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Abstract

We study the question of when a given rational representation of a reductive

group G gives rise to a reductive pair (GL(V ), ρ(G)), presenting complete classi-

fications when ρ is the representation afforded by a simple module for the group

SL2(K), or a symmetric power of the natural module (the induced or dual Weyl

modules for this group), where K is an algebraically closed field of any positive

characteristic. We also present several classes of examples for the group SL3(K)

in some small characteristics, along with results allowing new examples to be

generated.
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Chapter 1

Introduction

The work in this thesis is an attempt to gain some insight into the situations in

which we encounter a certain favourable type of embedding of algebraic groups,

referred to as reductive pairs. We do this primarily via the methods of repre-

sentation theory, as there is a large class of prospective examples of embeddings

of the form (GLn(K), ρ(G)), where ρ is a rational representation of an algebraic

group G, and when considering such examples we are equipped with a significant

arsenal of established techniques and theory. Nevertheless, it is important to keep

in mind that the problem is not purely representation theoretic: subtleties will

arise from the nature and behaviour of G as an algebraic group, and these must

be carefully dealt with before the full force of the representation theory may be

brought to bear. Indeed, circumnavigating these issues will form a large part of

the work within.

Introduced in Richardson’s 1967 paper Conjugacy classes in Lie algebras and

algebraic groups, the concept of a reductive pair of algebraic group has found much

use (see for instance [25, 17, 2, 1, 3]). In a very loose sense, they are sometimes

employed when seeking to prove results that attempt to salvage the good be-
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haviour of groups over fields of characteristic 0 in the positive characteristic case.

In many instances, the idea that for large enough characteristic, such behaviour

is more likely to be correctly modelled is borne out by the relative likelihood of a

particular pair of algebraic groups being a reductive pair in large characteristic.

For instance, in chapter 2 section 2.9 we will see a result (found in [1, 3.3]) that

when the characteristic is very large compared to the dimension of a G-module

V , then (GL(V ), ρ(G)) is always a reductive pair: in the same paper, this fact

is exploited to great effect. Nevertheless, the requirement on the characteristic

is quite restrictive, and we will see that in specific cases more precise statements

may be made.

1.1 Breakdown of Chapters

Chapter 2 contains sections describing the basics of the subject area, beginning

with definitions of the basic objects such as affine varieties and algebraic groups.

Next comes an overview of the representation theory of algebraic groups. The

main purpose of these sections is to set out the notation and terminology to be

used in the rest of the thesis. Towards the end of the chapter, focus turns to

the main objects of study, namely reductive pairs of algebraic groups. Results

are included from the literature that motivate the study of such pairs. The final

section of the chapter contains results that will be applicable to each case discussed

later, which are therefore set apart.

In chapter 3 we consider the group SL2(K). There is first a reminder of

the specifics of the representation theory of this group. In the next section we

consider results specific to the simple SL2(K)-modules, including results of Doty

and Henke [14] which provide a direct sum decomposition of the tensor product of
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two such simple modules into known indecomposable modules. In order that this

result may be applied to the problem of whether or not a particular irreducible

representation gives a reductive pair, we first need some results that tell us about

the Lie algebra of the image of such a representation. With the combination of the

above results, we finally present a complete classification of those simple modules

for SL2(K) that give reductive pairs, in any prime characteristic.

In the last part of chapter 3 we turn our attention to the symmetric powers of

the natural module E for SL2(K). These form another important class of modules

in this case, the induced modules ∇(λ). After a series of character calculations

(due to Donkin), we arrive at a complete classification of those induced modules

that give reductive pairs, in any prime characteristic. The proof of this result

relies upon the previous classification for simple modules mentioned earlier.

In chapter 4 we consider what can be said more generally for a simple algebraic

group G. Although the first section contains results that are in theory applicable

to any simple algebraic group, we quickly focus on the group SL3(K). Since

comparatively few explicit details of the representation theory of SL3(K) are

yet known (cf. chapter 3), the approach we present in this chapter is far less

direct. Loosely speaking, the main result of the chapter tells us that, armed with

knowledge of the composition factors of the module V ⊗ V ∗, we may in some

circumstances conclude that V gives a reductive pair. Combining this with other

results showing how to generate more examples of reductive pairs, we produce

several infinite families of examples. This process involved computer calculations

of composition factors, using Doty’s Weyl Modules package [13] for GAP [16] .

Chapter 5 contains a summary of the work in the main text, along with some

suggestions on new ideas to pursue.

Finally, chapter A is an appendix, including diagrams that illustrate certain
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concepts and results in the main text. Also included are some of the GAP code

used to generate examples for the group SL3(K), as well as some of the output of

these processes.
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Chapter 2

Preliminaries

Please note that many of the following definitions are presented out of their log-

ical order: in forgoing a proper treatment of the material (which would require

much more space), following the same structure as a standard book could add

unnecessary complication. Standard references for this topic include Linear Al-

gebraic Groups, by Humphreys [18], Linear Algebraic Groups, by Springer [28],

and Linear Algebraic Groups, by Borel [6]; of these, the first two offer a gentler

introduction to the neophyte.

2.1 Affine varieties

In this thesis, K denotes an algebraically closed field of positive characteristic p,

unless otherwise stated.

Definition 2.1.1. An affine variety is a pair (V,A), where V is a set and A ≤

Map(V,K) is a finitely generated subalgebra of the K-algebra of set maps from

V to K, such that the the map sending each x ∈ V to its evaluation map εx ∈

HomK−alg(A,K) is a bijection.

9



We note that the algebra structure on Map(V,K) in the above definition is

by pointwise operations. We will typically write K[V ] for the algebra A, and call

this the coordinate algebra of V ; in adopting this convention, it will be expedient

to refer to “the affine variety V ”, leaving the coordinate algebra implicit where

no confusion may arise.

Example 2.1.2. We write An for the set Kn. Regarding elements of the poly-

nomial algebra K[T ] := K[T1, T2, . . . , Tn] as K-valued functions on An, we have

that (An,K[T ]) is an affine variety, which we will call affine n-space.

Definition 2.1.3. Let (V,K[V ]) be an affine variety. For any subset S ⊂ K[V ],

define V(S) := {x ∈ V | f(x) = 0 ∀f ∈ S}. The V(S) form the closed sets of a

topology on V called the Zariski topology.

Unless otherwise stated, all mention to open or closed sets will be in reference

to the relevant Zariski topology.

Example 2.1.4. Let W be any closed subset of an affine variety V . Then W may

be made into an affine variety with coordinate algebra K[W ] = {f |W | f ∈ K[V ]}.

Definition 2.1.5. Let V be an affine variety and f ∈ K[V ] with f 6= 0. A subset

of V of the form Vf := {x ∈ V | f(x) 6= 0} is called a principal open set.

Since the complement of Vf in V is V({f}), it is indeed an open set. The

principal open sets form a basis for the Zariski topology. They may be regarded

as affine varieties in their own right, with the coordinate algebra of Vf being the

K-algebra Af := { afr | a ∈ A, r ≥ 0} (identified with a subalgebra of Map(Vf ,K)

in the obvious way). Arbitrary open subsets of affine varieties are not generally

affine varieties themselves.
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Example 2.1.6. This allows us to view the set GLn(K) as an affine variety: re-

garding Matn(K) as affine n2-space, GLn(K) is the principal open set Matn(K)d

defined by the nonvanishing of the determinant d. Its coordinate algebra is the

polynomial algebra generated by the n2 coordinate functions (restricted to GLn(K))

and the rational function 1/d.

Recall that a topological space is called irreducible if any of the following

equivalent conditions hold: every nonempty open set is dense; no two nonempty

open sets are disjoint; or the whole space cannot be written as a union of two

proper closed subsets. We remark that an affine variety is irreducible with re-

spect to the Zariski topology if and only if its coordinate algebra is an integral

domain. We remark at this point that irreducibility is a stronger condition than

connectedness: a topological space is connected if it cannot be written as a disjoint

union of two nonempty open subsets.

Definition 2.1.7. Suppose a topological space X contains a strictly increasing

sequence of closed, irreducible subsets X0 ⊂ · · · ⊂ Xn and no longer sequence of

this sort. Then we say that n is the dimension of X, and write dimX = n to

indicate this.

We note that for an irreducible topological space X and a proper, closed set

Y , dimY < dimX.

Definition 2.1.8. A topological space is called Noetherian if its closed (respec-

tively, open) sets satisfy the descending (respectively, ascending) chain condition.

Every affine variety is Noetherian with respect to the Zariski topology. A

Noetherian topological space has only a finite number of irreducible components

(these are maximal irreducible subsets), which are uniquely determined up to
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order. In contrast, any nonempty topological space may be written as a disjoint

union of one or more connected components, which are the maximal connected

subsets.

Definition 2.1.9. Let V,W be affine varieties. A map φ : V → W is called a

morphism of affine varieties (or just a morphism when the context is clear) if for

every map f ∈ K[W ] we have f ◦ φ ∈ K[V ]; in this case, the map φ] : K[W ] →

K[V ] defined by φ](f) = f ◦ φ is called the comorphism of φ.

Morphisms are continuous with respect to the Zariski topologies on the domain

and codomain. An inverse morphism exists (and we call φ an isomorphism of

affine varieties) precisely when the comorphism is an isomorphism of K-algebras.

We note that given any affine variety V , there exists an isomorphism between V

and some closed subset of affine n-space (depending on V ). Since many of the

examples we consider will most easily be realised as closed sets in an affine space,

we will occasionally refer without further comment to the coordinate algebra

of polynomial functions inherited from the full coordinate algebra of that affine

space. In short, for an closed subset V of affine n-space, this coordinate algebra

is K[V ] = K[T1, . . . , Tn]/I(V ), where I(V ) is the collection of all polynomials in

K[T ] = K[T1, . . . , Tn] vanishing on all of V .

Definition 2.1.10. Let V be an affine variety and x ∈ V . The tangent space to

V at the point x, Tx(V ) is the K-vector space of linear maps α : K[V ]→ K such

that for all f, g ∈ K[V ], α(fg) = f(x)α(g) + α(f)g(x).

This notion of tangent spaces extends that of the familiar tangent space at a

point to a curve or surface. A tangent space as defined above is finite dimensional.

Letting m be the minimal dimension of the tangent space Tx(V ) for any x ∈ V ,

we call a point y ∈ V simple if dimTy(V ) = m. An important result is that the
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dimension of the tangent space at a simple point of an irreducible variety is equal

to the (topological) dimension of that variety.

As in the study of manifolds, given a morphism between affine varieties, we

may compute the differential of the morphism at a point, which is a linear map

between tangent spaces.

Definition 2.1.11. Let φ : V → W be a morphism of affine varieties and let

x ∈ V . The map dφx : Tx(V ) → Tφ(x)(W ) defined by dφx(α) = α ◦ φ] is called

the differential of φ at x.

Definition 2.1.12. Given affine varieties V and W , we identify K[V ] ⊗ K[W ]

with a subalgebra of Map(V ×W,K) by letting the pure tensor f ⊗ g map a pair

(x, y) ∈ V ×W to f(x)g(y) ∈ K and extending linearly. With this identification,

(V ×W,K[V ]⊗K[W ]) is an affine variety, which we call the product of V and W .

We note that the product as defined here is a product in the categorical sense.

That this set carries the structure of an affine variety is vital to the definition of

the basic objects of study in this thesis, algebraic groups.

2.2 Affine algebraic groups

Definition 2.2.1. We define an algebraic group to be an affine variety G carrying

the structure of a group, such that the group multiplication map m : G×G→ G

and inversion map i : G→ G are morphisms of affine varieties.

We note that a more general definition is possible, but we will restrict our

attention to affine algebraic groups. Not every subgroup of an algebraic group

need be an algebraic group in its own right, however any closed subgroup is

(where by closed subgroup we mean a subgroup whose set of elements is closed in
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the Zariski topology, thus inherits an affine variety structure as discussed above).

In this thesis we will consider only algebraic subgroups of algebraic groups, unless

otherwise stated.

Example 2.2.2. The variety GLn(K) defined above is an algebraic group when

endowed with the standard group structure (matrix multiplication and inversion

are defined in terms of polynomials in the coordinate functions and the determi-

nant). Whereas affine n-space may be regarded as the prototypical example of an

affine variety, GLn(K) plays a similar role for algebraic groups: any algebraic

group is isomorphic (as an algebraic group) to a closed subgroup of GLn(K) for

some n.

Example 2.2.3. The special linear group SLn(K) is an algebraic subgroup of

GLn(K): it is a subgroup which is also closed, being the zero set of the function

d− 1.

Example 2.2.4. The affine line A1 = K has the structure of an Abelian group

under addition; since addition and negation are polynomials in the coordinate

function X on A1, we have an algebraic group, which we call the additive group,

Ga. On the other hand, we refer to the group of units of the field K as the multi-

plicative group, denoted Gm. It, too, is clearly an algebraic group, isomorphic to

GL1(K).

Example 2.2.5. Any finite group G may be regarded as an algebraic group with

coordinate algebra K[G] = Map(G,K).

Definition 2.2.6. A morphism of algebraic groups (or morphism when the con-

text is clear) is a morphism of the underlying affine varieties which is also a ho-

momorphism with respect to the group structures. An isomorphism of algebraic

groups is a morphism which is also an isomorphism of varieties.
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Note: it is not true that a bijective morphism of algebraic groups is automat-

ically an isomorphism of algebraic groups (although it is still an isomorphism of

“abstract” groups). An important example of where this fails will be encountered

repeatedly in this thesis in the form of the Frobenius morphism (defined shortly).

When discussing algebraic groups, we will always use the word “isomorphic” to

mean isomorphic as algebraic groups, unless otherwise stated.

Definition 2.2.7. Let G be a linear algebraic group (an algebraic group of ma-

trices over K). We define the Frobenius morphism F : G→ G by F (aij) := (apij),

that is, we raise the entries of the matrix to the pth power. A more compli-

cated definition can be made (see, for instance, [21, 3.1]), extending this notion

to arbitrary algebraic groups.

As noted above, F is a bijective morphism of algebraic groups, but the inverse

function is not a morphism (it involves taking pth roots).

There is a rigorously defined notion of a quotient of an algebraic group G by a

closed normal subgroup N . The result is an affine variety structure defined on the

set of cosets G/N , which can be shown to satisfy the universal properties desired

of a quotient.

Since an algebraic group is an affine variety, we may consider its irreducible

components.

Definition 2.2.8. We write G◦ for the identity component of G, which is the

(unique) irreducible component containing the identity element.

Proposition 2.2.9. We have that G◦ is a normal subgroup of G of finite index,

whose cosets are the irreducible components of G; these are therefore disjoint,

whence they are also the connected components of G.

Definition 2.2.10. We say that an algebraic group G is connected if G = G◦.
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Note that this requirement that G be irreducible is a stronger condition than

the usual topological notion of connectedness in topology, since every irreducible

space is connected whilst the reverse is not true in general.

Example 2.2.11. Without proof, we will state that the following algebraic groups

are all connected: Ga, Gm, GLn(K), SLn(K).

2.3 Lie algebras of algebraic groups

All points of a connected algebraic group G are simple: the map fg,h : G → G

defined by fg,h(x) = xg−1h is an isomorphism of varieties whose differential at

g ∈ G is an isomorphism of vector spaces Tg(G)→ Th(G).

Since an algebraic group carries the structure of an affine variety, it is natural

to consider the tangent spaces defined earlier as applied to this case. In fact, as

with a Lie group, the tangent space at the identity element of an algebraic group

carries the additional structure of a Lie algebra. Let V,W be affine varieties,

x ∈ V , y ∈ W . Then the map Φ : Tx(V ) × Ty(W ) → T(x,y)(V ×W ) defined by

Φ(α, β)(f ⊗ g) = α(f)β(g) for f ∈ K[V ], g ∈ K[W ] is a bijection; we will identify

these sets.

Definition 2.3.1. Let G be an algebraic group. We will write Lie(G) := T1(G),

where 1 is the identity element of the group. We call this tangent space the Lie

algebra of G, since it may be checked that it is a Lie algebra when equipped with

a bracket defined as follows. Define a morphism φ : G×G→ G by

φ(x, y) = xyx−1y−1.

Using the identification of Lie(G × G) with Lie(G) × Lie(G) via Φ as above, we
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consider the differential

dφ(1,1) : Lie(G)× Lie(G)→ Lie(G).

We set [α, β] = dφ(1,1)(α, β).

Example 2.3.2. It can be shown that Lie(GLn(K)) is the Lie algebra of n × n

matrices, with bracket the usual (commutator) Lie bracket for matrices.

When discussing differentials of algebraic group morphisms, it will be conve-

nient to drop the identity element from our notation, rendering dφ1 as simply

dφ. The differential of a morphism of algebraic groups is a homomorphism of Lie

algebras.

Definition 2.3.3. Let Intx : G→ G be the inner automorphism defined by x ∈ G,

so that Intx(y) = xyx−1. We write Adx for the differential d(Intx). It happens

that Adx is an automorphism of the Lie algebra of G. The adjoint representation

of G is the map Ad : G → GL(Lie(G)) sending each group element x to the Lie

algebra homomorphism Adx.

2.4 Some important subgroups

We note that the notion of solvability of groups applies equally well to algebraic

groups, since all the derived subgroups of an algebraic group G are themselves

closed and normal (and connected if G is connected). Recall that subgroups and

homomorphic images of solvable groups are solvable.

Definition 2.4.1. An algebraic group T is called a torus if it is isomorphic to a

diagonal subgroup D(n,K) of a general linear group. A group that is isomorphic

to a subgroup of some D(n,K) is called diagonalisable.
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Note that D(n,K) is isomorphic to a direct product of n copies of the multi-

plicative group Gm defined previously. We will usually speak of a torus T being

of a group G, meaning that T is a subgroup of G that is a torus. For instance,

D(n,K) is a torus of GL(n,K). Tori are solvable.

Definition 2.4.2. A Borel subgroup of G is a maximal closed, connected, solvable

subgroup.

Definition 2.4.3. Let B be a Borel subgroup of an algebraic group G, and let

P be any algebraic subgroup with B ≤ P ≤ G. Then P is called a parabolic

subgroup of G.

The parabolic subgroups may equivalently be described as those closed sub-

groups of G such that the variety G/P is projective (assuming an adequate defi-

nition of homogeneous spaces and projective varieties has been given).

Theorem 2.4.4. All Borel subgroups of G are conjugate, as are all maximal tori

of G.

A maximal torus is of course a torus properly contained in no other; since

Borel subgroups are maximal amongst the connected, closed, solvable subgroups,

each maximal torus is contained in a Borel. That the Borel subgroups are all

conjugate is a consequence of Borel’s fixed point theorem, and is false in general

if we drop the assumption that K is algebraically closed. The common dimension

of the maximal tori of G is called the rank of G.

Let V be a finite dimensional K-vector space. We recall the Jordan decompo-

sition of an element x ∈ GL(V ): there exist unique elements xs and xu in GL(V )

with xs semisimple, xu unipotent and x = xsxu = xuxs. For an arbitrary algebraic

group G there exists an analogous decomposition. We consider right translation
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of functions by x, written ρx, where ρx(f)(y) = f(yx) for f ∈ K[G], x, y ∈ G.

Given x ∈ G there exist unique elements s and u of G with x = su = us such that

ρs and ρu are semisimple and unipotent elements of GL(K[G]), respectively1. We

call s and u the semisimple and unipotent parts of x; if x is equal to its semisimple

or unipotent part, we say that x is semisimple or unipotent, respectively. The

subset Gu of all unipotent elements of G is closed in G. Any algebraic group all

of whose elements are unipotent will itself be called a unipotent group. Unipotent

groups are solvable.

Definition 2.4.5. Let G be an algebraic group. The radical of G, written R(G)

is the (uniquely determined) maximal connected normal solvable subgroup of

G. If G is a non-trivial, connected group and R(G) is trivial, we say that G is

semisimple.

The unipotent radical of G, written Ru(G) is the (again uniquely determined)

maximal connected normal unipotent subgroup of G. It is the collection of unipo-

tent elements of R(G). If G is a non-trivial, connected group and Ru(G) is trivial,

we say that G is reductive.

Given a connected algebraic group G, the quotient G/R(G) is semisimple,

whereas G/Ru(G) is reductive.

Example 2.4.6. The group SLn(K) is semisimple (thus also reductive), whilst

the group GLn(K) is reductive.

Let G be a reductive group. Given a maximal torus T of G and a Borel

subgroup B containing T , there exists a unique Borel subgroup B− called the

opposite Borel such that B ∩ B− = T . Let P be any parabolic subgroup of G.

1Since K[G] is not finite dimensional, a certain amount of work is needed to make this
statement rigorous. See for instance [18, 15.1]
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Then P admits a Levi decomposition into a semi-direct product of a reductive

subgroup L ≤ P and the unipotent radical Ru(P ). Such a subgroup L is called a

Levi subgroup of P , and all such subgroups are conjugate by elements of Ru(P ).

2.5 Representations of algebraic groups

We will be concerned only with representations that preserve the essential struc-

tures of an algebraic group: the group structure and the variety structure.

Definition 2.5.1. A (finite dimensional) rational representation of an algebraic

group G is a morphism of algebraic groups ρ : G → GLn(K) for some n. We

say that a module for the group algebra KG is a rational module if and only a

matrix representation afforded by the module is a rational representation. We

will sometimes refer to a KG-module as a G-module.

We note that where V is an n-dimensional K-vector space, we may regard

GL(V ) as an algebraic group unambiguously by picking a basis for V . Hereafter

and unless otherwise stated, in this thesis “module” will always mean rational

KG-module. We may also consider infinite dimensional rational modules: in

this case we require that the module V be locally finite dimensional (that is,

every finite dimensional K-subspace of V is contained in a finite dimensional

KG-submodule), and every finite dimensional submodule of V is rational in the

sense already described. This allows us to consider the coordinate algebra K[G]

as a rational module; this is an important step in realising an embedding of an

arbitrary algebraic group into some GLn.

Lemma 2.5.2. Direct sums, tensor products, linear duals and subquotients of

finite dimensional rational modules are rational.
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These are easily proved by working with the coefficient functions defined by

picking a basis. Using this result we can see that for a finite dimensional rational

module V , we have in particular that the rth symmetric power of V , SrV is

rational, since it is a quotient of V ⊗m. We will frequently consider the (rational)

natural module E for the group GLn(K) or SLn(K), consisting of column vectors

of length n with the action being by matrix multiplication.

Definition 2.5.3. Let M be a G-module. We define MFn
, the nth Frobenius

twist of M , as the G-module with the same underlying vector space as M , but for

which the action of G follows n iterations of the Frobenius morphism F : G→ G.

Thus, if ρ is the representation afforded by M , the representation afforded by

MFn
is ρ ◦ F ◦ · · · ◦ F (where F occurs n times).

2.6 Weights and roots

Definition 2.6.1. A character of an algebraic group G is a morphism from G to

the multiplicative group Gm. If χ1 and χ2 are characters of G, then so is χ1 +χ2,

defined by (χ1 + χ2)(g) = χ1(g)χ2(g). This turns the set X(G) of characters of

G into an Abelian group.

A cocharacter is a morphism from Gm to G. For a commutative group G, the

set of cocharacters, Y (G) also forms an Abelian group.

Composing a character with a cocharacter yields a morphism Gm → Gm. Since

X(Gm) ∼= Z, given a torus T we may associate to each pair (χ, λ) ∈ X(T )×Y (T )

an integer value which we will write 〈χ, λ〉. We note also that (as a consequence

of Dedekind’s theorem), X(T ) ∼= Zn and Y (T ) ∼= Zn for any n-dimensional torus

[28, 3.2.2].
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Definition 2.6.2. If G ≤ GL(V ) is a closed subgroup, then for each χ ∈ X(G)

we can define the weight space Vχ = {v ∈ V | gv = χ(g)v for all g ∈ G}. Each

Vχ is a KG-submodule of V , possibly the zero submodule. An nonzero element

of Vχ is called a semi-invariant of weight χ. The multiplicity of a weight χ is the

dimension of the weight space Vχ.

Suppose G is any algebraic group and we are given a rational representation

ρ : G → GL(W ). There is an injection X(ρ(G)) → X(G) given by sending

χ ∈ X(ρ(G)) to χ ◦ ρ. Thus, where χ is a character of G induced by a character

of ρ(G), we may define Vχ in the obvious way.

Proposition 2.6.3. Let ρ : G → GL(V ) be a rational representation with V

finite dimensional. Then the spaces Vχ for χ ∈ X(G) are linearly independent; in

particular, only finitely many of them are non-zero. [18, 11.4]

Definition 2.6.4. Let D be a diagonalisable subgroup of an algebraic group G

(for instance a torus). Then Ad(D) is a diagonalisable subgroup of GL(Lie(G)).

We may consider the weights of Ad(D) as defined above. The non-zero weights

are the roots of G relative to D, and we write Φ(G,D) for the set of these.

2.7 Root systems and Weyl groups

We will now recall definitions pertaining to root systems, which will be of great

importance in the later discussion of representations.

Definition 2.7.1. Let E be a finite dimensional Euclidean vector space. A root

system in E is a subset of elements Φ ⊂ E (called roots) such that:

• Φ is a finite spanning set not containing the zero vector;

• for any α ∈ Φ, the only multiples of α contained in Φ are α and −α;
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• for any α ∈ Φ, the reflection σα in E in the hyperplane perpendicular to α

leaves Φ stable; and

• for any α, β ∈ Φ, the vector σα(β)− β is an integral multiple of α.

Let Φ be a root system in E. It is always possible to choose a set of positive

roots, Φ+ ⊂ Φ with the two properties:

• for each root α ∈ Φ, precisely one of the roots α and −α is in Φ; and

• if α 6= β are two roots in Φ+, their sum α+ β is also in Φ+.

If Φ+ is a set of positive roots, then the elements of the set Φ− := −Φ+ are

called negative roots. A given choice of positive roots in turn determines a set

∆ called a base of Φ, consisting of simple roots. These are those roots in Φ+

which cannot be written as a sum of two elements in Φ+. The base ∆ forms

a basis of E with the property that any root α ∈ Φ can be written as a linear

combination of roots in ∆ with all coefficients either non-negative (the positive

roots) or non-positive (the negative roots).

The (finite) group W generated by the reflections in hyperplanes perpendicular

to the roots is called the Weyl group of the root system. If ∆ is a choice of simple

roots of Φ, then W is generated by the reflections {σα | α ∈ ∆}. With these

generators, Weyl group is an example of a finite Coxeter group. Thus it comes

with a longest element w0 determined by the choice of simple roots (this is the

unique element for which the length of any expression as a reduced word in the

simple reflections is maximal). The Weyl group permutes the set of bases of Φ

simply transitively.

A root system Φ in E is called irreducible if it cannot be partitioned into two

mutually orthogonal proper subsets.
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Let the inner product on the Euclidean space E be denoted ( , ). We write

〈α, β〉 for the quantity defined by 〈α, β〉 = 2(α, β)/(β, β), noting that with this

notation, σα(β) = β − 〈β, α〉α. For pairs of roots in a given base, these numbers

are integers, called the Cartan integers.

Root systems Φ in E and Ψ in F are isomorphic if there is an isomorphism

of vector spaces E → F preserving the Cartan integers. An isomorphism of root

systems

A vector λ in E will be called an abstract weight if all the values 〈λ, α〉 are

integers. The set of abstract weights forms a lattice Λ in E; the lattice spanned

by the roots is a subgroup of Λ of finite index. A base ∆ of Φ, determines a

corresponding basis B of Λ (necessarily of the same cardinality) with the property

that for αi ∈ ∆ and λj ∈ B, we have 〈λj , αi〉 = δij . Elements of B are called

fundamental dominant weights.

A non-zero Z-linear combination of fundamental dominant weights is called

dominant if all the coefficients are non-negative. We may define a partial order on

E by declaring that λ ≤ µ if and only if µ−λ is a non-negative integer combination

of simple roots (i.e. the difference is dominant). Thus Φ+ = {α ∈ Φ | α > 0}.

Every root system may be decomposed as a disjoint union of uniquely deter-

mined irreducible root systems in subspaces of E. It is well known that the irre-

ducible root systems are classified by Dynkin diagrams, which are certain graphs

whose vertices and edges are determined by the simple roots and Cartan inte-

gers. For a detailed discussion, see [19]. The Dynkin diagrams are categorised

as belonging to several families, and in this thesis we will mostly be concerned

with those of type A. The appendix contains diagrams showing some dominant

weights of a root system of type A2, some of which are marked due to their rele-

vance to a later calculation. In the diagrams, the numbers on the sides represent
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coordinates with respect to a choice of fundamental dominant weights, with the

weights falling at the intersection points of the lines. Note that the weights with

one coordinate negative are not dominant.

Let G be a connected algebraic group. It can be shown that for a torus S of

G, the quotient of its normaliser by its centraliser is a finite group, W (G,S) :=

NG(S)/CG(S).

Definition 2.7.2. Let T be a maximal torus of G. All such subgroups being

conjugate in G, we refer to any group in the isomorphism class of W (G,T ) as the

Weyl group W of G.

There is a natural action of W on the set of roots Φ(G,T ) relative to a maximal

torus of G. If n ∈ NG(T ) represents an element σ of the Weyl group, then σ

permutes the root spaces Lie(G)α as follows: Adn(Lie(G)α) = Lie(G)σ(α). [18,

24.1].

Through much work it can be shown that we have the following result, which

is [18, 27.1].

Theorem 2.7.3. Let G be a semisimple algebraic group, T a maximal torus of

G and define E := R⊗Z X(T ). Then Φ := Φ(G,T ) is a root system in the space

E in the sense defined above, with Weyl group isomorphic to W (G,T ).

Having chosen a positive definite symmetric bilinear form f on E, we may

define a new one by (x, y) :=
∑

w∈W (G,T ) f(w ·x,w ·y). This new form is W (G,T )

invariant.

In fact, this result may be extended to deal with reductive (and not just

semisimple) algebraic groups; for details, see [18, 27.1]. A choice of Borel subgroup

containing T amounts to a choice of base for Φ.

25



Definition 2.7.4. Let G be a reductive algebraic group, T a maximal torus of G,

and ∆ the base of Φ(G,T ) determined by a Borel subgroup B of G. Write each

β ∈ Φ+ (uniquely) as
∑

α∈∆ nαβα, where the nαβ are non-negative integers. We

say that a prime p is bad for G if p | nαβ for any of the nαβ; otherwise, we say that

p is good for G. A semisimple algebraic group has finitely many minimal non-

trivial connected closed normal subgroups, which we call the simple components

of the group. We say that a good prime p is very good for G if p - l + 1 for any

simple component of G whose Dynkin diagram is of type Al.

For the remainder of the thesis we will adopt the convention that (when dis-

cussing a reductive group G) T is a (fixed) maximal torus of G, B is a (fixed)

Borel subgroup containing T , and B− is the opposite Borel group determined by

B and T . We will write U := Ru(B), noting that B = TU is a Levi decomposition

of B.

2.8 Representation theory of semisimple algebraic groups

Let G be a semisimple algebraic group. We are particularly interested in the

irreducible KG-modules. For a rational representation φ of G, we will refer to the

images in X(T ) of the weights of φ(T ) as the weights of φ (or, if the associated

G-module is V , the weights of V ). It can be shown that the weights of a rational

representation are abstract weights in the sense defined above [18, 31.1]. One

might instead define the weights of V directly as the weights of the T -module V .

Definition 2.8.1. A KG-module V is irreducible (or simple) if it has no G-stable

subspaces except 0 and V .

Definition 2.8.2. If φ : G → GL(V ) (V 6= 0) is a rational representation, then

there exists a 1-dimensional subspace of V stable under φ(B). Any vector v
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spanning such a subspace will be called a maximal vector. Such a vector belongs

to a weight space Vλ for some weight λ.

The following proposition is found as [18, 31.2].

Proposition 2.8.3. Let V 6= 0 be a rational KG-module, v a maximal vector in

V of weight λ and V ′ the KG-submodule generated by v. Then the weights of V ′

are of the form λ −
∑
cαα, α ∈ Φ+, cα ∈ Z+, and λ itself has multiplicity 1.

Moreover, V ′ has a unique maximal submodule.

The proof depends on knowing how certain subgroups of G, the root groups

act on the weight spaces. If µ is any other weight of V ′, the proposition shows

that µ < λ in the sense defined in the previous section.

Definition 2.8.4. Following the notation of the previous proposition, we call λ

the highest weight of V ′.

It can be shown that in a root system, every abstract weight is conjugate

to precisely one dominant weight under the action of W (which one, of course,

depends on the choice of base). A dominant weight λ is thus greater than any

W -conjugate of λ. It can also be shown that W permutes the weights of any

rational representation. Thus the highest weight is always a dominant weight.

If the KG-module V of proposition 2.8.3 is irreducible, it coincides with V ′.

In particular, we have the following result [18, 31.3]:

Proposition 2.8.5. Let V be an irreducible KG-module. Then V contains a

unique 1-dimensional B-stable subspace spanned by a maximal vector of some

dominant weight λ, whose multiplicity is 1. All other weights of V take the form

λ−
∑
cαα, α ∈ Φ+, cα ∈ Z+.

If V ′ is an irreducible KG-module with highest weight µ, then V ∼= V ′ (as

KG-modules) if and only if λ = µ.
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Thus irreducible KG-modules, if they exist, are isomorphic precisely when

they have the same highest weight. It is possible to construct an irreducible

module with highest weight λ for λ any dominant weight [18, 31.4]:

Proposition 2.8.6. Let λ be a dominant weight. Then there exists an irreducible

KG-module of highest weight λ.

Thus the isomorphism classes of KG-modules are in one-to-one correspon-

dence with the dominant weights. We will write X(T )+ for the set of dominant

weights.

From here on, for any unexplained terminology in this section the reader is

directed to Jantzen’s book Representations of Algebraic Groups [21].

A character λ ∈ X(G) of an algebraic group may be considered as a 1-

dimensional representation by identifying Gm with GL1(K).

Definition 2.8.7. Let λ be a character of T (i.e. λ ∈ X(T )). Consider λ as a

character of B by letting U act trivially. We write Kλ for the one dimensional

B-module K with the action of T given by λ.

That we can define an action of the whole of B using a character of T follows

from the Levi decomposition of B as TU . As a semidirect product of T with the

normal subgroup U ≤ B, there is a homomorphism φ : B → T with kernel U

which acts as the identity map on T . Thus λ ◦ φ ∈ X(B) provides the desired

action.

Definition 2.8.8. Let M be any B-module. We write H i(M) for Ri indGBM ,

where Ri indGB is the ith right derived functor of induction. We will abbreviate

H i(Kλ) as H i(λ).

Let a M be a finite dimensional G-module, and recall that the socle of M ,

written socGM , is the sum of all the simple submodules of M ; it is the largest
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semisimple G-submodule of M . The head of M , written hdGM , is the quotient

of M by its radical (the intersection of all maximal submodules); it is the largest

semisimple homomorphic image of M [21, I,2.14; II,11.12].

Definition 2.8.9. Let λ ∈ X(T )+. We will write L(λ) := socGH
0(λ). It is a

simple G-module of highest weight λ [21, II, 2.3-6].

In calculations and results about specific simple modules, we will typically

refer to dominant weights by reference to their coordinates with respect to the

fundamental dominant weights (see the earlier section on root systems). For

example, for the group SL3(K), whose root system is of type A2, we will refer

to the simple module L(a, b), where (a, b) = aλα + bλβ (α and β being the two

simple roots).

Definition 2.8.10. We will write ρ := 1
2

∑
α∈Φ+ α ∈ X(T )⊗Z Q.

We define an action (the dot action) of W on E = X(T )⊗Z R as follows.

Definition 2.8.11. Let λ ∈ E, w ∈W . Set w · λ := w(λ+ ρ)− ρ.

Definition 2.8.12. We set

Xr(T ) := {λ ∈ X(T ) | 0 ≤ 〈λ, α〉 < pr for all α ∈ ∆} ⊂ X(T )+.

In particular, we refer to the weights in X1(T ) as restricted, and to X1(T ) itself

as the restricted region.

Definition 2.8.13. In the space E = X(T )⊗Z R, we define the affine reflection

σα,n(λ) := λ− (〈λ, α〉 − n)α,
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where α ∈ Φ, λ ∈ E and n ∈ N. We write Wp for the affine Weyl group, which is

the group generated by the elements σα,np.

We will consider the dot action of Wp on E, defined as above. In particular,

we may regard σα,np as reflection with respect to the hyperplane

{λ ∈ E | 〈λ+ ρ, α〉 = np}.

Definition 2.8.14. We define an alcove to be a subset of E of the form

A := {λ ∈ E | (nα − 1)p < 〈λ+ ρ, α〉 < nαp for all α ∈ Φ+},

where each nα is an integer depending on the positive root α.

In particular, we will write

A0 := {λ ∈ E | 0 < 〈λ+ ρ, α〉 < p for all α ∈ Φ+},

referring to this set as the bottom alcove.

For convenience, we will adopt the following notation.

Definition 2.8.15. Let λ ∈ X(T )+. Then∇(λ) := H0(λ), and ∆(λ) := H0(−w0λ)∗.

We note that ∇(λ) has simple socle L(λ), whereas ∆(λ) has simple head L(λ)

– and this may help as a mnemonic to remember which means which. We may,

on occasion, refer to the ∇(λ) as induced modules and the ∆(λ) as Weyl modules.

Definition 2.8.16. Let M be a finite dimensional G-module. We define the

formal character of M as

chM :=
∑

λ∈X(T )

dimMλe(λ) ∈ Z[X(T )],
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where e(λ) is the canonical basis element associated to λ in the ring Z[X(T )].

Since we write the group law in X(T ) additively, we have e(λ)e(µ) = e(λ+ µ).

The sum in the definition may be taken over finitely many weights, by 2.6.3.

Remark 2.8.17. By [21, II,Remark 2.7], finite dimensional G-modules have the

same composition factors (including multiplicities) if and only if they have the

same formal character.

Lemma 2.8.18. We have ch(M⊗N) = chM ·chN and ch(M⊕N) = chM+chN

for G-modules M and N .

Definition 2.8.19. Given an element φ =
∑
aλe(λ) of Z[X(T )], we will denote

by φF the element
∑
aλe(λ)p.

Lemma 2.8.20. For a G-module V , we have ch(V F ) = (chV )F .

Definition 2.8.21. Let M be a G-module. An ascending filtration 0 = M0 ≤

M1 ≤ M2 ≤ . . . of M such that each successive quotient module is either 0 or

isomorphic to an induced module ∇(λ) for some λ ∈ X(T )+ (depending on the

quotient) is called a good filtration. If instead the quotients are each either 0 or

isomorphic to some Weyl module ∆(λ) (with λ again depending on the quotient),

we call the filtration a Weyl filtration of M .

Definition 2.8.22. A finite-dimensional G-module that has both a good filtration

and a Weyl filtration will be called a tilting module.

We have the following important facts about tilting modules. For proofs, see

[11].

Lemma 2.8.23. Direct sums and tensor products of tilting modules are again

tilting, as are direct summands of tilting modules.
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Lemma 2.8.24. Tilting modules are isomorphic if and only if they have the same

formal character.

Lemma 2.8.25. For each λ ∈ X(T )+ there exists an indecomposable tilting mod-

ule T (λ) with unique highest weight λ. Furthermore, λ has multiplicity 1 as a

weight of T (λ). The T (λ) form a complete set of inequivalent indecomposable

tilting modules.

Definition 2.8.26. Recall the definition of the Ext functors ExtG(M, ·) as the

right derived functors of the hom functor HomG(M, ·).

Definition 2.8.27. Let A and B be G-modules. An extension of A by B is a

short exact sequence 0 → B → E → A → 0 of G-modules; in this case we may

also refer to E as an extension of A by B. Two extensions 0→ B → E → A→ 0

and 0 → B → E′ → A → 0 are considered equivalent if there is a commutative

diagram

0 //B //E //

∼

��

A //0

0 //B //E′ //A //0

of G-modules and G-module homomorphisms.

There is a well-known bijection between equivalence classes of extensions of A

by B and the Abelian group Ext1
G(A,B).

2.9 Motivation and definition of reductive pairs

In the last sections of the preliminaries we define and discuss several ideas con-

cerning the properties of particular embeddings of algebraic groups. That is, these

are properties of a pair (G,H) consisting of a group G and a particular subgroup

H; a different copy H ′ of H seen inside G may or may not give rise to a pair
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(G,H ′) with the same property. The first such definition that we will look at is

due to Serre, and generalises the important concept of complete reducibility from

representation theory. We then give a definition of reductive pairs, and discuss

several results pertaining to these.

Definition 2.9.1. A subgroup H of a connected, reductive algebraic group G

is said to be G-completely reducible if whenever H is contained in a parabolic

subgroup P of G, H is also contained in a Levi subgroup of that parabolic.

When G = GLn(K), this condition can be shown to reduce to the usual notion

of complete reducibility: that is, H ≤ GLn(K) is GLn(K)-completely reducible if

and only if H acts completely reducibly on Kn. The notion turns out not to be

very interesting in characteristic 0: in this case, a subgroup of an algebraic group

G is G-completely reducible if and only if it is reductive [2].

Recall that the centraliser of a subgroup H ≤ G is

CG(H) = {g ∈ G | gh = hg for all h ∈ H}.

We define the infinitesimal centraliser of the closed subgroup H of an algebraic

group G to be the set

cLieG(H) = {x ∈ LieG | Adh(x) = x for all h ∈ H}.

In all cases, we have Lie(CG(H)) ⊂ cLieG(H).

Definition 2.9.2. A subgroup H of G is separable in G if the Lie algebra of the

centraliser of H in G is equal to the centraliser of H in LieG, that is, LieCG(H) =

cLieG(H).

Equivalently, H is separable in G if and only if the spaces in the definition have
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the same dimension. Any closed subgroup H of a general linear group GL(V ) is

separable in GL(V ) [2, 3.5]. The motivation for this definition comes from the

following situation.

Remark 2.9.3. The word “separable” will have several meanings in different

contexts. First, we say that a field extension E/F is separable if either F has

characteristic 0, or, if F has characteristic p and x1, x2, . . . , xm ∈ E are linearly

independent over F , then their pth powers remain linearly independent over F .

Let φ : X → Y be a morphism of irreducible varieties. We call φ dominant if

the comorphism φ] : K[Y ]→ K[X] is injective. When φ is dominant, the field of

fractions of (the integral domain) K[Y ] may therefore be identified with a subfield

of the field of fractions of K[X]. If this field extension is separable, then we call

φ separable. Note that over fields of characteristic 0, all morphisms are separable

(from the definitions).

We say a closed subgroup H is topologically generated by h1, h2 . . . , hn ∈ G

if H is the closure of the subgroup of G generated by these elements. We let G

act on the variety Gn by simultaneous conjugation, that is

g · (g1, . . . , gn) := (gg1g
−1, . . . , ggng

−1)

for an n-tuple (g1, . . . , gn) ∈ Gn. In this case, the orbit map G→ G · (h1, . . . , hn)

is a separable morphism if and only if H is separable in G in the sense of defini-

tion 2.9.2.

We now define reductive pairs, giving some of the results that motivated the

work in this thesis. Reductive pairs were introduced by Richardson in [25]. In the

paper appears the following result; the definition will follow. We write C(g,G)

for the G-conjugacy class of g.
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Theorem 2.9.4 (Richardson). Let V be a finite-dimensional vector space over

an algebraically closed field (of arbitrary characteristic); and let H be an algebraic

subgroup of GL(V ) such that (GL(V ), H) is a reductive pair.

1. If x ∈ LieH, then C(x,Lie GL(V )) ∩ LieH is the union of a finite number

of H-conjugacy classes.

2. If h ∈ H, then C(h,GL(V )) ∩ H is the union of a finite number of H-

conjugacy classes.

If we let K have characteristic 0, then more can be said: in this case we may

replace GL(V ) in the statement with any connected reductive algebraic group G.

The proof of theorem 2.9.4 uses the stipulation that (GL(V ), H) be a reductive

pair in an essential way, in an argument that has to do with tangent spaces to

orbits of the conjugation action of G.

In the situation described in the statement of the theorem, every element

of C(h,GL(V )) has the same Jordan normal form. If we intersect this GL(V )-

conjugacy class with H, then the result is a union of H-conjugacy classes. The

theorem tells us that we may write C(h,GL(V )) ∩ H as a finite union of H-

conjugacy classes. Hence there is only a finite number of H-conjugacy classes

of h with a given Jordan normal form. In particular, there are only a finite

number of H-conjugacy classes of unipotent elements, since all eigenvalues of

such a matrix are 1. The use of reductive pairs also simplifies a result that was

known prior to Richardson’s paper: in good characteristic, all simple groups (and

by extension all semisimple) algebraic groups have only finitely many conjugacy

classes of unipotent elements. Richardson’s proof involves finding an embedding

of simple groups G of each type (except those of type An)2 as a reductive pair

2That groups of type An have finitely many unipotent conjugacy classes follows from consid-
ering a correspondence between partitions of n and sizes of Jordan blocks.
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(GL(V ), G).

Definition 2.9.5. Let H be a closed, reductive subgroup of a reductive group G.

We say that (G,H) is a reductive pair if LieH is an H-module direct summand

of LieG, where H acts via the adjoint representation of G.

Since their introduction, reductive pairs have found use in the work of others.

Theorem 2.9.6. [3, 1.4] Let H be a reductive subgroup of a reductive group G

such that (G,H) is a reductive pair. Let H ′ be a subgroup of H such that H ′

is a separable subgroup in G. Then H ′ is separable in H. Moreover, if H ′ is

G-completely reducible, then it is also H-completely reducible.

The same paper includes a result giving conditions under which reductive pairs

of a certain form will not occur.

Theorem 2.9.7. [3, Corollary 2.13] If (GL(V ), G) is a reductive pair, then every

subgroup of G is separable in G.

In particular, G must then be separable in itself, and if this is not the case,

then there cannot be any reductive pairs of the form (GL(V ), G). That a group

fail to be separable in itself does sometimes occur: in characteristic p, the group

SLp(K) has this property. To see this, consider that the infinitesimal centraliser of

SLp(K) contains the scalar matrices, since these all have trace 0 in characteristic

p. Its dimension is thus positive. However, in characteristic p the requirement

that the scalar matrices in SLp(K) have determinant 1 is restrictive enough to

ensure that the centre of SLp(K) is trivial; its Lie algebra therefore has dimension

0.

Let G be simple, and define an integer a(G) as the rank of G plus 1. For

a reductive group G, define a(G) as the maximum of the ranks of the simple
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components of G. The following theorem appears in a paper by Serre, and has

a proof using several results, including a rather technical case-by-case analysis

concerning groups of exceptional type [22]. Given a subgroup H ≤ G, we will

write |G,H| for the index of H in G.

Theorem 2.9.8. [27, 4.4] Suppose p ≥ a(G) and that |H : H◦| is prime to

p. Then H◦ is reductive if and only if H is G-completely reducible. (For much

relevant discussion, see [3, 1.2]).

In [1], a version of this result is presented with a less favourable bound; how-

ever, this time the proof does not rely on the case-by-case treatement found in

the proof of 2.9.8, and is conceptually much simpler. We call a rational G-module

non-degenerate if the identity component of the kernel of the representation af-

forded by V is a torus.

Theorem 2.9.9. [1, 3.5] Suppose p > 2 dimV −2 for a non-degenerate G-module

V and that |H : H◦| is prime to p. Then H◦ is reductive if and only if H is G-

completely reducible.

The uniformity of the proof of this result comes through its exploitation of a

result in the same paper that guarantees the existence of a particular reductive

pair. In particular, the following results are used.

Theorem 2.9.10. [1, 3.3] Let H be a closed subgroup of G and V be a G-module.

1. Suppose that p ≥ dimV and that |H : H◦| is prime to p. If H is G-

completely reducible, then V is a semisimple H-module.

2. Suppose that V is non-degenerate and p > 2 dimV − 2. If V is semisimple

as an H-module, then H is G-completely reducible.
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Theorem 2.9.11. [1, 3.1] Suppose p > 2 dimV − 2. Then (GL(V ), ρ(G)) is a

reductive pair.

Proof. Since we assume p > 2 dimV − 2, it is also true that p ≥ dimV , so that

Jantzen’s semisimplicity theorem [20, 2.1] tells us that V is semisimple. Again

since p > 2 dimV −2, Serre’s theorem on the semisimplicity of tensor products [26,

Thm 1] implies that V ⊗ V ∗ is also semisimple. This module is isomorphic to the

Lie algebra Lie(GL(V )), so the submodule Lie(ρ(G)) has a direct complement.

Remark 2.9.12. The assumption that (GL(V ), ρ(G)) is a reductive pair is used

in a crucial way in the proof of the second point of theorem 2.9.10; however,

the method by which it is shown to be a reductive pair, by appeal to Jantzen and

Serre’s semisimplicty results, is not relevant to the proof. Although the bounds

in both semisimplicity results are sharp (cf. [20, 26]), this is not to say that

for a given G there might not be many examples where we get a reductive pair

(GL(V ), ρ(G)) with p ≤ 2 dimV − 2. In some respects, an investigation into this

situation was the starting point of the present research project, commencing with

the group SL2(K).

Since it will greatly improve the clarity and brevity of what follows, we make

the following definition.

Definition 2.9.13. Let V be a G-module affording the representation ρ : G →

GL(V ). We will say that V gives a reductive pair if and only if (GL(V ), ρ(G)) is

a reductive pair.
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2.10 First results and methods

In this section can be found discussion of results that will be applicable to each

of the cases we study later. The general approach taken is as follows. Given a

rational representation ρ : G → GL(V ) of an algebraic group G over an alge-

braically closed field K of positive characteristic, we want to know whether or not

(GL(V ), ρ(G)) is a reductive pair. Considered as G-modules via the adjoint action

of GL(V ), we first identify the Lie algebra of GL(V ) with End(V ) ∼= V ⊗V ∗. The

main reason for doing this is to take advantage of results relating to the decom-

position of tensor products. We then need to establish whether or not Lie ρ(G),

or rather the image of this Lie algebra in V ⊗ V ∗, is a direct summand; in the

following, if we speak of Lie ρ(G) as being a submodule of V ⊗V ∗, we tacitly refer

to this image. One of the main difficulties to overcome in this work is correctly

identifying the submodule of V ⊗ V ∗ corresponding to the Lie algebra of ρ(G).

For the group SL2(K), we will work around this problem by showing that there

can effectively be only one such submodule. In general, our approach will be to

prove results about all modules isomorphic to Lie ρ(G).

We shall make much use of Steinberg’s tensor product theorem for simply

connected, semi-simple algebraic groups (below). A full proof can be found in

Jantzen [21, 3.17]. The idea is to prove first that, given a weight λ ∈ Xr(T ) and

a dominant weight µ, we have L(λ+ prµ) ∼= L(λ)⊗ L(µ)F
r
. The result as stated

below then follows by induction. The proof in [21] capitalizes on the relationship

between representations of the Frobenius kernels Gr with those of G, which is

suggested in Cline, Parshall and Scott [10] (this paper contains a short proof of

the result which does not require the methods of group schemes).

Theorem 2.10.1 (Steinberg’s tensor product theorem). Let λ ∈ X(T )+ with
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λ =
∑m

i=0 p
iλi, where the λi ∈ X1(T ). Then

L(λ) ∼= L(λ0)⊗ L(λ1)F ⊗ · · · ⊗ L(λm)F
m
.

Remark 2.10.2. Every dominant weight may be written as such a sum. For

example, in a root system of type A2 in characteristic p = 5, consider the weight

labelled (12, 70). We may write 12 and 70 in base 5 as 12 = 2 + (2 × 5), 70 =

0 + (4 × 5) + (2 × 52). Then (12, 70) = (2, 0) + 5(2, 4) + 52(0, 2). This theorem

frequently allows us to break down a complicated problem about an arbitrary simple

module into a possibly easier problem about the ( finitely many) restricted simple

modules.

The following result appears first in [5]3, stated in terms of modules for finite

groups. The arguments used hold when considering modules for cocommutative

Hopf algebras, so that the result is in fact applicable to a very wide range of

classes of modules, including KG-modules for any group algebra KG. We will

state the result only in the form in which we will use it.

Proposition 2.10.3 (Benson and Carlson). Let M and N be finite dimensional

KG-modules. Then K is a summand of M ⊗ N if and only if the following two

conditions are met:

1. M ∼= N∗

2. p - dimN

Moreover, if K is a direct summand of N ⊗ N∗ then it occurs with multiplicity

one.

3For a more detailed discussion the reader may consult Benson’s book [4].
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Remark 2.10.4. In the case of a KG-module V , it is straight forward to see

that, if p - dimV , there is a summand of V ⊗ V ∗ isomorphic to K. We have that

V ⊗V ∗ ∼= End(V ) ∼= MatdimV (K), the dimV ×dimV matrices with entries in K.

If p - dimV , then the set of scalar matrices is a direct summand of this module,

with direct complement the collection of matrices with trace zero.

The above result will itself be useful in a later section, but for now it is worth

noting the following corollary.

Corollary 2.10.5 (Benson and Carlson). Suppose M is an indecomposable KG-

module with p | dimM . Then for any KG-module N and any indecomposable

summand U of M ⊗N , we have p | dimU .

The proof is by contradiction, supposing first that p - dimU , then applying

2.10.3 twice, using the associativity of the tensor product.

Remark 2.10.6. We will use this result as follows. Corollary 2.10.5 implies that

for any indecomposable G-module M , if p | dimM , then M ⊗ N can have no

summands with dimension not divisible by p, for any G-module N . This will be

of particular use in cases when p - dim LieG.

By the reasoning described in the remark, we arrive at the following.

Proposition 2.10.7. Let K have characteristic p, and suppose p - dim LieG. Let

V = V1 ⊗ · · · ⊗ Vr be a G-module such that one of the Vi is indecomposable and

has dimension divisible by p. Then V does not give a reductive pair.

Proof. Suppose the factor Vi is indecomposable and has dimension divisible by p.

Write

V ⊗ V ∗ ∼= Vi ⊗ (V1 ⊗ · · · ⊗ Vr ⊗ (V1 ⊗ · · · ⊗ Vr)∗),
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where we have rearranged the tensor product to bring Vi to the front. Now corol-

lary 2.10.5 implies that all indecomposable summands of V ⊗ V ∗ have dimension

divisible by p. In particular, LieG (being indecomposable) cannot be a summand,

hence the result.

Lemma 2.10.8. Let G be a reductive algebraic group over K and V a G-module.

Then V F gives a reductive pair if and only if V does.

Proof. Recall that V F and V are equal as K-vector spaces, so that GL(V ) =

GL(V F ). Let the representation afforded by the module V be denoted by ρ.

Since the Frobenius morphism is a bijection, the subgroups ρ(G) and ρ ◦F (G) of

GL(V ) are equal, from which the result follows.

Remark 2.10.9. The above lemma is especially helpful when Steinberg’s tensor

product theorem is taken into account: if λ = pµ, with λ, µ dominant weights,

then L(λ) = L(µ)F .

Lemma 2.10.10. Let V,W be G-modules and let ρ be the representation afforded

by V . Suppose that V gives a reductive pair and that the differential dρ is injective;

suppose further that End(W ) has a summand isomorphic to K. Then the module

V ⊗WF gives a reductive pair.

Proof. Let ρ and σ be the representations afforded by V and W respectively. If

we consider the representation

ρ⊗ σF : G→ GL(V ⊗WF ),

then the aim is to show that Lie(ρ ⊗ σF (G)) is a summand of End(V ⊗WF ).
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First, we have the differential d(ρ⊗ σF ) : LieG→ End(V ⊗WF ), and

Im(d(ρ⊗ σF )) ⊂ Lie(ρ⊗ σF (G)), (2.1)

that is, the image of the differential is contained in the Lie algebra of the image

of the representation.

By the properties of the differential ([6, 3.21]), d(ρ⊗σF ) = dρ⊗1WF +1V ⊗dσF

(where here 1WF refers to the identity map on WF ); since the map σF is equal to

σ◦F and the differential of the Frobenius morphism F is 0, we have that dσF = 0,

whence d(ρ⊗ σF ) = dρ⊗ 1WF . Thus

dim d(ρ⊗ σF )(LieG) = dim(dρ⊗ 1WF )(LieG),

which, since dρ is an isomorphism onto its image, is equal to dim LieG. However,

dim LieG ≥ dim Lie(ρ⊗ σF (G)),

since the Lie algebra on the right is that of an algebraic group morphic image of

the group the Lie algebra of which is on the left. We therefore have equality in

2.1. Thus we may look for the image of the differential rather than the Lie algebra

of the image when deciding if V ⊗WF gives a reductive pair.

We note that End(V ⊗WF ) ∼= End(V )⊗ End(WF ) [7]. It will be convenient

to identify these spaces via such an isomorphism. Thus

d(ρ⊗ σF ) = dρ⊗ 1WF : LieG→ End(V )⊗ End(WF ).

So we have Lie(ρ⊗ σF (G)) = (dρ⊗ 1WF )(LieG) = {dρX ⊗ 1WF | X ∈ LieG} =

43



dρLieG ⊗ KF . Finally, we note that since LieG is a summand of End(V ) and

KF is a summand of End(WF ), their tensor product LieG ⊗KF is a summand

of End(V )⊗ End(WF ) ∼= End(V ⊗WF ).

Corollary 2.10.11. Let G be a simple algebraic group over a field K of positive

characteristic p such that p is very good for G, let λ be a restricted dominant

weight such that the simple G-module L(λ) gives a reductive pair, and let µ be

a dominant weight such that p - dimL(µ). Then the module L(λ + pnµ) gives a

reductive pair for any integer n ≥ 1.

Proof. Since p is very good for G and G is simple, the Lie algebra of G is simple

(as a Lie algebra, hence also as a module) [3]. Thus any homomorphism leaving

LieG is either the zero map or is injective; since λ is restricted, the differential

is therefore injective. Since L(λ) gives a reductive pair, we know that LieG is a

summand of Lie GL(V ). Since p - dimL(µ), proposition 2.10.3 tells us that this

module has a summand isomorphic to K. We now apply lemma 2.10.10, noting

that L(λ)⊗ L(µ)F
n ∼= L(λ+ pnµ).

Remark 2.10.12. If we relax the conditions on λ and µ, more may be said. If

λ, µ are required only to be dominant weights, then it may be that L(λ)⊗ L(µ)F
n

is not a simple module; however, the lemma still applies, so this module still gives

a reductive pair. Weaker conditions can be found to ensure that the module is still

simple, for instance requiring that λ ∈ Xn(T ) with non-zero restricted part (see

discussion of Steinberg’s tensor product theorem, 2.10.1).
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Chapter 3

SL2

3.1 Basic facts

In this chapter we focus on the group G = SL2(K). A great deal is known about

this group and its representations, making it a logical choice for a first example.

Lemma 3.1.1. (a) For 0 ≤ u ≤ p− 1 we have T (u) = L(u) = ∇(u) = ∆(u).

(b) For p ≤ u ≤ 2p − 2 the module T (u) is uniserial and its unique composition

series has the form [L(2p−2−u), L(u), L(2p−2−u)]. Moreover, T (u) is a non-

split extension of ∆(2p−2−u) by ∆(u) (or, dually, of ∇(u) by ∇(2p−2−u)).

[14, 1.1]

It is well-known (see for instance [14]) that for SL2(K) the module ∇(r) ∼=

SrE, the rth symmetric power of the 2-dimensional natural module for SL2(K).

Thus the simple SL2(K)-modules are tensor products of Frobenius twists of such

symmetric powers, by Steinberg’s tensor product theorem. As in [14], we shall

call the tilting modules T (u) described in the previous result fundamental.

Remark 3.1.2. As the characteristic gets larger, more of the dominant weights
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fall in the restricted region, so that more of the behaviour correctly models char-

acteristic 0 theory.

Lemma 3.1.3. The simple SL2(K)-modules are self-dual. That is, L(λ)∗ ∼= L(λ).

Proof. By [21, II,2.5], the dual of L(λ) is the module L(−w0λ). Since SL2 is of

type A1 so that the Weyl group of SL2 is of order 2, the longest element w0 sends

each weight to its negative, hence the result.

Lemma 3.1.4. Let K have characteristic p ≥ 3, and let ρ : SL2(K) → GL(V )

be a rational representation. Then Lie ρ(SL2(K)) is isomorphic to the Lie algebra

sl2(K) of trace-zero 2× 2 matrices with entries in K.

Proof. The kernel of ρ is a closed normal subgroup of SL2(K) and is therefore

either trivial or is the centre of SL2(K), which consists of those scalar matrices

having determinant 1. Thus the image ρ(SL2(K)) is therefore isomorphic as an

abstract group to SL2(K), and as an algebraic group either to SL2(K) or to

PGL2(K). Since p - 2, the Lie algebras of both of these groups are isomorphic,

and in particular are isomorphic to sl2(K).

The following result is abridged from [23, 15.20], which lists the cases in which

the adjoint representation of a simple algebraic group G is irreducible.

Theorem 3.1.5. If K has characteristic p and p - n, then Lie SLn(K) is an

irreducible SLn(K)-module.

Thus when deciding whether or not a representation gives a reductive pair, if

the characteristic is greater than or equal to 3, we may be certain the Lie algebra

we look for is isomorphic to L(2), the 3-dimensional simple SL2-module with

highest weight 2. We will address the issue of characteristic 2 in the discussion
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of the main results of this chapter, as in each case the argument we use will be

specific to the types of representation under consideration.

3.2 Simple modules

In [14], Doty and Henke provide a decomposition of an arbitrary tensor product of

simple modules for SL2 into a direct sum of tensor products of Frobenius twisted

fundamental tilting modules. Since we are concerned with tensor products of

simple modules with their duals, and since the simple SL2 modules are self-dual,

we will make use of this result in a simpler special case; we will nevertheless

include the full statement (as theorem 3.2.5) for interest’s sake.

Lemma 3.2.1. Let λ = a0 + a1p+ · · ·+ arp
r be a non-negative integer. Then the

dimension of the simple KSL2-module L(λ) is
∏r
i=0(ai + 1).

Proof. By Steinberg’s tensor product theorem, we have that L(λ) = L(a0) ⊗

L(a1)F ⊗ · · · ⊗ L(ar)
FR

. Since the underlying vector space of a module M is

the same as that of the module MF , we have that the dimension of L(λ) is the

product of the dimensions of the L(ai). By lemma 3.1.1, the simpleKSL2-modules

with restricted highest weight are symmetric powers of the 2-dimensional natural

module E; it is well-known that the dimension of the ith symmetric power SiE is

the multiset coefficient1

dimSiE =

((
dimE

i

))
=

(
dimE + i− 1

i

)
= i+ 1,

hence the result.

Lemma 3.2.2. Suppose p > 3, and let λ be a non-negative integer with base p

1That is, choice with replacement.
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expansion λ = a0 +a1p+ · · ·+akp
k. Supppose at least one of the ai = p−1. Then

L(λ) does not give a reductive pair.

Proof. Apply proposition 2.10.7, noting that by theorem 2.10.1,

L(λ) ∼= L(a0)⊗ L(a1)F ⊗ · · · ⊗ L(ak)
Fk
,

and that by lemmas 3.2.1 and 2.10.8, the term L(ai)
F i

has dimension p.

Remark 3.2.3. This provides an initial constraint on the simple modules that can

give rise to reductive pairs; we shall see that it agrees with the complete picture

that will emerge for this case.

Lemma 3.2.4 (Doty and Henke). Let L,L′ be two simple modules with highest

weights inclusively between 0 and p-1. Then L⊗L′ is tilting, and isomorphic with

the direct sum of T (u) as u varies over a set W (L,L′) of weights which can be

computed as follows. Let r (resp., s) be the larger (resp., smaller) of the highest

weights of L,L′. List the weights r + s, r + s − 2, . . . , r − s. For each u ≥ p on

this list, strike out the number 2p − 2 − u from the list. What remains is the set

W (L,L′). In other words, if S = {r + s− 2i}si=0, then

W (L,L′) = S − {2p− 2− u|u ∈ S, u ≥ p}.

In particular, L⊗L′ is indecomposable if and only if s = 0 or (r, s) = (p−1, 1).

Theorem 3.2.5 (Doty and Henke). Let r, r′ be arbitrary non-negative integers.

The tensor product L(r)⊗L(r′) can be expressed as a direct sum of twisted tensor
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products of fundamental tilting modules. In fact, we have

L(r)⊗ L(r′) ∼=
⊕
u

(⊗
T (ui)

F i
)
,

where u = (u0, . . . , um) ranges over all elements of the finite Cartesian product

W = W (δ0(r), δ0(r′))×W (δ1(r), δ1(r′))× · · · ×W (δm(r), δm(r′))

of the sets described in Lemma 3.2.4, and where m is the p-adic length of the

largest of r, r′. Given u as above, the corresponding indecomposable direct sum-

mand J(u) = ⊗mi=0T (ui)
F i

is always contravariantly self-dual, with simple socle

and head isomorphic with L(
∑m

i=0 ũip
i), where ũi is defined by

ũi =


ui if ui ≤ p− 1,

2p− 2− ui otherwise.

(3.1)

We shall show that, given a non-negative integer λ, there is precisely one

submodule of L(λ) ⊗ L(λ)∗ isomorphic to L(2). We shall do this in a series of

results.

It is well known that tensor products of induced modules have filtrations by

induced modules; in the case of SL2(K), we may be very explicit about this.

Lemma 3.2.6. There is a short exact sequence 0 → ∇(µ − 1) ⊗ ∇(ν − 1) →

∇(µ) ⊗ ∇(ν) → ∇(µ + ν) → 0. In particular, the module ∇(µ) ⊗ ∇(ν) has a

filtration with sections isomorphic to ∇(µ+ ν),∇(µ+ ν − 2), . . . ,∇(µ− ν) (each

with multiplicity one, with ν ≤ µ).
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For the sake of brevity in the proof, we will define

u(c) =

 1 c

0 1

 .

Proof. Consider the map φ : ∇(µ)⊗∇(ν)→ ∇(µ+ν) defined by sending a typical

basis vector2 xµ−aya⊗xν−byb to xµ+ν−a−bya+b and extending linearly. Note that

φ is clearly surjective; we shall show that it is an SL2-module homomorphism.

We have that SL2 is generated by the upper and lower unipotent subgroups

U+ and U−; because of the symmetry of the roles of the symbols x and y in the

symmetric powers, it is therefore enough to show that, for g ∈ U+ ⊂ SL2 and

X ∈ ∇(µ)⊗∇(ν), we have gφ(X) = φ(gX). In particular, having shown the result

for g = u(c), c ∈ K, we may infer the same result for u−(c), swapping the symbols

x and y in the argument. Now let g = u(c), and let X = xµ−aya ⊗ xν−byb be a

basis element of ∇(µ)⊗∇(ν). We have that gX = xµ−a(cx+ y)a⊗xν−b(cx+ y)b.

Expanding these brackets using the binomial formula, we see

gX = xµ−a
a∑
i=0

(
a

i

)
ca−ixa−iyi ⊗ xν−b

b∑
j=0

(
b

j

)
cb−jxb−jyj

=
a∑
i=0

b∑
j=0

(
a

i

)(
b

j

)
ca+b−i−jxµ−iyi ⊗ xν−jyj ,

where we have used the bilinearity of the tensor product repeatedly. Since this is

2Here we shall abuse notation by neglecting to draw a distinction between x’s and y’s on
different sides of the tensor product. Provided that we tacitly respect the distinction and do not
attempt to “bring an x over the tensor product” (or similar), this will not cause a problem.
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now expressed as a linear combination of basis vectors we can see that

φ(gX) =

a∑
i=0

b∑
j=0

(
a

i

)(
b

j

)
ca+b−i−jxµ+ν−i−jyi+j

= xµ+ν−a−b
a∑
i=0

b∑
j=0

(
a

i

)(
b

j

)
ca+b−i−jxa+b−i−jyi+j

= xµ+ν−a−b
∑

0≤i≤a
0≤j≤b
i+j=k

(
a

i

)(
b

j

)
ca+b−kxa+b−kyk,

where we have combined the sums and brought out the powers of x in order to

clarify an argument to follow. On the other hand, we have that

gφ(X) = gxµ+ν−a−bya+b

= xµ+ν−a−b(cx+ y)a+b

= xµ+ν−a−b
a+b∑
k=0

(
a+ b

k

)
ca+b−kxa+b−kyk.

We now claim that gφ(X) = φ(gX). To see this, consider the polynomial

(cx+ y)a+b = (cx+ y)a(cx+ y)b.

Once again using the binomial formula to expand each bracket, we compare co-

efficients of xa+b−kyk on each side for a given k ∈ {0, 1, . . . , a+ b}. Doing so, we

find that
a+b∑
k=0

(
a+ b

k

)
ca+b−k =

∑
0≤i≤a
0≤j≤b
i+j=k

(
a

i

)(
b

j

)
ca+b−k.

Thus φ is a homomorphism of SL2-modules.

Next, consider the map ψ : ∇(µ − 1) ⊗ ∇(ν − 1) → ∇(µ) ⊗ ∇(ν) defined by
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the following.

xµ−1−aya ⊗ xν−1−byb 7→ xµ−aya ⊗ xν−1−byb+1 − xµ−1−aya+1 ⊗ xν−byb.

That is, we increase the power of x on the left, then balance the effect this has

on the weight by increasing the power of y on the right; to ensure that the end

result is an element of the kernel of φ, we then subtract from this the vector we

get by applying the same rule reversed. Now, ψ is clearly injective, and we shall

now see that it is an SL2-module homomorphism. As before, we check this for an

element of U+.

Let g = u(c), X = xµ−1−aya ⊗ xν−1−byb. Then

ψ(gX) =
a∑
i=0

b∑
j=0

(
a

i

)(
b

j

)
ca+b−i−j (xµ−iyi ⊗ xν−1−jyj+1 − xµ−1−iyi+1 ⊗ xν−jyj

)
,

where the omitted steps in the calculation are similar to those performed for the

map φ. Next,

gψ(X) = xµ−a(cx+ y)a ⊗ xν−1−b(cx+ y)b+1 − xµ−1−a(cx+ y)a+1 ⊗ xν−b(cx+ y)b

= xµ−a(cx+ y)a ⊗ xν−1−b(cx+ y)b(cx+ y)− xµ−1−a(cx+ y)a(cx+ y)

⊗ xν−b(cx+ y)b

=
a∑
k=0

(
a

k

)
ca−kxµ−kyk ⊗

b∑
l=0

((
b

l

)
cb−lxν−1−lyl(cx+ y)

)

−
a∑

m=0

((
a

m

)
ca−mxµ−1−mym(cx+ y)

)
⊗

b∑
n=0

(
b

n

)
cb−nxν−nyn
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=

a∑
i=0

b∑
j=0

(
a

i

)(
b

j

)
ca+b−i−j (xµ−iyi ⊗ xν−1−jyj(cx+ y)− xµ−1−iyi(cx+ y)

⊗xν−jyj
)
,

and note that the term in brackets is equal to

xµ−iyi⊗ cxν−jyj +xµ−iyi⊗xν−1−jyj+1− cxµ−iyi⊗xν−jyj−xµ−1−iyi+i⊗xν−jyj ,

the first and third terms of which cancel, leaving

xµ−iyi ⊗ xν−1−jyj+1 − xµ−1−iyi+1 ⊗ xν−jyj .

Thus we see that ψ(gX) = gψ(X), as required.

From the above, it is clear that for a given pair of dominant weights (µ, ν)

with µ ≥ ν we have an exact sequence of SL2-modules ∇(µ − 1) ⊗ ∇(ν − 1) ↪→

∇(µ)⊗∇(ν) � ∇(µ+ ν). In fact we see

∇(µ− ν)⊗∇(0) //

��

· · · // ∇(µ− 1)⊗∇(ν − 1) //

��

∇(µ)⊗∇(ν)

��
∇(µ− ν) ∇(µ+ ν − 2) ∇(µ+ ν),

where the horizontal maps are injective, and the vertical maps are surjective. In

particular, we see that ∇(µ)⊗∇(ν) has a filtration with sections ∇(µ+ν),∇(µ+

ν − 2), . . . ,∇(µ− ν).

Lemma 3.2.7. dim HomSL2(∆(λ),∇(µ)⊗∇(ν)) ≤ 1.
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Proof. By the zero case of [21, Prop. 4.13], we know that

dim HomG(∆(α),∇(β)) =


1 if α = β

0 if α 6= β.

(3.2)

We also know that for a short exact sequence 0 → Y1 → Y → Y2 → 0 of KG-

modules, dim HomG(X,Y ) ≤ dim HomG(X,Y1) + dim HomG(X,Y2) for a given

module X. We apply this result inductively to the filtration of lemma 3.2.6,

giving

dim HomG(∆(λ),∇(µ)⊗∇(ν)) ≤
ν∑
i=0

dim HomG(∆(λ),∇(µ+ ν − 2i)). (3.3)

Since at most one of the integers µ+ ν− 2i is equal to λ, formula 3.2 implies that

the right hand side is at most 1.

In fact, 3.3 may be shown to be an equality, using [12, Prop. A2.2]

Corollary 3.2.8. dim HomSL2(L(λ), L(µ)⊗ L(ν)) ≤ 1.

Proof. Note that ∇(λ) has socle isomorphic to L(λ), and ∆(λ) has head isomor-

phic to L(λ). Thus HomSL2(L(λ), L(µ)⊗L(ν)) embeds in HomSL2(∆(λ), L(µ)⊗

L(ν)). Next, HomSL2(∆(λ), L(µ)⊗L(ν)) ≤ HomSL2(∆(λ),∇(µ)⊗∇(ν)). Thus it

is enough to prove that this latter space has dimension ≤ 1, which is lemma 3.2.7.

Remark 3.2.9. Recall that in characteristic p 6= 2, the Lie algebra of the image

of SL2 under a representation is isomorphic to the simple module L(2) (cf. 3.1.4).

The argument above shows in particular that there is at most (hence exactly) one

submodule of any tensor product L(λ)⊗ L(λ)∗ ∼= L(λ)⊗ L(λ) that is isomorphic
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to L(2), hence to the Lie algebra of the image of SL2 in the representation L(λ).

Thus, if we find such a submodule (whether or not it appears as a summand) we

may be certain that it is in fact the Lie algebra of the image; this is a great aid in

deciding whether an SL2-module gives a reductive pair.

We are now ready to state the main result of this section, which classifies the

simple SL2-modules giving reductive pairs. The majority of the work has been

done already, and the proof will therefore take the form of a few observations,

minor calculations and checks.

Theorem 3.2.10. Let λ 6= 0 be a non-negative integer with base p expansion

λ = a0 +a1p+ · · ·+akp
k and ρ : SL2(K)→ GL(L(λ)) the representation afforded

by the simple module L(λ). Let l be the smallest integer for which al 6= 0. Then,

when p > 3, (GL(L(λ)), ρ(SL2)) is a reductive pair if and only if

1. ai ≤ p− 2 for all i, and

2. al ≤ p− 3.

If p = 3, then (GL(L(λ)), ρ(SL2)) is a reductive pair if and only if all ai ≤ 1

except for al, which can be 1 or 2.

If p = 2, (GL(L(λ)), ρ(SL2)) is never a reductive pair.

Proof. First, let µ be the integer defined by factoring λ by the highest power of

p dividing it: that is, setting µ :=
∑k−l

j=0 bjp
j , where bj := aj+l. By lemma 2.10.8,

we know that L(λ) gives a reductive pair if and only if L(µ) does. Thus we may

assume in the proof that l = 0, so that λ is not a multiple of p.

It is now enough to check when one of the summands in Doty and Henke’s

decomposition of the tensor product is isomorphic to L(2): by corollary 3.2.8 we

know that there is precisely one submodule of L(λ)⊗L(λ) isomorphic to L(2), so
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if one of the summands is isomorphic to L(2), it must be the Lie algebra (rather,

its image under the various implicit isomorphisms); if none of the summands are

isomorphic to L(2), then we know the submodule we care about cannot split off,

by Krull-Schmidt.

The term J(u) in [14, theorem 2.1] is isomorphic to L(2) precisely when u =

(2, 0, . . . , 0): certainly T (2)⊗T (0)F⊗· · ·⊗T (0)F
k ∼= L(2), whereas L(2) 6∼= MF for

any KG-module M , or indeed to any tensor product of more than one non-trivial

Frobenius twisted fundamental tilting module.

Now suppose p > 3. Using the terminology of Doty and Henke’s results, we

must ensure that the set

W = W (al, al)×W (al+1, al+1)× · · · ×W (ak, ak)

contains the element (2, 0, . . . , 0). Thus W (al, al) must contain 2, and the rest of

the sets W (ai, ai) must all contain 0. Recall that

W (a, a) := S \ {2p− 2− u | u ∈ S, u ≥ p},

where S := {2a, 2a− 2, . . . , 0}. The higher the number a is, the more elements of

S will be removed to form W , working downwards in twos from p − 3, which is

removed whenever S contains the element p + 1 (that is, when a ≥ p+1
2 ). When

a = p− 2, we must remove 2p− 2− (2p− 4) = 2, and when a = p− 1 we remove

0, giving us the stated conditions on the coefficients of λ.
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For the case where p = 3, we note that in this case,

W (0, 0) = {0},

W (1, 1) = {2, 0}, and

W (2, 2) = {4, 2} (= {4, 2, 0} \ {6− 2− 4 = 0}),

hence the Cartesian product the set W contains the element (2, 0, . . . , 0) precisely

under the stated conditions on the coefficients.

When p = 2, we see by [14, 2.3] that L(r) ⊗ L(r′) is indecomposable for any

non-negative integers r, r′. Thus for the image in L(λ)⊗ L(λ) of Lie ρSL2(K) to

be a summand of that space would require that these spaces be isomorphic. This

is not so, since the image is 3-dimensional (albeit no longer simple), and 3 is not

a square number, which the dimension of L(λ)⊗ L(λ)∗ always is.

Example 3.2.11. Suppose K has characteristic 5. Then the simple module with

highest weight 450 does not give a reductive pair, since 450 = 0.1+0.5+3.52+3.53.

By lemma 3.2.1, L(450) has dimension (3 + 1)(3 + 1) = 16; since 2× 16− 2 = 30

is greater than p = 5, we are within the bound established in theorem 2.9.9. We

note that L(451) does give a reductive pair, since the lowest non-zero coefficient

of the base 5 expansion of 451 is no longer greater than p − 3 = 2. Note further

that in this case 2 < p < 2 dimL(451) − 2 = 62. Thus we have examples within

the bound which do and do not give reductive pairs.

Example 3.2.12. As another example, let p > 3 and consider the simple module

L(1 + p(p−1)
2 ) = L(1)⊗L(p−1

2 )F by theorem 2.10.1 . By lemma 3.2.1, this module

has dimension p + 1, again within the bound. This module will be of interest in
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the next section of this chapter, where we will compare its behaviour with that of

a symmetric power of the natural module.

3.3 Symmetric Powers

The character calculations in this section and the proof of lemma 3.3.1 are due to

Donkin.

Recall the definition of tilting modules from the preliminaries chapter. The

following lemma is a special case of [24, Lemma 3.3], which is proved in a similar

way, the argument being due to Donkin.

Lemma 3.3.1. If r, s ≥ 0 with |r − s| ≤ 1, then ∇(r)⊗∆(s) is a tilting module.

Proof. Let B be the Borel subgroup

B :=


 t 0

x t−1


∣∣∣∣∣∣∣ t ∈ K×, x ∈ K

 .

Then ∇(r) ⊗∆(s) = indGBKr ⊗∆(s) = indGB(Kr ⊗∆(s)), with the first equality

being by the definition of ∇(r), and the second by the tensor identity ([21] I,3.6),

where first we regard ∆(s) as a G-module, then as a B-module, as appropriate

(the equalities themselves are of G-modules). Now, Kr ⊗ ∆(s) has a B-module

filtration with sections Km, where m ranges over {r + s − 2i | 0 ≤ i ≤ s}. By

Kempf’s vanishing theorem ([21], II,4.5), Ri indGBKm = 0 for all i > 0; using this

and considering the long exact sequence of induction, we see that ∇(r) ⊗ ∆(s)

has a G-module filtration with sections indGBKm, that is, a filtration by ∇(m)’s.

Since (∇(r)⊗∆(s))∗ = ∆(r)⊗∇(s) ∼= ∇(s)⊗∆(r) also has such a filtration, we

see by the same argument (with r and s reversed) that ∇(r)⊗∆(s) is tilting.
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Define

Y (r) :=


∇(m)⊗∆(m) if r = 2m is even,

∇(m+ 1)⊗∆(m) if r = 2m+ 1 is odd.

Note that for even r, Y (r) ∼= ∇(m) ⊗ (∇(m))∗. Let χ(m) := ch∇(m) and

ψr := chY (r). Noting that the weights of the dual V ∗ of a module are in this case

the negatives of the weights of V , with multiplicities, we have χ(m) = ch ∆(m).

Alternatively, see [21, II,5.7-11] for more a general discussion of χ. One can

calculate directly (by working out the weight spaces) that

χ(m) = xm + xm−2 + · · ·+ x−m.

We will use the following well-known formula.

Lemma 3.3.2 (Clebsch-Gordan formula). Let λ ≥ µ be non-negative integers.

Then we have

ch (∇(λ)⊗∆(µ)) = ch∇(λ+ µ) + ch∇(λ+ µ− 2) + · · ·+ ch∇(λ− µ).

Next, using lemma 2.8.18 to calculate it directly, or using the Clebsch-Gordan

formula above, we may see that

ψr =


χ(r) + χ(r − 2) + · · ·+ χ(2) + χ(0) r even,

χ(r) + χ(r − 2) + · · ·+ χ(3) + χ(1) r odd.

We will show that for all non-negative, even integers r, ψr is a sum of charac-

ters of certain tilting modules. By 2.8.24, this implies an isomorphism of tilting
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modules between Y (r) and the direct sum of the tilting modules whose characters

appear. Doing this will allow us to reduce the problem of determining (for each

non-negative integer m) whether ∇(m) gives a reductive pair for SL2 to the al-

ready covered case of simple modules. We will proceed via several calculations, to

accommodate different values of r. It is worth noting that Donkin’s calculations

cover a wider class of examples than is included here.

Suppose p > 2. First, we let a be an even integer with 0 ≤ a ≤ p − 3, and

write

ψ2pm+a = χ(2pm+ a) + χ(2pm+ a− 2) + · · ·+ χ(2) + χ(0). (3.4)

Next, we factor the whole expression by χ(p− 1):

ψ2pm+a = χ(p− 1)
[
χ((2m− 1)p+ a+ 1) + χ((2m− 3)p+ a+ 1) + · · ·

+ χ(p+ a+ 1)
]

+ χ(a) + χ(a− 2) + · · ·+ χ(0). (3.5)

To see this equality, note that using the Clebsch-Gordan formula 3.3.2, we have

that the “top” term of χ(p − 1)χ((2m − 1)p + a + 1) is χ(2pm + a), whilst the

“bottom” term is χ((2m− 2)p+ a+ 2) (where by top and bottom we refer to the

usual order of the integers on the arguments). The bottom term is therefore the

one “2 greater than” (in the same sense) the top term of χ(p−1)χ((2m−3)p+a+1).

In fact, the terms we obtain by multiplying out the square bracket continue to

“stack” in this fashion; after all terms have been expanded, we are left with

χ(p− 1)
[
χ((2m− 1)p+ a+ 1) + · · ·+ χ(p+ a+ 1)

]
= χ(2pm+ a) + χ(2pm+ a− 2) + · · ·+ χ(a+ 2),
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and for this to equal ψ2pm+a we must add on ψa = χ(a) + χ(a − 2) + · · · + χ(0)

(the rest of the terms).

We will make use of the following lemma, which is [29, 6.1.1].

Lemma 3.3.3. 1. Let i, j ∈ {0, . . . , p − 2} with i + j = p − 2. Then for any

n ∈ N, there exists a short exact sequence of SL2(K)-modules:

0→ ∇(i)⊗∇(n)F → ∇(pn− i)→ ∇(j)⊗∇(n− 1)F → 0.

2. ∇(np− 1) ∼= ∇(p− 1)⊗∇(n− 1)F is an isomorphism of SL2(K)-modules.

Recalling that a ≤ p − 3, we apply this lemma to the all of the characters

within the square bracket in equation 3.5 to see

ψ2pm+a = χ(p− 1)
[(
χ(a+ 1)χ(2m− 1)F + χ(p− a− 3)χ(2m− 2)F

)
+
(
χ(a+ 1)χ(2m− 3)F + χ(p− a− 3)χ(2m− 4)F

)
+ · · ·

+ χ(a+ 1)χ(1)F + χ(p− a− 3)
]

+ χ(a) + χ(a− 2) + · · ·+ χ(0). (3.6)

We may now collect the terms in the bracket into two sets, rewriting the right-

hand side of equation 3.6 as follows.

ψ2pm+a = χ(p− 1)χ(a+ 1)ψF2m−1 + χ(p− 1)χ(p− a− 3)ψF2m−2 + ψa. (3.7)

Now, ∇(λ) is tilting for 0 ≤ λ ≤ p − 1 [14, Lemma 1.1], and although Y (r)F

is not tilting, ∇(p − 1) ⊗ Y (r)F is. To see this, we note that if we apply a

Frobenius twist to Y (r) and to a good filtration of Y (r), the result is no longer

good: we get sections ∇(µ)F (where Y (r) had sections ∇(µ), say). However

∇(p−1)⊗∇(µ)F ∼= ∇((µ+1)p−1)) as a KSL2-module, by lemma 3.3.3. We also
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use the following isomorphism of modules: (A⊗C)/(B⊗C) ∼= (A/B)⊗C, showing

that∇(p−1)⊗Y (r)F has a good filtration. Ultimately, ∇(b)⊗
(
∇(p−1)⊗Y (m)F

)
is tilting (0 ≤ b ≤ p− 1), being a tensor product of two tilting modules. Since all

the terms in 3.7 are characters of tilting modules, and since we have had equality

at all stages of the calculation, we must have

Y (2pm+ a) ∼= ∇(p− 1)⊗∇(a+ 1)⊗ Y (2m− 1)F

⊕∇(p− 1)⊗∇(p− a− 3)⊗ Y (2m− 2)F ⊕ Y (a). (3.8)

Next, we consider the case where a = p − 1. Following the same steps as in

equations 3.5, 3.6, 3.7, but using the other case of lemma 3.3.3, we arrive at the

following for this case.

Y (2pm+ p− 1) ∼= ∇(p− 1)⊗ Y (2m)F

⊕∇(p− 1)⊗∇(p− 2)⊗ Y (2m− 1)F ⊕ Y (p− 3). (3.9)

We next consider Y (p− 1 + 2pm+ a) with 0 ≤ a ≤ p− 3, a even. Again, by

similar manipulation we see

ψp−1+2pm+a = χ(p− 1)
[
χ(2pm+ a) + χ(2p(m− 1) + a) + · · ·

+ χ(2p+ a) + χ(a)
]

+ χ(p− 1− a− 2) + χ(p− 1− a− 4) + · · ·+ χ(0).

Next,

ψp−1+2pm+a = χ(p− 1)
[
χ(a)χ(2m)F + χ(p− 2− a)χ(2m− 1)F

+ · · ·+ χ(a)χ(2)F + χ(p− 2− a)χ(1)F + χ(a)
]

+ ψp−a−3.
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Finally, we collect the terms:

ψp−1+2pm+a = χ(p− 1)χ(a)ψF2m + χ(p− 1)χ(p− 2− a)ψF2m−1 + ψp−a−3,

whence (for 0 ≤ a ≤ p− 3)

Y (p− 1 + 2mp+ a) ∼= ∇(p− 1)⊗∇(a)⊗ Y (2m)F

⊕∇(p− 1)⊗∇(p− 2− a)⊗ Y (2m− 1)F ⊕ Y (p− a− 3). (3.10)

Another, simpler calculation yields

Y (2pm+ 2p− 2) = ∇(p− 1)⊗∇(p− 1)⊗ Y (2m)F . (3.11)

Considering 3.8, 3.9, 3.10 and 3.11, we have expressions for Y (r) for each even,

non-negative r. Thus we have expressions for ∇(m)⊗∆(m) with r = 2m – that

is, all non-negative integers m.

Theorem 3.3.4. Let K be an algebraically closed field of characteristic p > 0, let

n be a non-negative integer and let ρ : SL2(K)→ GL(∇(n)) be the representation

afforded by ∇(n), the nth symmetric power of the natural module.

1. If K has characteristic p > 3, then (GL(∇(n)), ρ(SL2)) is a reductive pair

if and only if n 6≡ p, p− 1 or p− 2 (mod p).

2. If K has characteristic 3, then (GL(∇(n)), ρ(SL2)) is a reductive pair if and

only if n ≡ 1, 2, . . . 6 (mod 9).

3. If K has characteristic 2, then (GL(∇(n)), ρ(SL2)) is never a reductive pair.

Proof. First suppose K has characteristic p > 3. Although in proving this result
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we will deal with several cases, they all resolve to the same issue: what ultimately

matters is the residue class of n modulo p. As in the calculations above, we write

r = 2n and∇(n)⊗∇(n)∗ ∼= ∇(n)⊗∆(n) = Y (r) as a direct sum of tilting modules.

Recall that by 3.2.8, if we exhibit a summand of ∇(n)⊗∆(n) that is isomorphic

to L(2), then we know ∇(n) does give a reductive pair. On the other hand, if

we can show that in a given decomposition of ∇(n)⊗∆(n) into (not necessarily

indecomposable) direct summands Mi, none of the Mi has a summand isomorphic

to L(2), then ∇(n) cannot give a reductive pair, by the Krull-Schmidt theorem.

By 3.8, we see that when n ≡ 0, 1, . . . , p−3
2 (mod p), ∇(n) gives a reductive

pair if and only if L(2n) gives a reductive pair, where n is the least residue of

n modulo p. When n = 0 (that is, when n = pm for some m), ∇(n) does not

give a reductive pair: by corollary 2.10.5, we know that no module isomorphic to

L(2) can be a summand of any module of the form ∇(p − 1) ⊗N (where N is a

G-module), since ∇(p−1) is p-dimensional and indecomposable (it is irreducible).

We combine this this with the last observation in the previous paragraph, noting

that none of the summands in 3.8 has a summand isomorphic to L(2). In the rest

of the cases we have 0 < 2n ≤ p− 3, so that ∇(n) does give a reductive pair.

By 3.9 and 3.10, we see that if n ≡ p−1
2 , p−1

2 + 1, . . . , p− 3 (mod p), then ∇(n)

does give a reductive pair, while for n ≡ p − 2 it does not. This is because if

n ≡ p−1
2 + a

2 (mod p) where 0 ≤ a ≤ p − 3 is even, then ∇(n) gives a reductive

pair if and only if L(p−a−3
2 ) gives a reductive pair, which is true for 0 ≤ a ≤ p− 5

but false for a = p− 3.

Finally we look at 3.11. Thus if n ≡ p− 1 (mod p), then ∇(n) does not give a

reductive pair, as corollary 2.10.5 shows ∇(n)⊗∆(n) does not have a summand

isomorphic to L(2) (as before). Combining this and the observations about other

residue classes above, the proof for p > 3 is complete.
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Now suppose p = 3. In this case, letting a = 0 in equation 3.8, we have

Y (6m) ∼= ∇(2)⊗∇(1)⊗ Y (2m− 1)F

⊕∇(2)⊗∇(0)⊗ Y (2m− 2)F ⊕ Y (0). (3.12)

Equation 3.9 becomes

Y (6m+ 2) ∼= ∇(2)⊗ Y (2m)F

⊕∇(2)⊗∇(1)⊗ Y (2m− 1)F ⊕ Y (0). (3.13)

Finally, equation 3.11 becomes

Y (6m+ 4) = ∇(2)⊗∇(2)⊗ Y (2m)F . (3.14)

From 3.12, we see that if p - m, then Y (6m) has a summand isomorphic to

L(2). This is because the term
(
∇(2)⊗∇(0)⊗ Y (2m− 2)F

)
itself has a sum-

mand L(2) ⊗ L(0) ⊗ L(0)F , using proposition 2.10.3, noting that Y (2m − 2)F =

(∇(m− 1)⊗∆(m− 1))F . Since Y (6m) = ∇(3m) ⊗ ∆(3m), we have there-

fore have that ∇(3m) gives a reductive pair for each m coprime to 3, namely

∇(3× 1),∇(3 × 4),∇(3 × 7), or generally those of the form ∇(3 + 9k); and also

∇(3×2),∇(3×5), or in other words those of the form∇(6+9k). On the other hand,

again using lemma 3.2.4, L(2)⊗L(1) ∼= T (3) in characteristic 3. Thus L(2) cannot

be a summand of either of the other terms in equation 3.12, for reasons we now

explain. The composition factors of T (3) in characteristic 3 are L(1), L(3), L(1),

by lemma 3.1.1. Hence the composition factors of T (3)⊗Y (2m−1)F are the com-

position factors of L(1) ⊗ Y (2m − 1)F (twice each) and the composition factors
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of L(3)⊗Y (2m− 1)F . If T (3)⊗Y (2m− 1)F has a summand isomorphic to L(2),

then this summand is in particular a submodule, and, being simple, is therefore a

composition factor. Thus it is enough to know that L(2) cannot be a composition

factor of either L(1)⊗Y (2m− 1)F or L(3)⊗Y (2m− 1)F ∼= (L(1)⊗Y (2m− 1))F ;

considering the weights of these modules, we see that no composition factor of

either may have highest weight congruent to 2 modulo 3. Finally, Y (0) is 1-

dimensional, so L(2) cannot be a submodule.

From 3.13, using the same reasoning, Y (6m + 2) does have a summand iso-

morphic to L(2) if p - m + 1, noting that Y (2m)F = (∇(m)⊗∆(m))F . Then,

following the same process as for the previous case, we see that we get a reductive

pair from each ∇(1 + 9k) and each ∇(4 + 9k). Since the other terms in equa-

tion 3.13 are the same as in the previous case, the same reasoning shows that L(2)

is not a summand of either of the those terms.

From 3.14, we see that Y (6m + 4) has a summand isomorphic to L(2) if

p - m+1. To see this, note that by lemma 3.2.4 we have L(2)⊗L(2) ∼= T (4)⊕L(2)

then apply the same reasoning as before. In this case, we see that we get reductive

pairs from ∇(2 + 9k) and ∇(5 + 9k). Again, these are the only ways to get a

summand isomorphic to L(2).

To summarise: from the cases above, we see that when p = 3, ∇(n) gives a

reductive pair if and only if n ≡ 1, 2, . . . 6 (mod 9).

Finally, suppose p = 2. First recall that direct summands of tilting modules

are tilting modules, by 2.8.23. Thus, if the image of Lie ρ(SL2(K)) in ∇(n)⊗∆(n)

is not a tilting module, it cannot be a summand. With this in mind, consider

that the differential dρ : sl2(K) → Lie (ρSL2(K)) is injective unless n is even,

in which case it has as its kernel the scalar matrices. If n is odd, Lie ρ(SL2) is

therefore the SL2(K)-module ∇(2), which is not a tilting module. Thus ∇(n)
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does not give a reductive pair when n is odd in characteristic 2. If n is even,

then Lie ρ(SL2) has a 2-dimensional simple submodule coming from the image

dρ (sl2(K)). Since sl2(K) is the SL2(K)-module ∇(2), this simple module must

be L(2) (which in characteristic 2 is L(1)F , which is 2-dimensional). There are

then two possibilities: either Lie ρ(SL2) is indecomposable, in which case it is the

module ∆(2); or else it has a decomposition as L(2)⊕L(0). Since ∆(2) and L(2)

are not tilting, in either of these cases this is enough information to conclude that

∇(n) does not give a reductive pair for even n in characteristic 2.

Example 3.3.5. Let k have characteristic p > 3. By 3.3.4, we see that ∇(p)

does not give rise to a reductive pair; by 3.2.10, we see that the simple module

L(1+ p(p−1)
2 ) = L(1)⊗L(p−1

2 )F does. Both of these modules have dimension p+1,

and we note that 2 < p < 2(p+ 1)− 2 = 2p. Thus, if the characteristic is not 3,

we have examples of both sorts of behaviour between the bounds in [3, 3.1].

Example 3.3.6. We can use lemma 2.10.10 to generate many more examples of

SL2(K)-modules giving reductive pairs. For instance, suppose K has characteristic

p > 2. Let ρi be the representation afforded by L(i). Since Lie(SL2(K)) is simple,

dρi is injective for each i. The dimension of ∇(r) being r+ 1, we see that ∇(r)⊗

∇(r)∗ has the trivial module K as a summand if and only if p - r + 1 (using

proposition 2.10.3). Therefore for each n ≥ 1 the following modules all give

reductive pairs.

L(1)⊗∇(1)F
n

L(1)⊗∇(2)F
n

L(1)⊗∇(3)F
n
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. . .

L(1)⊗∇(p− 1)F
n

.

This could have been predicted by theorem 3.2.10, since each of these modules

is simple. However, we also get the following for each λ with non-zero restricted

part3 such that L(λ) gives a reductive pair, and each k ∈ N.

L(λ)⊗∇(1 + kp)F
n

L(λ)⊗∇(2 + kp)F
n

L(λ)⊗∇(3 + kp)F
n

. . .

L(λ)⊗∇(p− 1 + kp)F
n

.

3That is, where λ = λ0 + pλ′, with 0 6= λ0 ∈ X1(T ) and λ′ dominant.
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Chapter 4

SL3 and other simple groups

In this chapter we consider some results that can sometimes be applied to arbitrary

simple algebraic groups to decide that a particular module does give a reductive

pair. Unfortunately, the results tend to require more information than is readily

available in order to draw useful conclusions. We thus quickly turn our attention

to SL3(K), as for this group a certain amount has already been worked out in

detail [30].

4.1 General statements for simple groups

The lemma below is stated in the form most applicable to our use in this chapter.

However, in chapter 5 we discuss other potential applications.

Lemma 4.1.1. Let R be a ring and let M be an R-module with a filtration

0 ≤M1 ≤M2 ≤ . . . ≤Mn = M.

Suppose every quotient Li := Mi/Mi−1 is such that Ext1
R(Li,M1) = 0. (Equiva-
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lently, every short exact sequence 0→M1 → E → Li → 0 splits). Then M1 is an

R-module direct summand of M : M = M1 ⊕W for some W ≤M .

Proof. Given a short exact sequence 0 → A′ → A → A′′ → 0 of R-modules and

an R-module B, we may consider the long exact sequence of the Ext functor in

the first variable,

· · · → ExtnR(A′′, B)→ ExtnR(A,B)→ ExtnR(A′, B)→ Extn+1
R (A′′, B)→ · · · .

In the notation of the statement, we are given exact sequences 0→Mi−1 →Mi →

Li → 0, and we therefore have exact sequences

Ext1
R(Li,M1)→ Ext1

R(Mi,M1)→ Ext1
R(Mi−1,M1),

in which the first term is 0 by hypothesis, and the last term is 0 by induction

(the base case being clear). Thus M1 is a summand of each Mi, in particular

Mn = M .

Remark 4.1.2. Provided that we can work out the composition factors of V ⊗V ∗

for a G-module V , we may sometimes use lemma 4.1.1 to show that V gives a

reductive pair (this method will not tell us that a given module does not give a

reductive pair). We note that (the image of ) the Lie algebra of the image of G is

a simple submodule of V ⊗ V ∗ (subject, potentially, to minor constraints on the

characteristic), so that 0 ≤ LieG ≤ V ⊗V ∗; this may be refined into a composition

series for V ⊗ V ∗ with LieG at the bottom. Thus, if we know a posteriori that

all extensions of the Lie algebra by the other composition factors must be split,

lemma 4.1.1 tells us that the Lie algebra is a direct summand of V ⊗ V ∗ (whence

the module V gives a reductive pair).
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We also note at this point that lemma 4.1.1 implies equally that all the sub-

modules of V ⊗ V ∗ in the same isomorphism class as LieG are summands under

the same hypotheses.

It will be useful to have some results that tell us about extensions of simple

modules. First of all, we recall the linkage principle (this may be found as [21,

Corollary 6.17]). The proposition is proved in Jantzen as a corollary of the strong

linkage principle, which, roughly speaking, tells us that for a simple module with

highest weight µ to be a composition factor of a cohomology module H i(w.λ) with

w an element of the Weyl group, we must have that µ ↑ λ. That is, there must

be a finite sequence of affine reflections σi, applied one after another ultimately

taking µ to λ, with µ ≤ σ1 · µ ≤ σ2 · (σ1 · µ) ≤ · · · ≤ σk · (σk−1 · (. . .)) = λ.

Proposition 4.1.3. Let λ, µ ∈ X(T )+. If Ext1
G(L(λ), L(µ)) 6= 0, then λ ∈Wp ·µ.

It will be useful for us to restate this as saying that if λ 6∈ Wp · µ, then any

extension of L(λ) by L(µ) must be split.

The following lemma is found in [21, Section 2.12].

Lemma 4.1.4. We have that Ext1
G(L(λ), L(λ)) = 0 for all λ ∈ X(T )+.

The idea of the proof is to show that an exact sequence 0 → L(λ) → M →

L(λ)→ 0 splits, by carefully picking an element of the λ weight space of L(λ) and

considering the action of the algebra of distributions Dist(G) (for a definition, see

[21]).

4.2 SL3

Now and for the remainder of this chapter let G = SL3(K), K algebraically closed

and of characteristic p 6= 0. Consider a rational representation ρ : SL3(K) →
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GL(V ). If the representation is non-trivial, the kernel of ρ is either trivial or

the centre of SL3(K), and is in either case finite. When p 6= 3, the adjoint

representation is irreducible and has highest weight (1, 1). Less is known about

the representation theory of SL3 than that of SL2, and although some progress

has been made (e.g. [8, 9]), no complete tensor product decomposition (as in [14])

seems to have appeared at the time of writing.

In Yehia’s PhD thesis [30], Ext1
G(L(µ), L(λ)) is shown to be at most one-

dimensional for G of type A2. Furthermore, for each dominant weight λ the set

of weights

A(λ) := {µ ∈ X(T )+ | Ext1
G(L(µ), L(λ)) 6= 0}

is determined explicitly. For our purposes it will be enough to consider the fol-

lowing result, which is an abridgement of [30, Proposition 4.1.1].

Proposition 4.2.1. Suppose λ, µ ∈ X(T )+, λ = λ0 + pλ′, µ = µ0 + pµ′, where

λ0, µ0 ∈ X1 (the restricted region) and λ′, µ′ ∈ X(T )+. Moreover suppose λ0 6= µ0.

Then

1. A necessary condition for Ext1
G(L(µ), L(λ)) to be non-zero is that µ0 is in

the Wp orbit of λ0.

2. If λ0 = (r, s) ∈ A0 (the bottom alcove) and µ0 is not one of (p−s−2, p−r−

2), (r+s+1, p−s−2) or (p−r−2, r+s+1), we have Ext1
G(L(µ), L(λ)) = 0.

Hence for SL3(K) we may do significantly better than using linkage alone.

The full result in [30] considers in point (2) any λ0 in the restricted region.

Stephen Doty has written a package [13] for the computer algebra software

GAP [16] which can perform calculations pertaining to Weyl modules. We used

this software to calculate the composition factors of tensor products of simple
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modules with small highest weights in type A2 in a variety of small characteristics.

It quickly began to take too long for the computer to complete the calculations

as the characteristic or weights increased. Some of the results themselves may be

seen in the appendix.

We may (somewhat crudely) use proposition 4.2.1 in combination with the

linkage principle 4.1.3 in order to create a “mask” of those dominant weights for

which extensions of the simple module L(1, 1) by simple modules with this highest

weight are all split. The result is a reduced selection of weights to look for amongst

the composition factors of determined by the computer calculations. Please see

the figures in the appendix illustrating this process. If none of the designated

weights appear, we may be certain (by 4.1.2) that the module in question does

give a reductive pair. We note at this point that the same process could in theory

be applied to any of the simple groups, albeit without the aid of 4.2.1, which is

specific to the case of type A2: we only require that the Lie algebra be a simple

module (which as noted previously is true when the characteristic is very good

for the group).

Example 4.2.2. Let p = 5. By considering characters, the composition factors

of L(5, 1) ⊗ L(5, 1)∗ are calculated to have highest weights (with multiplicities

following)

(6, 6), 1, (5, 5), 1, (1, 1), 1, (0, 0)1.

The weight (6, 6) is in the Wp orbit of (1, 1), so the linkage principle alone does

not allow us to rule out this weight as possibly contributing a non-split extension.

However, (6, 6) is not one of the weights specified by 4.2.1. We may therefore

infer that L(5, 1) gives a reductive pair in this case.

The following is an easy application of one of the preliminary results.
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Proposition 4.2.3. Let K have characteristic 7 and let n ≥ 1 be an integer.

Let λ ∈ A = {(1, 0), (0, 1), (1, 1), (2, 0), (0, 2), (2, 1), (1, 2), (3, 0), (0, 3)} and µ ∈

B = {(1, 0), (0, 1), (1, 1), (2, 0), (0, 2), (2, 1), (1, 2), (2, 2), (3, 0), (0, 3), (3, 1), (1, 3)}.

Then the module L(λ+ pnµ) gives a reductive pair.

Proof. The simple modules with highest weight in the set A of the statement

all give reductive pairs (cf. table of results in the appendix), and their highest

weights are restricted. Since the weights in B are all in the bottom alcove, [21,

II,5.6] implies that each simple module with highest weight in B is equal to the

induced module with the same highest weight. Then note that p = 7 does not

divide the dimensions (calculated using Weyl’s dimension formula [15, Cor.24.6])

of the these simple modules. Thus the conditions of corollary 2.10.11 are satisfied,

and for λ ∈ A,µ ∈ B we have that L(λ)⊗ L(µ)F ∼= L(λ+ pnµ) gives a reductive

pair.

Remark 4.2.4. The list above is not claimed by any means to be complete. By

remark 2.10.12, many more classes of examples of modules (simple or otherwise)

giving reductive pairs could readily be determined by this method.Note also that the

only significance of the prime being 7 was the ready availability of the calculated

results in the appendix.
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Chapter 5

Conclusion

In the above we have seen full treatments of the cases of simple modules and

induced modules for the group SL2(K) and several examples for the group SL3(K).

There are numerous directions that the project may now take, some of which we

discuss now.

The work on SL2(K) was left at its current state due to a desire to consider a

wider class of examples. It should be easy to continue to explore other classes of

examples for this group, due to its relative simplicity.

The difficulties encountered by the authors of [8, 9] could possibly be reduced

by considering the smaller class of examples relevant to our problem: that is,

it may be more tractable to restrict attention to tensor products L(λ) ⊗ L(λ)∗

instead of arbitrary L(µ)⊗L(ν). If so, it may be possible to say a great deal more

about the problem for SL3(K).

Some thought has been devoted to possible applications of (the proof of)

lemma 4.1.1 and the remark following it. For example, there is no need to require

that the sequence of modules in the lemma be a filtration: it would be enough to
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have

M1 ⊕M ′ ≤M2 ≤ . . . ≤Mn = M,

making the necessary changes to the proof. Moreover, the same lemma could

potentially be applied to more than just simple modules: the author began to

investigate such an application, but requiring greater knowledge of the specifics

of (in this case) tilting modules for SL3, this did not get very far.

There seems to be no reason that the methods of section 4.1 could not be

applied to other simple groups. An investigation into determining (or restricting)

the composition factors of L(λ) ⊗ L(λ)∗ may in some cases eliminate the need

for computers. The composition factors of L(n)⊗ L(n) for SL2(K) seem easy to

predict: if r 6= 0 and we write it in base p with coefficients ai, then the composition

factors that appear are the numbers of the form

2×
(

(a0 − b0) + (a1 − b1)p+ · · ·+ (ak − bk)pk
)
,

where 0 ≤ bi ≤ ai for all i; we think this could be proved by working with

characters. For SL3(K), those of L(a, b) ⊗ L(b, a) seem a little more difficult.

Example A.2.1 in the appendix shows composition factors of some tensor products

L(a, b) ⊗ L(b, a) for SL3(K) when K has characteristic 7. There are some clear

patterns, aside from the obvious limits imposed by dimension et cetera. For

instance, the weights appearing seem to form chains of the form . . . , (x − 4, y +

2), (x− 2, y + 1), (x, y), (x+ 1, y − 2), (x+ 2, y − 4), . . ., without gaps.

Finally, in all cases, it seems desirable to have more methods of combining

existing examples. Some work could be done on seeing how far this may be taken,

and whether any interesting modules may be treated by a combination of easier

examples.
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Appendix A

Table, Figures and GAP code

A.1 Table

The following table shows a sample of results generated using GAP. The rows and

columns are labelled by dominant weights, and a given cell (a, b) contains a “Y” if

the method described in the main text tells us that L(a, b) gives a reductive pair,

or is left blank if the results are inconclusive (cf. 4.1.2). The cell (0, 0) contains an

“N” because this module does not give a reductive pair, its dimension being too

small. The pattern shown in the table appears to tile (e.g. cells (14, 0) — (14, 3)

contain “Y”s, as do (15, 0)—(15, 2), (16, 0), (16, 1) and (17, 0); the same “trian-

gle” appears starting at (14, 7), etc), but the calculation becomes too lengthy to

continue far with this. Every weight (a, b) in this table with an inconclusive result

is such that L(a, b) ⊗ L(a, b)∗ has L(4, 4) as a composition factor. A similar in-

vestigation of the results for p = 5 (not included, for brevity) shows that, in each

case where the test is inconclusive, the module in question has L(2, 2) as a com-

position factor. When p = 7, (4, 4) is the reflection in the line joining (−1, p− 1)

and (p− 1, 1) of the highest weight of the Lie algebra; for p = 5, the same is true
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of (2, 2).

SL3, p = 7, does L(a, b) a reductive pair?

Y=yes, N=no; otherwise no conclusion drawn

wt 0 1 2 3 4 5 6 7 8 9 10 11 12

0 N Y Y Y Y Y Y Y

1 Y Y Y Y Y Y

2 Y Y Y Y

3 Y Y

4

5

6

7 Y Y Y Y Y Y Y Y

8 Y Y Y Y Y Y

9 Y Y Y Y

10 Y Y

11

12

A.2 GAP code

Here is the GAP code that was used to generate examples. As mentioned in the

text, it relies on Doty’s package Weyl Modules for GAP. The first routine takes a

prime p and a weight ab and determines then prints a list of composition factors of

the tensor product of the simple module L(ab)⊗ L(ab)∗ for SL3 in characteristic

p.

compfacs:=function(p,ab)

local ch1, flip, ch2, prodch, thelist, runningtotal, place;

flip:=[ab[2],ab[1]];

ch1:=SimpleCharacter(p,ab,"A",2);
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ch2:=SimpleCharacter(p,flip,"A",2);

prodch:=ProductCharacter(ch1,ch2);

thelist:=DecomposeCharacter(prodch,p,"A",2);

place:=0;

runningtotal:=0;

for place in [1..Length(thelist)/2] do;

runningtotal:=runningtotal + thelist[2*place];

od;

Print("p = ", p, ", wt (", ab[1], ",", ab[2], "). ", thelist, ".

Total composition length: ", runningtotal, "\n");

end;

The next routine iterates the first to create a list of results, which it then

prints. In the code below, weights up to (3p, 3p) are being examined.

compfacslist:=function(p)

local i, j;

for i in [0..3*p] do;

j:=0;

while j <= i do;

compfacs(p,[i,j]);

j:= j+1;

od;

od;

end;

A sample of output follows, showing a section of the results used to create

the table above. The lines in the list show the composition factors [m,n] (with
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multiplicities following) of the simple module of weight (a, b).

Example A.2.1. compfacslist(7); p = 7, wt (0,0). [ [ 0, 0 ], 1 ]. Total composition length: 1

p = 7, wt (1,0). [ [ 1, 1 ], 1, [ 0, 0 ], 1 ]. Total composition length: 2

p = 7, wt (1,1). [ [ 2, 2 ], 1, [ 0, 3 ], 1, [ 3, 0 ], 1, [ 1, 1 ], 2, [ 0, 0 ], 1 ]. Total composition

length: 6

p = 7, wt (2,0). [ [ 2, 2 ], 1, [ 1, 1 ], 1, [ 0, 0 ], 1 ]. Total composition length: 3

p = 7, wt (2,1). [ [ 3, 3 ], 1, [ 1, 4 ], 1, [ 4, 1 ], 1, [ 2, 2 ], 3, [ 0, 3 ], 1, [ 3, 0 ], 1, [ 1, 1 ], 2, [ 0,

0 ], 1 ]. Total composition length: 11

p = 7, wt (2,2). [ [ 4, 4 ], 1, [ 2, 5 ], 1, [ 5, 2 ], 1, [ 3, 3 ], 2, [ 0, 6 ], 1, [ 6, 0 ], 1, [ 1, 4 ], 2, [ 4,

1 ], 2, [ 2, 2 ], 5, [ 0, 3 ], 2, [ 3, 0 ], 2, [ 1, 1 ], 3, [ 0, 0 ], 1 ]. Total composition length: 24

p = 7, wt (3,0). [ [ 3, 3 ], 1, [ 2, 2 ], 2, [ 1, 1 ], 1, [ 0, 0 ], 1 ]. Total composition length: 5

p = 7, wt (3,1). [ [ 4, 4 ], 1, [ 2, 5 ], 1, [ 5, 2 ], 1, [ 3, 3 ], 2, [ 1, 4 ], 1, [ 4, 1 ], 1, [ 2, 2 ], 4, [ 0,

3 ], 2, [ 3, 0 ], 2, [ 1, 1 ], 3, [ 0, 0 ], 1 ]. Total composition length: 19

p = 7, wt (3,2). [ [ 5, 5 ], 1, [ 3, 6 ], 1, [ 6, 3 ], 1, [ 4, 4 ], 2, [ 1, 7 ], 1, [ 7, 1 ], 1, [ 2, 5 ], 3, [ 5,

2 ], 3, [ 3, 3 ], 3, [ 0, 6 ], 1, [ 6, 0 ], 1, [ 1, 4 ], 2, [ 4, 1 ], 2, [ 2, 2 ], 6, [ 0, 3 ], 3, [ 3, 0 ], 3, [ 1, 1 ],

4, [ 0, 0 ], 2 ]. Total composition length: 40

p = 7, wt (3,3). [ [ 6, 6 ], 1, [ 4, 7 ], 1, [ 7, 4 ], 1, [ 5, 5 ], 2, [ 2, 8 ], 1, [ 8, 2 ], 1, [ 0, 9 ], 1, [ 9,

0 ], 1, [ 4, 4 ], 2, [ 3, 3 ], 2, [ 2, 2 ], 2, [ 1, 1 ], 2, [ 0, 0 ], 2 ]. Total composition length: 19

p = 7, wt (4,0). [ [ 4, 4 ], 1, [ 3, 3 ], 1, [ 2, 2 ], 2, [ 1, 1 ], 2, [ 0, 0 ], 1 ]. Total composition

length: 7

p = 7, wt (4,1). [ [ 5, 5 ], 1, [ 3, 6 ], 1, [ 6, 3 ], 1, [ 4, 4 ], 2, [ 2, 5 ], 1, [ 5, 2 ], 1, [ 3, 3 ], 2, [ 1,

4 ], 1, [ 4, 1 ], 1, [ 2, 2 ], 4, [ 0, 3 ], 2, [ 3, 0 ], 2, [ 1, 1 ], 4, [ 0, 0 ], 2 ]. Total composition length: 25

p = 7, wt (4,2). [ [ 6, 6 ], 1, [ 4, 7 ], 1, [ 7, 4 ], 1, [ 5, 5 ], 2, [ 2, 8 ], 1, [ 8, 2 ], 1, [ 4, 4 ], 2, [ 3,

3 ], 1, [ 2, 2 ], 2, [ 1, 1 ], 2, [ 0, 0 ], 2 ]. Total composition length: 16

p = 7, wt (4,3). [ [ 7, 7 ], 1, [ 5, 8 ], 2, [ 8, 5 ], 2, [ 6, 6 ], 2, [ 3, 9 ], 1, [ 9, 3 ], 1, [ 4, 7 ], 5, [ 7,

4 ], 5, [ 1, 10 ], 1, [ 10, 1 ], 1, [ 5, 5 ], 8, [ 2, 8 ], 2, [ 8, 2 ], 2, [ 3, 6 ], 2, [ 6, 3 ], 2, [ 0, 9 ], 1, [ 9, 0

], 1, [ 4, 4 ], 4, [ 1, 7 ], 1, [ 7, 1 ], 1, [ 2, 5 ], 2, [ 5, 2 ], 2, [ 3, 3 ], 3, [ 1, 4 ], 1, [ 4, 1 ], 1, [ 2, 2 ], 4,

[ 0, 3 ], 2, [ 3, 0 ], 2, [ 1, 1 ], 4, [ 0, 0 ], 6 ]. Total composition length: 72

p = 7, wt (4,4). [ [ 8, 8 ], 1, [ 6, 9 ], 1, [ 9, 6 ], 1, [ 7, 7 ], 2, [ 4, 10 ], 2, [ 10, 4 ], 2, [ 5, 8 ], 4, [

8, 5 ], 4, [ 2, 11 ], 1, [ 11, 2 ], 1, [ 6, 6 ], 3, [ 3, 9 ], 3, [ 9, 3 ], 3, [ 0, 12 ], 1, [ 12, 0 ], 1, [ 4, 7 ], 9, [

7, 4 ], 9, [ 1, 10 ], 3, [ 10, 1 ], 3, [ 5, 5 ], 14, [ 2, 8 ], 6, [ 8, 2 ], 6, [ 3, 6 ], 5, [ 6, 3 ], 5, [ 0, 9 ], 1, [

9, 0 ], 1, [ 4, 4 ], 10, [ 1, 7 ], 3, [ 7, 1 ], 3, [ 2, 5 ], 6, [ 5, 2 ], 6, [ 3, 3 ], 4, [ 0, 6 ], 2, [ 6, 0 ], 2, [ 1, 4

], 2, [ 4, 1 ], 2, [ 2, 2 ], 6, [ 0, 3 ], 4, [ 3, 0 ], 4, [ 1, 1 ], 8, [ 0, 0 ], 10 ]. Total composition length: 164

p = 7, wt (5,0). [ [ 5, 5 ], 1, [ 4, 4 ], 1, [ 3, 3 ], 1, [ 2, 2 ], 2, [ 1, 1 ], 2, [ 0, 0 ], 2 ]. Total

composition length: 9
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p = 7, wt (5,1). [ [ 6, 6 ], 1, [ 4, 7 ], 1, [ 7, 4 ], 1, [ 5, 5 ], 2, [ 4, 4 ], 1, [ 3, 3 ], 1, [ 2, 2 ], 2, [ 1,

1 ], 2, [ 0, 0 ], 2 ]. Total composition length: 13

p = 7, wt (5,2). [ [ 7, 7 ], 1, [ 5, 8 ], 2, [ 8, 5 ], 2, [ 6, 6 ], 2, [ 3, 9 ], 1, [ 9, 3 ], 1, [ 4, 7 ], 5, [ 7,

4 ], 5, [ 5, 5 ], 8, [ 2, 8 ], 1, [ 8, 2 ], 1, [ 3, 6 ], 2, [ 6, 3 ], 2, [ 4, 4 ], 3, [ 2, 5 ], 1, [ 5, 2 ], 1, [ 3, 3

], 2, [ 1, 4 ], 1, [ 4, 1 ], 1, [ 2, 2 ], 4, [ 0, 3 ], 2, [ 3, 0 ], 2, [ 1, 1 ], 4, [ 0, 0 ], 6 ]. Total composition

length: 60

p = 7, wt (5,3). [ [ 8, 8 ], 1, [ 6, 9 ], 1, [ 9, 6 ], 1, [ 7, 7 ], 2, [ 4, 10 ], 2, [ 10, 4 ], 2, [ 5, 8 ], 4, [

8, 5 ], 4, [ 2, 11 ], 1, [ 11, 2 ], 1, [ 6, 6 ], 3, [ 3, 9 ], 3, [ 9, 3 ], 3, [ 4, 7 ], 9, [ 7, 4 ], 9, [ 1, 10 ], 2, [

10, 1 ], 2, [ 5, 5 ], 14, [ 2, 8 ], 5, [ 8, 2 ], 5, [ 3, 6 ], 5, [ 6, 3 ], 5, [ 0, 9 ], 1, [ 9, 0 ], 1, [ 4, 4 ], 9, [ 1,

7 ], 2, [ 7, 1 ], 2, [ 2, 5 ], 5, [ 5, 2 ], 5, [ 3, 3 ], 4, [ 0, 6 ], 1, [ 6, 0 ], 1, [ 1, 4 ], 2, [ 4, 1 ], 2, [ 2, 2 ],

6, [ 0, 3 ], 4, [ 3, 0 ], 4, [ 1, 1 ], 8, [ 0, 0 ], 10 ]. Total composition length: 151

p = 7, wt (5,4). [ [ 9, 9 ], 1, [ 7, 10 ], 1, [ 10, 7 ], 1, [ 8, 8 ], 2, [ 5, 11 ], 2, [ 11, 5 ], 2, [ 6, 9 ],

2, [ 9, 6 ], 2, [ 3, 12 ], 2, [ 12, 3 ], 2, [ 7, 7 ], 3, [ 4, 10 ], 4, [ 10, 4 ], 4, [ 1, 13 ], 1, [ 13, 1 ], 1, [ 5,

8 ], 6, [ 8, 5 ], 6, [ 2, 11 ], 3, [ 11, 2 ], 3, [ 6, 6 ], 4, [ 3, 9 ], 5, [ 9, 3 ], 5, [ 0, 12 ], 1, [ 12, 0 ], 1, [

4, 7 ], 13, [ 7, 4 ], 13, [ 1, 10 ], 6, [ 10, 1 ], 6, [ 5, 5 ], 20, [ 2, 8 ], 9, [ 8, 2 ], 9, [ 3, 6 ], 8, [ 6, 3 ],

8, [ 0, 9 ], 4, [ 9, 0 ], 4, [ 4, 4 ], 15, [ 1, 7 ], 6, [ 7, 1 ], 6, [ 2, 5 ], 11, [ 5, 2 ], 11, [ 3, 3 ], 9, [ 0, 6 ],

2, [ 6, 0 ], 2, [ 1, 4 ], 3, [ 4, 1 ], 3, [ 2, 2 ], 10, [ 0, 3 ], 8, [ 3, 0 ], 8, [ 1, 1 ], 12, [ 0, 0 ], 14 ]. Total

composition length: 284

p = 7, wt (5,5). [ [ 10, 10 ], 1, [ 8, 11 ], 1, [ 11, 8 ], 1, [ 9, 9 ], 3, [ 6, 12 ], 1, [ 12, 6 ], 1, [ 7, 10

], 2, [ 10, 7 ], 2, [ 4, 13 ], 2, [ 13, 4 ], 2, [ 8, 8 ], 3, [ 5, 11 ], 4, [ 11, 5 ], 4, [ 2, 14 ], 2, [ 14, 2 ], 2, [

6, 9 ], 3, [ 9, 6 ], 3, [ 3, 12 ], 6, [ 12, 3 ], 6, [ 0, 15 ], 1, [ 15, 0 ], 1, [ 7, 7 ], 4, [ 4, 10 ], 6, [ 10, 4 ],

6, [ 1, 13 ], 3, [ 13, 1 ], 3, [ 5, 8 ], 8, [ 8, 5 ], 8, [ 2, 11 ], 6, [ 11, 2 ], 6, [ 6, 6 ], 5, [ 3, 9 ], 7, [ 9, 3 ],

7, [ 0, 12 ], 2, [ 12, 0 ], 2, [ 4, 7 ], 17, [ 7, 4 ], 17, [ 1, 10 ], 9, [ 10, 1 ], 9, [ 5, 5 ], 26, [ 2, 8 ], 12, [ 8,

2 ], 12, [ 3, 6 ], 11, [ 6, 3 ], 11, [ 0, 9 ], 8, [ 9, 0 ], 8, [ 4, 4 ], 20, [ 1, 7 ], 9, [ 7, 1 ], 9, [ 2, 5 ], 14, [

5, 2 ], 14, [ 3, 3 ], 12, [ 0, 6 ], 3, [ 6, 0 ], 3, [ 1, 4 ], 6, [ 4, 1 ], 6, [ 2, 2 ], 16, [ 0, 3 ], 12, [ 3, 0 ], 12,

[ 1, 1 ], 16, [ 0, 0 ], 18 ]. Total composition length: 434

p = 7, wt (6,0). [ [ 6, 6 ], 1, [ 5, 5 ], 1, [ 4, 4 ], 1, [ 3, 3 ], 1, [ 2, 2 ], 2, [ 1, 1 ], 2, [ 0, 0 ], 2 ].

Total composition length: 10

p = 7, wt (6,1). [ [ 7, 7 ], 1, [ 5, 8 ], 2, [ 8, 5 ], 2, [ 6, 6 ], 2, [ 4, 7 ], 4, [ 7, 4 ], 4, [ 5, 5 ], 7, [ 3,

6 ], 1, [ 6, 3 ], 1, [ 4, 4 ], 2, [ 2, 5 ], 1, [ 5, 2 ], 1, [ 3, 3 ], 2, [ 1, 4 ], 1, [ 4, 1 ], 1, [ 2, 2 ], 4, [ 0, 3 ],

2, [ 3, 0 ], 2, [ 1, 1 ], 4, [ 0, 0 ], 6 ]. Total composition length: 50

p = 7, wt (6,2). [ [ 8, 8 ], 1, [ 6, 9 ], 1, [ 9, 6 ], 1, [ 7, 7 ], 2, [ 4, 10 ], 2, [ 10, 4 ], 2, [ 5, 8 ], 4, [

8, 5 ], 4, [ 6, 6 ], 3, [ 3, 9 ], 2, [ 9, 3 ], 2, [ 4, 7 ], 8, [ 7, 4 ], 8, [ 5, 5 ], 13, [ 2, 8 ], 4, [ 8, 2 ], 4, [ 3,

6 ], 4, [ 6, 3 ], 4, [ 4, 4 ], 8, [ 1, 7 ], 1, [ 7, 1 ], 1, [ 2, 5 ], 3, [ 5, 2 ], 3, [ 3, 3 ], 3, [ 0, 6 ], 1, [ 6, 0 ],

1, [ 1, 4 ], 2, [ 4, 1 ], 2, [ 2, 2 ], 6, [ 0, 3 ], 3, [ 3, 0 ], 3, [ 1, 1 ], 8, [ 0, 0 ], 10 ]. Total composition

length: 124

p = 7, wt (6,3). [ [ 9, 9 ], 1, [ 7, 10 ], 1, [ 10, 7 ], 1, [ 8, 8 ], 2, [ 5, 11 ], 2, [ 11, 5 ], 2, [ 6, 9 ],
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2, [ 9, 6 ], 2, [ 3, 12 ], 2, [ 12, 3 ], 2, [ 7, 7 ], 3, [ 4, 10 ], 4, [ 10, 4 ], 4, [ 5, 8 ], 6, [ 8, 5 ], 6, [ 2, 11

], 2, [ 11, 2 ], 2, [ 6, 6 ], 4, [ 3, 9 ], 4, [ 9, 3 ], 4, [ 4, 7 ], 12, [ 7, 4 ], 12, [ 1, 10 ], 4, [ 10, 1 ], 4, [ 5,

5 ], 19, [ 2, 8 ], 8, [ 8, 2 ], 8, [ 3, 6 ], 7, [ 6, 3 ], 7, [ 0, 9 ], 4, [ 9, 0 ], 4, [ 4, 4 ], 14, [ 1, 7 ], 5, [ 7, 1

], 5, [ 2, 5 ], 9, [ 5, 2 ], 9, [ 3, 3 ], 9, [ 0, 6 ], 1, [ 6, 0 ], 1, [ 1, 4 ], 2, [ 4, 1 ], 2, [ 2, 2 ], 10, [ 0, 3 ],

7, [ 3, 0 ], 7, [ 1, 1 ], 12, [ 0, 0 ], 14 ]. Total composition length: 252

p = 7, wt (6,4). [ [ 10, 10 ], 1, [ 8, 11 ], 1, [ 11, 8 ], 1, [ 9, 9 ], 3, [ 6, 12 ], 1, [ 12, 6 ], 1, [ 7, 10

], 2, [ 10, 7 ], 2, [ 4, 13 ], 2, [ 13, 4 ], 2, [ 8, 8 ], 3, [ 5, 11 ], 4, [ 11, 5 ], 4, [ 2, 14 ], 2, [ 14, 2 ], 2, [

6, 9 ], 3, [ 9, 6 ], 3, [ 3, 12 ], 6, [ 12, 3 ], 6, [ 7, 7 ], 4, [ 4, 10 ], 6, [ 10, 4 ], 6, [ 1, 13 ], 2, [ 13, 1 ],

2, [ 5, 8 ], 8, [ 8, 5 ], 8, [ 2, 11 ], 4, [ 11, 2 ], 4, [ 6, 6 ], 5, [ 3, 9 ], 6, [ 9, 3 ], 6, [ 0, 12 ], 2, [ 12, 0 ],

2, [ 4, 7 ], 16, [ 7, 4 ], 16, [ 1, 10 ], 8, [ 10, 1 ], 8, [ 5, 5 ], 25, [ 2, 8 ], 12, [ 8, 2 ], 12, [ 3, 6 ], 10, [ 6,

3 ], 10, [ 0, 9 ], 8, [ 9, 0 ], 8, [ 4, 4 ], 20, [ 1, 7 ], 8, [ 7, 1 ], 8, [ 2, 5 ], 13, [ 5, 2 ], 13, [ 3, 3 ], 12, [

0, 6 ], 3, [ 6, 0 ], 3, [ 1, 4 ], 5, [ 4, 1 ], 5, [ 2, 2 ], 16, [ 0, 3 ], 10, [ 3, 0 ], 10, [ 1, 1 ], 16, [ 0, 0 ], 18

]. Total composition length: 407

p = 7, wt (6,5). [ [ 11, 11 ], 1, [ 9, 12 ], 1, [ 12, 9 ], 1, [ 10, 10 ], 2, [ 7, 13 ], 1, [ 13, 7 ], 1, [ 8,

11 ], 2, [ 11, 8 ], 2, [ 5, 14 ], 2, [ 14, 5 ], 2, [ 9, 9 ], 5, [ 6, 12 ], 4, [ 12, 6 ], 4, [ 3, 15 ], 2, [ 15, 3 ], 2,

[ 7, 10 ], 4, [ 10, 7 ], 4, [ 4, 13 ], 4, [ 13, 4 ], 4, [ 1, 16 ], 2, [ 16, 1 ], 2, [ 8, 8 ], 5, [ 5, 11 ], 8, [ 11, 5

], 8, [ 2, 14 ], 4, [ 14, 2 ], 4, [ 6, 9 ], 4, [ 9, 6 ], 4, [ 3, 12 ], 10, [ 12, 3 ], 10, [ 0, 15 ], 2, [ 15, 0 ], 2, [

7, 7 ], 5, [ 4, 10 ], 10, [ 10, 4 ], 10, [ 1, 13 ], 4, [ 13, 1 ], 4, [ 5, 8 ], 10, [ 8, 5 ], 10, [ 2, 11 ], 8, [ 11, 2

], 8, [ 6, 6 ], 6, [ 3, 9 ], 8, [ 9, 3 ], 8, [ 0, 12 ], 4, [ 12, 0 ], 4, [ 4, 7 ], 20, [ 7, 4 ], 20, [ 1, 10 ], 12, [

10, 1 ], 12, [ 5, 5 ], 31, [ 2, 8 ], 16, [ 8, 2 ], 16, [ 3, 6 ], 12, [ 6, 3 ], 12, [ 0, 9 ], 12, [ 9, 0 ], 12, [ 4, 4

], 23, [ 1, 7 ], 12, [ 7, 1 ], 12, [ 2, 5 ], 16, [ 5, 2 ], 16, [ 3, 3 ], 15, [ 0, 6 ], 4, [ 6, 0 ], 4, [ 1, 4 ], 8, [ 4,

1 ], 8, [ 2, 2 ], 22, [ 0, 3 ], 16, [ 3, 0 ], 16, [ 1, 1 ], 22, [ 0, 0 ], 22 ]. Total composition length: 603

p = 7, wt (6,6). [ [ 12, 12 ], 1, [ 10, 13 ], 1, [ 13, 10 ], 1, [ 11, 11 ], 2, [ 8, 14 ], 1, [ 14, 8 ], 1, [

9, 12 ], 3, [ 12, 9 ], 3, [ 6, 15 ], 1, [ 15, 6 ], 1, [ 10, 10 ], 3, [ 7, 13 ], 2, [ 13, 7 ], 2, [ 4, 16 ], 2, [ 16, 4

], 2, [ 8, 11 ], 4, [ 11, 8 ], 4, [ 5, 14 ], 4, [ 14, 5 ], 4, [ 2, 17 ], 2, [ 17, 2 ], 2, [ 9, 9 ], 7, [ 6, 12 ], 7, [

12, 6 ], 7, [ 3, 15 ], 6, [ 15, 3 ], 6, [ 0, 18 ], 2, [ 18, 0 ], 2, [ 7, 10 ], 8, [ 10, 7 ], 8, [ 4, 13 ], 7, [ 13, 4

], 7, [ 1, 16 ], 4, [ 16, 1 ], 4, [ 8, 8 ], 7, [ 5, 11 ], 14, [ 11, 5 ], 14, [ 2, 14 ], 6, [ 14, 2 ], 6, [ 6, 9 ], 7, [

9, 6 ], 7, [ 3, 12 ], 14, [ 12, 3 ], 14, [ 0, 15 ], 3, [ 15, 0 ], 3, [ 7, 7 ], 7, [ 4, 10 ], 14, [ 10, 4 ], 14, [ 1,

13 ], 5, [ 13, 1 ], 5, [ 5, 8 ], 14, [ 8, 5 ], 14, [ 2, 11 ], 10, [ 11, 2 ], 10, [ 6, 6 ], 7, [ 3, 9 ], 10, [ 9, 3 ],

10, [ 0, 12 ], 6, [ 12, 0 ], 6, [ 4, 7 ], 24, [ 7, 4 ], 24, [ 1, 10 ], 16, [ 10, 1 ], 16, [ 5, 5 ], 34, [ 2, 8 ], 20,

[ 8, 2 ], 20, [ 3, 6 ], 13, [ 6, 3 ], 13, [ 0, 9 ], 16, [ 9, 0 ], 16, [ 4, 4 ], 26, [ 1, 7 ], 17, [ 7, 1 ], 17, [ 2, 5

], 18, [ 5, 2 ], 18, [ 3, 3 ], 18, [ 0, 6 ], 5, [ 6, 0 ], 5, [ 1, 4 ], 10, [ 4, 1 ], 10, [ 2, 2 ], 28, [ 0, 3 ], 20, [

3, 0 ], 20, [ 1, 1 ], 28, [ 0, 0 ], 28 ]. Total composition length: 828

p = 7, wt (7,0). [ [ 7, 7 ], 1, [ 0, 0 ], 1 ]. Total composition length: 2

p = 7, wt (7,1). [ [ 8, 8 ], 1, [ 7, 7 ], 1, [ 1, 1 ], 1, [ 0, 0 ], 1 ]. Total composition length: 4

p = 7, wt (7,2). [ [ 9, 9 ], 1, [ 8, 8 ], 1, [ 7, 7 ], 1, [ 2, 2 ], 1, [ 1, 1 ], 1, [ 0, 0 ], 1 ]. Total

composition length: 6
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A.3 Figures

Figures A.1 and A.2 are diagrams showing a section of the weight lattice of

SL2(K). In the pictures, a weight is marked with the symbol “ ” if it is

linked to the weight (1, 1), which is marked with a star. A weight is marked with

the symbol “ ” if it is a translate by some m(p, 0) + n(0, p) of one of the weights

(p− 3, p− 3), (3, p− 3) or (p− 3, 3). Thus the set of weights so marked (properly)

contains the set of those weights (a, b) which proposition 4.2.1 does not claim give

non-zero Ext1
G(L(a, b), L(1, 1)) (cf. 4.2.1). Where a weight is marked with both

symbols, this is a weight to look for amongst the composition factors (cf. 4.1.2).

Figure A.3 shows some results calculated for SL2 using the theorem in the

main text.
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Figure A.1: SL3(K), characteristic 7
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Figure A.2: SL3(K), characteristic 5
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Figure A.3: Examples for SL2.
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