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Abstract

The research project described in this thesis concentrates on the study, and
application of specific channel coding techniques, in particular, low-density
parity-check (LDPC) codes, iterative decoding on Tanner graphs, and their
application on joint iterative receivers based on the turbo principle, previ-
ously proposed.

The construction of random LDPC codes that fulfil certain desirable char-
acteristics, such as large girth, specific p and -~y values, and acceptable BER
and FER performance for short code lengths, traditionally requires a high
degree of processing power (i.e. CPU cycles) to run stochastic routines that
firstly search within all the possible combinations for those ones that match
the desired characteristics of the LDPC matrix, and secondly determines the
bit-error rate (BER) and frame-error rate (FER) performance.

The construction of well structured LDPC codes by means of algebraic
methods has provided LDPC codes that achieve excellent performance, with
desirable structure on their LDPC matrices. However, from the universe of
LDPC matrices, those ones created through well structured procedures are
a small group. Multiple procedures to modify their characteristics such as

length and rate have assisted to increase the pool of LDPC codes based on

11



well structured procedures.

This thesis study the problem of constructing random LDPC codes with
particular length, girth, and column weight as design parameters, with re-
duced processing power, while providing, at the same time, a desirable struc-
ture to allow efficient use of the memory and of the parallel processing ca-
pacity to reduce delay through efficient encoding and decoding.

Based on previous studies that analysed the same problem, an algorithm
is introduced to construct the Girth-Partition and Shift (GPS) LDPC codes,
which are half-rate quasi-cyclic (QC) LDPC codes. Several GPS construc-
tions are analysed over the AWGN channel and the flat-fading channel. The
efflect on the BER and FER performance from variations on their design
parameters, 1s included in this study.

This work also includes the BER and FER performance of the concate-
nation in parallel of different LDPC codes, some of which are based on well
structured procedures, such as Euclidean Geometries (EG) and Projective
Geomtries (PG), and Margulis constructions based on the Cayley graph,
while the rest are based on random procedures, such as Graphical Models
(GM) and GPS-LDPC codes. The aim of the analysis of this scheme, com-
bined with the referred LDPC code constructions, include the improvement
of the BER and FER‘ performance for short code lengths and the reduction
of the encoding complexity.

The BER and FER performance achieved by the parallel concatenation of
the previously mentioned LDPC codes, is further analysed in a joint demap-
ping, parallel channel decoding and source decoding system. The impact of

each component on the overall system performance is also examined.
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Chapter 1

Introduction

Channel coding has become an indispensable tool in modern communication
and digital storage systems that demand efficient and reliable digital data
transmission. The emergence of large scale, high speed data networks that
exchange, process and store digital information for commercial, governmental
and military applications related to an ever growing number of services and
users, requires channel capacity-approaching coding and decoding techniques.
The conception of channel coding and transmission schemes dedicated to a
particular application is based on a complex set of design factors such as
the coding gain, coding rate, bit error rate (BER), delay, implementational
complexity and channel characteristics [1].

The evolution of channel coding is full of occasional breakthroughs that
gave way to Turbo codes (TC) [2] and Low Density Parity Check (LDPC)
codes (3], and the Maximum A-Posteriori (MAP) decoding algorithm [4] that
applied to factor graphs [5] is known as sum-product or belief propagation

algorithm. Once the potential of such coding and decoding techniques was



recognized, new architectural designs were required to efficiently implement
these coding and decoding techniques.

An LDPC matrix understood by means of its factor graph, also known as
Tanner graph [6], is useful to derive procedures that modify the origial struc-
ture of the parity-check matrix in such a way that improvements on the BER
and FER performance are achieved. Factor graphs have made possible the
derivation of unified receiver designs that incorporate previously independent
sections, as well as channel models, achieving excellent performance |7|.

Techniques considered to determine converge thresholds and performance
boundaries on LDPC codes and iterative subsystems, have atracted much
atention lately, especially Density Evolution (8], Gaussian Approximation (9]
and Extrinsic Information [10].

The construction of LDPC codes through structured procedures 1s still
under research. LDPC codes belonging to this family, achieve good BER and
FER performance, but the number of codes that fulfil the requirements of
length and rate demanded by operating and new communication systems, 1S
still limited.

The theory that allows the design of iterative receivers by means of factor
graphs, is presented in [7], but performance characterisation of such joint 1t-
erative receivers is still under research. An important contribution to accom-
plish such task, is presented in [11] and [12]. The work presented in [13], [14],

and [15] makes use of all the previously mentioned contributions to derive a

joint iterative LDPC recerver.
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1.1 Summary of previous research results

In [16], a complete and detailed presentation of structured LDPC codes is
presented, including the basic characterisation of the codes for each construc-
tion. The performance of LDPC codes whose construction is based on Finite
Geometries, Balanced Incomplete Block Designs, Geometry-based Designs,
and Turbo-structures, is analysed comparatively. Most of these codes are
regular haltf-rate LDPC codes. It is concluded that codes with large girth
converge taster under iterative decoding and improved the performance in
the high E;/Ng region, by slowing down the onsetting of the error floor.

In [17], three new classes of structure LDPC codes with large girth are
introduced. These codes are regular LDPC codes with column weight p = 2.
The codes included under these construction are firstly the rate 1/2 with girth
16, secondly, the rate 1/3 with girth 20, and thirdly, a group of LDPC codes
with variable rate and girth 12. These codes perform better than randomly
created LDPC codes with similar coding rate.

In [7], factor graphs are used to derive joint iterative receivers for a broad
range of channel models and codes. Using the model structure, the joint
likelihood function is factorised to later generate the corresponding factor
graph, and derive the updates. The channels modeled in this work include
the a block fading channel, noncoherent Rayleigh channel with pilots every
symbol and every third symbol, and multi-path fading channel.

In [13], [14], and [15], the concatenation in parallel of two randomly cre-
ated LDPC codes 1s proposed. BER and FER performance curves are de-

rived through simulations over the AWGN channel and the flat Rayleigh
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fading channel, after decoding with the sum-product algorithm. This study
includes EXI'T chart assuming a Gaussian distribution of the extrinsic in-
formation and of the a-priori information, and concludes that EXIT graphs
assist on the design of LDPC codes, since the conditions for convergence of

the individual (constituent) LDPC codes must met.

1.2 Thesis outline

Based on the comments from the previous section, and a review of existing
code construction publications, the work presented is directed towards the

following objectives:

1. Develop new algorithms for the construction of LDPC codes, or en-
sembles of LDPC codes, to overcome the limitations present in state-

of-the-art LDPC codes, especially performance, length, and rate.
2. Contribute to the characterisation of the existing types LDPC codes.

3. Derive new applications for existing constructions of LDPC codes and

for existing types of LDPC codes.

4. Contribute to the characterization of existing joint iterative subsys-

tems.

5. Analise the performance of state-of-the-art LDPC codes applied to ex-

isting joint iterative subsystems.
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Chapter 2

In this chapter, complementary background material is provided: this ma-
terial is needed for the full understanding of our research results. A litera-
ture review of some low-density parity-check (LDPC) code constructions, the
techniques for code characterisation, and some applications as stand-alone

channel decoders, and as joint-iterative receivers.

Chapter 3

This chapter 1s devoted to the introduction of a new algorithm for the con-
struction of random LDPC codes.

This research complements the work presented in [18|, where the construc-
tion of LDPC based on Graphic Models (GM) is considered as an option to
construct powerful LDPC (n,2,k) LDPC codes. The novelty of this study is
based firstly, on the presentation of a new algorithm to create LDPC codes
which are quasi-cyclic, in order to increase the universe of LDPC codes con-
structed by this means, secondly, the reduction on the number of operations
required to search for solutions that satisfy the design parameters of the
LDPC code, when compared to the Graphic Model procedure, and finally,

the characterisation of the LDPC codes constructed through this algorithm.

Chapter 4

This chapter presents the performance of different types of LDPC codes when

concatenated in parallel.

This research complements the work presented in (15|, where the per-
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formance of the parallel concatenation of random LDPC codes, designed to
contain specific parameters, is analysed. The novelty of this work relies on
the performance analysis of different types of LDPC codes, random and well
structured, that fulfil the general requirements established by previous work.
This analysis also includes further conditions according to which, the appli-
cation of this LDPC codes in a parallel concatenated scheme, prove benefitial
in terms of BER and FER. Performance improvement for short code lengths
can be achieved with the LDPC codes proposed under parallel concatena-
tion. Although efficient encoding and decoding techniques is not part of this
research, it is important to mention how the types of LDPC codes analysed
in this chapter can benefit from such state-of-the-art encoding and decoding
techniques, due to their cyclic and quasi-cyclic structure. One type of LDPC
codes included in this Chapter, are the randomly created Girth-Partition and

Shift (GPS) LDPC codes, whose construction is introduced in Chapter 3.

Chapter 5

This chapter presents the analysis of a joint iterative receiver consisting of
a demapper, a parallel LDPC decoder, and a source decoder. The modihca-
tions required to make it feasible the exchange of soft-information for each
one of the contituent sections, is already well documented. The novelty of
this work relies on the analysis of the constituent subsystems, to understand
the individual impact on the overall performance, and possibly determine

which design parameters are preferable for this joint scheme.
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Chapter 6

This final chapter includes overall conclusions, statements of originality and

proposed directions for future work.

1.2.1 Appendix A

This appendix includes the generator polynomial vectors and the circulant
vector that define the Euclidean Geomtry (EG) and Projective Geometry

(PG) codes, used in various chapters of this dissertation.

1.3 Publications

1. J.C. Serrato, and T. O’Farrell, “Parallel Concatenated Gallager Codes
using Euclidean and Projective Geometry LDPC Codes”, The Annual

London Conference on communications (LCS 2004), University College

London, UK, 13-14 Sept. 2004.

2. J.C. Serrato, and T. O’Farrell, “Joint Demapping and Source Decoding

for Multilevel Modulation”, IEEE Wireless Communications and Net-

working Conference (WCNC 2006), Las Vegas, Nevada, USA, 3-6 Apr.
2006. '

3. J.C. Serrato, and T. O’Farrell, “Structured Parallel Concatenated LDPC
codes”, The Annual London Conference on communications (LCS 2006),

University College London, UK, 14-15 Sept. 2004.

4. J.C. Serrato, and T. O’Farrell, “Girth-Partition and Shift LDPC Codes”
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Chapter 2

Background and Literature

review

2.1 Purpose

This chapter has the following objectives. Firstly, to present a detailed ex-
planation of Turbo Codes (TC), Low-Density Parity-Check (LDPC) codes,
Factor Graphs, Iterative Decoding and the Design of Iterative Subsystems.
Secondly, to present the state-of-the-art in the previous mentioned topics.

Thirdly, to highlight the shortcomings of these coding approaches. Finally

the chapter presents a general framework for the studies to be undertaken in

this thesis.
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2.2 Turbo Codes

Turbo codes have been studied in dept since their discovery in 1973 [2] and
have been included for some time in communication systems standards. The
turbo principle has also been applied to a variety of receivers, after making
modifications to the original encoding and decoding processes. The perfor-
mance of a joint demapper and source decoder as well as the parallel concate-
nation of well structured LDPC codes 1s analised, making use of the turbo
principle. Therefore, understanding the characteristics of the turbo codes i1s

essential to this work.

2.2.1 Encoding of Turbo Codes

A turbo code is the parallel concatenation of two codes. The first design
considered a subclass of convolutional codes known as Recursive Systematic
Convolutional (RSC) codes, where two rate r = 1/2 systematic codes were
concatenated in parallel, having the input data interleaved before being fed
into one of the two encoders. As the encoders are systematic, meaning that
one of the outputs is the input itself, and considering that both are fed with
the same input, the systematic output of one of the encoders does not need
to be transmitted. The overall code rate is r = 1/3, although higher code
rates can be obtained by puncturing of the parity bits. Fig. 2.1 shows the

block diagram of the turbo encoder, where z information bits are encoded to

produce the codeword of length D + P.
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Figure 2.1: Turbo Encoder block diagram

2.2.2 Decoding of Trellis structured codes

Any decoding algorithm 1s based on either the idea of finding the most likely
transmitted information sequence (e.g. the Viterbi algorithm) or on finding
the most likely transmitted information bit given the coded sequence (e.g.
the Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm [19]). The first type of
decoder is called Maximum Likelihood algorithm, while the second is called
a Maximum a-posteriori probability (APP) algorithm.

The error performance of both, the Viterbi and the BCJR algorithms, is
the same in the case of equally likely information bits, and therefore the first
one is preferred due to its lower complexity. However, when the information
bits are not equally likely, better performance is achieved with the BCJR
algorithm [20).

The BCJR algorithm used in a turbo like structure can deliver superior
performance because the a-priori probabilities of the information bits change
from iteration to iteration. Also, its inherently Soft-Input Soft-Output na-
ture is very well suited for iterative decoding. On the other hand, the Viterbi

algorithm is inherently a Hard-Output algorithm that can be modified to de-
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liver a Soft-Output known as the Soft Output Viterbi Algorithm (SOVA).
which 1s more complex and has better performance than the Viterbi algo-
rithm, but is simpler and has a poorer performance when compared to the
iterative BCJR decoding algorithm.

Optimal decoding of turbo codes is impractical, as the complexity is too
large. The suboptimal iterative decoding algorithm presented in [2], which
breaks the overall decoding problem by decoding each of the constituent codes
with locally optimal solutions sharing information in an iterative fashion, of-
fers good performance at much lower complexity. Each decoder includes
soft-information at the input and produces soft-information at the output
which 1s exchanged and used as a-priori information by the other decoder.
During the first iteration no a-priori information is considered. The decoding
process continues until some previously setup number of iterations is com-
pleted. Iterative decoding obeys a law of diminishing returns such that the
incremental gain of each additional iteration is less than that of the previous
iteration. The decoding process may not always converge.

A drawback of turbo codes, when compared to LDPC codes, is the dif-
ference in the number of decoding iterations spent for each frame, since the
turbo decoder has no way to check if the estimated codeword is a valid one,
and therefore it is necessary for each received codeword to go through all the

iterations previously setup.

It is because of the small number of low weight codewords that turbo
codes perform well at low E,/Ny values; however, the performance of turbo
codes at higher E,/Np values becomes limited by the relatively small mini-

mum distance of the code. The goal of turbo code design is to reduce the
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Figure 2.2: Turbo Decoder block diagram

multiplicity of low weight codewords. The BER performance improves as the
block size Increases at the cost of increased latency. The interleaver design
is also a factor only at high E,/Ng values, as long as the inputs at the two
encoders are sufficiently uncorrelated to avoid a negative effect on the low
Ey /Ny region.

The choice of the constituent Recursive Systematic Convolutional (RSC)
encoder and the constraint length do not significantly influence the BER
performance. Fig. 2.2 shows the structure of the turbo decoder.

Given the received sequence r, the BCJR algorithm minimizes the BER,
by maximizing the a-posteriori probability P(4; = u;|r) that the information

bit u; is correctly decoded, having the estimate 4;. The following description
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of the algorithm is based on the log-likelihood ratios, or L-values. The de-
coder inputs the received sequence r and the a-priori L-values of the informa-

tion bits L, (u;) ,l =0,1,..., A — 1. The algorithm calculates the a-posterior:

L-values (APP L-values) of each information bit through eq. 2.1,

P (u; = +1jr)
L =In|——=
(w) = In [P (u; = —1\r)] (2.1)
and the decoder output is given by eq. 2.2
A +1 V L(ul) >
U — (22)

—1 V L(’U,l) < 0

In iterative decoding, the APP L-values can be taken as the decoder
outputs, resulting in a SISO decoding algorithm. The a-posteriori probability

equation is then modified to get eq. 2.3

p(u; =+1,1) Z(sr,s)eEfFH p(si=8,8141 =5, r) (2.3)
P(r) P(r) |

P(u = +1r) =

where Z?L is the set of all state pairs s; = s and s;41 = s on the trellis
diagram, that correspond to the input bit u; = +1 at time t = [. Reformu-

lating the expression P (u; = —1,r) in the same way, the APP L-value can

be written as eq. 2.4

l

(2.4)
Z:(s".,,,:s)EZ:”:_1 p(si=¢5, 8141 =35, r)

> aesu=t1 P (st =8, 8141 = $,T)
L(uz)=ln{ (2)€2, }

with p (s, s,r) defined by eq. 2.9,
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— P (S’: S, i<, I, rt>l)
p(s,s,r) (2.5)
= p(resifs) p(s,1ils') p (', rect)
where after applying the Bayes’ rule and considering that the probability of

the received branch at time [ depends only on the state and input bit at time

[. Next, defining «, 3, and «y through eq. 2.6,

oy (8') = p (s, reci)
v (8, 8) =p(s,1fs) (2.6)
Bi1 (8) = p (res1]s)

the expression for the probability a;1(s), is rewritten as eq. 2.7

ci1(s) = p (8 tiaiss) = 3 (s, 8) e (s (2.7

s' oy

and similarly, the expression for the probability Bi41 (s), is rewritten as eq.

2.8

Gi(s)= D, (s, s)B1(s) (2.8)

S€o41
where o7 is the set of all states at time (.

Equation 2.7 represents a forward recursion, while 2.3 represents a back-

ward recursion. The initial values for both recursions respectively are defined

in eq. 2.9,

87y (8) — ,8}{ (S) — (2-9)
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where K is the length of the input sequence. Finally, the branch metric is
defined by 2.10,

vi(s',8) =p(s,mls’) = P (u)p(r:|vi) (2.10)

where v; represents the output bits corresponding to the state transition
s’ — s at time [.

Overall, the conditions to have a successful BER performance with turbo
coding are (1) the presence of the two concatenated codes, (2) the inde-
pendence between the generated codewords through a pseudo-random in-
terleaving process, and (3) the alternate decoding that incorporates a-priori
L-values to improve its estimates, and generates a-posteriori L-values to ex-

change between decoders. These conditions are also present on the LDPC

codes.

2.3 Low Density Parity Check Codes

LDPC codes were first discovered by Gallager [3] in the early 1960s. LDPC
codes are linear block codes of length n and, just as any other block code, are
uniquely specified by either a generator matrix G of a parity-check matrix

H. If it is specified by a parity-check matrix, the code is the null space of

H. An n-tuple v={vo,v1, ..., un_1} over GF(2) is a codeword if and only i
vH? =0.
In particular, an LDPC code has the following structural properties: (1)

each row consists of p 1’s (row weight); (2) each columns consists of ¥ 1's
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(column weight); (3) the number of 1’s in common between any two columns.
denoted by A, is no greater than 1 (i.e. for any set of four points with
coordinates Pi(z1,v1), Po(Z1,v2), P3s(Z2,y1), and Py(zs,y,), at least one of
them must have value 0); and (4) both p and 7 are small compared with
the length of the code and the number of rows in H. The density d of the
parity-check matrix H i1s defined as the ratio between the total number of
1’s in H and the total number of entries in H.

The previous properties were stated in |3] and belong to regular LDPC
codes. Irregular LDPC codes follow properties (3) and (4), but have a vari-
able number of 1’s per row and/or per column. Irregular LDPC codes have
a better BER and FER performance compared to their regular counterparts
at the cost of higher encoding complexity when compared to a certain type
of regular LDPC codes known as cyclic and quasi-cyclic; however, they may
exhibit an error floor at a lower BER, in particular those ones built to achieve
a performance very close to their capacity limit. In |2 1} a procedure to lower
the error floor and allow an even better performance of irregular LDPC codes
is discussed.

A path is defined as a finite alternating sequence of imaginary vertical
and horizontal lines that join any two non-zero entries in H. Each non-zero
should not be considered more than once. A cycle is a path with the same
beginning and ending non-zero entry. The total number of non-zero entries
included in a cycle is called the length. The girth is the cycle with the
shortest length contained in H, which is always a positive even integer. An

increase on the girth has a positive impact on the performance of the code

when decoded with any type of belief-propagation algorithm [22] (message-
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passing on a bipartite graph [4]). Gallager’s third structural property implies
that the LDPC matrix should not contain cycles of length=4.

In [23] it was proved that cycle-free codes cannot support good codes,
since their cycle-free bipartite graphs provide extremely poor trade off be-
tween rate and distance for each fixed length, even though they converge
to the optimal solution. An optimal solution refers to the case where the
decoding process takes place on a cycle-free LDPC code using any type of
belief propagation algorithm; the number of updates on the bipartite graph
of the variable and check node L-values 1s a finite number; it is said that
codes whose bipartite graph present cycles cannot come to an optimal solu-
tion, since the node updating operation continues until infinity. An upper
bound on the minimum distance of cycle-free codes indicates that for codes
whose rate is higher than 0.5, the minimum distance is equal to or less than
2. The performance of a code at signal-to-noise ratios of practical interest
1s not necessarily related to the minimum distance, just as in the case of
turbo codes, nevertheless, the same paper concludes that cycle-free codes
are defined on parity-check matrices that are much too sparse to allow for a
reasonable performance.

A Tanner graph [6], is a graphical representation of an LDPC code where
the variables are lined up on one side and the parity checks on the other
(bipartite graph), having edges between variables and parity checks that
share a non-zero entry on the parity-check matrix H. There are no edges
linking variables to variables, nor parity-checks to parity-checks. A stopping
set S in a code C is a subset of the variable nodes in a Tanner graph for C

such that all the neighbours of S are connected to S at least twice. The size
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s of the smallest stopping set is termed the stopping distance s or minimum

stopping set s,.in of C and is defined as a stopping set that does not contain
a smaller stopping set within it. An LDPC code may have more than a single
Smin- |24] proved that iterative decoding cannot determine the variable nodes
contained 1in S when they are incorrect, since even if all the other bits were
known, every neighbour of S has at least two connections to the set S and
so all messages to S will be erasure messages.

Parameter s plays an important role in understanding the performance
of a code under iterative decoding over the binary erasure channel, as LDPC
codes with higher s show a better performance (25|, thus making s an im-
portant factor to consider during the design of LDPC codes. Also, it is clear
that adding linearly dependent rows to H can be advantageous, as this can
increase the stopping distance s at the cost of higher complexity and la-
tency [26]. s also explains why some LDPC codes with small girth, maybe
even some 4 cycles, have excellent BER and FER performance.

Based on methods of construction, LDPC codes can be classified into
two categories: random like codes and structured codes. Random-like LDPC
codes [27], [21] are constructed by computer search, based on certain guide-
lines and required structurel properties of their Tanner graphs, such as girth,
degree distributions of variable nodes and check nodes, and stopping sets.
Structured LDPC codes are constructed based on algebraic and combinato-
rial tools, such as Finite Geometries [28], [29], [30], [31], [32], [33], and [34].

The generator matrix of an linear LDPC code can be obtained in the same
way as for a linear block code. After manipulating the parity check matrix H,

to have it in the form: H = [P|I] where I represents the identity matrix, the



2.3. LOW DENSITY PARITY CHECK CODES 20

generator matrix is defined as G = [I|P”]. Having the information sequence
z, the codeword c is obtained by determining ¢ = z - Gmod(2).

Since the rediscovery of LDPC codes decoded with the MAP, Log-MAP
and Max-Log-MAP algorithms, different lines of research have been drawn
towards finding not just good BER and FER performance LDPC codes, but
also towards algorithms that produce structured LDPC codes that are either
regular or irregular.

Some of these procedures include Kirkman Triple Systems [35], Balanced
Incomplete Block Designs [36], and Lazebnik and Ustimenko (LU) g-regular
bipartite graph [37], among many others. Bilayer (expurgated and length-
ened) LDPC codes for Decode-and-Forward in relay channels [38], which are
capable of working at two different channel parameters and two different
rates (relay and destination), are among the state-of-the-art LDPC codes.
which are particularly useful for networks. Here, some of them are described
in detail.

Although binary LDPC codes can approach the capacity of a variety of
channels for asymptotically long block lengths, non-binary GF (q) LDPC
codes decoded using belief propagation have better performance on AWGN
and Binary Symmetric (BSC) channels and are appealing for use on bursty
channels [39]. However, belief propagation decoding for such codes is complex
and has received much attention lately [40].

Recently, some specific scenarios that include LDPC codes include [41]
and (42|. In the first one, the problem of extracting information from a
large sensor network in which sensors cooperatively deliver messages to a

mobile access point using a common LDPC codebook is analyzed. In the
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second one, 1t i1s proved that some LDPC codes can achieve secrecy and
can theretore being applied to the wiretap channel. A wiretap channel is
modeled as one transmitter £; sending k informafion bits coded into an n
bit codeword, through two different channels ch; and ch,, two receivers rq
and 79 respectively, where only r; should be capable of decoding the received
codeword c; with negligibly small probability of error, while 7, should receive
the codeword ¢, with mutual information I(n,cy) approaching zero as the
value n approaches infinity. Secrecy capacity of a wire tap channel is the
largest k/n for which secure and reliable communication is achievable.
When compared against Turbo codes over the binary-input Additive
white Gaussian noise channel, the performance of regular LDPC codes is

slightly inferior [8], although irregular LDPC codes outperform Turbo codes.

2.3.1 The construction of LDPC codes based on Gal-

lager’s random procedure

The codes presented in {3] are regular and are defined by the following guide-
lines: Let k be a positive integer greater than 1. Choose any value for p and
~v. Form a kp x k7 matrix H from ~ submatrices H;, H,,..., H, of size k x kp.
For 1< i < k, the ith row of H; contains all its p 1’s in columns (-1)p+1 to
ip. The remaining matrices are formed by doing column permutation ot H;.
The third structural property limits the number of valid permutations. Once
a valid random permutation is obtained, the submatrices that constitute H

are arranged in the form defined by eq. 2.11,
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H=| (2.11)

where the total number of ones is kpy and the total number of entries is k2 pry

and therefore having a density %

2.3.2 The construction of LDPC codes based on Finite

(zeometries

LDPC codes can be constructed algebraically based on the points and lines
of finite geometries [43]. Let Q be a finite geometry with n points and J lines
that has the following fundamental properties: (1) every line consists of p
points; (2) every point is intersected by -y lines (i.e. every point lies on 7y lines;
(3) any two points are connected by one and only one line, and (4) two lines
are either disjoint (i.e. parallel to each other) or they intersect at one and
only one point. The points and lines in Q) are denoted by A, P, ..., P, and
Ly, Lo, ..., L,, respectively. Let v=(v1,vy,...,v,) be an n-tuple over GF(2)
whose components correspond to the n points of geometry Q, where the ith
component v; corresponds to the ith point p; of Q. Let L be a line in Q. A
vector is defined based on the points on L as: vp=(vq, Vs, ..., Un), Where v; is
1 if p; is a point on L and 0 otherwise.

Let Hq=[h:;] be the Q geometry LDPC matrix with J rows and n

columns (i.e. the rows and columns correspond to the lines and points of
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the Q geometry respectively, where h; ; = 1 if and only if the ith line of Q

contains the jth point of Q, and h; ; = 1 otherwise.

The Euclidean and the Projective geometries over finite fields are two
families of finite geometries that define LDPC matrices. These matrices
are square, and for any particular length, the row weight is the same as
the column weight. Based on the previous fact, the transpose of any finite
geometry LDPC matrix defines in a different code with the same properties

as the original one.

The construction of LDPC codes based on Projective Geometry

(PG)

Consider the m-dimensional Projective Geometry over G F'(2°), denoted PG(m, 2°%).
This geometry consists of 2° 4+ 1 points, and each point is represented by an

element of GF(2m*+1s) which is considered an extension field of GF(2%).

The number of lines it contains is defined by eq. 2.13.

(14254 ... +2m)(1 4 28 + ... + 2(m~1s)

2.12
14 2¢ (2.12)

J —
lines, and each line consists of 2° + 1 points. Each point is intersected by

2ms — 1

_ 2.13
Y= ST (2.13)

As an example, let m=2 and s=2. Let GF(64) be the extension field of
GF(4) = {0,1,8,0°}. Each element in GF(64) is represented as a 3-tuple

over GF(4) as shown in Table 2.1.
The (0,0,0) 3-tuple is not included. To produce all the 3-tuples in the
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is the 3-tuple (1,0,0). According to the previous procedure, the number

num(1) will be assigned to the 3-tuple obtained from eq. 2.15

0 1 O
num(1l) = (1,0,0)- | 0 0 1 (2.15)
w? 1 w

The mner product 1s obtained by using table 2.2 and ??. which is shown
in eq. 2.16, which correspond to the second value in table 2.1, and repre-
sents the point i the second position in this field. Using point num(2), the
point in the third position can be obtained, which is (0,0,1). Once all the
63 3-tuples representing the points within this field have been assigned a
position, using the last point num(62) to get a further number will result in
the point located in the first position num(0), which is the one arbitrarily
chosen to start ordering the 3-tuples in the field. From this last statement,
it 1s possible to decide which vector with elements in the field can be chose
to represent the last row in matrix 2.14, since only a valid vector can be
useful to assign positions to all the 3-tuples, while an invalid vector would

only assign positions to a limited number of 3-tuples.

(1-04+40-0+0-w?1-1+0-0+0-1,1-0+0-14+0-w)
num(l) = (0+0+0,1+0+0,0+0+0)

= (0,1,0)
(2.16)

Addition and multiplication are defined over GF(2%), using the primi-

tive polynomial w®* = w + 1, and are depicted in Table 2.2 and Table 2.3
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respectively.

element 1 | element 2 | Addition

Table 2.2: Addition over GF(2°)

Let o V(1 <1 < 63) be a point in PG(2,4), then, the line (ma* + na?)
and the line (mak + Maa? ) with n over GF(2%) have o’ as a common point
(the only common point).

Generalizing, the line passing through (or connecting) o; and «; consists
of points in the form (nia* + n2a?), where both 7 cannot be equal to zero.
In this case m7; and 7o take independently the values 0,1, w, w?* to produce
15 lines, also represented as 3-tuples in Table 2.4 where only 5 points are
independent (i.e. different points), since the elements (o*, Ba*, f%a*) with
over GF(2%) are considered to be the same point in PG(2,4). The last two
columns at the right in Table 2.4 indicate the number of the point according

to Table 2.1 and one among the three independent vectors respectively. The
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element 1 Multiplication
0 [ o
o
w 0
w* 0

Table 2.3: Multiplication over GF(

DO
[\
——’

chosen vector from among the three, should be one with number equal of less
than J with J = 21 in this particular case.

Here follows the creation the first row of the LDPC matrix Hpg(2.4), by
obtaining the line that joins the five points, corresponding to the five values in
such first row, whos value is 1 (i.e. the other values in the first row take value
0). To obtain all the points in table 2.4, values are assigned to (ma* + na?).
o' and o can take independently any of the 3-tuples with elements 0, 1, w, w?,
where the 3-tuples chosen are o = (1,0,0) and o = (0,1,0). n; and 7, can
take independently any of the values 0,1,w,w? except both 0. The first
point is obtained by making 71 = 0 and 7, = 1. The value of the first point

is shown in eq. 2.17.
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Ist row = 0(1,0,0) + 1(0,1,0) = (0,0,0) + (0,1,0) = (0, 1, 0)
ond row = 0(1,0,0) + w(0,1,0) = (0,0,0) + (0, w,0) = (0,1,0)
3rd row = 0(1,0,0) + w?(0,1,0) = (0,0,0) + (0, w?,0) = (0, w?, 0)
4th row = 1(1,0,0) +0(0,1,0) = (1,0,0) + (0,0,0) = (1,0, 0)

15th row = w?(1,0,0) + w?(0,1,0) = (w?,0,0) + (0,w?,0) = (w*, w?,0)
(2.17)

By relating the obtained vectors in 2.17, with the order assigned to such
vectors in table 2.1, table 2.4 is determined. It is required to know which
vectors are independent; in order to do so, the first vector in table 2.4 1s
considered independent, and is multiplied by all the elements defined over
GF(2?) (i.e. the vector (0,1,0) is multiplied by the elements 0, 1, w, w*) to ob-
tain the dependent vectors (i.e. the vectors (0,0,0), (0,w,0), and (0, w?,0)).

From Table 2.4, the 3-tuples numbered 0, 1, 6, 8 and 18 represent the
positions in the vector of length 21 whose value is set to one, while the rest
of the positions take zero as value (i.e. from left to right, the first, second,

fifth, seventh and seventeenth elements out of 21 elements take value 1, while

the rest take value 0), as shown in eq. 2.18.

first row 110000101000000000100 (2.18)

The LDPC matrix Hpg(2,4) 1s formed by cyclic shift of vector 2.18, as

depicted in expression 2.9.
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O[T 0] T | independent _
0w 0] 8 | dp
O [wa 0] 2 | dep
1[0 0] 0 | independemt _
T 1(0[ 39 | dep
T w 0] 20 | dep
1 [w2]0] 6 | independemt
W0 [0] 4@ | dp
W10 48 | dep
“w [ w [0] 18 | independent
W [w2[0[ 8 | independent
2[00 2 | dep
w21 0] 50 | dep
w2 w 0] 27 | dep
w2 wa[0] 60 | dep

Table 2.4: Table with the 15 (n;o* + 72a’) combinations using G F(2?), indi-
cating which 3-tuples are independent

The construction of LDPC codes based on Euclidean (Geometry

(EG)

Consider the m-dimensional Euclidean geometry over GF(2°%), EG(m, 2°).
This geometry consists of 2™* points, and each point is represented by an m-
tuple over GF'(2°%). The point represented by the all-zero m-tuple, 0=(0,0,...,0),
is called the origin. The number of lines it contains is defined by eq. 2.19,

where each line consists of 2° points. Also, each point is intersected by the

number of lines defined by eq. 2.20.

3 2(m—1)2(2ms _ 1)

2.19
s T (2.19)

J
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