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Abstract

In part I, we describe a protected qubit which is realized in a two-dimensional

array of Josephson junctions. Our construction is the magnetic analogue of

(‘dual’ to) a suggestion of a superconducting current mirror qubit (Kitaev,

2006b). Our proposal therefore inherits the intrinsic fault-tolerance of the cur-

rent mirror qubit, but may perform better than it in the laboratory, since mag-

netic noise is generally less of a problem than electric noise. We adapt the

scheme for universal fault-tolerant quantum computation proposed by Kitaev

to our construction.

In part II, we describe a method of detecting the Chern number and entangle-

ment properties of topological four-component free-fermion systems in cold

atom experiments. We show that the Chern number of these systems decom-

poses into a sum of subsystem winding numbers which can be measured from

time-of-flight images. Such images also enable the degree of subsystem en-

tanglement in, and the component entanglement spectra of, these systems to

be measured. The method is applied to the quantum spin-Hall insulator and

a staggered topological superconductor. We find that the phase diagrams are

accurately reproduced, except when the subsystems are highly entangled.
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Introduction

The title of this thesis is somewhat generic, and reflects the fact that this work consists of

two distinct topics which have overlap only at a broad conceptual level. Both topics are

concerned with two-dimensional (2D) many-body quantum systems, and are influenced by

topological considerations to varying degrees. The thesis is divided into two parts; below,

we say a little about each part.

PART I
Part I of this thesis is entitled ‘A protected vortex exciton qubit’ and consists of four chap-

ters. The aim in this part is to describe an intrinsically fault-tolerant qubit which is realized

in a 2D array of Josephson junctions, and the means to perform universal fault-tolerant

quantum computation (QC) with such qubits (De & Spiller, 2014). This scheme, in which

the suppression of errors is achieved at the hardware level, is inspired by an approach to

QC known as topological QC (TQC) (Kitaev, 2003). TQC in its ‘purest’ form consists of

storing and processing information using the properties of anyons – exotic quasiparticles

which can appear in certain 2D many-body systems. Nonetheless, it has become clear that

even in the absence of anyons, robust information storage and processing is possible in cer-

tain quantum hardware. Superconducting circuits are particularly promising on this front

(Douçot & Ioffe, 2012), and our scheme is an example of this.

Chapter 1 provides background material on QC and superconductivity – in particular

some elementary aspects of Josephson junctions – which is required to follow the rest of

part I. We also take a look at basic ‘conventional’ superconducting qubits, and touch on the

topological approach for contrast.

In chapter 2, we review a protected qubit devised by Kitaev (Kitaev, 2006b). The reason

for this is that the qubit that we propose can be regarded as the magnetic analogue or ‘dual’

of Kitaev’s idea, and so by reviewing it we can contrast the two schemes. In particular, the

possible shortcomings of Kitaev’s qubit with respect to its interaction with its environment

– and the possible improvements our construction offers on this matter – are discussed. We

examine in detail how a two-fold ground state degeneracy (which can be used to realize a

qubit) emerges in the system that Kitaev considers.

Chapter 3 deals with the realization of our proposed qubit in a 2D array of Josephson

junctions. We first employ a path integral description to reveal the importance of topo-

logical excitations known as vortices in the system. A subsequent analysis in terms of

a Hamiltonian shows that in an appropriate parameter regime, a protected qubit emerges



which mirrors Kitaev’s qubit. This chapter is based on results from (De & Spiller, 2014),

and provides extra details of the analysis found therein.

A scheme for universal fault-tolerant QC using our proposed qubit is explained in chap-

ter 4. This scheme was first discussed in (Kitaev, 2006b), and we adapt the gates used by

Kitaev to our construction. To this end, we discuss some novel circuit elements, such as a

vortex harmonic oscillator. This chapter is based on results from (De & Spiller, 2014), and

elaborates on the arguments found therein.

PART II
Part II is entitled ‘Detection of the Chern number and entanglement in topological four-

component systems through subsystem winding numbers’ and consists of two chapters.

The aim in this part is to describe a method of measuring a topological invariant known as

the Chern number which characterizes certain 2D topological phases of matter – phases of

matter which can only be understood by appealing to topology. Such phases lack local order

parameters, which makes the experimental verification of these phases quite challenging in

general. The method we propose is tailored for experiments with cold atoms in optical

lattices, which is one of the most promising routes for realizing topological phases. We also

show how entanglement features – in particular component entanglement spectra (Legner &

Neupert, 2013; Li & Haldane, 2008) – can be accessed in the ‘four-component’ systems that

we consider. Along with the fundamental interest in topological phases, it is important to

have diagnostic tools for topological matter as a first step towards applications, for instance

in TQC.

Chapter 5 is an introduction to topological phases of matter. We focus on 2D free-

fermion systems – namely, topological insulators and superconductors – and discuss two

tools which are used to characterize such systems: the (first) Chern number and the en-

tanglement spectrum. As a warm-up for the following chapter, we then describe how the

Chern number of ‘two-component’ insulators (Alba et al., 2011) and superconductors (Pa-

chos et al., 2013) can be extracted in cold atom experiments from time-of-flight images.

In chapter 6, we explain in detail how the Chern number of four-component insulators

and superconductors can be detected. We first demonstrate that the Chern number of these

systems decomposes into a sum of subsystem winding numbers which can be measured

using the observables we consider. These observables also allow the degree of subsystem

entanglement in, and the component entanglement spectra of, these systems to be measured.

We find that the decomposition only fails when the subsystems are maximally entangled,

and this is confirmed by numerical studies of the Kane-Mele model (Kane & Mele, 2005)

and a recently introduced topological superconductor (Pachos et al., 2013). This chapter is

based on, and in places expands on, results published in (de Lisle et al., 2014).
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CHAPTER 1

Quantum computation with superconductors

Few can possibly disagree with the statement that quantum information (QI) is one of the

most dynamic fields of research in physics today. Born out of the need to understand

what quantum theories of information processing and communication would entail (Ben-

nett et al., 1984; Deutsch, 1985; Schumacher, 1995), its influence has now spread far and

wide. QI theoretic concepts are now being used to address problems as diverse as the black

hole information paradox (Hayden & Preskill, 2007; Verlinde & Verlinde, 2013), under-

standing the properties of quantum many-body systems (Amico et al., 2008) and the extent

to which quantum coherence is harnessed in biological systems (Lambert et al., 2013).

While a QI way of thinking has been permeating through disparate areas of physics,

impressive strides have been made in realizing one of the holy grails of the field: building

a large-scale quantum computer (Ladd et al., 2010). By harnessing the laws of quantum

mechanics, such computers promise to perform certain tasks – such as factoring large com-

posite integers (Shor, 1994, 1997) and simulating quantum systems (Feynman, 1982; Lloyd,

1996) – far more efficiently than classical computers. However, despite much progress, the

prospect of large-scale QC still remains a remote goal. The biggest obstacle to this goal is

how to counteract the ever present effects of decoherence, and the inevitable errors which

occur when attempting to control quantum systems. Almost two decades worth of research

into quantum fault-tolerance has taught us that theoretically – and increasingly, experimen-

tally – these problems are not insurmountable. One solution is to employ ‘software’ error

correction, where errors are actively detected and corrected during the computation (Shor,

1995, 1996; Steane, 1996). An alternative method is to find robust or topologically pro-

tected quantum hardware which is effective in suppressing errors (Kitaev, 2003; Nayak

et al., 2008; Pachos, 2012), while hybrids of these two approaches, such as surface codes

(Fowler et al., 2012; Raussendorf & Harrington, 2007), are also conceivable.
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1. Quantum computation with superconductors

One of the front runners in the race to provide reliable hardware for QC 1 is supercon-

ducting quantum circuits (Clarke & Wilhelm, 2008; Devoret & Schoelkopf, 2013). Some of

the advantages of such circuits are the relative ease with which they can be ‘tuned’, the fact

that superconducting electronics is already a mature field and the relative ease with which

they can be controlled. These circuits are composed of standard circuit elements such as

capacitors and Josephson junctions, which explains the ease of tunability, while the ability

of superconductors to display coherence on macroscopic scales – known as macroscopic

quantum coherence (MQC) (Leggett, 1980) – is the reason why such circuits can be manip-

ulated with relative ease. Furthermore, the macroscopic nature of superconducting qubits

means that they may be easier to scale up than competing microscopic hardware. The spec-

tacular progress in coherence times and quantum nondemolition measurements in recent

years clearly indicates the potential of the field (Devoret & Schoelkopf, 2013).

The next section of this chapter deals with the basics of the gate or circuit model of QC.

We explain what it means to quantum compute and the necessary and sufficient conditions

needed to do so. The standard reference for QC and QI is (Nielsen & Chuang, 2010), while

many concise and informative introductions exist, such as (Spiller et al., 2005). Section

1.2 is an introduction to some key aspects of superconductivity that are at the heart of

the first part of this thesis. In particular, we explain the nature of the superconducting

order parameter and the Josephson junction. Classic references on superconductivity are

(Schrieffer, 1999; Tinkham, 2004), while a modern and accessible account (which stresses

the importance of MQC) is provided by (Annett, 2004). In section 1.3, we build on the

foundations of the first two sections to give a brief overview of some different types of

superconducting qubits that exist at present.

1.1 Quantum computation

The following is a brief overview of what QC is and what is needed in practice to achieve

it.

1.1.1 The gate model

The gate model of QC 2 is named so due to the features it shares with the gate model of

classical computation (CC). Given this, let us take a moment to recap the salient features

of the classical model. The building blocks of a classical computer are bits, which can take

the values 0 or 1. CC consists of a string of bits being mapped to another string, either

deterministically or probabilistically, with the map being referred to as an algorithm. Any

algorithm can be broken down into a series of elementary operations – known as logic gates

1Of course, this is not a race in a sporting sense. Some of the competitors may well ‘join forces’ to make hybrid
architectures in order to cross the line. See for instance (Xiang et al., 2013).

2While there are now other models of QC (see (Spiller et al., 2005)), the gate model remains the ‘standard’
model of QC; it is the only model that we discuss in this thesis.
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1.1. Quantum computation

– on the bits.

The building blocks of a quantum computer are qubits, quantum systems that each live

in a 2D Hilbert space spanned by {|0〉 , |1〉}, which is known as the computational basis.

If the computer consists of a register of N qubits, its state will live in a 2N-dimensional

Hilbert space spanned by {|0〉 , |1〉}⊗N . QC consists of an initially prepared state being

transformed to a new state by some unitary transformation (belonging to SU(2N)), and

then some of the qubits (or all) being measured. The details of the three stage process of

preparation, evolution and measurement is determined by the quantum algorithm to be run.

Loosely speaking, quantum computers derive an advantage from quantum parallelism: the

ability to compute simultaneously on many different bit strings, by virtue of their ability to

be in a superposition of different bit strings.

Just as any classical algorithm can be decomposed into a series of fundamental gates, in

the quantum case, there exists universal sets of gates, which can be used to run an arbitrary

quantum algorithm. To perform universal QC, it suffices to be able to implement arbitrary

single-qubit unitaries and some entangling operation on pairs of qubits. For instance, the

gate set HADAMARD (H), PHASE (UP), π/8 z-rotation (Uπ/8) and CNOT (UCNOT) is

universal, and has the matrix representation

H =
1√
2

(
1 1

1 −1

)
,UP =

(
1 0

0 i

)
,Uπ/8 =

(
1 0

0 exp(iπ/4)

)
,UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

(1.1)

The single-qubit gates are written in the computational basis, while CNOT is written in the

{|00〉 , |01〉 , |10〉 , |11〉} basis (the first and second qubits are the control and target, respec-

tively). In practice, the gate set that is chosen is determined by the ease and accuracy of

implementation, and is therefore hardware specific. In chapter 4, we discuss an alternative

to (1.1) in the context of our proposed superconducting qubit.

1.1.2 The DiVincenzo check-list

While the theoretical requirements to perform QC are relatively easy to state, the practical

challenges involved in realizing large-scale QC are daunting. David DiVincenzo proposed

the following check-list (DiVincenzo, 2000) (presented below in abbreviated form) which a

quantum processor must satisfy if it is to be fully functional:

1. The system must be scalable and possess well-characterized qubits. A qubit is

well-characterized if its physical parameters are precisely known, for instance, the

‘free’ Hamiltonian of the qubit. Clearly, it is important to know this since the evo-

lution of the register is determined by the total Hamiltonian of the system. Since

useful QC (for tasks such as factoring) requires many (O(104)) qubits, the issue of

7



1. Quantum computation with superconductors

scalability has to be addressed. The addition of just an extra qubit to the register can

introduce potential problems, such as increasing the complexity of gate implementa-

tions. Scalability is thus a highly non-trivial problem.

2. The ability to initialize the register to some desired state. Clearly, it is important

to know the state of the processor at the beginning of the computation. The two

main paths to initialization are via cooling to the ground state or by performing a

measurement, which projects into the required state or another which differs from it

by a unitary rotation.

3. Coherence must be maintained while gates are being applied. The inevitable

coupling between a quantum computer and its environment will result in a loss of

coherence over time – a process known as decoherence. It is therefore important that

the system maintains its coherence during the evolution stage, so that the fidelity of

the final state (with respect to the final state prescribed by the algorithm) is reason-

able. For large-scale computations, unless decoherence is suppressed at the hardware

level, this requirement almost certainly calls for software error correction (Shor, 1995,

1996; Steane, 1996) (see section 1.3.3).

4. Availability of a universal set of gates. The algorithm to be run has to be physically

realizable. The minimum requirement for an arbitrary algorithm to be implemented

is a universal set of gates, such as (1.1).

5. High fidelity qubit-specific measurements. These are necessary to readout the re-

sult of the computation.

1.2 Superconductivity basics

We now give a brief overview of some basic aspects of superconductivity 3 which are needed

to follow chapters 2, 3 and 4.

1.2.1 The superconducting order parameter

Certain metals when cooled below a critical temperature undergo a spectacular phase transi-

tion and become superconducting: upon cooling, the electrons in a sample suddenly pair-up

into so-called Cooper-pairs which carry charge −2e 4 and zero spin, and the pairs undergo

a condensation of sorts. A superconductor can thus be regarded as a condensate, which can

be represented by a complex macroscopic wave function, ψ(~r). More formally, this is the

order parameter of the Ginzburg-Landau theory of superconductivity, which was shown by

3We restrict our attention here to classic low temperature s-wave superconductors.

4We adopt the convention that e is the elementary charge i.e. it is positive. Some authors prefer to say that
Cooper-pairs carry charge 2e, and thus treat e as a negative quantity.
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Figure 1.1: A Josephson junction, which consists of two superconducting regions separated
by a thin insulating barrier, or in general, a ‘weak link’. The superconductors on the left
and right of the junction have condensate phases θL and θR, respectively.

Gor’kov (Gorkov, 1959) to be derivable from the microscopic Bardeen-Cooper-Schrieffer

(BCS) theory of superconductivity (Bardeen et al., 1957) in a suitable limit. Some key fea-

tures of superconductors are their ability to carry current without dissipation (a so-called

supercurrent) and the energy gap that exists between the condensed ground state and quasi-

particle excitations.

The macroscopic wave function can be written as

ψ(~r) =
√

n(~r)eiθ(~r) , (1.2)

where ~r is a point in the superconductor, n(~r) is the local density of Cooper-pairs in the

condensate and θ(~r) is the condensate phase. It is the existence of this phase which leads

to the appearance of quantum effects on a macroscopic scale, as we shall see below.

1.2.2 The Josephson junction

In 1962, Josephson made a startling discovery regarding electron tunnelling between two

different superconductors (Josephson, 1962). He found that a system consisting of two su-

perconductors separated by a thin insulating barrier (see figure 1.1) can support the coherent

transfer of Cooper-pairs from one superconductor to the other, even in the absence of an ap-

plied voltage. Such a system now bears his name and is known as a Josephson junction,

while the effect is known as the DC Josephson effect. The Cooper-pair current from the

superconductor on the left to the one on the right is given by

I = Ic sinΘ , (1.3)

where Ic is the critical current of the junction (the maximum dissipation-less current that the

junction can sustain) and Θ is the gauge invariant phase difference across the junction. Θ is

defined to be

Θ≡ θR−θL +
2e
h̄

∫ R

L
~A ·d~r , (1.4)

where θL and θR are the condensate phases of the superconductors on the left and right,

respectively, and ~A is the vector potential in the system. The line integral above is taken

along a path through the insulating barrier, from its left edge to its right edge.

One way to set up a phase difference between two superconducting regions is to thread

an external flux Φex through a superconducting ring which is interrupted by a tunnel junc-

9
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Figure 1.2: A superconducting ring interrupted by an insulating barrier is threaded by an
external flux, Φex. The flux induces a phase difference across the junction.

tion, as shown in figure 1.2. From Ginzburg-Landau theory, we know that the current inside

a superconductor is proportional to ~∇θ +(2e/h̄)~A, which means that ~∇θ = −(2e/h̄)~A in

the bulk of a superconductor, since there is no current there 5. Non-zero Φex (a finite vector

potential) therefore gives rise to a phase twist within the superconducting ring, so that the

phases on either side of the junction must be different. The phase difference is simply

θR−θL =
∫

C
~∇θ ·d~r =−2e

h̄

∫
C
~A ·d~r , (1.5)

where the path C (the dashed contour in figure 1.2) goes through the bulk of the supercon-

ductor. The gauge invariant phase difference is thus

Θ =−2e
h̄

∫
C
~A ·d~r+ 2e

h̄

∫ R

L
~A ·d~r =−2e

h̄

∮
~A ·d~r = 2π

Φex

Φ0
, (1.6)

where |Φ0| = h/(2e) is the flux quantum 6. In general, the total flux through the ring

will contain a contribution from the supercurrent induced flux, but assuming that the self-

inductance of the ring is negligible (which is true for small enough rings), this contribution

can be neglected so that the total flux is Φex. The Cooper-pair tunnelling current is thus

I = Ic sin
(

2πΦex

Φ0

)
. (1.7)

A Josephson junction acts as a perturbation which couples two superconducting regions,

and the energy associated with this coupling can be derived by looking at the split-ring

geometry introduced above. From Faraday’s law, we know that as the external flux through

the ring is increased from zero to Φex, an emf is induced around the ring. The work done by

the induced emf is thus equal to the energy of the junction, since there is no dissipation for

currents less than Ic. The rate at which work is done (the power) is given by the product of

5This is due to the Meissner effect: electromagnetic fields are screened in the bulk of a superconductor.

6For a superconducting ring with no interruptions, the fact that the macroscopic wave function is single-valued
– i.e.

∮ ~∇θ ·d~r =−(2e/h̄)
∮
~A ·d~r = 2πn, where n is an integer – implies that the total flux enclosed by the ring

must be quantized in units of the flux quantum.
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the emf and the Josephson current, and so using (1.6) and (1.7) the junction energy is seen

to be ∫
I
dΦ

dt
dt =

h̄Ic

2e

∫
Θ

0
sinθ dθ = EJ (1− cosΘ) , (1.8)

where EJ ≡Φ0Ic/(2π) is the Josephson coupling energy. The constant EJ is often dropped

from the above expression, and this will be the case throughout this thesis, unless stated

otherwise.

The DC Josephson effect forms the basis for superconducting quantum interference de-

vices (SQUIDs) (Tinkham, 2004). In the simplest SQUID, a ring threaded by an external

flux is split into two halves by two junctions, with current being able to enter one half and

leave the other half. The currents through the two junctions display interference, which is

reminiscent of Young’s slits in optics. Here, the interference arises due to the path depen-

dent phases picked up by Cooper-pairs, which depends on the external flux. Such SQUIDS

enable a tunable Josephson energy to be realized, which often comes in handy in supercon-

ducting circuits.

The second effect that Josephson predicted is known as the AC Josephson effect: a

constant voltage V across a junction gives rise to a phase difference which varies linearly

with time
dΘ

dt
=

2eV
h̄

. (1.9)

The above relation implies (via (1.3)) that the Josephson current alternates sinusoidally

with frequency 2eV/h̄. Furthermore, the appearance of Planck’s constant indicates that

quantum mechanics is at work, which demonstrates that the phenomenon is an example

of MQC, which was mentioned in the introduction. The non-linear and non-dissipative

properties of a Josephson junction make it a unique circuit element and a key building-

block of superconducting qubits, which we discuss next.

1.3 Superconducting qubits

In describing the Josephson effects, the phase difference Θ was treated as a semi-classical

variable. However, under suitable conditions, its quantum mechanical nature becomes ev-

ident. From (1.6), one can see that Θ is essentially a dimensionless flux, and it turns out

that its conjugate variable is electric charge – the charge on a junction 7. Indeed, in the

previous section, the capacitive nature of a junction was not considered; the capacitance

was taken to be so large that Cooper-pairs could move freely across the junction with very

little energy penalty. As a result, the junction charge would have large fluctuations, and so

from the uncertainty principle, Θ would have small fluctuations, which justifies the semi-

classical treatment. However, for low capacitance junctions, the charging energy associated

with charge transfer across a junction becomes sizeable. Such junctions exist in an ‘insulat-

7In section 1.3.2 where we discuss flux qubits, we show that flux and charge are conjugate variables by looking
at the Lagrangian of a superconducting circuit.
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1. Quantum computation with superconductors

ing’ state where the charge has small fluctuations, with the phase difference now possessing

large fluctuations.

The quantum behaviour of the charge and flux degrees of freedom is exploited in the

design of superconducting qubits. Originally, three basic types known as charge (Bouchiat

et al., 1998; Nakamura et al., 1999), flux (Chiorescu et al., 2003; Friedman et al., 2000;

Mooij et al., 1999; Van der Wal et al., 2000) and phase (Martinis et al., 2002) qubits were

proposed. From these, new generations of qubits with improved coherence have evolved,

such as the Quantronium (Vion et al., 2002), Transmon (Koch et al., 2007a) and Fluxonium

(Manucharyan et al., 2009) qubits. The advent of circuit quantum electrodynamics (QED)

(Blais et al., 2004; Wallraff et al., 2004) – named due to the similarities with the field of

cavity QED – where superconducting qubits are coupled to transmission line resonators of-

fers a promising route to scalable QC. In topologically protected superconducting circuits

(Gladchenko et al., 2008; Ioffe & Feigelman, 2002; Ioffe et al., 2002; Kitaev, 2006b), in-

formation is stored in robust global degrees of freedom, in contrast to the local encoding of

information employed by ‘conventional’ superconducting qubits.

In sections 1.3.1 and 1.3.2, we discuss the most basic charge and flux qubits, respec-

tively, while in section 1.3.3, we provide some motivation for the study of topologically

protected superconducting qubits. Reviews of conventional superconducting qubits – and

schemes to couple qubits, which we will not discuss – can be found in (Clarke & Wilhelm,

2008; Girvin, 2011; Makhlin et al., 2001; Zagoskin & Blais, 2008), while (Douçot & Ioffe,

2012) reviews the implementation of protected qubits in superconducting circuits.

1.3.1 Charge qubits

Charge qubits operate in the regime where charge fluctuations are small, so that charge is the

relevant variable and is manipulated. The key element in such qubits is a low capacitance

junction, which possesses not only a Josephson energy, but also a non-negligible electro-

static charging energy. This latter energy scale corresponds to the energy needed to place

charges ±e on the junction ‘plates’.

The most basic charge qubit is realized by a small superconducting island – known as a

Cooper-pair ‘box’ (CPB), as shown in figure 1.3 – coupled by a junction with capacitance

CJ and coupling energy EJ to a superconducting electrode. This electrode acts as a reservoir,

from which n Cooper-pairs can tunnel onto the CPB, and back again. The island has to be

small, so that its capacitance is small enough to result in a charging energy which is much

larger than the thermal energy, kT . A control gate voltage Vg is also coupled to the system,

with the help of a gate capacitor with capacitance Cg. This polarizes the CPB and sets up a

bias, i.e. it induces an offset (or gate) charge of CgVg ≡ 2eng
8. For the system to function as

a charge qubit, the (single electron) charging energy EC ≡ e2/(2CΣ) – CΣ ≡Cg +CJ is the

total capacitance of the CPB – must dominate EJ . This is a consequence of the uncertainty

8A pictorial depiction of a classical charge configuration in this system can be found in (Büttiker, 1987).
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Figure 1.3: A CPB, characterized by a gate voltage Vg and capacitance Cg, and a Josephson
junction energy EJ and capacitance CJ . n denotes the number of excess Cooper-pairs on the
CPB.

principle and can be understood heuristically as follows: EC sets the kinetic energy scale,

and when it is much larger than the potential energy scale EJ , the junction is free to explore

all values of the phase difference, which results in small charge fluctuations.

As mentioned in section 1.2.1, superconductors are characterized by an energy gap ∆

between the ground state and quasi-particle excitations. It is crucial that both the super-

conducting electrode and CPB possess an energy gap ∆� EC. This condition is needed so

that quasi-particle tunnelling is effectively suppressed, which means that one may assume

that the CPB is free from quasi-particle ‘poisoning’. We will show below that, since only

Cooper-pairs can tunnel through the junction, the Hamiltonian describing the system is

HCPB = 4EC(n−ng)
2−EJ cosΘ , (1.10)

where the dimensionless gate charge ng is a continuous classical control parameter, and n

and Θ are canonically conjugate operators satisfying [Θ,n] = i. In contrast to the phase

difference of the superconducting ring in figure 1.2, Θ is compact: it lives on a circle with

the eigenvalues Θ and Θ+2π being identified. The reason for this is that in the CPB circuit

in figure 1.3, there is no continuous superconducting path from one side of the junction

to the other. There is thus no way of tracking how the phase winds from one side to the

other; all one can ascertain is the phase difference modulo 2π . Since Θ lives on a circle, the

spectrum of n is automatically restricted to the integers.

The first term in (1.10) captures the charging energy stored in the junction and gate

capacitors, as well as the energy of the battery. In terms of the gate and junction charges, qg

and qJ , respectively, this contribution is given by

q2
g

2Cg
+

q2
J

2CJ
−Vgqg , (1.11)

where the last term reflects the fact that the battery has done work Vgqg, so that its energy

has decreased by this amount. Kirchoff’s voltage law requires that Vg = qg/Cg+qJ/CJ , and

the junction charge differs from the gate charge by n excess Cooper pairs i.e. qJ = qg−2ne.
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Substituting the charges in terms of n and Vg, (1.11) can be rewritten as

4EC(n−ng)
2− 1

2
CgV 2

g , (1.12)

which agrees with the first term of (1.10), except for a constant. This constant can be

neglected since we are interested in the energies of different charge states at a fixed gate

voltage.

Given EC � EJ , it is convenient to work in the number basis {|n〉}, where |n〉 is a

charge eigenstate with n excess Cooper-pairs on the CPB. Since cosΘ =
(
eiΘ + e−iΘ

)
/2

and e±iΘ |n〉= |n∓1〉, the Hamiltonian (1.10) can be represented as

HCPB =
∞

∑
n=−∞

[
4EC(n−ng)

2|n〉〈n|− 1
2

EJ
(
|n〉〈n+1|+ |n+1〉〈n|

)]
. (1.13)

The spectrum of HCPB is dominated by the charging contribution, except in the vicinity

of ng being a half-odd-integer. For a given n, the charging energy is a parabola centred at

ng = n, and adjacent parabolae touch at half-odd-integer values of ng. At such voltages, the

degeneracy of two adjacent states – for instance, n= 0 and n= 1 at ng = 1/2 – is lifted by the

Josephson coupling, so that the charge states become superposed. Near these voltages, all

other charge states by virtue of their much higher energies (O(EC) or more) can be ignored.

The CPB circuit thus effectively realizes a qubit, with the two logical states corresponding to

states which differ by a Cooper-pair on the CPB. Explicitly, we approximate the tunnelling

and charging contributions to (1.13) as

− EJ

2
(
|n〉〈n+1|+ |n+1〉〈n|

)
and

2EC

{(
2ng− [2n+1]

)
|n〉〈n|−

(
2ng− [2n+1]

)
|n+1〉〈n+1|

}
,

respectively, where the deviation about the degeneracy point ng = n+1/2 is assumed to be

small. To be concrete, let us look at the region near ng = 1/2 (n = 0), in which case the

circuit can be viewed as a spin-1/2 particle in a magnetic field:

HCPB = BzZ +BxX . (1.14)

Above, X =

(
0 1

1 0

)
and Z =

(
1 0

0 −1

)
are the Pauli-x and z matrices, respectively, which

act on the space spanned by {|0〉 ≡ |↑〉 , |1〉 ≡ |↓〉}, while Bx ≡−EJ/2 and Bz ≡ 2EC(2ng−
1) are the x and z components of the magnetic field, respectively. The avoided energy level

crossing at a degeneracy point was first shown in (Nakamura et al., 1997).

While it is desirable to be able to control Bx – and this can indeed be achieved by replac-

ing the junction with a DC SQUID – (1.14) is nonetheless sufficient to perform an arbitrary

single-qubit unitary. Such gates can be realized by switching the gate voltage. For instance,
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by starting out far to the left of the degeneracy point (so that the eigenstates of (1.14) are

essentially the charge eigenstates) and then switching quickly to the degeneracy point (so

that HCPB = BxX) for some time produces a rotation about the x-axis of the Bloch sphere.

Such coherent oscillations were first demonstrated in (Nakamura et al., 1999). Nowadays,

AC voltage is usually used to implement gates, although switching still has its uses in qubit

initialization and measurement.

CPBs – and charge qubits in general – are affected by low-frequency 1/ f electric field

noise (Paladino et al., 2014) due to electrons hopping between traps in the local environ-

ment. Such traps are always present in the substrate material on which superconducting

circuits are built. This noise, along with the noise that can arise from fluctuations in the

gate voltage, can lead to sudden large jumps in the gate charge. To maximise insensitivity

to these kinds of fluctuations, CPBs are usually operated at the degeneracy point ng = 1/2

(the so-called ‘sweet spot’ or optimal working point (Vion et al., 2002)) where the effects of

low-frequency noise vanish to first-order. Another 1/ f source of dephasing which affects

all superconducting qubits is critical current fluctuations (Paladino et al., 2014), which leads

to fluctuations in the Josephson energy.

1.3.2 Flux qubits

We have seen that when the charging energy dominates the Josephson energy, quantum

information can be stored and manipulated in the charge degree of freedom. In the opposite

regime, charge fluctuations become pronounced while the phase becomes a good quantum

number. Flux or persistent current qubits function in this latter regime, and take the form of

a superconducting ring interrupted by a number of junctions, with flux threading the ring.

The simplest member of this family of qubits is the radio frequency (RF) SQUID (Friedman

et al., 2000), which makes use of a ring interrupted by a single junction, as shown in figure

1.2.

To find the quantum Hamiltonian of the RF SQUID, we start by looking at its classical

Lagrangian (Annett et al., 2002):

LRF(Φ,Φ̇) =
1
2

CJΦ̇
2 +EJ cos

(
2πΦ

Φ0

)
− (Φ−Φex)

2

2L
. (1.15)

The total flux through the ring, Φ = Φex−LI, consists of an external flux Φex which biases

the system, and a contribution from a supercurrent I (L is the effective ring inductance).

The first two terms of (1.15) represent the charging and Josephson coupling energies of the

junction, with CJ and EJ being the junction capacitance and Josephson energy, respectively.

The momentum conjugate to Φ is the charge on the capacitor

∂LRF

∂ Φ̇
=CJΦ̇ = Q , (1.16)
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and thus the classical Hamiltonian is

HRF(Φ,Q) = QΦ̇−LRF

=
Q2

2CJ
−EJ cos

(
2πΦ

Φ0

)
+

(Φ−Φex)
2

2L
. (1.17)

Upon canonical quantization, whereby flux and charge become operators which satisfy

[Φ,Q] = ih̄, we arrive at the quantum Hamiltonian

HRF =− h̄2

2CJ

∂ 2

∂Φ2 −EJ cos
(

2πΦ

Φ0

)
+

(Φ−Φex)
2

2L
, (1.18)

where the replacement Q = −ih̄∂/∂Φ has been made. The junction phase difference –

which is proportional to Φ – can be determined by how the phase winds along a continuous

superconducting path in the ring. In other words, the phase difference is not a compact

variable as was the case for CPB circuits: the spectrum of Φ (and Q) is the real line.

Given a large enough ring inductance and an external flux which is approximately a

half-odd-integer multiple of the flux quantum (Φex ≈ (n+1/2)Φ0), the potential of (1.18)

forms a double-well structure near Φ = (n+1/2)Φ0 with nearly degenerate minima, which

is exact for Φex = (n+ 1/2)Φ0. This can be seen by setting the derivative of the potential

−EJ cos(2πΦ/Φ0)+(Φ−Φex)
2/2L to zero, which yields the equation

sin
(

2πΦ

Φ0

)
=

Φ2
0

4π2LEJ

[
2π

Φ0
(Φex−Φ)

]
. (1.19)

A double-well potential has three stationary points, and therefore, in order for at least three

solutions to exist for the above equation for Φex ≈ (n+ 1/2)Φ0, the gradient of the right-

hand side must be less than one, since the magnitude of the slope at sin[(2n+1)π] is equal

to one:
Φ2

0
4π2LEJ

< 1 . (1.20)

As long as condition (1.20) is well satisfied, superpositions of the two lowest energy

eigenstates can be used to create two orthonormal states which are localized at either min-

ima. These states correspond to oppositely circulating persistent current states – or equiv-

alently, flux up and down states – and can be used as the basis for a qubit, with the (anti)-

clockwise state being denoted (|↑〉) |↓〉. It should be noted that these states are not flux

eigenstates – they are not ‘sharp’ in flux, but rather are flux wavepackets. The Hamilto-

nian of this effective two-level system is of the same form as the CPB Hamiltonian (1.14):

the bias Bz depends on Φex and controls the asymmetry of the double-well, while Bx is the

inter-well tunnelling amplitude. It depends on the barrier height, which is controlled by EJ ,

and the mass of the system, CJ . Bx can also be made tunable by replacing the junction with

a DC SQUID, allowing arbitrary single-qubit unitaries to be realized.

Motivated by the inability to observe MQC by the late 90’s, improved flux qubit de-
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signs were proposed, making use of smaller rings – possessing therefore much smaller

inductances than typical RF SQUID values – interrupted by three (Mooij et al., 1999) or

four (Feigel’man et al., 2000) junctions. The problem with the RF SQUID is that, condi-

tion (1.20) requires both the loop inductance and EJ to be large. Larger inductances lead to

greater system-environment coupling, while larger Josephson energies raise the double-well

barrier height, which is detrimental to flux tunnelling. As a result, the RF SQUID experi-

ment in (Friedman et al., 2000) was only able to create superpositions of excited states near

the top of the barrier, which was inferred from the level repulsion near the degeneracy point,

Φex = Φ0/2. It was estimated that the two superimposed flux states differed in magnetic

moment by 1010µB, and were thus macroscopically distinct quantum states. The negligi-

ble inductance of the three junction design offers longer coherence times, due to weaker

system-environment coupling, and tunnelling between the lowest states in this system has

been demonstrated (Van der Wal et al., 2000). Furthermore, Rabi oscillations were realized

by irradiating such a qubit with microwave pulses (Chiorescu et al., 2003).

Flux qubits suffer from 1/ f magnetic field noise (Paladino et al., 2014) due to fluc-

tuating magnetic moments, the origin of which has been a puzzle for over 20 years. In

(Koch et al., 2007b), a model of electrons hopping stochastically between traps with dif-

ferent preferential spin orientations is proposed, while (Faoro & Ioffe, 2008) suggests that

the noise results from electron spin diffusion at superconductor-insulator (substrate) bound-

aries. Magnetic noise also arises from fluctuations in external fluxes and current sources

connected to qubits. As with charge qubits, by working at the degeneracy point, the first

order effects of 1/ f noise can be negated.

1.3.3 Topologically protected qubits

As mentioned in the introduction to this chapter, the biggest obstacle to realizing large-scale

QC is the debilitating effect of noise on qubits, either through coupling to an environment

or processing errors. To meet this challenge, ingenious error correcting codes have been

concocted (Shor, 1995, 1996; Steane, 1996), wherein information is encoded redundantly

and errors are detected and corrected actively, without destroying the encoded information.

While classical error correcting codes also employ redundancy by utilizing many copies of

a bit string, quantum codes are fundamentally different since QI cannot be cloned (Wootters

& Zurek, 1982). In the quantum case, information is encoded non-locally: the information

stored in a logical qubit is ‘spread’ over many ‘physical’ qubits. As a result, errors – which

are typically local in nature – can be detected and corrected without harming the encoded

information.

The large overhead required for quantum error correction however places stringent de-

mands on the coherence times of qubits and the fidelities of elementary operations (gates

and measurements). Indeed, for fault-tolerant QC (Shor, 1996) to be possible in principle,

coherence times must be many orders of magnitude greater than the typical time needed for

an elementary operation, while the probability of error of these operations must be smaller
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than a certain threshold probability. While the exact value of the error threshold depends

on the code and noise model employed, values around 10−4 were quoted in the literature

for some years (Gottesman, 2009). Recently, significantly higher (and experimentally at-

tainable) thresholds around 10−2 have been found in the surface code (Fowler et al., 2012;

Raussendorf & Harrington, 2007; Wang et al., 2011), an approach which marries the soft-

ware and topological approaches to error correction. Moreover, the surface code only re-

quires qubits to be arranged on a 2D square lattice and interact with nearest neighbours, and

therefore naturally suggests an implementation with high quality superconducting circuits

(Barends et al., 2014).

In a pioneering paper (Kitaev, 2003), Kitaev proposed a radically different solution to

combating errors 9. The basic idea of this topological approach to error correction is to

find robust quantum hardware which is effective at suppressing errors. A spin lattice model

known as the toric code (Kitaev, 2003) is the canonical example of this: it can be regarded

as a Hamiltonian realization of an error correcting code. In particular, the ground states of

the Hamiltonian can be viewed as code states (logical basis states), whereas excited states

correspond to errors being present, and thus live outside of the code space. As a result, at

temperatures well below the energy gap between ground and excited states, errors will be

energetically suppressed, and so the system possesses an intrinsic fault-tolerance. Intrigu-

ingly, excitations in the toric code are (Abelian) anyons – quasiparticles which are neither

fermionic or bosonic and which possess fractional (braiding) statistics (Leinaas & Myrheim,

1977; Wilczek, 1982). In fact, variants of the toric code can support non-Abelian anyons

(Kitaev, 2003; Nayak et al., 2008; Pachos, 2012), which when braided with each other can

produce unitary transformations in a ground state manifold and thus process encoded in-

formation. Such operations are inherently robust since all that matters is the topological

class or nature of braids – their geometrical details are irrelevant. This scheme, which uses

the properties of anyons to store and manipulate information, is known as TQC, which was

mentioned in the introduction to the thesis.

Topological protection has been sought in superconducting circuits for some time (Ioffe

& Feigelman, 2002; Ioffe et al., 2002). Unfortunately, both these examples (and similar

schemes) would be difficult to realize with current fabrication technology, due to prob-

lems such as sensitivity to random offset charges (1/ f electric noise) and magnetic field

non-uniformities. Encouragingly though, intrinsic fault-tolerance in an array of Josephson

junctions has recently been demonstrated in the laboratory (Gladchenko et al., 2008). The

two-fold ground state degeneracy of the array in (Gladchenko et al., 2008) was found to be

protected against local flux noise well beyond linear order, while conventional approaches

– which as discussed above, rely on tuning control parameters – offer only linear order

protection (Chiorescu et al., 2003; Vion et al., 2002; Wallraff et al., 2004). Furthermore, re-

cent design improvements which reduce sensitivity to offset charge fluctuations (Bell et al.,

9This idea had actually been around since 1997! (Kitaev, 1997)
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2014) are expected to lead to further progress. In the next chapter, we examine in detail an-

other protected superconducting circuit which possesses a doubly degenerate ground state

(Kitaev, 2006b), while in chapter 3 we discuss our proposal of the magnetic analogue of

this circuit.
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CHAPTER 2

Kitaev’s current mirror qubit

In chapter 1, we introduced the idea that fault-tolerant QC can be performed by manip-

ulating anyons. While this idea is undeniably elegant, finding and harnessing anyons in

systems, be they natural or ‘man-made’, remains a highly non-trivial task which is likely

to keep experimentalists busy for many years to come. While various ‘sightings’ of anyons

have been made (Camino et al., 2005; Mourik et al., 2012; Willett et al., 2009), to date,

information storage and processing has not been achieved with anyons.

Despite these difficulties, TQC suggests another intriguing question: Can we find or

engineer systems that might not possess anyons, but still enable information to be encoded

and processed in a robust and global manner? This question probably inspired Kitaev to

devise a protected superconducting ‘current mirror’ qubit, and a scheme for universal fault-

tolerant computation using such qubits (Kitaev, 2006b). While the qubit possesses many

microscopic degrees of freedom, information can be robustly encoded in a global phase

degree of freedom. This chapter deals with the emergence of this qubit from microscopic

degrees of freedom. In chapter 4, we examine the scheme for QC, in the context of our dual

construction of Kitaev’s qubit, which is discussed in chapter 3.

2.1 Co-tunnelling transport in coupled Josephson junction chains

Kitaev’s idea builds on (Choi et al., 1998), in which quantum phase transitions in a system

consisting of two capacitively coupled chains of Josephson junctions (see figure 2.1) were

studied. In section 2.1.1, we discuss the parameters of the array and build some intuition for

the phases that the system admits. We then verify this intuition in section 2.1.2 by deriving

an effective Hamiltonian.
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Figure 2.1: Schematic diagram of the superconducting current mirror array, which consists
of two capacitively coupled chains of Josephson junctions. The superconducting islands or
grains are denoted by black squares, while the Josephson junctions are denoted by crosses.
Each junction has a Josephson energy EJ and a capacitance C1, while the chains are coupled
by a capacitance CI . The phases of the order parameters of the four corner grains are ϕi,
and superconducting leads are attached to these grains.

2.1.1 Array parameters

The array consists of identical junctions possessing a Josephson energy EJ
10 and a charg-

ing energy E1 ≡ e2/(2C1), which is associated with the junction capacitance, C1. There

is also another characteristic energy, EI ≡ e2/(2CI), which corresponds to the inter-chain

capacitance CI , which couples the chains. It is assumed that no tunnelling – Cooper-pair

or otherwise – is allowed between the chains. In (Choi et al., 1998), the effect of a finite

self-capacitance (capacitance to ground) and an external gate voltage applied to each island

was examined. Such a setup results in an external (polarization) charge being induced on

the islands, frustrating the system. Sizeable frustration pushes the array into phases which

would be unsuitable for realizing a qubit, and so Kitaev assumes a frustration-free system.

The junctions are assumed to be ‘ultra-small’, which implies that C1 is extremely small.

Junction charging energies therefore dominate the Josephson energies, EJ � E1, and thus

the island charges are highly localized. As a result, without inter-chain coupling, each chain

would be in the insulating phase. Now let us consider a finite inter-chain coupling; the

coupling capacitance is assumed to be much larger than the junction capacitance, CI �C1,

which means that EI � E1. While uncorrelated individual currents cannot flow, it is ener-

getically much more favourable for Cooper-pairs to propagate in one chain, while Cooper-

pairs propagate simultaneously in the other chain in the opposite direction. In other words,

for large enough EJ , the system should possess a phase where excitons – Cooper-pair and

‘Cooper-hole’ pairs – can propagate along the array. This is the reason why Kitaev dubbed

the system a ‘current mirror’ qubit; we refer to this qubit as ‘Kitaev’s current mirror qubit’

(KCMQ).

10We use the notation employed in (Choi et al., 1998), which is different from Kitaev’s notation.
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2.1. Co-tunnelling transport in coupled Josephson junction chains

2.1.2 Array Hamiltonian

The Hamiltonian of the system is

HKCMQ =
(2e)2

2 ∑
l,l′;x,x′

nl(x)C−1
ll′ (x,x

′)nl′(x′)−EJ ∑
l,x

cos [ϕl(x+1)−ϕl(x)] , (2.1)

where the conjugate variables nl(x) and ϕl(x) satisfy [ϕl(x),nm(y)] = iδlmδxy, and refer to

the excess number of Cooper-pairs on, and the (superconducting) phase of, the island at

discrete position x and on chain l (l = 1,2), respectively. We take the system to be of length

L and assume periodic boundary conditions, so that the sums over x and x′ in (2.1) run

from 1 to L 11. The first term in (2.1) captures the charging energy of the array, while the

second term reflects the Josephson energies of the junctions. The capacitance matrix, C,

encapsulates the electrostatic interactions between charges, and is defined by

Cll′(x,x′)≡C(x,x′)⊗δll′+CIδxx′⊗

(
1 −1

−1 1

)
, (2.2)

where the intra-chain capacitance matrix is

C(x,x′)≡C1
(
2δxx′−δx,x′+1−δx,x′−1

)
. (2.3)

C is defined such that, given the potential of the island at (x, l) is Vl(x), the charge on

an arbitrary island, 2enl(x) = ∑l′,x′ Cll′(x,x′)Vl′(x′), should agree with what circuit theory

predicts. This is indeed the case:

2enl(x) = ∑
l′,x′

Cll′(x,x′)Vl′(x′)

= 2C1Vl(x)−C1Vl(x−1)−C1Vl(x+1)+CIVl(x)−CIVl′ 6=l(x)

=C1(Vl(x)−Vl(x−1))+C1(Vl(x)−Vl(x+1))+CI(Vl(x)−Vl′ 6=l(x)) .

To make progress, it is useful to cast the charging energy contribution into a form which

is easier to analyse. If we write this contribution as 2e2~nTC−1~n, where

~n ≡
(

n1(1) n2(1) n1(2) ...
)T

, we can effect a unitary transformation with the matrix

H = δxx′ ⊗ 1√
2

(
1 1

1 −1

)
(a Hadamard matrix acting on ‘chain-space’), satisfying H2 =

δxx′⊗δll′ , by writing

2e2~nTC−1~n = 2e2~nT HHC−1HH~n = e2~n′TC′−1
~n′ . (2.4)

11We are assuming that an analysis of this periodic array will capture the behaviour of an array with open boundary
conditions (as shown in figure 2.1), which is ultimately what we are interested in.
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2. Kitaev’s current mirror qubit

The transformed capacitance matrix is

C′ ≡ HCH =C(x,x′)⊗δll′+2CIδxx′⊗

(
0 0

0 1

)
, (2.5)

while the transformed vector is~n′≡
√

2H~n=
(

n+(1) n−(1) n+(2) ...
)T

, where n±(x)≡
n1(x)±n2(x). The transformation reveals that the ‘+’ and ‘−’ degrees of freedom are de-

coupled, which should be clear to see below.

Let us simplify C′ by making use of CI �C1:

C′ ≈ 2δxx′⊗

(
C1 0

0 CI

)
−C1(δx,x′+1 +δx,x′−1)⊗

(
1 0

0 1

)
. (2.6)

While an exact solution for C′−1 is possible by ‘hand’, its complexity would render it diffi-

cult to use. This motivates us to use mathematical software to invert C′ for different sized

systems and extract the salient features of C′−1. Some examples of (2.6) and its inverse

are collected in appendix A. As noted there, the elements of C′−1 which couple the ‘+’

components only fall off arithmetically with distance, while those which couple the ‘−’

components fall off geometrically with distance. These features – which hold for arrays of

modest size and should remain for arrays of arbitrary size – allow us to approximate (2.1)

as

HKCMQ ≈ O(E1)∑
x

n+(x)2 +EI ∑
x

n−(x)2 +O(E1) ∑
x;y>0

n+(x)n+(x+ y)

−2EJ ∑
x

cos [ϕ+(x+1)−ϕ+(x)]cos [ϕ−(x+1)−ϕ−(x)] , (2.7)

where ϕ±(x) = [ϕ1(x)±ϕ2(x)]/2 are the coordinates conjugate to the momenta n±(x) i.e.

[ϕ±(x),n±(y)] = iδxy, and terms O(C1/CI)EI or smaller have been dropped. Strictly speak-

ing, the terms which are of order E1 should be written as, for example, E1 ∑xO(1)(x)n+(x)2,

but as we will see below, this is inessential.

Employing degenerate perturbation theory, it is possible to find an effective Hamilto-

nian which describes the low energy dynamics of the system. The method of finding an

effective Hamiltonian is sketched in appendix B, and since the calculation for the problem

at hand is lengthy, we relegate it to appendix C. Treating the Josephson term in (2.7) as a

perturbation and projecting into the subspace n+(x) = 0, n−(x) = 0,±2, one arrives at an

effective Hamiltonian, Heff
KCMQ, which describes the system as a single chain of junctions

with excitons as the tunnelling objects instead of Cooper-pairs (see figure 2.2):

Heff
KCMQ = 4EI ∑

x
n
′
−(x)

2−Eex
J ∑

x
cos
[
ϕ
′
−(x+1)−ϕ

′
−(x)

]
. (2.8)

ϕ
′
−(x)≡ 2ϕ−(x) and n

′
−(x)≡ n−(x)/2 are the phase of the macroscopic exciton wavefunc-
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Figure 2.2: Heff
KCMQ in (2.8) describes a single chain of junctions with excitons as the tun-

nelling objects.

tion and the number of excitons, at position x, respectively, and are conjugate variables:

[ϕ
′
−(x),n

′
−(y)] = iδxy. The junctions have a Josephson energy of Eex

J ≡ E2
J /E1, while their

charging energy is set by EI . In the regime where EI is much less than Eex
J (which requires

EJ � EI , given that E1� EJ), the excitons form a condensate. This is equivalent to saying

that the excitonic junctions are in the ‘superfluid’ regime, so that excitons can move freely

along the chain. Assuming that this is so, the exciton condensate phase has small quantum

fluctuations.

2.2 Low energy behaviour of the array and the emergence of a qubit

Given that in the low energy limit, the system is effectively described by a single chain of

excitonic junctions, its properties can be determined by appealing to results known from

the study of conventional chains of Josephson junctions (Pop et al., 2010). It turns out that

the ground state of such a chain can in fact be described by a single degree of freedom: the

number of phase slips in the chain. Consider a chain of L junctions (with open boundary

conditions) with a phase drop of γ across the chain, in a regime where the Josephson energy

EJ dominates the charging energy. If we neglect the charging energy for the moment, the

classical ground state consists of γ being equally distributed amongst all the junctions: θi =

γ/L, where θi is the phase difference across junction i. The assumption here is that γ/L

is small enough, so that θi = γ/L is the minimum energy configuration. Given this, the

potential of the chain is simply E0 = EJ ∑
L
i=1 1− cosθi ≈ EJγ2/2L.

However, this is not the end of the story. Phase slips can occur, where the phase of one

junction, say the jth, changes as θ j → θ j + 2π . Assuming that the phase bias is constant

(i.e. ∑i θi = γ must always be satisfied), the phases of the other junctions must change

a little to accommodate the phase slip. As a result, the energy of the chain changes to

E1 = EJ(γ−2π)2/2L, and after m phase slips, the energy is Em = EJ(γ−2πm)2/2L. These

energies correspond to parabolae centred at γ = 2πm, and the curves Em and Em+1 are

degenerate at γ = (2m+ 1)π . Restoring the charging energy – which introduces quantum

phase fluctuations which can give rise to phase slips – lifts these degeneracies. A tight-

binding model proposed in (Matveev et al., 2002) gives rise to energy bands which are 2π

periodic; the lowest band was confirmed in (Pop et al., 2010).

Applying these ideas to Kitaev’s device, we see that the lowest energy band can be

written primarily as a function of the phase difference at the ends, (ϕ4−ϕ3)− (ϕ1−ϕ2):

E = F (ϕ4−ϕ3 +ϕ2−ϕ1)+ error term , (2.9)
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Figure 2.3: The circuit’s energy, E, becomes almost exactly π-periodic in ϕ2−ϕ1 once
the boundary conditions ϕ1 = ϕ3 and ϕ2 = ϕ4 are imposed. The two states localized near
the minima at ϕ2−ϕ1 = 0,π can be used as the basis states of a qubit. These states are
degenerate, up to an exponentially small correction.

where F is 2π periodic. The ‘error term’ arises from uncorrelated currents, i.e. currents

which are non-excitonic in nature, and is predicted to decrease exponentially as the number

of junctions increases 12 (Brooks et al., 2013; Kitaev, 2006b). If the first and third leads

are connected so that ϕ1 = ϕ3, and similarly the second and fourth, the energy becomes π

periodic in ϕ2−ϕ1, up to an exponentially small correction: E ≈ F (2(ϕ2−ϕ1)). The two

distinct minima of F (2(ϕ2−ϕ1)) are located at ϕ2−ϕ1 = 0 and ϕ2−ϕ1 = π 13, and as long

as the barrier separating the minima is large enough, there are two ground states localized

around these minima. These states can be identified with the logical states of a qubit (say,

ϕ2−ϕ1 = 0↔ |0〉 , ϕ2−ϕ1 = π ↔ |1〉), as shown in figure 2.3.

The error term in (2.9) leads to an exponentially small (in the length of the device)

difference in the energy of the minima, which would inhibit dephasing. Encouragingly, this

degeneracy has been shown to be robust to modest disorder in circuit parameters (Dempster

et al., 2014). One may think that since the barrier height is O(Eex
J /L) (L is the length of the

device), in order to prevent bit flips or tunnelling between the wells, one cannot arbitrarily

increase the length of the device. However, as long as the ‘mass’ of the system – which

scales with CI (see the ‘kinetic’ or charging energy term of Heff
KCMQ in (2.8)) – is made

sufficiently large, the system cannot easily tunnel between the wells. As Kitaev notes, if we

take the kinetic energy scale of the system to be e2/(LCI) (LCI can be regarded as the total

inter-chain capacitance), then to suppress bit flips it is necessary to have

Eex
J
L
� e2

LCI
. (2.10)

[Eex
J /L]/[e2/(LCI)] is independent of L, and it can be increased by increasing CI . The

suppression of errors at the hardware level is what makes Kitaev’s qubit ‘protected’.

12We further discuss this error term in section 3.3, since it also arises in our dual construction.

13If the leads are not connected as described, then F (ϕ4−ϕ3 +ϕ2−ϕ1) has minima at ϕ4−ϕ3+ϕ2−ϕ1 = 0,2π

which are equivalent, since the phases are 2π periodic variables.
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2.3 Summary and discussion

In this chapter, we have explained how a qubit, namely KCMQ, can be realized in two ca-

pacitively coupled chains of Josephson junctions. An effective Hamiltonian (2.8) reveals

that, with the right choice of array parameters, the system can be regarded as a chain of

junctions which is superconducting with respect to excitons – composite objects consisting

of a Cooper-pair and a Cooper-pair hole. With the right choice of boundary conditions, the

energy of the circuit becomes π-periodic in a global phase difference, and possesses two

distinct minima. The two states localized at these minima can be used to realize a qubit, and

are degenerate up to an exponentially small correction in the length of the array. This near

degeneracy would inhibit dephasing, while bit flips can be minimized by making the inter-

chain capacitance large enough. Hence, KCMQ has all the ingredients one would expect

to find in an intrinsically fault-tolerant qubit; it belongs to a family of protected supercon-

ducting ‘0-π qubits’ (Douçot & Vidal, 2002; Gladchenko et al., 2008; Ioffe & Feigelman,

2002). We note that a realization of Kitaev’s qubit in a bilayer exciton condensate contacted

by superconducting leads has been suggested in (Peotta et al., 2011).

We have yet to discuss the interaction between KCMQ and its environment; a con-

sideration of electric field fluctuations reveals that they may change the behaviour of the

system qualitatively, and no longer allow a qubit to be realized. While Kitaev took the

self-capacitance of the islands to be zero, in practice these capacitances will be finite, albeit

small. Charge fluctuations in the form of electrons hopping back and forth between traps

(see section 1.3.1) would effectively result in an external AC voltage being applied to the

islands. With finite self-capacitances, such fluctuations could result in uncorrelated currents

flowing along the system, thus destroying the current mirror effect.

Conventional wisdom says that in the laboratory, electric noise is generally worse than

magnetic noise: the relaxation and dephasing times for a flux qubit outperform those for

a charge qubit (Clarke & Wilhelm, 2008). Thus, it seems reasonable to guess that a qubit

analogous to KCMQ, based on magnetic degrees of freedom, would perform better than

KCMQ in the laboratory. Furthermore, the magnetic analogue of Cooper-pair excitons

– vortex-antivortex pairs – can arise naturally in a suitable 2D array of junctions. This

provides another motivation for looking for a protected qubit which is dual to KCMQ, and

this is the topic of the next chapter.
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CHAPTER 3

A protected vortex exciton qubit

In this chapter, we explain our construction of a magnetic analogue of KCMQ. As men-

tioned earlier, there are a couple of reasons for why one would attempt to construct a qubit

dual to KCMQ. One motivation is the problem that electric field noise may pose to KCMQ

in an experimental realization. An analogue based on magnetic degrees of freedom would

have an advantage over KCMQ since magnetic field noise is less problematic than its elec-

tric counterpart. Another motivating factor is that the magnetic analogue of Cooper-pair

excitons, namely, vortex-antivortex pairs, arise naturally in arrays where Josephson ener-

gies dominate at low temperatures. This chapter is based on results from (De & Spiller,

2014).

3.1 Vortices

A vortex – in the context of Josephson junction arrays – is a configuration of the phases

which can be regarded as a topological excitation. Let us flesh out what is meant by this.

Arrays in which junction capacitances are so large that charging energies are negligible

are known as classical arrays. The physics of these arrays can be described by one of the

work-horses of classical statistical mechanics: the 2D XY model (Herbut, 2007). This model

describes ferromagnetically coupled classical planar spins of unit length, confined to two

dimensions. Clearly, this model is equivalent to a model of a 2D array of superconducting

islands which are Josephson coupled to their neighbours.

At low temperatures, the spins or phases of the islands will tend to align, in order to

minimize the energy. Such phase configurations can be decomposed in terms of long wave-

length oscillations known as spin-waves. However, at higher temperatures, the 2π period-

icity of the phases leads to the appearance of configurations which cannot be captured by

spin-waves, namely, vortices. An example of a vortex is shown in figure 3.1. Let us pick

a closed contour encircling the central plaquette in figure 3.1, which we can think of as
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3. A protected vortex exciton qubit

Figure 3.1: A vortex on a square lattice. The spins or phases are represented by the arrows.

where the vortex ‘lives’. If we track the change in phase as we traverse this contour in an

anti-clockwise fashion, we find that the phase changes by 2π . In fact, this is true for any

contour surrounding the position of the vortex.

Mathematically, distinct vortex configurations are classified according to their winding

number

n =
1

2π

∮
d~r ·~∇φ(~r) , (3.1)

which is an integer. A continuum notation has been adopted in (3.1) for clarity. The fact

that the integral in (3.1) is an integer follows from the periodicity of the phases; it measures

the number of times the phase winds by 2π along a closed loop. n is said to be a topo-

logical invariant: it is impossible to change the winding of a configuration through smooth

deformations of the phases 14, and it is for this reason that vortices are known as topological

excitations.

Vortices in the 2D XY model lead to a profound phase transition which is not accom-

panied by a breaking of a symmetry, known as the Berezinskii-Kosterlitz-Thouless (BKT)

transition (Berezinskii, 1971; Kosterlitz & Thouless, 1973). This transition describes the

unbinding of vortices: below the critical temperature TBKT, any vortices in the system are

strongly bound to an antivortex partner (a configuration with opposite winding), while above

it, the vortex-antivortex pairs disassociate into free entities. Vortices also play a key role in

arrays in which charging energies, while smaller than Josephson energies, are not negligi-

ble. In such cases, quantum fluctuations of the junctions must be taken into account. We

will see in the remainder of this chapter that in doing so, vortices emerge as massive quan-

tum mechanical point-like charges. Let us now turn our attention to our dual construction

of KCMQ.

14More precisely, it is impossible to construct a function φ(~r, t) (t ∈ [0,1]) which is continuous in t and for which
the winding of φ(~r,0) is n and the winding of φ(~r,1) is m 6= n. Configurations with different windings are said
to belong to different homotopy classes.
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Figure 3.2: The Josephson junction array which gives rise to a protected vortex exciton
qubit.

3.2 Path integral representation of the array

Our strategy for finding the dual of Kitaev’s qubit is to employ a rectangular array which

has anisotropic junction capacitances as well as anisotropic Josephson couplings, as shown

in figure 3.2. For the moment, let us focus on the Josephson couplings; we will discuss

our choice of capacitances below in section 3.3. We assume that the coupling in the y-

direction dominates that in the x-direction: Ey
J � Ex

J . The reason for assuming this is that in

a classical array with isotropic couplings, vortices when sufficiently far apart behave as a 2D

Coulomb gas of charges, with the strength of their interaction set by the Josephson energy.

With Ey
J � Ex

J , it turns out that it costs more energy for a vortex-antivortex pair (‘vortex

exciton’) to line up horizontally rather than vertically (see figure 3.4 and the discussion in

section 3.3), in analogy with the allowed configurations of charge excitons in KCMQ.

The existence of vortices in the array 15 is seen by analysing the partition function of

the system (Fazio & Schön, 1991), which is

Z= tre−H/(kT ) = ∏
i

∫ 2π

0
dφi 〈{φi}|e−H/(kT ) |{φi}〉 , (3.2)

where H is the Hamiltonian of the system, {φi} denotes the configuration of phases of the

array and T is the temperature. The matrix elements in (3.2) have the following path integral

representation (Swanson, 1992) (h̄ = 1)

〈{φi}|e−H/(kT ) |{φi}〉=
∫ {φi}

{φi}
D{Q j}D{φ j}e−S[{Q j(τ)},{φ j(τ)}] , (3.3)

15For theoretical convenience, we shall consider an infinite square array in what follows and assume that what we
learn holds for the rectangular array shown in figure 3.2.
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3. A protected vortex exciton qubit

where the Euclidean action is

S[{Q j(τ)},{φ j(τ)}]≡
∫ (kT )−1

0
dτ

(
(2e)2

2 ∑
i, j

Qi(τ)C−1
i j Q j(τ)− i∑

i
Qi(τ)φ̇i(τ)

−∑
〈i, j〉

E i j
J cosφi j(τ)

)
. (3.4)

In (3.3),
∫

D{φ j} denotes integration over all paths satisfying φi(0) = φi((kT )−1) = φi, and∫
D{Q j} ≡∏ j

∫
DQ j where

∫
DQ j ≡ lim

N→∞

1
(2π)N

∞

∑
Q j,0=−∞

· · ·
∞

∑
Q j,N−1=−∞

, (3.5)

with Q j,k representing the dimensionless charge on island j at discrete time τk = εk (the

time spacing ε is defined below). In the action (3.4), φi j ≡ φi− φ j, 〈i, j〉 denotes nearest

neighbour sites i and j while C−1
i j denotes the inverse of the capacitance matrix.

The presence of vortices can be seen by applying the Villain approximation (José et al.,

1977; Villain, 1975) to the Josephson energy term in Z. This approximation – which is

presented in appendix D – consists of trading the cosine Josephson potential for a form

which is quadratic in the phases and a summation over integers. As a result, the phases

can be integrated out, while the summation preserves the fundamental 2π periodicity of the

phases. To make the approximation, we must consider the imaginary-time integral (3.4)

in its discretized form, with time spacing ε . For isotropic arrays, this is chosen to be of

the order of the inverse Josephson plasma frequency, ω
−1
J = (8EJEC)

−1/2, which can be

regarded as an ultraviolet cutoff. For an anisotropic array, there are in general two different

plasma frequencies, and we choose ε to be of the order of ω
−1
J,x = (8Ex

J Ex
C)
−1/2. This choice

is motivated by the fact that the Villain approximation

exp
(

εE i j
J cosφi j,τ

)
≈

∞

∑
mi j,τ=−∞

exp

(
−

εE i j
J

2
(φi j,τ −2πmi j,τ)

2

)
, (3.6)

holds for E i j
J ε & 1 and improves in accuracy as E i j

J ε increases (Stern, 1994).

Using Villain’s approximation, exp
(

ε ∑〈i, j〉,τ E i j
J cosφi j,τ

)
can be written as

∑
{~mi,τ}

exp

[
−ε

2 ∑
i,τ

Ex
J (φi+x̂,τ −φi,τ −2πmx

i,τ)
2 +Ey

J (φi+ŷ,τ −φi,τ −2πmy
i,τ)

2

]
, (3.7)

where ~mi,τ = (mx
i,τ ,m

y
i,τ) is an integer-valued vector field associated with the links emerging

from site i in the +x̂ and +ŷ directions, with x̂, ŷ being the two lattice unit vectors. (3.7) can

in turn be rewritten in terms of another integer-valued vector field ~Ji,τ (its components have
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3.2. Path integral representation of the array

the same interpretation as the components of ~mi,τ )

∑
{~Ji,τ}

exp

[
−∑

i,τ

(
1

2εEx
J

Jx
i,τ

2 +
1

2εEy
J

Jy
i,τ

2
+ i~Ji,τ ·~∇φi,τ

)]
, (3.8)

where~∇φi,τ =(φi+x̂,τ−φi,τ ,φi+ŷ,τ−φi,τ). The details of this step are outlined in appendix D.

After noting that

i∑
i

∫
dτQi(τ)φ̇i(τ)→ iε ∑

i,τ
Qi,τ

φi,τ+ε −φi,τ

ε
= i∑

i,τ
Qi,τ∂τφi,τ , (3.9)

where ∂τφi,τ ≡ φi,τ+ε −φi,τ , we see that we can evaluate the phase integral

∏
i

∫ 2π

0
dφi ∑
{φi,τ}

exp

[
i∑

i,τ

(
Qi,τ∂τφi,τ − ~Ji,τ ·~∇φi,τ

)]
, (3.10)

since it is linear in the phases. The argument of the exponent above can be written as

i∑
i,τ

−Qi,τ +Qi,τ−ε︸ ︷︷ ︸
−∂τ Qi,τ

+Jx
i,τ − Jx

i−x̂,τ + Jy
i,τ − Jy

i−ŷ,τ︸ ︷︷ ︸
~∇·~Ji,τ

φi,τ , (3.11)

and since the Qs and Js above are integers, each integral over the phases yields a Kronecker

delta, δ~∇·~Ji,τ−∂τ Qi,τ ,0
, up to a constant. We will not keep track of such constants since they do

not yield any information about the degrees of freedom that the system possesses.

The partition function is now subject to the constraints~∇ ·~Ji,τ−∂τQi,τ = 0 at each lattice

site (i,τ). Introducing the rescaling J̃µ

i,τ = Jµ

i,τ/
√

Eµ

J and ∇̃µ =
√

Eµ

J ∇µ , the constraints

become ~̃∇ · ~̃Ji,τ − ∂τQi,τ = 0, and the enforcement of these constraints is indicated by the ′

on top of ∑{~̃Ji,τ}
:

Z= ∑
{Qi,τ}

′

∑
{~̃Ji,τ}

exp

[
−2εe2

∑
i, j,τ

Qi,τC−1
i j Q j,τ −

1
2ε

∑
i,τ
|~̃Ji,τ |2

]
. (3.12)

The original constraints are solved by

Jµ

i,τ = nµ

(
~n ·~∇

)−1
∂τQi,τ + ε

µν
∇νAi,τ , (3.13)

where repeated indices are summed over and
(
~n ·~∇

)−1
is the line integral on the lattice,

with the unit vector ~n specifying the direction of the integral 16. Furthermore, εµν is the

antisymmetric tensor (ε12 = −ε21 = 1), Ai,τ is an integer-valued field which lives on the

16For instance, for a function f j living on a one-dimensional lattice in the x̂ direction,
(

x̂ ·~∇
)−1

f j ≡ ∑
j
i=1 fi.
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3. A protected vortex exciton qubit

dual lattice 17, ∇νAi,τ ≡ Ai+ν̂ ,τ −Ai,τ and ∇ν∂τQi,τ ≡ ∂τQi,τ − ∂τQi−ν̂ ,τ . As a result, the

transformed constraints are solved by

J̃µ

i,τ = ñµ

(
~n ·~∇

)−1
∂τQi,τ + ε

µν
∇̃ν Ãi,τ , (3.14)

where ñµ = nµ/
√

Eµ

J and Ãi,τ = Ai,τ/
√

Ex
J Ey

J . Ai,τ is summed over without any constraints,

and so Z becomes

Z = ∑
{Qi,τ}

∑
{Ai,τ}

exp

−ε2e2
∑
i, j,τ

Qi,τC−1
i j Q j,τ −

1
2ε

∑
i,τ

[
ñx
(
~n ·~∇

)−1
∂τQi,τ + ∇̃yÃi,τ

]2

︸ ︷︷ ︸
4

+

[
ñy
(
~n ·~∇

)−1
∂τQi,τ − ∇̃xÃi,τ

]2

︸ ︷︷ ︸
�

 , (3.15)

and since ∑{Ai,τ} = ∏i,τ ∑
∞
Ai,τ=−∞, we can use the Poisson resummation formula (D.5) to

rewrite ∑{Ai,τ} exp
(
− 1

2ε
∑i,τ [4+�]

)
as

∏
i,τ

[
∞

∑
Vi,τ=−∞

√
Ex

J Ey
J

∫
∞

−∞

dÃi,τ exp
(

i2π

√
Ex

J Ey
JVi,τ Ãi,τ −

1
2ε

(4+�)

)]
. (3.16)

In the above, Vi,τ is another integer-valued field living on the dual lattice, which we will

eventually interpret as representing vortex degrees of freedom 18. The integrals in (3.16)

can be cast into the form of a multi-dimensional Gaussian integral, which can be evaluated

in the following manner

N

∏
i=1

(∫
∞

−∞

dAi

)
exp
(
−1

2
~AT ·M ·~A+~B ·~A

)
=

(
(2π)N

detM

)1/2

exp
(

1
2
~BT ·M−1 ·~B

)
, (3.17)

where Ai is the ith component of ~A and M is an N ×N positive definite real symmetric

matrix. I.e., (3.16) can be rewritten as (upon relabelling Ãi,τ → Ai,τ )

exp

(
− 1

2ε
∑

i,τ,µ

[
ñµ

(
~n ·~∇

)−1
∂τQi,τ

]2
)

∏
i,τ

[(
∞

∑
Vi,τ=−∞

√
Ex

J Ey
J

∫
∞

−∞

dAi,τ

)

× exp
(
−1

2
~AT ·M ·~A+~A ·~B

)]
, (3.18)

17The dual lattice consists of the set of points at the centres of the elementary squares of the original lattice.

18We will spell out why Vi,τ represent vortices when we come to (3.44), but in the meantime still refer to them as
vortices.
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3.2. Path integral representation of the array

where the components of ~A are Ai,τ and the components of ~B are

Bi,τ ≡ i2π

√
Ex

J Ey
JVi,τ +

1
ε

ε
µν ñµ(~n ·~∇)−1

∇̃ν∂τQi,τ . (3.19)

The fact that the eigenvalues of M in (3.18) are strictly positive is seen from the following:

the trace of M is positive (see (3.21)), and since M is infinite in extent, by symmetry, its

eigenvalues must be equal and therefore positive.

The partition function is now thus (up to constants)

Z= ∑
{Qi,τ}

∑
{Vi,τ}

exp

(
−ε2e2

∑
i, j,τ

Qi,τC−1
i j Q j,τ −

1
2ε

∑
i,τ,µ

[
ñµ

(
~n ·~∇

)−1
∂τQi,τ

]2

+
1
2
~BT ·M−1 ·~B

)
.

(3.20)

To determine M−1, we must look at the form of M: it couples only nearest neighbour

(in space) components of ~A and is symmetric. The elements of M can be determined by

expanding out4 and �. Letting k ≡ (i,τ), we see that its diagonal elements are

−Ex
J

ε
A2

k−
Ey

J
ε

A2
k =−

Ex
J +Ey

J
ε

A2
k ≡−

1
2

AkMkkAk

→Mkk =
2
ε
(Ex

J +Ey
J ) . (3.21)

In a similar vein, the element which couples nearest neighbours in the y-direction, Mkl =Mlk

(l ≡ (i+ ŷ,τ)), is given by

Ey
J

ε
AkAl ≡−

1
2

AkMklAl−
1
2

AlMlkAk =−AkAlMkl

→Mkl =−
Ey

J
ε

, (3.22)

while the element which couples nearest neighbours in the x-direction, Mkl = Mlk (l ≡
(i+ x̂,τ)), is given by

Mkl =−
Ex

J
ε

. (3.23)

In summary, the elements of M′ – which for convenience is defined via M = 2
ε
(Ex

J +Ey
J )M

′=
2Ex

J
ε
(1+β )M′, where β = Ey

J/Ex
J is the Josephson energy anisotropy – are (suppressing the

time dependence)

M′kl = M′lk =


1 if k = l

− β

2(1+β ) if k = i and l = i+ ŷ

− 1
2(1+β ) if k = i and l = i+ x̂

0 otherwise

. (3.24)
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3. A protected vortex exciton qubit

We can express M′kl as a Fourier transform 19

M′kl ≡M′(~rk−~rl) =
∫

d2~qM′(~q)ei~q·(~rk−~rl) , (3.25)

where
∫

d2~q≡
∫

π

−π

dqx
2π

∫
π

−π

dqy
2π

, from which we find

M′(~q) = ∑
~rk−~rl

M′(~rk−~rl)e−i~q·(~rk−~rl) = 1− β

2(1+β )
(e−iqy + eiqy)− 1

2(1+β )
(e−iqx + eiqx)

→M′(~q) = 1− 1
(1+β )

(cos(qx)+β cos(qy)) . (3.26)

Let us call the inverse of M′ the matrix G. This implies that the Fourier transform of G –

G(~q) – satisfies M′(~q)G(~q) = 1, and so

Gkl ≡ G(~rk−~rl) =
∫

d2~q
ei~q·(~rk−~rl)

1− 1
(1+β ) (cos(qx)+β cos(qy))

. (3.27)

It can be shown using the methods outlined in (Cserti, 2000) that

G(~r) = 2(1+β )
∫

π

0

dqy

2π

e−|n|s cos(mqy)

sinh(s)
, (3.28)

where~r = (n,m) and sinh(s) =
√

(1+β [1− cos(qy)])
2−1. Defining the matrix I to be 20

G(~r)≡ 2(1+β )

2π
I(n,m;β ) , (3.29)

we can thus give an expression for M−1:

M−1 =
ε

2Ex
J (1+β )

G =
ε

2πEx
J

I . (3.30)

1
2
~BT ·M−1 ·~B is now

1
2
~BT ·M−1 ·~B =− ε

4πEx
J

∑
i, j,τ

(
2π

√
Ex

J Ey
JVi,τ −

i
ε

ε
µν ñµ(~n ·~∇)−1

∇̃ν∂τQi,τ

)
Ii j(β )×(

2π

√
Ex

J Ey
JVj,τ −

i
ε

ε
αβ ñα(~n ·~∇)−1

∇̃β ∂τQ j,τ

)
. (3.31)

Since M is block diagonal, with all blocks being the same and each block corresponding

to a certain time ‘slice’, the inverse also has the same structure, so we need not label the

elements of I(β ) above with time indices. The cross terms in (3.31) can be summed by

19We work with dimensionless units, so that the lattice spacing is of unit length.

20The dependence of I on β is made explicit here for what follows below.
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3.2. Path integral representation of the array

parts (Fazio & Schön, 1991)

∑
i, j

Vi,τ Ii jε
αβ ñα(~n ·~∇)−1

∇̃β ∂τQ j,τ =−∑
i, j

Vi,τ ε
αβ

[
ñα(~n ·~∇)−1

∇̃β Ii j

]
︸ ︷︷ ︸

Θi j

∂τQ j,τ , (3.32)

where the charge-vortex interaction potential Θi j has been introduced, and since Ii j = I ji

(I(n,m;β ) = I(−n,−m;β )), the cross terms contribute the following in (3.31)

− i
√

β ∑
i, j,τ

Vi,τΘi j∂τQ j,τ . (3.33)

To analyse the coupling between the time derivative of the charges, we require the identity

εµνεαβ = δ µαδ νβ −δ µβ δ να , using which

ε
µν

ε
αβ ñµ(~n ·~∇)−1

∇̃ν∂τQi,τ Ii jñα(~n ·~∇)−1
∇̃β ∂τQ j,τ =

ñµ(~n ·~∇)−1
∇̃ν∂τQi,τ Ii jñµ(~n ·~∇)−1

∇̃ν∂τQ j,τ︸ ︷︷ ︸
(a)

−ñµ(~n ·~∇)−1
∇̃ν∂τQi,τ Ii jñν(~n ·~∇)−1

∇̃µ∂τQ j,τ︸ ︷︷ ︸
(b)

.

(3.34)

Since ñµ and ñν can be moved about freely, (b) in (3.34) becomes

− (~n ·~∇)−1ñν
∇̃ν∂τQi,τ Ii j(~n ·~∇)−1ñµ

∇̃µ∂τQ j,τ =−∂τQi,τ Ii j∂τQ j,τ , (3.35)

yielding the following contribution to (3.31)

− 1
4πεEx

J
∑
i, j,τ

∂τQi,τ Ii j∂τQ j,τ . (3.36)

It is known from (Fazio & Schön, 1991) that (a) in (3.34) produces the following contribu-

tion to (3.31)
1

2ε
∑

i,µ,τ

[
ñµ(~n ·~∇)−1

∂τQi,τ

]2
, (3.37)

which therefore cancels the term of opposite sign which exists in (3.20). The last term to be

examined in (3.31) is the vortex-vortex coupling, which is simply

−πεEy
J ∑

i, j,τ
Vi,τ Ii j(β )Vj,τ . (3.38)

An inspection of I (see (3.27) and (3.29)) reveals that it is infrared divergent (the inte-

grand diverges as ~q→ 0). This motivates the decomposition of I into an infrared divergent

part and a finite part (Kogut, 1979):

I(~r) = I′(~r)+ I(0) , (3.39)
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3. A protected vortex exciton qubit

where

I′(~r) =
2π

2(1+β )

∫
d2~q

ei~q·~r−1
1− 1

(1+β ) (cos(qx)+β cos(qy))
(3.40)

and I(0)∼ ln(R), where R is the linear size of the array. This means that in

exp

(
−πεEy

J ∑
i, j,τ

Vi,τ Ii jVj,τ

)
= exp

−πεEy
J I(0)∑

τ

[
∑

i
Vi,τ

]2
exp

(
−πεEy

J ∑
i, j,τ

Vi,τ I′i jVj,τ

)
,

(3.41)

as R→ ∞ (and so I(0)→ ∞), configurations {Vi,τ} which are not ‘neutral’ are suppressed.

In other words, only configurations satisfying

∑
i

Vi,τ = 0 ∀τ (3.42)

contribute to the partition function. Z thus now reads

Z= ∑
{Qi,τ}

′

∑
{Vi,τ}

e−SCCG({Qi,τ},{Vi,τ}) , (3.43)

where the prime on the sum means that only neutral configurations {Vi,τ} enter the sum,

and the coupled Coulomb gas action is given by

SCCG ({Qi,τ},{Vi,τ}) = ε ∑
i, j,τ

2e2Qi,τC−1
i j Q j,τ +πEy

JVi,τ I′i jVj,τ + i

√
β

ε
Vi,τΘi j∂τQ j,τ

+
1

4πε2Ex
J

∂τQi,τ Ii j∂τQ j,τ . (3.44)

For an isotropic array (β = 1), I′i j implies a logarithmic interaction between vortices 21.

This agrees with a heuristic derivation of the form of the interaction between a vortex and

an antivortex (Tinkham, 2004). We are thus led to interpret the variables Vi,τ as representing

vortex degrees of freedom. For arrays in which the two charging energies are equal, C−1
i j also

assumes a logarithmic form (in the limit of vanishing self capacitance). This is precisely the

nature of the Coulomb interaction between electric charges confined to a 2D world, and so

this motivates the name of the action. Having seen how vortices emerge from a path integral

description of the system, let us now examine a Hamiltonian description of the array. Such

a description will allow us to fine tune the parameters of the array, so that a dual of KCMQ

can be constructed.

21The interaction is asymptotically logarithmic (i.e. as |~ri−~r j| → ∞), although the logarithmic form is not a bad
approximation even when |~ri−~r j| is O(1) (Kogut, 1979).
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3.3. Hamiltonian description of the array

3.3 Hamiltonian description of the array

The emergence of vortices and the almost perfect symmetry that exists between charges

and vortices in SCCG suggests that a dual description of the system exists. In other words,

a representation in terms of vortices {Vi} and phases {θi} (residing on the dual lattice),

conjugate to the vortices, ought to exist. Indeed, when charging energies are small compared

to the corresponding Josephson energies (as is the case in the array we consider – see below

in this section), charge fluctuations become pronounced while the phases of the islands

become ordered. In such regimes, vortices, rather than Cooper-pairs, become the relevant

dynamical degrees of freedom, and it can be more convenient to analyse a Hamiltonian

defined in terms of vortices and their conjugate phases (Choi, 1994; van Wees, 1991). The

Hamiltonian describing our array is

Hv = πEy
J ∑

i, j
ViI′i jVj−

2
π2 Ey

C ∑
i

cos(θi+x̂−θi)−
2

π2 Ex
C ∑

i
cos(θi+ŷ−θi) , (3.45)

where the sums are over the dual lattice sites, and vortices and phases satisfy the commuta-

tion relation [θi,Vj] = iδi j.

Let us justify (3.45). Just as vortices emerged from the Villain approximation of the

phases {φi}, it is clear that a Villain approximation of the dual phases {θi} in (3.45) would

yield the electric charging energy contribution to SCCG. Ci j – in particular, the charging

energies associated with the junction capacitances – fixes the dual Josephson couplings

to be Ey
JD ≡

2
π2 Ex

C = 2
π2

e2

2Cx
and Ex

JD ≡ 2
π2 Ey

C = 2
π2

e2

2Cy
. To see this, we first examine the

capacitance matrix, which is

Ci j =


2(Cx +Cy) if i = j

−Cx if i = j± x̂

−Cy if i = j± ŷ

0 otherwise

. (3.46)

We have omitted the self-capacitances of the islands (which would contribute to the diagonal

of the matrix) since experiments show that they are negligible compared to the junction

capacitances (Fazio & Van der Zant, 2001). Ci j agrees with circuit theory, since we expect

the charge on island i, Qi, to equal ∑ j Ci jΦ j (Φ j being the potential of island j), and indeed

it does:

Qi =Cx(Φi−Φi+x̂)+Cx(Φi−Φi−x̂)+Cy(Φi−Φi+ŷ)+Cy(Φi−Φi−ŷ)

= 2(Cx +Cy)Φi−Cx(Φi+x̂ +Φi−x̂)−Cy(Φi+ŷ +Φi−ŷ)

= ∑
j

Ci jΦ j .

In section 3.2, we saw that anisotropic Josephson couplings of the phases {φi} give rise to

the form of the vortex-vortex interaction I′i j. Similarly, anisotropic Josephson couplings of
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Figure 3.3: The phase diagram for an isotropic array (see (Fazio & Schön, 1991)).

the dual phases {θi} would give rise to C−1
i j . Comparing with how ~BT ·M−1 ·~B/2 gives rise

to the vortex-vortex interaction term, we see that we should make the identification (see

(3.19))

1
2

(
i2π

√
Ex

JDEy
JDQi

)
(M−1)i j

(
i2π

√
Ex

JDEy
JDQ j

)
=−ε2e2Qi(C−1)i jQ j

→Mi j =
π2

εe2 Ex
JDEy

JDCi j . (3.47)

(3.22), (3.23) and (3.46) tell us that

−
Ey

JD
ε
≡− π2

εe2 Ex
JDEy

JDCy

→ Ex
JD ≡

2
π2

e2

2Cy
=

2
π2 Ey

C , (3.48)

and similarly Ey
JD ≡

2
π2 Ex

C.

Of course, the last term in (3.44) cannot be represented in (3.45). This term breaks

the perfect symmetry between charges and vortices, and reflects the spin-wave excitations

of the superconducting phases. In general, spin-waves are a source of dissipation for vor-

tices. However, since we are assuming that self-capacitances are negligible, the spin-wave

dispersion only has an optical branch (Fazio & Van der Zant, 2001). As a result, the spin-

wave-vortex coupling is irrelevant at low temperatures, and so (3.45) should be an effective

description of the array.

We are now in a position to see how the physics of KCMQ can be mirrored in the

system, with the right choice of parameters in Hv and appropriate boundary conditions.

Here, the analogue of the charge excitons in KCMQ are vortex-antivortex pairs (vortex

excitons), which, as mentioned in section 3.1, can bind naturally in a classical array when

the temperature is below TBKT. The phase diagram for an isotropic ‘quantum array’ (i.e.

when the charging energies are not negligible), was established in (Fazio & Schön, 1991)

and is shown in figure 3.3. In such arrays, there are two different BKT transitions, namely, a

vortex-unbinding transition when EJ � EC, and a charge-unbinding transition when EC�
EJ . These two transitions therefore compete when EJ ∼ EC and meet at the quantum critical
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Figure 3.4: Ratio of energies required for a nearest neighbour vortex exciton to form in
the x-direction compared to the y-direction, R(β ), as a function of the Josephson coupling
anisotropy, β = Ey

J/Ex
J .

point EJ/EC ≈ 2/π2.

Since we are considering an array with anisotropies in both the Josephson and charging

energies, the phase diagram of the array will acquire ‘extra dimensions’. For instance, one

extra dimension will be the Josephson energy anisotropy parameter, β , since it is known

that the critical temperature in the anisotropic 2D XY model depends on the strength of the

anisotropy (Spišák, 1993). We will assume that whatever our required array parameters, we

can place the system in an area of the phase diagram where vortices and antivortices are

bound together. In the next chapter, we will discuss arrays of junctions for measurements

and gates, in which we will require the existence of free vortices. Figure 3.3 informs us

that it is thus undesirable to run the qubit in an ultra-low temperature environment, since

the only two phases available to arrays at T ≈ 0 are the vortex dipole and charge dipole

phases. The fact that an ultra-low temperature environment is not required may make an

experimental realization of the qubit easier to come by.

In KCMQ, the charge excitons are arranged in the vertical (y) direction. Similarly,

vortex excitons also orient themselves in this manner since, as mentioned in section 3.2, we

assume that Ey
J � Ex

J . This can be seen by considering the ratio of the energies required

to form nearest neighbour vortex dipoles in the x-direction (‘+−’ or ‘−+’) and in the y-

direction (‘±’ or ‘∓’). We denote this ratio by 22

R(β )≡ I′(1,0;β )

I′(0,1;β )
, (3.49)

and it is plotted in figure 3.4. Clearly, for large enough anisotropy (i.e. β = Ey
J/Ex

J � 1),

it is energetically much more favourable for vortex excitons to orient themselves vertically

rather than horizontally.

22Ii j(β )≡ I(xi− x j,yi− y j;β ), where distances are measured in units of the lattice spacing.
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3. A protected vortex exciton qubit

The absence of Josephson tunnelling between the two chains of KCMQ means that the

motion of Cooper-pairs is restricted to one dimension. Likewise, to ensure that vortices

only move along the length of the array, we require the Josephson tunnelling of the vortices

in the y-direction to be inhibited. Such motion can be achieved by taking the inertia of the

vortices in the y-direction to dominate the inertia in the x-direction i.e. by enforcing Cx�
Cy→Ey

C�Ex
C. Furthermore, since we want the array to be in the regime of phase coherence

where vortices are the relevant degrees of freedom, the Josephson energies must dominate

the corresponding charging energies, i.e. E i
J � E i

C, i ∈ {x,y}. In particular, the condition

Ey
J � Ey

C ensures that uncorrelated vortex hopping is too costly, although correlated motion

of vortex excitons is possible, as we shall explain below.

Upon neglecting tunnelling in the y-direction, Hamiltonian (3.45) becomes

Hv ≈ πEy
J ∑

i, j
ViI′i jVj−

2
π2 Ey

C ∑
i

cos(θi+x̂−θi) , (3.50)

and using the notation employed in (Choi et al., 1998), this can be rewritten as

Hv = πEy
J ∑

l,l′,x,x′
Vl(x)I′ll′(x,x

′)Vl′(x′)−
2

π2 Ey
C ∑

l,x
cos(θl(x+1)−θl(x)) . (3.51)

In the above, l = 1,2 denotes the y-coordinate of the dual lattice sites, while x denotes the

coordinate along the length of the array. Given the one-to-one correspondence between the

essential features of KCMQ and the system we are considering, Hv is well approximated

by (compare with (2.7) in the previous chapter)

Hv ≈ O[−I′(1,0;β )]Ey
J ∑

x
V+(x)2 +O[−I′(0,1;β )]Ey

J ∑
x

V−(x)2

+O[−I′(1,0;β )]Ey
J ∑

x;y>0
V+(x)V+(x+ y)

− 4
π2 Ey

C ∑
x

cos [θ+(x+1)−θ+(x)]cos [θ−(x+1)−θ−(x)] , (3.52)

where V±(x) =V1(x)±V2(x) and θ±(x) = [θ1(x)±θ2(x)]/2.

We are interested in the low energy dynamics of the system, and given that the energy

scale for horizontal excitons (O[−I′(1,0;β )]Ey
J ) dominates the other energy scales, we can

project (3.52) into the subspace V+(x) = 0,V−(x) = 0,±2. This projection yields the effec-

tive Hamiltonian (in complete analogy to how the effective Hamiltonian (2.8) of KCMQ is

derived)

Hv
eff ≈ O

[
−4I′(0,1;β )

]
Ey

J ∑
x

V
′
−(x)

2−Eex
C ∑

x
cos
[
θ
′
−(x+1)−θ

′
−(x)

]
, (3.53)

where θ
′
−(x) = 2θ−(x), V

′
−(x) =V−(x)/2 and Eex

C ≡
4

π4
Ey

C
2

O[−I′(1,0;β )]Ey
J
. Hv

eff describes a one-

dimensional chain of junctions in which vertically aligned vortex excitons can tunnel. In
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3.3. Hamiltonian description of the array

Figure 3.5: Examples of vortex exciton tunnelling.

other words, the effective low energy degrees of freedom are vortex-antivortex pairs at posi-

tion x – characterized by the quantum number V
′
−(x) – which can tunnel due to a Josephson

coupling energy Eex
C , as shown schematically in figure 3.5. This is precisely the scenario in

KCMQ, with vortices replaced by Cooper-pairs. For the system to be in the superfluid phase

where the fluctuations of the phases θ
′
− are small and the dipoles tunnel freely, the tunnelling

strength must dominate the vortex ‘charging energy’, i.e. Eex
C � O [−4I′(0,1;β )]Ey

J . This

leads to the requirement(
Ey

C

Ey
J

)2

� π
4O
[
I′(0,1;β )

]
O
[
I′(1,0;β )

]︸ ︷︷ ︸
X

. (3.54)

It is possible to see that there are parameter regimes which satisfy the condition imme-

diately above and the condition 23

(
Ey

C

Ey
J

)2

� π4

16
(
O
[
I′(1,0;β )

])2︸ ︷︷ ︸
Y

, (3.55)

which is needed so that the projection into the subspace V+(x) = 0 ,V−(x) = 0,±2 is valid.

If we demand that (3.54) satisfies (Ey
C/Ey

J )
2 = γX and (3.55) satisfies (Ey

C/Ey
J )

2 = γ−1Y ,

where γ > 1, then dividing these two equations yields 24

R(β ) = 16γ
2 . (3.56)

Choosing γ = 3 leads to β ∼ 5×104, which means that (Ey
C/Ey

J )
2 ∼ 10−4. These conditions

do not fix the lowest energy scale, Ex
C, and we are free to choose it so that the junctions in

the x-direction are phase coherent, just like their counterparts in the y-direction. Thus,

all necessary conditions can be satisfied, although it is clear that there are many orders of

23This condition is equivalent to O [−I′(1,0;β )]Ey
J � (4/π2)Ey

C.

24We make the replacements O [I′(1,0;β )]→ I′(1,0;β ) etc.
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Figure 3.6: The superconducting wires that should be attached to establish the boundary
conditions needed for a π-periodic energy landscape.

magnitude separating the highest and lowest energy scales. This separation increases for

larger choices of γ , which would be ideal so that the inequalities in (3.54) and (3.55) are

well satisfied. In practice, it may be difficult to realize a sufficiently broad range of energies.

The energy of the system is described by an equation with exactly the same form as

(2.9), but with the replacements ϕi→ θi, where θi are the dual phases at the corners of the

array (see figure 3.6). The error term identified by Kitaev also has a counterpart here, and

can be justified as follows. In addition to the tunnelling of vortex excitons, rare uncorre-

lated tunnelling of individual vortices may also occur. For such a process to provide a net

contribution to vortex current (and hence a contribution to the energy, since the derivative

of the energy with respect to suitable phases yields a current), a vortex must move from one

end of the array to the other. If the length of the array is N and the probability for a vortex

to hop to an adjacent site is p – where p is small – then the probability for a vortex to make

its way from one end to the other is pN . Hence, the error term decreases exponentially in

the length of the array.

As explained in the previous chapter, Kitaev arrived at a π-periodic energy with two

degenerate minima by connecting the leads of his device diagonally. To establish a π-

periodicity here, the phases of the top left plaquette and the bottom right plaquette must

be identified, and similarly, the bottom left and the top right phases must be set equal too.

Attaching superconducting wires between the islands in the manner depicted in figure 3.6

will do the job. The wires equalize the phases of the superconducting islands that they

connect. Hence, if one were to track the winding of the superconducting phases of the top

left and bottom right plaquettes, one would find that the windings (or vorticities) would be

the same, which implies θ1 = θ3 (and similarly θ2 = θ4). The π-periodic energy (up to

an exponentially small correction) that results from the boundary conditions, and the states

localized around the two minima to be used as the computational basis for the qubit, will be

as shown in figure 2.3 (with the replacements ϕi→ θi).
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3.4. Summary and discussion

As with KCMQ, the exponentially small difference in the energy of the minima (due to

the error term) would suppress dephasing. Furthermore, owing to the one-to-one correspon-

dence between the essential features of KCMQ and its dual, we expect the degeneracy to

be little affected by modest disorder in the array parameters, as has been shown for KCMQ

(Dempster et al., 2014). The condition which guarantees that bit flips are suppressed in

KCMQ, (2.10), has an analogy here as well – (3.54). As explained above, this condition

can be met in principle, although in practice it may be difficult to realize. These features

thus protect the qubit from errors at the hardware level.

3.4 Summary and discussion

In this chapter, we have demonstrated how a protected qubit – a magnetic analogue of

KCMQ – emerges in a suitable array of junctions. A path integral representation of the array

reveals that a dual description exists in terms of vortices and dual phases. This motivates the

analysis of a Hamiltonian in a vortex and dual phase representation, to see how to mirror the

physics of KCMQ. With an appropriate choice of parameters, one can arrive at an effective

Hamiltonian, (3.53). (3.53) tells us that the system can be viewed as a chain of junctions

which is superconducting with respect to vortex excitons (vortex-antivortex pairs). We note

that quantum coherent behaviour of vortices (which is needed for our qubit and gates to

function) has been observed in arrays for many years (Elion et al., 1993).

By implementing certain conditions on the boundary phases, the array energy becomes

π-periodic in a global phase difference – a difference of phases at the ends of the system.

Two distinct minima are positioned at phase differences of 0 and π , and the states localized

at these minima can be identified with the computational basis of a qubit. Since the minima

are degenerate up to an exponentially small correction in the length of the array, dephasing

would be inhibited. Bit flips can also be suppressed in principle with the right choice of array

parameters. Hence, the qubit should be well protected from errors at the hardware level and

is an addition to the family of protected 0-π qubits (Douçot & Vidal, 2002; Gladchenko

et al., 2008; Ioffe & Feigelman, 2002; Kitaev, 2006b).

In practice, the system will be subject to stray external magnetic fields, which will act

analogously to external gate charge in KCMQ. However, as noted in section 2.3, magnetic

noise is generally less of a headache than electric noise in a laboratory, and we expect the

qubit to be resilient to a small amount of noise. Furthermore, the problem of random offset

charges on the islands due to electric noise is non-existent since Josephson energies in our

array dominate the corresponding charging energies, which means that charge fluctuations

are strong anyway. In the next chapter, we adapt Kitaev’s proposal for universal fault-

tolerant QC to our dual construction.
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CHAPTER 4

Fault-tolerant universal quantum computation using protected

vortex exciton qubits

Kitaev proposed a scheme for universal QC (Kitaev, 2006b), suitable for use with 0-π su-

perconducting qubits 25. This scheme is attractive due to its intrinsic fault-tolerance. In

attempting to control qubits (say, to perform single qubit gates), errors inevitably crop up

(over or under-rotations). This is due to unavoidable imperfections in the timing of the

protocol or the coupling strength between the qubit and the external system. Clearly, the

suppression of such errors at the hardware level is desirable, since it saves the experimental-

ist from resorting to costly error correction procedures, and this is precisely what Kitaev’s

scheme promises.

The measurements and gates proposed by Kitaev are:

1. Measurement in the computational basis (‘Z measurement’)

2. Measurement in the dual basis (‘X measurement’)

3. The one-qubit unitary R1(π/8) = exp(i(π/8)Z) and its inverse

4. The one-qubit unitary R1(π/4) = exp(i(π/4)Z) and its inverse

5. The two-qubit unitary R2(π/4) = exp(i(π/4)Z⊗Z) and its inverse

This set of measurements and gates was shown by Kitaev to be universal. A computation

using this set would be adaptive: the outcomes of intermediate measurements fix the gates

to be applied in the future. The X and Z measurements for KCMQ are believed to be

25To be precise, it is suitable for use with superconducting qubits whose microscopic degrees of freedom are
Cooper-pairs and superconducting phases. Physically, the scheme has to be altered for qubits which utilise
vortices and dual phases. The current chapter addresses this problem.
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Figure 4.1: Scheme for measurement in the computational basis.

fault-tolerant 26 (Kitaev, 2006b), while the phase gates R1/2(π/4) have been shown to be

fault-tolerant (Brooks et al., 2013) if certain conditions are met (see section 4.5). If these

measurements and phase gates are exact, then R1(π/8) can be afforded to be ‘noisy’: it

only needs to be realized with a fidelity of F > 0.93 to enable fault-tolerant computations

(Bravyi & Kitaev, 2005). Of course, in practice, some noise is likely to be associated

with the measurements, although it has been noted that repetition and majority voting or

repetition coding can improve reliability (Brooks et al., 2013).

In this chapter, we adapt Kitaev’s measurement and gate set to our qubit. We explain

how fault-tolerant computation with current mirror qubits can be mimicked with vortex

exciton qubits (VEQs). To this end, we present two novel circuit elements: a vortex DC

SQUID and a vortex harmonic oscillator. This chapter is based on results in (De & Spiller,

2014).

4.1 Computational basis measurement

A method of measuring in the computational basis {|0〉, |1〉} is sketched in figure 4.1. Two

‘tracks’ of junctions are connected onto the ends of the qubit, and the finite but small tem-

perature 27 implies that free vortices can exist in the tracks if the charging and Joseph-

son energies are similar. We take the top loop to enclose an external electric charge, Q.

It is well known that electrons circling around magnetic flux acquire a phase due to the

26I.e. it is believed that they can be performed non-destructively and with little probability of changing the
measured observable.

27Recall from figure 3.3 in the previous chapter that a finite temperature is needed for free vortices to exist in
principle.
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4.2. Dual basis measurement

Aharonov-Bohm effect (Aharonov & Bohm, 1959). Similarly, vortices traversing around

electric charge acquire a phase due to a dual phenomena known as the Aharonov-Casher

effect (Aharonov & Casher, 1984; Reznik & Aharonov, 1989), which has already been seen

in arrays (Elion et al., 1993). An electric charge vector potential, ~AQ, can therefore be

introduced (Van Wees, 1990) satisfying∮
C

d~r ·~AQ = Q , (4.1)

where the closed contour C encloses Q. The gauge invariant phase difference between

plaquettes j and i is thus (compare for (1.4))

θ j−θi−
Φ0

h̄

∫ j

i
d~r ·~AQ . (4.2)

As a result, the top loop will be subject to the constraint

2π
Q
2e

= χ +∑
i

∆θi , (4.3)

where

χ = θ2−θ1−
Φ0

h̄

∫ 2

1
d~r ·~AQ = 0,π , (4.4)

and {∆θi} are the gauge invariant phase drops across the qubit and the rest of the loop,

respectively.

Say the ground state corresponds to all the phase drops {∆θi} being equal. This being

the case, the vortex current in the top loop ∼ sin∆θi will depend on Q and χ . If Q/(2e) =

1/4, then a measurement of the vortex current 28 – which through the AC Josephson effect

is equivalent to a voltage measurement (see figure 4.1 and (1.9)) – would reveal the state of

the qubit.

As with the analogous measurement for KCMQ, this protocol should be fault-tolerant,

since χ is as protected during the measurement as when the qubit is ‘idle’. Noise in the

measurement can be overcome by applying the CPHASE gate 29 to the target qubit and an

ancilla qubit in the state |+〉= (|0〉+ |1〉)/
√

2, and then performing an X measurement (see

section 4.2) on the ancilla. Repeating this procedure and using majority voting will yield a

reliable Z measurement (Brooks et al., 2013).

4.2 Dual basis measurement

Before we discuss a dual basis {|±〉 = (|0〉± |1〉)/
√

2} measurement, we will first discuss

the dual protocol for KCMQ. Such a measurement for VEQs will require a ‘vortex charge

qubit’ (discussed below in 4.2.2), which to the best of our knowledge has not been discussed

28With Q/(2e) = 1/4, if χ = 0 then sin∆θi > 0, while if χ = π then sin∆θi < 0.

29CPHASE can be decomposed in terms of the protected phase gates R1(π/4) and R2(π/4) (Brooks et al., 2013).
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Figure 4.2: The ground state expectation value of the voltage as a function of ng.

in the literature. Thus, it will be helpful to first consider the method for KCMQ which

utilises a conventional charge qubit.

4.2.1 Dual measurement for KCMQ

As explained in section 2.2, the basis states of KCMQ have the following interpretation: |0〉
corresponds to the state peaked about Θ ≡ ϕ2−ϕ1 = 0, while |1〉 corresponds to the state

peaked about Θ = π . If |0,1〉 are ideal ‘spikes’ at Θ = 0,π , then |+,−〉 are superpositions

of either even or odd number states, respectively. This is easily seen be expanding the basis

in terms of the number states {|n〉}

|Θ〉=
∞

∑
n=−∞

einΘ |n〉 , (4.5)

where {|n〉} are eigenstates of n, the number operator conjugate to Θ. |+,−〉 can thus be

thought of as even or odd parity states, respectively. A dual basis measurement therefore

corresponds to a parity measurement of n.

Attaching a charge measurement device – say a charge qubit (an elementary CPB, as

described in section 1.3.1) – to the terminals of the qubit is no good for measuring the

parity of n. This is because charge qubits respond with unit period i.e. they have the

same response to n and n+1 offset or gate charge (in dimensionless units). This motivates

the following observation by Kitaev: If the wire connecting terminals 1 and 3 is cut, then

2ϕ2−ϕ3−ϕ1 = 0 (mod 2π), from which it follows that the phase drop across these terminals

becomes ϕ3−ϕ1 = 2(ϕ2−ϕ1) ≡ 2Θ. The operator conjugate to the phase difference 2Θ

is n/2. If we now connect terminals 1 and 3 across a charge qubit, the charge qubit can

now tell the difference between even and odd n i.e. it can tell whether n/2 is an integer or

half-odd integer.

The Hamiltonian for a charge qubit is

Hch = 4EC(N−ng)
2−EJ cosφ , (4.6)

where [φ ,N] = i, EC and EJ are the charging and Josephson energies, respectively, and ng

is the dimensionless external bias applied to the charge qubit. Attaching terminals 1 and
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4.2. Dual basis measurement

3 across the charge qubit leads to a bias of ng = n/2. The voltage across the charge qubit

is given by V = 1
2e

∂H
∂ng

, which leads to (using the Hellmann-Feynman theorem) the ground

state expectation value of the voltage to be

〈V (ng)〉0 =
1
2e

∂E0

∂ng
, (4.7)

where E0(ng) is the ground state energy. This expectation value is periodic in ng with unit

period, and resembles a ‘sawtooth’, as shown in figure 4.2.

Adding a further bias of about 1/4 leads to a total bias of ng ≈ 1/4+ n/2. A voltage

measurement of the charge qubit subsequently needs to be performed. If the measured

voltage is positive, then n is even, whereas if it is negative, then n is odd. Since we are

considering an elementary charge qubit operating in the regime where EC dominates EJ , its

eigenstates are effectively charge eigenstates (except near the ‘sweet spots’ where ng is a

half-odd integer). As a result, the measured voltage would be to a very good approximation

equal to 〈V 〉0, and so the measurement is essentially one-shot. This scheme thus realises a

parity measurement of n.

4.2.2 Dual measurement for VEQs

As with the dual basis measurement for KCMQ, a dual measurement on a VEQ is tanta-

mount to a parity measurement of m, the operator conjugate to χ , defined in (4.4). Such

a measurement requires a ‘vortex charge qubit’. Similar to a conventional charge qubit,

two equal and oppositely charged vortices sitting next to each other will store some ‘vortex

charging energy’. The device we have in mind is similar to a dual DC SQUID, which is

discussed in section 4.3 and sketched in figure 4.3 30. To be concrete, let us take the vortex

on the left plaquette to have charge −M, while its neighbour has charge +M. The precise

form of the charging energy is given by the vortex-vortex interaction, which is discussed in

section 3.2. For short distances, the interaction is not easy to work with. Nonetheless, the

fact that the charging energy is symmetric under M→−M and vanishes as M→ 0 are the

only pieces of information that we need for our purposes.

Since the energy is symmetric and is not simply constant, this device has properties

reminiscent of a conventional charge qubit. Applying a charge bias of 1/2 (in units of the

flux quantum) to one of the plaquettes and −1/2 to the other plaquette will result in the

states M = 0 and M = 1 becoming degenerate. However, vortex tunnelling, which can be

controlled by external electric charge (see figure 4.3) will break the degeneracy, resulting

in a spectrum that should be qualitatively similar to that of a charge qubit, at least for the

lowest band. Hence, we call this device a ‘vortex charge qubit’.

A parity measurement now follows in complete analogy to the scheme for KCMQ. The

30In our discussion of a dual DC SQUID in section 4.3, we are interested in the regime where the vortex tunnelling
strength dominates the interaction energy, whereas the opposite regime interests us here.
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Figure 4.3: A vortex DC SQUID.

first step is to cut the wires that equalize the phases θ1 and θ3. This results in a phase

difference of θ3−θ1 = 2(θ2−θ1) = 2χ between the free ends, which is conjugate to m/2.

The next step is to take a vortex charge qubit and apply the free ends of the VEQ across it.

Since the charge qubit has a unit period energy (with respect to bias charge), so does the

ground state vortex voltage, which is physically an electrical current 31. This means that if

a bias of ∼ 1/4 is applied, then measurement of the vortex charge qubit voltage will yield

the parity of m.

This measurement should be fault-tolerant, for the same reason given for the fault-

tolerance of the Z measurement. Given this, noise in the measurement procedure can again

be overcome by using the trick mentioned at the end of section 4.1 (Brooks et al., 2013). In

fact, (Brooks et al., 2013) notes that even if there is some probability for the measurement

to flip the parity of m, this can be negated by employing repetition coding.

4.3 R1(π/8) gate

An unprotected rotation R1(π/8) can be realized using the setup in figure 4.1 with some

modifications: external charge and voltage measurement are not needed, while a switch of

some sort should be inserted in the top track. This switch could be a dual or vortex DC

SQUID, a realization of which we now sketch.

We envisage a device which consists of two adjacent vortex sites with phases θL/R, as

shown in figure 4.3. Tunnelling can occur between the two sites across two junctions which

both have charging energy EC. Charge Q(t) (which we assume can be controlled with time

t) sitting on the island between these two junctions can control tunnelling, in the same

way that external flux piercing a conventional DC SQUID (Tinkham, 2004) controls charge

tunnelling via parallel paths. The two gauge invariant phase differences are

θL→R = θR−θL−
Φ0

h̄

∫ R

L
d~r ·~AQ , θR→L = θL−θR−

Φ0

h̄

∫ L

R
d~r ·~AQ , (4.8)

with ~AQ satisfying (4.1). The energy of this component has the form expected for a DC

31The equation Q=CV which describes a conventional capacitor is ‘dual’ to the equation Φ= LI which describes
a conventional inductor or a ‘flux capacitor’. Hence, ‘flux voltage’ corresponds to electrical current.
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Figure 4.4: A ring of Josephson junctions.

SQUID, namely 32

−EC (cosθL→R + cosθR→L) =−2EC cos
(

πQ(t)
2e

)
cos(θR−θL)

≡−EC(t)cos(θR−θL) , (4.9)

where EC(t) is the time-dependent coupling energy of the dual DC SQUID.

When the switch is turned on, an interaction term proportional to cos χ = Z is generated.

This can be seen easily by noting that cos χ |0〉 = |0〉 and cos χ |1〉 = −|1〉 if |0〉 and |1〉
are ideal spikes located at χ = 0,π , respectively. The switch pulse should thus satisfy
1
h̄

∫ T
0 EC(t)dt = π

8 , for some time T to implement the gate R1(π/8) = exp(i(π/8)Z). We

assume that when the switch is inserted into the top track, dual phase locking occurs, so that

the term −EC(t)Z is the only addition to the qubit Hamiltonian.

Clearly, the fidelity of this gate will suffer from timing errors and fluctuations in the

coupling strength 2EC cos
(

πQ
2e

)
. However, as mentioned in the introduction to this chapter,

a moderate loss of fidelity can be tolerated as long as the other gates and measurements are

highly accurate.

4.4 A dual LC oscillator

The protected phase gates first described by Kitaev and elaborated on in (Brooks et al.,

2013) require the 0-π qubit to be coupled to a high impedance electrical LC oscillator.

Implementing these protected phase gates on a VEQ therefore demands the construction of

a high impedance vortex or dual LC oscillator. We now turn our attention to this.

32We are assuming that EC dominates the Josephson energies of the device, so that the vortex-vortex interaction
term can be neglected. Clearly, EC cannot be made too big, since this will push the device into the insulating
regime.
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4.4.1 A toy model

Let us first consider a simple toy model to establish the kind of phenomenology we would

like to see in a vortex oscillator. Consider a ring of Josephson junctions, as shown in figure

4.4. The junction at the ‘top’ is characterised by junction energy E ′J and charging energy

EC, while all other junctions (which we refer to as the array junctions) are characterised by a

junction energy EJ and EC. We work with the assumption that EJ� EC� E ′J , which means

that the top junction effectively looks like a capacitor, while the array junctions effectively

look like inductors or semi-classical junctions.

Let us denote the number of charges on the top junction as n′ and the phase drop across

it as θ ′, while the charges and phases of the array junctions are {ni} and {θi}, respectively.

Therefore, the Hamiltonian of the ring is effectively

Hring ≈ 4ECn′2 +4EC ∑
i

n2
i −EJ ∑

i
(cosθi−1)︸ ︷︷ ︸

f (−θ ′)

. (4.10)

The fact that the array terms in (4.10) can be represented as f (−θ ′) follows from two

facts. First, there is a loop constraint θ ′+∑i θi = 2πk (k is an integer), which implies that

∑i θi = −θ ′+ 2πk. Second, as discussed in section 2.2, the energy of a chain of junc-

tions in the superfluid phase is a 2π periodic function ( f (θ)) of the phase drop across the

chain. Expanding about the minimum at zero (i.e. θ ′ = 0) where f is quadratic, we can

write f (−θ ′) ∼ θ ′2. As a result, the system looks like a harmonic oscillator. We note the

similarity between our toy model and the Fluxonium circuit (Manucharyan et al., 2009).

The Fluxonium Hamiltonian agrees with our analysis, in the limit that the Josephson en-

ergy of the ‘black-sheep’ junction (which corresponds to the top junction in our model) is

dominated by all other energies 33.

4.4.2 Vortex electrostatics

Before we discuss our construction of a vortex oscillator, we must consider the ‘electro-

statics’ of vortices. As mentioned in chapter 3, when vortices in an isotropic array have

a separation which is much greater than the lattice constant, they can be considered to be

point ‘charges’ which interact via a 2D Coulomb interaction. In a 2D world, the electric

field due to a point charge Q is simply Q
2πε0r , which can be derived from Gauss’s law in

two dimensions. As a result, the energy stored in a ±Q charge configuration separated by a

distance r, relative to the energy stored at a distance a, is

Q2

2πε0
ln
( r

a

)
. (4.11)

33We mention in passing that θ ′ corresponds to the ‘superinductance mode’ of the Fluxonium circuit in (Ferguson
et al., 2013), which is decoupled from all other degrees of freedom in the low energy limit.
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Figure 4.5: A 2D vortex capacitor.

The vortex-vortex interaction term in an isotropic array is πEJViI′i jVj (see (3.44)), which

motivated by (4.11) can be rewritten as 1
2πε0

2π2ε0EJViI′i jVj. From this, we identify the unit

of vortex charge to be

ev ≡
√

2π2ε0EJ . (4.12)

Treating vortices as Coulombic charges, one can perform a simple calculation of the

energy stored in a 2D ‘vortex capacitor’, along the lines of a calculation for electric charges

in three dimensions. For a capacitor storing a ±Q charge configuration, the energy still has

the form Q2/(2Cc), where the capacitance is Cc = ε0D/d (the subscript ‘c’ in Cc denotes

that Cc is the capacitance in conventional units). Here, D is the length of the ‘plates’ (in

units of the dual lattice spacing) and d = 1 is the distance between the plates, as shown in

figure 4.5. The energy stored is thus

Q2

2Cc
=

[(D+1)ev]
2

2Cc
= π

2EJ
(D+1)2

D
. (4.13)

However, vortices only behave as Coulombic charges when the separation between them

becomes large. One ought to check whether the simple Q2/(2Cc) energy of the setup in fig-

ure 4.5 actually matches up with an exact calculation of the energy stored using πEJViI′i jVj.

It turns out that for small D, there is a large mismatch between the energies calculated via

the two methods. Nonetheless, the ratio of the energies calculated via the ‘Q2/(2Cc) way’

and the ‘exact way’ tends to unity as D increases: for D = 20 this ratio is approximately 1.2.

Therefore, for large enough D, the energy of the configuration shown in figure 4.5 should

approximately be given by Q2/(2Cc).

4.4.3 A vortex oscillator

We are now in a position to discuss our construction of a vortex oscillator. The array for

such an oscillator is sketched in figure 4.6. We assume that the Josephson energies EJ are

isotropic, and chosen (in conjunction with the charging energies to be discussed) such that

free vortices and antivortices can exist in the array. Now, we take the charging energies of

‘the capacitive bit’ (the junctions along the thick black line in figure 4.6) and of junctions
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Figure 4.6: The array for a vortex oscillator (left) and ‘the capacitive bit’ of the oscillator
(right).

in the angular direction (except for the angular junctions right next to the thick black line,

which have energy Eφ

C ) as being negligible. As a result, we can neglect vortex tunnelling

across these junctions. If vortices and antivortices can accumulate on either side of the thick

black line, which behaves as a barrier for vortices, then this part of the array would resemble

a vortex capacitor, as in figure 4.5.

We would like each ‘track’ of the array at a constant radius (starting from one side of the

barrier and ending on the other side) to resemble a chain of dual junctions in the superfluid

phase, as in the toy model discussed in section 4.4.1. To achieve this, we need the charging

energy in the radial direction to be as large as possible relative to EJ such that a description

in terms of vortices remains sensible: Er
C & EJ . Similarly, we also require Eφ

C & EJ , so that

all the dual phases on one side of the barrier (right next to the barrier) become phase locked:

θ i
L/R ≈ θ

i+1
L/R .

Starting from the commutation relation [θi,Vj] = iδi j, we can make the change of vari-

ables

[θ i
R−θ

i
L︸ ︷︷ ︸

γ i

,
1
2
(V j

R −V j
L )︸ ︷︷ ︸

Q j/ev

] = iδi j , (4.14)

where ev is the unit of vortex charge defined in (4.12). With the above conditions in place,

the Hamiltonian describing the array is approximately

HVO ≈
1

2Cc
Q2

Tot +
Er

C
2M

N+1

∑
i=1

γ
i2 +Eφ

C

N

∑
i=1

∑
X=L,R

[1− cos(θ i+1
X −θ

i
X)] . (4.15)

In (4.15), Cc = ε0N, QTot = ∑
N+1
i=1 Qi and M is the number of junctions (with hopping ampli-

tude Er
C) in each track. The second term reflects the fact that each track resembles a chain

of junctions in the superfluid phase (see the discussion of the toy model above and the chain

of superfluid junctions in section 2.2). If Eφ

C is strong enough such that θ i
L/R ≈ θ

i+1
L/R , then

all the phase drops across the barrier are nearly the same, say γ i ≈ γ . As a result,

HVO ≈
1

2Cc
Q2

Tot +
Er

C(N +1)
2M

γ
2 , (4.16)
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Figure 4.7: Left: Circuit for implementing R1(π/4). Right: Circuit for implementing
R2(π/4). γ is the phase of the oscillator and χ is the phase drop across the qubit(s).

with γ and QTot being conjugate variables since 1
N +1

N+1

∑
i=1

γ
i

︸ ︷︷ ︸
γ

,
1
ev

N+1

∑
i=1

Qi

︸ ︷︷ ︸
QTot

= i . (4.17)

The system we have described is thus effectively a vortex harmonic oscillator.

We can rewrite (4.16) in the form

HVO ≈
q2

Tot
2C

+
γ2

2L
, (4.18)

where qTot = QTot/ev, and C =Cc/ev
2 and L = M

(N+1)Er
C

are the capacitance and inductance

of the oscillator, respectively. Both L and C have dimensions of inverse energy. For the

gates R1/2(π/4) to be fault-tolerant, the impedance of the oscillator,
√

L/C, should be large

(Brooks et al., 2013). We can express L/C in terms of array parameters:

L
C

=
M

(N +1)Er
C
· ev

2

Cc
=

M
(N +1)Er

C
· 2π2ε0EJ

ε0N
=

2π2MEJ

N(N +1)Er
C
. (4.19)

Since M scales with the radius of the ‘hole’ of the array, by making this radius arbitrarily

large compared to the length of the capacitor plate, the impedance can be made arbitrarily

large.

4.5 Protected phase gates

The central idea behind the protected phase gates is to use a continuous-variable error-

correcting code (Gottesman et al., 2001), in which switching on a coupling between a qubit

and a harmonic oscillator results in the qubit becoming encoded into the Hilbert space of

the oscillator. The oscillator then picks up a qubit-state dependent phase factor, which is re-

silient to experimental imperfections such as timing errors or perturbations in the coupling,

due to the properties of the code (Brooks et al., 2013). When the coupling is switched

off, the qubit and oscillator become disentangled, with R1(π/4) having been applied to the

qubit.
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Figure 4.8: Left: The grid state |0C〉 forms when the qubit is in state |0〉 (χ = 0). Right: The
grid state |1C〉 forms when the qubit is in state |1〉 (χ = π).

The circuit for implementing R1(π/4) on a VEQ is shown on the left in figure 4.7. The

elements labelled ‘Oscillator’ and ‘DC’ correspond to a dual LC oscillator and a dual DC

SQUID, respectively, while the black box denotes the VEQ. With time-dependent control

over the external charge of the vortex DC SQUID (see section 4.3), the device can function

as a switch. When Q = 0 it is switched on, and so the qubit and the oscillator are Josephson

coupled, whereas when Q = e, the device is switched off and so the qubit and oscillator are

uncoupled. The circuit is thus described by the Hamiltonian

Hph =
q2

Tot
2C

+
γ2

2L
−EC(t)cos(γ−χ) , (4.20)

where EC(t) is defined in (4.9).

To implement the gate, the coupling energy has to be turned on from zero and held at

its maximum value of 2EC for a duration of L/π , and then turned off again 34. The sign

of the additional cosine potential that the oscillator ‘sees’ depends on the state of the qubit.

For χ = 0, this term is −EC(t)cosγ , whereas for χ = π it is EC(t)cosγ . If the oscillator

is prepared in its ground state (a Gaussian wave function), then as EC(t) is turned on, the

oscillator evolves into one of two ‘grid states’, conditioned on the qubit’s state. As shown

in figure 4.8, the grid states |0C〉 and |1C〉 35 are superpositions of ‘spike’ like functions

governed by a broad Gaussian envelope. The spikes are at even multiples of π if the qubit’s

state is |0〉, which reflects the positions of the local minima of the potential due to the cosine

term. On the other hand, the spikes reside at odd multiples of π if the qubit’s state is |1〉.
Therefore, if the qubit is initially in the state α |0〉+β |1〉, then as the coupling pulses on to

its maximum value, the qubit and oscillator evolve as

(α |0〉+β |1〉) |ψi〉 → α |0〉 |0C〉+β |1〉 |1C〉 , (4.21)

where the initial state of the oscillator, |ψi〉, is assumed to be the ground state.

Having prepared the grid states, the coupling EC(t) needs to be held at its maximum

34There are some constraints on the form of EC(t) in order for the gate to be well protected, which are discussed
in (Brooks et al., 2013). We simply note that these constraints can be satisfied by the circuit parameters.

35The subscript ‘C’ denotes that these states can be thought of as a basis for an error-correcting code.
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value of 2EC for a time L/π . During this time, the oscillator is subject to the effective

Hamiltonian γ2/(2L), which can be justified as follows. The kinetic term q2
Tot/(2C) can be

neglected, since it is assumed that the height of the local wells and the ‘mass’ of the os-

cillator (C) suppress tunnelling into neighbouring wells. Furthermore, the term −2EC cosγ

acting on the peaks at even multiples of π and the term 2EC cosγ acting on the peaks at odd

multiples of π both lead to the same phase factor, i.e. the cosine term generates a global

phase factor. The spikes in the grid state |0C〉 therefore undergo the evolution

|2πk〉 → e−itγ2/(2L) |2πk〉= |2πk〉 , (4.22)

for t = L/π and where k is an integer. On the other hand, the peaks of |1C〉 pick up a phase

of −i:

|2π(k+1/2)〉 → e−itγ2/(2L) |2π(k+1/2)〉=−i |2π(k+1/2)〉 . (4.23)

As a result, the qubit and oscillator evolve as

α |0〉 |0C〉+β |1〉 |1C〉 → α |0〉 |0C〉− iβ |1〉 |1C〉 . (4.24)

To complete the gate, the coupling has to be turned off to zero. During this process, |0C〉
evolves to |ψ0

f 〉 while |1C〉 evolves to |ψ1
f 〉, and so the final state of the qubit and oscillator

is

α |0〉 |ψ0
f 〉− iβ |1〉 |ψ1

f 〉 . (4.25)

If |ψ0
f 〉= |ψ1

f 〉, then R1(π/4) is implemented perfectly on the qubit, while the gate fidelity

is reduced from unity if 〈ψ0
f |ψ1

f 〉 6= 1. It is argued in (Brooks et al., 2013) that under appro-

priate conditions 〈ψ0
f |ψ1

f 〉 ≈ 1 to a very high degree, which implies that the gate is almost

perfect. The intrinsic gate error 36 is found to scale favourably as exp
(
−1

4

√
L/C

)
, which is

the reason for demanding a high impedance oscillator. In fact, as alluded to above, (Brooks

et al., 2013) find that small timing errors (i.e. if the coupling remains at its maximum value

for some time longer than L/π) do not change the exponential scaling of the error, and that

the gate remains robust in the presence of a small non-zero temperature and against small

perturbations in the Hamiltonian (4.20). Finite temperature robustness is key for our dual

scheme, since, as we have explained above, our scheme would have to operate in a finite

temperature environment.

R2(π/4) can be applied to two VEQs by coupling them in series to an oscillator – as

shown on the right in figure 4.7 – and implementing exactly the same steps described for

R1(π/4). The total phase drop across the two qubits is 0 for the states |00〉 and |11〉, and

so the oscillator evolves to the final state |ψ0
f 〉. On the other hand, the total phase drop is π

for the states |01〉 and |10〉, and hence the oscillator evolves to the final state |ψ1
f 〉. As with

36This intrinsic error arises because the spikes of the code states will in practice have a finite width, resulting in a
small overlap between the states.
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R1(π/4), if |ψ0
f 〉= |ψ1

f 〉, then R2(π/4) is implemented perfectly, up to a global phase.

4.6 Summary and discussion

In this chapter, we have explained how Kitaev’s scheme for fault-tolerant universal QC using

current mirror qubits can be adapted for protected VEQs. Each measurement and gate in

Kitaev’s universal set can be realized with appropriate arrays of junctions. Furthermore,

the fault-tolerance of the measurements and the gates R1/2(π/4) implies that even with

a slightly noisy R1(π/8), fault-tolerant computations can be guaranteed. To realize this

scheme, we have presented some novel circuit elements, namely, a vortex DC SQUID and

a vortex harmonic oscillator. In particular, we have seen that the impedance of the vortex

oscillator can in principle be made arbitrarily large, which is promising with respect to

ensuring the intrinsic fault-tolerance of R1/2(π/4).
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Conclusions

In the first part of this thesis, we have described a protected qubit which is dual to a

0-π qubit (KCMQ) proposed in (Kitaev, 2006b). Our construction – which utilises vortex

and dual phase degrees of freedom – mirrors the key features of KCMQ and therefore

inherits its intrinsic fault-tolerance. More precisely, with suitable array parameters and

boundary conditions, a nearly doubly degenerate ground state emerges which can be used

to robustly store information, since bit flips and dephasing would be suppressed. We have

also adapted the scheme for universal fault-tolerant QC proposed by Kitaev to our qubit.

This has required the construction of novel circuit elements, such as a vortex harmonic

oscillator.

One motivation for our construction is that the magnetic analogue of Cooper-pair exci-

tons (present in KCMQ), namely vortex-antivortex pairs, can arise naturally in low temper-

ature arrays in which Josephson energies are dominant. Another motivation is that electric

field noise may impair the current mirror effect which KCMQ relies on, while the analo-

gous magnetic field noise which would affect our qubit is generally less of an issue in the

laboratory.

Interesting next steps to further investigate this scheme include assessing the impact of

realistic noise on both KCMQ and its dual, in order to verify our claim that the dual would

perform better in practice. It would also be interesting to examine the effect of the dissipa-

tive vortex-spin-wave coupling on both the qubit and gates and measurements. While we

argued in section 3.3 that this coupling should be irrelevant at low temperatures, it should

be remembered that our scheme cannot run in an ultra-low temperature environment, and

so future work would reveal the possible effects of the coupling. On a similar note, the gap

to excited states must be determined (as has been determined for KCMQ (Dempster et al.,

2014)) in order to gauge the effect of thermal fluctuations. Finally, we noted in section 3.3

that the ideal required array parameters may be difficult to realize experimentally; examin-

ing the extent to which our qubit retains its desirable features in practical parameter regimes

is therefore a worthwhile problem for future study.





PART II

Detection of the Chern number and entanglement in

topological four-component systems through subsystem

winding numbers
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CHAPTER 5

Topological phases of matter

5.1 Introduction

Since its introduction in 1937, the Landau theory of phase transitions (Landau, 1937) has

been fruitful in the effort to understand the various phases that matter can assume (Ander-

son, 1984; Landau & Lifshitz, 1958). The central idea of this theory is that phases of matter

can be classified by the symmetries that they break, while the associated local order param-

eters contain information about how the phases are ordered. Given its success in explaining

the behaviour of systems as disparate as ferromagnets, superfluids and nematic liquid crys-

tals, it was thought that Landau theory (along with the renormalization group and Landau

Fermi liquid theory (Wen, 2004)) could in principle account for all states of matter. Indeed,

it took the discovery of the integer quantum Hall effect (Klitzing et al., 1980) – more than

forty years after Landau theory was introduced – to show that Landau theory could not be

the be-all and end-all in the classification of phases of matter. It turns out that the mathe-

matics of topology is key to understanding integer quantum Hall (IQH) states (Avron et al.,

2003; Kohmoto, 1985; Thouless et al., 1982), and a new paradigm known as topological

order (Wen, 1995, 2004) has emerged to understand topological phases of matter. Research

into topological order continues at great pace today, with the recent discovery of topologi-

cal insulators and superconductors (Bernevig & Hughes, 2013; Hasan & Kane, 2010; Qi &

Zhang, 2011). This effort is spurred on by the prospect of using topological matter for QC

(Nayak et al., 2008; Pachos, 2012).

As of yet, no complete framework for classifying topological phases of matter has been

found, and inequivalent notions of topological order exist. The term is used most commonly

(Wen, 1995, 2004) in the context of fractional quantum Hall states (Tsui et al., 1982), which

emerge from strong electronic interactions (Laughlin, 1983). Nonetheless, there are non-

interacting phases of matter – namely topological insulators (for instance IQH states) and
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superconductors – which cannot be understood without appealing to topology, and are thus

regarded as being topologically ordered. Such free-fermion systems have in fact been classi-

fied according to their symmetries and dimensionality (Kitaev, 2009; Schnyder et al., 2008).

Some examples of current interest are topological p-wave superconductors in one (Kitaev,

2001) and two dimensions (Read & Green, 2000), which are both predicted to support lo-

calized Majorana modes at defects. Such emergent Majorana fermions are the subject of

intense theoretical investigation (Alicea, 2012), partly motivated by the prospect of using

them to perform TQC, by virtue of their non-Abelian statistics (Ivanov, 2001) (see section

1.3.3). The search for them in the laboratory has been no less intense, and some (incon-

clusive) evidence of their existence in solid-state systems has been found (Das et al., 2012;

Deng et al., 2012; Mourik et al., 2012; Rokhinson et al., 2012). Another topical class of

free-fermion systems are Z2 topological insulators (Kane & Mele, 2005), which was the first

example of an experimentally observed time-reversal symmetric topological phase (König

et al., 2007).

A number of theoretical signatures of topological order exist. Examples include robust

ground state degeneracies which are sensitive to the topology of the surface that the sys-

tem resides on (Wen & Niu, 1990), and the ability of a system to support anyons. These

two signatures are closely related, with the latter implying a ground state degeneracy if the

system is placed on a torus (Einarsson, 1990). Topological insulators and superconduc-

tors are characterized by bulk topological invariants such as Chern numbers (Bernevig &

Hughes, 2013; Kohmoto, 1985; Stone, 1992; Thouless et al., 1982). A remarkable feature

of these systems is the bulk-boundary correspondence: bulk topological invariants yield

information about gapless boundary modes, and vice versa (Hatsugai, 1993; Ryu & Hat-

sugai, 2002). More recently, entropic measures (Kitaev & Preskill, 2006; Levin & Wen,

2006; Li & Haldane, 2008) have been shown to successfully capture aspects of topological

order. However, accessing such signatures experimentally is generally challenging: topo-

logical ordering lacks local order parameters, which makes it difficult to infer from local

measurements. An exception is the Chern number characterizing IQH states, which can be

determined from measurements of the conductivity.

While the domain of topological matter has traditionally been solid-state systems, much

attention is currently focused on preparing and detecting topological states with cold atoms

in optical lattices. This route holds much promise, due to the inherently clean nature of cold

atom experiments and the recent implementation of topological insulating Hamiltonians

(Aidelsburger et al., 2013; Miyake et al., 2013). Still, the detection of topological signa-

tures in 2D optical lattices remains an outstanding challenge 37, although much progress has

been made recently on this front using various physical observables. Examples include ex-

tracting topological invariants from time-of-flight (TOF) measurements (Alba et al., 2011;

37An invariant known as the Zak phase (Zak, 1989) has recently been measured in a one-dimensional setup (Atala
et al., 2013).
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Goldman et al., 2013; Pachos et al., 2013; Wang et al., 2013), analysis of wave packet dy-

namics (Price & Cooper, 2012) and centre-of-mass measurements (Dauphin & Goldman,

2013), interferometric measurements of the Berry phase (Abanin et al., 2013) and mea-

surement of the entanglement entropy using a ‘quantum switch’ (Abanin & Demler, 2012).

Some of these schemes are however tailored for particular systems, and require idealistic

conditions that can be unrealistic in actual experiments. We note that there are other ar-

chitectures which offer promising routes to realize or simulate topological phases, such as

superconducting circuits (Gladchenko et al., 2008; Roushan et al., 2014).

In the next two sections, we introduce the first Chern number 38 and the entanglement

spectrum (ES) (Li & Haldane, 2008) – one of the entropic measures of topological order

mentioned above – while in section 5.4, we discuss how the Chern number of the simplest

free-fermion systems can be measured in cold atom experiments 39. These sections will set

the stage for chapter 6, where we discuss a method to measure the Chern number and ES of

‘four-component’ topological insulators and superconductors.

5.2 The first Chern number

The Chern number is an integer topological invariant which characterizes the many-body

ground state of a gapped non-interacting system of fermions. Historically, it emerged as a

defining property of 2D time-reversal breaking band insulators ever since their Hall conduc-

tance was proved to be proportional to the Chern number (i.e. quantized) (Thouless et al.,

1982), and has since been used to classify topologically non-trivial superconductors as well

(Read & Green, 2000; Volovik, 2009).

A common representation of the Chern number is in terms of the total Berry flux or cur-

vature of the occupied single-particle states in the Brillouin zone (BZ) (Bernevig & Hughes,

2013; Kohmoto, 1985; Stone, 1992). An equivalent representation is 40 (Avron et al., 1983)

ν =− i
2π

∫
BZ

d2 p tr
(
P~p
[
∂pxP~p,∂pyP~p

])
, (5.1)

where for insulators, P~p is the projector onto the occupied single-particle states labelled by

~p∈BZ, while for superconductors, P~p projects onto the negative energy quasiparticle states

labelled by ~p∈BZ. ν is well defined for projectors which vary smoothly across the BZ, and

is a topological invariant in the following sense: Say we pick a reference Hamiltonian and

an associated ground state; a smooth interpolation or deformation to another Hamiltonian

and its associated ground state cannot change the Chern number, and the two ground states

are said to be adiabatically connected to each other. ν thus defines an equivalence class of

Hamiltonians or ground states. The Chern number can only change at a phase transition,

38For brevity, we will hereafter speak of the Chern number rather than the first Chern number.

39Hereafter, our focus is on 2D free-fermion systems.

40The system is assumed to possess periodic boundary conditions i.e. we place it on a torus.
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i.e. when the system becomes gapless and P~p no longer varies smoothly across the BZ. For

insulators, this occurs when the valence and conduction bands become degenerate, while

for superconductors, this happens when one of the quasiparticle bands touches zero energy,

so that the band becomes degenerate with its particle-hole symmetric partner 41. We explic-

itly discuss the steps required to calculate the Chern number of the simplest free-fermion

systems in section 5.4.

As mentioned in the introduction to this chapter, ν – despite being a bulk quantity (i.e.

it is calculated for a system with no edges) – remarkably contains information about the

edge physics of a ‘real’ finite-size system (Bernevig & Hughes, 2013; Hasan & Kane, 2010;

Hatsugai, 1993). A system characterized by ν 6= 0 possesses chiral gapless edge states. In

other words, such a system with edges, while still possessing bulk states (i.e. states with

support only in the bulk of the system) and a bulk energy gap, will also possess gapless edge

states (i.e. states with support only on the edge of the system) which traverse or fill the bulk

gap. These states are chiral in the sense that they propagate in one direction only along an

edge, due to broken time-reversal symmetry (e.g. the application of a magnetic field giving

rise to an IQH state). The number of ‘branches’ of chiral fermions per edge is equal to |ν |,
while the chirality is determined by sgn(ν). Furthermore, such edge states are topologically

protected – they persist under smooth changes of the Hamiltonian which do not change

the Chern number – and are insensitive to disorder since there are no states available for

back-scattering. We note in passing that the Chern number also contains information about

the properties of anyons which may exist in free-fermion systems (Kitaev, 2006a; Read &

Green, 2000).

5.3 The entanglement spectrum

In 2006, Kitaev and Preskill (Kitaev & Preskill, 2006) and simultaneously Levin and Wen

(Levin & Wen, 2006) made the startling proposal that, by examining the entanglement en-

tropy of a 2D ground state wave function, one can glean information about whether the

system is topologically ordered or not. The basic idea (Pachos, 2012) is to partition the sys-

tem into two spatial regions – which are assumed to possess typical length scales which are

much larger than the correlation length 42 of the system – and calculate the entanglement

entropy with respect to this bipartition. Say we call one of the regions A and its complement

B; by tracing out the degrees of freedom in B, for instance, one arrives at a reduced den-

sity matrix for A, ρA. One can then calculate the entanglement entropy (the von Neumann

entropy of ρA)

S(ρA) =−tr(ρA logρA) , (5.2)

41See section 5.4.

42The correlation length is finite since the system is assumed to possess a non-zero energy gap above its ground
state.
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which measures the correlations of region A with region B.

S(ρA) takes the generic form

S(ρA) = α|∂A|− γ , (5.3)

where |∂A| is the size of the boundary separating the two regions and α and γ are non-

negative constants. α|∂A| represents the so-called area law contribution to the entangle-

ment entropy (Eisert et al., 2010), and is common to the ground states of gapped many-body

quantum systems with local interactions. It arises since entanglement between the two re-

gions can only exist in the vicinity of ∂A, between degrees of freedom which are separated

up to distances of the order of the correlation length. α is a non-universal quantity since

it depends on the microscopic details of the system. On the other hand, −γ is a universal

quantity which is known as the topological entanglement entropy. When this is finite, the

system is topologically ordered: γ is non-zero if and only if the system supports anyons,

while γ = 0 is equivalent to the statement that the system does not support anyons. γ is

determined entirely by the properties of the anyons that the system can host; in particular,

it is insensitive to deformations of the system Hamiltonian which do not change the phase

that the system resides in, which explains its universality. The fact that γ does not depend

on the geometry of the partition tells us that it captures global or topological features of

the entanglement in the ground state; when γ 6= 0, we interpret the system to possess an

additional order which reduces the entanglement entropy.

However, as mentioned earlier, there are inequivalent notions of topological order, and it

turns out that there are topologically ordered states for which γ vanishes. For instance, IQH

states have a non-zero Chern number, yet the topological entropy vanishes since they do

not support anyons. In a seminal paper (Li & Haldane, 2008), Li and Haldane showed that

the entire spectrum of a reduced density matrix (such as ρA above) can often contain addi-

tional information, which is not revealed by the entanglement entropy. For many systems,

this spectrum can be readily accessed by introducing the so-called entanglement Hamilto-

nian He
A, a Hermitian operator which is defined as ρA ∝ e−H

e
A and whose eigenvalues are

known as the ES. It is known that the ES of non-interacting topological insulators and su-

perconductors contains degeneracies (for appropriate spatial partitions), by virtue of these

systems possessing gapless edge modes (Fidkowski, 2010; Qi et al., 2012; Turner et al.,

2009). Therefore, knowledge of the ES of these systems allows one to infer the edge mode

spectrum and thus, the topological phase that the system resides in 43.

Let us discuss how one goes about calculating the ES for the relatively simple case of

non-interacting topological insulators (Legner & Neupert, 2013; Turner et al., 2009). The

43To be exact, while gapless edge modes imply degeneracies in the ES, the converse is not always true: there are
special cases where the system may be topologically trivial yet still possess degeneracies in the ES. This can
happen for inversion symmetric insulators (Turner et al., 2009), for instance.
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Hamiltonian for such systems are of generic tight-binding form

H =
N

∑
m,n=1

a†
mhm,nan , (5.4)

where a†
m are fermionic creation operators which create single-particle states in a single-

particle Hilbert space (of dimension N), from which Fock space is built. The creation

and annihilation operators obey the usual fermionic anti-commutation relations, while the

indices m and n could refer to positions on a lattice, or encode multiple degrees of freedom

such as position, spin, orbital and so on. We can partition the system into two parts, say A

and B, with the nature of this partitioning being unspecified for the moment. For example,

the partitioning could be a cut in real space which splits the system in half – in which case

A and B represent the degrees of freedom in the two halves – or it could divide the system

into subsystems distinguished by different spin projections. With this partitioning, one can

write the ground state |ψ〉 of (5.4) in the form of a Schmidt decomposition

|ψ〉= ∑
α

1√
Z

exp
(
−Ee

α

2

)
|α,A〉 |α,B〉 , (5.5)

where Z ≡ ∑α exp(−Ee
α) ensures that |ψ〉 is normalized. |α,A〉 |α,B〉 is a short-hand,

which indicates that each state (labelled by α) in the decomposition is given by a product

of an operator with no support on B and an operator with no support on A acting on the

vacuum. By performing a partial trace over the degrees of freedom in B, one arrives at the

reduced density matrix of A, from which, as discussed above, an entanglement Hamiltonian

He
A can be defined:

ρA = trB |ψ〉〈ψ| ≡
1
Z

e−H
e
A . (5.6)

{Ee
α} are the eigenvalues of He

A and are thus the ES. It is of course natural to also refer

to {Ee
α} as the ‘energies’ of the entanglement Hamiltonian, but one should note that they

have nothing to do with the physical energies of the system (the superscript ‘e’ denotes

entanglement). Rather, they determine the weights of the states in the reduced density

matrix, with low ‘energy’ eigenstates of He
A having greatest weight.

General arguments (see (Peschel, 2003) and references therein) tell us that the entangle-

ment Hamiltonian of a free-fermion system (such as a band insulator) must also describe a

free-fermion system. In other words, He
A must assume a tight-binding form

He
A =

N

∑
m,n=1

a†
m (he

A)m,n an , (5.7)

where despite the sum being over all modes in the single-particle Hilbert space, only terms

involving fermionic operators of A actually enter He
A. Indeed, it has been shown by Peschel
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(Peschel, 2003) that he
A is related to the restricted correlation matrix CA = PACPA by

he
A = log

(
1−CA

CA

)
(5.8)

(all matrices are N×N), and thus the eigenvalues {εi} of he
A (the single-particle entangle-

ment ‘energies’ or spectrum) are related to the eigenvalues {ζi} of CA by

εi = log
(

1−ζi

ζi

)
. (5.9)

Above, PA projects onto subsystem A while C is the two-point correlation function with

elements Cm,n = 〈ψ|a†
man |ψ〉.

Therefore, with knowledge of {εi}, the ES is given by

Ee
α =

N

∑
i=1

ni
αεi , (5.10)

where ni
α = 0,1 are the occupation numbers of the single-particle states. Since trPA < N,

CA will possess N− trPA trivial zero eigenvalues. These zero eigenvalues correspond to

εi = ∞ and do not contribute to the ES, and are thus neglected in (5.10). On the other hand,

zero eigenvalues of he
A (εi = 0) lead to degeneracies in the ES: if εk = 0, replacing nk

α = 0

by nk
α
′ = 1 results in Ee

α → Ee
α
′ = Ee

α . Such degeneracies tend to make the reduced density

matrix more mixed and indicate higher entanglement between the subsystems.

To end this section, we briefly discuss features of the ES that result from some possible

partitions. As alluded to above, a common partitioning is to split the system into two halves

(Turner et al., 2009). If the cut preserves the translational symmetries of the system in the

directions parallel to the cut, the restricted correlation matrix will also retain these symme-

tries. As a result, its eigenvalues, and thus the single-particle ES, can be labelled by the

lattice momenta along these directions. For free-fermion systems possessing gapless edge

states, it is known that the single-particle ES mimics these dispersions (Fidkowski, 2010;

Turner et al., 2009). Each branch of gapless edge states results in a gapless branch (with the

same chirality) of the single-particle ES, taking all values in [−∞,∞] in the thermodynamic

limit. The reason for this is quite simple: given (5.4), a topologically equivalent Hamilto-

nian is given by the replacement h→ 1/2−C. This is known as the flat band version of the

original Hamiltonian, since its eigenvalues are −1/2 (1/2) for the single-particle states that

are occupied (empty) in |ψ〉 44. Now, restricting (projecting) C to one half of the system A

is tantamount to throwing away the degrees of freedom in B, and thus simulates an edge

being introduced into the system, which is the cut which separates the halves. Therefore, if

the original Hamiltonian possesses gapless edge modes, the flat band version restricted to

A will possess these as well, i.e. the spectrum of CA will be gapless. Since the spectrum of

44The eigenstates of the flat band Hamiltonian are the same as those of the original Hamiltonian.
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he
A is monotonically related to this spectrum (see (5.9)), the single-particle ES will thus be

gapless as well.

Recently, an alternative partitioning which preserves full translational symmetry by trac-

ing out a subset of local degrees of freedom – such as sublattice sites or spin orientations –

has been investigated (Legner & Neupert, 2013). The authors found that for Chern insula-

tors (Haldane, 1988) (lattice analogues of IQH states) and Z2 topological insulators (Kane

& Mele, 2005) in a non-trivial topological phase, the ES (with respect to a sublattice cut) is

gapless. In section 6.2, we explain how this component ES can be measured in cold atom

experiments.

5.4 Detection of Chern numbers of two-component systems

In this section, we explain how the Chern number of simple two-component systems can

be constructed in experiments with cold atoms in optical lattices, using the standard di-

agnostic technique of TOF images (Alba et al., 2011; Pachos et al., 2013). Examples of

two-component systems which possess phases with non-trivial Chern numbers include p-

wave superconductors (Bernevig & Hughes, 2013; Read & Green, 2000; Volovik, 2009)

and the celebrated Haldane model (Haldane, 1988), the first example of a Chern insulator.

Consider a translationally invariant non-interacting system of fermions described by the

Hamiltonian

H2 =
∫

BZ
d2 pψ

†
~ph2(~p)ψ~p . (5.11)

The system has two components, which means that the spinor ψ~p = (a~p,b~p)T for some

fermionic plane-wave annihilation operators, a~p and b~p. h2(~p) is thus a 2×2 matrix and is

known as the Bloch Hamiltonian. To find the ground state of the system, one simply needs

to diagonalize the Bloch Hamiltonian: h2(~p)→ diag(E1(~p), E2(~p)). The two eigenvalues

at each point in the BZ – E1 and E2 – are known as the band energies, and we assume that

E1(~p)> E2(~q) for arbitrary ~p and~q, i.e. the system is gapped.

Let us first take a look at insulators; for instance, a~p and b~p could correspond to the two

sublattices of the Haldane model on a honeycomb lattice. Diagonalization yields creation

operators c†
1,~p and c†

2,~p which create modes with lattice momentum 45 ~p and energies E1 and

E2, respectively. The ground state of the system at half-filling 46 is thus given by

|gs〉= ∏
~p∈BZ

c†
2,~p |0〉 , (5.12)

where |0〉 is the vacuum with respect to the a and b operators, i.e. a~p |0〉= b~p |0〉= 0 for all

~p.

For a single-species or p-wave superconductor, b~p = a†
−~p, which comes about through

45Below, we will refer to lattice momentum as momentum.

46I.e. the dimension of the single-particle Hilbert space is N and there are only N/2 particles in the system.
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the Bogoliubov-de Gennes formalism (Bernevig & Hughes, 2013) which is used to diag-

onalize mean-field superconductors, such as the generic p-wave superconductor we are

considering here. This formalism enforces a particle-hole symmetry, which implies that

E2(~p) = −E1(~p). In this case, diagonalization yields creation operators c†
~p which create

quasiparticles 47 with momenta ~p and energies 2E1. The ground state of the system is the

well known BCS wave function (Annett, 2004; Read & Green, 2000)

|BCS〉= ∏
~p∈BZ/2

(
u~p + v~pa†

~pa†
−~p

)
|0〉 , (5.13)

where ‘BZ/2’ refers to the fact that the product should run over half of the BZ so that

each time-reversed pair (~p,−~p) only enters once. The complex functions u~p and v~p satisfy

|u~p|2 + |v~p|2 = 1, which ensures that |BCS〉 is normalized.

Both the insulating and superconducting ground states – (5.12) and (5.13), respectively

– are given by a product of operators (with each operator labelled by ~p) acting on the vacuum

state. Below, we make use of this fact and write the ground state for both types of systems in

the form |Φ〉=∏~p |Φ~p〉. This is a slight abuse of notation since Fock space does not possess

a tensor product structure. However, as far as topological properties are concerned, what

matters is how the occupation numbers of the plane wave modes (which are governed by u~p
and v~p in (5.13) for superconductors, for instance) vary across the BZ, and this information

is what is contained in |Φ~p〉.
The Chern number of either system can be calculated from the formula (5.1), with P~p =

|χ~p〉〈χ~p| being the projector onto the ground state of h2(~p), |χ~p〉 (which has eigenvalue E2).

In appendix E we demonstrate the well known fact that for two-component systems, ν can

be expressed as a winding number ν̃ [~̂s~p]

ν =
1

4π

∫
BZ

d2 p ~̂s~p ·
(

∂px~̂s~p×∂py~̂s~p
)
≡ ν̃ [~̂s~p] , (5.14)

which counts the number of times the normalized three-vector ~̂s~p winds around or covers

the unit sphere as the BZ is spanned. ~̂s~p parametrizes the Bloch Hamiltonian through

h2(~p) =−|~s|~̂s~p ·~σ , (5.15)

where ~σ = (X ,Y,Z) is the vector of Pauli matrices, and can thus be regarded as the Bloch

vector representation of |χ~p〉 48. It was shown in (Alba et al., 2011) for Chern insulators

(such as Haldane’s model), and in (Pachos et al., 2013) for topological superconductors, that

the vector ~̂s~p can be constructed from physical observables associated with TOF measure-

47These quasiparticles are superpositions of particles and holes.

48For insulators, the expansion of h2(~p) in (5.15) can in principle contain a term proportional to the identity
matrix. We neglect this term since it merely adds a constant to the spectrum and does not alter any topological
properties.
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ments. As ν in (5.14) is fully determined by ~̂s~p, the Chern number can thus be constructed

from such measurements.

More precisely, by studying how the atom cloud expands as the trap is switched off,

a set of TOF images can be obtained, which amount to measuring density operators of

the form a†
~pa~p and b†

~pb~p. As these correspond to different species, they can be measured

independently by releasing only one species from the trap at a time. It can be easily shown

that ~̂s~p can be written either as the ground state (of h2(~p) – |χ~p〉) expectation value of ~σ , or

as the ground state (of H2 – |Φ〉) expectation value of the Fock space representation of ~σ ,

ψ
†
~p~σψ~p:

~̂s~p = 〈χ~p|~σ |χ~p〉= 〈Φ|ψ†
~p~σψ~p|Φ〉= 〈Φ~p|ψ†

~p~σψ~p|Φ~p〉 . (5.16)

sz
~p is thus given directly by TOF images, while the other components of ~̂s~p can be measured

via suitable Hamiltonian manipulations (Alba et al., 2011; Pachos et al., 2013).

For a system with more than two components – for instance additional spin or internal

degrees of freedom – the straightforward path from physical observables to the construction

of ν no longer holds. The Bloch Hamiltonian for such a system is no longer a 2×2 matrix,

and thus cannot be expanded in the Pauli matrix basis {X ,Y,Z}. While the Hamiltonian

can be expanded in a basis of higher dimensional matrices and parametrized by a vector

~̂v~p, this vector will have more than three components (Bernevig & Hughes, 2013). As

a result, the fundamental definition of the Chern number (5.1) no longer reduces to the

simple winding number expression (5.14). While the components of ~̂v~p can still in principle

be obtained from TOF images following Hamiltonian manipulations, there is no longer a

recipe to construct ν from them.

In the next chapter, we generalize the method to extract Chern numbers from TOF

images to four-component systems. We also discuss how this experimental technique allows

one to access the ES with respect to component bi-partitions (Legner & Neupert, 2013).
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CHAPTER 6

Detection of the Chern number and entanglement in four-

component systems

As discussed in the previous chapter, cold atom experiments are a promising route to the

preparation and measurement of topological phases. To realize such phases, delicate inter-

actions such as spin-orbit coupling, non-Abelian gauge fields or p-wave pairing are often

required, which necessitates the use of many species of atoms and/or internal states. As a

result, since measurement schemes usually rely on single-species observables 49, there is

often no way of verifying the existence of topological phases.

This chapter deals with how single-species observables suffice to construct the Chern

number of four-component systems. We demonstrate that ν decomposes into contributions

arising from subsystems; these contributions are subsystem winding numbers which are

physically observable, just like the winding number (5.14) of two-component systems. We

examine two interesting four-component systems to illustrate this method. More specifi-

cally, we show that the phase diagrams of the quantum spin-Hall insulator (QSHI) (Kane &

Mele, 2005) and a staggered topological superconductor (Pachos et al., 2013) are accurately

reproduced, as long as the subsystem components are not highly entangled. Furthermore,

the degree of this entanglement can be inferred using the very same operators used to con-

struct the subsystem winding numbers. This means that our method enables one to probe

entanglement between different degrees of freedom and measure the ES with respect to

bi-partitions between these degrees of freedom. The contents of this chapter are based on

(de Lisle et al., 2014).

49By single-species observables, we mean observables of the form ψ
†
~p~σψ~p introduced in section 5.4, where ψ~p

is a two-component spinor. The z-component of this observable is the difference of two density operators
corresponding to different species; the other components can be measured by rotating them to the z-axis (by
manipulating the Hamiltonian) and then measuring the z-component.
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6.1 Decomposition of the Chern number into subsystem winding num-

bers

In this section, we show analytically that the Chern number of four-component systems de-

composes into a sum of subsystem winding numbers, which are physically observable. We

demonstrate this in detail first for topological insulators, and then for topological supercon-

ductors, for which the arguments carry over with minor modifications.

6.1.1 Decomposition for topological insulators

Let us consider an insulator with four distinct types of fermions, whose annihilation oper-

ators are denoted by a1, a2, b1 and b2. The grouping or bi-partitioning of the components

into a and b type fermions is physically motivated, and could correspond to different spin

orientations or sublattices, for instance. Assuming translational invariance with respect to

these operators, the system Hamiltonian can be written as

H4 =
∫

BZ
d2 pψ

†
~ph4(~p)ψ~p , ψ~p =


a1,~p

a2,~p

b1,~p

b2,~p

 , (6.1)

where the Bloch Hamiltonian h4(~p) is a 4× 4 matrix. As discussed in section 5.4, the

ground state of the system can be written in the form

|Φ〉= ∏
~p∈BZ

 ∑
na

1,~p,n
a
2,~p,n

b
1,~p,n

b
2,~p=0,1

αna
1,~p,n

a
2,~p,n

b
1,~p,n

b
2,~p
|na

1,~p,n
a
2,~p,n

b
1,~p,n

b
2,~p〉

≡ ∏
~p∈BZ
|Φ~p〉 , (6.2)

with Fock states

|na
1,~p,n

a
2,~p,n

b
1,~p,n

b
2,~p〉 ≡ (a†

1,~p)
na

1,~p(a†
2,~p)

na
2,~p(b†

1,~p)
nb

1,~p(b†
2,~p)

nb
2,~p |0〉 . (6.3)

na,b
i,~p = 0,1 are the mode occupation numbers while |0〉 refers to the vacuum state of all

modes. To ensure that the ground state in (6.2) is normalized, the coefficients αna
1,~p,n

a
2,~p,n

b
1,~pnb

2,~p

must satisfy ∑na
1,~p,n

a
2,~p,n

b
1,~pnb

2,~p=0,1 |αna
1,~p,n

a
2,~p,n

b
1,~pnb

2,~p
|2 = 1.

Since the system conserves particle number, i.e. [H4,N] = 0, where

N = ∑~p,α=1,2(a
†
α,~paα,~p + b†

α,~pbα,~p) is the total particle number operator, H4 consists of

sectors labelled by different total particle numbers. Therefore, at half-filling, |Φ~p〉 can only

consist of Fock states that satisfy the condition ∑α=1,2(na
α,~p +nb

α,~p) = 2. A complete basis

for each momentum component |Φ~p〉 of the ground state is thus given by

{|1100〉 , |1010〉 , |1001〉 , |0110〉 , |0101〉 , |0011〉} . (6.4)

|Φ~p〉 can be written as a sum of two states living in two orthogonal (‘even’ and ‘odd’)
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subspaces

|Φ~p〉= A |Φ(na
1 +na

2 = even; nb
1 +nb

2 = even)〉+B |Φ(na
1 +na

2 = odd; nb
1 +nb

2 = odd)〉

≡ A |Φe〉+B |Φo〉 , (6.5)

where we have suppressed the ~p dependence on the right-hand side for ease of readability.

The populations na
1 + na

2 and nb
1 + nb

2 are either both even or both odd, |Φe〉 and |Φo〉 are

normalized and orthogonal to each other, while A and B satisfy |A|2 + |B|2 = 1 to ensure

normalization. The partitioning of the state in this manner facilitates our derivation.

We now Schmidt decompose both the even and odd parts of (6.5) with respect to the a

and b subsystems:

|Φe〉= cosθe |ae〉 |be〉+ sinθe |ãe〉 |b̃e〉

|Φo〉= cosθo |ao〉 |bo〉+ sinθo |ão〉 |b̃o〉 , (6.6)

where θe,θo ∈ [0,π/2] such that all the Schmidt coefficients are non-negative. It is under-

stood that the states |ae/o〉, |be/o〉, |ãe/o〉 and |b̃e/o〉 – which are written in the occupation

number basis – have the creation operators ordered as in (6.3). These states are normalized

and obey the orthogonality conditions 〈ae/o|ãe/o〉= 〈be/o|b̃e/o〉= 0, as one can see from

|ao〉=
(

α01a†
2,~p +α10a†

1,~p

)
|0〉 , |ão〉=

(
α
∗
10a†

2,~p−α
∗
01a†

1,~p

)
|0〉 ,

|bo〉=
(

β01b†
2,~p +β10b†

1,~p

)
|0〉 , |b̃o〉=

(
β
∗
10b†

2,~p−β
∗
01b†

1,~p

)
|0〉 (6.7)

and

|ae〉= eiφa |0〉 , |ãe〉= eiφ̃aa†
1,~pa†

2,~p |0〉 ,

|be〉= eiφbb†
1,~pb†

2,~p |0〉 , |b̃e〉= eiφ̃b |0〉 , (6.8)

where |α01|2+ |α10|2 = |β01|2+ |β10|2 = 1. The phases φa/b and φ̃a/b are in general non-zero.

However, after multiplying |Φ~p〉 by a global phase of e−i(φa+φb) 50, we can transfer them

to the odd subspace through the U(1) gauge transformation a†
1,~p→ e−i(φ̃a+φ̃b−φa−φb)a†

1,~p ≡
eiϕa†

1,~p. These phases can therefore be absorbed into α01 and α10
51. As a result, the only ~p

dependence in |Φe〉 is in its Schmidt coefficients, cosθe and sinθe.

Before we evaluate the Chern number of the ground state (6.2) using the Berry phase

50One can see from the Berry phase representation of ν which we discuss below (see (6.9)) that, such a gauge
transformation results in 〈Φ~p|~∇|Φ~p〉→ 〈Φ~p|~∇|Φ~p〉− i~∇(φa+φb). This extra gradient term vanishes upon using
Stokes’ theorem.

51Explicitly, after multiplying |Φ~p〉 by a phase e−i(ϕ/2), we can make the replacements α01 → e−i(ϕ/2)α01 and
α10→ ei(ϕ/2)α10.
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representation

ν =− i
2π

∮
∂BZ
〈Φ~p|~∇|Φ~p〉 ·d~p , (6.9)

where ~∇ =
(
∂px ,∂py

)
and ∂BZ refers to the boundary of the BZ, let us show that (6.9) and

(5.1) are equivalent. Diagonalization of h4(~p) in (6.1) yields the creation operators c†
1, c†

2,

c†
3, and c†

4 (suppressing the ~p label), with the latter two corresponding to the two lowest

energy bands. We can write these as

c†
3 = αa†

1 +βa†
2 + γb†

1 +δb†
2

c†
4 = εa†

1 +ηa†
2 +µb†

1 +ωb†
2 , (6.10)

with the vectors |χ3〉 = (α,β ,γ,δ )T and |χ4〉 = (ε,η ,µ,ω)T being the two lowest energy

eigenvectors of h4(~p). As a result, |Φ~p〉 = c†
3c†

4 |0〉, which means that |Φ~p〉 can be equally

well represented by a Slater determinant of |χ3〉 and |χ4〉 52:

|Φ~p〉 ↔
1√
2
(|χ3〉⊗ |χ4〉− |χ4〉⊗ |χ3〉) . (6.11)

Substituting this alternative representation into (6.9) yields

ν =− i
2π

∮
∂BZ

(
〈χ3|~∇|χ3〉+ 〈χ4|~∇|χ4〉

)
·d~p , (6.12)

which is precisely what one obtains if one evaluates the projector representation of ν , (5.1),

with P~p = |χ3〉〈χ3|+ |χ4〉〈χ4| and uses Stokes’ theorem. The representations (5.1) and

(6.9) are thus equivalent, and this equivalence holds in general.

Let us now evaluate the Chern number. We note that A and B can be taken to be real

and non-negative, which is achieved by absorbing possible complex phases into the states

|ae/o〉 |be/o〉 and |ãe/o〉 |b̃e/o〉. Plugging (6.5) into (6.9) one finds

ν =− i
2π

∮
∂BZ

(
A2 〈Φe|~∇|Φe〉+B2 〈Φo|~∇|Φo〉

)
·d~p , (6.13)

where the terms A~∇A and B~∇B do not contribute since A~∇A+B~∇B = ~∇(A2 +B2)/2 = 0.

The even subspace contribution to the integral vanishes because cosθe~∇cosθe+sinθe~∇sinθe =
~∇(cos2 θe+ sin2

θe)/2 = 0 (recall that the only ~p dependence in |Φe〉 is in cosθe and sinθe).

Turning our attention to the odd subspace contribution, 〈io|~∇|io〉=−〈ĩo|~∇|ĩo〉, which stems

from ~∇
(
|α01|2 + |α10|2

)
= ~∇

(
|β01|2 + |β10|2

)
= 0. Furthermore, since the terms involving

gradients of the Schmidt coefficients disappear (for the same reason that the even versions

52In other words, an anti-symmetrized tensor product of |χ3〉 and |χ4〉, which reflects the anti-commutation prop-
erty of the creation operators.
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disappear), we arrive at

ν =− i
2π

∑
i=a,b

∮
∂BZ

S~p 〈io|~∇|io〉 ·d~p , S~p = B2T , (6.14)

where T = cos2 θo− sin2
θo is a measure of entanglement between the a and b subsystems

53.

Equation (6.14) reveals that the Chern number is a sum of exclusive contributions from

the a or b subsystems. Due to the presence of S 54, these contributions are not in general

Berry phases which can be evaluated as winding numbers of the vectors ~̂sa(~p) and ~̂sb(~p),

associated with the 2D states |ao〉 and |bo〉 (see (6.7)), respectively. ν decomposes into

a sum of Berry phase contributions if and only if |S| = 1, which occurs when |T | = 1,

implying that the subsystems are unentangled. However, as we further discuss in section

6.1.2, as long as S 6= 0, the Chern number can be calculated using the right-hand side of

(6.14) with |S|= 1. This method fails only when S→ 0, i.e. when the system is maximally

entangled 55.

6.1.2 Subsystem winding numbers as physical observables

The observables for the a and b subsystems take the same form as the observables for a

two-component system (see (5.16)):

Σx
a = a†

1,~pa2,~p +a†
2,~pa1,~p, Σ

y
a = −ia†

1,~pa2,~p + ia†
2,~pa1,~p, Σz

a = a†
1,~pa1,~p−a†

2,~pa2,~p

Σx
b = b†

1,~pb2,~p +b†
2,~pb1,~p, Σ

y
b = −ib†

1,~pb2,~p + ib†
2,~pb1,~p, Σ

z
b = b†

1,~pb1,~p−b†
2,~pb2,~p.

(6.15)

The ground state expectation values of these operators,~Σi,~p =
(

Σx
i ,Σ

y
i ,Σ

z
i

)
, is easily calcu-

lated to be

〈Φ~p|~Σi,~p|Φ~p〉= B2
(

cos2
θo 〈io|~Σi,~p|io〉+ sin2

θo 〈ĩo|~Σi,~p|ĩo〉
)

= S 〈io|~Σi,~p|io〉 , (6.16)

53To be precise, T is only a measure of entanglement in the ‘odd part’ of |Φ~p〉, |Φo〉. Below, when we talk of the
degree of entanglement in the ‘system’, we mean the entanglement present in |Φo〉, unless stated otherwise.

54We will suppress the ~p dependence of S~p for the most part.

55Of course, B→ 0 with T remaining finite also results in S→ 0, i.e. it appears that S→ 0 does not necessarily
imply that the system is maximally entangled. However, it appears that in most cases, B should remain non-
zero throughout the BZ. Only in certain extreme (and topologically trivial) cases – such as when a large energy
imbalance forces the entire population into subsystem a or b – can B possibly vanish. This leads us to believe
that in general, S→ 0 implies that T → 0. We note that for superconducting systems (see section 6.1.3 and
(6.28)), S = A2T → 0 implies that T → 0, since A cannot vanish. This is apparent from equations (6.35)
and (6.36) and the discussion in section 6.2 regarding the superconducting ground state of the entanglement
Hamiltonian.
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6. Detection of the Chern number and entanglement in four-component systems

where we have used the traceless property of the~Σi,~p operators which implies 〈ĩo|~Σi,~p|ĩo〉=
−〈io|~Σi,~p|io〉. If we define the normalized three-vector 〈io|~Σi,~p|io〉 to be

〈io|~Σi,~p|io〉 ≡ ~̂si(~p) , (6.17)

we obtain

〈Φ~p|~Σa,~p|Φ~p〉= S~̂sa(~p), (6.18)

〈Φ~p|~Σb,~p|Φ~p〉= S~̂sb(~p), (6.19)

i.e. the observables (6.15) allow an experimentalist to measure the vectors S~̂sa/b(~p), at least

in principle. Furthermore, since the norm of these vectors is equal to |S|, the degree of

entanglement between the subsystems can be probed by using the operators (6.15).

We would like to express the Chern number (6.14) in terms of the measurable quantities

that we have discussed, so that the single-species observables (6.15) suffice to measure

ν . As it stands, the elements of (6.14) cannot be determined from these observables; for

instance, the sign of S cannot be determined using (6.15). On the right-hand side of (6.14),

let us set |S|= 1 and assume that the sign of S, sgn(S), does not change along the integration

contour, so that it can be taken outside the integral. The right-hand side thus becomes

− i
2π

∑
i=a,b

sgn(S)
∮

∂BZ
〈io|~∇|io〉 ·d~p = sgn(S) ∑

i=a,b
ν̃ [~̂si] , (6.20)

where equality follows from the fact that the Berry phase of |io〉 can be expressed as the

winding number of the Bloch vector characterizing |io〉 56, ~̂si, which is defined in (6.17).

We postulate that ν can be calculated from (6.20).

The right-hand side of (6.20) is in fact experimentally accessible, using the observables

we are considering. From (6.18) and (6.19), it is clear that while ~̂si(~p) is not observable,

sgn(S)~̂si(~p) is observable. This is because only the magnitude of S can be determined, while

its sign is inaccessible. Therefore, the winding numbers ν̃ [sgn(S)~̂si] are also observable.

Assuming that sgn(S) remains constant (and non-zero) in the BZ, the following holds:

∑
i=a,b

ν̃ [sgn(S)~̂si] = sgn(S) ∑
i=a,b

ν̃ [~̂si] . (6.21)

In other words, the sum of the subsystem winding numbers, (6.20), that we postulate to

yield the Chern number, is physically observable. Indeed, the examples of section 6.3 show

that the method works even for |S| 6= 1: ν is returned as long as the system is not maximally

entangled, or S 9 0. Our method only breaks down when S→ 0, which implies that no

56As explained in section 6.1.1, the Berry phase and projector representations of ν are equivalent, and appendix
E demonstrates that for 2D systems (such as |io〉), the projector and winding number representations are equiv-
alent.
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6.1. Decomposition of the Chern number into subsystem winding numbers

information about the vectors ~̂si(~p) can be inferred. We will now show that with small

modifications, a similar decomposition holds for topological superconductors.

6.1.3 Decomposition for topological superconductors

The generalization to topological superconductors is straightforward. We take the Hamilto-

nian to be of the same form as (6.1), with the basis given now by ψ~p =
(

a~p,a
†
−~p,b~p,b

†
−~p

)T
.

The many-body ground state of the system can again be written as (6.2) (with BZ→ BZ/2)

with the Fock states

|na
~p,n

a
−~p,n

b
~p,n

b
−~p〉= (a†

~p)
na
~p(a†
−~p)

na
−~p(b†

~p)
nb
~p(b†
−~p)

nb
−~p |0〉 . (6.22)

Superconductors conserve only the parity, Π, of the total number of particles in the system,

i.e. [H4,Π] = 0 with

Π = exp

(
iπ ∑

~p

[
a†
~pa~p +b†

~pb~p
])

= exp

(
iπ ∑

~p
a†
~pa~p

)
exp

(
iπ ∑

~p
b†
~pb~p

)
≡ΠaΠb , (6.23)

where Πa and Πb are the subsystem parities. When the subsystems are coupled, Πa and

Πb are not independently conserved. Since the ground state of a superconductor resides

in the even (total) parity sector 57, the subsystem parities are correlated such that Πa =

Πb. Furthermore, the ground state is a condensate of Cooper-pairs which have zero total

momentum, and so the Fock states which enter (6.2) must reflect this. These considerations

imply that |Φ~p〉 can be expanded in the basis

{|0000〉 , |0011〉 , |1100〉 , |1111〉 , |0110〉 , |1001〉} . (6.24)

As in the insulating case (see (6.5)), the basis for |Φ~p〉 can be split into even and odd

occupation subspaces:

|Φ~p〉= A |Φe〉+B |Φo〉 . (6.25)

A Schmidt decomposition on |Φe/o〉 with respect to the subsystems a and b yields expres-

sions which have the same form as (6.6), but with the Schmidt bases now being given by

|ae〉=
(

α00 +α11a†
~pa†
−~p

)
|0〉 , |ãe〉=

(
α
∗
11−α

∗
00a†

~pa†
−~p

)
|0〉 ,

|be〉=
(

β00 +β11b†
~pb†
−~p

)
|0〉 , |b̃e〉=

(
β
∗
11−β

∗
00b†

~pb†
−~p

)
|0〉 , (6.26)

57See the ground state (5.13), for instance.
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and

|ao〉= eiφaa†
−~p |0〉 , |ão〉= eiφ̃aa†

~p |0〉 ,

|bo〉= eiφbb†
~p |0〉 , |b̃o〉= eiφ̃bb†

−~p |0〉 . (6.27)

Since |α00|2 + |α11|2 = |β00|2 + |β11|2 = 1, the above states are all normalized and subject

to the same orthogonality conditions as their insulating counterparts.

Similar to the case of topological insulators, suitable gauge transformations can transfer

the odd subspace phases to the even subspace. The decomposition of the Chern number via

the Berry phase representation proceeds in similar steps to the insulating case. The only

difference is that it is now the odd subspace contribution that vanishes in (6.13), with the

Chern number now being given by

ν =− i
2π

∑
i=a,b

∮
∂BZ

S 〈ie|~∇|ie〉 ·d~p, S = A2T , (6.28)

with T = cos2 θe− sin2
θe being a measure of entanglement between the subsystems.

The subsystem observables~Σi,~p =
(

Σx
i ,Σ

y
i ,Σ

z
i

)
are now defined by

Σx
a = a†

~pa†
−~p +a−~pa~p, Σ

y
a = −ia†

~pa†
−~p + ia−~pa~p, Σz

a = a†
~pa~p−a−~pa†

−~p,

Σx
b = b†

~pb†
−~p +b−~pb~p, Σ

y
b = −ib†

~pb†
−~p + ib−~pb~p, Σ

z
b = b†

~pb~p−b−~pb†
−~p,

(6.29)

and so the ground state expectation value of~Σi,~p is

〈Φ~p|~Σi,~p|Φ~p〉= A2
(

cos2
θe 〈ie|~Σi,~p|ie〉+ sin2

θe 〈ĩe|~Σi,~p|ĩe〉
)

= S 〈ie|~Σi,~p|ie〉

≡ S~̂si(~p) , (6.30)

i.e. the vectors S~̂sa/b(~p) are observable. Once again, this allows |S| to be measured, and

thus the degree of entanglement between subsystems can be probed for superconducting

systems by using the observables (6.29). Furthermore, using the argument presented for

insulators, (6.28) becomes a sum of subsystem winding numbers (right-hand side of (6.20))

which are observable. For a superconducting model that we examine in 6.3.2, the sum of

these winding numbers indeed yields ν , as long as the system 58 is not maximally entangled.

6.2 Detection of the component entanglement spectrum

We found above that since the entanglement measure T is proportional to the observable |S|,
the degree to which the subsystems are entangled can be probed experimentally. We now

58For superconductors, entanglement of the ‘system’ refers to entanglement of |Φe〉, unless stated otherwise.
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show that one can go further and use these same observables to construct the component ES

(Legner & Neupert, 2013) of non-interacting insulators and superconductors.

We first consider the insulating case. The two-point correlation function (which was

introduced in section 5.3) becomes block diagonal when expressed in momentum space

C̄=
⊕
~p∈BZ

C̄(~p) , (6.31)

where each block C̄(~p) is a 4×4 matrix labelled by ~p. These blocks have matrix elements

C̄i, j(~p) where i, j = 1,2,3,4 and 1↔ a1, 2↔ a2, 3↔ b1, 4↔ b2; for instance, C̄2,3(~p) =

〈Φ|a†
2,~pb1,~p |Φ〉. The projector onto subsystem a also assumes a block diagonal structure in

~p space

P̄a =
⊕
~p∈BZ

P̄a(~p) , P̄a(~p) = diag(1,1,0,0) , (6.32)

and thus the restricted correlation matrix is given by

C̄a = P̄aC̄P̄a =
⊕
~p∈BZ

C̄a(~p) . (6.33)

It is easy to see that Ssz
a(~p) =

(
C̄a(~p)

)
11 −

(
C̄a(~p)

)
22, and similarly for the x- and

y-components. A simple calculation reveals that the (non-trivial) eigenvalues of C̄a(~p)

are ζ± = (Na(~p)±|S|)/2, where we have defined the occupation in subsystem a to be

Na(~p)≡ 〈Φ|a†
1,~pa1,~p +a†

2,~pa2,~p |Φ〉. Substituting this into (5.9) yields the single-particle ES

or ‘energies’ at each momenta

ε±(~p) = log
(

Nb(~p)∓|S|
Na(~p)±|S|

)
, (6.34)

where the occupation in subsystem b is Nb(~p) = 2−Na(~p), since we are considering sys-

tems at half-filling. Our observables thus give direct access to the component ES. The

entanglement gap closes if ε+ = ε− for some ~p 59. It is straightforward to verify that this

is satisfied only when |S| = 0, i.e. when the subsystems are maximally entangled and our

detection scheme becomes unreliable.

While a similar analytic derivation between the ES and the observables is more involved

for paired fermion systems, due to (5.9) being replaced by a more complicated relation

(Peschel, 2003), one can qualitatively understand that a similar relation must also hold for

such systems. The ~p-th component of ρa is

ρa(~p) = A2 (cos2
θe |ae〉〈ae|+ sin2

θe |ãe〉〈ãe|
)
+B2 (cos2

θo |ao〉〈ao|+ sin2
θo |ão〉〈ão|

)
,

(6.35)

59This is a ‘direct’ gap closure; in principle, ‘indirect’ gap closures where ε+(~p) = ε−(~q) for ~p 6=~q can also exist.
The gap is thus formally given by min~pε+−max~pε−.
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with ρa being a product of these components over ~p. The state with greatest weight in

ρa is the ground state of the entanglement Hamiltonian, and since this Hamiltonian is of

superconducting form, the ground state must reside in the even parity sector. This means

that the largest eigenvalue of ρa is

∏
~p

A2 max(cos2
θe,sin2

θe) . (6.36)

|S| = A2|cos2 θe− sin2
θe| vanishes when cos2 θe = sin2

θe
60, and when this happens, the

largest eigenvalue of ρa becomes degenerate. In other words, as for insulators, when the

subsystems are maximally entangled, the entanglement gap closes 61. Indeed, we will nu-

merically show in section 6.3.2 that there is exact agreement between the observable |S|→ 0

and the entanglement gap closing for superconducting systems as well.

6.3 Case studies

We now demonstrate the validity of our analytic arguments by examining two distinct topo-

logical models: the QSHI (Kane & Mele, 2005) and a staggered topological superconduc-

tor (Pachos et al., 2013). In both cases, the phase diagrams are accurately reproduced by

subsystem winding numbers, with any discrepancies coinciding with regions of high entan-

glement between the subsystems.

6.3.1 Example I: The quantum spin-Hall insulator

The first example we consider is the QSHI defined on a honeycomb lattice (Kane & Mele,

2005). With this model, Kane and Mele showed that time-reversal symmetric topological

insulators can exist in principle. In contrast to phases which break time-reversal symmetry,

such as IQH states, the QSHI supports non-chiral edge states. Namely, an edge state which

propagates in a certain direction is accompanied by its time-reversed partner which moves

in the opposite direction. There are an odd number of such ‘Kramers pairs’ in the non-trivial

quantum spin-Hall (QSH) phase and an even number in the trivial insulating phase.

The Hamiltonian of this model is given by

HKM = t ∑
〈i, j〉

c†
i c j +λv ∑

i
εic

†
i ci + iλSO ∑

〈〈i, j〉〉
νi jc

†
i Zc j + iλR ∑

〈i, j〉
c†

i

(
~σ × ~̂di j

)
z
c j , (6.37)

where ci = (ci,↑,ci,↓)
T denotes the two spin degrees of freedom of a spin-half particle at

lattice site i. The first term describes nearest neighbour tunnelling with hopping amplitude

60As mentioned earlier, A must be non-zero since the ground state of the entanglement Hamiltonian must belong
to the even parity sector.

61Recall the discussion in section 5.3 where we explained that zeros in the single-particle ES imply degeneracies
in the ES. Assuming that the converse holds, and using the particle-hole symmetry ε− =−ε+ of superconduc-
tors, degeneracies in the ES imply entanglement gap closure.
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Figure 6.1: Top left: Theoretical phase diagram of (6.37) in the parameter space
(λv/λSO,λR/λSO). The trivial phase corresponds to νS = 0, while the QSH phase corre-
sponds to νS = 1. Top right: Phase diagram computed from (ν̃↑− ν̃↓)/2 mod 2. Bottom left:
The minimum of the subsystem entanglement measure across the BZ, min~p|S|. min~p|S|→ 0
indicates maximal entanglement whereas min~p|S| → 1 indicates minimal entanglement. We
see that in the QSH phase, the spin components are either completely or effectively decou-
pled. Bottom right: The gap of the ES of the spin-up subsystem. This gap is defined to be
min~pζ+−max~pζ− and closes when |S|= 0, as noted in section 6.2.

t, while the second term is a sublattice energy imbalance, where εi =±1 depends on which

sublattice i belongs to and λv sets the magnitude of the imbalance. Both these terms are

spin-conserving. The third term is an ‘intrinsic’ spin-orbit coupling of strength λSO, in the

form of next-nearest neighbour hopping, and conserves only the z-component of spin. In it,

νi j = (2/
√

3)sgn
(
~̂d1× ~̂d2

)
z

where ~̂d1 and ~̂d2 are unit vectors along the two bonds a particle

traverses in going from j to i. The last term is a Rashba spin-orbit coupling of strength

λR, in the form of nearest neighbour hopping, with ~̂di j being a unit vector from site j to

i. This last term breaks Z conservation and was introduced to model realistic solid-state

environments.

After Fourier transforming (6.37), it assumes the form of (6.1) in the basis

ψ~p = (a↑,~p,a↓,~p,b↑,~p,b↓,~p)T , where a and b denote the two sublattice degrees of freedom

in the unit cell of the honeycomb lattice 62. While the Chern number is zero for time-

reversal symmetric systems (Avron et al., 1988), Kane and Mele showed that HKM supports

trivial insulating and QSH phases, which are distinguished by a bulk Z2 valued topological

62a↑,~p is the Fourier transform of ci∈a,↑, with the other components of ψ~p being defined in an analogous manner.
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invariant (Kane & Mele, 2005) 63. Moreover, the Z2 invariant was shown to be related to the

so-called spin Chern number νS (Sheng et al., 2006), which is determined by spin-up/down

Chern numbers ν↑/↓. More precisely, the Z2 invariant is given by νS = (ν↑−ν↓)/2 mod 2.

The phase diagram as a function of λR and λv (in units of λSO) is shown in the top left panel

of figure 6.1.

The spin Chern number has a natural counterpart in our construction if we identify the

spin-up and spin-down components as the two subsystems with respect to which the ground

state is Schmidt decomposed. Let us define the ↑-spin observables to be

Σx
↑ = a†

↑,~pb↑,~p +b†
↑,~pa↑,~p , Σ

y
↑ = −ia†

↑,~pb↑,~p + ib†
↑,~pa↑,~p , Σ

z
↑ = a†

↑,~pa↑,~p−b†
↑,~pb↑,~p
(6.38)

and similarly for the ↓-spin component. By evaluating the ground state expectation values

of these operators, one can construct the vectors S~̂s↑(~p) and S~̂s↓(~p), and thus the subsystem

winding numbers ν̃ [sgn(S)~̂s↑/↓] ≡ ν̃↑/↓. When λR = 0, Z is conserved, and so the subsys-

tems are decoupled with |S|= 1. In this case, the winding numbers ν̃↑/↓ are bona fide Chern

numbers, and thus (ν̃↑− ν̃↓)/2 mod 2 coincides with νS, as expected. In fact, the top right

panel of figure 6.1 reveals that even when λR 6= 0 i.e. the subsystems are coupled, the dif-

ference of the winding numbers still yields the correct value of νS with high precision. The

bottom left panel of the same figure shows that the subsystem entanglement measure |S|
remains large within the QSH phase, which confirms that the spin components are mini-

mally entangled in this phase. We take this as confirming the reliability of our method for

non-maximally entangled states.

The entanglement gap of the spin-up subsystem is shown in the bottom right panel of

figure 6.1. Since ε± ∈ [−∞,∞], the gap is defined to be min~pζ+−max~pζ− where ζ± ∈ [0,1];
from (5.9), if this gap closes, min~pε+−max~pε− vanishes as well. It is clear to see that when

|S| = 0, the gap closes, as expected from section 6.2. An alternative partitioning is to treat

the two sublattices as subsystems. It was found in (Legner & Neupert, 2013) that in the

QSH phase, the corresponding sublattice ES (the eigenvalues ζ±) covers the entire interval

[0,1], although the converse does not hold. Therefore, if using our observables one finds

that the sublattice ES does not cover the entire interval [0,1], one can deduce that the system

is topologically trivial.

6.3.2 Example II: A staggered topological superconductor

The second example we consider is a recently introduced staggered topological supercon-

ductor (Pachos et al., 2013) which supports phases with Chern numbers ν = 0,±1 and ±2.

The interest in this model stems from the fact that it is adiabatically connected to Kitaev’s

celebrated honeycomb model (Kitaev, 2006a). In particular, detection of the ν =±2 phases

63When the Z2 invariant is equal to zero (trivial phase), there are an even number of the above-mentioned Kramers
pairs, whereas when it is equal to one (non-trivial phase) there are an odd number.
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6.3. Case studies

Figure 6.2: Top left: The phase diagram of (6.39) in (δ/t,µ/t) space computed via the
Berry phase (the numbers within the phase diagram are the Chern numbers of the corre-
sponding phase). The colour encodes the magnitude of the spectral gap, while the dashed
lines indicate the phase boundaries. Top right: The phase diagram computed from the sum
of the winding numbers of the a and b sublattices. Bottom left: The sublattice entanglement
measure as characterized by min~p|S|. Bottom right: The gap of the ES corresponding to ei-
ther sublattice. Here, the gap is defined to be min~p|1/2−η+|= min~p|1/2−η−| (see main
text for more details). There is good correspondence between |S| → 0 and the gap closing.

– which are known to emerge from the collective interactions of Majorana modes bound

to a vortex lattice (Lahtinen et al., 2012) – would provide unambiguous evidence for the

existence of Majorana modes.

The model is defined on a square lattice and described by the Hamiltonian

HSC = ∑
j

[
(µ−δ )a†

ja j +(µ +δ )b†
jb j + t

(
ia†

jb j− ib†
ja j+x̂ +a†

ja j+ŷ +b†
jb j+ŷ

)
+∆

(
a†

jb
†
j +b†

ja
†
j+x̂ +a†

ja
†
j+ŷ +b†

jb
†
j+ŷ

)
+H.c.

]
, (6.39)

where j denotes the positions of the unit cell, which consists of two adjacent (square lattice)

sites in the x-direction, and x̂ and ŷ are the primitive lattice translation vectors. The two sites

of the unit cell are distinguished by a staggered offset ±δ in the chemical potential, and a

staggered nearest-neighbour hopping amplitude ±it in the x-direction. These sites can thus

be regarded as two sublattice degrees of freedom, at which spinless fermions can be created

by the operators a†
j and b†

j . The fermions are subject to (nearest-neighbour) s-wave pairing

of strength ∆.

We partition the system into the a and b sublattices; the relevant operators to evaluate
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6. Detection of the Chern number and entanglement in four-component systems

the corresponding subsystem winding numbers are thus given by (6.29). The phase diagram

constructed from the winding numbers is shown in the top right panel of figure 6.2, and in

general faithfully reproduces the true phase diagram in the top left panel. Discrepancies

between the two occur only in regions where the sublattices are highly entangled, as can be

seen from the plot of min~p|S| in the bottom left panel of figure 6.2. Thus, as expected from

section 6.2, the decomposition breaks down when |S| → 0; results in these regimes should

therefore be treated with caution. Nonetheless, we note that the discrepancies in the phase

diagrams are only in the sign of ν , which is sufficient to distinguish all distinct types of

topological phases up to their chiralities.

In section 5.3, we saw that for an insulator, ε± are determined by the spectrum of the

restricted flat band Hamiltonian of the insulator. This holds for superconductors as well,

with ε± being determined by the eigenvalues 1/2−η± of the restricted flat band Bloch

Hamiltonian

1/2− P̄iP(~p)P̄i , (6.40)

where P(~p) is the projector onto the two lowest energy bands (with energy −1/2) and P̄i

is the projector onto subsystem i. The exact relationship between the two sets of eigen-

values is not needed for our purposes. We simply note that the particle-hole symmetry of

(6.40) implies that 1/2−η+ = −(1/2−η−) and thus ε+ = −ε−. Entanglement gap clo-

sure therefore corresponds to 1/2−η± = 0 and ε± = 0. The entanglement gap – defined as

min~p|1/2−η+|= min~p|1/2−η−| – for either sublattice is shown in the bottom right panel

of figure 6.2. We see that gap closures are in excellent agreement with |S| → 0, as argued in

section 6.2, with slight mismatches and discontinuities in the plot of the gap resulting from

the coarse-graining of parameter space and the BZ. The significance or otherwise of a gap-

less component ES for a topological superconductor (beyond indicating maximal subsystem

entanglement) is unclear at present.

6.4 Summary and discussion

This chapter has dealt with the problem of measuring the Chern number of topological

four-component insulators and superconductors. To solve this problem, we have presented

an analytic decomposition of the Chern number into a sum of subsystem winding num-

bers, which can be measured using single-species observables. To test the veracity of the

decomposition, subsystem winding numbers were used to construct the phase diagrams of

the QSHI and a staggered superconductor. In both cases, the results agree favourably with

the true phase diagrams. Our method is tailored for cold atom experiments, where mul-

tiple atomic species and/or internal states are often used to synthesize the pairing terms,

spin-orbit couplings and gauge fields required to create topological phases (Béri & Cooper,

2011; Bermudez et al., 2010a,b; Goldman et al., 2010; Kubasiak et al., 2010; Mazza et al.,

2012). Being able to separately measure the TOF images of the individual components

or species (Alba et al., 2011; Pachos et al., 2013) is sufficient to construct the subsystem
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winding numbers, and thus the Chern number.

The accuracy of our method is limited only by the entanglement between the compo-

nents with respect to which the observables are defined. In the limit of maximal entangle-

ment, BZ discretization errors become significant and thus the winding numbers, despite

remaining integers, become unreliable. Fortunately, the observables that are used to con-

struct the winding numbers can also probe the degree of entanglement, and thus assess the

reliability of the results. In our case studies, all discrepancies can be explained in terms of

high entanglement occurring in the corresponding regions of parameter space. The fact that

our decomposition method makes no a priori assumptions on the nature of the components

– i.e. a decomposition exists for any partition – means that in practice, an experimentalist

would have some freedom when using our method. Of course, for ‘best’ results, one should

employ observables associated with components that are as close to being unentangled as

possible, if indeed this can be gauged.

With the help of analytics and numerics, we revealed a connection between subsystem

entanglement and the translation symmetric component ES (Legner & Neupert, 2013). In

particular, we found that entanglement gap closure implies maximal entanglement and vice

versa. Indeed, our work provides a rare example of entanglement (spectrum) properties that

can be probed experimentally.
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Conclusions

In this second part of the thesis, we have presented a method of detecting the Chern

number and entanglement properties of 2D topological four-component insulators and su-

perconductors. Our scheme is applicable to cold atom experiments, and is notable for its

relative simplicity since it only relies on the standard tool of TOF imaging. In fact, the

method is quite general and could conceivably be applied to other experimental setups,

such as solid-state experiments or simulations of topological phases (Roushan et al., 2014).

The only requirement is that single-species observables should be accessible.

An open question is the generalization of our method to systems with more than four

components, a possible direction being to employ a multipartite Schmidt decomposition

(Carteret et al., 2000). We note that attempting to prove that the Chern number decomposes

for such systems may be a non-trivial task, since employing a general multipartite Schmidt

decomposition while respecting symmetries and constraints appears to be an involved affair.

Another possible route is to perform convoluted bipartite Schmidt decompositions, although

this hardly seems to be any easier. Numerical investigations might be the best bet to see

whether a decomposition holds more generally; if so, it would be interesting to see what

sort of correlations in the system lead to the method breaking down. Another topic worthy

of future study is to see whether other entanglement (spectrum) properties – in particular

those related to other types of system partitions (Hsieh & Fu, 2013) – can be accessed

through measurements.

It is interesting to speculate whether the method (or generalizations of it) could be ap-

plied to extract the invariants and entanglement spectra characterizing three-dimensional

topological insulators and superconductors (Bernevig & Hughes, 2013; Qi & Zhang, 2011).

Such invariants are determined by integrals over momentum space (as for the Chern num-

ber), and it is plausible that the information contained in TOF images may suffice to con-

struct them. Another worthwhile direction of study is to see whether the existence of in-

teracting topological phases can be verified. Hybrid methods such as TOF imaging supple-

mented with in situ measurements (Wang et al., 2013) – or even novel tools – are perhaps

needed to attack this problem.
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APPENDIX A

Some capacitance matrices and their inverses

Here, we collect the (transformed) capacitance matrices and inverses of an array of length

two (C′4×4 and C′−1
4×4), length three (C′6×6 and C′−1

6×6) and length four (C′8×8 and C′−1
8×8).

Open boundary conditions are assumed for all cases. From these examples, we infer the

important features of C′−1 for an arbitrary sized array to approximate (2.1) as (2.7). The

important thing to note about the inverses is that, the elements which couple the ‘+’ com-

ponents only fall off arithmetically with distance by a fraction of C−1
1 , while those which

couple the ‘−’ components fall off geometrically with distance by a factor O(C1/CI). Be-

low, a≡C1
2−2CI

2 and b≡C1
4−12C1

2CI
2 +16CI

4.
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A. Some capacitance matrices and their inverses

C′4×4 ≈


2C1 0 −C1 0

0 2CI 0 −C1

−C1 0 2C1 0

0 −C1 0 2CI

 C′
−1
4×4 ≈


2

3C1
0 1

3C1
0

0 − 2CI

(C1
2−4CI

2)
0 − C1

(C1
2−4CI

2)
1

3C1
0 2

3C1
0

0 − C1

(C1
2−4CI

2)
0 − 2CI

(C1
2−4CI

2)



C′6×6 ≈



2C1 0 −C1 0 0 0

0 2CI 0 −C1 0 0

−C1 0 2C1 0 −C1 0

0 −C1 0 2CI 0 −C1

0 0 −C1 0 2C1 0

0 0 0 −C1 0 2CI



C′−1
6×6 ≈



3
4C1

0 1
2C1

0 1
4C1

0

0 1
4CI
− CI

2a 0 −C1
2a 0 − C1

2

4CI a
1

2C1
0 1

C1
0 1

2C1
0

0 −C1
2a 0 −CI

a 0 −C1
2a

1
4C1

0 1
2C1

0 3
4C1

0

0 − C1
2

4CI a 0 −C1
2a 0 1

4CI
− CI

2a



C′8×8 ≈



2C1 0 −C1 0 0 0 0 0

0 2CI 0 −C1 0 0 0 0

−C1 0 2C1 0 −C1 0 0 0

0 −C1 0 2CI 0 −C1 0 0

0 0 −C1 0 2C1 0 −C1 0

0 0 0 −C1 0 2CI 0 −C1

0 0 0 0 −C1 0 2C1 0

0 0 0 0 0 −C1 0 2CI



C′−1
8×8 ≈



4
5C1

0 3
5C1

0 2
5C1

0 1
5C1

0

0 −4CI (C1
2−2CI

2)
b 0 −C1 (C1

2−4CI
2)

b 0 2C1
2 CI

b 0 C1
3

b
3

5C1
0 6

5C1
0 4

5C1
0 2

5C1
0

0 −C1 (C1
2−4CI

2)
b 0 −2CI (C1

2−4CI
2)

b 0 4C1 CI
2

b 0 2C1
2 CI

b
2

5C1
0 4

5C1
0 6

5C1
0 3

5C1
0

0 2C1
2 CI

b 0 4C1 CI
2

b 0 −2CI (C1
2−4CI

2)
b 0 −C1 (C1

2−4CI
2)

b
1

5C1
0 2

5C1
0 3

5C1
0 4

5C1
0

0 C1
3

b 0 2C1
2 CI

b 0 −C1 (C1
2−4CI

2)
b 0 −4CI (C1

2−2CI
2)

b


(A.1)
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APPENDIX B

Effective Hamiltonians via degenerate perturbation theory

Following the discussion in (Gottfried & Yan, 2003), we give some details on how to derive

an effective Hamiltonian via degenerate perturbation theory. We adopt the conventions used

by Gottfried and Yan, although the final result is slightly different. Consider a Hamiltonian

H which is the sum of two parts:

H =H0 +λH1 , (B.1)

where H0 is the unperturbed Hamiltonian, which is assumed to have a complete set of

known eigenstates and eigenvalues, and H1 is the perturbation. Even if the perturbation

is small, it will have a big effect on unperturbed states that have neighbours with energies

close by, which is the case for a degenerate or nearly degenerate spectrum. When this is so,

non-degenerate perturbation theory has to be modified, since the eigenstates and eigenvalues

calculated with it diverge.

Let us assume that the spectrum of H0 contains a degenerate or nearly degenerate sub-

space D spanned by {|α〉}. Since the problem is to find the perturbed spectrum in D, all

that needs to be said about the states {|µ〉} outside of D is that they are ‘far away’ from D,

in the sense that

|λ 〈α|H1 |µ〉 | � |Eα −Eµ | . (B.2)

Within D there is no such constraint on the matrix elements of the perturbation. The eigen-

states {|a〉} of H which correspond to D satisfy

(H−Ea) |a〉= 0 , (B.3)

and can be expanded as

|a〉= ∑
α

cα |α〉+∑
µ

dµ |µ〉 , (B.4)
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B. Effective Hamiltonians via degenerate perturbation theory

where {cα} are expected to be O(1), while {dµ} are expected to be O(λ ). Taking the inner

product of (B.3) with |β 〉 ∈D and with |µ〉 6∈D yields the equations

cβ (Eβ −Ea)+λ ∑
α

cα 〈β |H1 |α〉+λ ∑
µ

dµ 〈β |H1 |µ〉= 0 , (B.5)

dµ(Eµ −Ea)+λ ∑
α

cα 〈µ|H1 |α〉+λ ∑
ν

dν 〈µ|H1 |ν〉= 0 . (B.6)

The last term of (B.6) is O(λ 2), and so rearranging this equation for dµ and plugging into

(B.5) gives us

cβ (Eβ −Ea)+∑
α

cα

(
λ 〈β |H1 |α〉+λ

2
∑
µ

〈β |H1 |µ〉〈µ|H1 |α〉
Ea−Eµ

)
= 0 , (B.7)

to second order in λ .

Since ∑α cα 〈β |H0 |α〉= cβ Eβ , the above can be rewritten as

∑
α

cα

(
〈β |H0 |α〉+λ 〈β |H1 |α〉+λ

2
∑
µ

〈β |H1 |µ〉〈µ|H1 |α〉
Ē−Eµ

)
︸ ︷︷ ︸

≡〈β |Heff|α〉

= cβ Ea , (B.8)

where Ē is some mean energy in D, and the error in replacing Ea with Ē is negligible. The

motivation for the definition of the effective Hamiltonian Heff above is that, (B.8) looks just

like an eigenvalue problem restricted to the subspace D. Since the matrix elements of Heff

only ever correspond to states in D, we can define Heff to be (setting λ = 1)

Heff ≡ PHP+PH1
1−P

Ē−H0
H1P , (B.9)

where P= ∑α |α〉〈α| projects onto D, and Ē should not coincide with any of the eigenval-

ues in D. This definition of Heff differs from that in (Gottfried & Yan, 2003), in which the

first term on the right in (B.9) is PH1P. Our choice seems to be a more natural definition,

since as H1→ 0, Heff→ PH0P above, whereas Gottfried and Yan’s effective Hamiltonian

tends to zero.
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APPENDIX C

An effective Hamiltonian for Kitaev’s current mirror qubit

In this appendix, we derive a low energy effective Hamiltonian for the system analysed by

Kitaev. We start by decomposing (2.7) as

HKCMQ ≈H0
KCMQ +HJ

KCMQ , (C.1)

where

H0
KCMQ = O(E1)∑

x
n+(x)2 +EI ∑

x
n−(x)2 +O(E1) ∑

x;y>0
n+(x)n+(x+ y) (C.2)

is the free term and

HJ
KCMQ =−2EJ ∑

x
cos [ϕ+(x+1)−ϕ+(x)]cos [ϕ−(x+1)−ϕ−(x)] (C.3)

is the perturbation. The free part is clearly in a diagonal form, and it has a non-degenerate

ground state given by n+(x) = n−(x) = 0 ∀x, while since E1� EI , its lowest excited states

are given by n+(x)= 0, n−(x)= 0,±2 ∀x. Since only the low energy dynamics of the system

concern us, degenerate perturbation theory allows us to project HKCMQ onto the subspace

D, spanned by the ground and lowest excited states, to arrive at an effective Hamiltonian.

Denoting the basis by {|n+(1),n−(1),n+(2),n−(2), . . . ,n+(L),n−(L)〉} (the length of

the array is L and we assume periodic boundary conditions), we can write the ground state

as |gs〉 ≡ |0,0, . . . ,0,0〉, and thus form the projector P onto D:

P≡ |gs〉〈gs|︸ ︷︷ ︸
P0

+ ∑
{n−(x)}≡n−(x)=0,±2

|0,n−(1), . . . ,0,n−(L)〉〈0,n−(1), . . . ,0,n−(L)|︸ ︷︷ ︸
P{n−(x)}

. (C.4)

It is understood that the sum does not contain the term n−(x) = 0 ∀x. With this projector,
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C. An effective Hamiltonian for Kitaev’s current mirror qubit

we can form an effective Hamiltonian using the definition (B.9)

Heff
KCMQ ≡ PHKCMQP+PHJ

KCMQ
1−P

Ē−H0
KCMQ

HJ
KCMQP , (C.5)

where Ē is the mean energy of D and is very small compared to E1. The tunnelling pertur-

bation can be written in terms of charge raising (lowering) operators b†
j(x) (b j(x)) – where

j ∈ {+,−} – by defining

eiϕ j(x)︸ ︷︷ ︸
b j(x)

|. . . ,n j(x), . . .〉= |. . . ,n j(x)−1, . . .〉 , (C.6)

e−iϕ j(x)︸ ︷︷ ︸
b†

j(x)

|. . . ,n j(x), . . .〉= |. . . ,n j(x)+1, . . .〉 . (C.7)

Since cos [ϕ j(x+1)−ϕ j(x)] = 1
2

(
eiϕ j(x+1)e−iϕ j(x)+ e−iϕ j(x+1)eiϕ j(x)

)
, (C.3) becomes

HJ
KCMQ =−EJ

2 ∑
x

b+(x+1)b†
+(x)

(
b−(x+1)b†

−(x)+H.c.
)
+H.c. . (C.8)

The first term to be examined in (C.5) is PH0
KCMQP, and inspection reveals this to be

PH0
KCMQP= EI ∑

{n−(x)}

(
∑
x

n−(x)2
)
P{n−(x)} . (C.9)

This term simply measures the energy of the system in the absence of a tunnelling pertur-

bation. PHJ
KCMQP is next on the list to look at, and applying the perturbation on the ground

state gives

HJ
KCMQ |gs〉 ∝ ∑

x
|. . . ,n+(x) =−1,n−(x) = 1,1,−1, . . .〉+ |. . . ,−1,−1,1,1, . . .〉

+ |. . . ,1,1,−1,−1, . . .〉+ |. . . ,1,−1,−1,1, . . .〉 ,
(C.10)

where . . . refers to 0,0, . . . ,0. P0H
J
KCMQ |gs〉 and P{n−(x)}H

J
KCMQ |gs〉 clearly vanish, and

similar analysis of PHJ
KCMQ ∑{n−(x)}P{n−(x)} shows that it vanishes as well, which means

that

PHJ
KCMQP= 0 . (C.11)

Since (C.11) vanishes, the second order term in (C.5) simplifies to

PHJ
KCMQ

1−P

Ē−H0
KCMQ

HJ
KCMQP= PHJ

KCMQ(Ē−H0
KCMQ)

−1HJ
KCMQP . (C.12)
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Writing ∑xO(E1)n+(x)2 +EIn−(x)2 as

∑
{n j(x)}

(
∑
j,x

k jn j(x)2

)
|n+(1),n−(1), . . . ,n+(L),n−(L)〉〈n+(1),n−(1), . . . ,n+(L),n−(L)|︸ ︷︷ ︸

Q{n j(x)}

,

(C.13)

where k+ ≡ O(E1) and k− ≡ EI , and O(E1)∑x;y>0 n+(x)n+(x+ y) as

∑
{n j(x)}

(
O(E1) ∑

x;y>0
n+(x)n+(x+ y)

)
Q{n j(x)} , (C.14)

one can see that

(Ē−H0
KCMQ)

−1 = ∑
{n j(x)}

(
Ē−∑

j,x
k jn j(x)2−O(E1) ∑

x;y>0
n+(x)n+(x+ y)

)−1

Q{n j(x)} .

(C.15)

In the above, the inverse exists as long as we do not encounter 0−1; we can always tweak Ē

to ensure that this is so.

To determine PHJ
KCMQ(Ē −H0

KCMQ)
−1HJ

KCMQP we work our way from right to left.

HJ
KCMQP0 has already been worked out in (C.10), while HJ

KCMQ ∑{n−(x)}P{n−(x)} is given

by

HJ
KCMQ ∑

{n−(x)}
P{n−(x)} =−

EJ

2 ∑
{n−(x)}

∑
x

(
|. . . ,1,n−(x)+1,−1,n−(x+1)−1, . . .〉

+ |. . . ,1,n−(x)−1,−1,n−(x+1)+1, . . .〉+ |. . . ,−1,n−(x)−1,1,n−(x+1)+1, . . .〉

+ |. . . ,−1,n−(x)+1,1,n−(x+1)−1, . . .〉
)
〈{n−(x)}| ,

(C.16)

where the meaning of . . . should be self-explanatory. Before we examine the effect of

(Ē −H0
KCMQ)

−1 acting on these two terms, we introduce the following notation to keep

things as uncluttered as possible:

|{n j(x)}〉
′
≡ (Ē−H0

KCMQ)
−1 |{n j(x)}〉

=

(
Ē−∑

j,x
k jn j(x)2−O(E1) ∑

x;y>0
n+(x)n+(x+ y)

)−1

|{n j(x)}〉 .

Thus,

(Ē−H0
KCMQ)

−1HJ
KCMQP0 =−

EJ

2 ∑
x

(
|. . . ,n+(x) =−1,n−(x) = 1,1,−1, . . .〉

′

+ |. . . ,−1,−1,1,1, . . .〉
′
+ |. . . ,1,1,−1,−1, . . .〉

′
+ |. . . ,1,−1,−1,1, . . .〉

′)
〈gs| , (C.17)
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C. An effective Hamiltonian for Kitaev’s current mirror qubit

and

(Ē−H0
KCMQ)

−1HJ
KCMQ ∑

{n−(x)}
P{n−(x)} =

− EJ

2 ∑
{n−(x)}

∑
x

(
|. . . ,1,n−(x)+1,−1,n−(x+1)−1, . . .〉

′

+ |. . . ,1,n−(x)−1,−1,n−(x+1)+1, . . .〉
′
+ |. . . ,−1,n−(x)−1,1,n−(x+1)+1, . . .〉

′

+ |. . . ,−1,n−(x)+1,1,n−(x+1)−1, . . .〉
′)
〈{n−(x)}| . (C.18)

One should keep in mind that ‘. . .’ refers to different things in equations (C.17) and (C.18).

PHJ
KCMQ has already been worked out since it is equal to

(
HJ

KCMQP
)†

, and multiplying

P0H
J
KCMQ with (C.17) yields

P0H
J
KCMQ(Ē−H0

KCMQ)
−1HJ

KCMQP0 =
E2

J

4
4L(Ē−O(E1)−2EI)

−1
P0

∼−L
E2

J

E1
P0 ,

(C.19)

where the factor of 4L arises since at each position x only four overlaps survive, and there are

L instances of this (we also use (Ē−O(E1)−2EI)
−1 ∼−E−1

1 ). Next, we look at the action

of P0H
J
KCMQ on (C.18). If we focus on 〈. . . ,n+(x) = 1,n−(x) = 1,−1,−1, . . .| first, we

see that its overlap with |. . . ,1,n−(x)+1,−1,n−(x+1)−1, . . .〉
′

cannot survive since the

configuration n−(x) = 0 ∀x was excluded from the sum over {n−(x)}. On the other hand, its

overlap with |. . . ,1,n−(x)−1,−1,n−(x+1)+1, . . .〉
′

is finite if n−(x) = −n−(x+ 1) = 2

with all other n−(x) being zero. Since all other overlaps with

〈. . . ,n+(x) = 1,n−(x) = 1,−1,−1, . . .| vanish, we see that it contributes

(Ē−O(E1)−2EI)
−1 E2

J

4
|gs〉∑

x
〈0,0, . . . ,0,n−(x) = 2,0,n−(x+1) =−2, . . . ,0,0| .

Similar analysis of the other terms shows that

P0H
J
KCMQ(Ē−H0

KCMQ)
−1HJ

KCMQ ∑
{n−(x)}

P{n−(x)}

∼− E2
J

2E1
|gs〉∑

x
〈0,0, . . . ,0,n−(x) = 2,0,−2, . . . ,0,0|+ 〈0,0, . . . ,0,n−(x) =−2,0,2, . . . ,0,0| .

(C.20)

n+(x) = 0 ,n−(x) =±2 correspond to neutral excitations which we will call excitons. They

consist of an excess Cooper-pair at one island and a deficit of a Cooper-pair at the other is-

land at the same position x. (C.20) thus describes the ‘annihilation’ of an exciton with an ad-

jacent ‘exciton-hole’ to produce the ‘vacuum’ (i.e. the ground state). ∑{n−(x)}P{n−(x)}H
J
KCMQ

multiplied with (C.17) gives the inverse of the process just described, namely, the creation
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Figure C.1: A picture showing the effect of (C.20) and (C.21). An unfilled square represents
a neutral island, a filled circle represents an excess Cooper-pair while an unfilled circle
depicts the deficit of a Cooper-pair.

of an exciton and exciton-hole pair from the vacuum:

∑
{n−(x)}

P{n−(x)}H
J
KCMQ(Ē−H0

KCMQ)
−1HJ

KCMQP0 ∼

− E2
J

2E1
∑
x

(
|0,0, . . . ,0,n−(x) = 2,0,−2, . . . ,0,0〉+ |0,0, . . . ,0,n−(x) =−2,0,2, . . . ,0,0〉

)
〈gs| .

(C.21)

The processes described by (C.20) and (C.21) are shown in figure C.1.

Finally, we look at ∑{n−(x)}P{n−(x)}H
J
KCMQ acting on (C.18). The overlap between

〈. . . ,1,n−(x)+1,−1,n−(x+1)−1, . . .| and |. . . ,1,n−(x)+1,−1,n−(x+1)−1, . . .〉
′
yields

E2
J

4

(
Ē−O(E1)−EI

[
(n−(x)+1)2 +(n−(x+1)−1)2 + ∑

y 6=x,x+1
n−(y)2

])−1

︸ ︷︷ ︸
∼−E−1

1

P{n−(x)} ,

where we are assuming that EI
[
(n−(x)+1)2 +(n−(x+1)−1)2 +∑y 6=x,x+1 n−(y)2

]
is neg-

ligible in comparison to E1. There are L instances of the above, corresponding to the L

different positions where n+ = 1. The same analysis with the terms

〈. . . ,1,n−(x)−1,−1,n−(x+1)+1, . . .|, 〈. . . ,−1,n−(x)+1,1,n−(x+1)−1, . . .| and

〈. . . ,−1,n−(x)−1,1,n−(x+1)+1, . . .| leads to the same outcome as described above (i.e.

along with the factor of L there is also a factor of 4 as well), and so these contributions result

in the term

−L
E2

J

E1
∑
{n−(x)}

P{n−(x)} . (C.22)

The above and the scaled ground state projector (C.19) result in a multiple of the identity

operator on the subspace D (i.e. it is an energy constant in the effective Hamiltonian), which

we can ignore.

The other terms that arise from ∑{n−(x)}P{n−(x)}H
J
KCMQ acting on (C.18) represent the

propagation of excitons and exciton-holes, as well as the creation and annihilation of exciton

and exciton-hole pairs. Since it would be lengthy to show explicitly how all these terms

arise, just the result will be quoted. Along with the terms in equations (C.20) and (C.21),
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the net result is an exciton tunnelling term

− E2
J

2E1
∑
x

b−(x+1)2b†
−(x)

2 +H.c.=− E2
J

2E1
∑
x

ei2ϕ−(x+1)e−i2ϕ−(x)+H.c.

=−Eex
J ∑

x
cos [2ϕ−(x+1)−2ϕ−(x)] ,

(C.23)

where the Josephson energy for excitons is defined as Eex
J ≡ E2

J /E1. Putting this together

with PH0
KCMQP (equation (C.9)) which we write as EI ∑x n−(x)2, and making the change of

variables ϕ
′
−(x) ≡ 2ϕ−(x) and n

′
−(x) ≡ n−(x)/2 (so that [ϕ

′
−(x),n

′
−(y)] = iδxy), we finally

end up with the effective Hamiltonian

Heff
KCMQ = 4EI ∑

x
n
′
−(x)

2−Eex
J ∑

x
cos
[
ϕ
′
−(x+1)−ϕ

′
−(x)

]
. (C.24)

Heff
KCMQ describes a chain of Josephson junctions with excitons as the tunnelling objects.

The junctions have a charging and Josephson energy of 4EI and Eex
J , respectively, while

ϕ
′
−(x) and n

′
−(x) are the phase of the macroscopic exciton wave function and the number of

excitons at position x, respectively.
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APPENDIX D

The Villain approximation

The Villain approximation (José et al., 1977; Villain, 1975) is a transparent means of seeing

the existence of vortices in the 2D XY model. Here, we follow the derivation in (Herbut,

2007). Let us take the spins (or phases) {~si = (cosφi,sinφi)} of the model to reside on

the sites {i} of a 2D square lattice. Each phase is ferromagnetically coupled to its nearest

neighbours through a term −J~si ·~s j =−J cos(φi−φ j), where J > 0. The system’s partition

function is thus (k = 1)

ZXY = ∏
i

∫ 2π

0

dφi

2π
exp

(
J
T ∑

i,µ
cos(φi+µ̂ −φi)

)
, (D.1)

where µ̂ = x̂, ŷ are the two lattice unit vectors. In the Villain approximation, ZXY is approx-

imated by 64

ZXY ≈ ZV = ∏
i

∫ 2π

0

dφi

2π
∏
i,µ

∞

∑
mµ

i =−∞

exp

(
− J

2T ∑
i,µ
(φi+µ̂ −φi−2πmµ

i )
2

)
, (D.2)

where the integer-valued variables mµ

i are associated with each link connecting the sites i

and i+ µ̂ . The motivation for this approximation is that the phases can be integrated out

without sacrificing their 2π periodicity, due to the summation over integers. (D.2) can be

rewritten, by making use of the Gaussian integral identity

∫
∞

−∞

dxe−
a
2 x2+zx =

√
2π

a
exp
(

z2

2a

)
, (D.3)

64In general, J/T in (D.2) should be replaced with f (J/T ) (Fazio & Van der Zant, 2001; José et al., 1977), but
the stated form is a good approximation for low temperatures.
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D. The Villain approximation

which holds for a > 0 and arbitrary z. Identifying a≡ T/J and z≡−i(φi+µ̂ −φi−2πmµ

i ),

we see that

ZV = ∏
i

∫ 2π

0

dφi

2π
∏
i,µ

∞

∑
mµ

i =−∞

∫
∞

−∞

dxµ

i exp

(
− T

2J ∑
i,µ
(xµ

i )
2− i∑

i,µ
(φi+µ̂ −φi−2πmµ

i )x
µ

i

)
,

(D.4)

up to constants, and after employing the Poisson resummation formula

∞

∑
mµ

i =−∞

exp
(
i2πmµ

i xµ

i

)
=

∞

∑
nµ

i =−∞

δ (xµ

i −nµ

i ) , (D.5)

we arrive at

ZV = ∏
i

∫ 2π

0

dφi

2π
∏
i,µ

∞

∑
nµ

i =−∞

exp

(
− T

2J ∑
i,µ
(nµ

i )
2− i∑

i,µ
nµ

i (φi+µ̂ −φi)

)
. (D.6)

The phase integrals can now be performed, which leads to the (finite difference) diver-

genceless condition for each vector field~ni =(nx
i ,n

y
i ), namely~∇ ·~ni = nx

i −nx
i−x̂+ny

i −ny
i−ŷ =

0. These conditions can be solved by introducing variables that reside on the dual lattice,

which consists of the set of points at the centres of the elementary squares of the original

lattice. Some further manipulations lead to the emergence of vortex degrees of freedom, in

much the same way that they emerge in section 3.2.

104



APPENDIX E

Winding number representation of the Chern number for two-

component systems

The ground state, |χ~p〉, of a 2D Bloch Hamiltonian such as h2(~p) in (5.11) can be repre-

sented by a normalized Bloch vector, ~̂s~p, which lies on the Bloch sphere. As a result, the

projector onto |χ~p〉 can be written as

P~p = |χ~p〉〈χ~p|=
1
2

(
I +~̂s~p ·~σ

)
, (E.1)

where I is the 2D identity matrix and ~σ = (X ,Y,Z) is the vector of Pauli matrices, since
~̂s~p ·~σ |χ~p〉= |χ~p〉. Substituting this representation of the projector into the expression for ν ,

(5.1), and employing the identities

(~a ·~σ)(~b ·~σ) =~a ·~bI + i
(
~a×~b

)
·~σ , (E.2)

for two three-vectors~a and~b, and

tr
(

σ
α

σ
β

)
= 2δ

αβ , α,β = 1,2,3, (E.3)

we obtain

ν =− i
2π

∫
BZ

d2 p tr
(
P~p
[
∂pxP~p,∂pyP~p

])
=− i

16π

∫
BZ

d2 p tr
([

I +~̂s~p ·~σ
][

∂px~̂s~p ·~σ ,∂py~̂s~p ·~σ
])

=
1

4π

∫
BZ

d2 p ~̂s~p ·
(

∂px~̂s~p×∂py~̂s~p
)

≡ ν̃ [~̂s~p] . (E.4)
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E. Winding number representation of the Chern number for two-component systems

€ 

T 2

€ 
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 ˆ s  p 

Figure E.1: The winding number (E.4) is equal to the number of times the map ~̂s~p : T 2→ S2

covers the unit 2-sphere as the BZ is spanned.

Since ~̂s~p : T 2→ S2 is a map from the toroidal BZ to the unit 2-sphere, as shown in figure

E.1, the Chern number for two-component systems can be thought of as a winding number,

which we denote as ν̃ [~̂s~p]. The winding number counts the number of times ~̂s~p winds around

or covers S2 as the BZ is spanned.
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