27 
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Figure 3.17: py-GC traces for MDE wood samples treated in pH 2 and pH 7 acid. Labelled peaks were 
identified by analysis of purchased standards, shown in Table 3.1. (Originally in colour). 

An increase in phenol content of a sample is likely to be indicative of defunctionalisation of 

both syringol and guaiacol units of lignin, and may occur via either biological or chemical 

pathways (Hatcher, 1984; Martinez et al., 2005). The phenol peak in each of the four MDE 

samples was identified using the approximate retention time in Table 3.1.  Alves et al. (2006) 

show that quantification of peaks can be precise without the use of an internal standard, if the 

mass of that starting material is known. Therefore, the peak areas were divided by the mass of 

sample in mg, providing a measure of phenol peak area per mg.  An increase in 

defunctionalisation also results in a higher P: G ratio, as more guaiacol type units are 

converted into phenol type sub-units. P: G ratios for all MDE samples were calculated using the 

peak areas as assigned using the retention times of the standards. These values are compared 

in Figure 3.18 along with an untreated birch sample. Each sample was analysed in duplicate 

and the average value shown.  

Whilst these values do not provide an absolute measure of the phenol or guaiacol content, it 

allows an easy comparison between samples. However, the calculated error is high in all 

samples, and differences between the MDE samples were largely within the margins of error 

with the exception of the P: G ratio where an increase in defunctionalisation compared to the 

modern sample can tentatively be determined. 
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Figure 3.18: Peak areas of phenol corrected for mass (left) and P: G peak area ratios (right) for the four 
MDE samples preliminary samples compared to an untreated birch sample. Error bars are one standard 
deviation calculated from replicate analysis of the each sample. (Originally in colour). 

In order to assess whether py-GC may be more informative for the analysis of archaeological 

material, where degradation may be more advanced, analysis was also carried out on a sample 

excavated from Star Carr in 2013 (sample SC13 93554; Figure 3.19). Further sample details are 

given in Chapter 7 where a comparison is made with other archaeological wood samples. 

Analysis of the archaeological sample shows that where a sample is more degraded, alteration 

of the cellulose and lignin is easily identified by py-GC analysis. Loss of many of the cellulose 

related products at the start of the chromatogram indicates that the sample is severely 

depleted in cellulose. In addition, the phenol peak is more intense in the archaeological 

sample, indicating defunctionalisation of the lignin; this is also signified by a reduction in the 

intensity of the guaiacol peak (G) (Figure 3.19).  
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Figure 3.19: Comparison of py-GC traces between the MDE sample at pH 7 and an archaeological sample 
from Star Carr. Degradation of both lignin and cellulose is indicated in the archaeological sample by and 
increased intensity f the phenol peak (P) and a decreased intensity of other lignin components, labelled 
according to Table 3.1. (Originally in colour). 

3.3.5.3 Conclusions of py-GC analysis of wood 

Whilst FTIR reveals relative compositions of the wood samples, thus informing on the broad 

level of deterioration, py-GC gives a more detailed description of alteration of the major 

polymers, particularly lignin. An increase in the levels of defunctionalisation in lignin (due to 

chemical and biological attack: Martinez et al., 2005) can be indicated by an increased 

concentration of non-methoxylated compounds in the GC trace, particularly phenol. In FTIR, 

such small-scale differences may be unobservable as long as the lignin is largely intact. Phenol 

concentrations measured by py-GC could therefore be a useful method of comparing samples. 

Although an increase in phenol was not observed in the method development samples, this is 

consistent with results from bulk and FTIR analysis that indicate that significant deterioration 

had not occurred. Comparison with an archaeological sample shows that py-GC can reveal 

changes to both the lignin and cellulose when degradation is more advanced.  

Development of the py-GC method has not been fully investigated here. Ideally, more detailed 

interpretation of the lignin-related peaks would be carried out using mass spectrometry. 

Whilst peak ratios may allow direct comparisons between samples, the error has been shown 

to be significant, and the use of an internal standard would allow the technique to be more 

quantitative (Bocchini et al., 1997). Py-GC has therefore been used primarily as a secondary 

technique throughout the study, applied to samples where additional information may be 

useful.   
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3.3.6 Microscopic techniques 

Microscopic analysis of archaeological wood can reveal a great level of detail, as illustrated by 

studies such as those by Blanchette et al. (1990) and Bjordal & Nilsson (2007), where 

characteristic decay patterns are identified in different parts of the cells. Loss of structural 

parts of the wood may also be identified in both SEM and thin-section microscopy (e.g. Powell 

et al., 2001).  

3.3.6.1 Methodology 

3.3.6.1.1 Optical microscopy 

Two methods of preparing wood thin-sections for optical microscopy were tested.  

Firstly, samples were set in resin similarly to as described in Section 3.2.7.1 Due to the porous 

nature of the material however, the resin did not fully set. This resulted in breaking up of the 

wood during polishing.  

A more commonly used method for archaeological wood (e.g. Bjordal et al., 1999) is to slice a 

thin-section with a razor blade, sometimes freezing the sample prior to sectioning. Although 

this is effective for soft archaeological wood, it is difficult to achieve thin enough slices of 

robust, modern samples for analysis.  

Wood samples were viewed using plane polarised light with a Zeiss AxioScope binocular 

microscope with a motorised stage.  

3.3.6.1.2 SEM  

SEM analysis was carried out identically as for bone (Section 3.2.7.1). 

3.3.6.2 Assessment of techniques 

All four samples from the MDE were prepared in resin for thin-section analysis. Although 

structural components could be observed, differences between samples were not. It was not 

possible to analyse the samples optically using a sliced section.  

The minimal preparation method used for SEM analysis did not result in cell wall collapse in 

the modern MDE samples, as is often seen for archaeological wood (M. Stark, pers. comm., 

2011). Structural features of all samples were clearly visible, allowing the assessment of 

whether structural decay has occurred (Figure 3.20).  
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Figure 3.20: SEM images of wood samples treated at pH 2 (left) and pH 3 (right). Wood structure is 
clearly observed under SEM, and no damage is seen in either sample. 

3.3.6.2.1 Conclusionsof microscopy methods 

Both SEM and thin-section analysis of the four MDE samples revealed no structural 

differences; this agrees with results from other analytical methods, so does not suggest that 

microscopy is unsuitable for observing structural changes. Indeed, previous studies use it as a 

primary method of analysis (e.g. Blanchette et al., 1999; Bjordal et al., 1999).  

Thin-section analysis of modern wood samples was not particularly successful and was not 

pursued as a primary method of analysis for this study. However, in softer archaeological 

samples it may be more appropriate, although it has not been applied here. A simple method 

of SEM analysis proved successful and has been used in preference to optical microscopy for 

the analysis of modern samples.   

pH 2 pH 3
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3.3.7 Conclusions on wood analysis methods 

Analysis of a preliminary set of acid-treated wood samples has shown that over the short 

experimental time period used here, differences are minimal, and analytical techniques for the 

analysis of experimental wood deterioration are therefore required to be sensitive enough to 

detect small changes. Bulk assessment techniques are perhaps not as suitable for the analysis 

of wood as for bone; however, where they can be applied they allow both a direct comparison 

with bone treated at equivalent conditions and a quick comparison between samples. In 

addition, commonly used measurements such as umax may allow the direct comparison with 

reported data for archaeological samples.  

Whilst a number of wet chemical methods for the chemical characterisation of wood exist and 

are widely reported (e.g. Alves et al., 2006; Capretti et al., 2008), all of these methods require 

large amounts of sample and complicated preparation (Kleen & Gellerstedt, 1991). For this 

reason, it was decided not to pursue these methods, as they would not be appropriate for the 

analysis of archaeological samples.  

FTIR analysis is an alternative method of chemical characterisation and has been shown to give 

a reliable analysis of lignin: cellulose ratios in wood, as well as more detailed information, for 

example alteration of the lignin peaks upon lignin defunctionalisation (e.g. Pandey & Pitman, 

2003; Gelbrich et al., 2008). Due to its ease of use and potential to be applied non-

destructively, it is highly appropriate for the analysis of archaeological wood. However, it was 

possibly not sensitive enough to detect changes in these experimentally altered samples. For 

this reason, py-GC was also investigated. Although in the early stages of development, the py-

GC technique used provides complementary information to the FTIR analysis and has been 

used when additional information could be useful. In particular, by examining key degradation 

indicators, such as phenol content, lignin alteration could be more securely identified.  

SEM analysis proved to be the most effective microscopic technique, considering that for the 

purposes of this study it needs to be appropriate for both archaeological and modern samples. 

Again, the technique is minimally destructive and provides complementary information, 

allowing the assessment of whether chemical changes have led to the loss of structural 

integrity.  Visual analysis allows the comparison of samples with archaeological material 

reported in literature. SEM has also been applied selectively, providing additional information 

when necessary. 
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Table 3.2: Summary of all analytical techniques targeted for the analysis of organic materials throughout the rest of the study. The rationale for each technique has been previously 
detailed. 

 

Technique
Material

Advantages Disadvantages Description of application
Bone Wood

Visual analysis  
• Ease of application
• Direct comparison between samples

• Subjective
Routinely applied to all samples 
throughout thesis

Mass loss analysis  
• Ease of application
• Direct comparison between samples

• Cannot be applied to archaeological material
Routinely applied to experimental 
samples throughout thesis

pH analysis  
• Semi-quantitative
• Ease of application

• Cannot be applied to archaeological material
Routinely applied to experimental 
samples throughout thesis

Maximum water content 
• Ease of application
• Allows comparison with published archaeological data

• Subject to high levels of error
Routinely applied to all wood 
samples throughout thesis

Amino acid analysis 
(concentration and racemisation) 

• Fast; can routinely analyse large numbers of samples
• Allows comparison to literature data
• Minimally destructive

• Not widely available
• Concentration data is subject to high levels of error

Routinely applied to all bone 
samples throughout thesis

Powder X-ray diffraction 

• Potentially minimally destructive
• Ease of interpretation
• Allows comparison to literature data

• Not widely available
• Difficulty in powdering bone samples

Applied to most bone samples 
throughout thesis

FT-Infrared spectroscopy () 

• Widely available
• Ease of application
• Potentially non-destructive

• Non-quantitative
• Subjective

Routinely applied to all wood 
samples and selected bone 
samples

Py-Gas chromatography 
• Detailed analysis of lignin breakdown
• Allows comparison to literature data

• Slow analysis times
• Difficult to interpret without mass spectrometry

Applied to selected wood samples

Optical microscopy 
• Widely available
• Allows analysis of histological alteration

• Subjective
• Destructive

Used only rarely due to difficulties
in achieving thin sections

Scanning electron microscopy  
• Easy to interpret
• Minimal sample preparation

• Subjective
• Destructive

Used on selected bone and wood 
samples

Transmission electron microscopy () • Provides high resolution visual analysis
• Not widely available
• Complicated and destructive sample preparation

Applied minimally due to costs 
and destructive preparation
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3.4 Summary of methods 

A number of analytical methods suitable for the purpose of assessing organic preservation are 

reported. For the purposes of assessing the deterioration of organic materials at Star Carr, 

techniques that are minimally destructive, relatively cheap, and easily accessible have been 

focused on. It was important that the methods developed here could be applied to both 

modern and archaeological materials, providing a range of complementary information on the 

various structural components, both qualitative and quantitative. 

Following analysis of MDE samples of both bone and wood, the techniques that have been 

routinely applied throughout this study are summarised in Table 3.2. In addition, some 

techniques have been applied only when additional information was deemed important. This 

was due to factors such as those techniques being not as readily available, costly or requiring 

large amount of sample to be destroyed, making them inappropriate for the routine analysis of 

archaeological materials.   
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4 CHAPTER 4 
 

 

INVESTIGATING ORGANIC 
DETERIORATION IN ACID USING 

LAB-BASED EXPERIMENTS 
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4.1  Introduction 

The following chapter is an adapted version of two papers; 1 currently in press and 1 currently 

under review: 

1: Apatite for destruction: Investigating bone degradation due to high acidity at Star Carr. K. 

High, K.E.H. Penkman, N. Milner and I. Panter. Submitted to the Journal of Archaeological 

Science 

2: Fading Star: Towards understanding the effects of acidification on organic remains (wood) at 

Star Carr. K. High, K. Penkman, N. Milner and I. Panter. Proceedings of the 12th ICOM-WOAM 

conference, 2013 (in press).  

Results have been added to the second section (wood degradation) and therefore the two 

papers have been adapted and edited to fit in with the rest of the thesis.  

**** 

The discovery of bone, antler and wooden artefacts in alarmingly advanced stages of 

deterioration during the 2006-2008 excavation phase at Star Carr raised concern for the future 

survival of any remaining organic archaeological material at the site (Milner et al., 2011a; 

Chapter 1). The reasons for this accelerated decay were uncertain; factors contributing to 

organic degradation at wetland sites are many, and often interlinked. Examples include soil 

density, dissolved salts and soil water content (e.g. Pollard, 1996; Caple, 2004). An increase in 

oxygen content (for example caused by a reduction in the height of the water-table) is also 

likely to have a significant impact on the biological activity of the environment. Microbial and 

fungal activity in archaeological wood are major facilitators of both cellulose and lignin loss 

(e.g. Blanchette, 2000; Bjordal et al., 1999). However, the most recent analysis of wood from 

Star Carr revealed no substantial evidence for levels of biological decay above those expected 

at a waterlogged site of this age (Milner et al., 2011a).   

Monitoring of the Star Carr site has suggested that the water-table may have recently fallen 

and begun to fluctuate through the archaeological layer, possibly due to the installation of a 

series of field drains in 2000. The time period of monitoring has not yet been sufficient to 

establish long term trends regarding the exact position of the water-table, but it is expected to 

lie close to the archaeology (Brown et al., 2011). Geochemical analysis of the site in 2009 

further suggested that the site is no longer permanently saturated; elevated redox values 

(suggesting high levels of dissolved oxygen) were reported across the site. The observation of 

soil pH values of < 2.5 in the archaeological zone, as well as high concentrations of dissolved 

sulfur and iron (attributed to the dissolution of minerals such as pyrite from underlying 
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Speeton clay deposits) has led to the hypothesis that these geochemical and hydrological 

factors have led to the formation of sulfuric acid at the Star Carr site (Boreham et al., 2011; 

Chapter 2).  

It has been assumed that this dramatic and presumably rapid increase in acidity is leading to 

accelerated decay of organic remains (Milner et al., 2011a). However, few studies consider the 

effects of such high sediment acidity as that seen at Star Carr, although instances of similar pH 

levels in archaeological deposits are known. Examples include Yoxall Bridge, where a soil pH of 

2 was thought to be caused by underlying sulfur-rich mineral deposits (Brown et al., 2010), and 

areas of the Bronze Age site of Flag Fen where a pH of approximately 3.5 has been reported 

(Powell et al., 2001). Despite this, studies at these sites have not fully investigated the 

preservation potential for organic materials (specifically bone and wood) in burial 

environments with as high acidity as Star Carr.  

Previous research shows that high acidity has a detrimental effect on the survival of bone 

(Gordon & Buikstra, 1981). Other studies have taken an experimental approach to modelling 

bone diagenesis (e.g. Turner-Walker & Peacock, 2008; Karr & Outram, 2012). Research into the 

effects of the pH of the burial environment however, has been limited to environments with 

only mildly acidic sediment (e.g. pH > 3; Nicholson, 1996; 1998).    

Studies on the degradation of archaeological wood often focus on biological contributions to 

diagenesis and tend to be focused on marine environments (e.g. Bjordal et al., 1999). Although 

components of wood are known to be soluble in high concentrations of acid (e.g. Hoffman & 

Jones, 1990; TAPPI standard T 222 om-88), degradation of lignin and cellulose in acidic 

environments is more often researched outside of an archaeological context (for example in 

the paper and pulp, or coal industries) and therefore burial times do not often equate to the 

archaeological time scale (e.g. Adler, 1977; Xiang et al., 2003).  

This study aims to test how destructive high acidities equivalent to those found at the Star Carr 

site are to bone and wood, controlling for other site conditions. To this end, laboratory-based 

degradation experiments in sulfuric acid using a range of modern and archaeological bone 

were performed. This removes all other factors contributing to organic deterioration and 

allows the assessment of whether high acidity is the main contributor to the observed organic 

diagenesis at Star Carr.  
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4.2 Experimental 

4.2.1  Materials 

4.2.1.1 Bone 

Bone originating from a range of different species has been recovered from Star Carr, and 

slight differences in deterioration have previously been observed when comparing different 

types of bone (e.g. Nicholson, 1996; Koon, 2006). Throughout this study, sheep bone has been 

used as a modern analogue to deer bone (the most commonly recovered species from Star 

Carr) as it is more readily available. Modern long bone and rib samples were obtained from a 

butcher and identified by the butcher as sheep, with long bone A being from a more mature 

animal than long bone B. All were de-fleshed by gentle warming in a mild solution of biological 

washing powder.  

Modern analogues allow the comparison of different types of bone and range of conditions 

due to the greater quantity of material available, but archaeological bones will have already 

undergone a significant amount of deterioration in the burial environment (e.g. Jans et al., 

2002; Turner-Walker & Peacock, 2008). Therefore, a large mammal rib bone (likely to be red or 

roe deer) was obtained from Star Carr during excavations in 2010. This allowed the assessment 

of whether archaeological material is more at risk than modern material.  

All bone samples were sliced into 3 mm cross sections using a water-cooled diamond edged 

band saw. 

4.2.1.2 Wood 

Wood has been discovered at Star Carr in abundance, and spans a wide range of species, 

primarily birch, willow and aspen (Clark, 1954; Milner et al., 2013b). In addition, wood has 

been found as both round wood and split timbers. In order to compare differences between 

species, both willow and birch have been used throughout this study.  

Modern samples of birch (approximately 3 mm cross sections of a young branch) and willow 

(approximately 1 cm3 pieces from the centre of a trunk), were cut into uniform sections using a 

band saw. Similarly as for bone, archaeological wood is likely to have undergone significant 

levels of biological and chemical decay during the burial period (e.g. Blanchette, 2000; Bjordal 

et al., 2000).  Archaeological wood samples were obtained from both the Bronze Age site of 

Must Farm (ash) and from Star Carr (unknown species, probably willow) during excavations in 

2007 (SC07). Samples of approximately 3 cm3 were prepared using a scalpel. 
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4.2.2 Method 

Stock solutions of sulfuric acid at pH values of 1, 2, 3 and 5 were made using MilliQ water and 

12 M sulfuric acid (Fisher Scientific). The accurate pH of each stock solution was recorded using 

a glass pH probe calibrated between pH 4 and 7 (Denver instrument) and kept to within 0.1 pH 

units of the selected pH throughout the experiment.  Each sample was placed in a sterile glass 

screw-top vial and filled with 50 mL / g of the relevant solution. Two hydrological regimes were 

mimicked: the first to replicate conditions where there is limited movement of solution 

(‘stagnant’ conditions; S), and a second where the solution was replenished, replicating a 

‘dynamic’ site hydrology (D). Experiments were carried out at room temperature (RT) and at 

80oC in order to accelerate decay under laboratory conditions. The experimental conditions 

are summarised in Table 4.1 (for bone) and Table 4.2 (for wood).  

Periodically (approximately weekly) sub-samples of the supernatant liquid (aliquot samples) 

were taken from each sample and the pH of the remaining solution recorded. At these points, 

the solution was replaced in the “D” samples.  

Table 4.1: Summary of time points (in weeks) and planned experimental conditions for each bone type. 
Where samples had to be removed early due to rapid dissolution, the actual time point is shown in 
brackets. “D” represents dynamic conditions, and “S” represents stagnant conditions. Long Bone A is 
from an older animal than Long Bone B.  

 

Time points (weeks)

Long Bone A Long Bone B Rib Bone Arch. Rib

pH T D S D S D D

1

R
o

o
m

 t
em

p
er

at
u

re 6,8,16 6 6 6 6,16 6,16

2 6,8 6 6 6

3 6,8,16 6 6 6 6,16 6,16

5 6,8 6

Water 6,8 6 6 6 6

1

H
ea

te
d

 (8
0

o C
)

6,16(4) 6 6(3) 6 6(2),16(2) 6(1),16(2)

2 6 6 6 6

3 6,16 6 6 6 6,16 6,16

5 6 6

Water 6 6 6 6 6
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Table 4.2: Summary of time points (in weeks) and experimental conditions for each wood type. “D” 
represents dynamic conditions, and “S” represents stagnant conditions 

 

4.2.3 Analysis of bone deterioration 

All analysis was carried out according to methods developed in Chapter 3. The key techniques 

applied are summarised.  

4.2.3.1 Bulk assessment 

All samples were assessed by visual and mass loss analysis according to Chapter 3 Section 

3.2.2. Analysis of the pH of the reaction solution was carried out to provide a time-dependent 

analysis.  

A selection of samples were analysed by SEM and TEM according to Chapter 3 Section 3.2.7.1. 

4.2.3.2 Chemical analysis  

Analysis of the HA fraction was carried out using p-XRD only Chapter 3, Section 3.2.4). In some 

cases, not enough of the sample remained for analysis following experimentation.  

Total amino acid concentrations and amino acid racemisation was analysed for each bone 

sample based on the procedure outlined in Chapter 3 Section 3.2.3. Analysis of the 

supernatant aliquots taken at each sample point was also carried out.  

Time points (weeks)

Modern birch Modern willow
Star
Carr

Must Farm

pH T D S D S D D S

1
R

o
o

m
 t

em
p

er
at

u
re 6,16 6 6,16 6 6 6 6

2 6 6 6 6 6 6

3 6,16 6 6,16 6 6 6 6

5 6 6

Water 6,16 6 6,16 6 6 6

1

H
e

at
ed

 (8
0o C

)

6,16 6 6,16 6 6 6 6

2 6 6 6 6 6 6

3 6,16 6 6,16 6 6 6 6

5 6 6

Water 6,16 6 6,16 6 6 6
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Analysis of the starting materials was carried out prior to experimentation. Asx racemisation 

was slightly elevated in the archaeological samples compared to the modern bones (D/L = 0.1 

vs 0.06).  

1.1.1 Analysis of wood deterioration 

1.1.1.1 Bulk assessment 

Visual analysis, mass loss and maximum water content (umax) analysis were carried out on all 

wood samples as outlined in Chapter 3 Section 3.3.2. Analysis of the pH of the solution was 

also carried out at each sampling point.  

A selection of samples were analysed by SEM according to Chapter 3 Section 3.3.5.1.  

1.1.1.2 Chemical analysis 

All samples were analysed using FTIR (Chapter 3, Section 3.3.3). Heights for the 4 major 

absorption peaks (cellulose at 1325 and 1375 cm-1; lignin at 1240 and 1507 cm-1) were 

calculated and used to calculate 3 ratios that serve as a measure of diagenesis (lignin: 

cellulose, 1507: cellulose, and 1507: 1240).  

Additional analysis by py-GC was carried out on selected samples in order to supplement FTIR 

analysis, according to Chapter 3 Section 3.3.4.  

Analysis of the starting archaeological material was carried out using FTIR prior to the start of 

the experiment, and a reduction in the intensity of the peaks relating to cellulose indicate that 

wood from both Must Farm and, to a greater extent, Star Carr were depleted in cellulose prior 

to experimentation.  
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4.3  Investigation into bone deterioration  

4.3.1 Results: Bulk analysis 

It is expected that the dissolution of HA (Ca10(PO4)6(OH)2) in sulfuric acid will ultimately result 

in the formation of phosphoric acid; a much weaker acid, thus reducing the acidity  (Atkins et 

al., 2006) (Equation 4.1).  

Equation 4.1: Formation of phosphoric acid from dissolution of HA. 

 

It is often assumed that in the burial environment, this buffering of acidity by HA dissolution 

prevents the breakdown of the highly stable collagen helix (Collins et al., 1995). The capacity of 

the HA to buffer acidity is clearly demonstrated by analysis of the pH of the surrounding 

solution for bone samples at pH 2 and above, with a rapid increase in the pH of the 

supernatant in all bone samples (Figure 4.1, top). An increase in pH was maintained even after 

16 weeks under D conditions.  

 

Figure 4.1: Measured pH for dynamic conditions at room temperature for all bone samples. Data is 
shown for the pH 1 experiment (bottom) and pH 3 experiment (top) for 6 weeks. Buffering continues at 
similar levels for the duration of the 16 week experiments. (Originally in colour). 

At pH 1 this buffering ability is much weaker (Figure 4.1, lower), with a maximum pH of just 

under 2 being reached even in the S samples. Buffering is also significantly reduced in the 

H+ + PO4
3- H+ + HPO4

2- H+ + H2PO4
- H+ + H3PO4
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archaeological bone even at higher pHs, demonstrated by the data for pH 3 (Figure 4.1, upper); 

in contrast to the pH of 9.5 initially observed for the modern rib sample solution, the pH does 

not increase above 6.5 for the archaeological rib. It is likely that some mineral depletion has 

already occurred in the archaeological sample, leaving fewer phosphate and carbonate ions 

available to neutralise the acid.  

At pH 1 and 80oC, disintegration began to occur after only three days for modern bones and 

one day for the archaeological bone, and so the experiment was stopped early in order to 

retain sample for analysis (indicated in Table 4.1). As the experiment progressed, severe 

distortion and a translucent texture was observed in both long bone A and long bone B at pH 

1, RT by the 6 week time point. After 16 weeks, the same was seen in the bones at pH 2, RT 

(Figure 4.2).  

Although no visible deterioration was seen during the experiment in the majority of other 

samples, upon drying all samples at pH 2 and 3, and those at pH 5 at 80oC, developed a chalky, 

brittle texture.  

 

Figure 4.2 (Left to right): long bone A starting material; long bone A, pH1, 80
o
C, D after 3 days; long bone 

A, pH 1, RT, D after 6 weeks; long bone B, pH 1, RT, D after 6 weeks, illustrating differences between 
disintegrated, chalky and translucent samples. (Originally in colour). 

Deterioration occurred far more rapidly in the archaeological samples. As early as seven days 

at pH 1, 80oC, the sample had completely disintegrated. Rapid deterioration or distortion of 

the archaeological sample was also visible at pH 1 and 2, RT, and most 80oC samples, including 

at pH 7.  

Mass losses in all bone samples after 6 weeks are expressed as a percentage of the starting 

mass in Table 4.3. Approximately 5 % by mass of bone is made up of non-structural 

components, such as lipids and minor non-collagenous proteins that may be readily lost in an 

aqueous environment (Currey, 2002), and these may account for minor mass losses such as 

the ~2-3 % seen in water, RT. It is expected that these non-structural components would not 

still be present in archaeological bone at Star Carr.  

Long bone A Long bone A Long bone A Long bone B

Starting material pH 1, 80oC, D, 3 days pH 1, RT, D, 6 weeks pH 1, RT, D, 6 weeks
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Table 4.3: Mass loss in bone after 6 weeks and 16 weeks (in brackets) where relevant. Mass loss is 
presented as a percentage of the starting mass. 

 

Based on the buffering capacity observed (Figure 4.1), it is hypothesised that the majority of 

mass loss is due to dissolution of bone mineral. The mass of HA needed to change the pH from 

1 to 1.25 is approximately 40 times greater than needed to change the pH from 3 to 5. This 

explains why much greater mass loss observed at pH 1, compared to pH 3 where buffering is 

much more easily achieved.  

Mass loss was significantly lower in the S samples, even at low pH values: 3.5% compared to 

45.8% loss at pH 1, RT; and 6.7% compared to an almost complete loss of sample at 80oC in 

long bone A. Slightly greater mass losses are also seen at high temperature, due to the 

expected acceleration of deterioration.  

4.3.2 Results: Microscopy 

4.3.2.1 SEM 

In samples where significant visual changes were observed, SEM analysis was carried out. 

Analysis revealed that in samples that had developed a chalky texture, deep cracks in the bone 

surface could be identified (Figure 4.3, centre). In contrast, bones where distortion and a 

translucent appearance had occurred (mainly in samples treated in pH 1 acid), a smooth 

texture was seen under SEM (Figure 4.3, right), as well as the appearance of nodular 

formations. Collagen fibrils are approximately 0.5 μm in diameter (Rho et al., 1998), meaning 

Mass loss as a percentage of the starting mass at 6 and (16) weeks

Long Bone A Long Bone B Rib Bone Arch. Rib

pH T D S D S D D

1

R
o

o
m

 te
m

p
er

at
u

re

46 (78) 4 54 8 50 (63) 79 (>90)

2 18 4 45 39

3 3 (4) 2 3 9 (16) 10 (3)

5 3 2

Water 3 2 2 6 5

1

H
ea

te
d

 (8
0

o
C

)

>90 (>90) 5 >90 >90 (>90) 73 (>90)

2 32 7 73 67

3 9 (32) 5 28 28 36 (40) 34 (37)

5 5 5

Water 5 (27) 5 31 36 (50) 30 (36)
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that these nodules could potentially be collagen, visualised as a result of being exposed by HA 

loss.   

 

Figure 4.3: SEM images of bone at 400 x magnification. Left: untreated bone; Centre: long bone B 
treated at pH3, RT, D; Right: long bone B treated at pH 1, RT, D (inset, zoomed in section – scale bar 
reads 2 μm). 

4.3.2.2 TEM 

The number of samples analysed by TEM was limited by the fact that for heavily degraded 

samples, only a small sample size remained.  

Many of the samples completely dissolved during the process of demineralisation in EDTA. The 

fact that any remaining collagen was soluble in EDTA indicates that it was heavily degraded, as 

fresh collagen is insoluble under most conditions (e.g. Glimcher & Katz, 1965). This solubility is 

likely to be due to loss of cross-linking between the collagen fibrils, or break up of the protein 

chains (Koon, 2006). Alternatively, no collagen was present in the samples and treatment in 

EDTA resulted in dissolution of any remaining HA.  

A summary of the samples prepared for TEM is shown in Table 4.4, with those that dissolved 

indicated. The one sample successfully analysed is shown in Figure 4.4.  

Table 4.4: Summary of samples treated for analysis by TEM. 

 

Untreated pH 3 pH 1

Bone type Conditions TEM analysis

Long bone A pH 1, RT, D Dissolved

Long bone A pH 2, RT, D Analysed

Long bone A pH 3, 80oC, D Dissolved

Long bone B pH 3, 80oC, D Dissolved
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Figure 4.4: Images obtained using TEM of long bone A sample treated in pH 2, RT under dynamic 
conditions (left) compared to a modern sample (right). 

Comparison of the pH 2 treated sample with a modern bone sample prepared using identical 

conditions shows no alteration of the collagen; characteristic banding is visible and no markers 

of collagen degradation, such as beading or swelling of the fibrils were identified (Koon et al., 

2003). This indicates that a significant increase in collagen diagenesis has occurred in the 

equivalent sample treated at pH 1, which dissolved in EDTA, compared that treated at pH 2 

which displays little or no deterioration of the collagen (Table 4.4). 

4.3.3 Results: Chemical analysis  

4.3.3.1 Powder X-ray diffraction (p-XRD) 

P-XRD was carried out on all samples where the size of the sample allowed. Analysis of both 

the modern and archaeological bone material prior to experimentation showed peaks 

characteristic of fresh bone (e.g. Bartsiokas & Middleton, 1992), and in the majority of samples 

treated at RT no alteration was observed. In heated samples however, sharpening or splitting 

of the HA peaks was seen, indicating an increase in HA crystallinity (e.g. Person et al., 1995). 

For convenience and to allow comparison between large numbers of samples, these 

alterations have been characterised according to the degree to which the HA peak exhibits a 

slight shoulder or splitting. These characterisations have been termed  ‘peak with shoulder’ 

(PS), mild splitting (MS) or splitting (S). These alterations are illustrated in Figure 4.5 and 

summarised for all samples in Table 4.5. 

1 µm 1 µm



142 

 

 

Figure 4.5: Example p-XRD patterns, illustrated by long bone A samples treated at 80
o
C at various pHs 

compared to an untreated modern bone (bottom), which displays the characteristic broad peaks of HA in 
fresh bone. Vertical lines indicate the positions of peaks characteristic of pure HA (dashed lines) and 
gypsum (dotted lines). (Originally in colour). 

In all samples treated in pH 1 acid, even at RT, complete alteration of the crystal structure was 

observed and the characteristic hydroxyapatite peak at 32o 2 lost. The positions of the peaks 

are consistent with a change to gypsum (CaSO4.2H2O) (e.g. Kontoyannis et al., 1997). This 

suggests that complete dissolution and recrystallisation of the HA has occurred, incorporating 

the sulfur from the acid according to Equation 4.2.  

Equation 4.2: Formation of gypsum via the dissolution of HA. 

 

This was further confirmed by SEM analysis of the liquid removed after one day from the 

sample at pH 1, 80oC. Whereas HA crystals in bone are non-crystalline and measure on the 
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nano-scale (e.g. Rho et al., 1998), crystalline ‘rosette’ formations characteristic of gypsum 

were observed (e.g. Shih et al., 2005) (Figure 4.6).  

 

Figure 4.6: A and B show SEM images of gypsum rosette formation in different stages, reproduced with 
permission from Shih et al. (2005).Crystals pictured are in the 400-700 µm range.  Image C is an SEM 
image of a crystal in the solution removed after 1 day from a bone sample displaying the X-ray 
diffraction pattern characteristic of gypsum (pH1, 80

o
C, D). 

Table 4.5: Summary of changes to the p-XRD pattern for all analysed bones after 6 weeks, with 
characterisation after 16 weeks in brackets. (Originally in colour). 

Key: G = gypsum structure; S = peak splitting; MS = mild splitting; PS = peak with shoulder; - = no alteration.  

 

In long bone A after 16 weeks, RT pH 1, D no diffraction peaks were observed at all. This 

indicates that all crystalline inorganic material had been completely removed from the sample 

leaving behind only a protein matrix.  
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p-XRD classification after 6 (16) weeks
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4.3.3.2 Amino acid racemisation analysis 

4.3.3.2.1 Sample concentrations 

Analysis of the starting materials showed that the total concentration of amino acids in the 

archaeological sample was not notably different to the modern material, agreeing with studies 

that show that collagen is relatively robust and can survive well in the archaeological record 

(e.g. Collins et al., 1995). Slightly higher concentrations in the modern rib suggest that it is less 

densely mineralised, leading to a higher proportion of collagen.  

A relative increase in total amino acid concentration in experimental samples compared to the 

starting materials can be caused by loss of HA, and was increasingly seen at lower pH in most 

samples at RT (Figure 4.7). The same is also seen after 16 weeks.  

 

Figure 4.7: Total amino acid concentrations in all 4 bones under D conditions at RT and 80
o
C at 6 weeks. 

Water is given the description pH 7. Error bars are one standard deviation calculated from replicate 
analysis. (Originally in colour). 

In the 80oC samples the reverse is seen. As significant mass loss has also occurred in these 

samples (Section 4.3.1) and analysis of the pH levels indicates the dissolution of HA, we can 

conclude that at high temperatures protein is simultaneously being lost. After 16 weeks, very 

few amino acids appear to remain in any of the 80oC bone samples, even at pH 7 (water). The 

concentrations decrease with increasing acidity, indicating increasing loss of the protein. 
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4.3.3.2.2 Sample racemisation 

Analysis of the starting materials was carried out prior to experimentation. Asx racemisation 

was slightly elevated in the archaeological samples compared to the modern bones (D/L = 0.1 

vs 0.06), although no racemisation of Ser was observed.  

At RT, racemisation levels were consistently almost negligible, even after 16 weeks. Kinetic 

studies such as those by Bada (1972) have shown that racemisation rates are likely to be 

unobservable at RT over this short time-scale.  

 

Figure 4.8: Aspartic acid (Asx; left) and serine (Ser; right) racemisation at 80
o
C, D for all 4 bone types 

after 6 weeks. Outlined data points represent samples which were removed early. Samples under 
dynamic conditions showed similar trends. Error bars were negligible and therefore not shown. 
(Originally in colour). 

At 80oC however, Asx and Ser racemisation levels are elevated compared to the starting 

material in all samples, even those at pH 7 (water) (Figure 4.8) suggesting that the collagen 

structure is breaking apart within the bone. As both Asp and Ser can racemise in-chain, this 

could be due to an increase in conformational freedom in the collagen helix. In long bone A, 

this is pH dependent, with a very high D/L value observed in the bone sample at pH 1. 

Although the same is not seen for other bone types, it must be noted that in these the samples 

at pH 1 disintegrated before the 6 week period and were removed from the experiment early. 

High levels of Asx racemisation are seen in the archaeological rib bone, despite being only 

slightly elevated in the starting material. This suggests that breakdown of the collagen 

proceeds more rapidly than in fresh bone, possibly due to damage already occurring during 

burial. This agrees with the slightly lower total concentrations in the final samples of the 

archaeological bone at 80oC.    
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4.3.3.2.3 Aliquot amino acid concentrations 

Although it is difficult to quantify these results due to the potential evaporation of the 

solutions at 80oC, broad conclusions can be drawn. Amino acid concentrations in the 

supernatant solutions at RT throughout the experiments were very low; such low levels of 

amino acids present can be attributed to leaching of the small chain, non-structural proteins 

present in fresh bone. This suggests that only HA is dissolving, even at pH 1, RT where a high 

mass loss suggests that a significant proportion of the sample has disappeared. Alternatively, 

protein is also being lost, but the amino acids are broken down such that they cannot be 

detected.  However, the high stability of amino acids has been widely reported, and suggests 

that this would be unlikely at such low temperatures over this short time-scale (e.g. Sato et al., 

2004; Yablokov et al., 2009). 

 

Figure 4.9: Aliquot solution amino acid concentrations over 6 week reaction period for all bone samples 
at 80

o
C for pH 3 and pH 1. (Originally in colour). 

For the 80oC experiments, leaching is initially faster at pH 1, although large concentrations of 

amino acids are found in the solutions at pH 3 after the full 6 weeks (Figure 4.9). Leaching from 

the archaeological bone is also markedly faster than from the modern samples, resulting in an 

almost zero concentration of amino acids remaining in the bone itself by the end of the 

experiment (Figure 4.7), showing almost complete leaching of protein out of the bone.  
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Although much lower concentrations of amino acid are seen in solution at RT than at 80oC, it is 

possible that the reason for this is that when samples are heated short chains simply leach 

more readily out of the sample, rather than there being a larger number of short chains 

present in the bone. Collins et al. (1995) suggest that even free amino acids can be prevented 

from leaching out of the collagen matrix by hydrogen bonding, and this might be occurring at 

RT. 

4.3.3.2.4 Aliquot amino acid racemisation 

Racemisation values are consistently negligible in the samples at RT. At 80oC, Asx and Ser 

racemisation is observed, but is somewhat lower in solution than in the whole bone. For Asx 

this slightly increases towards neutrality (Figure 4.10). However, Smith & Evans (1980) suggest 

that racemisation, particularly of Ser, is faster in solution. Kinetic studies such as those by Bada 

and Shou (1980) also show that racemisation of free amino acids in solution is independent of 

pH between pH 3 – 9. A possible explanation for the observation here is that at low pH, rather 

than short peptide chains leaching into solution, collagen is leached out in a more stable form; 

either as a triple helix or in fibrils. In this case, lower racemisation may be explained by the 

inability of either Asx or Ser to racemise within the undisrupted helix.   

 

Figure 4.10: Racemisation values of Asx in solution at each sampling point during the experiment for 
modern rib and long bone A samples under dynamic conditions (the whole solution is replaced following 
each sampling point). Other bones show similar trends, with a slight increase in racemisation over time. 
(Originally in colour). 
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4.3.4 Discussion  

Lab-based experiments have shown that at low pH, bone rapidly buffers the surrounding 

environment through loss of the HA (Section 4.3.1). In acidic environments, bone collagen may 

not, therefore, be exposed to this low acidity, particularly at pH values of > 3. However, this 

study has demonstrated that this buffering capacity is severely limited at pH ~ 1 and is 

significantly reduced in archaeological samples. The implications for this are two-fold; firstly, 

more HA will continue to dissolve in order to establish equilibrium with the solution, and the 

bone itself (including the bone protein) will be exposed to low pH for longer. In a dynamic 

environment, where the water-table is fluctuating through the archaeological layer, this 

buffered zone would have to constantly be re-established, leading to more and more 

dissolution of bone mineral. Indeed, throughout the experiment, bones under stagnant 

conditions have been far less altered than those under dynamic conditions.   

Alteration of the HA has been shown by p-XRD to occur within 6 weeks in the samples at 80oC, 

even in water. Hiller & Wess (2006) propose that in a situation where dissolution occurs and 

recrystallisation can proceed, it will do so by the formation of larger crystals. Indeed, alteration 

of the HA does occur even under S conditions, when mass loss is very low, and the 

transformation to gypsum at pH 1 shows that dissolution and recrystallisation is occurring.  In 

an environment where recrystallisation is less likely (for example if groundwater fluctuates 

through the archaeological layer), increased crystallinity may be accounted for by the 

preferential dissolution of smaller crystals (Hedges & Millard, 1995).  

Previous studies have shown that the association between collagen and HA lends a high 

degree of protection to the collagen (Roberts et al., 2002; Koon, 2006). Therefore, this 

observed alteration of the inorganic HA structure is likely to have important consequences for 

the organic fraction. Racemisation values in the whole bone samples suggest that collagen 

breakdown within the bone is more progressed at pH 1, where HA alteration is also more 

advanced. This may be due to either complete collagen breakdown, or an increased degree of 

conformational freedom, for example by loss of the HA resulting in in-chain racemisation of 

Asp (e.g. Dobberstein et al., 2008; Collins et al., 2009). Complete collagen breakdown is 

supported by the high concentration of leached amino acids present in the surrounding 

solution. Bada & Shou (1980) show that free amino acid racemisation both in solution and in 

bone is independent of pH between pH 3 and 9 and only acid-catalysed at pH values of less 

than 1. It is possible therefore, that the increase in racemisation (i.e. increase in collagen 

damage) is not dependent on the pH, but is a secondary effect of HA dissolution, which is pH 

dependent. Covington et al. (2008) show that the stability of collagen is enhanced when 
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prevented from shrinkage by a tightly bound matrix – in the case of bone, this is 

hydroxyapatite.  

The low levels of racemisation but high amino acid concentrations observed in the supernatant 

solutions at low pH could suggest that collagen could be dispersing into solution whilst 

remaining relatively intact. This is supported by SEM and visual analysis of the samples. Whilst 

a chalky and cracked texture was observed in bone exposed to pH > 2, bones treated at pH 1 

developed a translucent, smooth texture. This could be the result of complete 

demineralisation leading to an exposed collagen matrix after rapid HA dissolution. The small 

‘nodules’ observed on the surface of the bone under SEM (Figure 4.3) are potentially 

consistent with the size of a collection of collagen fibrils, supporting the hypothesis that they 

might be exposed by HA loss (Rho et al., 1998). P-XRD analysis of the bone treated for 16 

weeks at pH 1, RT revealed little or no inorganic fraction remaining, yet high levels of amino 

acids were present supporting this hypothesis of initial HA loss, with subsequent protein 

leaching (Section 4.3.3.2). This may explain the formation of the Star Carr ‘jellybones’, but 

would indicate that their demineralised state is not stable over the longer term.  

The proposed mechanisms by which bone deteriorated under different strength sulfuric acid 

are simplified and summarised in Figure 4.11, showing that the rate at which HA dissolves 

appears to dictate the speed at which collagen degrades. 

 

Figure 4.11: Schematic showing the proposed degradation mechanism of bone in different strength 
sulfuric acid solutions. (Originally in colour).   

Treatment in 
weak sulfuric 

acid

Treatment in 
strong 

sulfuric acid

HA dissolution cannot buffer pH
• pH remains low (Fig. 4.1)
• Mass loss is high (Table 4.3)

HA dissolves to buffer pH
• pH is raised (Fig. 4.1)

• Mass loss is intermediate (Table 4.3)

No initial alteration of HA
• XRD pattern not altered (Fig.  4.5)

HA slowly dissolves, 
leaving collagen matrix
• Jelly-like appearance
• No HA peaks in XRD pattern 

(Table 4.5)
• High [AA] (Fig. 4.7)

HA is rapidly altered

Stagnant conditions
• XRD: recrystallisation as 

gypsum  (Fig. 4.5)

Dynamic conditions
• XRD: increased crystallinity 

(Fig. 4.5)
• SEM: recrystallisation as 

gypsum in solution (Fig. 4.3)

Collagen also rapidly breaks down
• High [AA] leaching into solution (Fig.  4.9)
• Low [AA] remain in bone (Fig.  4.7)
• Low D/L in solution: long chains are leached

Collagen is protected by HA
• Low [AA] leaching into solution (Fig.  4.9)
• High [AA] remain in bone (Fig.  4.7)
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4.4  Investigation into wood deterioration 

4.4.1 Results: Bulk assessment  

All wood samples displayed much lower ability to buffer the acidity of the surrounding solution 

at all pH values (Figure 4.12), in comparison to the equivalent experiments using bone, where 

at pH 3 the dissolution of HA in modern bone caused the pH to rise by approximately 4 - 5 pH 

units. 

 

Figure 4.12: Measured pH for D conditions at 80
o
C for all 4 wood samples at pH 1(bottom) and pH 3 

(top). A similar trend continues for the 16 week experiments. (Originally in colour). 

In contrast to bone, when wood degrades it is more likely to release acidic compounds such as 

formic and acetic acids than ions with the ability to raise the pH (e.g. Shaw et al., 1967). This 

may explain why in fact a slight increase in acidity is seen, particularly in the Star Carr sample. 

Whilst the lack of buffering ability is to be expected, analysis of the pH of the surrounding 

solution confirms that the wood samples are exposed to much lower pH throughout the 

experiment than the equivalent bone samples.   

Visual changes after 6 weeks were minimal, aside from a slight darkening of the wood 

observed at 80oC, pH 1 (Figure 4.13). In addition, the surrounding solution also became 

darkened; this was more pronounced at higher (more neutral) pH. This darkening of the 

solution is likely to be due to the leaching out of components such as tannins, which are water-
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soluble (Scalbert et al., 1989). No change in texture or macroscopic alteration could be 

discerned after 6 weeks.  

After treatment at pH 1, 80oC for 16 weeks however, both birch and willow samples appeared 

extremely dark and developed a brittle texture similar to charcoal upon drying. In the birch 

sample, this change had occurred throughout the sample whereas in the willow sample only 

the surface was affected. At pH 3, a slight darkening was observed but no change seen at pH 7 

(water), indicating that this change is pH dependent. Whilst charring of wood is most often 

associated with exposure to high temperature, it occurs due to the decomposition of both 

cellulose and lignin into carbon (Di Blasi, 2008). It is possible that after 16 weeks in acid, similar 

processes have resulted in the complete breakdown of structural polymers and led to this 

darkening of the wood surface. Further analysis would be required to confirm this.  

 

Figure 4.13: Images showing the darkening occurring in samples of birch (left) and willow (right) after 3 
and 42 days at pH 1, 80

o
C and D conditions. (Originally in colour). 

Mass losses in all wood samples after 6 and 16 (in brackets) weeks are expressed as a 

percentage of the starting mass in Table 4.6. Mass losses of approximately 10 %, as observed 

for the majority of samples at RT, can be explained by the loss of non-structural, water-soluble 

components such as sap, lipids and non-structural carbohydrates and sugars (Piispanen & 

Saranpaa, 2001), indicating that loss of structural polymers is not occurring at RT even at the 

16 week time point. This would also explain a lower mass loss in the Must Farm samples, as it 

is likely that these water-soluble components would have been lost in the archaeological burial 

environment (e.g. Hedges, 1995).   

After 3 days After 42 days After 3 days After 42 days
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Table 4.6: Mass loss in wood after 6 weeks and 16 weeks (in brackets) where relevant. Mass loss is 
presented as a percentage of the starting mass. 

 

Whilst higher mass loss is seen at 80oC, similar losses are seen at all pH values suggesting that 

decay is largely temperature, rather than pH, dependent. After 16 weeks at pH 1 and 80oC, 

visual alteration of both birch and willow indicated that decay was progressed. However, even 

in these samples the mass loss in modern samples does not represent the total stripping of 

cellulose, which accounts for approximately 70 – 80 % by mass of wood (Hoffman, 1981). It is 

possible that degradation is occurring, but leaching out of the degradation products is limited 

by the complexity of the wood macro-structure resulting in a lower mass loss than expected. 

Differences between types of wood are likely to be caused in part by differences in the relative 

composition (soluble components: cellulose:  lignin) of the starting materials. In particular, it is 

likely that archaeological wood would have already been depleted in cellulose, which is readily 

lost due to microbial decomposition in an archaeological environment (e.g. Blanchette et al., 

1990; Jones & Eaton, 2006). This potentially explains the much lower mass loss in 

archaeological samples, indicating that remaining components are not as susceptible to decay 

due to acidic conditions. Another consideration is the difference in sample size and shape 

used; birch samples were smaller than willow which would lead to a higher proportion of the 

sample being exposed to acid.  

Similarly to bone, mass loss data suggest that ‘dynamic’ conditions, regardless of the pH value, 

are more damaging than ‘stagnant’ conditions.  This is unsurprising, as experimental studies 

Mass loss as a percentage of the starting mass at 6 and (16) weeks

Modern birch Modern willow
Star
Carr

Must Farm

pH T D S D S D D S

1
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m
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e
ra

tu
re

10 (15) 8 5 (9) 5 10 0 0

2 10 7 4 - 10 1 2

3 10 (10) 7 4 (5) 4 12 0 0

5 8 8 - - - - -

Water 10 (11) 8 4 (5) - 15 0 0

1

H
e

at
e

d
 (

8
0o

C
)

40 (63) 32 29 (41) 24 30 16 9

2 40 29 26 - 37 16 13

3 33 (40) 19 25 (31) 16 29 15 13

5 26 14 - - - - -

Water 32 (39) 14 21 (30) - 31 13 10
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such as those by Nicholson (1996) and Crowther (2002) show how the rate at which degraded 

components of bone are washed away from the sample dictate the rate at which more of it 

degrades. It is very likely that the same is true for wood.  

Maximum water content (umax) values for all samples at the end of the experiment are shown 

in Table 4.7. Variable umax data may be obtained depending on the method of analysis, and as 

such needs to be approached with caution (Panter & Spriggs, 1996). The size of samples used 

in these experiments was much smaller than would ordinarily be used for umax analysis; 

therefore procedural errors, for example in removing excess surface water, may contribute to 

a high level of inaccuracy (e.g. Jenson & Gregory, 2006).       

Table 4.7: Maximum water content as a percentage of the end mass for all wood samples after 6 and 16 
(in brackets) weeks. 

 

Typical umax values for fresh, modern wood range from around 90-120 %, depending on the 

species (Hoffman, 1981) and wood with a umax value of approximately 300 % can be defined as 

severely degraded (Hoffman, 1986). Elevated values are seen in most of the experimental 

samples, particularly those under dynamic conditions, suggesting high levels of deterioration 

allowing a greater uptake of water; this is inconsistent with mass loss data.  

Previously, analysis of wood excavated from Star Carr in 2010 had yielded values averaging 

514%, suggesting that the level of decay in most of the experimental samples is equivalent to 

the level of degradation in wood at Star Carr (Panter, 2009). However, a lower umax after 16 

weeks compared to 6 weeks (as seen in the modern birch sample) is very unlikely to be true, 

potentially suggesting that measurements are not accurately describing degradation; this may 

Umax as a percentage of the end mass at 6 and (16) weeks

Modern birch Modern willow Star Carr Must Farm

pH T D S D S D D S

1

R
o

o
m
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m

p
e
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re 536 (246) 337 272 (309) 235 422 122 121

2 571 352 263 603 120 65

3 399 (216) 337 194 (305) 198 632 144 69

5 548 370

Water 412 (254) 379 230 (329) 467 145 139

1

H
e

at
e

d
 (

8
0o

C
)

775 (554) 552 300 (538) 303 533 155 107

2 795 493 254 396 159 161

3 652 (363) 447 320 (470) 252 448 164 164

5 695 350

Water 630 (384) 423 247 (473) 500 191 168
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be due to the high level of error incurred due to the small sample size.  Excess water on the 

surface of such a small sample is likely to lead to an increased measured umax. If this is 

considered, and it is assumed that all results are too high, results are more consistent with 

mass loss data, in suggesting that degradation is not pH dependent although more degradation 

is seen at higher temperature.  

4.4.2 Results: Microscopy (SEM) 

Analysis of samples after 6 weeks by SEM revealed little or no histological difference between 

samples treated at different pH levels. Comparison between the untreated starting material of 

willow and birch wood however, revealed that differences are evident in the starting materials 

(Figure 4.14, top). Differences in chemical composition between wood samples may not be 

solely due to degradation, but may also exist due to factors such as the age, species and 

growth location of the tree (Jane, 1970; Pandey & Pitman, 2003). The cell walls in the birch 

sample appear to be much thinner, which may indicate the presence of less cellulose 

(Blanchette et al., 1990). This is likely to be due to differences in age between the two types of 

wood sample, emphasising that care needs to be taken when comparing two different 

materials and potentially explaining the differences in mass loss between the two types of 

wood.  

SEM analysis of the samples treated for 16 weeks showed that cell walls appeared to be of the 

same thickness as in the starting material in both willow and birch (Figure 4.14, bottom). This 

indicates that all of the cell walls still remain, suggesting that complete loss of cellulose has not 

occurred (Blanchette et al., 1990). This is in agreement with the mass loss data; however on 

closer inspection, slight collapse of the cell walls can be observed, particularly in the willow 

sample. This is indicative that some loss of structural polymers (cellulose and/or lignin) has 

occurred (Blanchette et al., 1990) and is consistent with the mass loss of ~ 40 % mass loss 

observed (Table 4.6).  
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Figure 4.14: SEM images of modern willow and birch prior to the experiment (top) and after treatment 
for 16 weeks at pH 1 at 80

o
C, D conditions (bottom). 

It is possible that polymeric material has broken down but the degradation products not 

leached away from the cell walls, explaining why the cell walls still appear thick under SEM. A 

study by Crestini et al. (2009) shows how the percentage mass of archaeological wood that can 

be extracted with mild solvents increases with increasing degradation. This was attributed to 

the short chain sugars resulting from hydrolysis of the long cellulose chains being more soluble 

than cellulose and showed how these short sugars can remain in situ even in archaeological 

material. This further illustrates why a ‘dynamic’ environment would be more damaging than 

one that is ‘stagnant’ as movement of water through buried archaeological wood may result in 

the removal of these soluble sugars.  
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4.4.3 Results: Chemical analysis 

4.4.3.1 FTIR spectroscopy 

All experimental samples were analysed by FTIR, with 3 spectra taken from the surface of each 

sample. FTIR spectra obtained from modern birch samples treated at a range of pH values, at 

80oC under “D” conditions are shown in Figure 4.15. Very little difference in the fingerprint 

region is observed between spectra, even at 80oC. The same was seen in modern willow 

samples. 

 

Figure 4.15: FTIR spectra for birch samples treated at different pH at 80
o
C and under “D” conditions. 

Little difference is seen between spectra; this is illustrative of all samples treated for 6 weeks. (Originally 
in colour). 

Peak heights for key absorption peaks relating to lignin (1240 cm-1 and 1507 cm-1) and cellulose 

(doublet at 1300-1375 cm-1) were measured, and lignin: cellulose, 1507: cellulose and 1507: 

1240 ratios calculated as outlined in Chapter 3 (Section 3.3.3).  Differences in these ratios 

between samples were found to lie within the range of error (calculated by three repeat 

readings taken from each sample) (Figure 4.16). FTIR analysis further supports bulk assessment 

of the samples: wood deterioration over this short time frame does not appear to be pH 

dependent and even cellulose, which is susceptible to acid hydrolysis, is not completely 

removed. This is the same at 80oC, where degradation is expected to proceed more quickly.  
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Figure 4.16: Key ratios determined as markers of degradation for birch samples treated at 80
o
C for 6 

weeks. An increase in L: C and 1507: C ratios is indicative of cellulose loss, and an increase in the 1507: 
1240 ratio is indicative of lignin defunctionalisation. (Originally in colour). 

Despite the high abundance of both lignin and cellulose being indicated by intense peaks in the 

FTIR spectra, mass losses of up to 40 % were recorded in these birch samples at 80oC for 6 

weeks (Table 4.6). This cannot be attributed to the removal of only non-structural 

components, as these compose only approximately 15 % by mass of wood (Hedges, 1990).  As 

cellulose is composed of weakly bonded carbohydrate polymers, it is often quickly degraded 

by both chemical and biological processes (e.g. Blanchette, 2000). There is evidence in the 

literature suggesting that cellulose is susceptible to acid hydrolysis even at low temperatures, 

leading to degradation of the polymer by cleavage of the glycosidic bonds (e.g. Xiang et al., 

2003). Indeed, chemical characterisation of archaeological woods often utilises the relative 

ease by which cellulose can be extracted using strong sulfuric acid (Hoffman, 1981). If cellulose 

has broken down but remained in situ (as also indicated by SEM analysis), it is possible that the 

resultant short chain sugars contribute to the same absorption peaks as longer chain cellulose, 

and therefore chemical alteration of cellulose cannot be confirmed by FTIR analysis. Indeed, 

the peaks at 1325 and 1375 cm-1 relate to the C-OH and CH2 groups in cellulose respectively 

(Pandey, 1998), and these would still be present if hydrolysis of the glycosidic bond has 

occurred (Equation 4.3). Indeed, more OH groups are formed which may in fact result in an 

increase in the intensity of the peak at 1325 cm-1. 
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Equation 4.3: Hydrolysis of cellulose to sugars, showing that the CH2 group (red) is retained and there is 
an increased abundance of OH groups (blue) (from Li & Zhao, 2007). (Originally in colour). 

 

These results suggest that FTIR is not suitable for assessing wood deterioration over the 6 

week time frame; however after 16 weeks in modern samples, a high degree of visual 

alteration had occurred at 80oC and pH 1. Higher mass losses after 16 weeks compared to 6 

weeks also suggest that degradation was more advanced. FTIR analysis of these samples 

provides conclusive evidence that alteration of both the lignin and cellulose had occurred in 

both birch and, to a lesser extent, willow (Figure 4.17).  

 

Figure 4.17: FTIR spectra of willow and birch following 16 weeks treatment in pH 1 sulfuric acid at 80
o
C, 

D conditions. (Originally in colour). 

The complete loss of peaks relating to the absorption of cellulose as well as the peak 

characteristic of the methoxy group in lignin indicates that alteration of the birch sample has 

occurred. In the willow sample, a reduction in intensity of these peaks signifies that similar 

alteration has occurred, although to a lesser degree; although the peak relating to the 

aromatic ring in lignin is still present, a reduction in intensity and splitting of the peak at 1240 

cm-1 (relating to the methoxy groups on guaiacol and syringol) indicates that 

defunctionalisation of the lignin has occurred. These chemical changes are in agreement with 

the drastic visual alteration of the samples. A greater extent of alteration in the birch sample is 

possibly due to the smaller sample size resulting in more complete degradation of the 
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polymers compared to the modern willow sample, as degradation proceeds from the outside 

of the sample inwards.  

Defunctionalisation of lignin is more often attributed to biological deterioration (Martinez et 

al., 2005). This occurs by means of oxidative enzymes (Tuomela et al., 2000). Biological 

deterioration is unlikely to have occurred to such an extent under lab conditions, particularly 

taking account the low pH and high temperatures, and instead similar mechanisms may have 

proceeded by chemical hydrolysis.  

In both archaeological samples, no alteration of the FTIR spectra was seen after treatment for 

6 weeks and peak ratios were within the margin of error, similarly to modern samples; this is 

consistent with bulk analysis. FTIR analysis of the starting materials however, illustrates that 

there are similarities between archaeological material and the modern willow sample after 16 

weeks (Figure 4.18). A depletion of cellulose and splitting of the methoxy absorption (1507 cm-

1) is also evident in both the Must Farm and Star Carr starting material (Figure 4.18).  

In the archaeological materials, degradation of polymeric material in the untreated starting 

materials is evident from analysis by FTIR. Analysis also shows similarities between the Must 

Farm and Star Carr samples although the Must Farm sample was visually assessed as ‘robust’ in 

comparison to the more degraded Star Carr sample.   

 

Figure 4.18: Comparison of FTIR spectra for willow treated at 80
o
C in pH 1 sulfuric acid for 16 weeks with 

wood from Star Carr and Must Farm, illustrating the similarities observed between the archaeological 
materials. (Originally in colour). 
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4.4.3.2 Py-GC 

Py-GC, when combined with mass spectrometry, has been shown to provide detailed 

information regarding wood polymer degradation (e.g. Vinciguerra et al., 2007). Breakdown of 

the lignin polymer can be indicated by the presence of defunctionalised repeating sub-units 

from the lignin polymer (syringol and guaiacol). An increase in phenol content indicates 

complete defunctionalisation. The presence of smaller, carbohydrate derived molecules can 

confirm the presence of cellulose (e.g. van Bergen et al., 2000). Analysis of wood degradation 

products using py-GC has been carried out with FID detection, using published mass 

spectrometry data to assign retention times to degradation products (e.g. Faix et al., 1991; van 

Bergen et al., 2000; Alves et al., 2006).  

Comparison of the chromatograms for birch samples treated at the range of pH values for 6 

weeks at 80oC, “D” conditions is shown in Figure 4.19.  

 

Figure 4.19: py-GC chromatograms for birch samples treated in various strength sulfuric acid solutions 
for 6 weeks at 80

o
C, D conditions. (Originally in colour). 

In contrast to FTIR analysis, analysis of the samples by py-GC reveals that in fact there are clear 

differences in composition of the samples treated at lower pH; in particular, a reduction in 

carbohydrate related compounds eluting at the beginning of the chromatogram at pH 1 and 2, 

when compared to an untreated sample suggests that cellulose is in fact heavily depleted in 

the sample (Figure 4.19). This is perhaps unsurprising as cellulose is known to undergo acid 

hydrolysis (Hoffman, 1981; Li & Zhao, 2007), but contradicts observations made using FTIR. 

This could indicate that polymeric material has been broken down but remains in situ; whilst in 

FTIR these breakdown product also contribute to the spectrum, as the sample is first cleaned 
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by heating to 290oC prior to py-GC analysis, it is expected that any volatile degradation 

products would be removed. This is consistent with microscopic analysis (Section 4.4.2). 

Breakdown of lignin at low pH is also indicated by a slightly more intense signal attributed to 

phenol in the py-GC trace, suggesting that some syringol and guaiacol-type sub-units have 

been completely defunctionalised. A decrease in intensity of the later signals, assigned to 

larger lignin polymer units, is also indicative of degradation of the polymers prior to analysis. 

Again, this appears to be pH dependent, although the high intensity of the majority of lignin 

related products shows that lignin degradation is only minimal after treatment for 6 weeks. 

Analysis of the birch sample treated at pH 1 for 16 weeks was also carried out, and an absence 

of any peaks relating to either cellulose or lignin present in the 16 week sample further 

supports the FTIR data that there is no polymeric material remaining in the sample.  

 

Figure 4.20: Comparison of py-GC traces for birch sample treated for 6 (top) and 16 (bottom) weeks in pH 
1 sulfuric acid at, 80

o
C, D conditions. (Originally in colour). 

Similarly, py-GC analysis of the two archaeological starting materials (Figure 4.21) shows very 

low intensity peaks within the first 10 minutes of the chromatograms, confirming an absence 

of cellulose in both samples. In addition, py-GC analysis of the Star Carr samples yields no 

peaks relating to lignin. In contrast, in the Must Farm sample large numbers of peaks present 

in the chromatogram after 10 minutes indicate that lignin is present in abundance. This shows 

disagreement with FTIR analysis, where similarities in the spectra indicate that both 

archaeological samples were at a similar stage of degradation. This discrepancy could again be 

due to lignin degradation products remaining in situ and being detected using FTIR, whilst they 

are removed prior to analysis by py-GC. A further discussion of archaeological material is 

carried out in Chapter 7.  
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Figure 4.21: Comparison of py-GC traces for archaeological starting material; Star Carr (top) and Must 
Farm (bottom). (Originally in colour). 

4.4.4 Discussion 

This study has shown that the use of complementary analytical techniques is fundamental for 

the accurate assessment of degradation in archaeological wood. It has been shown that whilst 

fast, easily accessible methods such as mass loss and visual analysis provide an initial indication 

of diagenesis, more in-depth chemical characterisation is required alongside these. The use of 

FTIR spectroscopy for the analysis of archaeological woods can be highly informative, and its 

non-destructive application and fast analysis time makes it ideal for the analysis of precious 

cultural objects (e.g. Gelbrich et al., 2008). However, comparison with results obtained by py-

GC analysis suggest that the use of one technique in isolation may give an inaccurate or 

incomplete view of the deterioration occurring, particularly when looking at very low levels of 

deterioration. Results suggest that degradation of polymers, particularly cellulose, do occur 

upon treatment in acid, but that the degradation products are held within the porous wood 

structure. This affects bulk assessment analysis and FTIR analysis. Whilst this may not be so 

important for archaeological materials, where degradation products have time to be removed, 

it has important implications for experimental studies.  

Analysis of modern wood samples treated in sulfuric acid indicates that increasing acidity does 

have some effect on wood degradation, suggesting that organic material may be at risk by site 

acidification to the extent of that seen at Star Carr. Despite this, both lignin and cellulose do 

appear to remain in the experimental wood samples treated at pH values above 2 after 6 

weeks, suggesting that the effects are limited. In addition to this, low mass losses in 
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archaeological wood samples, where only a lignin skeleton is expected to remain, suggest that 

lignin is relatively stable to acidification. Although some increase in the intensity of the peak 

related to phenol in py-GC indicates that defunctionalisation of lignin has occurred in acid, the 

overall structure is retained, signified by intense peaks throughout the lignin region.  

After 16 weeks however, modern wood treated at pH 1 underwent significant degradation of 

polymeric material, indicated by both FTIR and py-GC. Kirk & Farrell (1987) show how lignin 

degradation occurs primarily via demethylation or demethoxylation of the sub-units, leading to 

an increased phenol content; this was observed by py-GC analysis. As biological deterioration 

of the polymers is unlikely to have occurred (for example, the conditions would have been 

anaerobic), this has been attributed to chemical hydrolysis, showing how high levels of acidity 

could result in chemical alteration of the lignin.  

Analysis by SEM and bulk assessment initially indicated that little change had occurred; in 

particular, no apparent change in the thickness of the cell walls was seen under SEM. This 

indicates that even though polymeric material is being chemically altered, the macroscopic 

structure of the wood can be retained.  
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4.5 Conclusions 

This study has shown that bone degradation is pH dependent, primarily due to the speed at 

which HA is altered at low pH. Bone that is already damaged (for example archaeological 

material) is at far greater risk than modern analogues.  Bones present in a dynamic 

environment are at much greater risk from acidification. This is an important consideration for 

Star Carr, where changing water-levels have resulted in groundwater fluctuating through the 

archaeological horizon (Brown et al., 2011), and illustrates the importance of monitoring 

water-levels at wetland archaeological sites. The complete degradation of the archaeological 

sample at pH 1, 80oC within 7 days is particular cause for concern, suggesting that bone yet 

uncovered at the Star Carr site is at severe risk and unlikely to survive under present site 

conditions for much longer. As this study has indicated that there is a threshold pH at which 

bone mineral becomes sufficiently damaged that collagen breakdown soon follows, it is vital 

that sediment pH at Star Carr and other vulnerable sites is monitored where possible. Where 

high acidity is identified at an archaeological site, recovery of any bone artefacts should be 

considered.  As experiments at different pH values show that bone can readily establish a 

buffered zone, it is possible that in the less acidic areas of the site, bones could remain in a 

relatively well-preserved state; however, these would be highly susceptible to any increase in 

acidity.  

Lab-based experiments have also highlighted that different levels of degradation are seen in 

bone of different ages and different types (e.g. racemisation was much higher in the modern 

rib bone than long bones). This is likely to be due to differences in bone mineral density 

between animal ages and types of bone (e.g. Green & Kleeman, 1991). From an archaeological 

point of view this is a very important consideration; preferential preservation of more densely 

mineralised bones is likely to occur where there is high acidity.  

Equivalent experiments on wood samples have shown that deterioration is also pH dependent, 

but that degradation of structural polymers occurs a lot more slowly than for bone (extensive 

alteration was only seen after 16 weeks at pH 1 and 80oC, in comparison to bone where 

complete dissolution of most bones occurred within 6 weeks). Once chemical alteration has 

occurred, wood can retain its macroscopic appearance. For these reasons, it is likely that wood 

material is not as at risk from acidification at Star Carr as bone is. Even if chemical 

deterioration occurs, information such as species and age of the wood may still be obtained 

from the artefacts. Importantly, analysis of experimental wood samples has shown that 

employing a multi-analytical approach to determining levels of degradation in organic 

materials is critical in obtaining an accurate measure of deterioration.   
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Although high acidity may be the major contributor to the deterioration of bone observed at 

Star Carr, it seems likely that the deterioration of wood observed at the site is driven primarily 

by other factors. Wood recently excavated from the site is undoubtedly heavily deteriorated, 

with py-GC analysis showing a lack of both cellulose and lignin (Figure 4.21), and the 

experiments in sulfuric acid have shown that lignin in particular is relatively stable to 

acidification. Although defunctionalisation was observed under extreme conditions, this did 

not result in the loss of macroscopic structure.  As previously discussed, further factors likely to 

be contributing to organic degradation are biological activity (possibly this is increased at Star 

Carr due to a lowering of the water-table; Blanchette et al., 1990; Jones & Eaton, 2006) and a 

fluctuating hydrology (Schwarzel et al., 2002). Overall, the experimental study has 

demonstrated that both bone and wood are more at risk in ‘dynamic’ hydrological 

environment than ‘stagnant’. As it is hypothesised that at Star Carr the water-table is 

fluctuating through the archaeology (Brown et al., 2011; Chapter 2), this illustrates that 

organic archaeological  material (particularly wood) still buried at the site is at risk from factors 

aside from high acidity. 
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5 CHAPTER 5 
 

 

 LAB-BASED BURIAL 
EXPERIMENTS (MICROCOSMS) 
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5.1 Introduction 

Lab-based experiments (Chapter 4) have shown that whilst bone is severely deteriorated in the 

presence of acid, the effects on wood are less clear. However, the experiments were designed 

to assess only the effects of high acidity at Star Carr, and as such did not account for factors 

such as microbial activity, site hydrology and soil geochemistry, which are all known to have an 

important contribution to organic deterioration in archaeological sites and cannot be 

disregarded (e.g. Caple, 1994; Blanchette, 2000; Child, 1995; Nicholson, 1996). Indeed, high 

levels of deterioration have been seen in wood excavated from Star Carr (Milner et al., 2011a), 

suggesting that factors aside from high acidity are playing an important role in the 

deterioration of organic materials at the site. 

Biological (fungal and microbial) activity is often acknowledged as the primary mode of 

deterioration of both lignin and cellulose in wood (e.g. Blanchette et al., 1990; Kim & Singh, 

2000). In addition, although bone is often considered protected from biological degradation by 

the hydroxyapatite (HA) (e.g. Collins et al., 1995), lab-based experiments (Chapter 4) have 

shown that in the presence of high acidity, this is rapidly removed and as such the collagen 

component may be exposed to biological degradation by collagenase producing bacteria (Child 

et al., 1993). Biological activity is intrinsically linked to oxygen content, and therefore degree of 

waterlogging, or hydrological regime of a burial location (e.g. Lillie & Smith, 2007). Studies such 

as those by Nicholson (1996; 1998) and Bartlett et al. (2010) illustrate how important other 

environmental conditions, such as water movement and soil density, are in influencing this. As 

such, specific soil types and burial locations contribute to organic deterioration in very specific 

ways; each burial location is unique, and as such difficult to characterise (Caple, 1994).   

Due to the abundance of variables contributing to preservation in situ, studies into specific 

factors have often utilised ‘microcosms,’ or lab-based burial experiments. These offer the 

opportunity to conduct burial experiments in a semi-controlled manner. Examples include an 

investigation into the effects of short-term fluctuations in water levels on the decay of oak 

samples, conducted by Lillie & Smith (2007). Using a series of large fermentation containers 

where the water levels were altered periodically, wood decay in different zones of saturation 

was monitored. Gelbrich et al. (2012) demonstrate the success of using microcosms in a study 

where bacteria were purposely introduced into the vessel, and biological activity in different 

zones of aeration monitored.  

At Star Carr, very specific and unusual site conditions have been recorded (Chapter 2); full 

characterisation of the burial environment is difficult, but it is likely that the phenomenon of 
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high acidity is not the sole factor facilitating the decay of bone and wood. Lab-based burial 

experiments were therefore set up in order to enhance data obtained from experiments in 

sulfuric acid only, by introducing other burial conditions. By conducting burial experiments in 

soil excavated from the site itself, and comparing this to decay observed in different soil types, 

the aim was to more fully understand the unique burial environment at the site. In addition, 

different degrees of aeration in various zones of each soil were created in order to form zones 

that were expected to be more or less conducive to biological activity, thus providing data 

regarding the extent to which microbial and fungal decay may be contributing to deterioration 

at Star Carr.  
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5.2 Experimental 

5.2.1 Method 

5.2.1.1 Experimental set up 

Three separate microcosms were initially set-up using 25 L fermentation vessels measuring 

approximately 37 cm in height, based on the method described by Lillie & Smith (2007). 

Microcosms were set up for a period of 12 months, and contained three different sediment 

types; peat from Star Carr, and two very different sediments (sand and compost) with which to 

compare this (Section 2.2.2). These were nominally divided into 3 zones with the aim of 

obtaining a dry, fluctuating and saturated zone for each soil type.  This was achieved by first 

covering the base of the vessel with a 2 cm layer of gravel to aid in the drainage of water and 

then installing a tap into the side of each vessel and sealing this with epoxy resin. A clear 

plastic tube was similarly attached to the outside of the vessel in order to allow the water level 

to be viewed (Figure 5.1).  

Due to experimental difficulties, some later adaptations were necessary, and an additional Star 

Carr peat zone was added (C4). These adaptations are detailed in Section 2.1.2 and all zones 

summarised in Table 1. A set of the materials listed in Section 2.2 was accurately weighed and 

spaced within each zone of each microcosm. Plastic tubes were also buried as ‘dipwells’ to 

allow the sampling of water during the experiment if necessary (Figure 5.2, left).  

 

Figure 5.1: Schematic of the initial microcosm set up. Additional containers were also later set up. 
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Figure 5.2: Photos of materials laid out in the microcosms, showing the dipwells in the centre  and the 
material spaced around the edge(left), and the outside of the microcosms (right). (Originally in colour). 

Initially, enough deionised water was added to raise the water level to the top of the saturated 

zone. After 2 weeks, 500 ml of deionised water was added to the top of the microcosm to raise 

the water level, which was then slowly drained back down using the tap, to the top of the 

saturated zone over a 2-week period. This process was repeated every month for 12 months.  

5.2.1.2 Sediment types  

The aim of the experiment was to obtain three distinct zones in the fermentation vessel for 

each sediment type. However, problems were encountered with defining the water level, as 

well as issues with leaking from microcosm C. In order to account for this, several adaptations 

were made to the experiment, resulting in zones that were broadly ‘dry,’ ‘saturated’ or ‘damp.’ 

‘Dry’ zones were set up in separate containers, and assumptions made about the levels of 

aeration in each of the other zones (see descriptions of sediment types). Table 5.1 summarises 

each of the 10 environments set up in the microcosm experiment. 
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Table 5.1: Summary of all conditions, or zones. 

 

5.2.1.2.1 Microcosm A: Sand 

Sand provides an environment where groundwater can percolate very readily, due to its high 

permeability (e.g. Wilson et al., 2008). For this reason, bone in sandy sites is often badly 

preserved and low in organic content; the bone can act as a ‘trap’ for ions in water moving 

through it, resulting in crystallisation following cracking, giving the bone a brittle texture (e.g. 

Grupe, 1995). In addition, the high porosity of sand allows microbial colonies to flourish due to 

the ease with which nutrients and oxygen are transported (e.g. Bartlett et al., 2010).  

The disadvantage of this permeability from an experimental perspective is that a clear water 

level could not be defined within the microcosm due to the high wicking ability of sand. The 

‘dry’ zone for sand was kept separate to avoid this problem, resulting in only two layers in the 

main fermentation vessel, although all three zones will be referred to as ‘microcosm A’ for 

convenience. It has been assumed that the lowest level in the fermentation vessel was less 

aerated than the top, although both layers were kept damp throughout. Sand was obtained 

from a building merchant, and left untreated as to allow any natural microbial colonies to 

remain undisturbed.  

 

Description of each of the 10 ‘zones’ in the microcosm experiment

Label Sediment Hydrology Detailed description

A3

Sand

Dry Set up separately; completely dry and open to the 
air. Aerobic

A2 Fluctuating Relatively aerated compared to A1. Kept damp

A1
Saturated Expected to be anaerobic as it is at the base of the 

microcosm and waterlogged. However, water level 
difficult to define

B3

Compost

Dry Set up in separate container. Dry

B2
Fluctuating Relatively aerated compared to B1. Kept damp, 

with water regularly flushed through

B1
Saturated Set up in separate container. Permanently 

saturated, expected to be anaerobic

C4

Star Carr

Dry Set up in separate container. Dry. (No Tanner Row 
bone available)

C3
Damp Relatively dry as it is the top of the microcosm, but 

some water washing through

C2 Fluctuating Relatively aerated compared to C1. Kept damp

C1
Saturated Expected to be anaerobic as it is at the base of the 

microcosm and waterlogged
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5.2.1.2.2 Microcosm B: Compost 

Organic rich sediments such as compost tend to be very conducive to the preservation of 

organic materials if waterlogged and anaerobic (e.g. Kenwood & Hall, 2000). Due to the high 

organic content they can also support large amounts of biological activity when they become 

aerobic (i.e. no longer waterlogged); indeed, large numbers of micro-fauna are involved in the 

composting process itself (e.g. Tiquia et al., 2002). Therefore, the use of ordinary garden 

compost serves as a microbially rich control environment. 

Two distinct layers were achieved in the compost microcosm: permanently saturated, and 

damp. As the water content of compost increases, the air permeability decreases, meaning 

that waterlogged compost at the base of the microcosm has been considered anaerobic (e.g. 

Das & Keener, 1997). To ensure comparability to the two other microcosms, where it was 

necessary to set up a ‘dry’ zone in a separate container, this was also done for microcosm B 

using air-dried sediment (see Table 5.1). Again, all three zones are referred to as ‘microcosm 

B’.  

5.2.1.2.3 Microcosm C: Peat from Star Carr 

The majority of archaeological materials at Star Carr have been recovered from a thick layer of 

reed and woody peat (Boreham et al., 2011; Chapter 1). Although this has a high organic 

content (similarly to compost), the low pH and high sulfur content at Star Carr make it unusual. 

The very low permeability of the peat also means that groundwater is slow to fluctuate 

through the sediments (Brown et al., 2011).    

To replicate the burial environment at Star Carr most accurately, peat taken directly from the 

site was used to fill the microcosm. As excavations had not recently taken place at the site, and 

therefore fresh sediment was not available, a number of soil samples excavated in 2007 from 

the wetland area of Trench SC23 were combined for this purpose.  

Possibly due to the exposure to oxygen since excavation 4 years previously, the pH of the peat 

recorded at the time of setting up the experiment was 1.63; this is lower than observed in 

much of the Star Carr site when analysed in field (pH 2-3; Chapter 2). Due to the high acidity, 

the epoxy resin seals leaked continually throughout the experiment. Therefore, the 

‘permanently saturated’ zone cannot confidently be described as always waterlogged, 

although the low permeability of the peat combined with the thick layers of peat on top of the 

zone indicate that it would have been highly anaerobic. To ensure that the ‘dry’ zone was 

properly achieved, a separate vessel was again set up containing air-dried peat (see Table 5.1).  
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5.2.1.3 Analysis 

Analysis of organic deterioration was carried out according to methods described in Chapter 3 

unless otherwise stated.  

Analysis of sediments was carried out as described in Chapter 2 (Section 2.3.2). 

5.2.2 Materials 

Both bone and wood were buried in each microcosm. The material was selected to be 

comparable to the lab-based study (Chapter 4) as well as later in situ burial experiments 

(Chapter 6). However, in some cases the amount of available material limited this. Both 

modern and archaeological materials were included, as archaeological material can be 

expected to have already undergone some degradation prior to excavation (e.g. Child, 1995; 

Blanchette, 2000). Further discussion of the archaeological materials used is carried out in 

Chapter 7. 

An asterisk denotes samples that are directly comparable to in situ burial experiments (Chapter 

6).  

5.2.2.1 Bone (3 modern, 2 archaeological) 

*Modern sheep rib bone, obtained from a butcher. Cleaned in biological washing powder and 

sliced into approximately 4-5 mm pieces using a water-cooled band saw. Marrow not removed  

*Modern artificial ‘jellybone’: sheep long bone obtained from a butcher. De-fleshed and sliced 

using a water-cooled band saw. Demineralised in 0.6 M HCl for 1 week, sewn into netlon bag 

*Modern sheep long bone, obtained from a butcher, cleaned in biological washing powder 

Sliced into approximately 4-5 mm pieces using a water-cooled band saw and the marrow 

removed  

Archaeological cow metatarsal from the early medieval site of Tanner Row, York. Sliced into 

approximately 4-5 mm sections using a water-cooled bone saw  

*Star Carr rib bone excavated in 2010 (sample number 92419) ‘robust’ in appearance. Sliced 

into approximately 5 cm lengths using a water-cooled band saw  

5.2.2.2 Wood (3 modern, 2 archaeological) 

*Modern oak, approximately 3 cm3 pieces of trunk, cut using a band saw 

*Modern willow, approximately 3 cm3 pieces of trunk, cut using a band saw  
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*Modern birch, branch of approximately 2 cm diameter, cut into 10 cm lengths using a band 

saw 

*Must Farm (Bronze Age) wood (ash), approximately 5 cm3 section, dried 

*Star Carr wood (unidentified, likely to be willow), approximately 3 cm3 piece from a split 

timber plank excavated in 2007. Dried and sewn into netlon bag. 
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5.3   Results and discussion 

5.3.1 Sediment analysis 

5.3.1.1 pH and redox analysis 

‘Dipwells’ were inserted at each depth in the microcosms with the aim of periodically 

removing water for analysis. In the majority of zones however, insufficient water was available 

for this to be feasible. Therefore, pH and redox values are reported only from analysis at the 

end of the experiment, as well as after 1 day and 6 months in a few cases (Table 5.2).  

Table 5.2: Summary of geochemical data for each of the 10 experimental zones. Where data was not 
recorded, the box is left blank. 

 

Microcosm C (Star Carr) remained highly acidic through the experiment, in all 4 zones. In the 

aerated, dry zone (C4) pH is even lower; this is possibly due to the presence of oxygen which 

may cause an increased level of sulfuric acid via the oxidation of sulfides, which have been 

identified in high abundance in the peat at Star Carr (e.g. Boreham et al., 2011; Chapter 2).  

In addition, redox potential is very high in all zones in microcosm C, suggesting a highly 

oxidising environment (Patrick & Mahaptra, 1968). A high redox potential is often interpreted 

as indicating the potential for high levels of microbial activity and by proxy, little propensity for 

organic material to survive (e.g. Lillie & Smith, 2007). High redox potential can however also be 

indicative of high concentrations of acid, which also cause oxidation (Caple, 1994; Atkins et al., 

pH and Redox measurements of each microcosm

After 1 day After 6 months End (12 months)

Zone Hydrology pH Redox
(mV)

pH Redox
(mV)

pH Redox
(mV)

A3 Dry

Sa
n

d

7.26 188

A2 Fluctuating 7.40 173

A1 Saturated 7.35 54

B3 Dry

C
o

m
p

o
st

5.00 435

B2 Fluctuating 4.88 187 5.58 194

B1 Saturated 5.53 149 6.15 474 3.58 176

C4 Dry

St
ar

 C
ar

r

0.85 487

C3 Damp 0.66 1.58 571

C2 Fluctuating 0.60 524 1.84 559

C1 Saturated 1.98 481 1.05 475 1.63 501
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2006). At such low pH values it is possible that microbial activity is in fact suppressed in spite of 

this oxidising environment; although a few groups of bacteria can adapt to and even thrive in 

such extreme environments (e.g. Brock et al., 1972; Cotter & Hill, 2003), low pH is likely to 

severely limit the growth of most aerobic colonies (e.g. Russel & Dombrowski, 1980; Beales, 

2004). 

In other microcosms, where pH is not as high, redox potential is more likely to serve as a proxy 

indicator for microbial activity. In most regions redox potential is moderate; however in the 

aerated zone of the compost microcosm an elevated redox potential (> 400 mV, indicating 

aerobic conditions) and almost neutral pH may provide ideal conditions for extensive microbial 

colonisation (Beales, 2004).   

In microcosm A (sand), a neutral pH is maintained and the low redox potential in the saturated 

(or least aerobic) zone confirms the absence of oxygen. This is likely to prohibit aerobic 

microbial activity, although anaerobic bacteria and fungi may still be active (e.g. Lillie & Smith, 

2007).  

5.3.2 Bone analysis 

5.3.2.1 Mass loss and visual analysis 

All buried bone samples were recovered from each microcosm except for the ‘jellybone’ 

samples in ‘anaerobic’ zones B1 and A1 where they had completely disappeared, leaving only 

the netlon bag behind. Other ‘jellybone’ samples from microcosms A and B had become 

discoloured and displayed high mass loss, although small fragments were recovered. However, 

in all mineralised bone retrieved from microcosms A and B, no real difference in appearance 

was seen in comparison to the starting materials except some slight staining visible in the 

modern samples (Figure 5.3).  

In contrast, all samples from waterlogged or damp zones in microcosm C had developed a very 

chalky and deformed texture, appearing almost swollen in appearance and barely recognisable 

as bone. In C4 this change had not occurred, with recovered material appearing little altered 

from the starting material.  All ‘jellybone’ samples were still present in microcosm C, although 

they had become darkened and distorted.  
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Figure 5.3: Image of buried bones before (top) and after burial in zone C2 (centre) and B2 (bottom). Note 
that C2 modern ‘jellybone’ is pictured after sub-sampling for analysis, and was in fact retrieved intact. 
(Originally in colour). 

Mass loss is reported as a percentage of the starting mass in Table 5.3. Mass loss is likely to be 

subject to quite a high level of error, due to the difficulty in ensuring samples are completely 

dry, and the possible inclusion in the measurement of soil adhering to the samples. Despite 

this, some broad observations can be made. An increase in mass is seen in many of the 

samples in microcosm C (negative mass loss), which must be the result of uptake from the soil 

environment; this could be moisture or other species present in the sediment. This is in 

accordance with the ‘swollen’ appearance of the samples.  

Mass losses are high in the modern rib samples, although this is possibly explained by loss of 

bone marrow, which was still present prior to burial, rather than structural components. In 

microcosms A and B, this is supported by the negligible mass loss observed in all archaeological 

samples, where these non-structural components are likely to have been removed over their 

long period of deposition prior to the experiment (Currey, 2002). As such, this is suggestive 

that very little structural alteration has occurred in mineralised bone in microcosms A and B.  

 

B2 (Compost, fluctuating) 
modern long bone

C2 (Star Carr, fluctuating) 
modern long bone

Modern longbone at start Modern jellybone at start Star Carr rib at start

B2 (Compost, fluctuating) 
Star Carr rib

C2 (Star Carr, fluctuating) 
Star Carr rib

C2 (Star Carr, fluctuating) 
Modern jellybone

B2 (Compost, fluctuating) 
Modern jellybone
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Table 5.3: Mass loss data for all bones from each of the 10 microcosm zones. No Tanner Row bone was 
buried in environment C4. (Originally in colour). 

 

The fact that the ‘jellybone’ samples, where all HA had been removed, underwent high mass 

loss compared to other samples highlights the important role that the HA plays in protecting 

the bone protein; a fact also highlighted by other studies (e.g. Child, 1995; Collins et al., 2002). 

In particular, it has been acknowledged that HA contributes to preventing microbial 

degradation of the collagen by enzymatic attack, as the close packing of the mineral phase 

excludes the large collagen degrading enzymes (collagenases) (Child et al., 1993; Child, 1995).  

The rapidity at which ‘jellybones’ were lost in zones A1 and B1 may therefore indicate that this 

was due to a large amount of biological activity, as opposed to chemical degradation; low mass 

loss and a lack of visual changes suggest that chemical deterioration of HA has not occurred in 

the mineralised bones (e.g. Collins et al., 2002; Hedges, 2002). If this is the case, the fact that 

all ‘jellybones’ survived in microcosm C (a highly acidic environment) is tentatively indicative of 

the fact that microbial activity was actually suppressed.  

 

 

 

 

Mass loss as a percentage of the starting mass

Material

Zone Hydrology Modern 
rib

Modern 
longbone

Jellybone Star Carr 
rib

Tanner
Row bone 

A3 Dry

Sa
n

d

31 -6 23 0 0

A2 Fluctuating 21 1 21 0 0

A1 Saturated 48 0 100 0 0

B3 Dry

C
o

m
p

o
st

42 4 17 0 0

B2 Fluctuating 35 6 35 0 0

B1 Saturated 30 3 100 0 0

C4 Dry

St
ar

 C
ar

r

4 0 28 -1

C3 Damp 27 -154 16 4 -15

C2 Fluctuating 15 -12 17 -16 -15

C1 Saturated 3 -22 14 -22 -24
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5.3.2.2 Amino acid analysis 

Amino acid analysis of bone samples retrieved from the microcosm experiments was partly 

carried out by Lucy Dawson as part of a summer placement project. Very little alteration of the 

total amino acid content is observed in the majority of samples from microcosms A and B with 

the exception of ‘jellybone’ samples (where recovered) where much lower total amino acid 

concentrations were recorded (Figure 5.4, right). No HA was present in these samples prior to 

burial, meaning that loss of collagen would not alter the relative composition. Instead, this 

reduction is more likely to be due to the inclusion of material from the burial environment in 

the sample.  

In addition, a small reduction in total amino acid concentration was observed in the Star Carr 

rib buried in all zone A and B environments. This suggests that some loss of collagen may have 

occurred. This could potentially be attributed to the same microbial activity that degraded the 

‘jellybone’ samples. In the modern samples, HA will prevent access of microbes to the 

collagen, but in an archaeological sample the low levels of diagenesis already present may 

have already increased the porosity of the bone (e.g. Child, 1995; Hedges, 2002). 

 

Figure 5.4: Comparison of total amino acid concentrations in buried material compared to the starting 
material (left) and Asx racemisation in the same samples (right). (Originally in colour). 

In all microcosm C samples with the exception of the modern rib, total amino acid content is 

decreased to a  greater extent than in microcosms A and B (Figure 5.4, left). This could also be 

attributed to collagen loss, similarly to that seen in zones A and B, although mass loss analysis 

contradicts this; in the majority of cases, a mass gain was actually seen in samples buried in 
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peat from Star Carr. It is possible that this mass gain is the result of uptake of material from 

the sediment, additionally resulting in a reduced relative concentration of amino acids.  

Racemisation of Asx can serve as an indicator of collagen damage, as it is more likely to occur 

when there is a loss of conformational freedom in the collagen chain (Chapter 3). Asx 

racemisation is little altered from the degree of racemisation in the starting material for most 

modern samples, suggesting that collagen has remained intact (Figure 5.4, rightt). As 

racemisation is normally very slow to occur this is not unexpected over only 12 months at 

room temperature (e.g. Smith & Evans, 1980). It is however slightly elevated in some of the 

archaeological bones. This may be because low levels of collagen breakdown and unravelling 

of the fibrils have already occurred in the starting material, by processes such as hydrolysis, 

which may allow further breakdown to proceed more readily (Koon, 2006). 

In all recovered ‘jellybone’ samples, even those displaying high mass loss, racemisation is 

lower than archaeological samples. This may corroborate conclusions drawn from the lab-

based experiments, where it appeared that racemised fragments may be readily leaching from 

the most deteriorated bones, reducing their observed degree of racemisation. However, not 

enough data is available here to fully confirm this.  

Differences between different zones of each microcosm are difficult to elucidate and this may 

be a result of the experiment being carried out over such a short time-scale; very little 

alteration of degree of racemisation is observed. Despite this, some initial observations from 

microcosm C, zones 1, 2 & 3, show a decrease of total amino acid content in all samples 

compared to that starting material (Figure 5.5); this is much less significant for zone 4 (dry). 

This is in agreement with mass loss data and visual analysis, which suggested that alteration 

was much less advanced in the dry zone. This further indicates the important role that 

groundwater movement is likely to play in facilitating diagenesis, as it enables chemical 

reactions to occur (Hedges & Millard, 1995; see discussion in Chapters 1 & 2).  
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Figure 5.5: Comparison of total amino acid concentration (left) and Asx racemisation (right) in all bone 
samples excavated from microcosm C compared to the starting material. Error bars are calculated as the 
standard deviation of replicate measurements, except for the starting material where the error 
calculated in Chapter 3 is applied. (Originally in colour). 

5.3.2.3 Powder X-ray diffraction 

The shape of the diffraction pattern for each sample has been classified according to the 

definitions outlined in Chapter 4 and summarised in Table 5.4. One ‘jellybone’ sample from 

microcosm C was analysed and found to contain no HA peaks, as expected as this was 

removed by treatment in acid prior to the experiment. Further ‘jellybone’ samples are 

therefore not included in the analysis.  

No alteration of the diffraction pattern is observed in any of the A and B samples. The 

appearance of a small shoulder in analysis of the Star Carr rib bone and Tanner Row bone in 

each case is attributed to alteration of the sample prior to burial rather than during the 

experiment. This lack of alteration further confirms that in both sand and compost, diagenetic 

processes were not sufficiently fast to cause bulk alteration of the mineral fraction within the 

time-scale of the experiment; in comparison to an archaeological time scale, the duration of 

the burial experiment was negligible. Whilst splitting of the HA peaks in fossil bones has been 

reported, it is often very minor in much younger archaeological bones (e.g. Person et al., 

1995). This is in agreement with analysis of the amino acid content, where again little 

alteration of the organic fraction is indicated.  
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Table 5.4: Summary of p-XRD patterns for all analysed bone sample, characterised according to 
classifications defined in Chapter 4 (Section 4.3.3.1). (Originally in colour). 

Key: G = gypsum structure; S = peak splitting; MS = mild splitting; PS = peak has shoulder; - = no alteration.  

 

In stark contrast to the lack of alteration of the HA in microcosms A and B, all samples analysed 

from damp or wet environments in microcosm C displayed the diffraction pattern 

characteristic of gypsum (Figure 5.6). This was also seen in lab-based experiments in Chapter 4, 

and there was attributed to high concentrations of sulfur causing dissolved HA to recrystallise 

as gypsum (calcium sulfate) according to Equation 5.1.  

Equation 5.1: Reaction of HA with sulfuric acid to form gypsum. 

 

Gypsum has been reported as inclusions in bones from archaeological sites of various ages 

(e.g. Zapata et al., 2006; Turner-Walker & Peacock, 2008). However, analysis of the ‘jellybone’ 

sample showed no gypsum peaks, suggesting that gypsum has resulted from interaction with 

the HA rather than uptake from the sediment. In addition, p-XRD analysis of mineralised bones 

from microcosm C reveal no peaks related to HA at all, suggesting that almost total 

transformation to gypsum has occurred. This may account for the increase in mass, as the 

change to gypsum according to Equation 5.1 would account for an approximately 230 % 

increase in mass of the mineral fraction, which accounts for approximately two thirds the total 

Characterisation for all bones samples analysed by p-XRD

Material

Zone Hydrology Modern rib
Modern 

longbone
Star Carr rib

Tanner Row 
bone 

A3 Dry

Sa
n

d

PS PS

A2 Fluctuating - - PS PS

A1 Saturated - - PS

B3 Dry
C

o
m

p
o

st

- - PS

B2 Fluctuating - PS

B1 Saturated - PS PS

C4 Dry

St
ar

 C
ar

r

- MS

C3 Damp G G G

C2 Fluctuating G G G

C1 Saturated G G G

Ca10(PO4)6(OH)2 + 20H2SO4 +nH2O 6H3PO4 + 10Ca(SO4)2 . nH2O

940 gmol-1 10 x 232 gmol-1
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mass of bone (Green & Kleeman, 1991). Further analysis would be required to confirm the 

extent of this transformation. 

In order for such an alteration of the mineral fraction to proceed, it must be assumed that 

sufficient interaction with the burial environment has occurred (e.g. Wilson & Pollard, 2002). 

Indeed, the fact that the change does not occur in the dry environment (C4) highlights the 

important role that groundwater interactions play in this transformation.  In addition, in lab-

based experiments it was observed that the transformation was more likely to occur under 

‘stagnant’ conditions; assumedly as a result of the dissolved ions from the HA not being 

washed away, allowing recrystallisation to occur. The rate at which groundwater is replenished 

is often cited as an important factor in the preservation of bone (e.g. Hedges & Millard, 1995; 

Crowther, 2002).  

 

Figure 5.6: Comparison of diffraction patterns for the modern long bone and Star Carr rib samples from 
zone A2, where no alteration is seen (note that a small shoulder on the HA peak in the Star Carr rib 
pattern was present prior to burial), compared to the distinctive gypsum diffraction pattern in the 
modern long bone sample from zone C1. All analysed samples from zones C1, C2 and C3 displayed this 
pattern. (Originally in colour). 

In part, this transformation is likely to be due to the increased speed at which HA will dissolve 

at low pH, in order to buffer the surrounding environment, as demonstrated by lab-based 

experiments (Chapter 4) as well as studies on the solubility of HA, such as those by Berna et al. 

(2004). HA normally re-precipitates as HA as this is one of the most stable forms of calcium 
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phosphate (Turner-Walker, 2008). Berna et al. (2004) show that there is only a small window 

of pH (around pH 7) within which this recrystallisation as apatite occurs. This may suggest that 

the low pH of the peat at Star Carr is not only causing dissolution of bone, but restricting the 

way in which it recrystallises, even in a completely stagnant environment.  

5.3.2.4 Microscopy 

In previous studies, the presence of gypsum crystals in bones has been identified using 

microscopic techniques (Turner-Walker & Jans, 2008). For this reason, one sample from 

microcosm C (modern long bone from zone 3) was analysed by SEM according to procedure 

outlined in Chapter 3.  

 

Figure 5.7: SEM image of modern long bone excavated from zone C3 (left), compared to untreated long 
bone (right). 

The surface of the bone excavated from zone C3 appeared ‘spongy’ in texture when compared 

to fresh bone. This is comparable to the appearance of bones analysed after incubation in 

sulfuric acid, and could therefore be the result of dissolution of the bone mineral (Chapter 4). 

Using SEM it was not possible to make a definitive conclusion about whether gypsum crystals 

were present, as their characteristic shape was not observed. In order to further investigate 

the extent of the transformation to gypsum in the bones from microcosm C, it may be 

necessary to employ a technique such as trace element analysis (e.g. Zapata et al., 2006). 

Alternatively, use of SEM with backscattered electron (BSE) function, for example as used by 

Turner-Walker & Jans (2008), may reveal changes in density of the bone mineral, which relates 

to chemical transformations. 
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5.3.2.5 Summary of bone analysis 

Deterioration of all mineralised bone samples recovered from microcosms A and B was 

minimal, with analysis revealing little alteration of both the HA and collagen in the majority of 

samples. This is unsurprising on this timescale; bone can be well preserved in archaeological 

contexts for millions of years (e.g. San Antonio et al., 2011). The complete loss of two 

‘jellybone’ samples and a high mass loss in others however, shows that demineralised bone 

has the potential to be rapidly lost in certain types of soil. It is hypothesised that the primary 

mode of this rapid deterioration was biological; both compost and sand have the potential to 

support large microbial colonies, and displayed mild pH and positive redox values, conducive 

to microbial activity (Lillie & Smith, 2007). Without the protection of the HA it is possible that 

microbial decay of collagen can occur with little difficulty (Child, 1995).  

The mode of deterioration in microcosm C (Star Carr peat) appears to be completely different. 

Whereas drastic alteration of the HA has been revealed by p-XRD in mineralised bone samples, 

the ‘jellybone’ samples survived well, aside from some discoloration. The seemingly complete 

alteration of the HA to gypsum in all samples analysed by p-XRD demonstrates the rapidity 

with which bone can potentially undergo chemical changes under the conditions present at 

Star Carr. The reasons for the rapid change are likely to be due to both the high acidity and 

high sulfur content, which combine to cause the alteration from apatite to gypsum.  Over such 

a short time scale, no subsequent alteration of the collagen in these mineralised samples was 

seen. However, it is well established that the HA in bone ordinarily protects the collagen from 

both microbial and chemical attack (e.g. Child, 1995; Collins et al., 2002). Furthermore, lab-

based studies carried out at 80oC showed that upon alteration of the bone mineral, collagen 

breakdown is quick to proceed (Chapter 4). Further lab-based experiments using only collagen 

have shown that collagen completely dissolved within hours in pH 2 sulfuric acid and 65oC 

(Rhodes, 2014). It is therefore hypothesised that this rapid alteration of the HA would be 

detrimental to the long-term survival of any remaining collagen in archaeological samples.  

As HA is known to protect the collagen, the fact that ‘jellybone’ samples did not completely 

disappear in any of the C environments, in contrast to in microcosms A and B, may suggest 

that microbial activity is suppressed at such low pH.  At such low pH, chemical hydrolysis of the 

collagen is likely to occur in the absence of HA, and as such loss of collagen may have been 

expected (Collins et al., 2002). In such a short-term experiment as the one reported here 

however, this may not be observed.  
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5.3.3 Wood analysis 

5.3.3.1 Mass loss and visual analysis 

All wood samples were retrieved from all zones of the study, and all samples retained the 

appearance and texture of fresh or archaeological wood, with some slight darkening in 

microcosms B and C attributed to high levels of tannins present in peaty sediments (e.g. 

Nicholson, 1998). In microcosm A long, fibrous formations, similar in appearance to fine plant 

roots, were observed adhering to the surface of the both the modern oak and willow samples 

from zone A1 (waterlogged/ anaerobic). These have not been definitively identified but are 

likely to be evidence of biological activity, for example fungal hyphae or filamentous bacteria 

such as actinomytes; both have the potential to degrade cellulose and lignin in wood (Buscot & 

Varma, 2005). In addition, when the oak sample was excavated from the top layer of 

microcosm A, the surrounding sand was darkened. This could potentially be the result of water 

soluble tannins leaching out of the wood (Bjordal & Nilsson, 2007).  

 

Figure 5.8: Images of wood material before burial (top) compared to burial in zone A2 (centre) and C3 
(bottom). (Originally in colour). 

C3 (Star Carr, fluctuating) 
modern willow

A2 (sand, fluctuating) 
modern willow

Modern willow at start Modern oak at start Modern birch at start

C3 (Star Carr, fluctuating) 
Modern birch

A2 (sand, fluctuating) 
Modern birch

A2 (sand, fluctuating) 
Modern oak

C3 (Star Carr, fluctuating) 
Modern oak
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Table 5.5: Mass loss data for all wood samples from each of the 10 microcosm zones. (Originally in 
colour). 

 

Mass loss data was obtained for all samples except those from zone C4, as masses were not 

recorded prior to burial (Table 5.5). Negative mass losses are indicative of mass gain. Similarly 

to bone buried in Star Carr peat, many of the modern wood sample have gained mass. This 

could be a result of taking up ions from the sediment. Whilst in bone samples this manifested 

as swelling of the samples, wood (particularly archaeological wood) is much more porous 

which may readily allow extraneous material to become incorporated into the voids within the 

structure (Hoffman & Jones, 1990).  

Whilst mass loss analysis in wood is subject to a degree of error due to this porosity, it appears 

that higher mass loss occurred in microcosm A than B for modern samples, whilst the reverse 

was seen for archaeological material. It is possible that the greater mass loss in modern 

samples is due to cellulose loss, as analysis of both the Must Farm and Star Carr samples prior 

to burial revealed low cellulose content. The differences between the two microcosms may be 

linked to the potential presence of fungi indicated by the fibrous formations observed in 

microcosm A, as fungal attack is widely recognised as a major contributor to deterioration of 

both cellulose and lignin (e.g. Blanchette et al., 1990; Kim & Singh, 2000). 

Mass loss is also high in the Star Carr wood in all microcosms, and particularly so in microcosm 

C, in contrast to other samples where a mass gain is seen. It must be noted that this sample 

was extremely crumbly and some parts of it may not have been recovered in all cases. Despite 

Mass loss as a percentage of the starting mass

Material

Zone
Hydrology

Modern 
oak

Modern 
willow

Modern
birch

Star Carr 
wood

Must Farm 
wood

A3 Dry

Sa
n

d

-2 -8 -2 16 -2

A2 Fluctuating 6 25 44 27 1

A1 Saturated 2 -4 10 38 1

B3 Dry

C
o

m
p

o
st

1 2 4 25 6

B2 Fluctuating 3 1 6 44 11

B1 Saturated 1 1 11 38 3

C3 Damp

St
ar
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ar

r

-4 -37 -26 26 -9

C2 Fluctuating -8 -31 -42 23 -13

C1 Saturated -8 -54 -39 13 -16
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this, further analysis of this sample prior to burial showed that it was extremely degraded and 

contained a large abundance of crystals that have been interpreted as gypsum (Chapter 7). 

This may result in it being degraded much more readily than other samples, by both chemical 

and biological means.  

5.3.3.2 FTIR spectroscopy 

Analysis of all wood samples was carried out by FTIR. Analysis of the starting materials by FTIR 

showed that cellulose was already heavily depleted in both the Must Farm and Star Carr wood 

samples prior to burial. In the Star Carr starting material, splitting of the signal at 1240 cm-1, 

(which relates to the C-O bond in the methoxy groups on the lignin sub-units) indicated 

defunctionalisation of the lignin, resulting in alteration of the methoxy environments (see 

Chapter 3 for further discussion). In the Must Farm sample prior to burial this peak was 

broadened with some slight splitting, which could also indicate some defunctionalisation, or 

could be due to slight differences in the FTIR spectra for different wood species (Pandey & 

Pitman, 2003). After burial in microcosms A and B, this peak is little altered in both modern 

and archaeological samples, signifying that deterioration of the lignin has not occurred to an 

extent that is observable by FTIR spectroscopy.  

In all excavated modern wood samples, strong absorption peaks remain at both 1325 and 1375 

cm-1 confirming the continued presence of cellulose. Excavated archaeological samples also 

still retain small peaks relating to cellulose, indicating that cellulose loss has been minimal over 

the 12 month burial period, in all zones (Figure 5.9). However, in lab-based experiments 

(Chapter 4), it was proposed that polymer degradation could have occurred but not been 

identified by FTIR as the degradation products remain in situ in the porous wood structure. 

This must therefore also be accepted as a possibility here.  

In contrast, in the majority of both modern and archaeological samples from microcosm C 

zones 1, 2 and 3 (Star Carr), the complete disappearance of the peak at 1240 cm-1 indicates 

that methoxy groups have been completely removed from the phenolic units in lignin (Figure 

5.9, top spectrum).   
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Figure 5.9: Comparison of FTIR spectra from untreated willow (bottom) and willow samples buried in 
zones A1 and C1. Note the complete loss of the methoxy signal at 1240 cm

-1
 in zone C1, although small 

cellulose peaks remain at 1325 and 1375 cm
-1

. (Originally in colour). 

Such alteration of the IR spectrum was also seen in the lab-based experiments, but only after 

16 weeks incubation at 80oC in pH 1 sulfuric acid (Figure 4.15). This is in accordance with the 

measured pH of microcosm C (< pH 1). Cellulose is more easily degraded by biological attack 

than lignin; it is more accessible and more easily broken down by enzymatic activity, and this is 

the reason that increased lignin: cellulose ratios are often seen in archaeological woods 

(Hoffman & Jones, 1990; Gelbrich et al., 2008). In microcosm C, where this defunctionalisation 

of lignin has occurred however, cellulose peaks are still detected, suggesting that biological 

activity has not been sufficient to result in complete loss of cellulose. This agrees with 

observations made regarding bone decay; ‘jellybone’ samples survived in microcosm C, 

suggesting little biological activity. It is therefore likely that this defunctionalisation is driven 

instead by chemical hydrolysis; this has been shown to occur with intense treatment in acid or 

alkali due to oxidation (Adler, 1977).  

Alternatively, decay could have been caused by white-rot fungi, which is rarely found in 

waterlogged envrionments, but preferentially decays lignin rather than cellulose (Hedges, 

1990; Pandey & Pitman, 2003). Physical evidence for white-rot fungi was potentially seen in 

the form of fibrous strands adhering to the surface in several samples from microcosm A 

(Section 3.3.1).  
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A number of ratios have been determined as indicators of decay. These are, an increase in 

lignin: cellulose and 1507: cellulose ratios can indicate cellulose loss, whereas an increase in 

the ratio of the two lignin peaks, 1507: 1240, signifies lignin defunctionalisation (Figure 5.10). 

For the microcosm C samples, this final ratio cannot be determined due to the loss of the peak 

at 1240 cm-1. In addition, the lignin: cellulose value will be distorted by the absence of the 

1240 cm-1 peak. Comparison of the 1507: cellulose ratio confirms that cellulose loss in 

microcosm C samples is within the expected error, corroborating the hypothesis that lignin 

defunctionalisation is occurring without significant cellulose depletion.  

 

Figure 5.10: Plot of peak height ratios indicating degradation parameters for willow samples excavated 
from zones A1, B1 and C1 compared to an untreated willow sample. Error bars are the standard 
deviation of three measurements of a modern willow sample. An increase in Lignin: Cellulose and 1507: 
cellulose ratios is indicative of cellulose loss, and an increase in 1507: 1240 ratio suggests lignin 
defunctionalisation. (Originally in colour). 

In contrast, the 1507: cellulose ratio in the A1 samples is low; this suggests that lignin is being 

preferentially degraded in microcosm A1 and lends further evidence to the presence of white-

rot fungi (Hedges, 1990).  
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5.3.3.3 Py-GC  

FTIR analysis of the samples from microcosm C indicated that defunctionalisation of the lignin 

had occurred in all of the wet or damp zones. In order to investigate this further, py-GC was 

carried out on all willow samples from zones C1 – 4 (Figure 5.11). Due to the short time-scale 

of the experiment, analysis was carried out on sub-samples taken from the surface of the 

samples (rather than through a cross section) and therefore represents surface degradation.  

 

Figure 5.11: Py-GC traces from all four zone C (Star Carr) willow samples, showing extensive degradation 
of all samples in damp or wet zones. (Originally in colour). 

The lack of peaks eluting later in the chromatograms confirm extensive degradation of lignin in 

those samples retrieved from zones that were wet or damp; this confirms FTIR analysis where 

loss of the absorption peak at 1240 cm-1 indicated that lignin had been completely 

defunctionalised. The relatively intense peak at approximately 11 minutes has been assigned 

with the use of standards as phenol. This indicates that although lignin has been chemically 

altered, the main phenolic structure remains, probably explaining why no loss of macroscopic 

structure was observed as lignin is the main source of mechanical strength in wood (Martinez 

et al., 2005). In addition analysis was carried out only on the surface and it is likely that lignin 

remains in the rest of the sample.  
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In contrast to FTIR analysis, py-GC analysis also indicates that cellulose is no longer present in 

the surface of samples C1 – 3. This is in agreement with results from lab-based experiments 

(Chapter 4), where cellulose was also visible under SEM and by analysis by FTIR but shown to 

be depleted upon analysis by py-GC. A possible explanation is that cellulose is being broken 

down but remaining in situ; as FTIR is carried out with no sample preparation degraded 

cellulose may still be observed, as opposed to in py-GC where non-structural components are 

first removed by heating at 290oC . Phenol content and P: G ratios were not calculated for the 

lab-based burial experiments, as no guaiacol peak could be found in the traces for zone C1-3 

samples and an increase in phenol content was obvious. 

The survival of both polymers in the C4 willow sample, as well as willow samples analysed from 

zones A1 and B1, was indicated by py-GC. This is in agreement with FTIR analysis and visual 

assessment of the samples, where little change was observed. The traces from willow samples 

C4, B1 and A1 are shown in Figure 5.12.  

 

Figure 5.12: Comparison of py-GC traces for willow samples recovered from zones A1, B1 and C4. 
(Originally in colour). 

In sample C4, cellulose loss and a relative increase in phenol is apparent, suggesting chemical 

alteration of the lignin, although it has not occurred to the same extent as in samples from wet 

or damp environments. This again highlights the important role that groundwater plays in 

aiding chemical reactions in burial environments (e.g. Hedges & Millard, 1995).  
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5.3.3.4 Microscopy 

SEM imaging was carried out on several wood samples with the aim of identifying any 

extensive evidence of fungal activity and obvious histological alteration. Again, analysis was 

carried out on the outermost surface of the samples.  

Evidence of fungal activity was observed in several of the samples analysed, including those 

from zones C1 and C2 (Figure 5.13, right), where it had been hypothesised that the low oxygen 

content and low pH may suppress biological activity. However, some studies do show that 

certain types of fungi can adapt to extreme conditions (e.g. Highley & Kirk, 1979; Blanchette et 

al., 1990). It is also possible that this activity developed post-excavation, as samples were 

analysed several weeks post-excavation, to allow for air drying of the samples.  

 

Figure 5.13: SEM images of wood samples retrieved from microcosm C. Oak from zone 1 shows potential 
degradation of the inner cell walls (left) and Must Farm wood from zone 2 shows evidence for fungal 
activity (right). 

In the C1 oak sample (Figure 5.13, left) cell walls still appeared thick, suggesting that the 

cellulose rich secondary cell walls are still present; however, in places it appears that the cell 

walls may be coming away from the outer, lignin-rich cell walls. This is suggestive of early 

stages of degradation (e.g. Blanchette et al., 1990). A similar appearance in an archaeological 

wood sample is reported by Florian (1990), where it has been interpreted as swelling of the 

secondary cell walls due to early stages of degradation, resulting in the separation from the 

primary cell walls. This was also observed in lab-based experiments in acid only (Chapter 4), 

where it was interpreted as degraded cellulose remaining in situ. Indeed, the fact that cellulose 

could be detected by FTIR, where no samples preparation was carried out, but not by py-GC, 

where samples were cleaned prior to analysis, is supportive of this hypothesis.  
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5.3.3.5 Summary of wood analysis 

Analysis of wood samples from the microcosm experiments shows primarily that wood 

deterioration in sand and compost was only in very early stages within the 12 month period; 

both FTIR and py-GC analysis showed that deterioration of the polymeric structure was not 

advanced, and samples retained the morphological characteristics of wood. In contrast, in 

microcosm C (Star Carr peat) zones 1-3 and, to a lesser extent, zone 4, lignin had been 

defunctionalised and cellulose depleted. This indicates either that biological activity had 

occurred or that degradation had occurred due to chemical processes. Lignin 

defunctionalisation occurs primarily by fungal activity (Martinez et al., 2005); however, at the 

low pH and expected anaerobic conditions in the wet zones of microcosm C, fungal activity 

would be expected to be severely supressed (e.g. Blanchette, 2000; Kim & Singh, 2000). In 

addition, no conclusive evidence for biological activity was seen in microcosm C, in contrast to 

microcosm A where long fibrils adhering to the surface of wood samples is suggestive of fungal 

activity. Therefore, chemical deterioration offers the most likely explanation. That these 

processes occurred within 12 months highlights that the conditions at Star Carr are not 

conducive to the preservation of archaeological wood. This is in contrast to assessment using 

lab-based experiments where it was concluded that wood was at much lower risk from 

acidification than bone.  
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5.4 Discussion and conclusions 

Conducting burial experiments under lab controlled conditions aimed to introduce a number 

of variables that are potential factors contributing to diagenesis, which were not accounted for 

in the lab-based experiments reported in Chapter 4. Primarily, this experiment aimed to 

achieve regions in different soils with different levels of oxygen content, which is likely to be 

related to microbial activity. Unfortunately, a number of practical difficulties resulted in a 

failure to confidently establish three distinct zones in each microcosm. In addition, the 

experiment was carried out over a relatively short period in comparison to the archaeological 

time-scale. Despite this, several observations were made from analysis of the material that has 

furthered our understanding of organic deterioration in the unique geochemical conditions at 

Star Carr.   

Biological activity was indicated by the presence of long fibres (potentially fungal hyphae or 

filamentous bacteria; Buscot & Varma, 2005) in several wood samples in microcosm A, and 

possibly confirmed by the complete loss of demineralised bone (‘jellybone’) samples in aerated 

zones of microcosms A and B. However, visual evidence for biological deterioration of both 

wood and bone was not identified in microcosm C. This is not surprising, as few micro-

organisms can thrive at such harsh pH (e.g. Russell & Dombrowski, 1980; Beales, 2004). This 

tentatively indicates that, although it is likely to occur at low levels, biological activity is not a 

major influence on the rate of deterioration of organic artefacts at Star Carr.  

Despite the apparent absence of biological activity, alteration of both the cellulose and lignin 

in wood were detected by FTIR and py-GC analysis in microcosm C (Star Carr peat). This 

indicates that chemical deterioration is more of a factor in wood degradation than estimated 

by lab-based experiments in acid only (Chapter 4). The low pH at the Star Carr site may 

therefore contribute to accelerated decay of wood, particularly if the acidity were to increase.  

Evidently, chemical decay of both bone and wood proceeded rapidly in microcosm C where 

conditions were damp or wet; the transformation of HA to gypsum and the defunctionalisation 

of lignin within the 12-month period illustrates how destructive the geochemical conditions at 

Star Carr are. This demonstrates that any remaining archaeological material still buried at the 

Star Carr site is at risk or rapid deterioration, primarily due to the high acidity.  

Aside from the acidity, results indicate that the water content of the sediments plays an 

important role in facilitating organic deterioration. In the dry zone in microcosm C, neither 

bone nor wood deterioration was as advanced. This is likely to be because the presence of 

groundwater allows faster exchange between the burial environment and organic remains 
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(Hedges & Millard, 1995). The absence of deterioration in the dry zone is also further evidence 

that deterioration was driven primarily by chemical rather than biological processes; in the 

most aerated zone, more biological activity may be expected.  

Microcosm experiments have added considerably to the lab-based experiments, showing that 

whilst site acidity may be a major factor in causing deterioration of organic material 

(particularly bone), other factors such as interaction with the groundwater and biological 

activity need to be considered. However, both lab-based approaches have considered 

conditions that do not fully represent conditions at the Star Carr site. In particular, hydrological 

effects (the movement of water through the archaeological zone) are likely to have a major 

impact on the rate of deterioration; analysis of wood has shown that cellulose may degrade 

but remain in situ. In a stagnant environment therefore, degradation may not be as advanced 

as in one with a dynamic hydrology which may wash out degradation products. In addition, 

transformation of the HA in bone to gypsum may not have the opportunity to proceed in a real 

burial environment, where recrystallization does not have chance to occur. Therefore, further 

burial experiments have been carried out in situ, providing the best possible representation of 

actual burial conditions at the Star Carr site (Chapter 6).  
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6 CHAPTER 6  
 

 

IN SITU BURIAL EXPERIMENTS 
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6.1 Introduction  

Lab-based experiments, such as those carried out in sulfuric acid (Chapter 4) and microcosms 

(Chapter 5), provide a controlled environment in which to investigate selected factors 

contributing to degradation. In reality however, a large number of biological and chemical 

factors will combine to contribute to diagenesis in an archaeological context (e.g. Gordon & 

Buikstra, 1981; Hopkins, 1996; Caple, 2004). 

In situ burial experiments aim to replicate diagenesis in an environment that is as close to the 

archaeological environment as possible, and the benefits of such experiments are 

demonstrated by a number of published studies. Notable long term examples include ‘The 

taphonomic bog-body project’: carried out in Scandinavian peat bogs (e.g. Turner-Walker & 

Peacock, 2008), and a 33 year burial experiment to study bone degradation at regular intervals 

at Wareham, Dorset (Crowther, 2002). Both have widened our understanding of the rate at 

which bone deteriorates in an archaeological context.  

Burial experiments are often also carried out alongside conservation projects in order to 

monitor organic deterioration. One example is an in situ experiment carried out during re-

watering of the Iron Age site of Fiskerton, where a series of both modern and archaeological 

bone samples were buried at varying depths (Williams et al., 2006; Chapter 1 Section 1.4.5.3). 

The aim of this was to assess whether raising the water-table would impact positively on 

organic preservation at the site. Similarly, whilst assessing the practicality of preservation in 

situ of Bronze Age wood at Flag Fen, a series of modern wood samples were buried and re-

excavated periodically (Powell et al., 2001). Assessment of microbial deterioration in those 

samples served as an indicator for potential risks from biological activity to the rest of the site.    

A 7-year study by Nicholson (1996; 1998) aimed to further understand the contribution of the 

nature of the burial environment to bone deterioration, and included sites at a range of 

different acidities (the lowest being measured at pH 3.2 - 4.5). It was concluded that bone 

diagenesis is not solely dependent on soil pH and can differ greatly depending on the specific 

conditions of the burial environment, which can vary very locally. Crowther (2002) also 

concluded from long term burial experiments in different soil types, that factors which have an 

influence on the rate of leaching of phosphate from buried bone (such as soil type and 

groundwater percolation) contribute significantly to the rate of diagenesis, along with pH. 

Hedges & Millard (1995) also discuss how site hydrology is a key factor in bone diagenesis.  

Whilst these previous studies have provided a large amount of data and greatly advanced our 

understanding of the effects of the burial environment on organic preservation, they have also 
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highlighted the fact that burial conditions must be considered on a site-by-site basis (e.g. 

Caple, 1994; Nicholson, 1998). In this study, site hydrology has been accounted for in part by 

the use of ‘dynamic’ and ‘stagnant’ conditions in lab-based burial experiments (Chapter 4). 

Without thorough monitoring data it is impossible to accurately replicate exact site hydrology 

without conducting an in-field burial experiment. The occurrence of two successive field 

seasons at Star Carr provided the opportunity to conduct in situ burial experiments for a 

period of 12 months at the site, as well as at another site located around prehistoric Lake 

Flixton (Flixton Island site 2).  

The burial period used here represents only a very short time in comparison to the majority of 

burial experiments described in literature, and it is unlikely that environmental conditions in 

only 12 months would have been representative of the average conditions to which 

archaeological materials have been exposed. However, it was hoped that by applying the 

analytical techniques described in Chapter 3, it would be possible to identify any small changes 

evident in the early stages of diagenesis. Data obtained from in situ burial experiments can 

also be correlated with lab-based studies in order to further understand the specific nature of 

the organic diagenesis at the Star Carr site. In addition, burial experiments allow an 

assessment of whether lab-based studies appropriately address the preservation problems 

seen at the site.    
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6.2 Experimental 

6.2.1 Materials 

6.2.1.1 Pilot study 

Prior to this research studentship, a pilot burial study was initiated in the summer of 2007, in a 

test pit located to the north of Star Carr (SC29; Section 6.2.2.1). Pig rib bone and chicken legs 

were buried at varying depths into the excavated wall of the trench (Needham, pers. comm.). 

Unfortunately, no record exists as to how each bone was treated, but it is thought that most of 

these were cooked, and that both fleshed and de-fleshed samples were included in the study. 

No wood samples were included. Permission was granted for this material to be analysed part 

of this PhD studentship. Samples were re-excavated and analysed in 2012, and the results 

reported here.  

6.2.1.2 Main study 

In the 12-month burial experiments conducted as part of this study, both bone and wood 

samples were buried. The experiment was designed to be comparable to the lab-based burial 

experiments (Chapter 5), although some limitations were imposed due to the availability of 

materials. Cooked bone was included in order to allow a comparison with the pilot study, as 

well as to enable a preliminary assessment of the differing behaviour of cooked and uncooked 

bone. Due to the short time-scale, all bones were de-fleshed by scraping as much as possible, 

although the uncooked sheep rib did have some flesh adhering to the surface on burial.  

6.2.1.2.1 Material buried in SC29 (4 wood types, 6 bone types)  

An asterisk denotes samples that are directly comparable to the lab-based burial experiments 

(Chapter 5) 

*Modern oak and willow, approximately 5 cm3 pieces of trunk, cut using a band saw 

*Must Farm (Bronze Age) wood (ash), approximately 5 cm3 section, dried 

*Star Carr wood (unidentified, probably willow), approximately 3 cm3 piece from a split timber 

plank excavated in 2007. Dried and sewn into netlon bag 

*Star Carr rib bone excavated in 2010 (sample number 92424) ‘robust’ in appearance. Sliced 

into approximately 5 cm lengths using a water-cooled band saw, sewn into netlon bag 

*Modern artificial ‘jellybones’: sheep long bone and rib, obtained from a butcher. De-fleshed 

and sliced using a water-cooled band saw. Demineralised in 0.6 M HCl for 1 week, sewn into 

netlon bags 

Roasted pig tibia and rib, kept whole and de-fleshed 
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*Raw sheep rib, obtained from butcher, kept whole and slightly de-fleshed  

6.2.1.2.2 Material buried at Flixton Island (4 wood types, 6 bone types) 

*Modern oak and willow, approximately 5 cm3 pieces of trunk, cut using a band saw 

*Modern birch, branch of approximately 2 cm diameter, cut into approximately 10 cm lengths 

*Star Carr wood (unidentified, probably willow), approximately 3 cm3 piece from a split timber 

plank excavated in 2007. Dried and sewn into netlon bag 

*Star Carr rib bone excavated in 2010 (sample number 92373) ‘robust’ in appearance. Sliced 

into approximately 5 cm lengths using a water-cooled band saw, sewn into netlon bag 

*Modern artificial ‘jellybones’: sheep long bone and rib, obtained from a butcher. De-fleshed 

and sliced using a water-cooled band saw. Demineralised in 0.6 M HCl for 1 week, sewn into 

netlon bags 

Roasted pig tibia and rib, kept whole and de-fleshed 

*Raw sheep rib, obtained from butcher, kept whole and slightly de-fleshed  

6.2.2 Burial locations 

6.2.2.1 SC29 

The ‘jellybone’ excavated in 2007 (described by Milner et al., 2011a) was discovered in a small 

test pit known as SC29 located in a field to the north of the Star Carr site (Figure 6.1; National 

Grid Reference: 502912 4881161). SC29 was also the location of the pilot burial experiment 

carried out in 2007 by Needham (2007). Sediment analysis at the time of the pilot burial 

indicated that the pH of this test pit was around 3.5, similar to that of parts of the Star Carr site 

(A. Needham, pers. comm.). The deposits in SC29 consist of a peat layer up to a metre thick, 

overlying pre-Holocene sediments of gravel and sand (Boreham et al., 2011). In SC29, as well 

as parts of the Star Carr site, a grey clay lens lies between the peat and the gravel at a depth of 

approximately 80 cm below ground level. Higher pH has been observed in this clay, indicating 

buffering of acidity (Boreham et al., 2011). SC29 is waterlogged from a depth of approximately 

70 cm below ground level, and therefore 3 different horizons were identified: dry, possibly 

fluctuating, and waterlogged (Figure 6.3). 

6.2.2.2 Flixton Island 

Flixton Island site 2, located to the east of Star Carr (Figure 6.1; National Grid Reference: 

503575 481170) was used as a control site. Previous excavations at the site are largely 

unpublished, but site reports show that poorly preserved, crumbly bone has been recorded 

(Milner & Taylor, 2012). Similarly to Star Carr, deposits consist of peat overlaying gravel, 

although the peat layer is much thinner and much of the archaeology is contained within the 



202 

 

gravel rather than the peat. No clay layer separates the two (Figure 6.2 & Figure 6.3). 

Measured pH values at the time of burial were approximately neutral (Figure 6.3). The water 

level at Flixton Island site 2 was not reached during excavations, and therefore only two 

hydrological zones were identified: dry, and possibly fluctuating.  

In the absence of extensive hydrological data for both burial sites, the defined hydrological 

zones are an estimate. However, the weather over the 12-month period (September 2012 – 

September 2013) was characterised by heavier rainfall as well as slightly warmer temperatures 

(approximately 0.6oC warmer) than usual for the North East of England (metoffice.gov.uk). This 

suggests that the height of the water-table would have been similar to (or higher than) 

observed during burial, for much of the experimental burial period.  

 

Figure 6.1: Map showing approximate geographical location of both burial sites in relation to Star Carr. 
National Grid locations are shown. (Originally in colour). 
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6.2.3 Method 

6.2.3.1 Burial 

Turner-Walker & Peacock (2008) emphasise the problems regarding the introduction of the 

burial samples into the burial environment; this should be achieved with minimum 

disturbance. At Star Carr, this is even more critical, as highly reactive sediments have been 

identified at the site, and pH has been shown to alter rapidly upon exposure to oxygen 

(Boreham et al., 2011; Chapter 2 Section 2.3.3.1).  A few studies have reported a method 

where the samples are contained in a plastic tube and pushed vertically into the ground (e.g. 

Turner-Walker & Peacock, 2008; Williams et al., 2006). However, it was decided that due to 

the short time-scale of the experiment, samples should be in direct contact with the soil to 

maximise degradation.  

For both the pilot and main study, samples were pushed directly into the face of the excavated 

trench at intervals of approximately 10 cm (Figure 6.2). The aim of this was to minimise 

exposure of the sediments, thus reducing oxidation.  

 

Figure 6.2: Photographs of material buried during the pilot study at varying depths in SC29 (left) and at 
two levels at Flixton Island for the 12 month study (right). Note the water-table visible at the base of 
SC29. Depths are approximate. (Originally in colour). 

In the pilot study, two columns of samples were buried at various depths. For the main study, 

three sets of material were buried into the wall of the re-excavated test-pit SC29 at depths of 

92 cm, 50 cm and 30 cm below the ground surface. At Flixton Island site 2, two sets were 

buried, at 60 cm and 30 cm into the face of a trench already excavated. Small or vulnerable 

samples were sewn into netlon bags prior to burial to aid with retrieval. During burial, pH 

analysis of the sediments was carried out according to as outlined in Chapter 2 (Section 

2.3.2.1) and shown in Figure 6.3.  

Figure 1: Bones as placed in SC29 trench section in 2007

9
0

 c
m 80 cm

SC29 Flixton Island
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Figure 6.3: Schematic showing location of samples buried for the 12 month study at SC29 (left) and 
Flixton Island (right). pH values recorded at time of burial are indicated. (Originally in colour). 

6.2.3.2 Excavation 

All samples were retrieved by hand by re-excavating a portion of the trench and carefully 

digging into the trench wall. All samples were kept at 4oC until required for analysis.  

Upon excavation, sediment pH and redox was again recorded adjacent to the samples.  

6.2.3.3 Analysis 

All samples were accurately weighed and photographed prior to burial to allow mass loss and 

visual analysis. Analysis of the organic materials was carried out according to methods outlined 

in Chapter 3. 
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6.3 Results and discussion 

6.3.1 Sediment analysis 

6.3.1.1 pH and redox analysis 

Held field probes (HI-98121 pH and ORP pocket probe, Hanna Instrument) were used to 

measure both soil pH and redox potential on site prior to burial of material, according to the 

method described in Chapter 2 (Section 2.3.2.1). The pH was recorded adjacent to the burial 

material at both sites and in additional locations in SC29, and then measured on the same 

samples after 24 hours storage at 4oC using a calibrated glass pH probe (Denver Instrument) 

(Table 6.1). Although the sediments at SC29 are very acidic in comparison to those from Flixton 

Island, the lowest pH recorded at SC29 (2.86) does not reach quite as high acidities as some 

areas of Star Carr, which have been reported to have a pH as low as 2.5 (Boreham et al., 2011; 

Chapter 2).  

Table 6.1: Measured pH and redox values at both burial locations at the time of burial.   

 

The reasons for the high acidity at Star Carr are discussed in more detail elsewhere (Chapter 2). 

In brief, it is believed to arise via oxidation of sulfide according to Equation 6.1 (Dent & Pons, 

1995; Boreham et al., 2011).  

Flixton Island SC29

Depth 
(cm)

pH in field
pH + 24 
hours

Redox
(mV)

pH in field
pH  + 24 

hours
Redox
(mV)

30 6.45 6.67 167 3.60 3.38 220

50 3.14 3.01 229

60 6.10 6.19 168 3.27 3.36 259

70 2.86 2.76 283

80 3.74 3.67 236

90 5.49 5.52 17
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Equation 6.1: Oxidation of iron sulfide (pyrite) to acid sulfates. 

 

Boreham et al. (2011) reported a change in pH in soil samples from Star Carr analysed both in 

field and after 24 hours. Samples here were analysed with a different pH probe after 24 hours, 

which may account for some discrepancies. However, similar trends were seen to those 

reported by Boreham et al. (2011); a slight decrease in pH after exposure to oxygen was 

observed in the most acidic samples from SC29, thought to be due to the continued oxidation 

of remaining sulfides upon exposure. Boreham et al. (2011) suggested that such a small 

decrease may be indicative that almost complete oxidation to sulfates had already occurred. In 

contrast, sediments from the upper, more neutral layer, undergo a slight increase in pH after 

24 hours. A potential explanation for this was proposed by Boreham et al. (2011); ‘liming’ of 

the soils in agricultural processes could lead to the neutralisation of acidic sulfates by gypsum 

formation (Chapter 2, Section 2.4.1.1). 

Studies where redox readings have been taken alongside water-level monitoring suggest that it 

serves as a good indicator for waterlogging (e.g. Brunning et al., 2000).  Patrick & Mahaptra 

(1968) define sediments with a redox potential < 100 mV as reducing and > 400 mV as 

oxidising. In between these values the higher the redox value the more oxidising, or aerobic, 

the sediments. However, in acidic soils the redox potential is also increased by the presence of 

acids, which are also highly oxidising (Atkins et al., 2006), and as such does not necessarily 

equate to oxygen content.  

All redox measurements at both SC29 and Flixton Island suggest that the sediments are 

moderately oxidising, indicating that both burial locations are aerobic. An exception is the base 

of SC29 (90 cm) where low redox potential implies that oxygen levels are low, possibly due to 

extended periods of waterlogging. Due to the rate at which the sediments at Star Carr have 

been observed to oxidise on exposure to oxygen, this may explain the high acidity in the upper 

regions of SC29 (Equation 6.1). Redox values measured at Star Carr in 2009 were often > 400 

mV, implying that sediments across the site may be more oxidising, and therefore more acidic, 

than represented by SC29 (Boreham et al., 2011).  

 

 

 

 

FeS2 + 3O2 + 2H2O                         Fe2+ + 2SO4
2- + 4H+
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6.3.1.2 Sulfur content analysis 

Soil samples adjacent to each set of burial material, as well as in additional locations in SC29, 

were collected upon burial of the material, and analysis of carbon, nitrogen, hydrogen, and 

sulfur content performed as outlined in Chapter 2 (Section 2.3.2.2). Percentage compositions 

are presented in Table 6.2.  

Table 6.2: Percentage values of sulfur and carbon in sediment samples from varying depths at Flixton 
Island and Test pit SC29. 

 

As the formation of sulfuric acid is hypothesised to be the cause of high acidity at Star Carr, it 

was expected that high sulfur concentrations would be found, and this is the case in SC29. 

Typically, soils have a sulfur content of 0.005 – 0.05 % (50 – 500 ppm) (Steinburgs et al., 1961). 

Sulfur content of peat is often elevated, but considered high when around 1% (1000 ppm) 

(Brown, 1985). Based on this, is it clear that sulfur content in SC29 is high throughout the 

profile, particularly in comparison to Flixton Island, despite its geographical proximity.  

The increasing concentration with depth (up to 80 cm) may suggest that the source of sulfur is 

from underlying deposits rather than sources from above, such as rainwater or agricultural 

activities. This is consistent with the hypothesis presented by Boreham et al. (2011) of a “sulfur 

pump” system where sulfur from underlying mineral deposits rises and gets trapped above the 

underlying clay lenses. This may also explain why concentrations of sulfur are lower in the 

bottom layer, as the clay-like consistency could mean that sulfur-rich groundwater is trapped 

above it. The difference between the two sites also supports the theory that these mineral 

Flixton Island SC29

Depth (cm) % Sulfur % Carbon Depth (cm) % Sulfur % Carbon

30 0.2 34.8 30

45 45 5.8 40.3

60 0.5 36.9 50 1.6 41.4

70 70 9.9 21.1

80 80 15.0 23.6

92 92 4.1 5.8
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deposits occur in small outcrops around the Star Carr site and do not underlie the Flixton 

Island site (Boreham et al., 2011; Brown et al., 2011).  

6.3.2 Bone analysis 

6.3.2.1 Pilot study in SC29 

6.3.2.1.1 Visual analysis 

Six bones were retrieved in total after approximately five years of burial, out of an estimated 

initial 10. The visual appearance of each is summarised in Table 6.3 and Figure 6.4. The first 

sample was found at a depth of 50 cm, at which point groundwater also appeared in the 

trench, indicating waterlogging. It is believed that another layer of samples were buried above 

this, but these were not retrieved. It is not possible to say whether this is due to complete 

degradation of the samples or a failure to locate them, although the high acidity of the soil 

suggests that complete loss of the bone could have occurred. The sample at 50 cm was barely 

recognisable as bone and only fragments of material were retrieved by sieving in a 400 μm 

metal mesh. Other samples from the top and middle of the trench were easily bent, suggesting 

HA has been lost. Bones retrieved from the lower layers were fairly robust in contrast, 

potentially because of the more neutral recorded pH leading to the loss of less HA due to 

buffering.  

Table 6.3: Visual analysis of samples retrieved from Test pit SC29 after five years burial.  

 

 

Sample Description pH

Column A, 50 cm depth 
Only very small fragments recovered by sieving – not certain to 

be bone 
3.12

Column A, 70 cm depth 
Very bad preservation, easy to bend suggesting high mineral 

loss. Stained dark brown 
3.27

Column A, 92 cm depth 
Good preservation upon excavation, although an orangey colour 

appeared soon after recovery 
5.49

Column C, 45 cm depth Discolouration, very easy to bend suggesting mineral loss 3.12

Column C, 68 cm depth Less discolouration but also easy to bend 3.27

Column C, 85 cm depth 
Excellent preservation, almost no visual deterioration other than 

discolouration. Very robust
5.49
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Figure 6.4: Photographs of six samples retrieved from pilot study in 2007 after approximately 5 years 
burial. (Originally in colour). 

6.3.2.1.2 Amino acid analysis 

Analysis was carried out as described in Chapter 3. Where the retrieved samples were big 

enough to do so, sub-samples were taken from both the outermost, exposed surface of the 

bone and the inside,.  

The relative amino acid compositions of all samples are characteristic of collagen, confirming 

that they are bone. In the two samples recovered from the base of the trench (A 92 cm and C 

85 cm) as well as column C at 45 cm, a slight increase in relative concentration in the outer 

section (when compared to the untreated chicken bone) indicates that HA has been lost 

(Figure 6.5). However, in samples A at 50 cm and C at 68 cm, a significant reduction in the 

amino acid concentration indicates that collagen may have broken down and been leached 

from the bone.  

 

Column A, 92cm depth

Column C, 45cm depth Column C, 68cm depth Column C, 85cm depth

Column A, 70cm depthColumn A, 50cm depth
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Figure 6.5: Comparison of total amino acid content for all excavated bones, compared to a modern 
cooked chicken leg bone (left) and Asx racemisation values in all excavated bones (right). Error bars are 
one standard deviation calculated from replicate analysis. (Originally in colour). 

Despite the reduction in total amino acid concentrations seen for most of the bones in the 

uppermost, acidic zones of the trench, Asx racemisation is only elevated outside the margin of 

error of the modern reference sample (chicken bone) in the one sample: A at 50 cm. This 

corroborates the hypothesis that a reduction in total amino acid concentration has occurred, 

and suggests that the collagen triple helices have broken down to some extent. Due to their 

jelly-like appearance and reduced total concentrations, we may have expected to also see an 

increase in Asx racemisation for C at 68 cm and A at 70 cm, whereas despite a clear reduction 

in amino acid concentration, no racemisation is observed in the sample. In lab-based 

experiments (Chapter 4) however, samples that developed a translucent, jelly-like texture also 

had only slightly elevated racemisation levels at room temperature despite having D/L values 

of over 0.5 at 80oC. This suggests that racemisation is too slow to observe on this timescale at 

these low temperatures.  An alternative explanation for the low observed D/L in Asx is that as 

the samples were located in the region of the water-table, fluctuating water may have resulted 

in degraded fragments of collagen leaching away from the samples. As these small fragments 

are likely to have the highest levels of racemisation, this would reduce the observed 

racemisation in the bone (e.g. Dobberstein et al., 2008).   
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Low racemisation values in the bones at the base of the trench, combined with minimal 

alteration of the relative amino acid concentration of the centre of the bone suggest that the 

damage in the waterlogged zone is only superficial and the loss of HA in the outer surface of 

the bones has not led to significant collagen damage.  

6.3.2.1.3 Powder X-ray diffraction 

p-XRD was carried out on all bones where the sample size allowed in order to assess the HA 

crystallinity. Both bones recovered from the lower, neutral zone displayed diffraction patterns 

characteristic of modern bone, indicating minimal alteration of the bone mineral (Figure 6.6, 

bottom).  

Sharp peaks appearing close to the HA diffraction peaks may be due to mineral impurities, 

such as quartz, that are commonly present in archaeological and fossil samples and originate 

from the burial environment (e.g. Bonar et al., 1983; Person et al., 1995).  

 

Figure 6.6: p-XRD patterns for all 3 samples retrieved from column A. The sharp peak at 28.5 
o
2Ѳ is 

probably due to a quartz impurity (e.g. Person et al., 1995). (Originally in colour). 

Minimal alteration of the HA, as indicated by p-XRD, is in agreement with total amino acid 

analysis, where little diagenesis was indicated, particularly in the middle section of the bones. 

Similarly, those in the middle zone showed little alteration, although a reduction in the 

intensity of the HA signal was observed. As the intensity of a diffraction line is proportional to 
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the volume of the material irradiated, this reduction in intensity may be a result of mineral 

depletion (Cullity, 1978). In contrast, p-XRD analysis of the bones located near the surface of 

the trench (dry, acidic) lacked any peaks characteristic of HA, suggesting that all bone mineral 

has been removed. This would be expected to result in elevated levels of amino acids, but this 

is not seen (Figure 6.5), again indicating that collagen is either simultaneously or subsequently 

being lost. Loss of both the protein and mineral fraction combined with high oxygen content 

(as indicated by elevated redox potential) in this region suggests that water may have been 

fluctuating through the sample. 

6.3.2.1.4 Microscopy 

Due to the fragile nature of most retrieved samples, thin-section optical microscopy was not 

possible. Instead, SEM was carried out on all 6 samples.  

Analysis by AAR and p-XRD has revealed both samples from approximately 50 cm to be heavily 

deteriorated, and SEM imaging revealed a cellular-like histological structure very unlike bone 

in appearance, with extensive deep cracking (Figure 6.7, left). The regular structure suggests 

that it is cortical bone and therefore likely to be pig rib (e.g. Bell, 1990). Osteons in cortical 

bones cannot often be viewed so clearly unless the bone has been acid treated, suggesting 

that degradation has occurred in these samples (Boyde, 2012). In this case, the spongy 

appearance may be the result of dissolution of the centre of the osteons from the Haversian 

canals outwards. This may occur by either chemical or microbial activity (Bell et al., 1996). In 

contrast, the chicken bone (which is naturally formed of a more open network; Boyde, 2012) 

uncovered at depths of 70 cm (Figure 6.7, right) as well as at 92 cm both displayed no deep 

cracking and no obvious alteration of the surface. This corroborates AAR and XRD analysis 

which both suggested that deterioration was not as advanced.   

 

Figure 6.7: SEM images of bone excavated from the pilot study in SC29, showing cortical bone (left) 
which is similar in appearance to bone treated in acid (Chapter 4). The more porous network of 
trabecular bone (right) makes it more difficult to observe damage.  

Column A, 70 cm Column A , 50cm 
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In all samples in the top two layers, ribbon-like formations were identified under SEM (Figure 

6.8, left). The appearance of these suggests that they could be fungal hyphae, indicating the 

presence of biological activity (e.g. Blanchette et al., 1990; Powell et al., 2001). Evidence of 

fungal activity suggests that the soil is not permanently waterlogged, leading to aerated 

sediments (e.g. Nicholson, 1996; Kim & Singh, 2000). Indeed, this is also supported by the high 

redox values measured in the peat layers of SC29. This is likely to increase the risk of organic 

deterioration; microbial activity is more likely to occur in aerated zones (e.g. Caple, 1994; Lillie 

& Smith, 2007).  

In other samples, such as that from column C at 70 cm (Figure 6.8, right), fibres adhering to the 

surface of the bone were less ribbon-like and could potentially be interpreted as collagen 

fibrils (Fantner et al., 2004; Boyde, 2012). This is consistent with a loss of HA leading to 

exposure of the collagen matrix. 

 
Figure 6.8: Features observed by SEM analysis of bone samples from SC29 which could be evidence for 
fungal activity (left). In other samples, fibres bear some resemblance to collagen fibrils (right) (Fantner et 
al., 2004). 

  

Column A, 70cmColumn  C, 68 cm
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6.3.2.2 Main Study  

6.3.2.2.1 Mass loss and visual analysis 

Out of 18 bone samples buried in SC29, all 18 were recovered after one year. Visual alteration 

of most bone samples had occurred during the 12 months; in particular a darkening of the 

material which can be attributed to tannins present in the peat (e.g. Nicholson, 1998). Out of 

12 bone samples buried at Flixton Island, all 12 were recovered. Visual analysis revealed little 

alteration, except in the artificial ‘jellybones’, where darkening and distortion had occurred 

(Figure 6.9, bottom right). 

 

Figure 6.9: Images of the starting material (top) compared to after burial for 12 months at different 
locations. Orange deposits can be seen on the surface of bones from SC29, and the difference between 
material buried at 30 cm and 92 cm at SC29 is demonstrated by comparison of the cooked pig tibia (left). 
‘Jellybones’ underwent discoloration and distortion at all burial locations (centre). (Originally in colour). 

Orange deposits developed on the surface of several bones after a few days post-excavation, 

particularly those from SC29. A non-quantitative test was carried out on this based on theories 

outlined by Feigl & Anger (1972). A few milligrams of the deposit were scraped off and heated 

at 80oC with 2 M HCl for 1 hour.  A few drops of 6 M potassium thiocyanate solution was 

added to this, and a colour change to blood red strongly indicated that these deposits 

contained iron.   

 

 

SC29 (30 cm) jellybone

Flixton Island (30 cm) cooked pig ribFlixton Island (60 cm) 
jellybone

SC29 (30 cm) cooked pig tibia

SC29 (92 cm) cooked pig tibia

Fresh cooked pig tibia Fresh longbone jellybone

SC29 (30 cm) cooked pig rib

Fresh cooked pig rib
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Mass loss analysis was carried out where possible and is reported as a percentage of the 

starting mass in Table 6.4. In the modern sheep rib, mass loss may be due to the loss of flesh 

rather than bone and was therefore not carried out. Pig femurs were not weighed prior to 

burial in SC29 and therefore no data was obtained. 

Table 6.4: Mass loss in samples buried for 12 months in Test pit SC29 and Flixton Island site 2. 

 

Mass loss analysis must be approached with caution, due to the potential uptake of 

components from the burial environment; however, a few initial observations can be made. 

Mass loss in the ‘jellybones’ was comparatively low, even in the most acidic zones (30 and 50 

cm at SC29). This indicates that the majority of mass loss in the mineralised bones does not 

come from the organic (collagen) fraction, and is more likely to be due to HA dissolution. This 

is in accordance with conclusions from lab-based experiments, described in Chapter 4.  

Mass loss was seen to increase with increasing acidity in the Star Carr rib bone, suggesting that 

HA loss is pH dependent, again agreeing with results from experiments described in Chapter 4 

as well as literature studies (e.g. Gordon & Buikstra, 1981; Margolis & Moreno, 1992). 

Negligible mass loss was observed in the equivalent sample located at Flixton Island, further 

suggesting that HA loss is less severe at more neutral conditions.  

The very high loss in the cooked modern samples compared to the archaeological samples is 

somewhat unexpected, as lab-based experiments have shown that modern uncooked material 

is less susceptible to degradation than archaeological analogues (Chapter 4). It is possible that 

some of this mass loss comes from the leaching out of non-structural components, such as fats 

and small proteins which are present in fresh bone (Currey, 2002). These are likely to have 

been removed from the archaeological sample shortly after its initial deposition. However, 

these are unlikely to account for mass losses of around 50 % such as seen at Flixton Island. 

Mass loss as a percentage of the starting mass

SC29 (depth) Flixton Island (depth)

Material 30 cm 50 cm 95 cm 30 cm 60 cm

Modern pig rib 
(cooked)

41 36 34 48 56

Modern pig femur 
(cooked)

42 38

Star Carr rib section 14 14 5 -1 0

Modern longbone
‘jellybone’

9 22 26 23 16

Modern rib
‘jellybone’

23 -7 14 14 14
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Cooking of bone can cause ‘melting’ of the collagen (Koon et al., 2003) and it is possible that 

this accelerates the loss of the organic fraction, allowing it to occur before loss of the of HA.  

6.3.2.2.2 Amino acid analysis 

Samples were all analysed for total amino acid content and amino acid racemisation in 

duplicate, with mean values reported below.   

Analysis of the starting materials showed that the artificial ‘jellybone’ samples have a much 

higher amino acid concentration then other starting materials as a result of the removal of the 

HA. However, racemisation was the same for untreated bone, suggesting that none was 

caused by the treatment with acid prior to burial. Analysis of the Star Carr rib revealed a higher 

total concentration and slightly elevated Asx racemisation relative to modern bone. Similarly, 

Asx racemisation in the cooked pig tibia was elevated to 0.18 suggesting that collagen damage 

has been caused by cooking.  

 

Figure 6.10: Total amino acid concentration (top) and Asx racemisation (bottom) in all excavated 
samples compared to the starting material. Error bars represent one standard deviation calculated from 
replicate analysis. (Originally in colour). 

An increase in total amino acid concentration is seen with decreasing depth, or increasing 

acidity, in SC29 in both modern and archaeological rib samples and the cooked pig tibia (Figure 

6.10, top). This indicates a loss of HA and supports results from the pilot study and lab-based 
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experiments, as well as mass loss analysis. Lower amino acid concentrations at high acidity in 

the ‘jellybone’ samples may indicate loss of collagen. However, as no HA is present it is more 

likely that uptake of surrounding material from the soil has contributed to the mass of the 

sample, thus altering the relative concentration of amino acids. At Flixton Island, little 

alteration of the total amino acid content is observed. This is also the case for the cooked 

bones, where a high mass loss was recorded, which could mean that HA and collagen are 

simultaneously being lost.  

Racemisation of Ser is consistently low in all recovered samples, indicating that advanced 

collagen breakdown has not occurred. Asx racemisation is also similar to the starting material 

except for in the cooked pig tibia, where it is lowered (Figure 6.10, bottom). A possible 

explanation for this is that collagen has been broken down by the cooking and therefore 

smaller, more highly racemised peptide chains and amino acids can easily leach out, lowering 

the observed racemisation levels. In this case, lower values in samples buried nearer the 

surface in both locations could be indicative of increased water movement through the 

samples, which may also contribute to faster dissolution of HA (e.g. Hedges et al., 1995).  

6.3.2.2.3 Powder X-ray diffraction 

As only small amounts of HA are expected to be present in the ‘jellybone’ samples, p-XRD 

analysis was limited to the Star Carr rib bones and cooked pig ribs. Analysis of the starting 

materials showed that the pig rib had a diffraction pattern characteristic of fresh bone 

whereas the Star Carr sample displayed a slight shoulder on the HA peak at 32-34 o2θ, 

signifying diagenesis (e.g. Bonar et al., 1983; Bartsiokas & Middleton, 1992).   

Alteration of the diffraction patterns for all bone samples was minimal; this is attributed 

largely to the short time-scale of the experiments. In all pig rib samples, no alteration of the HA 

was indicated by p-XRD except for perhaps the appearance of a small shoulder in the 50 cm 

sample (Figure 6.11). This is somewhat contrary to the high mass losses observed, which 

indicate that material is dissolving, indicating that HA is dissolving to a limited extent but is not 

able to recrystallize. This is supported by an increase in amino acid concentrations and is 

further evidence for the percolation of groundwater through the samples (e.g. Hedges et al., 

1995).  

The shoulder in the HA peak at 50 cm indicates that HA dissolution is pH dependent, in 

agreement with the lab-based experiments (Chapter 4). In the analysed archaeological rib 

samples, no alteration was seen depending on depth and location of burial. Again, this is 

attributed to the short time-scale of the burial experiment. 



218 

 

 

Figure 6.11: p-XRD patterns for the pig rib excavated from Test pit SC29 at all depths compared to an 
untreated cooked pig rib, showing no alteration of the HA. (Originally in colour). 

6.3.2.2.4 Microscopy 

Microscopic analysis of the burial samples was carried out using SEM in order to be 

comparable to the pilot study. Analysis was carried out on all 5 cooked pig ribs. 

The porous structure of the trabecular bone in the centre of the rib was unaltered in all 5 

samples (e.g. Figure 6.12, bottom left). However, in samples from SC29 crystalline deposits 

could be observed adhering to the surface (Figure 6.12, top left). These are possibly the orange 

formations that can be observed visually. The surface of the bones from 30 and 50 cm also 

appears pitted and smooth, in comparison to the rough texture seen in the samples retrieved 

from Flixton Island. This texture has also been seen in acid-treated samples in the lab (Chapter 

4) and may be the result of dissolution of the HA, leaving a collagen rich matrix. 
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Figure 6.12: SEM images of pig ribs from SC29 (top) and Flixton Island (bottom) after 12 months. 
Different magnifications are used to highlight certain features, including crystals adhering to the bone 
surface (top left) and possible fungal activity (bottom right). 

Cracks appearing on the surfaces may be the result of sample preparation. In most bones 

however, possible evidence for fungal activity was also identified (e.g. Blanchette et al., 1990). 

This was not extensive, and could not be observed without microscopic techniques. However, 

potential fungal hyphae were most extensive in samples from SC29 92 cm and both samples 

from Flixton Island (Figure 6.12, bottom right). These were in the most neutral soils and this is 

suggestive that fungal activity may be suppressed in the more acidic conditions in the top of 

the trench. This supports observation made in the lab-based burial experiments (Chapter 5) 

where ‘jellybone’ samples were less degraded than in other soils, possibly due to a suppression 

of microbial activity.  

 

 

 

 

SC29 30 cm pig rib

Flixton Island 60 cm Flixton Island 30 cm pig rib

SC29 92 cm pig rib
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6.3.2.3 Discussion 

Analysis of bones buried in situ has revealed primarily that only low levels of diagenesis are 

seen within 12 months. In lab-based experiments at a similar pH to SC29 (pH 3) and room 

temperature, very low loss mass loss and minimal chemical alteration of samples was also seen 

(Chapter 4). Furthermore, although complete alteration of the HA was seen in Star Carr peat 

after 12 months in the lab-based burial experiments, the measured pH was much lower than 

that measured in SC29 (Chapter 5). It is therefore not surprising that only low levels of 

deterioration were seen in the majority of bone samples in the in situ experiments. 

Nevertheless, analysis by AAR and p-XRD has allowed some assessment on the impact of the 

burial environment.  

Material buried for a 5-year period (pilot study) displayed alteration to the HA fraction, and a 

clear difference depending on depth of burial. This correlates to differences in soil pH, 

moisture content and redox potential (a proxy for oxygen content), all of which are intrinsically 

linked to bone preservation (e.g. Nicholson, 1996; Caple, 2004).   

Both the 12-month and 5 year study provided a strong indication that HA loss is the primary 

initial mode of bone alteration at these sites, with collagen remaining relatively intact in the 

majority of samples. Analysis suggests that site acidity is a major contributing factor to this, as 

more HA appears to be lost at low pH, but differences in bone at the same pH suggest that that 

site hydrology may also have an important contribution. In particular, bones located in the 

middle of the burial experiment, where the water-table is likely to fluctuate, underwent the 

largest loss of HA. This is in agreement with studies such as those by Williams et al. (2006) and 

Crowther (2002) that show that a fluctuating hydrological regime is detrimental to the survival 

of archaeological material.    

Cooked bone has not been included in any of the lab-based studies (Chapters 4 & 5). Research 

by Koon (2006) shows that there is a slight difference in collagen stability between pig and 

sheep bone, making direct comparisons between cooked and uncooked samples here slightly 

problematic. However, such a marked difference in racemisation between cooked and 

uncooked rib bones after burial indicates that leaching of collagen from cooked bone is faster 

than in uncooked bone. Indeed, Koon (2006) also shows how collagen that has been broken 

down, for example by cooking, leaches faster. It is possible that the same would be observed 

where collagen has been broken down due to acid-catalysed chemical hydrolysis.  
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6.3.3 Wood analysis 

6.3.3.1 Main study 

6.3.3.1.1 Mass loss and visual analysis 

Out of 12 wood samples buried in SC29, nine were recovered after one year. Based on the 

good level of preservation observed in the recovered samples, it is unlikely that the lost three 

samples had completely degraded and it is concluded instead that they were just not found. All 

wood samples were visually unchanged except for some slight discolouration (Figure 6.13). 

Both modern and archaeological samples retained their structure, displaying no evidence of 

compression, as has been observed in wood excavated from Star Carr (Milner et al., 2011a).  

 

Figure 6.13: Willow samples after 12 months at all burial locations, compared to the starting material, 
showing little alteration apart from some slight discolouration and some orange staining in the sample 
from SC29, 50 cm. (Originally in colour). 

Out of eight wood samples buried at Flixton Island, eight were recovered. Again, macroscopic 

appearance of the samples was largely unchanged. However, a small amount of white mould 

appeared on the surface of the birch sample at 60 cm a few days after excavation. Similarly as 

for bone, some evidence for iron-based compounds was also seen in the form of orange 

staining. This is likely to be iron oxide, determined by its distinctive colour (Schwertmann & 

Cornell, 2000). 

Mass loss analysis is reported as a percentage of the starting mass in Table 6.5.  

SC29 (50 cm) willow

Flixton Island (60 cm) 
willow

SC29 (30 cm) willow SC29 (92 cm) willow

Flixton Island (30 cm) 
willow

Untreated willow
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Table 6.5: Mass loss from wood samples buried for 12 months at both SC29 and Flixton Island site 2. 
Samples that were not recovered are indicated by a shaded box, and where there was no sample to 
begin with, this is indicated by a line through the box. 

 

Mass loss analysis in wood can be variable, as the porosity of the wood makes it difficult to 

obtain an accurate dry mass (e.g. Panter & Spriggs, 1996; Jensen & Gregory, 2006). Negative 

mass losses are possibly explained by the inclusion of soil into these pores following burial. 

However, some broad trends can be identified. Mass loss appears to be greater in 

archaeological samples (from Star Carr and Must Farm, where recovered). Analysis of the 

starting materials by FTIR prior to burial suggested significant cellulose depletion had already 

occurred in the sample from Must Farm and some lignin alteration had occurred. In the sample 

from Star Carr, all cellulose had been removed and lignin was also depleted (see Chapter 7 for 

full analysis). This suggests therefore that lignin has been further degraded since burial, 

particularly in the Star Carr samples where little or no cellulose was left to be removed. 

Alternatively, the loss of cellulose has increased the porosity of the wood, making mass loss 

analysis even more prone to error. However, evidence of mould on the surface of the birch 

samples at Flixton Island suggests that fungal activity could be occurring. Fungal activity is 

known to be the major facilitator of lignin degradation (e.g. Kim & Singh, 2000).   

The mass losses in modern samples are low enough to be explained by the loss of non-

structural components such as starches and simple sugars (e.g. Jane et al., 1970). The mass 

loss data therefore tentatively suggests that archaeological samples where lignin alteration has 

already occurred are more likely to undergo lignin diagenesis than modern samples. 

As the samples were not fully waterlogged to begin with, umax analysis was not carried out due 

to the difficulty in ensuring that samples were fully saturated prior to recording initial masses, 

leading to high level of error (Jenson & Gregory, 2006). 

Mass loss as a percentage of the starting mass

SC29 (depth) Flixton Island (depth)

Material 30 cm 50 cm 95 cm 30 cm 60 cm

Modern birch 14 7

Modern willow -1 -1 -4 18 5

Modern oak 19 -19 1 0

Bronze Age wood 
(Must Farm)

39

Star Carr wood 52 54 37 46 44
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6.3.3.1.2 FTIR spectroscopy 

All excavated wood samples were analysed by FTIR as outlined in Chapter 3 (Section 3.3.3). 

Three readings were taken directly from the outer surface of the samples. Peak heights were 

read for each of the 4 major peaks relating to cellulose (1325 and 1375 cm-1) and lignin (1240 

and 1507 cm-1), and heights averaged for all three readings. Analysis of the starting materials 

showed that only very small cellulose peaks were present in both the Star Carr and Must Farm 

samples, suggesting that cellulose was already heavily depleted.  

Cellulose depletion results in a higher lignin: cellulose (L: C) ratio, calculated by summing the 

heights of the two major peaks for each polymer (e.g. Pandey & Pitman, 2003; Gelbrich et al., 

2008). Ferraz et al. (2000) suggest that only the phenolic signal at 1507 cm-1 can be solely 

attributed to lignin, and as this is highly stable it can therefore be used as a reference. A 

comparison of the height of this peak with the cellulose peaks was also made, to confirm that 

the L: C ratio is not distorted by simultaneous breakdown of lignin. Both ratios are shown for 

each of the recovered willow samples in Figure 6.14.  

 

Figure 6.14: Comparison of several indicators of degradation for willow samples from the 12 month 
burial experiment, compared to the Star Carr wood used in the experiments and an untreated willow 
sample. An increase in L: C and 1507: C ratios indicate an increase in cellulose loss, and an increase in the 
1507: 1240 ratio is indicative of lignin defunctionalisation. (Originally in colour). 

Compared to the Star Carr sample retrieved from 60 cm at Flixton Island (dashed line), where 

all ratios are highly elevated, no real difference was seen between modern materials buried at 

different depths in SC29, taking the error calculated from the untreated sample into account. 
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As wood degradation via chemical hydrolysis occurs primarily by loss of the cellulose (Hoffman 

& Jones, 1990; Pandey & Pitman, 2003) followed by defunctionalisation of the lignin (Martinez 

et al., 2005), this suggests that hydrolysis is not occurring at a level that is detectable by FTIR, 

even in the most acidic parts of the trench. 

Breakdown of the lignin structure by hydrolysis is likely to initially occur by defunctionalisation 

of the phenol rings, resulting in a decrease in the height of the peak at 1240 cm-1 relative to the 

stable phenol peak at 1507 cm-1. No differences in this ratio were observed between modern 

samples (Figure 6.14), although it is elevated in the archaeological samples.  

Splitting of the peak at 1240 cm-1 was not seen in any of the modern samples, suggesting that 

lignin is undergoing only minimal deterioration (Pandey & Pitman, 2003).   

One exception to the lack of observed degradation using FTIR was in the sample where mould 

had developed (birch from Flixton Island, 60 cm; Figure 6.15). The phenolic lignin peak at 1507 

cm-1 was not detected in analysis of the sample close to the fungal activity, although it was 

seen in a measurement taken from elsewhere on the sample. This indicates loss of the 

aromatic ring and is in accordance with the observation that lignin is primarily degraded by 

fungal activity (e.g. Blanchette, 2000; Kim & Singh, 2000).   

 

Figure 6.15: Comparison of FTIR spectra of the birch samples excavated from Flixton Island, 60 cm where 
mould was present (bottom) and the bulk of the sample, showing loss of the phenol absorption. 
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6.3.3.1.3 Py-GC 

Visual, mass loss and FTIR analysis of the wood samples from both burial sites indicate that 

diagenesis has not occurred significantly within the 12 month burial period, particularly in 

modern wood samples. However, py-GC provides a more detailed analysis of polymer 

breakdown (Chapter 3). In addition, lab-based experiments (Chapters 4 & 5) have indicated 

that degradation products may remain in situ in wood samples, leading to inaccurate mass loss 

and FTIR measurements. In order to supplement the FTIR data, 2 willow samples were 

therefore analysed by py-GC, according to the protocol outlined in Chapter 3 (Section 3.3.4).  

 

Figure 6.16: py-GC chromatograms for willow samples from Flixton Island, 60 cm and SC29, 30 cm. 

Chromatograms from both samples contained significant peaks relating to celluloses and 

lignin, confirming results from FTIR analysis (Figure 6.16).  

Due to the high levels of error involved (Chapter 3, Section 3.3.4) combined with the fact that 

only subtle changes are observed in the chromatograms, no peak ratios have been calculated. 

Visual comparison of the chromatograms potentially indicates an elevated level of phenol in 

the sample from SC29 compared to that from Flixton Island, indicating defunctionalisation of 

the lignin. Although this data is currently only qualitative, and therefore this interpretation 

should be considered only alongside other evidence, this is in agreement with data from lab-

based experiments in acid (Chapter 4) where defunctionalisation of lignin in acidic solutions 

was more conclusively determined by both py-GC and FTIR. 
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6.3.3.1.4 Microscopy 

Willow samples retrieved from each of the five burial sites were analysed. Fungal hyphae were 

identified in all samples, but were far more extensive in wood from Flixton Island, and at a 

depth of 92 cm in SC29 (Figure 6.17).  

 

Figure 6.17: SEM images of wood samples excavated at both site, illustrating the extent of fungal 
activity.  

Similar observations regarding fungal activity were observed in bone samples (i.e. lower 

abundance in samples located in the top of SC29) again suggesting that the acidic conditions in 

the upper levels of SC29 may be slowing biological activity. For wood, this is an important 

consideration, as biological activity is often identified as the major cause of wood deterioration 

(e.g. Hedges, 1990; Blanchette et al., 1990; Kim & Singh, 2000). If biological activity is 

supressed under the conditions at Star Carr then this would suggest that any deterioration 

observed in wood at the site occurs primarily due to chemical processes.  

The thick cell walls viewed under SEM (indicated by an arrow in Figure 6.17, top left) also 

confirms that cellulose is still present, whereas in lab-based burial experiments (Chapter 5) 

SC29 30 cm willow

Flixton Island 60 cm willow Flixton Island 30 cm willow x 400

SC29 92 cm willow 
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cells walls appeared shrunken and collapsed. This indicates that degradation of cellulose is not 

advanced, even in Test pit SC29 where conditions were slightly acidic.     

6.3.3.2 Discussion 

Chemical analysis (FTIR and py-GC) of wood samples retrieved from the burial experiments 

indicates that diagenesis is minimal over the 12 months studied, including in the acidic regions 

of Test pit SC29. Lab-based experiments have indicated that low pH does not have as 

detrimental an effect on wood survival as bone, and that deterioration was only detectable 

after 16 weeks in pH 1 acid for 16 weeks. Even in SC29, the pH was almost 2 pH units greater 

than this. In addition, the time-scale of the experiments was only short, meaning that any 

degradation that did occur may be too minimal to observe. After a similar time-frame in the 

lab-based burial experiments, deterioration was observed only on the surface of samples 

buried in Star Carr peat, and again the measured pH was much lower than that in the in situ 

burial locations. Such low levels of deterioration are therefore not unexpected.  

Evidence for fungal activity has been observed, both visually and by SEM imaging throughout 

the trench at Flixton Island and in the more neutral regions of SC29 (92 cm). The destructive 

effect of this biological activity is demonstrated by FTIR analysis of the willow samples from 60 

cm at Flixton Island, where mould was observed on the surface of the sample. Absorption 

peaks relating to both lignin and cellulose were heavily depleted (Figure 6.15). In contrast, 

wood buried in more acidic regions of SC29, which is more comparable to parts of the Star Carr 

site, displayed little evidence for fungal activity, suggesting that it is supressed. As this relates 

to the top layer of the trench, it seems more likely that this suppression is due to the high 

acidity than low levels of oxygen; indeed, redox potential measurements indicate that these 

layers are the most oxygenated.  

Levels of deterioration are low in all samples; however, an increased phenol content 

(identified by py-GC; Figure 6.16) and high mass loss (Table 6.5) tentatively suggest that 

despite the absence of biological activity, deterioration of the wood is more advanced in the 

acidic regions of SC29 than the control site. This indicates that chemical deterioration is a 

major factor in facilitating degradation of both lignin and cellulose in acidic environments. This 

supports data from lab-based experiments (Chapter 4) where deterioration was advanced 

after 16 weeks at pH 1 and 80oC. In addition, the outer layer of wood samples buried in highly 

acidic Star Carr peat in lab-based burial experiments (Chapter 5) were found to contain 

defunctionalised lignin, further indicating that defunctionalisation occurs at low pH.  
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6.4 Discussion and conclusions  

It was anticipated that a 12 month in situ burial experiment would reveal only the very early 

stages of diagenesis, and this has been shown to be the case. All material was recovered 

except for three wood samples, which has been attributed to a failure to locate the buried 

samples rather than total degradation of the material. For most materials, no significant visual 

alteration was observed except for some darkening, attributed to staining by tannins (e.g. 

Nicholson, 1998). The exceptions are distortion and high mass loss in the ‘jellybone’ samples 

buried at Flixton Island, and the appearance of fungal hyphae on wood samples at Flixton 

Island. In addition, orange deposits developing on the surface of many of the SC29 samples 

have been interpreted as iron oxide formation (Schwertmann & Cornell, 2000). 

It is assumed that in waterlogged sites, microbial and fungal activity is suppressed (e.g. 

Hedges, 1990; Bjordal et al., 1999). However, fungal hyphae are visible under SEM in material 

excavated from the lower levels at both sites, although these had been assumed waterlogged. 

In contrast, little evidence was observed in the upper regions of SC29, where acidic pH was 

recorded (pH 3.6 for 30 cm; pH 3.14 for 50 cm. This suggests that biological activity was 

supressed at low pH. Despite this, deterioration of wood samples was detected by FTIR and py-

GC in these regions, indicating that chemical activity was a factor in the deterioration of both 

lignin and cellulose. The pH dependence of bone deterioration is even more obvious; an 

increase in relative amino acid concentrations at lower pH signifies a greater loss of HA.  These 

results are in agreement with lab-based experiments (Chapter 4) which demonstrated that 

bone degradation was greatly accelerated by low pH, and that after 16 weeks at 80oC wood 

deterioration also appeared to be pH dependent.  

Lab-based burial experiments (Chapter 5) led to the hypothesis that site hydrology was a major 

factor facilitating organic degradation; a theory also backed up by previous experimental 

studies (e.g. Crowther, 2002; Williams et al., 2006). Further assessing the impact of site 

hydrology was a key aim of these in situ burial experiments. Analysis of material from the pilot 

study shows that bone deterioration was more advanced in the middle regions of the trench 

compared to the top (pH 3.27 at 70 cm compared to pH 3.12 at 50 cm). This was indicated by 

both amino acid analysis and p-XRD. Deterioration in the main study for both bone and wood 

was too low to definitively assess a difference between different depths and assumed 

hydrological regimes; however, a slight shoulder appeared on the HA peak in p-XRD in the 

middle sample from SC29 (50 cm; likely to be fluctuating) was seen. This tentatively confirms 

that water was fluctuating through the samples, and that this has caused increased 

deterioration.     
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Although deterioration in the main burial experiments was minimal, the analysis of material 

from the 2007 pilot study provided additional data over a longer time period and suggested 

that bones buried in SC29 were highly vulnerable to deterioration. Samples in the top layer of 

the trench were barely identifiable, and it is believed that further samples were buried in the 

trench that were not recovered (A. Needham, pers. comm., 2012). Whilst it cannot be 

ascertained whether this is due to a failure to locate the sample or their complete 

disintegration, the fragmentary nature of the bone uncovered at 50 cm depth suggests that 

complete disappearance of the bones is possible. This further agrees with data obtained in 

Chapters 4 & 5 that suggests that bone present in acidic conditions such as those at Star Carr is 

likely to deteriorate rapidly. Bone present that is already deteriorated (e.g. archaeological 

bone) is unlikely to survive for much longer at the low pH at Star Carr.  

Flixton Island acted as a control site in this experiment. However, neither bone nor wood were 

much better preserved there. This is probably because the site was not waterlogged or acidic 

and as such biological activity could rapidly proceed. The high mass loss in the ‘jellybone’ 

samples at Flixton Island supports observation made in Chapter 5 that biological activity may 

be the major mode of deterioration of exposed collagen. Evidence of fungal activity on 

samples buried at 60 cm depth at Flixton Island indicates that biological factors could be 

contributing to organic diagenesis. This highlights that although low pH is highly detrimental to 

the survival of bone, drying out of the site, or fluctuations in the water-table should be another 

major cause for concern at the Star Carr site (e.g. Bartlett et al., 2010;  Hedges & Millard, 1995; 

Caple 2004).  

Data obtained from lab-based experimental studies have demonstrated that low pH is likely to 

be highly detrimental to the survival of both bone and wood. In situ burial studies have shown 

that if this is combined with a lowered water-table, decay of both bone and wood is likely to 

be accelerated. This is likely to be due both to the washing away of dissolved material and an 

increase in biological activity. Deterioration of material at Flixton Island in particular 

demonstrates that although low site pH may be a major factor facilitating organic decay at Star 

Carr, the negative effects of the presence of biological activity needs to also be considered.  

The information gained from in situ burial experiments re-enforces data obtained from the lab-

based experiments (Chapter 4 & 5), showing how controlled experiments can replicate site 

conditions effectively. However, in order to fully assess the effects that these conditions have 

on archaeological material remaining at Star Carr, an assessment of excavated material has 

also been carried out.  
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7.1 Introduction  

Lab-based experiments (Chapters 4 & 5) and field-based burial experiments (Chapter 6) have 

shown that high sediment acidity at Star Carr is likely to be playing a major role in the 

deterioration of bone at the site. Those experimental studies have shown that bone 

deterioration at low pH occurs initially by loss of the bone mineral (HA) to buffer the acidity, 

followed by degradation of the collagen once it is unprotected. 

Although high acidity seems to be less detrimental to the survival of wood, FTIR and py-GC 

analysis of experimental samples that have been exposed to high levels of acidity (pH 1) for a 

long period of time (16 weeks), has indicated both loss of cellulose and defunctionalisation of 

lignin. This suggests that both major polymeric components of wood can undergo chemical 

hydrolysis in highly acidic conditions.  

It has been hypothesised that the burial conditions at Star Carr have only recently become 

acidic (Boreham et al., 2011). Even if this is the case, Mesolithic material buried at the site will 

have already undergone low levels of diagenesis, as interaction between buried artefacts and 

the burial environment is continually taking place (e.g. Caple, 1994; Hedges & Millard, 1995; 

Pollard, 1996). Transfer of chemical species such as heavy metals from the burial environment 

can lead to changes in the composition of both bone (Turner-Walker, 2008) and wood 

(Hedges, 1990). It is likely that even in a neutral environment some loss of HA from bone will 

have occurred due to dissolution (Dixon et al., 2008). In addition, low levels of biological attack 

following loss of the HA may have caused some deterioration of the collagen (Child et al., 

1993). Even in a waterlogged environment where fungal activity is likely to be supressed 

(Blanchette, 2000), low levels of microbial activity, for example from erosion bacteria, may 

contribute to the loss of cellulose from buried wood (e.g. Gelbrich et al., 2008).   

Archaeological materials have been included in the experiments described in Chapters 4, 5 & 6 

in order to assess whether they undergo diagenesis faster than modern analogues. Lab-based 

experiments have shown that archaeological bone is less able to buffer surrounding acidity; 

this may result in faster subsequent degradation of the collagen. For wood, differences in the 

rates of degradation between modern and archaeological material is less clear. However, 

analysis of the Must Farm and Star Carr materials used in experiments has shown that it is 

depleted in cellulose, illustrating the compositional differences between modern and 

archaeological materials.  
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Literature studies, as well as field and burial experiments carried out as part of this study have 

shown that the specific site chemistry plays an important role in the mechanisms by which 

both bone (e.g. Nicholson, 1996; 1998) and wood (e.g. Powell et al., 2001) decay in an 

archaeological site. An extensive geochemical survey carried out in 2009-2010 revealed areas 

of the Star Carr site containing highly oxidative, acidic sediments (Boreham et al., 2011). 

However, further analysis also revealed that acidity was highly variable across the site (Chapter 

2, Section 2.3.3.1). It is likely that this variability impacts upon the preservation of organic 

artefacts locally, and there may be areas of the site where organic materials remain in good 

states of preservation, for example where acidity is buffered by the presence of clay. Although 

this variability has been accounted for in part by the experimental approaches, it is likely that 

conditions will have fluctuated over the period of burial. Along with the 11,000 year time-

frame, this makes is difficult to replicate the exact burial conditions at the site through lab-

based studies.  

In this Chapter, an assessment of the current state of organic materials recovered from Star 

Carr is made, using analytical techniques developed in Chapter 3. Comparison of these samples 

with experimental data and material from other archaeological sites was expected to allow an 

assessment of whether deterioration seen at the site is unusual, or simply what could be 

expected from a site of this age. In addition, the state of preservation can be related to the 

geochemistry of the burial location where possible.   
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7.2 Materials and burial locations 

All samples analysed from Star Carr are listed in Table 7.1 (bone) or Table 7.2 (wood). The 

locations of all samples within the site are indicated in Figure 7.1 (bone) or Figure 7.3 (wood).  

7.2.1 Bone from Star Carr 

7.2.1.1 Early excavations 

Only one bone was available for analysis from the original excavations in 1948. This was 

reportedly recovered from the spoil heap and is the rib bone of a large mammal. This is 

referred to as ‘1948 – spoilheap’. Geochemical data from the site is not available for this 

sample.  

In addition, visual observation of several bones from the original excavations (now located at 

the British Museum) was made, although no destructive analysis was possible.  

No material from the 1985 and 1989 excavations was available for analysis. 

7.2.1.2 2007/2008 excavations 

A number of chalky and brittle bone fragments of unidentified species were excavated from 

Trench SC23 in 2007 and 2008 and a selection of these provided for analysis. Trench SC23 is 

contained on the dryland area of Star Carr and all bone recovered from here was reported to 

be “poorly preserved” (Milner et al., 2011a, pg 2819). Based on original site reports (Clark, 

1954), it has been suggested that although it is now dry (Milner et al., 2011a), this trench may 

have been previously waterlogged. No pH measurements are recorded from SC23, although 

the investigation by Boreham et al. (2011) suggests that the dryland parts of the site are less 

acidic than the wetland, ranging from pH 4 - 5.5.    

7.2.1.3 2010 excavations 

Re-excavation of Cutting 2 (Clark’s original trench) in 2010 uncovered a large array of bone 

material in the backfill from the 1952 excavations. These were mainly classified as ‘robust’ 

upon excavation (B. Knight, pers. comm., 2010). Several of these bones were used in lab and 

field-based experiments in this study (Chapters 4, 5 & 6). Again, no geochemical data exists for 

these samples, although the backfill was fairly dry on excavation (various excavators, pers. 

comm., 2010).  
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On extension of Cutting 2 (Context 234), a number of more badly preserved bones were 

uncovered and two of these analysed. Similarly, in SC33, a new trench located only in the 

wetland area, a number of heavily demineralised bones (termed ‘jellybones’) were uncovered 

and analysed.  

7.2.1.4 2013 excavations 

The most recent excavations allowed for a more comprehensive geochemical study to take 

place. A series of bones from both wetland and dryland areas of Trench SC34 were sampled, 

with preservation varying greatly between samples. In several cases soil samples were taken 

from directly underneath the artefacts, and extensive pH measurements were taken across the 

site according to the procedure in Chapter 2 (Section 2.3.2.3). These were found to vary 

significantly across the trench, with differences of several pH units within metres (Chapter 2, 

Section 2.3.3.1). In some cases, the pH was recorded directly underneath the bone, and when 

this was not possible the pH was estimated based on nearby readings. The results are 

discussed alongside chemical analysis of the bone samples (Sections 7.3.2.2.1 and 7.3.2.3).  

7.2.2 Comparative material (bone) 

Amino acid analysis data from the bone from Star Carr has been compared to archive data 

obtained using the same method by the NEaar laboratory at York. Samples include a rhino 

bone from the cave site of Kirkdale, Yorkshire (grid reference: SE 76781 8561), estimated to 

date from around 112 ka BP (McFarlane & Ford, 1998; Buckley & Collins, 2011), and a range of 

cow bones from the Viking site of Coppergate, York (grid reference: SE 6042 5172) estimated 

to date from the mid-9th to 10th century AD (O’Connor, 1989).  

For p-XRD comparison, a cow metatarsal from the site of Tanner Row, York (grid reference: SE 

6002 5180) was analysed. The sample was from unstratified contexts, but is estimated to date 

from the early medieval period (obtained from T. O’Connor). Bone from Tanner Row is 

generally considered very well preserved (e.g. Carrott et al., 1997).  
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Table 7.1: Summary of all bone samples analysed from Star Carr. Where the species is known this is 
listed. 

Sample 

Name 

Year of 

excavation 
Trench (context) Description 

Spoilheap 1948 Unknown Very robust. Rib bone of large mammal 

86063 Chalky, brittle. Fragment.

86253 Chalky, brittle. Fragment.

86634 SC24 (93) Chalky, brittle. Fragment.

87093 SC24 (85) Jellybone 

89508 Chalky, brittle. Fragment.

90027 Chalky, brittle. Fragment.

90243 Chalky, brittle. Fragment.

91782 Chalky, brittle. Fragment.

92105 SC23 (155) Chalky, brittle. Fragment.

92310 Robust but with longitudinal splitting. Large mammal rib  

92315 Robust but with longitudinal splitting. Large mammal rib  

92339 Robust, large mammal tibia 

92373 Robust, no flaking. Large mammal rib 

92383 Robust large mammal metapodial. No flaking.  

92404 Robust, large mammal tibia 

92418 Robust. Large mammal rib

92419 Robust. Large mammal rib

92420 Fragment of large mammal skull. Fairly robust

92423 Robust but flaking. Orange deposits on surface. Large mammal 

92424 Robust, some surface flaking. Large mammal rib

92434 Robust but flaking. Large mammal scapula 

92436 Robust, no splitting. Large mammal rib  

92471 Tibia, possibly squashed, badly preserved

92509 Scapula? Fragment

92745 A Jellybone

92753 Jellybone, end of large mamma humerus 

92811 Jellybone, small fragments

98144 Jellybone. Orange flakes in bag

98930 Jellybone. White powder in centre

99342 Jellybone, dark in colour

99762 Almost translucent, white powder in centre. Coming apart

99871 Scapula; firm in centre but jelly texture towards thin part

103426 Scapula; firm in centre but jelly texture towards thin part

103610 Robust. Small fragment taken from bag

94647 Chalky, brittle. Fragment.

94825 Chalky, brittle. Fragment.

95290 Chalky, brittle. Fragment.

95430 Chalky, brittle. Fragment.

102869 Chalky, brittle. Fragment.
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Figure 7.1: Location of all analysed bone samples from the 2013 excavations at Star Carr. (Originally in colour). 
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7.2.3 Wood from Star Carr 

7.2.3.1 Early excavations 

No material was available for analysis from the early excavations at Star Carr as the majority 

has been conserved. However, visual comparisons have been attempted using photos from the 

original site reports.  

7.2.3.2 2007/2008 excavations 

Analysis was carried out on one section from a split timber plank excavated from Trench SC24 

in 2007, which was also used for the lab-based and burial experiments (Chapters 4, 5 & 6). It 

must be noted that this sample had been excavated approximately four years prior to analysis 

and had not been stored under anaerobic conditions. It is possible therefore that preservation 

of the timber when analysed was not representative of the condition upon excavation.  

Archive condition assessment data for seven wood samples analysed shortly after excavation 

in 2007 and 2008 has also been provided (Panter, 2009). These samples were all willow, poplar 

or birch and came from either Trench SC24 or Test pit SC29 (both of which waterlogged and 

estimated to be acidic; Chapter 2).  

7.2.3.3 2013 excavations 

Almost all wood samples from the Star Carr site analysed as part of this study were collected 

during excavations in 2013. The majority of the samples were only fragmentary and for this 

reason, an assessment of condition through the sample was not possible. During re-excavation 

of Trench VP85 in 2013, pH measurements were taken at different depths down the profile of 

the trench (Chapter 2, Section 2.3.3.1) and non-archaeological wood samples were recovered 

directly from the peat adjacent to these measurements (series SC13-MA1-7; indicated by a 

yellow box in Figure 7.3). In addition, a number of samples were taken alongside pH 

measurements across the surface of Trench SC34 (series SC13-JA1-4). These are shown on 

Figure 7.3 and summarised in Table 7.2. The species of these samples have not been identified.  

Ten fragmentary samples were also provided from within the extensive split timber platform 

indicated in the southern end of Trench SC34, uncovered during the 2013 excavations. These 

were all located within a brushwood ‘trackway’, indicated in Figure 7.3 and were either willow 

or poplar (M. Bamforth, pers.comm., 2013).  
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7.2.4 Comparative material (wood) 

All wood analysed for comparison is summarised in Table 7.3.  

7.2.4.1 Flag Fen (National Grid Reference: TL 22841 991144) 

Flag Fen, a Bronze Age site located on the East Anglian Fens, has yielded vast amounts of 

archaeological wood (mainly oak) during excavations over the past 30-40 years (Taylor, 1992). 

The area has suffered from drainage and peat shrinkage over past decades (Pryor, 1991) and 

as such may provide a comparable site to Star Carr, where drainage is also known to be 

occurring (Boreham et al., 2011; Bradley et al., 2012). It has been noted that the extensive 

drainage of Flag Fen has caused visible deterioration of the archaeological timbers in certain 

areas of the site (Powell et al., 2001). 

Wood samples, mainly of oak, were analysed from four different trenches with different site 

hydrology (I Panter, pers. comm., 2012). In summary, those samples from Test pits 1 and 3 had 

been waterlogged upon excavation whereas those from Trench 1 were dry. Test pit 2 had been 

previously excavated; a section of a stake from this trench (sample D00128) was sampled in 

three places as shown in Figure 7.2, spanning parts of the sample that had been previously 

exposed and the permanently waterlogged base.  

 

Figure 7.2: Illustration of where samples from stake D00128 were taken (not drawn to scale). 

7.2.4.2 Must Farm boats (National Grid Reference: TL 235 968) 

Eight Bronze Age log-boats were uncovered at Must Farm near Flag Fen in 2011-2012. All 8 log 

boats appear to have been purposefully sunk, and therefore it is assumed that they had been 

continuously waterlogged (Panter, 2013). The boats have been classified only as ‘oak’ and 

‘non-oak’.  

‘Base centre’

‘Top edge’

‘Top centre’

~ 30 cm
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Table 7.2: Summary of all wood samples analysed from Star Carr. Where the wood species is known, this 
is listed. 

 

Sample Name 
Year of 

excavation 

Trench 

(depth) 
Description 

2007 plank SC24 Heavily deteriorated, stored damp. Acidic 

YAT-45 SC24 Fragment of willow/poplar

YAT-B0025 SC24 Fragment of willow, top of sequence

YAT-B0325 SC24 Fragment of willow, middle of sequence

YAT-B0371 SC24 Fragment of willow, base of sequence

YAT-111 SC29 Fragment of birch, close to lake edge

YAT-118 SC29 Fragment of poplar, close to lake edge

YAT-119 SC29 Fragment of birch, close to lake edge

SC13 – MA1 VP85 (surface) Fragment

SC13 – MA2 VP85 (10 cm) Fragment

SC13 – MA3 VP85 (20 cm) Fragment

SC13 – MA4 VP85 (30 cm) Fragment

SC13 – MA5 VP85 (40 cm) Fragment

SC13 – MA6 VP85 (50 cm) Fragment

SC13 – MA7 VP85 (60 cm) Fragment

SC13 – JA1 SC34 (surface) Fragment

SC13 – JA2 SC34 (surface) Fragment

SC13 – JA3 SC34 (surface) Fragment

SC13 – JA4 SC34 (surface) Fragment

SC13 – JC4 SC34 (surface) Fragment

94023 Willow, robust

94009 Willow, robust

94004 Willow, robust

98005 Poplar, robust

94018 Poplar, robust

93556 Poplar, very crumbly 

93554 Willow or poplar. Robust

94006 Willow or poplar. Robust

94025 Willow or poplar. Robust

94010 Willow or poplar. Robust
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Table 7.3: Summary of all wood samples analysed for comparison. 

Sample Name 
Year of 

excavation 

Trench 

(depth) 
Description 

FF - D0003 Crumbly, oak timber

FF - D0007 Crumbly, oak timber

FF - D0053 Robust, some compression. Oak timber

FF - D0052 Robust, some compression. Oak timber

FF - D0128 Top Crumbly, top part of exposed stake

FF - D0128 Centre Centre of stake, underneath ground

FF - D0128 Base Edge of base of stake, underneath ground

FF - D0149 Robust, some compression. Oak timber

FF - D0155 Robust, some compression. Oak timber

Must Farm boat 1 Good condition, waterlogged. Oak

Must Farm boat 2 Good condition, waterlogged. Oak

Must Farm boat 3 Good condition, waterlogged. Oak

Must Farm boat 4 Good condition, waterlogged. Oak

Must Farm boat 5 Good condition, waterlogged. Non-oak

Must Farm boat 6 Good condition, waterlogged. Oak

Must Farm boat 7 Good condition, waterlogged. Oak

Must Farm boat 8 Good condition, waterlogged. Non-oak
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Figure 7.3: Location of all analysed wood samples from most recent excavations (2013) at Star Carr. (Originally in colour). 
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7.3 Results and discussion: Bone 

7.3.1 A review of previous analysis 

Assessment of bone preservation carried out during excavations in the 1950s and 1980s was 

limited to visual analysis. A difference in preservation between areas of the site was 

acknowledged even by Clark (1954); although the majority of both bone and antler are 

understood to have been robust and described as “firm” (Clark, 1954, pg 7), some pieces found 

further away from the lake edge were described as “dark in colour and soft as leather” (Clark, 

1954, pg 1).  

Excavations in 1985 and 1989 uncovered a large array of well-preserved faunal material, 

although a number of fragments of bone were assessed to be in a poor state of preservation 

(Rowley-Conwy, 1998). Further detail was not recorded.  

Two ‘jellybone’ samples were discovered in 2007 and 2008 (Milner et al., 2011a). Sample SC07 

– 86634 was located in the lower, waterlogged end of SC24: a trench extending into the 

wetland area of the site (see Figure 7.1). Geochemical analysis by Boreham et al. (2011) 

revealed pH values of between 2.5- 3 in the lower end of SC24. The 2008 ‘jellybone’ was 

discovered in Test pit SC29 located north of the site (see Chapter 6). Geochemical analysis of 

SC29 revealed the pH to be approximately 3.4 (A. Needham, pers. comm., 2011).  

 

Figure 7.4: 2007 'jellybone' sample showing its flexibility, probably due to extensive demineralisation 
(reproduced with permission from Milner et al., 2011a). (Originally in colour). 

Analysis of the two ‘jellybones’ was carried out shortly after excavation (Milner et al., 2011a). 

Histological integrity was determined by optical microscopy and TEM according to the protocol 

outlined in Chapter 3. Both bones were found to be almost completely demineralised, and 

elevated total amino acid concentrations further confirmed the extent of this 

demineralisation. However, the low levels of amino acid racemisation indicated that 

deterioration may either have occurred very rapidly, or that broken down protein chains and 

SC07 - 86634
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amino acids had leached out of the bone, reducing the observed racemisation. A difference in 

total amino acid concentration between the inner and outer parts of the bones also indicated 

that HA was more heavily depleted on the outside of the bone (Milner et al., 2011a). 

Analysis of the more robust bones from excavations between 2007 and 2010 had not been 

carried out prior to this study, beyond visual observation. However, visual observations have 

suggested that much deterioration observed in the more robust bones, such as longitudinal 

splitting of rib bones, occurs rapidly after excavation and drying out (B. Knight, pers. comm., 

2010).  

7.3.2 Further analysis 

All analysis of archaeological bone undertaken as part of this study was carried out as 

described in Chapter 3 unless otherwise stated. Analysis of geochemical samples was carried 

out as described in Chapter 2, Section 2.3.3.1.  

7.3.2.1 Visual analysis 

7.3.2.1.1 Early excavations 

The bone retrieved from the spoil heap in 1948 was incredibly well preserved and displayed 

very little discolouration. Similarly, most of the bones seen from the collection at the British 

Museum were robust in appearance; although these were dark in colour, most of the bones 

had been treated for conservation and discolouration may be a result of this (Figure 7.5, 

bottom two pictures).  

However, in several of the bones in the British Museum collection, a slight ‘chalkiness’ could 

be identified and parts of the surface had flaked away (Figure 7.5, top right). This further 

suggests that even in the original excavations at Star Carr, parts of the site may have been less 

conducive to good preservation of bone than others. This is in agreement with the original site 

report, where Clark identified that bone preservation was less good away from the lake edge 

(Clark, 1954), although the exact location of the observed finds cannot be determined.  
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Figure 7.5: Bone retrieved from the spoil heap in 1948 (top left) and bones held in the British Museum 
collection from original excavations at Star Carr. Site locations are unknown. Many were observed to be 
robust (bottom), but some bones show advanced degradation, with chalky deposits and severe cracking 
(top right). (Originally in colour). 

7.3.2.1.2 2007/2008 excavations 

All samples analysed from Trench SC23 from the 2007 and 2008 excavations were yellow in 

colour, brittle and chalky. They could easily be ground to a powder using an agate pestle and 

mortar. This brittleness indicates that collagen has been depleted, as collagen lends bone its 

elasticity (Currey, 2002) and is in contrast to the often ‘leathery’ bones that were reported 

uncovered from the lake edge deposits (Milner et al., 2011a). The ‘jellybone’ samples from 

2007 and 2008 (analysed immediately post excavation and reported by Milner et al., 2011a), 

were recovered from Trench SC24 which is partly in the wetland area of the site.   

 

Figure 7.6: Chalky and brittle bone fragments, typical of all those found located in the dryland part of the 
site in 2007 and 2008. (Originally in colour). 

SC07 - 86253 SC08 – 91782
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7.3.2.1.3 2010 excavations 

Upon excavation, the bones recovered from the backfill of Cutting 2 in 2010 were determined 

to be relatively robust (B. Knight, pers. comm., 2010). However, alteration was observed after 

2-3 months of storage. In many of the bones (particularly rib bones) small crystals had formed, 

presumably following drying. In some cases this resulted in the longitudinal splitting of the 

bones. Orange formations were also observed on the surface of several bones (Figure 7.7, 

centre). This was also observed in the field burial experiments (Chapter 6). A test using 

potassium thiocycanate as an indicator on these deposits from sample number 92423 

confirmed them to be iron based (Feigl & Anger, 1972; Chapter 6 Section 6.3.2.2).   

Samples excavated from below the backfill of Cutting 2 (Context 234) were more leathery in 

appearance and slightly bendable. The three samples excavated from SC33 (a wetland trench; 

Figure 7.1) were far more discoloured and soft, and have been classified as ‘jellybones’.  

 

Figure 7.7: Bone excavated in 2010, showing splitting of rib bones (top), and a flaky surface on scapula 
(bottom left). Orange deposits formed post excavation. The ‘jellybone’ samples from SC33 (bottom right) 
are much darker in colour, and bendable. (Originally in colour). 

7.3.2.1.4 2013 excavations 

A large number of bone artefacts were discovered during the excavation of Trench SC34 in 

2013, and preservation varied greatly. Those excavated from the dryland were reported to be 

crumbly, and of those excavated from the wetland trenches several were reported as 

SC10 - 92315

SC10 - 92423 SC10 - 92753
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appearing to be in the process of turning to ‘jellybone’. In particular, in bone such as scapula 

(where parts of the bone are thinner than others) a distinction could be made between ‘jelly’ 

regions in the dorsal surface and a more robust spine. However, many others from the 

wetland area were classified as being in a good state of preservation, particularly those 

recovered from the mud layers below the peat (Knight in Milner et al., 2013; Figure 7.8, top). 

 

Figure 7.8: Examples of bones recovered in 2013, showing grey concretions adhering to the surface (top), 
white chalky deposits in the centre of the bones (bottom left) and translucent 'jelly' on the surface 
(bottom right). (Originally in colour). 

In several of the samples analysed here, grey concretions formed on the surface of the more 

robust bones following drying that were difficult to remove (Knight, pers. comm., 2013; Figure 

7.8, top). Tests using the potassium thiocyanate method showed these not to contain iron. 

Total amino acid analysis was also carried out on the concretions and amino acids were 

present in the relative concentrations characteristic of collagen. This indicates that the 

103423

9976298930
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concretions originate from collagen, although no further analysis has been carried out to 

confirm this.  

A number of bones excavated from the wetland area of the site were so ‘jellyfied’ that they 

were almost translucent in appearance, and layers of this jelly appeared to be peeling away. 

Within the jelly, white powdery deposits were often found (Figure 7.8, bottom two pictures).  

7.3.2.2 AAR analysis  

All samples listed in Table 7.1 were analysed by HPLC to determine the total amino acid 

content and aspartic acid racemisation (D/L Asx).  

 

Figure 7.9: Total amino acid concentrations (left) and Asx racemisation (right) measured in a number of 
samples excavated from Star Carr compared to a fresh untreated bone (‘reference’). Those samples 
categorised as 'jellybone' following visual analysis are indicated. Full sample details are shown in Table 
7.1. (Originally in colour). 

As expected, most of the bones categorised as ‘jellybone’ have a much higher amino acid 

content than a control sample, indicating loss of HA (Figure 7.9, left). In contrast, very low 

amino acid concentrations are seen in samples recovered from the dryland part of the site (as 

low as 0.03 µmol/mg, compared to 2 µmol/mg in fresh bone). While in the wetland regions, 

bones have been identified as turning to ‘jelly’ via the loss of HA, an alternative mode of 
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diagenesis seems to be occurring in the dryland part of the site, leaving a mineral shell with 

very little collagen remaining. 

The conspicuous difference in composition between bones from the wetland compared to 

dryland areas is likely to be related to the difference in pH, which has been measured as only 

mildly acidic in the dryland parts of the site (approximately pH 4 – 5.5; Boreham et al., 2011). 

Lab-based experiments (Chapter 4) have shown how this would result in less loss of HA, as 

buffering of the acidity is much more rapidly achieved.  

However, the reasons that collagen has been lost is less clear, as collagen can survive very well 

in an archaeological context under normal conditions (e.g. Collins et al., 2002).  It is possible 

that percolation of groundwater through the archaeological zone in the dryland areas would 

accelerate the loss of collagen as dissolved components are quickly washed away (Hedges & 

Millard, 1995). Alternatively, the aerobic and neutral conditions have allowed biological 

deterioration of the collagen to occur (e.g. Child et al., 1993). 

Data from lab-based experiments suggest that collagen is fast to break down following loss of 

HA (Chapter 4). This can be indicated by increased racemisation of amino acids, either due to 

more terminal positions becoming available, or an increased level of conformational freedom 

allowing the in-chain racemisation of Asx (e.g. Collins et al., 1999). Elevated levels of Asx 

racemisation are seen in samples recovered from the dryland areas, further indicating that 

collagen has been heavily degraded (Figure 7.9, right). Racemisation exceeds that observed in 

a 112 ka rhino bone from Kirkdale (D/L = 0.13; Buckley & Collins, 2011), indicating that collagen 

is heavily deteriorated.  

In contrast, many of the bones defined as ‘jellybone’ display a similar Asx D/L value to modern 

untreated bone (approximately 0.06)  despite the fact that HA has been removed. This may be 

the result of a fluctuating water-table, as if small fragments of collagen are washed away this 

would reduce the observed racemisation (Dobberstein et al., 2008).  Evidence for a fluctuating 

water-table has been reported by both Boreham et al. (2011) and Brown et al. (2011). 

Furthermore, during excavation of the wetland trenches it appeared that the majority of 

archaeological material was located above the water-table (various excavators, pers. comm., 

2010). Alternatively, low racemisation in ‘jellybones’ could be the result of such rapid and 

recent loss of HA that the collagen has not yet had chance to racemise (Milner et al., 2011b). 

This is supported by the observation of low levels of Asx racemisation in samples that became 

rapidly demineralised when treated in pH 1 sulfuric acid in lab-based experiments (Chapter 4). 

The ‘1948 spoilheap’ sample has both a total amino acid concentration and D/L Asx that is very 

similar to fresh modern bone, suggesting that minimal deterioration has occurred. This is in 
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agreement with visual analysis of the sample. Similarly, in some of the more ‘robust’ bones 

from the 2010 excavations (i.e. those from the backfill of Cutting 2), similar concentrations of 

amino acids were detected as in fresh bone. This indicates that little loss of HA has occurred. 

Geochemical data was not recorded near these samples. However, the investigation by 

Boreham et al. (2011) revealed evidence to suggest that pH was considerably higher in 

previously excavated trenches. This was attributed to the mixing up of calcium-rich topsoil 

with the acidic sediments resulting in gypsum formation, thus neutralising the acidic sulfates 

(see Chapter 2). A much lower acidity in Cutting 2 would explain the good preservation 

observed in these bones. Asx D/L values in the region of 0.07-0.08 are comparable to 

racemisation measured in cow bones from both Tanner Row (D/L  = 0.073) and Coppergate 

(D/L = 0.08). This further suggests that deterioration of collagen is not unusual in the robust 

bones from Star Carr.  

Analysis of both the outer layer and inner layer was carried out on a number of bones 

excavated in 2010 where the sample size allowed (Figure 7.10). Concentrations in the outer 

layer are not consistently lower than the inside of the sample in bones analysed from 2010 

excavations and differences are mainly within the margin of error (one standard deviation 

calculated from replicate analysis), indicating that HA loss is similar throughout the bone.  

 

Figure 7.10: Comparison of total amino acid content (left) and Asx racemisation (right) for inner and 
outer sub samples for a number of samples from 2010 excavations. Those bones identified as 'jellybone' 
are outlined in red (samples 92753 and 92811). (Originally in colour). 
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Ordinarily, we may expect higher levels of racemisation on the outer layer of the bones where 

the collagen is more exposed to chemical and biological influences, leading to its breakdown 

and subsequent racemisation. Indeed, this is seen in all bones characterised as ‘robust’ (Figure 

7.10, right). However, the reverse is true for the ‘jellybone’ samples. The lower observed 

racemisation towards the outside of the bones suggests that small chain proteins and amino 

acids are readily leaching out of and away from the bone; this would be more effective in the 

outer layers of the sample. This further evidences that a dynamic hydrological environment in 

parts of the Star Carr site may be leading to greater damage of bone material due to the 

continuous flushing away of dissolved components.   

7.3.2.2.1 2013 excavations 

Excavation in 2013 allowed a more comprehensive geochemical survey to be carried out 

(Chapter 2). Therefore, bone samples can be related to the measured pH at the location that 

they were discovered. 2013 samples were prepared and analysed by Becky Rhodes as part of 

her MChem research project (Rhodes, 2014). 

Total amino acid content and Asx racemisation is shown for the bones analysed along with the 

measured pH were this is known, in Figure 7.11. For dryland samples, it has been assumed that 

the pH is mildly acidic – neutral, based on analysis reported by Boreham et al. (2011). For 

bones excavated from wetland areas, if a distinction could be made between parts of the bone 

that were ‘jelly-like’ (J) compared to ‘firm’ (F), both have been analysed. In others, the white 

chalky deposits in the centre of the bones (Ch) (Figure 7.8, bottom left) have been analysed in 

addition to the jelly outer layers. 

Similarly as for previous excavations, dryland bones display a much lower total concentration 

than both a modern untreated bone and wetland bones (Figure 7.11, left). Again, Asx 

racemisation is comparable to that seen in the 112 ka bone from Kirkdale (D/L = 0.13; Buckley 

& Collins, 2011) indicating that collagen is breaking down, allowing racemisation to occur 

either by a higher concentration of short chain amino acids or due to conformational freedom 

in the protein chains as a result of breakdown of the triple helix (Smith & Evans, 1980; Orgel et 

al., 2001). An alternative explanation is that this racemisation is due to contamination from 

soil microbes (Child et al., 1993).  
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Figure 7.11: Total amino acid concentrations (left) and Asx racemisation (right) for bones excavated from 
Star Carr in 2013. Where known, the adjacent sediments pH is indicated, or estimated based on nearby 
sediments pH (in brackets). Where relevant, values for the jelly-like (J), chalky deposits (Ch) and firm (F) 
parts of the bone are shown. (Originally in colour). 

All ‘jellybone’ samples have elevated total amino acid concentrations (indicative of HA loss) as 

expected. In the white chalky deposits however, low concentrations were detected in 

comparison to a modern sample. This suggests that this substance could be mainly HA. 

Asx racemisation is low in all wetland bones, and there are no significant differences between 

the ‘jelly’ and ‘chalky’ fractions. The low levels of racemisation observed could be the result of 

the leaching away of short chain proteins, resulting in a lower observed racemisation and 

corroborates analysis of other ‘jellybones’ from 2007, 2008 and 2010.  

The pH of the adjacent sediments does not appear to be a factor in determining either 

racemisation or HA loss. In particular, for one ‘jellybone’ (sample 103426), the measured pH 

was only mildly acidic. Lab-based experiments have shown that low levels of HA are lost even 

at pH of approximately pH 5 if the environment is dynamic. However, for bones to have lost 

enough HA for the bones to become translucent, it is likely that this process of dissolution and 

washing away of the HA would have had to occur for a prolonged period. An alternative 

explanation for the discovery of a ‘jellybone’ in mildly acidic sediment is that the pH has been 

fluctuating, and the pH has been lower than measured at the time of excavation. Furthermore, 

the pH of the adjacent sediments could also have be raised by dissolution of the HA itself.   
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7.3.2.3 Powder X-ray diffraction 

A selection of archaeological samples were analysed using p-XRD in order to investigate 

alteration of the mineral fraction. The diffraction patterns of each have been characterised 

according to the definitions described in Chapter 4, and are summarised in Table 7.4.  

Table 7.4: Summary of p-XRD patterns for analysed bones from Star Carr, described according to 
classifications defined in Chapter 4 (Section 4.3.3.1). (Originally in colour). 

Key: G = gypsum structure; S = peak splitting; MS = mild splitting; PS = peak has shoulder; LI = low intensity peaks; 0 

= no peaks; - = no alteration.  

 

Many samples analysed that had been categorised as ‘jellybone’ yield a diffraction pattern 

with no peaks present that are characteristic of HA (indicated by ‘0’ in Table 7.4). This signifies 

that all of the HA has been removed from the bone, which is in accordance with amino acid 

analysis, where elevated total concentrations were detected. FTIR analysis was carried out as 

outlined in Chapter 3, and the absence of any phosphate peaks confirmed the absence of any 

HA. In other samples, very low intensity (LI) HA peaks suggest that HA is highly depleted, 

although still present (Cullity, 1978).  

Sample analysis

Sample 

Name 

Year of 

excavation 
Trench (context) Description 

p-XRD 

description

Spoilheap 1948 Unknown Very robust PS
86063 Chalky, brittle MS
86253 Chalky, brittle PS
86634 SC24 (93) Jellybone 0
87093 SC24 (85) Jellybone PS
89508 Chalky, brittle PS
90027 Chalky, brittle MS
90243 Chalky, brittle MS
91782 Chalky, brittle PS
92105 SC23 (155) Chalky, brittle MS
92310 Robust but splitting PS
92315 Robust but splitting LI
92339 Robust LI
92404 Robust PS
92419 Robust PS
92420 Robust -
92423 Robust but flaking MS
92424 Robust but flaking PS
92434 Robust but flaking G
92509 Cutting 2 (234) Slightly jelly l ike PS
92753 SC33 Jellybone 0
98144 Jellybone 0
98930 Jellybone G

103426 Firm in centre jelly at edges MS
94647 Chalky, brittle LI
95290 Chalky, brittle LI

102869 Chalky, brittle S
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Figure 7.12: Diffraction patterns for a number of Star Carr samples, compared to an untreated modern 
bone sample.  Patterns have been classified according to as outlined in Chapter 4 (Section 4.3.3.1). 
(Originally in colour). 

Many of the chalky samples recovered from the dryland areas during 2007, 2008 and 2013 

excavations display the greatest amount of splitting (Figure 7.12). This shows that although it 

has been suggested by amino acid analysis that these samples consist of a HA-rich shell, the HA 

has undergone alteration. Whether this occurred before or after loss of the collagen cannot be 

determined. 

In order to assess what may be expected from p-XRD analysis of a robust archaeological 

sample, a cow metatarsal from the early medieval site of Tanner Row was also analysed. The 

HA peaks were only mildly shouldered, suggesting that little or no alteration of the mineral had 

occurred (Figure 7.12). A comparison with literature data for heavily degraded bones from an 

archaeological site in Western France was also made (approximately 2300 years BP) (Person et 

al., 1995). Diffraction patterns obtained from these bones using similar experimental 

parameters tended to yield slightly shouldered or even split HA peaks, similar to the chalky, 

dryland samples from the 2007 and 2008 excavations at Star Carr, despite their much younger 

age (Person et al., 1995). This suggests that many of the bones from areas of the Star Carr site 
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that are not defined as ‘jellybone’ are not unusually deteriorated (particularly those from the 

backfill of Cutting 2 and the ‘1948 spoilheap’ bone).  

One sample from 2010 (sample 92434) displays a diffraction pattern that is characteristic of 

gypsum (Kontoyannis et al., 1997). This was also seen in several samples treated in pH 1 

sulfuric acid in the lab-based experiments (Chapter 4) and indicates that dissolution and 

recrystallisation of the HA has occurred to such an extent that sulfur has been incorporated, 

forming calcium sulfate (gypsum), according to Equation 7.1.  

Equation 7.1: Reaction of HA with sulfuric acid to form gypsum. 

 

The white powdery deposits found inside some of the ‘jellybones’ excavated in 2013 were also 

found to have this same pattern (Figure 7.13).  For this to occur, sufficient time would have to 

pass following dissolution and flushing away of the dissolved components for recrystallisation 

to occur. However, the transformation was also observed in ‘dynamic’ samples in the lab-

based experiments, suggesting that this time period could be short.  

 

Figure 7.13: Diffraction pattern of the white powder present in several of the 2013 bones. Dotted lines 
indicate the typical position of peaks in pure gypsum (calcium sulfate). 
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7.3.2.4 Microscopy 

7.3.2.4.1 SEM 

A small selection of bones excavated from Star Carr in 2010 and 2013 were analysed by SEM as 

described in Chapter 3.  

Deep cracks were seen throughout the ‘robust’ bones excavated from the backfill of Cutting 2 

in 2010 (Figure 7.14). However, analysis of bones treated in acid (Chapter 4) showed that 

dissolution of the HA due to acidity occurs around the osteons, following the form of the 

histological structure, whereas in the 2010 robust samples they are more random. It is more 

likely that these cracks are due to compression from burial. However, nearer the surface of the 

sample, much deeper cracks were seen, causing splitting away of the outer surface.  

The surface of the robust bones excavated from dryland deposits (chalky, brittle bones) in 

2013 appeared much more porous in comparison to the ‘robust’ bones from the backfill of 

cutting 2 (Figure 7.14, bottom). In the wetland bones, this porosity appears to have followed 

the histological pattern of the bone, following the outline of the osteons, as opposed to the 

compression cracks seen in those excavated in 2010.  

 

Figure 7.14: SEM images of ‘robust’ rib bone excavated from the backfill of Cutting 2 in 2010; cracking is 
likely to be due to compression (top), compared to the chalky, brittle bones excavated from the dryland 
areas of the site (bottom). 

SC10 – (rib bone) showing linear cracks. Arrow indicates surface SC10 – (rib bone) at higher magnification

SC13– ‘Robust’ wetland bone SC13– ‘Robust’ wetland bone at higher magnification



 

256 

 

SEM analysis of ‘jellybone’ samples revealed large numbers of cracks and inclusions of 

particulate matter from the soil. Cracks were deep and longitudinal, giving the bone a fibrous 

appearance (e.g.  Figure 7.15, top left). In addition, small fibrils were present that are very 

similar in size and appearance to those viewed in ‘jellybones’ made under lab conditions 

(Chapter 4). These are illustrated in Figure 7.15, bottom left, where these long fibrils can be 

seen in the background (circled). It is possible that these fibrils are large collections of collagen 

fibres, exposed due to the loss of HA. Comparison with an SEM image from Fantner et al. 

(2004), where collagen was exposed when bone was mechanically fractured, supports this.  

In several of the ‘jellybones’ excavated in 2013, an extensive filamentous network was 

observed under SEM (Figure 7.15, top right). These have not been identified, but can be 

distinguished from the potential collagen fibres by their regular size and the presence of 

spores which that these are microbial or fungal (e.g. Buscot & Varma, 2005). It is impossible to 

tell whether these developed before or after excavation.  

 

Figure 7.15: SEM images of 'jellybone' samples excavated in 2010 (top left) and 2013 (top right and 
bottom left), showing extensive fungal network. Comparison is made to an image taken from Fantner et 
al. (2004). 

SC13 – 99871 ‘Jellybone’ showing extensive fungal network2010 ‘Jellybone’ showing the fibrous appearance

SC13 – 99871 ‘Jellybone’ at high magnification, with possible organic 
fibrils behind fungal hyphae (indicated by arrow)

SEM image of organic filaments in cracked bone, used with 
permission from Fantner et al. (2004)
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7.3.2.4.2 Thin-sectioning 

Thin-sectioning was largely unsuccessful on archaeological samples due to their fragile nature, 

resulting in difficulties obtaining a thin-section. However, a number of bones from the 2010 

excavations were analysed according to procedure outlined in Chapter 3.  

 

Figure 7.16: Optical microscopy images of thin-sections of a 'robust' rib bone (left) compared to a 
'jellybone' from the 2010 excavations (right). (Originally in colour). 

Comparison between the more ‘robust’ bones from the backfill of Cutting 2 and the 

‘jellybones’ (Figure 7.16) reveals the complete loss of histological structure in the 

demineralised bones; osteons can barely be recognised. 

Thin-section microscopy also aimed to confirm that no specific evidence for microbial activity 

could be seen, as often characteristic tunnelling patterns can be observed (Child et al., 1993; 

Child, 1995; Jans 2005). However, no clear evidence of microbial colonisation was identified.   

 

100 µm 50 µm
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7.3.2.5 Summary of bone analysis 

Analysis of both the amino acid content and HA of bone from Star Carr has shown primarily 

that the state of deterioration in bone artefacts differs greatly across the site. Bone from the 

dryland areas of Star Carr contain barely any collagen, yet HA is still present. A potential 

explanation for this is that HA has been sufficiently altered to allow biological degradation of 

collagen to proceed (Child et al., 1993; Dixon et al., 2008). The time frame in which this may 

have occurred could not be assessed, although Hedges et al. (1995) suggest that complete 

biological deterioration of collagen can occur within hundreds of years. Comparison with a 112 

ka bone from Kirkdale (Buckley & Collins, 2011) demonstrated that in many of the bones 

excavated from the dryland areas of the site racemisation of Asx is elevated, indicating that 

collagen is relatively highly degraded. 

In contrast, the discovery of large numbers of ‘jellybones’ during the 2013 excavation season, 

which contain almost no HA, suggest an alternative mode of deterioration. The low D/L Asx 

values in the majority of wetland bones suggest either that degraded fragments of collagen are 

quickly leached away or that loss of HA has occurred so recently that collagen breakdown has 

not yet had chance to occur. The significant difference in racemisation values across the Star 

Carr site indicate that localised geochemical conditions may be causing accelerated 

deterioration of the bone collagen only in very specific areas.   

The p-XRD patterns of chalky deposits within some of the wetland bones revealed them to be 

gypsum. This was also seen in all mineralised bone samples buried in Star Carr peat in the lab-

based burial experiments (Chapter 5) and indicates that complete dissolution and 

recrystallization of the HA has occurred. This both further highlights the extent to which the 

HA dissolves in an acidic environments, and indicates that the site hydrology could be 

sufficiently stagnant to allow recrystallization to occur. However, in lab-based experiments 

recrystallization as gypsum was observed even in a ‘dynamic’ environment (Chapter 4), 

indicating that this may occur in a very short space of time (days to weeks).  
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7.4 Results and discussion: Wood 

7.4.1 A review of previous analysis 

Descriptions of wood from the original excavations suggest that it was soft; roots had grown 

through the artefacts, although visual records show that it retained the macroscopic 

appearance of wood (Clark, 1954). Similarly, images of the excavations in 1985 and 1989 show 

the wood in the wetland parts of the site to be macroscopically identifiable as wood.  

Wood excavated in 2006 and 2007 was visually observed to be well preserved, but on handling 

was found to be extremely delicate (Milner et al., 2011a). The peat-wood interface was often 

very difficult to define and as a result wood was difficult to analyse (M. Taylor, pers. comm., 

2010) Where possible, the condition of the wood was further assessed using SEM imaging and 

standard decay tests such as density and maximum water content (umax) (Milner et al., 2011a).  

It was concluded that little or no cellulose was remaining in much of the wood, leaving only a 

lignin-rich skeleton.  

7.4.2 Further analysis 

7.4.2.1 Visual analysis 

7.4.2.1.1 2007/2008 excavations 

The sample stored for 4 years prior to analysis (‘2007 plank’) was incredibly crumbly and barely 

distinguishable from the surrounding peat.  This may be a result of drying out as a result of 

exposure to air post-excavation. The sample had been stored damp rather than waterlogged.  

The samples analysed by York Archaeological Trust in 2009 from the 2007/2008 excavations 

were described as ‘soft and spongy’ and described to be in much better conditions than the 

2007 plank. Compression damage was possibly identified (Panter, 2009).  

7.4.2.1.2 2013 excavations 

All wood samples obtained directly from the site in 2013 were also soft and spongy, although 

they retained the appearance of wood.  

7.4.2.1.3 Flag Fen/Must Farm 

Although some compression was seen in the timber planks from Flag Fen, and the wood was 

slightly spongy, the samples retained the visual appearance of wood. An exception was the top 

of the exposed stake, D0128 and samples from Trench 1 (not waterlogged). This is likely to be 
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a result of oxygen being introduced into the burial environment, facilitating biological 

degradation.  

 

Figure 7.17: Images of Must Farm log boat 1, and detail on log boat 3 (right), showing the excellent 
condition of the boat. 

All samples from the log-boats deliberately sunk at Must Farm were also observed visually to 

be in very good condition (Panter, 2013). The boats all broadly retain their original structure 

(Figure 7.17 ) and tests such as drill decay profiles (Seaby, 1991) showed them to be robust, 

particularly in the centre.  

7.4.2.2 Surface pH analysis 

Following excavation (approximately 1 month), the pH of the water in which samples had been 

stored was recorded using a calibrated glass pH probe. This was carried out on the 

archaeological samples taken from the wooden platform during the 2013 excavations and 

those analysed by YAT from 2007 and 2008 excavations. Results are shown in Table 7.5. The 

plank from Trench SC24 that was stored for 4 years prior to analysis was not stored in water 

and therefore this was not possible. However, the pH was taken using pH indicator paper and 

found to be less than pH 1.  

Geochemical analysis carried out in the field showed that sediment in Trench SC34 reached as 

low as pH 1.83 (Chapter 2, Section 2.3.3.1). The pH of the surface of many of the wood 

samples is much lower than this, particularly the ‘2007 plank’. This indicates that continued 

acidification could occur post excavation. This is in agreement with geochemical analysis 

carried out by Boreham et al. (2011) that showed that sediments rapidly increased in acidity 

post excavation. It is possible that the low pH observed in excavated wood is the result of 

these reactive sulfides being present within the highly porous structure of the wood. Indeed, 

chemical species present in a burial environment can often easily become incorporated into 

the wood structure (Hedges,1990). Similar processes have been observed in wood excavated 

from a number of archaeological sites, particularly marine environments. Examples include the 

Vasa shipwreck (Almkvist, 2008) and the Mary Rose shipwreck (Sandström et al., 2005).  
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Table 7.5: pH measured from the water in which wood samples were stored or the surface of the sample 
where this was not possible. 

 

7.4.2.3 Maximum water content (umax) 

Data from the 2007/2008 samples analysed by Ian Panter showed an average umax of 514 %, 

compared to 90-120 % expected for undecayed fresh wood. This suggests a relatively high 

level of decay, allowing increased water into the pores due to the removal of structural 

components (e.g. Hoffman, 1981; Panter & Spriggs, 1996). The majority of samples analysed 

from the 2013 excavations had values slightly higher than this (Table 7.6), suggesting that 

decay could be more advanced. Although samples were all analysed using a vacuum method 

adapted from Hoffman (1981), it must be noted that levels of error in umax measurements may 

differ depending on factors such as size of the sample and species.  In addition, the inclusion of 

minerals and other species from the environment may reduce the umax value, and therefore 

may depend on the nature of the burial environment (Panter & Spriggs, 1996). 

Comparison with umax values from the material analysed from Flag Fen suggests that decay is 

comparable; the highest value from Flag Fen is very close to the highest values from Star Carr 

in 2013. The majority of the Must Farm log boats have been identified as well-preserved and 

this is reflected in the umax data. 

Sample Name 
Year of 

excavation 
Trench  Description 

pH (surface or 

storage water)

2007 plank SC24 Heavily deteriorated, stored damp. Acidic <  1.00

YAT-45 SC24 Fragment of willow/poplar 1.70

YAT-B0025 SC24 Fragment of willow, top of sequence 2.20

YAT-B0325 SC24 Fragment of willow, middle of sequence 1.80

YAT-B0371 SC24 Fragment of willow, base of sequence 2.00

YAT-111 SC29 Fragment of birch, close to lake edge 3.00

YAT-118 SC29 Fragment of poplar, close to lake edge 2.70

YAT-119 SC29 Fragment of birch, close to lake edge 2.50

94023 Willow, robust 1.53

94009 Willow, robust 1.41

94004 Willow, robust 1.31

98005 Poplar, robust 1.43

94018 Poplar, robust 2.22

93556 Poplar, very crumbly 1.44

93554 Willow or poplar. Robust 1.48

94006 Willow or poplar. Robust 1.81

94025 Willow or poplar. Robust 1.33

94010 Willow or poplar. Robust 1.58
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Table 7.6: umax  data for a number of samples from Star Car as well as comparative material from Flag 
Fen and the Must Farm log boats (provided by Ian Panter). 

 

Wood from other waterlogged sites, for example the Viking site of Coppergate in York, also 

yields umax values in the region of 400-700 % (Spriggs, 1981) despite being generally regarded 

as in a good state of preservation and suitable for conservation.  This suggests that although 

wood is certainly deteriorated at Star Carr, at least from parts of the site this degradation is 

not particularly unusual for a waterlogged site of this age.  

 

 

Sample Name 
Year of 

excavation 

Trench 

(depth) 
Description uMax (%)

2007 plank SC24 Heavily deteriorated, stored damp. Acidic -

YAT-45 SC24 Fragment of willow/poplar 442

YAT-B0025 SC24 Fragment of willow, top of sequence 521

YAT-B0325 SC24 Fragment of willow, middle of sequence 521

YAT-B0371 SC24 Fragment of willow, base of sequence 652

YAT-111 SC29 Fragment of birch, close to lake edge 404

YAT-118 SC29 Fragment of poplar, close to lake edge 550

YAT-119 SC29 Fragment of birch, close to lake edge 652

94023 Willow, robust 858

94009 Willow, robust 561

94004 Willow, robust 572

98005 Poplar, robust 594

94018 Poplar, robust 611

93556 Poplar, very crumbly 682

93554 Willow or poplar. Robust 640

94006 Willow or poplar. Robust 719

94025 Willow or poplar. Robust 506

94010 Willow or poplar. Robust 355

FF - D0003 Crumbly, oak timber 279

FF - D0007 Crumbly, oak timber 250

FF - D0053 Test pit 1 Robust, some compression. Oak timber 598

FF - D0128 Top Crumbly, top part of exposed stake 510

FF - D0128 Centre Centre of stake, underneath ground 414

FF - D0128 Base Edge of base of stake, underneath ground 707

FF - D0149 Test pit 3 Robust, some compression. Oak timber 387

Must Farm boat 1 Good condition, waterlogged 311

Must Farm boat 2 Good condition, waterlogged 260

Must Farm boat 3 Good condition, waterlogged 344

Must Farm boat 4 Good condition, waterlogged 367

Must Farm boat 5 Good condition, waterlogged 727

Must Farm boat 6 Good condition, waterlogged 476

Must Farm boat 7 Good condition, waterlogged 544

Must Farm boat 8 Good condition, waterlogged 705
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7.4.2.4 FTIR spectroscopy 

For FTIR analysis, readings were taken directly from the outer surface of the dried samples and 

average peak heights calculated.  

In all samples from the 2013 excavations, the cellulose peak at 1375 cm-1 (relating to 

absorption by the C-H bonds in cellulose; Pandey, 1998), is very low or completely absent, 

indicating that breakdown of the cellulose polymers has occurred. However, the 1325 cm-1 

peak, (characteristic of the C-OH groups), is often still present although at very low intensity 

(Figure 7.18). This indicates that some cellulose remains, although it may be chemically 

altered. The same is seen in samples from Flag Fen, again suggesting that deterioration in 

wood at Star Carr is not significantly more advanced than may be expected for an 

archaeological site of this age. Some level of cellulose or hemi-cellulose loss would be 

expected to occur through slow chemical hydrolysis over the period of burial even in a neutral 

waterlogged environment (Hoffman & Jones, 1990).  

 

Figure 7.18: FTIR spectra for two samples from Star Carr compared to a fresh willow sample and a log 
boat from Must Farm. Important features are a reduction in the relative height of the cellulose peaks and 
splitting of the peak at 1240 cm

-1
 in archaeological samples (circled). These changes are slightly more 

significant in samples from Star Carr than the Must Farm boat. (Originally in colour). 

In contrast, in several of the boats from Must Farm, the C-H peak at 1325 cm-1 does remain, 

suggesting that celluloses are much better preserved. This may be because the boats are from 

a much younger archaeological site than Star Carr, and that the boats were permanently 

waterlogged. This would slow down biological deterioration of both lignin and cellulose (e.g. 
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Blanchette, 1990). It is possible that an increased level of oxygen is the major factor causing 

cellulose depletion at both Star Carr and Flag Fen, where drying out of the site is known to be 

occurring. This may lead to increased biological activity and subsequent depletion of 

carbohydrates (e.g. Bjordal et al., 1999; Blanchette, 2000; Gelbrich et al., 2008).  

In order to compare samples more comprehensively, L: C, 1507: C and 1507: 1240 ratios were 

plotted for all samples (see Chapter 3 for further discussion of these ratios; Figure 7.19). An 

increase in the L: C and 1507: TC ratios can be indicative of cellulose decay. For many of the 

Star Carr samples, these ratios are higher than for the Flag Fen and Must Farm boats, 

suggesting that cellulose loss is greater at Star Carr. The lowest ratio in Star Carr material is 

seen in sample 94010, which also showed the lowest umax value. 

As the 1507 cm-1 peak is more stable than the 1240 cm-1 lignin peak (which relates to 

absorption by the C-O-CH3 group), an increase in the 1507: 1240 ratio is indicative of lignin 

defunctionalisation (Pandey & Pitman, 2003), and in all samples this is elevated compared to 

the untreated willow sample (Figure 7.19). However, the increase does appear to be greater in 

the Star Carr samples, particularly when compared to the Must Farm boats.  

 

Figure 7.19: Plot of ratios derived from FTIR analysis of samples from Star Carr (green), Flag Fen (blue) 
and Must Farm (red) compared to a willow standard. Error bars are one standard deviation of 3 readings 
from the willow standard. An increase in the L: C and 1507: Total Cellulose (TC) peaks indicates loss of 
cellulose, and an increase in the 1507: 1240 peak indicates lignin defunctionalisation. (Originally in 
colour). 
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In addition, although in the majority of samples from Star Carr the peak at 1240 cm-1 was still 

intense, it was observed to have split, indicating that the chemical environment of the 

methoxy groups may have changed (Martinez et al., 2005; Figure 7.18). This could indicate 

defunctionalisation of the syringol and guaiacol type units, even though the lignin may still be 

largely intact. A similar observation was made in samples buried in highly acidic peat from Star 

Carr in the lab-based burial experiments (Chapter 5). The absence of microbial activity there 

suggested that the process is chemically driven. However, similar changes could also occur due 

to microbial activity over time.  

In the few samples where both the inner and outer parts were analysed, a distinction could be 

seen; the cellulose peaks were considerably lower. This is unsurprising as often the inner part 

of large artefacts has been more protected from the burial environment and chemical 

hydrolysis will proceed from the outer layers inwards (e.g. Hoffman & Jones, 1990; Almkvist 

2008). This is demonstrated most clearly by a lower L: C ratio in the ‘base centre’ sample of 

D0128 from Flag Fen (Figure 7.19). 

No FTIR analysis was carried out on samples analysed by YAT from the 2007 and 2008 

excavations at Star Carr. However, analysis of the wooden plank stored prior to analysis 

revealed almost no characteristic peaks (Figure 7.20). When compared to the analysis of 

material excavated in 2013, which is fairly robust, it is evident that degradation of both 

cellulose and lignin is far more advanced. It is possible that this deterioration occurred post 

excavation, as the sample had been stored damp. This would be likely to increase biological 

activity, which can result in deterioration of both of the polymers (Hoffman & Jones, 1990; 

Blanchette, 2000).   
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Figure 7.20: Samples from Star Carr 2007 excavations that had been stored for several years prior to 
analysis, compared to an untreated willow sample. Cellulose is indicated to have completely depleted, 
and loss of the 1240 cm

-1
 peak indicates extensive defunctionalisation of the lignin. (Originally in colour). 

7.4.2.5 Py-GC 

All archaeological samples listed in Table 7.2 and Table 7.3 were analysed by py-GC as outlined 

in Chapter 3.  

In many samples from the 2013 excavations at Star Carr, peaks relating to cellulose were 

detected (before around 10 minutes retention time), although these were significantly 

reduced compared to a modern willow sample (Figure 7.21). This is in agreement with analysis 

by FTIR, where in the majority of samples very small peaks relating to cellulose were present, 

suggesting that although heavily depleted and chemically altered, cellulose has not been 

completely removed. In comparison to samples from both Must Farm and Flag Fen, these 

cellulose peaks were slightly lower in intensity. However, it must be noted that the 

concentrations of cellulose has not been quantified in this method, and therefore peak 

intensities can only be taken as a guide.   

Peaks relating to lignin, eluting later in the chromatogram, are significant in all samples from 

Star Carr, confirming observations by FTIR that lignin is likely to remain in the samples. 

However, some differences are seen when compared to a modern sample, indicating that 

chemical alteration of the lignin has occurred. An increase in phenol indicates increased 

defunctionalisation of sub-units in lignin (Martinez et al., 2005; Chapter 4 Section 4.4.4), and 

can by identified by a characteristic peak appearing at approximately 11 minutes retention 
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time. In several of the Star Carr samples (see sample 93554, Figure 7.21) the phenol peak is 

very high, particularly in comparison to one of the Must Farm boats. Again, this is in agreement 

with FTIR analysis, where alteration of the methoxy absorption (1240 cm-1) was observed in all 

samples.  

 

Figure 7.21: py-GC traces for 2 samples from Trench SC34 excavated in 2013 compared to a log boat 
excavated from the Bronze Age site of Must Farm (note that this sample was analysed using a longer GC 
column and as a result the peaks have slightly shifted). Whilst cellulose peaks are present, these are 
small, and an increase in the intensity of the phenol peak (indicated with an arrow for each sample) 
suggests lignin defunctionalisation. (Originally in colour). 

Without applying a detection method such as mass spectrometry, the assignment of the peaks 

in the lignin region is problematic. However, by using commercially bought standards, the 

retention time for phenol was confidently assigned for each of the samples from Trench SC34. 

The phenol concentrations were corrected for the mass of sample analysed in order to 

determine relative phenol content for each sample, and compared to samples from Must Farm 

boats 1 and 2.  

Replicate analysis of preliminary samples showed the calculations of phenol content to have a 

large degree of error (Chapter 3, Section 3.3.4.2). The potential reasons for include incomplete 

transfer of the sample from the pyrolysis unit to the GC and errors due to the small sample 

size. As such results need to be interpreted with caution. However, most samples from the 

2013 excavations at Star Carr appear to have an increase in phenol content compared to the 
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modern willow sample and the Must Farm log boats. An exception is seen in sample 94010, 

where a low lignin: cellulose ratio as measured by FTIR also suggests that this sample is the 

least deteriorated. This indicates that defunctionalisation of lignin has occurred, and 

corroborates results by FTIR.  

 

Figure 7.22: Comparison of corrected peak areas for phenol in a number of samples excavated from Star 
Carr in 2013 compared to an untreated willow sample and two of the Must Farm log boats. (Originally in 
colour). 

Analysis by py-GC was also carried out on the 2007 sample that had been kept in storage since 

excavation (approximately four years) (Figure 7.23). In contrast to the samples from 2013 

excavations, almost no structural components were identified. This suggests that in addition to 

the expected loss of cellulose, even the lignin is severely degraded in this sample. This is in 

contrast to samples analysed soon after excavation in 2013, where a number of lignin related 

peaks were detected (Figure 7.21) although all samples were located in wetland areas of the 

site.  

0

50

100

150

200

250

300

350

SC
13

-9
40

09

SC
13

-9
40

04

SC
13

-9
40

23

SC
13

-9
35

54

SC
13

-9
35

56

SC
13

-9
40

18

SC
13

-9
80

05

SC
13

-9
40

25

SC
13

-9
40

10

SC
13

-9
40

06

M
o

d
er

n
 w

ill
ow

M
u

st
 F

ar
m

 b
oa

t 
1

M
u

st
 F

ar
m

 b
oa

t 
2

C
o

rr
e

ct
e

d
 P

h
e

n
o

l p
e

ak
 a

re
a 

(x
1

0
6
) (

p
e

ak
 a

re
a/

m
g)



 

269 

 

 

Figure 7.23: py-GC chromatogram for sample excavated from Star Carr in 2007 and stored for four years 
prior to analysis, compared to a fresh modern willow sample. Very few peaks relating to lignin sub units 
remain in the Star Carr sample. (Originally in colour). 

7.4.2.6 Microscopy  

SEM analysis of samples excavated in 2007/2008 was carried out by Ian Panter shortly after 

excavation, and revealed that in all of the samples the inner, cellulose-rich cell walls were 

almost completely lost, leaving only a lignin-rich skeleton, which is often characteristic of wood 

decay (Blanchette et al., 1990). Collapse of this skeleton was also observed, but it was noted 

that this may have occurred during sample preparation (Panter, 2009). Spherical deposits were 

seen on the wood using SEM and identified as possible iron oxide crystals, which indicates that 

exchange with the burial environment has occurred. In addition, some evidence for fungal 

activity was observed, although this may also have occurred post excavation. 

Analysis of several wood samples from the 2013 excavations also reveals thin cell walls, and 

cell collapse in places. However, regions remain where cell walls appeared more or less intact, 

suggesting that some cellulose is still present (Figure 7.24).  
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Figure 7.24: SEM images of archaeological wood compared to modern material (top left), showing the 
difference between the thick, cellulose-rich cell walls in undecayed wood compared to the lignin skeleton 
seen in wood from Star Carr. Cell collapse does however seem less extensive in the sample excavated in 
2013 compared to 2007. 

Further SEM analysis was carried out on the ‘2007 plank’, and the presence of large quantities 

of crystals obscured the cellular structure. These crystals have not been identified, although 

their plate-like, hexagonal form could be considered characteristic of gypsum (e.g. Shih et al., 

2005). Where cell walls were visible (Figure 7.25, right) these were thin and often collapsed.  

 

Figure 7.25: SEM images of the plank from 2007 after five years of storage, showing extensive crystal 
deposits and cell wall collapse 

Wood excavated in 2013, showing some cell collapse Modern willow

Wood excavated in 2007 shortly after excavation, 
showing extensive cell wall collapse (From Panter, 2009)

Wood excavated in 2013, showing that cell collapse has 
not occurred to the same extent as in 2007/2008
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Fungal activity can often be identified under SEM by the presence of long fungal hyphae (e.g. 

Bjordal et al., 1999) or by obvious cavities in the secondary cell walls (e.g. Kim & Singh, 2000). 

SEM imaging revealed no presence of biological activity in samples excavated from Star Carr. 

However, optical microscopy with the use of biological dyes may be more suitable for the 

detection of biological activity, as it analyses a much larger area of a sample (e.g. Humar et al., 

2008). This was not carried out in the current study.  
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7.4.2.7 Summary of wood analysis 

Wood analysed shortly after excavation revealed some deterioration, particularly of the 

cellulose. However, comparisons with materials from Flag Fen and Must Farm suggest that this 

is not unusual for a site of this age. Whilst defunctionalisation of lignin is indicated by higher 

levels of phenol and splitting of the absorption peak at 1240 cm-1 in FTIR, the high intensity of 

later-eluting phenolic compounds in py-GC analysis indicates that lignin is still present in 

abundance in all analysed samples, meaning that artefacts retain the macroscopic appearance 

of wood. This is further illustrated by SEM analysis of samples excavated in 2013, where 

collapse of the cell walls was not extensive. In an archaeological context, this means that 

information such as cut marks, species and age of the wood can still be determined.  

In contrast, analysis of one piece of wood from the 2007 excavations showed that very little 

organic polymeric material remained, while SEM revealed large areas of crystal formation. In 

addition, the pH of the water in which 2013 samples had been stored was very low (pH < 1) 

when analysed some months after excavation, whereas analysis of the sediments upon 

excavation yielded pH values in the region of 2-3 (Chapter 2). These observations suggest that 

chemical changes can occur within and around the sample during storage, most likely due to 

exposure to oxygen. The sample had been stored for approximately four years between 

excavation and analysis; it is not clear whether this deterioration occurred prior to excavation 

or during storage.  

Whilst lab-based experiments have shown that wood deterioration is less dependent on pH 

than bone deterioration (Chapter 4), such low pHs as recorded from the surface of the 2007 

samples (< pH 1) were not investigated. Cellulose in particular is known to deteriorate via acid 

catalysed hydrolysis, and it is likely that such low pH values may have facilitated such a rapid 

loss of polymeric material (e.g. Hoffman & Jones, 1990). Furthermore, after 16 weeks in pH 1 

sulfuric acid, a birch sample also appeared to have undergone extensive loss of lignin, 

suggesting that this too can be chemically driven. Despite this, the relatively good preservation 

of all archaeological samples analysed from excavations in 2013 suggests that deterioration of 

wood is not particularly advanced, at least in parts of the site. A possible explanation is that 

deterioration of the ‘2007 plank’ occurred largely post-excavation. This suggests that drying 

out of wood would be far more detrimental to its continued survival than high sediment 

acidity. Introduction of oxygen to the wood leads to increased acidity (as illustrated by the 

lowering of pH in the water in which all samples were stored); in addition, biological 

degradation of both the cellulose and lignin may become quickly accelerated.  
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7.5 Discussion and conclusions 

Analysis of both bone and wood from the Star Carr site show that site conditions are 

contributing to their rapid deterioration. For bone, high sediment acidity appears to be a major 

factor; much of the bone is either a HA shell, or a HA depleted ‘jellybone’. Lab-based 

experiments have shown that ‘jellybone’ will further rapidly deteriorate under acidic 

conditions, without the buffering and stability offered by the HA. Indeed, low Asx values in 

some of the most degraded bones could be indicative of rapid leaching away of broken down 

proteins, suggesting that some bones are literally being washed away. It is therefore likely that 

bones in the present state of preservation would not survive for much longer at the low pH 

that has been recorded during excavations. 

Whilst deterioration of wood at the site has been shown to be largely what we would expect 

(it is comparable to well-preserved wood from Flag Fen, for example), there are indications 

that it is highly susceptible to any further alteration; although samples excavated in 2013 were 

relatively robust, a sample allowed to dry out (‘2007 plank’) displayed alarming levels of 

deterioration. Analysis suggests that groundwater may be percolating through the archaeology 

in areas of the site, and the investigation into site hydrology conducted in 2010 (Brown et al., 

2011) suggested that the water-table may have been below the archaeology for long periods. 

M. Taylor (pers. comm., 2010) reported difficulties in establishing the peat/wood interface 

during excavations in 2007 and 2008. However, it is possible that this was due to compression 

of the wood. This is further evidence of drainage of the peat leading to shrinkage. Drying out of 

the site would put wood at increasing risk of accelerated deterioration due to biological 

activity (Blanchette, 2000). Indeed, no wood was found in the dryland areas of the site even 

during the 1950s excavations, further confirming that drying out of the wetland areas would 

result in the loss of wooden artefacts. Therefore, although low pH may be less detrimental to 

the survival of wood, drying out of the site could lead to its complete destruction.  

Analysis of bone from across Star Carr has highlighted that the modes of deterioration are 

variable across the site. Bones uncovered from the dryland areas have lost primarily collagen, 

whereas from the wetland areas, HA has been primarily depleted. This is likely to be due to 

marked differences in the burial conditions; alterations in acidity, hydrology and oxygen 

content are all likely to contribute. This variability would also mean that very different 

management strategies may need to be considered for different parts of the site; for example, 

we do not know what the effects of altering the pH or re-watering the site would have on the 
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dryland bones (consisting of mainly HA). In addition, the effects of mitigation strategies would 

have to consider the different degradation mechanisms of both bone and wood.  

The site variability also makes it problematic to assess the time-frame in which diagenesis may 

have occurred; recently excavated material cannot be directly compared with that uncovered 

during early excavations without knowing its exact burial location. Despite this, assessment of 

bone materials from the early excavations showed that a large number of samples were much 

better preserved than any material uncovered from most recent excavations. This provides 

evidence that although there may have been localised areas where less well-preserved bone 

was uncovered during the early excavations, on the whole, site deterioration is likely to have 

occurred within the last few decades.   

Analysis of both bone and wood has provided evidence that deterioration of both materials 

continues post-excavation, and this indicates that appropriate treatment of excavated organic 

materials is an important point for consideration. In particular, pH analysis of the water 

surrounding some of the wood samples from 2013 excavations showed that they had become 

highly acidic. This is possibly due to oxidation of any reactive sulfate present in the wood 

following exposure to air. Lab-based experiments have shown that although low pH is not as 

detrimental to the survival of wood as bone, at pH values of 1, loss of both cellulose and lignin 

occurred after 16 weeks. Therefore, acidification of wood samples post-excavation could be a 

problem that requires appropriate treatment and storage.  

In contrast, water surrounding bone samples did not show an increase in acidity upon storage; 

pH remained fairly constant. This is possibly due to the increased porosity of archaeological 

wood compared to bone, resulting in more sulfides becoming incorporated into the structure, 

which can then oxidise to sulfuric acid. Alternatively, bone may continue to dissolve to buffer 

acidity post excavation. Both observations illustrate the care that needs to be taken with 

organic artefacts following excavation. Ideally, any acidity would be neutralised quickly post-

excavation. 
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8 CHAPTER 8 
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8.1 Overall conclusions 

The application of a suite of complementary analytical techniques has been shown to be most 

appropriate for the determination of levels of preservation in both bone and wood. By 

combining bulk analysis techniques (e.g. mass loss and visual analysis) and chemical 

techniques (e.g. gas and liquid chromatography, FTIR and p-XRD), levels of deterioration can 

be more confidently determined (Chapter 3). The importance of a multi-analytical approach 

has been highlighted in the case of experimental wood samples, where analysis by FTIR 

showed no loss of cellulose whilst py-GC analysis showed that cellulose had in fact degraded, 

and was possibly left in situ (Chapter 5).  

Experiments aimed at investigating the effects of high acidity alone have shown that at low pH, 

bone mineral (HA) rapidly dissolves to buffer acidity, as seen through increased solution pH, 

high mass loss and peak sharpening in a p-XRD pattern (Chapter 4). The exposed collagen then 

quickly undergoes degradation, signified by increased leaching into solution. The loss of both 

components in an archaeological context would mean the loss of critical information; species 

identification, dating and osteological analysis would all be impossible. Lab-based burial 

experiments, where the acidity of soil used from Star Carr was less than pH 1, confirmed these 

findings and showed that when high concentrations of sulfur are present, the HA transforms to 

gypsum (Chapter 5). The consequences of such a transformation are unknown; however, as HA 

lends a high degree of stability to the bone collagen, it is likely that its alteration will effect 

survival of the collagen (e.g. Child et al., 1993; Collins et al., 2002). Burial experiments show 

that the rate at which HA loss or transformation occurs is determined by both the acidity of 

the sediments and site hydrology; it is likely that both are having a combined effect. 

The effects of acidity on the survival of wood are less obvious. Loss of cellulose and 

defunctionalisation of lignin has however been observed both in sulfuric acid only for a 

prolonged period (16 weeks at 80oC) (Chapter 4), and in acidic soils in lab-based burial 

experiments (Chapter 5). The absence of evidence for biological activity in either context 

suggests that these changes are purely chemically driven. Despite this, it must be noted that 

loss of cellulose and lignin defunctionalisation does not result in complete breakdown of the 

wood. Indeed, in the lab-based burial experiments, the only visual alteration of samples was a 

darkening of the surface. This suggests that chemical degradation of wood polymers does not 

result in the loss of archaeological information to the same extent as loss of HA and collagen in 

bone does. If the macroscopic appearance of wood is retained, species identification, cut mark 

analysis and dendrochronology can all still be carried out. 
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Burial experiments have shown that microbial activity is also a major factor in organic 

deterioration. In particular, the loss of ‘jellybone’ samples in microbially rich sediments (sand 

and compost) in the lab-based burials (Chapter 5) indicates that exposed collagen would be 

rapidly lost through biological deterioration. Biological activity appears to be somewhat 

supressed at Star Carr; even where oxygen is present, no evidence for microbial activity was 

found in either lab-based or in situ burial experiments. This has been assumed to be a result of 

the low pH. However, it needs to be considered that if drying out of the sediments occurs, this 

may result in increased fungal and microbial activity, leading to the rapid loss of demineralised 

bone as well as wood.  

Analysis of archaeological materials has shown that there are different modes of bone 

deterioration across the site. In the dryland areas, a HA shell is left behind after collagen 

depletion, and in the wetland regions the opposite occurs to leave a collagen-rich ‘jellybone’. 

This is likely to be the result of extreme variations in the geochemistry of the sediments across 

the site (Chapter 2). The mechanisms of formation of the HA shell is unclear, but may be the 

result of biological activity. The formation of ‘jellybones’ is highly likely to be the result of 

dissolution of HA to buffer acidic sediments. Lab-based experiments also showed that 

archaeological bone is less able to buffer surrounding acidity, and as a result could be more at 

risk in acidic sediments than estimated by modern replicates.  
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8.2 Impact for Star Carr 

8.2.1 Diagenesis of archaeological material 

Geochemical analysis at Star Carr shows that areas of the site are still highly acidic (< pH 2), 

although pockets of relatively neutral sediments (pH 4-6) remain (Chapter 2; Boreham et al., 

2011). In addition, a hydrological survey carried out in 2010, as well as reports by various 

excavators, suggested that the majority of the archaeological material now lies in fairly dry 

sediments (Brown et al., 2011).   

Whilst the variations in the geochemistry make it difficult to say for certain whether site 

conditions have changed recently, comparison between material from early excavations and 

material excavated more recently (2007-2013) suggests that far fewer bones are present in the 

well-preserved state first reported by Clark (1954). This makes it highly likely that rapid site 

deterioration has occurred within the last few decades.  

Whether this coincided with lowering of the water-table can also not be determined; however, 

lab-based experiments have shown that acidic conditions cause similar alteration of bones as 

has been seen in acidic regions of the site, making it highly likely that acidity is the key factor 

facilitating the decline in bone preservation (Chapter 4). Any bone located in acidic regions of 

the site would continue to lose HA, as it dissolves to buffer the acidity. The collagen would 

then be exposed and rapidly lost. Indeed, a large number of samples were uncovered in 2013 

that had already undergone severe HA loss. In contrast, many of the samples located in the 

dryland regions have lost collagen and retained HA (Chapter 7). If the surrounding sediment 

were to become acidic, it is likely that these would rapidly disappear.  

Whilst high acidity is unlikely to result in such rapid loss of wood, the drying out of the site is 

much greater cause for concern. No wood has ever been found in the dryland areas of the site, 

highlighting the importance of waterlogging to the survival of wooden artefacts. Waterlogging 

creates an anaerobic environment where biological deterioration is suppressed. Although 

anaerobic deterioration can still occur, no evidence for this at the Star Carr site has been 

found. Indeed, the low pH may be preventing biological activity (e.g. Kim & Singh, 2000), thus 

protecting wood to some degree.  

In contrast to the lack of biological deterioration, chemical deterioration has been shown by 

experimental studies here to occur at low pH (Chapter 4). Wood analysed at Star Carr is 

deteriorated to some extent, possibly as a result of this. Whether this would accelerate 

deterioration in a situation where the wood became aerobic is unknown.  
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These observations show that material still buried at Star Carr is at risk, particularly if site 

conditions were to alter further. For example, a particularly dry summer may result in further 

reduction of the water-table, resulting in increased acidity as more reactive sulfides are 

oxidised, thus putting both bone and wood at further risk. As both materials have already 

undergone diagenesis, the effects of this are likely to be highly detrimental and irreversible.  

8.2.2 Site management 

Both lab and field-based experiments have shown that site hydrology is a major factor 

determining organic diagenesis, not only because of the introduction of oxygen. If the water-

table fluctuates through the samples (‘dynamic’ hydrology), constant washing away of 

dissolved species leads to a more rapid breakdown. This suggests that ideally any waterlogged 

archaeological site would be permanently monitored, meaning that any alterations in pH, 

redox or water-table height could be quickly recognised.  

Potential strategies for slowing down organic deterioration can be considered. Raising the 

water-table at whole sites has been successfully achieved at a number of archaeological sites, 

including Sweet Track (Brunning et al., 2001). This would prevent any further oxidation of 

reactive sulfides to sulfates, and ensure that biological deterioration remains supressed. An 

alternative solution could be neutralising the whole site, for example by liming. However, for 

both potential strategies there is still a great deal of information lacking. Both wood and bone 

need to be carefully considered, as well as materials in different states of diagenesis. For 

example, we do not know what would happen to the HA-rich bones located in the dryland 

areas of the site if the dryland was to be re-wetted.  

Rapid changes in both bone and wood from Star Carr have been observed post-excavation 

(Chapter 7) showing that strategies for the treatment of excavated material may be just as 

important as site management. Increased acidity in wood samples suggests that sulfide has 

become incorporated into the porous structure and continue to oxidise to sulfuric acid post-

excavation. In order to prevent acidification, samples could either be stored waterlogged (this 

would also prevent shrinkage) or washed thoroughly prior to any conservation treatment. 

Although no reduction in pH was observed post-excavation in bone samples, this may be 

because HA continues to buffer, and therefore these should also be washed thoroughly before 

storage. This may also prevent the formation of crystals upon drying, which have caused 

splitting of rib bones.  
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8.3 Future work 

8.3.1 Method development 

Although the analytical methods applied throughout the study have been effective for the 

determination of levels of preservation, scope remains for further development of the 

methods. In particular, py-GC has been applied non-quantitatively here; if the method 

employed an appropriate internal standard, quantitation may be achieved (e.g. Bocchini et al., 

1998). This would allow direct comparison between samples from different archaeological 

sites.  

Analytical techniques have been selected for their non-destructive or minimally-destructive 

application. However, the method of p-XRD used here does require a relatively large amount 

of sample to be powdered (approximately 200 mg). The use of micro-XRD (e.g. Dalconi et al., 

2003) should therefore be developed in order for the analysis to be more suitable for the 

routine analysis of archaeological materials.  

Raman microscopy was trialled in Chapter 3; however, appropriate focus of the laser was 

found to be impossible without impregnating the samples in resin (Chapter 3 Section 3.2.5). 

This is likely to be due to the wavelength of the laser available. Use of a 785 nm laser, 

according to Timlin et al. (2000) and Raghavan (2011), could potentially provide a completely 

non-destructive method of determining levels of degradation in both the mineral and collagen 

fractions of bone.  

8.3.2 Biological assessment 

Whilst no microbial activity has been confidently identified in any experimental or 

archaeological materials, it is clear that biological activity may be a key factor in the diagenesis 

of wood, particularly if the Star Carr site continues to dry out. In addition, it may contribute to 

the rapid loss of demineralised ‘jellybone’. Characterisation of the biological environment of 

the site has therefore been identified as an important area for future work.  

Several methods of microbial characterisation are reported (e.g. Kirk et al., 2004; Ibekwe & 

Kennedy, 1998) and all have advantages and disadvantages. Traditional techniques such as 

culturing on agar plates (plate counts) may favour fast growing microbes and not give an 

accurate view of the microbial diversity of the soil (Kirk et al., 2004).  

It is proposed therefore to investigate the possibility of determining both the fatty acid methyl 

ester (FAME) and phospholipid fatty acid (PLFA) profiles of several soils from across the Star 
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Carr site, to determine whether high levels of microbial activity can be associated with 

different geochemical conditions and levels of organic preservation. Rather than specify exact 

microbes, this type of analysis provides a broad characterisation of types of microbial 

communities and can indicate the microbial diversity of an environment (Ibekwe & Kennedy, 

1998).  The advantages of this method are that it is relatively cheap and fast; however, it does 

not necessarily give an accurate reflection of which microbes are actually active as it also 

detects dead cells; an alternative method could be DNA characterisation although the high 

cost of this may make it unsuitable for determining variability across a large area (Ibekwe et 

al., 2002).   

8.3.3 Application to other wetland archaeological sites 

Although some comparison with other archaeological sites has been carried out here, the 

comparison was not extensive. The analytical methods used here have been chosen for their 

ease of use, cost and ability to be minimally destructive. This makes them ideal for the routine 

application of identifying changes in preservation at other archaeological sites. Therefore, a 

more comprehensive comparison with similarly aged sites should be possible, and may allow a 

more confident assessment of the time-frame in which deterioration at Star Carr has occurred. 

Although Mesolithic sites with preserved organic materials are rare (Tolan-Smith, 2008) some 

examples may be found further afield, for example in Ireland, Denmark or the Netherlands 

(Bailey & Spikins, 2008).  

8.3.4 Extended burial experiments  

Whilst burial experiments carried out in situ (Chapter 6) have been informative, the short time-

frame led to levels of degradation being only minimal. Further work should therefore involve 

prolonged burial experiments. Burial experiments carried out by Nicholson (1996; 1998) for 7 

years and Turner-Walker & Peacock (2008) for 4 and 8 years yielded higher levels of 

deterioration. In addition, experiments where material is removed periodically (e.g. Crowther, 

2002) enables a rate of deterioration to be more confidently estimated.  

Different species (for bone and wood), cooked and uncooked bone, and different type of bone 

(long bone/rib) and wood (roundwood/heartwood) have been used here (Chapters 4, 5 & 6), 

and results have indicated that differences in the levels of deterioration could be seen. In 

future burial experiments, a wider range of material could be considered in order to more fully 

understand these differences.  
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9 LIST OF ABBREVIATIONS 
ATR  Attenuated total reflectance 

D (conditions) Dynamic conditions 

EDTA  Ethylenediaminetetraacetic acid 

FTIR  Fourier transform infrared spectroscopy 

HA   Hydroxyapatite 

HPLC  High pressure liquid chromatography 

Ka   Thousand years ago 

MDE  Method development experiment 

NMR  Nuclear magnetic resonance 

OPA  o-phthaldialdihyde 

Py-GC  Pyrolysis gas chromatography 

p-XRD  Powder X-ray diffraction 

RP-HPLC  Reverse phase high pressure liquid chromatography 

RT   Room temperature 

S (conditions) Stagnant conditions 

SEM  Scanning electron microscopy 

TEM  Transmission electron microscopy 

umax  Maximum water content 
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