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Abstract 

The design of microwave filters starts from the derivation of a defined 

lowpass prototype network. A general lossy synthesis method is given which 

can 1) derive the reflection function from the transfer function when the 

unitary condition is not satisfied; 2) find the expressions for the complex 

admittance parameters and 3) synthesize the lossy coupling matrix (CM) 

with prescribed loss distributions. Two special cases are discussed for 

solving the refection function from a prescribed transfer function.  

 

An alternative approach to cope with loss is studied. In a transversal array, 

some resonators can be replaced by their low-Q alternatives to reduce the 

manufacture cost as well as the cavity size. The exact values for the 

dissipations of resonators or couplings can be determined analytically or by 

methods of gradient based optimizations.  

 

A method of CM synthesis with non-ideal load is given which can be used in 

designing diplexers or multiplexers. Filter networks matching to complex 

load impedances can be found by renormalizing reference impedances. An 

iteration method is introduced which can deal with frequency variant load 

and can deliver the required reflection zeros.  

 

A method for the synthesis of directional filters is presented which can be 

used for designing combiners. While each section of directional filters 

provides a 1
st
 order response, more complex filter characteristics can be 

realized by cascading those single sections. By proper transformations, 

directional filter networks can be realized using normal resonators and 

couplings. An example utilizing coaxial resonator is given. 

 

A method for the analysis of 2-D lumped element networks is presented. 

The method is based on the general telegrapher’s equations of multi-wire 

transmission lines. A 2-D lumped element network is equivalent to a 

combination of sub-networks which support single mode propagations. The 

method can be applied to the analysis of metamaterials and can be used for 

the design of waffle-iron filters. 



- v - 

Table of Contents 

Acknowledgements .................................................................................... iii 

Abstract ....................................................................................................... iv 

Table of Contents ........................................................................................ v 

List of Tables ............................................................................................ viii 

List of Figures.............................................................................................. x 

Chapter 1 Introduction ................................................................................ 1 

1.1 Microwave filters in communication systems ................................... 1 

1.2 Overview on filter design and synthesis .......................................... 2 

1.3 Overview of the thesis ..................................................................... 5 

1.4 Organization of the thesis ................................................................ 8 

Chapter 2 Filter Design and Synthesis .................................................... 11 

2.1 Filter characteristics ...................................................................... 12 

2.2 Filter networks of coupled resonators............................................ 16 

2.2.1 Lowpass prototype networks .............................................. 16 

2.2.2 Introduction of CM .............................................................. 19 

2.2.3 Synthesis of CM ................................................................. 23 

2.2.4 Transformation of CM ......................................................... 24 

2.2.5 The application of optimization ........................................... 26 

2.3 The synthesis of lossy filter networks ............................................ 27 

2.3.1 The definition of Qu ............................................................ 27 

2.3.2 The method of predistortion ............................................... 29 

2.3.3 The method based on even/odd mode analysis ................. 32 

2.3.4 Lossy synthesis based on CM ............................................ 35 

2.3.5 Methods of optimizations .................................................... 37 

2.4 Filter design based on CM ............................................................ 38 

2.4.1 Design of coarse models .................................................... 38 

2.4.2 Filter tuning based on CM extractions ................................ 41 

Chapter 3 Generalized Coupling Matrix Synthesis for Lossy 
Microwave Filters .............................................................................. 42 

3.1 Lossy transfer functions ................................................................ 43 

3.2 Synthesis of lossy CMs ................................................................. 46 

3.2.1 Generalized S to Y transformation ..................................... 47 

3.2.2 Discussions on the polynomial Ex....................................... 48 



- vi - 

3.2.3 Realizable conditions for CMs ............................................ 49 

3.3 Case I: F11=kF22 ............................................................................ 51 

3.3.1 Methods of synthesis.......................................................... 51 

3.3.2 Relations to even/odd mode analysis ................................. 54 

3.4 Case II: given loss distribution ....................................................... 55 

3.4.1 Generalized Y to S transformation ..................................... 55 

3.4.2 Derivation of lossy polynomial Ex ....................................... 56 

3.4.2.1 Uniform losses ........................................................ 57 

3.4.2.2 Non-uniform losses ................................................. 62 

3.4.3 Iterations on polynomial Ex ................................................. 66 

3.4.4 Relations to the method of predistortion ............................. 70 

3.4.5 Coupling matrix extraction from lossy response ................. 71 

3.5 Filter implementations ................................................................... 72 

3.5.1 Coaxial and dielectric resonators ....................................... 72 

3.5.2 Coaxial and dual-mode dielectric resonators ..................... 76 

Chapter 4 Dissipations in Parallel Connected Filter Networks ............. 78 

4.1 The effect of loss in parallel connected networks .......................... 79 

4.1.1 Loss distributions................................................................ 79 

4.1.2 The effect of loss on a single resonator.............................. 81 

4.1.3 The critical resonators ........................................................ 85 

4.2 Synthesis of lossy parallel connected networks ............................ 88 

4.2.1 Approximated analytical solution of Q distribution .............. 89 

4.2.2 A new lossy filter characteristic .......................................... 92 

4.2.3 The gradient based optimization ........................................ 93 

4.2.3.1 For transmission and reflection zeros...................... 94 

4.3.2.2 For flat passband insertion loss ............................... 96 

4.2.4 Realisation of perfect transmission zeros ........................... 98 

4.3 Examples ...................................................................................... 99 

4.3.1 Parallel connected symmetric networks ............................. 99 

4.3.3 Parallel network with input and output nodes ................... 103 

4.3.4 Other configurations ......................................................... 106 

4.4 Filter implementation ................................................................... 109 

4.4.1 Mixed coaxial and microstrip design................................. 110 

4.4.2 Mixed coaxial and dielectric resonator design .................. 112 



- vii - 

Chapter 5 Coupling Matrix Synthesis for Diplexers ............................. 115 

5.1 CM synthesis with non-ideal load impedance ............................. 116 

5.1.1 Reference impedance for two-port filter networks ............ 117 

5.1.2 A special case with exact solutions .................................. 119 

5.1.3 Synthesis with iterations ................................................... 121 

5.1.4 Examples ......................................................................... 123 

5.2 Synthesis and design of directional filters ................................... 125 

5.2.1 Theories ........................................................................... 126 

5.2.1.1 Directional filter networks ...................................... 126 

5.2.1.2 Node diagram ........................................................ 128 

5.2.1.3 Circuit Realization ................................................. 129 

5.2.2 Considerations of dissipations .......................................... 132 

5.2.3 Filter implementations ...................................................... 137 

Chapter 6 Circuit Analysis of Uniform 2D Lumped Element 
Networks .......................................................................................... 142 

6.1 Wave propagation in multi-wire line............................................. 142 

6.1.1 Generalized telegrapher’s equation.................................. 142 

6.2.2 Modes of propagation....................................................... 144 

6.2 Lumped element analysis for generalized 2D network ................ 146 

6.2.1 Method of analysis ........................................................... 146 

6.2.2 N=3 example .................................................................... 153 

6.3 Waffle-iron filter ........................................................................... 156 

6.3.1 Simplified circuit model ..................................................... 156 

6.3.2 N=5 example .................................................................... 157 

6.3.3 EM model and simulation ................................................. 160 

6.3.4 Improved configuration ..................................................... 161 

Chapter 7 Conclusions and Future work .............................................. 163 

List of References ................................................................................... 167 

 



- viii - 

List of Tables 

Table 2.1 CM of the predistorted circuit .................................................. 31 

Table 2.2 CM of the synthesized transversal array. ............................... 36 

Table 2.3 CM of the synthesized lossy circuit. ....................................... 37 

Table 3.1 Roots of the polynomials of the original characteristics. ..... 45 

Table 3.2 Roots of the polynomials of the new characteristics. ........... 45 

Table 3.3 Polynomials for the 4
th

 order example .................................... 52 

Table 3.4 CM synthesized for the 4
th

 order example. ............................. 53 

Table 3.5  Polynomial for the 4
th

 order example ..................................... 58 

Table 3.6  Synthesized lossy CM. ............................................................ 60 

Table 3.7 the original CM of the 4
th

 order example. ................................ 63 

Table 3.8 The lossy CM of the 4
th

 order example with non-uniform 
losses as imaginary parts of the diagonal elements...................... 63 

Table 3.9 Roots of E and P of the lossy characteristic. ......................... 63 

Table 3.10 Roots of E and P of the lossy characteristic. ....................... 64 

Table 3.11 Predistorted lossless polynomials. ....................................... 66 

Table 3.12 Coefficients of polynomials used in the first iteration. ........ 68 

Table 3.13 CM Mt synthesized in the first iteration. ................................ 68 

Table 3.14 Transversal array derived in the first iteration. .................... 68 

Table 3.15 Coefficients of the admittance parameters. .......................... 69 

Table 3.16 Coefficients of polynomials used in the iterations. ............. 69 

Table 3.17 CM Mt in the last Iteration ....................................................... 69 

Table 3.18 CM Mt in the First and Last Iterations.................................... 73 

Table 4.1 Q distributions for different insertion loss level .................... 91 

Table 4.2 CM of the sub-networks ......................................................... 102 

Table 4.3 Values of the elements in for the 5
th

 order network ............. 104 

Table 4.4 Values of the elements in for the 7
th

 order network ............. 105 

Table 4.5 Values of the elements in for the 8
th

 order network ............. 107 

Table 4.6 Values of the elements in for the 8
th

 order network ............. 109 

Table 4.7 The resonant frequency and Qu for the first five modes. .... 113 

Table 5.1 Coefficients for the rational polynomials of S parameters .. 120 

Table 5.2 Original and matched CMs. .................................................... 120 

Table 5.3 Synthesized CMs for the 5
th

 order example. ......................... 125 

Table 5.4 Element Values for the DF Sections ...................................... 137 



- ix - 

Table 5.5 Element Values for the Circuit Model .................................... 138 

 



- x - 

List of Figures 

Fig. 1.1 Illustration of multiplexers in a satellite communication 
system [3]. ........................................................................................... 2 

Fig. 1.2 Diplexer in base station for mobile communication system 
[4]. ......................................................................................................... 2 

Fig. 1.3  Procedures for filter synthesis. ................................................... 3 

Fig. 1.4 Procedures for filter design. ......................................................... 4 

Fig. 1.5 Illustration of an N+2 prototype network. .................................... 5 

Fig. 2.1 Various standard filter responses and their roots 
distributions. ..................................................................................... 15 

Fig. 2.2 Lowpass prototype network for minimum phase filters. .......... 17 

Fig. 2.3 Equivalence of invertors [13]. ..................................................... 18 

Fig. 2.4 Lowpass prototype network with invertors. .............................. 18 

Fig. 2.5 Illustration of a prototype network suitable to be 
represented by a CM [7].................................................................... 19 

Fig. 2.6 Transversal array model of coupled resonator microwave 
filter [8]. .............................................................................................. 23 

Fig. 2.7 Circuit model of each resonator in Fig. 2.6 [8]. ......................... 24 

Fig. 2.8 Various CM configurations [25]-[30]. ......................................... 26 

Fig. 2.9 Definition of lossy resonator [9]. ................................................ 28 

Fig. 2.10 A typical lowpass prototype network compared to one 
with loss. ............................................................................................ 28 

Fig. 2.11 Insertion loss of a typical filter with Qu of infinity, 5000, 
2000, 1000 and 500 for a center frequency of 2 GHz and 
bandwidth of 0.12 GHz. ..................................................................... 29 

Fig. 2.13 S parameters of original and predistorted circuits. ................ 32 

Fig. 2.14 S parameters of the original Chebyshev circuit and the 
synthesized lossy circuit. ................................................................. 34 

Fig. 2.15 Circuit synthesized according to the lossy response. ........... 34 

Fig. 2.16 S parameters of the original Chebyshev circuit and the 
synthesized lossy circuit. ................................................................. 36 

Fig. 2.17 Illustration of the lowpass-bandpass transformation of 
coupled resonator network. ............................................................. 39 

Fig. 2.18 A typical microstrip filter of cascaded half-wavelength 
lines [1]............................................................................................... 40 

Fig. 2.19 EM model of a coaxial resonator with air cavity and 
tuning screw. ..................................................................................... 40 



- xi - 

Fig. 2.20 The EM model of a dielectric resonator. .................................. 40 

Fig. 2.21 A dual-mode waveguide filter [72]. ........................................... 40 

Fig. 2.22 Flow chart of filter tuning process using CM extractions. ..... 41 

Fig. 3.1 A typical lossy insertion loss compared to the lossless 
one. ..................................................................................................... 43 

Fig. 3.2 Loss compensation by LNA [42]. ............................................... 44 

Fig. 3.3 Roots distribution (a) and response (b) of the new 
characteristic. .................................................................................... 45 

Fig. 3.4 Roots distribution (a) and response (b) of the new 
characteristic when the roots are shifted to the left in the 
complex plane. .................................................................................. 46 

Fig. 3.5 (a) Roots of the characteristic polynomials for the 4
th

 
order network synthesized comparing to the lossless ones. 
(b) Roots of E and Ex. ........................................................................ 53 

Fig. 3.6 Response of the 4
th

 order network synthesized when 
F11=k11F22. ........................................................................................... 53 

Fig. 3.7 Roots distribution of the 4
th

 lossy network with uniform 
loss compared to the lossless ones. ............................................... 59 

Fig. 3.8 Roots distribution for polynomials E and Ex. ............................ 59 

Fig. 3.9 Response of the 4
th

 lossy network with uniform loss 
compared to the lossless ones. ....................................................... 60 

Fig. 3.11 Response of the 4
th

 order lossy CM derived using the 
new characteristics. .......................................................................... 61 

Fig. 3.12 Roots of polynomials E and Ex comparing to the lossless 
ones. ................................................................................................... 64 

Fig. 3.13 Response of the 4
th

 order example with non-uniform loss 
distribution (a) comparing to the lossless ones and (b) 
comparing to the ones when loss is applied directly to the 
original CM. ........................................................................................ 65 

Fig. 3.14 Roots distribution of the 4
th

 order example with non-
uniform loss. ...................................................................................... 70 

Fig. 3.15 Response of the 4
th

 order example with non-uniform loss 
compared to the lossless ones. ....................................................... 70 

Fig. 3.16 EM model for the size reduction design. ................................. 73 

Fig. 3.17 Eigenmode (a) and EM design (b) of coaxial resonator.......... 74 

Fig. 3.18 3
rd

 order mix mode filter and its response. .............................. 74 

Fig. 3.19 6
th

 order mix mode filter. ........................................................... 75 

Fig. 3.20 Lossy 6
th

 order mix mode filter and its response. .................. 76 

Fig. 3.22 E field distribution of the two degenerated modes. ................ 76 

Fig. 3.23 H field distribution of the two degenerated modes. ................ 76 



- xii - 

Fig. 3.24 EM model for the 4
th

 order filter with dual mode dielectric 
resonator. ........................................................................................... 77 

Fig. 3.25 Simulated response for the 4
th

 order filter with dual mode 
dielectric resonator. .......................................................................... 77 

Fig. 3.26 Spurious response for the 4
th

 order filter with dual mode 
dielectric resonator. .......................................................................... 77 

Fig. 4.1 Circuit model of a single lossy resonator. ................................. 81 

Fig. 4.2 Circuit model synthesized for the 2nd order maximum flat 
filter. ................................................................................................... 83 

Fig. 4.3 Response of the circuit model synthesized using the 
above method. ................................................................................... 83 

Fig. 4.4 Response of a single resonator. (a) loss is included in the 
first resonator and (b) loss is included in the second 
resonator. ........................................................................................... 83 

Fig. 4.5 (a) Response of the circuit model when loss is included in 
each resonator. (b) Zoom up of S21 at band edge. ......................... 84 

Fig. 4.6 (a) Transversal array of the 3
rd

 order Chebyshev filter with 
equal capacitance. ............................................................................ 85 

Fig. 4.7 Response of the circuit model with 3
rd

 resonator low Qs 
(a) and 1

st
 resonator low Qs (b). ....................................................... 86 

Fig. 4.8 Circuit model of the 4
th

 order Chebyshev filter. ........................ 87 

Fig. 4.9 Transmission of each lossless resonator in Fig. 4.1 is 
compared to the one with Q of 150. Solid lines are for the 
lossless case. .................................................................................... 87 

Fig. 4.10 The derivatives of the absolute values of S21 regarding to 
the dissipation of each resonator. ................................................... 88 

Fig. 4.11 S parameters of the 4
th

 order filter compared to the ideal 
template. Markers are the sampling points. The solid line is 
the ideal template which is the lossless S21 being multiplied 
by a constant. .................................................................................... 90 

Fig. 4.12 S21 of the 4
th

 order circuit with different Q distributions 
compared to the ideal template. Markers are the sampling 
points. The solid lines are the ideal template which is the 
lossless S21 being multiplied by a constant.................................... 91 

Fig. 4.13 S parameters of the 4
th

 order circuit using different Q 
distributions. ..................................................................................... 92 

Fig. 4.14 Zeros and poles of the transfer and reflection function 
plotted in the complex plane. ........................................................... 93 

Fig. 4.15 S parameters of the optimized 3
rd

 order circuit (Qu equal 
to 81, 470 and 229) compared with the ones of equal Qu of 
470. ..................................................................................................... 95 



- xiii - 

Fig. 4.16 S parameters of the optimized 4
th

 order circuit (Q equal 
to 92, 278, 223 and 135) compared with the ones of equal Q of 
278. ..................................................................................................... 96 

Fig. 4.17 (a) S parameters of the 3
rd

 order filter with optimized Qu 
distribution compared with the loss less one. (b) Insertion 
loss in the passband is compared to the template which is an 
ideal response multiplied by 0.8. ..................................................... 97 

Fig. 4.18 (a) S parameters of the 3
rd

 order filter with optimized Q 
distribution compared with the loss less one. (b) Insertion 
loss in the passband is compared to the template which is an 
ideal response multiplied by 0.8. ..................................................... 97 

Fig. 4.19 S parameters of the 4
th

 order example with three perfect 
transmission zeros. .......................................................................... 99 

Fig. 4.20 Circuit model synthesized for the 4
th

 order Chebyshev 
filter. ................................................................................................. 100 

Fig. 4.21 Circuit model of the 4
th

 order parallel connected 
networks. ......................................................................................... 100 

Fig. 4.22 Response of the 4
th

 order Chebyshev filter with loss 
included. .......................................................................................... 101 

Fig. 4.23 Node expression of the circuit model of (a) transversal 
array. (b) Folded network. .............................................................. 101 

Fig. 4.24 Response of the circuit model shown in Fig. 4.23. ............... 102 

Fig. 4.25 Circuit model of the parallel connected 6
th

 order filter. ........ 102 

Fig. 4.26 Response of the circuit model. The response of equal Q 
of 2000 is compared to the one of the 3

rd
, 4

th
 5

th
 and 6

th
 

resonators having a low Qu of 250. ............................................... 103 

Fig. 4.27 (a) Circuit model of the 5
th

 order symmetric filter with 
three parallel connected sub-networks. ........................................ 104 

Fig. 4.28 S parameters of the 5
th

 order filter with Q distributions 
compared to the lossless ones. ..................................................... 104 

Fig. 4.29 Circuit model of the 7
th

 order asymmetric filter with 
transformed configurations. .......................................................... 105 

Fig. 4.30 S parameters of the 7
th

 order filter with Q distributions 
compared to the lossless ones. ..................................................... 105 

Fig. 4.31 Circuit model of the 8
th

 order symmetric filter with two 
sub-networks. .................................................................................. 106 

Fig. 4.32 S parameters of the 8
th

 order filter compared to the 
lossless case. .................................................................................. 106 

Fig. 4.33 S parameters of the 8
th

 order filter when equal Q is 
assigned to each sub-network. ...................................................... 107 

Fig. 4.34 Circuit model of the 8
th

 order asymmetric filter with two 
sub-networks. .................................................................................. 108 



- xiv - 

Fig. 4.35 S parameters of the 8
th

 order asymmetric filter compared 
to the lossless case. ....................................................................... 109 

Fig. 4.36 Circuit model of the 4
th

 order symmetric filter with two 
2

nd
 order parallel connected sub-networks with C1=C2= 

C3=C4=1. ........................................................................................... 110 

Fig. 4.37 EM model of the combined coaxial and microstrip filter. ..... 111 

Fig. 4.38 Response of the 4
th

 order Chebyshev filter with higher 
loss included in different resonators compared to one with 
an equal high Qu. ............................................................................ 111 

Fig. 4.39 Photo of the filter manufactured. ............................................ 112 

Fig. 4.40 Measurement result of the filter shown in Fig. 4.31. ............. 112 

Fig. 4.41 EM model of a typical dielectric resonator and its E field 
distribution. ..................................................................................... 113 

Fig. 4.42 EM model of the 4
th

 order filter with mixed dielectric and 
coaxial resonators. ......................................................................... 114 

Fig. 5.1 A simplified diagram for a DF (a) and its response (b) that 
can be used for power combining. ................................................ 115 

Fig. 5.2 illustration of reference impedance of (a) channel filter 
with response [S] and (b) ideal filter circuit model with 
response [S’]. .................................................................................. 117 

Fig. 5.3 S parameters of the network with matched and unmatched 
CM with frequency variant load. .................................................... 120 

Fig. 5.4 illustration diplexer formed by two channel filter and a 
waveguide T-junction...................................................................... 123 

Fig. 5.5 Real and imaginary part of load impedance in the lowpass 
domain. ............................................................................................ 124 

Fig. 5.6 S parameter of the network with matched S21 .......................... 124 

Fig. 5.7 Detailed diagram of DF with two identical filter networks 
inserted between a pair of 90º hybrids. ......................................... 126 

Fig. 5.8 Circuit diagram showing the admittances of a single 
section DF with 90º TL. ................................................................... 127 

Fig. 5.9 Cascading of n single section DF’s. ......................................... 127 

Fig. 5.10 Node diagram for a single section DF with lines 
representing invertors. The empty node represents non-
resonating nodes. ........................................................................... 128 

Fig. 5.11 The alternative configuration of the single section DF of 
Fig. 5.10. ........................................................................................... 129 

Fig. 5.12 Cascading of the single section DF (a) and its alternative 
(b). .................................................................................................... 129 

Fig. 5.13 Filter network to provide the required pole of a DF. ............. 130 

Fig. 5.14 Simplified circuit for a single section DF. .............................. 131 



- xv - 

Fig. 5.15 Cascaded single section DFs with phase shifters. ............... 132 

Fig. 5.16 Response for N=4 filter with Qu distribution (a) compared 
to the one with equal Q of 600 (b). ................................................. 133 

Fig. 5.17 Response for N=4 filter with lowered Qu distribution (a) 
compared to the one with equal Qu of 160 (b). ............................. 133 

Fig. 5.18 Response for the asymmetric 4
th

 order filter with Q 
distribution (a) compared to the one with equal Q of 800 (b). ..... 134 

Fig. 5.19 Response for asymmetric 4
th

 order filter with optimized Q 
distribution and phase shifter(a) compared to the one with 
equal Q of 800 (b). ........................................................................... 135 

Fig. 5.20 Response for 5
th

 order filter with Q distribution (a) 
compared to the one with equal Q of 1200 (b). ............................. 135 

Fig. 5.21 Response for 5
th

 order filter with optimized Q and phase 
shifters (a) compared to the one with equal Q of 1200 (b). .......... 135 

Fig. 5.22 Response for the 5
th

 order filter with optimized Q and 
phase shifters. ................................................................................. 136 

Fig. 5.23 Response for the 5
th

 order filter with optimized Q, phase 
shifter and FIR. ................................................................................ 136 

Fig. 5.24 Response for the 5
th

 order filter with optimized Qs, phase 
shifters, FIRs and invertors. ........................................................... 137 

Fig. 5.25 Circuit model of cascaded DFs simulated in ADS. ............... 138 

Fig. 5.26 Simulated response is exactly the same as the designed 
Chebyshev filter. ............................................................................. 139 

Fig. 5.27 Simulated response of the isolation....................................... 139 

Fig. 5.28 EM design of the first DF section in HFSS (a) andits 
response (b). .................................................................................... 140 

Fig. 5.29 EM design of the last DF section in HFSS (a) and its 
response (b). .................................................................................... 140 

Fig. 5.30 EM design of the 50Ω transmission line (a) and its 
response (b). .................................................................................... 140 

Fig. 5.31 Simulation result for the combiner (Solid line for the 
circuit simulation and dashed line for the combined 
EM/circuit simulation) ..................................................................... 141 

Fig. 5.32 EM model for the combiner (top view and side view). .......... 141 

Fig. 6.1 Illustration of the N-wire line with coupling capacitance. ...... 143 

Fig. 6.2 Generalized circuit model. ........................................................ 146 

Fig. 6.3 Equivalent circuit of a mode. .................................................... 150 

Fig. 6.4 Illustration of the equivalence of 2-D waffle-iron filter............ 151 

Fig. 6.5 Illustration of the network for each branch. ............................ 151 

Fig. 6.6 Even and odd mode admittance of a basic section. ............... 152 



- xvi - 

Fig. 6.7 Illustration of the node voltage and current for waffle-iron 
filter with 2N nodes. ........................................................................ 152 

Fig. 6.8 Circuit model of the metamaterial with 3 transversal 
nodes................................................................................................ 153 

Fig. 6.9 Equivalent circuit model 3 nodes network with the 
excitation to three modes. .............................................................. 155 

Fig. 6.10 Circuit model for waffle-iron filter with N transversal 
sections and M longitudinal sections............................................ 156 

Fig. 6.11 Circuit model of N=5 waffle-iron filter .................................... 157 

Fig. 6.12 Plot of 5 sets of eigenvectors with fitted sine waves............ 158 

Fig. 6.13 S21  of the five modes. .............................................................. 158 

Fig. 6.14 S21 with input voltage 1, 2, 3, 0, -2. ........................................ 159 

Fig. 6.15 S21 of the first mode with input voltage at an angle. ............. 159 

Fig. 6.16 HFSS model of waffle-iron filter. ............................................. 160 

Fig. 6.17 Simulated S parameter of the first and fifth mode. ............... 160 

Fig. 6.18 HFSS model of waffle-iron filter with input and output 
waveguide. ....................................................................................... 161 

Fig. 6.19 Simulated S parameter of the first and fifth mode. ............... 161 

Fig. 6.20 Circuit model for an alternative waffle-iron filter 
configuration ................................................................................... 161 

Fig. 6.21 S21 of the five modes of the modified configuration. ............ 162 

Fig. 6.22 S21 of the first mode when the input has a phase shift. ........ 162 

 

 



- 1 - 

Chapter 1  

Introduction 

1.1 Microwave filters in communication systems 

Microwave filters are frequency selective devices implemented in most 

communication systems. It allows signals of certain frequency band to pass 

though and blocks or attenuates the signal transmission of other frequencies 

[1][2]. Generally speaking, the vast literatures on microwave filters 

concentrate on one of the following aspects: 1) material and structure related 

to the filter design, 2) performance of transmission and rejection related to 

the filter synthesis and 3) issues of cost and size related to the manufacture. 

 

Since the 1950s, the development of communication systems requires the 

implementation of microwave filters of high performance. While filter design 

in the past involves much lab work on cut-and-try, filter design nowadays 

has been influenced by the developments of two areas including the 

applications of EM modelling and simulation software and the use of CMs as 

a general representation of narrow band filter networks. The field of filter 

design and synthesis is to convert the specifications to a circuit network and 

to realize the network by a physical filter through modelling and tuning. 

 

In satellite communication systems, the frequency division architecture 

illustrated in Fig. 1.1 is used due to the linearity requirement of high power 

amplifiers[2][3]. Filters are integrated into input/output multiplexers so that 

signals can be channelized. Due to the stringent requirement on loss, 

common designs use waveguide or dielectric filters as they provide the 

highest Q. Dual-mode waveguide filters are also used for size reduction. 

 

In most mobile communication systems, filters implemented in base stations 

are integrated as a diplexer [4][5] as illustrated in Fig. 1.2. Typically, the 

requirements for a diplexer include the high isolation between the two 

channels, high rejection of the transmit filter in the receiver band and low 

passband insertion loss of the transmit filter. These requirements can be 

fulfilled by filters with transmission zeros which are generated by cross 

couplings. Coaxial resonators are usually used as they can be easily 
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arranged into desired configurations. Also, the requirement for loss is not as 

stringent as that in satellite communication systems.  

 

 

Fig. 1.1 Illustration of multiplexers in a satellite communication system [3]. 

 

 

Fig. 1.2 Diplexer in base station for mobile communication system [4]. 

 

1.2 Overview on filter design and synthesis 

Starting from the specifications of a certain communication channel, the goal 

of filter design and synthesis is to find a physical realization that can fulfil 

those requirements. This problem has been divided into two categories, the 

filter synthesis which concentrates on the derivation of networks based on 

standard characteristics, and the filter design which concentrates on the 

physical realisation of the network. Various techniques proposed in the 

literature on microwave filters usually deal with a specific section of that 

sequence.  
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Developed since the 1930s, modern filter synthesis techniques as illustrated 

in Fig. 1.3 involve the approximation of the filter specifications by a transfer 

function and the derivation of lowpass prototype networks. The requirements 

for a bandpass filter include the centre frequency, the percentage bandwidth, 

the maximum insertion loss in the passband, and the minimum rejection 

levels in the stopband. 

 

First, those specifications are fulfilled by a filter characteristic which is a 

mathematical expression usually in the form of rational polynomials[6]. The 

standard characteristics can be derived analytically and the non-standard 

ones can be found by optimizations. Much of the work is summarized in [1] 

with design charts for various filter characteristics.  

 

Next, a low pass prototype network can be synthesized in an approximated 

or exact manner according to the characteristic. Nowadays, CMs are used 

for coupled resonator filters of varied configurations [7], and analytical 

procedures are found to derive the corresponding coupling matrix (CM) from 

a given characteristic [8].  

 

 

Fig. 1.3  Procedures for filter synthesis. 

 

The procedures for filter design are illustrated in Fig. 1.4. First, varied 

denormalizations are applied to the synthesized lowpass prototype network, 

so that it can be transformed into desired frequency bands. For the lumped 

element network, standard transformations between lowpass, bandpass, 

highpass and band stop configurations can be found in [1]. Richard’s 

transformation can be used to transform the lumped elements to distributed 

elements [9]. 
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Then physical realisation of the network can be found by utilizing various 

microwave elements including TEM transmission lines, waveguides, coaxial 

and dielectric resonators. Design equations can be found for some standard 

filter structures in [1]. Nowadays, filter design utilizes EM simulation software 

that can provide results close to measurements. For narrow band design, 

filter networks can be treated as coupled resonators [7]. With desired 

technologies, resonators and coupling elements are modelled separately 

according to their values in the synthesized network [10]. For desired 

configurations, connecting the resonators with coupling elements provides 

an initial design.  

 

Finally, computer aided tunings [11] can be applied to the initial designs 

utilizing various optimization techniques until the desired response is 

achieved. Computer aided tunings are also useful to tune the physical 

devices in order to compensate the manufacturing tolerance. 

 

 

Fig. 1.4 Procedures for filter design. 

 

Circuit models are important for the filter design and synthesis because they 

link between the mathematical expressions and the physical devices. A filter 

network that is suitable for a CM representation is shown in Fig. 1.5. The 

resonators are multiple coupled and non-synchronized tuned. Mij represents 

the coupling between i
th
 and j

th
 resonators. jBi is the frequency invariant 

reactance. Gs and GL are the unitary source and load admittances. It’s 

defined as an N+2 type network in [8] as there are two invertors connecting 

to the input and output loads. Ideally, the coupling matrix M is purely real 

and symmetric.  

 

The current filter design and synthesis techniques dealing with ideal CMs 

have been proven to be effective. However, the requirements of purely real 
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CM and unitary loads in circuit models are not true for physical filters and 

thus limit the applications of CMs in filter design and synthesis. For example, 

for filters of high performance in insertion loss or the ones with reduced size, 

as the dissipation incorporated in resonators and couplings can no longer be 

neglected, CM can no longer be purely real. Also, filters in communication 

systems are usually integrated with other devices at the output end. As a 

result, the unitary load admittance is only an approximation to the actual 

condition.  

 

A more practical network is shown in Fig. 1.6 with dissipations included in 

resonators and a non-ideal load admittance. While the procedures for the 

synthesis of ideal CMs are described in section 2.1 and 2.2, the derivation of 

CMs considering these non-ideal effects remains to be problematic. 

 

 

Fig. 1.5 Illustration of an N+2 prototype network. 

 

 

Fig. 1.6 Illustration of an N+2 prototype network with lossy resonators. 

 

1.3 Overview of the thesis 

The purpose of the work presented in this thesis is to provide a synthesis 

method for a modified circuit model in which some of the physical effects are 

included, so that the application of CM can be extended to more general 

cases. Besides the method for the synthesis of lossy filter networks, various 
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techniques are proposed for the design of diplexers or lowpass waveguide 

filters. 

 

For lossless networks, the reflection function can be found from the transfer 

function according to the condition of power conservation. Rational 

polynomial expressions for admittance parameters can then be derived [8]. 

The partial expansion of admittance parameters provides purely real 

residues and purely imaginary poles. Then a transversal array can be 

formed and can be transformed to other configurations. However, for lossy 

networks, the power conservation is not satisfied. The procedure [8] for the 

derivation of admittance parameters is no longer valid.  

 

The lossy synthesis method is general in this paper. A condition for the 

characteristic polynomials is introduced to replace the use the power 

conservation. As a result, the rational polynomial transformation between the 

S and admittance parameters for an N
th
 degree filter network is modified to 

be capable of dealing with losses. When the polynomials of S parameters 

satisfy a given condition, it is guaranteed that the admittance parameters as 

well as the CM can be derived from the S parameters.  

 

Two special cases are discussed for solving the refection function from a 

prescribed transfer function. In the first case, F11 (the numerator of S11) 

equals to F22 (the numerator of S22). This is the case that is equivalent to the 

even/odd mode analysis but is extended to be applied for asymmetric filter 

responses. In the second case, the loss distribution among a filter network is 

given. A method of iteration is applied to derive the CM with the prescribed 

loss distribution. The method is an extension to the conventional method of 

predistortion with non-uniform resonator Qs and lossy invertors.  

 

An alternative approach to cope with loss is also studied. It is noticed that in 

a transversal array, the effect of loss of each resonator on the filter response 

is independent of each other. The effect of loss of each resonator depends 

on its bandwidth and resonant frequency. As a result, some resonators can 

be replaced by their low-Qu alternatives to reduce the manufacture cost as 

well as the cavity size. A new type of transfer function is introduced. Circuit 

model synthesized according to this transfer function exhibits parallel 
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connected resonators with great bandwidth variations thus suitable for the 

design using varied Qu distributions. 

 

The exact values for the Qu distributions or lossy invertors can be 

determined by methods of gradient based optimizations. Previously, 

optimizations of CM are used to replace the series rotations for a desired 

configuration and the responses achieved are based on ideal Chebyshev 

function. The methods presented in this thesis can optimize the dissipation 

distribution for a parallel connected network. The cost function is defined not 

to get an ideal Chebyshev response but one with proper insertion and return 

loss. By tuning the weightings of different terms in the cost function, various 

goals can be achieved.  

 

The design method is also applied to configurations other than parallel 

connected networks. Using CM rotations, transversal arrays can be 

transformed into other parallel connected networks by grouping the residues 

and poles. Various examples are given in the thesis. One of the 4
th
 order 

example is implemented with mixed coaxial and microstrip technology. 

Examples of filters realized by mixed coaxial and dielectric resonators are 

also provided.  

 

Since the size and weight of a filter is an important aspect of filter 

implementation, compensations between filter’s performance and dissipation 

is critical in practical design. The introduction of non-uniform Q provides 

extra variables that can be tuned so that filter size can be reduced without 

losing performance.  

 

A method of CM synthesis with non-ideal load is given which can be used in 

the design of a diplexer or a multiplexer. Contracting to the lowpass 

prototype networks which begin and end in uniform resistances, a channel 

filter is synthesized with a non-ideal load impedance which represents the 

manifold connected.  

 

Since the S parameters of any two port network are defined with reference 

impedances, the filter network matching to a complex load impedance can 

be easily derived by a renormalization of reference impedance. For more 
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practical cases, the complex reference impedance should be a function of 

frequency over a specified frequency band. However, when the frequency 

variant load is taken into consideration, the response of the network is of a 

higher degree which violates the methods for the CM synthesis. As a result, 

various optimizations such as curve fittings are used to maintain the original 

degree of the filter network.  

 

In this thesis, an iteration method is introduced which doesn’t involve any 

curve fitting and can deliver the required reflection zeros thus maintain the 

required return loss level. This can provide better results comparing to 

previous methods.  

 

The method for the synthesis of directional filters is presented in this thesis. 

While each section of directional filters provides a 1
st
 order response, more 

complex filter characteristics can be realized by cascading those single 

sections. It is also demonstrated that directional filters can be used as a 

novel approach for designing combiners which is used in Long Term 

Evolution (LTE) base stations. 

 

A method for the analysis of 2-D lumped element networks is presented. The 

method is based on general telegrapher’s equation of the multi-wire 

transmission line. The 2-D lumped element network is equivalent to a 

combination of sub-networks which support a single mode of propagation. 

The method can be applied to the analysis of certain types of metamaterials 

and can be used for the study of waffle-iron filters. 

 

1.4 Organization of the thesis 

The thesis is arranged to have six chapters with the first one being the 

introduction. 

 

Chapter 2 provides background information on filter synthesis and design. 

Traditional synthesis methods in which the resonators are of high Qus or 

lossless are reviewed first. The synthesis methods are based on low pass 

prototype networks. With the introduction of CMs, the coupled resonator 
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networks can be synthesized and analyzed by various matrix operations. 

Using the transversal array network, the synthesis of CMs is greatly 

simplified. Then, techniques for the synthesis and design of lossy filters are 

reviewed including the method of predistortion, the use of even and odd 

mode networks and some modifications applied to CMs. These loss filters 

are designed to have dissipative resonators and cross couplings based on 

lossy transfer functions. 

 

Chapter 3 provides the generalized CM synthesis method for lossy filters. A 

condition for the characteristic polynomials is introduced to replace the use 

the power conservation. And a rational polynomial transformation between 

the S and admittance parameters for an N
th
 degree filter network is given. 

Then two special cases of solutions are discussed. The first one 

corresponds to the even and odd mode analysis method with asymmetrical 

responses. The second one corresponds to a more generalized method of 

predistortion with non-uniform dissipations. Examples of mixed coaxial and 

dielectric resonator filters are designed.  

 

In Chapter 4, the synthesis of lossy parallel connected network is discussed. 

The effect of loss in parallel connected network is studied. It is found that for 

a filter networks, some of its resonators are more critical than the others 

considering the effect of loss. As a result an optimum Q distribution with 

minimum number of higher Qu resonators can be implemented. Then an 

analytic solution to the Q distribution is given for parallel connected networks 

with small losses. When non-uniform Q is applied to other types of networks, 

a gradient based optimization can be used to derive the optimum loss 

distribution. Various numerical examples are given with two physical 

designs.  

 

Chapter 5 presents the method for the synthesis of CM with non-ideal load 

effects which can be applied in the design of diplexer. The transformation 

between S and Y parameters with a frequency variant reference impedance 

are reviewed first. Then an iteration is applied for the synthesis of CM with 

which the reflection zeros are solved thus obtaining a similar return loss 

level.  

The method for the design of diplexers based on directional filters is 

revisited. Explicit synthesis procedures are given so that any filter 
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characteristic can be realized by a cascading of single section DFs. 

Transformation and circuit equivalence are then applied so that the DF 

networks can be realized by standard filter technologies using resonators, 

couplings and TLs. An example is given for a 4
th
 degree DF and is realized 

by combline resonators.  

 

Chapter 6 presents the method for the analysis of 2-D lumped element 

networks which can be used in the design of waffle-iron filters. First, analysis 

is given for the multi-mode propagation in multi-wire lines. 2-D network 

consisting of lumped elements are studied which shows that this kind of 

network supports multi-mode of propagation. Waffle-iron filters are examples 

of these 2-D networks and simulations results are given and compared with 

circuit analysis. 
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Chapter 2  

Filter Design and Synthesis 

In this chapter, the theories for the design and synthesis of microwave filters 

will be reviewed. Traditionally, as presented in [1], filter design consists of 

the following steps. The first is the approximation of the specifications by a 

transfer function. Specifications include requirements on the rejection level, 

the in-band insertion loss level and the return loss level. Transfer functions 

satisfying given specifications are usually solved approximately by 

optimizations [12]. Standard types of transfer functions are reviewed first. 

 

The second step is the synthesis of a network which can realize the transfer 

function and is solved with the knowledge of network synthesis. Lowpass 

prototype networks are defined which is usually a cascading of series 

inductance and shunt capacitance. Design charts for lowpass prototypes 

with standard transfer functions are given in [1]. Other networks can be 

derived directly from them. When inverters are introduced to lowpass 

prototypes [13], the cascaded inductance and capacitance network is 

transformed to coupled resonators which can be synthesized by Darlington’s 

insertion loss method [1][2] using series of element extractions.  

 

Finally, with the prototype networks, the problem of filter design aims to 

transform the network representation into a variety of microwave elements 

including TEM transmission lines, waveguides and dielectric resonators. 

This is achieved by the denormalization of prototype networks based on the 

equivalence of lumped and distributed elements. [1] provides design charts 

for most standard filter responses and physical structures.  

 

Nowadays, CMs introduced in [7] and developed in [8] are used as a general 

representation of coupled resonator filters. Its definition is reviewed first. 

Then the procedures for the synthesis of transversal arrays are reviewed. 

The next section is on the introduction of various transformations applied to 

transversal arrays so that various network configurations can be achieved.  

 

With the aid of EM simulation software, filter designs depend more and more 

on the efficient modelling of microwave components. [14] provides recent 

examples for the design of various microwave filters. Initial EM models of 

bandpass or distributed networks which are obtained by the demoralisation 
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of lowpass prototypes. Then tuning is applied to the initial model so that the 

required response can be achieved.  

 

When dissipations are taken into consideration, sets of conditions used in 

the synthesis of filter networks are violated. Commonly used methods for the 

synthesis of lossy networks are reviewed including the predistortion, the 

lossy CM synthesis and the even/odd mode analysis. 

 

2.1 Filter characteristics 

The synthesis of microwave filter starts with the filter functions which are 

defined in a normalized frequency domain [1]. An ideal filter response has 

perfect transmission in the passband defined from ω=-1 to ω=1. The perfect 

transmission in the passband and complete rejection in the stopband leads 

to an infinite group delay at the band edge which is impossible to achieve by 

finite degree networks [15].  

This ideal response can be approximated by functions of rational 

polynomials. The rational polynomial expressions for S parameters of a filter 

network are given in (2.1) in which the polynomials F11 and E are of degree 

N (which is defined as the filter order) and the polynomial P is of degree Nfz 

(which defines the transmission zeros and is less than N). In addition to the 

S parameters responses, it is useful to study the roots of these polynomials 

and this can be done in a plot of roots distributions in the complex plane of 

s=σ+jω with the x-axis denoting the real part σ and y-axis denoting the 

imaginary part jω.  
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For lossless characteristics, S parameters must satisfy the condition of 

power conservation given in (2.2). As a result, the polynomial F22 is the 

complex conjugate of F11 with its highest coefficient be equal to that of F11 as 

given in (2.3).Also the polynomial E satisfies the Hurwitz condition that all its 

roots lie in the left half of the complex plane. According to (2.4), when F11 

and P are known, E can be found by an alternative roots method [16].  
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To approximate the ideal shape, various functions of rational polynomial are 

used [1] such as Maximum Flat and Chebyshev functions. For these 

standard filter characteristics, the polynomials F11 and P could be derived 

according to defined procedures [12]. Some examples of filter characteristics 

are given in the following.  

 

1). Maximum flat 

For a maximum flat characteristic, its polynomials are given in (2.5). The 

denominator can be found according to (2.4). A typical response and roots 

distribution for a 4
th
 degree response is shown in Fig. 2.1(a).  
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2). Chebyshev 

For Chebyshev response, the polynomial F can be found from a Chebyshev 

polynomial as in (2.6) which could be derived according to the recursive 

procedure given in [1]. A 4
th
 degree response is shown in Fig. 2.1(b). 
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3). Characteristics with transmission zeros 

Transmission zeros are included in designing filter responses as they have 

several advantages and are realized by modifying the constant P in (2.5) 

and (2.6) to a polynomial of certain degree. Purely imaginary transmission 

zeros are included to provide sharpened transitions at bandedges. Fig. 

2.1(c) shows the example of a 4
th
 order maximum flat response with two 

transmission zeros at ±1.6j. 

Transmission zeros can also be introduced into Chebyshev responses. It is 

then called a general Chebyshev response and the derivation is given in 

[16]. When the positions of transmission zeros are arranged properly, the 

rejection in stopband can be equal-ripple. The example of a 4
th
 degree with 

three transmission zeros at 1.7j, 2.2j and 3.6j is shown in Fig. 2.1(d). 
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Complex transmission zeros can also be introduced to provide equalized 

group delay [17][18]. They must appear in a conjugate pair. 

 

4). Other characteristics 

Besides the standard filter characteristics, other functions may have 

advantages for specific applications. The example is the characteristic 

polynomials in (2.7) that will be used in the design of lossy parallel 

connected network to be discussed in Chapter 4. The response of a typical 

example is given in Fig. 2.1(e). 
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(c) 

 

(d) 

 

(e) 

Fig. 2.1 Various standard filter responses and their roots distributions. 
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2.2 Filter networks of coupled resonators 

With the defined N
th
 degree functions, a corresponding N

th
 degree lowpass 

prototype network can be derived. The lowpass prototype network is a 

cascading of series inductances and shunt capacitances and can be derived 

by extractions of elements. Introducing inverters into the network to 

represent couplings can provide a coupled resonator network. 

 

With the requirement of high performance filters, transmission zeros are 

introduced into filter characteristics to provide steep transitions into stop 

bands or equalized group delays. Transmission zeros are generally realized 

by signal passes from two separated paths that have cancelled with each 

other at a specific frequency. As a result, the all-pass coupled resonators 

can be modified to included couplings between non-adjacent resonators.  

 

Atia and Williams in 1972 [7] presented a filter synthesis method based on 

the CM which is a general representation of cross coupled resonators. The 

complete network of multi-coupled resonators is described by its admittance 

matrix which is the sum of the CM, the source/load resistant matrix and the 

diagonalized resonator matrix. The problem of filter synthesis is to find the 

bridge linking the admittance matrix and the S parameters. The method of 

analysis given by Atia and Williams is reviewed first in this section followed 

by a simplified procedure given by Cameron [8]. Using these procedures, 

filters can be represented by CMs with various responses of rational 

polynomials.  

 

2.2.1 Lowpass prototype networks 

For standard filter characteristics, a lowpass prototype network can be 

synthesized according to the exact formulas given in [19][20]. These 

prototype networks are of two-port and consist of cascaded lumped 

elements of inductance and capacitance as shown in Fig. 2.2.  

The network consists of coupled resonators is first introduced by Dishal in 

1951 [21]. In the reference, a narrow band bandpass filter is defined with 

three kinds of parameters including the synchronous resonant frequencies 

for resonators, the couplings between adjacent resonators and the external 

Qs of the first and last resonators. The method of designing narrow band 

filters with no finite transmission zeros using sequentially coupled resonators 

is shown in [13][22].  
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Fig. 2.2 Lowpass prototype network for minimum phase filters. 

 

For the lowpass prototype network, there are both shunt and series 

elements that are difficult for the implementation. Inverters [13] are inserted 

into the circuit so that the circuit can be transformed to coupled resonators in 

which only series or shunt resonators are required. The transfer matrix of an 

inverter is given in (2.8). 
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An inverter is ideally a quarter wavelength transmission line. With the 

narrowband approximations, equivalence between lumped and distributed 

resonators can be found based on the reactance slope parameter. Then an 

inverter can be realized accordingly by the lumped or distributed equivalence 

as shown in [13]. The negative capacitances and inductances can be 

emerged with adjacent resonator elements of the lowpass prototype. The 

negative length of transmission lines could also be emerged with the length 

of adjacent cavities in waveguide filters.  
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Fig. 2.3 Equivalence of invertors [13]. 

 

As a result, the design of lowpass prototype is transformed into the design of 

tuned resonators and coupling elements as shown in Fig. 2.4.  

 

Fig. 2.4 Lowpass prototype network with invertors. 

 

This technique significantly simplified the design process [13]. However, as 

the approximations of ideal inverters by coupling elements set limitations to 
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the bandwidth that a filter can be designed accurately, the choice of 

equivalent networks depends on the frequency band. In narrow band 

applications, lowpass to bandpass transformation could be applied to the 

resonators while the inverters are considered to be constant. In this way, the 

coupled resonator filter network can be designed.  

 

2.2.2 Introduction of CM 

If the frequency band of interest is narrow, each cavity can be treated as a 

single resonant with multiple couplings to other cavities. A generalized 

lowpass filter network was introduced by a series of paper [7][23][24] and is 

shown in Fig. 2.5. The method of analysis is reviewed in this section.  

 

 

Fig. 2.5 Illustration of a prototype network suitable to be represented by a 
CM [7]. 

 

The series connected LC resonators are all normalized to a centre frequency 

of ω0=1rad/sec thus giving 1F capacitance and 1H inductance for each loop. 

The couplings between ith and jth resonators are denoted by a coupling 

coefficient Mij. For narrow band applications, the couplings are assumed to 

be frequency invariant. Each resonator forms a loop with coupling elements 

and the N loop voltage are denoted as e1, v2,…, en  with the loop current i1, 

i2,…, in. The source and load resistance are R1 and Rn. 

 

For an Nth degree network with input voltage applied only at the first loop, the 

complete set of loop equations according to Kirchhoff’s voltage law is given 

in (2.9) with s defined in (2.10) and Mij explained in (2.11).  
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 ijij MjjM 0   with 10  rad/sec (2.11) 

For a two port reactance network shown in Fig. 2.5, its short circuit 

admittance parameters are defined in (2.12) with port voltages and currents 

V1, I1, V2 and I2.  
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The admittances Y11 and Y21 can be found as in (2.13) when V2=0. Then 

(2.13) can be further derived using the loop voltage and current e1, i1 and in 

of Fig. 2.5 since e1=V1 when R1=0. 
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Then with R1=Rn=0, the loop equation in (2.9) is simplified to (2.14). By 

matrix inversion, an admittance matrix can be found as in (2.15). yl and zl 

represent the N-by-N admittance and impedance matrix in the following 

texts. 
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With the admittance matrix in (2.15), the Y11 and Y21 of (2.13)can be found as 

in (2.16) where I is an N-by-N identity matrix and M is the CM.  
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From the definition of the filter network, the matrix M is real and symmetric. 

As a result, it can be diagonalized as in (2.17). Matrix Λ is a diagonal matrix 

with its diagonal element being the eigenvalues of matrix M as in (2.18). 

Matrix T is the orthogonal eigenvector matrix.  

 tTTM   (2.17) 
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The admittance matrix yl of (2.15) is the reversion of the impedance matrix 

and with (2.17), the inversion can be derived as in (2.19) utilizing the 

eigenvalues and eigenvectors of CM M.  
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And the matrix multiplications in (2.19) can be further derived when the 

elements of T is given as in (2.20). As a result, Y11 and Y21 can be calculated 

as in (2.21). A conclusion can be drawn that for the network as in Fig. 2.5, its 

admittance parameters are rational polynomials with a common denominator 

of degree N. 
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In the synthesis of filter networks, the S parameters are known and the 

admittance parameters can be found according to (2.22) in which polynomial 

V is given in (2.23) for lossless case.  
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A partial expansion could then be applied to Y parameters as in (2.24). 

Comparing (2.21) with (2.24), λk can be found from the poles of Y parameter 

and T1k and Tnk can be found from the residues. With matrix Λ and T, the 

matrix M can be found. 
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According to the derivation above, there are some constraints for the poles 

and residues of Y parameters. Because matrix M is real and symmetric, its 

eigenvalues must be real and its eigenvector matrix T must be real and 

orthogonal. 

1). As λk is real, the poles pk must be purely imaginary.  

2). As the trace of M equals zero, 0  kk pj . 

3). As matrix T is real, the residues r11, r12 and r22 are all real and positive. 

4). 02
212211  rrr . 

5). As T is orthogonal, 01  nkkTT  and 021  kr  . 

6). As 011  nnMM , 02211   kkkk rr   . 

 

2.2.3 Synthesis of CM 

The synthesis procedure in last section can be greatly simplified using the 

network of transversal array given in Fig. 2.6. It is a prototype of coupled 

resonator network and is generally a parallel connection of N resonators. 

Each of the resonators consists of two inverters skJ , one capacitor kC , and 

one frequency invariant reactance kjB .  

 

For lossy circuit that will be discussed in the following section, a resistor kG  

is also included in each resonator as in Fig. 2.7. The synthesis procedure in 

[8] is reviewed here. The transfer matrix of each resonator in Fig. 2.7 is 

derived in (2.25) by matrix multiplications of the transfer matrix of each 

element.  

 

Fig. 2.6 Transversal array model of coupled resonator microwave filter [8]. 
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Fig. 2.7 Circuit model of each resonator in Fig. 2.6 [8]. 
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So the admittance parameters of each resonator can be derived using the 

standard ABCD to Y transformations. The admittance matrix of a resonator 

is thus given in (2.26).Comparing it with the partial expansion of (2.24), the 

values of the elements in the circuit model can then be found as 1kC , 

kkB  , kLk rM 22
2  , and kLkSk rMM 21 . 
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This method of synthesis CM is based on an N+2 CM in which the first and 

last nodes are representing the source and load. As a result, the method is 

capable of designing of filter with couplings to or between source and load.  

 

2.2.4 Transformation of CM 

For better rejection, transmission zeros are introduced by meanings of cross 

couplings. Then the basic matrices (full matrix derived from N-by-N network 

and parallel connected matrix from N+2 network) can be transformed to 

other configurations by means of similarity transformations. Similarity 

transformation is a series of matrix rotation applied sequentially to 

annihilating specific element in CM.  

Fig. 2.8 shows some of the filter configurations that are used in most 

practical design. These configurations are illustrated by node diagrams 

which show the coupling schemes. The solid circles represent resonators 
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and the hollow circles represent the non-resonating nodes that are usually 

the input and output nodes. The solid and dash lines are the positive and 

negative couplings respectively. 

To the standard configurations, sequence of rotations is given. Folded 

configuration [25] in Fig. 2.8(a) is generally used in filter that requires the 

presence of transmission zeros and can be easily implemented by 

waveguide or other structures. A corresponding CM is also shown with its 

responses.  

The configuration in (b) can be derived directly from transversal array for 

symmetric response [8]. It is similar to transversal array but has reduced 

number of parallel connected sub-networks. The Cud-de-sac [26] 

configuration is shown in (c). Trisection in (d) has the advantage that each 

transmission zero is assigned to one cross coupling. It can be further 

transformed to the configuration in (e). The rotation for trisection is given in 

[27] and [28]. The extended box configuration [29] is shown in (f). Arbitrary 

transmission zeros can also be introduced into the network by non-

resonating nodes [30] as shown (g). 
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(d) 

    

(d) 

 

(e) 

   

(f) 

 

(g) 

Fig. 2.8 Various CM configurations [25]-[30]. 

 

2.2.5 The application of optimization 

For other configurations that are difficult to be achieved by matrix rotations, 

various optimizations can be used to find the required CM. In [31], gradient 

based optimization is applied to an initial CM, and the cost function is 

defined in (2.27) for perfect reflection and transmission zeros. Ai and Bj 

represent the refection and transmission zeros. ε is the current ripple of 

insertion loss in the passband while ε0 is the desired value. 
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[32] and [33] provides a more effective optimization by giving the gradient of 

response with respect to elements in CM (2.28). A is the complete 
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admittance matrix as [A]=ω[I]-j[R]+[M]. Matrix P defines the desired CM 

configurations.  
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Based on the optimization, it has been shown in [33]-[37] that various CM 

configurations can be achieved without similarity transformations.  

 

2.3 The synthesis of lossy filter networks 

Filter networks can be implemented by different technologies. However, all 

the physical filters deal with certain level of losses. The use of lossy 

resonator can greatly reduce the size of manufactured filter cavities [38] [39]. 

It is thus desirable to include losses in the filter synthesis to compensate the 

performance degradation. The problem of synthesizing lossy filter networks 

has been completely solved by reflection mode device [40]-[42]. No general 

solutions have been found for two-port transmission type devices.  

 

Followed by the definition of Qu, various techniques for the synthesis of 

lossy filter networks are reviewed. The first one is predistortion described in 

2.4.2. By realizing a transfer function whose poles are shifted to the right to 

compensate the effect of loss, lossless transfer function can be recovered at 

the expense of high return loss. The previous CM synthesis technique is not 

valid when the circuit is lossy. The lossy circuit synthesis method in 2.4.3 

uses the decomposition of even and odd mode and thus non-uniform 

dissipations can be included in the circuit with hyperbolic transformations. A 

specific case of lossy CM synthesis is discussed in 2.4.4 which is valid for a 

specific response. Finally, optimization can also be used in the derivation of 

lossy CM.  

 

2.3.1 The definition of Qu 

For a lumped element resonator consisting series connected capacitor and 

inductance, loss is included by an additional resistance R as given in Fig. 
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2.9. Then the quality factor Q is defined by the stored and dissipated energy 

[9] as in (2.29).  

 

Fig. 2.9 Definition of lossy resonator [9]. 
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For physical implementations of microwave filters, the existence of loss is 

inevitable. For cavity filters, losses introduced by metal cavities can be found 

by (2.30) where b refers to the dimension of the cavity, K is a chosen 

constant for various resonator types and f is the resonant frequency [43]. 

Loss due to coupling apertures, tuning screws, and surface roughness can 

be found experimentally [44]. 

 fKbQ   (2.30) 

 

Fig. 2.10 A typical lowpass prototype network compared to one with loss. 

 

A lossy lowpass prototype network is illustrated in Fig. 2.10 with comparison 

to the lossless one. Insertion loss due to dissipation can be evaluated at the 

centre of the pass band using (2.31) according to the method given in [45]. f0 
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is the center frequency, Δf is the bandwidth and gi is the element values of 

the lowpass prototype.  

 



N

r
r

u

g
fQ

f
L

1

0343.4
 (2.31) 

 

Fig. 2.11 Insertion loss of a typical filter with Qu of infinity, 5000, 2000, 1000 
and 500 for a center frequency of 2 GHz and bandwidth of 0.12 GHz. 

 

Typical filter responses with various loss levels are depicted in Fig. 2.11. The 

example uses 4
th
 order Chebyshev response with 3 transmission zeros at -

1.7j, -2.2j and -3.6j in the lowpass domain. For a center frequency of 2 GHz 

and bandwidth of 0.12 GHz, The Qs used are infinity, 5000, 2000, 1000 and 

500. The dissipation loss is nearly proportional to the group delay in the 

passband [46][1]. The decrease of selectivity is much greater in the lower 

bandedge due to the steep transition in this side caused by the transmission 

zeros. General effect of loss to the nature frequencies and eigenmodes can 

be found in [47]. 

 

2.3.2 The method of predistortion 

The basic idea of predistortion [48] is to modify the filter network so that the 

effect of losses can be compensated. The first order perturbation of filter 

characteristics due to uniform losses can be derived. And the predistorted 

network can be found from the characteristics containing a reverse 

perturbation.  
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The method given in [49] enforces the poles and zeros of the transmittance 

of the lossy network to be the same as the lossless one. The method in [50] 

uses transfer immittances. In [51], insertion loss ratio was used for which the 

ideal response was given in (2.32a) and the predistorted one was given in 

(2.32b) by a first order approximation. The relationship between circuit 

elements and coefficients of insertion loss ratio can be found by Taylor 

series expansion [52]. The change of the natural frequencies which refers to 

the roots of the E polynomial due to dissipation can also be found by a 

sensitivity analysis [53].  
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The method of predistortion was applied to CM for uniform dissipations in 

[54][3].Since the effect of losses is to add a real part to the frequency 

variable of the transfer function and thus to move the poles and zeros to the 

left in the complex plane, this effect can be compensated by moving the 

poles and zeros to the right in the design of the transfer function. Then the 

high Q performance can be recovered using relatively low Q resonators. 

 

The denominator of S21 can be expressed by its roots as in (2.33a), where Erk 

is the kth root of the polynomial E(s). In predistortion, the roots of the 

denominator are moved to the right by a factor δ which is related to the value 

of Q that need to be compensated. The new E’(s) is now given in (2.33b). 
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Since the circuit to be synthesized is lossless, the polynomial F(s) can be 

found according to (2.34). Then a lossless CM can be synthesized using 

F(s), P(s) and E(s). 

      *2*2*

1111 )(')(')(')(')(')(' sEsEsPsPsFsF R    (2.34) 
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An example of 4
th
 order Chebyshev filter with two transmission zeros at ±1.6j 

is given in the following. The centre frequency is 0.956 MHz, and the 

bandwidth is 60 MHz. A Q of 250 is assumed. The synthesized CM is shown 

in Table 2.1.  

 

Table 2.1 CM of the predistorted circuit 

 -0.1020 0.1020 -0.3942 0.3942  

-0.1020 -1.3715    0.6159 

0.1020  1.3715   0.6159 

-0.3942   0.8658  0.6708 

0.3942    -0.8658 0.6708 

 0.6159 0.6159 0.6708 0.6708  

 

Fig. 2.12 shows the S21 of four different circuits. The green one is the 

response of original lossless circuit. When loss in included in each 

resonator, the response is the red one with round-ups at band edges. To 

compensate the roundings, the response of the predistorted circuit shows 

two peaks at band edges. Then when loss is added, the response at band 

edges will be flattened as the blue curve. Fig. 2.13 shows the original 

lossless response and the lossy response using the predistorted circuit. As 

shown in the figure, the effect of predistorted circuit is to flatten the S21 at 

band edge, but also results in a high return loss. 

 

Fig. 2.12 S parameters of original and predistorted circuit. 
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Fig. 2.13 S parameters of original and predistorted circuits. 

 

2.3.3 The method based on even/odd mode analysis 

Using predistortion, the synthesized circuit has equal losses on resonators 

and the return loss is usually not good. To improve the return loss and to 

distribute losses into resonators, the method of lossy circuit synthesis with 

non-uniform dissipation is introduced in [55].  

This method is based on even and odd mode analysis of two port network 

and can give even and odd mode circuit of any given lossy transfer 

functions. In [56], the method is extended to a more general case where a 

complimentary all pass function is added to the original transfer function and 

thus providing a network of higher degrees. The S parameters of a two ports 

network can be expressed by its even and odd mode of admittance 

parameters as in (2.35). As a result, we have the even and odd mode of S 

parameters as in (2.36) 
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The roots of E(s) can be divided into two groups. Re represents the roots of 

(1+Ye) and Ro represents the roots of (1+Yo). According to (2.36), we have 

the equations in (2.37). 

 

0/)('/)('11   sPsF R  at oR  

0/)('/)('11   sPsF R  at eR  

(2.37) 

In the following, we denote Ne as the order of even mode and No as the order 

of odd mode. The problem of determining the even mode roots to choose Ne 

elements from a set of N elements. This can be solved in Matlab using the 

function combnts. Only one combination of Re will result in an F11(s) that 

leads to a passive S11. Assuming the highest coefficient of F11(s) is unit. The 

other coefficients of F11(s) can be found by solving the linear equations 

above. Then we can derive the expressions for Se and So as in (2.38).The 

admittance of even and odd mode can be found as in (2.39). 
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Using the partial expansion of the admittance parameters the even and odd 

mode circuit can be found. They can be connected in parallel to form the 

transversal array of the complete circuit. However, when transformed to 

ladder networks, the circuit contains lossy elements only in the first and last 

resonators. This condition is equivalent to add attenuators at the input and 

output resonators.  

In order to distribute dissipations within the network, two methods are given 

in the literature. The first one is to include an all pass term to the transfer 

function [56]. An example of such a transfer function is given in (2.40).We 

can derive ))(()('  pskPsP  and ))(()('  pskPsE . Then )('11 sF  can be 

derived and the corresponding network can be found. The second method is 

to apply the hyperbolic transformations [57] until proper loss distribution is 

achieved.  
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The following is an example of 4
th
 order Chebyshev filter with k=0.5 and δ=9. 

The response of the original lossless circuit is compared with the lossy 

response in Fig. 2.14. The synthesized circuit is shown in Fig. 2.15 and the 

elements values are given in the following. 

 

Fig. 2.14 S parameters of the original Chebyshev circuit and the synthesized 
lossy circuit. 

 

Fig. 2.15 Circuit synthesized according to the lossy response. 
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jMM Ls 019501923.011  , jMM Ls 0063.03596.022  , jMM Ls 0188.07147.033   ,

jMM Ls 0098.03609.044   , jMM Ls 0256.07136.055   ,

254321  CCCCC  , jB 1617.00012.181   , jB 4138.21731.02  , 

jB 3028.16168.03  , jB 4163.21729.04   , jB 2927.16168.05   

Filter can be designed to contain separated high Qu and low Qu paths [58]. 

While the higher Qu path corresponds to response near the bandedge, the 

low Qu path corresponds to the response in the centre of passband. The 

method is extended in Chapter 4 for the design of lossy parallel connected 

networks. 

With the lossy even and odd mode responses, the network of predistortion 

can be applied for the sub-networks so that non-uniform dissipation can be 

obtained [59]. A similar method is given in [60] and [61] for non-symmetric 

responses in which the derivation of lossy networks is based on (2.34). It is 

stated in [60] that even/odd mode analysis of filter network can be applied to 

asymmetrical response as long as F11=F22. However the method requires the 

use of hybrid in the implementation to combine the subnetworks.  

 

2.3.4 Lossy synthesis based on CM 

A method of synthesizing lossy CMs is provided in [62] and [63]. The method 

is based on specifically assigned lossy response that is derived by shifting 

the lossless response with a given amount. When the synthesized network is 

transformed into a folded array, only the first and last resonators are lossy. 

Hyperbolic rotations can then be applied to distribute losses among the 

resonators and couplings. As a result, the final circuit contains both lossy 

inverters and resonators. 

The synthesis starts with the lossy response in (2.41) where k and α are 

constants. The admittance parameters can be derived as in (2.42). 
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The key point is that by using the lossy responses of (2.41), the numerator 

and denominator the admittance parameters in (2.42) are of the same 
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degrees as in the lossless case, so that the CM of the same order can be 

derived using the same procedures as in lossless. The partial expansions of 

the admittance parameters will result complex λk and residues. As a result, in 

the synthesized circuit, the inverters and the resonators are both lossy in the 

transversal array. 

The same 4
th
 order example is given here with k=0.5 and α=1.3. The 

responses of the original lossless circuit and the synthesized lossy circuit are 

shown in Fig. 2.16. The CM of the transversal array is shown in Table 2.2. 

The couplings are complex. After rotations, only the first and last resonators 

are lossy. The CM is shown in Table 2.3. 

 

Fig. 2.16 S parameters of the original Chebyshev circuit and the synthesized 
lossy circuit. 

 

Table 2.2 CM of the synthesized transversal array. 
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Table 2.3 CM of the synthesized lossy circuit. 

 1.0364     

1.0364 - 0.2386i -0.8620  0.3437  

 -0.8620  -0.8499   

  -0.8499  -0.8620  

 0.3437  -0.8620 - 0.4999i 0.9500 

    0.9500  

 

2.3.5 Methods of optimizations 

While analytic methods of deriving lossy filter networks have certain 

limitations as discussed earlier, methods of optimizations were introduced in 

[64] in which the element values of ladder networks were modified so that 

the magnitude of the transfer function of the lossy network is proportional to 

that of the lossless one.  

The basic design equation is given in (2.43) in which T1 is the transfer 

function of a lossless network and T2 is the transfer function of a lossy 

network with its magnitude proportional to that of the ideal one. The changes 

of element values are given by εp. The magnitude of the transfer function is a 

linear combination of εp described by γp which can then be found by 

comparing the response with and without εp. A least square or gradient 

based minimization can be used to derive the values of εp. 

        kip

n

p
pjTjT  0

12

1
12  





 (2.43) 

A method of optimization was formulated in [65] using various minimization 

techniques with constraints of inequalities. The method was applied to 

ladder networks whose characteristics are expressed by the cascading of 

transfer matrices. Different cost functions are given in [66][67].  

For the design of waveguide filter introduced in [68], the dissipations due to 

various physical structures such as the cavities and coupling screws are 

modelled separately. Then a filter was designed using the CM which gives 

the optimum insertion loss. This method utilized the fact that for a give 

configuration and transfer function, there are numbers of CMs with changed 

element values.  
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2.4 Filter design based on CM 

When the required specifications are met by a synthesized lowpass 

prototype network, the next step is to design the filter’s physical structure. 

There are various technologies available [69] and the choice is made based 

on the operating band. When there are multiple technologies available, the 

choice can be made through a trade-off between the performance and the 

cost. 

The first step in filter design based on CM is the demoralization of lowpass 

prototype to the required frequency band. For a bandpass filter, this can be 

achieved by a standard lowpass to bandpass transformation of lumped 

elements. Then, various technologies may be applied for the realization of 

bandpass resonators which are coupled correspondingly for the realization 

of couplings. For transmission line type of networks, the lowpass prototype 

may also be transformed into a distributed network. The design of 

waveguide filter is a typical example.  

Finally, with the coarse model based on direct transformation, various tuning 

methods can be applied. Most tuning methods are based on an extraction of 

equivalent circuit from the responses. By comparing the extracted circuit to 

the designed one, corresponding elements can be tuned accordingly. After 

the manufacture of physical filters, tuning can also be applied to compensate 

manufacture tolerance.  

 

2.4.1 Design of coarse models 

With the standard lowpass to bandpass transformations in (2.44) [1], a 

lowpass resonator denoted by a capacitor in Fig. 2.17 (a) is transformed to a 

bandpass resonator consisting of a parallel connected capacitor and 

inductor as in Fig. 2.17 (b) which is a typical example of a coupled resonator 

bandpass filter. 

 
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f 0
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(a) 



- 39 - 

 

(b) 

Fig. 2.17 Illustration of the lowpass-bandpass transformation of coupled 
resonator network. 

 

Bandpass resonators can then be realized by various technologies. A 

microstrip resonator discussed in [1] is shown in Fig. 2.18 consisting of 

cascaded half-wave length transmission line. The resonant frequency is 

determined by the length and the couplings are realized by gaps between 

the microstrip lines. Filters based on microstrip lines have smaller size but 

are usually of higher loss.  

The EM model for a coaxial resonator is shown in Fig. 2.19. Its resonant 

frequency is mainly determined by the stub length and is affected by the 

cavity size and the tuning screw. When two of the resonators are cascaded, 

there are both electrical and magnetic couplings in between and different 

couplings may be realized by a window between the two cavities or an 

inserted stub. Coaxial resonators can be cascaded to form a combline filter 

[70] which is usually used in mobile communication systems for its ability to 

realize various coupling configurations.  

The EM model of a TE01 dielectric resonator is shown in Fig. 2.20. The 

resonant frequency is determined by the size of the dielectric bulk structure 

and various couplings can be realized by windows or probes between the 

cavities[71]. Dielectric filters have the best performance regarding loss and 

is typically used in satellite communication systems. 

A method is given by Cohn [13] for the design of narrow band waveguide 

filters. The bandpass resonators can be replaced by the equivalent half-

wavelength transmission lines. And the ideal inverters can be replaced by 

their equivalence of reactances as in Fig. 2.3. The negative lines of inverters 

can be emerged with adjacent length of transmissions. The result is a 

cascading of shunt reactances with lengths of transmission lines. The shunt 

reactances can then be realized by various discontinuities in the waveguide. 

A cascading of waveguide cavities and is only capable of realising the 

mainline couplings. As a result, the filter is synchronously tuned with no 

transmission zeros. A dual mode waveguide introduced in [72] can be used 
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for realizing more complex filter configurations. A typical diagram for an 8
th
 

order dual-mode waveguide filter is shown in Fig. 2.21. 

 

 

Fig. 2.18 A typical microstrip filter of cascaded half-wavelength lines [1]. 

 

Fig. 2.19 EM model of a coaxial resonator with air cavity and tuning screw. 

 

 

Fig. 2.20 The EM model of a dielectric resonator. 

 

 

Fig. 2.21 A dual-mode waveguide filter [72]. 
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2.4.2 Filter tuning based on CM extractions 

Based on the coarse model, various computer aided tuning techniques can 

be applied. An example utilizing parameter extraction is shown in Fig. 2.22 

[11][73]. First, S parameters are obtained from EM simulations or real time 

measurements. Data gathered should be rationalized by removing the 

effects induced by the input and output connections. 

CMs or other circuit models can then be extracted from the responses using 

an appropriate method. Various analytical or optimization methods can be 

used for this purpose. The differences between the extracted circuits and the 

designed ones can indicate which structures should be adjusted. 

 

Fig. 2.22 Flow chart of filter tuning process using CM extractions. 
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Chapter 3  

Generalized Coupling Matrix Synthesis for Lossy Microwave 

Filters 

Generally speaking, there are two problems in the synthesis of lossy CMs: 

the determination of lossy transfer functions that can be realized by lossy 

networks and the derivation of lossy circuits based on the given responses. 

The lossy synthesis methods reviewed earlier solve these problems partially 

and are only applicable within certain constants. The method of predistortion 

[54] in 2.4.2 provides the denominator polynomial of lossy transfer functions 

with uniform resonator losses. The method given in 2.4.3 determines lossy 

circuits based on even and odd modes analysis [55]. The filter networks 

realized either have dissipations only at the input and output resonators or 

have complex cross couplings which are difficult to implement. In [60][61], 

the even and odd mode analysis which is originally only valid for symmetrical 

responses is extended to the case when S11=S22. However, the lossy network 

synthesized requires the use of hybrids to combine sub-networks. The 

method in 2.4.4 is based on a very specific type of lossy responses for which 

the characteristic polynomials are multiplied by certain constants so that the 

lossless synthesis method is still valid.  

 

A generalized lossy synthesis technique is presented in this chapter. The 

method can (1) find the reflection function from the transfer function when 

unitary condition is not satisfied; (2) derive the expressions for the complex 

Y parameters and (3) synthesize the lossy CM with prescribed loss 

distribution. The method is based on a condition set for the polynomials of S 

parameters which replaces the use of power conservation in the lossless 

case and it is guaranteed that the admittance parameters and corresponding 

CMs can be derived.  

 

Two special cases are given for solving the refection function with a 

prescribed transfer function. In the first case, F11 the numerator of S11 equals 

to F22 the numerator of S22. The method is equivalent to the even and odd 

mode analysis given in [55] and [60] for asymmetric filter responses. Since 

the networks are transversal arrays which have a parallel connection of the 

even and odd mode sub-networks, they can be transformed to any realizable 
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configurations. In the second case, loss distributions are given. An method 

of iteration is applied so that the synthesized CM has the prescribed loss 

distribution. The method is equivalent to an extension of conventional 

method of predistortion with non-uniform resonator Qs and lossy invertors.  

 

The lossy synthesis method provided is capable of synthesizing lossy 

networks with prescribed non-uniform Qs. The application of this method is 

found in the implementation of filter networks consisting of two different 

kinds of resonators. Filters with both dielectric and coaxial resonators is 

used in to provide improved spurious [74][75]. Various examples of 

synthesizing CMs are given in this section to illustrate the design processes. 

A 6
th
 degree filter with TM dielectric and coaxial resonators is modeled in 

HFSS [76] and simulated. A 4
th
 degree filter with dual-mode dielectric 

resonator and coaxial resonator is also given.  

 

3.1 Lossy transfer functions 

The method of lossy synthesis starts with a given transfer function. As 

dissipations included in filter networks introduce rounding at bandedge and 

thus deteriorate the filter’s performance, an insertion loss which is 

proportional to the lossless one as shown in Fig. 3.1 is chosen to maintain 

the selectivity. This kind of transfer function is used in the receiver pass as 

the degraded insertion loss can be easily compensated by an additional LNA 

[42] as illustrated in Fig. 3.2.  

 

Fig. 3.1 A typical lossy insertion loss compared to the lossless one. 
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Fig. 3.2 Loss compensation by LNA [42]. 

 

S parameters in (2.1) are used in which S21 is the general Chebyshev 

response or other desired filter characteristics, S21’ in (3.1) represents the 

lossy response and k21 is a constant smaller than one that determines the 

insertion loss level. Using the polynomials in (2.1), the transfer function can 

be expressed by polynomials in (3.2) in which the denominator polynomial E 

is the same as the lossless one and the numerator polynomial P is the 

lossless one multiplied by k21. 

 212121 ' SkS   (3.1) 
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A new lossless characteristic can also be used which has a similar insertion 

loss as the general Chebyshev response but a different return loss. It is 

derived by shifting the poles of the original Chebyshev response non-

uniformly as in (3.3) until the flatness of passband insertion loss is achieved. 

The insertion loss shown in (3.3) has the same numerator as the standard 

response. rei is the pole and δi is the corresponding modification. k21 is a 

constant used to renormalize the insertion loss level. For lossy responses, 

k21 equals to one and the insertion loss level is determined by the value of δi. 
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(3.3) 

A similar response is discussed in [77] where a lossy filter is realized by 

including non-uniform losses to lossless parallel connected networks. 

Because the sensitivity of insertion loss is different regarding resonator 

dissipations and is a parameter of resonator bandwidth, a parallel connected 

network with non-uniform Q and selective insertion loss can be derived. The 

detail of the design method will be given in Chapter 4.  



- 45 - 

The following is an example of the new characteristic which is originally a 4
th
 

order general Chebyshev response with three transmission zeros at -1.7j, -

2.2j and -3.6j. The poles of the insertion loss are shifted to the left by 0.0709; 

0.0730; 0.0024; 0.0135 in the complex plane while the zeros are kept at the 

original positions. According to power conservation in (3.4), the polynomial 

F11 can be derived. The poles and zeros of these characteristics are 

compared with the original ones in Table 3.1 and Table 3.2. The roots of F11 

are complex and form complex conjugate pairs with the roots of F22. 

            ***

1111 sEsEsPsPsFsF   (3.4) 

Table 3.1 Roots of the polynomials of the original characteristics. 

E P F11 F22 

-0.7034+1.3183j -3.6000j +0.8569j +0.8569j 

-0.9291-0.0812j -2.2000j -0.9644j -0.9644j 

-0.1248-1.0961j -1.7000j -0.6517j -0.6517j 

-0.4608-0.8483j  + 0.0519j +0.0519j 

 

Table 3.2 Roots of the polynomials of the new characteristics. 

En Pn F11n F22n 

-0.7743+1.3183j -3.6000j -0.3474+0.8890j 0.3474+0.8890j 

-1.0021-0.0812j -2.2000j -0.9639j -0.9667j 

-0.1272-1.0961j -1.7000j -0.1580-0.6940j 0.1580-0.6940j 

-0.4743-0.8483j  -0.4766+0.0630j 0.4766+0.0630j 

 

(a)                                                         (b) 

Fig. 3.3 Roots distribution (a) and response (b) of the new characteristic. 
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Fig. 3.3(a) shows the root distributions compared to the original ones in the 

complex plane. The insertion loss of this new characteristic in Fig. 3.3(b) is 

the same as the general Chebyshev response while the return loss is no 

longer equal-ripple.  

 

It is noted that the new characteristics can be derived by shifting the poles 

with amounts proportional to the ones given earlier. Poles can even be 

shifted to the right as shown in Fig. 3.4(a). The response is shown in Fig. 

3.4(b). Though these new responses have higher return loss levels, they can 

be used in the synthesis of lossy filters and some new properties can be 

found that will be discussed later.  

 

(a)                                                             (b) 

Fig. 3.4 Roots distribution (a) and response (b) of the new characteristic 
when the roots are shifted to the left in the complex plane. 

 

3.2 Synthesis of lossy CMs 

The problem of CM synthesis with given transfer functions involve three 

steps. The first one is to derive the corresponding reflection function. For 

lossless cases, this can be easily solved using the condition of power 

conservation. The second one is to derive the rational polynomial 

expressions of the admittance parameters from S parameters. And the third 

one is to build up the transversal array using the residues and poles of the 

admittance parameters. A general procedure for CM synthesis is given in 

this section. It is based on an S to Y transformation and a modified condition 

for the polynomials of S parameters can be found for which the power 

conservation in (3.4) is only a special case.  
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3.2.1 Generalized S to Y transformation 

The transformation between scattering and impedance matrices for multi-

port networks is given in (3.5) [78] where �� is the reference impedance. F 

and G are diagonal matrices with diagonal elements 1 2�|��(��)|⁄  and ��. 

For a two-port network with unitary reference impedance, the transformation 

between scattering and admittance matrices can be simplified to (3.6).  

    FGSGSIFZ *11 
  (3.5) 
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According to the polynomial expressions of S parameters in (2.1), for an N
th
 

degree network, the admittance parameters are rational polynomials whose 

denominators are of degree 2N as in (3.7). 
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(3.7) 
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For lossless responses, substituting the power conservation of (3.4) into 

(3.7), we have (3.8) in which the admittance parameters are rational 

polynomials of degree N. Then the CM synthesis in [9] can be applied which 

is based on the partial expansions of the admittance parameters.  
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Since the power conservation is no longer valid for lossy cases, a new 

condition for the polynomials of S parameters is given in (3.9). Ex is a newly 

defined polynomial of degree N and it can be found from the F, P and E 

polynomials according to (3.10). When this new condition in (3.9) is satisfied, 

N
th
 degree admittance parameters can always be found as in (3.11). 

            sEsEsPsPsFsF x 2211  (3.9) 
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3.2.2 Discussions on the polynomial Ex 

For N
th
 degree responses, (3.9) provides the condition with which N

th
 degree 

admittance parameters can be derived. It is general for both lossless and 

lossy cases. For a lossless response, due to the condition of power 

conservation, the roots of F11 and F22 are of conjugate pairs and thus the 

polynomial F22 is the complex conjugate of F11 as in (3.12) [8]. The 

polynomial P can be expressed by its roots rpi as in (3.13). If rpi are purely 

imaginary, the complex conjugate of P could be expressed as in (3.14) 

where nfz is the number of transmission zeros.  

      *1122 1 sFsF
N

  (3.12) 

    pirssP   (3.13) 

              sPrsrsrssP
nfz

pi

nfz

pipi 11**
  (3.14) 

Substituting the expressions of (3.12) and (3.14) into (3.4), we have (3.15) 

which is a modified version of power conservation. When (N-nfz) is odd, 

(3.16) can be easily derived. When (N-nfz) is even, the polynomial P is 

multiplied by j in the synthesis of filter characteristic polynomials [8] and 

(3.16) is still satisfied. Thus the expression in (3.15) is equivalent to (3.16) 
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for any N and nfz. Comparing (3.16) to the original power conservation in 

(3.4), we can easily see that for lossless cases, polynomial Ex is the complex 

conjugate of E as in (3.17). 

                *2211 11 sEsEsPsPsFsF
nfzN

  (3.15) 

              *2211 1 sEsEsPsPsFsF
N

  (3.16) 

    *1 sEE
N

x   (3.17) 

For lossy responses, the polynomial Ex is not the same as in the lossless 

case and its roots are shifted according to the dissipations. Substituting the 

insertion loss of (3.1) into (3.9), we have the condition in (3.18). 

            '''''' 2
212211 sEsEsPsPksFsF x  (3.18) 

For a synthesis problem, P’ and E’ are given while F11’, F22’ and Ex are 

unknown. The expression for F11’ and F22’ can be derived in two different 

cases given in the following sections. Then with the complete set of 

polynomials of S parameters, corresponding admittance parameters can be 

found from (3.10) and can be synthesized as an N
th
 degree parallel 

connected network according to [8]. It will also be shown that with the 

condition in (3.18), it is guaranteed that an N
th
 degree network can be 

synthesized. (3.18) is the basis for the synthesis of CMs for which the 

condition of power conservation is a special case. 

 

3.2.3 Realizable conditions for CMs 

For lossless networks, the derivation of the CMs in [7], [8] and [79] requires 

the poles and residues of the admittance parameters satisfying the 

conditions given in (3.19). For the lossy networks, since the poles and 

residues are complex, those conditions are violated. It will be proved in this 

section that the condition given in (3.18) is sufficient that the prescribed 

lossy characteristics can be realized by a lowpass prototype networks with 

distributed dissipations. 

 

r11, r12 and r22 are real 

0, 2211 rr  

02
122211  rrr  

(3.19) 
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 012r  

The synthesis method given in [8] is based on the equivalence of the 

admittance parameters derived from S parameters and from parallel 

connected networks. The rational polynomials of admittance parameters in 

(3.10) can be expressed by partial expansions as in (3.20) where k  is a 

pole. kr11 , kr21  and kr22 are corresponding residues of 11Y , 21Y  and 22Y . For 

transversal arrays, the admittance parameters consisting of N resonators are 

the summation of the admittance parameters of each resonator as in (3.21).  
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For admittance parameters to be realized by a parallel connected network, 

the two expression in (3.20) and (3.21) should be equivalent to each other. 

Thus it is required that the condition in (3.22) is satisfied. For lossy networks, 

the residues no longer need to be positive since the invertors can be lossy 

and complex. As a result, the realizable conditions in (3.19) are simplified to 

the one in (3.22) for more general cases.  
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122211 kkk rrr   (3.22) 

We will show next that with (3.9), the realizable condition in (3.22) is always 

satisfied. That is to say with (3.9), the responses can always be synthesized 

as a network of transversal array. The residues can be calculated according 

to (3.23) where nY11 , nY21  and nY22  are the numerators of admittance 

parameters and 'dY  is the first order derivative of the denominator [8]. Then 

the condition in (3.22) on the residues is equivalent to the one in (3.24) 

which relates the values of numerators at each pole. 
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 At 0dY , 
2

212211 nnn YYY   (3.24) 

According the polynomial expressions of the admittance parameters of 

(3.11) into (3.24), a pole is achieved at the frequency when (3.25) is 

satisfied. Then the polynomial Ex can be found as in (3.26). 
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         02211  sEsFsFsE x  (3.25) 

        sFsFsEsEx 2211   (3.26) 

Substituting (3.26) into the condition in (3.9), we have (3.27) which can be 

rearranged to give the polynomial P as in (3.28). Factorizing the right-hand 

side of (3.28), we have (3.29) which is equivalent to (3.24). As a result, we 

have proven that under (3.9), the realizable condition in (3.24) is always 

satisfied and the S parameters can be synthesized as a parallel connected 

network. 
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(3.29) 

 

3.3 Case I: F11=kF22 

With a given insertion loss as in section 3.1, the condition in (3.18) can be 

used to solve the reflection functions of F11 and F22. The first solution is 

found when F11=kF22. For lossless responses discussed in [13], roots of F11 

and F22 are the same and lie on the imaginary axis of the complex plane. 

Additional losses in the network make the roots of F11 and F22 be shifted 

away from the original positions and are complex in general. It will be shown 

in this section that when the roots of F11 lie in the same positions as those of 

F22, an even/odd mode analysis that is originally only applicable to 

symmetrical responses [55][80] can now be used for the synthesis of lossy 

networks. Also, there is no need for hybrids to combine the even/odd mode 

sub-networks as in [60]. 

 

3.3.1 Methods of synthesis 

When F22=F11, or more generally as in (3.30) where k11 is a constant, (3.31) 

can be derived from the left hand side of (3.18). The two factors in (3.31) 
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which are a combination of F11 and P consists polynomial E. As a result, at a 

root of E, either of the two factors should be zero as in (3.32) where rei 

represents part of the roots of E and rej represents the others. For an N
th
 

degree response, using the roots of E, the coefficients of F11 can be solved 

from the N linear equations without knowing the expression for Ex. 

    '' 111122 sFksF   (3.30) 
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The 4
th
 order example used in section 3.1 with the new characteristics is 

used as an example to illustrate the synthesis procedures. Given k21=0.8 and 

k11=0.7, the characteristic polynomials are listed in Table 3.3 and their roots 

are plotted in Fig. 3.5(a) in the complex plane compared to the standard 

general Chebyshev responses. The derived F11 and F22 have the same 

coefficients except for a constant k11. Ex can also be found from (3.26) which 

is no longer the complex conjugate of E due to the existence of losses as 

shown in Fig. 3.5b.  

The CM synthesized in given in Table 3.4. The response of the synthesized 

lossy network is given in Fig. 3.6. The insertion loss is the equivalent to the 

lossless one shifted by a constant k21. The S11 and S22 are no longer the 

same and are shifted by constant k11. In designing a lossy network, the value 

of k21 determines the insertion loss level and thus the amount of included 

dissipations. The values k11 determines the difference between S11 and S22 

and thus has effect on the loss distribution. 

 

Table 3.3 Polynomials for the 4
th
 order example 

E’ P’ F11’ F22’ Ex 

-0.7743 
+1.3183j 

-3.6000j 
-0.0339 
+1.0005j 

-0.0339 
+1.0005j 

0.5366 
+1.3945j 

-1.0021 
-0.0812j 

-2.2000j 
0.1005 
-1.0046j 

0.1005 
-1.0046j 

0.6800 
-0.0542j 

-0.1272 
-1.0961j 

-1.7000j 
-0.0920 
-0.8028j 

-0.0920 
-0.8028j 

0.1265 
-1.1424j 

-0.4743 
-0.8483j 

 
-0.3113 
+0.0804j 

-0.3113 
+0.0804j 

0.3616 
-0.9438j 
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Fig. 3.5 (a) Roots of the characteristic polynomials for the 4
th
 order network 

synthesized comparing to the lossless ones. (b) Roots of E and Ex. 

 

Table 3.4 CM synthesized for the 4
th
 order example. 
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Fig. 3.6 Response of the 4
th
 order network synthesized when F11=k11F22. 
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When the lossy transfer function is derived from the lossless one by 

S21’=k21S21, the synthesized CM either have dissipations concentrated at the 

input and output resonators or have complex cross couplings which are 

difficult to implement.  

 

3.3.2 Relations to even/odd mode analysis 

This method of deriving the reflection function is more general than the ones 

given in [55] and [60] that the filter response doesn’t need to be symmetric. 

Based on the synthesis procedure, the even and odd mode analysis which is 

originally used for symmetric networks could be applied to asymmetric 

networks when the response satisfies the conditions in (3.18) and (3.30).  

The even and odd mode of this asymmetric network is defined based on the 

equation in (3.33) which is derived from (3.31) by dividing E. The even and 

odd mode S parameters can then be defined as in (3.34) where Ex=ExeExo 

and Es=EseEso. 
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With the even and odd mode S parameters, the corresponding even and odd 

mode admittance parameters can be defined according to (3.35). For S 

parameters of this asymmetric network, the condition in (3.36) which is for 

the symmetrical response is still satisfied.  
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By substituting (3.36) into standard transformation from S parameters to 

admittance parameters, we have (3.37), which shows that the filter network 

is the parallel connection of the even and odd mode sub-networks as for 

symmetric networks. 
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(3.37) 

The lossy characteristic of (3.2) could be extended to the ones that are of 

higher degree than N. In this case, the polynomials of P and E are multiplied 

by additional terms of Xp and Xe as in (3.38). Those additional terms only 

change the phase of the insertion loss and thus are equivalent to an all pass 

network. The same procedure can be applied to synthesize lossy circuits. 

When the network synthesized by even and odd mode method has loss 

distributed only at the input and output resonators, this method can be used 

to distribute losses into the internal of the network. 
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3.4 Case II: given loss distribution 

Solution to (3.18) could also be found when the polynomial Ex is given. For 

lossless networks, it is shown that Ex is the complex conjugate of E. For 

lossy networks, this relation is not valid. We will show in this section that with 

the prescribed loss distribution and transfer function, a network can be 

synthesized with losses only at resonators. 

 

3.4.1 Generalized Y to S transformation 

Based on the transformation from S parameters to admittance parameters in 

(3.11), the polynomial expressions for the numerator and denominator of the 

admittance parameters can be found as in (3.39). 
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Then a similar condition as in (3.18) can be found for the admittance 

parameters as in (3.40) with Yx defined in (3.41). 
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      sFsFEsEY xx 2211   
(3.41) 

With Yx, the polynomial expressions for S parameters can be found directly 

from admittance parameters as in (3.42). The condition in (3.40) is 

equivalent to the one in (3.18) and this can be proved by polynomial 

substitutions. 
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For any CM regardless of the configuration, its eigenvalues and residues 

can be found by a Jacobi eigenvalue algorithm which is an iterate method to 

gradually reduce the values of the off-diagonal elements until they are small 

enough that the eigenvalues can be approximated by the diagonal ones. In 

each of the iteration, the largest off-diagonal element is set by zero by a 

similarity transformation with calculated pivots. As a result, any CM can be 

transformed back to the transversal array.  

Then with the transversal array network, the rational polynomial of the 

admittance parameters of the network can be found according to the 

definition of partial expansion. Then the response of the network can be 

found by the transformation of admittance parameters to S parameters as 

given in (3.42). That is to say, rational polynomial responses of CMs can be 

found without matrix inversions. 

 

3.4.2 Derivation of lossy polynomial Ex 

With uniform resonator dissipations, roots of the characteristic polynomials 

are shifted to the left uniformly as shown section 2.4. To maintain the 

selectivity of lossy networks, insertion loss is tuned to be proportional to that 

of the lossless one as discussed in section 3.1. As a result, the roots of 

polynomial E are kept at the original positions. Correspondingly, this requires 
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the roots of Ex polynomial to be shifted to the left by a given amount. While 

this procedure is straightforward for uniform losses, for non-uniform losses, 

the roots need to be shifted by complex numbers which are determined by 

polynomial comparison. In addition, a method of iteration can be applied to 

deal with non-uniform losses. 

 

3.4.2.1 Uniform losses 

When dissipations of resonators are included in the filter network as shown 

in Fig. 2.7, its admittance parameters in (2.26) are modified to the ones in 

(3.43) where δ represents the amount of dissipation and can derived from 

resonator Q by (3.44). We can see that the inclusion of uniform dissipation is 

equivalent to shifting the poles of the admittance parameters to the left by 

the constant δ and is also equivalent to change the variable s to s+δ when 

the capacitors are normalized as in the synthesis of CM. Then regarding the 

S parameters of filter networks, lossy responses can be derived from the 

lossless ones by a change of variable from s to s+δ. 
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 QBW

f


 0  (3.44) 

The lossy filter characteristics that maintain the lossless selectivity are given 

in (3.45). For this lossy response, the roots of polynomial P’ are shifted to 

the left from the original positions. As a result, the synthesized network will 

not give perfect transmission zeros. However, this will not have severe effect 

on the passband insertion loss. For this case, the polynomial Ex of the lossy 

response can be found directly by shifting the roots of the conjugate of the 

polynomial E to the left by 2δ as in (3.46). 
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Substituting the parameters defined in (3.45) into the general condition in 

(3.18), we have (3.47) with which polynomials F11 and F22 can be solved. 

Then CM can be synthesized from the admittance polynomials with the S to 

Y transformation given in (3.39) and the result has equal dissipations on 

resonators.  

              sPksPksEsEsFsF x
0

21
0

21
0

2211 ''  (3.47) 

(3.47) could be transformed back to a lossless case by shifting the roots of 

each polynomial to the right by δ as in (3.48). And it is equivalent to power 

conservation for lossless network due to the conditions in (3.49) for the 

complex conjugate pairs of characteristic polynomials.  

            sPksPksEsEsFsF x
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21
0
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The example for lossy synthesis given in section 3.3 is used here to illustrate 

the synthesis procedures. δ is set to be -0.015 which is equivalent to a Qu of 

1100 with a centre frequency of 2 GHz and bandwidth of 0.12 GHz. k21 is set 

to be 0.8.  

 

Table 3.5  Polynomial for the 4
th
 order example 

E’ P’ F11’ F22’ Ex 

-0.7034 + 
1.3183i 

-0.0150 -
0.600i 

-0.5186 + 
1.1560i 

0.4886 + 
1.1560i 

0.6734 + 
1.3183i 

-0.9291 - 
0.0812i 

-0.0150 -
0.200i 

-0.7303 - 
0.0313i 

0.7003 - 
0.0313i 

0.8991 - 
0.0812i 

-0.1248 - 
1.0961i 

-0.0150 -
0.700i 

-0.0884 - 
1.0470i 

0.0584 - 
1.0470i 

0.0948 - 
1.0961i 

-0.4608 - 
0.8483i 

 -0.3703 - 
0.7850i 

0.3403 - 
0.7850i 

0.4308 - 
0.8483i 
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First, polynomials E’, Ex and P’ derived using (3.45) and (3.46) are listed in 

Table 3.5. The multiplication of F11’ and F22’ could then be found using (3.48) 

and the roots on the left hand side of the complex plane are assigned to F11’. 

The roots distribution is shown in Fig. 3.7 compared to the ones of the 

original general Chebyshev function. We can see the roots of E are kept at 

the same position. The roots of P are shifted to the left uniformly by a 

constant δ and the roots of F11 are now complex. 

 

Fig. 3.7 Roots distribution of the 4
th
 lossy network with uniform loss 

compared to the lossless ones. 

 

Fig. 3.8 Roots distribution for polynomials E and Ex. 

 

The root distributions for E and Ex are compared in Fig. 3.8. For lossless 

cases, they form complex conjugate pair and are symmetrical regarding the 

imaginary axis. The uniform losses included in the networks shift the 

symmetrical axis to the left by a constant δ. CM synthesized using the 
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polynomials in Table 3.5 are shown in Table 3.6 and the response of the 

lossy CM is compared to the lossless ones in Fig. 3.9. This method gives a 

lossy filter network which is the same as one given by predistortion except 

that we give a lossy network with dissipation at each resonator directly. 

 

Table 3.6  Synthesized lossy CM. 

 -0.5053     

-0.5053 
-0.2562 
- 0.0150i 

-0.8464  -0.4143 0.0873 

 -0.8464 
0.0679 
- 0.0150i 

0.2310 -0.9313  

  0.2310 
0.9841 
- 0.0150i 

0.7653  

 -0.4143 -0.9313 0.7653 
-0.0886 
- 0.0150i 

1.3767 

 0.0873   1.3767  

 

Fig. 3.9 Response of the 4
th
 lossy network with uniform loss compared to the 

lossless ones. 

 

This method of analysis explains why that for filters with transmission zeros, 

only the poles of the transfer function can be predistorted as in [54]. For a 

retrospective network, the numerator of S21 must be the same as the 

numerator of S12. Assuming that we still have the perfect transmission zeros 

in the lossy network as in (3.50), when they are transformed to the lossless 

ones, we will have (3.51) which is contradicting to the power conservation 
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due to (3.52). As a result, the predistorted lossy network cannot have perfect 

transmission zeros. 

            sPksPksEsEsFsF x
000

2211   (3.50) 

              sPksPksEsEsFsF x
000

2211  (3.51) 

      sPsP 0*0
 (3.52) 

In [3], a method of adaptive predistortion is given which will result in a filter 

network with better return loss. The circuit is actually based on the new 

characteristic given in section 3.1 in which the roots of E polynomial are 

shifted to the right. When the new characteristics are used, its roots 

distribution is given in Fig. 3.10 and the response is shown in Fig. 3.11 

comparing to the results of the earlier case. 

 

Fig. 3.10 Roots distribution of the 4
th
 order lossy CM derived using the new 

characteristics comparing to the ones in Fig. 3.8. 

 

Fig. 3.11 Response of the 4
th
 order lossy CM derived using the new 

characteristics. 
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3.4.2.2 Non-uniform losses 

The method of lossy synthesis can also be applied for non-uniform Qs. In 

traditional method of predistortion, the loss factor δ which is used to modify 

the characteristic polynomials is also uniform and can be derived from 

resonator Q. When non-uniform Qs are applied, the effect of loss on filter 

characteristics is different. Loss factor δs are now non-uniform and have 

complex values. Comparing to (3.43), the inclusion of the non-uniform Q 

shifts the roots of admittance parameters as shown in (3.55), but the change 

of variable is no longer valid. As a result, two new parameters δei and δpi are 

introduced to derive the lossy responses from the lossless ones as shown in 

(3.54) where rei’ and rpi’ represent the roots of the lossless polynomials E 

and P.  
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These complex loss factors δei and δpi should be found first. In lossy 

synthesis, the lossy polynomial E‘ should be the same as the original 

lossless polynomial derived by Chebyshev characteristics as shown in (3.55) 

where rei and rpi are the poles and zeros of the original Chebyshev transfer 

function. When a lossy CM is given, its characteristic polynomials can be 

found by curve fittings. The values of δei and δpi can then be found by 

comparing the roots of the lossy and lossless characteristic polynomials. 
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With δei, the polynomial Ex for lossy case can be found according to(3.56). 

Then the synthesis process follows the same as in the case of uniform Q. 

Polynomials F11 and F22 can be solved according to (3.47) and then lossy 

CM can be derived using the admittance parameters from (3.39). 

          eieieix rssE  Im2Re2*  
(3.56) 

The 4
th
 order example given earlier is used here as an example. The original 

CM is given in Table 3.7. A Q distribution of 300, 1000, 1000 and 300 with 

centre frequency of 2 GHz and bandwidth of 0.12 GHz is assumed. And the 
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corresponding lossy CM is given in Table 3.8 by including imaginary parts 

from the Qs given.  

 

Table 3.7 the original CM of the 4
th
 order example. 

 -1.0531     

-1.0531 -0.1462 -0.9303  -0.3307 0.0523 

 -0.9303 0.1117 0.3232 -0.6566  

  0.3232 0.8550 0.6112  

 -0.3307 -0.6566 0.6112 -0.1133 1.0518 

 0.0523   1.0518  

Table 3.8 The lossy CM of the 4
th
 order example with non-uniform losses as 

imaginary parts of the diagonal elements. 

 -1.0531     

-1.0531 
-0.1462-
0.0556j 

-0.9303  -0.3307 0.0523 

 -0.9303 
0.1117-
0.0167j 

0.3232 -0.6566  

  0.3232 
0.8550-
0.0167j 

0.6112  

 -0.3307 -0.6566 0.6112 
-0.1133-
0.0556j 

1.0518 

 0.0523   1.0518  

 

The lossy characteristics are found by rational polynomial fitting of the 

response of CM. The values of δei and δpi could be found by comparing the 

roots of the fitted characteristic polynomials with the lossless ones and are 

given in Table 3.9.  

 

Table 3.9 Roots of E and P of the lossy characteristic. 

rei (roots of 
lossless E) 

-0.7034 + 
1.3183i 

-0.9291 - 
0.0812i 

-0.1248 - 
1.0961i 

-0.4608 - 
0.8483i 

rei’(roots of 
lossy E) 

-0.7448 + 
1.3082i 

-0.9843 - 
0.0863i 

-0.1418 - 
1.0910i 

-0.4916 - 
0.8383i 

rpi(roots of 
lossless P) 

- 3.6000i - 2.2000i - 1.7000i  

rpi’(roots of 
lossy P) 

-0.1531 - 
3.6107i 

0.1282 - 
2.1994i 

-0.0639 - 
1.6899i 

 

δei 
-0.0413-
0.0101i 

-0.0552-
0.0051i 

-0.0170 
+0.0051i 

-0.0309 
+0.0101i 

δpi 
-0.1531-
0.0107i 

0.1282+0.0
006i 

-0.0639 
+0.0101i 
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With the values of δei, polynomial Ex can be found according to (3.56). The 

roots of E and Ex are shown in Fig. 3.12 comparing to the lossless ones. 

Then lossy CM with non-uniform Q can be derived using those polynomials 

and is given in Table 3.10. The loss distribution of the synthesized CM is not 

the same as the prescribed one because the CM used to calculate the 

values of δei and δpi are the original lossless one. A method of iteration can 

be applied in which the newly calculated CM is used to find the values of δei 

and δpi.  

 

Fig. 3.12 Roots of polynomials E and Ex comparing to the lossless ones. 

 

Table 3.10 Roots of E and P of the lossy characteristic. 

 
0.7631 - 
0.0384i 

    

0.7631 - 
0.0384i 

-0.1212 - 
0.1392i 

-0.8629 + 
0.0333i 

 
-0.3548 - 
0.0065i 

0.0648 + 
0.0033i 

 -0.8629 + 
0.0333i 

0.0607 - 
0.0206i 

0.2845 - 
0.0261i 

-0.7764 - 
0.0404i 

 

  
0.2845 - 
0.0261i 

0.8963 + 
0.0363i 

0.6934 + 
0.0049i 

 

 
-0.3548 - 
0.0065i 

-0.7764 - 
0.0404i 

0.6934 + 
0.0049i 

-0.1284 - 
0.0210i 

1.2203 + 
0.0239i 

 
0.0648 + 
0.0033i 

  
1.2203 + 
0.0239i 

 

 

The lossy response after 10
th
 iteration is compared to the lossless one in 

Fig. 3.13(a) and in Fig. 3.13(b), the lossy response is compared to the one 

when Q is directly applied to the original matrix.  
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                                               (a) 

  

                                                (b) 

Fig. 3.13 Response of the 4
th
 order example with non-uniform loss 

distribution (a) comparing to the lossless ones and (b) comparing to the 
ones when loss is applied directly to the original CM. 

 

According to (3.55), the corresponding lossless polynomials E and P can be 

found as in (3.57) where rei and rpi are the poles and zeros of the original 

Chebyshev transfer function. For these lossless functions, the polynomials 

F11 and F22 can be found by power conservations using E and P and a 

predistorted lossless CM could be synthesized. 

The CM synthesis procedures can also be taken for a set of lossless 

polynomials. The roots of the predistorted lossless polynomial E are equal to 

(rei - δei). The predistorted lossless polynomial P must be the same as the 
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original one as discussed earlier. Then the polynomial F11 could be found by 

power conservation. The polynomials are listed in Table 3.11 with which the 

lossless synthesis can be applied.  
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Table 3.11 Predistorted lossless polynomials. 

si , i= 4 3 2 1 0 

Predistorted E 1 2.0737 + 
0.7073i 

3.0606 + 
1.7921i 

1.8696 + 
2.7298i 

0.0175 + 
1.3830i 

Predistorted Ex -1 2.0737 - 
0.7073i 

-3.0606 + 
1.7921i 

1.8696 - 
2.7298i 

-0.0175 + 
1.3830i 

Predistorted P 0 0.0940 0.7051i -1.6714 - 1.2657i 

Predistorted F11 1 -0.4456 + 
0.7127i 

1.0159 + 
0.3402i 

-1.2507 + 
0.3784i 

0.3427 - 
0.4436i 

 

The procedure for non-uniform lossy synthesis given earlier contains an 

approximation that the loss factors derived from the lossy characteristics 

based on the original CM is the same as loss factors derived from responses 

based on the predistorted CM. The result of this approximation is that the 

final lossy E’ is not exact the same as the Chebyshev polynomial. This 

problem will be discussed with more details and be solved in the next 

section. 

 

3.4.3 Iterations on polynomial Ex 

The problem is to synthesize a lossy CM with prescribed P’ and E’ for lossy 

responses. As discussed earlier, for uniform resonator Q, loss factor δ 

derived from Q is the same as the amount by which the variable s is shifted 

and is used directly to the modification of characteristic polynomials. With 

non-uniform Qs, δei and δpi  by which the roots of polynomials E and P are 

shifted need to be found first by curve fittings. For the synthesis method 

presented here, a procedure of iteration is employed, so that the polynomial 

P’ and Ex are updated according to the response of a lossy CM.  

The initial values of P’ and Ex are chosen to be the lossless ones. In each 

iteration, they denoted as Exi and Pi.  
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First, the polynomial for F11i and F22i are derived using Exi, Pi and E according 

to (3.18). The zeros of F11i and F22i no longer lie on the imaginary axis as in 

the lossless case. Then, a lossy CM Mt is found using the characteristic 

polynomials. 

Next, a new lossy CM Mi is defined by adding the prescribed loss distribution 

to the real part of Mt in which δ is an imaginary matrix with its diagonal 

elements representing the dissipation of each resonator and the off-diagonal 

ones representing the losses of invertors. Then, the new polynomials Exi+1  

and Pi+1 can be found by the method given in the section 3.4.1 from this 

lossy network Mi.  

Finally, this procedure is applied iteratively until the losses of the 

synthesized CM are the same as the prescribed ones under a degree of 

precision. The loss distribution will converge to the prescribed one after 

about 30 iterations. 

 

The procedure of iteration is given as follows: 

 1). The initial values for Exi and Pi are equivalent to the ones in the 

lossless case. 

 2). Derive F11i and F22i using Exi, Pi and E using (3.19) 

 3). Synthesize lossy CM Mt 

 4). Derive Exi+1  and Exi+1  from lossy Mi which is equivalent to 

Re(Mt)+δ. 

 5). go back to 3) if the imaginary part of Mt is not close enough to δ.  

 

The example here is the synthesis of CM of a 4
th
 order general Chebyshev 

filter with three transmission zeros at -1.7j, -2.2j and -3.6j in the lowpass 

domain. Giving the centre frequency and bandwidth of 2 GHz and 0.12 GHz, 

Qs of 500, 2000, 2000 and 500 of the ladder network is given which 

corresponds to loss factors of 0.0333, 0.0080, 0.0080 and 0.0333. 

 

The polynomials P, F and E of the lossless network are synthesized using 

the method given in [9]. For the lossy responses, Ex0 is the complex 

conjugate of E. P0 equals to P multiplied by a constant 0.91 and E’ equals to 

E. Then F11i and F22i are derived. These polynomials are listed in Table 3.16. 

With these polynomials, Mt can be synthesized and is shown in Table 3.13. 



- 68 - 

Table 3.12 Coefficients of polynomials used in the first iteration. 

 s0 s1 s2 s3 s4 

E’ 
0.0500 + 
1.4834i 

2.0477 + 
2.8717i 

3.2498 + 
1.8931i 

2.2182 + 
0.7073i 

1 

P0 - 1.3504i -1.7833 0.7522i 0.1003  

Ex0 
0.0500 - 
1.4834i 

-2.0477 + 
2.8717i 

3.2498 - 
1.8931i 

-2.2182 + 
0.7073i 

1 

F11_0 
0.0768 + 
0.6111i 

0.9751 + 
1.4311i 

1.8930 + 
1.1629i 

1.4821 + 
0.7073i 

1 

F22_0 
0.0768 - 
0.6111i 

-0.9751 + 
1.4311i 

1.8930 - 
1.1629i 

-0.9751 + 
1.4311i 

1 

Table 3.13 CM Mt synthesized in the first iteration. 

 -0.6067     

-0.6067 -0.2847 -0.8214  -0.3962 0.0827 

 -0.8214 0.0736 0.2300 -0.9138  

  0.2300 0.9882 0.7537  

 -0.3962 -0.9138 0.7537 -0.0697 1.3577 

 0.0827   1.3577  

 

Then as in the 4) step, the matrix Re(Mt)+δ is transformed to a transversal 

array using the Jacobi eigenvalue algorithm as discussed in section 3.4.1. 

The transversal array is shown in Table 3.14. Then the polynomials of the 

admittance parameters can be found by a reverse of partial expansion and 

the polynomial Yx can be derived according to (3.40). The polynomials of the 

admittance parameters are listed in Table 3.15. Then the polynomials Ex1 

and P1 updated using the Y to S transformation in (3.42) and a new round of 

iteration can be applied.  

 

Table 3.14 Transversal array derived in the first iteration. 

 
-0.4433 - 
0.0010i 

0.2651 - 
0.0033i 

0.0139 + 
0.0002i 

-0.3179 - 
0.0014i 

 

-0.4433 - 
0.0010i 

-0.0284 - 
0.0293i 

   
-0.6887 - 
0.0031i 

0.2651 - 
0.0033i 

 
0.9456 - 
0.0148i 

  
-0.3873 - 
0.0050i 

0.0139 + 
0.0002i 

  
1.4322 - 
0.0157i 

 
0.7360 - 
0.0084i 

-0.3179 - 
0.0014i 

   
-1.6421 - 
0.0235i 

0.8272 + 
0.0025i 

 
-0.6887 - 
0.0031i 

-0.3873 - 
0.0050i 

0.7360 - 
0.0084i 

0.8272 + 
0.0025i 
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Table 3.15 Coefficients of the admittance parameters. 

 s0 s1 s2 s3 s4 

Yd 
0.0641 + 
0.0644i 

0.1032 + 
2.1529i 

2.5737 + 
0.0619i 

0.0833 + 
0.7073i 

1 

Y11n 
0.0043 + 
0.4363i 

0.5365 + 
0.0159i 

0.0184 + 
0.3651i 

0.3680 0 

Y21n 
0.0075 + 
0.6752i 

0.8916 - 
0.0076i 

-0.0025 - 
0.3761i 

-0.0501 0 

Y22n 
0.0117 + 
1.0478i 

1.5126 + 
0.0746i 

0.0925 + 
1.5280i 

1.8501 0 

Yx 
-0.0134 + 
0.0060i 

0.0113 + 
0.7203i 

1.8930 - 
1.1629i 

0 0 

 

The result will converge after about 15 iterations. Expressions for Exi and Pi 

in last iteration are shown in Table 3.16. The lossy CM is shown in Table 

3.17. 

 

Table 3.16 Coefficients of polynomials used in the iterations. 

 s0 s1 s2 s3 s4 

Pn 
0.0148 + 
1.3497i 

1.7822 - 
0.0150i 

-0.0050 - 
0.7519i 

-0.1002  

Exn 
0.0165 - 
1.3549i 

-1.8319 + 
2.7055 

3.0363 - 
1.7732i 

-2.0515 + 
0.7073i 

1 

F11n 
0.0215 + 
0.4885i 

0.7029 + 
1.2333i 

1.5753 + 
1.0164i 

1.2227 + 
0.7073i 

1 

F22n 
0.0105 - 
0.3867i 

-0.5413 + 
1.1453i 

1.4614 - 
0.8965i 

-1.0560 + 
0.7073i 

1 

 

Table 3.17 CM Mt in the last Iteration 

 -0.7054     

-0.7054 
-0.1737 - 
0.0336i 

-0.8467  -0.3682 0.0710 

 -0.8467 
0.0685 - 
0.0083i 

0.2706 -0.8267  

  0.2706 
0.9161 - 
0.0082i 

0.7262  

 -0.3682 -0.8267 0.7262 
-0.1035 - 
0.0333i 

1.2776 

 0.0710   1.2776  

 

The root distributions for lossless and lossy P and F in the complex plane 

are shown in Fig. 3.14. The response of the synthesized lossy network is 

shown in Fig. 3.15 as the solid lines and is compared with the lossless ones 

as the dash lines.  
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Fig. 3.14 Roots distribution of the 4
th
 order example with non-uniform loss. 

 

 

Fig. 3.15 Response of the 4
th
 order example with non-uniform loss compared 

to the lossless ones. 

 

3.4.4 Relations to the method of predistortion 

In the method of predistortion, the effect of loss is compensated by 

designing a lossless network with the roots of its E polynomial shifted to the 

left in the complex plane by a constant. This network can also be solved by 

the lossy synthesis method given in this section. 

The roots of polynomial Ex are shifted to the left by 2δ as in (3.58). 

Polynomials F11 and F22 can be solved according to (3.59) in which a lossy 
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polynomial P is used with its roots shifted from the original positions. Then 

by shifting the roots of the polynomials in (3.59) to the right by δ, the 

equation can be transformed to a lossless one which is consistent with the 

power conservation. This also proves that for this kind of lossy network, 

perfect transmission zeros which are purely imaginary can be realized 

      
2

*
1


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For the resonators of non-uniform dissipation, the loss factor δ for each 

resonator is also non-uniform and may have complex values. However, the 

same procedures of designing lossy networks can be applied. The lossy 

polynomials given in (3.60) in which δei and δpi represent the modifications 

made to the roots of polynomial E and P respectively.  
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For the CM synthesized according to the above procedures, the dissipation 

distribution may not be the exactly same as the required ones. The reason is 

that the values of δex used don’t correspond to the synthesized lossy CM. 

This problem can be solved using the following iteration.  

 

The initial value is the lossless CM M0 derived by traditional synthesis 

method. 

 1). Find the values of δex by comparing the response of the lossless 

CM Mi and the one with prescribed loss.  

 2) Derive the polynomials F11’ and F22’ using (3.59). 

 3) Derive the complex predistorted CM Mi+1.  

 4) Go back to Step(1) using CM Mi+1  until the loss distribution in Mi+1 

is the same as prescribed ones with a required precision. 

 

3.4.5 Coupling matrix extraction from lossy response 

In order to extract a CM based on simulated or measured data, it is 

important to the data is rationalized. In practice, filters have input and output 
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connecting sections which will introduce a phase loading effect [81] [82] that 

is not included in circuit models. As a result, the phase loading at input and 

output port should be determined and removed from the measured data 

before the extraction. The method given in [81] [82] provide a simple 

procedure for removing the phase loading. The method is based on the 

symmetry of the phase of S parameters in the frequency band far away from 

the center frequency. However, to most practical cases, it is difficult to 

measure the exact phase in that band and the existence of higher order 

mode make it impossible to retain the symmetry of phase.  

 

A new method for removing the phase loading effect is given in this section. 

The method use data from the passband and is thus more reliable. For the 

filter response that can be modeled by a CM, its S parameters must satisfy 

the condition given in (3.8) and the admittance parameters must satisfy the 

condition given in (3.40). The first step is to remove φ21 so that (3.8) is 

maintained. The second step is to remove φ11 and φ22 so that the remaining 

term of partial expansion of Y can be zero.  

 

3.5 Filter implementations 

The method of lossy synthesis discussed in this chapter is capable for the 

synthesis of CM with any prescribed loss. Two examples of filter design are 

given in this section with the use of both coaxial and dielectric resonators 

and that requires the synthesis of CM with non-uniform Qu distributions.  

 

3.5.1 Coaxial and dielectric resonators 

Traditional design of coaxial resonator filter has the disadvantage of high 

loss. While the dielectric resonator has low loss, they are of poor spurious 

performance. The TM dielectric resonator discussed in [83] and [84] has 

higher Qu than coaxial resonators and when combined with coaxial 

resonators in the filter design, the spurious performance can also be 

improved [74]. 

The example is a 6
th
 degree filter with general Chebyshev response. The 

filter is symmetric with four transmission zeros at 1.6j, -1.6j, 2.4j and -2.4j in 

the lowpass domain. The centre frequency is 2 GHz and the bandwidth is 
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0.12 GHz. The filter is realized by two coaxial resonators at the input and 

output with Qu of 3200 and four TM01 dielectric resonators with Qu of 2500.  

Design Step 1 CM synthesis for the lowpass prototype. 

The original and designed CMs are compared in Table 3.18. 

Table 3.18 CM Mt in the First and Last Iterations 

MS1 0.9957 M56 0.8309 MS1 0.6608 M56 1.0458 

M12 0.8309 M6L 0.9957 M12 0.7055 M6L 1.2272 

M23 0.5823 M25 -0.1521 M23 0.5548 M25 -0.1595 

M34 0.6971 M16 0.0147 M34 0.7067 M16 0.0174 

M45 0.5823   M45 0.6353   

 

Design Step 2 Resonator design 

The TM dielectric resonator to be used in the design has a diameter of 7.7 

mm and height of 36.1 mm. The dielectric constant is 37. In the original 

design, this resonator is put into a relatively large cavity with a size of 

40mm*50mm*50mm and is of low loss. The eigenmode analysis in HFSS 

shows the first mode has a frequency of 2.158GHz and a Qu of 122457.  

In order to reduce the size of the designed filter, a smaller cavity with the 

dimension of 44mm*25mm*25mm is used. With the deduction in the cavity 

size, the resonant frequency is increased. To obtain a center frequency at 2 

GHz, a cap is included in the design as shown in Fig.3.16. This will also 

deduce the Qu of the resonator. The new eigenmode has a frequency of 

2.031GHz and a Qu of 2495. 

 

Fig. 3.16 EM model for the size reduction design. 
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The design of the coaxial resonator is relatively simple as shown in Fig.3.17. 

The first eigenmode has a resonant frequency of 2.019GHa and a Qu of 

3280. 

 

Fig. 3.17 Eigenmode (a) and EM design (b) of coaxial resonator. 

 

Design Step 3 Design of couplings 

In order to design the couplings, a 3
rd

 order example is built first. The 

input/output nodes are realized by coaxial resonators and the input/output 

couplings are realized by probe connecting at the coaxial resonators. 

Couplings between resonators are realized by windows. CM extraction is 

applied to the simulated response for the tuning. The EM model of the 3
rd

 

order example and its response is given in Fig. 3.18. Based on the tuning 

information, we could make a diagram on the coupling and dimensions. 

(a) 

(b) 

Fig. 3.18 3
rd

 order mix mode filter and its response. 
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Transmission zeros are introduced into the structure by cross coupling 

between the first and fourth dielectric resonators. This is realized by a probe 

coupling as shown in Fig. 3.19 with simulated response. 

 

Fig. 3.19 6
th
 order mix mode filter. 

 

Design Step 4 Lossy design 

Lossy is incorporated into the structure by modified boundary of finite 

conductance and replaced PEC with aluminium. Then tuning is applied by 

comparing the original CM and the lossy one. The response is given in Fig. 

3.20.  

(a) 

(b) 
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Fig. 3.20 Lossy 6
th
 order mix mode filter and its response. 

 

3.5.2 Coaxial and dual-mode dielectric resonators 

To further reduce the size of the filter, dual mode dielectric resonators 

discussed in [85] and [86] can be used. The eigenmode of the coaxial 

resonator is 0.950 GHz with a Qu of 2483. The dielectric resonators have 

degenerated mode of 0.905 and 0.907 GHz with Qu of 5534 and 5497 

respectively. The E and H field distribution for the two modes are given in 

Fig. 3.21 and Fig. 3.22.  

 

Fig. 3.21 E field distribution of the two degenerated modes. 

 

Fig. 3.22 H field distribution of the two degenerated modes. 

 

The filter designed is of 4
th
 order. The EM model is given in Fig. 3.23 and the 

response is given in Fig. 3.24. The transmission zeros are realized by 

spurious couplings between the two coaxial resonators.  
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Fig. 3.23 EM model for the 4
th
 order filter with dual mode dielectric resonator. 

 

Fig. 3.24 Simulated response for the 4
th
 order filter with dual mode dielectric 

resonator. 

 

Fig. 3.25 Spurious response for the 4
th
 order filter with dual mode dielectric 

resonator. 
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Chapter 4  

Dissipations in Parallel Connected Filter Networks 

The alternative approach studied in this paper is an extension on the method 

presented in [77][87] and it shows that it is possible to achieve a high Q 

performance using the correct non-uniform Q distribution. In a parallel 

connected network [8], each resonator represents a pole [87], as a result, 

each resonator Q has an independent effect on the filter response. It is 

shown that for resonators with smaller bandwidth and near bandedge 

resonant frequencies, the effect of loss is more severe than the others. As a 

result, these resonators are more critical in determining filter characteristics 

and have to be designed with high Q technologies, while the others can be 

designed with low Q resonators to reduce filter size and cost without 

deteriorating the performance.  

 

With the first order approximation on the effect of loss of each resonator, the 

variation of the magnitude of S21 due to loss is a linear combination of the 

dissipation of each resonator. The Q distribution that gives a flat passband 

insertion loss can be derived analytically by solving a set of linear equations 

that enforces the insertion loss to be proportional to the lossless one at 

several given points. This method is suitable for the parallel connected 

networks with small loss.  

 

For other cases, gradient based optimization introduced in [33] that is used 

for determining lossless CMs could be applied to find the Q distribution. The 

method presented in this paper utilizes a cost function that is defined not to 

get an ideal Chebyshev response but one with prescribed stopband rejection 

and passband insertion loss. A new lossy filter characteristic is given in this 

paper that is suitable to be realized by parallel connected networks with 

dissipations only at resonators. The variables used in the optimization are 

the components of a parallel connected network and the dissipation of each 

resonator.  

 

The method can also be applied to configurations other than transversal 

arrays. Using CM rotations, transversal arrays can be transformed into other 

parallel connected networks by grouping the residues and poles [8]. An 
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example is given for the design of a 4
th
 order filter which is then realized by a 

mixed coaxial and microstrip technology. 

 

As a conclusion, it is possible to design a parallel connected filter network 

with unequal dissipations and have a high Q performance. Resonators with a 

smaller bandwidth and near band edge resonant frequency should be 

designed with lower loss, while the other resonators can be designed with 

higher loss without significantly deteriorating the performance. 

 

4.1 The effect of loss in parallel connected networks 

The traditional synthesis methods for lossy filter start with a given transfer 

function which is usually an ideal Chebyshev response multiplied by a 

constant smaller than 1, then the problem is to find a circuit to realize the 

response. The new approach provided in this section is based on a given 

lossless circuit.  

 

Because in parallel connected networks, each resonator represents a global 

eigenmode, the effect of loss on each resonator is independent of each 

other. The effect of loss on a single resonator will be studied. Two issues 

arise in the design of filter with unequal Qs. First, while the existence of loss 

can cause the transmission to reduce, the amount of the reduction is related 

to the bandwidth of the resonator. A 2
nd

 order parallel connected network is 

given as an example. It is shown that dissipation included in the resonator 

with larger bandwidth will have smaller effect on the total transmission. 

Second, for a higher order filter the position of the resonator frequency is 

also important for the total response. The resonators with resonant 

frequency near the bandedge have a lager effects on the rounding of 

insertion loss. For a circuit with order higher than 4, there are two narrow-

band resonators controlling the shape of the transmission at band-edges. 

These two resonators have to be of high Q.  

 

4.1.1 Loss distributions 

The transversal array of a filter network is a direct representation for global 

eigenmode [88]. After rotations, these modes are mixed and combined. 

Unlike parallel connected networks, the resonators of other configurations 
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have indirect relations with the total characteristics. A simple 2
nd

 order 

example is given to show how the loss is distributed when the network is 

transformed between the parallel and cascading configurations. 

 

The CM of a 2
nd

 order cascaded network and the pivot applied are given in 

(4.1). After the rotation, the CM is transformed into a parallel connect one 

network as in (4.2). 
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(4.2) 

When 21   , a lossy path between the global eigenmodes is introduced as 

in (4.2). When 21   , the matrix is simplified to (4.3)and the Q of each 

resonator is not changed.  
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(4.3) 

Similarly, for a parallel connected network of (4.4), the CM after rotations is 

given in (4.5). When 21   , a lossy path between the two resonators is 

introduced. When 21   , the Q of each resonator is not changed.  
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In general, for a parallel connected network, if the Qs are uniform, the 

transformed network will have the same Q and response. And thus is 

meaningless to tune the Q of each resonator. On the other hand, if the Qs 

are non-uniform, the circuit is equivalent to a lossless network with lossy 

resonators and couplings. Then it is possible to achieve a better response by 

a proper designed Q distribution. 

 

4.1.2 The effect of loss on a single resonator 

The admittance parameters of a parallel connected network are shown in 

(3.20) where rk is a residue, λk is a pole and k21 is the value of the direct 

coupling between the input and output non-resonating nodes when the 

number of transmission zeros is the same as the filter order. Each term 

which provides a pole of the admittance parameters can be realized by a 

resonator and is a direct representation of one global eigenmode [88]. This 

is not the case for conventional cross-coupled ladder networks. 

 

Fig. 4.1 Circuit model of a single lossy resonator. 

 

As shown in [8], each term of the admittance parameters can be realized by 

a resonator. Fig. 4.1 shows the circuit model of a lossy resonator with one 

capacitor Ck, one frequency invariant reactance jBk, one resistance δk and 

two invertors Mk. δk represents the dissipation of this resonator. The filter 

synthesized is a parallel connection of N single resonators with uniform 

capacitors. 

The transmission parameter of the resonator in Fig. 4.1 is given in (4.6) with 

a unit capacitor and symmetric invertors. It is shown in (4.6) that the effect of 
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δk on the insertion loss is related to the magnitude of the corresponding 

residue, which is related to the bandwidth of the resonator. While the 

existence of loss can reduce the transmission, the amount of the reduction 

depends on the bandwidth of the resonator. As a result, dissipations 

included in the resonators with larger bandwidth will have smaller effects on 

the performance.  
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For a single resonator, the effect of loss on transmission is related to the 

bandwidth. As a result, the transmission of a transversal array must depend 

on the Qu distribution regarding the bandwidth of each branch.  

 

A new kind of Maximum Flat filter is given in the following as an example 

with synthesis procedures. Resonators of this filter have a large bandwidth 

variation. The transfer function shown in (4.7) is maximum flat at 1  and 

has N transmission zeros at 1 .  
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According to power conservation, we have the return loss in (4.8). 
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Polynomial expressions of the numerators of S parameters in (4.8) can then 

be derived as in (4.9). Using the condition of power conservation, the 

expression for the polynomial )(sE  can be derived by an alternative pole 

method given in [9]. 
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Synthesized circuit model for a 2
nd

 order example is shown in Fig. 4.2. This 

lossless circuit is the starting point for the design of lossy filter. The response 

the lossless 2
nd

 order example is shown in Fig. 4.3. 

 

Fig. 4.2 Circuit model synthesized for the 2nd order maximum flat filter. 

 

Fig. 4.3 Response of the circuit model synthesized using the above method. 

 

 

(a)                                                       (b) 

Fig. 4.4 Response of a single resonator. (a) loss is included in the first 
resonator and (b) loss is included in the second resonator. 
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It can be observed from the circuit model in Fig. 4.2 that the first resonator 

has a larger bandwidth than the second one. The effects of loss on these 

resonators are compared in Fig. 4.4 which shows the responses of a single 

resonator with and without loss.  

The responses of the total network with loss included in different resonators 

are compared in Fig. 4.5 with a centre frequency of 0.956 GHz and a 

bandwidth of 0.06 GHz. The band-edge rounding is less severe when the 

second resonator is of low Qu. It is verified that loss included in the 

resonator with larger bandwidth will have a smaller effect on the 

transmission. 

(a) 

(b) 

Fig. 4.5 (a) Response of the circuit model when loss is included in each 
resonator. (b) Zoom up of S21 at band edge. 
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4.1.3 The critical resonators 

The values of the resonant frequencies should also be considered in the 

design. For the admittance parameters shown in (3.20), each term 

approaches infinity when the frequency approaches the corresponding 

resonant frequency as in (4.10).  
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(4.10) 

This implies that the response at a resonant frequency is mainly determined 

by that specific resonator. As a result, dissipations of the resonators with 

resonant frequencies near the bandedge are the cause of insertion loss 

rounding and hence need to be reduced. This direct relation between a 

single resonator and the total performance does not exist for any other 

configuration. Generally speaking, one narrow-band and hence high Q 

resonator is required to control each sharp transition at the passband edges. 

A 3
rd

 order Chebyshev example with two transmission zeros at j5.1 is used 

to illustrate the effect of bandwidth variation. The synthesized circuit model is 

shown in Fig. 4.6. 

 

Fig. 4.6 (a) Transversal array of the 3
rd

 order Chebyshev filter with equal 
capacitance. 

 

The third resonator has a larger bandwidth. So a lower Q of 150 is assigned 

to the third resonator while the others have a larger Q of 2000. The designed 

centre frequency is 0.956 GHz and bandwidth is 0.06 GHz.  
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The response is compared with the one while all three resonators have 

equal Q of 2000 in Fig. 4.7(a). The insertion loss is proportional to the one of 

high Q without distortions at band edges. Fig. 4.7(b)shows the response 

when the resonator 1 is of lower Q. Comparing with Fig. 4.7(a)the rounding-

up at band edge due to loss is much more significant thus showing the effect 

of loss distribution on transmission. 

 

(a) 

 

(b) 

Fig. 4.7 Response of the circuit model with 3
rd

 resonator low Qs (a) and 1
st
 

resonator low Qs (b). 
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So far, a design approach is proposed in which the resonators with larger 

bandwidth are realized with low Q techniques and the ones with narrow 

bandwidth are realized with high Qs. 

Further analysis can be made to a 4
th
 order example. It’s a general 

Chebyshev filter with three transmission zeros of -1.7j, -2.2j and -3.6j in the 

normalized lowpass domain. The lowpass prototype network is shown in Fig. 

4.8. It is synthesized using the method given in [9]. 

 

Fig. 4.8 Circuit model of the 4
th
 order Chebyshev filter. 

 

Fig. 4.9 Transmission of each lossless resonator in Fig. 4.1 is compared to 
the one with Q of 150. Solid lines are for the lossless case. 

 

In Fig. 4.9 the lossless transmission of each resonator is compared to the 

one with Q of 150 when the center frequency and bandwidth are 2 GHz and 

0.12 GHz respectively. It is shown that for resonator 2 which has the 
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smallest bandwidth, the effect of dissipation is much more severe than those 

of the other resonators. Also, resonators 2 and 3 have resonant frequencies 

near the selective bandedge. In order to minimize the effect of dissipation, 

resonators 2 and 3 should be designed with higher Q than the others. 

 

The derivative of the absolute value of S21 regarding to the elements of the 

CM is derived in [30]. Using the complex CM shown in (4.11), we could find 

the derivative of |S21| regarding to the dissipation of each resonator which is 

plotted in Fig. 4.10 for this 4
th
 order example. For each resonator, the 

maximum deduction of the insertion loss occurs at the corresponding 

resonant frequency and the amount of deduction is determined by the 

resonator’s bandwidth. 
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Fig. 4.10 The derivatives of the absolute values of S21 regarding to the 
dissipation of each resonator. 

 

4.2 Synthesis of lossy parallel connected networks 

In [61], a method for synthesizing parallel connected network with non-

uniform Q is given. The lossy response realized is similar to the new 

characteristic discussed in Section 3.1.2.  
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According to (3.29), the roots of polynomial Es is the same as the roots of 

(1+Ye)(1+Yo) and the roots of polynomial Ps is the same as the roots of (Ye-

Yo). When non-uniform dissipation is included in each resonator, the change 

of the roots of E and P could be derived as in (4.12) and (4.13) using Taylor 

series expansion. 
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(4.13) 

In (4.12) and (4.13), the first terms in the expansion are the same as the 

ones in lossless case. The roots are modified by real second order terms 

and imaginary third order terms. As a result, the insertion loss of parallel 

connected network with loss included in each resonator is equivalent to the 

ones of which the poles and roots are shifted to the left in the complex plane 

by non-uniform complex amounts. The response achieved is a lossy version 

of new characteristics derived in Part II except the roots of P polynomial are 

complex. 

 

4.2.1 Approximated analytical solution of Q distribution 

An analytical solution for the Q distribution that gives a flat passband 

insertion loss could be derived with approximations on the effect of loss. For 

an N
th
 degree lossy filter network, its S parameters can be expressed by the 

even and odd mode parameters as in (3.29).Using the even and odd mode 

S and Y parameters given in (3.28), S21 could be derived as in (4.14). 

    oeoe

oe

YYYY

YY
S












1

1

1

1

11
21  (4.14) 



- 90 - 

 















o

e

N

k ok

ok
o

N

k ek

ek
e

js

r
Y

js

r
Y

1

1




 (4.15) 

Using the partial expansion of the even and odd mode admittance 

parameters given in (4.15), the variation of |S21| due to loss is a linear 

combination of the dissipation of each resonator as in (4.16). 
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As a result, we can enforce the values of insertion loss at several sampling 

points to be proportional to the lossless ones, so that a Q distribution could 

be found by solving the set of linear equations analytically. A constant m is 

defined to determine the lossy insertion loss level. For an N
th
 degree filter, 

sampling points chosen as the position of reflection zeros give acceptable 

results.  

 

Fig. 4.11 S parameters of the 4
th
 order filter compared to the ideal template. 

Markers are the sampling points. The solid line is the ideal template 
which is the lossless S21 being multiplied by a constant. 
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This example is the 4
th
 order Chebyshev filter given earlier with three 

transmission zeros normalized at -1.7j, -2.2j and -3.6j. In the analysis, m is 

set to 0.9. With a center frequency of 2 GHz and a bandwidth of 0.12 GHz, 

the Q calculated are 274, 5640, 1045 and 266. The response is shown in 

Fig. 4.11 comparing to the ideal template. This result would be very difficult 

to achieve using conventional cascaded filters unless very high Q resonators 

are used.  

Because the variation of insertion loss due to loss is a linear combination of 

dissipation as shown in (4.16), we could use different Q distributions that are 

proportional to each other to achieve different insertion loss level. With 

different values of m, Q distributions are calculated and listed in Table 4.1. 

With the decreased values of m, the Q also decreases. However, a flat 

passband insertion loss is still achieved as shown in Fig. 4.12 in which the 

passband insertion loss is compared with the ideal template for each case. 

 

Table 4.1 Q distributions for different insertion loss level 

m Qs 

0.95 549       11281         2090       532 
0.9 274       5640           1045       266 
0.8 137       2820           522         133 
0.7 91         1880           348         88 

 

Fig. 4.12 S21 of the 4
th
 order circuit with different Q distributions compared to 

the ideal template. Markers are the sampling points. The solid lines are 
the ideal template which is the lossless S21 being multiplied by a 
constant. 
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The S parameters with different Q distributions are shown in Fig. 4.13. For 

each case, the imperfect reflection and transmission zeros indicate that the 

characteristic realized is no longer the same as the general Chebyshev 

response. With the decreased Q, the return loss and rejection levels 

increase with respect to the lossless condition.  

 

Fig. 4.13 S parameters of the 4
th
 order circuit using different Q distributions. 

 

4.2.2 A new lossy filter characteristic 

Including loss in the filter network is equivalent to shifting the zeros and 

poles of the transfer function to the left in the complex plane. If the 

dissipation is uniform, the constant shifting of the poles and zeros will cause 

bandedge rounding of the insertion loss. As a result, in predistortion or the 

lossy circuit synthesis methods discussed earlier, the insertion loss of the 

lossy circuit is the same as the lossless one being multiplied by a constant, 

while the positions of the poles and zeros of the transfer function are the 

same as the lossless ones.  

 

The lossy response synthesized in this paper is different in that the poles 

and zeros of the transfer function are not the same as the ideal general 

Chebyshev characteristic. The lossy response is derived by shifting the 

poles of the transfer function to the left non-uniformly. With a proper amount 

of shifting, a flat passband insertion loss and a good return loss can be 

attained with imperfect transmission zeros.Fig. 4.14 shows the poles and 

zeros of the 4
th
 order example used earlier comparing to lossless ones in the 

complex plane.  
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Fig. 4.14 Zeros and poles of the transfer and reflection function plotted in the 
complex plane. 

 

As a conclusion, it is possible to design a parallel connected filter network 

with unequal dissipations and have a high Q performance. Resonators with a 

smaller bandwidth and near band edge resonant frequency should be 

designed with lower loss, while the other resonators can be designed with 

higher loss without significantly deteriorating the performance. 

 

4.2.3 The gradient based optimization 

For filters with configurations other than the transversal array, the optimum Q 

distribution can be determined by a gradient based optimization. In the 

optimization, the initial value of the CM is the lossless one derived by an 

analytical procedure [8] or by optimization [33]; then the whole or parts of the 

complex matrix including dissipations of resonators shown in (4.17) are used 

as variables. It is found that for most of the cases, acceptable results can be 

achieved by optimizing only the dissipation of each resonator without 

changing the real part of the CM. The constraints are 0k  to enforce 

passivity or min k when a minimum loss is given. 
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Generally, the optimization consists of two procedures. First, the dissipations 

of resonators are used as variables to achieve different goals. Then the real 

part of the CM is tuned to provide an improvement on the response which is 

usually minor. It is noticed that for parallel connected networks, the Q 

distribution plays a more important role in determining the characteristics 

than it is in series connected networks.  

 

There are two kinds of error functions defined later for different properties we 

want to achieve for the lossy filter. One focused on stopband will provide a 

good rejection by realizing perfect transmission zeros using Q distribution. 

The other can give a good insertion loss in the passband similar to the one 

designed by lossy circuit synthesis method. 

 

Matlab optimization fmincon is used for the minimization of error function. 

Gradient is calculated numerically at each step. The algorithm used is 

interior-point. 

 

4.2.3.1 For transmission and reflection zeros 

Using non-uniform Q distribution, a lossy filter could have perfect 

transmission zeros. This is achieved by optimizing both the Q of each 

resonator and the real part of CM with proper setting of weights in cost 

function. The error function of [10] is used and is defined as in (4.18). 
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 (4.18) 

Where irz  is the i
th
 reflection zero, jtz  is the j

th
 transmission zero. rzw , tzw , 

rlw  are the weights. The third term is the error of return loss at band edges (

j1 ), while   is related to the return loss level by   2/110/ 110


 RL .  
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Here is a 3
rd

 order example with two transmission zeros at j6.1  and 

j5.2 . The optimized Qu are 81, 470 and 229 with a centre frequency at 2 

GHz and a bandwidth of 0.12 GHz. In Fig. 4.15, the optimized response is 

compared to the one with uniform Qu of 470. It is shown that the zeroes of 

both transmission and reflection can be get using lossy resonators with 

decreased insertion loss.  

 

Fig. 4.15 S parameters of the optimized 3
rd

 order circuit (Qu equal to 81, 470 
and 229) compared with the ones of equal Qu of 470. 

 

For a 4
th
 order filter with three transmission zeros at j7.1 , j3.2 and j3.3

, it is difficult to achieve the goal in one optimization due to the increased 

complexity of the configuration. As a result, an iteration technique is used. 

Keeping the cost function the same, Q and CM are optimized in iterations. 

The values of Qs are 92, 278, 223 and 135. The resonator with the largest Q 

is the one with smallest bandwidth. The response is shown in Fig. 4.16. It is 

shown that when the largest Q is given for a design, it is possible to have 

only part of the resonators high Q while the others’ are lowered and still 

maintains the perfect transmission zeros with a decrease in insertion loss. 

 

The largest Q of each resonator in Fig. 4.15 and Fig. 4.16 are different 

because the upper bounds of the Q are set with different values in 

optimization. New sets of Q distribution could be found with different upper 

bounds. This indicates that the problem of Q distribution that provides 

perfect transmissions have multiple solutions. As a result, an alternative 

approach is used in which the largest Q is fixed in the optimization. It is 

found that for every fixed value, a new set of Q distribution that gives perfect 
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transmission zeros can be found. Furthermore, these Q distributions are 

tending to be proportional with each other.  

 

Fig. 4.16 S parameters of the optimized 4
th
 order circuit (Q equal to 92, 278, 

223 and 135) compared with the ones of equal Q of 278. 

 

4.3.2.2 For flat passband insertion loss 

For filters with configurations other than the transversal array, the optimum Q 

distribution can be determined by a gradient based optimization. In the 

optimization, the initial value of the CM is the lossless one derived by an 

analytical procedure [8] or by optimization [33]; then the whole or parts of the 

complex matrix including dissipations of resonators shown in (4) are used as 

variables. It is found that for most of the cases, acceptable results can be 

achieved by optimizing only the dissipation of each resonator without 

changing the real part of the CM. The constraints are 0k  to enforce 

passivity or min k when a minimum loss is required. 

 

The error function defined in (4.19) is modified from the one given in [33] in 

that a new term is included to enforce the passband insertion loss to be 

proportional to the ideal lossless template. rzi is the i
th
 reflection zero and tzj 

is the j
th
 transmission zero. wrz, wtz and wil are the weightings. m is a constant 

with its magnitude smaller than 1 and is used to define the loss level. S0
21 is 

the lossless template. sk is the kth sampling points. For a Chebyshev 

response, the sample points are the maximums and the minimums of 

insertion loss in the passband and two points at bandedge. 
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The same 3
rd

 order example is used here. In the optimization, m equals to 

0.8 and only ilw is set to a non-zero value to prove that the insertion loss 

level could be tuned by Q distribution. The Q optimized are 140, 2972 and 

328 with only one high Q resonator. The response is compared with the 

lossless ones in Fig. 4.17. It is shown that the fitting of the insertion loss is 

not perfect, but the rounding is avoided. 

 

Fig. 4.17 (a) S parameters of the 3
rd

 order filter with optimized Qu distribution 
compared with the loss less one. (b) Insertion loss in the passband is 
compared to the template which is an ideal response multiplied by 0.8. 

 

Fig. 4.18 (a) S parameters of the 3
rd

 order filter with optimized Q distribution 
compared with the loss less one. (b) Insertion loss in the passband is 
compared to the template which is an ideal response multiplied by 0.8. 
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The same 4
th
 order example is also used. The Qs are 299, 7281, 1547, 301 

with one high Q resonator. The response is shown in Fig. 4.18 

 

4.2.4 Realisation of perfect transmission zeros 

A proper loss distribution could also give perfect transmission zeros. This 

method could be used when the requirement for rejection is severe. The 

solution for the 2
nd

 order filter is exact and approximation will be used for 

higher order case.  

According to (4.20), a transmission zero is also a zero in the admittance 

parameter Y21. For a 2
nd

 order filter, assuming the second residue is 

negative, the partial expansion of the admittance parameter is given in 

(4.21). 
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At a transmission zero, the dissipation of each resonator and the values of 

the residues must satisfy (4.22) and (4.23). 
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When the dissipation of one resonator is given, the dissipation of the other 

resonator can be determined from (4.23) which guarantees that a perfect 

transmission zero could be get.  

For an N
th
 order filter, when δi is small, each term in the admittance 

parameters can be replaced by its Taylor series expansion as in ((4.24). 
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At each transmission zero, if the higher order expansions are neglected, we 

have (4.25). 
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The linear equation can be solved when the filter has N-1 transmission zeros 

and one of the δi is given. An example is given using 4
th
 order filter used 

earlier. For the perfect transmission zeros, Qu solved are 84, 277, 222 and 

126 and the response is shown in Fig. 4.19.  

 

Fig. 4.19 S parameters of the 4
th
 order example with three perfect 

transmission zeros. 

 

4.3 Examples 

4.3.1 Parallel connected symmetric networks 

Transversal array requires the parallel connection of N networks for an N
th
 

degree filter and is thus sometimes difficult to realize. For a symmetric 

network of even degree, poles and residues can be grouped. Each group 

can form a sub-network and can be applied with similarity transformations. 

The final network is the parallel connection of these sub-networks as 

described in [8]. In this way, the number of parallel connected branches can 

be reduced.  

Considering the effect of loss distribution, the resonators of narrow band can 

be assigned to one group. In this way, each sub-network will have an equal 

Qu distribution. As discussed earlier, for a circuit with equal Qu distribution, 

similarity transformations will not change the value of Qu for each resonator 

and will not introduce other lossy elements at cross couplings. 
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1 Symmetric parallel connected 4th order example 

The following is an example of symmetric 4
th
 order Chebyshev filter with two 

transmission zeros at j5.1 . The centre frequency is 2 GHz, and the 

bandwidth is 0.12 GHz. The transversal array model synthesized is shown in 

Fig. 4.20. 

 

Fig. 4.20 Circuit model synthesized for the 4
th
 order Chebyshev filter. 

 

For this symmetric even order network, the transversal array can be 

transformed into the parallel connection of two 2
nd

 order network while the 

response is not changed. The circuit model is shown in Fig. 4.21. The 

response when the resonator 3 and 4 are of low Qs is compared with the 

one when resonator 1 and 2 are of low Qs in Fig. 4.22. And it is shown that 

when the resonator 3 and 4 are of Qs of 150, the transmission of passband 

is proportional to the one with equal Q of 1000 and the return loss is less 

distorted than the other case.  

 

Fig. 4.21 Circuit model of the 4
th
 order parallel connected networks. 



- 101 - 

 

Fig. 4.22 Response of the 4
th
 order Chebyshev filter with loss included. 

 

It is interesting to note that when loss is included in the two symmetric 

resonators of one branch, the transmission of passband will be even flatter, 

because the degradation of transmission due to the loss of resonators with 

symmetric center frequencies compensates each other throughout the 

passband. 

For the circuit with Q distribution as shown in Fig. 4.23(a) the response is the 

same as the one shown in Fig. 4.22. The insertion loss is shifted from 

lossless case by 0.7 dB. This value can be used with the method described 

in section I to synthesize a lossy circuit which is shown in Fig. 4.23(b). The 

responses of the two circuits are compared in Fig. 4.24 showing that the 

method of synthesizing lossy circuit presented here is as good as the one 

given in Fig. 4.23(b). 

 

          

(a)                                                        (b) 

Fig. 4.23 Node expression of the circuit model of (a) transversal array. (b) 
Folded network. 
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Fig. 4.24 Response of the circuit model shown in Fig. 4.23. 

 

2 Symmetric 6th order parallel connected example 

The same procedure is applied to a 6
th
 order Chebyshev filter with four 

transmission zeros at 1.3958j, -1.3958j, 1.0749 and -1.0749. In the 

transversal array, residues and poles are grouped to form two sub-networks. 

The one of degree 2 is formed by narrow band resonators and are applied 

with lower loss. The other sub-network of 4
th
 degree is realized with low Q 

resonators. The topology is shown in Fig. 4.25(a). An alternative topology is 

shown in Fig. 4.25(b) which is a parallel connection of three sub-networks of 

degree 2. The CMs for the two sub-networks are listed in Table 4.2 and 

Table 4.4. 

                

(a)                                                        (b) 

Fig. 4.25 Circuit model of the parallel connected 6
th
 order filter. 

 

Table 4.2 CM of the sub-networks 

 -0.4315   

-0.4315 -0.0080 1.2071  

 1.2071 -0.0080 0.4315 

  0.4315  

1.85 1.9 1.95 2 2.05 2.1 2.15
-30

-25

-20

-15

-10

-5

0

Frequency (GHz)

S
 p

a
ra

m
e
te

rs

 

 

S11 of circuit 1

S21 of circuit 1

S11 of circuit 2

S21 of circuit2

1.85 1.9 1.95 2 2.05 2.1
-3

-2

-1

0

 

 



- 103 - 

 

 -0.9447     

-0.9447 -0.0640j 0.7032  0.3487  

 0.7032 -0.0640j 0.3277   

  0.3277 -0.0640j 0.7032  

 0.3487  0.7032 -0.0640j -0.9447 

    -0.9447  

 

The response is shown in Fig. 4.26. The response when the red resonators 

in Figure 4.33 are of low Qs of 250 is compared with the one when the blue 

resonators are of low Qs. The first one has a flat insertion loss and a less 

distorted return loss in the passband. 

 

Fig. 4.26 Response of the circuit model. The response of equal Q of 2000 is 
compared to the one of the 3

rd
, 4

th
 5

th
 and 6

th
 resonators having a low 

Qu of 250. 

 

4.3.3 Parallel network with input and output nodes 

1. Symmetric 5th order example with input and output nodes 

The following example is a 5
th
 order Chebyshev filter with four transmission 

zeros at 1.4j, -1.4j, 2.2j and -2.2j. The centre frequency and bandwidth are 2 

GHz and 0.12 GHz respectively. The CM is transformed according to the 

grouping of poles and residues. 

The circuit configuration with Qs for each resonator is shown in Fig. 4.27 and 

the values of elements of the CM for this network are listed in Table 4.3. The 

circuit has three sub-networks and one of them is of high Q while the Qs of 
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the other two sub-networks are much smaller. The response is shown in Fig. 

4.28 compared to the lossless one. 

 

Fig. 4.27 (a) Circuit model of the 5
th
 order symmetric filter with three parallel 

connected sub-networks. 

Table 4.3 Values of the elements in for the 5
th
 order network 

MS1 -0.4287 M1L 0.4287 δ1 0.0040 

M12 1.2102 M3L 0.6235 δ2 0.0042 

MS3 -0.6235 M4L 0.7131 δ3 0.0593 

MS4 0.7131   δ4 0.0075 

M45 -1.0329   δ5 0.0392 

 

Fig. 4.28 S parameters of the 5
th
 order filter with Q distributions compared to 

the lossless ones. 

 

2. Asymmetric 7th order example with input and output nodes 

A 7
th
 order Chebyshev filter with four transmission zeros at -1.7j, -1.9j, -2.5j 

and -4.2j is used here with a centre frequency of 2 GHz and a bandwidth of 

0.12 GHz. The configuration shown in Fig. 4.29 is different from the parallel 

connected network in that the input and output are resonating nodes.  
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Fig. 4.29 Circuit model of the 7
th
 order asymmetric filter with transformed 

configurations. 

 

The element values of the CM are listed in Table 4.4. This is a relatively low 

loss design and one of the resonators is of high Q. Although the Q factors of 

the first and last resonators are infinity in this case, they can be scaled to 

any convenient level. This merely affects the absolute passband insertion 

but not the selectivity, flatness or return loss. The response of this circuit is 

shown in Fig. 4.30.  

 

Table 4.4 Values of the elements in for the 7
th
 order network 

MS1 0.9968 M7L 0.9968 B1 -0.0237 δ1 0.00010 

M12 0.1610 M27 0.1610 B2 1.0165 δ2 0.00146 

M13 0.3617 M37 0.3617 B3 -0.9400 δ3 0.01157 

M14 -0.3058 M47 0.3058 B4 0.8189 δ4 0.00528 

M15 0.4385 M57 0.4385 B5 0.3800 δ5 0.01550 

M16 -0.5026 M67 0.5026 B6 -0.2889 δ6 0.01458 

    B7 -0.0237 δ7 0.00010 

 

 

Fig. 4.30 S parameters of the 7
th
 order filter with Q distributions compared to 

the lossless ones. 
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4.3.4 Other configurations 

1. 8th order symmetric filter with transformed configuration 

This example is an 8
th
 order Chebyshev filter with 6 transmission zeros at 

1.25j, -1.25j, 0.8120+0.1969j, 0.8120-0.1969j, -0.8120+0.1969j and -0.8120-

0.1969j with a centre frequency of 2 GHz and a bandwidth of 0.12 GHz. CM 

is transformed according to the grouping of poles and residues. The two 

smallest residues are in one group and the other six residues are the other 

group. Then similarity transformations are applied to each of the sub-

networks to obtain the ladder network. Optimization is applied to the final 

parallel connected network giving the non-uniform Qs.  

The circuit configuration is giving in Fig. 4.31 with the element values in 

Table 4.5. The response is shown in Fig. 4.32. The insertion loss of this 

network overlaps with the ideal template used in the optimization. 

 

Fig. 4.31 Circuit model of the 8
th
 order symmetric filter with two sub-

networks. 

 

Fig. 4.32 S parameters of the 8
th
 order filter compared to the lossless case. 
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Table 4.5 Values of the elements in for the 8
th
 order network 

MS1 -0.4054 M78 -0.7433 δ1 0.00284 

M12 1.1609 M8L 0.9462 δ2 0.00284 

M2L 0.4054 M38 0.2568 δ3 0.00865 

MS3 0.9462 M47 -0.1902 δ4 0.01977 

M34 0.7433   δ5 0.01640 

M45 0.4702   δ6 0.01737 

M56 0.1945   δ7 0.01863 

M67 -0.4702   δ8 0.00857 

 

We could assign equal Qs for each sub-network. In this case, the Qs for 

each sub-network are 15000 and 1000. As shown in Fig. 4.33, the ripple of 

insertion loss in the passband is increased. However the selective bandedge 

is still maintained. 

 

Fig. 4.33 S parameters of the 8
th
 order filter when equal Q is assigned to 

each sub-network. 

 

2. 8th order asymmetric example with transformed configuration 

The parallel connected network in Fig. 4.31 could be utilized to realize 

asymmetric characteristic when the 6
th
 order ladder sub-network has 

asymmetric couplings as shown in Fig. 4.31. The CM for this configuration is 

synthesized by adding a constant phase φ to the even and odd mode S 

parameters as in (4.26). 
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From the even and odd mode S parameters, the even and odd mode 

admittance parameters could be derived as in (4.27) which are also modified 

by the phase φ.  

 

Using the modified even and odd mode admittance parameters, we could 

derive a new set of residues and poles for each φ. In order to synthesize the 

network in Fig. 4.34, the poles and residues need to be divided into two 

groups; also the two residues that form the 2
nd

 order sub-network should 

have equivalent values. A sweep of φ is used and the values of the residues 

are compared in each case until two of them are equal. It is noted in this 

step that this synthesis problem has multiple solutions. Then CM 

transformations are applied to each sub-network to obtain the ladder 

networks which are finally parallel connected. The theory of this procedure 

will be presented in detail in a later publication. 

 

Fig. 4.34 Circuit model of the 8
th
 order asymmetric filter with two sub-

networks. 

 

An 8
th
 order filter with three transmission zeros at -1.7j, -1.9j and -2.5j with a 

centre frequency of 2 GHz and a bandwidth of 0.12 GHz is used to illustrate 

the idea. It is found that a phase of -1.5260 rad will give two equal residues.  

The CM derived is given in Table 4.6. Because a phase shift is included in 

the S parameters, the reference admittances for this network are no longer 



- 109 - 

uniform but complex values dependent on φ. For this example, the values of 

the source and load admittance are both 1+0.9562i. The response is shown 

in Fig. 4.35. 

 

Table 4.6 Values of the elements in for the 8
th
 order network 

MS1 0.5867 M78 -0.7603 B1 -0.0191 δ1 0.04383 

M12 0.2782 M8L 1.2992 B2 -0.0190 δ2 0.00114 

M2L 0.5867 M38 -0.0568 B3 1.2080 δ3 0.00042 

MS3 1.2992 M47 0.0664 B4 -0.4486 δ4 0.01382 

M34 -0.7809 M48 -0.1783 B5 0.5308 δ5 0.00831 

M45 -0.5169 M57 0.4619 B6 0.8682 δ6 0.00071 

M56 0.2016   B7 -0.4797 δ7 0.01717 

M67 -0.4072   B8 1.2080 δ8 0.02963 

 

 

Fig. 4.35 S parameters of the 8
th
 order asymmetric filter compared to the 

lossless case. 

 

4.4 Filter implementation 

A parallel connected network requires the parallel connection of N 

resonators for an N
th
 degree filter and is sometimes difficult to implement. 

For an even degree symmetric network, poles and residues can be grouped 

to form sub-networks which can be applied with similarity transformations 

independently [8]. The final network is the parallel connection of these sub-
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networks. In this way, the number of parallel connected branches can be 

reduced.  

Considering the effect of loss distribution, the critical resonators can be 

assigned to one group with high Q, and each sub-network can be designed 

with an equal Q distribution. In this way, similarity transformation applied will 

not introduce losses into cross couplings. The example is the design of a 4
th
 

order filter. First a mixed coaxial and microstrip design will be introduced 

followed by a mixed coaxial and dielectric design. 

 

4.4.1 Mixed coaxial and microstrip design 

The following is an example of a symmetric 4
th
 order Chebyshev filter with 

two transmission zeros normalized at ±1.6j. The centre frequency is 2 GHz, 

and the bandwidth is 0.12 GHz.  

Step 1 CM synthesis for the lowpass prototype 

For this symmetric network, the transversal array can be transformed into 

the parallel connection of two 2
nd

 order networks as in Fig. 4.36. For this 

network, it is found that when resonators 3 and 4 have Q of 150, and the 

others have high Q of 1000, the insertion loss in the passband is less 

distorted than the one with equal Q of 1000. The circuit could be realized by 

a combined coaxial and microstrip technology. 

 

Fig. 4.36 Circuit model of the 4
th
 order symmetric filter with two 2

nd
 order 

parallel connected sub-networks with C1=C2= C3=C4=1. 

 

 

Step 2 EM designs of branches 

The high Qu branch utilizes coaxial resonators. The input couplings are 

realized by probes. The probes are transformed to microstrip lines. The low 

Qu branch is realized by hairpin microstrip resonators. The substrate used is 

Rogers Duroid 6010 with a thickness of 1.27 mm. 
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Step 3 Filter design 

The final parallel network is then realized by connecting the branches using 

a microstrip T junction as shown in Fig. 4.37. The microstrip lines connecting 

each sub-network to the T junction need to be fine tuned to match the phase 

of the two parallel connected networks. The Q for the coaxial resonator and 

the microstrip resonator are 4000 and 220 respectively. The response of the 

EM model is shown in Fig. 4.38. 

 

Fig. 4.37 EM model of the combined coaxial and microstrip filter. 

 

Fig. 4.38 Response of the 4
th
 order Chebyshev filter with higher loss 

included in different resonators compared to one with an equal high Qu. 

 

Step 4 Manufacture 

A photo of the filter made is shown in Fig. 4.39 and the measurement result 

is compared with the simulation results in Fig. 4.40. The manufactured filter 

is tuned by tuning screws controlling the center frequency of the coaxial 
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resonator and the coupling between them. The deviation of the center 

frequency and bandwidth between the simulated and measured results is 

due to the mismatch of the resonant frequency of the microstrip lines. The 

measured passband insertion loss is 0.3 dB higher than the simulated filter. 

This is caused by the Q factor of the coaxial resonators being a little lower 

than predicted. 

 

 

Fig. 4.39 Photo of the filter manufactured. 

 

Fig. 4.40 Measurement result of the filter shown in Fig. 4.31. 

 

4.4.2 Mixed coaxial and dielectric resonator design 

The same Chebyshev response as in last section is used here for a lower 

loss design. The high Qu branch is realized by dielectric resonators shown in 

Figure and the low Qu branch is realized by coaxial resonators. The sub-
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networks for the two branches are designed separately using a 2
nd

 order 

coaxial network with Qu of 4000 and a 2
nd

 order dielectric network with Q of 

16000. The eigenmode analysis is applied to dielectric resonators as shown 

in Fig. 4.41. The effect of tuning disk is shown in Table 4.7 for the first five 

modes. The coupling between dielectric resonators is realized by windows 

and enhanced by a probe. The input and output coupling to the dielectric 

resonators are realized by probes.  

 

Fig. 4.41 EM model of a typical dielectric resonator and its E field 
distribution. 

Table 4.7 The resonant frequency and Qu for the first five modes. 

27 30 35 

2.12, 14000 2.13, 14000 2.14, 14000 

2.85, 10000 2.90, 15000 2.94, 9700 

2.85, 10000 2.90, 10000 2.94, 9700 

2.85, 16000 2.90, 10000 3.16, 13000 

3.15, 15000 3.16, 14000 3.17, 13000 

 

For the low Qu branch, coaxial resonators are used. The coupling between 

coaxial resonators is realized by a window at the top of the two resonators. A 

similar bottom coupling is introduced in [89]. The input and output couplings 

are realized by probes contacting the resonators.  

The final network is then realized by connecting the branches in parallel as 

shown in Fig. 4.42 which is then simulated in HFSS. Because of the low loss 

of this design, the simulated results shown in Fig. 4.43 give perfect insertion 

loss.  
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Fig. 4.42 EM model of the 4
th
 order filter with mixed dielectric and coaxial 

resonators. 

 

Fig. 4.43 S parameters simulated using the model in Fig. 4.42. 
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Chapter 5  

Coupling Matrix Synthesis for Diplexers 

In communication systems, microwave filters are usually assembled to form 

a diplexer or a multiplexer which allows signals of different frequency bands 

to be combined or separated. In mobile base stations, the implementation of 

diplexers allows signal from two different bands to be transmitted or received 

simultaneously on a single antenna [4]. Multiplexers are used for more 

complex frequency division architectures [1].  

 

A multiplexer consisting of a manifold and several channel filters is given in 

[90]. The design method is based on non-linear optimization of the phase 

length between each channel for reduced interaction as well as the 

optimization of channel filters for enhanced matching. Starting from singly 

terminated filters [91], non-contiguous or contiguous multiplexer can be 

tuned to meet various specifications. A complete circuit representation of a 

diplexer or a multiplexer can be synthesized using the method in [92][93]. In 

this method, the rational polynomial expressions for the multi-port S 

parameters are derived first from iterations. Then CM for each filter and the 

circuit model for the junction is synthesized. However, the method is only 

valid to a limited type of junction. 

  

(a)                                                        (b) 

Fig. 5.1 A simplified diagram for a DF (a) and its response (b) that can be 
used for power combining. 

 

Diplexers or multiplexers can also be designed based on the concept of 

directional filters (DF) that has been presented in the literature over the past 

decades including the use of striplines [94]-[96] and waveguide [97]. A DF is 
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a matched four-port device shown in Fig. 5.1(a) with an input at port 1. 

Power emerges at port 2 with the frequency response of a band-pass filter 

and the remaining power emerges at port 3 with the complementary 

response of a band-reject filter as illustrated in Fig. 5.1(b). Port 4 is isolated. 

Because of the transmission characteristics of DF’s, they may be used for 

signal combining or multiplexing as in [98]. 

 

In this chapter, the above two methods for the design of a diplexer are 

discussed with techniques introduced for improvement. In the first design 

method, as a channel filter is connected to a 3-port junction, the connecting 

port sees the junction and the other channel. For the channel filter, this effect 

can be interpreted as a frequency variant load impedance. After the design 

of common junction by optimizing phase length at each port, an analytical 

method is given for the synthesis of CM for a channel filter with 

correspondence general load impedance.  

 

In the second method a diplexer is built from cascaded DF sections. As 

shown in [102], while a single section of DF realizes a first order filter 

characteristic, cascaded DF sections are capable of realizing any filter 

characteristics that can be expressed by rational polynomials. As opposed to 

conventional techniques of designing diplexers, this technique does not 

involve the design of channel filters or junctions. Instead, a single bandpass 

filter characteristic is used such that the insertion and return loss of this 

bandpass filter provides the forward transmission characteristics of each 

band. Because the two passbands are formed by the insertion and return 

loss of a single filter characteristic, the two channels of the combiner have 

no interaction even when the two bands are very close to each other. 

 

5.1 CM synthesis with non-ideal load impedance 

The CM synthesis method given in chapter 2 is based on a lowpass 

prototype network with uniform source and load impedance. However, for a 

filter integrated into a diplexer or a multiplexer, its output port is connected to 

a junction. The method of synthesis based on a uniform load is not valid in 

this case. The objective of this work is to find a direct approach to the design 

of a channel filter with a general frequency variant complex load. 
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5.1.1 Reference impedance for two-port filter networks 

The filter network with a uniform and general frequency variant load is 

shown in Fig. 5.2 with two different sets of S parameters [S’] and [S].The 

derivation of S parameters in [78] is based on the definition of reference 

impedance. The filter network in Fig. 5.2(a) and (b) are the same. However, 

the difference of S parameters are due to the difference of reference load 

impedances of unitary and ZL correspondingly. 

[S’] is unknown, but since it has a unitary load impedance, it can be used for 

the synthesis of a CM. The filter response is given in [S]. Using the theory of 

power wave renormalization [78], a transformation of S parameters (5.1) with 

respect to reference impedance can be used to derive [S’] from [S]. 

    (a)

    (b) 

Fig. 5.2 illustration of reference impedance of (a) channel filter with response 
[S] and (b) ideal filter circuit model with response [S’]. 

  ,  (5.1) 

The procedure of earlier method [99] and [100] can be summarized as 

follows: 

1. Designing a template of general Chebyshev filter of degree N [8] and 

deriving the response [S]. 

2. Deriving the response [S’] by renormalizing the reference impedance 

from complex load ZL to unitary load.  

3. Synthesizing a CM according to the response [S’]. 
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The concept for the designing of a channel filter proposed in [99] focuses on 

a constant complex load. The method of synthesis is straightforward as the 

constant load gives a constant r2 and modifications to S parameters can be 

found according to (5.1) without changing the degree of the polynomials. 

When the load is frequency variant, the load impedance at center frequency 

is used. As a result, the method is restricted to narrowband cases. 

Frequency variant complex load is studied in [99]. Instead of only matching 

to constant complex impedance, the variation of the complex impedance vs. 

frequency is also taken into consideration in the proposed approach. The 

admittance matrix of a filter network is independent to the impedance 

reference and can be derived from the S parameters with reference 

impedances as in (5.2) with load impedance ZL at output port. 

 

2
212211

21
21

2
212211

2
212211

22

2
212211

2
212211

11

))(1(

)Re(2

))(1(

)1)(1(

))(1(

))(1(

sZsZZs

sZ
y

sZsZZs

sss
y

sZsZZs

sZsZZs
y

LLL

L

LLL

LLL

LLL
























 (5.2) 

Then the polynomial expressions for the admittance parameters can be 

found for lossless case as in (5.3). For a frequency variant load impedance 

ZL, the polynomials in (5.3) are of higher degree than the original design of S 

parameter. As a result, it is impossible to find the CM providing the same S 

parameter response with a frequency variant load.  

 

A method of curve fitting is used in [100] to maintain the degree of 

admittance parameters. It is found that with proper modifications to the 

phase of S parameter response, the original denominator of admittance 

parameters can be derived. However, the accuracy of the method depends 

on the validation of curve-fitting. The rapid changing load impedance gives 

poor response for the synthesized CM.  
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5.1.2 A special case with exact solutions 

Using the general expression for the rational polynomial of S parameters 

given in Chapter 3, the transformation of S parameters in (5.1) can be 

rewritten into the transformation of polynomials of S parameters as in (5.4). 
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 (5.4) 

Constant load ZL can lead to a set of polynomials of F11’(s), E’(s) and P’(s) 

which are of the same degree as the originally designed ones. And CM 

synthesis can be applied without modifications. When the load impedance is 

frequency variant, the degrees of those polynomials must be increased. As a 

result, CM can only be found by least square polynomial fitting. Besides, 

filter topology may be changed because of the fitting to the P polynomial. 

A special case is found when the load impedance has a linear imaginary part 

and a constant real part. For this kind of load impedance, the polynomials on 

the left are found to have the original degree and an exact synthesis is 

possible. Suppose the frequency variant part of ZL is purely imaginary as in 

(5.5), substituting it into (5.4), we have (5.6). When the response is of 

degree N, the second term will an Nth degree polynomial when Zx is of first 

order since the highest term in F11-E* is cancelled.  

 xL jZZ  1  (5.5) 
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 (5.6) 

The example is a fourth degree Chebyshev filter with one transmission zero 

at 1.7j. The load impedance is assumed to be Z=0.3s+(0.8j+0.5). The original 

and modified coefficients for the rational polynomials of S parameters are 

listed in Table 5.1.  
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The derived CM matched to the load is compared with the original ones in 

Table 5.2. When deriving the matched CM with constant complex load 

impedance, the elements MNN and MNL are changed. For this frequency 

variant load impedance, the element corresponds to the final resonator and 

the couplings to it are changed. It can be deduced that with the increase 

complexity of the load impedance, more elements in the CM are required to 

be modified to provide a matched response. The response of the CM with 

match load is compared with the unmatched one in Fig. 5.3. 

 

Table 5.1 Coefficients for the rational polynomials of S parameters 

F11 P E Ex F11’ P’ E’ Ex’ 

1.0000 0 1.0000 1.0000 0.3597 0 0.3597 0.3597 

- 0.3252i 0 2.1344 - 
0.3252i 

-2.1344 
- 0.3252i 

1.7506 - 
1.7897i 

0 2.5183 - 
1.7897i 

-2.5183 
- 1.7897i 

0.9736 0 3.2514 - 
0.8101i 

3.2514 
+0.8101i 

-1.6238 
+1.1208i 

0 2.9319 - 
2.7409i 

2.9319 + 
2.7409i 

- 0.2439i 0.8090 2.7013 - 
1.2321i 

-2.7013 
- 1.2321i 

2.4253 - 
1.6455i 

1.1441 2.9773 - 
3.6218i 

-2.9773 
- 3.6218i 

0.1118 - 1.3753i 1.0589 - 
0.8847i 

1.0589 
+0.8847i 

-1.0695 
+0.3153i 

- 1.9450i 0.8246 - 
2.0847i 

0.8246 + 
2.0847i 

 

Fig. 5.3 S parameters of the network with matched and unmatched CM with 
frequency variant load. 

 

Table 5.2 Original and matched CMs. 
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1.0331 0.0543 0.9090 0 0 0 

0 0.9090 0.0952 -0.6045 0.4170 0 

0 0 -0.6045 -0.5290 -0.8077 0 

0 0 0.4170 -0.8077 0.0543 1.0331 

0 0 0 0 1.0331 0 

 

0 1.0331 0 0 0 0 

1.0331 0.0543 0.9090 0 0 0 

0 0.9090 0.0952 -0.6045 0.6953 0 

0 0 0.9090 -0.5290 1.3468 0 

0 0 0.6953 1.3468 -4.5965 2.4360 

0 0 0 0 2.4360 0 

 

5.1.3 Synthesis with iterations 

When the exact synthesis is only valid for specific load impedance, an 

iteration method can be derived for general load impedance. First, the 

inverse transformation of (5.4) can be derived where the response of 

matched filter (F11’’(s) and E’’(s)) is derived from the response of circuit 

model (F11’(s) and E’(s)) and load impedance as in (5.7). 
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 (5.7) 

The degree of the polynomials in (5.7) are higher than N when ZL is a 

general load impedance represented by a polynomial of degree higher than 

1. If we can find a circuit model of degree N whose response is expressed 

by F11’(s), E’(s) and P’(s), the degree of the response of matched filter must 

be higher than N. The question is F11’’(s) and E’’(s) are unknown.  

The characteristics of a Chebyshev response are defined by its zeros and 

roots. We can make such a constraint that F11’’(s) and E’’(s) must contain 

the zeros of the originally designed response F11
0 and E0. Thus the 

polynomial F11’’(s) can be divided into the multiplication of two parts: the 

original polynomial F11
0 and an additional polynomial that is represented by X 

in the above expression. With F11’’(s) and E’’(s), the S parameters of the 

matched filter will be as in (5.8).  
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The magnitudes of S parameters in (5.8)are the same as the originally 

designed ones, while the phases are changed according to X. Conservation 

of energy is still satisfied because the phase of S11 is not changed and the 

amount of phase change of S21 is half of that of S22. 

 

With given load impedance and originally designed F11
0 and E0, an iteration 

method as follows is used to derive F11’(s), E’(s) and P’(s) which are used for 

the synthesis of CM. 

 

1. The initial E polynomial is the original E0 polynomial for desired response 

as in (5.9). 

 )()(' 0 sEsE   (5.9) 

2. Iteration 

Since we know (1) both F11’’(s) and E’’(s) have the same zeros in the 

passband as F11
0 and E0; (2) the highest coefficients of F11’(s) and E’(s) are 

both unitary, the problem of finding other coefficients is simplified to a linear 

system problem. 

 

i. Solving for F11’(s) 

The roots of F11
0 are Zf0. Given values of E’(s) at Zf0, we have the 

expressions in (5.10) for any of the roots of F11’’. 
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Since F11
0 has N zeros and the number of unknown coefficients is also N, an 

exact solution can be found. 

 

ii. Calculating ε 
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ε is used for the normalization of the P polynomial. In order to keep the 

configuration of CM, we choose P’(s)=P0. The value of ε is found in the 

iteration according to the required return loss level at band edge. 

 

iii. Solving for E’(s) 

The polynomial E’(s) can be found by alternating pole method with given P’(s) 

and F11’(s) as in (5.11). 

 )(')(')(')(')(')(' 2211 sEsEsPsPsFsF    (5.11) 

iv. Go back to i with updated E’(s) until the changing of E’(s) is less than a 

given tolerance. 

 

5.1.4 Examples 

The following is an example of designing a channel filter for waveguide 

diplexer. The two channel filters with general Chebyshev response are 

connected at a waveguide T-junction as shown in Fig. 5.4. The load 

impedance to one of the channel filter can be found from a combined EM 

simulation of the T-junction and circuit simulation of the CMs. The frequency 

variant load impedance is depicted in Fig. 5.5 with its real and imaginary 

parts.  

 

Fig. 5.4 illustration diplexer formed by two channel filter and a waveguide T-
junction. 

 

Then, a 5
th
 degree Chebyshev filter with one transmission zero at -1.6j with 

the reference impedance will by synthesized using the iteration method. The 
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synthesized CM is given in Table 5.3 and the matched filter response is 

given in Fig. 5.6. 

 

Fig. 5.5 Real and imaginary part of load impedance in the lowpass domain. 

 

We can observe from earlier example that while the zeros of F11’’(s) and P’(s) 

are enforced to be the same as original, the zeros of E’’(s) are not exactly 

the same as original. As a result, reflection zeros of the network are not 

changed but the return loss can no longer be equal-ripple.  

 

Fig. 5.6 S parameter of the network with matched S21 
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Table 5.3 Synthesized CMs for the 5
th
 order example. 

0 1.0344 0 0 0 0 0 

1.0344 -0.0548 0.8826 0 0 0 0 

0 0.8826 -0.0587 -0.5777 -0.2895 0 0 

0 0 -0.5777 0.4566 -0.5730 0 0 

0 0 -0.2895 -0.5730 -0.0868 0.9801 0 

0 0 0 0 0.9801 0.1294 1.2318 

0 0 0 0 0 1.2318 0 

 

The zeros of F11’’(s) and E’’(s) can be forced to be the same as original in 

the iteration. In order to do this, the coefficients of E’’(s) will also be solved 

by a linear system problem similar to that of E’(s). Using these new 

solutions, S11 of the matched filter are exactly the same as original but S21 is 

not. The reason is that in the equation of transformation, the value of X in the 

transformation of P’(s) polynomial is given once the load impedance is given. 

The values of X derived from solving the linear system of F11’’(s) and E’’(s) 

are not necessarily the same as the one derived from P’(s). This 

inconsistence cannot be neglected.  

A conclusion can be made here that it is impossible to match a filter with any 

frequency variant load impedance while restoring its original magnitude of 

response. However, it is possible to find a “perfect” match by the tuning of 

load impedance so that it satisfies certain conditions and this will be our 

future work. 

 

5.2 Synthesis and design of directional filters 

The principles of operation of a DF used in this section are an extension on 

the work presented in [101]. A synthesis method for DF’s is presented in 

[102]. The design is based on a pole placement method where each single 

section of a DF is singly tuned to provide a pole of a bandpass filter. This 

may be realized by inserting two resonator networks between a pair of 90º 

hybrids. Cascading these matched four-port sections allows a multi-pole 

response equivalent to the characteristics an N
th
 degree filter. As in a 

transversal array, each section of the network corresponds to a pole of the 

filter’s admittance parameters [8]; each cascaded section in a DF realizes a 

pole of its S parameters.  
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The design process starts with a lowpass filter prototype and bandpass 

characteristics are achieved by standard transformations. Various 

approximations are used to derive a simplified and realizable equivalent 

circuit. The final circuit contains resonators and some internal couplings that 

can be implemented by standard filter technologies.  

The design concepts are validated with a design of a cellular combiner with 

specifications used in uplink 800 MHz LTE bands. The design is based on 

the characteristics of a 4
th
 order general Chebyshev filter and the required 

selectivity is achieved by two transmission zeros placed close to the 

passband. The cellular combiner was fabricated using coaxial resonators. 

The proposed solution achieves good isolation between the input ports, 

return loss and minimum in-band insertion loss. 

 

5.2.1 Theories 

5.2.1.1 Directional filter networks 

The original design theory [101] was based on the DF configuration shown in 

Fig. 5.7. The DF consists of two identical filters and a pair of 3 dB hybrids. 

Giving the scattering matrix the filter network as in (5.12), the power incident 

at port 1 emerges at port 2 with the return loss of network and at port 3 with 

the insertion loss while port 1 is matched and port 4 is isolated. Regarding 

the simplified diagram in Fig. 5.1, the response of each port is giving as in 

(5.13).  

   









2221

1211

SS

SS
S  (5.12) 

 

Fig. 5.7 Detailed diagram of DF with two identical filter networks inserted 
between a pair of 90º hybrids. 
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The complete admittances of a DF section are shown in Fig. 5.8 with the 

resonators be depicted as Y. 

 

Fig. 5.8 Circuit diagram showing the admittances of a single section DF with 
90º TL. 

 

In our design, the filter network in Fig. 5.7 is a single resonator and higher 

order characteristics are achieved by cascading these single sections.The 

cascading of single section DFs are shown in Fig. 5.9. The response of a 

single section is shown in (5.14). For a cascade of two sections, (5.14) is the 

input to the second section. P1 input at port 1 provides P1R1 at port 2 and 

P1T1 at port 3. Because of the symmetry of the network, Q1 input at port 4 

provides Q1R1 at port 3 and Q1T1 at port 2. So the response of two sections is 

the combination of those outputs as in (5.15).  

 

Fig. 5.9 Cascading of n single section DF’s. 
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With (5.14) being the initial values, a recurrence formula in (5.16) can be 

derived for the cascading of n sections. From the expression for Pn+Qn, we 

can derive the equation in (5.17) which represents an all-pass response. 

 
nnnnn

nnnnn
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 (5.16) 
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5.2.1.2 Node diagram 

As DF is a four-port network with admittances shown in Fig. 5.7, the analysis 

is usually done by a circuit simulator of connected transmission lines. It is 

noticed that the response of a DF network can be easily derived using a 

node diagram as shown in Fig. 5.10. 

 

Fig. 5.10 Node diagram for a single section DF with lines representing 
invertors. The empty node represents non-resonating nodes. 

 

The node diagram is obtained by replacing the 90º TL in Fig. 5.7 with 

admittance invertors. As a node diagram of a conventional filter, the lines 

represent couplings; the dark dots represent resonators and the empty dots 

represent non-resonating nodes. The couplings realized by invertors are 

related to the characteristic impedance of the TLs. For each DF section, a 

four port CM with six nodes could be derived from the node diagram. The 

response of the DF network can then be found using the multi-port CM 

analysis method given in [103]. 

An alternative configuration for single section DF may be found as shown in 

Fig. 5.11, while the dashed line represent negative couplings. This network 

is derived by scaling nodes in one of the hybrids in Fig. 5.10 and the two 

couplings in the center of the network cancel with each other. The response 
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of this network remains the same except the port 3 and port 4 are 

exchanged. 

 

Fig. 5.11 The alternative configuration of the single section DF of Fig. 5.10. 

  (a) 

   (b) 

Fig. 5.12 Cascading of the single section DF (a) and its alternative (b). 

 

An N
th
 degree DF is derived by cascading N sections. Unlike a conventional 

filter, sections can be cascaded in any order. Fig. 5.12 shows the connection 

of two sections for the two configurations with the 180º phase shifter which 

should be added after the section when the corresponding zi is the same as 

the conjugate of pi. 

 

5.2.1.3 Circuit Realization 

The S parameters of a lossless filter network may be expressed as rational 

polynomials and the sum of these parameters is given in (5.18) which is also 
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an all-pass response and n is the filter order, zi represents a zero and pi 

represents a pole.  
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From power conservation, we can derive (5.19), which states that pi is the 

same as either zi or its conjugate.  

    *1111
* PFPFEE   (5.19) 

By equating the two all-pass responses in (5.17) and (5.18), for a given filter 

characteristics, Pn+Qn are known as in (5.20). By the decomposition of poles, 

Ri and Ti of each section can be derived according to (5.21) which states that 

Ri and Ti have the same pole pi and the zeros of the numerator of Ri+Ti are 

zi. As a result, each pole of a filter characteristic may be realized by a single 

DF section and a higher order response may be formed by cascading DF’s. 

The next problem is to find the network realisation with reflection coefficient 

Ri and transmission coefficient Ti. 

 
E

PF
QP nn


 11  (5.20) 

 
i

i
ii

ps

zs
TR




  (5.21) 

A simple resonator network as shown in Fig. 5.13 is used to provide the 

characteristics of Ri and Ti. The network consists of a capacitance C and a 

frequency invariant reactance B which is included for complex poles. The S 

parameters of this network are given in (5.22). 

 

Fig. 5.13 Filter network to provide the required pole of a DF. 
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Comparing (5.22) with (5.21), we obtain the values for the capacitance and 

frequency invariant reactance according to the values of poles as in (5.23). It 

should be noted that in the case when zi is of the complex conjugate of pi, a 

180º phase shifter should be introduced after the i
th
 section.  
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The final circuit for a section may be derived after some scaling and 

simplifications. Standard lowpass to band-pass transformations are applied. 

The branches for the 90º hybrid are replaced by an equivalent π network of 

inductances. Elements of the inductances of the π network are then merged 

with the resonators. The 90º TL with unit Z0 at the input and output is 

replaced by an equivalent TL. The final circuit for the single section DF is 

given in Fig. 5.14. L’ and C’ can be realized by conventional resonators such 

as coaxial and dielectric resonators. The inductances Lv represents the input 

coupling to the resonators and Lm represents inter coupling between the 

resonators. 

 

Fig. 5.14 Simplified circuit for a single section DF. 
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An N
th
 degree DF is derived by cascading n=N sections. A 180º phase 

shifter should be added after the section in which the corresponding zi is the 

same as the conjugate of pi as illustrated in Fig. 5.15. Unlike a conventional 

filter, sections of DFs can be cascaded in any order.  

 

Fig. 5.15 Cascaded single section DFs with phase shifters. 

 

5.2.2 Considerations of dissipations 

As discussed in Chapter 4, different Qs can be assigned to parallel 

connected networks without deducing the selectivity. Each resonator in 

parallel connected network is independent of each other and is realizing one 

corresponding eigenmode. In the design of directional filter, each section of 

DF is realizing a pole of S parameters and can also be assigned with 

different Qs. The same optimization method as in Chapter 4 is applied to find 

the optimum Q distribution for directional filter.  

 

1. N=4 symmetric example 

This example is an N=4 Chebyshev filter with symmetric response. The two 

transmission zeros are at 1.6j and -1.6j in the lowpass domain. The 

optimized Q are 1455.7, 234.5, 234.0 and 1473.8 with two low-Q resonators 

and two medium Q resonators. The S parameter response is shown in Fig. 

5.16(a) and is compared to the one with equal Q of 600 in Fig. 5.16(b).  
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(a)(b) 

Fig. 5.16 Response for N=4 filter with Qu distribution (a) compared to the 
one with equal Q of 600 (b). 

Lower Q resonators could be used in the structure with lowered insertion 

loss levels. When the highest Q is confined to 400, the response is shown in 

Fig. 5.17(a). The insertion loss in the passband is reduced to -3 dB 

compared to -1 dB in the earlier example. The optimized Q are 400.5558, 

78.1153, 78.0794 and 405.1020. The response is compared to the one with 

equal Qu of 160 in Fig. 5.17(b).  

 

(a)                                                     (b) 

Fig. 5.17 Response for N=4 filter with lowered Qu distribution (a) compared 
to the one with equal Qu of 160 (b). 

 

2. N=4 Asymmetric example 
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(a)                                                     (b) 

Fig. 5.18 Response for the asymmetric 4
th
 order filter with Q distribution (a) 

compared to the one with equal Q of 800 (b). 

 

The optimization method is valid for asymmetric response. For this 4
th
 order 

example, the transmission zeros are at -2.4j and -1.6j. The optimized Q are 

291.0, 195.9, 4076.1 and 567.8. The high Qu resonator is due to the high 

selectivity of this response at the lower bandedge. The response has similar 

selectivity as the one with equal Q of 800 as shown in Fig. 5.18.  

 

For the cascading of DFs, a phase shifter can be inserted between sections. 

This provides an addition parameter that can be used in optimization. The 

response of the 4
th
 order filter is shown in Fig. 5.19 with the optimized phase 

shifters. It can be seen that perfect transmission zeros could be realized. 

The Qus optimized in this example are 307.6, 197.2, 3819.0 and 562.6. The 

optimized phase shifters are -1.3694, 1.7074, 2.4064 and 2.6700 in degree. 
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Fig. 5.19 Response for asymmetric 4
th
 order filter with optimized Q 

distribution and phase shifter(a) compared to the one with equal Q of 
800 (b). 

 

3. N=5 asymmetric 

This example is a 5
th
 order Chebyshev filter with three transmission zeros at 

1.8j, -2.6j and -4j. The optimized Q are 589.8, 306.4, 418.4, 3666.3 and 

1017.4. The response is compared to the one with equal Q of 1200 in Fig. 

5.20.  

 

Fig. 5.20 Response for 5
th
 order filter with Q distribution (a) compared to the 

one with equal Q of 1200 (b). 

When optimized with phase shifter, the response is given in Fig. 5.21. The 

response shown has perfect transmission zeros. The optimized Q are 615.8    

304.8    424.6    3638.5    985.3. The optimized values for phase shifters are 

-0.8193    0.6990    1.7361    0.8136    1.5699 in degree. 

 

Fig. 5.21 Response for 5
th
 order filter with optimized Q and phase shifters (a) 

compared to the one with equal Q of 1200 (b). 
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For this Chebyshev filter with transmission zeros at -1.8j -2.2j -3.8j, the 

response has equal rippled stop band and various parameters are used in 

the optimization. The response with the optimization of phase shifter is given 

in Fig. 5.22. The Qs are 594, 289, 444, 4508 and 997. The phase shifters 

are -0.4742, 0.8497, 1.6045, -0.1084 and 1.1680 in degree.  

 

Fig. 5.22 Response for the 5
th
 order filter with optimized Q and phase 

shifters. 

 

Fig. 5.23 Response for the 5
th
 order filter with optimized Q, phase shifter and 

FIR. 

 

For each resonator in DF, its center frequency is shifted from 0 in the 

lowpass domain by the additional frequency invariant reactance denoted by 

B. When B is used in the optimized as a variable, the response is given in 

Fig. 5.23. The optimized Qus are 486, 311, 414, 4098 and 1064. The original 

Bs are -6.6024, -1.1585, 1.2254, 20.8042 and 5.0813. The optimized 

frequency invariant reactances are -6.9279, -1.2364, 1.2098, 20.9139 and 

5.1038. 
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Optimization of the asymmetric invertors with Qs of 649, 282, 428, 4810 and 

1086 and Invertors K of 1.0901, 1.0775, 1.0587, 1.0345 and 1.0427 is 

shown in Fig. 5.24. 

 

Fig. 5.24 Response for the 5
th
 order filter with optimized Qs, phase shifters, 

FIRs and invertors. 

 

5.2.3 Filter implementations 

With cascaded sections, high performance combiners may be designed. A 

combiner with two passbands of 832-841.5 MHz and 842.5-852 MHz is used 

as an example to illustrate the design theory. The requirements are: 

passband return loss >18 dB, the insertion loss <1 dB and isolation between 

input ports >30 dB. 

 

Design Step 1 – chosen filter characteristics 

A 4th order general Chebyshev filter is used. Because the two bands are 

close to each other, the filter characteristic should have a steep transition 

and is realized by two transmission zeros close to the passband. The 

transmission zeros are at 1.15j and 1.45j in the lowpass domain. After 

synthesizing the general Chebyshev response using the method given in [9], 

we have the polynomials F11 and E of the lowpass prototype and Ri and Ti of 

each section are found according to (5.20). Values of the capacitors and 

frequency invariant reactances are calculated according to (5.22) and are 

listed in Table 5.4.  

Table 5.4 Element Values for the DF Sections 
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-0.8366i -0.7005-1.2885i 0.7005-1.2885i 0.9636 3.6787 

0.9805i -0.9531+0.2651i -0.9531+0.2651i 0.7021 3.6787 

0.7632i -0.3062+0.9603i 0.3062+0.9603i 2.1762 -6.2716 

0.0751i -0.0537+1.0451i -0.0537+1.0451i 2.1762 -38.9048 

 

Design Step 2 – transformation to a band-pass circuit 

A lowpass to bandpass transformation is applied to each resonator and the 

network is combined with the equivalent circuit of the 90º hybrid. For the 

design of mainline TL, because of the transformation used, its characteristic 

impedance cannot remain as 50 ohm. However, by choosing a scaling 

factor, the characteristic impedance can be set as 50.5 ohm and it is then 

replaced by 50 ohm TL in the circuit design with little effect on the response. 

The element values for the circuit model are given in Table 5.5.  

 

Table 5.5 Element Values for the Circuit Model 

L’ (nH) C’ (pF) Lv (nH) LH(nH) Θ (deg) 

4.4055 9.4932 67.7524 482.6675 98.0693 

6.2435 6.9168    

1.7620 21.4403    

0.2954 122.1489    

 

 

Fig. 5.25 Circuit model of cascaded DFs simulated in ADS. 

 

Then four DF sections are cascaded. The final complete circuit model is then 

simulated in ADS as shown in Fig. 5.25. The result is shown in Fig. 5.26 and 

it is the same as synthesized Chebyshev response. The simulated isolation 

is shown in Fig. 5.27. 
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Fig. 5.26 Simulated response is exactly the same as the designed 
Chebyshev filter. 

 

Fig. 5.27 Simulated response of the isolation. 

 

Design Step 3 – circuit realization by an EM model 

For this 4
th
 order filter, there are four sections and each of them contains two 

coupled resonators. The input and output are non-resonating nodes. Each 

section is designed and tuned in HFSS. The Fig. 5.28 and Fig. 5.29 are the 

first and fourth sections. Couplings realized by windows. The input couplings 

are realized by non-resonating stubs and the inter resonator coupling is 

realized by a window. For this lossless design, we used PEC for conductors. 
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(a)                                                     (b) 

Fig. 5.28 EM design of the first DF section in HFSS (a) andits response (b). 

 

(a)                                                          (b) 

Fig. 5.29 EM design of the last DF section in HFSS (a) and its response (b). 

 

The main branch of the hybrid is realized by a 50 Ω line. 50 Ω line is 

achieved by adjusting the distance between the probe and cavity as shown 

in Fig. 5.30 for the modal and response. 

 

(a)                                                     (b) 

Fig. 5.30 EM design of the 50Ω transmission line (a) and its response (b). 
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Design Step 4 – combined simulation of the whole structure 

An EM model for each DF section was built and tuned in HFSS. Each 

section has a different resonant frequency and couplings as illustrated in Fig. 

5.28(b) and Fig. 5.29(b). The S parameters of each section were then put in 

ADS and connected by TLs. The result of this combined EM and circuit 

simulation is given in Fig. 5.31 as the dashed line response.  

 

Fig. 5.31 Simulation result for the combiner (Solid line for the circuit 
simulation and dashed line for the combined EM/circuit simulation) 

 

The EM model of the whole structure is shown in Fig. 5.32. Because each 

DF section controls one pole of filter characteristic, they may be tuned 

independently. No cross couplings are required when realizing transmission 

zeros and thus through tuning, different kinds of responses may be achieved 

by the same structure. 

 

Fig. 5.32 EM model for the combiner (top view and side view). 
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Chapter 6  

Circuit Analysis of Uniform 2D Lumped Element Networks 

The problem wave propagation in N-wire line structure is studied using 

generalized telegrapher’s equation in [104]. It is shown that the structure 

supports the propagation of N de-coupled modes [105][106]. However, in the 

field of metamaterial, many papers have been published claiming to have 

constructed metamaterials with two-dimensional cross section which 

demonstrate effective negative constitutive parameters and hence negative 

refraction at an interface. All these papers .have made the same 

fundamentally incorrect assumption that if the dimensions of the individual 

circuit elements are small with respect to the wavelength then one can 

assume a single mode of propagation [107]. 

 

The 2D lumped element network is a special case of N wire line with uniform 

cross sections in xy-plane and finite length in z-axis. With the definition of 

characteristic impedance and admittance matrices, the modes of 

propagation in this structure can be found by the diagonalization of the 

transfer matrix. The method can be applied to the analysis of waffle-iron filter 

[108][109].  

 

6.1 Wave propagation in multi-wire line 

This section provides a review for the analysis of wave propagation in multi-

wire line structure.  

 

6.1.1 Generalized telegrapher’s equation 

The N-wire line structure is illustrated in Fig. 6.1. The wires are one-

dimensional and are defined by self-inductance. Each wire is coupled to the 

ground and other wires by coupling capacitance.  

 

A transverse field component E(z-vt)satisfies the wave equation everywhere 

in the transverse plane even after the introduction of the lossless N-wire line 

structure shown in Fig. 6.1. Assuming there is a ground conductor then the 
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voltages on each of the remaining N wires can be calculated from a line 

integral along any path to each of the conductors producing a unique set of 

voltages Vr for r=1 to n. Since the E field has the solution E(z-vt) everywhere 

in the cross sectional plane then each voltage has the same argument and 

hence the voltage column vector is [V(z-vt)].  

 

 

Fig. 6.1 Illustration of the N-wire line with coupling capacitance. 

 

Let the current flow on each conductor be described by the vector [I]. The 

loss of charge on the wires over an incremental length dz is given in (6.1) 

where [C] is the capacitance matrix with the necessary and sufficient 

conditions on realisability being that [C] is hyperdominant i.e. all off diagonal 

terms are negative and the sum of all rows and columns are non-negative. In 

the limit, (6.1) is equivalent to (6.2). 

     VCzQ   (6.1) 

 
    VC
z

Q





 (6.2) 

With the definition of current, (6.2) is equivalent to the differential equation in 

(6.3a) which gives the loss of current along the lines. A new matrix which 

can be called an inductance matrix is defined with respect to loss of voltage 

along the lines as in (6.3b). 

 
     
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
 (6.3a) 
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 (6.3b) 

Eliminating [I] and [V] in (6.3a) and (6.3b), we obtain (6.4) which can then be 

expressed as in (6.5) since [V] and [I] have the argument (z-vt). 
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(6.4) 

 
     
      ''''

''''
2

2

ILCI

VCLV








 (6.5) 

 

6.2.2 Modes of propagation 

Assuming there is a single mode of propagation in the N-wire line, (6.5) is 

equivalent to in (6.6). For a solution of V’’ we have (6.7) which defines the 

relation between L and C. 

         0''12  VCL  (6.6) 

     1

2

1 
 CL


 (6.7) 

Considering case of multi-mode propagation, since wave propagation along 

the z axis can be expressed by the generalized form of ����, voltage in (6.5) 

is derived as in (6.8). 

      VCLV 22    (6.8) 

We can now define characteristic impedance and admittance matrices as in 

(6.9). Using the characteristic admittance and impedance matrices, the 

general telegrapher’s equation in (6.5) can be written as in (6.10). 

 
   
   CY

LZ








 (6.9) 

 ']'][][[']'[

']'][][[']'[

IZYI

VYZV




 (6.10) 

In general, a solution of V requires the condition in (6.11) that the 

propagation constant of each mode is the corresponding eigenvalue of 

matrix YZ. 
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      012  YZ  
(6.11) 

 

Thus for a single mode of propagation, [�] = [�]�� apart from a scalar 

multiplier. In general this is not the case and (6.11) is a complex multi-valued 

function with N solutions for � all connected by branch points of the square 

root variety. The modes must all exist simultaneously with N positive 

solutions representing forward waves and N negative solutions representing 

waves travelling in the opposite direction [110]. 

 

Since there are multimode propagations, the column vector of voltage [V] 

can be expressed in (6.12) which states that each node voltage V is a linear 

combination of N mode voltages Ve. The same applies to the node current [I] 

which is a combination of N mode current Ie. 

 ]][[][

]][[][

eI

eV

IXI

VXV




 (6.12) 

Each Ve and Ie corresponds to a mode of propagation along the z axis of the 

form ����. Substituting (6.12) into (6.10), we have (6.13) in which [��] is a 

diagonal matrix and [����] is a column vector. 

 
]][][][[]][][[

]][][][[]][][[
2

2

z
I

z
I

z
V

z
V

eXZYeX

eXYZeX














 (6.13) 

The solution of (6.13) is found in (6.14) which is transformed into (6.15)by 

matrix inversion which shows that [��] and [��] are the eigenvalues and 

normalized eigenvector of matrix of [Z][Y]. 
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]][][[]][[








II

VV

XXZY
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


 (6.15) 

When the N-wire line have uniform cross section which means that the 

network have equivalent self-inductance (L1=L2=…Ln), matrix [Y][Z] is 

equivalent to [Z][Y], so that [Xv] is equal to [XI]. The N-wire line structure is 

equivalent to a network of N separated wire connected at the input and 

output by combiners. 
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6.2 Lumped element analysis for generalized 2D network 

This section shows the method for the analysis of 2D lumped element 

networks by the separation of mode. The response of the network can be 

found by equivalent circuits based on propagating modes.  

 

A generalized circuit model is given with defined characteristic matrices Y 

and Z. First, the transfer matrix of network is derived. Then the mode 

separation method for N-wire line is applied to the network and an equivalent 

circuit can be found according to the equivalence of single mode and 

input/output combiner. The transfer matrix of the network can then be block 

diagonalized and is found to be the multiplication of three sub-networks. For 

the cascading of the networks, the response can be found by method of 

image parameters. A 3
rd

 order example is given to show the analysis 

procedures.  

 

6.2.1 Method of analysis 

1. Circuit model and Y Z 

The circuit in Fig. 6.1 could be viewed as the cascading of M basic blocks 

along z-axis and the cascading is most easily described by the multiplication 

of transfer matrices. In this section, the transfer matrix of a single block 

along z-axis is derived. The circuit model for the basic block is shown in Fig. 

6.2. It is a 2N port network consisting N shunt admittance Yi coupled to the 

adjacent one by Yij. In the figure, we define the input node voltages and 

currents as V1, V2,…Vn and I1, I2,…In. The output node voltages and currents 

are V1’, V2’,…Vn’ and I1’, I2’,…In’ respectively. For this diagram, its 

impedance and admittance matrices are given in (6.16) and (6.17). 

 

Fig. 6.2 Generalized circuit model. 
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2. Transfer matrix 

The input and output node voltages satisfy the equations in (6.18) and the 

node currents satisfy the conditions in (6.19). IYij represent current in 

inductance Lij. 
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Substituting the inductance currents in (6.20) into (6.19), we have (6.21). 
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(6.21) 

Re-organizing (6.18) and (6.21), we have (6.22) in which V and I are vectors 

of voltages and currents at the input nodes. Y and Z are matrices defined in 

(6.16) and (6.17). D is an N by N identity matrix. By simple matrix operation, 
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(6.23) can be derived which is a description of the transfer matrix of the 

network shown in Fig. 6.2.  
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3. Decoupling of modes 

It is shown in the analysis of N wire line that node voltages and currents can 

be expressed by the linear combination of mode voltages and currents. The 

relation is shown in (6.24) and (6.25) in matrix form where Vmi and Vmo are 

the input and output voltages of each mode. 
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Substituting (6.24) and (6.25) into the transfer matrix in (6.23), we have 

(6.26), which can be derived as in (6.27) according to (6.15). 
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When the matrix Z has uniform elements, that is Z=z0*D, (6.28) can be 

derived from (6.15). Then (6.27) is equivalent to (6.29). Since the four block 

matrices in (6.29) are all diagonalized, it represents the transfer matrix of the 

de-coupled network in which the transfer matrix of a mode is independent of 

the other modes.  
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With (6.24), (6.25) and (6.29), the transfer matrix of the network is given in 

(6.29) which is the multiplication of three sections. 



- 149 - 

    

    

































































































'

'

0

0

0

0

0

0

0

0

1

1

2
0

2

0

2
0

2

0

I

V

X

X

Dz

DzD

X

X

I

V

Dz

DzD

X

X

I

V

X

X

I

V

I

V

I

V

mo

mo

I

V

mi

mi

I

V




 (6.30) 

 

4. Equivalent circuit 

According to the definition of transfer matrix in (6.31), the matrix in (6.23) 

can be re-organized so that the transfer matrix of the 2N-port network can is 

as shown in (6.32). 

 [V1 I1 V2 I2 … Vn In]
t=[T][V1’ I1’ V2’ I2’ … Vn’ In’]

t (6.31) 
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The transfer matrix T in (6.32) can be viewed as a block matrix of N by N 

elements. Each element consists of a 2 by 2 sub-matrix. When the circuit 

has uniform elements, the transfer matrix T can be block diagonalized. Then 

the matrix T is a multiplication of the block eigenvector matrix and the 

diagonalized matrix Tc1 as in (6.33).  

      outcin TTTT 1  (6.33) 

The multiplication of transfer matrices represents the cascading of networks. 

In this way, the network in Fig. 6.2 can be viewed as the cascading of three 

sections. The first and last sections can be viewed as input and output 

combiners whose transfer matrices are Tin and Tout. These transfer matrices 

satisfy the condition in (6.34). They can be derived from the eigenvector 

matrix Xv as in (6.35)according to (6.30) and Vij represent the element in row 

i and column j of matrix Xv. 

     DTT outin   (6.34) 
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The matrix Tc1 is given in (6.36). Each diagonal block of matrix Tc1 is a 2 by 2 

matrix which is the transfer matrix of a 2-port network as shown in Fig. 6.3.  
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Fig. 6.3 Equivalent circuit of a mode. 

 

The values for Yi-1,I’ can be derived from the corresponding eigenvalue γ
2  

in 

as in (6.37).  

   2
1,11 ' kii ZYY    (6.37) 

As a result, the circuit in Fig. 6.2 which has N shunt admittance along x-axis 

is divided into N 2-port sub-networks combined by input and output 

combiners. These 2-port networks have no interaction with each other and 

are a direct representation of propagating modes.  

 

5. Image parameters 

The total transfer matrix for M blocks along the z direction is given in (6.38) 

with simplifications. The transfer matrix in (6.38) is equivalent to a network 
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consisting of N branches combined at the input and output by 2N-port 

combiners whose transfer matrices are Tin and Tout. Because each of the 

Tcimatrix is block diagonalized, each branch supports the propagation of one 

mode and the equivalent circuit is shown in Fig. 6.4. For each branch, the 

method of image parameter can be applied. 
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Fig. 6.4 Illustration of the equivalence of 2-D waffle-iron filter. 

 

Fig. 6.5 Illustration of the network for each branch. 

As each branch in Fig. 6.4 is periodic, the transfer matrix of each branch can 

be found by the method of image parameter. The equivalent circuit of such a 

branch is shown in Fig. 6.5.  

 

Yi’ and Zi can be derived according to Fig. 6.3. With the even and odd mode 

admittance defined in Fig. 6.6, the transfer matrix of M cascaded section is 

given in (6.39) with γ and Zi given in (6.40).  



- 152 - 

  '
2

1
1YYe                       

1

1 2

2

'

Z

Y
Yo   

Fig. 6.6 Even and odd mode admittance of a basic section. 
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6. S parameters 

 

Fig. 6.7 Illustration of the node voltage and current for waffle-iron filter with 
2N nodes. 

 

With the total transfer matrix [T] of the 2N-port network, its S parameter can 

be derived with given source and load resistances. The complete circuit is 

illustrated in Fig. 6.7 with source voltage ei, source resistance Rs and load 

resistance Rl. The source voltages and port voltages are related as in (6.41) 

while the load voltages and load currents are related as in (6.42). With the 

2N port transfer matrix in (6.38), we can substitute the equations in (6.41) 

and (6.42) to replace Vi and Ii’. Then after some re-arrangement, an N by N 

matrix T’ could be derived as in (6.43) which states the voltage transfer ratio.  

 siiii RIeV   
(6.41) 
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Considering the 2N port network in Fig. 6.7, the output voltage Vi’ can be 

found when source voltage ei is given according to (6.43). From the previous 

discussion we know that when input voltages are equivalent to an 

eigenvector of matrix [Y][Z], the 2D network support a single mode of 

propagation whose propagation constant is equivalent to the corresponding 

eigenvalues. To study this single mode of propagation, the network in Fig. 

6.7 can be viewed as a 2-port network and its power transfer ratio can be 

found as in (6.44) where the total input and output power are the summation 

of the input and output power of each discrete port. Then an equivalent S21 

can be found as in (6.45). 
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6.2.2 N=3 example 

It is instructive to imagine constructing a metamaterial which supports a 

single mode of propagation. Consider the simplest metamaterial where the 

transverse network is an array of three capacitors to ground with coupling 

constrained to adjacent capacitors as shown in Fig. 6.8. The capacitance 

matrix is given by (6.46). 

 

Fig. 6.8 Circuit model of the metamaterial with 3 transversal nodes. 
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And the inverse matrix is given in (6.47)where ∆= |�| = ��������� − ������
� −

������
� . 
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Thus although the capacitance matrix is sparse the inductance matrix is full, 

with each inductor coupling to all the others. Any attempt to construct a 

metamaterial with a single mode of propagation would require the 

construction of this complex matrix with all inductors coupling all the others 

despite the capacitors not coupling. This is impossible to achieve in practice 

and indeed none of the metamaterials published in the literature attempt to 

do this. Consequently all must support multiple modes of propagation. It is 

the interference between these modes which creates negative refraction as 

we demonstrated in [111]. 

 

Considering the case of multimode propagation, the network in Fig. 6.8 has 

3 nodes in the transversal plane and infinity sections cascading along the z 

direction. The vertical capacitances Cy represent the couplings to ground. 

The horizontal capacitances Cx represent the couplings between adjacent 

nodes. The inductance along z direction represents self inductance of the 

wire. The admittance and impedance matrices of a basic section are given in 

(6.48) and (6.49). 
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When Cx=1, Cy=2 and Lz=2, the characteristic matrix is given in (6.50).  
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The eigenvalues of (6.50) are 4p
2
, 6p

2
 and 10p

2
 which corresponding to 

propagating constant of ±2� , ±√6� and ±√10� for the three existing 

modes. The normalized eigenvectors are given in (6.51).  
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For sinusoidal wave, the eigenvectors represent the input voltage at the 

three nodes which will excite the eigenmode with corresponding 

eigenvalues.  

   (a) 

 (b) 

         (c) 

Fig. 6.9 Equivalent circuit model 3 nodes network with the excitation to three 
modes. 

 

The first eigenvector represents equal voltages at the three input nodes. 

This case is equivalent to an even mode excitation, so that an even mode 



- 156 - 

analysis can be applied as shown in Fig. 6.9(a) providing the equivalent 

circuit with propagation constant of � = ±p����� = ±2p.  

The second eigenvector represents a zero voltage at the second node and 

the equivalent circuit is shown in Fig. 6.9(b). The propagation constant of 

this mode is � = ±p���(�� + ��) = ±√6p.  

For the third eigenvector, the voltage across Cy is V0 and the voltage across 

Cx is 3V0 which provides an equivalent capacitance of 3Cx. As a result, the 

propagation constant is � = ±p���(�� + 3��) = ±√10p. 

6.3 Waffle-iron filter 

Waffle-iron was invented by S.B. Cohn in the 1950s [112] and developed by 

Leo Young in the 1960s [108]. It is a waveguide lowpass filter which has a 

wide stop band. Due to the effect of cut-off frequency of waveguide, the filter 

exhibits a bandpass characteristic. The design is developed from ridged 

waveguide filter and has the advantage of little spurious mode in the stop 

band. A photo of waffle-iron filter is shown in [109]. 

 

6.3.1 Simplified circuit model 

The circuit model of waffle-iron filter is shown in Fig. 6.10. It consists of 

bandpass resonators similar to those of combline filters that extend in 2 

dimensional. It has N resonators along x-axis connected by inductance �� 

and has M blocks along z-axis connected by inductance ��. 

 

Fig. 6.10 Circuit model for waffle-iron filter with N transversal sections and M 
longitudinal sections. 
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The impedance and admittance matrices of this circuit are given in (6.52) 

and (6.53). 
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6.3.2 N=5 example 

The example is a waffle-iron filter with 5 sections in x direction and 10 

sections in z direction. For a practical design, a half inductance is added to 

the basic section at both ends along x-axis. Such a network is illustrated in 

Fig. 6.11. The resonator is denoted as inductance L and capacitance C. The 

transversal coupling is represented by inductance Lx and the longitudinal 

coupling is represented by inductance Lz. There are two inductances at the 

end of transversal plane with the values of Lx/2. 

 

Fig. 6.11 Circuit model of N=5 waffle-iron filter 

 

For a five section waffle iron filter with the illustrated configuration, its 

eigenvectors are listed below and the values of the eigenvectors are 

independent of the values assigned to L, C, Lx and Lz. 

V1=-0.1954, -0.5117, -0.6325, -0.5117, -0.1954 
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V2=-0.3717, -0.6015, 0, 0.6015, 0.3717 

V3=-0.5117, -0.1954, 0.6325, -0.1954, -0.5117 

V4=-0.6015, 0.3717, 0, -0.3717, 0.6015 

V5=0.4472, -0.4472, 0.4472, -0.4472, 0.4472 

The values of the eigenvector represent to five sinusoidal waves which 

correspond to the five initial modes of a rectangular waveguide. The values 

of the five eigenvectors are plotted in Fig. 6.12 with fitted sin waves. 

 

Fig. 6.12 Plot of 5 sets of eigenvectors with fitted sine waves. 

 

When the input voltage is the same as a set of eigenvector, there should be 

only one corresponding mode propagating in the network. We choose C=2, 

L=2, Lx=1 and Lz=1. The S21 of these five modes are compared in Fig. 6.13. 

Each of these five modes has a passband and a different center frequency. 

 

Fig. 6.13 S21  of the five modes. 
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For any other input voltage, the resulting S21 is a combination of the five 

eigenmodes. For example, when V_input=[1, 2, 3, 0, -2], the S21 is given in 

Fig. 6.14. The modes are combined to provide a wider passband. 

 

Fig. 6.14 S21 with input voltage 1, 2, 3, 0, -2. 

 

When the input voltage has the magnitude of the first eigenvector with a 

phase difference, the S21 is compared to that of the first mode in Fig. 6.15. 

This S21 is the same to that of the first mode but distorted in the stopband 

due to the existence of other modes. 

V1= -0.1954 je  , V2= -0.5117 2je  , V3= -0.6325 3je  , V4= -0.5117 4je  , V5= -0.1954 5je  

 

Fig. 6.15 S21 of the first mode with input voltage at an angle. 
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6.3.3 EM model and simulation 

An EM model of a waffle iron filter with five section in the transversal plane 

and ten sections in the longitudinal plane is simulated in HFSS as shown in 

Fig. 6.16. There are five propagating mode in this structure. The transfer 

functions of the first and fifth mode are shown as green lines in figures 

below. As the five propagating modes have little interaction with each other 

as shown in Fig. 6.17, the response of the EM simulation is quite similar to 

that of a circuit model. 

 

 

Fig. 6.16 HFSS model of waffle-iron filter. 

 

Fig. 6.17 Simulated S parameter of the first and fifth mode. 

 

In actual design, input and output matching waveguides are included as 

shown in Fig. 6.18. As the size of the input and output waveguide is 

determined by the first mode, only the first mode maintains a flat passband 

as shown in Fig. 6.19. The responses of higher order mode are distorted due 

to the mis-matching. And these distortions of higher order modes cause the 

spikes in the first mode. 
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Fig. 6.18 HFSS model of waffle-iron filter with input and output waveguide. 

 

Fig. 6.19 Simulated S parameter of the first and fifth mode. 

 

6.3.4 Improved configuration 

To enhance the performance of a waffle iron filter, one way is to get better 

matching with the input and output rectangular waveguide. And the other is 

to modify the structure so that the higher order modes having the same 

bandedge leaving the stop band completely spurious free.  

 

Fig. 6.20 Circuit model for an alternative waffle-iron filter configuration 
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The second option can be achieved by a structure based on a modified 

circuit model as shown in Fig. 6.20. In this circuit, each of the inductance 

couplings is modified to include a capacitance coupling. 

 

When L=2, C=2, Lx=1, Cx=0.5, Lz=1, Cz=0.5, the response of the circuit 

model is shown in Fig. 6.21. All the five modes have a similar bandage in the 

higher frequency side. When the input voltage corresponds to that of the first 

mode with a phase shifter, the insertion loss is shown in Fig. 6.22. 

 

Fig. 6.21 S21 of the five modes of the modified configuration. 

 

Fig. 6.22 S21 of the first mode when the input has a phase shift. 
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Chapter 7  

Conclusions and Future work 

The study for the theories of filter design and synthesis started in 1930s. 

Over the decades, the commonly used procedures begin with defined 

specifications. Then proper characteristic functions can be chosen. Various 

circuit networks can then be synthesized according to the applications. EM 

models are derived from the networks by direct transformation and EM 

tuning. Finally, physical structures can be built based on the EM models.  

 

Even though these procedures are well-defined in the literature, the 

development of communication systems requires filters of high performance 

and more complicated architectures while the issues of size and cost are 

also critical. The work in the thesis consists of four parts, which are 

extensions to different aspects of filter synthesis. In the first two parts, 

various ways of incorporating dissipations are considered. Resonator loss is 

important in filter design because it determines its overall size. The method 

of filter synthesis with non-uniform Qs provides an effective way of reducing 

filter size.  

 

The lossy synthesis method in Chapter 3 is an extension to the lossless 

coupling matrix synthesis given in [7] and [8] which first derives the 

admittance parameters from the characteristic functions using the equation 

of power conservation, then generate a canonical CM that can be 

transformed to required configurations. The lossy synthesis method 

presented is based on a new condition for the lossy characteristic 

polynomials to replace the power conservation. When the lossy transfer 

function is defined, solutions to the characteristic polynomials are found 

under two conditions. In the first one, S11 equals to k∙S22 where k is a 

constant. This an even and odd mode of analysis applied to asymmetric filter 

responses. In the second one, the loss distribution is given and thus is a 

non-uniform predistortion. The method can 1) find the reflection function 

from the transfer function when unitary condition is not satisfied; 2) derive 

the expressions for the complex admittance parameters and 3) synthesize 

the lossy CM with prescribed loss distribution.  
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As the method is completely based on the given transfer function and loss 

distribution, future work can be concentrated on deriving the optimum lossy 

transfer function and Q distribution so that the filter designed has the small 

dimensions with varied cavity sizes.  

Alternatively, an optimum lossy transfer function can be defined considering 

the return loss. As with loss compensation, the return loss is usually 

increased, transfer functions can be tuned to deliver the required return loss 

level.  

For the method of lossy synthesis presented in section 3.3, the synthesis 

starts with a defined passive insertion loss and the derived CM has a 

positive imaginary part which represents dissipation. When various 

transformations of CM are applied, the imaginary part might be negative 

which is non-realistic. It is thus desired to include additional conditions on 

the transformation so that the passivity of the network can be guaranteed.  

Generally speaking, the method of lossy synthesis can be used as a starting 

point for lossy filter design as it provide more variables tunable for filter 

performance and size. While the method presented considers only the 

resonator loss, the coupling loss can also be taken into consideration. While 

two specific solutions are discussed in the thesis, it is also possible that 

there are other solutions that can be used for a specific design. 

 

The design of parallel connected network in Chapter 4 begins with 

discussions on the effect of dissipation on a single resonator with 

consideration of bandwidth and resonant frequency. Then for parallel 

connected networks, an approximated analytical solution to the loss 

distribution that gives a specific transfer function is given. Gradient based 

optimizations can also be applied for perfect transmission and reflection 

zeros and an optimum passband insertion loss.  

The method presented can deliver good return loss and insertion loss with 

non-uniform Q distributions based on non-perfect Chebyshev functions. As a 

general rule, for better performance, high Qu resonators are the ones with a 

smaller bandwidth or the ones with near bandedge resonant frequencies.  

The future work is to improve the applicability of the method to cavity filters 

as the parallel connected network is usually difficult to implement for such 

filters using coaxial or dielectric resonators. One way of doing this is to 

replace the couplings to the non-resonating nodes at the input and output by 
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a resonator since multiple couplings to a resonator are much easier to 

achieve.  

Examples are given in the thesis for filters with a low loss path and a high 

loss path. Since the two paths can be realized using coaxial and microstrip 

technologies, a proper arrangement of the structure can save much size. 

Another future work is to implement the method to higher order filters.  

 

Chapter 5 is on the coupling matrix synthesis for diplexers. In the first 

method, diplexers are designed using common junctions and channel filters. 

While the port length of common junction can be tuned to deliver optimum 

channel isolation and insertion, CMs are synthesized with a frequency 

variant load.  

While the method of iteration guarantees the position of reflection zeros of 

the original Chebyshev responses, the return loss may not be equal ripple 

with a varied load. A further algorithm can be applied to change the position 

of reflection zeros so that equal rippled return loss can be found.  

The method may be extended to derive the network for a diplexer or 

multiplexer when proper circuit models are used to represent junctions and 

connections. As the load is general, the method may also find application in 

designing a filter connecting to other devices such as an amplifier.  

 

In the second method, directional filters are used for the design of diplexers. 

Methods are given for the synthesis of single and cascaded DF sections. 

Example of DF with coaxial resonators are also given. One of the advantage 

of designing diplexers with DFs is that it provide good isolation between the 

two channels as they are realized by the return loss and insertion loss of a 

filter response. 

 Since each DF section is coupled externally to other sections by specific 

length of 50Ohm transmission lines and is coupled internally to the 

resonators by non-resonating nodes, it is possible to replace the non-

resonating nodes by resonators so that the phase length between sections 

can be realized by couplings. Also, different arrangement for the cascading 

can be experimented for the best performance.  

 

Chapter 6 is on the circuit analysis of uniform 2D lumped element networks. 

The work presented here is a supplement to the study of metamaterial in 
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[111]. First, wave propagation in multi-wire line is studied. Then method of 

analysis is given for lumped element networks 2D networks and it is shown 

that for a 2D network with N by M nodes, there exist N mode of propagation 

within the structure. The input and output response of the structure is a 

combination of the propagating modes. Finally, the method of analysis is 

verified by the simulation of waffle-iron filters. It is thus shown that for a 

general non-uniform 2D structure that can be modelled by a lumped element 

network, there are always multiple mode of propagation. Single mode of 

propagation used in much of the discussion of metamaterial occurs only with 

a specific arrangement of input voltages or when the inductance matrix is the 

inverse of the capacitance matrix. 

The method of analysis may be used for the synthesis of lowpass filter 

networks using waveguide or waffle-iron structures. And the spikes at stop 

band due to a misalignment at input and output port can be eliminated by a 

varied filter structure as discussed in section 6.3.4. 
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