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Abstract

The increasing computational power of modern computers has contributed to the ad-

vance of nature-inspired algorithms in the fields of optimisation and metamodelling. Ge-

netic programming (GP) is a genetically-inspired technique that can be used for meta-

modelling purposes. GP main strength is in the ability to infer the mathematical structure

of the best model fitting a given data set, relying exclusively on input data and on a set

of mathematical functions given by the user. Model inference is based on an iterative or

evolutionary process, which returns the model as a symbolic expression (text expression).

As a result, model evaluation is inexpensive and the generated expressions can be easily

deployed to other users.

Despite genetic programming has been used in many different branches of engineer-

ing, its diffusion on industrial scale is still limited. The aims of this thesis are to investigate

the intrinsic limitations of genetic programming, to provide a comprehensive review of

how researchers have tackled genetic programming main weaknesses and to improve ge-

netic programming ability to extract accurate models from data. In particular, research

has followed three main directions. The first has been the development of regularisa-

tion techniques to improve the generalisation ability of a model of a given mathematical

structure, based on the use of a specific tuning algorithm in case sinusoidal functions are

among the functions the model is composed of. The second has been the analysis of the

influence that prior knowledge regarding the function to approximate may have on ge-

netic programming inference process. The study has led to the introduction of a strategy

that allows to use prior knowledge to improve model accuracy. Thirdly, the mathematical

structure of the models returned by genetic programming has been systematically anal-

ysed and has led to the conclusion that the linear combination is the structure that is

mostly returned by genetic programming runs. A strategy has been formulated to reduce

the evolutionary advantage of linear combinations and to protect more complex classes

of individuals throughout the evolution.

The possibility to use genetic programming in industrial optimisation problems has

also been assessed with the help of a new genetic programming implementation devel-

oped during the research activity. Such implementation is an open source project and is

freely downloadable from http://www.personal.leeds.ac.uk/~cnua/mypage.html.
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Chapter 1

Introduction

1.1 Definition of a model and of a metamodel

Mathematical models permeate all fields of science. They are used on a daily basis in every

sector of industry to understand the behaviour of different kinds of systems, which may

be either physical, as in engineering, may describe social and economical phenomena,

as in finance, or may relate to more abstract entities, as in mathematics and computer

science.

A model is defined in mathematical terms as the relationship f between the selected

input or predictor variables x and the measured responses y of a system:

y = f(x) | f : D ⊂ RN → RM (1.1)

where x = {xi} for i = 1, . . . , N and y = {yj} for j = 1, . . . ,M . The dimensionality of

the model is defined as the number of input variables N . For simplicity, in the following

the system response will be considered univariate, so f : D ⊂ RN → R and y ∈ R. The

generality of the analysis is not compromised by this assumption as long as the mathemat-

ical representation of the model and not its exploitation in statistical terms is concerned.

In fact, the probability density function p(y) associated to the output y can be obtained

through the multiplication of the single multiple inputs - single output probability density

functions p(yi) only if the components yi are statistically independent (Bishop 1995).

Traditional analytical models (also called fundamental models (Vladislavleva 2008))

are built from fundamental or constitutive laws, which are the basic deterministic rules

describing the immutable behaviour of the constituents of the system under analysis.

For example, models of the speed and acceleration of a ball rolling down an inclined

1
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plane can be built from Newton’s laws. Models of this kind are however subject to a

range of limitations that undermines their application to complex phenomena. First of

all, the validity of a model is limited by the hypotheses that were assumed during its

development: these may be either not realistic or simplistic in a real-life scenario (see

for example the importance of extracting from experimental data the inverse dynamics

model of an antropomorphic robot arm to correct the physics-based rigid-body-dynamics

model as detailed in Rasmussen and Williams (2006, p. 23)). Secondly, phenomena may

be too complex or simply their knowledge too scarce to allow for an analytical model to

be built (Pierce et al. 2008).

Modern computers have allowed for the development of alternative strategies to

tackle a level of complexity that would be otherwise unapproachable using analytical

methods. Numerical simulations, or more in general “computer codes” (Simpson et al.

2001), are based on algorithms that systematically apply fundamental or constitutive

laws to describe the behaviour and the interactions among discrete parts composing the

system under study. Although numerical simulations are still based on general mathe-

matical and physical assumptions, as analytical models are, they do not return an explicit

mathematical expression describing the relationship between the system input variables

or parameters and the system response or output.

Most of today’s engineering analysis relies on the execution of computer simulations

(for example in structural analysis or computational fluid dynamics). This approach suf-

fers however from two main drawbacks. First of all simulations do not provide a general

insight into the system under analysis, but just the output corresponding to given inputs;

secondly, it is difficult to understand the relative influence of each system input variable

on the system output. Furthermore, computer simulations are generally computationally

expensive (Simpson et al. 2001, Ramu et al. 2010), so their direct use for the exploration

of a system response under different input configurations (for example in forecasting,

extrapolation and optimisaton) is not recommended (Jin et al. 2001, Harewood et al.

2007).

The need for direct simulations to explore the behaviour of a complex system can be

limited by the use of metamodelling techniques. Metamodelling or regression (Chetwynd

et al. 2006) is the process of building an approximation f̃ of the relationship f between

the inputs and the outputs of a system (Eq. (1.1)) from a limited number of samples or
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records {xk, f(xk)} generated by real experiments or computer simulations:

y = f̃(x) + ε (1.2)

where ε takes into account the inherent error of the approximation process, the error due

to quantities that were not controlled nor observed (Friedman 1991) and measurement

or numerical errors (noise).

The approximated relationship f̃ is called metamodel, surrogate model or empirical

model of the true underlying input-output relationship f (Eq. (1.1)), to highlight the fact

that it is built uniquely from data. According to Vladislavleva (2008, p. 5), metamodels

are “explicit models” that “relate black-box inputs and outputs”, although this definition

is generally loosened to include also models that do not have an explicit representation

(Simpson et al. 2001, Jin et al. 2001, Toropov et al. 2005). Regardless their implicit or

explicit nature, metamodels provide a means to approximate the response of a system

that is far less expensive than a direct numerical simulation or physical experiment (Kroo

2004). As a result, the use of metamodels is nowadays an established way to reduce the

computational cost of industrial products analysis and development (Simpson et al. 2001,

Ong et al. 2003, Bonte et al. 2005, Toropov et al. 2005, Harewood et al. 2007, Shahpar

et al. 2008, Syberfeldt et al. 2009).

1.1.1 Requirements for metamodels and metamodelling techniques

The importance for industry of accurate metamodels can be ascribed to two basic rea-

sons. Metamodels, expecially when they are in explicit form, provide a synthetical repre-

sentation to data (Kordon and Lue 2004) and increase understanding of the relationship

between a system input variables and output, possibly providing physical insight into the

the system under analysis (Friedman 1991, Lew et al. 2006, Winkler et al. 2007). The

availability of an empirical model also eases the identification of the most influential vari-

ables on the system output (sensitivity analysis1) (Vladislavleva 2008, Ramu et al. 2010).

However, as briefly introduced in the previous section, the main advantage granted by

metamodels is engineering analysis time and cost reduction. Metamodels for example

are today commonly used for optimisation and uncertainty analysis in lieu of computa-

tionally expensive simulations (Toropov et al. 2005, Lew et al. 2006, Harewood et al.
1for example metamodels generated by Polynomial Chaos Expansion allow for the analytical extraction of

sensitivity information on model input variables (Sudret 2008, Eldred et al. 2008, Arwade et al. 2010).
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2007, Zeguer and Bates 2011). Their quick and inexpensive evaluation makes the use of

population-based search algorithms affordable, fostering research into this class of meta-

heuristic methods (Lamberti and Pappalettere 2011). Metamodels are also suited for

more traditional, gradient-based optimisation techniques (Quarteroni et al. 2000, Ramu

et al. 2010) for their ability to smooth experimental or computational noise (Loweth et al.

2011).

Given the importance of metamodels, a wide range of metamodelling techniques has

been developed and is today available to designers and engineers. Although accuracy

and robustness are the main parameters driving the selection of a suitable technique,

additional criteria are considered by the final user. Friedman (1991) and Jin et al. (2001)

referred to additional performance criteria that are taken into account when selecting a

metamodelling technique:

1. smoothness: ability to produce metamodels that are continuous and have continuous

derivatives;

2. efficiency: computational cost for building and using a metamodel (evaluation cost);

3. transparency: defined by Jin et al. (2001) as “the capability of providing the in-

formation concerning contributions of different variables and interactions among

variables”. Friedman (1991) refers to “interpretability” in this regard;

4. simplicity: simple techniques are characterised by easy adaptation to each problem

and by a reduced number of parameters that have to be set by the user.

The previous additional criteria may affect the choice for a particular technique as

much as accuracy and robustness. Efficiency is critical for the success of a metamodelling

technique. In general the evaluation of a metamodel is far quicker than the execution of a

direct simulation. However, higher metamodel evaluation time necessarily implies longer

analysis. The costs incurred to generate a metamodel should also be considered. Not only

do the time and computational power to process the building data set have to be taken

into account, also the cost of generating (or gathering) the data has to be considered. In

this regard, the curse of dimensionality (Bellman 1961) is an unavoidable issue whenever

high dimensional spaces are dealt with (Ong et al. 2003, Kroo 2004, Smits et al. 2005,

Singh et al. 2007, Eldred et al. 2008, Vladislavleva 2008, Arwade et al. 2010): due to

the expansion of the design space, to reach the same data density the samples size has to

be increased exponentially with the number of dimensions (Friedman 1991, Smits et al.
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2005). As collecting or extracting a sufficient number of records may be expensive, meta-

modelling techniques that minimise the amount of input data are generally preferred.

Transparency and interpretability can give an insight into the behaviour of the system

under study, revealing connections with fundamental models. They also ease the analysis

and exploitation of a metamodel, its deployment and its use. The availabilty of an explicit

metamodel, for example in the form of a text expression, simplify metamodel exploitation

in industrial computer codes.

Finally, simplicity should not be considered a minor issue. Metamodelling techniques

are complex mathematical and statistical tools: as such, their use could be compromised

should they require from the user a detailed understanding of their mathematical sub-

tleties. A quotation from Simpson et al. (2001, p. 135) clearly identifies the problem:

“the results of the statistical analysis [. . . ] were difficult for people responsible for the

day-to-day operation to interpret and use”.

1.1.2 Motivation, research aims and objectives

The paramount role of metamodels and metamodelling techniques in design and opti-

misation motivates the research effort to improve the existing methodologies and to find

new ones.

In the last decades technology advances have encouraged the development of a new

class of nature-inspired algorithms that can be applied to metamodelling. Genetic Pro-

gramming (GP) is one of them: inspired by Darwin’s and Wallace’s theory of natural

evolution and by the later discovery of DNA recombination mechanisms, it can be used to

generate metamodels from a set of data samples produced by experiments or computer

simulations. The main strength of genetic programming is its ability to both find the opti-

mal mathematical structure and the optimal values of the coefficients of the metamodels.

Secondly, the metamodels generated by GP have features that are particularly appreciated

in engineering: they are explicit, that is they are symbolic mathematical expressions, and

they are global, as the validity of the generated expression extends to the whole design

space.

These two properties explain the interest that this technique has attracted in the last

two decades and motivate the research activity presented in this work, aimed at exploring

the potentialities of genetic programming for metamodelling purposes. In particular, the

main research aims are:
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1. assessing what the current genetic programming limitations are in terms accuracy,

robustness, efficiency, transparency and simplicity and comparing them to existing

metamodelling techniques strengths and weaknesses;

2. exploring new strategies for improving the genetic programming algorithm, in par-

ticular the integration of deterministic search algorithms in the artificial evolution

paradigm;

3. exploring possible approaches to let genetic programming benefit from any avail-

able prior knowledge regarding the behaviour of the underlying relationship be-

tween the inputs and the outputs of the system under analysis;

4. assessing and encouraging the use of genetic programming in industry and academia

as a valuable modelling tool. The final part of the thesis is dedicated to genetic pro-

gramming application to industrial modelling and optimisation problems.

The research activity presented in this work has focused both on the theoretical as-

pects of genetic programming as well as on the practical issues concerning its implemen-

tation. The main outcomes and contributions set for the research activity here presented

are:

1. the development of an open source, parallelised C++ GP code (called HyGP) which

can be run on laptop machines as well as on high-performance clusters by engineers

and designers;

2. the identification and implementation of a statistical methodology to compare dif-

ferent GP implementations, necessary step to assess possible improvements to GP

paradigm;

3. the generation of valid metamodels for real engineering use, as a proof of the valid-

ity of the tecnique developed

1.1.3 Structure of the work

This chapter provides a general description of the metamodelling process. The most

common global metamodelling techniques and a few methodologies used to generate the

building data sets (design of experiments or DoE) are reviewed. A few mid-range and

local approximation techniques are also described. Genetic programming is introduced
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as an explicit and global metamodelling technique and a few industrial and academic

problems where it has been applied are shown.

Chapter 2 is a general introduction to evolutionary algorithms, class which genetic

programming belongs to. The differences among evolutionary strategies, evolutionary

programming, genetic algorithms and genetic programming are discussed and common

theoretical principles described.

In Chapter 3 the basic GP paradigm, as described by Koza (1992), is dissected and

analysed in each single part, from population initialisation to selection, genetic operations

and fitness evaluation. Details of the alternative GP representations to the one used by

Koza (1992) are also given.

In Chapter 4 the main pitfalls of the basic GP algorithm are reviewed. The key proper-

ties of closure and sufficiency are described. The issue of code growth or bloat is explained

and a review of different strategies to tackle it are described. A few common approaches

to reduce fitness evaluation cost are presented. Advanced GP implementations featur-

ing multiple genotype-phenotype mapping and multiobjective fitness functions are also

described.

Chapter 5, 6 and 7 are dedicated to the description of the GP implementation devel-

oped during the research activity. Chapter 5 opens with a general description of memetic

or hybrid GP algorithms, a class of GP implementations in which deterministic algorithms

are used to tune the numerical coefficients of the GP individuals. Then the new GP

implementation, called HyGP, is presented and a few enhancements to its basic imple-

mentation presented and validated on a few test regression problems. An optimisation

problems solved with HyGP and a comparison with other metamodelling techniques (PCE

and MLSM) are also described. The application of the developed GP implementation to a

few industrial optimisation problems is described in Chapter 6. Chapter 7 reports a novel

strategy to bias the HyGP search towards more compactness and simpler metamodels. A

comparison between HyGP and gaussian processes performance on a few test regression

problems is also decribed.

General conclusions are given in Chapter 8, followed by recommendations for future

work. Three appendices are also included to encourage the further use of HyGP. Appendix

A details the structure of HyGP code and describes the implementations for sequential

and parallel execution. Some suggestions to further parallelise the code are also given.

Appendix B is a guide on how to use HyGP, whereas Appendix C contains the HyGP input

settings used to generate most of the metamodels described in this dissertation.
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1.1.4 Overview of related papers

This thesis includes the material presented in the following papers:

• V. V. Toropov, A. Polynkin, U. Armani, L. F. Alvarez, “Application of metamodel

building by genetic programming to industrial optimization problems”, Proceedings

of the IV european conference on computational mechanics (ECCM 2010), Paris,

France, 2010;

• U. Armani, V. V. Toropov, A. Polynkin, O. M. Querin, L. F. Alvarez, “Enhancements to

a hybrid genetic programming technique applied to symbolic regression”, Proceed-

ings of the 8th ASMO UK/ISSMO conference on engineering, design optimization,

product and process improvement, London, UK, 2010;

• U. Armani, D. J. Boon, V. V. Toropov, A. Polynkin, L. J. Clarke, M. B. Stowe, “Genera-

tion of models related to aluminium surface treatment using genetic programming”,

Proceedings of the 9th world congress on structural and multidisciplinary optimiza-

tion (WCSMO9), Shizuoka, Japan, 2011;

• U. Armani, Z. Khatir, A. Khan, V. V. Toropov, A. Polynkin, H. Thompson, N. Kapur,

“Control of physical consistency in metamodel building by genetic programming”,

Proceedings of the second international conference on soft computing technology in

civil, structural and environmental engineering (CSC 2011), Chania, Greece, 2011;

• U. Armani, V. V. Toropov, A. Polynkin, S. Shahpar, “Application of explicit metamod-

els generated by genetic programming to computationally expensive optimisation

problems”, to be submitted to Structural and Multidisciplinary Optmization, 2012;

• U. Armani, S. Coggon, V. V. Toropov, “Derivation of deterministic design data from

stochastic analysis in the aircraft design process”, Proceedings of the Eleventh Inter-

national Conference on Computational Structures Technology (CST 2012), Dubrovnik,

Croatia, 2012;

• H. Lohse-Busch, C. Hühne, D. Liu, V. V. Toropov and U. Armani “Parametric opti-

mization of a lattice aircraft fuselage barrel using metamodels built with genetic

programming” in B.H.V. Topping and P. Iványi, (Editors), Proceedings of the Four-

teenth International Conference on Civil, Structural and Environmental Engineering

Computing (CC2013)), Civil-Comp Press, Stirlingshire, United Kingdom, paper 230,

2013. doi:10.4203/ccp.102.230
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1.2 Metamodelling process

Metamodelling is a cyclic process. The main metamodelling stages can be identified as

(Simpson et al. 2001, Vladislavleva 2008, Ramu et al. 2010):

1. data generation

2. metamodel generation or development

3. problem analysis and metamodel reduction

In the following sections the main issues of each step are briefly presented.

1.2.1 Data generation

Data generation consists of all the operations required for gathering, filtering and select-

ing the data that are used to generate the model. As introduced in Section 1.1, data are

collected as a set of samples, records or fitness cases, each having the following structure:

{ x1 x2 . . . xN y } | xi ∈ R i = 1, . . . , N y ∈ R (1.3)

where xi is a particular value of the input variable i, N the number of input variables

assumed for the problem and y the corresponding output or response of the system under

study. The measured response y may be affected by experimental or computational errors.

In Eq. (1.3) a single scalar output is considered: the definition of sample can be extended

to multiple output systems adding the remaining responses. A set of samples like the

one defined in Eq. (1.3) is called data matrix (Vladislavleva 2008), building data set or

training data set (Friedman 1991).

Each row of a data matrix define a design point in a bounded region of the system input

space, called design space. For a given number of samples the accuracy of a metamodel

can be increased using techniques called Design of Experiments (DoE) for the selection of

the position of the design points. The optimal design point distribution indicated by a DoE

depends however on the specific metamodelling technique used: the most common DoEs

will be described in Section 1.2.5. It is worth mentioning that although the use of specific

DoEs is recommended, in real-life industrial application it is not always possible to use an

optimal design point distribution, as often metamodels have to be built on already existing

data: in these cases the extraction of a reduced building data set using data filtering

and balancing techniques may help reduce the cost of metamodel generation without
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compromising on the quality of the approximation (Harmeling et al. 2006, Vladislavleva

2008).

1.2.2 Metamodel generation

Metamodelling techniques process data matrices to generate an implicit or explicit math-

ematical function f̃ (for simplicity, the output y is assumed scalar):

y = f̃(x) + ε(x) (1.4)

although the error ε may be the result of non-controlled input variables or measurement

errors (see Eq. (1.2)), it will be assumed that such error is only due to the approximation,

as the metamodelling process only relies on data and it can influence neither modelling

assumptions nor data generation.

The quality of a metamodel is a measure of the distance between the metamodel f̃

and the true underlying function f (Eq. (1.1)) it aims to approximate (Friedman 1991,

Vladislavleva 2008). The integral error I is an ideal definition of such distance (Friedman

1991):

I =

∫
D
w(x) ∆(f̃(x), f(x)) dx (1.5)

where ∆() is a function defining the distance between f(x) and f̃(x) with x in the whole

design space D and w(x) is a weight function.

A first issue resulting from the definition of the integral error is that, no matter how the

validation data set DV has been chosen, the error on this data set depends necessarily on

the training data set DT used to build the model. Bishop (1995) follows a framework that

is useful to understand what are the main issues arising in model building2. Considering

an error function defined as sum of squares, he shows that the average squared error over

the set of all possible training data sets DT can be decomposed as sum of two terms, a

squared bias and a variance:

∫
εDT

[{f̃(x)− 〈y|x〉}2]p(x)dx = (bias)2 + variance (1.6)

2the framework is reported by Bishop as an introduction to artificial neural networks, a modelling tech-
nique will be described in Section 1.2.4.2. Nonetheless, the same framework can be applied to any modelling
technique.
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where the integral is computed on the complete design space D, εDT
stands for the ex-

pectation operator over the ensemble of training data sets DT and 〈y|x〉 is the average

value of the target y given the input point x. p(x) is the probability density of x.

Bias and variance are defined as (Bishop 1995, p. 335):

(bias)2 =
1

2

∫
{εDT

[y(x)]− 〈y|x〉}2p(x)dx (1.7)

variance =
1

2

∫
εDT

[{y(x)− εDT
[y(x)]}2]p(x)dx (1.8)

The above listed definitions allows to ascribe a non-zero error of the model (as defined

in Eq. 1.6) to two different phenomena. The model output for a given input x may be

on average different from the target value y(x), giving rise to a non-zero bias (Eq. 1.7).

This happens when a model is too simple or not flexible: models affected by high bias

are usually said to suffer from oversmoothing. On the opposite, if the metamodelling

technique is really sensitive to the choice of the training data set, the resulting predicted

values may exhibit a large variance for a given x, hence the term variance in Eq. 1.8.

Models that fits the training data perfectly are likely to have high variance, but lose the

large scale behaviour of the true underlying function: such models are said to suffer

from overfitting. It is clear that acceptable models represent a trade-off between bias and

variance, oversmoothing and overfitting, which results in a minimum of the error defined

in Eq. 1.6.

To further complicate things, the integral in Eq. 1.6 is evaluated on the whole design

space D. For practical reasons is not obviously possible to evaluate it on the whole design

space, and this forces to compute its approximation on a finite data set DV , usually called

validation data set. Usually indicators like the maximum absolute error, the root mean

square error (RMSE) or the coefficient of determination R2 (Jin et al. 2001) are used.

The error on the validation data set gives an indication of how well the model is able to

generalise, or predict the output of the underlying function on new input points, but it is

clear that a zero error on the validation data set does not necessarily imply that the model

has the same behaviour of the true underlying function.

In order to reach a good compromise between reduced bias and reduced variance,

it has been observed that increasing concurrently the number of training points and the

complexity of the model (i.e. number of weights) can be a successul strategy (Bishop

1995, Vladislavleva 2008). Prior knowledge regarding the expected behaviour of the true

underlying function can also be effectively exploited to reduce bias (Bishop 1995) (an
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example will be given in Chapter 5, Section 5.4). Other common strategies to improve

generalisation ability are reported in Bishop (1995), where the interested reader can find

useful references. Regularization is a class of methods that relies on an additional penalty

to the error function to curb the amount of highly non-linear variations in the model. In

general the extra term is a sum of squared second partial derivatives of the model with

respect to the input variables. Weight decay strategy penalises the sum of the squares of

the adaptive parameters of the model, so it is effective when these parameters are linked

to the curvature of the model. Early stopping is based on the idea that the parameters

tuning process tends to generate a overfitted model, so stopping it before it reaches such

state can be an effective way to improve generalisation ability. The hold out method uses a

validation data set to check the quality of the model during the training process: to avoid

overfitting even on the validation data set, when tuning is completed the performance

of the model is assessed on a third, indipendent test data set (Lew et al. (2006) provide

a good example of how these technique is used to set up a genetic programming code).

Cross validation follows the same idea, addressing however the often scarce possibility to

build extra validation data sets. The training data set is divided into N clusters of points,

of which N − 1 are used to train the model and the one left out acts as validation data

set. The average error computed over N validation clusters gives the final error measure.

When the validation cluster is reduced to a single point, the method is generally called

leave-one-out method (a useful example is reported in Viana and Haftka (2009)).

1.2.3 Problem analysis

The problem analysis stage aims at extracting information from the generated model to

better understand the relative importance of each variable on the model response. This

is the purpose of sensitivity analysis. A variety of techniques are available to study the

influence of input variables on metamodel output: methods based on partial derivatives

analysis are accurate but provide local information (Helton and Davis 2003), whereas

techniques based on the analysis of output variance allow to rank input variables accord-

ing to their contribution on output variance (Sobol 1993, Helton and Davis 2003, Sudret

2008, Arwade et al. 2010).

From the information acquired through sensitivity analysis, the whole metamodelling

process can be repeated using a reduced set of the most important input variables (di-

mensionality reduction) to improve the accuracy of the model (Simpson et al. 2001,
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Vladislavleva 2008). The diagram in Fig. 1.1 represents the cyclic nature of this process:

data generation, model development and sensitivity analysis are repeated to progressively

refine the metamodel until an acceptable quality is reached.

FIGURE 1.1: Metamodelling stages

Once a metamodel is generated and accepted, it can be used for different purposes.

This stage is usually referred to as “model exploitation” or “model exercising” (Simpson

et al. 2001) (see Fig. 1.1). Metamodels can help explore the behaviour of a system for new

sets of input values, or systematically evaluated for optimisation, robust design purposes

or uncertainty analysis (Helton and Davis 2003, Lew et al. 2006). As the metamodel

response is in any case affected by error, validation of any predicted behaviour through

a final set of simulation or experiments is usually performed. Significative examples of

the entire metamodelling process and metamodel exploitation can be found in Harewood

et al. (2007), Ramu et al. (2010) and Arwade et al. (2010).

1.2.4 Commonly used global metamodelling techniques

Three classes of metamodelling techniques are commonly used in academia and indus-

try (Friedman 1991, Bishop 1995, Alvarez 2000, Jin et al. 2001, Simpson et al. 2001,

Rasmussen and Williams 2006, Ramu et al. 2010):

• response surface methodologies (RSM)

• artificial neural networks (ANNs)

• kriging (also known as Gaussian Processes)
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These techniques are commonly termed “global” as they generate a single implicit or ex-

plicit metamodel that approximates the response of the system under study on the whole

design space. Due to the non-linearities that the response to approximate may exhibit,

generating globally accurate metamodels is generally more difficult than producing local

approximations. In Section 1.2.7 it will be shown how partitioning the design space is

just one of the many strategies used by researchers to improve metamodel accuracy.

1.2.4.1 Response surface methodologies (RSM)

Response surface methodologies assume that the mathematical structure (Vladislavleva

2008) of the metamodel is defined a priori as a linear combination of a set of mathemat-

ical bases, also called model bank (Polynkin et al. 2008), defined by the user. For this

reason these techniques are called “parametric regression techniques” (Friedman 1991,

Sebag et al. 1997, Vladislavleva 2008). The numerical coefficients of the linear combina-

tion are identified by a least-squares approach using the building data set provided by the

user (Simpson et al. 2001, Ramu et al. 2010)).

The choice of the mathematical bases is wide. For their simplicity and smoothness,

first (Eq. 1.9) and second order (Eq. 1.10) polynomials are typically used (Simpson et al.

2001, Ramu et al. 2010):

ỹ(x1, . . . , xN ) = β0 +

N∑
i=1

βixi (1.9)

ỹ(x1, . . . , xN ) = β0 +
N∑
i=1

βixi +
N∑
i=1

βiix
2
i +

N∑
i=1

N∑
j=1,i>j

βijxixj (1.10)

where βi, βij are coefficients to be tuned.

To approximate non-linear responses the order of the polynomial can be increased to

3-rd, 4-th or higher orders (Ramu et al. 2010). However, higher order polynomials implies

a larger number of coefficients to be tuned, hence a larger building data set (Helton and

Davis 2003). Noise and undesired oscillations on the design space boundary are also to

be expected. To tackle highly non-linear problems usually polynomials are abandoned

in favour of more complex sets of functions. For example, Polynkin et al. (2008) used

intrinsecally linear functions and rational functions. In order to avoid trial and error for

the selection of the best set of functions, some knowledge of the likely behaviour of the

response to be approximated is required.
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A wise selection of the model bank may ease metamodel analysis and exploitaiton.

The use of Hermite, Lagrange, Jacobi and Laguerre polynomials in Polynomial Chaos Ex-

pansion (PCE) dramatically simplifes metamodel sensitivity analysis: the variance contri-

bution of each variable (Sobol indices - Sobol (1993)) to the total output variance can be

extracted analytically from the PCE, avoiding the use of more computationally intensive

Monte Carlo approaches (Eldred et al. 2008, Sudret 2008, Arwade et al. 2010).

1.2.4.2 Artificial neural networks (ANNs)

Artificial neural networks (ANNs) inception can be ascribed to the model of artificial

neuron developed by McCulloch and Pitts (1943) in the 1940s. The first artificial neu-

ral networks were introduced by Rosenblatt (1958), who called them perceptrons, and

Widrow and Lehr (1990), which instead coined for them the term adalines. Since then,

their development have made them fit for classification and regression purporses in dif-

ferent branches of engineering, science and finance (Simpson et al. 2001, Pierce et al.

2006 2008).

ANNs are appreciated for metamodelling tasks as they are “universal approximators”,

in other words they can approximate to an arbitrary accuracy any continuos function and

its derivatives, provided that ANNs of proper complexity are chosen (Bishop 1995, Pierce

et al. 2006). ANN metamodels can be thought as “grids” composed of single operators

called “neurons”, “perceptrons” or “units”. A perceptron is a mathematical model that

associates a set of input variables x with an output value y. The relationship between

x and y is assumed to consist of a linear combination of the input variables xi which is

transformed by a non-linear function g( · ), also called activation function (Bishop 1995,

p. 117), as shown in 1.11:

y = g

(
N∑
i=1

wixi + w0

)
= g

(
N∑
i=0

wixi

)
| x0 = 1 (1.11)

where w0 is called bias and N is the dimension of the input space. The typical graphical

representation of a unit is given in Fig. 1.2.

A common choice for the activation function g( · ) is the logistic sigmoid (Bishop 1995,

Simpson et al. 2001), for reasons that will be explained shortly:

g(a) =
1

1 + e−a
(1.12)
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FIGURE 1.2: Neuron typical representation

but other functions can be used (for example the Heaviside step function (Bishop 1995)).

Artificial neural networks are made linking a certain number of neurons, in order to

make an “architecture”. Architectures are defined by the number of neuron layers and

by rules that constrain the links that can be established between units. If links are not

permitted between a neuron and any other neuron that contributes directly or indirectly

to the generation of its inputs, the neural network is said to have a feed-forward architec-

ture. An example of a two-layer feed-forward architecture is shown in Fig. 1.3, in which

the set of units between the input and the output ones are called hidden units. Acting

FIGURE 1.3: Example of a two-layer feed-forward neural network

on the size and the structure of the architecture the accuracy of the approximation pro-

duced by neural networks can be increased (Simpson et al. 2001). A major strength of the

two-layer feed-forward architecture represented in Fig. 1.3 is that it can approximate to

arbitrary accuracy any continuous function and its derivatives, provided that the number
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of hidden units is sufficiently large (Bishop 1995). Typically ANNs architectures used for

engineering applications employ tens or even hundreds of neurons (Flood 2011).

It is important to stress that mappings represented by feed-forward neural networks

can be cast into explicit models. In particular, the mathematical expression of each output

yk of the two-layer neural network represented in Fig. 1.3 is (Bishop 1995, p. 119):

yk = g̃

 M∑
j=0

w
(2)
kj g

(
N∑
i=0

w
(1)
ji xi

) (1.13)

where the sums expressing the linear combinations as in 1.11 start from 0 in order to

include the bias (x0 = 1). Symbols g( · ) and g̃( · ) represent activation functions. In

general, each unit can have its own activation function, different from the others.

In order to use neural networks, the weights of each neuron (see for example wi with

i = 0, . . . , N in Eq. (1.11)), have to be tuned. The weight tuning process is generally

called training or supervised learning (Mohammadi and Mahdavi 2008, Flood 2011) and

aims at minimising a metric defined as a function of the errors between the response

predicted by the neural network and the actual one on a given training data set (Simpson

et al. 2001, Pierce et al. 2006 2008). The metric to be minimised can be for example the

sum of the square errors (Bishop 1995, Orr 1996, Simpson et al. 2001) but others can

also be used (Chetwynd et al. 2006, Pierce et al. 2008).

Two iterative approaches are commonly used to solve such minimisation problem,

deterministic (gradient-based) and stochastic. In the former, the back-propagation algo-

rithm (Bishop 1995, Rogers and LaMarsh 1995, Simpson et al. 2001, Pierce et al. 2006,

Mohammadi and Mahdavi 2008, Flood 2011) is used to compute first the gradient of the

error metric as a function of the weights, and then improved optimal sets of weights are

progressively found exploiting this information using a gradient-based technique (for ex-

ample using conjugate gradient method (Pierce et al. 2008)). The main advantage of this

approach is that it is computationally efficient and therefore faster than approximating the

derivatives using numerical differentiation (Bishop 1995). Derivatives are indeed found

through multiplications of the values at the input and output ends of each weight, which

are already computed during the evaluation of the neural network (forward-propagation),

and the derivative of the activation function. Using the logistic sigmoid activation function

(Eq. 1.12) gives the additional advantage that its derivative can be expressed as a func-

tion of the activation function itself. A detailed description of the process can be found

in Bishop (1995, p. 141-146). Gradient-based error minimisation may however lead to
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local minima of the error metric, let alone the fact that the set of weight found depends

on the initial weight provided by the user (Pierce et al. 2006, Chetwynd et al. 2006) and

the technique can be applied only if the activation functions and the error function are

differentiable (Bishop 1995). The latter class of training methods uses population-based

algorithms, which are able to explore globally the error surface and to avoid local minima

(differential evolution is for example used in Chetwynd et al. (2006)). However, they are

necessarily less efficient.

Radial basis functions networks (RBF networks) can be analysed using the same for-

malism of artificial neural networks, although the idea they are based on and the range of

techniques that can be used to train them are different from ANNs. Radial basis functions

approximation is based on the idea that any continuous function can be approximated

with arbitrary accuracy by a linear superposition of localised bump functions (Bishop

1995).

The bump functions are generated by so called radial functions, which exhibit a mono-

tonic increase or decrease function of the distance (radius) from a central point xc ∈ RN

(Orr 1996, Jin et al. 2001, Rendall and Allen 2008). Typical radial functions are the

Gaussian, which decreases monotonically with the distance from the centre xc:

h(‖x− xc‖) = e
−
‖x− xc‖2

2σ2 (1.14)

where σ and xc are parameters to be tuned (Bishop (1995, p. 169) also reports the gen-

eralised expression of the Gaussian, having however more parameters to be tuned). The

multiquadric, which increases monotonically with the distance from the centre, is another

radial basis function:

h(‖x− xc‖) =

√
r2 + ‖x− xc‖2

r
(1.15)

where r is a numerical parameter used to tune the rate of increase of the radial function.

RBFs networks can then be represented as ANNs having a two-layer feedforward ar-

chitecture, in which the weights belonging to the first layer are used to determine the

mathematical features of the basis functions (see parameters σ, xc, r in 1.14 and 1.15)

and only the weights of the second layer impose a relative importance of the activations

as in standard ANNs (Bishop 1995, Mohammadi and Mahdavi 2008). Fig. 1.4 shows the
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architecture of a typical RBF network (for simplicity, the case of a multiple input - single

output mapping has been considered).

FIGURE 1.4: Representation of a RBF neural network

As ANNs, even RBFs networks can be cast in their explicit form, as a linear combina-

tion of radial basis functions (Bishop 1995, Jin et al. 2001, Silva et al. 2007, Rendall and

Allen 2008, Mohammadi and Mahdavi 2008):

ỹ =
M∑
i=1

wihi(‖x− xci‖) + w0 =
M∑
i=0

wihi(‖x− xci‖) | h0 = 1 (1.16)

where wi are the weights of the radial basis function and M is the number of units in

the hidden layer (usually far fewer then the size of the training data set (Bishop 1995)).

The mathematical structure reported in 1.16 affords RBFs networks to be trained in a

different way than the one used for ANNs, which is faster than back-propagation based

search algorithms (Nabney 2003, Mohammadi and Mahdavi 2008). If Eq. 1.16 is used to

build a model from a training data set made of N points (xi, yi), the error εi in each point

can be written in matrix notation as:

εi = y(xi)− ỹ(xi) = y(xi)−Hw (1.17)

where H is the matrix having as rows the radial basis functions hi(‖x−xci‖), . . ., hi(‖x−

xcM ‖) evaluated on the N training data points and w is the (column) vector of weights

to be found. The weights in Eq. 1.17 that minimise the sum-of-squares error function can

be found using a direct method using linear matrix inversion techniques (Bishop 1995),

which is faster than the iterative methods exploiting back-propagation algorithm.

It should be mentioned however that this possibility implies that all the weights that

define the mathematical properties of the radial basis functions (see for example σ, xc, r
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in 1.14 and 1.15) are already known. There are techniques that use only the coordinates

in the input space of the training sample points to set such parameters (unsupervised

methods) but, although fast, they may lead to suboptimal identification of radial basis

functions (Bishop 1995). In case optimisation of these properties is required, weight

optimisation methods used for ANNs (based on back-propagation algorithm or population

based strategies) can be applied.

1.2.4.3 Kriging method

Kriging is also referred to as Gaussian Process (Rasmussen and Williams 2006, p. 30) or

Design and Analysis of Computer Experiments (DACE) (Simpson et al. 2001, p. 132). A

Gaussian Process is "a collection of random variables, any finite number of which have

a joint Gaussian distribution" (Rasmussen and Williams 2006, p. 13). In other words,

if a randomly selected set of n outputs f(xi) is taken, where f is the function we want

to approximate, then the joint probability density p of this set is described through a

multivariate Gaussian distribution:

p(f(x1), f(x2), . . . , f(xn)) = N(µ,Σ) (1.18)

= (2π)−D/2|Σ|−1/2exp(−1

2
(f − f)Σ−1(f − f)) (1.19)

where N stands for Gaussian distribution (also known as normal distribution), µ is the

mean of the distribution (vector of size n, defined as the average of f(xi), f) and Σ is the

covariance matrix of the distribution. Often the values fi = f(xi) are referred to as the

"variables" of the Gaussian Process.

An important step in Gaussian Processes is the definition of single entries of the co-

variance matrix Σ. It is assumed that the single covariance terms k(y, y′) the covariance

matrix is composed of, which define the relationship between the outputs f(xi), can be

written as a function of the sole inputs xi (Rasmussen and Williams 2006, p. 14, 18):

k(y, y′) = k(x,x′) = k (1.20)
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So the covariance matrix Σ is defined as:

Σ =


k(x1,x2) + σ2n · · · k(x1,xn)

...
. . .

...

k(xn,x1) · · · k(xn,x1) + σ2n

 (1.21)

where k(xi,xj) are the covariance functions previously introduced. The covariance func-

tions turn into variances when xi = xj: in this case the variance term σ2n has been added

to account for the noise on the observation (the same variance for each observation is

assumed in matrix 1.21). In case observations can be assumed noise-free, the variance

term σ2n can be removed.

Once all the elements required by the multivariate Gaussian probability density have

been defined, such probability density acts as a "structure" of the metamodel allowing to

extract the expected reponses on the points where predictions are desired (predictions).

This process is called conditioning, and the particular definition of the multivariate Gaus-

sian probability density affords to perform it analytically: the interested reader can find

the details in Rasmussen and Williams (2006, p. 15-17). As a final result, predictions

and corresponding confidence intervals are returned, but no analytical expression is pro-

duced: to extract predictions on a new test data set the conditioning process has therefore

to be repeated.

The selection of the covariance function k(xi,xj) deserves particular attention. The

squared exponential covariance function is commonly used (Simpson et al. 2001, Jin et al.

2001, Bonte et al. 2005, Rasmussen and Williams 2006):

k(xi,xj) = σ2f exp

[
−1

2
(xi − xj)

TM(xi − xj)

]
+ σ2n δij (1.22)

where σf , M and σn are called hyperparameters (Rasmussen and Williams 2006, p 20),

n being the number of records in the building data set. Many other standard covariance

functions can be used, while new ones can even be composed adding together existing

functions (a useful overview is given in Rasmussen and Williams (2006, Ch. 4,5)). The

particular values of the hyperparameters used in the covariance function allow to change

the behaviour of the resulting model, which can either interpolate or smoothen the input

data, depending if noise on observations is assumed ot not (see Simpson et al. (2001),

Ramu et al. (2010) and also Rasmussen and Williams (2006, p. 20) for a useful example).
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The wide range of covariance functions available if on the one hand increases the

flexibility of Gaussian Process technique, on the other hand introduces the issue of estab-

lishing a rigorous way to optimise the selection of the covariance function. Two levels

of optimisation are therefore implicit in Gaussian Process modelling: the selection of the

covariance function "structure" and the selection of the hyperparameters once such struc-

ture has been chosen (Rasmussen and Williams 2006, p. 108-111). The strategy that is

generally followed to perform such selection is based on Bayes’ theorem, as it implies the

maximisation of the marginal likelihood p(y|X, θ), or the probability of the observations

y given the hyperparameters θ and the structure of the covariance function Hi. The ad-

vantage of such approach is that the marginal likelihood can be computed analytically for

the multivariate Gaussian probability density (Rasmussen and Williams 2006, p. 112). Its

logarithm is reported below (Rasmussen and Williams 2006, p. 113):

log p(y|X, θ) = −1

2
yTK−1y y − 1

2
log|Ky| −

n

2
log(2π) (1.23)

where Ky = Kf + σ2nI is the covariance matrix for the noisy target y obtained from the

noise-free covariance matrix Kf . The extraction of kriging model responses in unsam-

pled region implies therefore solving an unconstrained nonlinear optimisation problem

(Simpson et al. 2001), that is finding the maxima of Eq. 1.23, with all the related is-

sues (local optima, dependence of the found optimum on the initial guesses, etc..). The

other advantage of this approach, called Bayesian inference, is that it automatically in-

volves a trade-off between model fit and model complexity, differently to what happens

in parametric techniques like RMS and ANNs where this balance is reached acting on

parameters and model structure, often relying on cross-validation strategies (although

bayesian learning of weights is also used for ANNs (Bishop 1995, Ch. 10)).

Often the response y(x) of a system is approximated either using a deterministic non-

zero mean or adding to the Gaussian Process f(x) a predefined explicit global model g(x),

usually a polynomial (Jin et al. 2001) (Rasmussen and Williams 2006, p. 27):

ỹ(x) = g(x) + f(x) (1.24)

The global behaviour of the metamodel is given by the first term, the function g(x), while

the Gaussian Process f(x) introduces local variations to locally fit the building data set

(basically the Gaussian Process is used to model the residuals).
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1.2.5 Selection of the design of experiment

The use of experimental design techniques, or Design of Experiments (DoE), aims at in-

creasing the efficiency of the metamodel generation process. DoEs were originally de-

veloped for physical experiments, to reduce the influence of the random errors affecting

the measurement process (Alvarez 2000, Simpson et al. 2001). The same methodologies

were later extended to the design of deterministic computer experiment, which are less

prone to noise, although some errors may still be generated by incomplete convergence,

truncation errors or problem discretisation (Alvarez 2000, Bonte et al. 2005, Ramu et al.

2010). According to the assumptions on input data random error, DoE optimality criteria

change (Simpson et al. 2001).

A design of experiment is a list of coordinates defining the points in a design space in

which the response of the system under study has to be sampled. The input variables are

defined as factors, and the number of input configurations to be sampled per factor are

called levels (Simpson et al. 2001, Ramu et al. 2010).

The range of DoEs is wide. A proper DoE selection does not only have to take into

account the metamodelling technique used to process the gathered data, but it also has

to consider the cost of producing or obtaining the system response and the purpose of the

metamodel (i.e. model identification or sensitivity analysis) (Simpson et al. 2001, Ramu

et al. 2010). In the following sections a survey of the most common DoEs is presented.

1.2.5.1 Full factorial design

Full factorial design is the most basic DoE. All combinations of all factors at all levels

are sampled. The number of levels is assumed equal for each factor, and as a result the

number of DoE points is NNf

l , where Nl is the number of levels and Nf the number of

factors.

The main advantage of this design is the extensive information that can be gathered.

In case response surface methodology is chosen for metamodel building, a 3Nf design

allows for the estimation of the main (linear) and quadratic effects and interactions of a

second order polynomial in Nf input variables (Alvarez 2000, Simpson et al. 2001). The

technique becomes however prohibitive for high-dimensional and expensive systems. In

Fig. 1.5 an example of a tridimensional full factorial DoE having 5 levels per factor is

shown (125 points).
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FIGURE 1.5: Example of full factorial DoE for three factors (design space: (0, 1)×(0,
1)×(0, 1))

Fractional factorial designs are obtained from full factorial design removing a certain

percentage of the original points (Alvarez 2000, Simpson et al. 2001). For their reduced

size but also lower sampling resolution if compared to full factorial designs, fractional

factorial designs are used in the early modelling stages, in particular for screening design

variables and identify those with the greatest influence on the response (Alvarez 2000,

Simpson et al. 2001, Lew et al. 2006).

1.2.5.2 Central composite design

Central composite designs are 2-level full-factorial design augmented with a central point

and two additional ’star’ points for each factor, located at a given distance α from each

factor lower and upper bound. In total five levels for each factor are used, so the total

number of point in the DoE is 2Nf + 2Nf + 1 for Nf factors. In case the ’star’ points

are located on the faces of the hypercube defined by the 2-level full factorial design,

the design is referred to as face-centred central composite design. An example of central

composite design for 3 factors is shown in Fig. 1.6.

Central composite designs allow for the evaluation of linear and quadratic terms in

response surface modelling (Alvarez 2000, Ramu et al. 2010). However, the number

of points may be still excessive in case of high-dimensional and costly systems (Alvarez

2000, Ramu et al. 2010).

1.2.5.3 Box-Behnken design

Box-Behnken designs are a family of three-level designs, used in particular for fitting

second order polynomials (RSM). They are available only for a limited range of factors (3
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FIGURE 1.6: Example of central composite DoE for three factors (design space: (-1,
1)×(-1, 1)×(-1, 1))

to 7) (Ramu et al. 2010) and they do not contain the points corresponding to the vertices

of the hypercube defined by the lower and upper bounds of each factor, as shown in

Fig. 1.7. As a result, Box-Behnken designs are suitable for situations where factors cannot

concurrently assume values at the extremes of their ranges, or these configurations are

expensive or impossible to test (Simpson et al. 2001, Ramu et al. 2010).

FIGURE 1.7: Example of Box-Behnken DoE for three factors (design space: (-1, 1)×(-1,
1)×(-1, 1))

1.2.5.4 Latin Hypercube design

Latin Hypercube designs belong to the class of so-called ‘space filling’ designs (Simpson

et al. 2001), whose main feature is to consider all regions of the design space equally

important. As a result, they ensure that all input variables are represented, no matter

if the system response is dominated only by few of them: for this reason their use is

recommended in the early stage of design, when variables’ contribution and metamodel

form cannot be specified (Simpson et al. 2001).
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A Latin hypercube design is composed of a number of points equal to the number

of levels Nl, set by the user (Alvarez 2000). To guarantee a uniform exploration of the

design space, stochastic or deterministic approaches are commonly used to generate the

position of the DoE points. Deterministic approaches implicitly assume that all factors fol-

low a uniform probability distribution and rely on optimisation algorithms that maximise

the minimum distance between DoE points or minimise more complex cost functions.

Audze and Eglais’s cost function for example is based on the analogy between a set of

points and a system made of unit mass particles. The repulsion force between points is

modelled through a potential energy defined as the reciprocal of the squared distance

between points, so that a optimal uniform point distribution can be obtained minimising

the sum of the points’ potential energies (Alvarez 2000, Bates et al. 2004). An example

of deterministic Latin Hypercube design for two factors is shown in Fig. 1.8A.

Following instead a probabilistic approach, the sampling range of each factor is di-

vided in a number of subranges equal to the desired levels, in order to let each sub-range

have the same probability to be sampled, according to the probability distribution func-

tions (pdf) of the input variables. A single DoE point coordinate is then selected from

each subrange, generally using a uniform probability distribution. These single coordi-

nates are then assembled into DoE points through random association (Helton and Davis

2003). Fig. 1.8B provides an example of stochastic Latin Hypercube design for two fac-

tors.
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(-5, 10)×(0, 15))
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2)×(-2, 2) )

FIGURE 1.8: Examples of uniform (deterministic) (A) and stochastic (B) Latin Hypercube
DoEs for two factors

Latin Hypercube designs are appreciated for their space-filling properties and their

versatility (Simpson et al. 2001). They are commonly used for generating kriging building
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data sets (Alvarez 2000, Bonte et al. 2005, Ramu et al. 2010) and usually recommended

in response surface methodologies during the early stages of metamodelling when the

best mathematical structure of the metamodel is unknown (Simpson et al. 2001). It

should however not be neglected that Latin Hypercube designs cannot be used in case

input variables are correlated, they are not reproducible (randomly generated) and that

the user is responsible to set the proper DoE size to ensure that the sampling density is

high enough for the selected metamodelling technique (Ramu et al. 2010).

1.2.6 Advantages and drawbacks of established techniques

The brief description provided in the previous sections is sufficient to assess the strengths

and drawbacks of the most common metamodelling techniques.

1.2.6.1 Response surface methodologies

Response surface methodologies, as in general all techniques based on parametric re-

gression, are explicit, so design variables’ contributions to the system response can be

identified easily, at least if the mathematical bases are simple (for example low order poly-

nomials). The resulting metamodels smoothness is appreciated for reducing the problem

of noise. Finally, RSM is really easy to use.

On the other hand, the parametric nature of the technique requires that the user has

some knowledge regarding the possible mathematical behaviour of the response to be

approximated (Lew et al. 2006), otherwise the overall computational cost of metamodel

building is likely to be increased by preliminary screening aimed at finding a set of proper

mathematical basis functions (Singh et al. 2007, Ramu et al. 2010). As acknowledged

by Polynkin et al. (2008), the selection of a proper basis can increase dramatically the

accuracy of the metamodel. The common approach to use low-order polynomials may

lead to poor metamodel accuracy in case of highly nonlinear problems (Jin et al. 2001),

and increasing the order of the polynomials may introduce noisy behaviour and also

may require a dramatic increase in the DoE size for tuning the polynomials’ coefficients

(Helton and Davis 2003, Eldred et al. 2008). As a result, RSM is not recommended for

highly non-linear and highly dimensional problems (Simpson et al. 2001, Jin et al. 2001).
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1.2.6.2 Artificial neural networks

Artificial neural networks and radial basis function networks are able to generate accurate

metamodels of highly non-linear and high dimensional problems (Simpson et al. 2001,

Chetwynd et al. 2006), although Flood (2011) reported that five or six independent vari-

ables are a typical limit to the dimensionality of the problems that can be approached

by ANNs. ANNs can process both deterministic (noise-free) as well as experimental data

(Rogers and LaMarsh 1995, Chetwynd et al. 2006).

A major criticism is that ANNs lack transparency, as in general they do not produce

explicit metamodels (although in simple cases an analytical expression can be extracted

- see for example Pierce et al. (2008, p. 1398)). Secondly, some prior knowledge or pre-

liminary testing is required for a proper selection of the activation functions, the ANN

architecture and the total number of neurons (Pierce et al. 2006, Chetwynd et al. 2006,

Pierce et al. 2008). All these parameters may affect considerably the accuracy of the ANN,

being lack of generalisation and overfitting (modelling of noise instead of the underlying

structure of the data) the main risks (Pierce et al. 2006 2008). Rogers and LaMarsh

(1995) proposed an empirical method to determine (manually) the number of neurons

in ANNs having a single hidden layer. In Pierce et al. (2006), Chetwynd et al. (2006),

Pierce et al. (2008) different training, validation and test data sets were used to select the

optimal number of neurons in the the hidden layer of a two-layer ANN. A few researchers

ventured further, suggesting the use of genetic algorithms to automise the process of find-

ing optimal ANN architectures (an example of ANN architecture evolution can be found

in Zhang and Mühlenbein (1995) and in Flood (2011)). This possibility is motivated by

the ability of genetic algorithms to perform a directed search in a space of user-defined

programs. Genetic algorithms’ paradigm will be introduced in Chapter 2.

Thirdly, ANNs training cost is also to be reckoned with. In terms of the computational

cost of training data gathering or generation, the total number of samples required may

be high (Simpson et al. 2001), especially if independent training, validation and test data

sets are used to select the optimal ANN’s architecture and size (Chetwynd et al. 2006,

Pierce et al. 2008). As for training time, it may vary considerably according to the archi-

tecture chosen, the number of neurons and, in case a backpropagation algorithm is used,

the set of initial weight selected (Rogers and LaMarsh 1995). In general however ANNs

training time is far larger than the time required for tuning a parametric model (Lew et al.

2006) and may pose a limit to the total number of samples that can be used (Chetwynd
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et al. 2006, Flood 2011). Simpson et al. (2001) in this regard reported (p. 134): “. . . the

procedure is to toss the data directly into the NN software, use tens of thousands of pa-

rameters in the fit, let the workstation run 2-3 weeks grinding away doing the gradient

descent, and voilá, out comes the result”3. Mohammadi and Mahdavi (2008) also pro-

vided some evidence of the high training time (more than 10 hours for backpropagation

ANNs). To cope with the computational cost of the technique, recurring to parallelised

computer codes is strongly suggested (Rogers and LaMarsh 1995, Simpson et al. 2001).

Radial basis function networks are generally faster to train than more complex ANNs

(Mohammadi and Mahdavi 2008).

1.2.6.3 Kriging method

Kriging method is flexible and able to deal with highly non-linear and mid-dimensional

problems (less than 50 input variables (Simpson et al. 2001)). In case it is used as an

interpolation technique, problems with noisy input data may arise. Kriging requires the

user to define the structure Hi of the covariance function and, if used to model the resid-

uals as in Eq. (1.24), the definition of an additional global metamodel, so it is not as

easy to set up as RSM. Training is time consuming for high dimensional problems and

for large training data sets (Rasmussen and Williams 2006), and fitting problems have

been reported for some full factorial and central composite designs (Jin et al. 2001). The

metamodel generated by kriging is not explicit, and the influence of each design variable

on the output response cannot be easily evaluated (Jin et al. 2001).

A synthesis of the advantages and drawbacks of each of class of techniques is reported

in Table 1.1 (the content was adapted from (Simpson et al. 2001, pag. 143)).

1.2.7 Local and mid-range approximation techniques

Global and transparent metamodels are ideal for their simplicity, interpretability and

practically inexpensive evaluation. Some compromise on accuracy should however be

accepted for high dimensional and highly non-linear systems. In such cases mid-range

or local approximation techniques usually provide more accurate metamodels. This class
3The author would like to thank Mr. René Meissner from Airbus for the interesting discussion on neural

networks at DiPART conference held in ASRC, Bristol in December 2011. The application of neural network
metamodelling to industrial problems having a number of input variables smaller than 100 was confirmed
to be incredibly demanding in terms of the size of the design of experiment and the duration of the neural
network training.
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TABLE 1.1: Recommendations on metamodelling technique selection

Technique Characteristics / Appropriate uses
Response surfaces • well-established and easy to use

• best suited for applications with random error
• appropriate for low-dimensional problems (< 10 input
variables)

Neural networks • good for highly-nonlinear or high dimensional problems
• best suited for deterministic applications
• high computational cost (often more than 10000 training
data points); best for repeated application

Kriging (Gaussian Process) • extremely flexible but complex
• well-suited for deterministic applications
• can handle mid-dimensional problems (< 50 input vari-
ables)
• suited for smooth underlying functions, not varying over
many orders of magnitude
• criticism of limited support reported in Simpson et al. (2001)
overcome by extensive research and availability of open-source
toolboxes (see for example Rasmussen and Nickish (2010),
Rasmussen (2006) and the links to other Gaussian Process
packages provided in the former)

of methods leaves the idea of approximating a response through a single metamodel ex-

tending on the whole design space. Unfortunately this results in loss of simplicity and

transparency.

Taylor expansion is one of the simplest local approximation techniques. The system

response y is approximated in a region around a sampled design point x0 as a sum of

derivatives of increasing order:

y = f(x0)+
N∑
i=1

[
df

dxi

]
x0

(xi−x0i)+
1

2

N∑
i=1

N∑
j=1

[
d2f

dxidxj

]
x0

(xi−x0i)(xj−x0j)+o(‖x−x0‖2)

(1.25)

where N is the dimensionality of the problem. Taylor expansion is still explicit, but may

be accurate only in a narrow region centred in the known design point x0 for highly

non-linear functions. Additional computational cost results from the estimation of the

partial derivatives. Yet, Taylor expansion is important conceptually, as it shows that the

assessment of the non-linearity of a (differentiable) function has to take into account the

extension of the input domain around the known point: theoretically any (differentiable)

response can be approximated by a constant or linear function on a narrow enough design

space centred in x0. Furthermore, the reduction of the input region usually reduces the
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level of interaction between input variables. Splitting the design space and performing a

piecewise regression is a strategy that motivates many local and mid-range approximation

and metamodel-based optimisation techniques.

Recursive partitioning regression (Friedman 1991) is based on the recursive splitting

of the design space: in each subregion the system response is approximated usually by

constant or linear functions. The adaptive control on the size of the partitions may ease

the analysis of the interactions among the input variables. A main restriction of the

method is the lack of continuity at the subregion boundaries and the lack of transparency.

Splines are popular piecewise polynomial fitting procedures (Friedman 1991, Quar-

teroni et al. 2000). The building data set is interpolated or fitted through a set of polyno-

mials of order k, each defined in a subregion of the design space. The overall metamodel

is required to be continuous to order k−1. The application of splines to high dimensional

problems (N > 2) is hindered by the rapid increase in the DoE size required to tune the

coefficients of the polynomials (curse of dimensionality) (Friedman 1991).

Multivariate adaptive regression splines (MARS) (Friedman 1991) is based on recursive

partitioning regression. The main weakness of recursive partitioning, the lack of conti-

nuity, is solved replacing the constant or first order terms with splines of order q, so that

continuity can be achieved in the metamodel and its derivatives. A MARS metamodel can

be written in the form of an additive model:

f̃(x) =
M∑
m=1

amBm(x) (1.26)

where the basis functions Bm contain in their own definition the design space subregion

in which they are not zero:

B(q)
m (x) =

Km∏
k=1

[
skm ·

(
xv(k,m) − tkm

)]q
+

(1.27)

Km is the number of splits resulting from the recursive partitioning of the design space,

skm is a function used to determine which half of the subregion has to be considered

(skm = ±1), tkm is the position on the axis defined by the input variable xv(k,m) where

the splitting of the design space has taken place. The parameter q is the order of the

spline, whereas the subscript + indicates the positive part of the argument (Jin et al.
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2001):

[
skm ·

(
xv(k,m) − tkm

)]q
+

=


[
skm ·

(
xv(k,m) − tkm

)]q
if skm ·

(
xv(k,m) − tkm

)
> 0

0 otherwise

(1.28)

A MARS metamodel can be recast in a sum of terms of increasing dimensionality, so

transparency is guaranteed to some extent. The accuracy of the technique is critically

dependent on the size of the training data set (Jin et al. 2001).

The multipoint approximation method (MAM) (Polynkin and Toropov 2011) is not a

metamodelling technique per se, but it deserves to be mentioned as it is an optimisation

technique which relies on metamodels defined iteratively on subregions of the design

space. In MAM the system response is approximated by a linear combination of meta-

models φi(a,x):

f̃(x) =
K∑
i=1

biφi(a,x) (1.29)

where the size of the model bank K is set by the user. The vector a represents the

parameters or coefficients to be tuned in each metamodel φi and bi are the coefficients of

the linear combination of metamodels φi. Polynkin et al. (2008) suggested using different

techniques like RSM, kriging and RBFs to generate the single metamodels φi. Although

in general Eq. (1.29) can be used as a global metamodel, better accuracy is reached in

MAM considering it as a mid-range approximation. The design space is explored through

the iterative definition of a trust region on which Eq. (1.29) is locally tuned. MAM has

been successfully used in high dimensional problems, featuring up to 500 input variables

(Polynkin et al. 2008).

Finally, the moving least squares method (MLSM) (Choi et al. 2001, Toropov et al.

2005) is an example of metamodelling technique which generates accurate global meta-

models, although the gain in accuracy is paid by a reduced transparency, as the meta-

models are not returned in explicit form. MLSM belongs to the class of local parametric

approximations described by Friedman (1991), which are global parametric metamodels

whose parameter values are computed by locally weighted least-squares fitting. MLSM

models take the form (Friedman 1991):

f̃(x) = g(x|{âj(x)}p1) (1.30)
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where g is a given parametric model having p parameters âj to be tuned. Parameter

values are obtained through locally weighted least-squares fitting:

{âj(x)}p1 = argmin
N∑
i=1

w(x,xi)[y(xi)− g(x|{âj(x)}p1)]
2 (1.31)

where N is the number of points in the building data set. The weight w associated to

each sampling point xi decays as the evaluation point x moves away from the building

point xi. The typical behaviour is exponential (Toropov et al. 2005, Loweth et al. 2011):

w(x,xi) = exp(−θr2i ) (1.32)

where θ is a (hyper)parameter (closeness of fit parameter) and ri is a normalised distance

from the building point xi and the evaluation point x. Acting on θ is possible to either

increase smoothing or improve local accuracy.

As reported by Friedman (1991), the quality of the approximation is “determined

more by the choice of w and to a lesser extent by the particular parametric function g

used. Typically polynomials of 1st, 2nd or 3rd order are used for g. As the weights depend

on the position of x, also the coefficients of the MLSM basis functions depend on x. As

a result, MLSM does not return an explicit metamodel. As least-squares weight tuning is

performed using a direct technique, MLSM metamodel training is relatively inexpensive.

For this reason MLSM is successfully used in uncertainty analysis in conjunction with

Monte Carlo approaches, as done for example in Toropov et al. (2005).

1.3 Introduction to genetic programming

Genetic programming (GP) (Koza 1992) is an iterative and population-based search tech-

nique that aims at finding “a suitable program in the space of all possible programs”

(Langdon et al. 1999, pag. 167). A program can be defined as a set of instructions that

solves a given problem or task (Zhang and Mühlenbein 1995, Barbosa and Bernardino

2011). As introduced in Section 1.1.2, the distinctive feature of genetic programming is

the mechanism or strategy used to explore the search space: trial solutions are generated

through genetically-inspired operations. The definition of optimality criteria allows GP to

direct the search towards desirable or optimal programs.
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The non-specific nature of genetic programming is its main strength. Genetic pro-

gramming can be used to perform a directed search and optimise any entity that, once

coded, can be processed and evaluated by GP. Thanks to its versatility, GP has been used

in many fields of engineering for metamodelling, classification and design (Barbosa and

Bernardino 2011). Table 1.2 provides a list of different applications in which genetic

programming has been successfully employed. Further examples can be found in Bar-

bosa and Bernardino (2011). The most common task genetic programming is used for

is symbolic regression (Barbosa and Bernardino 2011), an expression commonly used by

GP researchers to refer to the process of generating a metamodel through the recombi-

nation of mathematical operators considered in their symbolic form (Lew et al. 2006,

Vladislavleva 2008).

TABLE 1.2: GP applications (Ps stands for program synthesis, Sr for symbolic regression)

Application Authors Aim
• Evolution of images and videos Sims (1987 1993) Ps
• Evolution of neural networks Zhang and Mühlenbein (1995) Ps
• Resolution of integral equations Blickle (1996) Sr
• Evolution of non-linear model of fluid flow in a
coupled water tank system

Gray et al. (1996) Sr

• Evolution of polyethylene rheological model and
strain energy function of hyperelastic materials

Schoenauer et al. (1996) Sr

• Evolution of a non-linear dynamic model of heli-
copter rotor speed controller and engine

Gray et al. (1997) Sr

• Evolution of music Johanson and Poli (1998) Ps
• Evolution of digital circuits Kalganova and Miller (1999) Ps

Iba and Terao (2000) Ps
• Evolution of delay-time algorithms for anti-air
missile proximity fuses

Nyongesa et al. (2001) Sr

• Evolution of models of shear strength of rein-
forced concrete deep beams

Ashour et al. (2003) Sr

• Evolution of temporal rules Sætrom and Hetland (2003) Sr
• Evolution of a dynamic model of a planar 10-bar
truss

Shaw et al. (2004) Ps

• Modelling of blown film properties Kordon and Lue (2004) Sr
• Rediscovery of Newton’s law of gravity Smits et al. (2005) Sr
• Evolution of metamodels of the structural mod-
ulus and Poisson ratio of honeycomb structures, of
natural frequency and mode shape in a 9 degree-
of-freedom mass-spring system

Lew et al. (2006) Sr

• Evolution of a differential equation solution Koza (1992) Sr
Buchsbaum (2007) Sr

• Evolution of a model for a diesel engine NOx’s
emissions

Winkler et al. (2007) Sr

• Evolution of models for the velocity to accelera-
tion ratio in earthquakes

Kermani et al. (2009) Sr

• Discovery of physical laws (Hamiltonian and La-
grangian)

Schmidt and Lipson (2009a) Sr

• Evolution of solutions of implicit equations Schmidt and Lipson (2010) Sr
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1.3.1 Genetic programming as a metamodelling technique

The application of genetic programming to metamodelling is motivated by the possibility

to reformulate metamodelling as a search for the most accurate model in a set or space of

mathematical models (Schmidt and Lipson 2010). As we have already seen, the expres-

sion “symbolic regression” is generally used to stress GP ability to search for metamodels’

mathematical structure or function through the recombination of symbols representing

mathematical operators. Not only is GP able to generate the mathematical structure of

the best metamodel approximating the given training data, but it also finds the optimal

values of its numerical coefficients (Smits and Kotanchek 2004, Lew et al. 2006, Schmidt

and Lipson 2010). GP search in the space composed of all the mathematical expressions

that can be built using functions and variables given by the user is iterative: new trial so-

lutions are generated performing evolution-inspired operations on metamodels symbolic

expressions, their quality evaluated on a given building data set and used to select a sub-

set of metamodels from which a new generation of metamodels is spawned. At the end

of the search a metamodel is symbolic form is returned.

Following the definitions provided in the previous sections, genetic programming can

be defined as a non parametric, global and explicit metamodelling technique. Its main

strengths are:

• GP is able to infer knowledge from input data (Schmidt and Lipson 2009a).

GP can infer the mathematical structure as well as optimise the value of the pa-

rameters of the metamodel that best fits the building data set. Knowledge of the

mathematical structure of the true underlying function relating system inputs and

output is not required, except for the definition of the functions that GP can use

to generate the models. Highly non-linear functions can be used to model highly

non-linear responses. As a result, typical preliminary analysis usually performed in

parametric regression (like screening or variable selection) is not needed.

• GP is able to select the most influential input variables from the set provided by the

user. In this sense, GP can perform sensitivity analysis: a few examples where GP

has been used for this purpose are provided in Nordin et al. (1999), Smits et al.

(2005), Lew et al. (2006), Vladislavleva (2008).

• GP has “creative potential” (Schmidt and Lipson 2009a).

GP is able to find innovative metamodels and more in general innovative solutions,
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which might not have been anticipated by the user or designer (Chellapilla 1997,

Soule and Foster 1998a, Schmidt and Lipson 2009a). GP creative potential is a re-

flection of GP ability to extensively explore the whole design space in an automated

and directed way. In this sense GP is referred to as a machine learning technique,

and it can be considered a form of artificial intelligence (Zhang and Mühlenbein

1995). The generation of innovative solutions is a common feature of evolutionary

techniques (Beyer and Schwefel 2002, Kroo 2004).

• GP metamodels are returned in an explicit, symbolic form.

The explicit text expression generated by GP ensures the maximum metamodel

transparency and readability (Kordon and Lue 2004, Kermani et al. 2009). The anal-

ysis of GP generated metamodels may help extract some knowledge regarding the

fundamental models describing the system under analysis (Barbosa and Bernardino

2011). Such feature is referred to as “human insight” by Smits and Kotanchek

(2004), being particularly valuable as it helps increase user trust in the metamodel.

The availability of a symbolic model also allows for symbolic post-processing oper-

ations, like symbolic differentiation (Schmidt and Lipson 2009a), and it may ease

sensitivity analysis (Kordon and Lue 2004) and uncertainty analysis (Pierce et al.

2008). For example Smits et al. (2005) and Schmidt and Lipson (2009a) used GP

expressions for the identification of metavariables, cluster of variables that can be

used as transforms to generate low complexity models.

• GP metamodels are practically inexpensive to evaluate, being text expressions.

• GP are in general compact and easy to handle (Smits and Kotanchek 2004, Lew

et al. 2006).

GP metamodels can be easily saved as text files and deployed in this form to the

final users. No extra tools or prior knowledge of genetic programming is required

to use the metamodels once generated.

• GP is able to approximate noisy functions and provide smooth models (the smooth-

ing ability depends on parameters set by the user).

Noise may however increase symbolic regression computational cost (Zhang and

Mühlenbein 1995, Sætrom and Hetland 2003, Schmidt and Lipson 2009a).

However, GP is still a population-based search algorithm, so a few drawbacks should

be expected:
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• GP is computationally demanding.

Although some implementations can reduce dramatically the computational cost,

GP is extremely computationally expensive (Nordin et al. 1999).

• GP metamodels are generally less accurate than metamodels generated using other

techniques (RBFs, ANNs, MLSM) (Smits and Kotanchek 2004), although in some

scenarios GP can outperform neural network metamodels, RSM based on polyno-

mials (Lew et al. 2006) and, as shown in Chapter 7, Gaussian Process metamodels.

• the result of a GP search is generally not unique (Winkler et al. 2007).

GP usually generates many metamodels of different shape and size with comparable

accuracy. As a result, the selection of the best metamodel may require additional

analysis, for example to assess metamodel accuracy and smoothness on new sam-

ples or robustness to input data uncertainty (as done for example in Pierce et al.

(2008) for ANNs). Although time consuming, this process may still be useful to

gain insight into the problem (Kroo 2004). Usually the smaller is the building data

set, the larger is the set of metamodels of comparable accuracy.

• although explicit, in some cases GP metamodels do not allow for a clear physical

interpretation (Schmidt and Lipson 2009a). Expression complexity may also hinder

readability (Sims 1993).

In the following chapters GP strengths will be explained in more detail and different

solutions to overcome GP weaknesses will be explored.





Chapter 2

Darwin, evolutionary algorithms

and genetic programming

The reformulation of the concept of metamodelling as a search for the optimal meta-

model in the space of metamodels motivates the application of genetic programming

to regression. In order to understand how symbolic regression is performed by genetic

programming it is however worth to separate for a while the evolutionary mechanisms

used to perform a search from the specific purpose, in this case metamodelling, of the

search itself. In this chapter it is shown how the evolutionary paradigm has been derived

from evolutionary theories and genetics, the most common evolutionary algorithms are

described and the issue of representation in genetic programming is introduced.

2.1 Stochastic and deterministic search techniques

An optimisation problem can be defined in general terms as (Haftka and Gürdal 1993):

find : x ∈ D ⊂ RN (2.1)

minimising : f(x) (2.2)

such that : gj(x) ≥ 0 j = 1, . . . , ng , (2.3)

hk(x) = 0 k = 1, . . . , ne (2.4)

where D is the design space, f(x) is the objective or cost function (Fogel 1994), gj are

the inequality constraints and hk the equality constraints. The fact that a minimisation

39
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problem is assumed in (2.2) is not restrictive, as a maximisation problem can be refor-

mulated as a minimisation one (Haftka and Gürdal 1993). A simple way to do it is to

apply a monotonically decreasing function w(y) to the function y = f(x) that has to be

maximised: the minima of w(y) are the maxima of f(x). Common function used for

this purpose are the reciprocal (w(y) = 1/y) and the opposite of the natural logarithm

(w(y) = −ln(y)) (Bishop 1995), although attention should be paid to the range of output

values of the function to be transformed to avoid undefined operations.

The iterative search for a solution defined by some optimality criteria in a design space

can be approached using two kinds of solvers: deterministic or stochastic. In either case,

a set of trial solutions xi are iteratively explored to minimise the predefined cost function,

which represents the quality of the found trial solution.

Deterministic and stochastic methods differ in the way the trial solutions are generated

(Fogel 1994). Deterministic methods rely on the cost function gradient or other sensitivity

information evaluated at the location in the design space provided by the latest trial

solution found by the solver. The position of the next trial solution is indicated by a

vector indicating the direction in which the design space has to be explored and the

distance from the previous trial solution. As a result, deterministic methods require that

a distance can be defined in the mathematical space they are expected to explore, and

that the cost function be regular enough that gradient can be computed (Quarteroni et al.

2000). For this reason, they may not be reliable in presence of noise. Furthermore, the

solution found depends on the position of the initial guess provided by the user.

On the other hand, stochastic techniques only exploit the values that the cost func-

tion assumes on a set of trial solutions. Such information is used to generate the next

set of trial solutions by means of a specific criterion: biology, evolution theory, social

sciences, music, physics, metallurgy and astronomy have provided the inspiration for a

variety of stochastic search algorithms (Lamberti and Pappalettere 2011). As the new

solutions are not indicated by relative displacements with respect to the previous ones,

in general stochastic methods can be used to explore spaces where a distance can not be

defined. This property makes stochastic methods particularly versatile and allow for their

application to a wide range of problems, among which the generation of metamodels.

Secondly, they can be used with non-differentiable cost functions (Chetwynd et al. 2006).

Thirdly, the design space exploration is less affected by the position of the initial guesses

than in deterministic methods, and local solutions are more likely to be avoided (Pierce



Chapter 2 Darwin, evolutionary algorithms and genetic programming 41

et al. 2006, Chetwynd et al. 2006) as a result of a more extensive design space explo-

ration. For their robustness, stochastic techniques are also able to cope with data affected

by measurement or computational noise. A wide range of stochastic methods is nowa-

days available: genetic algorithms (GA), particle swarm optimization (PSO), ant colony

optimization (ACO), firefly algorithm (FA), bacteria foraging, harmony search (HS), big

bang-big crunch (BB-BC), hunting search (HuS), simulated annealing (SA), charged sys-

tem search (CSS), etc (Lamberti and Pappalettere 2011). In general it is not possible to

identify a priori the best stochastic method, as their performance is generally dependent

on the search or optimisation problem under study (Lamberti and Pappalettere 2011).

In conclusion, deterministic algorithms are fast, efficient and accurate as long as some

regularity conditions are assumed on the cost function to be explored (Fogel 1994). Such

conditions are not easily satisfied by cost functions built from real-life engineering appli-

cations, which may feature multiple optima (multimodal cost function), may be affected

by noise and may also be non differentiable, if discontinous. Stochastic methods are par-

ticularly effective in this scenario, and are also appreciated for their ability to return a set

of “good” solutions or designs rather than a single one (for example for trade-off analysis

using Pareto front) and in multi-objective searches (Kroo 2004).

2.2 Neo-Darwinian paradigm

Evolutionary algorithms represent a class of stochastic methods, which genetic program-

ming belongs to. Their main inspiration has come from evolution theories, biology

and genetics. Darwin’s and Wallace’s evolution theories (Kutschera 2003), as well as

Lamarck’s, have particularly influenced the first researchers on evolutionary computation

(Fogel 1994), and the DNA discovery from F. Crick and J. D. Watson in 1953 and its role

in organism reproduction have provided a mechanical model to imitate for the generation

of new trial solutions.

In the following a brief description of Lamarck’s, Darwin’s and Wallace’s theories of

evolution is given and the contribution of modern genetics to evolutionary algorithms

implementation discussed. Not to hurt the reader’s sensitivity, the evolution theories here

presented are meant to be merely a source of inspiration for computational methods: this

thesis neither confute nor support the validity of such theories.
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2.2.1 Lamarck, Darwin and Wallace

According to Darwin’s and Wallace’s theory of evolution, species are able to adapt under

the pressure of the environment in which they live. Such pressure is typically the result

of the finite quantity of resources available to the species, food being the typical exam-

ple. Adaptation, or evolution, is made possible by the exchange of biological information

(coded in what would be later called “DNA”) from parents to offspring through the re-

production process, which may also introduce variations in such information (Kutschera

2003). Whenever a variation in the biological information results in an organism that is

fitter than others to live in a particular environment, such organism is more likely to reach

the reproduction phase and, as a result, it is more likely to spread its biological charac-

teristics to its offspring and so to future generations. As the environment itself is likely to

change, living organisms are the specific results of an endless process of adaptation to a

constantly changing environment, where the prize is the survival. In this sense Darwin’s

theory is also called the “survival of the fittest”, although this expression was introduced

by the philosopher H. Spencer (Kutschera 2003).

Darwin’s and Wallace’s theories of evolution have eventually led to the formulation of

neo-Darwinism, a theory of evolution according to which the acquisition of new biological

features is entirely ascribed to genetic mechanisms occurring during reproduction. As a

matter of fact Darwin did not entirely exclude the possibility that organisms can acquire

some characteristics during their lives and pass them to the offspring, idea that is the core

of Lamarck’s theory of evolution (Banzhaf et al. 1998, Kutschera 2003, eco 2009). This

possibility, referred to as “the inheritance of acquired characters”1, was instead excluded

by Wallace (Kutschera 2003).

2.2.2 Neo-Darwinism

Neo-Darwinism is the term used to refer to the most widely accepted collection of evolu-

tionary theories (Fogel 1994). Its main tenets derive from Darwin’s and Wallace’s theory

of evolution (Fogel 1994):
1The classic example of the giraffe is provided in Wallace (1858): “. . . The powerful retractile talons of the

falcon- and the cat-tribes have not been produced or increased by the volition of those animals; but among
the different varieties which occurred in the earlier and less highly organized forms of these groups, those
always survived longest which had the greatest facilities for seizing their prey. Neither did the giraffe acquire
its long neck by desiring to reach the foliage of the more lofty shrubs, and constantly stretching its neck for
the purpose, but because any varieties which occurred among its antitypes with a longer neck than usual at
once secured a fresh range of pasture over the same ground as their shorter-necked companions, and on the
first scarcity of food were thereby enabled to outlive them. . . . ”
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1. NATURAL SELECTION

2. REPRODUCTION

3. VARIATION

Natural selection is the “pressure” or “force” that is responsible for the death or the survival

of an organism. It is generally determined by the fact that resources, like food or a mating

partner, are finite in nature so the organism able to access them is more likely to survive

and reproduce, whereas the one that cannot reach them will find more difficulties in

transferring its biological information through mating. Where many organisms have the

same access to resources, they are likely to engage in a fight to prevail. As a result, natural

selection is closely linked to competition among individuals.

The winners or survivors to natural selection are likely to mate and transmit their

successful biological information to their offspring, which may have an advantage with

respect to other organisms due to the inheritance of successful traits from the parents. The

possibility of an organism to generate individuals similar to itself is called reproduction,

and it is vital as it is the only way to spread successful biological information.

The biological information, which determines the structure, the functions and indi-

rectly the behaviour of the organism itself, is expected to be affected by casual changes

during reproduction. As a result, offspring’s biological information may be slightly differ-

ent from its parents’. Offspring’s new traits are the effect of such variation in the biological

information passed from parents to offspring. A priori this change may be either good or

bad for the offspring: only natural selection and the struggle for resources will determine

if variation is beneficial to the individual.

2.2.2.1 Genotype and phenotype

Darwin and Wallace observed the biological variation from parents to offspring and recog-

nised its importance in explaining the adaptation of the species to the environment. Yet,

they could not figure out the inner cause of such variation (Kutschera 2003). The devel-

opment of genetics, from Mendel’s experiments to DNA discovery in 1953 by J. D. Watson

and F. Creek, provided the insight that was missing to link the three principles of natural

selection, reproduction and variation. The synthesis of Darwin’s and Wallace’s theories

with genetics has led to the birth of Neo-Darwinism.

Geneticists discovered that the set of physical characteristics or observable properties

of any organism, called phenotype or phenome, are coded into a chain of molecules called
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deoxyribonucleic acid (DNA) stored in each cell of the organism. The DNA of an organism

is also referred to as the genotype, genome or genetic code of that organism (Banzhaf

et al. 1998). To our purposes it is sufficient to know that the genetic code contains all

the “information” required for an organism to build its own body and to regulate all the

functions indispensable to its life and to its interaction with the external environment

(Sims 1993). As the interaction of an organism with the environment critically depends

on its phenotype, and being this a reflection of its genotype, natural selection can be

considered as a selector of the fittest genotypes.

It is worth noting that the experiences and learning processes an organism may go

through during its life have no effect on its genetic code and so they cannot be passed

to offspring according to Neo-Darwinism, as that would imply the acceptance of “the

inheritance of acquired characters” supported by Lamarck. In other words, variations

in the genotype produce a different phenotype, but changes in the phenotype (due to

training, wounds or experience for example) cannot affect the genotype.

2.2.2.2 Crossover and mutation

Reproduction is a key element of Neo-Darwinism as it is the main cause of phenotypical

variation in species. Such variation is the result of the recombination and alteration

that parents’ genotypes undergo to generate the offspring’s genotypes. The mechanisms

through which parents’ DNA is copied and transmitted to offspring are extremely complex

and their detailed description is beyond the aims of this work. A simplified description is

however useful to understand the way evolutionary algorithms generate trial solutions.

In “sexual” reproduction offspring’s genetic codes are generated blending together

parents’ DNAs. The mixing mechanism has been named crossover by geneticists, as blocks

of DNAs are exchanged between the parents’ DNAs to generate offspring’s DNAs. The

process involves two stages: initially the correct coupling between the two parents’ split-

ted DNA chains is established putting similar parts of the two DNAs together, then, once

the match is established, a few blocks are swapped between the splitted DNA chains. This

mechanism is called homologous crossover or homologous recombination. In Fig. 2.1 the

process is schematically illustrated: the portions of parents’ splitted DNA chains are first

aligned in correspondence of the black circle, which represents the same DNA base. The

DNA portions following the matching point, represented by the other symbols, are then

swapped.
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FIGURE 2.1: Homologous crossover

Homologous crossover guarantees both stability and variability of the genotype. The

recombination of parents’ genotypes is mild enough to ensure that the offspring have

feasible and successful genetic codes, yet it is extensive enough to introduce some new

features in offspring’s phenotypes that may (or may not) be beneficial for the fight for

survival.

There is another mechanism that is recognised to cause genotype variation, called

mutation. Mutation is a random variation of a part of the DNA and spontaneously occurs

during reproduction, although it can be caused by external factors (contact with mu-

tagens, for example). Mutation can have either a positive or a destructive effect on the

organism. In Fig. 2.2 it is schematically shown how a portion of DNA chain is transformed

by mutation into another, maybe new, sequence of DNA (the triangle, third symbol from

the left, is changed into a circle).

FIGURE 2.2: Mutation

2.2.2.3 Pleiotropy and polygeny

Establishing a direct correspondence between single portions of DNA, which for simplicity

will be called genes, and specific phenotypical traits of an organism is particularly difficult.
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Borrowing the terminology from set theory, DNA portions are not linked to phenotypical

traits by a bijective function.

Geneticists use the terms “pleiotropy” and “polygeny” to describe the complex relation

between genotype and phenotype. As reported by Fogel (1994, p. 3), “. . . Pleiotropy is the

effect that a single gene may simultaneously affect several phenotypic traits. Polygeny is

the effect that a single phenotypic characteristic may be determined by the simultaneous

interaction of many genes”. Due to the complicate mapping between genotype and phe-

notype, “the results of genetic variations are generally unpredictable due to the universal

effect of pleiotropy and polygeny” (Fogel 1994, p. 3).

Pleiotropy and polygeny are important issues also in evolutionary algorithms, which

rely on the codification of a solution through a genotype.

2.3 Evolution as a search mechanism

The evolution mechanism depicted by Neo-Darwinism can be easily interpreted as a strat-

egy to explore new organism’s physical features without seriously compromising the pos-

sibility to exploit existing successful features, as genotype variation is gradual and multi-

ple copies of the set of so-far successful genes are in any case retained by the population.

So evolution as theorised by Neo-Darwinism can be considered in a sense as a search of

the genotype corresponding to an optimal phenotype, the one which ensures the survival

and the best adaptation of a species to a certain environment. Quoting Fogel (1994),

“Darwinian evolution is intrinsically a robust search and optimization mechanism” (p. 3),

and also “evolution is an obvious optimizing problem-solving process” (p. 4).

Evolutionary algorithms or evolutionary computing (Winkler et al. 2007) are the re-

sult of the attempts to transpose the evolutionary and genetic mechanisms implied by

Neo-Darwinism into an algorithm that can be used to perform a directed search or ex-

ploration of a user-defined space. The basic components shared by all evolutionary algo-

rithms are (Sims 1993, Michalewicz 1996, Eiben and Schoenauer 2002):

1. a genotype-phenotype mapping, also called representation. Evolutionary algorithms

handle and refine programs, be they vectors, mathematical equations or other en-

tities. A way to represent such programs is key for the artificial evolution process

to be able to evolve them. The chosen representation has to allow for evolvability,

as it “must give a non-vanishing likelihood that variation produces performances
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improvement” (Altenberg 1994). “Evolvability” is not always easy to guarantee (Af-

fenzeller and Wagner 2004), as this property should be ensured by the user through

appropriate coding and representation.

2. a population of genotypes, also called individuals or chromosomes. Evolutionary

algorithms require several individuals to be able to search effectively for the op-

timal genotype. As reported in Zhang and Mühlenbein (1995), “the evolutionary

approach differs from most other search techniques in that it makes a parallel search

simultaneously involving hundreds or thousands of points in the search space”. The

generation of an initial population of individuals from which the evolution can start

is then required.

3. a function that assumes the role of the selection pressure, according to the Dar-

winian concept of environment. Such function is called fitness function. Usually the

fitness value associated to a genotype is computed by a computer according to spe-

cific criteria, but there are examples of evolutionary algorithms used in art where

fitness value is evaluated by the user (Sims 1993, Johanson and Poli 1998).

4. a selection process which probabilistically selects the genotypes having the best fit-

ness (Fogel 1994). Darwinian selection relies on heritability, or the assumption that

“better individuals are more likely to produce better offspring” (Blickle and Thiele

1997, p. 361). Quoting Blickle and Thiele (1997, p. 361), “. . . without heritability,

selection of better individuals makes no sense”.

5. a set of “genetic” operations that alter parents’ genotypes to produce offspring’s

genotypes.

6. a set of numerical parameters that defines population size, the maximum number

of generations and a few other issues related to the practical implementation of the

algorithm (Michalewicz 1996).

The basic set of operations that are common to all evolutionary algorithms are shown

in Table 2.1 (Koza 1992, Banzhaf et al. 1998, Brameier and Banzhaf 2007, Poli et al.

2008). The algorithm starts with the random generation of the initial population of

genotypes (1), from which an iterative process develops. At each iteration, also called

generation, each individual of the current population undergoes fitness evaluation (2) (it

may require the execution of the program), selection (3), reproduction (crossover and
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TABLE 2.1: Evolutionary algorithm
1. Initialization of the population
2. Fitness evaluation (may require execution)
3. Selection
4. Reproduction:
I replication
I crossover
I mutation

5. Termination criterion check. If met go to 6 otherwise go to 2.
6. Stop (maximum number of generations reached or termination criterion met)

mutation) (4). The algorithm stops when a particular termination criterion is met (5), i.e

a particularly fit individual is found, or the maximum number of generations is reached

(6).

An important feature of the evolutionary paradigm as described in Table 2.1, so far

gone unnoticed, is its versatility. Deterministic (gradient-based) techniques can be used

to search for solutions to the optimisation problem defined in (2.1-2.2-2.3-2.4) as long

as a distance in the design space D can be defined. There are many optimisation prob-

lems in engineering where however this is not possible. For example, how to define the

distance between two electric circuits? And between two algorithms? The evolutionary

paradigm provides a way to explore a user-defined space through variation of a “code”

representing a trial solution. As a result, it can be used to optimise every entity or object

that can be given a representation and evaluated so that the conditions previously listed

are satisfied. Table 1.2 gives an example of the variety of problems that can be solved

using an evolution-based algorithm.

2.3.1 Classification of evolutionary algorithms

Evolutionary algorithms are usually classified in four major categories (Fogel 1994, Banzhaf

1994, Banzhaf et al. 1996, Affenzeller and Wagner 2004, Kroo 2004, Collet and Schoe-

nauer 2004)): evolutionary programming (EP), evolution strategies (ES), genetic algo-

rithms (GA) and genetic programming (GP). The evolutionary algorithms taxonomy is

represented in Fig. 2.3.

Evolutionary programming (EP) was originally presented by L. J. Fogel in his doc-

toral dissertation at UCLA (USA) in the 1960s (Fogel 1964, Bull 2008). Fogel’s aim was

to generate artificial intelligence. Evolutionary programming was conceived as a set of
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FIGURE 2.3: Classification of evolutionary algorithms

operations that can evolve mathematical models called finite state machines for the pre-

diction of symbols of a sequence. A variable-length genotype was chosen to represent the

finite state machines and mutation was used as the “principal search mechanism used to

create one or more offspring per parent” (Bull 2008, p. 1).

Evolution strategies (ES) were developed by H.-P. Schwefel and I. Rechenberg, col-

laborating in Germany in the 1960s and 1970s (Fogel 1994, Beyer and Schwefel 2002).

Evolutionary strategies were first conceived as a “set of rules for the automatic design and

analysis of consecutive experiments with stepwise variable adjustments driving a suit-

ably flexible object/system into its optimal state in spite of environmental noise” (Beyer

and Schwefel 2002, p. 4-5) and successfully applied to the design of a 3D convergent-

divergent hot water flashing nozzle (Beyer and Schwefel 2002). Only later this set of

rules were formally codified to the constant-length representation known today and ap-

plied to the optimisation of real-valued functions (Beyer and Schwefel 2002). Originally,

a single offspring was generated from a single parent through a mutation operator and

both genotypes were left in the population to compete for survival. Later, new strategies

were introduced to generate one or more offspring from one or more parents.

Genetic algorithms (GA) appearance dates back to the 1970s and is attributed to

the work of J.H. Holland at the University of Michigan (US) (Holland 1975). Genetic

algorithms have been used since mainly for optimisation of real-valued functions. The

representation chosen by Holland to represent a point in a design space is a string of bits

of costant length (Holland 1975 1992, Koza 1992, Van Belle and Ackley 2002), usually

called GA chromosome. Crossover is traditionally the main GA operator for the generation

of trial solutions (Holland 1992, Chellapilla 1997, Luke and Spector 1998, Van Belle
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and Ackley 2002). An example of parents’ chromosomes recombination produced by a

crossover operator (two point crossover) is shown in Fig. 2.4.

FIGURE 2.4: Two-point crossover in genetic algorithms

Due to the inherent “granularity” of the chromosomes, GA is better at handling integer

variables. If GA is applied to optimisation problems featuring continuos input variables,

the maximum accuracy of the solution found by GA is necessarily affected by the design

space discretisation imposed by the binary encoding used to define chromosomes (Kroo

2004).

Genetic programming (GP) was introduced by Cramer (1985) and Koza (1992). Its

typical uses range from regression of mathematical models, solution of differential equa-

tions, integral calculation to pattern recognition, electric circuits and antennas synthesis.

Differently from ES and GA, Genetic programming relies on a variable length chromo-

some (Koza 1992, Zhang and Mühlenbein 1995, Nordin et al. 1999, Van Belle and Ackley

2002), typically but not exclusively tree-shaped, whose size can be increased as a result

of genetic modifications. Crossover is the main search operator according to Koza (1992),

although mutation is often used to promote variability in the population of trial solutions.

GP versatility can be ascribed to the variable length representation chosen to code GP

individuals, which allows to increase the size, the shape and the complexity of the trial

solutions (Sims 1993, Zhang and Mühlenbein 1995, Johanson and Poli 1998).

There are clear historical reasons behind the classification of the different dialects of

evolutionary computing presented above. Evolutionary programming, genetic algorithms

and genetic programming were given birth in the US, whereas evolutionary strategies

were developed in Germany. A few of them were initially conceived as strategies to ad-

dress specific tasks, like evolutionary programming and evolutionary strategies. In their

original formulations, evolutionary algorithms can also be distinguished according to the
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representation chosen, tree-shaped as in GP or linear as in GA, whether they have a vari-

able or fixed length representation, and according to the mechanism used to generate trial

solutions. Evolutionary programming and evolutionary strategies indeed rely on muta-

tion for offspring generation, as opposed to genetic algorithms and genetic programming

that exploit mainly crossover (Koza 1992, Banzhaf et al. 1996, Luke and Spector 1998).

The previous classification has however faded with time, probably as a result of the

ever increasing use of evolutionary algorithms in engineering and of the attempts to im-

prove their performance through the addition of novel features. Consequently, the bound-

aries among EP, ES, GA and GP are nowadays blurred: for example, the evolutionary pro-

gramming implementation used by Chellapilla (1997) can be described as a conventional

GP implementation in which only mutation operators are used. The matricial representa-

tion chosen by Kalganova and Miller (1999) to evolve electric circuits is far more complex

than the string of bits assumed by Holland (1975), so that recognising in it a GA defining

feature is hardly possible. A few researchers agree that some original differences among

evolutionary algorithms have disappeared: Barbosa and Bernardino (2011) for example

classify GP as a GA used for the automatic generation of computer programs, in particular

of metamodels. Collet and Schoenauer (2004) support a more radical point of view, stat-

ing that “all evolutionary algorithms are born equal if the user is provided with enough

parameters to tune” (Collet and Schoenauer 2004, p. 214).

In conclusion, it seems that a comprehensive way to classify an evolutionary algorithm

should take into account the task the algorithm is used for, the selected representation

and the genetic operators used. In the following chapter a detailed analysis of the genetic

programming paradigm based on syntax tree representation will be presented.





Chapter 3

GP for symbolic regression tasks

In Chapter 1 genetic programming was generally introduced as a technique able to gen-

erate metamodels through the recombination of mathematical operators considered in

their symbolic form (symbolic regression). Chapter 2 provided the theoretical background

needed to understand how evolutionary algorithms perform a search in a user defined

space. In this chapter further details will be given on each stage of the genetic program-

ming algorithm applied to symbolic regression. Although the description will mainly focus

on the tree-based GP implementation described by Koza (1992), at the end of the chapter

alternative GP representations will be briefly reviewed.

3.1 GP basic implementation

One of the requirements for the application of genetic programming to symbolic regres-

sion is the identification of a metamodel representation. The first and most common

genotype representation in genetic programming is the syntax tree, or simply tree, in-

troduced by Cramer (1985) and Koza (1992) and still widely used (Sims 1993, Soule

et al. 1996, De Jong and Pollack 2003, Smits and Kotanchek 2004, Winkler et al. 2007,

Vladislavleva 2008, Barbosa and Bernardino 2011). Mathematically a syntax tree is a

directed graph (Lew et al. 2006), composed of links and nodes. Each node is connected

to other nodes through links, which represent a dependency of the operation contained

in the node on arguments contained in the connected nodes. The dependencies between

connected nodes are unambiguously defined through a hierarchy based on node position:

“offspring” nodes placed below a “parent” node are all arguments of the parent node, so

53
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in order to evaluate the operation contained in the parent node all the operations con-

tained in the offspring have to be executed first. A syntax tree is defined by all the nodes

that stem out of a root node, which is placed above all other nodes and is not argument

of any other node. In syntax trees recursion is excluded by the impossibility to define

a parent node as argument of a node at a lower level. Links to nodes not immediately

above or below the current node are also forbidden.

Although syntax trees can be used to represent different entities, they are particularly

suited for describing mathematical functions. A mathematical expression can be con-

verted in a syntax tree (genotype) associating a node to each indivisible mathematical

entity the expression is made of and using links to define the dependencies between func-

tions and corresponding arguments. The term arity defines the number of offspring nodes

a parent node can have (Lew et al. 2006, Vladislavleva 2008): mathematical functions

used for metamodelling purposes mostly have one or two arguments, so they are repre-

sented by unary (arity 1) or binary (arity 2) functional nodes. Variables and constants

instead are represented with terminal nodes (arity 0). For example, the mathematical ex-

pression x3 + cos(y), whose mathematical behaviour (phenotype) is shown in Fig. 3.1B,

can be represented through the syntax tree in Fig. 3.1A. The evolutionary paradigm acts

(A) Genotype
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FIGURE 3.1: Syntax tree (genotype) of x3 + cos(y) and corresponding phenotype for
x ∈ [−π/2, π/2] and y ∈ [−π/2, π/2]

is able to improve metamodel accuracy modifying through genetic operations the size and

shape of the syntax trees as well as the content of the trees’ nodes.

The syntax tree is hystorically the original representation used in genetic program-

ming. For its simplicity, it was the representation selected for the development of a new

GP implementation, which is the outcome of the research activity presented in this work

and will be described in Chapter 5. Different representations have however been devel-

oped to extend tree-based genetic programming capability and improve its performances



Chapter 3 GP for symbolic regression tasks 55

(Kantschik and Banzhaf 2001b, Withall et al. 2009). The two major alternatives to tree-

based GP are linear GP and graph-based GP (Langdon et al. 1999, Kantschik and Banzhaf

2001b, Barbosa and Bernardino 2011). Although these representations can be used for

symbolic regression, their intrinsic nature make them more suitable for other tasks, like

algorithm induction and image recognition, as it will be shown in Section 3.3. The follow-

ing sections aim instead at providing an insight into the basic components of tree-based

GP paradigm.

3.1.1 Tree-based GP: definitions

A formal definition of a few parameters relating syntax tree size and shape is necessary for

the application of genetic operators and it is also important to indirectly control the qual-

ity of the metamodels during the evolution. In this dissertation the following conventions

are adopted:

1. the size of a syntax tree is the number of nodes the tree is composed of;

2. each node in a tree is identified by a number in the interval ranging from 1 to the

size of the tree. The root node is identified by number 1. The remaining nodes have

integer identification numbers that increase descending towards the bottom of the

tree, assuming that whenever a binary node is encountered the left child node and

its children come first in the counting, as shown in Fig. 3.2;

3. the depth of a node is the length of the shortest branch linking the current node to

the root node. The length of the branch is measured in number of nodes, excluding

the current node and including the root node. The root node has depth 0;

4. the depth of a syntax tree is the maximum depth among the depths of the nodes

composing the tree.

Fig. 3.2 will help with the previous definitions: node number 4 has depth 2, as it is two

“steps” apart from the root node (first step to node 2, second step to node 1). The depth

of the trees is 2. Tree depth and tree size are precious parameters as they are commonly

used to avoid excessive growth of an individual. More details on their use will be given

in Section 4.5, Chapter 4.
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FIGURE 3.2: Depth and node identification in a syntax tree. On the left the syntax
tree (genotype) of x3 + cos(y). On the right a generalization of the tree: FB is used to
represent a binary node, FU a unary node, TV a terminal node containing a variable, TC
a terminal node containing a constant. The number close to each node of the tree on
the right is the node identification number. The depth of each node is indicated in the

column between the pictures.

3.1.2 Initialisation of the population

Population initialisation is the process through which a certain number of syntax trees

(alsos referred to as individuals) is randomly generated combining a set of symbols (Lew

et al. 2006, Poli et al. 2008), called primitives, provided by the user. As seen in the

previous section, these symbols either represent mathematical functions (functional set

F), which require a positive number of arguments (arity>0), or variables and numerical

constants (terminal set T). In the original GP formulation, Koza (1992) introduced the use

of the ephemeral random constant, <, a symbol that does not correspond to any specific

real value but is replaced by one or more constants randomly generated in a given range

at the beginning of the evolution. In case < is not used and specific constants are not

included in the terminal set, GP can still generate numerical coefficients by clustering

variables in neutral arithmetic operations (for example x/x produces 1 for x 6= 0).

The initialisation process is critical to the success of the evolution. The convergence

rate, or number of generations needed to produce an acceptable individual, usually im-

proves if as much different combinations of primitives as possible are generated, result-

ing from the increase in the likelihood of finding right from the first generation a set of

“good” individuals, or syntax trees corresponding to metamodels with high accuracy and

generalisation ability. According to the experiments performed by Langdon (2000)1, GP

populations appear to retain a long-term memory of the way they are initialised: Langdon

(2000, p. 110) showed that the average tree size to depth ratio in the population tends to

keep constant and equal to the value of this ratio set during the initialisation. The size to
1Langdon used a standard tree-based GP, with standard subtree crossover, no mutation, tournament se-

lection, no elitism (Langdon 2000, p. 111).
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depth ratio is a paremeter that defines the shape of a tree, as shown in Fig. 3.3: “bushy”

trees have larger size to depth ratios than “slender” trees (Langdon 2000).

(A) Bushy tree (size to
depth ratio = 3.5)

(B) Slender tree (size to
depth ratio = 1.5)

FIGURE 3.3: Different tree shapes resulting from different size to depth ratios

Although Langdon (2000) focused mainly on the exploration of various syntax tree

shapes, his results confirm the importance of search space sampling on the evolution

success. Many techniques have been developed to ensure variability in the initial popu-

lation. The most common are no limit method, full method, grow method and ramped

(half-and-half) method.

The no limit method (Koza 1992) does not assume any limit on the maximum depth of

the trees. The algorithm that implements this method chooses recursively a random kind

of node (terminal or functional) and assigns it a random primitive of the same kind, en-

suring also the syntactical correctness of the links between nodes. When all the branches

of a tree are assigned a terminal node the process ends and a legal tree is returned. Trees

generated by this method are likely to be extremely different in size and shape. However,

there is absolutely no control on the maximum size and depth of the tree, which could be

theoretically infinite.

The full method (Koza 1992, Barbosa and Bernardino 2011) generates trees of a depth

defined by the user. To assign the nodes, the algorithm selects randomly functional nodes

(binary or unary) unless the depth of the node to be generated is equal to the user-

defined maximum depth. In this case the node is forced to be a terminal node and its

type (variable or constant) is chosen randomly in the terminal set. Trees generated by

full method may appear quite “bushy” and dense respect to the trees obtained with other

methods.

The grow method (Koza 1992, Barbosa and Bernardino 2011) generates on average

more slender and stretched trees with respect to the full method, as the branches’ lengths
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are not forced to reach the tree’s maximum depth defined by the user. The grow algo-

rithm chooses randomly a node among the whole set of primitives (joined functional and

terminal set), being forced to pick up a terminal node only if the corresponding node’s

depth is equal to the maximum depth set by the user. As a result, terminal nodes might be

chosen even in the early stages of the generation process, giving birth to shorter branches

and then less dense trees.

The ramped method (Koza 1992, Montana 1995, Whigham 1995, Luke and Spector

1997, Langdon 1998, Langdon et al. 1999, Collet et al. 2000, Topchy and Punch 2001, Van

Belle and Ackley 2002, Poli et al. 2008), was developed to increase tree shape variability

by the combined use of the previous two methods (grow and full). In its original form,

called ramped half-and-half (Koza 1992), the method generates half of the population

using the full method and the other half using the grow one, imposing a range of depth

limits for each method. Variations have been introduced to modify the relative percentage

of the population initialised with each method.

The previous methods are typically used to generate a set of individuals of relatively

small size and depth, as the size of the solution is in general not known a priori and the

evolution process can anyway adapt trees’ size and shape. Against this common practice,

Poli and Langdon (1998) support the idea that initial populations should contain individ-

uals having size or depth similar to the ones observed in the end-of-run solutions. The

same attitude is shared by (Chellapilla 1997) (see for example the high size limit used for

initialisation in Chellapilla (1997, p. 211)), and it is the result of an alternative approach

to evolutionary search. According to these researchers genetic operators perform a sort

of “interpolation” between parents to generate children, instead of progressively building

up a pool of solutions out of more and more specific subtrees refined by the evolution

process.

Although grow, full and ramped methods are the most common in GP community,

many researchers have put forward alternative solutions. Langdon (2000) criticised the

ramped half-and-half method for a bias towards the generation of short and bushy (full)

trees for a given size limit. He proposed the ramped uniform initialisation method as a

more balanced alternative. Although interesting, the method is considerably more com-

plex than the above mentioned and for this reason is not here explored further. In con-

clusion, it is also important to remind that initialisation is not necessarily random, and

any prior knowledge regarding the shape or primitives of the desired solution can be

exploited at this initialisation stage. For example, high-quality metamodels generated by
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other metamodelling techniques can be embedded in the initial population, hopefully pro-

viding important genetic material that can boost the search for an even better metamodel

(Poli et al. 2008).

3.1.3 Fitness function

The fitness function has the role of creating “environmental pressure” into the artificial

world populated by syntax trees. It is a function that assesses the quality of each indi-

vidual phenotype and assigns it a score, called fitness value. It is assumed that a smaller

fitness value corresponds to more accurate metamodels.

Historically, the first metric used to measure fitness value was the sum of the absolute

errors (Koza 1992) (examples may be found also in Nordin et al. (1996) and Smits and

Kotanchek (2004)):

F (k, t) =

m∑
j=1

|f(xj)− f̃k,t(xj)| (3.1)

where:

• F (k, t) is the fitness value of individual k at generation t (f̃k,t);

• m is the number of fitness cases in the training data set;

• f(xj) is the actual response of the system at the fitness case xj;

• f̃k,t(xj) is the value returned by individual k at generation t for the fitness case xj .

The metric defined by Eq. (3.1), based on 1-norm (Quarteroni et al. 2000), has also

been used in its averaged form (average of the sum of the absolute errors) (Langdon et al.

1999). Many other metrics have been introduced, based on 2-norm (root mean square

error or sum of the squared errors (Banzhaf 1994, Chellapilla 1997)), p-norm, inf-norm

(p-norm with p=inf is the magnitude of the maximum error on the training data set) or

hit (error defined only beyond a given threshold) (Smits and Kotanchek 2004). One of

the most common fitness functions is anyway the root mean square error (RMSE), or the

squared averaged 2-norm:

F (k, t) =

√√√√ 1

m

m∑
j=1

|f(xj)− f̃k,t(xj)|
2

(3.2)
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where the symbols used have the same meaning indicated for Eq. (3.1). Regardless

the norm chosen to define the fitness function, dividing the norm by the number of fitness

cases is generally recommended in case the number of fitness cases fed into the GP imple-

mentation is increased throughout the evolution, to avoid sudden increments in fitness

value due only to the addition of new fitness cases.

Koza (1992) used the expression raw fitness to refer to the fitness functions defined as

sum of errors. He specifically referred to the sum of absolute errors (Eq. (3.1)), but here

the term will be used to refer to all metrics mentioned so far. He used raw fitness to for-

mulate additional and more complex fitness functions, called standardised fitness, adjusted

fitness and normalised fitness: as these formulations will not be used in the following, they

are not expored further. More details can be found in Koza (1992).

3.1.4 Selection

The selection process identifies the fittest individuals in the population and grants them

the privilege of passing their genotypes to the new generations through the following re-

production stage. The fitness function defined in the previous section determines the evo-

lutionary success of each individual, according to the heritability hypothesis introduced in

Section 2.3, Chapter 2: better fitness values determine higher probability to be selected,

whereas worse fitness values reduce such probability. As the probabilistic nature of the

selection process is another assumption of the evolutionary paradigm, it is important to

remind that even though selection encourages the evolution of the fittest individuals, it

does not prevent low fitness individuals from spreading their genotype through reproduc-

tion.

Fitness proportionate selection (Koza 1992, Holland 1992, Whigham 1995, Nordin

et al. 1996, Lew et al. 2006) is the original selection method proposed by J. R. Koza.

This selection method assigns to each individual a probability to be selected that is pro-

portional to its fitness value. The selection process can be easily implemented using the

normalised fitness nk,t defined in Koza (1992): the fitness range [0, 1] is split in a number

of subintervals equal to the number of individuals and having width nk,t. The subinter-

val containing a number randomly generated in the range [0, 1] determines the selected

individual. This process is often compared to the spin of a roulette wheel having slices of

different angles, proportional to the individuals’ fitness values and so it can also be found

in literature as roulette wheel selection (Fogel 1994, Ferreira 2001, Lew et al. 2006).



Chapter 3 GP for symbolic regression tasks 61

Another basic selection strategy is truncation selection (Zhang and Mühlenbein 1995,

Blickle and Thiele 1997). In this method a subset of the population, usually defined

by a percentage of the best individuals, is admitted into a mating pool, the rest of the

population being excluded from any further operation. Individuals undergoing genetic

operations are randomly selected in the mating pool with uniform probability.

Selection have a profound effect on evolution (Luke and Spector 1997 1998), there-

fore it should be performed in a balanced way. If selection gives too much evolutionary

advantage to highly fit individuals population variability may be excessively reduced and

the evolutionary search constrained to a subregion of the design space (in symbolic re-

gresson the design space is the space made by all the mathematical expressions that can

be built using the given primitives and within the constraints imposed by trees’ size or

depth limits). On the other hand, if selective pressure is too low, and individuals prob-

ability to be selected loosely related to fitness value, the risk of a blind or undirected

exploration of the search space is high. In both cases the chances of success are dramat-

ically reduced: the evolution is likely to converge prematurely to a “globally suboptimal

solution” (Koza 1992, p. 104). Such behaviour has been observed in all dialects of evolu-

tionary computation (see Secton 2.3.1, Chapter 2) and for this reason many conclusions

obtained in GA and ES can be applied to GP. This possibility is also underpinned by the

independence of the selection mechanism from the rest of the GP implementation (Blickle

and Thiele 1997, p. 362).

In this regard the selection methods presented above have serious drawbacks. Fitness

proportionate selection tends to direct the search towards the exploration of genotypes

similar to the ones of few fittest individuals, reducing the genotypes diversity throughout

the evolution and undermining the global exploration of the search space (Blickle and

Thiele 1997, Zitzler and Thiele 1999, Alvarez 2000). Koza himself acknowledged that

it is likely to cause premature convergence (Koza 1992, p. 103) (the same conclusion is

supported by Fogel (1994, p. 6), although for GAs). Truncation selection also drastically

reduces the diversity in the population and leads to premature convergence (Blickle and

Thiele 1997).

A range of alternative selection methods have been developed to preserve genetic

diversity in the population, mainly classified as rank-based selection methods and tourna-

ment selection methods.
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3.1.4.1 Rank-based selection

Rank-based selection methods were firstly suggested to overcome the drawbacks of fitness

proportionate selection (Blickle and Thiele 1997). A ranking is introduced sorting first

the individuals according to their fitness values, and then assigning rank M to the one

with the highest (worst) fitness value, and rank 1 to the one with the lowest (best) fitness

value, M being the number of individuals in the population. The selection still requires

the generation of a random number as in fitness proportionate selection (roulette wheel

sampling), but the probability of an individual to be selected is defined as a function of

its rank. In linear ranking selection, the selection probability pi of an individual of rank i

is defined by a linear function (Blickle and Thiele 1997):

pi =
1

M

(
η+ + (η+ − η−)

i− 1

M − 1

)
i ∈ {1, ...,M} (3.3)

where η−

M is the probability of the worst individual to be selected and η+

M the probability of

the best individual to be selected. In statistics η− and η+ would be called the (theoretical)

frequencies of the worst and the best individual respectively (Upton and Cook 1996). If

the population size M is constant during the run, the condition
∑M

1 pi = 1 imposes that

η+ + η− = 2, with η+ ≥ η− ≥ 0.

In exponential ranking selection (Montana 1995, Blickle and Thiele 1997) the selection

probabilities of the ranked individuals are exponentially weighted. The probability pi of

the individual having rank i is given by:

pi =
cM−i∑M
j=1 c

M−j
i ∈ {1, ...,M} (3.4)

where 0 < c < 1 is a parameter by which the probability distribution can be tuned. The

term under the fraction line ensures that the sum of the pi probabilities equals 1. As:

M∑
j=1

cM−j =
cM − 1

c− 1
(3.5)

the equation (3.4) can be rewritten as:

pi =
c− 1

cM − 1
cM−i i ∈ {1, ...,M} (3.6)

Blickle and Thiele (1997) showed that exponential ranking selection allows to maximize
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at the same time variability and the average fitness increase between generations due

only to selection. Also, varying the selection pressure through parameter c it is possible

to control the time to convergence, as noted in Montana (1995).

3.1.4.2 Tournament selection

In tournament selection a subpopulation of t individuals is randomly extracted from the

population (the selection can be done with or without replacement of the chosen individ-

ual). Such group of individuals, whose size t is defined as the tournament size, takes part

to a tournament: the individual with the best fitness value wins and is selected. To get µ

individuals the process is repeated µ times.

Fitness is the most common performance used in GP tournament selection (Luke and

Spector 1997, Luke and Panait 2002a, Van Belle and Ackley 2002). Yet, other scores

or parameters can be used to determine the winner of a tournament, for example the

size of the syntax tree or Pareto dominance: more details will be given in Section 4.5.4,

Chapter 4. Xie et al. (2006) proposed clustering tournament selection, in which the pop-

ulation is first divided into different subpopulations according to individuals’ outputs on

the training data set, and then the t competitors are selected from different clusters and

the winner is randomly selected from the cluster that provided the individual with best

fitness.

One of the major advantages of tournament selection is that it can be implemented

easily and is effective in in preserving diversity in the population (Blickle and Thiele 1997,

Xie et al. 2006). Blickle and Thiele (1994) provided a theoretical model to predict how

many best-quality individuals are transferred from the old to the new generation as a

result of tournament selection of size t. Assuming that in the old population there are

s(fb) individual of fitness fb, Blickle and Thiele (1994) estimated that the number s′ of

such individuals selected through tournament are:

s′(fb) = M

(
1−

(
1− s(fb)

M

)t)
(3.7)

where M is the size of the population. In case s(fb)�M :

s′(fb) = ts(fb) (3.8)
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Although the result in Eq. (3.8) is valid only if the number of best individuals s(fb) is much

smaller than the population size, and so accurate only at the beginning of the evolution or

if a strategy to delete copies is in place, the equation is important as it shows the influence

of tournament size on premature convergence. If the tournament size t is too high, the

relentless replication of the best individuals predicted by Eqs. (3.7-3.8) (takeover effect)

may result in loss of diversity and so premature convergence. In practice, tournament

sizes commonly vary from 2 (Luke and Spector 1997 1998, Miller and Thomson 2000),

to 7 (Vladislavleva et al. 2010), to 10 (Chellapilla 1997).

According to the analysis carried out in Blickle and Thiele (1997), exponential ranking

selection, linear ranking selection and tournament selection are comparable in terms of

diversity loss and average fitness increase between generations.

3.1.5 Genetic operators

Genetic operators role is to generate a new population from the privileged set of indi-

viduals identified by the selection process. The primary operators commonly used in

genetic programming are reproduction, crossover and mutation. In Section 3.1.5.6 a few

secondary operators that can be used in specific cases will be briefly described.

3.1.5.1 Reproduction

Reproduction consists in copying a selected individual to the new population without

changes to the genotype. The definition of such term given in Chapter 2 may generate

some confusion: according to neo-darwinism, sexual reproduction is the process through

which two organisms generate offspring, whose genotype is generated by both crossover

and mutation from parents’ ones. In evolutionary algorithms, reproduction may be used

to just indicate the replication of a parent’s genotype without changes Luke and Spector

(1997), Ferreira (2001), De Jong and Pollack (2003), Munroe (2004). This meaning will

be adopted in this work: reproduction is then assumed to require a single parent and to

generate a single, identical child.

Reproduction is usually associated with the concept of elite. The elite is a group of

highly fit individuals that are propagated between generations without alteration, its use

being termed elitism. In evolutionary algorithms elitism is a common way to keep a mem-

ory of the best solutions found during the exploration. It is usually recommended when

at each generation extensive variations are introduced in selected individuals’ genotypes,



Chapter 3 GP for symbolic regression tasks 65

to prevent such huge variations from having destructive effect on the good individuals

found (Zhang and Mühlenbein 1995, Ferreira 2001, Lew et al. 2006, Vladislavleva 2008).

Elitism is usually implemented by maintaining an archive, which may be part of the pop-

ulation or a separate population (Teller and Veloso 1996, Sætrom and Hetland 2003,

Vladislavleva 2008). In either case, the archive is usually updated with the best individu-

als at each generation.

Elitism, despite the many benefits brought to the evolution both in GP and GA (Fogel

1994, Zitzler and Thiele 1999, Deb et al. 2002), should be used in a balanced way. If used

to massively, it can have a detrimental effect on diversity and pose limits to the design

space exploration (premature convergence) (Luke and Panait 2002a, De Jong and Pollack

2003, Affenzeller and Wagner 2004).

3.1.5.2 Crossover methods

Crossover is historically considered the primary search operator in genetic programming

(Koza 1992). The most common version of the crossover operator, generally referred

to as standard crossover or subtree crossover, generates two offspring from two parents,

swapping the subtrees branching out of two randomly selected nodes in each parent’s

syntax tree, called crossover points. In Fig. 3.4 is shown the crossover between the two

following mathematical expressions:

PARENT 1:
log x2 + 3

cos(y)
PARENT 2: 2x+ sin(z3)

The crossover points are node 3 in parent 1 and node 5 in parent 2. Crossover gen-

erates two offspring pruning the subtrees branching out of the parents’ crossover points

and swapping them:

OFFSPRING 1:
sin(z3) + 3

cos(y)
OFFSPRING 2: 2x+ log x2

The result of the operation is two new syntax trees that resemble the parents but at

the same present new features. The extent of the variation produced by subtree crossover

on a syntax tree depends on the choice of the crossover points. In case stochastic node

selection is used, the term hit rate is adopted to define the sampling frequency of a node

(Banzhaf et al. 1998, Vladislavleva 2008). As nodes at higher depths on average out-

number nodes at lower depths, the probability of the nodes with higher depth of being
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FIGURE 3.4: Standard or subtree crossover

selected is larger, and hence larger will be their hit rate in case of uniform random selec-

tion. Subtrees stemming out of nodes at high depths are necessarily smaller than subtrees

developing from nodes close to the tree root node. Therefore, if crossover point selection

is done through uniform random selection, the extent of variation on parents’ genotype

will decrease progressively during the evolution, as syntax trees’ average size and depth

increase (Koza 1992, Banzhaf et al. 1998, Whigham 1995, Van Belle and Ackley 2002,

Vladislavleva 2008, Barbosa and Bernardino 2011).

For its simplicity, standard subtree crossover is widely used in GP community (Koza

1992, Nordin et al. 1996, Soule et al. 1996, De Jong and Pollack 2003), usually coupled

with a mechanism to prevent the operation from taking place in case offspring exceed

the maximum depth or size allowed (Whigham 1995, Montana 1995, Luke and Spector

1996, Richards et al. 2005).
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However, standard subtree crossover suffers from a few limitations. Poli and Langdon

(1998) defined subtree crossover as a “local” search operator, as it does not introduce

extensive modifications in the genotypes and so it cannot explore globally the design

space. They also observed that the genetic code that is exchanged is mostly transferred

from one parent. Secondly, as explained above, subtree crossover is biased, as in absence

of countermeasures the traditional node selection strategy tends to pick nodes close to

the terminal ones. Its capability to explore new syntax tree shapes is also limited, as

experiments using subtree crossover have shown that during evolution the average tree

size to depth ratio remains constant and equal to the value of this ratio observed in the

first generation (see Section 3.1.2). Thirdly, subtree crossover mechanism cannot ensure

that the portions of genetic material that proved successful in the parents, usually referred

to as building blocks, retain the same performance in the offspring.

If the bias on crossover point selection can be eliminated easily (in Section 4.5.2,

Chapter 4 and Section 5.2.4.2, Chapter 5 a simple strategy will be described), ensuring

that portion of successful syntax trees perform well when inserted in a different syntax

tree is far more difficult. To study the effect of the location in a syntax tree where new

genetic material (syntax subtree) is implanted on offspring fitness value, researchers have

turned their attention to the DNA recombination mechanism occurring in nature. In ho-

mologous crossover, as briefly introduced in Section 2.2.2.2, Chapter 2, genetic material

exchange from DNA regions that are responsible for the same phenotypical trait (called

loci) is encouraged by the alignment of the DNA chains before recombination (Nordin

et al. 1999). Back into the artificial world populated by syntax trees, alignment of this

kind is totally absent in standard subtree crossover. Nordin et al. (1999) ascribed standard

crossover “brutality” (Nordin et al. 1999, p. 290) and the high probability of generating

offspring that are worse than parents to the complete neglection of the importance of the

context, the location where a syntax subtree is implanted. The role of context is paramount

in producing higly fit individuals from inherited code: to get the best fitness contribution,

it is important that the code portion be surrounded by code that makes it perform well

(Langdon 2000, Bleuler et al. 2001). Different strategies have been devised to ensure that

the exchanged portions of genetic code are extracted and inserted in regions of the geno-

types that are “similar” in the two parents. These attempts resulted in the development of

homologous or context-preserving crossover operators, whose major implementations are

detailed in Table 3.1, together with a few other alternative crossover operators commonly

used (Banzhaf et al. 1998, Poli et al. 2008).
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TABLE 3.1: List of most common context-preserving crossover operators

Crossover name Effect
Size-fair c. It generates a single child swapping subtrees selected from two par-

ents. The crossover point in the first parent, the one from which
the child inherits its root node, is selected randomly. In the second
parent the crossover point is the root node of a subtree having on
average the same size as the subtree to be replaced in the first parent
(Langdon 2000)

Homologous c. As size-fair crossover, but the replacing subtree in the second parent
is selected to be not only of the same size of the subtree to be re-
placed, but also of the same shape and rooted at a similar location
(Nordin et al. 1999, Langdon 2000, p. 102)

One-point c. Crossover points are chosen in a common region shared by the two
parents (Poli and Langdon 1998, Nordin et al. 1999, Poli et al. 2008,
Vladislavleva 2008). The common region is identified traversing the
parent genotypes and recording the nodes with the same position
and number of arguments (arity).

Uniform c. Similarly to one-point crossover, crossover points are selected in a
common region between parents, so to preserve context. Instead
of replacing a single subtree, many nodes or subtrees (if selected
nodes are on the boundary of the common region) randomly selected
in the common region are swapped (Poli and Langdon 1998). The
mechanism is inspired by the uniform crossover for GAs (Poli and
Langdon 1998). Uniform crossover is for example used in Kalganova
and Miller (1999)

“Genetic c. dissolves” It is a sort of interpolation between two individuals, according to
which two subtrees are not swapped but faded, introduced by Sims
(1993). Unfortunately Sims (1993) did not provide many details on
the technique.

Self c. Example of crossover involving a single parent. Randomly chosen
subtrees belonging to the same individual are swapped (Poli et al.
2008).

The role of a few of the crossover operators presented above on syntax trees’ fitness

and size will be discussed more in detail in Section 4.4.1, Chapter 4.

3.1.5.3 Mutation methods

The mutation operation generates a single child from a single individual. A range of dif-

ferent strategies can be used to modify the parent genotype: mutation operators can just

change a few nodes in a syntax tree or radically change the individual (Van Belle and

Ackley 2002). In general the extent of genotypic change caused by mutation in the par-

ent genotype is usually much wider than the one caused by crossover (Chellapilla 1997).

This is due to the fact that the variation introduced by mutation does not depend on the

variability of the population (Chellapilla 1997, Munroe 2004). Crossover generates off-

spring shuffling existing genetic material, so it will not introduce radical changes in case
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a population is composed of similar individuals and its effect will fade by the generation.

Mutation instead introduces new genetic material (Munroe 2004). This is the reason why

mutation can be effective in reducing the risk of premature convergence.

Mutation can be useful to escape suboptimal individuals, but also lethal, as it may

turn a successful individual into a low-quality one in a single generation. Due to muta-

tion unpredictability on fitness value, different methods have been developed to control

the amount of variation introduced in the genotype (Chellapilla 1997). All of them re-

quire the choice, usually random, of a node, called mutation point, where the genotype

modification has to take place. Point mutation and subtree mutation lie at the opposite

ends of the spectrum regarding the amount of variation introduced in a genotype.

Point mutation is the mutation operator that produces the smallest variation in a syn-

tax tree. It replaces the content of a node in the selected tree with another primitive of

the same kind: a function is replaced by another function having the same number of

arguments (arity), a variable or constant is replaced by another element of the terminal

set (Sims 1993, Zhang and Mühlenbein 1995, Chellapilla 1997). An example is shown in

Fig. 3.5: the mutation point selected in the parent is node 2, which is a functional binary

node. The function contained in it is an addition (+). Mutation operator replaces this

function with another binary function included in the functional set, here division (/):

PARENT:
log x2 + z

cos(y)
→ OFFSPRING:

log x2

z

1

cos(y)

FIGURE 3.5: Point mutation
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although only a single node has been modified, the metamodel has undergone a sig-

nificative change from parent to offspring. To increase the amount of variation produced

by point mutation, more than one node per syntax tree can be modified. A way to do it is

to assign a threshold of mutation (a number) to each node of the parent: if traversing the

tree such threshold is lower than a randomly generate number, the content of the node is

replaced with another primitive of the same arity (Van Belle and Ackley 2002). All nodes

in a parent tree are instead replaced with another randomly chosen node of the same

arity by the operator AllNodes presented in Chellapilla (1997). Despite the number of

nodes mutated in a tree, the amount of variation introduced by point mutation depends

critically on the variability in the functional and terminal sets declared by the user, as no

change in syntax tree structure is performed by the operator. If the range of primitives is

limited, the amount of change from parent to child will be limited consequently.

Subtree mutation (Koza 1992, p. 106) produces a larger variation on the parent’s

genotype than point mutation, as it replaces the branch stemming out from the mutation

point with a subtree randomly initialised2. An example is given in Fig. 3.6. Examples of

the application of subtree mutation can be found in Koza (1992), Sims (1993), Langdon

and Poli (1998a), Richards et al. (2005).

FIGURE 3.6: Subtree mutation

Many other mutation operators have been introduced. A few of them are described in

Table 3.2. As seen for crossover, to enhance the effects of the mutation operators on the

genotype, different selection strategies can be used to increase the probability of nodes of
2grow, full and ramped half-and-half methods are the most common ways to generate the subtrees. See

Section 3.1.2.
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lower depth to be selected (Brameier et al. 1998, Chellapilla 1997, Langdon et al. 1999,

Vladislavleva 2008).

TABLE 3.2: List of most common mutation operators

Mutation name Effect
Uniform subtree m. (Van Belle and Ackley 2002). Each node of the parent tree is as-

signed a mutation threshold. If a node’s threshold is lower than
a randomly generated number, the node is substituted by a ran-
domly generated subtree.

50%-150% fair m. (Langdon 1998, Langdon et al. 1999). Subtree mutation in which
the size of the replacing subtree is correlated with the size of the
subtree to be replaced.

Size-fair subtree m. (Langdon 1998, Langdon et al. 1999). Subtree mutation in which
the size of the replacing subtree is the size of a subtree randomly
chosen in the parent tree.

Hoist m. (Poli et al. 2008). A “new” individual is created copying a ran-
domly selected subtree from a parent (implicitly used by Smits
and Kotanchek (2004) and Vladislavleva (2008), as during fit-
ness evaluation they consider all individuals’ subtrees as single
individuals).

Expansion m. (Sims 1993, Chellapilla 1997). A new individual is generated re-
placing a terminal node in the parent tree with a randomly initial-
ized subtree (also called grow by Chellapilla (1997)).

Shrink (collapse) m. (Sims 1993, Chellapilla 1997). A randomly chosen subtree is re-
placed by a randomly created terminal node (also called trunc by
Chellapilla (1997).

Mutating constants at
random

(Sims 1993, Chellapilla 1997). A new individual is generated
adding Gaussian noise to constants in the parent tree (also called
Gaussian mutation by Chellapilla (1997)).

Selective m. (Aichour and Lutton 2007). As standard subtree mutation, but the
subtree to be replaced is the subtree that contributes the least to
the overall individual’s fitness. To identify such subtree, each node
in a tree is replaced with a neutral constant and the difference
between the fitness values of the original tree and of the modified
tree is computed. The subtree to be replaced is the one producing
the least difference in fitness values.

Permutation (Koza 1992). The subtrees stemming out of the left and right
child nodes of a binary node are swapped. It is not actually a
mutation operator, but it can be used to increase variability in the
population (used for example in Chellapilla (1997)).

3.1.5.4 Methods to apply crossover and mutation

In GA and GP mutation is usually applied to the offspring genotypes as soon as they have

been generated by crossover. This strategy aims at emulating the natural DNA recom-

bination process, in which mutation is the result of errors occurring during genotypes’

crossover. This approach was adopted for example by Affenzeller and Wagner (2004,

p. 255) for GAs, whereas for GP examples can be found in Alvarez (2000), Topchy and
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Punch (2001), Keijzer (2003). In Chellapilla (1997) crossover was not used, but up to six

different mutation operator are applied in sequence on the same selected individual.

Alternatively, crossover and mutation can be applied independently (De Jong and Pol-

lack 2003, Vladislavleva 2008, Barbosa and Bernardino 2011). The strategy is in general

less disruptive or radical than the previous approach, and it allows for the independent

analysis of the effect of the two operators, as done in Banzhaf et al. (1996) (although not

using tree-based GP and not for symbolic regression tasks).

3.1.5.5 Role of crossover and mutation

The requirements for a successful evolutionary search are the possibility to explore the

search space in its entirety as well as the ability to refine existing good individuals. These

concepts are expressed by Koza (1992) using the terms “exploration” and “exploitation”.

GP representation and genetic operators should be able to guarantee these two proper-

ties. The role of representation will be briefly discussed in Section 4.8, Chapter 4, where

genotype-phenotype mappings different from syntax tree will be introduced. In this sec-

tion the role of genetic operators in ensuring both the exploration of the search space and

the exploitation of the best individuals will be analysed.

Poli and Langdon (1998) identified the properties that genetic operators should have

to ensure exploration and exploitation. A genetic operator should be global, in the sense

that it should produce offspring with the highest variety in shape, size and content, to

the extent that the chosen representation and legality of the offspring allow it3. On the

other hand, a search operator should also be local, or able to introduce small variations

in parents’ genotypes, encouraging the inheritance of “good portions” of genetic material

from a suboptimal parent and refining it.

Crossover and mutation are the primary search operators in GP as they are both global

and local, depending on the specific implementation and node selection strategy. For

example, point mutation or standard subtree crossover with crossover points selected at

high depths perform a local, refining action on selected parents (Chellapilla 1997, Poli and

Langdon 1998). Subtree mutation or standard crossover with crossover points selected

close to the tree root node tend instead to generate offspring that bear little resemblance

to the parents, leading the search to unknown regions of the design space. Due to the
3quoting Sims (1993, p. 468): “large random changes in genotype usually result in large jumps in pheno-

type that are less likely to be improvements, but are necessary for extending the expression to more complex
forms”.
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coexistence of local and global features in both crossover and mutation, the role of these

operators in GP evolution has been debated since the birth of genetic programming.

Researchers tried to address the problem observing crossover and mutation roles in

GAs. In genetic algorithms crossover is the primary generator of new trial solutions, but it

is not able to reintroduce primitives, also called alleles, once these have been lost (Holland

1992, pp. 110-111). Mutation has therefore the important role of reintroducing fresh

genetic material (lost alleles) in the evolution. Helping mantain variability in and among

the chromosomes, it increases the search robustness to local suboptima and promotes

local refinement. In this sense mutation helps GAs avoid premature convergence.

In principle, the beneficial effect that mutation has in GAs holds for GP as well (Chel-

lapilla 1997, Munroe 2004, Winkler et al. 2007). However, there are a few practical issues

that brought researchers to consider mutation less effective than crossover, at least in the

early 1990s. Koza (1992) argued that subtree mutation is either “not needed” or it has

“little utility” in GP, limited to occasional genotypes perturbations to lead the evolutionary

search out of regions of local optima. According to Koza (1992), design space exploration

is effectively performed by crossover through the aggregation of successful portions of

genetic material, called building blocks, which would allow to find the right evolutionary

path to the global optimum. The building block theory, relying on the assumption that

portions of successful genetic code can be identified and exchanged by crossover, was

originally formulated for GAs and extended by Koza (1992) to GP. Mutation, on the other

hand, was considered not able to propagate building blocks. Also, its function of rein-

troducing lost alleles and restoring lost diversity in the population is not as critical as in

GAs, where alleles are likely to be lost. Koza (1992) argued indeed that the probability to

lose alleles in a GP evolution is far smaller than in GAs, as primitives are usually far fewer

than the nodes of a generic GP tree. As a result, for a few years many researchers hardly

used mutation in their experiments (Montana 1995, Langdon and Poli 1998b, Luke and

Spector 1997, Soule and Foster 1998ba, Langdon et al. 1999, Langdon 2000, Van Belle

and Ackley 2002, De Jong and Pollack 2003).

The attitude towards mutation changed from the end of the 1990s (Banzhaf et al.

1996, Luke and Spector 1997, Van Belle and Ackley 2002). On the one hand, the applica-

tion of building block theory to GP was questioned (Luke and Spector 1997, Chellapilla

1997), and on the other new experiments provided evidence against crossover supremacy

as search operator both in GP and GAs (Banzhaf et al. (1996) and in particular Luke and
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Spector (1998, p. 210): “where and why one is preferable to the other is strongly depen-

dent on domain and parameter settings”). Many other studies have shown that mutation

has an effective role in GP evolution (Banzhaf et al. 1996, Chellapilla 1997, Whitley et al.

2006, Winkler et al. 2007, Poli et al. 2008). Theoretically, the new interest in muta-

tion can be explained by the fact that such operator can increase the sampling frequency

of lost primitives and so boost genetic diversity and reduce the risk of premature con-

vergence (Luke and Spector 1997, Poli and Langdon 1998). Furthermore, the local or

refining action they perform on individuals is key in reducing convergence time and it is

not consistently performed by crossover (Chellapilla 1997, Poli and Langdon 1998).

The renewed interest in mutation has brought a few researchers to completely rely on

mutation for the generation of trial solutions, abandoning crossover (“the results clearly

indicated that recombination operators (e.g., subtree crossover) are not indispensable

and that the use of mutation operators alone is capable of generating appropriate pro-

grams” Chellapilla (1997, p. 216)). Despite Chellapilla’s conclusions, today the belief

that crossover and mutation are both needed in GP is widely accepted (Munroe 2004,

Lew et al. 2006, Vladislavleva 2008).

Extensive research has been dedicated to discover the optimal (constant) rates at

which crossover and mutation should be used to maximise the quality of the evolved in-

dividuals (Nordin et al. 1996, Banzhaf et al. 1996, Poli and Langdon 1998, Lew et al.

2006). Munroe (2004) introduced a further element, showing that genetic operator im-

portance varies during the evolution and so crossover and mutation optimal rates cannot

be constant. He proved that mutation is more effective in increasing individual fitness

value than crossover during the early stages of GP evolution. Crossover regains its im-

portance in generating trial solutions only after an intermediate stage where both genetic

operators are equally effective. These conclusions are consistent with the observations

reported by Nordin et al. (1996), who performed symbolic regression of a second or-

der polynomial with linear4 and tree-based GP implementations using subtree crossover

and point mutation. Nordin et al. (1996) observed that crossover starts to generate in-

dividuals with a better fitness value than their parents (constructive crossover) only after

a few generations, and after a period of exploration where it is predominantly destruc-

tive (offspring have a worse fitness value than parents), crossover becomes responsible

of exploring alternative solutions having the same fitness but of increased size (neutral

crossover). Unfortunately Nordin et al. (1996) limited their analysis to crossover, so a
4more details on the linear GP representation will be given in Section 3.3.
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more precise match with Munroe’s observations cannot be established. However, the re-

sults are important as they allow to formulate the hypothesis that GP evolution can be

split in three stages: youth, maturity and stagnation. Further research on this aspect of

evolution might lead to interesting discoveries.

In conclusion, twenty years after Koza’s book, it seems that more than the single use

of either crossover or mutation, finding a correct blend of the two is more effective for

ensuring GP success. For example, Lew et al. (2006) applied cross validation and hold out

methods (see Section 1.2.2, Chapter 1) to optimise reproduction, crossover and mutation

rates.

In the next chapter, in Section 4.4.1, a further element, the presence of neutral code

in syntax trees, will cast a new light on the role of crossover and mutation.

3.1.5.6 Secondary genetic operators

Although GP mainly relies on crossover and mutation for search purposes, Koza (1992,

p. 105-7) introduced a range of operators that are occasionally used:

• Editing: simplification of syntax subtrees during evolution according to predefined

rules. For example a subtree composed of only numerical constants and functions

can be replaced by the result of the operations. Editing can also be used to remove

subtrees that have no effect on the fitness value of the syntax tree (see Section 4.5.1,

Chapter 4).

• Encapsulation: operation through which a subtree is converted into a primitive, and

so it can be reused to generate new syntax trees (Koza 1992, pag. 110). Encapsula-

tion is the most common way to reuse valid portions of evolved code (Angeline and

Pollack 1993, Whigham 1995).

• Decimation: deletion of a certain percentage of the population, which is regenerated

using the initialisation methods. It is a strategy used to restart the evolution afresh,

or to abruptly divert the exploration to new regions of the design space. It was used

for example by Smits and Kotanchek (2004) and Vladislavleva (2008) under the

name cascade to periodically delete the entire population. To avoid loss of precious

genetic material, an external archive storing the best individuals was maintained.
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3.1.6 Termination criteria

Termination criteria define the conditions under which the evolutionary search is stopped

(see Section 2.3, Chapter 2). The simplest and most commonly used criterion is to ter-

minate the evolution when the quality of the best individual, measured by fitness (for

example RMSE) or by the number of hits (Koza 1992), reach a certain threshold. A hit

is a score associated to an individual, ranging from 0 to the number of fitness cases in

the building data set. A hit is scored when the response produced by a syntax tree for a

fitness case is within a given tolerance from the corresponding actual response (Banzhaf

1994, Chellapilla 1997).

Criteria based on the measurement of the current quality of the best individual evolved,

like the ones described above, fail in detecting if the population as a whole still has the

potential to further improve the quality of the best individual. As a result, they may pre-

maturely terminate the evolution, in case scarce knowledge of the problem leads the user

to define a low threshold. A few termination criteria have been developed to stop the evo-

lution automatically when the whole potentiality of the evolution is considered exploited.

These approaches are based on different definitions of population “hidden potential”:

• hidden potential as impossibility to improve the population (Affenzeller and Wagner

2004, Yin et al. 2007). This approach assumes that convergence is reached when it

is not possible to generate a certain number of individuals that have better fitness

value than their parents.

• hidden potential as impossibility to perturb the population (Banzhaf et al. 1996). In

Section 3.1.5.5 it was pointed out that in the final stage of the evolution (stagnation

stage), the dramatic decrease of both destructive and constructive crossover rates

determines the impossibility to improve or degrade the quality of the best individu-

als (Nordin et al. 1996). The proportion of destructive crossovers performed each

generation can then be used as a signal of the impossibility to further perturbate

the population, and so of convergence. This strategy was used in Banzhaf et al.

(1996): the rate of destructive crossover was monitored throughout the evolution,

and when that rate fell under 10% the evolution was stopped. It is interesting to

note that this approach is slightly different from the previous one, as it is based on

the idea that convergence is a condition in which the fitness of the best individuals

of the population can neither be increased nor decreased using crossover.
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Termination criteria also have the practical duty to stop the evolution if it gets too

computationally expensive, regardless if it has converged or not. Different parameters

can be used to impose a computational budget to a GP evolution:

• maximum number of generations (Koza 1992);

• maximum number of fitness evaluations (number of individuals evaluated) (used

for example in Vladislavleva (2008));

• maximum number of node evaluations (De Jong and Pollack 2003)

Checks based on the first two parameters are really common and easy to implement.

According to De Jong and Pollack (2003), monitoring the number of node evaluations

provides a more accurate approximation of the computational effort required by the evo-

lution of variable length structures as syntax trees, as such parameter directly depends on

the size of the individuals.

In real-life GP applications, a criterion that allows to monitor both quality and cost

of the evolved individuals is often opted for. An example can be found in Section 5.2.6,

Chapter 5.

3.2 Data generation and results analysis

The selection of the building data set DoE is critical for the generation of high-quality

metamodels, as seen in Chapter 1. Surprisingly, the issue has been exhaustively addressed

in GP only by a limited number of researchers, among which Vladislavleva (2008). In

Section 3.2.1 her main conclusions will be reported. Moreover, the analysis of the results

produced by GP, and in particular the comparison of the metamodels produced by two

different GP implementations, require specific statistical techniques, due to the stochas-

tic nature of GP algorithm. In Section 3.2.2 a brief survey of such techniques will be

presented.

3.2.1 Design of experiment: requirements for GP

As for any metamodelling technique, the distribution and the size of the building data

set is critical for the quality of the metamodels returned by GP. In particular, what is the

optimal DoE for GP? And how many points should be used to allow for the generation of
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a high-quality metamodel? How does the size of the DoE affect the computational cost of

the evolution?

It is extremely hard to answer these questions using mathematical theory, mainly be-

cause GP does not assume any mathematical structure for the solution, the mechanisms

used by GP to explore the design space are stochastic and the solution of the symbolic

regression problem is not unique. Surprisingly few GP researchers paid attention to the

data generation stage, as observed by Giacobini et al. (2002) and Vladislavleva et al.

(2010), opting for randomly generated building data sets. This is the case for all the GP

symbolic regression examples described in Koza (1992, Chapter 10). Zhang and Müh-

lenbein (1995) also used a randomly selected building data set. In Ferreira (2002) and

De Jong and Pollack (2003) two symbolic regression problems were performed using a

dataset randomly chosen in the interval [−1, 1]. In Banzhaf (1994) no details are provided

regarding how the fitness cases were selected.

The lack of interest in the DoE selection may be explained perhaps by the practical sim-

plicity of randomly generating a set of points. A similar attitude is often observed in the

applications where data are already available: their direct use as training data set, with-

out performing any control on their distribution, is common (Smits and Kotanchek 2004)

and may be explained by the belief that having more data, regardless their ditribution, is

always better than having fewer data. On top of that, probably some overconfidence on

GP ability should be taken into account.

The metamodelling background provided in Chapter 1 gives some guidelines to iden-

tify the optimal DoE for GP. It was there reported that the use of space-filling designs is

a good practice “in the early stages of design, when the form of the metamodel cannot

be specified” (Simpson et al. 2001). This the typical scenario in which GP works, as it

searches for the optimal mathematical structure fitting the input data. A space-filling

design provides GP with information regarding the behaviour of the underlying function

reducing the average extension of unsampled subregions of the design space. As the

aim of GP as a metamodelling technique is to generate global metamodels, a uniform,

uniformly weighted, space-filling DoE will be assumed as the ideal DoE for symbolic re-

gression through GP.

Among the space-filling DoE available, the class of Latin Hypercube DoEs represents

a good compromise between space-filling properties and number of points, which can

be chosen by the user according to the computational cost of experimentation (see Sec-

tion 1.2.5.4, Chapter 1). Alvarez (2000) for example used Audze-Eglais Latin Hypercube
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DoEs generated by a permutational genetic algorithm (Bates et al. 2004). Full facto-

rial DoEs have superior space-filling properties than Latin Hypercube, but, as noted in

Section 1.2.5.1, Chapter 1 their cost in terms of data gathering may be unfeasible for

high-dimensional and expensive systems.

The research done by Vladislavleva (2008) is based on the different assumption that

data are already available, but it is important as it indirectly confirms that space-filling

designs are optimal for GP. She proved on a few test cases the benefits on GP symbolic

regression of reducing a large and almost randomly generated input data set to a smaller

and uniformly distributed (balanced) subset. Proximity, surrounding and non-linearity

weights (Harmeling et al. 2006) based on the distance of each point to the closest points

(neighbours) and on the corresponding output were used to measure the degree of uni-

formity of the design space sampling and to assess the importance of each point of a

randomly generated input data set. A ranking based on the weights was used to reduce

the data set to a compressed and almost uniformly distributed (balanced) one, which was

then used as training data set for GP5. The comparison of the best metamodels produced

using the original and the compressed data sets (Vladislavleva 2008) showed that not

lower or even better accuracy (on the original data set) was reached when the smaller

but approximately uniformly distributed DoE subset was used. Particularly good meta-

models were obtained when the data set compression was done using the weight captur-

ing the rate of variation (non-linearity weight) of the output in a neighbourhood centred

in each sample point. Vladislavleva’s results are important as they confirm the previous

assumption on the beneficial effects of space-filling design on metamodelling through GP.

In particular they prove that:

1. having more data is not necessarily better than having fewer data;

2. data distribution is critical to GP metamodel accuracy. For the same number of DoE

points having a uniform distribution increases GP metamodel accuracy;

3. to improve GP metamodel accuracy, it is better to increase the population rather

than enlarging in an unplanned way the input data set.

The last question to answer concerns the optimal size of the DoE. The non-parametric

nature of GP does not allow to identify the minimum number of points required to gen-

erate a metamodel. For parametric techniques this number is a function of the number
5the GP implementation used in Vladislavleva (2008) is Pareto GP: a brief description will be given in

Section 4.5.4.4, Chapter 4.
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of unknowns in the model, depending if the fitting is performed in a standard way or

according to a least-square approach (see for example response surface methodologies or

polynomial chaos expansion (Eldred et al. 2008)). Giacobini et al. (2002) showed that

it exists a minimum number of points from which a boolean function can be completely

reconstructed, but no recommendations on how to select such minimal building data set

were given. In the absence of any conclusive answer to this question, generally it is rec-

ommended to use as many points as possible, to fight the curse of dimensionality. In

Chapters 5 and 6 experiments on benchmarks and real-life applications will give an idea

of the dependence between the accuracy that can be expected from a GP metamodel, the

dimensionality of the problem and the number of points in the training data set.

3.2.2 Results analysis

GP metamodels’ accuracy and generalisation ability is generally checked evaluating root

mean squared error (RMSE), coefficient of determination (R2) (Montgomery et al.

2006, Ramu et al. 2010), maximum absolute error, maximum percentual error on an addi-

tional (different) validation data set, better if uniformly sampled on the design space and

larger in size than the building data set, as suggested in Simpson et al. (2001, pag. 142).

A validation methodology tailored to GP metamodels is described in Vladislavleva (2008).

As GP is a stochastic technique, each single GP evolution, also called run, may in the-

ory generate a different metamodel: some may terminate stuck in a suboptimal region of

the design space, whereas others may escape these regions and provide an outstanding

metamodel. To increase the probability of obtaining a globally optimal metamodel, gen-

erally in a GP experiment many runs are launched, typically from 10 to 50 (Schoenauer

et al. 1996, Luke and Spector 1997, Chellapilla 1997, Luke and Spector 1998, Vladislavl-

eva 2008), out of which the best metamodel per run is extracted through the validation

process above described.

The set of validation errors associated to the best metamodels generated by each

run of a GP experiment, also called validation error distributions, are generally used to

compare the exploratory power of two GP implementations, provided that the same com-

putational budget (see Section 3.1.6) is granted to all runs.

A first way to compare GP experiments is to compare the average of the validation

error distributions (Soule et al. 1996, Chellapilla 1997). Nordin et al. (1999, pag. 295-6)

compared two radically different GP implementations, based on different representations
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(machine code linear GP and tree-based GP) using average performance. Luke and Spec-

tor (1997 1998) and Soule and Foster (1998b) used student’s two-sample t-test (Upton

and Cook 1996) to compare mean standardised fitness.

A comparison based on average parameters may however not be reliable. The av-

eraging process can obscure characteristic features of the evolutions (Blickle 1996), as

they mix data produced by successful runs and failed runs, and could bring to misleading

conclusions. Soule and Foster (1998a) termed the difference in individual performance

due to failed or successful exploration as bimodal distribution, also suggesting that anal-

ysis should be done on successful runs only, and (badly) failed runs filtered out. Soule

and Foster (1998a) considered the failed runs useful only to understand why the run

failed. Also Vladislavleva (2008) recognised the problem. She defined a threshold on the

validation error and considered all the generated metamodels whose error was beyond

that threshold as outcome of failed runs (called bad runs). Failed runs were then treated

differently from successful runs in the analysis of GP performance.

Many researchers preferred to use statistical methods to compare the validation er-

ror distributions produced by different GP implementations. The most used statistical

methods are ANOVA test and rank-based, non parametric tests. ANOVA test is used to

assess if two sets of measurements, normally distributed, are the realisation of the same

normal distribution (Upton and Cook 1996). This test was used for example by Luke

and Panait (2002ab). ANOVA test however assumes that the measurement sets are nor-

mally distributed. This assumption may not be true for GP results, as validation error sets

may be strongly skewed. Rank-based non parametric methods are used to test if there is

significant evidence of a difference between the medians of two data sets. They do not

require that the data sets to be compared be the realisation of any particular distribution,

but it is generally harder to get conclusive results from them than from ANOVA tests.

Wilcoxon rank sum test (also called Mann-Whitney U test) is generally used to compare

two validation error sets, whereas Kruskall-Wallis test is used to spot median differences

in more than two error sets (Upton and Cook 1996). These tests were used for example in

Hollander and Wolfe (1999), De Jong and Pollack (2003), Hornby (2006), Vladislavleva

(2008) and Vladislavleva et al. (2010).

A tool that is often used to graphically represent the distribution of the metamodels’

errors on training or building data sets is the boxplot (Upton and Cook 1996). A few

examples of its use can be found in Luke and Panait (2002ab), Helton and Davis (2003),

Zitzler and Thiele (1999), Whitley et al. (2006) and Vladislavleva (2008). A boxplot
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is a diagram that represent the median, the first quartile (25% percentile), the third

quartile (75% percentile) and extreme values of a given data set, as shown in Fig. 3.7.

The distance between the first and the third quartile is called interquartile range, and

corresponds to the width of the rectangular box in Fig. 3.7. The lines extending out of

the rectangle represent the samples belonging to the first fourth and the last fourth of

the data: by convention their maximum length is one and a half times the interquartile

range. Samples represented by plus sign (+) are considered outliers (Harmeling et al.

2006). Boxplots will be used frequently throughout this dissertation to represent the

errors of the best metamodels produced by a GP experiment (see Chapters 5, 6).

FIGURE 3.7: Boxplot

3.2.3 Computational effort analysis

The method originally used by J. R. Koza to measure and compare the exploratory power

or performance of GP implementations was based on the probability P (M, i) of a run

using a population of size M to find a correct solution within the first i generations. This

probability was called probability of success and was defined as (Koza 1992):

P (M, i) =
number of successful runs at generation i

total number of runs
(3.9)

J. R. Koza’s computational effort analysis aims at computing the number of indepen-

dent runs R(z) that need to be launched and the total number of individuals I(M, i, z)

that need to be processed to solve a problem with a probability of success z at genera-

tion i (Koza 1992, Chellapilla 1997, Van Belle and Ackley 2002). Computational effort

is a useful parameter to assess GP potentiality (Koza 1992, Whigham 1995, Chellapilla

1997, Miller and Thomson 2000, Bleuler et al. 2001, Van Belle and Ackley 2002) but its

application to symbolic regression problems is hindered by some practical issues. First

of all, the definition of successful metamodel is tricky. Referring to a zero or reduced

value of the error on the building data set can be misleading, as generalisation has to

be taken into account. Even measuring the error on the the validation data set, it is not
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easy to define a threshold under which the metamodel can be considered successful, as

the actual GP search efficacy is not known a priori. Furthermore, often the selection of

the best metamodel depends on parameters other than error, like compactness of the ex-

pression and smoothness, and so it requires human intervention (Kordon and Lue 2004)

and most of the times ends up being a trade-off analysis among equally optimal solutions.

The difficulty of unambiguously defining a success predicate in symbolic regression makes

definition (3.9) unusable most of the times. In Bleuler et al. (2001) computational effort

was indeed used to compare different GP implementations on a boolean problem (even-

k-parity function), not on a metamodelling one. Secondly, a reliable computation of the

probabilistic model P (M, i) on which computational effort analysis is based requires the

analysis of a statistically meaningful number of runs, far larger than the number normally

used in a GP experiment. As a result, computational effort analysis is not widely used for

symbolic regression tasks.

3.3 Alternative GP representations

Tree-based GP is the most common type of GP found in literature nowadays (Barbosa and

Bernardino 2011). Although historically genetic programming has been associated to a

tree-based representation (Cramer 1985, Koza 1992), other representations have been

introduced to improve GP performances and to allow the structure of the individuals to

better reflect the nature of the problem under study.

Representation has indeed an important part in ensuring the exploration capability of

GP and its quick execution. As emphasised by Vladislavleva (2008, p. 83-4), a good rep-

resentation should allow fast evaluation speed and guarantee the legality of the offspring

produced by the genetic operations. If legal individuals cannot be generated a priori, the

representation should not introduce excessive computational overhead to check the le-

gality of individuals’ nodes and to fix the illegal individuals. Furthermore, it should allow

for both radical changes and small variations on the individuals genotype through the

application of genetic operations, so to foster exploration but at the same time preserve

important subtrees.

The major GP representations alternative to syntax tree are the linear (Nordin et al.

1996, Banzhaf et al. 1996, Nordin et al. 1999) and graph structures (Teller and Veloso

1996, Brameier et al. 1998, Kantschik and Banzhaf 2001a, Brameier and Banzhaf 2007,

Poli et al. 2008, Withall et al. 2009).
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The linear genotype is the simplest and most versatile representation that can be

used to implement a GP code, as made of strings of instructions acting on computer

registers. Its use is however discouraged by some practical limitations. In the applications

where execution speed is critical, the use of machine code is recommended but may

raise further issues related to portability (see Section A.1.1.1, Appendix A). Furthermore,

although the linear approach is versatile and can be used to perform different tasks, like

algorithm and control law generation, it does not appear suited for symbolic regression

problems, at least if an explicit metamodel is expected. Linear GP paradigm is based on

a so called imperative approach: this means that the metamodel evolved by a linear GP

implementation is not a symbolic expression but a program that behaves like such (Nordin

et al. 1999, p. 281, 293-4). So linear GP is not able to perform symbolic regression, at

least not in the literal sense. Although an explicit metamodel can be in principle obtained

processing a linear GP individual, this is in practice not done as the conversion has to be

performed manually and so it may be hindered by the size of the individual6.

The graph is a generalisation of the syntax tree and so it is generally more versatile.

On the one hand this means that more complex relationship can be represented with

graphs than it is possible with linear and tree structures. On the other hand, thanks to the

freedom in establishing multiple connections between nodes, a graph is able to represent

a complex program with few nodes and arcs (Schmidt and Lipson 2009a). As a result,

in graph-based GP code can be reused more extensively than in tree-based GP, leading

to a reduction in individual size that, in turn, increases the execution speed and reduces

RAM memory usage. The increased versatility of the graph structure implies also that

graph-based GP can be used to perform symbolic regression of multiple output functions

(vector functions), operation that is not easily achievable in tree-based GP (syntax trees

can usually handle only single output programs). Such increased versatility has however

a cost. The general complexity of the graph representation implies that the development

of genetic operators for graph genotypes and ensuring the legality7 of the connections

between nodes is more difficult than for syntax-trees (Barbosa and Bernardino 2011).

6A quote taken from the Discipulus™website illustrates the point: “But all versions of Discipulus™output
the evolved programs as CODE, not as equations. [. . . ] That said, . . . , you can read the code and reduce
the code to an equation. But some computer programs Discipulus™can write do NOT reduce to a simple
equation. So we cannot do that automatically. It takes a human to make a conversion from code to the
simplest and most readable form of an equation.” (excerpted from http://blog.rmltech.com/2012/05/

turning-discipulustm-program-outputs.html on July 11, 2012).
7propriety that will be called closure in Section 4.1, Chapter 4.

http://blog.rmltech.com/2012/05/turning-discipulustm-program-outputs.html
http://blog.rmltech.com/2012/05/turning-discipulustm-program-outputs.html


Chapter 4

Main genetic programming

challenges

Genetic programming implementation has undergone substantial changes since the intro-

duction of the tree-based formulation by Cramer (1985) and Koza (1992), described in

the previous chapter. Alternative representations have been developed, and many basic

components, among which fitness function and genetic operators, have been redefined to

address a problem that is intrinsically linked to GP variable length representation: bloat,

defined as “program growth without significant return in term of fitness” (Poli et al. 2008,

p. 101).

This chapter is a collection of the solutions provided by researchers to the main GP

standard algorithm pitfalls. The survey is not limited to GP implementations for symbolic

regression tasks, as it is believed that the same phenomena can be observed to a certain

extent in all GP implementations, regardless the task and the (variable length) represen-

tation. A wider analysis may therefore help identify solutions that could be successfully

applied to symbolic regression tasks.

4.1 Closure property

The correct execution of a GP evolution relies on two main factors: the correct execution

of genetic operations, linked to representation and genetic mechanisms, and the correct

execution of fitness evaluation procedures, which instead depends on primitives and fit-

ness function definitions. These two properties are usually encompassed in a single term,

85
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“closure property”. Yet, due to the different GP mechanisms and components they in-

volve, it seems reasonable to give them specific names: syntactical closure and semantical

closure.

4.1.1 Syntactical closure

Syntax is the branch of linguistics that studies the principles and the rules used to build

structurally correct sentences, regardless the meaning. As the nodes of a genotype need

to satisfy specific structural conditions to form a legal individual, as words do to form a

sentence, the expression “syntactical closure” will be used to refer to the correctness of

the links between the single nodes of a GP individual.

GP individual syntactical correctness or legality has to be ensured during the first stage

of any GP evolution, initilisation, but it may be disrupted by the genotype modifications

performed by genetic operations.

The mechanisms that lead to the generation of illegal genotypes depends on the repre-

sentation and on the specific details of genetic operations, so giving a general solution is

not possible. In tree base GP for symbolic regression tasks, for example, illegal genotypes

can be generated by point mutation, in case it replaces a node with another one of dif-

ferent arity: the resulting mismatch in the number of arguments introduces a condition

that, if not handled by repair strategies, cannot be processed by GP. The issue may be

more radical when different data types are used (Montana 1995): in this case not only

does the number of arguments have to match, but also the type of data returned by the

substituted and replacing node has to be the same.

In general, three main approaches have been followed to ensure syntactical closure:

• deletion: individuals that cannot be interpreted (not legal) are either immediately

discarded and replaced by new ones, or penalised by harsh fitness values (Ryan

et al. 1998).

• a posteriori correction or repair (dynamic data typing): after being generated, ille-

gal individuals are repaired and accepted in the population. Sims (1993) repeatedly

applied genetic operators until a legal individual is found. In (Keijzer and Babovic

1999) a deterministic repair mechanisms is used to fix all illegal individuals. In

some cases repair algorithms can be very complex and specific to the GP implemen-

tation (Kalganova and Miller 1999). In general this approach results in additional

computational cost.
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• a priori generation of feasible individuals: individuals are created legal.

It has been noted that the the mechanisms used to ensure genotype legality, either “a

priori” or “a posteriori”, may constrain the exploratory path (Whigham 1995, Banzhaf

et al. 1998). For the interested reader, two interesting a priori approaches are strong data

typing approach (Montana 1995) and grammatical approaches (Whigham 1995, Ryan

et al. 1998).

4.1.2 Semantical closure

Once syntactical correctness of the individuals is achieved there is a second type of closure

that has to be satisfied, which could be called semantical closure. Semantics is the branch

of linguistics that studies how meaning is associated to a symbol, so semantical closure is

an expression that will be used to describe the condition in which a meaning, or fitness

value, can be extracted from the symbols representing a GP individual during the fitness

evaluation stage. The independent analysis of semantical closure is motivated by the fact

that syntax closure does not necessarily imply that fitness value is defined.

The analysis of semantical closure is strictly related to primitives, fitness function def-

inition and the training data set, so it is not possible to provide general conclusions and

recommendations. In GP implementations for symbolic regression tasks, semantical clo-

sure is satisfied if the constants, variables and functions return values that once processed

by any other function in the functional set, result in a well-defined (real) value. The train-

ing data set may affect the semantical closure of a GP individual, as functions may not

be defined on the entire real axis. Division for example is not defined when the divisor is

zero.

The most common way to guarantee semantical closure is to use protected operations

(Koza 1992, Montana 1995, Langdon et al. 1999). Whenever a functional primitive is not

defined because of the particular value of the arguments, as for example in the following

cases:

a

x
with x = 0

log(x) with x ≤ 0,

the operation is forced to return a predefined real value. For example, Koza (1992) forced

undefined division to return 1 to make it easier for GP to generate constants exploiting
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division neutral property (Koza 1992, Keijzer 2003), but less common values like 0 have

been used (Xie et al. 2006).

On the one hand, protected operators ease the generation and the use of constants

and then may help the exploration allowing for a local refinement of individuals (see Sec-

tion 3.1.5.5, Chapter 3). On the other hand, the use of protected operators may lead to

unreliable assessment of the metamodels corresponding to a GP individual, as the actual

result of an operation, either defined or not, is replaced by a user-defined value (Montana

1995). Keijzer (2003) observed that the effect of a protected operation on a GP individual

phenotype (metamodel) is to locally replace the highly non-linear behaviour associated

with the presence of asymptotes with a well-defined behaviour of lower non-linearity

(Keijzer 2003, p. 71-72). Such correction can result in misleading conclusions regard-

ing the quality of the original metamodel, as during metamodel validation protection

mechanisms are not used. To avoid such problems, different strategies from protected

operations can be used. The presence of undefined operations can be detected and indi-

viduals affected by them can be penalised through fitness value. Nordin et al. (1999) for

example marked the undefined GP individuals with a symbol INF and penalised them

during the evolution. Alternatively, genotypes containing undefined operations can be

deleted from the population as soon as they appear (Keijzer 2003). Both the previous

approaches however do not protect against the risk of producing a metamodel that turns

out to be undefined on some regions of the validation set or the design space. A more

conservative approach could be to use only the functional primitives that give birth to

metamodels defined on the entire real axis (Keijzer 2003), like polynomials, although

this may result in mathematical expressions of excessive size and poor accuracy (see for

example experiments reported in Section 5.5.3.1, Chapter 5).

4.2 Sufficiency property

The problem faced by GP is to search for a suitable program in the space defined by all

possible programs that can be built using the primitives defined by the user. The first

requirement for GP success is that the search space implicitly defined by the selected

primitives contains the solution that is looked for, or at least an acceptable approximation

thereof (Langdon et al. 1999). If that happens, the sufficiency property is satisfied.

In the case of symbolic regression, sufficiency means that at least a metamodel of ac-

ceptable accuracy can be built as a combination of the available terminals and functions.
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In some cases, a reduced range of primitives may be useful to produce alternative formu-

lations of known solutions (Ryan et al. 1998). An example will clarify this point. Let’s

suppose that the objective function (the solution) is sin(y): if the terminal set is y and

the functional set includes sin(), a GP implementation is likely to find the solution in its

original formulation, sin(y), during the first generation as a result of random aggregation

of primitives. But if the functional set included only algebraic operations (addition, sum-

mation, multiplication, division) and power, neglecting for now how constant values can

be found, a run would most likely generate an expression like the following:

y − 0.16667 y3 + 0.00833 y5 ' y − y3

3!
+
y5

5!
(4.1)

which is the Taylor expansion of sin(y) around y = 0 limited to the first three terms.

Expression (4.1) is undoubtedly a valid approximation of the solution sin(y) in a

region centred in y = 0 and it is somewhat simpler than the original expression, as

it does not use trigonometric operations. A similar example is reported in Ryan et al.

(1998), where Grammatical Evolution (see Section 4.8) used for symbolic regression of

the polynomial x4 + x3 + x2 + x on [−1, 1] returned expressions containing sin or exp.

However, if the range of primitives is reduced up to the point that no combination of

them represents a function that reasonably fits the data, GP search is doomed to failure. A

wrong selection of primitives can also dramatically increase the difficulty of the search (as

noted in Bleuler et al. (2001) for the generation of the even-k-parity function problem).

4.3 Multiobjective fitness function

The aim of any metamodelling technique is to generate a metamodel that is a “good”

approximation of the true underlying model that accounts for response variance, as in-

troduced in Section 1.1, Chapter 1. Once a metamodel is generated, the assessment of

its quality does not require but the evaluation of the integral error I (Eq. 1.5), in one of

its formulation (RMSE, R2, max absolute error, etc . . . ), on the validation data sets. A

“good” metamodel can then be recognised by a reduced integral error.

The main challenge that GP has to confront is to evolve a metamodel with an ac-

ceptable integral error I on the entire design space from the limited amount of informa-

tion provided by the training data set (Zhang and Mühlenbein 1995). The original GP
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paradigm (Koza 1992), described in the previous chapter, implicitly assumes that the min-

imisation of the error on the training data set is sufficient to lead the evolution towards

“good” metamodels. Although this approach may in some cases be successful, it is flawed

by the fact that a zero error on the training data does not imply that a metamodel has

good generalisation ability, in other words that it provides an acceptable approximation

of the true underlying function on the whole design space.

Fig. 4.1 illustrates the point: the noisy function is the metamodel generated by a GP

implementation purely based on error using the black points as training data set, while

the smooth line represents the underlying true function (z sin(z) in [0, 3]). It is clear that

GP evolution was successful, as a metamodel with zero error on the training data set was

found, but the generated metamodel is practically unusable for its poor generalisation

ability.

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

2

ZSINZ_CHECKDER
Run 3, generation 50

(myGP) Fitness = 5.345670e−04
(myGP) R2 = 9.999993e−01

FIGURE 4.1: Example of GP metamodel with poor generalisation ability. The function to
be approximated (smooth) and the metamodel (noisy) return the same response on the

training data set (black dots)

Increasing the density of the DoE may help improve metamodel generalisation ability,

but it does not represent a conclusive solution to the generalisation problem, let alone

the computational overhead associated with it: there will always be a chance for GP

to generate a metamodel noisy enough to interpolate the given data without providing a

reliable approximation of the true underlying function on the whole design space. Runge’s

phenomenon proves indeed that even using regular polynomials the integral error of

the metamodel evaluated on the whole design space can grow even if the number of

(uniformly distributed) input samples is increased (Quarteroni et al. 2000, p. 239).
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The tendency of GP to generate a metamodel that is accurate on the training data set

but has poor generalisation ability is called overfitting (Langdon and Poli 1998a, De Jong

and Pollack 2003, MacLean et al. 2005, Vladislavleva 2008). Although an appropriate

selection of primitives may reduce the problem (Blickle 1996), overfitting is mainly the

result of GP attempts to minimise metamodel error metric on the training data set.

The previous examples have shown that fitness function based purely on error does

not lead GP to the discovery of the true underlying function. Yet, this is not an issue

related to any intrinsic limit of GP potentiality, but a theoretical one. The problem of

finding a mathematical expression of any mathematical structure minimising the error on

a given input data is not well-defined: there are multiple models that could be assumed to

be true underlying functions (see Fig. 4.1). In optimisation terms, the search performed

by GP, when led uniquely by training error minimisation, has infinite solutions.

In order to use GP for metamodelling purposes, it is then necessary to bias the evolu-

tion towards the set of (finite) solutions that have the features that the true underlying

function is assumed, expected or desired to have. A smooth behaviour for example is

usually assumed for the true underlying function describing some natural phenomena, as

done in the application shown in Section 6.4, Chapter 6. Keeping non-linearities to a min-

imum may be required for practical purposes, for example to ease metamodel analysis and

optimisation. When instead metamodels are used to infer knowledge or to perform sen-

sitivity analysis a reduced size (compactness) and interpretability are important (Sætrom

and Hetland 2003, De Jong and Pollack 2003, Schmidt and Lipson 2009a).

A way to direct GP search to solutions of the desired form is to codify the desired prop-

erties through mathematical quantities, called objectives, and reformulate fitness function

as a function of them as well as of training error. This idea is the basis of multiobjective

GP.

4.3.1 Objective identification

A major challenge in the definition of GP objectives is to identify which genotypical prop-

erty determines the appearance of a desired phenotypical trait (metamodel property).

Similarly to what happens in nature, the relation between genotype and phenotypical

traits in GP is not biijective and extremely complex, due to pleiotropy and polygeny (see

Section 2.2.2.3, Chapter 2). Researchers have tried to identify GP genotype features that

are linked to important properties in the corresponding metamodel.
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Generalisation ability has been observed to be correlated with the size of GP individu-

als, with shorter expression having usually better generalisation ability than longer ones

with the same training error (Zhang and Mühlenbein 1995, Nordin and Banzhaf 1995,

Blickle 1996, Soule and Foster 1998ba, Iba and Terao 2000). According to Langdon et al.

(1999, p. 168), there is no correlation between fitness and the size of a GP individual,

so keeping GP trees’ size as small as possible is a good practical rule to enhance gener-

alisation ability. Smoothness is another appreciated property, but unfortunatley shorter

solutions are neither necessarily smoother than longer ones nor exempt from the risk of

over-fitting (Vladislavleva 2008).

Smoothness, low non-linearity, compactness and a reduced number of nested opera-

tions are also important to increase metamodel reliability and interpretability (Vladislavl-

eva 2008, Schmidt and Lipson 2009a) and so, in the end, determine the success of a GP

metamodel. These properties contribute to what Vladislavleva (2008) called metamodel

complexity. Smits and Kotanchek (2004) favoured trees with lower depth to minimise

the number of nested functions through the definition of the expressional complexity, sum

of the number of nodes in all subtrees of a given tree. The first parameter aimed at

measuring the order of non-linearity of a metamodel was introduced by Garshina and

Vladislavleva (2004). Its definition takes into account the minimum order of the poly-

nomial approximating a GP metamodel with a given precision. This approach however

introduces a further metamodelling problem, the approximation of a metamodel gener-

ated by GP through a RSM technique, and considering that such further approximation

has to be done for all the individuals in the population, it may dramatically slow down

evolution (Vladislavleva 2008). A more efficient strategy was developed by Vladislavl-

eva (2008). She introduced a set of rules to recursively compute a GP tree “order of

non-linearity” from the order of non-linearity of its terminal and functional nodes. The

approach, based on approximation through univariate Chebyshev polynomials, is more

efficient than building a multivariate polynomial response.

A compact, interpretable and “physically grounded” mathematical structure is the

most desired feature in a GP metamodel, at least when GP is required to provide the-

oretical insight into an unknown physical system (Keijzer et al. 2005, Schmidt and Lipson

2009a). With the aim of increasing interpretability and physical consistency of GP meta-

models, Keijzer and Babovic (1999) introduced the concept of “dimensionally awareness”

in GP. In Keijzer and Babovic’s implementation physical units are assigned to each GP

terminal. Newly generated trees featuring operations that are not physically consistent,
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for example the sum or subtraction of terminals having different physical dimensions, are

penalised through the definition of an objective called goodness of dimension. Metamod-

els generated by Keijzer and Babovic’s dimensionally aware genetic programming were

reported to feature improved interpretability and to be less affected by excessive tree

growth than standard GP (Keijzer and Babovic 1999, Keijzer et al. 2005).

4.3.2 Objective handling

The set of objectives used to bias GP evolution define a sort of metamodel “aesthetics”,

as they define more or less accurately the phenotypical traits desired in the solution.

A typical issue in multiobjective GP is to find a way to harmonise the optimisation of

each desired trait during the evolution, as it often happens that such features are not

independent (pleiotropy and polygeny) and sometimes even conflicting. Penalising GP

individual size excessively for example may reduce evaluation time and so speed up the

evolution, but it may also limit genotype expressivity and compromise accuracy.

The strategies used in multiobjective GP to deal with the concurrent optimisation of

multiple objectives are based on the typical multiobjective methods used in optimisa-

tion, especially in evolutionary algorithms (Fonseca and Fleming 1995, Zitzler and Thiele

1999, Laumanns et al. 2002, Deb et al. 2002, Marler and Arora 2004, Bonte et al. 2005).

Common approaches are:

• bounded objective function method (the main objective is identified and the others

turned into constraints);

• weighted-sum method (also called parametric approach);

• lexicographic method;

• Pareto approaches.

An introduction to the methods listed above can be found in Marler and Arora (2004).

In Section 4.5 a few applications of these methods to GP using specific objectives will be

reviewed. For the interest Pareto optimality has attracted in the whole class of evolution-

ary algorithms, a general introduction to Pareto approaches will be presented in the next

section.
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4.3.2.1 Introduction to Pareto approaches

Pareto approaches are used when it is not possible to determine “the relative importance

of the objective functions or desired goals before running the optimization algorithm”

(Marler and Arora 2004, p. 370). Pareto-based multiobjective optimisation aims at finding

a subset of points or vectors, called Pareto set, that represents the best compromise in

terms of objectives, considered all equally important. The Pareto set is composed of

mathematically equivalent solutions, so the best point(s) cannot be selected until the

final user gives some indication on the relative importance of the objectives (a posteriori

articulation of preferences (Marler and Arora 2004)). The advantage of Pareto approach is

that no additional optimisation runs have to be performed to identify new optimal points

objective preferences change.

Pareto optimality has been used extensively in the field of evolutionary computation,

GP included, as it is able to deal with heterogeneous objectives, non necessarily com-

parable using standard inequalities, and to identify in a population of vectors a set of

equally optimal but diverse individuals. In EAs, maintaining a set of equally good indi-

viduals that span all the possible combinations of the objectives helps increase genotype

variability, which in turn reduces the risk of premature convergence, as seen in Chapter 3.

This explains why many selection methods and genetic operators based on Pareto dom-

inance (Fonseca and Fleming 1995, Zitzler and Thiele 1999, Keijzer and Babovic 1999,

Vladislavleva 2008) as well as on other Pareto performance metrics (Fonseca and Fleming

1995, Smits and Kotanchek 2004) have been developed in GAs and GP.

A common challenge in evolutionary algorithms is to ensure the Pareto front is actu-

ally reached and explored uniformly. The evolution may indeed disrupt the uniformity of

the distribution along the trade off surface, hindering the exploration of some potentially

interesting combinations of objectives or converging to a single region of the Pareto front

(genetic drift Fonseca and Fleming (1995, p. 7), De Jong and Pollack (2003)). Strate-

gies as sharing, crowding, niching based on Pareto dominance and restricted mating have

therefore been developed for this aim (Fonseca and Fleming 1995, Zitzler and Thiele

1999, Deb et al. 2002, Laumanns et al. 2002, Kroo 2004).

In Section 4.5.4.4 more details will be given on Pareto GP implementations. First,

however, it is worth to identify the most important objectives in determining GP evolution

success through the analysis of the causes of premature convergence.
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4.4 Premature convergence, bloat and neutral code

The problem of premature convergence has been introduced in the previous chapter,

where it was described as a state when evolution has reached a local optimum of the fit-

ness landscape, and further evolution is not able to improve that fitness. In Section 3.1.4,

Chapter 3, loss of population diversity caused by unbalanced selection strategies was

identified as a major cause of premature convergence, both in GA and GP (Koza 1992,

Banzhaf et al. 1996, Affenzeller and Wagner 2004). On the other hand, as introduced in

Section 3.1.5.5, Chapter 3, crossover and mutation also have a major role in preventing

GP evolution from being stuck in suboptimal solutions, through the exploration of new

and diverse trial solutions. Selection strategies and genetic operators appear therefore

intricately related to the problem of premature convergence.

The elements described so far do not allow to formulate any hypotheses regarding how

the selection and the reproduction stages may interact to cause a progressive reduction

in GP exploratory power. In the next section it will be shown that the consideration

of further GP phenomena called bloat and neutral code are required to reach a deeper

understanding of the causes of premature convergence.

4.4.1 Bloat

Bloat is an important phenomenon in genetic programming. One of the clearest definition

is provided by Poli et al. (2008, p. 101), who define bloat as “program growth without

(significant) return in terms of fitness”. Blickle (1996) and Langdon (1998) refer to bloat

as a generic increase in individual size from one generation to the other not linked to any

performance improvement in the population. Other similar definitions are provided by

Soule and Foster (1998a), Langdon et al. (1999), Banzhaf and Langdon (2002), De Jong

and Pollack (2003) and Haeri et al. (2012), all sharing the concept that bloat is a con-

dition in which despite a growth in GP individual size fitness values slightly improves

or it does not at all. The expression “fitness stagnation” is usually associated with the

bloat phenomenon. It is important to note that code growth is often necessary to im-

prove fitness, in particular during the first generations of a GP run (Soule and Foster

1998b). Zhang and Mühlenbein (1995), Langdon and Poli (1998a) and Schmidt and
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Lipson (2009a) posed the interesting problem of computing the “appropriate” size of a

solution of a problem, beyond which any further increase is bloat1.

Bloat has been observed to affect GP regardless the implementation or representa-

tion used and independently from the task GP has been applied to. Bloat however is

not specific to genetic programming, as it was also reported in artificial neural networks

(Luke and Panait 2002a). Langdon (1998), Langdon and Poli (1998b), Soule and Foster

(1998a) and Langdon et al. (1999) suggested that code growth without substantial fitness

improvement is inherent in any search technique that uses a variable-length representa-

tion. Bloat can be seen as the result of the increased redundancy due to the absence of

limits on the size of the individuals (Langdon and Poli 1998a). Redundancy is the pos-

sibility to build many genotypes with the same phenotype (Banzhaf 1994): although an

intrinsic feature of GP, it is enhanced by the possibility of extending individual genotypes

with portions of genetic code that have no effect on fitness.

If there is a general consensus on what bloat generally implies, no agreement has

been reached on how to recognise bloat quantitatively. In other words, to the best of

the author’s knowledge, a parameter that could be used to detect whether a GP run is

“bloating” or not has not yet been defined. The most common approach is to monitor

average individual size and compare it with the average population fitness. De Jong

and Pollack (2003) observed an exponential increase in the average number of node

evaluations with generations in absence of bloat countermeasures in a multiobjective

GP not using mutation. In Soule and Foster (1998b) and Soule and Foster (1998a) the

average tree size in a GP implementation not using mutation was reported to increase

linearly with generations. In Bleuler et al. (2001), average tree size was also observed

to grow approximately linearly with the generations (standard GP with subtree crossover,

point mutation for even 5-parity problem). In the symbolic regression of quintic and sextic

polynomials performed by Langdon et al. (1999, p. 184) and Langdon (2000) using a tree-

based GP with tournament selection, one-child crossover, no mutation, a linear increase in

the average depth of binary trees was observed, at about one level per generation. In both

cases it was predicted that a quadratic or sub-quadratic growth in size may be expected.

Although all the mentioned experiments were performed with GP using only crossover,

bloat can occur even with other genetic operators, like subtree mutation (Langdon 1998).
1In this sense, referring to code growth with return in fitness as to “structural bloat”, as done in Gelly

et al. (2006), or “fitness independent bloat”, as done in Langdon (1998), seems unappropriate given the
negative undertone the word has in GP community. The expressions “necessary code growth” or “healthy
code growth” or “code growth due to training” appear to be more correct.
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Bloat describes a state of fitness stagnation of a GP evolution and is, necessarily, a

condition to be retarded as much as possible. However, also a disproportionate rate of

growth, either in tree depth or size, with respect to fitness improvement rate is detri-

mental to GP exploration. Langdon et al. (1999) and MacLean et al. (2005) observed

that if size is not kept under control (for example through a length bias or penalisation),

GP best individual may suffer from a sudden corruption of generalisation ability, in other

words overfitting, if the evolution is let to continue after the individual has reached its

“maturity”. These findings back the idea expressed in Zhang and Mühlenbein (1995),

Langdon and Poli (1998a) and Schmidt and Lipson (2009a) that for a certain problem an

appropriate (optimal) size of the individuals may exist.

A disproportionate rate of growth has also serious practical implications. De Jong and

Pollack (2003) showed that, in the absence of countermeasures, the number of GP tree

node evaluations on average increase exponentially with generations. This rate of growth

may put to the test even the most powerful computers, or at least the ones commonly

used in universities and laboratories, considering that the computational overhead due to

selection, genetic operations and evaluation is a function of tree size (Van Belle and Ackley

2002, De Jong and Pollack 2003). A typical problem when running GP experiments with

large GP populations is to provide enough RAM memory to allow for individuals storage

and evaluation (Soule et al. 1996, Soule and Foster 1998b, Langdon and Poli 1998a,

Iba and Terao 2000, Bleuler et al. 2001, Luke and Panait 2002a, Van Belle and Ackley

2002). To avoid incurring computational costs that cannot be sustained, a computational

budget can be assigned to the evolution, but in this case disproportionate code growth

can rapidly squander it evaluating individuals larger than average but with poor fitness

value, limiting GP search efficiency.

Finally, excessive code growth may raise problems in using or implementing the solu-

tion generated by GP. In symbolic regression a large model usually has a reduced inter-

pretability (Van Belle and Ackley 2002). An excessive solution size can represent an issue

also in other applications. A large logic circuit generated by GP, for example, may be hard

to implement in hardware. In general, larger solutions are more expensive to produce

(Zhang and Mühlenbein 1995).

In conclusion, fighting bloat and excessive code growth is paramount for GP efficiency

so size control should be considered as one of the main objective in multiobjective GP.

Different approaches can be used to reduce size growth. For example, through a simple

size penalisation, or, assuming that an appropriate size of the solution can be identified,
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penalising size if it is beyond this assumed threshold. These strategies however do not

address the causes of bloat, they simply try to limit its effects. In the next section it will be

shown that the causes of bloat have to be sought in the behaviour of portions of genotype

that have no effect on fitness, or introns.

4.4.2 Introns

In the natural world there are many examples of “amounts of apparently unexpressed

pseudogene DNA” (Van Belle and Ackley 2002, p. 152) or “genetic code that does not ap-

parently express itself in the individual produced by the genome”, as reported by Nordin

et al. (1996) referring to the studies of J. D. Watson, co-discoverer of the structure of

DNA in 1953. Segments of organisms’ DNA that do not explicitly contribute to protein

synthesis are usually referred to as introns (Langdon et al. 1999). Opposed to introns are

exons, which are portions of genetic code that do contribute to the generation of proteins

(Langdon et al. 1999).

Introns are mostly found in high complexity organisms, as eukaryotes, whereas in

simple ones, as prokaryotes, non functional genetic code is almost absent (Nordin et al.

1996, Soule et al. 1996). Soule et al. (1996, p. 216) report that “80% - 90% of human

genome does not code for functional proteins, even though some of this DNA has a struc-

tural function”. Neutral parts of genetic code are therefore apparently useful in nature

and serve a specific purpose.

Researchers in evolutionary computation have borrowed the terminology used in biol-

ogy and genetics and they applied the terms intron and exon to describe portions of com-

puter code (Soule and Foster 1998a). In EAs an intron or neutral code is defined as a por-

tion of an individual genotype that has no effect on the individual fitness value, whereas

an exon (or effective code) is a portion that contributes to it (Nordin et al. 1996). Introns

have been observed in ES, EP and GA (Soule and Foster 1998a), but in GP their genera-

tion and growth is sustained by the variable-size representation (Altenberg 1994, Nordin

et al. 1996, Langdon and Poli 1998a, Miller and Thomson 2000, Brameier and Banzhaf

2007, Poli et al. 2008). To understand how introns affect GP evolution, it is important

to make a distinction between portions of genetic code that can possibly contribute to an

individual’s fitness as opposed to portions that cannot under any circumstances (Soule

and Foster 1998a). An intron classification is introduced in the next section.
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4.4.2.1 Classification

The representation chosen, the building data set and the primitives available to GP con-

tribute to the range of introns that GP can spontaneously generate during the evolution.

As seen in Table 1.2, GP can be used for many tasks, in which the primitives or the pre-

resentation used may encourage the formation of specific kinds of introns that do not

exist in GP applied to symbolic regression. However, in author’s opinion, knowing both

what can and what cannot happen depending on the specific parameters of a GP imple-

mentation may be beneficial for the development of a GP implementation for symbolic

regression tasks.

The classification that is suggested in the following has been obtained merging the

definitions and observations reported in Iba and Terao (2000) for tree-based GP and

Brameier and Banzhaf (2007) for linear GP2. Three main different types of introns can

then be defined, divided in two classes:

• non-executed code: genotype portions that are not executed or evaluated. Their

existence is determined by the availability of functional primitives that allow to

skip the evaluation of some part of the genotype, like conditional statements (for

example the functional primitive if . . . then) or other logical operations or control

statements. For this reason, this kind of introns are often encountered in GP appli-

cations to control law or algorithm synthesis. Two subclasses of non-executed code

can be defined. Structural or syntactic introns (Brameier and Banzhaf 2007, Iba and

Terao 2000) are parts that are never executed, regardless the building data set used.

Effective introns (Soule et al. 1996, Iba and Terao 2000) are instead code segments

that could theoretically be executed but they are not due to the specific selection

of the building data set (during individual evaluation the operating conditions to

activate them are not encountered).

• non-functional code: genotype portions that are executed but do not affect fitness

value. They are also called semantical introns (Brameier and Banzhaf 2007). Se-

mantical introns are the only intron type that can be encountered in GP used for

symbolic regression tasks, as control statements are not used. The appearance of
2the linear GP representation will be introduced only in Section 3.3.
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semantical introns is made possible by the neutral property of the functional primi-

tives used. An example is provided by the following expression:

5x+ (3− 3) (4.2)

whose response does not depend on the subtree (3−3) due to the neutrality property

of addition. Nordin et al. (1996) observed that some genotype portions can happen

to be neutral on specific building data sets, but are not neutral once evaluated on

a different input data set. An example of this behaviour is illustrated by the GP

individual:

5x+ (sin(x)) (4.3)

in which the subtree (sin(x)) may appear as a semantical intron if the building data

set is [kπ | k ∈ Z]. This type of “apparent” introns are a threat to generalisation

ability: a possible strategy to counter them will be shown in Section 5.3.0.6, Chap-

ter 5. Further classifications of semantical introns have been put forward. Nordin

et al. (1996) considered the number of instructions/operations required to pro-

duce a neutral code portion (first order and second order introns). Soule and Foster

(1998b), Langdon et al. (1999) referred to viable (neutral fragment which by mod-

ification of a single subtree become effective on fitness - for example the portion

(1− (4− 3)) in X + (1− (4− 3))) or inviable nodes (neutral fragment which cannot

become effective on fitness even by its modification - for example Z in Y + (0 ∗ Z))

and operative and inoperative nodes to describe different categories of neutral code.

In this thesis this classification is not used.

The classification introduced so far refers only to the introns generated spontaneously

during a GP evolution. Nordin et al. (1996) called them “implicit” introns to distinguish

them from “explicitly defined” introns, which are generated and inserted in the population

by an external agent. A brief explanation on how this kind of introns has been used to

improve GP search will be given in Section 4.5.3.

4.4.3 Introns role in evolution: interaction with crossover and mutation

Introns provide a mechanism to explain bloat, as they make GP individuals bigger with-

out changing their fitness value. In this sense, introns cause bloat and bloat is strictly

linked with the appearance of introns, regardless the GP representation used (Blickle and
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Thiele 1994, Nordin and Banzhaf 1995, Langdon and Poli 1998a, Soule and Foster 1998a,

Bleuler et al. 2001, Banzhaf and Langdon 2002, De Jong and Pollack 2003). Although this

mechanism has been identified, it has not yet been explained how introns are generated

by GP and how they should be dealt with to improve GP performance. More specifically,

if bloat is caused by introns, is intron elimination beneficial for a GP evolution? Is it

possible to indiscriminately remove them? If not, when and how to remove them? These

questions are not trivial and address a fundamental issue, whether introns are useless or

have a function in genetic programming.

Research has shown that introns function changes during a GP run. To study intron

dynamic behaviour, researchers have used the adjective constructive, destructive or neu-

tral to describe genetic operations that produce offspring of respectively better, worse or

same fitness as the parents (Nordin et al. 1996, p. 6). The idea that crossover could be

a mostly destructive operator and introns could provide a defense mechanism against GP

individuals disruption was put forward not long after the appearance of GP (Altenberg

1994). The symbolic regression experiments on a second order polynomial performed by

Nordin et al. (1996) with both linear and tree-based GP confirmed the theory, which is to-

day widely accepted (Langdon and Poli 1998a, Bleuler et al. 2001, Brameier and Banzhaf

2007). As seen in Section 3.1.5.2, Chapter 3, the disruptive effect can be explained by the

fact that crossover, at least the standard version, does not take into account the context

in which swapped subtrees are inserted (Bleuler et al. 2001). Introns provide a defense

against this destructive effect modifying crossover hit rate3 of the nodes in a GP individual

(Altenberg 1994, Nordin et al. 1996). Fig. 4.2 helps explain how the defense mechanism

works: if the crossover point is selected by uniform selection among the nodes excluding

(A) original individual (B) individual pro-
tected by an intron

FIGURE 4.2: Example of GP individual protected by neutral code

the root, the probability of disrupting the individual in Fig. 4.2A is 100%, as for sure
3see Section 3.1.5.2, Chapter 3.
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one of the two connections to the root node will be disrupted. If instead the same tree

is implanted in a larger tree containing an intron (IN) as in Fig. 4.2B, the probability of

disruption decreases to a maximum of 83.3% (5/6), as the intron can be replaced with-

out consequences to the rest of the individual (and the intron may be composed of other

nodes). The same protection mechanism, based on hit rate modification, substantially

holds for subtree and point mutation (Langdon 1998, Langdon et al. 1999). Results in

Banzhaf and Langdon (2002) suggest that introns protect individuals from deleterious

changes due to point mutation, although a simplified representationless GP model was

used to reach this conclusion. Other evolutionary algorithms, like Grammatical Evolution

(Ryan et al. 1998), also benefit from the protection provided by introns.

A major drawback of intron presence is that they could become too protective, con-

strasting therefore exploration in favour of exploitation (Langdon et al. 1999). In other

words, introns can protect GP individuals from crossover and mutation even when they

may be constructive (Langdon 1998), encouraging instead neutral crossover. A correla-

tion between the increase of the average intron size during the last part of a GP run and

the rise in neutral crossover frequency, and a concurrent drop in both destructive and

constructive crossover, is well documented in Nordin et al. (1996), who observed it in

both linear and tree-based GP used for symbolic regression of a second order polynomial

(fitness proportionate selection). It can be inferred that introns, if no parsimony measures

are put in place to counter them, grow to a point that they lock the optimal individual

found making it harder by the generation for genetic operations to perturb the evolution,

eventually leading to fitness stagnation. Therefore, as soon as the intron conservative pro-

tection starts to take over, the training stage has to be considered concluded (Nordin et al.

1996, Banzhaf et al. 1996, Iba and Terao 2000). The same excessive protection mecha-

nism was observed by Blickle and Thiele (1994). They concluded that “the probability to

escape a potential local optimum decreases with time” (Blickle and Thiele 1994, p. 37),

as promising new-born individuals with low proportion of neutral code are less likely to

survive than individuals with high proportion of neutral code. Similar conclusions were

reached by Langdon et al. (1999) who used GP to solve the artificial ant problem. So,

recurring to a mechanical similitude, the effect of neutral code on evolution can be com-

pared with the behaviour of a flywheel: the bigger the neutral code portion, the harder is

to improve fitness (Langdon et al. 1999, p. 186), as the bigger the flywheel is the harder

is to change its angular speed. Introns can be considered as a measure of the “inertia” or

resistance to change in a GP population.
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Despite the long-term detrimental effect, protection offered by introns may be needed

in particular stages of the evolution. As already hypothesised in Section 3.1.5.5, Chap-

ter 3, a GP run can be roughly split in three stages, which were called youth, maturity and

stagnation. The results described by Nordin et al. (1996) confirm this idea, and provide

quantitative means to define these stages. It has been shown indeed that stagnation can

be recognised by a sudden fall in destructive and constructive crossover frequency and an

abrupt increase in intron average size. Youth instead can be characterised as a stage in

which constructive and destructive crossover frequencies have an irregular behaviour but

are on average higher than during stagnation and the average intron size slowly increases,

experiencing a jump when the best individual is found (Nordin et al. 1996, p. 10). Such

jump in intron average size may be the evidence that introns are useful in the early gen-

erations of a GP run, protecting as sort of computational “incubators” promising but small

and not fit individuals from the harsh environment. The beneficial role of introns on GP

evolution is also indirectly suggested by Banzhaf (1994). Recalling Kimura’s neutrality

theory of evolution, Banzhaf (1994) support the idea that any form of redundancy, or the

possibility to generate many different genotypes corresponding to the same phenotype,

is key to enhance variability, as selection pressure is not able to destroy different individ-

uals if they have the same fitness. According to Banzhaf (1994) introns, increasing GP

redundancy, are therefore beneficial to global exploration: increasing variability in the

population they provide an escape route from locally optimal region of the design space.

In conclusion, introns role on GP evolution is dynamic: introns can increase the prob-

ability of the individual to survive but at the same time reduce the efficiency of GP as

optimisation process (Blickle and Thiele 1994). The effect of neutral code appears also

to depend on its diffusion, that is the ratio between effective and neutral code in the

population. The mechanisms that bring to the formation of introns become therefore im-

portant to describe the relation between bloat and introns. In this regard, according to

Banzhaf et al. (1996) (for linear GP) and Soule et al. (1996) (for tree-based GP), introns

are mainly generated by crossover and subtree mutation, due to the statistical advantage

for the longer of two individuals to have the same fitness value as the parents. Point

mutation has been identified as a “switch” operator that can turn an intron into working

code and viceversa (Soule and Foster 1998a). Point mutation appears to prevalently turn

neutral part of genetic code into effective code or to break blocks of neutral code (Banzhaf

et al. 1996). This functionality adds to the already important function of reintroducing

lost alleles (Section 3.1.5.5, Chapter 3).
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4.4.4 Bloat theories

Three main theories regarding how introns are generated and result in bloat have been

formulated in the GP community (Soule and Foster 1998ba, Langdon et al. 1999, De Jong

and Pollack 2003, Gelly et al. 2006) and are indicated by the following expressions:

• protective role of introns;

• fitness causes bloat;

• removal bias theory.

4.4.4.1 Protective role of introns

The theory (Altenberg 1994, Nordin and Banzhaf 1995) does not address the causes of

intron formation, but emphasises the fact that intron growth is a phenomen that sustains

itself. Precedently it has been shown how the presence of introns reduces the probability

of the individual to be disrupted, as the crossover point may be selected in the neutral

region (Nordin and Banzhaf 1995, Ryan et al. 1998). The probability of disruption then

decreases as the size of the neutral part increases (Soule and Foster 1998b). This obser-

vation finds a mathematical proof in Blickle and Thiele (1994, p. 34), where it is shown

that the probability that crossover leaves unchanged the effective region of a given GP

tree containing neutral code (called redundant code) is linear with the proportion of neu-

tral nodes in the parent individual. Concurrently, it has been observed that in case no

length bias are introduced in the evolution, on average crossover and subtree mutation

produce a size increase in the offspring (Langdon and Poli 1998a). These two elements

combined make population vulnerable to bloat and unable to stop it if measures to curb

size growth are not in place.

The appearance of the smallest intron is sufficient to trigger bloat: the individual

that contains it, which will be called “carrier”, will be more likely to survive genetic

modifications untouched in its effective region than other individuals that do not have

introns. Its neutral part on average will be expanded by crossover and subtree mutation,

so the carrier will keep its original fitness value and the probability that its effective region

is disrupted will decrease as its overall size increases. This mechanism explains the typical

exponential growth in average introns size, observed for example in Nordin et al. (1996).
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4.4.4.2 “Fitness causes bloat”

The theory is based on the general assumption that, if a variable length representation

is chosen, long genotypes have a statistical advantage on short genotypes of the same

fitness, as there are (far) more longer programs than shorter ones that result in the same

fitness (Langdon and Poli 1998a, Langdon 1998 2000, Banzhaf and Langdon 2002). So

the evolution is steered towards larger versions of the same solution simply because they

are more abundant (Soule and Foster 1998b, Langdon et al. 1999).

Specifically, neutral code further expands the number of syntactically different but

semantically equivalent individuals (Soule and Foster 1998b). As a result, in the absence

of size bias, individuals composed of larger regions of neutral code are more likely to

be sampled by GP than individuals with smaller introns (Langdon et al. 1999, Langdon

2000).

As noted in Soule and Foster (1998ba), this theory holds for unbiased search tech-

niques using a discrete variable-length representation. It does not assume neither the

evolutionary mechanisms (genetic operators) nor the existence of introns, being based

only on the distribution of the solutions in the search space. In this sense, it is more gen-

eral than the other two bloat theories (Langdon et al. 1999, pag. 170). It also predicts

the occurence of bloat in search techniques not based on populations (Langdon 1998,

Langdon et al. 1999).

4.4.4.3 Removal bias theory

The removal bias theory (Altenberg 1994, Soule and Foster 1998b, Langdon et al. 1999)

was developed for tree-based GP and it assumes the mostly destructive effect of subtree

crossover and subtree mutation. In this sense is less general than the other two theories.

Inviable code, or neutral code that even if modified cannot change fitness value, forms

subtrees that are mostly concentrated around the leaves (terminals) in a typical tree

(Soule and Foster 1998b). Assuming that the nodes have all the same probability to

be selected as crossover or mutation points (this is not always the case, as the selection

may be biased on purpose), nodes close to the terminals are more likely to be selected as

crossover or subtree mutation points. At the same time, the small subtrees rooted in these

nodes are more likely to be inviable code than larger subtrees rooted at lower depths.

As a result, the crossover and mutation point selection is biased towards the small and

inviable subtrees rooted near the terminals. The replacement of larger subtrees would be
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penalised, as larger subtrees are more likely to be made of viable code (Soule and Foster

1998b) and on average altering viable code has a destructive effect on individual fitness

(context issues). So on the one hand the choice of the subtree to be replaced is biased

towards small and inviable subtrees. On the other hand, the replacing subtree is not

subjected to similar size constraints. As for crossover, a large subtree is most likely to be

implanted in an inviable node close to the parent’s terminals, otherwise it would most

probably penalise the offspring. In subtree mutation the generation process is not biased

towards the creation of small replacing subtrees.

The overall effect of the asymmetry between the size of the subtree to be replaced and

the replacing subtree (Altenberg 1994) is an average tree size increase with no change

in fitness, as replacing subtrees are implanted in inviable regions of the parents. The

presence of inviable code then triggers the accumulation of further inviable code, and the

mostly disruptive crossover produces an evolutionary disadvantage for new-born smaller

trees.

The previous theories highlight different causes of bloat. Given the complexity of

phenomenon, there is a general consensus in the GP community that the described mech-

anisms coexist in a typical GP run (Soule and Foster 1998ba, Langdon and Poli 1998b,

Langdon et al. 1999, Banzhaf and Langdon 2002).

4.5 Strategies to fight bloat

So far it has been shown that the control of introns size throughout a GP run is paramount

to increase GP efficiency, as depending on their proportion in a GP population introns

can provide a protection of promising individuals against disruption (introns as incuba-

tors of new solution) or prevent further evolution and determine premature convergence

(introns as population “inertia” against improvement). The positive effect of reducing in-

trons is acknowledged by many researchers (Blickle and Thiele 1994, Nordin et al. 1996,

Banzhaf et al. 1996, Soule et al. 1996, Iba and Terao 2000). As expected, keeping indi-

vidual size under control not only reduces the computational effort associate to a GP run

but also increase the accuracy of the best individuals and GP success rate (Soule et al.

1996, Soule and Foster 1998a, Bleuler et al. 2001, Van Belle and Ackley 2002).

Bloat theories allow to identify in the following mechanisms the main causes of intron

formation:
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1. predominantly destructive character of crossover and subtree mutation (protective

role of introns and removal bias theory);

2. size bias in subtrees to be replaced but not in the replacing subtree (removal bias

theory);

3. equal selection probability of all nodes in a tree, favouring the selection of nodes

close to the terminals (protective role of introns and removal bias theory);

4. probabilistic advantage of larger individuals (“fitness causes bloat” theory).

Consequently, subverting these basic mechanisms can then lead to the development of

strategies to prevent introns appearance. In the following sections a survey of the main

anti-bloat strategies is presented. Some approaches contrast the appearance of introns

altering the basic mechanisms described by bloat theories, others instead focus on the

direct elimination of introns or penalisation of bloated individuals. More specifically, the

strategies that will be described can be divided in the following classes:

• direct elimination through code editing

• genetic operator adjustment

• explicitly defined introns

• multiobjective approaches

• avoidance of destructive crossover (or mutation)

4.5.1 Direct elimination through code editing

The most direct way to reduce intron size is to remove them from GP individual through

editing (Soule et al. 1996, Iba and Terao 2000, Blickle and Thiele 1994, Blickle 1996,

Ryan et al. 1998). Intron direct removal requires as a first step their identification. Iba

and Terao (2000) and Blickle (1996) used a strategy based on the marking algorithm

(Blickle and Thiele 1994, Blickle 1996): they assigned a counter variable or flag to each

node of a tree. If during tree evaluation the value stored in the counter is not updated

it means that the corresponding node is not used, so the subtree rooted in that node is

a structural intron. The neutral subtree can then be removed or replaced by a randomly

generated terminal node (deleting crossover - Blickle (1996)).
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Intron elimination through code removal presents however a few limitations. Firstly,

identifying neutral code implies an additional computational cost (Nordin et al. 1996,

Collet et al. 2000, Aichour and Lutton 2007), which is proportional to individual size and

to the number of individuals in the population. Moreover, not all introns can be easily

detected (Blickle 1996). Soule et al. (1996) and Langdon and Poli (1998a) acknowledge

the difficulty of reliably detecting neutral code. More specifically, the strategy used by Iba

and Terao (2000) and Blickle (1996) to identify introns is able to find only structural and

effective introns, so it appears of no use in GP used for symbolic regression, as affected

only by semantical introns. Secondly, removing introns every generation partially reduces

introns growth rate but, as noted by Soule et al. (1996), this rate remains exponential.

Interestingly, Soule et al. (1996) also observed that introns growth rate retains a memory

of the introns size at the beginning of the evolution: editing the first generation slightly

reduces introns growth rate.

4.5.2 Genetic operator adjustment

The following approaches have mainly been inspired by the removal bias theory (Sec-

tion 4.4.4.3).

4.5.2.1 Altering subtree crossover/point mutation balance

If bloat is caused by the asymmetry of subtree crossover and subtree mutation, as as-

sumed by the removal bias theory, then increasing point mutation rate will reduce bloat.

Experiments on linear GP on classification tasks performed by Banzhaf et al. (1996) show

that increasing point mutation rate indeed helps reduce the percentage of introns in the

population, retard fitness stagnation, prolong evolution and increase the accuracy of the

best individual. These results prove the validity of the theory that considers introns as

population “inertia” towards variation. They also support the theory that mutation pri-

mary role is to break blocks of neutral code and to introduce alleles that may have been

lost due to selection pressure.

4.5.2.2 Constraining crossover point selection to effective regions of the genotype

The asymmetry of subtree crossover and subtree mutation assumed by the removal bias

theory can be reduced if the possibility of selecting neutral (inviable) nodes as crossover

points is eliminated. In Blickle and Thiele (1994) a marking algorithm is proposed to
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identify the nodes that are not executed/evaluated and crossover point selection is then

restricted to the nodes that are effective, with the aim of increasing the probability of a

constructive crossover (marking crossover). As this technique relies on the same algorithm

to detect introns described in Section 4.5.1, the same drawbacks there highlighted hold

(only structural introns are detected). In Collet et al. (2000) the idea of constraining the

selection of the subtree to be replaced is further developed. Each subtree composing the

parent is evaluated and the subtree giving the worst contribution to parent’s fitness value4

is selected for replacement with a randomly generated tree.

Constraining the crossover point selection to non neutral regions of the genotypes is

an attempt to increase the probability of performing a constructive crossover. However,

these approaches are only able to avoid neutral crossover. There is no guarantee that

swapping active subtrees and implanting them in active regions of the parents leads to a

constructive crossover. Probably it is for this reason that this class of methods is seldom

used (Langdon and Poli 1998a, p. 45).

4.5.2.3 Adjusting hit rates

Bloat according to the removal bias theory and the “protective role of introns” theory is

caused by the higher probability of selecting terminal nodes as crossover points if a ran-

dom uniform sampling strategy is used. Biasing the selection is then a simple solution

to contrast bloat. One of the most commonly used approaches is to assign different hit

rates to inner (functional) nodes and terminal nodes (Luke and Spector 1996 1997 1998,

Brameier et al. 1998, Langdon et al. 1999, Langdon 2000, Vladislavleva 2008). For ex-

ample Koza (1992) suggests setting the hit rate of functional nodes to 90%, using instead

10% for terminal nodes.

Adjusting hit rates reduces the protection mechanism provided by introns, making

the population more “reactive”, or less resistant to change. Nonethless, as in the previ-

ous approach, reducing the probability to select a neutral node as crossover point is no

guarantee that the offspring have better fitness than the parents: swapping two effective

subtree most of the times results in worse offspring.
4through this strategy is therefore possible to detect semantical introns.
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4.5.2.4 50%-150% fair mutation and size-fair subtree mutation

According to the removal bias theory, subtree mutation tends to increase the size of the

parent as the selection of the tree to be replaced is biased towards small subtrees, whereas

the random subtree generation is not. The introduction of a dependency between the sizes

of the subtree to be replaced and the subtree to be randomly generated can then tackle

bloat. This strategy also reduces the probabilistic advantage of longer programs assumed

by the “fitness causes bloat” theory. The correlation between the size of the subtree to be

replaced and the subtree to be inserted assumed by 50%-150% fair mutation (Langdon

1998, Langdon et al. 1999) and size-fair mutation (Langdon et al. 1999) is based on these

concepts.

4.5.2.5 Size-fair and homologous subtree crossovers

Size-fair crossover and homologous crossover (Langdon (2000) for tree-based GP, Nordin

et al. (1999) for linear GP) are improved versions of the standard subtree crossover, able

to recreate in the offspring, to some extent, the context that swapped subtrees had in

parents. The introduction of a size and depth correlation between parents and offspring,

which is implicit in the concept of context, reduces the probabilistic advantage of larger

solutions (“fitness causes bloat” theory) and the asymmetry of the crossover operator

(removal bias theory).

Both strategies were reported to consistently curb bloat in a symbolic regression prob-

lem performed using a tree-based GP, to the extent that the rate of growth of the average

individual size is reduced to an approximately linear trend with generations instead of the

quadratic of sub-quadratic behaviour observed with standard crossover (Langdon 2000).

Langdon (2000) however reported that the search success rate (number of correct so-

lutions found out of the number of runs) was however not improved with respect to

standard GP, in some symbolic regression cases even slightly reduced (Langdon 2000,

p. 106). Probably the reduced efficiency can be explained by the excessive aggressiveness

of the two new operators. Imposing a strong bias on size may hinder the formation of

“incubator” introns (see Section 4.4.1) in the early generations of a GP run (youth stage),

reducing therefore the protection towards small but promising individuals which could

boost search efficiency. This effect is strengthened in case the initial population has a

small average size.
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4.5.2.6 Different mutation operators

The use of many different mutation operators introducing a size bias in the offspring

is another possible countermeasure to bloat. Sims (1993) used for example more than

five kinds of mutation. Mutation frequencies were adjusted to make size or complexity

reduction slightly more likely than code growth, reducing bloat.

A general drawback of the previous approaches, which attempt to reduce the asym-

mentry of genetic operators and to affect the interaction between introns and genetic

operators, is that they necessarily have to be developed for the specific representation

used (Bleuler et al. 2001). This means that these solutions are not general countermea-

sures to bloat (Langdon et al. 1999).

4.5.3 Explicitly defined introns

Introns provide GP individuals with protection against disrupting genetic operations (“Pro-

tective role of introns” theory). As it has been shown, such protection can increase but

also decrease the efficiency of the search, according to the proportion of neutral code in

the population. Artificial introns, not generated spontaneously by GP, can then be used

to vary this proportion with the aim of retarding premature convergence.

Artificial introns were first used in GAs, according to Altenberg (1994). Nordin et al.

(1996) extended the approach to linear GP, calling this kind of introns explicitly defined

introns (EDIs). Each EDI is given a weight, which correponds to the probability of its root

node to be selected during crossover. Changing the weight is then possible to increase or

loosen the protection offered by EDIs to the individual that hosts them.

The experiments performed by Nordin et al. (1996) and Blickle (1996) on symbolic

regression problems did not produce conclusive results. Moreover, the complexity of the

strategy may discourage the practical use of EDIs (Blickle 1996).

4.5.4 Multiobjective approaches

In Section 4.3 it has been shown that using a fitness function based uniquely on an error

metric (defined on the building data set) is not a good criterion to direct a GP evolution,

as it most probably leads to a solution with poor generalisation ability. To increase the

probability of finding a “good” solution, the additional features that the ideal solution is
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expected to have need to be converted into quantitative objectives and fitness function

changed to a multiobjective formulation.

The analysis presented in the previous sections has shown that reducing bloat is deter-

minant for improving GP efficiency. A few stategies derived from the main bloat theories

have been described but, due to the specific mechanisms they tackle, they result in coun-

temeasures of limited validity (see Section 4.5.2).

In this section a different class of anti-bloat approaches are presented, called multi-

objective approaches. They curb disproportionate code growth a posteriori, as they do

not aim at tackling the mechanisms that lead to bloat, but penalise bloated individuals

instead. They hence represent a more general solution to bloat, independent from GP

representation and genetic operators, and they are effective against both structural and

semantical introns.

The simplest indicator of bloat is individual size. Hystorically, size has always been

used as a second objective, after the error metric, in multiobjective GP implementations

to control size growth in GP evolution. There are no theoretical bounds on the number

of objectives, however. In the following a survey of the application to genetic program-

ming of the general multiobjective optimisation methods introduced in Section 4.3.2 is

presented.

4.5.4.1 Transforming objectives into constraints

One of the most commonly used strategies to tackle disproportionate code growth is to

impose an upper bound on the maximum size (Blickle 1996, Langdon and Poli 1998a)

or depth (maximal depth restriction - Koza (1992), Whigham (1995), Soule et al. (1996),

Luke and Spector (1997 1998), Van Belle and Ackley (2002)) of the individuals produced

by genetic operations. Koza (1992) for example in his experiments imposed that crossover

could not produce offspring of depth larger than 17.

This strategy poses a few problems. To begin with, before the size or depth limit is

reached, code growth occurs unsuppressed (De Jong and Pollack 2003). Secondly, the

maximum size or depth has to be selected by the user. The existence of an “appropriate”

size of the solution has been previously assumed (see Section 4.4.1), but it is in general

difficult to guess (Zhang and Mühlenbein 1995). A guess about such appropriate size

introduces therefore a bias: a size limit too tight undermines expressivity and diversity

in the population (Blickle 1996), whereas a limit too loose does not curb code growth.

Thirdly, additional strategies are required to handle individuals that do not respect the
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limits: they could be discarded and the genetic operation repeated or correction stategies

could be applied to reduce their size/depth.

Maximal size/depth restriction is anyway really simple and computationally inexpen-

sive and in some cases has proved successful. Luke and Panait (2002a) strongly support

depth limiting (“when it comes to fitness, plain depth limiting is hard to beat” Luke and

Panait (2002a, p. 420)). Particularly good performance of this approach in symbolic

regression for tree-based GP are reported in Luke and Panait (2002b). In many cases

depth/size limiting is successfully used in combination with other parsimony pressure

techniques (Blickle 1996, Luke and Panait 2002b). Often it is used to impose a limit to

the computational cost of the evolution (Smits and Kotanchek 2004).

4.5.4.2 Parametric approach

Parsimony pressure is an alternative expression to refer to the use of size penalisation.

Parsimony pressure is said to be parametric when size (or depth) is included explicitly

in the fitness function as an objective (Nordin et al. 1996, Bleuler et al. 2001, Luke and

Panait 2002b). In symbolic regression tasks, a general parametric approach consists in

adding to the main objective (error metric) a term depending on the individual size, depth

or any correlated parameters5:

Fi = Ei + p(si) (4.4)

where Ei is the error metric of individual i on the building data set and p a function of the

size si of the individual or correlated parameter. A linear relationship for p is generally

used (Nordin et al. 1996, Blickle 1996, Bleuler et al. 2001, Alvarez 2000, Luke and Panait

2002a):

Fi = Ei + αsi (4.5)

α being a weight that can be used to tune the relative importance of the size (or depth)

with respect to error Ei. Eq. (4.5) follows the general formulation of the weighted-sum

method in multiobjective optimisation (Marler and Arora 2004). Soule et al. (1996) used

GP with linear parsimony pressure to evolve robot guidance laws: he activated the size

penalisation defined by Eq. (4.5) only if the size of the program goes beyond a predefined

threshold.
5see for example the expressional complexity defined in Section 4.3.1, which is used to both penalise size

and nested operations.
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Linear parsimony pressure is one of the most effective techniques for size control in GP

due to the generality of the approach (Soule and Foster 1998b). However, the “benefits

and costs of parametric parsimony pressure” are strictly related to the amount of pressure

used (Soule and Foster 1998a, p. 299). Excessive parsimony pressure reduces individual

size degrading however average individual fitness, and viceversa (Blickle 1996, Soule and

Foster 1998a). Guessing a priori the appropriate value of the weight α that introduces

a balanced amount of parsimony pressure is extremely difficult as its optimal value de-

pends on the problem and on the definition of the error metric Ei (Blickle and Thiele

1994, Zhang and Mühlenbein 1995, De Jong and Pollack 2003, Vladislavleva 2008). If

the fitness formulation features more than two objectives, it is also not trivial to guess

the correct relative importance of size (or depth) with respect to the other objectives in

generating a high-quality individual (Smits and Kotanchek 2004). Performing a few pre-

liminary runs is therefore usually suggested to optimise as much as possible the benefits

of linear parsimony pressure (Blickle 1996, Soule et al. 1996, Nordin et al. 1996, Bleuler

et al. 2001). Alternatively, cross-validation strategies (see Section 1.2.2, Chapter 1) can

be used to tune the objective weights, which following the terminology used in the ma-

chine learning community can be called hyperparameters: a useful example is provided

by Lew et al. (2006).

Luke and Panait (2002a) and Luke and Panait (2002b) observed that the importance

of the different objectives may change during evolution, so assigning them a constant

value may negatively affect GP search, favouring small size over error reduction. The

experiments performed by Soule and Foster (1998a) show that this is indeed the case.

Adaptive parsimony pressure The analysis performed by Soule and Foster (1998a)

proves that a variable parsimony pressure that can adapt to the different stages of evo-

lution increases the efficiency of GP. Adaptive parsimony pressure has been implemented

in different ways.

In Kalganova and Miller (1999) a “two-stage” approach is followed to optimise fitness

and minimise size. Parsimony pressure is activated through a second objective linked

to the size of the individual only when a given level of the main objective (performance,

raw fitness) is reached. The approach can be generalised by the fitness function definition
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proposed in Bleuler et al. (2001, p. 537) (minimisation of fitness assumed):

Fi = Ei + 1 if Ei > ε (4.6)

Fi = 1− 1

Ni
if Ei ≤ ε (4.7)

where Fi is the fitness of individual i, ε is the error threshold, Ei is the error of individual

i and Ni is the corresponding size. A two-stage fitness function lets the population evolve

an individual of acceptable quality first and then tries to reduce the size of such individual.

The successive application of the two penalisations prevents parsimony pressure from

conflicting with the main objective (error) when the best individuals are still being looked

for, main drawback of linear parametric pressure. The idea was already put forward in

Zhang and Mühlenbein (1995), although not specifically applied to GP. A main drawback

of the two-stage fitness formulation is that the error threshold ε has to be defined by the

user, who may not have enough knowledge to guess its optimal value. Parsimony pressure

may then never be activated and bloat occur undisturbed (Bleuler et al. 2001).

A two-stage but also smoothly adaptive parsimony pressure approach is used in Zhang

and Mühlenbein (1995). The main idea is to exploit the two-stage approach and for each

stage introducing an adaptive parsimony weight α(g) which depends on the history of the

correlation between the error and the size of the optimal individual in the population. In

mathematical terms:

Fi(g) = Ei(g) + α(g)Ci(g) (4.8)

where Fi(g) is the fitness value of individual i at generation g, Ei(g) is the error and Ci(g)

is a complexity metric (size of the individual for example (Bleuler et al. 2001)). Further

details on the definition of α(g) can be found in Zhang and Mühlenbein (1995).

The two-stage fitness functions presented require the definition of an error threshold

ε, so a few preliminary tests are required to optimise this parameter.

4.5.4.3 Lexicographic (rank-based) approaches

Two strategies for the optimisation of accuracy and size of GP individuals that do not

require tuning parameters have been proposed by S. Luke and L. Panait. The common

feature of these approaches is that they compare objective of the same nature through a

non-parametric approach.
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Lexicographic parsimony pressure (Luke and Panait 2002b) is introduced during the

selection stage through two comparison stages. Individuals are first compared with re-

spect to their raw fitness/error values. If the values are different, the individual with

best quality is selected. Otherwise, a second comparison is done with respect to size: the

smallest individuals is then chosen. In the rare case that individuals have same fitness

and same size, the selection is random. The approach is based only on rank, so no tuning

parameters are needed to articulate a preference between two objectives of different na-

ture. The strategy was developed with the aim of reducing introns in populations with a

lot of individuals with identical raw fitness/error, encouraging the selection of the small-

est individuals among the fittest. However, Luke and Panait (2002b) acknowledge that

the strategy is not effective for symbolic regression, where the slight fitness improvements

due to overfitting drastically reduce the probability of execution of the second compar-

ison, so impairing bloat and overfitting reduction. The idea underlying lexicographic

parsimony pressure was already proposed by Zhang and Mühlenbein (1995), who also

acknowledged its similarity with the two-stage strategy used in Kalganova and Miller

(1999).

In Luke and Panait (2002a) a parsimony pressure based on “double tournament” se-

lection is described. The selected individual is the winner of a final tournament based on

size performed among individuals that have already passed a first qualifying tournament

based on raw fitness/error (or viceversa). Compared to maximal depth restriction (Sec-

tion 4.5.4.1), the strategy appears to better curb bloat, but not in a statistically significant

manner.

Although not more effective in reducing code bloat than maximal depth/size restric-

tion if used by themselves, lexicographic parsimony pressure and double tournament

performances drastically improve when applied together with maximal depth/size re-

striction. The main effect of a combined used of the previous techniques is a dramatic

reduction in GP individual average size (Luke and Panait 2002b), in some cases halved

(Luke and Panait 2002a), with respect to the average size of the solutions produced using

maximal depth/size restriction. No beneficial effect on best raw fitness/error is however

recorded by Luke and Panait (2002ab).

4.5.4.4 Pareto approaches

Pareto approaches, introduced in Section 4.3.2.1, have been used to introduce parsimony

pressure in GP. Similarly to rank-based approaches, Pareto approaches do not compare
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objectives of different nature and do not require user-defined parameters to articulate a

preference among the objectives.

In its simplest form, Pareto parsimony pressure is introduced considering raw fit-

ness/error as first objective and size, depth, or any other related parameter as second.

Pareto parsimony pressure biases the evolution towards compact and accurate individ-

uals introducing a ranking among individuals that is used in selection strategies as an

alternative to more common fitness-based rankings, for example in tournament selec-

tion (Fonseca and Fleming 1995, Vladislavleva 2008). Different dominance-based cri-

teria have been used to rank individuals in a Pareto sense to promote the convergence

towards the actual Pareto front and to encourage its uniform exploration. These criteria

are mainly based on three metrics defined in the Pareto objective space, which result in

different exploration behaviours of such space (Fonseca and Fleming 1995, Smits and

Kotanchek 2004):

• non domination level: ranking built recursively eliminating from the objective space

the individuals belonging to the Pareto front (for example fast non-dominated sorting

algorithm in Deb et al. (2002), used by Vladislavleva (2008, p. 95)).

• domination: number of individuals that dominate the given individual. It encour-

ages exploration at the edges of the known Pareto front or in new regions.

• dominance: number of individuals the given individual dominates (Zitzler and Thiele

1999). It encourages the exploitation in the middle of the known Pareto front (used

for example in Kroo (2004)).

The above described criteria have been used to implement many Pareto strategies

for evolutionary algorithms: PAES (Knowles and Corne 1999), SPEA (Zitzler and Thiele

1999), SPEA2 (Zitzler et al. 2001) and NSGA-II (Deb et al. 2002) are among the most

known. As Pareto selection strategies require only the definition of a metric on the objec-

tive space, regardless the individual representation or the task of the optimisation, they

are easily adaptable to GP. Some useful recommendations about their optimal use in GP

can then be obtained from the analysis of Pareto EAs and GAs. Elitism is reported by

Zitzler and Thiele (1999), Deb et al. (2002) to improve accuracy and evolution speed in

GAs, so its use is usually suggested in Pareto GP implementations (Teller and Veloso 1996,

Bleuler et al. 2001, Sætrom and Hetland 2003, Smits and Kotanchek 2004, Vladislavleva

2008). In this case special attention has to be paid to ensure that the archive is updated



118 Chapter 4 Main genetic programming challenges

correctly with the non-dominated individuals, as in general the number of individuals

composing the Pareto front is different from the size of the archive. Different clustering

techniques can be used to select a given number of uniformly distributed individuals on

the Pareto front (for example crowding (Deb et al. 2002), average linkage method (Zitzler

and Thiele 1999)). In the opposite scenario, different Pareto layers can be involved in

the selection process if the individuals on the Pareto front are fewer than the archive size

(Vladislavleva 2008).

4.5.5 Avoiding destructive crossover

Forcing crossover (and subtree mutation) to be constructive is an indirect way to fight

disproportionate code growth and fitness stagnation, as it dissolves the evolutionary ad-

vantage of individuals containing a large amount of neutral code (see Section 4.4.4). This

approach not necessarily reduces all neutral code, limits instead introns to the extent that

they do not hinder fitness improvement. It can also be used in combination with other

anti-bloat strategies, to boost fitness once the protection against variation (“population

inertia”) has been weakened by the partial elimination of introns. Indeed, the simple

reduction of neutral code percentage in the individuals does not necessarily ensure that

the likelihood of constructive crossover increases (Ryan et al. 1998, p. 91).

The following strategies are common ways used in GP to ensure that crossover is

constructive or at least not able to destroy the best solutions found:

Pseudo-hillclimbing. An offspring is accepted only if its fitness is equal (mild version)

or better (rigorous version) than the fitness of the parent which supplied the offspring’s

root node. Otherwise, a copy of the parent is taken (Soule and Foster 1998b, Langdon

et al. 1999). The tests performed by Soule and Foster (1998b) on a maze navigation

problem and on the even-7-parity problem show that when mild pseudo-hillclimbing is

used, code growth is reduced but still present. The rigorous pseudo-hillclimbing instead

affects so much bloat dynamics that the dependency between tree size and generations

is reduced to a sub-linear trend. Soule and Foster (1998b) explained this behaviour

observing that the strong requirement posed by the rigorous pseudo-hillclimbing strategy

eliminates the individuals containing introns whose existence is predicted by both the

removal bias and “protective role of introns” theories. Only code growth correlated to

fitness improvement occurs, as predicted by the “fitness causes bloat” theory, and the rate
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of growth is far slower than the quadratic or sub-quadratic one observed when introns

are allowed (see Section 4.4.1).

The two versions of pseudo-hill climbing increase convergence speed and reduce the

use of computational resources due to the reduced amount of introns in the individuals.

However, they do not significatively improve average individual fitness (Soule and Foster

1998b). This may imply that “a certain amount of neutral and/or destructive crossovers

are necessary for an effective search” (Soule and Foster 1998b, p. 785), indirectly con-

firming the important role of introns in ensuring a global exploration of the design space

in the early stages of a GP run (introns as “incubators” of promising subtrees - see Sec-

tion 4.4.3). A drawback of the pseudo-hilclimbing method is its computational cost: a lot

of individuals have to be generated and evaluated to select just a few.

Self-adaptive selection pressure steering. Self-adaptive selection pressure steering

was originally developed for GAs (Affenzeller and Wagner 2004). It is basically a variation

of the pseudo-hillclimbing strategy: during the evolution, an increasing percentage of the

population has to be made of individuals that have better fitness value than their worse

parent (or than an average of the parents’ fitness values). The remaining part of the

population is filled with randomly selected individuals from the pool of offspring that did

not satisfy the success criterion.

The application of this approach to GP, as done in Winkler et al. (2007), is heavily pe-

nalised by the computational costs of generating and evaluating a number of individuals

much larger than the population, given the fact that crossover is mostly destructive (see

Section 4.4.4.3). If in GAs this is possible due to the fast genotype evaluation (in Affen-

zeller and Wagner (2004) the size of the evaluated individual pool reaches up to 11 times

the population size), in GP such process is computationally unfeasible. As the possibility

to find individuals that are better than the parent is related to evolution convergence, the

self-adaptive selection pressure steering method has also inspired a termination criterion

(see Section 3.1.6, Chapter 3).

Plagiarism penalty Plagiarism penalty (Langdon and Poli 1998b) is a parametric ap-

proach that penalises the fitness of an individual if it is equal to its best parent’s. This

strategy reduces the evolutionary advantage of offspring containing introns, which by

definition have the same fitness of their parents. Penalising them breaks the protection

mechanism provided by introns and reduces “population inertia”, so plagiarism penalty is



120 Chapter 4 Main genetic programming challenges

expected to extend the training or youth stage of a GP run and to retard premature con-

vergence (see Section 4.4.3). The experiments performed by Langdon and Poli (1998b)

on the artificial ant on Santa Fe trail problem show that plagiarism penalty is able to slow

code growth without penalising the performance of the best individuals. Similarly to

what occurs with pseudo-hillclimbing, bloat is not stopped because the bloat mechanisms

due to the removal bias theory and the “fitness causes bloat” theory are not targeted. A

second important effect observed by Langdon and Poli (1998b) is that plagiarism penalty

can increase genotype diversity varying the magnitude of the penalisation, which in turn

may reduce the risk of premature convergence. As a result of the reduced introns pro-

tection and the enhanced variability, GP runs benefit from an extended training or youth

stage. Unfortunately in Langdon and Poli (1998b) the plagiarism penalty was not tested

on symbolic regression problems, but it is reasonable to assume that similar effects can

be expected due to the general validity of the bloat theories.

4.6 Boosting variability: distributed genetic programming

Introns and lack of variability are the main causes of premature convergence in GP and

GA (Affenzeller and Wagner 2004). Mutation has been traditionally trusted with the duty

of boosting variability and converting neutrons into effective code to reduce the “popu-

lation inertia” to retard premature convergence (see Section 4.4.3). Common strategies

to boost variability are the epoch replacement operator (Whigham 1995), which consists

in generating from scratch a certain number of individuals each generation, and the cas-

cade operator (Section 3.1.5.6, Chapter 3), through which the population is periodically

destroyed and regenerated.

A radically new approach to increase variability is exploited in distributed genetic pro-

gramming (Koza 1992, Luke and Spector 1996, Smits and Kotanchek 2004, Affenzeller

and Wagner 2004, Poli et al. 2008): several subpopulations, or demes, are evolved si-

multaneously and from time to time a few individuals migrate from a deme to another

to exchange fresh genetic material. The stochastic nature of genetic drift increases the

likelihood that different demes converge to different optimal solutions (Affenzeller and

Wagner 2004, p. 250), so the inclusion of the migrating individuals is likely to reduce the

risk of premature convergence.

Many different strategies have been adopted to manage the flow of migrating indi-

viduals from deme to deme. A distributed approach is used in the GA-GP algorithm
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developed by Affenzeller and Wagner (2004), called SASEGASA. In SASEGASA the initial

population is split into many demes, which are let to evolve independently. Self-adaptive

selection pressure steering is used to detect premature convergence of the demes: when

it is not possible to generate a certain number of offspring outperforming the parents,

a deme is is merged with other converged demes. Progressively the number of demes

reduces, while their population size increases. At the end of a SASEGASA experiment a

all demes are absorbed into a single population having the size set at the beginning. The

distributed approach featured by SASEGASA allows to enhance variability in the subpop-

ulation and so reduce the risk of premature convergence. Although the computational

cost of SASEGASA is penalised by the expensive self-adaptive selection pressure steering

method, it can be said that the use of computational resources in SASEGASA is more effi-

cient than in a standard GA. The evolutions in the single demes are indeed stopped soon

after the training stage has terminated, and converged demes are merged. In this way the

computational power that would not have produced significative improvements during

the stagnation stage of the demes’ evolution is used to train a new, bigger and heteroge-

neous population with a higher potential to find the global optimum/a. SASEGASA was

originally developed for GA but it has also been applied to GP for metamodelling purposes

(Winkler et al. 2007). In GP the self-adaptive selection pressure steering method used in

SASEGASA acquires futher importance, as it reduces introns. A distributed GP was also

used by Iba and Terao (2000) to evolve robot navigation strategies.

It is worth to remind that if distributed GP implies the parallel execution of many GP

runs, a parallel GP implementation does not necessarily adopt a distributed approach.

More details on parallel GP are given in Appendix A.

4.7 Reducing fitness evaluation cost

Genetic programming is a computationally expensive technique. Much research effort has

been dedicated to the reduction of fitness evaluation, which is the most time consuming

operation in genetic programming (Sims 1993, Schoenauer et al. 1996, Giacobini et al.

2002, Xie et al. 2006, Vladislavleva 2008).

If elitism is used and if the building data set does not change throughout the evolu-

tion, the simplest strategy to reduce the evaluation cost is to evaluate elite individuals

only once, when they are inserted into the archive (Koza 1992). The savings in term of

reduction of the number of evaluated individuals are proportional to the size of the elite.
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More effective strategies to reduce fitness evaluation costs have been developed. They

can be classified according to the part of the evaluation process they attempt to simplify:

some reduce the number of fitness cases, others the number of individuals evaluated, a

third group simplifies the individual to be evaluated and/or the fitness function to make

fitness evaluation cheaper.

4.7.1 Reducing the number of fitness cases

Fitness evaluation cost can be reduced limiting the number of fitness cases considered in

the evaluation process, although modifying the building data set in size or distribution

may potentially affect the quality of the evolved individuals (Section 3.2.1, Chapter 3).

Giacobini et al. (2002) proved that it exists a minimum number of fitness cases from

which a boolean function can be reconstructed by GP. It appears therefore that reducing

the number of fitness cases may reduce computational cost without affecting the quality

of the best individuals returned by GP, at least for the symbolic regression of functions

defined on a discrete domain.

The research done by Vladislavleva (2008) and Vladislavleva et al. (2010) on balanc-

ing techniques (Section 3.2.1, Chapter 3), confirm that also in GP used for the symbolic

regression of continuous functions the computational cost associated to fitness evalua-

tion can, under certain conditions, be cut reducing the number of fitness cases without

degrading the quality of the regression.

Goal softening and the ESSENCE algorithm (Vladislavleva 2008) are techniques that

allow for reduction in evaluation costs or, equivalently, allow to improve the quality of

the evolved metamodels for the same computational budget They consist of increasing

progressively (linearly) the size of the subset used to evaluate the individuals through-

out the evolution, starting from a subset considerably smaller than the original building

data set (Vladislavleva (2008) used 10% of the original building data set size). GP indi-

viduals generalisation ability is increased if the increasing subsets are selected randomly

(Vladislavleva 2008). Similar approaches were used also by Angeline and Pollack (1993)

(GAs) and by Schoenauer et al. (1996) (GP).

4.7.2 Reducing the number of individuals evaluated

Evaluating only a percentage of the individuals in a GP population is a way to reduce the

total computational cost of evaluation. The population clustering strategy (Xie et al. 2006)
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for GP for symbolic regression tasks aims at reducing the number of individuals actually

evaluated by clustering fitness-case-equivalent individuals. Fitness-case-equivalent individ-

uals are defined as metamodels that produce the same output in two successive training

samples, randomly selected. Once all the individuals in the population are assigned to a

cluster, only the fitness value of the smallest individual in each cluster is evaluated and is

then assigned to all the other individuals in the cluster. Such fitness value is then used to

establish a ranking among clusters, and then in tournament selection.

Population clustering considerably increases success rate and convergence speed in

symbolic regression. However, the computational cost of the additional operations that

clustering requires is not negligible and dissolves much of the savings obtained (Xie et al.

2006).

4.7.3 Simplifying the evaluation procedure

The main advantage offered by metamodels is that they are inexpensive to evaluate, so

considerable reduction in the fitness evaluation cost may be expected from the use of a

fitness function metamodel. This principle was followed by Ziegler and Banzhaf (2003),

who used machine code GP (Nordin et al. 1999) to evolve a classifier able to determine

the winner of a tournament selection from the genotypical features of the individuals

taking part to it, this way eliminating the need to perform fitness evaluation of each

individual. Despite using a metamodel of the fitness function is a powerful way to reduce

fitness evaluation cost in GP, the assessment of the actual savings has to take into account

that the evolution through GP of such metamodel may also be expensive (Ziegler and

Banzhaf 2003).

4.8 Multiple genotype-phenotype mappings

The representation used by genetic programming, be it linear, tree or graph, is intrinsically

redundant. Redundancy or neutrality (Banzhaf 1994) is defined in GP as the possibility to

generate different genotypes, even radically different, having the same phenotype (mea-

sured by the fitness value). The variable-length nature of GP individuals further increases

the number of ways individuals with the same observable properties can be built.

As introduced in Section 4.4.3, redundancy is fundamental to increasing the probabil-

ity of evolving high-quality solutions for two main reasons. The first is that it multiplies
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the number of evolutionary paths that GP can follow to reach the globally optimal phe-

notype (Miller and Thomson 2000, Ferreira 2001). Secondly, it makes neutral variations

of the genotypes possible, enhancing variability in the population and favouring the ex-

ploration of the design space (Banzhaf 1994).

A few mechanisms that indirectly enhance GP redundancy have been analysed in this

chapter. A first one is the use of many functional primitives (see sufficiency property in

Section 4.2). Introns can also be used to effectively increase the level of redundancy in

GP (see Section 4.4.1), although their excessive and uncontrolled growth may produce

collateral effects (see Section 4.4.3).

A third way to increase redundancy in GP is to use a double genotype-phenotype map-

ping. The standard GP paradigm, as the one described by Koza (1992) and analysed in

Chapter 3, adopts a single genotype-phenotype mapping: tree-based genotypes are mod-

ified by genetic operators and the corresponding phenotypes, for example mathematical

expressions, can be extracted from them using a mapping algorithm. A double genotype-

phenotype GP implementation instead use two orders of genotypes: genotypes of the first

order (inner) undergo genetic operations but they cannot be directly mapped to the final

program (for example a mathematical expression). They have to be converted in geno-

types of the second order, for example to syntax trees, and then transformed to their final

shape (mathematical expression)6. This way the redundancy intrinsic in the representa-

tions used in each genotype order can be exploited, increasing the overall redundancy of

the GP implementation.

Binary Genetic Programming (BGP) (Banzhaf 1994), Grammatical Evolution (GE)

(Ryan et al. 1998), Cartesian Genetic Programming (CGP) (Miller and Thomson 2000)

and Gene Expression Programming (GEP) (Ferreira 2001) are different examples of dou-

ble genotype-phenotype GP. They all feature fixed-length GA chromosomes as first order

genotypes, mapped to a syntax tree or a directed graph for evaluation purposes.

6Some attention has to be paid to the different and sometimes ambiguous usage of terms in standard GP
and double-mapping GP. For example in Vladislavleva (2008, p. 81) the syntax tree is called “genotype” and
the corresponding response surface is the “phenotype”. For double-mapping GP, for example in Miller and
Thomson (2000), the syntax tree is the “phenotype” and the linear chromosome which is mapped into is
referred to as the “genotype”. In this case it does not appear clear how the final program, for example the
response surface in a symbolic regression problem, has to be called. As a result, the naming conventions
introduced by Vladislavleva (2008) are here followed.



Chapter 5

Hybrid genetic programming

Previous chapters have provided an extensive background on genetic programming the-

oretical assumptions and described many of the different implementations that have

spawned from Cramer’s and Koza’s work. This chapter is dedicated to the illustration

of the GP implementation, which will be named HyGP, developed as part of the research

activity described in this thesis.

After a brief description of hybrid approaches in genetic programming (Section 5.1),

the improved implementation is described in detail in Section 5.2, while in Sections 5.3

and 5.4 a few strategies to boost its performances are presented.

The last part of the chapter is dedicated to the comparison of the enhanced HyGP

with other metamodelling techniques. In Section 5.5 tests carried out with a parametric

metamodelling technique, polynomial chaos expansion (PCE), are described. The opti-

misation of a 10-bar truss performed using metamodels generated by HyGP and moving

least squares method (MLSM) is described in Section 5.6.

5.1 Hybrid (or memetic) techniques

In Chapter 1 it has been acknowledged that there are substantially two kinds of ex-

ploratory algorithms, gradient-based and stochastic ones. Their features are contrasting,

as the exploitation of information provided by derivatives allows for an efficient but lo-

cal exploration, whereas stochastic searches are generally characterised by a slower but

global exploration of the design space, be it a vectorial space (as in GA) or a function

space (as in GP for symbolic regression tasks).

125
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The integration of traditional, deterministic search techniques in population-based

algorithms seem therefore a natural way to achieve speed and to avoid local optima. This

basic idea has lead to the birth of the so-called hybrid or memetic approaches. One of the

first indications on the potential benefits of hybrid approaches in GA, EP and ES can be

found in Fogel (1994).

The idea of merging the two search strategies spread also to the genetic programming

community. Deterministic algorithms have been used differently according to the specific

nature of the program to be evolved. In particular, many researchers developing GP for

symbolic regression tasks (Collet et al. 2000, Topchy and Punch 2001, Keijzer 2003) have

argued that the search for the right value of the parameters can actually spoil the search,

as a potentially good or optimal mathematical structure can be penalised excessively by a

wrong value of just one constant, leading to the disappearance of the precious individual

from the population. As a result, hybrid GP implementations have focused in particular

on the use of deterministic algorithms to optimise the allocation and the tuning of the

numerical constants that may be generated during individual initialisation and evolution.

In order to appreciate the new perspective offered by hybrid GP approaches is necessary

to plunge into the way numerical constants have traditionally been handled in genetic

programming, with particular attention to symbolic regression tasks.

In the original Koza’s GP formulation (Koza 1992) numerical constants, called random

ephemeral constants, are randomly generated and inserted in the individuals at the begin-

ning of the evolution, so that the tuning process relies uniquely on the ability of crossover

and mutation to cluster or group the numerical coefficients to generate the final numeri-

cal values (see also Lew et al. (2006)). In this sense, parameters tuning is performed by

evolutionary mechanisms. Not all researchers have however agreed on the advantages of

randomly generating the numerical constants only at the beginning of the evolution. In

Binary Genetic Programming (see Section 4.8, Chapter 4) Koza’s assumption is dropped

and the numerical parameters are randomly generated at each generation as a result of a

modification of the portion of genotype coding the parameters. On the other hand, Miller

and Thomson (2000) report that for CGP (see Section 4.8) the search improves using a

fixed value (1.0) instead of the ephemeral random constant introduced by Koza (1992).

Adventuring a bit further, some researchers have criticised the very use of explicit

numerical constants. Ferreira (2002) shows how not using numerical terminals for the

intialisation of the individuals can drastically improve GEP success rate in symbolic re-

gression and other tasks with respect to standard GEP implementation where constants
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are part of the individuals. Experiments show that GEP is able to generate the numerical

value exploiting properties as, for example, the identity element of multiplication and

addition (if x ∗ 1 = x, then x/x generates 1)1.

Hybrid approaches feature strategies to deal with numerical constants rather different

from all the ones described above. A deterministic optimiser is generally used to tune the

GP individuals’ numerical values, often fed with initial guesses provided by a stochastic

optimiser, able to perform a global search for roughly optimal parameters values. This

mechanism allows to refine locally inaccurate models, leaving to the evolutionary mech-

anisms the global exploration for an acceptable mathematical model. Hybrid approach

may be considered as performing deterministically a local refinement (exploitation) that

is otherwise performed by crossover and mutation operators in conventional GP (Poli and

Langdon (1998), see also Section 3.1.5.5).

The main advantages of hybrid approaches can then be syntetically formulated as:

• higher confidence in individuals’ fitness value. Optimising the values of the param-

eters allows to reduce fitness variance due to bad values of them and so it provides

a more reliable assessment of the mathematical structure of the individual. The

more parameters’ values optimisations are performed starting from different initial

guesses, the more reliable is the assessment. As a result, the risk of losing individu-

als with a good mathematical structure but “bad” parameters’ values is minimised;

• reduction of the size of the trees during evolution, as clusters of nodes are not

needed to produce constants (Schoenauer et al. 1996). As a result, increased search

efficiency, reduced RAM usage and more efficient use of computational power are

to be expected from the adoption of hybrid approaches in GP;

• faster tuning of the numerical parameters;

• increase of the evolution speed, as the search for a good mathematical structure

is not hindered by the process of aggregating blocks of code to tune numerical

parameters by evolutionary mechanisms (Zhang and Mühlenbein 1995);

• reduction of the search space (Ferreira 2002);

• reduction of the number of generations required to reach the same level of accuracy.
1Ferreira (2002) however does not mention any problems related to the non definition of the operations

generating the numerical constant: x/x = 1 but if x = 0 a measure to make the operation legal must be
implemented to ensure semantical closure (see Section 4.1.2, Chapter 4).
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Aware of the benefits, researchers have come up with many different hybrid GP imple-

mentations, featuring a similar core GP algorithm but different optimisers for numerical

coefficients tuning. Probably the first attempt to use an additional tuning algorithm can

be ascribed to Zhang and Mühlenbein (1995), who perturbed GP numerical parameters

by a series of random variations, eventually selecting the set of numerical coefficients re-

sulting in the best fitness value according to a hill-climbing strategy. Blickle (1996) used

a similar approach, changing parameters sequentially by a fixed amount for a specified

maximum number of optimisation steps. Inspired by evolution strategies and evolution-

ary programming (see Section 2.3.1, Chapter 2), Schoenauer et al. (1996) and Chellapilla

(1997) performed tuning adding Gaussian noise to numerical parameters (in Chellapilla

(1997) this procedure is referred to as Gaussian mutation). Gray et al. (1996 1997) used

for tuning purposes a Nelder-Simplex algorithm and simulated annealing (simulated an-

nealing was also suggested by Lew et al. (2006)).

Strategies as the ones just outlined represent initial attempts to make parameter tun-

ing independent from evolution. Nontheless, they do not benefit from the quick and fine

tuning achievable by deterministic optimisers, although stochastic optimisers are effective

in providing a rough guess of the optimum set of numerical coefficients.

An example of the integration of a deterministic optimiser in tree-based GP was pre-

sented in Topchy and Punch (2001), where local tuning is performed by a gradient-based

optimiser. Linear scaling was instead used by Keijzer (2003). The same approach was

used in the Pareto-based GP implementation described in Smits and Kotanchek (2004),

Smits et al. (2005), Vladislavleva (2008), Vladislavleva et al. (2010) (see Section 4.5.4.4,

Chapter 4).

Still, all the described implementations have missed a fundamental issue for the suc-

cess of hybrid approaches. In fact, the computational cost of tuning the numerical pa-

rameters has not been taken into account: if the number of coefficients in the GP in-

dividuals are not kept to the bare minimum, so that expressivity and then fitness value

are not compromised, the advantages provided by deterministic tuning quickly disappear.

Experiments carried out by the author (not shown here) have proved that the natural

proliferation of numerical constants in Koza’s style GP makes the deterministic tuning of

an entire population of individuals computationally unfeasible after the first generations,

due principally to bloat (see Section 4.4.1, Chapter 4). A clever strategy to optimise both

the number and the location of the coefficients in GP individuals is then key to the success

of hybrid approaches.
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In this regard, the hybrid tree-based GP implementation developed by Alvarez (2000)

(used also in Ashour et al. (2003)) is particularly interesting as numerical nodes are in-

serted into parameterless individuals in optimal location so that the number of coefficients

is minimised, reducing as a result the tuning cost. The parameters insertion algorithm is

based on the application of simple algebraic properties, like distributive property for mul-

tiplication (more details can be found in Alvarez (2000)). The approach followed in

Alvarez (2000) makes GP individuals’ coefficients handling completely independent from

evolution, as numerical nodes do not take part to genetic operations (although the spon-

taneous generation of constants can still be expected as a result of the existence of neutral

elements for the functional primitives used - ex. x/x = 1). The approach also reduces

the appearance of semantical introns, reducing the use of computational resources and

delaying premature convergence (see Section 4.4.3, Chapter 4).

5.2 HyGP, a hybrid GP implementation

This section is dedicated to the description of a hybrid tree-based GP implementation

aimed at symbolic regression tasks, which has been called “HyGP”. The software was

used to produce the metamodels shown in Chapter 6 and is freely downloadable from

Armani (2011).

HyGP evolutionary engine has been developed according to the guidelines provided

in Koza (1992) and summarised in Chapters 2 and 3. However, the evolutionary search

has been used only to find a set of good mathematical structures, while deterministic

algorithms have been opted for for the insertion and optimisation of the numerical values

in the evolved parameterless individuals, in order to benefit from the advantages of the

hybrid GP approaches described in the previous section. The work done by Alvarez (2000)

has been the main inspiration for the efficient use of computational resources (computing

power and memory usage). Therefore, although the traditional genetic programming

operators - reproduction, mutation, crossover - are still used, they are applied to GP

individuals (metamodels) stripped of their numerical terminals. Parameters are inserted

in the offspring and optimised only during fitness evaluation and at the end of the run.

The whole process is shown schematically in Fig. 5.1.

Some changes have been introduced to the GP algorithm developed by Alvarez (2000)

to improve the efficiency of the search and the quality of the evolved individuals. In the

next sections HyGP’s components are described in detail.
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FIGURE 5.1: HyGP’s hybrid GP algorithm

5.2.1 Initialisation

A modified version of the ramped half and half method is used to initialise the population

(see Section 3.1.2, Chapter 3). The relative percentages of the population generated by

the “full” and the “grow” method can be specified by the user2. As Alvarez’s hybrid ap-

proach is adopted, nodes containing numerical values are not inserted in the trees at this

stage. Individuals’ structure is defined selecting functional nodes (FU, FB) and variable

nodes (TV). At the end of the this step trees do not contain any numerical parameters

(terminal constant nodes - TC).
2See parameter p_FULL in Section B.1.1, Appendix B.
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5.2.2 Parameters insertion and tuning by an optimisation algorithm

The computational overhead required for parameter tuning is kept to the minimum through

the optimisation of coefficients location and number. Following Alvarez’ hybrid approach,

at each new generation parameterless individuals, which will be termed ancestors, are

first generated using traditional GP operations. Then, a family of mathematical expres-

sions is spawned from each ancestor through the insertion of numerical terminals, which

are finally optimised using a SQP algorithm (Madsen et al. 2002). The number of indi-

vidual generated from each ancestor is equal to the number of sets of initial guesses used

by the SQP optimiser: the individual having the lowest error after tuning is then chosen

to represent the original ancestor3. Particular measures have been put in place in order

to give the user the possibility to specify the data set used for parameter tuning and to

choose the number of random initial guesses for the SQP optimiser (see Appendix B): the

effect of the number of initial guesses, or the size of the “families”, has been studied and

results will be discussed in Section 5.3.0.3. In a standard HyGP experiment the number

of initial guesses is 2.

Parameters are inserted recursively taking into account the possible simplifications

granted by distributive property between sum/subtraction and multiplication/division,

so that the number of parameters is reduced without compromising the expressivity of

the individual. The rules applied by the insertion algorithm are described in Table 5.1.

The reader will notice the similarity with the set of rules presented in Alvarez (2000,

p. 59). Unary nodes containing sine or cosine are however here treated in a different

way, in order to provide such primitives with more expressivity. In particular, as a result

of rule 2 and 3, a sine or cosine term is provided with a parameter for amplitude (rule 2)

and another one for frequency (rule 3).

The flowchart of the parameter insertion algorithm is shown in Fig. 5.2. An example

of how the insertion algorithm works is given in Fig. 5.3, where is shown how the ancestor

z+ sin(z) is turned into the expression 4.3 + 8.1z+ 1.2sin(3.5z) (complete individual). It

is worth reminding that inserting parameters necessarily alters the depth and the size of

the tree.
3Encouraging the evolution of classes of individuals rather than of single individuals is a technique that

has also been used by other researchers. Parallels can be found for example in the context-free grammar
genetic programming implementation developed by Whigham (1995) (see Section 4.1.1, Chapter 4).
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TABLE 5.1: Rules followed to insert constant nodes

1. Binary node (FB)

• Multiplication and Division operations only require one tuning parameter:
F (x) = x1 ∗ x2 −→ F̃ (x, a) = a1 ∗ x1 ∗ x2

• All other operations require two tuning parameters:
F (x) = x1 + x2 −→ F̃ (x, a) = a1 ∗ x1 + a2 ∗ x2
F (x) = xx21 −→ F̃ (x, a) = (a1 ∗ x1)a2∗x2

• When F is a combination of the previous two approaches, tuning parameters
are only applied to operations different from multiplication and division:
F (x) = x1 ∗ (x2/x3 + x4) −→ F̃ (x, a) = x1 ∗ (a1 ∗ x2/x3 + a2 ∗ x4)
F (x) = (x1 + x2)

x3∗x4 −→ F̃ (x, a) = (a1 ∗ x1 + a2 ∗ x2)a3∗x3∗x4

2. Unary node (FU)

• if sin() or cos(), one tuning parameter is inserted; otherwise no parameters
are added:
F (x) = sin(x) −→ F̃ (x, a) = a ∗ sin(x)
F (x) = cos(x) −→ F̃ (x, a) = a ∗ cos(x)

3. Terminal Var node (TV)

• One tuning parameter is inserted:
F (x) = (x1) −→ F̃ (x, a) = (a1 ∗ x1)

4. At the end of the process a free parameter is added to the whole expression:

• F̃ (x, a) −→ Ffin(x, a) = a0 + F̃ (x, a)

5.2.3 Selection

The selection of the individuals for genetic operations (reproduction, crossover and mu-

tation) exploits elitism. The main reasons for the adoption of an elitist approach are

described in Section 3.1.5.1, Chapter 3.

In this regard, the individuals included in the population elite are granted a privileged

status. The elite is defined as a subset made of a certain percentage of the best individuals

in the population at each generation. So before selection ancestors have to be sorted

according to the fitness value of the best complete individual they spawn.

In all the experiments that will be described in this chapter and in the next (Chapter 6)

the elite size was set to 20% of the population, although there is complete freedom for

the user to change the percentage defining the elite size (see Appendix B).

For the selection of candidates for crossover, the first parent is chosen as the individual

having the lowest fitness value in a pool of three competitors randomly selected in the
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FIGURE 5.2: Algorithm to insert constant nodes in the tree structure

FIGURE 5.3: Tree before (left) and after (right) parameter insertion: z+sin(z) turns into
4.3 + 8.1z + 1.2sin(3.5z)
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elite (tournament selection of size 3), whereas for the second parent the three competitors

are randomly selected from the whole population. As for mutation, the individual under-

going mutation is the one having the lowest fitness value in a pool of three competitors

randomly selected from the elite.

5.2.4 Reproduction, crossover and mutation

Traditional genetic operators are used to evolve ancestors, which are GP syntax trees

without numerical parameters. Reproduction, crossover and mutation are applied in-

dependently from each other to generate a predefined percentage4 of the population,

according to description provided in Section 3.1.5.4, Chapter 3. In all the experiments

shown in this chapter and the next (Chapter 6) the percentage of the new population

generated by crossover and mutation has been set to 40%, leaving a percentage of 20%

to reproduction, as shown in Fig. 5.4.

The independent application of the genetic operators allows to focus on the single

effect of each particular genetic operator. This strategy has been therefore chosen to

better understand the effect of crossover and mutation, as well as to make code validation

simpler.

FIGURE 5.4: HyGP replacement scheme

4These percentages are set through the parameters REPR_RATE, CROSS_RATE and MUT_RATE described
in Section B.1.1, Appendix B.
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Some modifications have been introduced to the standard versions of reproduction,

subtree crossover and subtree mutation to improve the exploration of the search space

and the robustness of the generated metamodels. Details are provided in the next sec-

tions.

5.2.4.1 Reproduction

All individuals belonging to the elite are transferred unchanged to the new population.

If in the elite there are multiple copies of the same ancestor, they are replaced by new

individuals, generated randomly using either a “full” or a “grow” algorithm5 (the selection

is done randomly) imposing a maximum depth of 2. This approach has been inspired by

the epoch replacement operator used by Whigham (1995) (see Section 4.1.1, Chapter 4).

If the same ancestor survives in the elite for more than a generation, a reevaluation

procedure is applied to verify its robustness: a new tuning of the coefficients is performed,

using as initial guesses a set of values different from the ones obtained in the previous

generation. The fitness value of the new individual is compared to the previous fitness

value, and the best set of coefficients is chosen6.

5.2.4.2 Crossover and mutation

Crossover and mutation are applied independently in HyGP. Subtree crossover is used,

whereas mutation is alternatively point mutation (odd generations) and subtree mutation

(even generations) (see Section 3.1.5, Chapter 3). Point mutation is used to introduce

small changes in the individuals, which are likely to cause minimal disruption to the

genotype (point mutation can be considered as a local or “delicate” operator). On the

other hand, subtree mutation is also used for its potential to radically change the structure

of the genotype. The resulting balanced set of mutation operators is then able to introduce

slight (or local) as well as dramatic (or global) changes in genotypes, variations that are

both needed in a GP search as described in Section 3.1.5.5, Chapter 3). In both cases,

mutation is likely to introduce brand new pieces of genetic information, helping maintain

genetic diversity.

Candidates nodes for crossover and mutation7 are not selected with uniform probabil-

ity, in order not to bias the selection towards terminal nodes, which results in local search
5for more details on these algorithms see Section 3.1.2, Chapter 3, .
6The number of reevaluations can be increased setting the number of initial guesses for the SQP optimiser

to a value bigger than 2 - see parameter N_GUESSES in Section B.1.1, Appendix B, .
7see Section 3.1.5.2, Chapter 3
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and bloat due to removal bias8. However, instead of imposing a separate hit rate for func-

tional and terminal nodes9, a two-step selection is used. The depth of the candidate node

is chosen first, giving all depths in the individual the same probability to be selected. The

node is then selected among all the nodes at the same depth, still all having the same

probability to be selected. Such strategy appears to be a really simple solution to reduce

the effect of removal bias.

To further reduce bloat, an upper bound on program depth is introduced, following

the approach called maximal depth restriction described in Section 4.5.4.1, Chapter 3.

It has been already reported on the benefits of this approach for symbolic regression10.

The depth of the (parameterless) offspring generated by crossover or subtree mutation is

checked: if it is lower or equal to the imposed limit, the offspring is accepted, otherwise

the genetic operator is repeated until a child with an acceptable depth is generated. This

is a variation of the traditional maximal depth restriction used in Koza (1992), according

to which one of the parents is chosen if the child exceeds the limit depth.

5.2.5 Fitness function

In order to encourage the evolution of accurate, smooth and compact mathematical ex-

pressions, as well as to avoid bloat, the fitness function is defined as a weighted sum of

different terms or objectives, as outlined in Section 4.5.4, Chapter 4.

The fitness value F (i, t) of individual i at generation t is computed as:

F (i, t) = a1F1(i, t) + a2F2(i, t) + a3 106 F3(i, t) + a4F4(i, t) (5.1)

a1 + a2 + a3 + a4 = 1 (5.2)

where:

• F1 is the root mean square error (RMSE) of individual i at generation t evaluated

on the building data set, divided by the average RMSE of the elite individuals at the

previous generation:

F1 =
RMSE(i, t)

RMSE(t− 1)
(5.3)

• F2 is the square of the number of numerical terminals (or coefficients) present in

the individual, after the parameter insertion has taken place.
8see Section 4.4.4, Chapter 3
9See Section 4.5.2, Chapter 3

10See Section 4.5.4.1, Chapter 3
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• F3 is the number of not legal operations that are encountered during the individual

RMSE evaluation, defined as the total number of fitness cases in which any opera-

tion in the syntax tree is not legal (for example, division by zero).

• F4 is the number of nodes the individual is made of.

The weighted approach defined by (5.1) has been chosen as the simplest way to

optimise concurrently different objectives. Accuracy, parameter tuning cost reduction,

smoothness and generalisation ability, bloat repression have been considered as the main

factors contributing to a successful evolution11. As noted in Section 4.5.4.2, Chapter 4,

some preliminary GP trials are required to tune the weights in Eq. 5.2.

Although not original in its structure, the fitness function defined in Eq. (5.1) presents

some innovative features regarding the way objectives are defined. In first place, the

traditional raw fitness defined as sum of the absolute errors or root mean square error12

is replaced by a normalised error value (F1). Initial GP tests, not shown here, confirmed

the validity of the approach, in particular for a multiobjective fitness function formulation.

Secondly, the integration of a “smoothing” term that penalises undefined operations

(F3) is a novelty with respect to the fitness function formulation described by Alvarez

(2000), whose hybrid approach has been an important source of inspiration for HyGP.

This extra term, which was already used by Blickle (1996), has proved effective in im-

proving smoothness and generalisation ability.

Finally, generalisation ability and computational efficiency are boosted whereas pre-

mature convergence and overfitting are contrasted penalising the size of the individuals

through the terms F2 and F4. Reducing parameter tuning cost is key to the success of

hybrid GP approaches (see Section 5.1), so the term F2 has been introduced to bias the

evolution towards individuals with fewer numerical coefficients, as also done in Alvarez

(2000). However, this penalisation is not able to prevent in any way the progressive

accumulation of nested multiplications and divisions, which, applying the rules in Ta-

ble 5.1, require just one numerical coefficient. Therefore, a size penalisation has been

added through the last term F4 to prevent such eventuality, which can quickly disrupt

the evolution process. The size penalisation expressed by term F4 is widely recognised

as an effective general strategy to fight bloat13. As already introduced in the previous

section, the maximal depth restriction strategy is also used as an additional measure to
11for a general introduction to GP evolution as a multiobjective problem see Section 4.3, Chapter 4.
12see Section 3.1.3, Chapter 3.
13see parametric parsimony pressure strategies in Section 4.5.4.2, Chapter 3.
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curb bloat14, although due to the particular nature of the hybrid approach some bloat

reduction is likely: in particular a reduction of semantical introns15 can be expected.

Curiously, Eq. (5.1) can be considered a synthesis of the fitness functions used in

Blickle (1996), where the number of tuning parameters is not penalised, and in Alvarez

(2000), where illegal syntax trees are not discouraged.

5.2.6 Termination criteria

The evolution is terminated if the root mean square error of the best-so-far individual

goes below a predefined threshold16. The evolution in any case ends when the number

of generations reaches the limit specified by the user17.

5.3 Enhancements to hybrid GP algorithm

The hybrid GP algorithm described in the previous sections is substantially similar to the

implementation developed by Alvarez (2000), although some important features have

been introduced to improve metamodels accuracy and to reduce bloat. Such implemen-

tation, as it has been presented so far, will be termed “reference” in the following sections.

Main focus of the research following HyGP development has been the exploration

of new strategies to improve the quality of the evolved metamodels in terms of accuracy

and computational cost. A variety of issues undermining the efficiency of the evolutionary

search have been addressed, resulting in a set of different enhanced versions of the HyGP

code. Such implementations are described in the following sections.

5.3.0.1 Influence of copies in the population

The first issue that has been analysed is the role of copies on HyGP evolution. The pro-

liferation of copies of the same individual increases the risk of fitness stagnation and

premature convergence due to loss of diversity, as observed by Koza (1992), Srinivas and

Patnaik (1994) and Chellapilla (1997). Whereas a few researchers have allowed identical

individuals in their GP populations (Lew et al. 2006), others have implemented strategies

for the removal of “clones”, both in GP (De Jong and Pollack 2003) and in GA (Affenzeller
14see Section 4.5.4.1, Chapter 3.
15see Section 4.4.2.1, Chapter 3.
16See parameter THRESHOLD described in Section B.1.1, Appendix B.
17See parameter G described in Section B.1.1, Appendix B.
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and Wagner 2004). In HyGP reference version, copies are replaced by newly generated

individuals, as described in Section 5.2.4.1.

In order to study the effect of removing copies from the elite on the accuracy of the

evolved models, HyGP code has been modified so that during reproduction copies are

not deleted. This alternative HyGP implementation will be referred to in the experiments

shown in Section 5.3.4 as “with COPIES” version.

5.3.0.2 Effect of periodic population regeneration

A second enhanced HyGP implementation has been developed to maximise population

variability through the periodical deletion and regeneration of part of the population.

Evolution is modified so that every six generations, the common genetic operations used

in HyGP (reproduction, crossover, mutation) are not applied. Instead, a large percentage

of the population (set to 60%) is deleted and the empty places are filled with new individ-

uals. Such individuals are generated either by random initialisation or by joining existing

structures using a binary function randomly selected among the available primitives.

The periodic deletion of part of the population has been inspired by the ALPS approach

used by Hornby (2006) to improve evolutionary algorithms and by the cascade operator

presented in Vladislavleva (2008) (see Section 3.1.5.6, Chapter 3). The strategies used

for the generation of new individuals, instead, have been adapted from the epoch replace-

ment operator described in Whigham (1995) (see Section 4.1.1, Chapter 4) and from the

multigenic chromosome approach used by Ferreira (2001) (see Section 4.8, Chapter 4).

This enhanced HyGP version will be referred to as “KILLandFILL” in Section 5.3.5.

5.3.0.3 Sensitivity to the number of initial guesses

As described in the opening sections of the chapter, the reduction of the computational

cost associated with parameter tuning is key to the success of hybrid GP approaches. In a

HyGP experiment the user has the possibility to set the number of tuning processes each

ancestor undergoes18. Increasing the number of initial guesses for the SQP optimiser

improves fitness evaluation robustness for each individual, but it can lead to excessive

computational overhead, considering that populations are typically made of hundreds of

ancestors19.
18see Section 5.2.2
19see Chapter 6 for examples.
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In order to assess the influence of deterministic tuning on the accuracy of the gen-

erated metamodels, the number of SQP random initial guesses has been increased from

2, the default number of initial guesses, to 10. The HyGP implementation featuring this

extra tuning effort will be referred to as “10guesses” in Section 5.3.5.

5.3.0.4 Role of redundancy

Sufficiency and redundancy have paramount importance in genetic programming. GP

is able to generate good quality models even though important primitives are not made

available by the user, as seen in Section 4.2, Chapter 4. Moreover, in Section 4.8, Chap-

ter 4 it has been shown how the availability of multiple evolutionary paths to generate

the solution increases the probability of evolutionary search success.

In non-hybrid GP the availability of multiple evolutionary paths is reduced by the

premature disappearance of numerical coefficients from individuals (Vladislavleva 2008,

pag. 83). A decrease in the numerical coefficients in fact reduces the number of genotypes

(or syntax trees) that map to the same phenotype (or mathematical model).

The use of unary functional primitives that insert extra numerical coefficient is a sim-

ple but effective solution to this problem. For example, the unary primitives ShiftC and

ScaleC defined by Vladislavleva (2008), which encapsulate an addition and a multiplica-

tion by a numerical coefficient, have been reported to successfully tackle the premature

disappearance of numerical nodes (Vladislavleva 2008, pag. 83).

An enhanced HyGP implementation has therefore been developed to explore the bene-

fits of a new unary function called “SHIFT”, inspired by Vladislavleva’s ShiftC and ScaleC

operators. The SHIFT primitive modifies the parameters insertion algorithm20, introduc-

ing an extra addition in the node of the syntax tree where it is located. For example, if

we consider the structure Z1∗Z2, parameter insertion without SHIFT would produce the

individual:

Z1 ∗ Z2 =⇒ a0 + a1 ∗ Z1 ∗ Z2 (5.4)

whereas if the ancestor was Z1 ∗ SHIFT (Z2), the complete individual would be:

Z1 ∗ SHIFT (Z2) =⇒ a0 + Z1 ∗ (a1 + a2 ∗ Z2) (5.5)

20see Section 5.2.2.
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Although simple, the SHIFT operator is an effective way to increase the number of

numerical coefficients associated to an ancestor, and so the number of primitives combi-

nations that are mapped onto the same model or submodel.

The HyGP implementation featuring the SHIFT primitive will be referred to as “SHIFT”

in Section 5.3.5.

5.3.0.5 Effect of cross-validation strategy on generalisation ability

Cross-validation is a well known class of strategies used to increase the generalisation

ability of a model, as seen in Section 1.2.2, Chapter 1. A fifth HyGP implementation

has then been developed to assess if the use of the hold out method, that is splitting the

building data set and using two different subsets for model tuning and model evaluation,

improves the generalisation ability of the evolved models.

The building data set was generated by a genetic algorithm called permutational GA

(Bates et al. 2004) and then split to extract two different subsets: of the two, one subset

(tuning data subset) was used for tuning, the other (evaluation data subset) was used for

the final model fitness evaluation. Permutational GA was specifically used as it guarantees

not only an optimal or near-optimal latin hypercube distribution in each single subset

(tuning and evaluation subsets) but also in the merged data set (complete building data

set). The HyGP implementation enhanced with the hold out strategy will be referred to as

“NestedDOE” in Section 5.3.5. In all the experiments that have been performed the size of

the evaluation data subset is a third of the overall size of the (merged) building data set.

5.3.0.6 Effect of additional measures to counter overfitting

Differently from traditional GP (Koza (1992)), hybrid GP implementations allow to tailor

the tuning strategies to the particular location of the numerical coefficients in the syntax

tree. This feature has deserved a particular attention during HyGP development, as initial

experiments highlighted a characteristic phenomenon involving trigonometric primitives.

If sine or cosine are unary nodes of a syntax tree, SQP algorithm usually tends to improve

individual fitness value increasing the circular frequency and trimming the amplitude of

these functions. As this mechanism allows to build highly fit individuals in the span of

few generations, sine and cosine are used by GP far too often, even when the solution

does not have a periodic behaviour. However, most of the times the corresponding model

is affected by overfitting due to high circular frequency oscillations (noise). In Fig. 5.5 the
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problem is illustrated by the comparison of two different individuals produced by HyGP

for the same test problem, the symbolic regression of the expression Z∗sin(Z) from seven

points uniformly distributed in [0, π]. The evolved individuals are shown in Fig. 5.5: the

function in Fig. 5.5A has the same root mean square error as the function in Fig. 5.5B,

which is approximately zero. Although the former clearly has far worse generalisation

ability than the latter, HyGP is not able to discriminate between them using the given

building data set.
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Run 2, generation 0
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R2 = 1.000000e+00

(A) NO circular frequency optimisation
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(B) WITH circular frequency optimisation

FIGURE 5.5: Symbolic regression of Z ∗ sin(Z). Seven uniformly distributed points in
[0, π], shown by dots, are used as training set

A HyGP implementation has been developed to tackle overfitting caused by sine and

cosine. An algorithm has been added to recognise trigonometric terms like sin(cZ) and

cos(cZ) and to constrain the value of their arguments c, called circular frequencys. In

mathematical terms, a numerical coefficient c is recognised by HyGP as a circular fre-

quency value ai,k only if c appears as argument of sine or cosine and it is multiplied by a

variable, as in the following:

sin(c ∗ Zi) =⇒ ai,k = c (5.6)

cos(c ∗ Zi) =⇒ ai,k = c (5.7)

where Zi is the symbol of the i-th independent variable and k refers to the number of

circular frequencys recognised as circular frequencys for Zi. If it is assumed that the

maximum number of oscillations21 (periods) due to sine or cosine terms that metamodels

can have in each variable’s range ri is Pmax, then the maximum magnitude of the circular
21 see parameter MAX_N_PERIODS in Section B.1.1, Appendix B.
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frequency ωi,lim multiplying Zi is:

ωi,lim =
2πPmax
ri

(5.8)

The deterministic search for the best set of numerical parameters is then biased to penalise

set of values xi that feature circular frequencys outside the range [−ωi,lim, ωi,lim]. The bias

has been introduced adding to the traditional SQP error metrics (Madsen et al. 2002) a

penalisation made of as many terms gi,k as the number of circular frequencys recognised.

The minimisation problem solved using SQP has been reformulated as:

find x (5.9)

minimising FSQP (x) =
1

2

m∑
j=1

(
f̂j(x)− fj

)2
+

nvar∑
i=1

npulsi∑
k=1

gi,k(ai,k, ωi,lim) (5.10)

where x is the set of unknown parameters’ values of the GP individual f̂ being tuned,

fj is the observed output in sample j, f̂j is the output produced by the GP individual in

sample j, m is the number of samples (size of the building data set), nvar is the number of

independent variables and npulsi is the number of circular frequencys found for variable Zi

in the individual undergoing tuning. The penalisation terms gi,k that direct the search for

x away from high circular frequencys are defined as functions of the particular numerical

coefficients in x recognised as circular frequencys ai,k:

gi,k(ai,k, ωi,lim) =

 0 if ai,k ∈ [−ωi,lim, ωi,lim]

e(|ai,k|−ωi,lim)
2

− 1 if ai,k /∈ [−ωi,lim, ωi,lim]
(5.11)

The HyGP implementation described above has been used to generate the model plot-

ted in Fig. 5.5B. Such implementation will be referred to as “Omegalim” is Section 5.3.5.

5.3.0.7 Effect of different fitness function formulations

Attention has also been paid to the study of alternative formulations of the fitness function

and their effect on the quality of the evolved models. As described in Section 4.3, Chap-

ter 4, more than one property or objective contribute to the definition of a high-quality

metamodel. In Section 4.5.4, Chapter 4 different ways have been shown to translate these

properties into mathematical quantities to either encourage or penalise them during the

evolution.
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Three HyGP implementations have been developed to analyse the effect of three dif-

ferent fitness functions on metamodels accuracy. These implementations will be termed:

• normFIT

• normFITdiv

• MinMax

In normFIT implementation the fitness function is defined as follows:

F (i, t) = a1F1(i, t) + a2F2(i, t) + a3 ∗ 106 ∗ F3(i, t) + a4F4(i, t) (5.12)

a1 + a2 + a3 + a4 = 1 (5.13)

where F1(i, t) is redefined as a normalised RMSE or RMSNE22:

F1(i, t) = RMSNE(i, t) (5.14)

RMSNE(i, t) =

√√√√ 1

m

m∑
j=1

[
f̂i,j,t − fj

fj

]2
(5.15)

where f̂i,j,t is the value returned by individual i in generation t at sample point j and fj

is the known output at sample point j. The sum is made on the total number of sample

cases m in the building data set.

The fitness function formulation used in normFITdiv implementation maintains the

general definition shown in Eq. (5.12), but emphasises the variation with respect to the

average RMSNE in the elite of the previous generation:

F1(i, t) =
RMSNE(i, t)

RMSNE(t− 1)
(5.16)

normFIT and normFITdiv implementations have been introduced to check whether the

evolution benefits from the normalisation of the error.

In MinMax implementation the fitness function is defined in a different way, using a

MinMax approach, as shown in Eq. (5.17):

F = max
{
a1 ∗ 10 ∗ F1(i, t), a2F2(i, t), a3 ∗ 106 ∗ F3(i, t), a4F4(i, t)

}
(5.17)

a1 + a2 + a3 + a4 = 1 (5.18)

22RMSNE as, differently from RMSE, the error is normalised by the known output for each sample point.
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where the objectives F1, F2, F3 and F4 are defined as in the reference HyGP implemen-

tation described in Section 5.2.5. The MinMax approach is tested to understand whether

optimising the worst objective at a time instead of the linear combination of all four can

increase the number of evolutionary paths towards the solution.

5.3.1 Experimental methodology

The nine HyGP implementations presented in the previous section have been tested on

five symbolic regression problems, defined in Section 5.3.1.1.

For each implementation and each test problem an experiment consisting of 10 inde-

pendent runs was performed (50 experiments, 500 runs in total). The RMSE of the best

individual returned at the end of the evolution by each run was computed on building

as well as on a validation data set. For each experiment two RMSE samples made of 10

values each (one for building, one for validation) were then produced.

Both RMSE samples produced by model evaluation on building and validation data

sets were analysed. Model irregularities gone unnoticed during the evolution may in

fact appear during the reevaluation on the validation data set. To avoid any bias in the

conclusions due to the failure of a few runs (phenomenon termed “bimodal distribution”

by Soule and Foster (1998a) and described in Section 3.2.2, Chapter 3), two kind of

“pathologies” have been looked for, as done also by Vladislavleva (2008): singularities,

related to the presence of asymptotes in particular points of the data set, and excessive

RMSE. The percentage of individuals affected by singularities will be indicated with the

symbol “%∞” in Section 5.3.2. Individuals scoring an RMSE larger then the arbitrarily

chosen threshold of 100 were considered suffering from excessive RMSE pathology and

classified as "bad". The percentage of “bad” individuals will be indicated with the symbol

“%bad” in Section 5.3.2.

RMSE values of “pathologic” individuals were then removed from both RMSE samples

and a first analysis was performed on the reduced RMSE samples. At this stage boxplots23

were used to formulate hypotheses regarding the performances of the different HyGP

implementations. Indicators as median and interquartile range were considered more

appropriate than mean and variance as RMSE observations could not be assumed to have

a normal distribution.
23see Section 3.2.2, Chapter 3.
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A statistical analysis was then carried out on reduced RMSE samples produced by

reevaluation on validation data set to confirm or discard hypotheses emerged from pre-

vious analysis. Two-sided Kruskal-Wallis test and Wilcoxon rank sum test24, both non-

parametric, were used. Kruskal-Wallis test was carried out first to check if there was

significant evidence of a difference in median among all the RMSE samples for each test

problem. In case significant evidence had been detected, Wilcoxon test was used to com-

pare the median between single pairs of RMSE samples. A 5% significance level was

assumed in all statistical tests.

Parametric tests as one-way ANOVA (Upton and Cook 1996) were used only in a few

cases and only as a reference, as RMSE observations in the samples could not be assumed

to be normal.

5.3.1.1 Test functions

The nine HyGP implementations described in Section 5.3 were tested on the following

symbolic regression test problems:

f1(z1, z2) =
e−(z1−1)

2

1.2 + (z2 − 2.5)2
(5.19)

f2(z) = e−zz3cos(z)sin(z)
[
cos(z)sin2(z)− 1

]
(5.20)

f3(z1, z2) =
(z1 − 3)4 + (z2 − 3)3 − (z2 − 3)

(z2 − 2)4 + 10
(5.21)

f4(z1, z2) = [30 + z1sin(z1)] (4 + e−z2) (5.22)

f5(z1, z2) =

(
z2 − 5.1

z21
4π2

+ 5
z1
π
− 6

)2

+ 10
(

1− π

8

)
cos(z1) + 10 (5.23)

The test functions listed above were selected as benchmarks for a simple reason: they

are compact, they have a highly non linear behaviour in the domain under analysis and

they can be easily conceived as being obtained combining non linear mathematical func-

tions. Korns (2011) calls this class of test functions “simple test formulas”. However the

very same author acknowledges that this “simple” test functions represent a demanding

challenge for GP, as “for these intractable problems state-of-the-art symbolic regression

engines fail to return a champion with the correct formula” (Korns 2011, p. 130). If GP

is not able to return a correct formula for “simple test formulas” then according to Korns
24See Section 3.2.2, Chapter 3.
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“user interest and trust in the symbolic regression system wanes”, GP “loses its differen-

tiation from other black box machine learning techniques as support vector regression or

neural nets” and thirdly, being GP a “technique for returning, not just coefficients, but a

correct formula”, “if this claim cannot be fulfilled [...] a serious reputational issue will

develop and research money will flow in other directions” (Korns 2011, p. 130).

Therefore, the test functions were selected among the ones used by other researchers

on symbolic regression through GP. The first three were taken from Vladislavleva (2008),

who selected these and others functions as “the most difficult problems” from an original

set of thirteen functions introduced by Keijzer (2003): Kotanchek function in Eq. (5.19),

Salustowicz function in Eq. (5.20) and RatPol2D function in Eq. (5.21). The fourth func-

tion, Eq. (5.22), was taken from Hock and Schittkowski (1981) and it will be called Hock

function in the following. The last function (Eq. (5.23)), known as Branin-Hoo function,

was excerpted from Viana and Haftka (2009). The plots of the functions are shown in

Fig. 5.6.

5.3.1.2 Building and validation data sets

The building data sets of the test functions described in Section 5.3.1.1 were generated

coupling points selected by optimal latin hypercube sampling25 with the corresponding

values of the test function. A GA-based code was used to generate the DoEs (Bates et al.

2004). The sampling regions are reported in the second column of Table 5.2 and shown

delimited by a dashed line in Fig. 5.6: inside each dashed rectangle, the dots represent

the DoE points (for Salustowicz test function the rectangle shrinks to a segment).

The validation data set was instead generated using a full-factorial DoE26. For a reli-

able evaluation of the quality of the individual, a larger number of points was generated

with respect to the building data set. The sampling region was also extended for the val-

idation data set, in order to assess model extrapolation ability, as done in Vladislavleva

(2008).

The number of points, the upper and lower bounds and the other characteristics of

the validation data sets for each test problem are given in Table 5.2.
25see Section 1.2.5, Chapter 1.
26see Section 1.2.5, Chapter 1.
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FIGURE 5.6: Shape of the test functions (left) and corresponding regions which building
and validation data sets are sampled from (right)
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TABLE 5.2: Training and validation data sets for the test functions. In the middle column
the domain used for optimal latin hypercube sampling is defined. In third column the
validation data set is defined using the notation Zi = [a : dx : b]. This means that values

of variable Zi are sampled from a to b with a step dx.

test function building data validation data
(OLH DoE) (full factorial DoE)

Kotanchek 40 points 2025 points
0 ≤ Z1 ≤ 4 Z1, Z2 = [−0.2 : 0.1 : 4.2]
0 ≤ Z2 ≤ 4

Salustowicz 100 points 221 points
Z1 = [0.05 : 0.1 : 9.95] Z1 = [−0.5 : 0.05 : 10.5]

(full factorial DoE)
RatPol2D 40 points 1156 points

0 ≤ Z1 ≤ 6 Z1, Z2 = [−0.25 : 0.2 : 6.35]
0 ≤ Z2 ≤ 6

Hock 20 points 441 points
0 ≤ Z1 ≤ 5 Z1, Z2 = [−0.5 : 0.3 : 5.5]
0 ≤ Z2 ≤ 5

Branin-Hoo 30 points 1369 points
−5 ≤ Z1 ≤ 10 Z1 = [−6.5 : 0.5 : 11.5]
0 ≤ Z2 ≤ 15 Z2 = [−1.5 : 0.5 : 16.5]

5.3.2 Results and discussion

The results of the experiments described in Section 5.3.1 and its analysis will be detailed

in the following sections.

To start with, in Section 5.3.3 standard GP, based on classic genetic programming

framework, is put to the test with HyGP on the five test regression problems introduced

in Section 5.3.1.1. The results obtained motivate the choice of not progressing further

with experimentation on standard GP.

In Section 5.3.4 only two HyGP implementations are compared, the reference formula-

tion introduced in Section 5.2, in which copies are deleted from the elite, and with COPIES

implementation, described in Section 5.3.0.1, in which copies are instead left in the elite.

This first comparison is performed on all the test functions.

Finally, in Section 5.3.5 all the remaining implementations are compared with the

original HyGP formulation (reference), analysing separately each test function.

5.3.3 Preliminary tests: standard GP against hybrid GP

The HyGP implementation described in Section 5.2 differs from standard genetic pro-

gramming mainly for the addition of the deterministic tuning algorithm. Little is known

about what effect numerical coefficient tuning has on generalisation ability, robustness
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and computational cost of model generation once added to a Koza’s style genetic pro-

gramming implementation.

To shed a light on this topic and assess if the main advantages of hybrid approaches

generally introduced in Section 5.1 can be expected, the reference HyGP implementation

has been compared to a similar GP implementation in which tuning was switched off. The

results are reported in the following for each test problem.

5.3.3.1 Kotanchek test problem

The GP parameters used for both experiments, reference and standard GP are listed in

Table 5.3. In table 5.4 pathologies on training and validation data sets are reported:

TABLE 5.3: Kotanchek test problem: main parameters used in the experiments

Population size: 200
Generations: 50
Primitives: +, -, *, / (protected), square, cube, sin, cos, exp
No. of fitness cases: 40
Initialisation 50% full + 50% grow
Maximum depth initialised trees 4
Maximum depth initialised trees 2
Maximal depth restriction 50
Reproduction rate 20%
Crossover rate 40%
Mutation rate 40%
a2 (W_COMPLEXITY) 0.001
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.0001

reference appears to be more robust than standard GP, for which only 4 out of 10 runs

produce a defined model on the validation data set. On the other hand, the best individual

TABLE 5.4: Comparison with standard GP: pathologies on building and validation data
sets for Kotanchek test case. All experiments consisted of 10 runs: %∞ is the percentage
of individuals not defined, %bad is the percentage of individuals with a RMSE>100 on

the particular data set. Median and IQR are computed on the remaining individuals.
Kotanchek Building data set Validation data set

RMSE RMSE
%∞ %bad median IQR %∞ %bad median IQR

standard_GP 0 0 9.003E-02 4.052E-02 60 0 1.392E-01 7.001E-02
reference 0 0 6.676E-02 2.378E-02 10 0 1.109E-01 3.394E-02

is returned by standard GP (RMSE = 7.005910e-002 R2= 8.816135e-001) as shown by

RMSE boxplots in Fig. 5.7. The better performance with respect to reference is however

not statistically significant (p-value = 0.64343). The difference in accuracy on building
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data set and validation data set for individuals produced by reference may be explained

by overfitting.
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FIGURE 5.7: Kotanchek test case, comparison between standard GP and reference im-
plementation: RMSE boxplots for building and validation data set. Individuals with

RMSE>100 as well as undefined ones are not included

In Fig. 5.8 the average size and depth of the individuals in the archive (40) are plotted

against the generations: it can be observed that tuning contributes effectively to limiting

the depth of the individuals.
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FIGURE 5.8: Kotanchek test case, comparison between standard GP and reference im-
plementation: average size and depth of the 40 individuals belonging to the archive
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5.3.3.2 Salustowicz test problem

The GP parameters used for both experiments, reference and standard GP are listed in

Table 5.5.

TABLE 5.5: Salustowicz test problem: main parameters used in the experiments

Population size: 300
Generations: 50
Primitives: +, -, *, / (protected), square, cube, sin, cos, exp,

negative exp, opposite, reciprocal
Number of fitness cases: 100
Initialisation 50% full + 50% grow
Maximum depth initialised trees 4
Maximum depth initialised trees 2
Maximal depth restriction 50
Reproduction rate 20%
Crossover rate 40%
Mutation rate 40%
a2 (W_COMPLEXITY) 1.0e-6
a3 (W_N_CORRECTIONS) 0.01
a4 (W_SIZE) 1.0e-6

Pathologies on training and validation data sets are shown in table 5.6.

TABLE 5.6: Comparison with standard GP: pathologies on building and validation data
sets for Salustowicz test case. All experiments consisted of 10 runs: %∞ is the percentage
of individuals not defined, %bad is the percentage of individuals with a RMSE>100 on

the particular data set. Median and IQR are computed on the remaining individuals.
Salustowicz Building data set Validation data set

RMSE RMSE
%∞ %bad median IQR %∞ %bad median IQR

standard_GP 0 0 1.171E-01 1.023E-01 80 0 1.168E-01 1.337E-01
reference 0 0 1.496E-01 1.023E-01 90 0 4.036E-01 0.000E+00

The generalisation properties of the individuals produced by both experiments appear

really poor: considering the very little proportion of individuals defined on the validation

data set, standard GP returned the best model (R2 = 9.72844e-01 , RMSE = 4.99181e-

02), as shown by RMSE boxplots in Fig. 5.9. The Salustowicz test case, although a

relatively simple univariate function, will prove a hard regression problem also in the

experiments shown in the following chapters.

The average size and depth of the individuals in the archive (60) are plotted against

the generations in Fig. 5.10. Differently from the Kotanchek test case (Section 5.3.3.1), it
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FIGURE 5.9: Salustowicz test case, comparison between standard GP and reference
implementation: R2 boxplots for building and validation data set. Individuals with

RMSE>100 as well as undefined ones are not included

can be observed that tuning effectively curbs code growth limiting both the size and the

depth of the individuals.
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FIGURE 5.10: Salustowicz test case, comparison between standard GP and reference
implementation: average size and depth of the 10 individuals belonging to the archive

5.3.3.3 RatPol2D test problem

The GP parameters used for both experiments, reference and standard GP are listed in

Table 5.7.

Pathologies on training and validation data sets are shown in Table 5.8.
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TABLE 5.7: RatPol2D test problem: main parameters used in the experiments

Population size: 200
Generations: 50
Primitives: +, -, *, / (protected), square, cube, sin, cos, exp,

reciprocal
Number of fitness cases: 40
Initialisation 50% full + 50% grow
Maximum depth initialised trees 4
Maximum depth initialised trees 2
Maximal depth restriction 50
Reproduction rate 20%
Crossover rate 40%
Mutation rate 40%
a2 (W_COMPLEXITY) 0.0001
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.00001

TABLE 5.8: Comparison with standard GP: pathologies on building and validation data
sets for RatPol2D test case. All experiments consisted of 10 runs: %∞ is the percentage
of individuals not defined, %bad is the percentage of individuals with a RMSE>100 on

the particular data set. Median and IQR are computed on the remaining individuals.
RatPol2D Building data set Validation data set

RMSE RMSE
%∞ %bad median IQR %∞ %bad median IQR

standard_GP 0 0 8.397E-01 4.103E-01 30 0 4.870E+00 7.755E+00
reference 0 0 6.165E-01 8.537E-02 0 10 1.634E+00 7.017E-01

Reference turns out to be more robust than standard GP, for the larger number of

individuals defined on the validation data set, and more consistent, as the RMSE in-

terquartile range is lower than in standard GP case.

Reference also returns the best model, as shown in RMSE boxplots of Fig. 5.11. The

difference in median of the validation set RMSE distributions is not statistically signifi-

cant according to Wilcoxon rank-sum test (p-value = 0.063969).

In Fig. 5.12 the average size and depth of the individuals in the archive (40) are

plotted against the generations: tuning in this case affects mainly depth dynamics.
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FIGURE 5.11: RatPol2D test case, comparison between standard GP and reference imple-
mentation: R2 boxplots for building and validation data set. Individuals with RMSE>100

as well as undefined ones are not included
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FIGURE 5.12: RatPol2D test case, comparison between standard GP and reference im-
plementation: average size and depth of the 10 individuals belonging to the archive

5.3.3.4 Hock test problem

The GP parameters used for both experiments, reference and standard GP are listed in

Table 5.9.

In Table 5.10 pathologies on training and validation data sets are reported: all the

individuals produced by both reference and standard GP are defined on the validation

data set.
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TABLE 5.9: Hock test problem: main parameters used in the experiments

Population size: 200
Generations: 50
Primitives: +, -, *, / (protected), square, cube, sin, cos, exp
Number of fitness cases: 20
Initialisation 50% full + 50% grow
Maximum depth initialised trees 4
Maximum depth initialised trees 2
Maximal depth restriction 50
Reproduction rate 20%
Crossover rate 40%
Mutation rate 40%
a2 (W_COMPLEXITY) 0.01
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.001

TABLE 5.10: Comparison with standard GP: pathologies on building and validation data
sets for Hock test case. All experiments consisted of 10 runs: %∞ is the percentage of
individuals not defined, %bad is the percentage of individuals with a RMSE>100 on the

particular data set. Median and IQR are computed on the remaining individuals.
Hock Building data set Validation data set

RMSE RMSE
%∞ %bad median IQR %∞ %bad median IQR

standard_GP 0.0 0.0 4.067E+00 1.333E+00 0.0 10.0 9.892E+00 2.485E+01
reference 0.0 0.0 6.165E-01 8.537E-02 0.0 10.0 1.634E+00 7.017E-01

Reference however performs far better than standard GP, in terms of both accuracy and

consistency, as shown by the RMSE boxplots in Fig. 5.13. The difference in the median

of the two validation RMSE distribution is statistically significant, as confirmed by both

Wilcoxon rank-sum test (p-value = 0.00064951) and ANOVA test (p-value = 0.0061172).

In Fig. 5.12 the average size and depth of the individuals in the archive (40) are plot-

ted against the generations: the effect of the parameter insertion algorithm and tuning

on size and depth dynamics is easily recognisable.

5.3.3.5 Branin-Hoo test problem

The GP parameters used for both experiments, reference and standard GP are listed in

Table 5.11.
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FIGURE 5.13: Hock test case, comparison between standard GP and reference implemen-
tation: R2 boxplots for building and validation data set. Individuals with RMSE>100 as

well as undefined ones are not included

0 10 20 30 40 50
0

10

20

30

40

50

60

70

Average size of archive individuals

Generation

S
iz

e
 (

n
o
d
e
s
)

 

 

standard_GP

reference

(A) size dynamics

0 10 20 30 40 50
2

4

6

8

10

12

14

16

Average depth of archive individuals

Generation

D
e
p
th

 

 

standard_GP

reference

(B) depth dynamics

FIGURE 5.14: Hock test case, comparison between standard GP and reference imple-
mentation: average size and depth of the 40 individuals belonging to the archive

In Table 5.12 pathologies on training and validation data sets are reported. Standard

GP completely failed to return acceptable models, as 9 out of 10 individuals turned out

to be undefined on the validation data set and the only one defined has a RMSE larger

than 100. Such model was therefore considered “bad” according to the definition given

in Section 5.3.1 and excluded from the comparisons.
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TABLE 5.11: Branin-Hoo test problem: main parameters used in the experiments

Population size: 200
Generations: 50
Primitives: +, -, *, / (protected), square, cube, sin, cos, exp
Number of fitness cases: 30
Initialisation 50% full + 50% grow
Maximum depth initialised trees 4
Maximum depth initialised trees 2
Maximal depth restriction 50
Reproduction rate 20%
Crossover rate 40%
Mutation rate 40%
a2 (W_COMPLEXITY) 0.001
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.0001

TABLE 5.12: Comparison with standard GP: pathologies on building and validation data
sets for Branin-Hoo test case. All experiments consisted of 10 runs: %∞ is the percentage
of individuals not defined, %bad is the percentage of individuals with a RMSE>100 on

the particular data set. Median and IQR are computed on the remaining individuals.
Branin-Hoo Building data set Validation data set

RMSE RMSE
%∞ %bad median IQR %∞ %bad median IQR

standard_GP 0.0 0.0 3.156E+01 9.752E+00 90.0 10.0 N/A N/A
reference 0.0 0.0 5.220E+00 2.368E+00 50.0 0.0 1.959E+01 1.357E+01

Reference appears in this case far superior to standard GP. Its individuals’ RMSE

distribution on the validation data set is shown in Fig. 5.15B.
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FIGURE 5.15: Branin-Hoo test case, comparison between standard GP and reference
implementation: R2 boxplots for building and validation data set. Individuals with

RMSE>100 as well as undefined ones are not included
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In Fig. 5.16 the average size and depth of the individuals in the archive (40) are

plotted against the generations. As in the previous test case, parameter insertion algo-

rithm and tuning effectively curbs both size and depth of the generated individuals: the

average depth and size of reference archive individuals at the end of the evolution are

approximately a half of the values of these parameters observed in standard GP.
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FIGURE 5.16: Branin-Hoo test case, comparison between standard GP and reference
implementation: average size and depth of the 40 individuals belonging to the archive

5.3.3.6 Comparison between standard and hybrid GP: conclusions

The comparison between the two genetic programming implementations reference and

standard GP has been carried out taking into account generalisation ability of the returned

models and computational cost, which has been estimated recording the time needed to

complete a GP evolution.

In Fig. 5.17 training time distributions of the two implementations for all the test cases

considered are shown. Boxplots are used and medians are clearly indicated by a red bar.

Training times prove that standard GP is far faster than the reference implementation

of HyGP. However, higher training times appear to be the price that has to be paid for

improved generalisation ability and consistency. Evidence backing this conclusion is pro-

vided in Table 5.13, where for each test case are reported which implementation scored

better for generalisation, best accuracy, archive individuals average size and depth.
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FIGURE 5.17: Runtime comparison between standard GP and reference on the five test
problems

TABLE 5.13: Results of the comparison between reference HyGP implementation and
standard GP: the implementation that showed best generalisation performance, returned
the best individual and exhibited the smallest average archive individuals’ size and/or

depth are reported in the columns

Test problem Best for generalisation Best for accuracy Difference
in RMSE
median
statistically
significant?

Best for
size and/or
depth

Kotanchek reference standard GP NO reference
Salustowicz identical (bad) standard GP N/A reference
RatPol2D reference reference NO reference
Hock identical reference YES reference
Branin-Hoo reference reference YES reference

From Table 5.13 hybrid GP (reference) appears to outperform standard GP in most of

the test problems with respect to the parameters considered (generalisation, accuracy of

the best individual, size/depth). Salustowicz test case is a particular test problem, where

high proportion of individuals (80-90%) turns out to be undefined on the validation data

set, so although standard GP performs better than reference, this result is not statistically

significant.

The comparison shows that the parameter insertion algorithm and consequent param-

eter tuning is an effective strategy to improve generalisation ability and reduce size/depth
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of the model generated. However, in order to make the strategy more appealing for prac-

tical use in regression problems, the comparison also shows that future research efforts

should be directed towards the reassessment of the tuning strategy, to avoid tuning when

not contributing effectively to population fitness improvement and so reduce overall train-

ing times.

5.3.4 Assessment of the influence of copies

For all the test functions a limit of 50 generations was set. Regarding the population

size, for Salustowicz function 300 individuals were used, whereas for all the other cases

population size was reduced to 200. The primitives used for each test case are the same

as the ones reported in Section 5.3.5.

A first insight into the results is provided by Table 5.14. In the table, the percent-

age of undefined individuals (column (2) and (6)), the percentage of “bad” individuals

(having RMSE > 100 - column (3) and (7)), median and interquartile range (IQR) are

shown for each test problem on building and validation data sets. The increase in the

number of “bad” and undefined individuals from building to validation data set provides

evidence of the importance of reevaluating individuals on a larger data set after model

generation. Salustowicz and Branin-Hoo metamodels returned by reference implementa-

tion are mostly undefined on the validation data set, whereas expressions generated by

with COPIES are less affected by the problem.

p-values obtained by the comparison of the RMSE samples using Wilcoxon rank sum

test and one-way ANOVA test are shown in Table 5.15. The NULL hypothesis to test is

whether there is significant evidence of difference between the RMSE medians on each

test problem or not. Assuming a 5% significance level, p-values returned by Wilcoxon

test suggest that there is no significant evidence that removing copies from the elite is

beneficial for the evolution (ANOVA results are given only as a reference). However, it

must be noted that in Salustowicz case only one model out of the ten returned by reference

was actually used for the comparison, so the corresponding statistical test is not reliable.

Hock test problem appears as the only one where reference outperforms with COPIES: on

the validation data set reference RMSE median is approximately half of with COPIES RMSE

median, and the interquartile range of the first is an order of magnitude smaller than the

other. Statistics seems not to support the better behaviour of reference, even though the



162 Chapter 5 Hybrid genetic programming

TABLE 5.14: Pathologies on building and validation data sets for reference and with
COPIES implementations. All experiments consisted of 10 runs: %∞ is the percentage of
individuals not defined, %bad is the percentage of individuals with a RMSE>100 on the

particular data set. Median and IQR are computed on the remaining individuals.
Experiment Training data Test data

RMSE RMSE
%∞ %bad median IQR %∞ %bad median IQR

Column no. (2) (3) (4) (5) (6) (7) (8) (9)
Kotanchek
with COPIES 0 0 7.908E-02 1.840E-02 0 0 1.390E-01 4.453E-02
reference 0 0 6.676E-02 2.378E-02 10 0 1.109E-01 3.394E-02
Salustowicz
with COPIES 0 0 1.977E-01 2.691E-02 20 0 2.263E-01 9.980E-02
reference 0 0 1.496E-01 1.023E-01 90 0 4.036E-01 0.000E+00
RatPol2D
with COPIES 0 0 5.929E-01 1.856E-01 0 0 1.463E+00 9.902E-01
reference 0 0 6.165E-01 8.537E-02 0 10 1.690E+00 9.644E-01
Hock
with COPIES 0 0 1.943E+00 1.143E+00 0 0 7.583E+00 1.225E+01
reference 0 0 8.412E-01 1.162E+00 0 0 4.132E+00 4.059E+00
Branin-Hoo
with COPIES 0 0 6.647E+00 1.074E+01 10 0 1.959E+01 1.676E+01
reference 0 0 5.220E+00 2.368E+00 50 0 1.959E+01 1.357E+01

TABLE 5.15: reference vs. with COPIES: p-values returned by Wilcoxon rank sum test
NULL hypothesis: p-values
reference and with COPIES have the
same distribution

ANOVA Wilcoxon

Kotanchek 0.9053 0.2775
Salustowicz 0.1806 0.6667
RatPol2D 0.6072 0.5490
Hock 0.1100 0.0640
Branin-Hoo 0.5576 0.6064

p-value is really close to the 0.05 threshold. More definitive conclusions might probably

be drawn from a larger number of runs.

5.3.5 Results for each test problem

In the following sections the performances of the remaining implementations are com-

pared on a test problem at a time. Although the results reported in the previous section

do not give statistical evidence that removing copies from the elite is beneficial, in all

the experiments reported in the following copies were removed from the elite. This was

done to improve semantical variety, in other words to discover the widest range possible

of “best” individuals with acceptable accuracy but different mathematical structure. This

can be useful to improve the chances to find expressions similar to the underlying func-

tion sought, which otherwise could be approximated with alternative expressions that
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are not interesting for the user (for example overfitted models, with structure completely

different from the desired one - on the importance of retrieving a meaningful structure

see discussion in Section 5.3.1.1). The HyGP input settings used to generate the best

metamodel can be found in Appendix C.

5.3.5.1 Kotanchek test problem

The common GP parameters used for all the experiments are listed in Table 5.16.

TABLE 5.16: Kotanchek test problem: main parameters used in the experiments

Population size: 200
Generations: 50
Primitives: +, -, *, / (protected), square, cube, sin, cos, exp
No. of fitness cases: 40
NestedDOE:
building points 28
validating points 12

The pathologies affecting the generated individuals on building and validation data

sets are reported in Table 5.17. NestedDOE clearly stands out as 90% of the individuals

present singularities on the validation data set. The high percentage may be due to ei-

ther actual or not simplified singularities in the mathematical expressions. The difference

is clearly explained if, for example, we consider the expression Z1/Z1: for Z1 = 0 the

fraction is undefined, but after simplification it returns a well defined result, 1. HyGP

implementations are not able to discriminate between not simplified and actual singular-

ities, so, adopting a conservative approach, NestedDOE results have been excluded from

further statistical analysis as its RMSE sample is made by only one observation.

TABLE 5.17: Pathologies on building and validation data sets for Kotanchek test case. All
experiments consisted of 10 runs: %∞ is the percentage of individuals not defined, %bad
is the percentage of individuals with a RMSE>100 on the particular data set. Median

and IQR are computed on the remaining individuals.
Kotanchek Building data set Validation data set

RMSE RMSE
%∞ %bad median IQR %∞ %bad median IQR

reference 0 0 6.676E-02 2.378E-02 10 0 1.109E-01 3.394E-02
10guesses 0 0 5.860E-02 0.000E+00 0 0 1.622E-01 0.000E+00
KILLandFILL 0 0 7.072E-02 1.697E-02 0 0 1.281E-01 5.244E-02
shift 0 0 6.229E-02 1.902E-02 10 0 1.047E-01 4.678E-02
NestedDOE 0 0 9.329E-02 1.999E-02 90 0 1.499E-01 0.000E+00
MinMax 0 0 6.852E-02 7.716E-03 0 0 9.343E-02 1.254E-02
Omegalim 0 0 6.155E-02 1.529E-02 0 0 8.571E-02 9.749E-03
normFIT 0 0 3.590E-01 4.122E-02 0 0 1.377E-01 6.452E-03
normFITdiv 0 0 4.100E-01 6.152E-02 0 0 1.611E-01 4.159E-02
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The case of 10guesses is also interesting, as the interquartile range is zero on both

data sets. This might suggest that increasing the number of SQP random initial guesses

improves the HyGP robustness, to a point that evolution always returns the same best

individual regardless the stochastic nature of the algorithm: the search becomes inde-

pendent from the initial population state. Unfortunately, the quality of the unique best

individual returned is not particularly high. In Fig. 5.18 boxplots of the RMSE and R2

samples computed on the validation (test) data set are shown.
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FIGURE 5.18: Kotanchek test case: RMSE and R2 boxplots for validation data set. Indi-
viduals with RMSE>100 as well as undefined ones are not included

The global p-value returned by Kruskal Wallis test is 4.705E-07 so there is significant

evidence at 5% level that some RMSE samples are definitely better than others in terms

of median (one-Way Anova p-value, equal to 1.546E-06, seems to confirm it).

Table 5.18 shows the results of the pairwise comparisons between RMSE samples:

p-values smaller than 0.05 indicate that the two implementations’ RMSE medians as eval-

uated on the test data set are significantly different.

Considering that the high percentage of undefined individuals excludes NestedDOE

from the comparisons (the corresponding row and column have to be neglected), Ome-

galim and MinMax implementations outperform all the others. Between the two there is

no significant difference in the median according to the p-value (0.09). The best model
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TABLE 5.18: Kotanchek test case: p-values resulting from pairwise comparison using
Wilcoxon rank sum test. To compare two implementations, start from the row with
the name of the first one; then read along the row until the column with the second
implementation’s name is found. If a white box is reached, keep reading down the

column until the row with the second implementation’s name is found.
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reference 1.109E-01
10guesses 1.622E-01 0.00
KILLandFILL 1.281E-01 0.78 0.00
shift 1.047E-01 1.00 0.00 1.00
NestedDoE 1.499E-01 0.60 0.18 0.36 0.60
MinMax 9.343E-02 0.03 0.00 0.06 0.03 0.36
OmegaLim 8.571E-02 0.00 0.00 0.00 0.00 0.18 0.09
normFIT 1.377E-01 0.03 0.00 0.27 0.16 0.55 0.00 0.00
normFITdiv 1.611E-01 0.01 1.00 0.02 0.03 0.91 0.00 0.00 0.16

generated by MinMax is:

f̃(z1, z2) = (0.0774878972863 z1
3 − 0.508295723871 z1

2 + 0.732193486674 z1

− 0.0902514598889 z2
2 + 0.436203142055 z2)

2 − 0.000185135700008 z1

− 0.0287136503092

(5.24)

whereas the best model produced by Omegalim implementation27 is:

f̃(z1, z2) = 0.182099273973 sin(0.694646208945 z1)

+ 0.174097117467 sin(1.82679481612 z1)− 0.017891848784 z1
2 z2

+ 0.186506234991 z2
2 − 0.0463726896637 z2

3 + 0.0000046354018192 z1
2 z2

7

− 0.0489317086592

(5.25)

The corresponding plots are shown in Fig. 5.19 superimposed to the original Kotanchek

function.

5.3.5.2 Salustowicz test problem

The main GP parameters used for all the experiments are shown in Table 5.19.

The pathologies affecting the individuals generated by the different GP implementa-

tions are shown in Table 5.20. From the high percentages of undefined individuals on the
27the input settings used are reported in Section C.1, Appendix C.
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FIGURE 5.19: Kotanchek test problem: best models generated by MinMax and Omegalim
implementations (in red) superimposed to Kotanchek function (in black)

TABLE 5.19: Salustowicz test problem: main parameters used in the experiments

Population size: 300
Generations: 50
Primitives: +, -, *, / (protected), square, cube, sin, cos, exp,

negative exp, opposite, reciprocal
Fitness cases: 100
NestedDOE:
building points 66
validating points 34

validation data set (column “%∞” under “Validation data set”), it is clear that all the im-

plementations struggled to produce individuals with good generalisation ability, although

the number of primitives, the population size (300), and the number of fitness cases were

increased with respect to Kotanchek test case. Despite the poor general performances,

normFIT and normFITdiv seem to be the most robust techniques.

TABLE 5.20: Salustowicz test problem: pathologies on building and validation data sets

Salustowicz Building data set Validation data set
RMSE RMSE

%∞ %bad median IQR %∞ %bad median IQR
reference 0 0 1.496E-01 1.023E-01 90 0 4.036E-01 0.000E+00
10guesses 0 0 5.748E-02 6.042E-02 80 0 2.966E-01 2.139E-01
KILLandFILL 0 0 1.945E-01 3.011E-02 50 10 2.233E-01 9.634E-02
shift 0 0 1.200E-01 1.199E-01 60 10 2.263E-01 7.309E-02
NestedDOE 0 0 1.390E-01 1.084E-01 80 0 3.186E-01 2.025E-01
MinMax 0 0 1.794E-01 3.262E-02 50 0 2.435E-01 1.749E-01
Omegalim 0 0 1.702E-01 7.376E-02 80 0 3.004E-01 2.065E-01
normFIT 0 0 8.536E-01 1.157E-01 40 0 3.035E-01 6.717E-03
normFITdiv 0 0 8.474E-01 9.268E-02 30 0 3.039E-01 1.397E-03

Boxplots of the RMSE and R2 samples are shown in Fig. 5.20: shift produced the
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best individual in terms of RMSE and R2. However, such conclusion is not statistically

significant as Kruskal-Wallis p-value for RMSE samples as evaluated on the validation data

set is ten times larger than the 0.05 threshold (0.5675). In any case, the low percentage

of individuals defined on the validation data set made the tests unreliable.
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FIGURE 5.20: Salustowicz: RMSE and R2 boxplots. Individuals with RMSE>100 as well
as undefined ones are not included

The best metamodel returned by shift28 is plotted in red in Fig. 5.21 overlapped to

Salustowicz function in black. The metamodel expression is reported below:

f̃(z1) = 0.5569171313814 + ((0.6030669446878∗

(cos [((((66.38679520928 ∗ (−82.78990399331 + 1.093325012629 z1))))/

(((−21.87042454172 ∗ (25.03295588305 + z1 z1 z1)))))]))

− (−5.774999946019 z1 + 5.905808685662 z1))

(5.26)

5.3.5.3 RatPol2D test problem

In Table 5.21 the main GP parameters are listed.

The pathologies of the individuals generated by the HyGP implementations on build-

ing and validation data sets are reported in Table 5.22.
28the input settings used to generate the metamodel can be found in Section C.2, Appendix C.
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FIGURE 5.21: Salustowicz test problem: best model generated by shift implementation
(red line) and Salustowicz function (black line)

TABLE 5.21: RatPol2D test problem: main parameters used in the experiments

Population size: 200
Generations: 50
Primitives: +, -, *, / (protected), square, cube, sin, cos, exp,

reciprocal
Fitness cases: 40
NestedDOE:
building points 28
validating points 12

TABLE 5.22: RatPol2D test problem: pathologies on building and validation data sets

RatPol2D Building data set Validation data set
RMSE RMSE

%∞ %bad median IQR %∞ %bad median IQR
reference 0 0 6.165E-01 8.537E-02 0 10 1.634E+00 7.017E-01
10guesses 0 0 4.923E-01 2.069E-01 0 10 4.653E+00 9.383E+00
KILLandFILL 0 0 5.439E-01 1.336E-01 0 30 1.258E+00 1.567E+01
shift 0 0 4.279E-01 3.367E-01 0 10 1.117E+00 3.586E-01
NestedDOE 0 0 1.316E+00 1.615E-01 0 0 6.433E+00 3.484E+01
MinMax 0 0 4.845E-01 2.440E-01 0 0 1.681E+00 8.114E+00
Omegalim 0 0 4.864E-01 2.994E-01 0 10 1.279E+00 2.357E-01
normFIT 0 0 5.021E-01 3.152E-02 0 0 2.228E+00 8.648E-03
normFITdiv 0 0 5.061E-01 3.860E-02 0 0 2.238E+00 1.321E-02

Differently from Salustowicz test problem, all the generated metamodels are defined

on the validation data set, although in a few cases a small percentage of them score a

high RMSE (column “%bad” under “Validation data set”). From the boxplots of the RMSE

and R2 samples shown in Fig. 5.22, reference, shift and Omegalim implementations stand

out as giving the best combination of low RMSE median and interquartile range (IQR).

Significant evidence of a difference among the RMSE medians is confirmed by the low
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FIGURE 5.22: RatPol2D test problem: RMSE and R2 boxplots. Individuals with
RMSE>100 as well as undefined ones are not included

p-value returned by Kruskal-Wallis test29 (5.969E-05<0.05). Pairwise comparisons made

by Wilcoxon rank sum test highlight the better performances of shift and Omegalim with

respect to NestedDOE, normFIT and normFITdiv. There is no significant difference at 5%

level between the RMSE medians of shift and Omegalim. The list of p-values produced by

Wilcoxon rank sum test is presented in Table 5.23.

TABLE 5.23: RatPol2D test case: p-values resulting from pairwise comparison using
Wilcoxon rank sum test. To compare two implementations, start from the row with
the name of the first one; then read along the row until the column with the second im-
plementation’s name is found. If a white box is reached, keep reading down the column

until the row with the second implementation’s name is found
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reference 1.634E+00
10guesses 4.653E+00 0.34
KILLandFILL 1.258E+00 0.30 0.47
shift 1.117E+00 0.08 0.03 0.47
NestedDoE 6.433E+00 0.00 0.18 0.06 0.00
MinMax 1.681E+00 0.84 0.97 0.19 0.01 0.05
OmegaLim 1.279E+00 0.04 0.11 0.61 0.06 0.00 0.03
normFIT 2.228E+00 0.04 0.24 0.16 0.00 0.00 0.47 0.00
normFITdiv 2.238E+00 0.05 0.24 0.16 0.00 0.00 0.47 0.00 0.31

29The p-value returned by One-Way Anova test, 1.615E-02, backs the conclusion.
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The expression of the best model generated by shift is reported below30:

f̃(z1, z2) = −0.00173828969516 z1
6 z2 + 0.0334579253585 z1

5 z2

+ 0.0000351699480953 z1
4 z2

4 − 0.00987633264153 z1
4 z2

2

− 0.213450848609 z1
4 z2 + 0.0698782011422 z1

4 + 0.0942687219247 z1
3 z2

2

+ 0.546678587066 z1
3 z2 − 0.886656122808 z1

3 − 0.426718761705 z1
2 z2

2

+ 3.93178636296 z1
2 − 0.0674199876581 z1 z2

3 + 1.46482757145 z1 z2
2

− 3.48056045116 z1 z2 − 6.75940150248 z1 + 0.173809936525 z2
3

− 2.28987637434 z2
2 + 6.6340120764 z2 + 2.19324217003

(5.27)

The best model produced by Omegalim is given in Eq. 5.28:

f̃(z1, z2) = 0.000411031272381 z1
4 z2

3 − 0.045187441492 z1
4 z2 + 0.182445578214 z1

4

− 0.0501672989779 z1
3 z2

2 + 0.690345540243 z1
3 z2 − 2.28965459769 z1

3

− 0.0205614550616 z1
2 z2

3 + 0.36685951209 z1
2 z2

2 − 3.2366096702 z1
2 z2

+ 10.0265022305 z1
2 − 0.00360820550814 z1 z2

5 + 0.0544395450417 z1 z2
4

− 0.231088472394 z1 z2
3 + 4.5212342401 z1 z2 − 17.5162957202 z1

− 0.2690291428 z2
2 − 0.194045031546 z2 + 8.74325580434

(5.28)

The metamodels are plotted in Fig. 5.23 superimposed to RatPol2D function.
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FIGURE 5.23: RatPol2D test case: best individuals from shift and Omegalim implemen-
tations (in red) superimposed to RatPol2D function (in black)

30the input settings used to produce the metamodel are listed in Section C.3, Appendix C
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5.3.5.4 Hock test problem

The main GP parameters are shown in Table 5.24.

TABLE 5.24: Hock test problem: main parameters used in the experiments

Population size: 200
Generations: 50
Primitives: +, -, *, / (protected), square, cube, sin,

cos, exponential
Fitness cases: 20
NestedDOE:
building points 14
validating points 6

The pathologies affecting the generated metamodels are described in Table 5.25.

TABLE 5.25: Hock test problem: pathologies on building and validation data sets

Hock Building data set Validation data set
RMSE RMSE

%∞ %bad median IQR %∞ %bad median IQR
reference 0 0 8.412E-01 1.162E+00 0 0 4.132E+00 4.059E+00
10guesses 0 0 7.465E-01 2.979E-01 0 10 9.016E+00 6.235E+00
KILLandFILL 0 0 8.587E-01 1.161E+00 0 0 7.325E+00 6.256E+00
shift 0 0 1.086E+00 1.172E+00 0 0 3.672E+00 1.681E+00
NestedDOE 0 0 2.865E+00 2.190E-04 0 0 6.788E+00 9.337E-02
MinMax 0 0 6.805E-01 2.389E-01 0 30 3.581E+00 5.877E+00
Omegalim 0 0 8.587E-01 0.000E+00 0 0 2.252E+00 9.412E-06
normFIT 0 0 1.445E-02 0.000E+00 0 10 7.062E+00 7.942E-08
normFITdiv 0 0 2.539E-03 1.476E-03 0 10 3.612E+00 1.295E+00

No particularly bad behaviours emerged during the RMSE and R2 evaluation on val-

idation data set. A small percentage of individuals generated by MinMax shows a bad

behaviour on validation data set. In the boxplots shown in Fig. 5.24 Omegalim stands out

for the low RMSE median and the extremely low RMSE and R2 interquartile range (IQR).

The low p-value returned by Kruskal-Wallis test (4.577E-04) provides significant evi-

dence, at the 5% level, of a difference in the RMSE medians among the samples31. Pair-

wise Wilcoxon rank sum tests confirm the better performance of Omegalim: all the p-

values resulting from a comparison involving Omegalim, except for the one with MinMax,

are smaller than 0.05 (see Table 5.26).
31ANOVA test however does not support the conclusion, as the p-value returned is 0.33.
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FIGURE 5.24: Hock test problem: RMSE and R2 boxplots. Individuals with RMSE>100
as well as undefined ones are not included

TABLE 5.26: Hock test case: p-values resulting from pairwise comparison using Wilcoxon
rank sum test. To compare two implementations, start from the row with the name of
the first one; then read along the row until the column with the second implementation’s
name is found. If a white box is reached, keep reading down the column until the row

with the second implementation’s name is found
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reference 4.132E+00
10guesses 9.016E+00 0.08
KILLandFILL 7.325E+00 0.62 0.32
shift 3.672E+00 0.85 0.08 0.47
NestedDoE 6.788E+00 0.31 0.48 0.79 0.02
MinMax 3.581E+00 0.60 0.07 0.23 0.67 0.46
OmegaLim 2.252E+00 0.00 0.00 0.00 0.00 0.00 0.31
normFIT 7.062E+00 0.45 0.26 0.55 0.03 0.03 0.21 0.00
normFITdiv 3.612E+00 0.32 0.01 0.18 0.32 0.00 0.92 0.00 0.00

The best metamodelgenerated by Omegalim32 is reported in Eq. (5.29):

f̃(z1, z2) =
(
3.59644475784 z1 − 0.770501844171 z1

2
)2 − 24.074516819 z2

− 4.30155851714 z1 + 7.02267630102 z2
2 − 0.681383038881 z2

3

+ 148.962136216

(5.29)

32the input settings used can be found in Section C.4, Appendix C.
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The best metamodel generated by normFITdiv is shown in Eq. (5.30):

f̃(z1, z2) = −0.00140908481001 z1
4 z2

2 + 0.6294892722 z1
4 − 5.85582776761 z1

3

+ 0.465151867005 z1
2 z2 + 13.2924383738 z1

2 − 1.5541368693 z1 z2

− 3.3565923571 z1 + 0.131421354898 z2
4 − 1.89803058221 z2

3

+ 10.6252778175 z2
2 − 26.989797409 z2 + 149.19569559

(5.30)

The metamodels presented above are plotted in Fig. 5.25 superimposed to the Hock

function.
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FIGURE 5.25: Hock test problem: best individuals from Omegalim and normFITdiv im-
plementations (in red) superimposed to Hock function (in black)

5.3.5.5 Branin-Hoo test problem

The main GP parameters used for all experiments are listed in Table 5.27.

TABLE 5.27: Branin-Hoo test problem: main parameters used in the experiments

Population size: 200
Generations: 50
Primitives: +, -, *, / (protected), square, cube, sin, cos, exp
Fitness cases: 30
NestedDOE:
building points 20
validating points 10

The pathologies of the generated individuals on building and validation data sets are

reported in Table 5.28.
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TABLE 5.28: Branin-Hoo test problem: pathologies on building and validation data sets
Branin-Hoo Building data set Validation data set

RMSE RMSE
%∞ %bad median IQR %∞ %bad median IQR

reference 0 0 5.220E+00 2.368E+00 50 0 1.959E+01 1.357E+01
10guesses 0 0 5.144E+00 3.540E+00 50 0 1.553E+01 2.136E+01
KILLandFILL 0 0 5.223E+00 2.132E+00 40 0 1.994E+01 5.115E+00
shift 0 0 5.973E+00 2.730E+00 30 10 2.202E+01 1.388E+01
NestedDOE 0 0 4.130E+01 7.277E-02 20 0 7.724E+01 9.798E-01
MinMax 0 0 6.113E+00 1.508E+00 20 0 1.959E+01 1.570E+01
Omegalim 0 0 5.944E+00 9.271E-01 40 0 1.832E+01 1.110E+01
normFIT 0 0 1.979E-01 5.636E-02 40 10 5.502E+01 2.295E+01
normFITdiv 0 0 1.386E-01 9.913E-02 30 0 4.951E+01 1.160E+01

All the implementations struggled to generate metamodels with good generalisation

ability, as shown by the high percentage of undefined individuals on the validation data

set. All RMSE and R2 samples are characterised by high interquartile ranges as shown by

the boxplots in Fig. 5.26. The poor performances of NormFIT, normFITdiv and NestedDoe

implementations clearly emerge. The RMSE samples produced by the other implementa-

tions are not substantially different.
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FIGURE 5.26: Branin-Hoo test problem: RMSE and R2 boxplots. Individuals with
RMSE>100 as well as undefined ones are not included

Kruskal-Wallis test results support the hypothesis that not all RMSE medians are equal

(p- value: 2.310E-05), at least at 5% level. Such conclusion may however not be reliable

given the high percentage of undefined individuals33.
33The evidence of a difference among the RMSE medians is backed by Anova p-value (2.848E-11), but this

value too could be biased by the reduced size of the samples.
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A few conclusions can be drawn from pairwise comparison of the RMSE samples by

Wilcoxon rank sum test, whose p-values are reported in Table 5.29. NestedDOE is out-

performed by all the other implementations, as anticipated by boxplots. NormFIT and

normFITdiv are also characterised by poor performances. There is no significant evidence

of differences in RMSE medians for the remaining implementations.

TABLE 5.29: Branin-Hoo test case: p-values resulting from pairwise comparison using
Wilcoxon rank sum test. To compare two implementations, start from the row with
the name of the first one; then read along the row until the column with the second
implementation’s name is found. If a white box is reached, keep reading down the

column until the row with the second implementation’s name is found
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reference 1.959E+01
10guesses 1.553E+01 0.55
KILLandFILL 1.994E+01 0.93 0.54
shift 2.202E+01 0.79 0.66 0.94
NestedDoE 7.724E+01 0.00 0.00 0.00 0.00
MinMax 1.959E+01 0.94 0.62 0.75 0.75 0.00
OmegaLim 1.832E+01 0.43 0.93 0.48 0.59 0.00 0.41
normFIT 5.502E+01 0.03 0.10 0.01 0.01 0.01 0.01 0.01
normFITdiv 4.951E+01 0.01 0.03 0.00 0.00 0.01 0.00 0.00 1.00

It is worth noting that the best individual generated by 10guesses34, whose expression

is shown in Eq. (5.31), is as a matter of fact the Branin-Hoo function:

f̃(z1, z2) = 9.60209703926 cos(1.00000053842 z1)− 12.0000255964 z2

− 19.0985885529 z1 + 3.1830982295 z1 z2 − 0.258368814492 z1
2 z2

+ 4.08324072854 z1
2 − 0.411206971382 z1

3 + 0.0166886394138 z1
4

+ 1.00000121669 z2
2 + 46.0001253703

(5.31)

The best individual generated by Omegalim implementation is instead a polynomial:

f̃(z1, z2) = 0.00110046560295 z1
6 − 0.0195603884183 z1

5 + 0.0651324905047 z1
4

+ 0.163610467325 z1
3 − 0.245036641918 z1

2 z2 + 2.1005820657 z1
2

+ 3.08536116255 z1 z2 − 21.4397538069 z1 + 0.958637398866 z2
2

− 11.5720729266 z2 + 51.4956500855

(5.32)

34the input settings used can be found in Section C.5, Appendix C.
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The plots of the metamodels reported in Eqs. (5.31-5.32) are shown in Fig. 5.27,

superimposed to Branin-Hoo function.
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FIGURE 5.27: Branin-Hoo test problem: best individuals from 10guesses and Omegalim
implementations (in red) superimposed to Branin-Hoo function (in black)

5.3.6 Discussion of the results

Two different kinds of conclusions can be drawn from the results described in the previous

sections. First of all, all HyGP implementations appear to struggle on rational functions

like Kotanchek (Eq. (5.19)) and RatPol2D (Eq. (5.21)) functions. The poor performance

in this cases can be explained by the fact that the division, although protected, is an op-

erator likely to produce overfitted or udefined individuals. Division by a term that is zero

within the design space is the simplest way to introduce high non-linearities in a model

without increasing size, and so to increase fitness according to the definition given in

Section 5.2.5. If the poles of the division do not belong to the building data set, then the

model has more chances to survive than the others as a result of overfitting. However,

during validation the drawbacks of overfitting eventually emerge, resulting in undefined

individuals. If on the other hand the poles belong to the building data set, the penalisation

of illegal operation (see objective F3 in fitness function definition - Section 5.2.5) reduces

the likelihood that the model survives to selection and be able to spread the division op-

erator. In both cases this means that division will rarely appear in an acceptable model.

A proof of this interpretation is the fact that none of the best expressions generated for

Kotanchek and RatPol2D test cases contains a division, being in particular a linear com-

bination of terms. Two possible solutions to better exploit operators like division will be

shown in the next section (5.4) and in Chapter 7.
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Statistical tests however confirm that for each single test case some implementations

perform definitely better than others. NestedDOE (described in Section 5.3.0.5), normFIT

and normFITdiv (in Section 5.3.0.7) have generally shown poor performances in most of

the problems (see Kotanchek, RatPol2D, Branin-Hoo test functions). The negative perfor-

mance of NestedDOE is not expected, as being the implementation of the cross-validation

strategy (hold out method - see Section 1.2.2, Chapter 1) it should generate models with

the best compromise between accuracy and generalisation: results show however that

its curbing effect on model size is too conservative (high bias, low variance). Omegalim

(described in Section 5.3.0.6) appears to be the best implementation on the tested sym-

bolic regression problems, both for quality (low RMSE median) and reliability (low RMSE

interquartile range) of the metamodels generated. Shift implementation (described in

Section 5.3.0.4) has also produced high-quality models for Salustowicz and RatPol2D test

cases, proving that the increased redundancy resulting from using the unary operator

“shift” can improve the search for a good metamodel.

On the other end, unexpected behaviours have emerged. The KILLandFILL (see Sec-

tion 5.3.0.2) implementation has not produced consistent results, maybe as a result of a

lack of protection in tournament selection of newly generated individuals (“young” indi-

viduals) against fitter ones (“older” individuals). As a matter of fact, the ALPS algorithm

which inspired KILLandFILL implementation features a selection strategy that prevents

individuals of different “age” from being competitors in the same tournament selection,

age being defined as the number of generations an individual survives (Hornby 2006). In

the experiments previously described such protection based on age was not introduced

as the original purpose was to assess the effect of the cascade operator, which does not

feature age-based protection (see Section 3.1.5.6, Chapter 3). The mediocre performance

of 10guesses is also surprising: despite the increased tuning effort, the search appears not

to be consistenly improved.

In conclusion, Omegalim strategy and shift unary operator can be considered as the

most effective approaches to improve HyGP performances among the ones tested.

5.4 Problem specific knowledge exploitation in HyGP

The ability to build metamodels only from data, regardless the nature of the system that

produced the data, is the main strength of data-driven metamodelling techniques (Affen-

zeller and Wagner 2004, Vladislavleva 2008). Any GP implementation can operate as a
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“black-box”, leaving to the user only the setting of the parameters required to launch an

experiment and the final assessment of the quality of the returned metamodel.

Yet, it is plausible to think that the quality of the evolved metamodels can benefit

from any information regarding the system under analysis, deriving for example from

establihsed analytical or fundamental models (see Section 1.1, Chapter 1) or from prior

knowledge of the system. Domain knowledge has been indeed used in GP to bias the evo-

lutionary search in design applications, as noted by Barbosa and Bernardino (2011). In

some cases, such knowledge has been used to actively control GP evolution. Dimension-

ally aware genetic programming (Keijzer and Babovic 1999), introduced in Section 4.3.1,

Chapter 4, is an example of how the physical consistency of the operations in a syntax

tree can be used as a criterion to direct the evolution.

In this section a strategy to exploit constraints that may be implicitly posed by the

physical nature of the system under study is presented. The approach makes use of the

lower and upper bounds that in many cases may be assumed on the system responses to

consider them feasible, for mathematical or physical reasons. For instance, in mechanics

kinetic energy is by definition constrained by a lower bound equal to zero, being always

positive. Another example are scaled or normalised quantities: in thermodynamics effi-

ciency is generally defined in the range [0, 1]. As such bounds are generally inferred from

existing analytical models and do not trequire additional simulations or experiments, they

represent knowledge that can be directly used to direct GP evolution at a reduced, if not

null, computational cost.

If the existence of a feasible range for the response is ascertained, it is then possible

to penalise at the evaluation stage the GP individuals that return unfeasible values. An

additional data set provided by the user can be used for the feasibility check. Such ap-

proach was implemented in HyGP by adding an extra term to the fitness function defined

in Section 5.2.5. The reformulated fitness function is shown in Eq. (5.33):

F (i, t) = a1F1(i, t) + a2F2(i, t) + a3 106 F3(i, t) + a4F4(i, t) + a5F5(i, t) (5.33)

a1 + a2 + a3 + a4 + a5 = 1 (5.34)

The definition of the additional term F5 had to take into account the response returned

by the metamodel and the maximum or minimum value the actual response can assume

in each point of the additional data set C used for the feasibility check. To this purpose,
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for the i-th metamodel f̃ generated at generation t a parameter di,t was defined on C as:

di,t =

|C|∑
k=1

dk (5.35)

dk =



∣∣∣f̃(xk)− uk
∣∣∣ if f̃(xk) ≥ uk∣∣∣f̃(xk)− lk
∣∣∣ if f̃(xk) ≤ lk

0 if f̃(xk) > lk ∧ f̃(xk) < uk

(5.36)

where |C| is the number of points the data set C is made of, xk is the vector defining the

position of the k-th point belonging to C, uk and lk are respectively the upper and lower

bound of the response in point k. It should be noted that uk and lk are not necessarily

both defined: for example positive responses are defined in the seminterval [0 ∞), so

uk is undefined or infinite. Eqs. (5.35, 5.36) formally express the concept that di,t is the

sum of the distances of the metamodel responses from a set of points belonging to the

boundary of the response feasible region. If all the estimated responses on C are in the

feasible region then di,t is zero.

Preliminary tests showed that defining F5(i, t) (Eq. (5.33)) using a linear dependency

on di,t (Eq. (5.35)) resulted in no quality improvement, being the penalisation too weak.

An exponential dependency on di,t was finally adopted:

F5(i, t) = 106
(
ed

p
i,t − 1

)
p ∈ N (5.37)

from Eq. (5.37) is easy to see that the penalisation due to unfeasible response smoothly

reduces to zero with di,t approaching zero. The coefficient p can be tuned to tighten or

loosen the penalisation. In the next section the benefits of the presented approach are

described using a benchmark problem.

5.4.1 Test of the penalisation approach

The effect of the penalisation term F5 defined in Eq. (5.37) was tested on the Kotanchek

function, defined in Eq. (5.19) and reported below:

f(z1, z2) =
e−(z1−1)

2

1.2 + (z2 − 2.5)2
(5.38)
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Kotnachek function is strictly positive on R2: the experiments with the penalisation aimed

at testing whether this knowledge can be used effectively through the proposed strategy

to improve HyGP symbolic regression.

Experiments made of 10 independent HyGP evolutions were run using different values

of the exponent p (defined in Eq. (5.37)) and the coefficient a5 (defined in Eq. (5.33)),

without altering the general settings of the HyGP runs (200 individuals, 50 generations).

The implementation used in all experiments was the combined Omegalim and shift ap-

proach, following the conclusions expressed in Section 5.3.6. The primitives used in all

evolutions were addition, subtraction, multiplication, protected division, shift, square,

cube, sine, cosine and exponential.

The sign of the response produced by HyGP metamodels was checked on an addi-

tional data set C made of 20 uniformly spaced points (full factorial DoE) covering the

region [0, 4]× [0, 4]. The same building and validation data set defined in Table 5.2 (Sec-

tion 5.3.1.2) were used to generate and to validate the quality of the best metamodels

produced by each HyGP run. The statistical methods described in Section 5.3.1 were used

to compare the RMSE and R2 samples produced by each HyGP experiment.

Eight different HyGP experiments were performed. In four of them penalisation was

enabled, setting the exponent p to p = 2 and p = 3, studying also the effect of different

values of the coefficient a5 (Eq. (5.33)) on the quality of the final best metamodel. In

the other four experiments the penalisation was not used, in order to make a comparison

with the reference, shift, Omegalim and the combined Omegalim and shift implementations

(described in Section 5.2, Section 5.3.0.4 and Section 5.3.0.6). The experiments included

in the analysis will be named as in Table 5.30.

TABLE 5.30: Plan of experiments to assess the effect of the penalisation term F5

No. experiment name description p a5
1 omegalim_shift p=3 a5=0.0001 penalisation enabled 3 0.0001
2 omegalim_shift p=3 a5=0.001 penalisation enabled 3 0.001
3 omegalim_shift p=3 a5=0.01 penalisation enabled 3 0.01
4 omegalim_shift p=2 a5=0.0001 penalisation enabled 2 0.0001
5 omegalim_shift penalisation DISABLED × ×
6 shift penalisation DISABLED × ×
7 omegalim penalisation DISABLED × ×
8 reference penalisation DISABLED × ×

Following the experimental methodology already used, the best individuals produced

by each run of the HyGP experiments listed in Table 5.30 were validated on the validation
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data set. The pathologies emerged are reported in Table 5.31.

TABLE 5.31: Pathologies on validation data sets for Kotanchek test case. All experiments
consisted of 10 runs: %∞ is the percentage of individuals not defined, %bad is the
percentage of individuals with a RMSE>100 on the particular data set. Median and IQR

are computed on the remaining individuals.

Kotanchek Validation data set
RMSE

%∞ %bad median IQR
Omegalim_shift p=3 a5=0.0001 10 0 1.228041e-01 1.209799e-01
Omegalim_shift p=3 a5=0.001 10 0 1.031283e-01 1.012077e-01
Omegalim_shift p=3 a5=0.01 10 0 9.902799e-02 5.594168e-02
Omegalim_shift p=2 a5=0.0001 0 0 6.293210e-02 6.477281e-02
Omegalim_shift 0 0 9.451645e-02 2.356540e-02
shift 10 0 1.047431e-01 4.677519e-02
Omegalim 0 0 8.571021e-02 9.749058e-03
reference 10 0 1.108534e-01 3.393596e-02

The RMSE and R2 samples generated by the experiments are represented in Fig. 5.28

using boxplots. Each distribution is made of 10 samples, corresponding to the RMSE or

R2 value of the best metamodel generated by each of the 10 independent evolutions the

experiment consisted of. RMSE and R2 were evaluated on the validation data set.
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FIGURE 5.28: Distribution of RMSE and R2 values on validation data set returned by the
best metamodels generated by GP for different values of p

According to the p-value returned by Kruskal-Wallis35 test (0.21514) there is not

enough evidence to support the hypothesis that the use of the penalisation defined in

Eq. (5.37) produced a change in the RMSE and R2 median value (at 5% significance
35ANOVA p-value = 0.48439.
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level). However, boxplots show that RMSE and R2 interquartile range increases when pe-

nalisation is enabled, indicating that the feasibility penalisation may increase syntax trees

variety during the evolution and, extending the training stage (or youth stage), leads to

individuals of better quality. The actual mechanisms that cause an increase in the RMSE

and R2 interquartile ranges when penalisation is enabled are however still unknown and

further research is needed to understand how penalisation biases HyGP evolution.

The effect of the feasibility penalisation on Kotanchek metamodels structure can be

appreciated from the analysis of the mathematical expressions of the best metamod-

els generated by “Omegalim_shift” and “Omegalim_shift p=3 a5=0.0001”, reported in

Eq. (5.39) and Eq. (5.40), respectively.

f̃(z1, z2) = −0.120801 + (0.0442430 z2
2)3 − 0.0436809 z1

2 z2 + 0.0872379 z1

+ 0.00899636 z1
2 z2

2 − 0.00499831 z2
4 + 0.279459 z2 + 0.168453 sin(1.71415 z1)

(5.39)

f̃(z1, z2) = −0.0241637

+
[33.5706 sin(1.44049 z1)− 0.923777 z2 + 62.1925]2 + 265.5989

(68.3857 z2 − 105.061)2 + (60.4282 z2 − 228.862)2 + (60.0122 z1 − 44.1352)2 − 269.67

(5.40)

The difference between Eq. (5.39) and Eq. (5.40) is evident: feasibility penalisation

allowed HyGP to focus the search on rational metamodels, class which Kotanchek function

belongs to. As observed in Section 5.3.6 HyGP struggles to infer rational functions, so the

tested penalisation can be useful to improve HyGP performances in such cases.

In Table 5.32 the RMSE and the coefficient of determination (R2) evaluated on the

validation data set for the metamodels defined in Eq. (5.39) and in Eq. (5.40) are com-

pared.

TABLE 5.32: RMSE and R2 values of the metamodels defined in Eq. (5.39) (penalisation
not used: Omegalim_shift) and in Eq. (5.40) (penalisation used - Omegalim_shift p=3

a5=0.0001)

RMSE R2

Omegalim_shift 0.078081 0.852949
Omegalim_shift p=3 a5=0.0001 0.008666 0.998189

Fig. 5.29 and Fig. 5.30 show the plots of the two metamodels defined in Eq. (5.39)

and in Eq. (5.40) superimposed to the Kotanchek function plot.
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FIGURE 5.29: Penalisation not used:
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0
1

2
3

4

0

1

2

3

4

0.2

0.4

0.6

0.8

omegalim_shift_ineq_c0megadistexp3_20_0001
Run 7, generation 50

RMSE = 7.479483e−003
R2 = 9.988213e−001

(A) Kotanchek function (in
black) and model generated

with penalisation (in red)

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

omegalim_shift_ineq_c0megadistexp3_20_0001
Run 7, generation 50

Test data set
RMSE = 8.666161e−003

R2 = 9.981885e−001
Max error = 3.176655e−002

Max rel error (%) = 1.850469e+005

E
s
ti
m

a
te

d

Actual

(B) Model response vs. actual response
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5.5 Genetic programming versus polynomial chaos expansion

So far different strategies to improve HyGP performances have been described. It is how-

ever useful to compare HyGP with other metamodelling techniques, to assess its advan-

tages and drawbacks. In this section a series of tests with a parametric technique called

Polynomial Chaos Expansion (PCE) is presented. The results here presented are the out-

comes of a research activity carried out in collaboration with a major aerospace company

with the aim of improving and expanding their metamodelling tool based on PCE.
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PCE is a metamodelling technique that uses a linear combination of polynomials of

increasing dimensionality (Eldred et al. 2008):

y =a0B0 +
∞∑
i1=1

ai1B1(ξi1) +
∞∑
i1=1

i1∑
i2=1

ai1i2B2(ξi1 , ξi2)

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3B3(ξi1 , ξi2 , ξi2) + . . .

(5.41)

where ξik are input variables modelled by given statistical distributions, Bik are multivari-

ate polynomials of increasing dimensionality and aik are coefficients that have to be tuned

on a building DoE provided by the user. The expression in Eq. (5.41) can be reformulated

as (Eldred et al. 2008):

y =

∞∑
j=0

αjΨj(ξ) (5.42)

where the terms Ψj(ξ) stand for multivariate polynomials of increasing dimensionality

and the coefficients αj replace the aik in Eq. (5.41).

As the mathematical structure of a PCE metamodel is imposed by the sum of the

multivariate polynomials Bik (see Eq. (5.41)) or, equivalently, Ψj(ξ) (see Eq. (5.42)),

PCE belongs to the class of parametric metamodelling techniques (Friedman 1991) (see

Section 1.2.4.1, Chapter 1).

The numerical coefficients αj of the truncated PCE expansion need to be tuned to

obtain the metamodel. The number of coefficients αj to be found is equal to the number

of terms in the truncated PCE, which is equal to (Eldred et al. 2008, p. 3):

N =
(p+ d)!

p! d!
(5.43)

where p is the maximum order of the truncated PCE and d is the number of independent

input variables. Although the N coefficients αj can be computed using exactly N points,

many researchers (Eldred et al. 2008, Georgiou and Cooper 2011) have shown the ad-

vantages of evaluating them through a least-squares approach using more points than the

minimum number N . The expression “oversampling ratio” (rover) will be used to indicate

the ratio between the actual number of points Nused used to compute the coefficients and

the minimum number N required to do it:

rover =
Nused

N
(5.44)
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Eldred et al. (2008, p. 8) for example suggests using an oversampling ratio of 2.

The multivariate polynomials Ψj(ξ) are usually defined as products of one-dimensional

polynomials belonging to the so-called Askey scheme (Eldred et al. 2008), as in this case

the metamodels produced truncating the PCE in Eq. (5.42) can be used to extract ana-

lytically the contribution of each input variable to the total variance of the approximated

output without requiring any additional sampling. PCE was chosen as the main modelling

tool by the aerospace company that supported the analysis detailed in the following as

sensitivity analysis can be performed analytically, so immediately, on the PCE model with-

out using Monte Carlo approaches (Sobol 1993, Sudret 2008, Arwade et al. 2010). This

feature was considered so important as to neglect the usual lack of flexibility and the

extra cost of screening (finding the correct mathematical structure - order of the PCE ex-

pansion) intrinsic to parametric techniques. This anyhow proves that in practical cases

the concept of “best” machine learning algorithm or modelling technique is quite relative

and subject to the actual needs of the final user, who can be interested in other features

beyond sheer accuracy (for example PCE can be used just for sensitivity analysis, but not

for modelling).

5.5.1 Test functions

The comparison of PCE and HyGP was performed on two symbolic regression problems:

f(x0, x1) = 100
(
x0 − x21

)2
+ (1− x1)2 (5.45)

f(x0, x1) =
e−x

2
0

1.2 + x21
(5.46)

the expression in Eq. (5.45) is the so-called Rosenbrock function. This function was not

used to test HyGP enhancements (see Section 5.3) because it has proven too simple for

HyGP. Eq. (5.46) is instead a reformulation of the Kotanchek function introduced in Sec-

tion 5.3.1.1.

Due to limitations imposed by the metamodelling software to the selection of the uni-

variate polynomials36 for the generation of the PCE, the input variables of both functions

had to be assumed to follow a normal distribution. Also, instead of a uniform latin hy-

percube DoE, a normally-weighted Latin Hypercube sampling strategy (Helton and Davis

2003) was used to generate the building data sets. This restriction was however useful to

36only Hermite polynomials were available.
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assess the ability of HyGP to deal with DoEs different from the uniform latin hypercube

used so far.

The parameters used to compare the quality of the metamodels generated by the two

techniques are the root mean square error (RMSE) and the coefficient of determination

(R2) computed on a validation data set defined as a full-factorial DoE on the design space

and made of a number of points far larger than the building data set.

5.5.2 Results for Rosenbrock function

The input variables x0 and x1 were assumed normal with zero mean and a standard

deviation equal to 2/3:

x0 ∼ N(0.0, 0.66667) (5.47)

x1 ∼ N(0.0, 0.66667) (5.48)

As the dimensionality of the problem is d = 2 and the maximum order of the PCE polyno-

mial was set to p = 4, the minimum number of DoE points needed for the estimation of

the PCE coefficients is N = 15 (see Eq. (5.43)). Two experiments were performed using

initially a 16-point DoE (rover = 1, as the tool used all except one point for metamodel

building) and then increasing the DoE size to 31 points (rover = 2, one point not used for

metamodel building).

The normally-weighted Latin Hypercube DoE used for metamodel building is shown in

Fig. 5.31. A full-factorial DoE made of 2500 points in [0, 2]×[0, 2] was used as a validation

data set. The root mean square error (RMSE) and the coefficient of determination (R2)

computed on this data set were finally used to compare the metamodels generated by

PCE and HyGP.

5.5.2.1 Metamodel generated by polynomial chaos expansion

The obtained PCE metamodels are plotted in red in Fig. 5.32A (rover = 1) and Fig. 5.33A

(rover = 2) superimposed to the actual Rosenbrock function (in black). The subplots B

and C compare the actual Rosenbrock response with the modelled response for each point

on the building and validation data set, respectively. In Table 5.33 are reported the RMSE

and the R2 of the generated PCE metamodels evaluated on the validation data set.

From the figures and the table it emerges that the minimum number of points required

for PCE parameter tuning (rover = 1) was not enough to generate an accurate metamodel
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FIGURE 5.31: Latin Hypercube DoEs used for modelling Rosenbrock function (rover =
1, 2). Building points are represented by •, points represented by × were used only for

internal validation.

TABLE 5.33: RMSE and R2 for Rosenbrock PCE metamodels

No. of points rover RMSE R2

15 1 3.991337E+02 6.220599E-01
30 2 3.832273E-04 1.0000000

of Rosenbrock function. Using twice as many points (rover = 2) the accuracy dramati-

cally improved: the RMSE decreased by six orders of magnitude (from 3.991337E+02

to 3.832273E-04) and the R2 increased to reach its upper bound, sign of perfect match

between approximation and underlying function.
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The text expression of the PCE metamodel generated using rover = 2 is:

f̃PCE(x0, x1) = 105.149782533− 1.33333140256 ∗ ((1.0 ∗ ((x0 − [0])/([0.66667]))1))

− 59.2601467423 ∗ ((1.0 ∗ ((x1 − [0])/([0.66667]))1))

+ 168.24239822 ∗ ((−0.707106781187 + 0.707106781187 ∗ ((x0 − [0])/([0.66667]))2))

+ 3.68067489117e-06 ∗ ((1.0 ∗ ((x0 − [0])/([0.66667]))1) ∗ (1.0 ∗ ((x1 − [0])/([0.66667]))1))

+ 62.8545583509 ∗ ((−0.707106781187 + 0.707106781187 ∗ ((x1 − [0])/([0.66667]))2))

+ 1.40240452183e-05 ∗ ((−1.22474487139 ∗ ((x0 − [0])/([0.66667]))1

+ 0.408248290464 ∗ ((x0 − [0])/([0.66667]))3))

− 83.8065162129 ∗ ((−0.707106781187 + 0.707106781187 ∗ ((x0 − [0])/([0.66667]))2)∗

(1.0 ∗ ((x1 − [0])/([0.66667]))1))

+ 2.85742853065e-06 ∗ ((1.0 ∗ ((x0 − [0])/([0.66667]))1)∗

(−0.707106781187 + 0.707106781187 ∗ ((x1 − [0])/([0.66667]))2))

+ 4.10831781727e-07 ∗ ((−1.22474487139 ∗ ((x1 − [0])/([0.66667]))1

+ 0.408248290464 ∗ ((x1 − [0])/([0.66667]))3))

+ 96.7718974897 ∗ ((0.612372435696− 1.22474487139 ∗ ((x0 − [0])/([0.66667]))2

+ 0.204124145232 ∗ ((x0 − [0])/([0.66667]))4))

(5.49)

5.5.2.2 Metamodel generated by genetic programming

The exact Rosenbrock function was generated by HyGP from the smallest DoE made of

15 points37. If slight errors on the coefficients are neglected, the following metamodel,

produced by HyGP:

f̃GP (x0, x1) = 1.00000 +
[
(−3.16228x1)

2 − 10.00000x0
]2 − 2.00002x1 + (−0.99999x1)

2

(5.50)

is identical to Eq. (5.45). The metamodel reported in Eq. (5.50) is plotted in Fig. 5.34A su-

perimposed to Rosenbrock function. In Figs. 5.34B and 5.34C the appoximated response

is plotted against the actual response on building and validation data sets. Metamodel

RMSE and R2 on the validation data set are reported in Table 5.34.

To assess the computational costs of the symbolic regression performed by HyGP, it

should be taken into account that the metamodel reported in Eq. (5.50) was the best out
37The input settings used to generate the metamodel are reported in Table C.6 in Section C.6, Appendix C.
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TABLE 5.34: RMSE and R2 for the Rosenbrock metamodel generated by HyGP

No. of points RMSE R2

15 3.947692E-04 1.000000

of 20 generated metamodels. All runs were performed in parallel mode38 on a laptop

running Ubuntu Linux 3.0.0 equipped with two AMD Turion 64 X2 TL-50 processors and
38the parallel implementation used will be described in Section A.3.2, Chapter A.
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2.0 GB of RAM. The time required by each HyGP run is shown in Fig. 5.35 together with

the runs’ convergence history.
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FIGURE 5.35: Rosenbrock function: convergence history and time required by GP runs

5.5.3 Results for Kotanchek function

Input variables were assumed to be normally distributed, with zero mean and standard

deviation σ = 2:

x0 ∼ N(0.0, 2.0) (5.51)

x1 ∼ N(0.0, 2.0) (5.52)

As the objective function is not a polynomial and the order of the PCE that best approx-

imates it is not known (common scenario in industrial applications), the oversampling

issue was not taken into account. The maximum order of the PCE was set to p = 6.

A normally-weighted Latin Hypercube sampling was used to generate a building data

set made of 80 points in the region [−4, 4] × [−4, 4]. The building data set is shown in

Fig. 5.36.

5.5.3.1 Comparison of PCE and GP metamodels

The best metamodels generated by PCE and HyGP are plotted in red in Fig. 5.37A and

in Fig. 5.38A superimposed to the Kotanchek function (in black). The subplots B and C

compare the Kotanchek function response with the modelled response for each point on

the building and validation data set, respectively.
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The superior accuracy and generalisation ability of the best metamodel generated by

HyGP is proved by the substantial difference in RMSE and R2 errors on the validation

data set with respect to the PCE metamodel, as shown in Table 5.35.

TABLE 5.35: RMSE and R2 for Kotanchek function metamodels generated by PCE and
HyGP

Metamodelling technique RMSE R2

PCE 2.538393E+00 -3.515243E+02
HyGP 1.885756E-03 9.998054E-01

Interestingly, HyGP was able to recognise that the function to be modelled was ratio-

nal, and as a result the generated metamodel was far more compact than the PCE polyno-

mial, with obvious advantages in terms of interpretability, ease of handling, use of RAM

and evaluation time. The expression of the HyGP metamodel is shown in Eq. (5.53):

f̃GP (x0, x1) = −0.00250846

+
345.968 + 0.128425x1 − 0.204097x0

413.08610 + (17.2227x1x20)2 + (−17.1527x1x0)2 + (15.3829x30)2 + (21.4576x0)2 + (18.5243x1)2

(5.53)

The input settings used to generate the metamodel reported above can be found in

Section C.7, Appendix C. As noted for the Rosenbrock function case, indications on the

computational cost of the regression can be obtained considering that the metamodel

reported in Eq. (5.53) was the best out of the 12 generated metamodels. All runs were

performed in parallel mode39 on a laptop running Ubuntu Linux 3.0.0 equipped with two

AMD Turion 64 X2 TL-50 processors and 2.0 GB RAM. The time required for each GP run

is shown in Fig. 5.39 together with the runs’ convergence history.

5.5.4 Conclusion

The better accuracy and generalisation of HyGP with respect to PCE show that HyGP has

the potential to be used by the company who funded the research as a valid substitute to

PCE. Of course HyGP does not allow for sensitivity analysis through analytical means, but

the expression returned by HyGP can be used with Monte Carlo methods to perform fast

sensitivity analysis, as the output of HyGP expression can be evaluated almost instantly.
39the parallel implementation used will be described in Section A.3.2, Chapter A.
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5.6 Genetic programming versus moving least squares method

The weight minimisation of a planar 10-bar truss is a well known test case for meta-

modelling and optimisation algorithms (Haftka and Gürdal 1993, Elishakoff et al. 1994,

Herencia and Haftka 2010, Hofwing et al. 2011, Lamberti and Pappalettere 2011). Its

formulation is relatively simple and analytical models describing the axial force acting in

the bars are available for a wide range of concentrated loads applied to the structure (El-

ishakoff et al. 1994, Herencia and Haftka 2010). Despite the problem apparent simplicity,

bars’ axial stresses are highly non linear and so their modelling represents a challenge for

most metamodelling techniques, given also the high dimensionality of the problem.

The problem was therefore considered a good test case to compare HyGP with a para-

metric technique, the moving least squares method (MLSM) presented in Section 1.2.7

Chapter 1, on a more complex problem than the ones seen so far (see Section 5.3.1.1).

Both techniques were used to generate metamodels of the axial stresses in the truss bars

from the output generated by the analytical expressions of such stresses, whereas the op-

timum design was found through a GA search on the generated metamodels. It may be

observed that modern simulation tools like finite element modelling (FEM) could also be

used to compute the axial stresses in the bars once the cross sectional areas are known.

Although correct, this approach was not chosen, mainly because the aim is to assess if

HyGp is able to “understand” from data the structure of the underlying function that ex-

plains the outputs produced (see discussion in Section 5.3.1.1 sparked by observations

reported in Korns (2011)), which in this rare case are available. FEM analysis would

return required outputs for any DoE point, but of course no explicit model linking these
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outputs. Moreover, if exact analytical solutions exist, it appeared reasonable to use them,

as more accurate than FEM and immediately available.

As for HyGP modelling, due to the nature of the problem, the penalisation approach

described in Section 5.4 could not be applied. The penalisation can be applied only in

case the output of the function to approximate is intrinsically bounded, by definition or

for the physics of the problem. In this case the stresses in the bars are not bounded by

any physical law or definition. The optimisation process has to find a truss which, given

the loads, presents stresses that are included in a user defined range, but this does not

imply that stresses should not go beyond the required bounds for other configurations.

5.6.1 Optimisation problem

The layout of the planar 10-bar truss to be optimised is shown in Fig. 5.40. The structure

is assumed to be subjected to the loads P1 and P2 described in the figure.
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FIGURE 5.40: 10-bar truss with loads P1 and P2 (the bars are identified with numbers)

In mathematical terms the optimisation problem can be defined as follows:

find : Ai i = 1, . . . , 10 (5.54)

minimising : m(A) =
10∑
i=1

ρiliAi (5.55)

subject to : 0.1 in2 ≤ Ai ≤ 10.0 in2 i = 1, . . . , 10 (5.56)

|σi| ≤ 25000 psi i = 1, . . . , 8, 10 (5.57)

|σ9| ≤ 75000 psi (5.58)
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where Ai are the cross-sectional areas of the truss bars, whose length is li = 360 inches

for the bars on the sides (i = 1, . . . , 6) and li = 360 ·
√

2 = 50.9117 inches (i = 7, . . . , 10)

for the diagonals. The bars are supposed to be all made of aluminium with density

ρi = 0.1 lb/in3 (i = 1, . . . , 10) and m(A) is the total mass of the truss, objective of the

minimisation. The magnitude of the loads P1 and P2 applied to the lower bars of the truss

(see Fig. 5.40) is 105 lbf. Constraints were imposed on the absolute normal stress (tensile

or compressive) |σi| in the bars40.

The optimisation problem defined in (5.54-5.55-5.56-5.57-5.58) is particularly chal-

lenging for HyGP as axial forces, and so axial stresses, display a highly non-linear be-

haviour, being rational functions of bars’ cross-sectional areas (Herencia and Haftka 2010).

HyGP difficulty in modelling rational functions was noted in Section 5.3.6. The expres-

sions of the axial forces in the bars as a function of the cross sectional areas are shown

below (adapted from Herencia and Haftka (2010), setting P3 = 0):

N1 =P2 −
√

2

2
N8 (5.59)

N2 =N6 = −
√

2

2
N10 (5.60)

N3 = − P1 − 2P2 −
√

2

2
N8 (5.61)

N4 = − P2 −
√

2

2
N10 (5.62)

N5 = − P2 −
√

2

2
N8 −

√
2

2
N10 (5.63)

N7 =
√

2 (P1 + P2) +N8 (5.64)

N8 =
b1 − a12N10

a11
(5.65)

N9 =
√

2P2 +N10 (5.66)

N10 =
b2a11 − b1a21
a11a22 − a12a21

(5.67)

40It may be objected that buckling has not been explicitly addressed in the definition of the maximum
allowable axial stress. The objection is correct, but the problem was considered only as a test case for HyGP
metamodelling ability and not aimed at optimising a real structure. Morever, the stress constraints were
taken from Haftka and Gürdal (1993).
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where:

a11 =

(
1

A1
+

1

A3
+

1

A5
+

2
√

2

A7
+

2
√

2

A8

)
L

2E
(5.68)

a12 = a21 =
L

2A5E
(5.69)

a22 =

(
1

A2
+

1

A4
+

1

A5
+

1

A6
+

2
√

2

A9
+

2
√

2

A10

)
L

2E
(5.70)

b1 =

(
P2

A1
− P1 + 2P2

A3
− P2

A5
− 2
√

2(P1 + P2)

A7

) √
2L

2E
(5.71)

b2 =

(√
2(−P2)

A4
−
√

2P2

A5
− 4P2

A9

)
L

2E
(5.72)

where P1 and P2 are the applied forces, Aj (j = 1, . . . , 10) are the bars’ cross-sectional

areas, L is the length of each horizontal bar and E is the Young’s modulus of the bars’

material.

A permutation GA algorithm (Bates et al. 2004) was used to generate two Latin hy-

percube DoEs in the 10-dimensional design space defined by (5.56). Preliminary tests

showed that 100 points were enough for HyGP to infer the truss total mass m(A). A

400-point DoE was instead generated to model the axial stresses in the bars: the formu-

lae (5.59, . . . , 5.72) were used to compute the bars’ axial force for each combination of

cross sectional areas defined by DoE points, then divided by the area to obtain the axial

stress. The space filling properties and uniformity of the DoEs was checked evaluating

the minimum Euclidean (2-norm) distance between DoE points: such distance is shown

in Fig. 5.41 for each point in the two generated DoEs. The average minimum distance

for the 100-point DoE used for total mass inference is 8.95, with a standard deviation of

0.32. For the 400-point DoE used for axial force inference the average minimum distance

is 6.33, standard deviation 0.55.

5.6.2 Optimisation using HyGP metamodels

HyGP experiments made of 10 independent runs each were performed to generate the

metamodels of the bars’ axial forces and of the total mass. The combined omegalim

and shift implementations were used in all cases (the input settings used are reported in

Section C.8, Appendix C).
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FIGURE 5.41: Minimum distance between points in the DoEs used for symbolic regres-
sion of total truss mass and bars’ axial forces

HyGP was able to infer the correct expression for the total mass in all 10 independent

runs using the 100-point DoE. The metamodels of the bars’ axial stresses were obtained

dividing the expressions generated by HyGP by the area of the corresponding bar. The

selection of the most accurate axial force expression for each bar was hindered by the

fact that no validation data set was used to assess the generalisation ability of each meta-

model. Although the final metamodel selection was based on the highest coefficient of

determination R2 on the building data set, more than one metamodel for the same bar

were considered in some cases. As a result, four different set of metamodels were used

in the optimisation. The standard genetic algorithm embedded in HyperStudy (Toropov

et al. 2005, Harewood et al. 2007, Alt 2009) was used to find the vector of cross sec-

tional areas corresponding to the lightest truss satisfying the constraints on the bars’ axial

stresses.

The truss minimum mass and the bars’ axial stresses returned by the four sets of

metamodels are compared to the corresponding actual mass and stresses computed using

the analytical solutions (5.59, . . . , 5.72) in Tables 5.36, 5.37, 5.38, 5.39. In the tables the

second column contains the cross sectional areas of each bar, the third the actual stress

σ, the fourth the stress estimated by HyGP metamodel σest and the last one the relative

error on the stress computed as 100 ∗ (σest − σ)/|σ|. Bold is used whenever the actual

stresses are beyond the allowable stress.

In Fig. 5.42 a schematic compares the suboptimal trusses resulting from the four dif-

ferent sets of HyGP metamodels (Figs. 5.42B - 5.42C - 5.42D - 5.42E) with the optimal

truss (Fig. 5.42A). The optimal truss is defined by the vector of cross sectional areas Aopt
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TABLE 5.36: First set. Validation of ax-
ial stresses and mass estimates at the

suboptimum found by GA
bar Area σ σest εrel

(no.) (in2) (lbf/in2) (lbf/in2) (%)
1 8.74 21776.0 20533.6 -5.70
2 1.11 12301.5 14616.9 18.82
3 8.60 -24369.2 -24628.1 -1.06
4 5.15 -16758.9 -15796.7 5.74
5 1.50 2725.1 1972.4 -27.62
6 0.89 15372.9 15860.8 3.17
7 6.70 23140.5 23926.2 3.40
8 5.54 -23074.5 -20968.7 9.13
9 4.75 25695.0 25181.8 -1.99

10 1.02 -18874.7 -24642.1 -30.56
Objective:
m mest εrel

(lb) (lb) (%)
total mass 1853.06 1853.06 0.0

TABLE 5.37: Second set. Validation of
axial stresses and mass estimates at the

suboptimum found by GA
bar Area σ σest εrel

(no.) (in2) (lbf/in2) (lbf/in2) (%)
1 8.96 19853.4 19102.5 -3.78
2 1.47 21989.9 24982.2 13.60
3 8.79 -25358.1 -24979.4 1.49
4 3.69 -18326.5 -16694.3 8.90
5 1.67 5729.8 11031.5 92.53
6 1.58 20483.3 24889.8 21.51
7 7.03 24694.9 24985.6 1.18
8 4.44 -24582.4 -24197.4 1.57
9 2.36 40458.4 37498.1 -7.32

10 1.80 -25520.1 -24823.6 2.73
Objective:
m mest εrel

(lb) (lb) (%)
total mass 1736.46 1736.46 0.0

TABLE 5.38: Third set. Validation of
axial stresses and mass estimates at the

suboptimum found by GA
bar Area σ σest εrel

(no.) (in2) (lbf/in2) (lbf/in2) (%)
1 7.46 25419.3 24902.0 -2.03
2 1.18 14043.0 24891.9 77.25
3 8.34 -25207.4 -24978.4 0.91
4 4.11 -20.2621 -18383.8 9.27
5 0.46 13569.0 6463.0 -52.37
6 1.12 14990.3 24772.6 65.26
7 5.99 26059.2 24998.1 -4.07
8 6.62 -19168.7 -17584.8 8.26
9 3.69 31927.6 28691.4 -10.14

10 1.13 -20757.5 -24954.9 -20.22
Objective:
m mest εrel

(lb) (lb) (%)
total mass 1703.63 1703.63 0.0

TABLE 5.39: Fourth set. Validation of
axial stresses and mass estimates at the

suboptimum found by GA
bar Area σ σest εrel

(no.) (in2) (lbf/in2) (lbf/in2) (%)
1 8.19 22825.2 21847.8 -4.28
2 1.05 20434.3 24954.6 22.12
3 8.98 -23734.1 -24999.9 -5.33
4 3.08 -25503.9 -21889.4 14.17
5 2.26 3679.6 5960.4 61.99
6 1.13 18937.0 24999.5 32.01
7 6.58 24312.9 24999.9 2.83
8 5.36 -22927.5 -22139.7 3.43
9 3.44 32332.4 29214.4 -9.64

10 1.28 -23558.9 -24967.2 -5.98
Objective:
m mest εrel

(lb) (lb) (%)
total mass 1737.08 1737.08 0.0

(measured in in2):

Aopt = {7.90 0.10 8.10 3.90 0.10 0.10 5.80 5.51 3.68 0.14} (5.73)

as reported by Haftka and Gürdal (1993), to which corresponds a mass of 1497.5 lbs.

Simplified representations of the truss are used to highlight the differences in the final

designs: the thicknesses of the bars are proportional to the corresponding bars’ radii.

Scatter plots in Fig. 5.42 are provided to show the discrepancy between the optimal cross

sectional area and the estimated one for each bar (◦ optimal value of the cross sectional
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area, × cross sectional area estimated by HyGP metamodels).
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(B) Suboptimal truss found for the first set of metamodels
(1853.06 lbs)
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(C) Suboptimal truss found for the second set of metamod-
els (1736.46 lbs)
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(D) Suboptimal truss found for the third set of metamodels
(1703.63 lbs)
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(E) Suboptimal truss found for the fourth set of metamod-
els (1737.08 lbs)

FIGURE 5.42: Schematic comparing the optimal 10-bar truss with the suboptimal trusses
found using HyGP metamodels (◦ optimal value of the cross sectional area, × cross

sectional area estimated by HyGP metamodels)
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5.6.3 Optimisation using MLSM metamodels

The optimisation was repeated using the moving least square method (MLSM), a para-

metric metamodelling technique whose theoretical background was introduced in Sec-

tion 1.2.7, Chapter 1. The technique is available as a tool in the commercial optimisation

software HyperStudy v11 (Toropov et al. 2005, Alt 2009) and is widely used in industry

(Harewood et al. 2007, Zeguer and Bates 2011) for accuracy and robustness, so it was

considered a valid and mature reference to compare the capability of HyGP with.

Polynomials of first, second and third order were used as basis for the MLSM method

for the generation of global metamodels of the axial stresses. As for the total mass, a first

order polynomial basis was of course enough to approximate the mass as a function of

cross sectional areas. The same building data set processed by HyGP was used, although

only two thirds of the samples were used to build the metamodels. The remaining third

was used instead as a validation data set to tune the closeness of fit (automatic closeness

of fit set in HyperStudy software), as suggested by Loweth et al. (2011). A Gaussian

decaying function was used in all cases.

Building and validation data sets were generated splitting randomly the building DoE

used for HyGP experiments. For mass model inference, 75 points were used for building,

25 for validation. For stress model inference, 300 points were used for building, the re-

maining 100 for validation. Although the point selection was done randomly, the building

and validation data sets featured good space filling properties, as shown by the minimum

distance between DoE points plotted for either data set in Fig. 5.43.

The coefficient of determination R2 of the MLSM metamodels generated using poly-

nomials of 1st, 2nd and 3rd order as basis are reported in Table 5.40: R2 was evaluated on

building and validation data sets as well as on the merged data set.

GA was used to find the set of cross sectional areas corresponding to the lightest truss

satisfying the stress constraints, as done with HyGP metamodels. The optima found using

the three different polynomial bases are shown in Tables 5.41, 5.42, 5.43.
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FIGURE 5.43: Minimum distance between DoE points in building and validation data
sets used by MLSM to generate mass and stresses metamodels

TABLE 5.40: Value of the coefficient of determination R2 of the stress and mass MLSM
metamodels on building, validation and merged data sets

Axial stress σest

Order 1 Order 2 Order 3
bar Build Test Merged Build Test Merged Build Test Merged
1 0.74639 0.57409 0.71714 0.84657 0.59424 0.82806 0.99910 -3.53790 0.98924
2 0.94606 0.63998 0.92953 0.83383 0.64683 0.81675 0.99454 -2.69958 0.96583
3 0.99225 0.62621 0.98796 0.98356 0.72556 0.97434 0.99796 -1.21364 0.97395
4 0.95203 0.61262 0.93301 0.81026 0.73389 0.80991 0.99693 -1.81781 0.96589
5 0.96988 0.57294 0.95274 0.86128 0.60607 0.82698 0.99635 -0.64826 0.96387
6 0.91967 0.45168 0.89176 0.85656 0.54941 0.82295 0.99367 -4.80223 0.91781
7 0.93331 0.65347 0.90891 0.97413 0.79497 0.96248 0.99983 -0.88337 0.99649
8 0.97115 0.66848 0.95666 0.95240 0.74254 0.93457 0.99879 -1.18166 0.98248
9 0.99679 0.72650 0.99517 0.98696 0.81313 0.98059 0.99842 -0.55860 0.98847
10 0.94943 0.63685 0.93014 0.94808 0.70466 0.92974 0.99891 -2.91754 0.98782

Mass m
Order 1 Order 2 Order 3

Build Test Merged Build Test Merged Build Test Merged
1.0 1.0 1.0 1.0 1.0 1.0 N/A N/A N/A
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TABLE 5.41: Exact and estimated ax-
ial stresses and truss mass at the found
suboptimum, using MLSM with 1st or-

der polynomial basis
bar Area σ σest εrel

(no.) (in2) (lbf/in2) (lbf/in2) (%)
1 9.86 20509.7 21847.8 6.52
2 0.10 21286.2 24954.6 17.23
3 5.40 -36596.6 -24999.9 31.69
4 2.37 -41334.1 -21889.4 47.04
5 0.10 43705.1 5960.4 -86.36
6 0.10 21286.2 24999.5 17.44
7 4.12 33528.3 24999.9 -25.44
8 7.33 -19719.2 -22139.7 -12.27
9 2.63 52575.0 29214.4 -44.43

10 0.10 -30103.3 -24967.2 17.06
Objective:
m mest εrel

(lb) (lb) (%)
total mass 1367.93 1367.93 0.0

TABLE 5.42: Exact and estimated ax-
ial stresses and truss mass at the found
suboptimum, using MLSM with 2nd or-

der polynomial basis
bar Area σ σest εrel

(no.) (in2) (lbf/in2) (lbf/in2) (%)
1 5.32 36600.4 550.2 -98.50
2 1.40 11886.9 17017.9 43.17
3 3.97 -51738.1 -24999.7 51.68
4 4.23 -19721.3 -23852.7 -20.95
5 1.54 7329.1 12162.7 65.95
6 1.83 9063.3 17427.7 92.29
7 4.84 30769.5 24998.0 -18.76
8 3.86 -34673.8 -24700.0 28.765
9 4.34 27198.7 38993.6 43.37

10 1.02 -22919.8 -24635.0 -7.48
Objective:
m mest εrel

(lb) (lb) (%)
total mass 1374.12 1374.12 0.0

TABLE 5.43: Exact and estimated ax-
ial stresses and truss mass at the found
suboptimum, using MLSM with 3rd or-

der polynomial basis
bar Area σ σest εrel

(no.) (in2) (lbf/in2) (lbf/in2) (%)
1 3.87 62474.2 24997.2 -59.99
2 0.79 7127.8 24977.1 250.42
3 2.40 -66043.4 -24926.1 62.26
4 3.20 -29468.9 12701.7 143.10
5 5.91 7981.8 -14580.5 -282.67
6 0.10 56396.0 22317.9 -60.43
7 3.15 26215.2 -13630.1 -151.99
8 8.34 -24008.9 8535.6 135.55
9 6.06 22029.9 12450.4 -43.48

10 7.88 -1011.5 10637.6 1151.67
Objective:
m mest εrel

(lb) (lb) (%)
total mass 1880.72 1880.72 0.0
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5.6.4 Comparison of results

The comparison of suboptima found using GP metamodels (Tables 5.36, 5.37, 5.38, 5.39)

with the suboptima found by MLSM metamodels reveals the better performance of HyGP.

The optimal value of 1497.5 lbs for the 10-bar truss mass, reported by Haftka and

Gürdal (1993), was not obtained by any attempts. The only truss design satisfying the

stress constraints is represented by HyGP “first set” described in Table 5.36, resulting in a

truss mass of 1853.06 lbs, 23.74% heavier than the optimal design. The other suboptimal

designs found using HyGP metamodels are lighter but slightly violate the constraints, up

to a maximum of 4.24% on the stress upper bound (bar 7 in Table 5.38). On the other

hand, the violation of stress limits for the MLSM designs are much more critical. For

the case of 3rd order polynomial basis (Table 5.43), the maximum stress level allowed is

exceeded by 164%, with no particular gain in terms of mass (1880.72 lbs, when HyGP

“first set” design results in 1853.06 lbs with no stress violations). The use of 1st or 2nd

order polynomial basis does not improve the design, as shown in Tables 5.41 and 5.42:

mass is generally lower than the solutions found by HyGP, but stress limits are violated

far beyond the 4.24% recorded for HyGP designs.

The poor performance of MLSM can be partly ascribed to the fact that the optima is on

the design space boundary: Harewood et al. (2007) also report on MLSM low accuracy in

these circumstances. It can be concluded that HyGP and genetic programming in general

have some extrapolation ability that make them particularly useful when the optima are

located on the design space boundary.

5.6.5 Computational cost

HyGP experiments were performed using the parallel implementation described in Sec-

tion A.3.3, Chapter A on a Linux cluster made of eight nodes, each equipped with several

3 MHz Intel Xeon processors.

The time required for each HyGP run to generate a metamodel for the axial force

is plotted in Fig. 5.44 for all the ten bars. The average time is 79909 seconds, equal

to 22 hours and 12 minutes. 12 GB of RAM were allotted to each run. HyGP settings

are reported in Table C.8 in Section C.8, Appendix C. The generation of metamodels

for the total mass was far faster, with an average time per evolution of 1 hour and 48

minutes. The high time required by HyGP to produce a metamodel is of course an issue

that should be solved in the future both by optimisation of the code (memory handling,
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parallelisation, etc) and optimisation of HyGP parameters (population size, number of

generations, number of tuning processes, etc).
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FIGURE 5.44: Time in hours for the generation of the axial forces HyGP metamodels

MLSM was far faster than HyGP, as to build a 3rd order model it took less than 5

minutes on a single processor laptop computer. However, it should be noted that meta-

modelling had to be repeated three times, one for each order of the polynomial, whereas

HyGP is able to search for the better mathematical structure of the metamodel (screening)

automatically.

5.7 Conclusion

In this chapter a new hybrid genetic programming algorithm, called HyGP, has been pre-

sented. A range of strategies to improve its performances, inspired by the analysis of

the main GP pitfalls described in the previous chapters, have been proposed (see Sec-

tion 5.3). The experiments set up to test the validity of these strategies (Section 5.3.5)

have confirmed that the use of Omegalim strategy and the inclusion of the shift unary op-

erator among the primitives effectively improve HyGP performances on a set of symbolic

regression test problems.

A further strategy to improve the generalisation ability of the metamodels evolved by

HyGP exploiting prior knowledge about the system to be modelled has been introduced

(see Section 5.4). Tests on a benchmark have provided promising results, so the strategy

is worth further attention in the future.
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The final part of the chapter has been dedicated to the comparison of HyGP to other

metamodelling techniques. Tests with polynomial chaos expansion (PCE) have shown the

advantage of HyGP (and GP in general) on parametric techniques. On the two symbolic

regression problems selected, HyGP was able to produce more accurate metamodels using

fewer DoE points than PCE. Furthermore, HyGP metamodels were more compact and

interpretable.

The 10-bar truss optimisation problem has been selected to test HyGP robustness on

a highly non linear and high dimensional metamodelling problem. The reduced accuracy

of HyGP metamodels was not able to lead the GA optimiser used to the global optimal

design, but anyway it confirmed the good metamodelling capability of the developed

code. Metamodels generated by HyGP led to a suboptimal solution but better than the

one found by optimisation based on MLSM metamodels. The particular location of the

optimum, lying on the design space boundary, was put forward as a possible explanation

of the lower performance of MLSM. The experiment in any case confirmed that HyGP has

some useful extrapolation capability.

The tests described in this chapter have proven that HyGP is robust enough to be

used on real-life metamodelling problems. A comprehensive set of tests performed on

industrial problems will be described in the next chapter.



Chapter 6

HyGP application to industrial

problems

The main focus of Chapters 2, 3 and 4 has been genetic programming theoretical back-

ground and the exploration of the broad range of implementations formulated by GP

researchers to overcome GP paradigm pitfalls. In Chapter 5 a new genetic programming

software called HyGP has been introduced and experimental activity reported.

Although the validation activity has allowed to improve HyGP performances in terms

of generalisation, accuracy and computational efficiency, HyGP use has so far been con-

strained to benchmark cases, which do not really reflect the complexity and variability of

real industrial or academic problems. In this chapter HyGP is finally put to the test on

more realistic problems, in order to provide an answer to the following questions:

• are models generated by HyGP accurate and robust enough to be used for real

optimisation problems, where the computational cost of the simulations constrains

the maximum size of the design of experiments?

• what is the level of human intervention required for setting up an experiment and

for the final selection of the best metamodel? Is the process easily transferable to

an industrial environment?

• what are HyGP limits and weaknesses in terms of computational cost and time?

How does it cope with the “curse of dimensionality”?

• does HyGP bear comparison with other more traditional modelling techniques in

terms of metamodels’ accuracy?

207
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As the following sections will focus on metamodels quality and use, this chapter can

be considered as a natural extension of Chapter 1.

6.1 General optimisation framework

As broadly described in Chapter 1, the use of metamodels in modelling and optimisation

allows to reduce the number of direct experimental test or numerical simulations required

to identify the behaviour of a complex system and to optimise its response. In the last

decades this advantage has been recognised by industry and academia (Jin et al. 2001), so

that the use of metamodels in lieu of actual simulations for modelling and optimisation

purposes is nowadays widely spread (Toropov et al. 2005, Bonte et al. 2005, Shahpar

et al. 2008, Loweth et al. 2011).

Metamodel building, validation and exploitation stages have already been introduced

in Section 1.2, Chapter 1: typically the experimental data are fed into a modelling tech-

nique and a metamodel (or more than one) is returned. The exploitation generally implies

extrapolation or forecast of the system behaviour for unsampled combinations of the in-

put parameters. For optimisation tasks, an optimiser is generally used to find the set of

input parameters minimising or maximising a predefined cost or objective defined as a

function of the system output(s).

The role of the optimiser is to efficiently explore the design space. As a result, the

selection of the search algorithm represents a delicate compromise. Population-based al-

gorithms are renowned for their ability to scan efficiently the entire design space, even

in case of noisy or non smooth objective functions. On the other hand, gradient-based

approaches are far more efficient but their performance is negatively affected by noisy

and non smooth functions and the results depend critically on the initial guess provided

by the user. Consequently, the optimiser selection has to take into account the features of

the metamodel to be explored. For instance, Ong et al. (2003) used EA to find an optimal

wing design optimisation through metamodels generated by radial basis functions. Hare-

wood et al. (2007) used MLSM coupled with GA to optimise a coronary stent. Shahpar

et al. (2008) used an SQP optimiser and MAM metamodels to optimise the aerodynamic

design of NASA rotor 37 compressor rotor blade. A Pareto-based EA was used by Syber-

feldt et al. (2009) to explore metamodels generated by artificial neural networks (ANN).

In some cases, combining stochastic and deterministic optimisers can be beneficial for the

accuracy and the robustness of the search: for example Bonte et al. (2005) performed a
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metal forming process optimisation using SQP to explore Kriging metamodels. To reduce

the probability of finding sub-optimal configurations, SQP initial guesses were generated

randomly. A similar approach was used by Alvarez (2000) to tune GP individuals, al-

though initial guesses were generated by a GA algorithm.

The final step of the optimisation process is generally the validation of the optimum

(optima) found by the optimiser. A final set of experiments or simulations is generally per-

formed to assess the discrepancy between the optimal values returned by the metamodel

based optimisation process and the actual responses at the defined point (an example can

be found in Rogers and LaMarsh (1995)).

The whole process above described is sketched in Fig. 6.1.

FIGURE 6.1: Framework generally adopted in metamodel-based optimisation

6.2 GP in real applications

HyGP performance has been assessed on real modelling and optimisation problems: the

case studies that have been selected for the test are reported in Table 6.1. The prob-

lems span very different fields, from fluid dynamics to chemistry, and feature a broad

dimensionality range, from what can be considered low (1 to 4 variables) to high dimen-

sionality (more than 10 variables). An example of mid dimensionality problem was the
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10-bar truss optimisation, featuring 10 variables, described in the previous chapter, Sec-

tion 5.6. Most data have originated from numerical simulations, while only in one case

models were generated from data gathered from a real physical process. The data gen-

erated by numerical simulations were assumed reliable and hence not affected by noise

(problems Hw, Jp, Bb, Af, Rb). Basically the same hypothesis was assumed for the ex-

perimental problem, as no particular measures were put in place by the experimenters to

reduce measurement noise (problem Cd).

TABLE 6.1: List of selected modelling and optimisation problems
Problem Dimension Data Sec.
ID description (experim./real)
Hw Hospital ward ventilation optimisation 1 numerical 6.3
Cd Modelling of chromate diffusion process

in aeronautical paint
2 experimental 6.4

Jp Modelling of supersonic jet pump en-
trained flow rate

3 numerical 6.5

Bb Bread baking oven design optimisation 3 numerical 6.6
Af Structural optimisation of a lattice aircraft

fuselage barrel
7 numerical 6.7

Rb Aerodynamic optimisation of NASA rotor
37 compressor rotor blade

25 numerical 6.8

In all cases, the research activity consisted in applying HyGP to the data produced or

collected by other researchers. In the next sections the metamodelling and optimisation

activity is described in detail, following the framework described in the previous section

(Fig. 6.1). For the problem having the highest dimensionality (Rb) the computational

cost associated with the metamodel generation is reported. The settings used for each

problem are reported in Appendix C.

6.3 Hospital ward ventilation optimisation

Ventilation in healthcare environments is critical to ensuring patient comfort and at the

same time reducing the transmission of airborne infectious particles to other patients or

healthcare workers. CFD simulations have been used to simulate air temperature and ve-

locity fields as well as pathogen particles trajectories inside hospital wards to help design

comfortable and safe environments (Khan et al. 2011ab).

Khan et al. (2011a) formulated ventilation design as a multi-objective optimisation

problem, where the objectives to be minimised were the normalised average thermal

comfort |Tres| and pathogen concentration |C| in a monitoring region A defined in a
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simplified model of a hospital ward. In Khan’s model, a hospital room was represented

as a two-dimensional cavity, whose walls are maintained at a temperature Tw. Fresh air

having temperature Tin and velocity uin is introduced in the cavity by an air inlet whose

position is fixed. Stale air is extracted by a single air outlet, whose position on the walls

of the cavity can be changed acting on the normalised parameter s. The positions of the

pathogen source Sφ and the monitoring region A are fixed. In Figure 6.2 a schematic

diagram of the hospital ward model is shown.

FIGURE 6.2: Two-dimensional model of an hospital ward with pathogen source Sφ and
monitoring region A

The averaged thermal comfort |Tres| and pathogen concentration |C| in the moni-

toring region A are assumed to be functions of the air outlet location s. The optimal

ventilation design was identified as the one minimising the weighted cost function shown

in Eq. (6.1):

f(s) = WC |C(s)|+WTres |Tres(s)| (6.1)

0.3 ≤ s ≤ 0.9125 (6.2)

where WC and WTres are weights used to change the relative importance of either objec-

tive.

Khan’s optimisation problem was approached using HyGP coupled with a GA search

algorithm to find the minimum of the cost function defined in Eq. (6.1), with WC and

WTres set both to 0.5. To generate thermal comfort |Tres| and pathogen concentration |C|
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metamodels, exactly the same data generated by Khan et al. (Khan et al. 2011a) was

used, consisting of 45 points uniformly sampled in the range [0.3, 0.9125].

For |Tres| metamodel generation, HyGP population was set to 400 individuals, im-

posing a maximum of 200 generations. The primitives used were addition, subtraction,

multiplication, division, shift1, square, cube, sine, cosine, exponential, reciprocal and hy-

perbolic functions (sinh, cosh, tanh).

As the response to be modelled is a normalised quantity, its range does not exceed the

interval [0, 1]. Such constraints on the output were exploited using the strategy described

in Section 5.4, Chapter 5: a penalisation was introduced for metamodels returning val-

ues bigger than 1 on an additional data set C made of 32 points regularly spaced in

[0.3, 0.92]. A total of 16 independent evolutions were run. The best metamodel found for

the normalised, averaged thermal comfort |Tres| is shown in Equation (6.3):

|Tres(s)| = 0.955786− 1(
327.076 s− 49.5365

s

)2
+ 1170605.54229 s9

×

[29.0308 cos(34.6155 s)− 8.12347 cos
(
187.947 s2

)
+

59.2608 cos
(
30.0985 s2

)
+

111.213

s
− 305.371]

(6.3)

Different HyGP settings were used to generate the metamodel of the normalised average

pathogen concentration |C(s)|. A population of 300 individuals was used, the maximum

number of generations set to 100. The functional primitives set was identical to the one

used for thermal comfort, but division and reciprocal were not used. The penalisation

described in Section 5.4, Chapter 5 was introduced for metamodels returning responses

outside the feasible region [0, 1]: a set of 7 points uniformly distributed in [0.3, 0.42]

was used to check the existence of negative responses, whereas another set of 25 points

uniformly sampled in [0.44, 0.92] was used to check the existence of responses bigger

than 1. In total, 12 independent evolutions were run. The best metamodel found for the

normalised, averaged pathogen concentration |C(s)| is shown in Equation (6.4):

|C(s)| = 0.00194827− tanh
[(

3.47996769908 · 1053
)

s144
]
×[

tanh
(
18.8286 s5

)
− 4.06459 s + 2.48559 s2

] (6.4)

In Fig. 6.3 the metamodels defined in Eq. (6.3-6.4) are plotted as a function of the nor-

malised position s. The dots represent the building data set.
1see Section 5.3.6, Chapter 5 for the advantages related to the use of shift primitive.
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FIGURE 6.3: Plots of thermal comfort and pathogen concentration metamodels against
normalised outlet position s

The availability of the explicit metamodels for thermal comfort and pathogen concen-

tration eased the analysis of the effect of weights variation on the cost function: Eq. (6.1)

is plotted in Fig. 6.4 for different values of WC and WTres .

FIGURE 6.4: Cost function for different values of the weights

The minimum of the cost function assembled using the metamodels defined in Eqs. (6.3-

6.4) for WC = 0.5 and WTres = 0.5 was found in s = 0.3. In Table 6.2 the corresponding

value of the cost function is shown and compared to the response returned by CFD vali-

dation. In the second row the minimum found by Khan et al. (2011a) using metamodels

generated by moving least squares method (MLSM) is reported.
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TABLE 6.2: Minima of the cost function f(s) found by different metamodelling tech-
niques

technique smin f(smin) CFD validation rel. error
GP + GA 0.3 0.4791136 0.4802253 0.2%

MLSM + GA 0.3 0.4801972 0.4802253 0.006%

The comparison shows that both techniques converged to the same point smin asso-

ciated to the minimum of the cost function. The metamodels generated by MLSM are

characterised by higher accuracy than the ones produced by HyGP. For both cases the

validation error is far lower than 1%.

6.3.1 Effect of penalisation on metamodels quality

In Fig. 6.5 the RMSE distributions corresponding to the best metamodels generated for the

optimisation problem are compared to the RMSE set resulting from a HyGP experiment

where the penalisation of the output was not used. The RMSE refer to the data used for

building the metamodels.

The p-values returned by Kruskal-Wallis test performed on the RMSE distributions

evaluated on the building data set do not provide any evidence of a significant difference

in the median due to the effect of the penalisation. The p-value returned for thermal

comfort experiments is 0.49752. For pathogen concentration, the use of the penalisation

slighlty improved metamodels accuracy, although such improvement is not statistically

meaningful (Kruskal-Wallis p-value = 0.11903).

1 2 3 4 5

x 10
−3

  without penalisation  

  with penalisation (p=3) 

RMSE

(A) thermal comfort |Tres(s)| models

0.05 0.1 0.15

  without penalisation  

  with penalisation (p=3) 

RMSE

(B) pathogen concentration |C(s)| models

FIGURE 6.5: Boxplots representing RMSE distribution for the best models generated with
and without the penalisation



Chapter 6 HyGP application to industrial problems 215

A further test was implemented to check whether penalisation contributed to improve

the smoothness of the metamodels on unsampled regions of the design space, effect that

could not be recognised observing the metamodels’ RMSE on the building data set.

As no validation data set was available to evaluate other RMSE distributions2, the

metamodels’ generalisation ability was assessed through the sum of the metamodel’s re-

sponse distance di from the output feasible region [0, 1], as described in Eqs. (5.35-5.36)

in Section 5.4, Chapter 5. The distance di was computed on an additional data set D made

of 6201 points uniformly distributed in the interval [0.3, 0.92]. This sum is proportional to

the area between the model and the output feasible region [0, 1] in the selected domain

interval.

In table 6.3 the values of the overall distance di from the feasible region [0, 1] for each

metamodel returned by HyGP for thermal comfort symbolic regression are given. The

boxplots in Fig. 6.6 show the different distributions of di for thermal comfort metamodels

produced using and not using the output penalisation.

TABLE 6.3: Thermal comfort models’ distances di from feasible region

without penalisation with penalisation
run 1 1.2324e+01 6.3746e-01
run 2 5.8301e+01 4.0053e-02
run 3 2.6372e+00 9.4451e-01
run 4 2.3652e+00 5.2473e+00
run 5 1.8600e+00 6.5424e-02
run 6 4.9864e-01 2.3314e+00
run 7 2.7227e+00 1.5467e+00
run 8 3.1799e+00 0.0
run 9 5.4815e-01 1.0189e+00

run 10 4.5035e+00 0.0
run 11 4.0025e-01 2.8616e+01
run 12 2.0535e+02 1.0229e+01
run 13 8.8728e-01 6.4701e-01
run 14 4.7886e+00 4.8797e-01
run 15 0.0 6.3183e-01
run 16 1.3516e+01 2.4373e+00
average 1.9618e+01 3.4300e+00
median 2.6799e+00 7.9576e-01

IQR 7.8386e+00 2.1077e+00
models inside bounds (%) 6.2 12.5

p value 9.3392e-02

Table 6.4 lists the values of di for each bacteria concentration model generated using

and not using the penalisation. The boxplots in Fig. 6.6 show the different distributions

of di for bacteria concnetration metamodels produced using and not using the output

penalisation.
2for the importance of the validation data set, see Section 3.2.2, Chapter 3 and Section 5.3.1, Chapter 5.
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FIGURE 6.6: Boxplots of thermal comfort metamodels’ distances di from output feasible
region

TABLE 6.4: Bacteria concentration metamodels’ distances di from feasible region

without penalisation with penalisation
run 1 9.8925e-01 0.0
run 2 7.3112e-01 6.4714e-01
run 3 1.1504e+01 6.6014e+00
run 4 2.2419e+01 2.0765e+01
run 5 7.3582e-01 8.9439e-01
run 6 7.4186e+00 5.9104e+00
run 7 8.6624e-01 8.2953e+00
run 8 8.9188e-01 8.9392e-01
run 9 4.7552e+00 2.1729e+00

run 10 0.0 2.9932e+00
run 11 4.6822e+01 4.6933e+00
run 12 1.2657e+01 4.2889e+01
average 9.1491e+00 8.0630e+00
median 2.8722e+00 3.8433e+00

IQR 1.1279e+01 6.5542e+00
models inside bounds (%) 8.3 8.3

p value 1.0
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  without penalisation  

  with penalisation (p=3) 

d
i

FIGURE 6.7: Boxplots of bacteria concentration metamodels’ distances di from output
feasible region
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Combining the results from tables 6.3-6.4 with the observations made at the beginning

of the section on the accuracy of the metamodels on the building data set, it emerges

that the use of penalisation was beneficial for the symbolic regression, although such

conclusion is not confirmed by statistical evidence.

Thermal comfort metamodels generalisation ability was improved, although the pe-

nalisation did not influence the accuracy on the building data set. The opposite happened

for the pathogen concentration metamodels: the penalisation improved the accuracy on

the building data set, whereas generalisation ability was no particularly increased.

The lack of conclusive evidence regarding the effect of the penalisation may be as-

cribed to the small size (32 points) of the additional data set used for assessing the feasi-

bility of metamodels’ output.

6.4 Chromate diffusion model

Chromates (chromium (VI) salts, salts of chromic acid, salts containing the divalent ion,

CrO2-
4 ) are widely used in the aerospace industry for corrosion protection, primarily of

aluminium alloys. Although efforts are being made to replace chromates with less harmful

alternatives, they are still in widespread use. It is therefore important to understand the

role of chromates in corrosion prevention and the mechanisms by which it is achieved.

Corrosion protection schemes for metallic structures, particularly those containing

aluminium alloys, imply generally an initial surface treatment (usually involving either

chemical conversion or anodising), followed by the application on the resulting oxide

layer of a corrosion inhibiting primer containing a soluble chromate salt. If required, a

topcoat can be applied to provide additional protection from harsh environments. Typi-

cally, chromate salts of heavy metals such as barium chromate (BaCrO4) and strontium

chromate (SrCrO4) are used in corrosion inhibiting aerospace primers.

The corrosion protection system is designed to function in the following manner:

when a scratch occurs that penetrates the chromate-loaded primer through to the under-

lying aluminium alloy substrate, the metal is exposed. Contact with an aqueous medium

can then trigger the corrosion process leading to the deterioration of the alloy. Soluble

chromates present in the primer are able to hinder such process: they dissolve into the

aqueous medium and are then transported to the exposed site, where chromium ions re-

act with the aluminium alloy producing a passive layer, arresting further corrosion. Thus,
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the leaching (or dissolution) of chromate is an important step in corrosion protection

process.

Modelling of the leaching process under different conditions may improve understand-

ing of corrosion protection and may lead to a reduction in the amount of testing required

for the qualification of new corrosion protection systems.

Research has shown clear time dependency of chromate leaching (Prosek and Thierry

2004, Xia 2000, Scholes et al. 2006): generally, leach rates decrease with time. It has

also been reported that the pH of the aqueous medium that comes into contact with the

primer has an influence on leaching. High leach rates are found at low pH (Furman et al.

2006). Solubility of chromates has been regarded as not being a controlling factor as the

concentration of leached chromate dissolved in the immersion medium is low compared

to that of a saturated solution (Xia 2000).

The model proposed by Furman et al. (Furman et al. 2006) defines the mass of

released material per surface unit (Mt, measured in mg/dm2) as proportional to a power

of time (the model was found exploiting Fick’s second law of diffusion):

Mt = kDeff t
n (6.5)

in which Deff is the effective diffusion coefficient, k is a constant and tn is a power of

time. Furman et al. proposed to use a constant value of 0.25 for the exponent n of the

time variable for all primers under various conditions, letting the effective diffusion coef-

ficient Deff be the only varying parameter in the model described in Eq. (6.5). However,

experiments performed on four primers (not described here), whose results are shown in

Fig. 6.8, show that the validity of the Furman’s simplified model is rather limited. Tests

proved that the effective diffusion coefficient Deff has a different value for each primer,

and the power of time n cannot be assumed to be equal for all primers either. For exam-

ple, a basic power fit of the form ctn to the data plotted in Fig. 6.8 results in different

values of the exponent n for primers Aerodur HS 37092 (n = 0.33) and Seevenax 313-01

(n = 0.12). This proves that a model using a constant power of time is not appropriate

for modelling the leaching process and new models are needed.

6.4.1 Methodology

The aim of the research activity, conducted in collaboration with an aerospace company,

was to provide mathematical models of the quantity of chromate salts dissolving into an
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aqueous solution from an aluminium alloy sample treated with a chromate-loaded primer.

The study focused on the behaviour of three different primers, which will be referred to

as A, B and C3 in the following.

The generation of the models was only the final stage (step 3) of a process that con-

sisted of the following steps:

1. preparatory testing

2. chromate leaching measurement

3. model generation through genetic programming

The first two steps, initial testing and chromate leaching measurement, were carried out

independently by Mr. D. J. Boon, Dr. L. J. Clarke and Dr. M. B. Stowe in the labs of the

aerospace company and the gathered data were kindly provided for the metamodelling

activity.

During the preparatory stage a sensitivity analysis of the leaching process was carried

out to identify the main variables involved. Tests showed that the temperature of the

aqueous solution where the treated alloy sample was immersed did not have a significant

effect on the leaching over a range of 9°C to 50°C and for a time period of up to two

months. As a result, time and pH were identified as the independent variables to be
3The correspondent commercial names are F580-2080 for primer A, Aerodur®S15/90 for primer B, Epoxy

Primer 37032A for primer C.
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used in the design of experiments. In total, 35 sample points were defined for primer A,

whereas 72 sample points were used for primers B and C. The plans of experiments used

for each primer are shown in Fig. 6.9.
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FIGURE 6.9: DoEs for primers A, B and C

In the second stage, the coated aluminium samples were immersed in an aqueous solu-

tion of 300 ml and the total quantity of chromate dissolved into the solution measured at

different times and for different initial pH values of the solution, according to the design

of experiments for each primer. Over a period of 2 months, 20-ml samples were removed

from the medium and chromate content and pH of the samples measured. The chromate

concentration in the sample was measured through Atomic Absorption Spectrometry, us-

ing an AAnalyst 400 Spectrometer from PerkinElmer, and the total mass of chromate in

the solution obtained multiplying the concentration by the volume of the solution. The

total volume of the solution was then made back up to 300 ml by adding 20 ml of fresh

medium. If the pH of the solution had drifted from the required value, the 20-ml sample

that was added to the solution was also used to adjust the pH of the solution back to the

desired pH. Because the rate of leaching reduces with time, measurements were taken
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more frequently at the beginning of the experiment than at the end, as it is shown in the

design of experiments for the three primers in Fig. 6.9.

In the third and final stage, data obtained by the measurements on the samples were

processed by HyGP to generate empirical models for the quantity of dissolved chromate

as a function of time and pH.

Ten independent runs for each input data set were launched to increase the chances of

finding acceptable models. A constant population of 200 individuals and 100 generations

were used in all the experiments. The functions (primitives) used were the standard

algebraic operations (addition, subtraction, multiplication and division) as well as power,

sine, cosine, logarithm, reciprocal and the hyperbolic functions. Shift unary operator was

also used4.

6.4.2 Results

In the following paragraphs the best models generated for each primer are described. pH

is represented by pH; time is measured in hours, and represented by the letter t.

6.4.2.1 Primer A

The best model found according to the sheer root mean square error on the building data

set is reported in Eq. (6.6):

f(t, pH) = 2.45694 · 10−3 t +
462.344 t

99.2640 t− 95.1374 t
pH + 203.436

− 0.190638 (6.6)

Its coefficient of determination isR2 = 0.9958987, the maximum error -2.466175mg/dm2.

However, the most significant model generated is described in Eq. (6.7):

f(t, pH) = 4.41652 (1.91811 t)
1

4.87395 pH−3.04801 − 0.498776 (6.7)

the model in Eq. (6.7) has a coefficient of determination (R2 = 0.995062) slightly lower

than the previous one’s. The maximum error, 2.341443 mg/dm2, is however smaller. The

corresponding plot is shown in Fig. 6.10, together with a graphical comparison of the

estimated response against the measured (or actual) response. The particular interest in

Eq. (6.7) comes from the striking resemblance to the model proposed by Furman et al.,

described in the introduction (Eq. (6.5)).
4see Section 5.3.0.4, Chapter 5
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FIGURE 6.10: Generated model for primer A

6.4.2.2 Primer B

For primer B HyGP was not able to generate models as simple as the ones found for

primer A (Eqs. (6.6-6.7)). The extended pH range or the noise in measurements may

have forced the algorithm to increase the average size of the mathematical expressions to

increase the accuracy. In other words, the models are generally affected by “bloat”, which

is a well-known behaviour for genetic programming techniques, as seen in Section 4.4.1,

Chapter 3.

The best model found according to the root mean square error on the building data

set was:

f(t, pH) = 0.024784 t pH

− tanh(0.125306 t) (0.0898783 t + 0.36776 pH− 5.1529)

− 3.18441 · 10−3 pH +
0.25614 t

pH2 − 1.61642 · 10−3 t pH2

+
(
3.39314 · 10−17

)
t pH14 + 0.00567243

(6.8)

Although complex, the model shows a high coefficient of determination (R2 = 0.970065).

The maximum error is -5.889410 mg/dm2. The corresponding plot is shown in Fig. 6.11.
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FIGURE 6.11: Generated model for primer B

6.4.2.3 Primer C

The models found for primer C were neither compact not easily interpretable. On average,

models were larger than in the first case (primer A), being mainly linear combination of

non-linear terms.

The model having the best root mean square error was:

f(t, pH) = 0.243435 pH− 6.47727 · 10−3 t + tanh(107.85 t)

−
5.14483 · 10−4

(
210.141 t− 569.132 t

pH + 1.56793·10−6 t4

pH

)
pH

+ 7.08876 · 10−3 t pH− 8.25987 · 10−5 t pH3 + 2.82282 · 10−7 t pH5

− 1.97306 · 10−2 pH2 − 0.527521

(6.9)

The corresponding coefficient of determination is relatively high R2 = 0.983118. The

maximum error is -2.542556 mg/dm2. The plot of the model is shown in Fig. 6.12.

6.4.3 Discussion of results

HyGP has shown the ability to produce high quality models for the three data sets pro-

vided by the experiments.

The explicit mathematical expressions shown in Eqs. (6.7-6.8-6.9) ease the interpre-

tation of the data produced by the experiments on the treated aluminium samples. With

regards to the influence of pH value on the leaching, high chromate releases are high-

lighted at low pH (pH < 2) for all three primers, whereas for primer B high releases are
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FIGURE 6.12: Generated model for primer C

detected even for high pH (pH > 12). A local maximum is detected near neutral pH for

primers B and C. During the experiments on the aluminium samples it was interestingly

noted that the pH of solutions having a not neutral pH (pH 6= 7) had a tendency to move

towards neutral. This behaviour, noticed also by Furman et al. (Scholes et al. 2006), indi-

cates that there are reactions going on between elements from the primer and the acidic

or alkaline solution. According to Kondratenko et al. (Kondratenko and Sherstyuk 1986)

the drift in pH is the result of four equilibrium reactions going on between the acidic or

alkaline solution and chromates.

The general trend of the leaching rate with respect to time has already been discussed

in the opening of the section (see Fig. 6.8) and the models generated by HyGP conform

with it. As shown in Fig. 6.10, 6.11 and 6.12 the leaching is initially high and slows down

with time. Such reduction in the leaching rate can be explained considering the different

times needed by the chromates to diffuse out of the primer, according to their position in

the primer film: the chromates near the surface of the primer dissolve rapidly, whereas

the chromates sited below the surface need more time to diffuse outwards. Diffusion of

chromates out of the primer plays then an important role in corrosion protection, as the

efficacy of the corrosion protection process depends on the quantity of chromate leached.

Focusing instead on the method used to generate the models, the results of the pre-

vious paragraph show HyGP ability to extend or generalise existing chromate leaching

models. The model in Eq. (6.7) is in fact a generalisation of the model found by S.A.

Furman et al. (Furman et al. 2006) presented in Eq. (6.5), as not only time but also pH
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is included in the model. Where simple and interpretable expressions were not found, as

for the cases of primers B and C, HyGP still provided high-quality models.

6.5 Modelling of supersonic jet pump entrained flow rate

Supersonic jet pumps are devices that are able to pump a flow without the need for mov-

ing parts. The flow pressure variation is achieved mixing the flow (also called entrained

flow) with a high velocity jet (or primary flow) and making them go through a duct of

variable cross-sectional area (Eves et al. 2011). As a result of the lack of moving parts,

supersonic jet pumps boast a far longer life compared to other pump typologies and for

this reason they can be considered environmentally friendly devices. Their application is

common in refrigeration to desalination industry (Eves et al. 2011).

Eves et al. (2011) applied a formal optimisation framework to the optimisation of a su-

personic jet pump design. The entrained flow rate V̇ent was maximised for a broad range

of primary flow rates V̇pri (from 200 L/min to 1200 L/min). For the application of the

formal optimisation framework (described in Section 6.1), the problem was reformulated

as follows:

maximise : V̇ent (6.10)

subject to : V̇pri ≤ c0 (6.11)

cLi ≤ DVi ≤ cUi i = 1, 2, 3 (6.12)

the entrained flow rate V̇ent and the primary flow rates V̇pri were assumed function of the

independent variables DV 1, DV 2, DV 3 defined as:

DV 1 = RN (6.13)

DV 2 =
RDI
RN

(6.14)

DV 3 =
RDO
RDI

(6.15)

where RN is the jet pump nozzle radius, RDI the diffuser inlet radius and RDO the dif-

fuser outlet radius. The input variables DV 2 and DV 3 were defined as ratios of physical

jet pump parameters to avoid unfeasible designs. CFD simulations provided the values of

the objective V̇ent and the constraint V̇pri for each point of a Latin Hypercube DoE made of

100 points. MLSM was used to generate metamodels of the entrained and primary flow
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rate and GA and SQP algorithms were used to search for the solution of the optimisation

problem defined in Eqs. (6.10-6.11-6.12).

6.5.1 Entrained flow modelling using HyGP

The idea to use HyGP to model the jet pump entrained flow rate sparked from a practical

need: the final user of the jet pump model required a simple tool to evaluate the jet

pump performance for a given set of design parameters. Genetic programming models

are returned as explicit text expressions that can be evaluated by spreadsheet software,

so HyGP was in this case considered the optimal modelling tool. The request of the jet

pump user then gave the opportunity to assess HyGP applicability to industrial problems,

as well as confirming that accuracy is not the only criterium that guides the selection of a

metamodelling technique.

The modelling stage was repeated using HyGP instead of MLSM on the already exist-

ing data kindly provided by Dr. Eves. Model generation and validation were performed

on the existing building and validation data sets, respectively made of 136 and 57 points

sampled in the following region:

1.0mm ≤ DV 1 ≤ 3.38mm (6.16)

2.0 ≤ DV 2 ≤ 3.5 (6.17)

1.5 ≤ DV 3 ≤ 4.5 (6.18)

The minimum distance between DoE points in the building and validation data sets are

shown in Fig. 6.13. For each point the corresponding entrained flow rate had been previ-

ously computed by CFD simulations.

10 HyGP independent runs were performed, setting the population size to 200 individ-

uals and the maximum number of generations to 50. The other parameters are reported
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(B) Validation data set

FIGURE 6.13: Minimum distance bewteen DoE points for building and validation data
sets

in Table C.15 in Appendix C. The best model found is reported in Eq. (6.19):

V̇ent(DV 1, DV 2, DV 3) = 395.18 DV1− 602.739 DV2− 764.272 DV3

+ 969.842 DV1 DV2 + 169.974 DV2 DV3− 2892.42 DV1

DV2
+

160.407 DV2

DV1

− 300.893 DV12 DV2− 9.69909 DV13 DV2− 62.4153 DV1

DV3
+

924.589 DV3

DV2

+ 639.652 DV12 − 5.50577 DV12 DV22 +
980.552

DV1 DV3
+

439.244 DV12

DV3

+
34.079 DV13

DV3
+ 0.528353 DV1 DV23 DV32 − 737.5 DV12

DV2 DV3
− 171.104 DV22

DV12 DV3

+
81.8517 DV22

DV13 DV3
s− 304.829 DV1 DV2

DV3
− 7.1222 DV1 DV23 DV3 + 36.2463

(6.19)

The RMSE, coefficient of determination R2 and the maximum relative error are provided

in Table 6.5. The metamodel features good generalisation properties as the RMSE and R2

on building and validation data sets are comparable. In Fig. 6.14 the estimated entrained

flow rate is plotted against the actual flow rate computed by CFD for each sample in

the building and validation data sets: the points closeness to the line reflects the high

accuracy of the metamodel on both data sets.

TABLE 6.5: Entrained flow rate metamodels quality on building and validation data sets

Building Validation
RMSE 1.00131e+01 1.13879e+01
R2 0.998373 0.997664
Max relative error (%) 2.01211e+01 2.24671e+01

The accuracy of the model was considered acceptable for industrial use, and the avail-

ability of the explicit expression in Eq. (6.19) made metamodel exploitation easier. For
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FIGURE 6.14: Model response versus actual response. Each point represent an entrained
flow rate in L/min

example, the plot in Fig. 6.15 showing the dependency of the entrained flow rate on the

three input variables was generated using the expression returned by HyGP. In the figure

it can be clearly seen that the entrained flow rate maximum lies approximately in the

region centered in {3.3 2.4 1.5}, observation that is consistent with the results reported

by Eves et al. (2011).

FIGURE 6.15: Entrained flow rate (L/min) as a function of DV1, DV2, DV3
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6.6 Bread baking oven design optimisation

Commercial bread-baking industry has been showing increasing interest in computational

fluid dynamics (CFD) to model the complex mass and heat transfer processes involved

in bread baking, with the aim of reducing cooking times without compromising bread

quality.

In forced convection ovens (also called “direct fired” ovens), a common oven typology,

hot air is injected in the baking chamber by nozzles located on the ceiling and the floor

of the chamber. Bread loaves are placed on a tray located at equal distance H from the

ceiling and the floor, as shown schematically in Fig. 6.16.

FIGURE 6.16: Three-zone direct fired oven: a) Overview of the oven; b) Simplified
schematic showing the oven longitudinal section and the mechanism for distributing air

through the nozzles on the ceiling and on the floor

Air temperature uniformity in the baking chamber is a key factor to ensure uniform

heat transfer and then product quality. Following Khatir et al. (2011ab), temperature

uniformity in an oven baking chamber can be defined by the parameter σT defined in

Eq. (6.20):

σT =

√∫
V (Ti − Tzone)2dV∫

V dV
(6.20)

where TZone is the temperature of the air flowing through the nozzles fitted on the

baking chamber walls, V is the baking domain and Ti is the air temperature at point i of

the baking chamber.

By the definition in Eq. (6.20), the optimisation of the oven design consists in finding

the set of design parameters that minimises the root mean square temperature variation

σT .
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6.6.1 Methodology

In mathematical terms, the oven design optimisation implies finding a global minimum

of the function σT . HyGP was used to generate a global metamodel of σT : due to oven

simmetry, σT was modelled only on a portion of the baking chamber. Three parameters

defining oven and nozzles characteristics were considered as independent variables, as

done in Khatir et al. (2011b): the nozzle jet diameter (D), the dimensionless nozzle-

to-surface distance (HD ) and the nozzle jet velocity (unoz). The CFD model of the oven

baking chamber and the input variables are described in Fig. 6.17.

FIGURE 6.17: CFD baking chamber model with design variables: nozzle jet diameter D,
jet velocity unoz and distance H between tray surface and chamber ceiling (nozzle to

nozzle distance S = 200 mm)

CFD simulations provided σT values on a Latin hypercube DoE made of 30 points,

used as building data set. As by definition σT is positive in the whole domain, such

knowledge was exploited to improve HyGP symbolic regression through the use of the

penalisation introduced in Section 5.4, Chapter 5. The sign of σT was checked on an

additional data set C made of 120 points generated using a full factorial DoE in the

region [5, 20] × [2, 10] × [8, 40]. For the HyGP experiment, 12 independent evolutions

were performed, each using a population of 300 individuals for a maximum number of

200 generations. As functional primitives addition, subtraction, multiplication, power,

shift, square, cube, sine, cosine, hyperbolic sine, hyperbolic cosine, hyperbolic tangent,

exponential were selected.



Chapter 6 HyGP application to industrial problems 231

The best metamodel found by HyGP is shown in Eq. (6.21):

σT (D, HD , unoz) = 6.54966× 10−6 D3 unoz + 4.26492× 10−6 D2 unoz
2

− 1.84683× 10−4 D
(
H
D

)2
unoz + 2.69398× 10−5 D

(
H
D

)
unoz

2

+ 4.97275× 10−2 D
(
H
D

)
− 6.163× 10−1 D + 5.77163× 10−6

(
H
D

)5
unoz

2

+ 2.13294× 10−8
(
H
D

)4
unoz

4 − 1.68813× 10−4
(
H
D

)4
unoz

2

− 1.07612× 10−2
(
H
D

)4 − 1.76832× 10−7
(
H
D

)3
unoz

4

+ 9.4134× 10−4
(
H
D

)3
unoz

2 + 2.83469× 10−2
(
H
D

)3
unoz

+ 5.52956× 10−4
(
H
D

)2
unoz

2 − 2.96942× 10−1
(
H
D

)2
unoz

+ 5.81804× 10−1
(
H
D

)2
+ 5.57406× 10−1

(
H
D

)
unoz + 1.234

(
H
D

)
+ 7.574× 10−7 unoz

4 + 5.78694× 10−4 unoz
3 − 4.88598× 10−2 unoz

2

+ 5.79625× 10−1 unoz + 2.86242

(6.21)

Although the generated metamodel shown above is quite accurate on the building data set

(RMSE = 4.62702e-02, R2 = 0.999296), its response was found to be positive only inside

the hypercube [5, 20]× [2.75, 8]× [8, 39.7]. This may be explained considering that the fit-

ness function as defined in Eq. (5.33)5 gathers conflicting objectives: RMSE minimisation

on building data set may hinder the minimisation of the distance di of the metamodel re-

sponses from the feasible region. An attempt to visualise the behaviour of the metamodel

at the boundaries of the hypercube [5, 20]× [2.75, 8]× [8, 39.7] is shown in Fig. 6.18a.

6.6.2 Results of the optimisation

In the second stage of the analysis, a GA was used to find the minimum of the σT meta-

model as defined in Eq. (6.21) in the hypercube [5, 20] × [2.75, 8] × [8, 39.7]. In Table 6.6

the minimum found is compared with the minimum of another σT metamodel generated

by MLSM using the same input data. The values returned by the metamodels were val-

idated with the responses returned by CFD simulations in the minima locations (Khatir

et al. 2011b), reported in fourth column.

The estimates provided by HyGP and MLSM metamodels are affected by relative er-

rors of the same order of magnitude (see fifth column in Table 6.6). The small size of the

building data set may have been the main cause of the poor accuracy of the metamodels.
5see Section 5.4, Chapter 5.
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TABLE 6.6: Minima found using metamodels generated by GP and MLSM

technique {D,H/D, unoz} σT σT from CFD rel. error
{ [mm], [ ], [m/s] } [K] [K] %

MLS + GA {20.00, 6.82, 38.12} 1.16 1.22 4.9%
HyGP + GA {13.80, 7.31, 39.70} 1.07 1.14 6.1%

Despite their lower accuracy, HyGP metamodel helped discover an optimal design char-

acterised by a value of σT (1.14) lower than the one corresponding to the optimum found

on MLSM metamodels (1.22). Moreover, the metamodel explicit expression can be easily

used to perform Monte Carlo based sensitivity analysis.

The σT metamodel defined in Eq. (6.21) is shown in Fig. 6.18b, 6.18c, 6.18d setting

each variable to a constant value: the dot in the figures represents the minimum found

by GA.

(A) σT on boundaries (B) σT (H/D, unoz) in D = 13.80 mm

(C) σT (D,unoz) in H/D = 7.31 (D) σT (D,H/D) in unoz = 39.70 m/s

FIGURE 6.18: Behaviour of σT metamodel (Eq. (6.21)) on the boundaries of the hyper-
cube [5, 20]× [2.75, 8]× [8, 39.7] and around the minimum
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6.6.3 Effect of the penalisation

As done for the hospital ward ventilation optimisation (see Section 6.3.1), the effect of

the penalisation on HyGP models was assessed comparing the experiment described in

the previous section with an identical experiment where instead the penalisation was not

used.

In Fig. 6.19 are shown the distributions of RMSE and R2 of the best models generated

by each run of these two experiments, computed on the building data set.

0 0.1 0.2 0.3

  without penalisation  

  with penalisation (p=3) 

RMSE

(A) RMSE

0.975 0.98 0.985 0.99 0.995 1

  without penalisation  

  with penalisation (p=3) 

R
2

(B) R2

FIGURE 6.19: Boxplots representing RMSE and R2 distribution on building data set of
the best models generated with and without the penalisation

According to Kruskal-Wallis test (p-value 0.0055836), the penalisation seems to have

consistently worsened the accuracy of the models, rather than improving it. Such conclu-

sion can be however misleading, as it refers only to the models’ behaviour on the building

data set, not taking into account possible overfitting issues. In fact, the introduction of

the penalisation may increase generated models’ average error on the building data set

as an additional objective, output feasibility, has to be satisfied on unsampled regions of

the design space.

So, a thorough assessment of the generalisation ability was carried out following the

methodology described in Section 6.3.1. The sum of the distances of the models responses

from the feasible region, di, was computed on a full factorial DoE made of 8000 points

sampled in the original design space [5, 20] × [2, 10] × [8, 40]. The overall distances di

for each model generated with and without the penalisation are reported in Table 6.7.

Boxplots in Fig. 6.20 show the distributions of di.
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TABLE 6.7: σT models’ distances di from feasible region and corresponding statistics

without penalisation with penalisation
run 1 2.7051e+03 6.8186e+02
run 2 2.2827e+01 5.3148e+02
run 3 1.1712e+03 1.0375e+03
run 4 6.7022e+02 4.9405e+02
run 5 9.6636e+02 2.0205e+02
run 6 2.9234e+02 3.2230e+02
run 7 7.8744e+02 4.1522e+02
run 8 5.9548e+02 1.6276e+02
run 9 1.1573e+03 6.4371e+01

run 10 8.7899e+02 3.8935e+02
run 11 7.8389e+02 9.9915e+04
run 12 6.5040e+02 8.0844e+02
average 8.9013e+02 8.7520e+03
median 7.8566e+02 4.5463e+02

IQR 4.3887e+02 4.8297e+02
p value 0.14096

models inside bounds (%) 0 0

0 500 1000 1500 2000 2500 3000
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  with penalisation (p=3) 
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FIGURE 6.20: Boxplots of σT metamodels’ distances di from output feasible region

From Table 6.7 and Fig. 6.20 it emerges that the use of penalisation affected the

generalisation property of the models, producing a decrease in the median of the sum

of the distances. Such conclusion is however not supported by Wilcoxon rank sum test

(p-value = 0.1406).

6.7 Parametric optimisation of a lattice aircraft fuselage barrel

In the EU FP7 collaborative research programme ALaSCA (Advanced Lattice Structures

for Composite Airframes) (Ala 2010), the potential of anisogrid structures for a com-

posite fuselage section has been investigated and a developed fuselage design has been
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improved by topology optimization with respect to weight and structural performance

(Niemann et al. 2012). The design is derived from the composite lattice structure, whose

geometry (Vasiliev 2001) is shown in Fig. 6.21, which has been successfully applied for

years in Russian rocket technology for their excellent strength and stiffness to weight ratio

(Vasiliev 2012).

FIGURE 6.21: Geometry of lattice structure in a composite fuselage barrel

The ALaSCA project investigates aircraft fuselage designs made of carbon fibre rein-

forced plastic (CFRP) material. These materials have a high specific strength and high

specific stiffness. However, as opposed to metals, which are homogenous materials, com-

posites are orthotropic materials made of fibres held together by a matrix. Because fibre

composites behave differently from metals, a new weight efficient composite anisogrid

fuselage design is sought. The most weight efficient application of such a material occurs

when the fibres are oriented parallel to the loads. In the studied anisogrid structure, the

grid forming stiffeners are predominantly made of a unidirectional composite in which

the fibres are parallel, while the skin is made of a laminate consisting of plies oriented in

various angles.

The design process of the composite lattice structure is a multi-parameter optimisa-

tion problem, for which a metamodel-based optimization technique is used to obtain the

optimal solution describing the lattice element geometry in this paper. In the optimiza-

tion of a lattice composite fuselage structure, one of the design variables, the number of

helical ribs, is integer. It is assumed that it is allowed to perform a response function

evaluation only for points that have discrete values of the design variables (Balabanov

and Venter 2004). This makes it impossible to initially ignore the discrete nature of the

design variables, solve a continuous problem and adjust the result to the given set of the

discrete values, as sometimes suggested (Stolpe 2011).
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In the following, a discrete form of genetic algorithm (GA) (Michalewicz 1996, Bates

et al. 2004) is used to search for the optimal solution in terms of weight savings subject

to stability, strength and strain requirements. The optimal solution has been examined by

the FE simulation of the lattice fuselage barrel to determine the true structural responses

which are then compared to those provided by the metamodels. A composite lattice

barrel, considered in the current ALaSCA EU FP7 research project, is used to demonstrate

the efficiency and accuracy of the metamodel-based optimization technique as well as

provide the designers with a wealth of information on the structural behaviour of the

novel anisogrid design.

6.7.1 Finite Element modelling and simulations

An automated multiparametric global fuselage barrel finite element (FE) tool is developed

for optimization purposes. This tool simulates the behaviour of a user defined composite

anisogrid fuselage barrel under specified loads. The software used are MSC Patran and

MSC Nastran; while the programming language is PCL. This model generation code is a

powerful pre and post processing tool.

The automated multiparametric global barrel FE tool consists of three pieces of codes:

a request file, a pre-processing function and a post processing function. The request

session file contains the list of parameter sets used as inputs for the model generation.

This piece of code effectively contains the list of fuselage models to be simulated. The

pre-processing file generates the fuselage models, requests the analysis, and after the

analysis is complete, calls the post processing function. The post processing file harvests

and formats the results. A user defined number of models can thus be generated and

analysed in a batch mode with this program. The detailed flowchart for the automated

multiparametric global barrel FE tool is shown in Fig. 6.22.

The code models a simplified section of a composite anisogrid fuselage barrel. Ge-

ometric factors such as fuselage section length and diameter, skin thickness, stiffener

locations and stiffener cross sections can be defined by the user. Also the material proper-

ties, loads, and mesh density are user defined. Using these inputs, the smallest and most

important building block of the code, the unit cell geometry, is generated first. In the

case of the fuselage barrel here discussed, the unit cell is triangular as seen in Fig. 6.23.

Then the nodes associated with loads and multipoint constraints are created. The early

creation of these nodes allows for a continuous low node id nomenclature being applied
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FIGURE 6.22: Automated multiparametric global barrel FE tool flowchart

to the loaded nodes. This is instrumental for the application of the loads and boundary

conditions. The barrel mesh is then created starting with the meshing of the unit cell

including the skin and the stiffeners. The sample mesh shown in Fig. 6.23 can be made

finer or coarser by the user. The unit cell mesh is then multiplied via translation and

rotation to generate the full fuselage barrel mesh. The material properties are applied to

the skin, frames and helical ribs. Miscellaneous settings such as loads, load case creation,

section property request, and group formation are implemented. Finally, the static and

the linear buckling analyses are set up in MSC/Nastran Solution 400 and started. When

the analysis is done, the post processing function is called.

FIGURE 6.23: Barrel with visualised frames and helical ribs
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The thus built model consists of a constant radius simplified fuselage barrel with tri-

angular skin fields, which are bounded by hat shaped helical ribs and Z shaped circum-

ferential frames. The skin is modelled with shell elements. The helical ribs, which are

located on either side of the skin, are modelled with offset beam elements. The circum-

ferential frames, located on the inner side of the skin, are also modelled with offset beam

elements. A sample fuselage model is shown in Fig. 6.23 with a three dimensional visu-

alization of the stiffeners modelled with beam elements. The geometry of the analysed

fuselage barrel is described in detail in Section 6.7.2.

After analysis, the post processing function imports the results, arranges the model on

the screen, generates strain and buckling ranges, and takes screen shots of the results. The

strains are harvested from a result section which excludes the load application zones and

boundary condition application zones so as to avoid numerically induced strain peaks.

Displacements are also extracted from that results section. The buckling result, on the

other hand is taken from the full fuselage model. Fig. 6.24 shows sample results. These

results are then transferred into a csv file. At the end of the batch mode analysis, the

results for all analysed models are summarized in the same csv file and screen shots are

available for most results.

FIGURE 6.24: Sample results

The advantages of the automated tool are an efficient model generation and analysis

when a large number of similar models are to be analysed, reliable model generation and

data collection, as well as the flexibility to alter the unit cell geometry with acceptable

programming effort in order to analyse different skin bay geometries. As more than 100
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fuselage barrel geometries had to be analysed for the sample optimization described in

the next section, the automated multiparametric global barrel FE tool was used.

6.7.2 Fuselage optimisation example

One of the aims of the ALaSCA EU FP7 research project was the development of an aniso-

grid composite fuselage structure. As part of the early design phase, an optimisation of

the fuselage structure was performed, using as building data set a uniform Latin Hyper-

cube DoE made of 101 points, each one of them corresponding to the input parameter set

defining a specific fuselage geometry paired with the corresponding response generated

via finite element models (MSC/Nastran software used). The bar chart of the minimum

distances between the DoE building points is shown in Fig. 6.25, where the good uni-

formity of the DOE can be appreciated. Metamodels generated by HyGP were built to

explore through a GA optimiser the structural properties of different geometries in or-

der to find the optimum structure. The resulting optimum structure was then validated

through FEM simulation to verify the structural behaviour predicted via optimization.

FIGURE 6.25: Minimum distances between points in the used 101-point optimal Latin
hypercube design

The fuselage structure considered consists of a lattice-derived structure with a load

bearing skin and stiffeners located on either side of the skin as shown in Fig. 6.26. The

outer stiffeners are surrounded by protective foam, which in turn is covered by a thin

aerodynamic skin (Niemann et al. 2012). The absence of rib crossings found in typical

grid structures and shown in Fig. 6.21 is a substantial production advantage of this struc-

ture. The optimized grid type fuselage section is a simple structure without windows or

floors consisting only of the repeated structural triangular unit cell.
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FIGURE 6.26: ALaSCA airframe concept with primary structure elements (Niemann et al.
2012)

Fig. 6.27 shows the finite element fuselage barrel model with the inner helical ribs in

green, their counter parts on the outside of the skin in blue, the circumferential frames in

yellow and the skin in red. The stiffening ribs are arranged at an angle so as to describe

a helical path along the fuselage barrel skin. Hence, these ribs are called helical ribs.

The helical ribs have a hat cross section, whereas the circumferential frames have a z

shaped cross section. The upper barrel with the opaque skin illustrates the presence of

only one set of parallel helical ribs on the outside of the skin. Below, the same barrel

with transparent skin shows the presence of a second set of helix ribs winding around

the barrel on the inside and in the opposite direction. These ribs in conjunction with the

circumferential frames create uniform triangular skin bays. The helical ribs form an angle

of 2ϕ between them as illustrated in Fig. 6.28. This angle remains constant throughout

the barrel model.

FIGURE 6.27: Example of fuselage barrel FE model
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FIGURE 6.28: Skin bay geometry

FIGURE 6.29: Circumferential ribs and helical ribs

The design variables were chosen to vary the geometry of the helical stiffeners and

frames, the skin thickness, and the frame pitch without altering the triangular shape of

the skin bay geometry. The seven optimization parameters are:

1. h, the skin thickness in mm

2. n, the number of helical rib pairs around the circumference of the barrel

3. th, the helical rib thickness in mm

4. Hh, the helical rib height in mm

5. d, the circumferential frame pitch in mm

6. tf , the circumferential frame thickness in mm

7. Hf , the circumferential frame height in mm

These parameters are varied between the maximum and the minimum bounds listed

in Table 6.8. The design variables are shown in Fig. 6.28-6.29. By altering the frame

pitch, the height of the triangular skin bay is affected. Similarly, the number of helical
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ribs changes the width of the base of these triangular bays. Consequently, these two

variables change the area and the angle 2ϕ of these skin bays, and thus are - along with

the skin thickness - instrumental in influencing the buckling behaviour of the structure.

The rib and frame geometries are also affecting the buckling of the fuselage globally and

locally. Stiffer reinforcements on the edges of the skin bays reduce global and skin bay

buckling. Although stability is expected to be the critical failure mode for the fuselage

structure, the variables are also affecting the strength of the structure. The composite

material fails if it is strained beyond a maximum value. Finally, the fuselage has to have a

certain stiffness in bending and in torsion to avoid excessive global deformations in flight.

The design variables are varied within the bounds shown in Table 6.8 to generate fuselage

structures, which are then evaluated with respect to the mentioned failure modes.

TABLE 6.8: Design variables and space

Symbol Design variable Lower bound Upper bound
Z1 Skin thickness (h) 0.6 (mm) 4.0 (mm)
Z2 No. of helix rib pairs around the cir-

cumference (n)
50 150

Z3 Helix rib thickness (th) 0.6 (mm) 3.0 (mm)
Z4 Helix rib height (Hh) 15 (mm) 30 (mm)
Z5 Frame pitch (d) 500 (mm) 650 (mm)
Z6 Frame thickness (tf ) 1.0 (mm) 4.0 (mm)
Z7 Frame height (Hf ) 50 (mm) 150 (mm)

An upward gust load case at low altitude and cruise speed is applied to the modelled

fuselage barrel and depicted in Fig. 6.30. At one end of the barrel, bending, shear, and

torsion loads are applied while the opposite end is fixed. These loads are applied via

rigid multipoint constrains, which force a rigid barrel end. While floors are not modelled,

the masses from the floors are applied at the floor insertion nodes. Finally, the structural

masses are applied to the skin shell elements via mass densities.

FIGURE 6.30: Load application
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The optimisation constraints are strength, stiffness, and stability. The corresponding

optimisation responses extracted from the FE models are the largest strains (tensile and

compressive strains in the frames and in the helical ribs; tensile, compressive and shear

strains in the skin), the critical buckling load, and the stiffness of the fuselage.

The results are normalised before further analysis. The mass per meter is computed

for each model and then normalised against the largest mass per length of the 101 DOE

fuselage models. Margins of safety (MS) are computed for the strains, the stiffness and

the buckling results. A margin of safety is a normalization with respect to the allowable

quantity, which measures whether the structures passes or fails when the load is imposed.

Strains should be below an allowable limit strain. The strain margin of safety MSε is

computed as follows:

MSε =
εmax
ε
− 1 ≥ 0 (6.22)

where ε is the computed strain and εmax the maximum allowable strain. Stiffness, on

the other hand, should be larger than the allowable limit stiffness. Therefore the margin

of safety for stiffness MSS is computed as follows:

MSS =
S

Smin
− 1 ≥ 0 (6.23)

where S is the computed stiffness and Smin the minimum allowable stiffness. Margins

of safety can be positive or negative. A positive margin of safety shows that the computed

value found in the structure does not violate the allowable value, and thus the structure

is acceptable. A negative margin of safety, on the other hand, shows that the computed

value violates the allowable value. Hence the structure fails and should be redesigned.

The normalisation of the studied results allows for an easy comparison and, in the case of

the margins of safety, a ready detection of failed fuselage geometries.

The 101-DOE FE models corresponding to the 101 DOE training data are generated

using the automated multiparametric global fuselage barrel FE tool. Since a large num-

ber of similar FE models are generated and analysed, a mesh convergence study is not

done for each individual model, but rather for one representative model. The resulting

mesh, called the DOE mesh, is applied to all 101 DOE FE models. This is done for time

efficiency reasons. The subsequently obtained optima are validated via FEM. A mesh

convergence study is then done for each fuselage model corresponding to an optimum.

Furthermore, smeared orthotropic material properties, rather than laminates consisting

of discreet orthotropic plies, are applied to the skin in each model. The stacking sequence



244 Chapter 6 HyGP application to industrial problems

of the laminate is not optimised to avoid additional integer design variables. Once an op-

timum satisfying the constraints is found, a new design with a realistic skin ply stacking

sequence can be determined.

Using HyGP methodology, the 101 obtained response sets are then used to build the

metamodels for the structural responses, which are the normalised responses of strength,

stiffness, stability and the fuselage barrel weight. In case I, Section 6.7.2.1, only the

strength responses are taken into account in order to generate an optimal fuselage ge-

ometry; this is done because the generation of the buckling results via FEM take re-

markably longer than the generation of the strength results. In a second case, case II

(Section 6.7.2.2), the stability, strength, and stiffness responses are used to generate an

optimal fuselage structure.

6.7.2.1 Case I

The explicit expressions for the responses related to tensile strain, compressive strain,

shear strain and weight of the fuselage barrel are built by HyGP. As example, the expres-

sion for tension strain is given below:

fts = −1.68356 + 1.25543 Z1 + 0.690658 Z3

− 0.005447 Z2 Z3 −
0.266889 Z1

Z3
+

4.00324 Z2

Z5
+

0.00664789 Z4

Z3

−
0.500119965039 Z1

(
868.596Z1

Z2
− 0.38115 Z1 Z4 + 3.14228Z12

Z3
+ 0.0000033183Z1 Z2

2 Z4
5

Z6
3 Z7

3

)
Z2

(6.24)

where Zi with i = 1, . . . , 7 are the design variables detailed in Table 6.8 (see “Symbol”

column).

The optimisation is validated by analysing the optimum fuselage geometry with FEM.

The fuselage response predicted via optimisation and the response obtained via FEM are

compared. The optimisation result is acceptable if the critical margin of safety predicted

via optimisation is within 0.10 of the same margin obtained via FEM. Furthermore, the

critical margin should be non-negative. If the first optimum does not fulfil these require-

ments, the optimisation results are improved iteratively until the requirements are met.
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Two optimisation loops are required to reach a satisfying result when only strength con-

straints are used. Table 6.9 compares the responses predicted via optimisation and the

corresponding responses obtained using the FEM.

TABLE 6.9: Optima obtained using strength constraints

Model Tensile
strain

Compressive
strain

Shear
strain

Normalised
mass

(MS) (MS) (MS)
Reference: Model nr. 52
(DOE mesh)

1.08 0.41 1.94 0.18

Optimum I (DOE mesh) 0.52 0.02 1.35 0.11
Optimum I (converged) 0.36 -0.09 1.21 0.11
Prediction I (HyGP+GA) 0.02 0.00 1.42 0.10
Optimum II (converged) 0.54 0.04 1.54 0.12
Prediction II (HyGP+GA) 0.03 0.01 1.64 0.11

From the 101 DOE FE models, model number 52 is the most weight efficient geom-

etry that fulfils the strength constraint. The responses for model 52 clearly show the

optimisation potential. The critical margin of safety of 0.41 is in compressive strain with

a normalised weight of 0.18. When designing an aircraft part, one aims at a critical mar-

gin of safety close to zero so as to minimise weight. Furthermore, it is desirable that the

optimisation predicted margins of safety be smaller, or conservative, with respect to the

actual fuselage response determined via FEM so as to minimise design changes after the

optimisation. The responses obtained via the optimisation loops discussed below show a

reduction in the margins of safety and the corresponding reduction in normalised weight.

The response predicted for the first optimum (Prediction I) matches the DOE mesh

response (Optimum I (DOE mesh)) better than the converged mesh response (Optimum

I (converged)). The optimum parameter set is modelled in FE first with the mesh used

for the DOE. This mesh is called the DOE mesh. Subsequently the same optimum param-

eter set is modelled with a mesh resulting from a convergence study for this particular

geometry and yielding converged results. This mesh is called the converged mesh. The

two structural responses obtained with FE are then compared to the response predicted

via the optimisation.

The first optimum has a normalised weight of 0.10 with a predicted critical margin of

safety of 0.00 for compressive strains. Using the DOE mesh FEM, the critical compressive

strain margin of safety is 0.02. In the case of the DOE mesh, the critical margin is posi-

tive and the predicted margin is conservative. The optimisation predicts accurately and
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precisely the critical structural response of the DOE mesh model. This is expected as the

DOE was established with the same mesh.

However, in the case of the converged mesh, the critical margin is negative, -0.09. The

strains obtained with the converged mesh are higher than those obtained with the DOE

mesh, which shows that the actual fuselage structure obtained via the first optimisation

loop fails in compression. This should be avoided even though the optimisation and the

FE margins are close. Furthermore, the non-critical strain margins obtained via FEM do

not match the predicted margins and some predicted margins are non-conservative in-

dependent of the mesh. A predicted non-conservative margin of safety is to be avoided.

However, in this optimization a non-conservative margin of safety is acceptable for non-

critical constraints as these have a smaller impact on the design as the critical constrains.

Due to the failure in compressive strain, the first optimum is rejected, and the converged

mesh results of the first optimum geometry flow into the next optimization loop so yield-

ing the second optimum.

The second optimum (Prediction II) yields a critical margin of safety in compressive

strain, which is conservative with respect to the corresponding converged mesh FE model

results (Optimum II (converged)). The predicted compressive strain margin is 0.01, while

the margin obtained via FEM is 0.04. This is an excellent result since the margins are less

than 0.10 apart. The non-critical tensile and shear strain margins are predicted to be

0.03 and 1.64 respectively, while the FEM yields corresponding margins of 0.54 and 1.54

respectively. The predicted tensile strain margin is conservative, whereas the predicted

shear strain margin is not. Since the shear strain margin is the least critical margin, this

non-conservative prediction is acceptable. The second optimum fulfils the requirement

that the critical margin of safety predicted via optimisation be within 0.10 of the mar-

gin obtained via FEM. Furthermore, the critical predicted margin is conservative as it is

smaller than the margin obtained via FEM. At the end of the two optimisation loops, a

low weight optimum with accurate predictions of the critical constraints was therefore

obtained.

Table 6.10 shows the geometric parameters of the two optima found and the reference

design when only the strength responses are used for the optimisation. A weight efficient

optimum - Optimum II - has been reached by minimising the number of frames and ribs

and thus generating large skin bays.
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TABLE 6.10: Design variable values and strength constraints for found optima

Design Skin
thickness

Nr. of
helix rib
pairs

Helix rib
thickness

Helix rib
height

Frame
pitch

Frame
thickness

Frame
height

h n th Hh d tf Hf

(mm) (mm) (mm) (mm) (mm) (mm)
Reference:
DOE Model
nr. 52

2.33 109 0.65 23.40 627.50 1.51 66.80

Optimum I 2.08 60 0.60 27.90 627.70 1.00 50.00
Optimum II 2.28 60 0.66 27.90 627.70 1.00 50.00

Through the optimisation loops, the triangular skin bay area increases by 82% - almost

doubles - from model 52 (DOE Model nr. 52) to the second optimum (Optimum II). This

large bay area is due to the decrease of the number of helix rib pairs to 60, which is close

to the lower bound of 50, and the increase of the frame pitch to 627.70 mm, which is close

to the upper bound of 650 mm. The resulting skin bays are large triangular skin bays with

a base width of 209.44 mm, a height of 627.70 mm and an angle between the crossing

helical ribs of 2ϕ=18.94 degrees. The applied loads are low enough that the structure

required to bear them can have large skin bays when only the strength requirement is

considered.

The helical ribs have a tall and slender hat-shaped cross section. The second optimum

yields helical ribs, which have a thickness of 0.66 mm, which is close to the minimal

allowed valued of 0.60, and a height of 27.90 mm, which is close to the maximum allowed

value of 30 mm. This leads to a large moment of inertia and thus to a high bending

stiffness. The circumferential frames, on the other hand, carry smaller loads than the

helical ribs. They are also less instrumental in preventing fuselage bending. Therefore,

the resulting frames are thin and small both dimensions reaching the minimal bounds

of 1.0 mm and 50.0 mm respectively. When only the strength response is used in the

optimization, a fuselage barrel with large skin bays, few thin and tall helical ribs, and few

thin and small circumferential frames is reached.

6.7.2.2 Case II

In addition to the strength constraint, the stability and stiffness responses of the 101 DOE

models are used to generate an optimum in this second case. The predicted responses

(Prediction III) and the FE responses (Optimum III (converged)) of the third optimum

are shown in Table 6.11.
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TABLE 6.11: Optimum obtained with strength, stiffness and stability constraints

Model Tensile
strain

Compressive
strain

Shear
strain

Buckling Torsional
stiffness

Bending
stiffness

Normalised
mass

(MS) (MS) (MS) (MS) (MS) (MS)
Optimum III
(converged)

0.62 0.08 1.09 -0.07 1.21 0.89 0.29

Prediction
III
(HyGP+GA)

0.20 0.23 1.27 0.00 1.21 0.89 0.29

The response predicted via optimisation is again verified with a FEM simulation of the

optimum geometry. The third optimum displays a predicted critical margin in buckling

of 0.00 with a normalized weight of 0.29. The buckling margin obtained with the con-

verged FE model is -0.07. Although, the difference between the predicted and the FEM

margins is less than 0.10, the fuselage fails via global buckling as shown with the FEM.

The optimization does not predict this failure.

The compressive strain margin of safety is no longer the critical margin when stability

is considered. In fact, for this particular geometry, the tensile strain is more critical than

the compressive strain. The predicted tensile strain margin of 0.20 is conservative when

compared the 0.62 margin obtained via FEM. The predicted compressive and shear strain

of 0.23 and 1.27, respectively, are not conservative compared to the compressive strain

margin of 0.08 and the shear margin of 1.09 obtained via FEM. This is not desirable, but

acceptable as these are not the critical margins.

The predicted stiffness margins correspond to the margins obtained via FEM. The

torsional stiffness margin is 1.21, while the bending stiffness margin is 0.89. Stiffness is

not a critical constraint for this design optimization.

Although the critical buckling margin of safety determined via FEM is negative, no

additional optimization iterations have been performed due to time constraints. If addi-

tional optimization loops were to be performed, the following goals would be pursued:

all margins of safety should positive, the critical margin of safety prediction should be

conservative with respect to FE result, and the predicted critical margin should be within

0.10 of the FE result.

The parameter set for the final optimum geometry is as listed in Table 6.12. Stability

requirements lead to smaller skin bays as larger panels buckle at a lower load than smaller

panels. The skin bay area of the third optimum geometry decreases by 68% compared to

the skin bays of the second optimum. The number of helix ribs increase to 150, which

is the upper bound for this variable. The frame pitch decreases to 501.50 mm, which is
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TABLE 6.12: Design variable values for optimum obtained with stength, stiffness and
stability constraints (Optimum III)

Design Skin
thickness

Nr. of
helix rib
pairs

Helix rib
thickness

Helix rib
height

Frame
pitch

Frame
thickness

Frame
height

h n th Hh d tf Hf

(mm) (mm) (mm) (mm) (mm) (mm)
Optimum III 1.71 150 0.61 27.80 501.70 1.00 50.00

close to the lower bound of 500.00. The resulting skin bays are small triangular skin bays

with a base width of 83.78 mm, a height of 501.70 mm and a shallow angle between the

crossing helical ribs of 2ϕ=9.55 degrees. These small and shallow skin bays are excellent

against buckling. Also, the normalized weight increases remarkably from 0.11 for the

second optimum to 0.29 for the third optimum. Stability is a weight driving factor.

The hat shaped helical ribs remain tall and thin with a thickness of 0.61 mm and a

height of 27.80 mm. The z-shaped circumferential frames remain unchanged from the

third optimum with a thickness of 1.0 mm and a height of 50.0 mm. At first sight, these

thin stiffeners are surprising when stability is considered. A thickening of the stiffeners is

expected to avoid local buckling of the webs and flanges. These thin stiffeners are direct

result of the modelling technique. Helical ribs and circumferential frames are modelled

with beam elements, which are unable to represent local buckling in the webs and in the

flanges. Only global beam buckling can be investigated with beam elements. Therefore,

stiffeners would have to be modelled more precisely with shell elements or analysed via

hand calculations to detect local buckling. These local buckling analyses are expected to

generate thicker stiffeners.

6.7.2.3 New design

The final study generated a new design based on the third optimum. Since the smeared

material properties were used for all studied FEM models, the laminate ply stacking se-

quence was not configured. A realistic skin laminate is now applied to the skin of the

third optimum to generate a new practical design. Using a standard CFRP ply thickness

of 0.125 mm, the skin thickness increases from 1.71 mm in the third optimum model to

1.75 mm. The same ply material properties were used as in the optimization work. The

structural responses of the new design are shown in Table 6.13.

Compared to the FEM results corresponding to the model of the third optimum, the

lay-up of the new design slightly increases stability, although the margin of safety in



250 Chapter 6 HyGP application to industrial problems

TABLE 6.13: New design response

Model Tensile
strain

Compressive
strain

Shear
strain

Buckling Torsional
stiffness

Bending
stiffness

Normalised
mass

(MS) (MS) (MS) (MS) (MS) (MS)
New design
(converged)

1.15 0.19 1.31 -0.04 1.25 0.81 0.29

buckling is still negative with -0.04. All other margins are positive. Considering the small

negative buckling margin of safety, it is expected that a small change such as an increase

in skin thickness could be sufficient to obtain a zero or positive margin of safety. A prelim-

inary light weight design, which fulfils the stability, strength and stiffness requirements,

can be produced from this optimization result.

6.7.2.4 Remark

When only the strength constraints are used, the optimization results are such that all

margins of safety are positive, the predicted critical margin of safety is smaller than the

FE margin of safety, and the critical predicted margin of safety was within 0.10 of the FE

result. Thus the optimization result obtained from the strength constraints is valid and

leads to a structurally sound preliminary fuselage design.

Including the stability and stiffness constraints in addition to the strength constraints,

the optimization results fulfil the condition that the predicted and the FE margin of safety

results are within 0.10 of each other. Unfortunately, the actual critical margin is nega-

tive leading to a premature buckling of the fuselage structure. When stability, strength,

and stiffness constraints are used, the optimization leads to a design requiring structural

adjustments to be viable. Two major factors are expected to improve the results: an

increase in data points and individual convergence studies for each model. Due to time

constraints, these improvements could not be implemented in this optimization. Knowing

these error sources, the resulting optimum and predicted responses of the structural be-

haviour are of satisfactory accuracy. Also the new design resulting from the optimization

is of good quality where only small design changes are required to obtain a weight effi-

cient structure that fulfils the strength, stiffness and stability constraints. The performed

optimisation then represents a good tool for early design stages.
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6.7.3 Results with MLSM-based optimisation

The optimisation shown in the previous sections was orginally meant to be based on

metamodels generated by the MLSM technique available in the commercial optimisation

software HyperStudy (Toropov et al. 2005, Alt 2009, Zeguer and Bates 2011). A few

attempts on “Case I” however did not produce satisfying results, as the normalised mass

returned was negative. In the following these attempts are detailed and confirm that

HyGP-based optimisation can produce accurate results when other techniques fail.

6.7.3.1 MLSM metamodels building

Using the 101-point DoE defined in Section 6.7.2, the moving least squares method

(MLSM) was used to generate two sets of metamodels for the objective (normalised mass)

and the constraints (tensile strain MS, compressive strain MS, shear strain MS), using re-

spectively 1st (set A) and 2nd order (set B) polynomials as a mathematical base. In both

cases gaussian weighing was used, and closeness of fit was set to 5 (mid value in range

[1, 10] allowed by HyperStudy). In Table 6.14 the coefficients of determination R2 of the

resulting metamodels on the building data set are reported.

TABLE 6.14: Value of the coefficient of determination R2 of case I MLSM metamodels on
building data set

Set A Set B
1st Order MLSM 2nd order MLSM

Response R2 R2

MS tensile strain 0.9958747 0.9988923
MS compressive strain 0.9977960 0.9993751

MS shear strain 0.9995940 0.9998596
Normalised mass 0.9877087 0.9942394

The GA algorithm coded in HyperStudy was used to search for the optimal configura-

tions of the 7 input parameters leading to the minimum normalised mass on the condition

that the margins of safety MS were all not negative. The convergence history is shown in

Fig. 6.31. The found optima are shown in Table 6.15 (input parameters rounded to the

first decimal place).

TABLE 6.15: Value of the coefficient of determination R2 of case I MLSM metamodels on
building data set

Set h n th Hh d tf Hf t. strain c. strain s. strain norm.
mm () mm mm mm mm mm MS MS MS mass

A 1.9 50 0.6 15.0 650.0 1.0 50.0 0.45 -0.01 1.23 -0.06
B 4.0 150 0.6 15.0 650.0 1.0 50.0 1.22 0.94 3.38 -1.95
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(A) Set A

(B) Set B

FIGURE 6.31: GA convergence histories for optimisation with set A and set B metamodels
(images generated by HyperStudy: obj_1 stands for normalised mass, objective; c_1, c_2

and c_3 for the margins of safety MS, constraints)

The optima found by GA were of course not accepted, due to the negative normalised

mass (in bold). The high coefficients of determination R2 of MLSM metamodels reported
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in Table 6.14 were then ascribed to overfitting, for both first and second order MLSM

regression. The GA search was therefore led to a design point where mass metamodel

did not prove reliable, as physically inconsistent. Due to the failed MLSM-based optiimi-

sation, HyGP was then given a try with the results detailed in the previous sections. It is

important to note that in HyGP metamodelling “physical” inconsistency like the one expe-

rienced for MLSM mass regression could have been tackled using the approach described

in Section 5.4 of the previous chapter.

6.7.4 Conclusion

In order to optimise a composite anisogrid fuselage barrel design, a 101-point DOE has

been developed according to an extended uniform Latin hypercube design. Each data

point corresponds to the response from FE simulations of a fuselage barrel. An auto-

mated tool which generates and analysis the fuselage barrel models was created for this

study. Using these training data sets, the global metamodels, which are the explicit ex-

pressions of the sought structural responses as a function of the design parameters, have

been built using HyGP methodology described in Chapter 5. The parametric optimization

of the fuselage barrel was performed using Genetic Algorithm (GA) to obtain the best

design configuration in terms of weight savings subject to stability, strength and strain

requirements. The optimal solution and predicted structural responses have been verified

by a FE simulation of the optimal lattice fuselage barrel.

Two optimal structures have been determined. The first structure only fulfils the

strength requirement and yields a light weigh fuselage with few and thin helical ribs,

large skin bays, and few circumferential frames. The second structure complies with the

strength, stability and stiffness requirements and thus is a heavier structure with smaller

skin bays and more stiffeners. The analysis allowed to identify stability as a driving fac-

tor for the skin bay size and the fuselage weight. The second optimal fuselage structure

found requires only small design change to yield an acceptable preliminary design.

It is concluded that the use of the global metamodel-based approach has allowed to

solve this optimisation problem with sufficient accuracy as well as provided the designers

with a wealth of information on the structural behaviour of the novel anisogrid design

of a composite fuselage. Preliminary tests have also proved the superior quality of HyGP

metamodels with respect to MLSM ones.
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6.8 Aerodynamic optimisation of NASA rotor 37 compressor

rotor blade

NASA rotor 37 is a representative transonic axial-flow compressor rotor that has been

used extensively in computational fluid dynamics (CFD) community to test optimisation

algorithms and validate CFD codes (Dunham et al. 1998, Duta and Giles 2006, Ameri

2010).

Different approaches have been used to optimise the blade design under different con-

straints. For example, Samad and Kim (2008) used a three-dimensional RANS6 solver to

generate the data sets and built global response surfaces using second order polynomials:

the Pareto front with respect to pressure ratio and adiabatic efficiency was then found

using a multi-objective genetic algorithm coupled with an SQP optimiser. Shahpar et al.

(2008) used Multipoint Approximation Method (MAM) to find an optimal blade design.

The approach used by Oyama and Obayashi (2002) is also interesting (although for NASA

rotor 67 optimisation) as no metamodels were used to reduce the computational cost: the

minimum entropy design was found evaluating through direct simulations the points se-

lected by an evolutionary algorithm. Duta and Giles (2006) used adjoint code to study

the sensitivity of the mass flow to the twist of the midheight section of the blade.

The aerodynamic optimisation of NASA rotor 37 compressor blade was considered a

good test case for HyGP. First of all because to the best of the author’s knowledge such

optimisation has never been attempted using global metamodels generated by genetic

programming. Secondly, the problem exhibits a relatively high dimensionality, with 25

input variables, and so in general it is a challenging problem due to the curse of dimen-

sionality. It is important to note that only few examples have been found in literature of

the application of genetic programming to design spaces of more than ten dimensions.

Nordin et al. (1999) successfully solved a 40 input-variable data-mining problem without

any dimensional reduction, whereas Smits et al. (2005) and Vladislavleva (2008) re-

duced a 23 input-variable problem to a lower dimensionality using a GP-based sensitivity

analysis tool before generating the final model using genetic programming.

In the following sections the optimisation process and the resulting optimal blade are

described. To assess HyGP metamodels reliability, the optimisation was repeated using

global metamodels generated by MLSM.

6Reynolds-Averaged Navier Stokes system of equations.
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6.8.1 Problem description

The blade parameterisation was done using five engineering parameters available in Rolls-

Royce PADRAM code (Shahpar and Lapworth 2003): axial movement of sections along

the engine axis (variable XCEN, in mm), circumferential movements of sections (variable

DELT, in degrees), solid body rotation of sections (variable SKEW, in degrees), and lead-

ing/trailing edge recambering (variables LEMO and TEMO, in degrees). A sketch showing

the physical meaning of the input variables is given in Fig. 6.32A. These design param-

eters define the shape of a bidimensional airfoil on five stations along the blade span,

at 20%, 40%, 60%, 80%, and 100% (tip) of the overall span, as shown in Fig. 6.32B.

The airfoil at the blade root was fixed (station 0%). The total number N of independent

design variables is 25. B-spline interpolation was then used through the control stations

along the span to generate smooth design perturbations in the radial direction.

(A) Deformation modes (B) Control stations along blade
span

FIGURE 6.32: NASA rotor 37 blade parametrisation

The optimisation problem was to find the values of the 25 parameters that maximise

the adiabatic efficiency η of the blade, defined in Eq. (6.25):

η =

(
Poutlet
Pinlet

)γ−1
γ
− 1

Toutlet
Tinlet

− 1
(6.25)

where Pr = Poutlet
Pinlet

is the pressure ratio and Toutlet
Tinlet

is the temperature ratio between outlet

and inlet, respectively; γ is fluid specific heat. Constraints were defined on pressure ratio

and mass flow through the rotor: a maximum perturbation of 0.5% with respect to the
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baseline pressure ratio Pr0 = 2.15 and to the baseline mass flow ṁ0 = 20.1 kg/s was

imposed.

6.8.2 Input data and GP settings

The original range of the design variables ([−5, 5] mm for XCEN and [−0.5, 0.5] degrees

for the other variables DELT, SKEW, LEMO and TEMO) was scaled to [1.0, 11.0]. In the

scaled design space, a DoE made of 100 points was randomly generated. In order to

improve the quality of the random design, a constraint on the minimal distance between

points was imposed: the space-filling properties of the scaled DoE are shown in Fig. 6.33A

through a plot of the minimum distance of each point to neighbouring DoE points. The

average minimum distance is 14.49, the minimum distance standard deviation is 0.97.

For each DoE point, a few CFD simulations were performed with Rolls-Royce SOPHY

(Shahpar 2005) to compute the corresponding values of efficiency, pressure ratio and

mass flow rate. The data were used as HyGP building data set.
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(B) additional data set C

FIGURE 6.33: Minimum distance between points in building data set (A) and additional
data set for model penalisation (B) for efficiency, pressure ratio and mass flow symbolic

regression

The constraint on pressure ratio Pr was recast in normalised form using two inequal-

ities:

c1 =
Pr

1.005 Pr0
≤ 1 (6.26)

c2 =
0.995 Pr0

Pr
≤ 1 (6.27)
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where Pr0 is the baseline pressure ratio. The constraint on the mass mass flow ṁ was

similarly recast and normalised:

c3 =
ṁ

1.005 ṁ0
≤ 1 (6.28)

c4 =
0.995 ṁ0

ṁ
≤ 1 (6.29)

where ṁ0 is the baseline mass flow.

Efficiency was also reformulated, to turn the maximisation problem (maximisation of

efficiency η) into a minimisation problem (min η′):

0 ≤ η ≤ 1⇒ η′ = 2− η ⇒ 1 ≤ η′ ≤ 2 (6.30)

The scaled 100-point DoE was fed as a building data set into HyGP to generate the

five metamodels of c1, c2, c3, c4, η′ defined in Eqs. (6.26, 6.27, 6.28, 6.29, 6.30): 2

metamodels for pressure ratio, 2 for mass flow and 1 for the reformulated efficiency.

Preliminary tests with standard HyGP settings, not shown here, resulted in really ir-

regular response surfaces that could not be used for optimisation. Metamodels featured

low generalisation ability, typical of overfitting. The exclusion of the protected division

from the primitives somewhat improved metamodel smoothness, but the introduction of

the penalisation defined in Section 5.4, Chapter 5 with p = 3 proved to be decisive. An

additional data set C made of 50 points uniformly distributed in the scaled design space

(latin hypercube DoE) was used to bias the search for reliable metamodels of the refor-

mulated efficiency η′ and the four constraints. The minimum distance between points in

C is plotted in Fig. 6.33B: the average minimum distance between points is 17.99, the

minimum distance standard deviation is 0.85. On this additional data set metamodels of

η′ returning values lower than 1.1 were penalised, as well as metamodels for c1, c2, c3, c4

giving values lower than 0.5.

In the next sections the optimum found using HyGP metamodels is compared with

the one returned by MLSM metamodels. In Table C.17 in Appendix C the settings used in

HyGP experiments are reported.

6.8.3 Result of the optimisation performed with HyGP and GA

HyGP metamodels were explored using Multiobjective GA with Adaptive Range (AR-

MOGA) from Rolls-Royce optimisation software SOFT (Shahpar 2002) to find the values
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of the 25 input parameters that optimise the rotor efficiency within the given constraints.

Among the suboptima found, two designs were selected: their accuracy with respect to

the responses provided by CFD simulations at the same design point is assessed in Ta-

bles 6.16 and 6.17.

TABLE 6.16: Validation of HyGP opti-
mum 1 found by GA

HyGP model CFD εrel (%)
η′ 1.125 1.138 -1.14%
c1 0.988 0.981 0.71%
c2 0.994 1.008 -1.39%
c3 0.999 0.999 0%
c4 0.997 0.990 0.71%

TABLE 6.17: Validation of HyGP opti-
mum 2 found by GA

HyGP model CFD εrel (%)
η′ 1.091 1.134 -3.79%
c1 0.996 0.973 2.36%
c2 0.999 1.016 -1.67%
c3 0.952 1.002 -4.99%
c4 0.993 0.987 0.61%

In Tables 6.18 and 6.19 the actual values of the efficiency η, the pressure ratio Pr and

the mass flow ṁ returned by CFD simulations at the two optima described in Tables 6.16

and 6.17 are compared to their corresponding values in the baseline design.

TABLE 6.18: Optimum 1: values of η, Pr and ṁ in baseline design and HyGP optimised
design (values by CFD)

Baseline Optimised rel. variation (%)
η 0.857 0.862 +0.58%
Pr 2.15 2.12 -1.39%

ṁ [kg/s] 20.1 20.19 +0.5%

TABLE 6.19: Optimum 2: values of η, Pr and ṁ in baseline design and HyGP optimised
design (values by CFD)

Baseline Optimised rel. variation (%)
η 0.857 0.866 +1.05%
Pr 2.15 2.11 -1.86%

ṁ [kg/s] 20.1 20.24 +0.70%

As shown by Tables 6.18 and 6.19, the errors on efficiency, pressure ratio and mass

flow is generally under 2%. Optimum 1 stands out for a smaller violation of the pressure

ratio constraint (-1.39% variation with respect to baseline pressure ratio against a maxi-

mum of 0.5%) with respect to optimum 2, where a higher efficiency is gained (+1.05%)

at the cost of more severe violations on pressure ratio and mass flow constraint (-1.86%

with respect to baseline pressure ratio, +0.70% with respect to baseline mass flow. In

both cases the maximum variation allowed was 0.5%).
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6.8.4 Comparison with optimum found by MLSM and SQP

NASA rotor 37 blade optimisation was repeated using MLSM to generate the metamodels

for the objective and the four constraints, whereas SQP was used to find the optimum.

The same 100-point DoE described in Section 6.8.2 was used. All points were used for

metamodel building. As a result, the closeness of fit was not optimised: it was instead set

to the maximum value (100) in order to encourage local accuracy (Toropov et al. 2005,

Loweth et al. 2011). That was possible as the data are not affected by noise, so smoothing

was not required. A second order polynomial was chosen as basis for the MLSM.

In Table 6.20 the values of η′, c1, c2, c3, c4 - Eqs. (6.26, 6.27, 6.28, 6.29, 6.30) - at the

optimum found are compared to the responses returned by CFD simulations. In Table 6.21

the resulting efficiency, pressure ratio and mass flow at the optimum are compared with

the same parameters in the baseline design.

TABLE 6.20: Validation of MLSM optimum found by SQP

MLSM CFD validation εrel (%)
η′ 1.132 1.132 -0.05%
c1 0.990 0.987 0.24%
c2 1.000 1.003 -0.29%
c3 0.986 0.995 -0.94%
c4 1.000 0.995 0.54%

TABLE 6.21: Values of η, Pr and ṁ in baseline design and in MLSM optimised design
(values by CFD)

baseline optimised rel. variation (%)
η 0.857 0.868 1.28%
Pr 2.15 2.13 -0.78%

ṁ [kg/s] 20.10 20.11 +0.03%

The comparison of the optima found by SQP on MLSM metamodels with optimum

1 found using HyGP metamodels (Table 6.18) shows that MLSM allowed for a larger

increase in the blade efficiency (1.28% against 0.58% produced by HyGP coupled with

GA - Table 6.18) with a less severe violation of the constraint imposed on pressure ratio

(-0.78% against -1.39% obtained by GA with HyGP metamodels).

The better performance of MLSM can be explained by the better accuracy of the MLSM

technique with respect to HyGP. In particular, the fact that the optimum was not located

on the design space boundary contributed to the superior accuracy of MLSM. Harewood

et al. (2007) reported on the possible lack of accuracy in MLSM if the optimum is located
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on the boundary of the design space. Also, the smoothness of the metamodels resulted

in the better performance of SQP search algorithm with respect to the non-deterministic

GA search. It is worth noting neither optimisation process was able to improve the blade

efficiency without violating at least a constraint.

The optimal set of blade parameters found through HyGP and MLSM metamodels are

reported in Tables 6.22 and 6.23: the corresponding blade shapes are compared to the

shape of the baseline blade design in Fig. 6.34.

TABLE 6.22: Blade parameters in optimum 1 found using HyGP metamodels

Station XCEN DELT SKEW LEMO TEMO
(mm) (°) (°) (°) (°)

0% 0.00000 0.00000 0.00000 0.00000 0.00000
20% 3.83924 -0.44331 -0.42574 0.15586 -0.07605
40% 1.04283 -0.37682 -0.32360 -0.24108 0.47043
60% 1.78793 0.38174 0.05784 0.00936 -0.10840
80% -2.38414 -0.18487 0.32866 -0.39907 0.38807

100% 1.63545 0.27269 -0.39470 0.02017 -0.14352

TABLE 6.23: Blade parameters in the optimum found using MLSM metamodels

Station XCEN DELT SKEW LEMO TEMO
(mm) (°) (°) (°) (°)

0% 0.00000 0.00000 0.00000 0.00000 0.00000
20% 0.01355 0.01992 -0.04297 -0.02942 -0.10893
40% -1.09720 -0.03056 -0.04254 -0.13860 -0.06543
60% 0.59583 0.01364 0.05910 -0.11524 0.04775
80% 2.29663 -0.02520 0.07393 -0.50000 0.03837

100% 2.08573 -0.11509 0.05538 -0.19514 -0.02887

(A) baseline (B) HyGP-optimised blade
design

(C) MLSM-optimised
blade design

FIGURE 6.34: Baseline and optimised blades
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6.8.5 Computational cost

The experiments required for the optimisation of NASA rotor 37 blade were performed

on a Linux machine equipped with a 2.27 MHz Intel Xeon processor. The independent

HyGP runs were launched sequentially and no parallelisation was exploited in the fitness

evaluation. HyGP settings for all 5 experiments (model inference of efficiency and the

four constraints) are reported in Table C.17 in Appendix C.

The time required for the completion of each HyGP run is shown in Fig. 6.35. The

average time for a complete GP run was 4.5 hours (16159 seconds).
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FIGURE 6.35: Time in hours for the generation of η′, c1, c2, c3, c4

The time required to generate MLSM metamodels is as a matter of fact not comparable

with HyGP, as HyperStudy produces the required MLSM models in less than 10 minutes

on the same machine. The high computational cost of hybrid genetic programming is

however a known issue, which can probably be tackled through massive parallelisation

of the coefficients tuning and fitness evaluation stages. Limiting the tuning process to

classes of individuals of specific phenotypical traits could also be a promising strategy,

provided that such an approach does not affect the quality of the returned metamodels.

6.9 Conclusion

In this chapter the application of genetic programming to several modelling and optimisa-

tion problems has been presented. Data generated both by numerical simulations and real

experiments have been modelled using HyGP, the genetic programming implementation

introduced and validated in Chapter 5.
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The level of accuracy and generalisation ability achieved by the generated models

suggests that HyGP can be used for industrial optimisation problems. The quality of the

metamodels has appeared to be critically dependent on the size of the building data set.

In the jet pump problem (Section 6.5) HyGP successfully returned an accurate and

explicit metamodel that was accepted for industrial use. In Section 7.4.5, Chapter 7 it

will be further shown that HyGP in this case performs better than an established implicit

metamodelling technique as gaussian processes.

In the bread baking oven design optimisation (Section 6.6) the reduced size of the

building data set had detrimental effects on the quality of the model. The use of the

penalisation described in Section 5.4, Chapter 5 however has proved an effective and

inexpensive way to make up for missing data and cope with the effect of the curse of

dimensionality.

The fuselage barrel optimisation (Section 6.7) showed the limits of MLSM technique

and proved that HyGP can be superior to other metamodelling techniques in some sce-

narios.

The comparison with MLSM on the NASA rotor 37 blade aerodynamic optimisation

(Section 6.8) has shown that neither HyGP-based nor MLSM-based optimisation is able

to lead to an efficiency improvement with respect to the baseline design without violating

the constraints. Despite CFD validation showed that HyGP metamodels are slightly less

accurate than MLSM ones in the optimal points found, the process has confirmed the

usability of HyGP for industrial optimisation problems. The main advantage of HyGP

metamodels over MLSM ones is their explicit form, which affords easy and inexpensive

implementation of Monte Carlo sensitivity analysis.

HyGP appears therefore as a valid tool for industrial optimisation problems. Its main

drawback is its high computational cost. Execution in parallel mode affords some re-

duction in these costs, but it is undeniable that higher computational efficiency has to be

reached to encourage the use of HyGP. In Appendix A an insight into HyGP code structure

is given and different execution modalities described.



Chapter 7

Search for factorised solutions in

genetic programming

The experiments shown in the previous chapter prove that hybrid genetic programming

can be very expensive in terms of time and computational resources required. Moreover,

the generated metamodels may suffer from limited interpretability, being in most cases

linear combinations of the primitives.

In this chapter a new strategy to increase the accuracy and the interpretability of the

solutions is explored. To assess the advantages and the drawbacks of generating a global

explicit expression via genetic means, a comparison on the same regression test functions

introduced earlier is carried out with an implicit technique, gaussian processes.

7.1 Evolutionary advantage of linear combinations of terms

A characteristic behaviour emerges from the analysis of the experiments described in

Chapter 5 and 6: HyGP frequently produces linear combinations of terms to approximate

the true underlying function. This tendency can probably be explained in two ways. First

of all, a linear combination may allow an acceptable approximation even from the begin-

ning of the evolution, giving an evolutionary advantage with respect to other structures,

and it can be improved by the addition of small terms, which nonetheless most of the

times do not improve generalisation ability but result in overfitting. On the opposite,

more complex structures may be penalised at early stages of the evolution by selection

pressure, as to return accurate approximations they have to undergo more radical changes

263
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and are not likely to be improved by size growth normally occurring throughout the evo-

lution, at least not in the same way linear combinations do.

Secondly, linear combinations are probably more resilient to crossover and muta-

tion, which are known to be mostly destructive (see Section 3.1.5.5, Section 4.4.3, Sec-

tion 4.4.4.3), and therefore they survive and progressively eliminate the good but not yet

mature building blocks containing highly non-linear functional primitives.

Reducing the evolutionary advantage of individuals made of linear combinations of

terms appears then as a possible way to explore different mathematical structures. Con-

sequently, it might reduce premature convergence, lead to improvements in solutions’

accuracy, and reduce the computational cost of the evolution. In fact, linear combina-

tions contain in general more numerical coefficients to be tuned than highly non-linear

individuals made of few terms, so on average they may be expected to incur higher tuning

costs.

In the previous chapters it has been shown that the proliferation of linear combina-

tions can be curbed by different strategies. Promising but not mature individuals may be

indirectly protected from aggressive selection by using a multiobjective fitness function

penalising “excessive” size. The problem in this case is however defining which size is to

be considered “excessive”, in the absence of any knowledge regarding the correct struc-

ture of the true function to be found. Secondly, introns may be used to provide neutral

crossover and mutation points, allowing the exploration of new shapes and structures and

relieving selection pressure (see Section 4.4.3, Chapter 4). Further protection may also be

imposed by restricting the classes of individuals that are allowed to take part to selection,

as done by Hornby (2006), who imposed that only individuals that have gone through

a comparable amount of genetic specialisation (parameter defined as “age”, measured in

number of generations) can compete in a selection process (see Section 5.3.6, Chapter 5).

In the following a strategy that aims at protecting highly non-linear individuals, based

on the idea of a “factorisation bonus”, is presented and its effect on accuracy, average size

and average computational cost of the individuals assessed. In addition, a complemen-

tary strategy based on editing is introduced that aims at reducing the number of nested

divisions that frequently degrade GP individuals generalisation ability.



Chapter 7 Search for factorised solutions in genetic programming 265

7.1.1 Factorisation bonus

The “factorisation bonus” is defined as a fitness value reduction (in the sense of quality

improvement) granted to individuals whose mathematical structure has specific desirable

features. The bonus is not based on a measure of the accuracy of the individual on the

building data set but exclusively on the shape of the individual’s syntax tree and its con-

tent. More in detail, the bonus is granted to the individuals that have at low depths of

their tree structure primitives that may be considered “non-linear”, with the aim of pro-

moting factorised expressions and reducing the hegemony of non-factorised expressions

as linear combinations typically are. In the experiments shown in the following sections,

the primitives that are considered “non-linear” are multiplication, division (protected),

sine, cosine, exponential, logarithm, hyperbolic tangent and reciprocal.

In order to award the bonus, the depth dtree of the complete tree to be evaluated and

the depth d of the “factorising” operation at the lowest depth in the tree (if found) are

recorded. During the fitness evaluation stage then the fitness value of each individual is

computed taking into account the value of d. If a factorising primitive is found relatively

close to the root node, the factorisation bonus is awarded as a reduction to a tenth of the

actual fitness value of the tree, as shown in Eq. 7.1:

F (i, t) =

 0.1 ∗ F (i, t) if d < min (0.2 ∗ dtree, 6)

F (i, t) if d >= min (0.2 ∗ dtree, 6)
(7.1)

where the function F (i, t) reported on the right of the curly bracket is the fitness function

defined in Eq. 5.2, Section 5.2.5, Chapter 5. The “threshold depth” for the factorising

operation found to be awarded the bonus is defined as the minimum of two parameters:

a fifth of the tree depth (0.2 ∗ dtree) and a value set to 6. Preliminary tests have shown

that using only the first does not affect the selection process after a few generations, due

to the normal size growth of the individuals. On the other hand, using only a constant

value (6 in this case) is not effective in the first generations of the evolution due to the

reduced size of the individuals.

The “factorisation bonus” approach is interesting for its potential to reduce the size of

the individuals and at the same time to support the exploration of complex mathematical

structures.
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7.1.2 Editing

Editing is a long exploited strategy, reported in Koza (1992) and also used more recently

to reduce introns, as seen in Section 4.5.1, Chapter 4. In the following however a specific

editing strategy applied in conjunction with the factorisation bonus approach is presented

and its effect on generalisation ability assessed.

The editing strategy has been developed to reduce genetic programming tendency to

generate numerical constants through nested protected divisions, which are not effec-

tively penalised by the multiobjective fitness function defined in Eq. 5.2, Section 5.2.5,

Chapter 5. Typically subtrees made of nested divisions terminates with the subtree A/Xj

where A is a general subtree and Xj is a variable node. Those terms are particularly

harmful for the generalisation ability of an individual as, although they return defined

values during training thanks to the repairing action of protected division, they may lead

to undefined behaviours (asymptotes) on the test data set.

Two strategies are put forward to tackle this problem, which will be called “Ed” and

“Ed2”, and they are both applied to the ancestors, in other words to the individuals before

parameters insertion (see Section 5.2.2, Chapter 5). They both detect the presence of

blocks A/Xj in the individual and check if 0 belongs to the domain of the denominator

Xj of such blocks. If so, the strategy “Ed” replaces the variable with a constant value (1.0),

which will later undergo tuning. The strategy “Ed2” instead randomly selects whether to

replace the variable with a constant or adding a constant (1.0) to the variable, in order to

minimise the risk of incurring an undefined case. An example of how these two strategies

act on an ancestor is shown in Fig. 7.1.

7.2 Methodology and test problems

The strategies described in the previous section were tested following the same method-

ology described in Section 5.3.1, Chapter 5, used for all the experiments of that chapter.

The three test functions that proved most difficult for the hybrid genetic programming

code described in Chapter 5 were used as test problems: Kotanchek, Salustowicz, and

RatPol2D (see Section 5.3.1.1, Chapter 5). In addition, a new, four-dimensional test

function taken from Korns (2011), which will be called “Korns P10” and is reported in

Eq. 7.2, was used for symbolic regression tasks.
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(A) Ed strategy

(B) Ed2 strategy

FIGURE 7.1: Editing strategies in action on node 8 of the tree represented on the left: the
trees indicated by the arrow represent the edited individual in case 0 is in the domain of

variable X2

f5(z1, z2, z3, z4) = 0.81 + 24.3 ∗ 2.0 z1 + 3.0 z22
4.0 z33 + 5.0 z44

(7.2)

The function “Korns P10” was selected as proxy of the class of “fairly simplistic formu-

las”, for which “current state-of-the-art symbolic regression systems suffer poor accuracy”

or “fail to return a champion with the correct formula” (Korns 2011, p. 130). The im-

portance of testing genetic programming implementations on this class of “intractable”

problems (Korns 2011, p. 130) was detailed in Section 5.3.1.1, Chapter 5.

The training and validation data set for Kotanchek, Salustowicz, and RatPol2D test

functions are defined in Section 5.3.1.2, Chapter 5. As for Korns P10 test function, the

same domain bounds used by Korns (2011) on the four input variables were used. The

building and validation data sets are defined in Table 7.1.
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TABLE 7.1: Training and validation data sets for Korns P10 test function. In the middle
column the domain used for optimal latin hypercube sampling is defined. In third column
the validation data set is defined using the notation Zi = [a : dx : b]. This means that

values of variable Zi are sampled from a to b with a step dx.

test function building data validation data
(OLH DoE) (full factorial DoE)

Korns P10 300 points 4096 points
−50 ≤ Zi ≤ 50 i = 1, 2, 3, 4 Zi = [−50 : 14.28 : 50] i = 1, 2, 3, 4

In Fig. 7.2 the Korns P10 test function is plotted for −50 ≤ Zi ≤ 50 with i = 1, 3,

Z2 = 0 and Z4 = 1.
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FIGURE 7.2: KornsP10 function plotted for Z2 = 0 and Z4 = 1

7.3 Experiments

Eight different experiments were performed for each test function using as baseline ge-

netic programming implementation the omegalim version described in Section 5.3.0.6,

Chapter 5. In three of them factorisation bonus was enabled, and in two of these three

the editing strategies “Ed” and “Ed2” superimposed to the factorisation approach. These

experiments were then repeated adding shift to the functional primitives. To assess the

effect of the new strategies on the baseline genetic programming implementation, in the

following sections the results are compared to the ones returned by omegalim and ome-

galim_shift implementations. The experiments performed and the naming convention

used is reported in Table 7.2.
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TABLE 7.2: Plan of experiments to assess the effect of factorisation bonus and editing
strategies Ed and Ed2

No. experiment name features enabled
1 omegalim
2 omegalim_shift shift primitive
3 omegalim_F factorisation bonus
4 omegalim_shift_F factorisation bonus, shift primitive
5 omegalim_Ed_F factorisation bonus, Ed
6 omegalim_shift_Ed_F factorisation bonus, Ed, shift primitive
7 omegalim_Ed2_F factorisation bonus, Ed2
8 omegalim_shift_Ed2_F factorisation bonus, Ed2, shift primitive

7.3.1 Kotanchek test problem

The same GP parameters listed in Table 5.16 of Section 5.3.5.1, Chapter 5 were used. The

pathologies of the individuals generated by the different implementations on building and

validation data sets are reported in Table 7.3.

TABLE 7.3: Kotanchek test problem: pathologies on building and validation data sets

Kotanchek Building data set Validation data set
RMSE RMSE

%∞ %bad median IQR %∞ %bad median IQR
omegalim 0 0 6.155E-02 1.529E-02 0 0 8.571E-02 9.749E-03
omegalim_shift 0 0 5.754E-02 2.055e-02 70 0 9.391e-02 5.297e-03
omegalim_F 0 0 4.296E-02 2.856E-02 80 0 5.575E-02 1.696E-02
omegalim_shift_F 0 0 5.354E-02 3.063E-02 60 0 7.129E-02 3.159E-02
omegalim_Ed_F 0 0 5.072E-02 2.116E-02 30 0 7.202E-02 9.050E-02
omegalim_shift_Ed_F 0 0 5.157E-02 6.323E-02 40 0 2.716E-02 7.207e-02
omegalim_Ed2_F 0 0 6.259E-02 4.151E-02 30 0 1.122E-01 4.462E-02
omegalim_shift_Ed2_F 0 0 5.438E-02 3.454E-02 20 0 6.418E-02 8.386E-02

Omegalim implementation appears the most robust, in the sense that all the best indi-

viduals generated from each run are defined on the validation data set. The isolated use

of the factorisation bonus appears to reduce the generalisation ability of the generated

individuals, performance that is however improved by the superimposition of Ed and Ed2

editing strategies.

The boxplots of RMSE and R2 reported in Fig. 7.3 show an interesting effect of the

factorisation bonus.

All the experiments where the factorisation bonus was enabled returned a best indi-

vidual with lower RMSE than the baseline omegalim and omegalim_shift implementations.

In particular, a higher RMSE (and R2) interquartile range is observed in the experiments

featuring the combined use of factorisation bonus and editing strategies Ed or Ed2. There
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FIGURE 7.3: Kotanchek test problem: RMSE and R2 boxplots. Individuals with
RMSE>100 as well as undefined ones are not included

are also a few differences in the median of the RMSE (and R2) distributions, particu-

larly evident for the experiment omegalim_shift_Ed_F. These differences however are not

recognsed as statistically significant by Kruskal-Wallis test on the validation data set (p-

value=0.30422)1.

The expression of the overall best model, generated by omegalim_shift_Ed_F, is re-

ported below:

f̃(z1, z2) = −0.0103772 + (−36.3242 z1 − 48.3108 + 15.5212 z1z1)
2/

((40.8610 z1 − 90.0379− 25.8195 z1z1)
2 + (−69.1777 z2 − 0.256008 z2z1 + 17403.4)2)

(7.3)

The effect of the factorisation bonus can be appreciated comparing the expression re-

ported above with Eq. 5.25, expression of the best one returned by omegalim (Sec-

tion 5.3.5.1, Chapter 5). The model in Eq. 7.3 is plotted superimposed to the original

Kotanchek test function in Fig. 7.4A, together with the actual vs. estimated response

plots on building and validation data sets (Fig. 7.4B and Fig. 7.4C).

The superior generalisation ability of the best model generated by omegalim_shift_Ed_F

(Eq. 7.3) compared to the best one generated by omegalim can be ascribed to the correct

identification of Kotanchek function mathematical structure. In this case the factorisation
1The ANOVA test agrees with such conclusion, with p-value = 0.3326.
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FIGURE 7.4: Kotanchek test problem: best individual generated by omegalim_shift_Ed_F

bonus successfully avoided the generation of a linear combination of terms, something

that instead happened with omegalim as shown by Eq. 5.25 in Section 5.3.5.1, Chapter 5.

The analysis of the average size of archive individuals against the generations, plotted

in Fig. 7.5, reveals that the use of the factorisation bonus does not consistently affect the

average size of the individuals in the archive.

An interesting effect that is linked to the use of factorisation bonus is the runtime

reduction, as shown in Fig. 7.6. Runtime reduction can not be completely ascribed to the

reduced size of the individuals, as it has been shown that no consistent effect is produced

by the factorisation bonus on the average size of the archive individuals. So probably the

factorisation bonus affects computational overhead indirectly, making parameters tuning
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less expensive, maybe thanks to the better mathematical structure of the individuals it

allows for.
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7.3.2 Salustowicz test problem

All the experiments were performed using the same parameters listed in Table 5.19 of

Section 5.3.5.2, Chapter 5. The pathologies the individuals generated by the different im-

plementations suffer from on building and validation data sets are reported in Table 7.4.

TABLE 7.4: Salustowicz test problem: pathologies on building and validation data sets

Kotanchek Building data set Validation data set
RMSE RMSE

%∞ %bad median IQR %∞ %bad median IQR
shift 0 0 1.200E-01 1.199E-01 60 10 2.263E-01 7.309E-02
omegalim 0 0 1.702E-01 7.376E-02 80 0 3.004E-01 2.065E-01
omegalim_shift 0 0 1.757E-01 6.902E-02 30 0 2.047E-01 5.408E-02
omegalim_F 0 0 1.655E-01 6.948E-02 90 0 1.624E-01 0.000E+00
omegalim_shift_F 0 0 7.803E-02 4.500E-02 80 0 9.346E-02 7.170E-03
omegalim_Ed_F 0 0 1.217E-01 9.306E-02 100 0 n/a n/a
omegalim_shift_Ed_F 0 0 1.034E-01 2.984E-02 70 0 1.034E-01 9.872E-03
omegalim_Ed2_F 0 0 1.218E-01 7.111E-02 90 0 5.951E-01 0.000E+00
omegalim_shift_Ed2_F 0 0 9.864E-02 6.237E-02 50 10 1.462E-01 2.156E-01

The reduced number of individuals defined on the validation data set is not unex-

pected, as similar generalisation issues were observed in the experiments described in Sec-

tion 5.3.5.2, Chapter 5. Omegalim_shift and omegalim_shift_Ed2_F are somewhat more

robust than the other implementations, whereas omegalim_Ed_F gives the worst results

with no individuals defined on the validation data set. Despite most of the individuals

generated using the factorisation bonus are not defined on the validation set, the individ-

uals that are indeed defined show in some cases higher accuracy than the ones produced

by the baseline experiments shift, omegalim and omegalim_shift, as shown by the RMSE

andR2 boxplots in Fig. 7.7. This is the case of omegalim_shift_F, omegalim_shift_Ed_F and

omegalim_shift_Ed2_F. The consistently positive effect of the shift primitive on accuracy

has also to be acknowledged.

However, according to the p-value returned by Kruskal-Wallis test on the validation

data set (0.099677) there is no significant evidence of a difference in the medians of the

samples produced by the various experiments. Curiously, the ANOVA test supports the

opposite conclusion (p-value = 0.0080031).

The best model was generated by omegalim_shift_F. Its expression is reported below:

f̃(z1) = −0.000189778+

113.724 sin(−1.61627 z1) + 116.524 sin(1.63860 z1)

−62.2514 + 39.5659 z1 − 7.07145 z1 z1

(7.4)
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FIGURE 7.7: Salustowicz test problem: RMSE and R2 boxplots. Individuals with
RMSE>100 as well as undefined ones are not included

The expression reported above should be compared to Eq. 5.26, best individual returned

by shift (see Section 5.3.5.2, Chapter 5), to appreciate the difference in size.

The returned model in Eq. 7.4 is superimposed to Salustowicz function plot in Fig. 7.8A.

In Fig. 7.8B and 7.8C are shown the actual responses versus the responses estimated using

the best model generated by omegalim_shift_F (Eq. 7.4).

No consistent effect on the average size of archive individuals and on runtime is

achieved using the factorisation bonus, with or without the editing strategies, as shown

by the plots of the average archive individuals’ size as a function of generation and of

runtime boxplots in Fig. 7.9.
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7.3.3 RatPol2D test problem

The same GP parameters listed in Table 5.21 Section 5.3.5.3, Chapter 5 were used for the

experiments. The pathologies of the individuals generated by the tested implementations

on building and validation data sets are reported in Table 7.5.

TABLE 7.5: RatPol2D test problem: pathologies on building and validation data sets

RatPol2D Building data set Validation data set
RMSE RMSE

%∞ %bad median IQR %∞ %bad median IQR
shift 0 0 4.279E-01 3.367E-01 0 10 1.117E+00 3.586E-01
omegalim 0 0 4.864E-01 2.994E-01 0 10 1.279E+00 2.357E-01
omegalim_shift 0 0 2.275E-01 3.505E-01 0 60 2.685E+00 2.736E+00
omegalim_F 0 0 5.514E-01 9.525E-02 0 20 6.752E+00 9.020E+00
omegalim_shift_F 0 0 6.358E-01 2.216E-01 0 10 5.752E+00 2.498E+01
omegalim_Ed_F 0 0 6.460E-01 1.286E-01 0 10 3.756E+00 1.460E+01
omegalim_shift_Ed_F 0 0 5.196E-01 2.242E-01 0 20 2.354E+00 1.022E+01
omegalim_Ed2_F 0 0 5.480E-01 3.363E-01 0 20 4.131E+00 1.418E+01
omegalim_shift_Ed2_F 0 0 6.819E-01 4.039E-01 0 0 5.537E+00 3.277E+01

No particular differences in the number of undefined individuals on the validation

data set were recorded, with the exception of the implementation omegalim_shift for

which 6 individuals out of 10 are undefined on the validation data set.

The boxplots of RMSE and R2 samples are reported in Fig. 7.10.
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FIGURE 7.10: RatPol2D test problem: RMSE and R2 boxplots. Individuals with
RMSE>100 as well as undefined ones are not included

Omegalim and shift appear the most robust implementations, as they show far smaller

RMSE and R2 interquartile ranges on both building and validation data sets. However,
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their exploration ability proves slightly less effective than omegalim_shift_Ed_F and ome-

galim_Ed2_F, implementation that returned the best individual. According to the p-value

returned by the Kruskal-Wallis test (0.00099349) there is evidence of significative dif-

ference between RMSE medians2. The p-values resulting by pairwise comparison of the

RMSE samples reported in Table 7.6 confirm that omegalim, shift have statistically better

median than the other implementations except omegalim_shift_Ed_F.

TABLE 7.6: RatPol2D test case: p-values resulting from pairwise comparison using
Wilcoxon rank sum test. To compare two implementations, start from the row with
the name of the first one; then read along the row until the column with the second im-
plementation’s name is found. If a white box is reached, keep reading down the column

until the row with the second implementation’s name is found
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shift 1.117E+00
omegalim 1.279E+00 0.06
omegalim_shift 2.685E+00 0.02 0.02
omegalim_F 6.752E+00 0.00 0.00 0.15
omegalim_shift_F 5.752E+00 0.00 0.00 0.11 1.00
omegalim_Ed_F 3.756E+00 0.00 0.02 1.00 0.42 0.19
omegalim_shift_Ed_F 2.354E+00 0.20 0.81 0.93 0.23 0.14 0.28
omegalim_Ed2_F 4.131E+00 0.02 0.11 0.68 0.28 0.11 1.00 0.72
omegalim_shift_Ed2_F 5.537E+00 0.00 0.01 0.45 0.90 0.84 0.60 0.27 0.41

The best model was generated by omegalim_Ed2_F and is reported below:

f̃(z1, z2) = −0.352041 + (532.069− 72.9607 z2)/

(598.117/(52.1197 + 8.27273z1 z1 − 49.3048 z1 − 5.24910 z2z2 + 27.3669 z2))
2

(7.5)

The model in Eq. 7.5 is plotted superimposed to RatPol2D test function in Fig. 7.11A.

In Fig. 7.11B and 7.11C the actual reponse is plotted versus the response approximated

by the model on building and validation data sets.

The evolution of the average size of archive individuals shown in Fig. 7.12A show

an interesting behaviour: all the implementations in which the factorisation bonus was

enabled experience a smaller average growth rate than the implementations where the

bonus was not used (shift, omegalim and omegalim_shift). The reduction in size, due

to the difference in the mathematical structure of the models, is easily appreciated if
2ANOVA test on test data set does not back such conclusion (p-value = 0.14447).
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FIGURE 7.11: RatPol2D test problem: best individual generated

Eq. 7.5 is compared with Eq. 5.28 and Eq. 5.27 (best individuals returned respectively by

omegalim and shift, see Section 5.3.5.3, Chapter 5).

In Fig. 7.12B runtime boxplots are shown for the experiments performed: the experi-

ments where the factorisation bonus was enabled, no matter if editing was enabled, show

on average a smaller runtime with respect to the ones not exploiting the bonus. There-

fore, it seems that for this case, differently from the previous ones, there is a correlation

between the use of factorisation bonus and a reduction of the computational cost of the
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evolution.
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7.3.4 KornsP10 test problem

The main parameters used for the experiments are listed in Table 7.7.

TABLE 7.7: KornsP10 test problem: main parameters used in the experiments

Population size: 400
Generations: 200
Primitives: +,-,*,/(protected), square, cube, sin, cos, tanh,

exp, log
Fitness cases: 300

The pathologies the individuals generated by the different implementations suffer

from on building and validation data sets are reported in Table 7.8.

TABLE 7.8: KornsP10 test problem: pathologies on building and validation data sets

KornsP10 Building data set Validation data set
RMSE RMSE

%∞ %bad median IQR %∞ %bad median IQR
omegalim 0 0 3.310 2.587 10 0 2.647E+00 7.774E-001
omegalim_shift 0 0 4.214 1.681 40 0 2.294E+00 3.574E-01
omegalim_F 0 0 4.960 1.656 60 0 2.963E+00 5.205E-01
omegalim_shift_F 0 0 3.283 2.039 10 0 2.198E+00 1.810E-01
omegalim_Ed_F 0 0 4.888 2.442 40 0 2.167E+00 4.234E-02
omegalim_shift_Ed_F 0 0 3.574 1.544 0 0 2.384E+00 6.483E-01
omegalim_Ed2_F 0 0 3.453 2.820 0 0 2.374E+00 5.507E-01
omegalim_shift_Ed2_F 0 0 4.601 1.142 10 0 2.214E+00 3.913E-01

The results shown in Table 7.8 reveal that the use of factorisation bonus alone in-

creased the number of undefined individuals on the validation data set with respect to

the baseline implementation omegalim. The combined use of the bonus with one of the

editing strategies partly solved the problem.

The boxplots of RMSE and R2 distributions referring to the validation data set are

reported in Fig. 7.13.

The boxplots show that in general the quality of the best solutions generated by all im-

plementations is quite poor, with the exception of the best three individuals generated by

omegalim, omegalim_Ed2_F and omegalim_shift_Ed2_F. At a general level, the combined

use of factorisation bonus and one of the editing strategies resulted in a slight improve-

ment in the median of the RMSE and R2 distribution. Such improvement is however

recognised as not statistically significant by Kruskal-Wallis test on the validation data set

(p-value = 0.15249)3.
3ANOVA tests backs this result with p-value = 0.89231.



282 Chapter 7 Search for factorised solutions in genetic programming

0 5 10 15

omegalim

omegalim_shift

omegalim_F

omegalim_shift_F

omegalim_Ed_F

omegalim_shift_Ed_F

omegalim_Ed2_F

omegalim_shift_Ed2_F

RMSE

RMSE on test data
Distribution of best individuals (one per run)

(A) RMSE

−1 −0.5 0 0.5 1

omegalim

omegalim_shift

omegalim_F

omegalim_shift_F

omegalim_Ed_F

omegalim_shift_Ed_F

omegalim_Ed2_F

omegalim_shift_Ed2_F

R
2

R
2
 on test data

Distribution of best individuals (one per run)

(B) R2

FIGURE 7.13: KornsP10 test problem: RMSE and R2 boxplots. Individuals with
RMSE>100 as well as undefined ones are not included

The expression of the best model generated by omegalim_shift_Ed2_F is reported be-

low:

f̃(z1, z2, z3, z4) = 0.809396 + (−36.6710 z2)/

(((((147.049 z4 z4 − 2.01659 z4)
2)− (128.716 z4 + (−222.307 (z2/(z3z3)))))/

(−32.5875 (263.633 z2)))− (−150.732 (z3/(z2/(z3(z3/− 74.6861))))))

(7.6)

In Fig. 7.14B and Fig. 7.14C are shown the actual Korns P10 output values on the val-

idation data set versus the responses estimated using the approximated model in Eq. 7.6

on the same points.

In Fig. 7.15A are shown the average size growth of archive individuals during the

evolution, while in Fig. 7.15B boxplots show the runtime distribution for each experiment.

A first look at the size growth reveals that the combined use of factorisation bonus and

one of the two editing strategies results in a smaller growth rate, reducing the average size

of the archive individuals by approximately a third by the end of evolution with respect to

the implementations where these two strategies were not enabled. A correlation between

the combined use of factorisation bonus with an editing strategy and the computational

cost reduction is confirmed by boxplots in Fig. 7.15B. In particular it can be noted that

omegalim_Ed_F, the implementation with the smallest average size of archive individuals,

is also the one having the lowest runtime median.
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7.4 Comparison with Gaussian Processes

The experiments run so far show that the generation of a global explicit expression via

genetic means has undoubtedly a cost, in terms both of computing time and generali-

sation ability. To assess if such cost is bearable and to check HyGP maturity, the same

regression tests have been performed using an implicit technique. Gaussian Processes

(Section 1.2.4.3, Chapter 1) have been considered for the comparison, in particular the

MatLab implementation written by Rasmussen and Nickisch, freely downloadable from

Rasmussen (2006) (see also Rasmussen and Williams (2006), Rasmussen and Nickish

(2010)). Precious help in the selection of the covariance functions (see Section 1.2.4.3,

Chapter 1) and in results validation was provided by Mr. James Lloyd from the University

of Cambridge.

In the following the settings used and the coefficient of determination R2 obtained

considering the pointwise mean output of the gaussian process for each regression test

function are reported. The gaussian process hyperparameters, required to define the co-

variance function (see Section 1.2.4.3, Chapter 1) and the mean of the process, have been

optimised through a conjugate gradient method as implemented in Rasmussen (2006),

following the Bayesian model selection approach (Rasmussen and Williams 2006, p. 108).

7.4.1 Kotanchek test problem

The Gaussian Process was set up using an affine mean and a squared exponential covari-

ance function (Rasmussen and Williams 2006, p. 83) with equal length scales for the two

input variables (called function covSEiso in Rasmussen (2006)). A maximum of 100 func-

tion evaluations was imposed for the conjugate gradient optimiser. The building data set

(40 points) and validation data set (2025 points) detailed in Table 5.2, Chapter 5 were

used. In Fig. 7.16 the pointwise mean output generated by the conditioned Gaussian Pro-

cess are shown superimposed to the true underlying function. The actual vs. estimated

output plot is also shown. The coefficient of determination returned was R2 = 0.9985736.

7.4.2 Salustowicz test problem

As for the previous case, the Gaussian Process was set up using an affine mean and a

squared exponential covariance function with equal length scales for the two input vari-

ables (covSEiso). A maximum of 100 function evaluations was imposed for the conjugate

gradient optimiser. The building data set (100 points) and validation data set (221 points)
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FIGURE 7.16: Kotanchek test problem: Gaussian Process response

detailed in Table 5.2, Chapter 5 were used. The pointwise mean generated by the Gaus-

sian Process are shown in Fig. 7.17 superimposed to Salustowicz function. The coefficient

of determination achieved was R2 = 0.9999823.
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FIGURE 7.17: Salustowicz test problem: Gaussian Process response
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7.4.3 RatPol2D test problem

The Gaussian Process was set up using an affine mean and a squared exponential covari-

ance function with equal length scales for the two input variables (covSEiso). A maxi-

mum of 100 function evaluations was imposed for the conjugate gradient optimiser. The

building data set (40 points) and validation data set (1156 points) detailed in Table 5.2,

Chapter 5 were used. In Fig. 7.18 the pointwise mean response generated by the condi-

tioned Gaussian Process and the actual vs. estimated output plot are shown. The resulting

coefficient of determination was R2 = 0.9796763.
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FIGURE 7.18: RatPol2D test problem: Gaussian Process response

7.4.4 Korns P10 test problem

Due to the presence of asymptotes Korns P10 function appeared very challenging for

gaussian processes (Snelson et al. 2004). For this reason different covariance functions

were used, and also a training data set purged of points characterised by excessive outputs

(outliers, defined as points whose output absolute value is larger than 50) was attempted.

A maximum of 1000 function evaluations was imposed for the conjugate gradient hyper-

parameter optimiser. The building data set (300 points) and the validation data set (4096

points) defined in Table 7.1 were used.

The tests with different functional structures for the mean and the covariance func-

tions led to coefficient of determination R2, defined on the pointwise mean output of the
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Gaussian Process, reported in Table 7.9. In addition to the already introduced squared ex-

ponential covariance function with uniform length scales (covSEiso), the rational quadratic

covariance function with automatic relevance determination (ARD) distance measure was

used (Rasmussen and Williams 2006, p. 106). This covariance structure features length

scales independently tuned and is indicated as covRQard. The GPSS MAE covariance func-

tions were found automatically using the Gaussian Process Structure Search code written

by Mr. Lloyd (Lloyd 2012).

TABLE 7.9: KornsP10 test problem: obtained R2 for different covariance functions. In
bold the best R2 returned.

Mean Covariance function Outliers removed? R2 Hyperparameters
Zero constant + covSEiso NO -0.293146 3
Zero constant + covRQard NO -0.293338 7
Zero constant + covSEiso YES -0.002457 3
Zero constant + covRQard YES -1.746069 7

GPSS MAE level 2 YES -2.124714 6
GPSS MAE level 3 YES -2.007970 8

Affine constant + covRQard YES -1.941058 12

7.4.5 Jet pump problem: comparison of HyGP and Gaussian Process

An additional test was performed on a real life industrial problem, in particular the mod-

elling of the jet pump entrained flow rate described in Section 6.5, Chapter 6. As noted

previously, the practical need of a user-friendly metamodel motivated the adoption of

HyGP. The test with Gaussian Process allows to check if there could have been some gain

in accuracy had the final user not expressively asked for an explicit metamodel. As in Ko-

rns P10 case, a few different sets of mean and covariance function were tested, reported

in Table 7.10 together with the resulting RMSE and R2 computed on the same validation

data set introduced in Section 6.5.

TABLE 7.10: Jet pump test problem: obtained R2 for different covariance functions. In
bold the best R2 returned.

Mean Covariance function RMSE R2 Hyperparameters
Zero mean covSEiso 16.63110 0.9950176 2
Zero mean covSEard 14.76978 0.9960705 4
Zero mean constant + covRQard 13.60173 0.9966674 6

Affine mean constant +covRQard 13.59126 0.9966725 10
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7.4.6 Discussion of the results

The Korns P10 test case confirms that Gaussian processes are not ideal when the response

to be modelled varies over many orders of magnitude, at least in their conventional form

(Snelson et al. 2004). There are some strategies, like warping (Rasmussen and Williams

2006, p. 92) (Snelson et al. 2004) that allow to cope with these scenarios, but these

approaches are not standard and anyway imply searching for a well-behaved monotonic

warping function.

In these scenarios, the search for mathematical structures performed by HyGP appears

as a valid approach, as not constrained nor degraded by the smoothness properties or the

scale of variation of the underlying function. The comparison between theR2 obtained on

the four benchmarks and the real industrial case by the two techniques shows indeed that

not only is HyGP effective when no assumptions on the smoothness of the response can

be made but it can also provide metamodels of quality comparable to gaussian process-

generated metamodels. In fact, for Korns P10 function and the jet pump problem HyGP

outperformed Gaussian Processes.

TABLE 7.11: RMSE and R2 errors computed on validation data set for the given test
problems. Best results for each test case are highlighted in bold

Test function Gaussian Process HyGP
R2 R2

Salustowicz 0.999982 0.911976
Kotanchek 0.998574 0.994518
RatPol2D 0.979676 0.953612

Korns_P10 -0.002457 0.999741
Jet pump 0.996672 0.997664

It may be objected that the wrong selection of the covariance function or the pres-

ence of multiple local marginal likelihood suboptima in the space of hyperparameters can

be blamed for the not optimal performance of Gaussian Processes in some of the previ-

ous cases (Rasmussen and Williams 2006, p. 115). These claims are grounded, but are

intrinsic to modelling with Gaussian Processes. Tackling these issues implies facing the

problem of how to lead a search for a structural part of a model, and therefore restates

the importance and validity of population-based regression techniques, able to robustly

search for the optimal mathematical structures and coefficients of a model. In this sense,

genetically-based search strategies for the automatic selection of Gaussian Processes co-

variance functions could be an interesting and promising direction of research.



290 Chapter 7 Search for factorised solutions in genetic programming

7.5 Conclusion

In this chapter a strategy to protect against selection pressure highly factorised metamodel

made of highly non-linear functions has been introduced, called “factorisation bonus”.

The experiments performed show that the use of the factorisation approach leads to better

approximations of the test functions than omegalim and omegalim_shift, implementations

that already represent an improvement with respect to the basic HyGP engine presented in

Chapter 5. The improvement in accuracy can be ascribed to the ability of the factorisation

bonus of protecting mathematical structures that otherwise would get lost during the

early stages of the evolution.

Factorisation appears then similar to the ALPS strategy (Hornby 2006) in the sense

that not mature but highly factorised individuals, deemed promising, are granted a spe-

cial protection during selection that allows them to compete with mature individuals,

likely to have high accuracy due to overfitting. A confirmation of that is the fact that all

the best models produced by omegalim and omegalim_shift, where the factorisation bonus

was not enabled, are linear combinations of terms or even polynomials. The use of the

factorisation bonus leads instead always to the generation of highly factorised and com-

pact expressions. The bonus also seems to increase the exploration ability of GP, probably

as a result of the protection granted to factorised individuals, but at the same time affects

negatively robustness. Unfortunately a clear and consistent difference in the effect of the

two editing strategies did not emerge, although the importance of the two strategies can

not be denied considering that in three cases out of four the best model was generated

exploiting the factorisation bonus in combination with Ed or Ed2.

The lack of statistical evidence of the better performance of the implementations fea-

turing the factorisation bonus is due to the reduced robustness with respect to the baseline

implementations, omegalim and omegalim_shift.

The experiments also show that for Kotanchek, RatPol2D and Korns P10 test functions

the use of the factorisation bonus allows for a general reduction in the median runtime.

In this sense the bonus is able to reduce the computational cost of the evolution. For

Salustowicz test function the outcome, in terms of accuracy of the best individual and av-

erage runtime, is contradictory. The best model returned represents an improvement with

respect to the baseline implementations. However, in this case the factorisation bonus

failed to protect the correct structure, although multiplication was among the factorising

primitives under control.
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The wrong identification of the Salustowicz function mathematical structure proves

that the factorisation bonus approach, although already effective, needs further explo-

ration to express its full potential. So far it has appeared biased towards the protection

of only divisions. A more effective strategy should be developed, probably establishing a

hierarchy of functional primitives and define tournaments based on this hierarchy. The

ALPS approach may provide useful inspiration. To reduce the number of HyGP parame-

ters, it would also be useful to develop a strategy to eliminate or automatically identify

the best values of the numerical constants in the equation defining the factorisation bonus

(Eq. 7.1).

In the final part of the chapter the comparison of HyGP with Gaussian Processes, an

implicit metamodelling technique, has been described. Regression tests on benchmark

functions and on a real-life industrial problem have proved that HyGP can produce meta-

models of accuracy comparable or even better than Gaussian Process metamodels. In one

case the better performance of HyGP is due to the fact that genetic programming does

not require the function to be modelled to be smooth or varying on a limited range. Dif-

ferently from Gaussian Process, HyGP returns the explicit expression of the metamodel.





Chapter 8

Conclusions and recommendations

for future work

8.1 Summary of contributions

The research presented in this thesis has focused on the problem of generating accurate

mathematical metamodels from data through an evolutionary technique called “genetic

programming”. The ability to produce a metamodel through data-driven techniques is

key for the fast exploration of the behaviour of a system, as such analyses would be far

more expensive or demanding if approached using more traditional methodologies, like

direct simulations or analytical models.

A review of the most common metamodelling techniques nowadays used has shown

that genetic programming has unique features. Some techniques, like kriging (gaussian

processes), are able to generate accurate approximations, but not in an explicit form and

under strict conditions regarding smoothness and the scale of output variation. Others,

like response surface methodologies, are instead explicit, but require prior knowledge of

the relationship between inputs and outputs to better fit the data. Genetic programming

has appeared as the only metamodelling technique able to produce relatively accurate

and explicit metamodels without requiring any prior knowledge on the mathematical

relationship between inputs and outputs.

Much attention has been dedicated to the analysis of the main factors that affect

negatively genetic programming performances, like introns, bloat and lack of variability.

The review of the different solutions advanced by researchers has allowed to identify a

293
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minimum set of requirements that increases the likelihood of generating accurate and

compact metamodels at a reasonable computational cost.

The tree-based, hybrid genetic programming implementation developed during the

research activity, named HyGP, has stemmed from this analysis. Besides basic counter-

measures to bloat, in HyGP a strategy has been implemented for handling metamodels’

numerical coefficients not conventionally adopted in GP. The strategy, based on the de-

terministic insertion and tuning of numerical coefficients in HyGP individuals, allows to

unambiguously assess if the low accuracy of a metamodel is ascribable to a wrong math-

ematical structure or to wrong values of numerical coefficients. Although the approach

had already been introduced by Alvarez (2000), it has been rigorously tested here for the

first time on a few benchmark regression problems, showing that it performs better than

the standard genetic programming paradigm (see Section 5.3.3, Chapter 5). The hybrid

approach has also been further improved introducing a mechanism to limit the overfitting

issues caused by sine and cosine primitives (see Sections 5.2.2 and 5.3.0.6, Chapter 5).

A completely new strategy has been developed to increase the generalisation ability

of the metamodels evolved by HyGP (see Section 5.4, Chapter 5). The strategy allows the

user to define through a set of inequality constraints the desired behaviour of the ideal

solution on a set of points in the design space. The survival and evolution of a meta-

model with enhanced generalisation ability is encouraged penalising the probability of

the metamodels not satisfying the specified inequalities of being selected for the repro-

duction stage. The main advantage of the approach is that it does not necessarily require

extra computational cost for data gathering, as prior knowledge of the system under study

can be exploited to define the desired behaviour.

To test HyGP performances, a few experiments on benchmark cases and real-life in-

dustrial metamodelling and optimisation problems have been performed (see Chapter 6).

The results obtained show that HyGP is able to produce metamodels of accuracy com-

parable to and in some scenarios better than other metamodelling techniques: Table 8.1

summarises the regression and optimisation problems where HyGP outperformed estab-

lished techniques.

The main advantage of HyGP metamodels is that they are returned as a symbolic

expression, so they can be used for inexpensive sensitivity analysis through Monte Carlo

methods and in general be processed using analytical tools. An additional approach has

been introduced to reduce the size and increase the accuracy of HyGP metamodels, based
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TABLE 8.1: List of regression and optimisation problems where HyGP outperformed
other metamodelling techniques. The technique in bold returned the most accurate
metamodel (regression) or better solution (optimisation) for the problem defined in first

column.
Problem Techniques Section and Chapter

Regression of Rosenbrock function HyGP PCE Section 5.5.2, Chapter 5
Regression of Kotanchek function HyGP PCE Section 5.5.3, Chapter 5

10-bar truss optimisation HyGP MLSM Section 5.6, Chapter 5
Fuselage barrel optimisation HyGP MLSM Section 6.7.3, Chapter 5

Regression of Korns P10 function HyGP Gaussian Pr. Section 7.4.4, Chapter 7
Jet pump regression problem HyGP Gaussian Pr. Section 7.4.5, Chapter 7

on the protection of individuals containing highly non-linear functional nodes at low

depths (Chapter 7).

8.2 Practical impact of the research

The research on genetic programming methodologies has been carried out with a twofold

aim. On the one hand, ways to improve the traditional GP paradigm have been explored,

obtaining the results described in the previous section. On the other hand, much work

has been dedicated to make HyGP a user friendly and efficient metamodelling tool, which

can be used with minimum effort by users without programming skills. This has been

considered a necessary requirement for HyGP successful application in industry.

This vision has motivated the efforts to develop a few C++ parallelised versions of

HyGP to make the most efficient use of the computing architecture available to the user

(see Appendix A), in particular clusters. The range of applications described in Chapter 6

can give a hint about which aerospace companies have shown active interest for HyGP.

The metamodels that were specifically generated and accepted for industrial use are:

1. Model of chromate diffusion process (Section 6.4, Chapter 6)

2. Model of supersonic jet pump entrained flow rate (Section 6.5, Chapter 6)

3. Model of a lattice aircraft fuselage barrel (Section 6.7, Chapter 6)

Finally, the Matlab scripts written to post-process the results produced by HyGP have

also a considerable practical importance. They allow to compare HyGP experiments using

statistical methods like Kruskal-Wallis test and Wilcoxon rank sum test, and therefore they

can be used to test further improvements to the current HyGP implementation.
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8.3 Recommendations on future work

At the end of this long dive into genetic programming, different recommendations for

future work emerge, not only limited to HyGP. The general review of GP research has

allowed to discover that definitions of major GP phenomena do not exist or, if they exist,

they are not accepted by the whole GP community. Such definitions are important to

compare different GP implementations and so they are vital for research in GP. General

consensus is needed in the following areas:

• a common definition of bloat should be introduced.

Some authors define bloat as code growth without any fitness improvement, other

as disproportionate code growth with respect to fitness improvement. Also, some

refer to the average size of GP individuals, other to the size of the best individual.

In this sense, a unique parameter that comparing size and fitness was able to detect

bloat would be useful to implement anti-bloat strategies. A possible idea of a “bloat

quantifier” could be:

Ib(t) = −∆ē/ē(t− 1)

∆s̄/s̄(t− 1)
(8.1)

where Ib(t) is the bloat “quantification” at generation t, ∆ē is the variation of the

average error (RMSE for example) from generation t−1 to t, ē(t−1) is the average

error of the population at generation t − 1. At denominator, ∆s̄ is the variation of

the average size in the population and s̄(t−1) is the average size at generation t−1.

• a common set of test cases (benchmarks) should be defined.

The identification of common test cases would allow a direct comparison of GP

implementations. The functions described in Affenzeller and Wagner (2004, p. 260-

1) or the ones used by Vladislavleva (2008) could be selected for this purpose. For

the particular difficulty of the problem, also the 10-bar truss optimisation problem

described in Section 5.6, Chapter 5 could be a good candidate.

• a common measure of computational cost should be agreed on.

A few definitions of the computational cost associated to a GP run have been pre-

sented in Section 3.1.6, Chapter 3. The number of node evaluations seems to be the

best parameter as it takes into account also the effects of bloat.
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• the importance of dimensionality analysis apparently has gone unnoticed in genetic

programming, apart from the attempt made by Keijzer and Babovic (1999). Re-

searchers have tried to increase the quality of GP metamodels reducing the number

of input parameters of the problem (Vladislavleva 2008) through sensitivity analy-

sis or clustering them in metavariables (Singh et al. 2007). However, if the physical

nature of the input variables is known, the Buckingham theorem (Focken 1953)

provides a powerful way to reformulate the metamodelling problem that does not

require to neglect the effect of any variable. The approach is a promising and rela-

tively unexplored way to improve the quality GP metamodels and is worth further

attention in the future.

More precise recommendations can be given about possible ways to improve HyGP

performances and its use of computational resources. A set of potential improvements

easily implementable are:

• expressional complexity (Smits and Kotanchek (2004, p. 289) and Vladislavleva

(2008, p. 90)) could be used instead of individual size to reduce bloat (see also

Section 4.3.1, Chapter 4).

• all subtrees that compose each individual could be considered during evaluation and

selection to increase population variability, as done in Smits and Kotanchek (2004)

and Vladislavleva (2008). As all these subtrees are in any case evaluated, this ap-

proach would not result in an increase in RAM usage or computational overhead,

while increasing the chance of finding a good model.

• the user should be given the possibility to insert in the initial population exter-

nally generated models, for example established analytical (fundamental) models

(“warm start”). This would allow to bias the evolution using validated models and

possibly to generalise them. In MacLean et al. (2005), Yin et al. (2007) this ap-

proach is mentioned as a promising way to boost the search. Such strategy is also

used effectively in Schmidt and Lipson (2009a). An algorithm to convert a text

expression into a syntax tree accepted by HyGP is required to implement this ap-

proach.

• the current parallel HyGP implementation could be modified according to the sug-

gestions provided in Section A.4, Chapter A to make a more efficient use of parallel

architectures. Furthermore, HyGP use could be further simplified if all the software
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performing metamodel generation, validation and post-processing was integrated

in a unique framework. Python programming language seems to have optimal

features to merge all these functionalities, as links with C++ code can be easily

implemented.

The following are instead a list of promising research areas which deserve further

exploration:

• despite the strategy introduced in Section 5.4, Chapter 5 can be effectively used to

exploit prior knowledge of the system under analysis to improve the generalisation

ability of HyGP metamodels, further research is needed to understand how it affects

the evolution and how it can be improved. It would be interesting to explore the

effect of other formulations of the penalisation term F5.

• it would be interesting to analyse the phenomenon of bloat in HyGP, to see if in

the absence of any size penalisation the same quadratic or sub-quadratic increase

in size and linear in depth reported for standard GP (see Section 4.4.1, Chapter 4)

would be observed. That would allow to assess the effect of the parameter inser-

tion algorithm on bloat (see Section 5.2.2, Chapter 5). Furthermore, it would be

interesting to study the combined effect of adaptive parsimony pressure or Pareto

selection and the hybrid formulation featured by HyGP. Combined implementations

of this kind have not been found in literature.

• finding a way to define “species” with common mathematical features (for example

rational functions, polynomials, etc . . . ) inside a GP population would allow for the

application of selection strategies commonly used in GAs, like niching or restricted

mating. Clustering could then be used to select individuals from either different

or similar species, to direct the exploration to interesting subregions of the design

space.

• strategies to automate the selection of the optimal parameters both in selection

and in genetic operations could reduce the bias imposed by the initial GP settings

defined by the user. These strategies could also adapt the values of the different

parameter according to the evolution stage (youth, maturity or stagnation). For

example tournament size, elite size, crossover and mutation rates could dynamically

change during the evolution.
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• reducing the computational cost of evaluation and parameter tuning in HyGP is

critical for its application to high dimensional problems, due to the curse of dimen-

sionality. As programming style can affect performances, memory usage in HyGP

code can probably be further optimised. A way to monitor RAM usage during the

run could help implement more efficient ways to handle HyGP populations.
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HyGP implementation details

This appendix focuses instead on HyGP implementation details, from the selection of the

programming language to HyGP code structure. The simple strategy used to parallelise

the code is presented and further development towards a more efficient parallelism are

described.

A.1 Programming language selection

In general, a programming language should be chosen for its intrinsic capabilities to effi-

ciently perform the operations described in the algorithm to be implemented. Many differ-

ent and conflicting criteria make the identification of the optimal programming language

for genetic programming algorithm implementation very challenging, and this maybe

explains why many different languages have been used by GP researchers through the

years.

First of all, execution speed is key, due to the high number of fitness evaluations: low-

level programming languages may dramatically reduce execution time but at the cost of

a more difficult implementation and often of a reduced portability.

Secondly, the programming language, the specific task the GP implementation aims

to perform, and the GP representation1 can be constrained by each other, as particular

representation are suggested for particular tasks. For example, linear representation is

often preferred for algorithm or control law generation, and in this case machine code is

the best programming language in terms of speed2.
1see Section 3.3, Chapter 2.
2see Section 3.3, Chapter 2.
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Thirdly, portability is paramount. The possibility to develop, test and run a piece of

software on the highest number of architectures without significant modifications is a

necessary condition for its application on an industrial scale.

A.1.1 Machine code or object-oriented languages?

Table A.1 reports the results of a brief survey carried out before starting HyGP develop-

ment to identify what programming languages had mostly been used for genetic program-

ming implementations since the appearance of Koza’s book (Koza 1992).

TABLE A.1: A list of a few genetic programming implementations, with corresponding
programming language and year in which the original implementation was launched

Name Progr. language Author Year
GP LISP Koza (1992) 1992

GPQuick C++ Singleton (1993) 1993
AIM-GP (CGPS) machine code cited in Nordin et al. (1996 1999) 1994

Discipulus™ machine code cited in Nordin et al. (1999)
(www.rmltech.com)

Code by Hollick et al. C/C++ Hollick and Kuhlmann (1995) 1995
lil-gp C Zongker et al. (1996), Punch and

Zongker (1998)
1995

SYSGP C++ Brameier et al. (1998) 1998
Open BEAGLE C++ Gagné and Parizeau (2002) 1999

Code by Alvarez C++ Alvarez (2000) 2000
ParetoGP Toolbox MatLab cited in Vladislavleva (2008) 2001

Kordon and Lue (2004)
HeuristicLab C#, .NET Wagner and Affenzeller (2002) 2002

ECJ Java Luke and Panait (2002a) 2002
Luke (2010)

GPLab MatLab Silva (2003) 2003
TinyGP Java, C Poli et al. (2008) 2004

Code by Lew et al. Java Lew et al. (2006) 2006
Pyevolve Python Perone (2009) 2009
Eureqa C++ Schmidt and Lipson (2009ab) 2009
HyGP C++, Fortran (this thesis) 2011

The range of programming languages as it appears from Table A.1 spans low-level

programming code (machine code), higher-level programming languages, like C and LISP,

and more abstract and object-oriented programming languages like C++, Java, Python

and Matlab. No GP implementations in Fortran were found by the survey. Such a wide

range of choice justifies a more detailed analysis on the advantages and weaknesses of

different classes of programming languages for GP implementation.
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A.1.1.1 Machine code

Low-level programming languages (for example, machine code or binary code) generally

allow for high execution speed and optimised memory usage. These features are partic-

ularly important considering that a single GP run is generally computationally intensive

and requires large amount of RAM. Nordin et al. (1999) reported that a speed-up of up

to two order of magnitude can be achieved by machine code GP implementations with

respect to similar GP implementations written in compiled programming languages (C,

C++), as there is no need to convert high-level data structures to machine code during

evaluation. Nordin et al. (1999) also observed that machine code allows for an efficient

optimisation of the memory usage, which cannot be done by more abstract programming

languages. AIM-GP, a GP implementation written in machine code, has been reported to

perform extremely well on high-dimensional symbolic regression problems, with up to 40

input variables (Nordin et al. 1999, pag. 288).

The striking performances allowed by machine code however do not come without

drawbacks. A first limitation is posed on the GP representation, as the only GP represen-

tation that can be handled or processed by the low-level operations on registers performed

by machine code is the linear one. Flexibility is then somewhat penalised.

Secondly, in machine code GP the practical implementation of all the mechanisms re-

quired for fitness evaluation, genetic modification and primitives selection are so depen-

dent on the target processor (Nordin et al. 1999, pag. 292) that a specific evolutionary

engine has to be written for any particular target machine3. As a result, portability may

be extremely limited and closure satisfaction may be a challenge, due to the complexity of

correctly splitting the genotypes during mutation or crossover (Nordin et al. 1996 1999).

Portability of the evolved program can be increased through machine code decompilation

(Nordin et al. 1999, pag. 288-89), or the conversion in compilable C code of the best

individual evolved by machine code GP (this is a feature of Discipulus™).

Thirdly, it should be reminded that machine code GP follows an imperative approach,

and not a functional approach4. As a result, programs evolved by machine code GP are to

be used like “black boxes”, returning a certain set of outputs corresponding to the input

provided by the user.
3for example, a version of machine code GP has been developed even for the Sony PlayStation (Nordin

et al. 1999, pag. 281).
4see Section 3.3, Chapter 2.
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Given the high execution speed, but, at the same time, the scarce portability, machine

code is an optimal choice for writing linear GP implementations aiming at evolving algo-

rithms or control laws in real time, on specific target machines and without the need of

human intervention: for example, machine code GP has been successfully used for on-

line control of autonomous robots (Nordin et al. 1999, pag. 297). However, the use of

machine code as programming language appears less convenient for GP implementations

performing symbolic regression tasks, as in such cases runtime reduction is not critical

and the availability of an explicit mathematical expression may help data analysis and

interpretation.

A.1.1.2 Higher level and object-oriented languages

Higher level programming languages like C or Fortran represent a good compromise be-

tween speed and portability. However, they still lack the versatility of object-oriented

languages. The possibility to define objects and to establish a hierarchy among them (in-

heritance, polimorphism, etc. (Prata 2005)) undoubtedly simplifies the implementation

of the GP algorithm (Barbosa and Bernardino 2011), which by its nature is organised

on different independent levels (population, individual and fitness cases). The versatility

granted by objects also allows more freedom in terms of GP representation: linear, tree

or graph genotypes can easily be implemented.

If on the one hand the high level of abstraction and versatility of some object-oriented

languages may ease GP implementation, on the other hand it may imply drastically slower

GP execution speed. This is generally the case for GP software written in non-compiled

or scripting languages like Python or MatLab. An indipendent symbolic regression test

performed using data sampled from Rosenbrock function with a C++ and a Python GP

implementation showed that the former runs at least two orders of magnitude faster than

the latter. Similar conclusions about the use of Python for GP implementation were also

reported by Perone (2009).

MatLab and any other proprietary programming languages introduce major obstacles

to GP use at industrial scale, so they have not been considered.

A.1.2 Optimal selection for regression purposes

Among all programming languages described in the previous sections, C++ was recog-

nised as the best compromise in terms of speed, versatility and portability. HyGP was
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then written in C++, although for computationally intensive operations Fortran routines

were generally preferred. HyGP individuals’ numerical coefficients5 are indeed tuned by

the Fortran SQP algorithm written by Madsen et al. (2002), called smoothly from C++

HyGP code.

The operating system selected for HyGP development, testing and standard use was

Linux. The availability of open source editors, compilers and debuggers6 played an im-

portant role in the decision (Vaughan-Nichols 2004), but far more important was the con-

stantly increasing recognition of such operating system in high-performance computing

sector. Fig. A.1 shows the composition of the world best 500 supercomputers (TOP500) in

the period 1993-2010 in terms of operating system (Meuer et al. 1993): the percentage of

supercomputers based on Linux grew from 0% to about 80% in approximately 12 years.

As HyGP was conceived primarily as a research tool designed to be run on the widest

range of high-performance computers, Linux appeared a correct choice. Moreover, Linux

machines are widely used also in industry.

FIGURE A.1: Operating systems installed on the 500 most powerful supercomputers
(period 1993-2010) (image reported under permission - http://www.top500.org).

5see Section 5.2.2, Chapter 5
6see for example compilers g++ and gfortran, debugger gdb and editor Eclipse IDE, all included or easily

installable on any Linux distribution.
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A.2 Basic structure of HyGP code

HyGP source code was developed trying to maximise the use of classes to enable code

reuse and reduce code size, allow for easier testing and make future development easier.

The main classes that were defined are:

• RunParameters: class that stores all the parameters required to set up a HyGP ex-

periments, except the primitives (variables and functions) the building data set pro-

vided by the user or any additional data set to be used for problem specific knowl-

edge exploitation (see Section 5.4, Chapter 5).

• ProblemDefinition: class that stores the primitives (variables and functions), the

building data set provided by the user and any additional data set to be used for

problem specific knowledge exploitation. A method for splitting the building data

set and declaring which data subset has to be used for HyGP individual tuning and

fitness evaluation is here implemented7, as well as a simple method to compute

statistical data on the building data set. All the functions required for variable

initialisation are also contained in ProblemDefinition.

• Reporter: class containing all the methods used to print results to file. More infor-

mation on the files produced as output can be found in Section B.3, Appendix B.

• Population: class containing the arrays of the addresses (pointer arrays) of the indi-

viduals that define the GP population. Instead of inserting and removing numerical

coefficients from the individuals each generation, it was opted for keeping two lists

of addresses, one corresponding to individuals without numerical coefficients and

the other one to individuals with numerical coefficients. All the methods required

for population random generation, population genetic modification (crossover and

mutation), individual fitness evaluation, population sorting and termination crite-

rion assessment were also implemented here.

• Node: base class defining the atomic entity composing a syntax tree. The class was

adapted from Hollick and Kuhlmann (1995), as all the derived classes Binary_Node,

Unary_Node, Terminal_Var, Terminal_Const. These derived classes are needed to

allow syntax trees to represent mathematical expressions: Binary_Node is used to

7this method was used to apply the NestedDoE approach described in Section 5.3.0.5, Chapter 5.
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code binary functions (FB), Unary_Node for unary functions (FU), Terminal_Var for

variables (TV) and Terminal_Const for numerical coefficients (TC).

Each Node class stores pointers to other Node classes, so links between nodes can

be established and syntax trees built. Each link has to be defined upwards and

downwards: upwards to the “parent” node for which the current node is an argu-

ment, and downwards to define the arguments of the current node. For example

Binary_Node has a pointer to the parent node and two pointers to the nodes defin-

ing the two arguments of its function. To ease legality checks in the syntax trees

and to account for different numbers of downwards links, most of the methods for

the base Node class are virtual (see polimorphism - (Prata 2005)), and specifically

defined in the derived classes (for example the destructor or the node counter). The

conventions followed for node numbering and for depth assignment in each syntax

tree are shown in Fig. A.2.

FIGURE A.2: Conventions for node numbering and depth assignment in HyGP syntax
trees.

The top node of the tree, also called root node, is always assumed to be a binary

function (Binary_Node). This assumpiton, inherited from Hollick and Kuhlmann

(1995), does not reduce the variety of mathematical expressions that can be repre-

sented through a syntax tree8.

Data acquisition from input file and numerical coefficient tuning were left to standard

functions. More information on input file format can be found in Section B.1, Appendix B.

A detailed flowchart with the operations performed and the commands used in HyGP

main source file is provided in Fig. A.3-A.4 (to be compared with Fig. 5.1, which is the

general HyGP algorithm).

8similar practical issues, which affect GP individuals genotype, are common in GP literature: for example
in (Soule et al. 1996, p. 217) GP individuals’ root node has to be a control statement.
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FIGURE A.3: HyGP flowchart - 1st part
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FIGURE A.4: HyGP flowchart - 2nd part



310 Appendix A

A.3 HyGP parallelisation

HyGP first implementation was developed without any awareness of the potentiality of

multiprocessor computers. After the first sequential executions on a desktop machine, it

soon appeared clear that, given the computational cost of a single HyGP run, parallelisa-

tion would be a necessary prerequisite for HyGP application to academic and industrial

modelling problems.

The idea to exploit parallelism is nowadays an established strategy to make efficient

use of computational resources (Friedman 1991, Rogers and LaMarsh 1995, Simpson

et al. 2001, Polynkin et al. 2008). Quoting Chapman et al. (Chapman et al. 2007, p. 3):

“It is vital that application software be able to make effective use of the paral-

lelism that is present in our hardware”

GP and more in general GA algorithms have features that make their parallelisation

particularly easy and efficient. Multiple similar and independent operations are per-

formed at different levels: fitness evaluation is an example of operation that can be

executed in parallel at individual level, whereas the evolution of a single metamodel

(GP) or design point (GA) is an example at population level. Such a hierarchical organ-

isation brought Fogel to refer to artificial evolution as “an inherently parallel process”

(Fogel 1994, p. 11). As reported in Zhang and Mühlenbein (1995), “the evolutionary

approach differs from most other search techniques in that it makes a parallel search si-

multaneously involving hundreds or thousands of points in the search space”. Schmidt

and Lipson (2009a) also highlighted that the nature of genetic algorithms is intrinsically

parallel.

Parallelisation is then a necessary step to fully exploit evolutionary algorithms’ poten-

tiality (Fogel 1994, Affenzeller and Wagner 2004, Kroo 2004, Winkler et al. 2007) and to

make the otherwise excessive computational cost of evolutionary techniques manageable

(Barbosa and Bernardino 2011).

Before showing how HyGP was parallelised, it is important to remind the difference

between distributed GP and parallel GP. In distributed GP many populations (also called

islands, demes or villages - Fogel (1994), Affenzeller and Wagner (2004)) are evolved in-

dependently although some migrations between them can be established to boost genetic

variability, as described in Section 4.6, Chapter 4. The adjective “parallel” instead refers
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to the fact that a few operations of the GP algorithm are performed concurrently on dif-

ferent machines or processors. The two concepts are independent, although distributed

GP massively benefits from the parallelised evolution of different populations.

A.3.1 Target architecture

As seen in the previous section, prerequisite for algorithm parallelisation is hardware

parallelism, or the existence of multiprocessor architectures. The design of an efficient

multiprocessor computer is a research field in itself and far beyond the scope of this

work. It is however important to describe the main typologies of parallel architectures to

understand how the parallelism in the hardware can be exploited so to match the intrinsic

parallel nature of genetic algorithms.

Two basic ways of connecting processors in parallel exist, which differ according to the

modality of access to computer memory. Shared memory systems, also called symmetric

multiprocessing systems (SMPs), are architectures where many central processing units

(CPUs) are connected to a single, shared memory unit. Being all the CPUs close to the

memory, data are accessed quickly and networks are not needed. On the other hand,

memory sizing is critical to guarantee that all processes are allotted enough memory for

completing their task. A schematic diagram of a SMP system is shown in Fig. A.5.

FIGURE A.5: Shared memory architecture or SMP

Distributed memory systems feature instead a memory unit for each processor. Mul-

tiprocessor architectures are assembled connecting the single systems made of processor

and memory. These external (network) connections are however generally slower than

the internal connections between processor and memory, so distributed memory systems

are generally used when no massive data exchange among processors is required (all
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data needed by each processor is loaded into the memory and output exchanged at task

completion). Fig. A.6 reports a diagram of a distributed memory system.

FIGURE A.6: Distributed memory architecture

All the multiprocessor architectures available nowadays are combinations of the pre-

vious basic systems. A typical parallel architecture that can be found in university and

industry laboratories is the so-called “cluster”, which can be defined as a distributed

memory system composed of many shared memory machines or nodes, which are usually

standard workstations connected by an off-the-shelf network. Code designed to be run on

clusters may then exploit two levels of hardware parallelisation: among the nodes, typi-

cal of distributed systems, and among the cores in a single node. The former is referred

to as “coarse grain parallelism”, whereas the latter as “fine grain parallelism” (Garcke

et al. 2003, Chapman et al. 2007). A cluster architecture is represented schematically in

Fig. A.7.

FIGURE A.7: Cluster architecture
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Other parallel architectures are available, but they are still based on a combination of

shared/distributed memory systems. Massively Parallel Processors (MPPs) for example

are distributed memory architectures. Constellations are clusters of “large SMP nodes

scaled such that the number of processors per node is greater than the number of nodes”9.

A brief analysis of the systems used for the development of supercomputers may help

identify the most efficient and cost effective parallel architecture that could be used in the

near future in industry and academia: Fig. A.8A and Fig. A.8B report the architectures

and the number of processors of the 500 most powerful supercomputers in the period

1993-2010 (Meuer et al. 1993). From the figures, it emerges that the cluster is by far

the most common ways to build high performance computing machines nowadays. Ap-

peared on the TOP500 list in 1998 (Meuer et al. (1993),Vaughan-Nichols (2004)), cluster

architecture reached in November 2010 82.80% of the share of the most powerful super-

computers. Fig. A.8B reveals the massive increase in the number of processors used in

these supercomputers, sign that the current trend to increase computing power relies

on distributing computational jobs on a higher and higher number of processors. Paral-

lel computation can exploit a range of 4000-8000 processors in the most typical cluster

configuration.

(A) Multiprocessor architecture share (B) Number of processors share

FIGURE A.8: Architecture and number of processors of the 500 most powerful supercom-
puters (period 1993-2010) (image reported under permission - http://www.top500.org).

Fig. A.9 shows the sectors and the application areas which supercomputers were typ-

ically used in during the period 1993-2010.
9excerpted from http://www.clusterconnection.com/2009/06/cluster-or-constellation/ on April

29, 2012.

http://www.clusterconnection.com/2009/06/cluster-or-constellation/
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(A) segments share (B) application area share

FIGURE A.9: Segment and application area share of the 500 most powerful supercom-
puters (period 1993-2010) (image reported under permission - http://www.top500.org).

Cluster architectures then are and will be an efficient, reliable and cost effective way

to build parallel machines. Therefore they were selected as the ideal target systems for

the parallelised HyGP implementation. As a matter of fact, cluster architecture matches

the requisites of HyGP experiments, as “clusters are effective for loosely coupled tasks”

(Vaughan-Nichols 2004). HyGP was first parallelised on a SMP system (single node of a

cluster), using a “fine grain” approach. A parallel HyGP version was also implemented on

a distributed memory architecture (using a single processor per cluster node) to overcome

the memory limitations imposed by the SMP configuration. Although a HyGP implemen-

tation exploiting both fine and coarse grain parallelism featured by the cluster architec-

ture was not actually developed, in Section A.4 suggestions for the full exploitation of

cluster parallelism are given.

A.3.2 Parallelisation for shared memory architectures

As described in Section 5.3.1, Chapter 5 HyGP experiments are made of a certain number

of runs, which are independent evolution processes starting from a randomly initialised

population of metamodels. As single runs do not exchange data during evolution, they

can be easily executed in parallel, allocating a run to a single process. This parallelisation

strategy was initially implemented for execution on a single multiprocessor cluster node,

which can be considered a SMP machine.

The two most known languages for code parallelisation on SMPs are Pthreads and

OpenMP (Hoeflinger 2006, Chapman et al. 2007, Grama et al. 2008). OpenMP can be
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defined as a set of directives or commands that are able to split or share operations

among processors in shared-memory parallel computers (SMPs) (Hoeflinger 2006, Chap-

man et al. 2007, Barney 2011, Gustafson 2011) . It was introduced by a group of indus-

tries called the OpenMP Architecture Review Board (ARB) in the latter half of the 1990s10

with the aim of making parallel programming easier and reduce portability problems. The

set of OpenMP directives are today widely accepted, making parallelisation far less depen-

dent on the architectures. One advantage of the OpenMP directive approach is that the

parallelisation can be done step by step, retaining the original sequential code (Hoeflinger

2006, Chapman et al. 2007). Although Pthreads allows a greater degree of control and

precision on process handling, it is also more complex and harder to learn than OpenMP.

The basic control on memory and threads allowed by OpenMP was considered sufficient

for the simple parallelisation task, so HyGP was parallelised using OpenMP.

Central concept in the operation allocation among processors is the “thread”, defined

as a set of instructions that can be executed independently from others. HyGP evolutions

are by independent, so each one of them was allocated to a “thread”. The instructions to

compile and execute HyGP on a SMP system are given in Section B.2.2, Appendix B.

HyGP parallel execution on SMP systems is in general suggested for problems of re-

duced dimensionality and small building data sets. In this case, OpenMP allows HyGP

to be run also on most multiprocessor desktop computers, both in parallel or sequen-

tial mode with no change to HyGP source code required (the original sequential HyGP

source code is retained). For more computationally intensive problem, the amount of

RAM memory available on the machine may not be enough for parallel execution of 10

or more runs, considering that the typical RAM usage for a single HyGP run is 4 to 6

GB, depending on the population size and depth limit. OpenMP cannot be run on a full

cluster, as it is not an SMP machine, but OpenMP code development (Cluster OpenMP)

may give this opportunity in the future (Hoeflinger 2006).

A.3.3 Parallelisation for distributed memory architectures

A distributed memory system was considered as the target architecture for a second par-

allel HyGP version. The aim was to tackle the memory constraints that make parallel

symbolic regression of highly dimensional data not efficient on a typical SMP machine,
10The first version, written to be used with Fortran, was released in 1997.
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unless the number of concurrent HyGP runs is drastically reduced, so losing the advan-

tage of parallel computing. The same parallelisation strategy introduced in the previous

section was followed, allocating one evolution per process.

As for SMP machines, many languages can be used to write a code exploiting the

hardware parallelism of a distributed memory machine. MPI, or Message Passing Inter-

face, is one of the most known set of directives for code parallelisation. However, it

requires major changes in the sequential source code (Chapman et al. 2007). It has to be

noted that, in general, higher costs for program development using MPI with respect to

shared-memory parallel programming (OpenMP) have to be expected (Hoeflinger 2006).

HyGP implementation, on the other hand, does not require strict parallelisation: data

transfer among different runs is not needed, as a distributed approach is not implemented.

So parallelisation through MPI was not even needed. A compromise in terms of simplicity

and fair usage of resources was found in the use of job array (Thornton 2010). A job array

can be defined as a method to submit to a cluster a set of computational jobs with different

initial settings. The fact that jobs are submitted as soon as the computational resources

in the cluster become available solves the problem of lack of memory: in case of memory

shortage processes (evolutions) are launched in sequential mode, otherwise evolutions

are launched concurrently. Also, no HyGP source code modification was needed, as a job

array is declared through a script that calls the code written for sequential execution.

In Section B.2.3, Appendix B the instructions on how to launch a job array are given.

A.4 Conclusion

In this appendix the structure of the genetic programming implementation used to gen-

erate the metamodels presented in the rest of the thesis, known as HyGP, has been de-

scribed. Open source tools (operating system, compilers, parallelisation directives) were

used in order to allow for the widest diffusion of the code11. Some computational is-

sues, like efficient parallelisation, have been addressed during the development. As a

result, HyGP allows for a set of independent runs to be launched in parallel on a single

multiprocessor computer or on a cluster using job arrays.

However, only a single level of parallelism has been exploited so far. Future research

will have to focus on more complex ways to fully exploit the double parallelism of clusters:
11HyGP is freely downlodable from http://www.personal.leeds.ac.uk/~cnua/mypage.html. More in-

formation on input file format and output generated is provided in Section B.1, Appendix B.

http://www.personal.leeds.ac.uk/~cnua/mypage.html
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whereas a single evolution can be allocated per cluster node using MPI or job arrays,

fitness evaluation can also be parallelised within each node. Being each cluster node an

SMP system, OpenMP could be used to efficiently parallelise even fitness cases evaluations

on the different processors composing the node. This approach could also pave the way

to an efficient implementation of a distributed version of HyGP (in this case inter-node

parallelisation through MPI directives is suggested, as evolutions should be performed

concurrently).

The use of Graphics Processing Units (GPUs) (Harding and Banzhaf 2007) is also a

new field of research from which dramatic reduction of fitness evaluation time can be

expected.
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Guide to HyGP use

This appendix shows how to use the genetic programming implementation developed

during the research activity, called HyGP. The operations required to set up HyGP input

file are described in Section B.1, while in Section B.2 it is shown how to compile and

launch a HyGP experiment once the input file has been created. HyGP code was written

in C++ and is supposed to be run in a Linux/Unix environment, although executables

for Windows can be in theory obtained using different compilers from the ones assumed

in the following.

The output produced by HyGP is described in Section B.3. A few Matlab scripts have

been written to post-process the text expressions generated by HyGP (validation and re-

sults plotting), so to ease the interpretation of the results. All the images reported in this

dissertaton were generated using these scripts, which are briefly described in Section B.5.

As the steps described in the following were relentlessly performed during the re-

search activity to produce the metamodels shown in Chapter 5 and Chapter 6, a few

suggestions to help the user get the most out of HyGP are given in Section B.4 .

B.1 Input file and evolution parameters

Listing B.1 shows the general format of a HyGP input file. The symbol “#” (number sign)

is used to introduce comments in the input file (lines beginning with “#” are neglected

by HyGP). Words in capital are labels used to assign HyGP parameters: the value set but

the user has to follow the symbol “=” (equal sign).

319
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The data in the input file is organised in three main sections:

1. evolution parameters

2. functional primitives available to HyGP

3. data matrix and matrices used to impose inequality constraints on metamodel out-

put and derivatives

B.1.1 Evolution parameters

The main parameters for the evolution are declared in the first section of the input file

(lines 2-34 in Listing B.1). Special care has to be taken in setting the values: a blank

space has to be left between “=” and the given value, but no space has to be put between

the name of the label and “=”. For example NVAR= 2 is correct, whereas NVAR =2 and

NVAR = 2 are not accepted.

The list of basic HyGP evolution parameters is reported in Tables B.1 (run set up

and population initialisation), B.2 (genetic operators, fitness function and termination

criterion) and B.3 (split DoE settings).

In Table B.4 the main parameters to set up inequality constraints on metamodel output

and derivatives are shown. More details on this feature will be given in Section B.1.4.
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LISTING B.1: Example of input file

1 # Evolut ion parameters
2 SEED= 20
3 NVAR= 2
4 MINRAND= −200
5 MAXRAND= 200
6 MAX_N_PERIODS= 1.5
7 STEP= .001
8 NFITCASES= 10
9 METHOD= 4

10 DEPTH_MAX= 4
11 DEPTH_MIN= 2
12 DEPTH_LIM= 50
13 p_FULL= .5
14 REPR_RATE= .2
15 CROSS_RATE= .4
16 MUT_RATE= .4
17 COMP_RATE= .0
18 NEW_RATE= .0
19 M= 200
20 G= 50
21 NORMALISED_ERR= 0
22 MINMAX= 0
23 W_COMPLEXITY= .01
24 W_N_CORRECTIONS= .1
25 W_SIZE= .001
26 W_FACTORISATION= .005
27 N_GUESSES= 2
28 SPLIT= 0
29 VALIDATING_LINES= 6
30 THRESHOLD= 1.0E−12
31 N_INEQUALITY0= 8
32 W_PEN_ORD0= 0.001
33 N_INEQUALITY1= 5
34 W_PEN_ORD1= 0.001
35 # L i s t of opera t ions
36 BINARY_FUN= add , sub , mult , sd i v
37 UNARY_FUN= pow1 , square , cube , s in , cos , exp , nxp , inv
38 #
39 # v a r i a b l e 1 (Z1) v a r i a b l e 2 (Z2) cor resp . output
40 9.306026e−01 −5.733779e−01 2.071918 se+02
41 . . . . . . . . .
42 −1.786222e+00 1.259808e+00 3.805549e+02
43 # 0−order i n e q u a l i t y c o n s t r a i n t s
44 0.0 0.0 .5 >
45 −1.0 0.0 90.0 >
46 . . . . . . . . . . . .
47 2.0 −2.0 3500 >
48 # f i r s t −order i n e q u a l i t y c o n s t r a i n t s
49 0.0 0.0 1.0 0.0 0.0 <
50 . . . . . . . . . . . . . . . . . .
51 1.5 −1.5 1.0 0.0 2000 >
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TABLE B.1: HyGP evolution parameters. Run set up and population initialisation
Parameter Value Notes

SEED [int] seed for random number generator. If set to -1 the
seed is initiliased by using the computer clock. If a
positive value is given, such value is used as seed

NVAR [int] number of independent variables for the problem
MINRAND [float] lower bound for the random number generator
MAXRAND [float] upper bound for the random number generator

STEP [float] increment for the random number generator (random
values picked in [MINRAND:STEP:MAXRAND])

NFITCASES [int] size of the building data set (MUST be equal to the
number of rows of the data matrix)

METHOD [int] type of method used for tree generation/initialisation
(1 - unlimited, 2 - full, 3 - grow, 4 - ramped half and
half)

DEPTH_MAX [int] maximum depth of a randomly generated parameter-
less tree (initialisation)

DEPTH_MIN [int] minimum depth of a randomly generated parameter-
less tree (initialisation)

p_FULL [float] percentage (normalised, from 0 to 1) of individuals
to be generated using “full” method in case method
“ramped half and half” is chosen. The rest is filled
using “grow” method.

M [int] Population size (constant during the evolution)
G [int] Maximum number of generations
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TABLE B.2: HyGP evolution parameters. Genetic operators, fitness function and termi-
nation criterion

Parameter Value Notes
REPR_RATE [float] percentages (from 0.0 to 1.0) of new populations

generated by reproduction, crossover and mutation.
The sum MUST be equal to 1

CROSS_RATE
MUT_RATE
DEPTH_LIM [int] maximum accepted depth of parameterless offspring

produced by crossover and subtree mutation
COMP_RATE [float] percentage of new population generated “composing”

existing individuals (see Section 5.3.0.2, Chapter 5)
NEW_RATE [float] percentage of new population generated from scratch

(see Section 5.3.0.2, Chapter 5)
MAX_N_PERIODS [float] maximum number of periods of functions sin(a ∗ z1)

or cos(a ∗ z1) in the given variable range (see Sec-
tion 5.3.0.6, Chapter 5)

NORMALISED_ERR [int] error formulation. If 0 RMSE is used, if 1 the nor-
malised version is used (see Section 5.3.0.7, Chap-
ter 5)

MINMAX [int] MinMax formulation. If 0 a linear combination of ob-
jectives is used, if 1 the MinMax formulation is used
(see Section 5.3.0.7, Chapter 5)

W_COMPLEXITY [float] weight for complexity objective
W_N_CORRECTIONS [float] weight for singularity objective

W_SIZE [float] weight for size objective
W_FACTORISATION [float] pressure for fractional expression generation

N_GUESSES [int] number of initial random guesses for SQP optimiser
THRESHOLD [float] desired accuracy on the building data set. The evolu-

tion is stopped when the best individual in a genera-
tion has a RMSE lower or equal to THRESHOLD

TABLE B.3: HyGP evolution parameters. Split DoE settings
Parameter Value Notes

SPLIT [int] switch for nested DoE technique (see Section 5.3.0.5,
Chapter 5). Used if set to 1, not used if set to 0

VALIDATING_LINES [int] number of lines in the data matrix that are used as
validation data set, starting from the first row of the
matrix. All the other rows in the matrix are used for
tuning
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TABLE B.4: HyGP evolution parameters. Inequality constraints settings
Parameter Value Notes

N_INEQUALITY0 [int] number of inequality constraints on metamodel out-
put (number of rows of first additional matrix)

W_PEN_ORD0 [float] weight of the objective defining metamodel output in-
equality constraints in fitness function

N_INEQUALITY1 [int] number of inequality constraints on metamodel par-
tial derivatives (number of row of second additional
matrix)

W_PEN_ORD1 [float] weight of the objective defining metamodel deriva-
tives inequality constraints in fitness function

B.1.2 Available operations

The functional primitives that can be used in a HyGP run have to be declared in two sep-

arate classes: binary functions and unary functions. If more than a primitive is declared,

a comma has to be used to separate the names. For example:

BINARY_FUN= add,sub

UNARY_FUN= square,cube,sin,cos,exp

The currently available operations are listed in Tables B.5 (binary functions) and B.6

(unary functions).

TABLE B.5: List of available HyGP binary operations

Symbol operation Notes
add Addition
sub Subtraction
mult Multiplication
sdiv Protected division It returns 1 if the denominator is zero (and

increases the penalisation for unfeasible re-
sponses)

spow Protected power It returns 1 in case of undefined operation
(and increases the penalisation for unfeasible
responses)
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TABLE B.6: List of available HyGP unary operations

Symbol operation Notes
square Power of 2
cube Power of 3
sin Sine
cos Cosine
shift Shift operation It adds a constant to the argument (translation

operator)
exp Exponential
nxp Negative exponential 1/exp(x), where x is the actual argument of the

function
neg Opposite Attention! It spoils the effect of the algorithm

used to penalise high frequency noise (Sec-
tion 5.3.0.6, Chapter 5), as if the argument of
cos() or sin() are multiplied by -1 the standard
format sin(ω ∗ x) or cos(ω ∗ x) is not matched.
It is better not to use it, SQP tuner can find neg-
ative arguments anyway.

log Natural logarithm Protected version: it returns a predefined large
number (MAX_VAL) if the argument is not posi-
tive (and increases the penalisation for unfeasi-
ble responses).

sinh Hyperbolic sine
cosh Hyperbolic cosine
tanh Hyperbolic tangent
abs Absolute value
inv Protected reciprocal 1/x, where x is the actual argument of the func-

tion. It returns 1 if x is zero (and increases the
penalisation for unfeasible responses).

B.1.3 Data matrix

The set of m=NFITCASES fitness cases used as building data set has to be declared as a

matrix, in which each row corresponds to a sample point (see definition of data matrix

1.3 in Section 1.2, Chapter 1):

x1,1 x1,2 . . . x1,N y1

. . .

xi,1 xi,2 . . . xi,N yi

. . .

xm,1 xm,2 . . . xm,N ym

(B.1)

The m × N data matrix is declared in the input file after the functional primitives

(lines 40-42 in Listing B.1).
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In case the nested DoE option is used (switch SPLIT set to 1 - see Table B.3), the first

VALIDATING_LINES of the data matrix are used for fitness evaluation, whereas the rest

are used for model building (parameters tuning using SQP algorithm).

B.1.4 Matrix defining the inequality constraints on metamodel output

The matrix is used to define the desired behaviour of the evolved metamodels’ output on

a set of given points in the form of an inequality constraint, according to the approach

described in Section 5.4, Chapter 5. Each row of the matrix contains the coordinate of a

point, a value and a sign that defines the preceding value as a lower or upper bound of

the metamodel output in the point:

xi,1 xi,2 . . . xi,N yb inequality sign

For example, if in a symbolic regression problem in two variables the metamodel out-

put value has to be larger than 0.5 in the point (0, 0), but negative in (2, 2), the following

lines should be used:

0.0 0.0 0.5 >

2.0 2.0 0.0 <

The matrix defining the inequality constraints on metamodel output must be defined after

the data matrix (see lines 44-47 in Listing B.1). The number of rows must be equal to

N_INEQUALITY0 (see Table B.4) and the number of columns must be equal to NVAR+2

(see Table B.1).

B.1.5 Matrix defining the inequality constraints on metamodel derivatives

This matrix is used to define the desired behaviour of the evolved metamodels’ partial

derivatives on a set of points, similarly to what has been done in the previous section.

This feature was developed to penalise not acceptable rate of increase/decrease. Experi-

ments performed so far showed ambiguous results, so further research is needed to get a

conclusive assessment of this capability.

To impose that the partial derivative of the evolved metamodels evaluated in the di-

rection defined by the vector {vi,1, vi,2, , . . . , vi,N} in the point {xi,1, xi,2, . . . , xi,N} is
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smaller or larger than a given y′b value the following line has to be used in the input file:

xi,1 xi,2 . . . xi,N vi,1 vi,2 . . . vi,N y′b inequality sign

For example the line:

1.5 −1.5 1.0 0.0 2.0 > (B.2)

means that the partial derivative along the direction (1.0, 0.0) (first axis) evaluated in

point (1.5,−1.5) has to be larger than 2.0.

The matrix defining the inequality constraints on metamodel derivatives must be in-

serted after the data matrix (see lines 49-51 in Listing B.1). The number of rows must be

equal to N_INEQUALITY1 (see Table B.4) and the number of columns must be equal to

2*NVAR+2 (see Table B.1).

Partial derivatives are computed in HyGP using a first order finite difference method,

so they should be considered approximations of the real derivative value.

B.2 Compiling and linking

HyGP was mostly written in C++ but contains also parts in Fortran77. C++ was used to

implement all the operations related to population handling (genetic operators, sorting,

initialisation, fitness evaluation, etc). To allow for fast optimisation of the numerical

parameters of the generated GP individuals the SQP algorithm developed in Fortran 77

by Madsen et al. (2002) was linked to the main C++ HyGP code.

HyGP is assumed to be run on a Linux operating system. A makefile based on g++

and gfortran compilers was written to ease compilation and linking of the source files.

The makefile is listed in Listing B.2.

The code was written in order to run in sequential mode or in parallel mode (see

Section A.3, Chapter A). As a result, according to the architecture available, the code can

be run:

• sequentially on a single CORE, one evolution after the other (for standard desktops

or laptops)

• in parallel on one machine (node), allocating one evolution to each CORE (for

multiprocessor/multithread machines)
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LISTING B.2: HyGP makefile

1 # Bas i c Makef i le
2 a l l : gp
3

4 gp : master . o T . o M. o
5 # fo r Linux on feng−gps1
6 g fo r t r an −s td =’ legacy ’ −o gp M. o T . o master . o
7 −L/ usr / l i b / gcc /x86_64−redhat−l i nux /4 .0 .2/
8 − l s t d c++
9 −fopenmp

10

11 M. o : . / genet ic_code /SQP/MI0L2_c/MI0L2 .FOR
12 g fo r t r an −s td =’ legacy ’
13 −c . / genet ic_code /SQP/MI0L2_c/MI0L2 .FOR
14 −o M. o
15

16 T . o : . / genet ic_code /SQP/MI0L2_c/TI0L2 .FOR
17 g fo r t r an −fsecond−underscore
18 −c . / genet ic_code /SQP/MI0L2_c/TI0L2 .FOR −o T . o
19

20 master . o : master . cpp
21 # p a r a l l e l compi la t ion
22 g++ −c −g p a r a l l e l _ m a s t e r . cpp −o master . o −fopenmp
23 # normal compi la t ion
24 # g++ −c −g master . cpp −o master . o
25

26 c lean :
27 rm M. o
28 rm T . o
29 rm master . o
30 rm gp

• in pseudo-parallel on many nodes, one evolution for each NODE (for clusters with

Sun Grid Engine - array jobs are used)

In the following the instructions to generate the executables for each execution mode

will be described. A few conventions regarding the names of the directory will be as-

sumed:

• PROJECT_PATH path where HyGP source code was saved to;

• PATH_INPUT_FILE is the input file location;

• PATH_OUTPUT_DIRECTORY is the path of the directory where the output files are writ-

ten to. The directory is automatically generated by HyGP;

• NO_RUNS is the number of independent evolutions (runs) the HyGP experiment is

made of.
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Before compiling, make sure that the path of the library -lstdc++ (line 8 in List-

ing B.2) is correct for the system in use.

B.2.1 Compiling for sequential execution on a single processor computer

This is the simplest way to compile and run the GP code. Evolutions are run one after

the other on a single processor. To generate the executable, first open the makefile and

in the group of instructions following master.o: leave uncommented only the line below

“normal compilation”, as shown below:

master.o: master.cpp

# parallel compilation

# g++ -c -g parallel_master.cpp -o master.o -fopenmp

# normal compilation

g++ -c -g master.cpp -o master.o

In a linux shell, enter the directory where HyGP source code was saved:

>> cd PROJECT_PATH

and type “make”:

>> make

The makefile performs compilation and linking and generates the executable called “gp”.

If that does not happen, most of the times this is due to a missing library. Once “gp” has

been generated, a HyGP experiment is launched by calling the script experiment_new:

>> ./experiment_new PATH_INPUT_FILE PATH_OUTPUT_DIRECTORY NO_RUNS

If the input file and/or the output directory is in the same directory of the script, then the

two characters “./” have to be always used as in:

>> ./experiment_new ./input_file.txt ./output_dir 10

The script experiment_new collects the best individual generated in the experiment as

well as some additional statistical data, so there is no need to run other scripts at the end

of the experiment.
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B.2.2 Compiling for parallel execution on a multiprocessor/multithread ma-

chine

This execution mode allocates a single evolution to every processor. As most of modern

computers have a multiprocessor or multithread architecture, it is then recommended to

substantially reduce the time required for an experiment, although for large building data

sets and for high dimensional problems may require a large amount of RAM. OpenMP

capability is required.

To generate the executable, first open the makefile and in the group of instructions

following master.o: leave uncommented the line below “parallel compilation”, as shown

below:

master.o: master.cpp

# parallel compilation

g++ -c -g parallel_master.cpp -o master.o -fopenmp

# normal compilation

# g++ -c -g master.cpp -o master.o

In a linux shell, enter the directory where the source code was saved:

>> cd PROJECT_PATH

and type “make”:

>> make

The makefile performs compilation and linking and generates the executable “gp”. The

experiment is then launched calling the executable “gp” and NOT the script experiment_new:

>> ./gp PATH_INPUT_FILE PATH_OUTPUT_DIRECTORY NO_RUNS p

Note that the “p” is an argument that tells the code to run in parallel mode. Replacing

the “p” with an “s” the code would run sequentially (no difference with the execution

mode described in the previous section). When the experiment is finished, the script

posteriori (located in PROJECT_PATH) has to be launched to extract the best model of

the HyGP experiment as well as statistical data about the independent evolutions:

>> ./posteriori PATH_OUTPUT_DIRECTORY NO_RUNS
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B.2.3 Compiling for pseudo parallel execution on a cluster (SGE array job)

This implementation was written specifically to be used on a Sun Grid Engine cluster,

as array jobs are used to manage the allocation of the single evolutions to the different

nodes of the cluster, if necessary. If enough resources are available, evolutions are run in

parallel; if not, they are run sequentially. For this reason this implementation is particu-

larly suggested for expensive evolutions (high number of points in DoE, big populations

(>400), long evolutions (more than 200 generations). To generate the executable, first

open the makefile and in the group of instructions following master.o: leave uncom-

mented the line below “normal compilation”, as shown below:

master.o: master.cpp

# parallel compilation

# g++ -c -g parallel_master.cpp -o master.o -fopenmp

# normal compilation

g++ -c -g master.cpp -o master.o

In a linux shell, enter the directory where the source code was saved:

>> cd PROJECT_PATH

and type “make”:

>> make

The makefile performs compilation and linking and generates the executable “gp”. The

experiment is launched through submission of the array job script experiment_sge to

an SGE cluster. Before launching the script, the HyGP input file location and the output

directory path have to be declared in the script. So open experiment_sge, located in

PROJECT_PATH, and modify the lines as INPUT_STRING= and OUTPUT_STRING= as follows:

INPUT_STRING= PATH_INPUT_FILE

OUTPUT_STRING= PATH_OUTPUT_DIRECTORY

Once updated, submit the script to the Sun Grid Engine using the qsub command:

>> qsub ./experiment_sge

When the HyGP experiments terminates, general statistical data regarding the evolutions

as well as the best model of the experiment can be extracted by typing:

>> ./posteriori PATH_OUTPUT_DIRECTORY NO_RUNS

as done with the parallel implementation described in the previous section.
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B.3 HyGP output

For each independent run HyGP produces exactly the same output files. These files are

saved in directory called “run_M”, where M is the number of the run. All “run_M” di-

rectories are generated in the path PATH_OUTPUT_DIRECTORY declared by the user when

he launches the HyGP experiment (mind that the directory is automatically generated by

HyGP).

The following files are created in each directory “run_M”:

• best_gp.txt: it contains the expression of the best model at each generation, to-

gether with its main properties (no of generation, fitness value, RMSE error, R2,

number of hits). The file is updated at each generation.

• data_gp.txt: it contains statistical data about the whole population: minimum,

average and maximum model error (Fit), fitness (F), individual size (S) and depth

(D) at each generation (generation number specified in first column). The file is

updated at each generation.

• latest_archive.txt: the mathematical expression and the properties of the indi-

viduals belonging to the archive/elite (or best set of models found at each genera-

tion) are stored here. The file is overwritten at each generation and the data format

is the same as in best_gp.txt.

• node_selection.txt: it contains statistical data regarding node selection. In first

column the total no of nodes selected during the evolution is reported, in second

to fifth column the number of nodes selected per type (Binary , Unary, Var, and

Const nodes) d In the remaining columns the number of nodes selected per depth

is written. The file is written only at the end of the HyGP run.

• objectives.txt: it can be neglected.

• points_gp.txt: it stores the response of the best model evolved (column “tree”)

and of the known output (column “g_obj”) for each point in the building data set.

The elapsed time since the start of the evolution, the seed used and other parameters

are recorded as well. The file is overwritten at each generation.

• n_tree_evaluations.txt: the number of tree evaluations per generation are stored

here (first column generation number, second column number of tree evaluations so



Guide to HyGP use 333

far). The information reported can be useful in determining the cost of the evolution

(see Section 3.1.6, Chapter 3).

Besides the data related to each HyGP run, statistical data is gathered at the end of a

HyGP experiment by the script posteriori. The data extracted by the script is organised

in the following files:

• archives.txt: it contains the archives/elites of each evolution

• archives_best.txt: it contains the expressions of the best model generated by

each evolution

• best_tree.txt: it contains the expression of the best model generated among all

evolutions

• depth_ave.txt

• fitness_min.txt

• fitness_var.txt

• F_min.txt

• F_var.txt

• nodes_stat.txt

• size_ave.txt

• time_stat.txt

B.4 Practitioner rules to improve results

The following are some suggestions on how to improve the metamodels produced by

HyGP:

1. increase mutation rate and/or mutation effect on individuals (from point to subtree

mutation, for example)

2. increase population size

3. increase number of generations
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4. reduce parsimony pressure (decrease parameters W_COMPLEXITY and W_SIZE)

5. use less “dangerous” or irregular primitives (first to exclude: division and reciprocal,

then sin and cos that may cause noise)

6. increase number of random guesses

7. increase number of points (most effective is the DoE is balanced)

It is worth mentioning that in some cases the target values may have values so small as

to result in non neglectable numerical errors in RMSE evaluation. In this cases different

scaling techniques can be used. Multiplying the output by a large constant is nome cases

substantially improved the quality of the metamodels evolved.

B.5 Post-processing

Once the best metamodel produced by a HyGP experiment has been identified, for exam-

ple using the posteriori script, its properties on the training and validation data set can

be computed executing the following Matlab scripts (in the given order):

1. test_eval.m: it evaluates the individuals on a validation data set provided by the

user and writes the results in the text file archives_best_TEST.txt. It also shows

the run that produced the metamodel performing best on the validation data set;

2. list_selection.m: it visualises the RMSE and R2 distribution of the best individu-

als produced by each run of a GP experiment, on the training and validation data set,

and compare the RMSE distribution using the Kruskal-Wallis test (see Section 3.2.2,

Chapter 3);

3. verifyGP_overlap.m: it computes RMSE, R2, max absolute and relative errors of

a selected metamodel, both on building and validation data sets. It also plots its

mathematical expression and the actual response versus the response generated

by the metamodel, on both data sets. In case Matlab toolbox is enabled, it also

simplifies the expression of the selected metamodel, returning it in latex form.
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List of HyGP input settings

The input settings for the HyGP experiments described in Chapter 5 and in Chapter 6 are

reported in the following sections.

C.1 Kotanchek function

HyGP input parameters for the symbolic regression of Kotanchek function through the

Omegalim implementation are reported in Table C.1.

TABLE C.1: HyGP input parameters for the symbolic regression of Kotanchek function
(Omegalim implementation)

number of independent runs 10
binary functions add,sub,mult,sdiv
unary functions square,cube,sin,cos,exp
Population size 200
Max no. of generations 50
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50% full, 50%

grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 50
NFITCASES 40
N_INEQUALITY0 0
MAX_N_PERIODS 1.5
a2 (W_COMPLEXITY) 0.001
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.0001
a5 (W_PEN_ORD0) 0.0
no. of initial guesses for SQP optimiser 2
error threshold for termination 1.0E-12

335
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C.2 Salustowicz function

HyGP input parameters for the symbolic regression of Salustowicz function through the

shift implementation are reported in Table C.2.

TABLE C.2: HyGP input parameters for the symbolic regression of Salustowicz function
(shift implementation)

number of independent runs 10
binary functions add,sub,mult,sdiv
unary functions square,cube,sin,cos,exp,neg,inv,nxp,shift
Population size 300
Max no. of generations 50
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50% full, 50%

grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 50
NFITCASES 100
N_INEQUALITY0 0
a2 (W_COMPLEXITY) 1.0e-6
a3 (W_N_CORRECTIONS) 0.01
a4 (W_SIZE) 1.0e-6
a5 (W_PEN_ORD0) 0.0
no. of initial guesses for SQP optimiser 2
error threshold for termination 1.0E-12
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C.3 RatPol2D function

HyGP input parameters for the symbolic regression of RatPol2D function through the shift

implementation are reported in Table C.3.

TABLE C.3: HyGP input parameters for the symbolic regression of RatPol2D function
(shift implementation)

number of independent runs 10
binary functions add,sub,mult,sdiv
unary functions square,cube,sin,cos,exp,inv,shift
Population size 200
Max no. of generations 50
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50% full, 50%

grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 50
NFITCASES 40
N_INEQUALITY0 0
a2 (W_COMPLEXITY) 0.0001
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.00001
a5 (W_PEN_ORD0) 0.0
no. of initial guesses for SQP optimiser 2
error threshold for termination 1.0E-12
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C.4 Hock function

HyGP input parameters for the symbolic regression of Hock function through the Ome-

galim implementation are reported in Table C.4.

TABLE C.4: HyGP input parameters for the symbolic regression of Hock function (Ome-
galim implementation)

number of independent runs 10
binary functions add,sub,mult,sdiv
unary functions square,cube,sin,cos,exp
Population size 200
Max no. of generations 50
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50% full, 50%

grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 30
NFITCASES 20
N_INEQUALITY0 0
MAX_N_PERIODS 1.5
a2 (W_COMPLEXITY) 0.01
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.001
a5 (W_PEN_ORD0) 0.0
no. of initial guesses for SQP optimiser 2
error threshold for termination 1.0E-12
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C.5 Branin-Hoo function

HyGP input parameters for the symbolic regression of Branin-Hoo function through the

10guesses implementation are reported in Table C.5.

TABLE C.5: HyGP input parameters for the symbolic regression of Branin-Hoo function
(10guesses implementation)

number of independent runs 10
binary functions add,sub,mult,sdiv
unary functions square,cube,sin,cos,exp
Population size 200
Max no. of generations 50
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50% full, 50%

grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 50
NFITCASES 30
N_INEQUALITY0 0
a2 (W_COMPLEXITY) 0.001
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.0001
a5 (W_PEN_ORD0) 0.0
no. of initial guesses for SQP optimiser 10
error threshold for termination 1.0E-12
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C.6 Rosenbrock function (PCE comparison)

The input parameters used for Rosenbrock function symbolic regression are listed in Ta-

ble C.6.

TABLE C.6: GP settings for Rosenbrock function symbolic regression
number of independent runs 20
binary functions add, sub, mult, sdiv
unary functions shift, square, cube, sin, cos, exp
Population size 200
Max no. of generations 50
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50% full,

50% grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 30
a2 (W_COMPLEXITY) 0.01
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) .001
a5 (W_PEN_ORD0) 0.0
MAX_N_PERIODS 1.5
number of initial random guesses for SQP op-
timiser

2

error threshold for terminating the evolution 1.0E-7
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C.7 Kotanchek function (PCE comparison)

The input parameters used for Kotanchek function symbolic regression are listed in Ta-

ble C.7.

TABLE C.7: GP setttings for Kotanchek function inference
number of independent runs 12
binary functions add,sub,mult,sdiv
unary functions shift,square,cube,sin,cos,exp
Population size 200
Max no. of generations 50
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50%

full, 50% grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 50
a2 (W_COMPLEXITY) 0.001
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) .0001
a5 (W_PEN_ORD0) 0.0
MAX_N_PERIODS 1.5
number of initial random guesses for SQP op-
timiser

3

error threshold for terminating the evolution 1.0E-12
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C.8 10-bar truss optimisation

In Tables C.8 and C.9 the GP settings used for the symbolic regression of the axial forces

and the mass are reported.

TABLE C.8: GP settings for 10-bar truss axial forces’ models inference
number of independent runs 12
binary functions add, sub, mult, sdiv, spow
unary functions shift, square, cube, sin, cos, exp, nxp,

inv, sinh, cosh, tanh
Population size 400
Max no. of generations 300
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50% full, 50%

grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 40 (bar 1, 10), 30 (bar 2, . . . , 9)
MAX_N_PERIODS 2
a2 (W_COMPLEXITY) 0.0001
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.0
max number of periods in variables’ range in
case sin or cos are selected

4.0

no. of initial guesses for SQP optimiser 3 (bar 1), 4 (bar 2, . . . , 10)
error threshold for termination 1.0E-5

TABLE C.9: GP settings for 10-bar truss mass model inference
number of independent runs 12
binary functions add, sub, mult, sdiv, spow
unary functions shift, square, cube, inv
Population size 500
Max no. of generations 300
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50% full, 50%

grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 40
MAX_N_PERIODS 2
a2 (W_COMPLEXITY) 0.001
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.001
no. of initial guesses for SQP optimiser 4
error threshold for termination 1.0E-5
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C.9 Hospital ward ventilation optimisation

HyGP input parameters for the symbolic regression of thermal comfort are reported in

Table C.10. The settings for pathogen concentration are listed in Table C.11.

TABLE C.10: HyGP input parameters for thermal comfort symbolic regression
number of independent runs 16
binary functions add, sub, mult, sdiv
unary functions shift, square, cube, sin, cos, exp, nxp,

inv, sinh, cosh, tanh
Population size 400
Max no. of generations 200
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50% full, 50%

grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 50
NFITCASES 45
N_INEQUALITY0 32
a2 (W_COMPLEXITY) 0.001
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.0001
a5 (W_PEN_ORD0) 0.0001
no. of initial guesses for SQP optimiser 2
error threshold for termination 1.0E-12

TABLE C.11: HyGP input parameters for pathogen concentration symbolic regression
number of independent runs 12
binary functions add, sub, mult
unary functions shift, square, cube, exp, nxp, sin, cos,

sinh, cosh, tanh
Population size 300
Max no. of generations 100
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50% full, 50%

grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 50
NFITCASES 45
N_INEQUALITY0 32
a2 (W_COMPLEXITY) 0.01
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.001
a5 (W_PEN_ORD0) 0.0005
no. of initial guesses for SQP optimiser 2
error threshold for termination 1.0E-12
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C.10 Chromate diffusion model

GP settings used in the experiments are reported in Table C.12 (Primer A), Table C.13

(Primer B) and Table C.14 (Primer C).

TABLE C.12: HyGP input parameters for the generation of chromate diffusion model,
primer A

number of independent runs 10
binary functions add, sub, mult, sdiv, spow
unary functions shift, square, cube, exp, nxp, sin, cos,

log, inv, cosh, sinh, tanh
Population size 200
Max no. of generations 100
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50% full, 50%

grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 30
MAX_N_PERIODS 1.5
a2 (W_COMPLEXITY) 0.001
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.02
no. of initial guesses for SQP optimiser 2
error threshold for termination 1.0E-5

TABLE C.13: HyGP input parameters for for the generation of chromate diffusion model,
primer B

number of independent runs 10
binary functions add, sub, mult, sdiv, spow
unary functions shift, square, cube, exp, nxp, sin, cos,

log, inv, cosh, sinh, tanh
Population size 200
Max no. of generations 100
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50% full, 50%

grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 30
MAX_N_PERIODS 1.5
a2 (W_COMPLEXITY) 0.00001
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.005
no. of initial guesses for SQP optimiser 2
error threshold for termination 1.0E-5
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TABLE C.14: HyGP input parameters for the generation of chromate diffusion model,
primer C

number of independent runs 10
binary functions add, sub, mult, sdiv, spow
unary functions shift, square, cube, exp, nxp, sin, cos,

log, inv, cosh, sinh, tanh
Population size 200
Max no. of generations 100
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50% full, 50%

grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 30
MAX_N_PERIODS 1.5
a2 (W_COMPLEXITY) 0.0001
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.001
no. of initial guesses for SQP optimiser 2
error threshold for termination 1.0E-5
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C.11 Jet pump model

HyGP settings for entrained flow rate symbolic regression are reported in Table C.15.

TABLE C.15: HyGP input parameters for supersonic jet pump entrained flow regression
number of independent runs 10
binary functions add, sub, mult, sdiv, spow
unary functions shift, square, cube, sin, cos, exp, nxp,

inv, log, sinh, cosh, tanh
Population size 200
Max no. of generations 50
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50% full, 50%

grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 30
MAX_N_PERIODS 1.5
a2 (W_COMPLEXITY) 0.0001
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.00001
no. of initial guesses for SQP optimiser 2
error threshold for termination 1.0E-5
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C.12 Bread baking oven design optimisation

HyGP settings for the regression of the temperature uniformity σT are reported in Ta-

ble C.16.

TABLE C.16: GP settings for the regression of temperature uniformity σT in bread baking
oven design optimisation

number of independent runs 12
binary functions add, sub, mult, spow
unary functions shift, square, cube, sin, cos, sinh, cosh,

tanh, exp, nxp
Population size 300
Max no. of generations 200
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50% full, 50%

grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 30
NFITCASES 29
N_INEQUALITY0 120
MAX_N_PERIODS 1.5
a2 (W_COMPLEXITY) 0.0001
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.00001
a5 (W_PEN_ORD0) 0.0005
no. of initial guesses for SQP optimiser 2
error threshold for termination 1.0E-5
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C.13 Aerodynamic optimisation of NASA rotor 37 compressor

rotor blade

The HyGP settings used for the generation of NASA rotor 37 efficiency and constraints

metamodels are reported in Table C.17.

TABLE C.17: HyGP settings for NASA rotor 37 experiments
number of independent runs 10
binary functions add, sub, mult, spow
unary functions shift, square, cube, sin, cos, exp, nxp,

log, sinh, cosh, tanh
Population size 400
Max no. of generations 200
reproduction rate 0.2
crossover rate 0.4
mutation rate 0.4
tree generation method ramped half and half (50% full, 50%

grow method)
max. depth of randomly generated trees 4
min. depth of randomly generated trees 2
tree depth upper bound during evolution 50
a2 (W_COMPLEXITY) 0.0001
a3 (W_N_CORRECTIONS) 0.1
a4 (W_SIZE) 0.00001
a5 (W_PEN_ORD0) 0.0001
max number of periods in variables’ range in
case sin or cos are selected

1.5

no. of initial guesses for SQP optimiser 4
error threshold for termination 1.0E-7
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