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Abstract 

The research project described in this thesis concentrates on the study, and 

application of specific channel coding techniques, in particular, low-density 

parity-check (LDPC) codes, iterative decoding on Tanner graphs, and their 

application on joint iterative receivers based on the turbo principle, previ- 

ously proposed. 

The construction of random LDPC codes that fulfil certain desirable char- 

acteristics, such as large girth, specific p and -y values, and acceptable BER 

and FER performance for short code lengths, traditionally requires a high 

degree of processing power (i. e. CPU cycles) to run stochastic routines that 

firstly search within all the possible combinations for those ones that match 

the desired characteristics of the LDPC matrix, and secondly determines the 

bit-error rate (BER) and frame-error rate (FER) performance. 

The construction of well structured LDPC codes by means of algebraic 

methods has provided LDPC codes that achieve excellent performance, with 

desirable structure on their LDPC matrices. However, from the universe of 

LDPC matrices, those ones created through well structured procedures are 

a small group. Multiple procedures to modify their characteristics such as 

length and rate have assisted to increase the pool of LDPC codes based on 
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well structured procedures. 

This thesis study the problem of constructing random LDPC codes with 

particular length, girth, and column weight as design parameters, with re- 

duced processing power, while providing, at the same time, a desirable struc- 

ture to allow efficient use of the memory and of the parallel processing ca- 

pacity to reduce delay through efficient encoding and decoding. 

Based on previous studies that analysed the same problem, an algorithm 

is introduced to construct the Girth-Partition and Shift (GPS) LDPC codes, 

which are half-rate quasi-cyclic (QC) LDPC codes. Several GPS construc- 

tions are analysed over the AWGN channel and the flat-fading channel. The 

effect on the BER and FER performance from variations on their design 

parameters, is included in this study. 

This work also includes the BER and FER performance of the concate- 

nation in parallel of different LDPC codes, some of which are based on well 

structured procedures, such as Euclidean Geometries (EG) and Projective 

Geomtries (PG), and Margulis constructions based on the Cayley graph, 

while the rest are based on random procedures, such as Graphical Models 

(GM) and GPS-LDPC codes. The aim of the analysis of this scheme, com- 

bined with the referred LDPC code constructions, include the improvement 

of the BER and FER performance for short code lengths and the reduction 

of the encoding complexity. 

The BER and FER performance achieved by the parallel concatenation of 

the previously mentioned LDPC codes, is further analysed in a joint demap- 

ping, parallel channel decoding and source decoding system. The impact of 

each component on the overall system performance is also examined. 
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Chapter 1 

Introduction 

Channel coding has become an indispensable tool in modern communication 

and digital storage systems that demand efficient and reliable digital data 

transmission. The emergence of large scale, high speed data networks that 

exchange, process and store digital information for commercial., governmental 

and military applications related to an ever growing number of services and 

users, requires channel capacity-approaching coding and decoding techniques. 

The conception of channel coding and transmission schemes dedicated to a 

particular application is based on a complex set of design factors such as 

the coding gain, coding rate, bit error rate (BER), delay, implementational 

complexity and channel characteristics [1]. 

The evolution of channel coding is full of occasional breakthroughs that 

gave way to Turbo codes (TC) [2] and Low Density Parity Check (LDPC) 

codes [3], and the Maximum A-Posteriori (MAP) decoding algorithm [4] that 

applied to factor graphs [5] is known as sum-product or belief propagation 

algorithm. Once the potential of such coding and decoding techniques was 

1 
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recognized, new architectural designs were required to efficiently implement 

these coding and decoding techniques. 

An LDPC matrix understood by means of its factor graph, also known as 

Tanner graph [6], is useful to derive procedures that modify the origial struc- 

ture of the parity-check matrix in such a way that improvements on the BER 

and FER performance are achieved. Factor graphs have made possible the 

derivation of unified receiver designs that incorporate previously independent 

sections, as well as channel models, achieving excellent performance [7]. 

Techniques considered to determine converge thresholds and performance 

boundaries on LDPC codes and iterative subsystems, have atracted much 

atention lately, especially Density Evolution [8], Gaussian Approximation [9] 

and Extrinsic Information [10]. 

The construction of LDPC codes through structured procedures is still 

under research. LDPC codes belonging to this family, achieve good BER and 

FER performance, but the number of codes that fulfil the requirements of 

length and rate demanded by operating and new communication systems, is 

still limited. 

The theory that allows the design of iterative receivers by means of factor 

graphs, is presented in [7], but performance characterisation of such joint it- 

erative receivers is still under research. An important contribution to accom- 

plish such task, is presented in [11] and [12]. The work presented in [13], [14], 

and [15] makes use of all the previously mentioned contributions to derive a 

joint iterative LDPC receiver. 
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1.1 Summary of previous research results 

In [16], a complete and detailed presentation of structured LDPC codes is 

presented, including the basic characterisation of the codes for each construc- 

tion. The performance of LDPC codes whose construction is based on Finite 

Geometries, Balanced Incomplete Block Designs, Geometry-based Designs, 

and Turbo-structures, is analysed comparatively. Most of these codes are 

regular half-rate LDPC codes. It is concluded that codes with large girth 

converge faster under iterative decoding and improved the performance in 

the high Eb/No region, by slowing down the onsetting of the error floor. 

In [17], three new classes of structure LDPC codes with large girth are 

introduced. These codes are regular LDPC codes with column weight p=2. 

The codes included under these construction are firstly the rate 1/2 with girth 

16, secondly, the rate 1/3 with girth 20, and thirdly, a group of LDPC codes 

with variable rate and girth 12. These codes perform better than randomly 

created LDPC codes with similar coding rate. 

In [7], factor graphs are used to derive joint iterative receivers for a broad 

range of channel models and codes. Using the model structure, the joint 

likelihood function is factorised to later generate the corresponding factor 

graph, and derive the updates. The channels modeled in this work include 

the a block fading channel, noncoherent Rayleigh channel with pilots every 

symbol and every third symbol, and multi-path fading channel. 

In [13], [14], and [15], the concatenation in parallel of two randomly cre- 

ated LDPC codes is proposed. BER and FER performance curves are de- 

rived through simulations over the AWGN channel and the flat Rayleigh 
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fading channel, after decoding with the sum-product algorithm. This study 

includes EXIT chart assuming a Gaussian distribution of the extrinsic in- 

formation and of the a-priori information, and concludes that EXIT graphs 

assist on the design of LDPC codes, since the conditions for convergence of 

the individual (constituent) LDPC codes must met. 

1.2 Thesis outline 

Based on the comments from the previous section, and a review of existing 

code construction publications, the work presented is directed towards the 

following objectives: 

1. Develop new algorithms for the construction of LDPC codes, or en- 

sembles of LDPC codes, to overcome the limitations present in state- 

of-the-art LDPC codes, especially performance, length, and rate. 

2. Contribute to the characterisation of the existing types LDPC codes. 

3. Derive new applications for existing constructions of LDPC codes and 

for existing types of LDPC codes. 

4. Contribute to the characterization of existing joint iterative subsys- 

tems. 

5. Analise the performance of state-of-the-art LDPC codes applied to ex- 

isting joint iterative subsystems. 
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Chapter 2 
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In this chapter, complementary background material is provided; this ma- 

terial is needed for the full understanding of our research results. A litera- 

ture review of some low-density parity-check (LDPC) code constructions, the 

techniques for code characterisation, and some applications as stand-alone 

channel decoders, and as joint-iterative receivers. 

Chapter 3 

This chapter is devoted to the introduction of a new algorithm for the con- 

struction of random LDPC codes. 

This research complements the work presented in [18], where the construc- 

tion of LDPC based on Graphic Models (GM) is considered as an option to 

construct powerful LDPC (n, 2, k) LDPC codes. The novelty of this study is 

based firstly, on the presentation of a new algorithm to create LDPC codes 

which are quasi-cyclic, in order to increase the universe of LDPC codes con- 

structed by this means, secondly, the reduction on the number of operations 

required to search for solutions that satisfy the design parameters of the 

LDPC code, when compared to the Graphic Model procedure, and finally, 

the characterisation of the LDPC codes constructed through this algorithm. 

Chapter 4 

This chapter presents the performance of different types of LDPC codes when 

concatenated in parallel. 

This research complements the work presented in [15], where the per- 
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formance of the parallel concatenation of random LDPC codes, designed to 

contain specific parameters, is analysed. The novelty of this work relies on 

the performance analysis of different types of LDPC codes, random and well 

structured, that fulfil the general requirements established by previous work. 

This analysis also includes further conditions according to which, the appli- 

cation of this LDPC codes in a parallel concatenated scheme, prove benefitial 

in terms of BER and FER. Performance improvement for short code lengths 

can be achieved with the LDPC codes proposed under parallel concatena- 

tion. Although efficient encoding and decoding techniques is not part of this 

research, it is important to mention how the types of LDPC codes analysed 

in this chapter can benefit from such state-of-the-art encoding and decoding 

techniques, due to their cyclic and quasi-cyclic structure. One type of LDPC 

codes included in this Chapter, are the randomly created Girth-Partition and 

Shift (GPS) LDPC codes, whose construction is introduced in Chapter 3. 

Chapter 5 

This chapter presents the analysis of a joint iterative receiver consisting of 

a demapper, a parallel LDPC decoder, and a source decoder. The modifica- 

tions required to make it feasible the exchange of soft-information for each 

one of the contituent sections, is already well documented. The novelty of 

this work relies on the analysis of the constituent subsystems, to understand 

the individual impact on the overall performance, and possibly determine 

which design parameters are preferable for this joint scheme. 
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Chapter 6 

This final chapter includes overall conclusions, statements of originality and 

proposed directions for future work. 

1.2.1 Appendix A 

This appendix includes the generator polynomial vectors and the circulant 

vector that define the Euclidean Geomtry (EG) and Projective Geometry 

(PG) codes, used in various chapters of this dissertation. 

1.3 Publications 

1. J. C. Serrato, and T. O'Farrell, "Parallel Concatenated Gallager Codes 

using Euclidean and Projective Geometry LDPC Codes", The Annual 

London Conference on communications (LCS 2004), University College 

London, UK, 13-14 Sept. 2004. 

2. J. C. Serrato, and T. O'Farrell, "Joint Demapping and Source Decoding 

for Multilevel Modulation" , 
IEEE Wireless Communications and Net- 

working Conference (WCNC 2006), Las Vegas, Nevada, USA, 3-6 Apr. 

2006. 

3. J. C. Serrato, and T. O'Farrell, "Structured Parallel Concatenated LDPC 

codes" , 
The Annual London Conference on communications (LCS 2006), 

University College London, UK, 14-15 Sept. 2004. 

4. J. C. Serrato, and T. O'Farrell, "Girth-Partition and Shift LDPC Codes" 
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Chapter 2 

Background and Literature 

review 

2.1 Purpose 

This chapter has the following objectives. Firstly, to present a detailed ex- 

planation of Turbo Codes (TC), Low-Density Parity-Check (LDPC) codes, 

Factor Graphs, Iterative Decoding and the Design of Iterative Subsystems. 

Secondly, to present the state-of-the-art in the previous mentioned topics. 

Thirdly, to highlight the shortcomings of these coding approaches. Finally 

the chapter presents a general framework for the studies to be undertaken in 

this thesis. 
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2.2 Turbo Codes 
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Turbo codes have been studied in dept since their discovery in 1973 [2] and 

have been included for some time in communication systems standards. The 

turbo principle has also been applied to a variety of receivers, after making 

modifications to the original encoding and decoding processes. The perfor- 

mance of a joint demapper and source decoder as well as the parallel concate- 

nation of well structured LDPC codes is analised, making use of the turbo 

principle. Therefore, understanding the characteristics of the turbo codes is 

essential to this work. 

2.2.1 Encoding of Turbo Codes 

A turbo code is the parallel concatenation of two codes. The first design 

considered a subclass of convolutional codes known as Recursive Systematic 

Convolutional (RSC) codes, where two rate r= 1/2 systematic codes were 

concatenated in parallel, having the input data interleaved before being fed 

into one of the two encoders. As the encoders are systematic, meaning that 

one of the outputs is the input itself, and considering that both are fed with 

the same input, the systematic output of one of the encoders does not need 

to be transmitted. The overall code rate is r= 1/3, although higher code 

rates can be obtained by puncturing of the parity bits. Fig. 2.1 shows the 

block diagram of the turbo encoder, where z information bits are encoded to 

produce the codeword of length D+P. 
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Figure 2.1: Turbo Encoder block diagram 

2.2.2 Decoding of Trellis structured codes 

Any decoding algorithm is based on either the idea of finding the most likely 

transmitted information sequence (e. g. the Viterbi algorithm) or on finding 

the most likely transmitted information bit given the coded sequence (e. g. 

the Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm [19]). The first type of 

decoder is called Maximum Likelihood algorithm, while the second is called 

a Maximum a-posteriori probability (APP) algorithm. 

The error performance of both, the Viterbi and the BCJR algorithms, is 

the same in the case of equally likely information bits, and therefore the first 

one is preferred due to its lower complexity. However, when the information 

bits are not equally likely, better performance is achieved with the BCJR 

algorithm [20]. 

The BCJR algorithm used in a turbo like structure can deliver superior 

performance because the a-priori probabilities of the information bits change 

from iteration to iteration. Also, its inherently Soft-Input Soft-Output na- 

ture is very well suited for iterative decoding. On the other hand, the Viterbi 

algorithm is inherently a Hard-Output algorithm that can be modified to de- 
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liver a Soft-Output known as the Soft Output Viterbi Algorithm (SOYA). 

which is more complex and has better performance than the Viterbi algo- 

rithm, but is simpler and has a poorer performance when compared to the 

iterative BCJR decoding algorithm. 

Optimal decoding of turbo codes is impractical, as the complexity is too 

large. The suboptimal iterative decoding algorithm presented in [2], which 

breaks the overall decoding problem by decoding each of the constituent codes 

with locally optimal solutions sharing information in an iterative fashion, of- 

fers good performance at much lower complexity. Each decoder includes 

soft-information at the input and produces soft-information at the output 

which is exchanged and used as a-priori information by the other decoder. 

During the first iteration no a-priori information is considered. The decoding 

process continues until some previously setup number of iterations is com- 

pleted. Iterative decoding obeys a law of diminishing returns such that the 

incremental gain of each additional iteration is less than that of the previous 

iteration. The decoding process may not always converge. 

A drawback of turbo codes, when compared to LDPC codes, is the dif- 

ference in the number of decoding iterations spent for each frame, since the 

turbo decoder has no way to check if the estimated codeword is a valid one, 

and therefore it is necessary for each received codeword to go through all the 

iterations previously setup. 

It is because of the small number of low weight codewords that turbo 

codes perform well at low Eb/No values; however, the performance of turbo 

codes at higher Eb/No values becomes limited by the relatively small mini- 

mum distance of the code. The goal of turbo code design is to reduce the 
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Figure 2.2: Turbo Decoder block diagram 

multiplicity of low weight codewords. The BER performance improves as the 

block size increases at the cost of increased latency. The interleaver design 

is also a factor only at high Eb/No values, as long as the inputs at the two 

encoders are sufficiently uncorrelated to avoid a negative effect on the low 

Eb/No region. 

The choice of the constituent Recursive Systematic Convolutional (RSC) 

encoder and the constraint length do not significantly influence the BER 

performance. Fig. 2.2 shows the structure of the turbo decoder. 

Given the received sequence r, the BCJR algorithm minimizes the BER, 

by maximizing the a-posteriori probability P(ü1 = ui I r) that the information 

bit ul is correctly decoded, having the estimate 61. The following description 
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of the algorithm is based on the log-likelihood ratios, or L-values. The de- 

coder inputs the received sequence r and the a-priori L-values of the informa- 

tion bits La, (ul) 
,1=0,1, -, 

h-1. The algorithm calculates the a-posteriori 

L-values (APP L-values) of each information bit through eq. 2.1, 

L (ul) - In 
P (ul _ +lIr) 
P (ul =- lýr) 

and the decoder output is given by eq. 2.2 

1+i üi = 

-1 

V L(ul)>0 

VL (ul) <0 

(2. i) 

(2.2) 

In iterative decoding, the APP L-values can be taken as the decoder 

outputs, resulting in a SISO decoding algorithm. The a-posteriori probability 

equation is then modified to get eq. 2.3 

p (ul = +1, r) 
- 

'ý-(s', 
s)EE '_+' p (si = s') sc+i = s, r) 

P (ul _ +11r) _- 
(2.3) 

P (r) P (r) 

where El is the set of all state pairs sl = s' and sl+l =s on the trellis 

diagram, that correspond to the input bit ul = +1 at time t=1. Reformu- 

lating the expression P (ul = -1, r) in the same way, the APP L-value can 

be written as eq. 2.4 

E(s, 
s)EEu`=+1 p (Si = S', sj+l = s, r) 

L (icy) = In (2.4) 

with p (s', s, r) defined by eq. 2.5, 
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=p (S/, s, rt<l, r1, rt>l) 
p (s', s, r) (2.5) 

= p(rt>aIs)p(s, riIs')p(s'. rt<l) 

where after applying the Bayes' rule and considering that the probability of 

the received branch at time 1 depends only on the state and input bit at time 

1. Next, defining a, ß, and -y through eq. 2.6, 

ac (s') = p (s', rt<c) 

2'i (s', s) =p (s, rj Iss) (2.6) 

0i+1 (s) =p (rt>lI s) 

the expression for the probability a, +l (s), is rewritten as eq. 2.7 

as+, (s) =p (s', rt<a+i) =E 'Yc (s', s) al (s') (2.7) 
s'Eoj 

and similarly, the expression for the probability , 
ßl+l (s), is rewritten as eq. 

2.8 

11 'Yi (sý, s) , 
ýi+ý (s) (2.8) 

sEoi+l 

where orl is the set of all states at time 1. 

Equation 2.7 represents a forward recursion, while 2.8 represents a back- 

ward recursion. The initial values for both recursions respectively are defined 

in eq. 2.9, 

1, s=0 
ao (s) = 

0, sL0 

1, s=0 ßK (S) - 
Q, sO 

(2.9) 
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where K is the length of the input sequence. Finally, the branch metric is 

defined by 2.10, 

'Yi (s', s) =p (s, riI s') =P (ul) p (r1Ivi) (2.10) 

where vl represents the output bits corresponding to the state transition 

s'-+ s at time 1. 

Overall, the conditions to have a successful BER performance with turbo 

coding are (1) the presence of the two concatenated codes, (2) the inde- 

pendence between the generated codewords through a pseudo-random in- 

terleaving process, and (3) the alternate decoding that incorporates a-priori 

L-values to improve its estimates, and generates a-posteriori L-values to ex- 

change between decoders. These conditions are also present on the LDPC 

codes. 

2.3 Low Density Parity Check Codes 

LDPC codes were first discovered by Gallager [3] in the early 1960s. LDPC 

codes are linear block codes of length n and, just as any other block code, are 

uniquely specified by either a generator matrix G of a parity-check matrix 

H. If it is specified by a parity-check matrix, the code is the null space of 

H. An n-tuple v={vo, vi, ..., vn_1 } over GF(2) is a codeword if and only if 

vHT=O. 

In particular, an LDPC code has the following structural properties: (1) 

each row consists of p 1's (row weight); (2) each columns consists of 'y 1's 
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(column weight); (3) the number of 1's in common between any two columns, 

denoted by A, is no greater than 1 (i. e. for any set of four points with 

coordinates P1(x1, yl), P2(xl, y2), P3(x2, yl), and P4(x2, y2), at least one of 

them must have value 0); and (4) both p and -y are small compared with 

the length of the code and the number of rows in H. The density d of the 

parity-check matrix H is defined as the ratio between the total number of 

1's in H and the total number of entries in H. 

The previous properties were stated in [3] and belong to regular LDPC 

codes. Irregular LDPC codes follow properties (3) and (4), but have a vari- 

able number of 1's per row and/or per column. Irregular LDPC codes have 

a better BER and FER performance compared to their regular counterparts 

at the cost of higher encoding complexity when compared to a certain type 

of regular LDPC codes known as cyclic and quasi-cyclic; however, they may 

exhibit an error floor at a lower BER, in particular those ones built to achieve 

a performance very close to their capacity limit. In [21] a procedure to lower 

the error floor and allow an even better performance of irregular LDPC codes 

is discussed. 

A path is defined as a finite alternating sequence of imaginary vertical 

and horizontal lines that join any two non-zero entries in H. Each non-zero 

should not be considered more than once. A cycle is a path with the same 

beginning and ending non-zero entry. The total number of non-zero entries 

included in a cycle is called the length. The girth is the cycle with the 

shortest length contained in H, which is always a positive even integer. An 

increase on the girth has a positive impact on the performance of the code 

when decoded with any type of belief-propagation algorithm [22] (message- 
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passing on a bipartite graph [4]). Gallager's third structural property implies 

that the LDPC matrix should not contain cycles of length=4. 

In [23] it was proved that cycle-free codes cannot support good codes, 

since their cycle-free bipartite graphs provide extremely poor trade off be- 

tween rate and distance for each fixed length, even though they converge 

to the optimal solution. An optimal solution refers to the case where the 

decoding process takes place on a cycle-free LDPC code using any type of 

belief propagation algorithm; the number of updates on the bipartite graph 

of the variable and check node L-values is a finite number; it is said that 

codes whose bipartite graph present cycles cannot come to an optimal solu- 

tion, since the node updating operation continues until infinity. An upper 

bound on the minimum distance of cycle-free codes indicates that for codes 

whose rate is higher than 0.5, the minimum distance is equal to or less than 

2. The performance of a code at signal-to-noise ratios of practical interest 

is not necessarily related to the minimum distance, just as in the case of 

turbo codes, nevertheless, the same paper concludes that cycle-free codes 

are defined on parity-check matrices that are much too sparse to allow for a 

reasonable performance. 

A Tanner graph [6], is a graphical representation of an LDPC code where 

the variables are lined up on one side and the parity checks on the other 

(bipartite graph), having edges between variables and parity checks that 

share a non-zero entry on the parity-check matrix H. There are no edges 

linking variables to variables, nor parity-checks to parity-checks. A stopping 

set S in a code C is a subset of the variable nodes in a Tanner graph for C 

such that all the neighbours of S are connected to S at least twice. The size 
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s of the smallest stopping set is termed the stopping distance s or minimum 

stopping set smi, z of C and is defined as a stopping set that does not contain 

a smaller stopping set within it. An LDPC code may have more than a single 

smite,. [24] proved that iterative decoding cannot determine the variable nodes 

contained in S when they are incorrect, since even if all the other bits were 

known, every neighbour of S has at least two connections to the set S and 

so all messages to S will be erasure messages. 

Parameter s plays an important role in understanding the performance 

of a code under iterative decoding over the binary erasure channel, as LDPC 

codes with higher s show a better performance [25], thus making s an im- 

portant factor to consider during the design of LDPC codes. Also, it is clear 

that adding linearly dependent rows to H can be advantageous, as this can 

increase the stopping distance s at the cost of higher complexity and la- 

tency [26]. s also explains why some LDPC codes with small girth, maybe 

even some 4 cycles, have excellent BER and FER performance. 

Based on methods of construction, LDPC codes can be classified into 

two categories: random like codes and structured codes. Random-like LDPC 

codes [27], [21] are constructed by computer search, based on certain guide- 

lines and required structurel properties of their Tanner graphs, such as girth, 

degree distributions of variable nodes and check nodes, and stopping sets. 

Structured LDPC codes are constructed based on algebraic and combinato- 

rial tools, such as Finite Geometries [28], [29], [30], [31], [32], [33], and [34]. 

The generator matrix of an linear LDPC code can be obtained in the same 

way as for a linear block code. After manipulating the parity check matrix H, 

to have it in the form: H= [PII] where I represents the identity matrix, the 
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generator matrix is defined as G= [I I PT ]. Having the information sequence 

x, the codeword c is obtained by determining c=x- Gmod(2). 

Since the rediscovery of LDPC codes decoded with the MAP, Log-MAP 

and Max-Log-MAP algorithms, different lines of research have been drawn 

towards finding not just good BER and FER performance LDPC codes, but 

also towards algorithms that produce structured LDPC codes that are either 

regular or irregular. 

Some of these procedures include Kirkman Triple Systems [35], Balanced 

Incomplete Block Designs [36], and Lazebnik and Ustimenko (LU) q-regular 

bipartite graph [37], among many others. Bilayer (expurgated and length- 

ened) LDPC codes for Decode-and-Forward in relay channels [38], which are 

capable of working at two different channel parameters and two different 

rates (relay and destination), are among the state-of-the-art LDPC codes, 

which are particularly useful for networks. Here, some of them are described 

in detail. 

Although binary LDPC codes can approach the capacity of a variety of 

channels for asymptotically long block lengths, non-binary GF (q) LDPC 

codes decoded using belief propagation have better performance on AWGN 

and Binary Symmetric (BSC) channels and are appealing for use on bursty 

channels [39]. However, belief propagation decoding for such codes is complex 

and has received much attention lately [40]. 

Recently, some specific scenarios that include LDPC codes include [41] 

and [42]. In the first one, the problem of extracting information from a 

large sensor network in which sensors cooperatively deliver messages to a 

mobile access point using a common LDPC codebook is analyzed. In the 
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second one, it is proved that some LDPC codes can achieve secrecy and 

can therefore being applied to the wiretap channel. A wiretap channel is 

modeled as one transmitter tl sending k information bits coded into an n 

bit codeword, through two different channels chl and ch2, two receivers rl 

and r2 respectively, where only rl should be capable of decoding the received 

codeword cl with negligibly small probability of error, while r2 should receive 

the codeword c2 with mutual information I (n, c2) approaching zero as the 

value n approaches infinity. Secrecy capacity of a wire tap channel is the 

largest k/n for which secure and reliable communication is achievable. 

When compared against TI irbo codes over the binary-input Additive 

white Gaussian noise channel, the performance of regular LDPC codes is 

slightly inferior [8], although irregular LDPC codes outperform Turbo codes. 

2.3.1 The construction of LDPC codes based on Gal- 

lager's random procedure 

The codes presented in [3] are regular and are defined by the following guide- 

lines: Let k be a positive integer greater than 1. Choose any value for p and 

-y. Form a kp x k-y matrix H from -y submatrices H1, H2,..., H. ) of size kx kp. 

For 1< i<k, the ith row of H1 contains all its p 1's in columns (i-1)p+l to 

ip. The remaining matrices are formed by doing column permutation of H1. 

The third structural property limits the number of valid permutations. Once 

a valid random permutation is obtained, the submatrices that constitute H 

are arranged in the form defined by eq. 2.11, 
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H1 

H= 
H2 

(2.11) 

Hy 

where the total number of ones is kply and the total number of entries is k2 p'y 

and therefore having a density 1 
. 

2.3.2 The construction of LDPC codes based on Finite 

Geometries 

LDPC codes can be constructed algebraically based on the points and lines 

of finite geometries [43]. Let Q be a finite geometry with n points and J lines 

that has the following fundamental properties: (1) every line consists of p 

points; (2) every point is intersected by -y lines (i. e. every point lies on -y lines; 

(3) any two points are connected by one and only one line, and (4) two lines 

are either disjoint (i. e. parallel to each other) or they intersect at one and 

only one point. The points and lines in Q are denoted by P1, P2,..., P,, and 

L1, L2i ..., Ln, respectively. Let v=(vl, v2) ..., vn) be an n-tuple over GF(2) 

whose components correspond to the n points of geometry Q, where the ith 

component v2 corresponds to the ith point pi of Q. Let L be a line in Q. A 

vector is defined based on the points on L as: VL=(v1, v2, ..., vn), where vi is 

1 if pi is a point on L and 0 otherwise. 

Let HQ=[hi, j] be the Q geometry LDPC matrix with J rows and n 

columns (i. e. the rows and columns correspond to the lines and points of 
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the Q geometry respectively, where hij =1 if and only if the ith line of Q 

contains the jth point of Q, and hij =1 otherwise. 

The Euclidean and the Projective geometries over finite fields are two 

families of finite geometries that define LDPC matrices. These matrices 

are square, and for any particular length, the row weight is the same as 

the column weight. Based on the previous fact, the transpose of any finite 

geometry LDPC matrix defines in a different code with the same properties 

as the original one. 

The construction of LDPC codes based on Projective Geometry 

(PG) 

Consider the m-dimensional Projective Geometry over GF(2s), denoted PG(m, 2s) 

This geometry consists of 2s +1 points, and each point is represented by an 

element of GF(2(m+1)s), which is considered an extension field of GF(2s). 

The number of lines it contains is defined by eq. 2.13. 

J= 
(1+2s+... +2"ßs)(1+2s+... +2(m-l)s) 

1+2s 
(2.12) 

lines, and each line consists of 2s +1 points. Each point is intersected by 

2' ̀ ''s -1 ry 2s-1 
(2.13) 

As an example, let m=2 and s=2. Let GF(64) be the extension field of 

GF(4) = {0,1,0,02}. Each element in GF(64) is represented as a 3-tuple 

over GF(4) as shown in Table 2.1. 

The (0,0,0) 3-tuple is not included. To produce all the 3-tuples in the 
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num x y z num x y z num x y z 
0 1 0 0 21 w2 0 0 42 w 0 0 
1 0 1 0 22 0 w2 0 43 0 w 0 
2 0 0 1 23 0 0 w2 44 0 0 w 
3 w 1 w 24 w w2 1 45 1 w w2 
4 1 1 w 25 w w2 1 46 w w w2 
5 1 w2 w 26 w2 w 1 47 w 1 w2 
6 1 w2 0 27 w2 w 0 48 w 1 0 
7 0 1 w2 28 0 w2 w 49 0 w 1 
8 w w2 0 29 1 w 0 50 w2 1 0 
9 0 w w2 30 0 1 w 51 0 w2 1 
10 w w2 w2 31 1 w w 52 w2 1 1 
11 w 1 w 32 1 w2 1 53 w2 w w2 
12 1 0 w 33 w2 0 1 54 w 0 w2 
13 1 w2 w2 34 w2 w w 55 w 1 1 
14 w w w 35 1 1 1 56 w2 w2 w2 
15 1 0 1 36 w 0 w 57 w 0 w 
16 w2 0 w 37 w 0 1 58 1 0 w2 
17 1 1 w2 38 w2 w2 w 59 w w 1 
18 w w 0 39 1 1 0 60 w2 w2 0 
19 0 w w 40 0 1 1 61 0 w2 w2 
20 1 w 1 41 w 1 w2 62 w w2 w 
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Table 2.1: The 63 points in the PG(2,22), defined as 3-tuples (x, y, z) over 
GF(22) excluding the 3-tuple (0-0-0) 

appropriate order, any 3-tuple is multiplied by the matrix 0 portrayed in 

eq. 2.14, consisting on a zero vector of length m, an identity matrix of size 

m by m, and a 3-tuple as bottom row with elements in GF(64). 

010 

0= 001 (2.14) 

w2 1w 

Next, the creation of Table 2.1 is demonstrated in detail. Assign number 

num(O) to any 3-tuple representing a point in PG(2,22), which in this case 
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is the 3-tuple (1,0,0). According to the previous procedure, the number 

num(1) will be assigned to the 3-tuple obtained from eq. 2.15 

010 

num(1) _ (1,0,0) "001 (2.15) 

w2 1w 

The inner product is obtained by using table 2.2 and ??, which is shown 

in eq. 2.16, which correspond to the second value in table 2.1, and repre- 

sents the point in the second position in this field. Using point num(2), the 

point in the third position can be obtained, which is (0,0,1). Once all the 

63 3-tuples representing the points within this field have been assigned a 

position, using the last point num(62) to get a further number will result in 

the point located in the first position num(0), which is the one arbitrarily 

chosen to start ordering the 3-tuples in the field. From this last statement, 

it is possible to decide which vector with elements in the field can be chose 

to represent the last row in matrix 2.14, since only a valid vector can be 

useful to assign positions to all the 3-tuples, while an invalid vector would 

only assign positions to a limited number of 3-tuples. 

= (1.0+0.0+O. w2,1.1+0.0+0.1,1.0+0.1+0"w) 

num(i) _ (o+o+o, i+o+o, o+o+o) 

= (0,1,0) 
(2.16) 

Addition and multiplication are defined over GF(22), using the primi- 

tive polynomial w2 =w+1, and are depicted in Table 2.2 and Table 2.3 
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respectively. 

element 1 element 2 Addition 
0 0 0 
0 1 1 
0 w w 
0 w2 w 
1 0 1 
1 1 0 
1 w w2 
1 w2 w 
w 0 w 
w 1 w 
w w 0 

w w2 1 
w2 0 w2 

w2 1 w 
w2 

--- 
w 1 

r o 
w2 0 

Table 2.2: Addition over GF(22) 

Let a `d(1 <i< 63) be a point in PG(2,4), then, the line (, qla2 + 772a i) 

and the line (qia1c + 772a') with i over GF(22) have a' as a common point 

(the only common point). 

Generalizing, the line passing through (or connecting) ai and o consists 

of points in the form (alai + i2a'), where both 77 cannot be equal to zero. 

In this case m and 772 take independently the values 0,1, w, w2 to produce 

15 lines, also represented as 3-tuples in Table 2.4 where only 5 points are 

independent (i. e. different points), since the elements (ai�Qai, ß2ai) with 3 

over GF(22) are considered to be the same point in PG(2,4). The last two 

columns at the right in Table 2.4 indicate the number of the point according 

to Table 2.1 and one among the three independent vectors respectively. The 
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element 1 element 2 Multiplication 
0 0 0 
0 1 0 
0 w 0 
0 w2 0 
1 0 0 
1 1 1 
1 w w 
1 w2 w2 

w 0 0 
w 1 w 
w w w2 

w w2 1 

w2 0 0 
w2 1 w2 

w2 w 1 
w2 w w 

Table 2.3: Multiplication over GF(22) 

chosen vector from among the three, should be one with number equal of less 

than J with J= 21 in this particular case. 

Here follows the creation the first row of the LDPC matrix HPG(2,4), by 

obtaining the line that joins the five points, corresponding to the five values in 

such first row, whos value is 1 (i. e. the other values in the first row take value 

0). To obtain all the points in table 2.4, values are assigned to (alai + 7)2aj). 

ai and ai can take independently any of the 3-tuples with elements 0,1, w, w2, 

where the 3-tuples chosen are cri = (1,0,0) and ai = (0,1,0). 77l and 772 can 

take independently any of the values 0,1, w, w2 except both 0. The first 

point is obtained by making q, =0 and 72 = 1. The value of the first point 

is shown in eq. 2.17. 



2.3. LOW DENSITY PARITY CHECK CODES 

1st row = 0(1,0,0) + 1(0,1,0) = (0,0,0) + (0,1,0) = (0,1,0) 
2nd row = 0(1,0,0) + w(0,1,0) _ (0,0,0) + (0, w, 0) = (0,1,0) 

3rd row = 0(1,0,0) + w2(0,1,0) _ (0,0,0) + (0, w2,0) = (0, w2,0) 

4th row = 1(1,0,0) + 0(0,1,0) = (1,0,0) + (0,0,0) = (1,0,0) 
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15th row = w2(1,0,0) + w2(0,1,0) = (w2,0,0) + (0, w2,0) = (w2, w2,0) 
(2.17) 

By relating the obtained vectors in 2.17, with the order assigned to such 

vectors in table 2.1, table 2.4 is determined. It is required to know which 

vectors are independent; in order to do so, the first vector in table 2.4 is 

considered independent, and is multiplied by all the elements defined over 

GF(22) (i. e. the vector (0,1,0) is multiplied by the elements 0,1, w, w2) to ob- 

tain the dependent vectors (i. e. the vectors (0,0) 0), (0, w, 0), and (0, w2,0)). 

From Table 2.4, the 3-tuples numbered 0,1,6,8 and 18 represent the 

positions in the vector of length 21 whose value is set to one, while the rest 

of the positions take zero as value (i. e. from left to right, the first, second, 

fifth, seventh and seventeenth elements out of 21 elements take value 1, while 

the rest take value 0), as shown in eq. 2.18. 

first row 110000101000000000100 (2.18) 

The LDPC matrix HPG(2,4) is formed by cyclic shift of vector 2.18, as 

depicted in expression 2.5. 
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x y z number dep/independent 
0 1 0 1 independent 
0 w 0 43 dep 
0 w2 0 22 dep 
1 0 0 0 independent 
1 1 0 39 dep 
1 w 0 29 dep 
1 w2 0 6 independent 

w 0 0 42 dep 
w 1 0 48 dep 
w w 0 18 independent 

w w2 0 8 independent 
w2 0 0 21 dep 
w2 1 0 50 dep 
w2 w 0 27 dep 
w2 w2 0 60 dep 

Table 2.4: Table with the 15 (alai + 772ai) combinations using GF(22), indi- 
cating which 3-tuples are independent 

The construction of LDPC codes based on Euclidean Geometry 

(EG) 

Consider the m-dimensional Euclidean geometry over GF(2s), EG(m, 2s). 

This geometry consists of 2" points, and each point is represented by an m- 

tuple over GF(2s). The point represented by the all-zero m-tuple, 0=(0,0,..., 0), 

is called the origin. The number of lines it contains is defined by eq. 2.19, 

where each line consists of 21 points. Also, each point is intersected by the 

number of lines defined by eq. 2.20. 

J= 
2(m-1)2(2ms 

- 
1) 

(2.19) 
2s-1 
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110000101000000000100 
011000010100000000010 
001100001010000000001 
100110000101000000000 
010011000010100000000 
001001100001010000000 
000100110000101000000 
000010011000010100000 
000001001100001010000 
000000100110000101000 
000000010011000010100 
000000001001100001010 
000000000100110000101 
100000000010011000010 
010000000001001100001 
101000000000100110000 
010100000000010011000 
001010000000001001100 
000101000000000100110 
000010100000000010011 

I1 00001010000000001001 

Table 2.5: LDPC based on PG(2,4) 

2"`s-1 
2s -1 

(2.20) 

Let m=2 and s=2. Then EG(2,22) is a 2-dimensional Euclidean 

geometry over the Galois field GF(4), with 16 points, each one being a 2- 

tuple over GF(4) as shown in Table 2.6. 

Rom Table 2.7, the 2-tuples numbered 0,4,12, and 13 represent the 

positions in the vector of length 15 whose value is set to one; the rest of the 

positions take zero as value. The LDPC matrix HEC(2,4) is formed by cyclic 

shift of the such vector, as depicted in expression 2.8. 

The following list contains the vectors representing the circulants E that 



2.3. LOW DENSITY PARITY CHECK CODES 31 

0 1 0 
1 0 1 
2 w1 1 
3 w1 w2 
4 1 1 
5 wl 0 
6 0 w1 
7 w2 w1 
8 w2 1 
9 wl wl 
10 w2 0 
11 0 w2 
12 1 w2 
13 1 wl 
14 w2 w2 
15 1 0 

Table 2.6: The 16 points in the EG(2,22), defined as 2-tuples (x, y) over 
GF(22) including the origin (0-0) 

generate the LDPC matrices H, as well as the corresponding generator poly- 

nomials (GP) of H and HT, for the EG and PG LDPC codes, analysed 

under parallel contenation in future Chapters. 

" EG(2,22), n= 15, k=7, p=4, -y=4 

" F=x14+x10+x2+x 

" GPH=x8+x4-+'x2+x+1 

" GPHT=x8+x7+x6+x4+1 

" EG(2,23), n= 63, k= 37, p=8, 'y =8 

" E=x62 + x54 + x49 + x38 + x28 + x6 + x5 + x3 

0 GPg=x26+x22+x16+x12+x6+x5+x2+x+1 
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x y number dep/independent 
0 1 1 dep 
0 w1 6 dep 
0 w2 11 dep 
1 0 0 independent 
1 1 4 independent 
1 wl 13 independent 
1 w2 12 independent 

w1 0 5 dep 
w1 1 2 dep 

wl wl 9 dep 
wl w2 3 dep 
w2 0 10 dep 

w2 1 8 dep 
w2 wl 7 dep 

w2 w2 14 dep 

Table 2.7: Table with the 15 (ai +7)2aß) combinations using GF(22), indi- 

cating which 2-tuples are independent 

" GPHT=x26+x25+x24+x21+x20+x14+x10+x4 -1 

" EG(2,24), n= 255, k= 175, p= 16, -y = 16 

" E=x254 + x251 + x225 + X221 + X215 + x163 + x155 + X144 + x143 + x88 

+x60 + x46 + x39 + x23 + x14 +x 

" GPH=x80+x76+x73+x72+x70+x69+x68+X66+X65+x64 +x63+ 

x62 + X61 + X60 + x58 + X57 + x56 + x54 + X53 + x52 + X43 +x42 + X41 + 

x40+x39+x37+x34+x32+x30+x28+x25+x24 +x21+x20+x18+ 

x16+x15+x13+x12+x11+x9+x6+x4+x2+1 

. GPHT=x80 + x78 + x76 + x74 + x71 + x69 + x68 + x67 + x65 + x64+ 

x62 + X60 + X59 + x56 + X55 + X52 + X50 + X48 + X46 + x43+ X41 + X40 + 

x39+x38+x37+x28+x27+x26+x24+x23+ x22+x20+x19+x18+ 



2.3. LOW DENSITY PARITY CHECK CODES 33 

100000000000100 
010000000000010 
001000000000001 
100100000000000 
010010000000000 
001001000000000 
000100100000000 
000010010000000 
000001001000000 
000000100100000 
000000010010000 
000000001001000 
000000000100100 
000000000010010 
000000000001001 

Table 2.8: LDPC based on EG(2,4) 

x17+x16+x15+x14+x12+xll+ x10+x8+x7+x4+1 

" EG(2,25), n= 1023, k= 781, p= 32, -y = 32 

" E=x1022 + x934 + x932 + x885 + x874 + x809 + X768 + X761 + X740 +x656 + 

x618 + x594 + x418 + X414 + X409 + x401 + x391 + x375 +x355 + x323 + x320 + 

x298+X283+X219+X213+x169+X168 +x139+x86+x72+X30+x11 

" PG(2,22), n= 21, k= 11, p=5, ry =5 

" E=x20+x19+x14+x12+x2 

" GPH=x10 + x8 + x6 + x4 + x3 +1 

" GPHT=x10+x7+x6+x4+x2+1 

" PG(2,23), n= 73, k= 45, p= 9,7 =9 E=x 72 + x71 + x69 + x65 + x57 + 

x41+x36+x18+x9 
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" GPH=X28+x26+x22+X19+ X18+x'7+x14+x13+ x12+x9 +x8+ 

x5+x4+x3+x+1 

" GPHT=x28+x27+x25+x24+x23+x20+x19+x16+x15+x14 +x11+ 

x 10 +x9+x6+x2+1 

" PG(2,24), n= 273, k= 191, p= 17, ry = 17 

" E=x272 + x271 + x264 + x261 + x246 + x213 + x208 + x184 + x116 +x114 + 

x 100 + x94 + x77 + x73 + x64 + x45 + x33 

" GPH=x82 + x76 + x68 + x58 + x53 + x52 + x47 + x44 + x39 + x34 +x28 + 

x24+x18+x14+x6+x4+x2+1 

" GPHT=x82+x80+x78+x? 6+x68+x64+x58+x54+x48+x43 +x38+ 

x35+x30-+29+x24+x14+x6+1 

" PG(2,25), n= 1057, Ic = 813, p= 33, ry = 33 

" E=x1056 + x1055 + x1012 + x1000 + x974 + x942 + x932 + x867 + x859 +x767 + 

x673 + x669 + x623 + x576 + x574 + x551 + x515 + X497 +x488 + X464 + X449 +, 

x419+x412+x359+x348+x345+x328 +x239+x217+x211+X198+X182+x177 

2.3.3 The construction of LDPC codes based on Cay- 

ley Graphs 

In [44] an algebraic construction of LDPC codes is proposed based on k- 

regular graphs by means of Cayley graphs. For this, consider a finite group 

G. Let A be a subset of G (i. e. AEG satisfying A= A-'. The Cayley 
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graph X (G, A) is the graph having as vertices the elements gEA such that 

h= ga. X (G, A) is an undirected k-regular graph with k=I Al. 

Let q be an odd prime and let Fq be the finite field of q elements and 

consider the SpecialLinearGroup SL2(Fq) consisting of all 2x2 matrices 

with entries in Fq and having determinant ad - be=1. SL2(Fq) is a group of 

order q3 - q. 

Let G= SL2 (Fq) and let 

A: = A12 A-1 
1 -2 B10 

, B-1 
10 

010121 -2 1 
(2.21) 

Then the Cayley graph X (G, A) is a 4-regular graph and (3,6) regular 

LDPC codes can be constructed with length 2(q3 - q). Two copies of G 

(G,,, G�) represent the left vertices in the bipartite graph, while one copy 

of G represents the right vertices. An element g., E G,, on the left will be 

connected to the right vertices g,, A2, g,, ABA-1, gEB. An element gv E G� on 

the left will be connected with the right vertices g1JA-2, gvAB-'A-1, gEB-' 

2.3.4 Construction of LDPC codes based on Graphical 

Models 

In [17], [45] and [18], the construction of LDPC codes based on graphical 

models is introduced. This construction is outstanding as the constraints are 

relatively loose, allowing a wide range of code lengths and rates. Such codes 

have girth >6 and their column weight can be either 2 or 3. 



2.4. FACTOR GRAPHS 36 

In [17] and [43], the procedure to construct girth = 16(n, 2, n/2) LDPC 

codes is introduced. The main idea is to represent the LDPC matrix by eight 

sections. Each section is either the identity matrix or a shifted version. The 

number of positions that the elements are shifted, is called the slope-pair, 

which has a graphical representation. The procedure looks for sixteen slope- 

pairs that fulfill some constraints; e. g. two slope-pairs per section. Fig. 2.3 

shows the unfolded eight sections of the cylinder-like graphical model, for the 

(368,2,184) LDPC code with g= 16. When the LDPC matrix is represented 

by ten sections, with two slope-pairs for even sections and one slope-pair for 

odd sections, girth = 20(n, 2, n/3) LDPC codes can be developed. Also, by 

modifying the graphical representation and looking for slope-pairs, girth = 

12(n, 2, k) LDPC codes with 1/2 <k<1 can be constructed. 

2.4 Factor Graphs 

A factor graph is a diagram that represents the factorization of a function 

of several variables (e. g. the function f (v, w, x, y, z) can be factorized as 

f (v, w, x, y, z) =f 1(v1w, x) f 2(w) f 3(xl y, z) as shown in Fig. 2.4). Such 

a graph consists of nodes (or squares) and edges (or circles). There is a 

unique node for every factor and there is a unique edge for every variable. 

The factors are also called local functions and their product is called the 

global function [5]. Therefore, f (v, w, x, y, z) represents a global function 

and f 1, ..., 
f3 represent local functions. 

A main application of factor graphs are probabilistic models, where for 

a group of random variables (local functions), their joint probability density 
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g=16 
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Figure 2.4: Factor graph of the factorization of the function f (v, w, x, y, z) _ 
fl(vlw, x)f2(w)f3(xly, z) 

function would represent the global function. The example of probability 

propagation, which had been used only for cycle-free graphs, proved later to 

be useful also for graphs with cycles. 

In coding theory, different decoding algorithms make use of graphical 

models to be understood, such as the Viterbi algorithm that operates on 

a trellis diagram to decode convolutional codes. The generalization of the 

concept behind traditional decoding algorithms results in two main summary 

propagation algorithms, the sum-product algorithm and the max-product (or 

min-sum) algorithm. The structure of these algorithms matches the graph 

directly as they operate by passing messages (or summaries) along the edges 

of the graph. 

Making use of linear algebra, a binary linear block code can be represented 

as in eq. 2.22, 

C={xEF': HxT=O} (2.22) 

where H is the parity-check matrix over F and where n in the length of the 

code. Consider for example the EG(2,2) LDPC matrix depicted in eq. 2.23 
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that defines the (15,4,7) LDPC code. 

HEG(2,2) = 

100010000000110 

10001000000011 

101000100000001 

110100010000000 

011010001000000 

001101000100000 

000110100010000 

000011o10001000 
000001101000100 

000000110100010 

000000011010001 

100000001101000 

oi000000011o100 
001000000011010 

000100000001101 

39 

(2.23) 

It follows from 2.22 that the membership indicator function 2.24 (i. e. the 

function that dictates which codewords of length n belong to the null space 

of HEG(2,2)) of this code can also be written as eq. 2.25, where ® denotes 

addition modulo 2. Note that each factor in eq. 2.25 corresponds to one row 

of the parity-check matrix of eq. 2.8. 
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Ic: F'={0,1}: xh-ý 
1, ifx EC 

(2.24) 
0, else 

Gxl 

'(12 ® x6 ® x14 ® x15 

"(x1 ®xg ®x7 ® x15) 
Ic (xi, 

.., xý5) _ (2.25) 
(Xi ®x2 ®x4 (D x8) 

'(x4 ®X12 ® x13 ® x15 

The left column (i. e. the first variable and the corresponding parity 

checks) and the bottom row (i. e. the last parity check and the correspond- 

ing variables) of the LDPC matrix HEG(2,2) in eq. 2.8 are depicted in Fig. 

2.5. This is assuming the variable nodes in the LDPC matrix HEG(2,2) are 

numbered from left to right, and the parity-check nodes are numbered from 

top to bottom. 

Iterative Decoding of LDPC codes 

For the decoding of LDPC codes, the two most popular belief propagation 

decoding algorithms are the min-sum and the sum-product algorithms. The 

first one is a generalization of the Viterbi algorithm and looks for the most 

likely transmitted codeword, while the second one looks for the most likely 

transmitted bit, for each bit in a codeword. 

Let f (x1, x2)x3, ..., x15) be some discrete probability mass function, then 

the marginal probability for p(x2) can be written as in eq. 2.26. 
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23 

parity check nodes 
f(x) 

---- - ----------- 
4 5i `6 789 10ý 11 12 13 14 1 

Figure 2.5: Factor graph of the EG(2,22) LDPC code 

p (x2) _ .f 
(-'1711 x2,13 , ..., 115) (2.26) 

X1, X3, --", X15 

If the factor graph in Fig. 2.5 includes all the variable nodes but without 

cycles, and considers x2 as the root of the factor graph, it can be depicted as 

in Fig. 2.6. Let the function f (X 11 x2i x3, ..., x15) be the discrete probability 

mass function of the factor graph in Fig. 2.6; then f can be written as eq. 

2.27. 

f13 (x2, x10, x11, x13) 

f (xi' 
..., x15) = 

f2 (x2 
, x14) (2.27) 

. f5 (X2, X3)x5, X9) 

"(f4 
(x1, x2, x4, x8) f6 (x6) f7 (x7) f15 X12, x15» 
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Figure 2.6: Factor graph of the HEG(2,22) LDPC matrix in eq. 2.8, including 
only once all the variable nodes (i. e. without cycles), and using x2 as the 
root variable node 

Inserting eq. 2.27 into eq. 2.26 and applying the distributive law, yields 

eq. 2.28. 

EE f13 (x2,110) a11,113 f11 (a11) f10 (a10) 

X10 X11 X13 

/Lf13-'X2 

f2 (X2, a14) f14 (a14) 

X14 

P (x2) 
= 

µf2X2 

E f5 (a2) X3, x5, a9) f3 
(a3) 

f9 (a9) 

X9 S3 55 

µf5! +X 2 

(i &8 >14 f4 (x1, a2, a4,18) fl (a1) f8 (a8) 

'(F, x6 
f6 (x4) x6) E 

X7 
f7 (x4) x7) EX12 Ea15 f15 

(x4) x12, a15) f12 (X12))) 

(2.28) 

The factor µf 13 --ý a2 is the summary of the functions (i. e. the parity- 

check nodes) including all the variable nodes in the left part of Fig. 2.6. 
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Therefore, eq. 2.28 is transformed into eq. 2.29, 
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p (12) 
- µf13 --ý x2 ' µf2 12 " µf5 Xa " µf4 X2 (2.29) 

which corresponds to the summary factors (messages) of each one of the four 

branches in Fig. 2.6. 

The Sum-Product rule is the function (eq. 2.30) that represents the 

message out of some node f (x, yl, ..., yn) along the branch x. 

µs--. >x(x) _Z... Zf (X) yl, ..., yn) ' Pfy1 -* f (y1) ... /, L fyn --'> f 
(yn) (2.30) 

1J1 Yn 

The Max-Product rule can be obtained from the previous equation if the 

maximization is used as the summary operator. 

The algorithm can be applied to both graphs with and without cycles; 

however, the scheduling is different, as for a graph without cycles it is effi- 

cient to begin the message computation from the leaves (i. e. all the variable 

nodes that are only connected to one parity-check node) and to successively 

compute messages as their required input messages become available, so that 

each message is computed exactly once. In a factor graph with cycles, the 

algorithm becomes iterative. All messages are repeatedly updated, according 

to some schedule. The computation stops when the available time is over, 

or when another stopping condition is satisfied, such as finding a valid code- 

word or reaching a maximum predefined number of iterations; therefore the 

computation of eq. 2.30 on a graph with cycles is an approximation of the 

true summary. 
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The flooding update schedule, which is the most popular when decoding 

LDPC codes, alternates between updating the messages out of equality con- 

straint nodes and updating the messages out of parity-check nodes. Even 

though the flooding schedule is very popular, there is no evidence that it is 

optimal and no evidence that it provides good complexity-performance trade 

off. Recently, a lazy scheduling approach was studied in which not all mes- 

sages are updated every iteration, and the probability of updating a message 

is a function of its reliability and updating history [461. In [47] an analysis 

of the convergence rate of the semi-serial and serial schedulers is presented, 

proving that the computation tree under serial scheduling grows asymptot- 

ically in the number of iterations twice as fast compared to the flooding 

schedule, and that the serial schedule decoder is expected to converge in half 

the number of iterations compared to the flooding decoder when working 

near the decoder's capacity. 

For the decoding of LDPC codes, in [4] there is a detailed explanation 

of both algorithms. Let the local f unctions be the likelihoods at the parity- 

check nodes, described as 'ye(x) (where the subindex e stands for edge), and 

the likelihoods at the variable nodes, described as ryn(x) (where the subindex 

n stands for node). 

Let the intermediate f unctions Ae-n(x) be the messages (contributions) 

sent from the set of parity-check nodes to a particular variable node, and 

µnýe(x) as the messages sent from the set of variable nodes to a particular 

parity-check node. 

Finally, let the f final f unctions An (x) and p, (x) represent the concentra- 

tion of the information for a particular variable node or parity-check node 
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(i. e. 7,, (x) and -ye(x) respectively), together with all the contributions com- 

ing into that particular variable node or parity-check node, respectively (i. e. 

Pe--+n(x) and µn-e(x) respectively). 

The Sum-Product algorithm consists of the following three steps: 

9 Initialization: The local functions -y.,, (x) and lye(x) are initialized. The 

intermediate functions µe-n(X) and µ,. e(X) are set to zero. 

(x) are up- " Iteration: The intermediate functions µ,,, (X) and µ, 

dated alternatively. The variable-to-check function µ,,,, e(x) is com- 

puted as the product of the variable's local value and all contributions 

coming into the variable n, except the one from the parity-check e. 

µn-ge(l) = 1'n(x) 
11 µe'-> (x) 

nEe', e'#e 

(2.31) 

The check-to-variable function µ,, n(x) is computed as the summation 

over all local configurations on the parity-check e that match the x on 

the variable n, each term being the product of the parity-check's local 

cost and all the contributions coming into the parity-check e, except 

the one from the variable n. The sum 

pe-n(X) =Z 1'e(Xe) 
11 µn'_ e(1n') 

(2.32) 
n'Ee, n'#n 

" Termination: The final function µ,,, (x) is computed as the product of 

the variable's local value and all contributions coming into n. This final 
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function it is the estimated output value of the codeword. 

An(X) = 7n(X) f /ýeý-ýn(x) (2.33) 
nEe' 

and the final function y, (x) is computed as the product of the check's 

local value and all contributions coming into e. 

{ie(X) -'Ye(X) 
11 

P'n'-*e(Xs') 

n'Ee 

(2.34) 

The iteration and termination functions must be modified when the log- 

likelihood ratio (LLR) 2.35 is considered as the input to the decoder, where z 

is the channel output. Therefore, the variable-to-check and check-to-variable 

intermediate functions µn, e(x) and µe, n(x) are defined as eq. 2.36 and eq. 

2.37 respectively. 

L (n) = In 
P(n = 0)lz (2.35) 
P(n = 0) lz 

µn-ie(ý) _ jin(x) µe'-, n(X) (2.36) 
nEe', e'oe 

(n'e 
en(x) = 2tanh1 rl tanh (xn')) (2.37) 

n'Ee, n'#n 

Also, the final cost function changes to eq. 2.38. 

/In(x) = ryn(X) 
Z 

µe'-n(X) (2.38) 
nEe' 
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As an example, consider the (9,2,6) LDPC matrix in eq. 2.39. Assume 

the bpsk modulated zero codeword has been transmitted, and assume the re- 

ceived log-likelihood vector includes positive values for correct log-likelihoods 

(i. e. decode to zero), while it includes negative values for incorrect log- 

likelihoods (i. e. decode to one). The received log-likelihoods are shown in 

eq. 2.40. 

H(9,2,6) _ 

100100100 

010010010 

001001001 
100001010 

010100001 

001010100 

(2.39) 

{'y,, (1), -y,,, (2), 
..., -yn(15)} _ {+4.0, +4.0, +3.9, -1.5, +2.7, +4.0, +4.0, +4.0, +3.9} 

(2.40) 

The intermediate cost functions Ms_, e(9,2,6) and Me-+s(9,2,6) are initiated, 

with all their elements equal to zero. After doing the variable-to-check up- 

date, and the check-to-variable update, Ms-ße(9,2,6) and Me_, s(9,2,6) take the 

values in eq. 2.41 and eq. 2.43 respectively. The update of Me_, s(9,2,6) 
(1,1) 

is calculated in eq. 2.42. 
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Ms-'e(9,2,6) 

+4.0 0 0 -1.5 0 0 +4.0 0 0 

0 +4.0 0 0 +2.7 0 0 +4.0 0 

0 0 +3.9 0 0 +4.0 0 0 +3.9 

+4.0 0 0 0 0 +4.0 0 +4.0 0 

0 +4.0 0 -1.5 0 0 0 0 +3.9 

0 0 +3.9 0 +2.7 0 +4.0 0 0 
(2.41; 

=2" 
(tanh (Ms-ße(9,2,6) (1,4)/2) " tanh (Ms--*e(9,2,6) (1,7)/2)) 

"Me-s(9,2,6) 
(1,1) 

Me-ßs(9,2,6) (1,1) 

=2" (tanh (-1.5/2) " tanh (+4.0/2)) Me-ßs(9,2,6) (1) 1) 

_ -1.4 
(2.42) 

-1.4 0 0 +3.3 0 0 -1.4 0 0 

0 +2.5 00 +3.3 0 0 +2.5 0 

0 0 +3.3 0 0 +3.2 0 0 +3.3 
Me-ßs(9,2,6) 

- 

+3.3 0 00 0 +3.3 0 +3.3 0 

0 -1.4 0 +3.2 0 0 0 0 -1.4 

0 0 +2.5 0 +3.3 0 +2.5 0 0 
(2.43) 

Just after one iteration, the final variable cost µ,,, (x) for all the variables, 

shows a correct decoding, as shown in eq. 2.44. 
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{i (1), {+5.9, +5.1, +9.7, -5.1, +9.3, +1.1, +5.0, +9.8, +5.7} 

(2.44) 

Density evolution (DE) [40], [48] is a technique to analyse the performance 

of an LDPC code with particular ensemble parameters (d,,, da), or certain 

ensemble of LDPC code, when decoded with a particular algorithm under 

a particular channel. This technique determines the corresponding capacity 

to any desired degree of accuracy; in other words, DE assists to determine 

the minimum Eb/No required to transmit information at a target bit-error 

probability, given a maximum number of iterations and a particular decoding 

algorithm to decode an LDPC code. 

There are three principles that support the use of this technique, called 

concentration, convergence to cycle - free case, and density evolution and 

threshold determination [8]. The first principle asserts that the behaviour 

of almost all codes is alike and therefore, the determination of the average 

behaviour of the ensemble suffices to characterize the individual behavior of 

the vast mayority of the codes. The second principle suggests that, since 

the average behaviour of long codes is equal to the behaviour observed on 

cycle-free graphs, the average behaviour is computable by a deterministic 

algorithm. Finally, the third principle claims that long codes will exhibit a 

threshold phenomenon which separates the region where reliable transmission 

is possible, from that where it is not. 

Given the PDF of the variable-to-check update equation Mnýe for the 

initial values, denoted as P°, then, the PDF of the check-to-variable update 
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equation Mein and the PDF of the variable-to-check update equation M;, 
__e 

for any i>1, denoted as Qi and P' respectively, can be computed. 

Assuming that the channel is AWGN, the PDF of the received codeword is 

denoted by eq. 2.45. The all-zero or the all-one codewords can be assumed, 

if the channel is symmetric. The cumulative distribution function (CDF) 

(described by eq. 2.46) of the PDF, provides the converge threshold, where 

for certain Eb/No, the CDF provides the same probability of error for any 

number of iterations. 

PDFGaussian =e 
(x2 _ 

a2)2 
(2.45) 

or- , pi 

fxe CDFaussian =1+ er fµ er f=2 -t2dt (2.46) 
2 o, ý))I pi 

Through observing the evolution of P' and Qi it is possible to ascertain 

whether the fraction of an incorrect message approaches zero or not, as the 

number of iterations increases. 

Convergence thresholds at a rate of one half for regular LDPC codes under 

Log-MAP and Max-Log-MAP decoding are given in Table 2.9. From this 

graph it becomes clear that as the value of ry and p increases, the thresholds 

also is increased for each particular ensemble, with the best performance 

obtained by the most sparse ensembles of LDPC matrices. 

In [40], DE is introduced for the analysis of GF(q) LDPC codes. In [49], 

the DE equations for non-binary LDPC ensembles are derived, trying to 

make use of an additional degree of freedom when compared to binary LDPC 
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j k DE Max-Log-MAP DE Log-MAP 
3 6 1.7 1.11 
4 8 2.5 1.62 
5 10 3.1 2.04 

Table 2.9: Convergente thresholds at r=0.5 for binary-input AWGN channel 
under Log-MAP and Max-Log-MAP decoding 

codes. The results of the study suggests that for a fixed degree distribution, 

the threshold seems to be a unimodal function of the alphabet size, but as 

the alphabet size is increased, the performance of the iterative decoder seems 

not to approach the Shannon limit. 

However, DE ignores dependency between bits, which is particularly prob- 

lematic for specific decoding instances. Also, DE does not show failure to 

converge for specific decoding instances, as it only shows the average be- 

haviour. 

DE is computationally intensive and hence using a Gaussian Approxima- 

tion (GA), low-complexity approximate analysis methods that track a single 

parameter of the messages that have been developed through iterations, in- 

stead of the density functions. In Gaussian approximation, the mean and 

the mutual information of the messages exchanged in the decoder, are re- 

spectively tracked based on mean [9], and the extrinsic information transfer 

(EXIT) charts techniques [50], [51], [52]. 

While Density Evolution and Gaussian Approximation, based on mean 

techniques maximize the noise threshold for convergence of the iterative de- 

coder as optimization criterion, the EXIT charts use curve fitting as an indi- 

rect and sub-optimal way of optimizing for the best convergence threshold, 

for a given check and variable node degree profiles [10] 
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The mutual information function of a message whose pdf is symmetric 

Gaussian density of mean a2/2 and variance a2 is defined by eq. 2.47 [53] 

=T (N(a2/2, a2)) 
J (a) 

x_o2/2 2 (2.47) 

=1- 27r, 2 
ff ,e2,2 1092 (1 + e-x) dx 

The performance of TC and LDPC codes, through the use of EXIT charts, 

is presented in [53] and [10] respectively. In the last one, eq. 2.48 and eq. 2.49 

are presented as an approximated EXIT function for the variable node and 

the check node respectively, when the LDPC code is regular. Ia� and'a, are 

the mutual information of extrinsic output messages of the check nodes, and 

the mutual information of extrinsic output messages of the variable nodes, 

respectively; dl and d, are the variable node degree and the parity-check node 

degree, respectively, and ý7ch, is the variance of the channel messages. When 

the LDPC code is irregular, eq. 2.48 and eq. 2.49 are modified to include 

the variable node and parity-check node distribution. 

Tv =J 
(\/(di 

- 1) (J-j (Iav))2 + ach (2.48) 

Tc=1-J(dr. -1J-1(1-Iac)) 
(2.49) 

2.5 Design of Iterative Subsystems 

As soon as probability propagation algorithms were defined in terms of factor 

graphs, the concept was used to model advanced receiver designs for particu- 
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lar types of channels and modulation schemes [7]. Up to that point, commu- 

nication receivers consisted of serially concatenated processing subsystems. 

each one optimized to perform a specific task. Such receiver designs had 

two major drawbacks. Whenever the interface between subsystems involves 

the passing of hard-decisions, the information lost becomes unavailable to 

subsequent stages. On top of that, stages at the beginning of the processing 

chain do not benefit from new information derived by stages further down 

the chain. 

The interpretation of subsystems with factor graphs, such as the modu- 

lation demapper, the equalizer, the multiuser detector, the source decoder, 

etc, with Soft-Input Soft-Output (SISO) algorithms typically in the form of 

log-likelihood ratios, has proved to improve the BER and PER performance 

compared to previous receiver designs. 

2.5.1 Joint Demapping and Channel Decoding 

This scheme considers the concatenation of a channel decoder and a modified 

demapper where both subsystems exchange soft information. This concept, 

proposed in [12] and [11] reduces the BER when compared to a conventional 

receiver where both demapping and channel decoding are carried out inde- 

pendently and the channel decoder is a convolutional code. 

By considering this approach, the soft demapping device replaces the sec- 

and encoder/decoder, but still improves the overall BER performance with- 

out further reduction of the coding rate or increased complexity. Different 

types of mapping are analysed and a design rule based on mutual information 
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to find good mappings is proposed. It shows through simulations that gray 

mapping, with the highest unconditioned bit-wise mutual information value 

1=0.55, has a low performance when used for this scheme, while antigray 

mapping, with lo -- 0.32, has a better performance, although, a mapping 

with 1 -- 0.41 would have the best performance, when considering 16QAM. 

2.5.2 Joint Source and Channel Decoding 

For reasons of delay and complexity and because of highly non stationary 

sources, many source coding schemes still contain redundancy and output 

bits of different significance and error sensitivity. Also, most of the source 

decoders are highly sensitive to channel errors when these are not restricted 

to a small time or space. This means that when the channel bit error rate is 

very high, the decoded sequence still have many corrupted bits which could 

potentially degrade the quality of the application in turn. 

The joint source-channel scheme is based on the idea of making use of the 

source redundancy, which can be modeled as a Markov source, and therefore, 

can be decoded making use of a modified BCJR algorithm. Different ideas 

have been proposed for this scheme, some of which use as source a Markov 

source with different parameters, while others make use of modified versions 

of source coding standards. 

In [54], the case of two correlated binary information sequences that are 

not compressed by source coding, but are independently channel encoded, is 

considered where by the correlation between both sequences is exploited at 

the receiver. One of the conclusions is that the gap between the theoreti- 
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cally attainable performance and that obtained through simulations increases 

(the performance degrades) as the correlation between the input sequences 

increases. 

In [55], the information generated by a binary Markov source is sent 

through a Rayleigh fading channel using complete channel state information. 

The performance of the system is analised when the source information is 

not compressed at the transmitter, and the receiver performs a joint source- 

channel decoding. The main conclusion is that when the source is very 

redundant, it is better to compress, but as the redundancy of the source 

decreases the gap is reduced until it becomes better not to compress and 

instead make use of the little redundancy left on the source which is still 

high enough to improve the channel decoding performance. The decoder is 

a modified version of the Viterbi decoder. 

[56] presents the general block diagram behind joint source channel- 

decoding. [57], [58], [59] and [60] introduce joint source channel decoding 

when residual redundancy is present at the output of speech, video and im- 

age encoders respectively. All the proposed joint schemes offer a better per- 

formance than the conventional unjoint approach but at the cost of higher 

complexity, latency and modifications to the interlayer protocols to accept 

the exchange of soft information in both directions. 

[61] shows a different approach by considering a two-state Markov source 

together with a Low-Density Parity-Check code. It does not only conclude 

that the joint scheme shows better performance compared to the separate 

scheme, but also shows that the number of iterations required by the LDPC 

decoder is greatly reduced. If parallelised with different processors, this im- 



2.5. DESIGN OF ITERATIVE SUBSYSTEMS 56 

plies an overall processing time reduction. 

Source Coding 

Source coding deals with the task of creating efficient descriptions of informa- 

tion sources, which permit a reduction in the memory or bandwidth resources 

required to store or transport sample realizations of the source data [62]. A 

brief explanation of source coding for discrete sources is given here. Re- 

garding discrete sources, the ability to create reduced data-rate descriptions 

is related to the information content and the statistical correlation among 

the source symbols. The source coding subsystem goal is to form the best 

possible fidelity description of the source for a given available bit rate, or 

to achieve the lowest possible bit rate in order to obtain a specified fidelity 

description of the source. 

A discrete source generates a sequence of symbols X (k) selected from a 

source alphabet at discrete time intervals kT, where k=1,2,... is a counting 

index. If the alphabet contains a finite number of symbols, say N symbols, 

the source is said to be a finite discrete source. 

A finite discrete source is defined by an alphabet and the probability 

assigned to each symbol. Once determined the probability P (Xj) of each 

symbol Xj, we can determine the self-information I (Xj) for each symbol in 

the alphabet as eq. 2.50. 

I (X; ) _ -logt (pi) (2.50) 

The average self-information for the symbols in the alphabet, also called 
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the source entropy, is defined as eq. 2.51, 

N 

H (X) =E {I (Xj)} =-Z pjlog2 (pj) (2.51) 
j=1 

where E{ Xj is the expected value of X. The source entropy is defined as the 

average amount of information per source output, and represents the average 

amount of uncertainty that is resolved by the use of the alphabet. The 

amount of information in bits per symbol is bounded below by zero if there 

is no uncertainty, and above by loge (N) if there is maximum uncertainty. 

0<H (X) : 5: 1092 (N) (2.52) 

Source coding is used when the information content of an N-symbol al- 

phabet is less than the upper bound loge (N). 

A discrete source is said to be memoryless if the symbols emitted by the 

source are statistically independent. In particular, this means that for the 

symbols taken two at a time, the joint probability of the two elements is 

simply the product of their respective probabilities as shown in eq. 2.53. 

The average entropy per symbol of a statistically independent M-tuple is 

written as eq. 2.54. 

P (X;, Xk) =P (XjXk) IP (Xk) =P (X; ) P (Xk) (2.53) 

= ME {-log2P (Xi)} 

-1 HM (X) 
_ EX,,, [-P (Xm)1092p (Xm)I (2.54) 

=H(X) 
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A discrete source is said to have memory if the symbols emitted by the 

source are not statistically independent. The dependency between symbols 

means that in a sequence of M symbols, there is reduced uncertainty about 

the M- th symbol, if the previous M-1 symbols are known. The entropy 

for a source with memory is the limit in eq. 2.55. 

H (X) = limAI�,. HM (X) (2.55) 

The entropy of an M-tuple from a source with memory is always less 

than the entropy of a source with the same alphabet and symbol probability 

but without memory. In other words, an NI-tuple with dependent symbols 

contains less information, or resolves less uncertainty, than does one with 

independent symbols. 

HM (X) 
memory 

< HM (X )nomemory (2.56) 

The average entropy per symbol of an M-tuple from a source with mem- 

ory, decreases as the length M increases. A consequence is that it is more 

efficient to encode symbols from a source with memory in groups of several 

symbols rather than to encode them one symbol at a time. For purposes of 

source encoding, encoder complexity, memory constraints, and delay consid- 

erations, limit the size of a symbol sequences treated as a group. 

Source Coding for Digital Data 

The coding that takes place to reduce the redundancy of a data source re- 

quires the selection of an efficient binary representation of that source. Often 
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this implies the substitution of one binary representation of the source sym- 

bols with an alternative representation. The binary code assigned to each 

source symbol must satisfy certain constraints to permit reversal of the sub- 

stitution. For the specific task of data compression, the primary goal is to 

reduce the number of bits, which in turn, will reduce the redundancy on the 

data source. 

To achieve this task, a complete characterization of the source is required, 

by obtaining the probability of each symbol and the joint probabilities of the 

symbols taken two at a time, three at a time, and so on. These non binary 

symbols are mapped via a dictionary called a character code, to a binary 

alphabet description. 

Data compression codes are often variable-length codes. The length of a 

binary sequence assigned to each alphabet symbol should be inversely related 

to the probability of that symbol. A better data compression can be achieved 

when there is a wide difference between the probabilities of the symbols, 

compared to the case when the probabilities of the symbols are equal or 

relatively similar. Also, having a sufficiently large set of symbols increases 

the data compression. An extension code can be derived from the original 

set to form a new set of symbols, so that the previous condition can be met. 

The data compression code should have as desired properties, the capacity 

to be uniquely decodable and be prefix-free. Compression performance is 

measured by the compression ratio, which is the ratio of the average number 

of bits per sample before compression, to the average number of bits per 

sample after compression. 

Recent work in the field include [63] where the BCJR algorithm is anal- 
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ysed and a new algorithm is derived for rate distortion source coding. Also, 

in [64], entropy coding and channel coding are merged into a single non- 

catastrophic encoding operation, where it is claimed that during the event of 

an incorrectly decoded codeword, there would not be a spread of mistakes. 

Huffman Code 

The Huffman code [65] is a prefix-free, variable length compression code that 

can achieve the shortest average code length n for a given input alphabet. 

The possibility of having the shortest average code length for a particular 

alphabet, to be significantly greater than the entropy of the source alphabet, 

shows an inability to exploit the promised data compression due to the al- 

phabet, not the coding technique. The Huffman coding procedure provides 

a transform between any two alphabets and is generated as part of a tree- 

forming process. The process starts by listing the input alphabet symbols, 

along with their probabilities, in descending order of occurrence, where each 

tabular entry correspond to the branch ends of a tree. Each branch is as- 

signed a weight equal to its probability. The two entries with the lowest 

probabilities are merged to form a new branch with their composite prob- 

ability. After every merging, the new branch and remaining branches are 

reordered, always in descending order of occurrence. If at any point, the new 

branch has equal probability to some other branch, the new branch is given 

a higher position; this condition reduces the code length variance, which in 

turn, lowers the chance of buffer overflow. 
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Markov Chains 

In general, the random variables within the family defining a stochastic pro- 

cess are not independent, and in fact can be statistically dependent in very 

complex ways. However, the class of Markov random processes which are use- 

ful in modeling problems, have a simple form of dependence [66]. 1 in modeling 

problems, have a simple form of dependence [66]. 

A random process X (t) is a Markov process if the future of the process 

given the present is independent of the past, that is, if for arbitrary times 

tl<t2<... <tk<tk+1, 

P [X (tk+i) = Xk+11 X (tk) _ Xk, ..., 
X (t1) = xil (2.57) 

P [X (tk+1) = Xk+l 1X (tk) = Xkl 

if X (t) is discrete-valued, and 

P [a <X (tk+i <_ b) _ Xk+1I X (tk) = Xk, ..., 
X (t1) = xi} (2.58) 

P [a <X (tk+i <_ b) = Xk+1I X (tk) = Xk] 

Equations 2.57 and 2.58 define the Markov property where the value of 

X (t) at time t is referred to as the state of the process at time t while the 

change between states is called a transition. 

A Markov chain is an integer-valued Markov process. If X (t) is a Markov 

chain, then the joint probability mass function (PMF) for k+1 arbitrary 

time instants is given by eq. 2.59. 
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P [X (tk+1) = Xk+1i X (tk) = Xk, ... i 
X (t1) = xi] 

=P [X (tk+1) = Xk+1l X (tk) _ Xk] P [X (tk) _ Xkl X (tk-1) = xk-1i ... 

xP [X (t2) 
_ x2I X (tl) 

= x1] P [X (tl) 
= x1] 

62 

(2.59) 

Thus the joint PMF of X (t) at arbitrary time instants is given by the 

product of the PMF of the initial time instant and the probabilities for the 

subsequent state transitions. Therefore, it is clear that the state transition 

probabilities determine the statistical behaviour of a Markov chain. 

Let Xn, be a discrete-time integer-valued Markov chain that starts at 

n=0 with the PMF given by 2.60. 

pj(0)=P[Xo=j] Vj=0,1,2,... (2.60) 

Assuming that the one-step state transition probabilities are fixed and do 

not change with time, it takes the general form of eq. 2.61, 

P[Xn+l=7IXn=iII =pik `df (2.61) 

and X,,, is said to have homogeneous transition probabilities. The joint PMF 

for X.,.,, 
... 

Xo is the given by eq. 2.62 

P [X, = 2nß ..., 
Xp = i0] = pin_l, i, t ... pio, ilpio 

(0) (2.62) 

Thus X,, is completely specified by the initial PMF p2 (0) and the matrix 

of one-step transition probabilities depicted by eq. 2.63, where P is the 
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transition probability matrix. 

Poo poi pot 

Pio Pu pia ... 

P= (2.63) 

Pio Pu Pie ... 

An n-order Markov chain has an n-step transition probability matrix. 

Considering the state probabilities at time n, let p(n) = {pi(n)} denote the 

row vector of state probabilities at time n. The probability pj(n) is related 

to p(n - 1) through eq. 2.64. 

pj (n) 
= Ei, P [Xn = iI Xn-1 = i] P [Xn-1 = i] pj (n) = Eipijpi (n 

- 
1) 

(2.64) 

Equation 2.64 states that p(n) is obtained by multiplying the row vector 

p(n - 1) by the matrix P. Making a generalization of the previous concept, 

we have the expression in 2.65. 

P (n) =p (0) P (n) =p (0) P` n=1,2,... (2.65) 

Thus the state PMF at time n is obtained by multiplying the initial state 

PMF by P'; in other words, the n-step transition probability matrix is the 

n-th power of the one-step transition probability matrix. 
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2.5.3 Serial vs Concatenated codes 

A serial concatenation is formed from two codes; an n1, kl code Cl as inner 

code and an n2, k2 code C2 as outer code, where in general the inner code 

is a binary code and the outer code is a nonbinary code with symbols from 

GF(2k1). The symbols of C2 are represented by their corresponding bits of 

kl binary symbols (or kl-tuples). Encoding consists of two steps. First, the 

k1 k2 binary information digits are divided into k2 bytes of kl information 

digits each. These k2 bytes are encoded according to the rules for C2 to 

form an n2-byte codeword. Second, each kl-digit byte is encoded into a 

codeword in C1, resulting in a string of n2 codewords of C1, a total of n2n1 

digits. These digits are then transmitted, one Cl codeword at a time, in 

succession. Thus, the resulting code is an (mmn2, k1k2) binary linear code. 

The concatenated code of Cl and C2, regardless of whether iterative or non- 

iterative, is decoded in two steps; First each Cl codeword is decoded and the 

check digits are removed, leaving a sequence of n2k1-digit bytes. These bytes 

are then decoded according to the decoding method for C2, to leave the final 

corrected message. 

A parallel concatenation is also formed by two codes; code Cl and code C2 

have the same n, k. Encoding is implemented in parallel and the codewords 

must be in systematic. The binary information k are encoded according to 

the rules for Cl to obtain nj digits. The binary information k is in parallel 

interleaved and then encoded according to the rules for C2 to obtain n2 

digits. Since both codes have the same n, k, it is clear that nj and n2 are 

the same. The transmitted codeword is formed by the information bits, 
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the parity bits from Cl with length nl -k and the parity bits from C2 

with length rn2 - k; therefore, the length of the transmitted codeword is 

k+(n-k)+(n-k) =2n-k. 

In [67], a study to compare the BER performance of serial versus parallel 

concatenation is introduced over AWGN and Fading channels, using non- 

iterative decoding. Although the parallel concatenation has a lower rate, the 

performance curve of the parallel concatenated approach shows little Eb/No 

gain. Other studies [68], this time with iterative decoding and using a turbo 

code as inner code show the same performance for both schemes at lower 

complexity of the serial concatenation, although it must be considered that 

the turbo code is a parallel concatenation and that may be the reason of the 

similar performance. 

2.5.4 Parallel concatenated LDPC codes 

This scheme results from the direct parallel concatenation of LDPC codes and 

is presented in detail in [13], [15], [14] and [69]. There are several benefits 

with such an approach, including an increased redundancy and therefore 

performance, but with a reduced requirement of memory to allocate a non- 

concatenated LCPC code of the same length. Also, such an approach can 

produce better performance in the low Eb/No region, compared to a single 

LDPC code whose performance in such region depends on the mean column 

weight `. 

A theoretical model to calculate the BER at low Eb/No values is intro- 

duced and a study regarding the performance of this approach with different 
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LDPC codes is included in [13], where one of them has fixed =' =2 while the 

second one varies between 2< ry < 3. The term used to describe ry is mean 

column weight (MCW). 

Finally, this approach does not require the use of an interleaver, com- 

pared to the turbo code counterpart, and can stop without going through 

unnecessary iterations. 

2.6 Summary and proposed framework 

Turbo codes decoded with the belief-propagation algorithm, have been al- 

ready in use for some time in practical systems. Irregular LDPC codes 

can achieve better performance compared to regular LDPC codes and turbo 

codes, although they may present an error floor at low BER values and 

have high implementation complexity, due to the irregular composition of 

the LDPC matrix. 

Construction of regular LDPC codes through structured procedures has 

attracted substantial attention since their performance is similar to, or better 

than the performance obtained with randomly created regular LDPC codes; 

other benefit of this approach is the reduced requirement of memory to save 

the LDPC matrix for some designs, as well as a reduced number of operations 

for the encoding and decoding processes. However, regular LDPC codes 

through structured procedures present a limitation on the number of codes 

with different length, different rate, different column weight, different weight 

and different girth. Overall, LDPC codes give mayor advantages over turbo 

codes such as not needing an interleaver and the ability to avoid unnecessary 
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iterations when a valid codeword is decoded. 

The representation of LDPC codes through factor graphs, has assisted 

to the better understanding of the decoding performance of belief propaga- 

tion algorithms applied to turbo codes and LDPC codes. Also, factor graph 

theory has assisted the development of new receivers that are optimum for 

certain channels; such receivers may take the form of joint iterative subsys- 

tems that accept and deliver soft information, making it possible to expand 

the propagation of messages, previously limited to the channel decoder, to 

provide the best performance ever achieved. The fact that joint iterative 

subsystems are highly parallelisable also makes them an attractive option. 

For some proposed schemes, it is not improving the BER or FER perfor- 

mance what matters, which are already close to the channel capacity, but to 

achieve the same performance with reduced complexity (e. g. a reduced num- 

ber of iterations). Therefore, it has been important to provide new algorithms 

that are suboptimal (e. g. receivers with a reduced level of complexity). 

The main concepts needed to understand the work presented in this the- 

sis related to channel coding and joint iterative subsystems have been intro- 

duced. Addition material has been included to assist with the comparison 

graphs (e. g. Huffman coding). 

The two capacity approaching channel encoding/decoding techniques are 

introduced as well as some regular construction techniques. Of special inter- 

est is subsection 2.3.4 which is fundamental for a new type of regular LDPC 

construction presented in this thesis. The joint iterative subsystem schemes 

presented in subsections 2.5.4 and 2.5.5 serve as background for a proposed 

joint scheme without channel encoder/decoder. Subsection 2.5.6 considered 
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a parallel concatenated Gallager codes scheme where irregular random LDPC 

codes with different mean column weight =y are concatenated. The perfor- 

mance of a similar scheme for regular structured LDPC codes is investigated 

in the thesis. 

The novelty of this work relies on the development of an efficient algo- 

rithm to construct Quasi-cyclic LDPC codes that are regular, half-rate, with 

a maximum girth of 16, variable column weight, for different code lengths. 

EXIT charts to understand their performance are included for different col- 

umn weights, as well as DE graphs to analise their performance. The perfor- 

mance of several LDPC codes constructed through structured and random 

algorithms, is analised when concatenated in parallel. The performance of 

joint demapping-source decoding is analysed independently first, to later in- 

corporate a parallel concatenated channel decoder. The performance of the 

previous scenarios is analysed under the AWGN channel, with multilevel 

modulation (i. e. QPSK, 16QAM and 64QAM). 



Chapter 3 

Quasi-Cyclic Girth Partition 

and Shift LDPC Codes 

3.1 Purpose 

Since it was discovered that the error performance achieved by LDPC codes 

when decoded with the sum-product algorithm [70], [71], approached the 

channel capacity [72], research was then focussed on the construction of new 

LDPC codes, the analysis of their performance, and new procedures to make 

their encoding and decoding more efficient (e. g. reduce the number of flip- 

flops and reduce the number of gates required, while achieving encoding or 

decoding in the least possible number of clock cycles). 

The importance of developing structured LDPC codes, is to provide a 

wide family of codes that share certain performance properties, but also 

to facilitate the development of efficient encoding and decoding algorithms. 

Cyclic and Quasi-Cyclic (QC) codes [73] [74], [75], [76], [77], [78], [29], [79], 

69 
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[80] based on sparse matrices are considered a particular type of LDPC codes. 

Euclidean Geometry and Projective Geometry codes [81] are an exam- 

ple of Cyclic LDPC codes, while the codes based on arrays of EG or PG 

LDPC matrices, are an example of QC-LDPC codes. EG and PG LDPC 

codes have girth g six, while [82] is an example of girth twelve QC-LDPC 

codes. The structure of Cyclic and QC LDPC codes, allow low complexity 

encoding [83], [84], with simple shift registers based on their generators or 

generator matrices, taking advantage of the sectionised cyclic structure, with 

complexity linearly proportional to the number of parity-check bits of the 

code for serial encoding, and to the length of the code for high-speed parallel 

encoding. Also, their structure has an advantage in integrated circuit de- 

coder implementations. References [85], [86], and [87] are similar studies for 

the decoding part, where low complexity decoding algorithms are proposed. 

In this section a novel algorithm to create new regular LDPC codes is 

proposed. This procedure facilitates the construction of LDPC codes with for 

a particular column weight and a particular girth. The girth and the length 

are directly related to each other in this algorithm; therefore, by increasing 

the length as a parameter of design, the girth can be increased as well. 

The Quasi-Cyclic LDPC codes created from the new proposed algorithm are 

related to the Partition-and-shift LDPC codes presented in [18], [17], and [45]. 

Cyclic and QC LDPC codes will also be defined, in order to establish 

the nomenclature. The main benefit of this algorithm, is a reduction in the 

number of operations to generate new QC-LDPC codes for a particular girth, 

regardless of the length. 
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3.2 Introduction to QC LDPC codes 

A circulant H, is a square matrix in which each row is the cyclic shift of 

the row above it. A cyclic shift is defined as a shift of one position to the 

right applied to all the values in a vector, where the value in the right most 

position is then placed in the left most position. This implies that the row 

at the top of the circulant is the cyclic shift of the row at the bottom of 

the same circulant. It can be noticed that in a circulant, each column is the 

downward cyclic shift of the column on its left, with the left most column 

being the downward cyclic shift of the right most column. The matrix 3.1 

shows a5x5 circulant. 

10100 

01010 

He =1001011 (3.1) 

10010 

01001 
The row and column weights of a circulant, p, and ry, respectively, are 

the same, therefore, it will be refered to, as w,. When w, = 1, the circulant 

takes the form of an identity matrix, and is called a circulant permutation 

matrix. Due to the structure of a circulant, it is completely characterized by 

any row or any column. The top row is therefore called the generator of the 

circulant. 

If a matrix with dimensions r, x c, fulfils all the conditions described 

previously, then r,, = c,. For the r, x r, circulant H, over GF(2), if its rank 
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is r, then all its rows are linearly independent. 

A QC-LDPC matrix is an array of sparse circulants of the same size as 

shown in 3.2, whose null space generates a QC-LDPC code. For such QC- 

LDPC matrix Hqc with size rHgc by cHgc over GF(2), positive and integer, 

with rHgc < CHgc the following properties are met. 

El 
,l 

E1,2 Ei, 
c 

Hqc 
E2,1 E2,2 ... E2 

,c (3.2) 

Er i Er, 2 Er, c 

The weight of each circulant H,, (i, j), for all 1<i< rHgc and for all 

1<j< cH,,, is small compared to its size r,. No two rows (or two columns) 

of Hqc have more than one 1-component in common, called the row - column 

constraint. The first property implies that each circulant H, (i, j) in Hqc is 

sparse; the second property implies that the girth is at least six, since there 

are no cycles of length four, and the girth g of an LDPC code is always even. 

Then, the null space of Hqc is a QC-LDPC code with length n= CHgc " CC. 

If Hqc contains H, (i, j) with the same p, and 'y, for all 1<i< rHgc and 

for all 1< j< CHgc, then Hqc is regular; otherwise, it is irregular. 

3.3 Half-rate GPS LDPC Codes with p= 2 

The GPS-LDPC codes belong to the set of QC-LDPC codes. The novel 

GPS-LDPC codes have column weight 'y and row weight p=2- -y and are 

half rate. The main goal of this algorithm is to obtain the matrix Hqc with 
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girth 6<g< 16, depending on the requirements of the design. Two new 

matrices are defined. 

The first one is the cycle matrix YHgc. Each of the elements in the 

YHgc matrix is called the circulant identifier (1), as shown in 3.3. I= 

{IN, IDl, ID2, Iu} is the set of circulant identifiers in the cycle matrix. I 

Hqc (i. e. each of the circulant identifiers in the cycle matrix maps to one 

of the circulants in Hqc). The set of circulant identifiers do not take any 

numerical value. 

Il, 
l 

11,2 
... Il, 

s 

12,1 
YHqc 

Is l 2' 

12,2 ... 12,9 

122 ... 12, 
s 

(3.3) 

The second one is the slope matrix SH. The SH matrix contains two 

types of elements called slopes (S) and nulls (N), as shown in 3.4. SH Hqc 

(i. e. each of the slopes in the slope matrix maps to one of the circulants in 

Hqc). The slope denotes a circulant whose generator has weight one, since 

the elements of Hqcbelong to GF(2). S= 10,..., r, - 1} VN (i. e. the value 

of the slope takes positive integer values from zero up to r, - 1). When 

S=0, the slope denotes a circulant's generator whose non-zero element is 

located in the left most position, and when S= rc - 1, the slope denotes 

a circulant's generator whose non-zero element is located in the right most 

position. The value of the slope denotes the position of the non-zero element 

in a circulant's generator. NH Hqc (i. e. each of the nulls in the slope 

matrix maps to one of the circulants in Hqc). The null denotes a circulant 
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whose generator has weight zero, and therefore does not take any numerical 

value. Also, IH{S, NJ. 

S11 S1,2 S1,9 

N2,1 S2,2 ... N2 
9 SH = (3.4) 

N22,1 52 
,2 

SY, 

The algorithm is divided into three parts. The first one makes use of the 

cycle matrix, the second one makes use of the shift matrix, and finally the 

third one is related to the construction of the GPS-LDPC matrix. 

During the first part of the algorithm, only g needs to be defined, in 

order to build the cycle matrix of size (g/2) x g. The cycle matrix con- 

tains g+ (g/2) circulant identifiers of the type ID, located in the positions 

(i, j)V1 <i< (g/2), 1<jGg, when j=i, j=i+ (g/2) or j= (i -1 mod 

(g/2)) + (g/2). The cycle matrix contains at the beginning of the algorithm 

one circulant identifier of the type ID2 located in the position (2,1). Also, 

the cycle matrix contains (g/2) -1 circulant identifiers of the type Iu located 

in the positions (i, j)`d1 <i< (g/2), i 2,2 <j< (g/2), when i= (j + 1) 

mod J. Finally, the cycle matrix contains gx (g/2) - (2 - g) circulant identi- 

fiers of the type IN in the positions left. The number and position of the IN 

and ID, circulant identifiers does not vary at any point during the algorithm, 

while the circulant identifiers Iu will be changed to ID2 (i. e. one by one), in 

accordance with the algorithm described next. The cycle matrix shown in 

3.5 is an example when the girth required for the GPS-LDPC matrix is six 

and ^y=2. 
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ID1 IN IU ID1 IN ID1 

YHqc = ID2 'Dl IN IDl ID1 IN (3.5) 

IN IU ID1 IN ID1 'D1 

The first part of the algorithm chooses any 1u as the starting cycle iden- 

tifier and searches on the cycle matrix for all the possible cycles whose length 

is shorter than the girth proposed. The total number of cycle identifiers in- 

cluded in a cycle is called the length. A section is a vertical or horizontal 

path that joins any two cycle identifiers on the cycle matrix. A cycle is a 

path with the same starting and ending Iu cycle identifier, that fulfils the 

following conditions. 

" The starting and ending cycle identifier of a cycle can be any 1u cycle 

identifier on the cycle matrix. 

9 The first and last sections in the cycle that meet at the same Iu cycle 

identifier, should be perperdicular to each other. 

"A cycle should include only sections. 

"A cycle should not include any IN cycle identifiers. 

"A cycle should not include any lu cycle identifiers, other than the 1U 

cycle identifier chosen as the starting cycle identifier. 

"A cycle has no limit in the number of ID, cycle identifiers included in 

the path. 

9A cycle has no limit in the number of ID2 cycle identifiers included in 

the path. 
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"A cycle includes at least four cycle identifiers 

"A cycle should not include more than four consecutive ID, cycle iden- 

tifiers in the path, if the first and the last one are the same ID1 cycle 

identifier (i. e. if the the first and the last ID, are the same cycle iden- 

tifier in the position Iij, and if and only if the cycle identifiers between 

them are three or more ID, cycle identifiers, then such a path should 

not be considered a cycle). 

" For any cycle identifier to be included in a cycle, the section with the 

proposed cycle identifier should be parallel to the previous section 

" Since there is no defined section at the beginning of the cycle search, 

any cycle identifier that fulfils the conditions previously stated, can be 

included as part of the cycle (i. e. the second cycle identifier in the path 

that forms a cycle, starting from a IU should be of the type IDl, or ID2 

and should be located in the same row or in the same column within 

the cycle matrix. 

" The length of a cycle should be shorter than the value of the girth 

proposed (i. e. the number of cycle identifiers should be smaller than 

the value of the girth) . 

For the better understanding of the previous conditions, assume the cycle 

matrix has as elements, circulants represented by the cycle identifiers, where 

each type of cycle identifier represents a different type of circulant. For this 

reason, it is necessary to redefine the concept of cycle, which was originally 

defined in section 2.3. 
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After all the possible cycles that include the same Iu as the beginning 

cycle identifier have been searched for, such cycle identifier IU changes to 

ID2. This process is repeated for each of the Iu cycle identifiers in the cycle 

matrix, until all of them have been changed to ID2. 

It must be noted that the definition of cycle and length provided here is 

different to the definition that is used for an LDPC matrix. All the cycles 

that include a particular IU cycle identifier with position Iij in the cycle 

matrix, as the starting point, should be saved on a database, called the cycle 

database (CDBi, j). 

ID1 IN IU ' ID1 IN ID1 

1T 
YHqc = ID2 ID1 IN ID1 ID1 IN (3.6) 

1T 
IN ID2 ID1 IN ID1 ID1 

The cycle matrix 3.6 shows the cycle {I1,3, I3,3,13,6, I1,67 I1,3} in the cycle 

matrix. Such a cycle should be saved on CDB1,3. From 3.6, it is inferred 

that CDB3,2 has been completed and therefore 13,2 has changed from IU to 

ID2. Since I3,2 is now an ID2 cycle identifier, it can be considered for any 

cycle starting at 11,3. The only cycles for 3.6 are: 

" {13,2,13,5, '2,5,12,2,13,2} 

" {I1,3,13,3) 13,6,11,67 I1,3} 

Table 3.1 contains the number of cycles per girth and per cycle identifier, 
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in the same order considered as initial item on a cycle, to be then changed 
from Ju to ID2. The number of cycles grows exponentially for every pair 

of different girth values. This is because most of the cycles are formed as 

multiples of four, when -y =2 (e. g. when the girth is eight, the algorithm 

looks for cycles of length six, but since most of the cycles have length four, 

not many more cycles with length six are found in the cycle matrix, to be 

added to the cycle dababase). 

Girth 1st 2n 3r 4t 5t 6t 7t Total 
g=6 1 1 2 
g=8 1 1 1 3 
g= 10 4 4 4 6 18 
g=12 4 4 4 4 6 22 
g= 14 11 19 19 19 21 43 132 
g= 16 11 19 19 19 19 21 43 151 

Table 3.1: Number of cycles per girth and per cycle identifier, when -y =2 

For the second part of the algorithm the length of the code n must be 

chosen, in order to build the slope matrix of size (g/2) x g. The only condition 

that the length should meet is v mod (g/2)=0, where v is the number of rows 

in the GPS-LDPC matrix, and v= n/2. Parameters n and v must be positive 

integers. The slope matrix contains 2g slopes and (g - 4)g/2 nulls. The nulls 

in the slope matrix have the same position as the IN in the cycle matrix, the 

slopes with the value zero assigned (S = 0), should have the same position 

as the ID, in the cycle matrix, whereas the rest of the slopes in the slope 

matrix should remain without any assigned value and they have the same 

position as the ID2 and the Iu in the cycle matrix (e. g. based on the cycle 

matrix 3.5, when the girth is six, the slope matrix is displayed in 3.7). 
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S1,1 =0N 
SH = S2,1 S2,2 =0 

N S3,2 

S1,3 S1,4 =0N S1,6 =0 

N 52,4=0 S2,5=0 N 

, 
S33=0 N S35=0 S36=0 

79 

(3.7) 

A second database contains all the possible shifts except zero, that can 

be assigned to each slope that has not been assigned a value yet (i. e. 1< 

S<r, - 1, VN, with r, = n/g). Such a database is called the slope database 

SDBi, j. (e. g. according to the previous statements, on the slope matrix 3.7, 

the slope databases are SDB2,1 
, 

SDB3,2, and SDB1,3i assuming n= 30, and 

g=6 we have r, = 5, and SDB = 1,2,3,4). 

The number and position of the nulls and the slopes does not vary at 

any point during the algorithm. The value the slopes will be assigned is in 

accordance with the following steps: 

1. The first slope chosen is S2,1, and is assigned temporarily the first value 

included in the SBD2,1. 

2. S2,1 cannot produce on its own cycles shorter than the proposed girth, 

and therefore all the shifts included in the SDB2,1 remain. 

3. The slopes will be analysed following the same order the IDU cycle 

identifiers on the cycle matrix were chosen to search for cycles. The 

idea of the analysis of the value of a slope, is to delete from their 

corresponding slope database those shifts that would generate a cycle 

on the shift matrix (e. g. on 3.7, the first slope to be analysed is S3,2 = 1, 

since SDB3,2 = 1,2,3,4). 
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4. After choosing the slope to be analysed, based on the corresponding 

cycle database, any shift included in the corresponding slope dababase 

is added modulo((n/g) - 1) or substracted modulo((n/g) -1) according 

to all the cycles in the cycle database, that start with the cycle iden- 

tifier located in the same position (e. g. on 3.7, after choosing 13,2, the 

corresponding slope database is SDB3,2, and the cycles on the cycle 

database to be considered, are those ones that start with 13,2). 

5. The slopes included in the cycle with odd positions, have the value of 

their shift assigned, added modulo((n/g) - 1). (e. g. on 3.7, for S322, 

{13,5,12,2} are added modulo((n/g) - 1)). 

6. The slopes incuded in the cycle with even positions, have the value of 

their shift assigned, substracted modulo((n/g) - 1). (e. g. on 3.7, for 

53,2) {12,5,13,2} are substracted modulo((n/g) - 1)). 

7. After all the values, corresponding to each one of the cycle identifiers, 

have been either added or substracted according to steps 5 and 6, if the 

resulting value equals zero, the value of the shift chosen from the slope 

database to be temporarilly assigned to the slope being analysed, is 

deleted. If the slope analysed is deleted, the algorithm returns to step 4 

until one of the shifts doesn't need to be deleted, or until all the shifts on 

the slope database for the slope being analysed, have been considered. 

(e. g. on 3.7,53,2 = 1, is the first value temporarilly assigned from the 

SDB3,2 = 1,2,3,4. For the cycle {13,2,13,5,12,5,12,2,13,2}, the result 

after steps 5 and 6 equals +0 -0+0 -1 = -1; therefore, the shift with 

value one is not deleted from the slope database SD B3,2, and therefore 
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there is no need to repeat the procedure for the shift with value two). 

8. For the slope being analysed, if all the shifts in the slope database 

have been deleted, the algorithm returns to 1 and the next shift value 

included in the SDB2,1 is assigned to S2,1. 

9. After a shift in the slope database has been analysed and has not been 

deleted, it is assigned permanently to the corresponding slope. The 

algorithm then returns to step 4 to analyse which shifts on the slope 

database corresponding to the next slope can generate a cycle. 

10. The algorithm stops when all the slopes have been assigned a shift 

value from their corresponding slope database; if all the shift values in 

any of the slope databases have been deleted, and all the shift values 

in SDB2,1 have been considered, there is no GPS-LDPC matrix that 

fulfils the requirements. This means that the value of the length should 

be increased or the value of the girth should be decreased to successfully 

obtain all the required slope values. 

For the third part of the algorithm, if all the slopes were successfully 

assigned a shift value, then the corresponding GPS-LDPC matrix can be 

constructed. Since NH Hqc and SH Hqc as previously established, the 

GPS-LDPC matrix includes a circulant whose generator is the 0=(0,0,..., 0) 

v/g-tuple (i. e. an all-zero squared matrix) for each of the N in SH; the 

GPS-LDPC matrix includes a circulant whose generator is the 1=(1,0,..., 0) 

v/g-tuple (i. e. an identity matrix) for each of the S=1 in SH; finally, the 

GPS-LDPC matrix includes a circulant whose generator is based on the shift 
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value assigned to the corresponding slope in SH. (e. g. for S2,1 = 1, S3,2 = 2, 

and 51,3 =3 on the slope matrix in 3.7, after doing NH Hqc and SH Hqc, 

the corresponding Hqc is shown in 3.8). 

Hqc _ 

10000 00000 00010 10000 00000 10000 

01000 00000 00001 01000 00000 01000 

00100 00000 10000 00100 00000 00100 
00010 00000 01000 00010 00000 00010 

00001 00000 00100 00001 00000 00001 

01000 10000 00000 10000 10000 00000 

00100 01000 00000 01000 01000 00000 
00010 00100 00000 00100 00100 00000 

00001 00010 00000 00010 00010 00000 

10000 00001 00000 00001 00001 00000 

00000 00100 10000 00000 10000 10000 

00000 00010 01000 00000 01000 01000 

00000 00001 00100 00000 00100 00100 

00000 10000 00010 00000 00010 00010 

00000 01000 00001 00000 00001 00001 

(3.8) 

The maximum achievable girth for this algorithm to construct a QC- 

LDPC is g= 16. Fig. 3.1 shows that for a cycle matrix, assuming girth 

18, no shift value remains in the slope database after applying step 5 on- 

wards; the cycle identifiers are: 13,2,13,11,12,11,12,1,11,11 '1,10, '2,10,12,11 
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Figure 3.1: Cycle matrix when g= 18, including limiting length 16 cycle 

, 
13,11,13,2,12,2,12,10,11,10, I1,1,12,1,12,2,13,2- All the cycle identifiers in- 

cluded in this cycle are ID, '--> S=0 except I2,1 and 13,2, which are ID2. 

Assuming 12,1 HS= Xl and I3,2 HS= X2, and after applying steps 5, 

6 and 7, the addition of shifts equals zero for any value of Xl and X2 (i. e. 

{+0-O+X1-0+0-0+0-O+X2-0+0-0+0-X1+0-X2=0} 

V{Xl, X2} E N). 

Table 3.2 includes the slopes for each girth from 6 up to 16. In particular, 

the new algorithm looks for the minimum code length that had a solution 

on each case. (i. e. there is no solution, if the proposed code length is shorter 

than the one presented here and there are no changes to the initial slopes 

selected). 

To compare the performance of the GPS-LDPC codes, the GPS(672,2,336), 

and the GPS(4368,2,2184) LDPC codes with g =16, and 18 respectively, are 

generated. They are compared in Fig. 3.2, and Fig. 3.3 against the graphical- 

model (GM) based LDPC codes with the identical parameters respectively; 

both LDPC code constructions are (n, 2, k) codes with half rate. For the sim- 
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Girth Length Slopes 
6 12 S2,1:::::::::: 17 
8 16 S2,1 = 1, S3,2 = 1,54,3 = 1, S144 
10 70 S2,1= 1, S3,2 =2, S4,3 =1) S5.4 =2,51,5 3 
12 60 52,1 = 1, S3,2 = 2, S4,3 = 1, S5,4 = 2, S6,5 = 1, S1,6 =2 
14 224 S2,1 = 

51,7= 
1,53,2 
6 

= 3, S4,3 = 7, S5,4 = 2, S6.5 = 3, S7,6 = 4, 

16 272 S2,1 = 
S8,7 = 

1, S3,2 
4,51,8 

= 3, S4,3 

=6 
= 5, S5,4 = 1, S6,5 = 3, S7,6 = 5, 

Table 3.2: Slopes within the slope matrix for different length codes and 
different girth 

ulations, the sum-product decoding algorithm was employed over an AWGN 

channel. The maximum number of iterations was 60. 

The GPS-LDPC code shows better performance compared to the RG- 

LDPC code for Eb/No > 4.4 dB; when compared against the GM-LDPC 

code, the GPS-LDPC code shows a worse performance for all the Eb/No 

values investigated. A constant gap of approximately 0.25 dB between both 

BER curves occurs for all the code lengths analised. The gap between the 

GPS LDPC codes with length n=672, and 4368, and the channel capacity 

measured for a BER of 10-3, is 3.4 and 3.1 dB respectively. 

The performance of the new GPS LDPC codes was also compared over a 

flat Rayleigh fading channel, after 60 iterations for QPSK modulation. Once 

again, the GM-LDPC codes show better BER and FER that the GPS-LDPC 

codes with a gap of 2 dB between the BER and FER performance curves, 

for n=672. A comparison of the Eb/No required by the GPS-LDPC codes, 

with length n=672, to achieve a target BER of 10-3 when analised over the 

flat Rayleigh fading channel and over the AWGN channel, show a gap of 3 

dB and 2.5 dB respectively. 
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Figure 3.2: BER (left) and FER (right) performance of the GPS(672,2,336) 

and GM(672,2,336) LDPC codes. Maximum 60 iterations over AWGN chan- 
nels, and QPSK modulation 
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Figure 3.3: BER (left) and FER (right) performance of the GPS(4368,2,2184) 

and GM(4368,2,2184) LDPC codes. Maximum 60 iterations over AWGN 

channels, and QPSK modulation 



3.4. HALF-RATE GPS LDPC CODES WITH p=3 

16, 

102 

w 
w m 

10' 

10, 

W 

10{ 
2468 10 

Eb/NO [dB] 

10 

10' 

10' 

IN 

456789 

Eb/NO [dB] 

86 

Figure 3.4: BER (left) and FER (right) performance of the GPS(672,2,336) 

and GM(672,2,336) LDPC codes. Maximum 60 iterations over the flat 
Rayleigh fading channel, and QPSK modulation 

3.4 Half-rate GPS LDPC Codes with p=3 

When -y = 3, the number of circulant identifiers, slopes and nulls, as well 

as their location, change. However, once the cycle matrix is initialised ad- 

equately, the rest of the algorithm is applied without modifications. The 

distribution of the circulants on the LDPC matrix proposed, which varies as 

a function of the girth and the column weight as a design parameters, is part 

of the novelty of this work. 

In this case, the cycle matrix contains g+ (g/2) circulant identifiers of 

the type ID, located in the positions (i, j), V (1 <i< (g/2)), (1 <j g), 

when j=i, j= (i - 1) mod (g/2), or j=i+ (g/2). At the beginning of the 

algorithm, the cycle matrix contains one circulant identifier of the type ID2 

located in the position (3,1). The cycle matrix contains g+(g/2)-1 circulant 
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identifiers of the type IU located in the positions (i, j), V (1 <i< (g/2)) 
,i 

2, (2 <j< (g/2)), when i= (j + 1) mod j, or j= (i -1 mod (g/2)) + (g/2). 

Finally, the cycle matrix contains gx (g/2) - (3 " g) circulant identifiers of 

the type IN in the positions left. The number and position of the IN and ID, 

circulant identifiers does not vary at any point during the algorithm, while 

the circulant identifiers IU will be changed to ID2, following the same steps 

presented for -y = 2. Eq. 3.9 shows the cycle matrix when the girth required 

for the GPS-LDPC matrix is ten and -y = 3. 

YHqcqc = 

ID1 IN IN ID2 ID1 ID1 IN IN ID2 ID2 

ID1 ID1 IN IN ID2 ID2 ID1 IN IN ID2 

ID2 ID1 ID1 IN IN ID2 ID2 ID1 IN IN 

IN ID2 ID1 ID1 IN IN ID2 ID2 ID1 IN 

IN IN ID2 ID1 ID1 IN IN ID2 ID2 ID1 

(3.9) 

Table 3.3 contains the number of cycles per girth and per cycle identifier, 

in the same order considered as an initial item on a cycle, to be then changed 

from IU to ID2. The number of cycles grows exponentially as the value of 

the girth increases. 

Girth Total 

g=8 210 
g= 10 1567 

g= 12 11785 

g= 14 104653 

Table 3.3: Number of cycles per girth, when 'y =3 

After the cycles are saved in the cycle database, the length of the code n 
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must be chosen, in order to build the slope matrix of size (g/2) x g, with the 

same condition (i. e. v mod (g/2)=0). The slope matrix contains 3g slopes 

and (g - 6)g/2 nulls. The number and position of the nulls and the slopes 

does not vary at any point during the algorithm. Once all the slopes have 

been assigned a value, the GPS-LDPC matrix is formed. If not all the slopes 

were assigned a value, then, the length of the code should be increased, or 

the value of girth should be reduced, until a solution is found. 

The maximum achievable girth to construct a QC-LDPC when -y =3 

remains g= 16. This is because the limit on the maximum achievable girth 

depends entirely on the number of ID, cycle identifiers. 

Table 3.4 includes the slopes for each girth from 8 up to 14. In particular, 

codes whose length is close to the minimum achievable were searched for, 

while the minimum length is included in brackets. (i. e. while the lengths are 

very similar, the slopes that are valid for one length, may not be valid for 

a different one, resulting in an LDPC matrix with a girth smaller than that 

desired, if not analysed on a length basis). 

The reason for using this distribution, is to reduce the number of opera- 

tions required by the algorithm to calculate all the cycles with a shorter girth; 

this translates into a reduced number of operations to obtain the QC-LDPC 

for the girth required. Also, since the cycles for a particular girth are kept 

in the database cycle, it is not necessary to calculate them every time a new 

code is to be built. 

To compare the performance of the GPS-LDPC codes, the GPS(672,3,336), 

and the GPS(4368,3,2184) LDPC codes whose parity-check matrices have 

g =8 and 12, respectively, were generated. They are compared in Fig. 3.5, 



3.4. HALF-RATE GPS LDPC CODES WITH p=3 

O QPSK uncoded 
-s Shannon brit rate=l2 

BER GPS(672,3,336) 

2$ BER Marguris(672,3,336) 

103 ........, - ............... -=. -. -ri. ..... _ .,:.. 

Lij 

1Ud ..... ,... 

'.. 

10l 
01234 

Ey/No[d8) 

1cp 

10-' 

10' 

w LL 

10 

W 

iný 

89 

Figure 3.5: BER (left) and FER (right) performance of the GPS(672,3,336) 

and Margulis(672,3,336) LDPC codes. Maximum 60 iterations over AWGN 

channels, and QPSK modulation 
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Figure 3.6: BER (left) and FER (right) performance of the GPS(4368,3,2184) 

and Margulis(4368,3,2184) LDPC codes. Maximum 60 iterations over AWGN 

channels, and QPSK modulation 
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Girth Length Slopes 
8 160 S3,1 = 1, S4,2 = 2, S133 = 1, S244 =2 

(152) S2,5 = 3,53,6 = 3,54,7 = 3, S1,8 =3 S3,5 = 7, S4,6 = 8,51,7 = 7, S2,8 =8 

10 1000 S3,1 = 1, S4,2 = 2, S5,3 = 3, S14 4=2, S2,5 =4 (830) S2,6 = 7, S3,7 = 6, S4,8 = 10, S5,9 = 4, S1,10 = 10 
53,6 = 22, S4,7 = 33, S5,8 = 25, S1,9 = 20, S2,10 = 34 

12 4200 S3,1 = 1, S4,2 = 3, S5,3 = 5, S6,4 = 1,51,5 = 3, S2,6 =5 
(3480) S2,7 = 13, S3,8 = 15, S4,9 = 21, S5, lo = 13, S6,11 = 15,51,12 = 21 

S3,7 = 45, S4,8 = 73, S5,9 = 69, S6, lo = 105, S1,11 = 73, S2,12 = 122 
14 140000 13,1 = 1,14,2 = 3,15,3 = 7,16,4 = 12,17,5 = 1, 

11,6 = 14,12,7 = 24,12,8 = 16,13,9 = 42,14,10 = 55, 
15,11 = 68,16,12 = 43,17,13 = 59,11,14 = 100,13,8 = 180, 
14,9 = 340,15,10 = 549,16,11 = 704,17,12 = 412,11,13 = 771, 
12,14= 1061 

Table 3.4: Slopes within the slope matrix for different length codes and 
different girths 

and Fig. 3.6 against a Margulis based LDPC codes [88], [44]; both ensem- 

bles are (n, 3, k) codes with half rate. For the simulations, the sum-product 

decoding algorithm was employed over an AWGN channel. The maximum 

number of iterations was 60. 

The GPS-LDPC code shows similar BER performance and an small in- 

provement on the FER performance compared to the Margulis LDPC code 

for all Eb/No values investigated; however, the gap between both codes is less 

than 0.1 dB for the different code lengths depicted. The gap between the 

GPS LDPC codes with length n=672, and 4368, and the channel capacity 

measured for a BER of 10-3, is 2.0 and 1.3 dB respectively. 

Similarly, to compare the performance of the GPS-LDPC codes over a 

flat Rayleigh fading channel, the GPS(672,3,336) code whose were compared 

in Fig. 3.7, against two Margulis based LDPC codes with the same (n, -y, k) 
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Figure 3.7: BER (left) and FER (right) performance of the GPS(672,3,336) 
and Margulis(672,3,336) LDPC codes. Maximum 60 iterations over the flat 
Rayleigh fading channel, and QPSK modulation 

parameters; both constructions are half rate. For the simulation, the sum- 

product decoding algorithm was employed over an AWGN channel. This 

time, the maximum number of iterations was 60. 

The GPS and the Margulis LDPC codes follow very similar BER and 

FER performance curves, although the Margulis ensemble outperforms the 

GPS ensemble by 0.1 to 0.2 dB for all Eb/No values investigated of BER 

and FER. A comparison of the Eb/No required by the GPS-LDPC codes, 

with length 672, to achieve a target BER of 10-3 when analised over the flat 

Rayleigh fading channel and over the AWGN channel, show a gap of 2.5 dB 

and 2.3 dB respectively. 

Extrinsic information transfer (EXIT) charts [89] are analised in [10], 

with an approximation for the ensemble of LDPC codes with parameters 
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(n, 3, k=n/2) with p=6 and ry = 3. These are portrayed in the next section. 

3.5 General construction of GPS LDPC Codes 

The generalization of the procedure to construct regular GPS LDPC codes, 

includes as design parameters the proposed girth (g), the proposed row weight 

and the proposed column weight. The following rule should be considered 

prior to selection of the design parameters. For a GPS LDPC code with rate 

1- (p/'y) to be realisable, the remainder of (ry"x, for x=(1,2,..., g/2), divided 

by (g/2), must be zero. 

'y must be a positive integer with values ly >2 and the girth, must be 

a positive integer with values g>6. The girth must be g> ly. Once this 

variables have been assigned values, the cycle matrix, the shift matrix and 

the GPS-LDPC can be constructed. 

The cycle matrix contains p+1 circulant identifiers of the type ID1. If 

(p/-y) < 2, then the cycle matrix and the slope matrix contain g columns 

and g/2 rows. If (p/-y) > 2, then the cycle matrix and the slope matrix 

contain (p/'y) " (g/2) columns and g/2 rows. 

If (p/. y) < 2, then the procedure to create the GPS LDPC matrix is the 

same as that one detailed previously for -y =2 or ^/ = 3, except for the fact 

that the number of ID2 circulant identifiers will be increased on a per column 

basis according to the following rule; for the first g/2 columns, there will be a 

total of ry -2 ID2 circulant identifiers, while for the rest of the columns, there 

will be a total of -y -1 ID2 (e. g. eq. 3.10 and eq. 3.11 with g= 12 ry =3 and 

p=4, and g= 16, -y =4 and p=5, to construct GPS-LDPC codes with 
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rate 1- (3/4) = 1/4 = 0.25 and 1- (4/5) = 1/5 = 0.20 respectively). 

YHQc 
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ID1 IN IN 'D2 ID2 'D1 'D1 IN IN ID2 ID2 'D2 

'D1 ID1 IN IN ID2 ID2 ID2 ID1 IN IN ID2 ID2 

ID2 ID1 ID1 IN IN ID2 ID2 ID2 ID1 IN IN ID2 

ID2 ID2 ID1 'D1 IN IN ID2 ID2 ID2 ID1 IN IN 

IN 'D2 ID2 ID1 ID1 IN IN ID2 ID2 'D2 ID1 IN 

IN IN ID2 ID2 ID1 ID1 IN IN ID2 ID2 ID2 ID1 

(3.10 

YHQcqc - 

'D1 IN IN IN ID2 ID2 ID1 ID1 IN 

ID1 ID1 IN IN IN ID2 'D2 ID2 IN 

ID2 ID1 IN IN IN IN ID2 ID2 IN 

ID2 ID2 'D1 IN IN IN IN ID2 IN 

IN ID2 ID1 ID1 IN IN IN IN 'Dl 

IN IN ID2 ID1 ID1 IN IN IN 'D2 

IN IN ID2 ID2 ID1 ID1 IN IN ID2 

IN IN IN ID2 ID2 ID1 ID1 IN ID2 

(3.11) 

It can be noticed in eq. 3.11 that the number of columns has been re- 

duced in such a way that the first g/2 columns from left to right remain the 

same, while the remaining g/2 columns have been punctured (i. e. columns 

10,11,12,14,15, and 16 have been punctured) in such a way that the num- 

ber of circulant identifiers per row is the same. This puncturing of columns 
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reduces the processing time to obtain all the invalid cycles within the cycle 

matrix. If this approach is considered, then the slope matrix must be punctu- 

ared as well, removing the same columns; the puncturing on this matrix has 

the effect of allowing a bigger number of valid shifts in the slope dababase, 

therefore producing GPS-LDPC matrices with shorter length for the same 

design parameters, compared to the results without punturing the previously 

mentioned columns. 

As an example, consider g= 12, -y =3 and p=4 as design parameters; 

the rate for this code is 1- (pl-y) =1- (3/4) = 0.25. One solution for the 

slope matrix, considering a length n= 2320 (k = 1740) as shown in eq. 3.12. 

0NNN300N 

SH= 

00NNN5 13 N 

100NNN 45 N 

N300NNN0 

NN500NN 13 

NNN100N 105 

(3.12) 

If (p/-y) > 2, then the procedure to create the GPS LDPC matrix is the 

same as that one detailed previously for 'y =2 or ry = 3, except for the fact 

that the last g/2 columns of the cycle matrix and slope matrix, are repeated 

(p/ry) -2 times. 

As an example, consider g=8, -y =3 and p=9 as the design parameters. 

The rate for such code is 1- (3/9) = 2/3 = 0.67. The cycle matrix for such 

design parameters is shown in eq. 3.13. 
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ID1 IN ID2 ID1 ID1 IN ID2 ID2 ID1 IN ID2 ID2 

ID1 ID1 IN ID2 ID2 ID1 IN ID2 ID2 ID1 IN 'D2 
YHgc _ qc 'D2 ID1 ID1 IN ID2 ID2 ID1 IN 'D2 ID2 ID1 IN 

IN ID2 ID1 ID1 IN ID2 ID2 ID1 IN 'D2 ID2 ID1 

(3.13 

The complexity required to decode the GPS LDPC codes, is slightly 

higher compared to an LDPC code that contains only cyclic or quasi-cyclic 

shifts. This is because the GPS LDPC codes contains two types of matrices, 

(a) an identity matrix with cyclic shifts depending on the design, and (b) the 

null matrix, which in general adds little or no complexity to the decoding 

process. 

Based on [85], the decoding procedure of a GPS-LDPC code can be di- 

vided into v parallel decoding processes, which is the total number of slopes 

S elements in the shift matrix (i. e. the number of null N elements in the same 

shift matrix does not affect the complexity, since they represent null matrices 

in the LDPC matrix). Therefore, the delay to decode a GPS LDPC code is 

v times faster compared to an LDPC code without decoding in parallel. 

3.6 Flexibility of the Design Parameters of 

the GPS-LDPC codes 

If due to design requirements, there is a need to increase the girth of the code 

for a particular length, or simply to increase the girth beyond 16 to make 
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better use of length of a longer code (i. e. the longer the length of a code. 

the higher the value of the girth that can be achieved, resulting in better 

BER and PER performance), it is only necessary to change some ID, cycle 

identifiers for Irj cycle identifiers. This would invariably increase the number 

of cycles to be calculated, and also would increase the delay to analyse each 

temporary shift value assigned to the slopes in the slope matrix. 

For this construction algorithm, the longer the length of a code, the higher 

the value of the girth that can be achieved, resulting in better BER and PER 

performance. Although there is a maximum limit in the value of the girth 

achievable (i. e. g= 16) for the new algorithm, it is only necessary to change 

some ID, cycle identifiers for lu cycle identifiers. The number and location 

of the ID, cycle identifiers that need to be changed for Iu cycle identifiers 

depends on each particular case, and therefore no guidelines are provided 

in this body of work. The changes previously mentioned would invariably 

increase the number of cycles to be calculated, and also would increase the 

delay to analyse each temporary shift value assigned to the slopes in the 

slope matrix. 

The BER performance curves displayed in Fig. 3.8 are useful to under- 

stand the behaviour of GPS-LDPC codes when their parameters are modified. 

For instance, the GPS (2100,3,1050) LDPC code with g= 12, and the GPS 

(2100,3,1050) LDPC code with g= 10, show a gap of 0.75 dB measured for 

a BER of 10-3, which increases proportionaly with the Eb/No. Similar be- 

haviour is diplayed between the GPS (1000,3,500) LDPC code with g= 10, 

and the GPS (1000,3,500) LDPC code with g=8; the gap for this case if 

0.75 dB measured for a BER of 10-2. Finally, it is interesting to note how the 
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BER performance curve of GPS-LDPC codes with different length, but the 

same girth as parameter, present the same slope. That is the case when the 

GPS (2100,3,1050) LDPC code with g= 10, is compared against the GPS 

(1000,3,500) LDPC code with g= 10; the same behaviour takes place when 

the GPS (1000,3,500) LDPC code with g=8, and GPS (160,3,80) LDPC 

code with g=8 are compared. 

From the previous example, it can be concluded that the girth, and the 

length are linked; altering one of them will invariably affect the BER and 

FER performance; however, the cause of this change is particular to each pa- 

rameter. Reducing the girth on one out of two codes with the same length, 

reduces the independence of the likelihoods after a certain number of itera- 

tions, which produces a change in the slope. On the other hand, increasing 

the length on one out of two codes with the same girth, increases the num- 

ber of parity-check and variable nodes, improving the BER and FER per- 

formance, but since the independence of the likelihoods remains for similar 

number of iterations, the slope is not altered. 

Also, by changing the distribution of the IU it is possible to get GPS- 

LDPC codes with different values of ry. In other words, the variable and 

parity-check node distributions could be changed according to some design 

parameters to search for QC, which would vary the Eb/No region where the 

code performs the best. 
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3.7 Summary 
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A novel algorithm to construct LDPC codes using the girth and the length of 

the code as design parameters, has been introduced. The codes construted 

with this procedure are half rate QC-LDPC codes with variable g and ry. 

The algorithm works in such a way that the number of operations required 

to calculate new LDPC codes with the same g and 'y is reduced, when com- 

pared to similar QC-LPDC code constructions [18], [17], and [45]. The new 

GPS LDPC codes have similar performance to other random and structured 

LDPC codes over the AWGN channel and the flat Rayleigh fading channel, 

although only short code lengths were analised through BER and FER per- 

formance curves, with n= 4368 being the longest code. A major benefit 

of the new algorithm is its capacity to generate codes for a wide range of 

lengths, that proves impossible to achieve with other constructions, in par- 

ticular, those based on well structured procedures, such as finite geometries. 

Although several sources suggest the requirement for LDPC matrices to con- 

tain large girth is not necessary to achieve good performance (i. e. only avoid 

girth 4), and that an increase in the girth may modify other characteris- 

tics of the parity-check matrix, therefore resulting in a BER performance 

improvement, here it has been shown that consistently, when the girth has 

been increased, the BER performance has improved as well; this implies that 

the improvement in the performance is also a function of the girth, besides 

other many characteristics. 

An additional benefit of this algorithm is its flexibility to incorporate 

design constraints, to produce a wide variety of QC-LDPC codes, using more 
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efficiently the hardware of the channel encoder on a given communications 

system. For instance, a system that requires a very small delay on the channel 

encoding stage, would prefer to perform this operation in parallel through 

i shift registers directly related to i sections of the generator polynomial, 

or the generator matrix respectively, as proposed in [90]. This encoding is 

efficient because the number of sections is directly related to the number 

of circulants. Therefore, by maximizing the girth as a parameter for the 

GPS LDPC codes, the number of circulants is also maximized, with the 

additional benefit of improved performance due to the maximization of the 

girth in terms of the BER achieved for a particular Eb/No, and in the slope 

of the BER curve. 

Assuming the same efficient encoding algorithm applied on a duplex or 

full-duplex system, with constraints on the number of shift registers to per- 

form the channel encoding on one of the terminals, as well as requiring the 

same encoding rate and the same codeword length on both sides, the new al- 

gorithm has the flexibility to produce QC-LDPC codes with different girths, 

but with the same rate and and length. 

The characterisation in dept of this ensemble my means of DE [8], pro- 

vides the channel capacity achievable for an LDPC code with parameters 

(n, j, k=n/2) with p=6 and -y = 3. However, LDPC codes with short lengths, 

which cannot achieve the same BER and FER performance as their long 

peers (i. e. their bit-error probability is relatively far from the channel capac- 

ity) are more desirable for systems with tight margin on the tolerated delay 

for channel enconding. To fulfil the criteria previously mentioned, provid- 

ing acceptable BER and FER, after a few number of iterations, the parallel 
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concatenation of codes with different -y has been proposed in [13], [14], [91], 

and [92] among others; it is interesting to notice that the EXIT chart for 

LDPC codes with 'y =2 and p=4, shows that such ensemble is desirable 

as the inner code working when concatenated in parallel, due to big im- 

provement on the extrinsic information provided after the first iteration is 

accomplished by this code. Based on these ideas, it is desirable to analise 

and characterise the performance of the GPS LDPC codes introduced here, 

when concatenated in parallel. 



Chapter 4 

Parallel Concatenated 

Structured and Random LDPC 

codes 

4.1 Purpose 

The novelty in this work is based on (1) the analysis of the performance 

of well structured LDPC codes when concatenated in parallel, in terms of 

BER and FER, (2) the comparison of such performance against their random 

counterparts, and (3) the establishment of guidelines, if any, to secure the 

successful performance of this approach. 

After the powerful technique proposed in [93] to construct long powerful 

codes from short component codes with different characteristics (i. e. cod- 

ing and decoding complexity, and BER and FER performance), known as 

concatenated coding, turbo codes [2] make use of two fundamental ideas to 

102 
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achieve outstanding performance: an encoder design that produces a code 

with random like properties (i. e. recursive encoders together with large pseu- 

dorandom interleavers), and a decoder design that uses an iterative decoder 

that exchanges SISO values. 

These two fundamental ideas present in turbo coding, are considered 

in [13] and [14] where the concatenation of two random LDPC codes with 

different Mean Column Weight (MCW) is introduced. Such a scheme has 

proved to be an effective way to improve the bit error rate (BER) perfor- 

mance by increasing the redundancy whilst reducing the decoding complexity 

when compared to an LDPC of the same length. The use of the sum-product 

decoding algorithm through the joint bipartite graph shows a better perfor- 

mance than that of the individual codes. 

Other benefits are obtained from this approach when compared to an 

LDPC code with the same length, such as, less decoding complexity and less 

delay if the decoder works in parallel, as well as less memory required since 

the number of elements in the concatenated LDPC matrices is smaller than 

that of a single LDPC matrix for the same code length. Also, no interleaver 

is required between the constituent encoders and decoders. 

The idea behind using LDPC codes with different MCW, is to take ad- 

vantage of their individual performance at different Eb/No values. It is well 

known that low MCW LDPC codes (i. e. 2< MCW < 2.5) perform bet- 

ter in the low to medium Eb/No region, while high MCW LDPC codes (i. e. 

MCW > 2.5) perform better in the medium to high Eb/No region, for each 

particular code length. 

It is therefore relevant to analyse the performance of other types of LDPC 
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codes that can be concatenated in parallel, and at the same time, can pro- 

vide further improvement either in performance or reduced complexity. The 

parallel concatenation of half-rate LDPC codes producing codewords that 

are rate 1/3, is particularly desirable, since some communication systems 

use these coding rates as part of their standard, and especially after the in- 

troduction of adaptive hybrid Forward Error Correction (FER) / Automatic 

Repeat reQuest (ARQ) protocols. Three new scenarios are proposed utilis- 

ing structured LDPC codes to take advantage of their efficient encoding and 

decoding properties, as previously stated. 

The first one analyses two PG, or two EG LDPC codes. As described 

in [43], an EG or PG LDPC matrix is built by cyclic shifts of a circulant; 

this matrix defines an EG or PG LDPC code. The transpose of the EG or 

PG LDPC matrix defines a different EG or PG LDPC code. Therefore, by 

using a single matrix, two codes are defined. 

The second one analyses two types of structured LDPC codes concate- 

nated in parallel, where the first one has -y =2 and is described in [16], while 

the second one has ry =3 and is described in [88]. Both LDPC codes are 

regular half rate LDPC codes with good BER and FER performance. 

The third one analyses two GPS LDPC codes as described in [94], where 

the first one has 'y =2 while the second one has -y = 3. Both LDPC codes 

are regular half rate LDPC codes with good BER and FER performance. 

Also, these codes are quasi-cyclic (QC) LDPC codes and therefore have low 

encoding and decoding complexity which make them an atractive option for 

parallel concatenation. 

Extrinsic information transfer (EXIT) charts are included to further anal- 
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yse the performance of the LDPC codes considered. IA represents the average 

mutual information between the bits on the decoder graph edges (the bits 

about which extrinsic L-values are passed) and the a priori L-values; IE rep- 

resents the average mutual information between the bits on the graph edges 

and the extrinsic L-values. V ND and CND are the Variable to Node of 

Degree d, (dv = 'y) and the Check to Node of Degree d, (dv = p) messages, 

respectively. To create the EXIT charts of LDPC codes, in [95], each LDPC 

code is seen as the concatenation of two block codes connected through an in- 

terleaver. The same approach is considered here to produce the EXIT charts 

of the LDPC codes used for concatenation. 

Chapters 2 and 4 include a detailed description of the procedure to create 

these LDPC codes. Particular characteristics of the LDPC codes chosen for 

simulations were included in this chapter. 

4.2 Parallel Concatenated Encoding 

Two generator polynomials or generator matrices, gpl and gp2, encode the 

information sequence i with k bits bl,.., k, to produce independently the code- 

words cl and c2 of length nj and n2 respectively, where nl = n2, and both 

codes have the same rate r. There is no need for an interleaver between 

the constituent generator polynomials, because the distribution of the parity 

checks that link the codeword bits in the LDPC matrices, is pseudo-random. 

Both generator polynomials produce codewords in systematic form, with k 

information bits and n-k parity bits. Only the parity bits p are sent together 

with the input information sequence i. The diagram of the concatenated en- 
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Figure 4.1: Block diagram of the encoder for the parallel concatenation of 
LDPC codes 

coder is shown in Fig. 4.1. 

4.3 Parallel Concatenated Decoding 

The decoding is performed in parallel on each constituent decoder indepen- 

dently. The log-likelihood values of the received signal are fed into both 

decoders and after completion of the individual iterations, the a-posteriori 

log-likelihoods Lp are exchanged between decoders. The addition of the re- 

ceived log-likelihoods and the a-priori log-likelihoods La,, is substracted from 

the a-posteriori log-likelihoods Lp, to obtain the extrinsic information in the 

form of log-likelihoods Le, as shown in Fig. 4.3. This would complete one su- 

per iteration. During the first super iteration, the a-posteriori log-likelihoods 

are computed with no a-priori information. 

The process of exchanging information between the constituent decoders 

continues until one of the component decoders converge to valid codewords, 

or a maximum number of super iterations is reached. In the latter case, 
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if different LDPC codes are being used, the output from the decoder with 

the best individual BER performance should be used to perform the hard 

decision, as it is considered the best estimate of the transmitted information 

sequence. 

LDPC codes can be represented by means of bipartite graphs (Tanner 

graphs). The concatenation of two LDPC codes can also be represented 

through a bipartite graph, in such a way that the variable nodes correspond- 

ing to the information and parity bits in both codes, are related to the check 

nodes in both LDPC [71]. 

H1 = 

H2 = 

100001100010 

010010010001 
011000101000 

100100010100 

000110001010 

oo10010001o1 

100001100010 

10100010001 

001010001100 

001100010100 

100010001010 

010001100001 

(4.1) 

(4.2) 

The bipartite graph shown in Fig. 4.2 corresponds to the concatenation 

of the LDPC matrices described in eq. 4.1 and eq. 4.2. Not all the edges 
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Figure 4.2: Bipartite graph corresponding to the parallel concatenation of 
the LDPC code matrices 4.1 and 4.2 
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Figure 4.3: Block diagram for the decoding of parallel concated LDPC codes 

joining variable nodes to check nodes have been depicted, in order to allow 

clarity. 

4.4 Parallel Concatenated EG and PG LDPC 

Codes 

Here, the parallel concatenation of EG and PG LDPC codes is proposed. EG 

and PG LDPC codes [43] are completely defined by the parity check matrix 

H. Chapter 2 contains the list of the vectors representing the circulants E 
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that generate the LDPC matrices H, as well as the corresponding generator 

polynomials GP of H and HT, for the EG and PG LDPC codes, analysed 

under parallel contenation. 

Fig. 4.4, and Fig. 4.5 show the EXIT chart for the type I PG(73,9,45) 

LDPC code. Fig. 4.6, and Fig. 4.7 show the EXIT chart for the type I 

PG(273,17,191) LDPC code. Fig. 4.4 shows that the first LDPC code starts 

to decode successfully at a lower Eb/No 
, when compared to the second 

one in Fig. 4.6. Graphs Fig. 4.5 and Fig. 4.7 show that the proposed 

concatenation in parallel of PG and EG LDPC codes, increases very fast the 

mutual information (i. e. after a relatively small number of iterations), once 

the Eb/NO for each case, is high enough to show the BER turbo cliff (the 

turbo cliff is measured in [53] at a BER of 10-4). Also, it can be seen that 

PG(2,2s) and EG(2,25) LDPC codes with s>2, have a good start after the 

first half of the first iteration, since the mutual information increase is related 

to -y for the IVND and to p for the ICND (i. e. as p and -y increase, the mutual 

information increases). 

4.4.1 Simulation results 

Both EG and PG LDPC codes share almost identical performance character- 

istics, and therefore the simulations include only PG LDPC codes. In [43], 

BER and FER performance curves of these codes show no gap between EG 

and PG for a similar length, after being decoded with the sum-product al- 

gorithm. Therefore, only PG constructions were considered for the parallel 

concatenation. 
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Figure 4.4: EXIT chart for the type I PG(73,9,45) LDPC code with 
Eb/No=0,1,2,3 dB. 
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Figure 4.5: EXIT chart for the type I PG(73,9,45) LDPC code with Eb/No=3 

dB. 
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Figure 4.6: EXIT chart for the type I PG(273,17,191) LDPC code with 
Eb/No=0,1,2,3 dB. 
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Figure 4.7: EXIT chart for the type I PG(273,17,191) LDPC code with 
Eb/No=3 dB. 
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Figure 4.8: BER performance comparison between the Parallel Concatenated 
type I PG(101,9,45) and the GPS(102,3,51) LDPC codes over an AWGN 
channel with QPSK modulation, sum-product decoding and 30 iterations. 

The codes considered were the type I PG(73,9,45) and PG(273,17,191) 

LDPC codes, which generate the parallel concatenated type I PG(101,9,45) 

and PG(355,17,191) LDPC codes. The simulations were performed over an 

AWGN channel with sum-product decoding. The maximum number of iter- 

ations was set at 30. 

Fig. 4.8 shows how the proposed concatenation in parallel of EG and PG 

LDPC codes improves the BER compared to the single component after an 

Eb/No=3.8 dB has been reached. 

Fig. 4.9 shows how the proposed concatenation in parallel of PG and EG 

LDPC codes achieves a better FER than an LDPC code with similar length 

and rate. 

Fig. 4.10 shows how the proposed concatenation in parallel of PG and 

EG LDPC codes improves the BER compared to the single component after 

an Eb/NO=4.2 dB has been reached. 
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Figure 4.9: FER performance comparison between the Parallel Concatenated 
type I PG(101,9,45) and the GPS(102,3,51) LDPC codes over an AWGN 
channel with QPSK modulation, sum-product decoding and 30 iterations. 
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Figure 4.10: BER performance comparison between the Parallel Concate- 

nated type I PG(355,17,191) and the GPS(352,3,176) LDPC codes over an 
AWGN channel with QPSK modulation, sum-product decoding and 30 iter- 

ations. 
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Figure 4.11: FER performance comparison between the Parallel Concate- 

nated type I PG(355,17,191) and the GPS(352,3,176) LDPC codes over an 
AWGN channel with QPSK modulation, sum-product decoding and 30 iter- 

ations. 

Fig. 4.11 shows how the proposed parallel concatenation of PG and EG 

LDPC codes achieves a better FER than an LDPC code with similar length 

and rate. 

When comparing Fig. 4.8 against Fig. 4.10 it is clear that the EG and 

PG LDPC codes proposed for parallel concatenation do achieve a better BER 

performance than their constituent parts, but only after a certain Eb/No has 

been reached. Although this is a limited performance improvement, this 

approach could be included in a system with Automatic Repeat Request 

(ARQ) if the Eb/No is known by the transmitter. Rate adaptation with 

hybrid ARQ [96], [97], [98] is considered an important improvent for recent 

communication standards such as the Universal Mobile Telecommunications 

Service (UMTS) employing High Speed Downlink Packet Access (HSDPA) 

[99]. If the transmitter has knowledge of the quality of the channel (i. e. 
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Eb/No), it could decide if a probability of decoding correctly a retransmission 

is higher by sending the same frame with single codification, or by sending 

the complementary redundancy from the parallel encoder. 

Other benefit comes from the FER performance graphs, since this ap- 

proach forces the validation of the codewords from two different codeword 

sets, reducing the likelihood of approving a valid codeword, that is different 

from the transmitted one. Such task could be accomplished with the same 

LDPC matrix in the case of EG and PG LDPC codes. Through simulations 

under the AWGN channel, with the sum-product algorithm applied on a 

single LDPC decoder (i. e. no parallel concatenation), it was revealed how 

the FER performance decreases in the case of short code lengths of EG and 

PG LDPC codes due to the short Hamming distance (i. e. EG n =15 with 

dein = 5, n =63 with dmjn, = 9, and n =255 with drr,, tin = 17, and PG n =21 

with drain = 6, n =73 with d1jn = 10, and n =273 with d, in = 18; no frame 

errors due to wrong codeword validation were detected for longer EG or PG 

LDPC codes for the Eb/No values analysed); such effect is not small enough 

to be discarded as a contributor to the poor FER performance. 

Since only one LDPC matrix is required, defined through a single vector, 

a reduced amount of memory to contain the LDPC matrix is required, when 

compared to other codes concatenated in parallel, such as [14], [13], and [15]. 

Based on the publication of efficient encoding [90] and efficient decoding [86], 

[87] techniques for Cyclic and QC LDPC codes, the application of EG and PG 

LDPC codes on parallel concatenated schemes, as proposed in this section, 

becomes feasible, although such techniques are not included in this study. 
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Figure 4.12: GM(240,2,120) LDPC code 

4.5 Parallel Concatenated Graphical Model 

with -y =2 and Margulis with ry =3 LDPC 

Codes 

In [16] and [17], a procedure to construct regular LDPC codes by means of 

graphical models with -y =2 is presented. The construction algorithm is 

explained in chapter 2. Fig. 4.12 and Fig. 4.13 depict the GM(240,2,120) 

and GM(672,2,336) LDPC matrices respectively. 

The procedure to construct regular LDPC codes by means of Cayley 

graphs is proposed in [88]. Such LDPC codes are half rate, and have g=6, 

p=3, -y = 6, and length n =2(q3 - q) with q any prime number, resulting in 

the lengths shown in Table 4.1, for different values of q. 

" q=3n=48 
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Figure 4.13: GM(672,2,336) LDPC code 

q n k ry p rate 
3 48 24 3 6 0.5 
5 240 120 3 6 0.5 
7 672 336 3 6 0.5 
11 2640 1320 3 6 0.5 
13 4368 2184 3 6 0.5 
17 9792 4896 3 6 0.5 
19 13680 6840 3 6 0.5 

Table 4.1: Basic characterisation of the Margulis LDPC codes based on Cay- 

ley graphs 

" q=5n=240 

" q=7n=672 

"q= 11 n= 2640 

" q= 13n=4368 

9 q= 17n=9792 

"q= 19 n= 13680 
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As as example for the creation of these codes, consider q=3. The finite 

field Fq when q=3 is F3 =0,1,2. Next, the set SL2 (F3) consisting of all 

the 2x2 matrices with elements a1,1, b1,2, c2,1, d2,2 with entries in F3 =0,1,2 

and having determinant ad - be =1 is defined. The set SL2 (F3) has order 

q3 -q= 24 in this example. The Table 4.2 includes the values for a, b, c, 

and d, that conform the set of matrices SL2 (F3) 

a b c d 
0 1 2 0 
0 1 2 1 
0 1 2 2 
0 2 1 0 
0 2 1 1 
0 2 1 2 
1 0 0 1 
1 0 1 1 
1 0 2 1 
1 1 0 1 
1 1 1 2 
1 1 2 0 
1 2 0 1 
1 2 1 0 
1 2 2 2 
2 0 0 2 
2 0 1 2 
2 0 2 2 
2 1 0 2 
2 1 1 1 
2 1 2 0 
2 2 0 2 
2 2 1 0 
2 2 2 1 

Table 4.2: a, b, c, and d, that conform the set of matrices SL2 (F3) 

The bipartite graph is formed by linking the vertices in the left, represent- 
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Figure 4.14: BER and FER performance for the Graphical Model (n, 2, k) 
LDPC code with q=(5,7,11,13,17,19) over the AWGN channel with 
QPSK modulation. 

ing the variable nodes, with the vertices in the right, representing the check 

nodes. Each matrix g in the set G= SL2 (F3), represents a single vertex in 

the bipartite graph. Two copies of G (i. e. G1e ft_1 and Gle ft_2) contains the 

variable nodes, while one copy of G (Gright) contains the check nodes. An ele- 

ment gE Gleft_1 and an element gE Gle ft_2 are connected with the elements 

gE Gright, according to g., A2, g,, ABA-1, g,, B and gA-2, gAB-'A-1, g�B-1 

respectively, where A, A-1 B, and B-1 were defined in Chapter 2. 

The resulting Margulis (48,3,24) LDPC parity check matrix is shown in 

the expresion 4.3. 

The BER and FER performance of the LDPC codes based on the Cayley 

graph, also known as Margulis LDPC codes, is presented portrayed in Fig. 

4.14. The comparative analysis of the Margulis LDPC codes is included 

in [88], and [44]. 
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001000000000000010001000010000000001100000000000 

100000000000000100010000001000000100010000000000 

010000000000000001100000100000000010001000000000 

000010001000010000000000000001000000000000100010 

000001010000100000000000000100000000000000010001 

000100100000001000000000000010000000000000001100 

000000001100000000001000000001010000100000000000 

000000100010000000010000000010001000010000000000 
000000010001000000100000000100100000001000000000 
010000000001100000000000000000100010000000010000 

001000000100010000000000000000010001000000100000 

100000000010001000000000000000001100000000001000 
H= (4.3) 

100000100000000000000001000010000100000010000000 

010000010000000000000010000100000010000100000000 

001000001000000000000100000001000001000001000000 

000000000000010010000100010000000000000001100000 

000000000000100001000010100000000000000100010000 

000000000000001100000001001000000000000010001000 

000100000010000100000000001000001000000000000100 

000010000100000010000000010000010000000000000010 

000001000001000001000000100000100000000000000001 

000001000000000000100010000000000000001100000001 

000100000000000000010001000000000000010010000100 

000010000000000000001100000000000000100001000010 
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Figure 4.15: EXIT chart for the Graphical Model (240,2,120) LDPC code 
with Eb/No=0,0.5,1,1,5,2,2.5,3 dB. 

Fig. 4.15, and Fig. 4.16 show the EXIT chart for the Graphical Model 

(240,2,120) LDPC code. Fig. 4.17, and Fig. 4.18 show the EXIT chart for the 

Margulis (240,3,120) LDPC code. Fig. 4.15 shows a faster increase of IE, CND 

after the first iteration, when compared to Fig. 4.17 for the same Eb/No, 

although this condition changes with the number of iterations. The higher 

the Eb/No, the faster this change will be produced. This condition is related 

to p and 'y. When comparing Fig. 4.16 with Fig. 4.18 it is noticeable that 

the LDPC code with y=2 requires a higher Eb/No to converge compared to 

the LDPC code with 'y = 3; also, these graphs show for the same Eb/No, the 

LDPC code with 'y =2 requires more iterations to converge, than the code 

with-y=3. 

Based on Fig. 4.15 and Fig. 4.17, it becomes clear that if the decoding 

process is not performed in parallel, the decoder with 'y =2 should perform 

the first iteration, since it would produce higher quality extrinsic log-likehood 
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Figure 4.16: EXIT chart for the Graphical Model (240,2,120) LDPC code 
with Eb/No=3 dB. 
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Figure 4.17: EXIT chart for the Margulis (240,3,120) LDPC code with 
Eb/No=0,0.5,1,1,5,2,2.5,3 dB. 
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Figure 4.18: EXIT chart for the Margulis (240,3,120) LDPC code with 
Eb/No=3 dB. 

values, compared to the decoder with ry = 3. These observations match 

similar ones presented in [15] where EXIT charts were employed to analyse 

the quality of the extrinsic information as a function of the signal to noise 

ratio. 

4.5.1 Simulation results 

Fig. 4.19 shows how the proposed concatenation in parallel of Margulis and 
GM LDPC codes improves the BER compared to the single components for 

an Eb/No >1.5 dB, but performs worse than the Turbo Code with generators 

(13,15) with the same length and rate, with a 0.9 dB gap at 10-3. 

Fig. 4.20 shows how the proposed concatenation in parallel of Margulis 

and GM LDPC codes performs worse than the Turbo Code with generators 

(13,15) with the same length and rate, with a 0.9 dB gap at 10-2. 

Fig. 4.21 shows how the proposed concatenation in parallel of Margulis 
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Figure 4.19: BER performance comparison between the parallel concatena- 
tion of the Graphical Model (240,2,120) with the Margulis (240,3,120) LDPC 
codes, and the Turbo Code (360,120) with rate=1/3 and generator polyno- 
mials [13,15] over an AWGN channel with QPSK modulation, sum-product 
decoding and 30 iterations. 

Figure 4.20: FER performance comparison between the parallel concatena- 
tion of the Graphical Model (240,2,120) with the Margulis (240,3,120) LDPC 

codes, and the Turbo Code (360,120) with rate=1/3 and generator polyno- 
mials [13,15] over an AWGN channel with QPSK modulation, sum-product 
decoding and 30 iterations. 
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Figure 4.21: BER performance comparison between the parallel concatena- 
tion of the Graphical Model (672,2,336) with the Margulis (672,3,336) LDPC 
codes, and the Turbo Code (1008,336) with rate=1/3 and generator polyno- 
mials [13,15] over an AWGN channel with QPSK modulation, sum-product 
decoding and 30 iterations. 

and GM LDPC codes improves the BER compared to the single compo- 

nents for an Eb/No >1 dB, but performs worse than the Turbo Code with 

generators (13,15) with the same length and rate, with a 0.7 dB gap at 10-3 

Fig. 4.22 shows how the proposed concatenation in parallel of Margulis 

and GM LDPC codes performs worse than the Turbo Code with generators 

(13,15) with the same length and rate, with a 0.7 dB gap at 10-2 

When comparing Fig. 4.19 with Fig. 4.21 it is clear that the parallel 

concatenation of the Graphical Model and the Margulis LDPC codes, do 

achieve a better BER and FER performance than their constituent parts, 

after a relatively low Eb/No has been reached. A benefit of the parallel con- 

catenation of two LDPC codes with p=2 and p=3 is the improvement of 

the BER and FER performance at a lower Eb/No, compared to the parallel 
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Figure 4.22: FER performance comparison between the parallel concatena- 
tion of the Graphical Model (672,2,336) with the Margulis (672,3,336) LDPC 
codes, and the Turbo Code (1008,336) with rate=1/3 and generator polyno- 
mials [13,15] over an AWGN channel with QPSK modulation, sum-product 
decoding and 30 iterations. 

concatenation of two LDPC codes with the same p=3, clearly depicted in 

the EXIT charts for such ensemble. This approach also reduces the amount 

of memory required to allocate the parity check matrices, when compared to 

a single LDPC code with the same length, rate and column weight, although 

this benefit is seen on any scheme with parallel concatenation. Finally, for 

a required BER or FER, once the Eb/No required by any of the single com- 

ponents is reached, a reduction in the redundancy, and in the encoding and 

decoding processing is obtained by avoiding the concatenation of the code 

with p=2. 
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Figure 4.23: Simulation of the probability density function curves every 4 
iterations, when calculating the convergence threshold for an LDPC code for 
a total of 28 iterations using DE and assuming an AWGN channel and QPSK 
modulation. 

4.6 Parallel Concatenated -y =2 and -y =3 

Girth Partition and Shift LDPC Codes 

The construction of the Girth-Partition and Shift LDPC codes is presented in 

the previous Chapter. The GPS(240,2,120), GPS(240,3,120), GPS(672,2,336), 

and GPS(672,3,336) were considered to analyse their performance when con- 

catenated in parallel. Although the GPS LDPC codes have a wide range of 

lengths available, the proposed lengths were chosen to match the lengths of 

the Margulis codes presented in the previous section, which have very limited 

design flexibility. 

The capacity threshold [49] using DE techniques [48] for this ensemble of 
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Figure 4.24: Simulation of the cumulative distribution function curves every 
4 iterations, when calculating the convergence threshold for an LDPC code 
for a total of 28 iterations using DE and assuming an AW'VGN channel and 
QPSK modulation. 
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LDPC codes (i. e. the ensemble of LDPC codes with parameters (n, 3, k=n/2) 

with p=6 and 'y = 3) is analised in depth in [8]. The threshold for the 

quantised Gaussian channel assuming 3-bit messages and for the Gaussian 

channel with a continuous message alphabet (i. e. BP) is 0.847 and 0.88 

respectively. Fig. 4.23 and Fig. 4.24 simulate the probability density function 

and cumulative distribution function of the messages arriving at the variable 

nodes every four iterations, when the previous mentiones DE techniques are 

used. 

4.6.1 Simulation results 

Fig. 4.25 shows how the proposed concatenation in parallel of GPS LDPC 

codes improves the BER compared to the single components for an Eb/No >1.5 

dB, but performs worse than the Turbo Code with generators (13,15) with 

the same length and rate, with a 0.75 dB gap at 10-3. 

Fig. 4.26 shows how the proposed concatenation in parallel of GPS LDPC 

codes performs worse than the Turbo Code with generators (13,15) with the 

same length and rate, with a 0.8 dB gap at 10-2. 

Fig. 4.27 shows how the proposed concatenation in parallel of GPS 

LDPC codes improves the BER compared to the single components for an 

Eb/No >1.5, but performs worse than the Turbo Code with generators (13,15) 

with the same length and rate, with a 0.55 dB gap at 10-3 

Fig. 4.28 shows how the proposed concatenation in parallel of GPS LDPC 

codes performs worse than the Turbo Code with generators (13,15) with the 

same length and rate, with a 0.8 dB gap at 10-2. 
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Figure 4.25: BER performance comparison between the parallel concatena- 
tion of the GPS (240,2,120) with the Margulis (240,3,120) LDPC codes, and 
the Turbo Code (360,120) with rate=1/3 and generator polynomials [13,15] 

over an AWGN channel with QPSK modulation, sum-product decoding and 
30 iterations. 

Figure 4.26: FER performance comparison between the parallel concatena- 
tion of the Graphical Model (240,2,120) with the Margulis (240,3,120) LDPC 

codes, and the Turbo Code (360,120) with rate=1/3 and generator polyno- 

mials [13,15] over an AWGN channel with QPSK modulation, sum-product 
decoding and 30 iterations. 
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Figure 4.27: BER performance comparison between the parallel concatena- 
tion of the Graphical Model (672,2,336) with the Margulis (672,3,336) LDPC 
codes, and the Turbo Code (1008,336) with rate=1/3 and generator polyno- 
mials [13,15] over an AWGN channel with QPSK modulation, sum-product 
decoding and 30 iterations. 

Figure 4.28: FER performance comparison between the parallel concatena- 
tion of the Graphical Model (672,2,336) with the Margulis (672,3,336) LDPC 

codes, and the Turbo Code (1008,336) with rate=1/3 and generator polyno- 
mials [13,15] over an AWGN channel with QPSK modulation, sum-product 
decoding and 30 iterations. 
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When comparing Fig. 4.25 and 4.26 against Fig. 4.27 and 4.28, it is 
clear that the parallel concatenation of the GPS LDPC codes with p=2 and 
p=3, do achieve a better BER and FER performance than their constituent 
parts, after a relatively low Eb/No has been reached. As the length of the 

constituent codes is increased, the gap between the BER curve for the turbo 

code and the BER curve for the GPS parallel concatenation, is reduced. 
Even more interesting is to note that although the Graphical Model 

(p = 2) and Margulis (p = 3) LDPC codes perform better in terms of 
BER and FER when compared to the GPS (p = 2) and (p = 3) LDPC 

codes respectively, when concatenated, it is the last ones that perform the 

best. When concatenated, the gap between the BER curves is 0.1 dB when 

n= 360 and 0.15 dB when n= 1008 for a BER of 10-3. One explanation 

for this behavior comes from the bipartite graph. Although the Graphical 

Model (p = 2) and Margulis (p = 3) LDPC codes perform better indepen- 

dently, when concatenated they could create short unwanted cycles, reducing 

faster the independancy of the extrinsic information. If there were short cy- 

cles present in the bipartite graph for the parallel concatenation of the GPS 

(p = 2) and (p = 3) LDPC codes, they have the flexibility to be modified ad 

hoc. Such flexibility is not shared by the Margulis LDPC codes. 

4.7 Conclusions 

The parallel concatenation of EG and PG LDPC codes shows limited perfor- 

mance improvement, when compared to the performance of the constituent 

parts, and therefore their application should be limited to systems that re- 
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quire low encoding complexity and low decoding complexity in terms of pro- 

cessing power, low memory assigned to contain the parity-check matrix, and 

short frames to reduce the delay. Since these codes achieve successful de- 

coding in a very small number of iterations after a certain Eb/No has been 

reached, it is desirable to combine one EG or PG LDPC code, with an LDPC 

code whose p=2. 

The bipartite graph is an important design instrument for the selection of 

the codes to be concatenation in parallel, as it helps to prevent short cycles 

not contained in the constituent codes. Well chosen constituent codes can 

achieve good BER and FER performance when concatenated in parallel, even 

if their constituent codes perform poorly. 

Specific properties of the constituent codes, observed through the use of 

EXIT charts, define the overall performance of the concatenated decoder 

scheme. Codes that contain good specific properties are desirable. However, 

not all the LDPC codes created through well structured procedures can fulfil 

such requirements. On the other hand, for randomly created LDPC codes, 

many of the desirable properties are considered as design parameters, such 

as the column weight, but poor structure would limit their implementation, 

even if their performance is excellent in terms of BER and FER [15], [13], 

and [14]. Instead of focussing on the creation of LDPC codes [21], or the 

modification of existing LDPC codes [43], the novelty of this work relies 

on the proposed selection of LDPC codes to be concatenated in parallel, 

improving the characterisation of such codes prevously published, and the 

analysis of their performance. This analysis is justified since they contain 

some of the good specific properties demanded by the EXIT charts to improve 
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the overall BER and FER performance. Such analysis is unique to this work. 

In the same way some codes, or concatenation of codes perform better 

than others, EXIT charts, first applied to the performance analysis of an 

iterative demapper concatenated with a convolutional decoder, are also used 

to analyse other subsystems belonging to joint iterative receivers. Further 

analysis of the desirable properties of the subsystems involved in such joint 

iterative receivers can be useful, when one of the constituent part is the 

parallel concatenation of LDPC codes. This topic is considered in the next 

Chapter. 



Chapter 5 

Iterative Demapping, Parallel 

Channel Decoding and Source 

Decoding for Multilevel 

Modulation 

5.1 Purpose 

Traditional designs of receivers in the communications industry have inde- 

pendent subsystems with information flowing in only one direction, making 

hard decisions at each step of the process. State of the art receivers process 

data in an iterative manner through modified algorithms that both accept 

and produce soft values related to the reliability of the information (e. g. 

the channel decoder exchanges log-likelihood values with other subsystems). 

Such schemes vary according to the points where the exchange of extrin- 

135 
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sic information takes place, proving to perform better in terms of BER and 

FER when compared to traditional designs, with a trade-off in complexity 

and latency. [100] 

Several papers present the analysis of the iterative source and channel 

decoding scheme, including [101], [59], [56], [64], [54], [61], and [58], among 

others. Although it has proved beneficial to use any redundancy left after 

source encoding, or to avoid any source encoding when the redundancy at the 

information source is small, nonetheless, the performance achieved is inferior 

or similar to that of the uncoded signal when the channel conditions are poor 

(low Eb/No). 

A SISO demapper is considered in [12], [11], and [102], which improves 

the BER and FER performance of the channel decoder when a modified 

convolutional decoder is employed. Previous research has proved that the 

gain obtained using this approach depends on the type of mapping employed. 

While gray mapping does not improve the performance, other mappings do 

(e. g. antigray mapping). This behaviour is analysed by means of EXIT 

charts. 

The purpose of this study is to analyse the performance of well struc- 

tured LDPC codes, in particular Margulis constructions, GM constructions 

and GPS constructions, when concatenated in parallel, and decoded jointly 

in a receiver with an iterative demapper and an iterative source decoder. 

Understanding the impact of the individual sections that conform the joint 

iterative receiver, may provide valuable information to understand the con- 

ditions under which this receiver can perform the best. 

The first approach to understand the overall performance, consists on 
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Figure 5.1: Block diagram for the joint demapping and source decoding 
scheme 

revising the BER performance achievable without the parallel concatenated 

decoder. The system to be revised is a joint iterative demapper and source 

decoder, as depicted in Fig. 5.1. The characteristics of both sections are 

varied to understand their behaviour. 

Although the analitical description of the iterative demapper, and the 

iterative source decoder has been previously published, both concepts are 

reproduced next. 

5.2 Demapping with a-priori knowledge 

The analytical description of the iterative demapper is well documented by 

the reference provided in [12], and here is reproduced for four and eight point 
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constellations, together with the general derivation. 

A binary signal SE {0,1 } is mapped into the complex symbols X= 

map(S) according to the signal constellation of any modulation scheme re- 

quired and transmitted. By doing so, all the bits related to a particular 

symbol become dependent on each other. The demapper needs to calculate 

the log-likelihood ratios of the received mapped symbols. It is the mutual 

dependancy of the bits linked up in the constellation symbol that is exploited 

in the system considered. 

The demapper obtains the log-likelihood values of the received signal 

Z=h*X+n, where h represents the channel function in the time domain, 

n represents the additive white gaussian noise, and * represents the convo- 

lution. In the case of a four points constellation such as 4QAM (i. e. where 

each constellation point represents two bits), the log-likelihood value of the 

first binary bit So conditioned to the received signal Z at the output of the 

matched filter is, 

L (so IZ) =1 PsO=OIZ) (5.1) 
= lnp(so=1, si=OIZ)+(so=1, si=1IZ) 

p(SO=O, sJ=OIZ)+(so=O, sl=1IZ) 

We can assume that the probability of the individual bits forming the 

symbol is equal to the combined probability, as long as the symbols are in- 

dependent. Based on the previous statement, the proposed scheme has to 

consider the independence of continuous symbols produced by the source, 

that would be mapped into a constellation point. If continuous source sym- 

bols are not statistically independent, such as in the case of a Markov source. 

the introduction of an interleaver is necessary. (e. g. in the case of a source 
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producing blocks of three independent symbols, but with dependence be- 

tween blocks, and 8PSK mapping, an interleaver would not be necessary 

as long as the mapping operation was done in phase with the independent 

source symbols, and assuming transmission over an AWGN channel). If the 

independence of source symbols exists, the joint probability can be expressed 

as the multiplication of the individual probabilities. 

p(so=1, s1=1)=p(so=1)"p(s1=1) (5.2) 

By making use of Bayes' rule p(alb) " p(b) = p(bla) " p(a) and the inde- 

pendence of source symbols in eq. 5.1, we get the expression shown in eq. 

5.3. 

L (soIZ) 
= Inp(ZIso=1, s1=o)p(so=1, s1=o)+p(ZIso=1, s1=1)p(so=1, s1=1) 

p(ZIso=o, sl=o)P(SO=o, S1=o)+P(ZISO=o, s1=1)P(so=o, s1=1) 

= lnp(ZIso=1, s1=0). p(so=1). p(s1=0)+P(ZIso=1, s1=1)"p(so=1)"p(s1=1) 
P(ZIS0=0, s1=0)"P(SO=0)-P(51=0)+P(ZIS0=0, s1=1). P(s0=0)"P(s1=1) 

= lnp(s0=1)"fP(ZIso=1, $1=0)'P(s1=0)+P(ZIS0=1, s1=1)'P(51=1)] 
p(so=0)'{p(ZIso=0, sl=0)"p(s1=0)+P(ZISO=0, s1=1). P(51=1)] 

= lnp so=1) + lnp(ZIso=1, S1=0)"p(51=0)+n(ZISO=1, s1=1)"n(s1=1) 
P(so=o) P(ZIso=0, sl=0). n(s1=O)+P(ZIso=0, s1=1). n(s1=1) (5.3) 

= lnp so=1 + lnp(ZIso=1, s1=0)+p(ZIso=1, s1=1)"p(p(ss, ý==1) o) 
P(so=0) P(ZIso=0, s1=0)+P(ZIso=0, s1=1). n(si=1) 

P(S1 0) 
1) 

= lnP s0-1 + lnP(ZISO=1, s1=0)+P(ZIso=1, s1=1)"eýnXs1-0 
P(50=0) lnP(s1-1) 

P(ZIso=0, s1=0)+p(ZIso=0, s1=1). e P(s1=o) 

P(ZIso=1, S1=0)+p(ZIs0=1, s1=1). eLa(s1) 
= La (so) + lnp(ZIso=0, 

s1=0)+n(ZIso=0, s1=1). eLa(s1 

The term lnP Sk=1 represents the a-priori information of the bit Sk Vk; 
P(Sk=O) 

this is replaced by the log-likelihood La (Sk) at the end of eq. 5.3. 

After the same manipulation is applied to eq. 5.2, the log-likelihood value 
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of the first binary bit So conditioned to the received signal Z at the output of 

the matched filter for an eight point constellation such as 8PSK (i. e. where 

each point represents three bits) is written according to eq. 5.4. 

L (so1 Z) = La, (so) 

+L7Lp(ZISO=1, Si=0, s2=0)+... ý pýZýso=1, si=1, s2=1)eLa(Si). eLa(s2) 

(5.4) 

P(Zlso=O, si=0, s2=O)+... +p(ZlS0=O, si=1, s2=1). eLa(sl). eLa(s2 

The generalization of eq. 5.4 is described by eq. 5.5, where sj, j=o... Af-i, j k 

b (i) denotes the joint event of the variables sj, j=o.... A1-1, ß#k and takes the 

value 0 or 1 according to the binary representation of i, where M denotes 

the number of points in the constellation (e. g. for M=3, k=1, and i=3, 

xo =1 and x2 = 1), and c(i, h) takes the value 1 if the bit number h is set 

in the binary decomposition of i, otherwise it is 0, with 

L (skIZ) = La (Sk) 

ýL 

2_M-1-1 Z sk=1, s -b 2 . gL7=0,. 1Ok, c(i, h)=1 
LaVj) 

La s 
Ei=O _1P(ZISk=0, s7, ß=0... M-1,7,4k=b(i» eEj=O, 1 k, c(i, h)=1 7 

-0 (5.5) 

h=j, 
j 

(5.6) 
j-1, j>k 

In [50], the EXIT charts are used to analyse the convergence threshold 

for a joint iterative demapping and convolutional decoding scheme. Through 

this study it becomes clear that when the proposed scheme is combined with 

gray mapping, the convergence threshold is improved compared to other 
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mapping schemes (i. e. the system decodes information successfully at a lower 

Eb/No compared to other mapping schemes), but at the cost of achieving 

lower BER after the number of iterations is increased. In the EXIT chart. 

different mapping schemes are represented by straight lines with different 

slopes, where gray mapping results in a horizontal line (i. e. for any value 

of mutual information at the input of the SISO demapper, the output will 

always show the same mutual information value). 

5.3 Hidden Markov Source estimation 

algorithm 

In [43], a hidden Markov model is used to estimate the parameters of the 

source model with the received sequence zi from zl to zK. A hidden Markov 

source generates symbols, which are represented through rk possible states. 

bk = {rk_1 = i, Sk, rk =j} is the k- th transition branch and p(s, r3 I ri) is the 

transition probability, where sE {0,1} for a two state hidden Markov source 

with initial parameters A_ {p(s, rj I ri), p, sE {0,11, i, j=0,1}, where p is 

the initial state of the source model. The maximum a-posteriori (MAP) 

algorithm applied on a trellis is also known as the BCJR algorithm. The 

calculation of the propagation of the probability likelihoods in the trellis is 

known as the forward and backward equations, described by eq. 5.7 and 5.9, 

respectively. cxk(i) represents the forward equation, while , ük(i) reprsents the 

backward equation. 
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ak(i) = P(rk = i, X) 
Lrk-1 

Esk P(rk-1=9, Sk, rk=i, z1 
1, 

zkIA) 

= 
P(z1_1IA`P(zklp(zl-1'A) 

"rk-1 
Lsk ak-1(7)P(zklsk)P(sk, rk=ilrk-1=j,, \) 

P(zklzi 1, A) 

k-1 k-1 
P( zkl zl , 

\) = ýrk_l ESk lrk P(rk-1 = . 7, ski rk = i) zklzl i 
A) 
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(5.7) 

_ Irk_1 Esk >rk ak-1(j)P(Sk, rk = il rk-1 = j, A)P(zkl sk) 

(5.8) 

ýk(2) = 
P(zk+llrk=ti, A) 

P(zk+1IZ1 , A) (5.9) 
> 

8k+1 
ýTk+1 ak+l( )P(zk+llsk+1)P(Sk+1'rk+1=7Irk=ti, A) 

P(zk+1Iz1 , A) 

P(bk) = P(rk-1 = 2' Sk, rk _ . 7I zi{) \) 
(5.10) 

_ 
«k-1(i)Qk(7)P(sk, Tk=. 7Irk- I=i, A)P(zkISk) 

P(zk Izl -1, A) 

L(Sk) = lnFrk_1 > 
rk ak-1(2)Ok(j)P(Sk = 1, rk =j ISk-1 = i, ý) 

5.11) 

= 2, = O-lfl 
rk l 

Erk ak-l(%)ßk(j)P(Sk O, rk = jýSk-1 A) 

The conditioned transition probability is represented by eq. 5.8. The 

probability of the k- th branch may be computed as eq. 5.10. Finally, the 

extrinsic information expressed as a log-likelihood ratio, is described by eq. 

5.11. 
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Figure 5.2: Factor graph for a joint demapping and source decoding scheme 

5.4 Joint Demapping and Source Decoding 

The factor graph describing the joint demapping and source decoding re- 

ceiver, is shown in Fig. 5.2. The model considers only the conditional prob- 

ability between adjacent source symbols. 

To evaluate the performance of the this scheme, the source at the trans- 

mitter is modelled as a first order Markov source with two states, which 

produces the binary sequence of information bits So, Si, 
..., 

SN E 0,1. The 

state transition probabilities are displayed in Table 5.1. 

Initial State Final State Transition Probability 
State 1 State 1 Pi 
State 1 State 2 1- pl 
State 2 State 2 P2 
State 2 State 1 1- p2 

Table 5.1: State Transition Probabilities 

Since the BCJR algorithm is better understood on a trellis, Fig. 5.3 shows 

the two state trellis model for the proposed Markov Source. The initial state 

of the source is unknown at the receiver and therefore equal probability has 



5.4. JOINT DEMAPPING AND SOURCE DECODING 144 

Pl 
State]. -----------------"---ºý Statel 

-P; 

ý1, P2 

State 2 State 2 
P 

Time 1 Time 2 

Figure 5.3: Trellis for the First order Markov Source model with two states 

been assumed for ao and , QK. 

It is stated in [12] that the performance of the demapper depends on 

the particular mapping constellation and the maximum number of iterations 

set up, or according to a different criteria, that it depends on the mutual 

information I(X; Z), and the number of iterations set up. X represents 

the transmitted constellation sybol, and Z represents the same constellation 

symbols after being affected by the AWGN channel. Gray mapping has the 

highest mutual information among all the possible constellations for each one 

of the constellation points; however, no improvement can be obtained even 

after many iterations. This behaviour is due to the low correlation between 

bits that represent the constellation symbol. To complete the first iteration, 

the decoder sends its estimate to the demapper, but since the bits in the 

QPSK symbol are independent from each other, no a-posteriori information 

generated by one of the bits can be useful to improve the estimate of the 

other bit. Constellations that show a lower mutual information. correspond 

to constellations whose symbols do not provide maximum independence be- 

tween the constituent bits. This, on the other hand, improves the BER 
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Figure 5.4: QPSK constellations mapping, left: gray, right: antigray 

performance compared to the case when gray mapping is considered, but 

only after a certain number of iterations. 

Gray and antigray mapping were chosen for the simulations, as the means 

to study the point previously indicated, on the joint demapper and source 

decoder. Fig. 5.4 show the gray and antigray constellation for QPSK. 

The size of the frame for the simulation is 256 bits per frame. A pseu- 

dorandom interleavers of size 16x16 provides independence to the sequence 

of bits, at least for the first few iterations. Since no channel coding is con- 

sidered here, there is no reason to increase the frame length, especially since 

the only reason behind this simulation verify the behaviour of the iterative 

demapper, and of the iterative source decoder. QPSK modulation was con- 

sidered, and there the BER also represents the Source Symbol Error Rate 

(SSER). The Transition Probability (TP) matrix of the Markov source was 

varied according to eq. 5.12. 

0.85 0.15 
l 

(5.12) 
0.15 0.85 
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Figure 5.5: BER with length=256 QPSK modulation 

To show the impact of the mapping on the BER performance, Fig. 5.5 

and Fig. 5.6 characterise the BER and FER performance, respectively, when 

the length of the frame is 256, including gray and antigray mapping. 

The graphs show that the gray mapping does not provide any improve- 

ment to the BER. The BER after 20 iterations is same as the BER after 

the first iteration; therefore, is only the source decoder that provides such 

improvement. For the antigray mapping, there is some improvement through 

the iterations, due to the reasons previously explained. This results match 

those ones previously published for a joint iterative demapper and iterative 

convolutional decoding. 

The second stage of this analysis considers the incorporation of the GPS(1000,3,500)LDPC 

code, in a joint demapper, channel decoder and source decoder under the 

AWGN channel with gray and antigray modulation. The block diagram of 
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Figure 5.6: FER with length=264 QPSK modulation 

this system is depicted in Fig. 5.7. For every iteration of the receiver, the 

log-likelihood values of the demapper, channel decoder and source decoder 

are calculated and exchanged in a sequencial manner. 

To show the impact of the channel decoder, Fig. 5.8 and Fig. 5.9 charac- 

terise the BER and FER performance, including gray and antigray mapping. 

After 20 iterations, the BER and FER graphs show that the impact of the 

channel decoder is not considerably modified with the use of the extrinsic 

information provided by the demapper with antigray mapping, and therefore 

the system with gray mapping show the best performance. 

The last stage of this analysis considers the incorporation of the GPS(240,3,120)LDPC 

code concatenated in parallel with the GPS(240,2,120) LDPC code, in a joint 

parallel concatenated channel decoder and source decoder under the AWGN 

channel with gray modulation. Antigray modulation is not considered since 
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Figure 5.7: Block diagram for a joint demapping, channel decoding and 
source decoding scheme 
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Figure 5.8: BER GPS(1000,3,500) QPSK modulation 
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Figure 5.9: FER GPS(1000,3,500) QPSK modulation 
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Figure 5.10: Block diagram for a joint demapping, channel decoding and 

source decoding scheme 
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it already proved to be ineffective when the performance of the single LDPC 

decoder was introduced. The BER and FER performance is shown in Fig. 

and Fig. respectively. Every 5 iterations between the parallel concatenated 

LDPC codes, the log-likelihood values of the demapper, nd source decoder 

are calculated and exchanged in a sequential manner. A tota of 30 iterations 

were predefined. The overall performance of this scheme is poor compared to 

a system that does not exchange information with the source decoder. This 

can be proved, since the performance of the joint scheme improves as the 

redundancy of the source is decreased, meaning that the estimates from the 

source are sending incorrect likelihoods. 

5.5 Summary 

The analysis of the parallel concatenation of GPS LDPC codes with column 

weight 2 and 3, together with an iterative source decoder and an iterative 

demapper, has been characterised through simulations. The impact of the 

constellation used for the demapper do not show an improvement in the 

performance achieved by the LDPC decoder. On the contrary, the little re- 

dundancy sent back as likelihoods can reduce the overall performance. An 

adecuate weighting of the likelihoods could provide benefitial and should be 

analysed in future work. The impact of the source decoder is not consider- 

able, but as the redundancy of the source is reduced, the overall performance 

improves. Once more, there seem to be an inadequate weighting of the like- 

lihoods. This is proved after the last scheme performs five iterations for the 

concatenated decoder before exchanging information with the source decoder. 



Chapter 6 

Conclusion 

In this thesis, a new procedure to construct Quasi-Cyclic LDPC codes with 

variable girth and variable length as design paramenters has been studied. 

Also, the parallel concatenation of structured LDPC codes has been charac- 

terised. Finally, the impact of the source decoder and the iterative demapper 

is revised, when used in a joint iterative receiver together with a parallel con- 

catenated decoder. In this final chapter the conclusions of this research are 

presented and directions are proposed for future work. 

6.1 Thesis Summary 

The novel algorithm to construct Girth-Partition and Girth LDPC codes 

using the girth and the column weight of the code as design parameters, has 

been introduced. These codes are half rate QC-LDPC codes. The algorithm 

reduces the number of operations required to find LDPC codes with the 

constraints imposed for the design parameters selected, when compared to 
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similar QC-LPDC code constructions [18], [17], and [45]. The new CPS 

LDPC codes have similar performance to other random and structured LDPC 

codes over the AWGN channel and the flat Rayleigh fading channel. The 

flexibility of the algorithm to generate codes for a wide range of lengths is of 

great benefit, since that is not possible to achieve with other constructions 

based on finite geometries. The new algorithm has the flexibility to produce 

QC-LDPC codes with different girths, but with the same rate and and length. 

The parallel concatenation of EG and PG LDPC codes shows limited 

performance improvement, when compared to the performance of the con- 

stituent parts, and therefore their application should be limited to systems 

that require low encoding complexity and low decoding complexity in terms 

of processing power, low memory assigned to contain the parity-check matrix, 

and short frames to reduce the delay. Since these codes achieve successful 

decoding in a very small number of iterations after a certain Eb/No has been 

reached, it is desirable to combine one EG or PG LDPC code, with an LDPC 

code whose p=2. 

The novelty of this work relies on the proposed selection of LDPC codes 

to be concatenated in parallel, improving the characterisation of such codes 

previously published, and the analysis of their performance. This analysis is 

justified since they contain some of the good specific properties demanded by 

the EXIT charts to improve the overall BER and FER performance. Such 

analysis is unique to this work. 

The analysis of the parallel concatenation of GPS LDPC codes with col- 

umn weight 2 and 3, together with an iterative source decoder and an iter- 

ative demapper, has been characterised through simulations. The impact of 
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the constellation used for the demapper do not show an improvement in the 

performance achieved by the LDPC decoder, considering antigray demap- 

ping for QPSK modulation; this is not the case when the decoder is an 

iterative convolutional decoder. The little redundancy sent back by the it- 

erative demapper with antigray mapping, as likelihoods, reduces the overall 

performance when the scheme considers an LDPC decoder. An adecuate 

weighting of the likelihoods could prove benefitial and should be analysed in 

future work. The impact of the source decoder is not considerable, but as 

the redundancy of the source is reduced, the overall performance improves. 

Once more, there seem to be an inadequate weighting of the likelihoods. 

6.2 Statements of Originality 

The main contributions of this work are: 

I. The introduction of a new procedure to construct LDPC codes with 

girth and column weight as a design parameter. 

2. The characterisation of the new ensemble of GPS LDPC codes. 

3. The aditional characterisation of well structured LDPC codes included 

in previous chapters, my means of EXIT charts. 

4. The characterisation of well structured LDPC codes when concatenated 

in parallel, over AWGN and flat Rayleigh fading channels. 

5. The BER and FER performance characterisation for a joint iterative 

receiver with an interative demapper, and interative source decoder and 
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a parallel concatenated channel decoder using specific LDPC codes. 

6.3 Suggested directions of Future Work 

Based on EXIT charts, minor modifications to the algorithm presented to 

create GPS LDPC codes can provide new LDPC code ensembles, useful to 

improve the BER and FER performance. 

The parallel concatenation of EG and PG LDPC codes with other LDPC 

codes whose column weight is two, should be analysed, since the EXIT charts 

indicate good BER and FER performance for such scheme. 

The analysis of the joint iterative receiver with an interative demapper, 

and interative source decoder and a parallel concatenated channel decoder 

should be enhanced through DE techniques, including EXIT charts. 

Based on the parallel concatenation of non-binary LDPC codes studied 

in [49] the characterisation of such scheme is still basic and further research 

is required. 

The impact of lazy scheduling [46] for the sum-product decoding has to 

be further characterised for the different types of LDPC codes. The impact of 

such technique on parallel concatenated LDPC codes is still an open question. 

In [103] an improved Max-Log-MAP algorithm is introduced for Turbo 

codes. BER performance curves demostrate that it achieves near to Log- 

MAP algorithm performance with a reduced complexity. The performance 

and characterisation through DE when applied to LDPC codes could provide 

good performance. 

The analysis of parallel concatenated LDPC codes on multiuser detection 
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techniques, together with Hybrid ARQ needs to be addressed. 
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