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Abstract
Chromosome conformation capture technology has provided a route to studying genome

structure through DNA-DNA contact-counts. An iteration of chromosome conformation

capture technology is Hi-C, which provides genome wide two dimensional contact-count

data. The contact-count data from Hi-C can be viewed as a proxy for distance and using

some transform function can be transformed into estimated distances. These estimated

distances can be fitted into Euclidean space using the statistical tools of multidimensional

scaling to give estimated chromosome or genome configurations.

The first part of this thesis takes the Hi-C contact-count data for Chromosome 14,

transforms it into estimated distances which are fitted into Euclidean space to give an

estimated chromosome configuration. Steps are also taken to pre-process the genome

contact-count matrix to refine the information held within it. The pre-processed genome

contact-count matrix is transformed into estimated distances, which are fitted into

Euclidean space to give an estimated genome configuration. The estimated chromosome

and genome configurations are investigated, to find if known features of these structures

are captured through fitting the Hi-C data.

The second part of this thesis simulates contact-count data from simple configurations.

Using the inverse of the transform functions the distances between points in a

configuration can be transformed into mean contact-counts. The mean contact-counts

are perturbed using a suitable distribution function to provide perturbed contact-counts,

which are transformed into perturbed distances. The perturbed distances can be fitted into

Euclidean space to give a fitted configurations. The properties of the fitted configurations

are investigated and compared with the original configurations, and the properties of

the perturbed distances are also investigated. Then steps are taken to improve the fitted

configurations using information from the properties of the perturbed distances, with the

successful techniques applied to estimating the chromosome configuration.
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Chapter 1

Introduction

The genome is the term used to describe the genetic material of an organism and the

nuclear machinery used to maintain and process it. The largest components of the

genome are chromosomes, these are large molecules of deoxyribonucleic acid (DNA)

and are carriers of genetic information. DNA is a filament, constructed from a chain

of millions of base pairs, each pair consisting of adenine with thymine or guanine with

cytosine (GC). In Eukaryotes chromosomes are housed in the nucleus and the human

nucleus consists of twenty two chromosome pairs and XX for females or XY for males.

When unwound the chromosome filament for a human totals approximately two meters

in length, approximately 200,000 times the size of the diameter of an average mammalian

cell nucleus (de Wit and de Laat, 2012).

The nucleus also houses the nuclear machinery used to maintain and process the

chromosomes such as transcription factories (Verschure et al., 1999) which copy DNA

into RNA, Cohesin and CTCF proteins which maintain chromosome structure (Hadjur

and Sofueva, 2012) and the nuclear lamina (Akhtar and Gasser, 2007; Guelen et al.,

2008) to which chromosomes anchor. The quantity of DNA housed in the nucleus and

the requirement for genomic machinery to access specific parts of it, means a high level

of non-random structure is required for the genome to function and function efficiently.
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Elucidating genome structure will further our understanding of genome function.

1.1 Interphase genome

The interphase state is when the cell is performing its assigned function and the genome

is in a less condensed state allowing the nuclear machinery to freely operate on the

chromosomes. Chromosomes in interphase cannot be easily distinguished through a

microscope and their structure is largely unknown. What is known is that the DNA

molecules are arranged on multiple levels to form chromosomes. The DNA is first

wound around histone proteins to produce a 10nm cord, which takes a “beads on a string”

appearance. The cord is further wound to produce a 30nm cord. The 10nm cord is called

euchromatin and is characterised by gene-rich and open DNA easier for transcription,

while the 30nm cord is heterochromatin which is gene-poor and more condensed taking

a structural role. Both euchromatin and heterochromatin are examples of chromatin.

Research indicates that on the next level of arrangement, chromatin clusters together to

form globules (Baù et al., 2011; Goetze et al., 2007; Sanyal et al., 2011) taking another

“beads on a string” appearance. The cores of the globules consist of gene-rich active

DNA, while gene-poor inactive DNA is found more peripherally. Further arrangement

of DNA appears to be driven by the distribution of euchromatin and heterochromatin.

Shopland et al. (2006) observed gene-rich chromatin segments partitioned by gene

deserts (gene-poor chromatin segments), then the segments making several arrangements,

where one feature was clustering of gene-rich segments and clustering of gene deserts.

Lieberman-Aiden et al. (2009) and Sanyal et al. (2011) note the genome being partitioned

into gene-rich and gene-poor compartments. Compartments could be an additional level

of arrangement and formed by clusters of euchromatin and clusters of heterochromatin,

with gene-rich DNA located at the interior for easy access to the nuclear machinery

and gene-poor DNA located peripherally to provide structural support (Guelen et al.,
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2008) and to avoid inhibiting the nuclear machinery. DNA-DNA contacts made between

genomically distant (along the DNA filament) segments (Lieberman-Aiden et al., 2009;

Simonis et al., 2006) provide evidence for chromatin clustering.

The chromosomes are arranged into chromosome territories (CT’s) (Cremer et al.,

1993; Cremer and Cremer, 2010; Heard and Bickmore, 2007), which make few

interchromosomal interactions (Lieberman-Aiden et al., 2009). CT arrangement in the

nucleus is measured on radial distance from the origin (centre) of the nucleus. One

proposal is that CT’s are radially arranged according to gene-content (Boyle et al.,

2001; Tanabe et al., 2002), where gene-rich chromosomes localize at the nuclear interior

and gene-poor chromosomes localize at the nuclear periphery. Another idea proposes

CT’s are radially positioned according to chromosome size (Bolzer et al., 2005), with

chromosome size increasing as radial distance increases. Another idea blends the two

ideas and proposes CT’s are radially positioned according to the ratio of gene-density

to chromosome size (Heride et al., 2010). If CT’s radial positioning is driven by gene-

content then this appears to follow a trend of gene-rich material colocalizing in the interior

of the structures (globule, chromosome or nucleus) and gene-poor material localizing on

the periphery. Genome structure can be imagined as balls of string sitting in a basket,

where each ball of string is made from a single fibre wound up, and inside some of the

balls the string has unwound leaving clumps of free fibre.

1.2 Probing genome structure

In the latter half of the twentieth century microscopy was used to study genome structure.

The principle method of microscopy was fluorescence in situ hybridization (FISH).

The FISH method attached fluorescent probes to specific DNA (or RNA) sequences

and recorded the probes position in the genome when observed through a microscope.

FISH helped decipher chromosome territories arrangement, the physical properties of
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chromatin and investigated the folding patterns of gene-rich and gene-poor chromosome

regions. The FISH method is limited by the amount of fluorescent probes which can

be attached and ultimately microscope resolution. In 2002 Dekker et al. developed the

technique of chromosome conformation capture (3C) which opened the way to studying

the genome using DNA-DNA contacts, where a contact signifies two DNA segments are

spatially close approximately 10nm-100nm (Dekker et al., 2013). The advent of 3C and

associated technologies 4C, 5C and Hi-C has allowed the study of DNA-DNA contacts,

providing a new avenue to study genome structure and eventually reconstructing a 3D

low-resolution path of chromatin through the nucleus.

1.2.1 Chromosome conformation capture

Invented by Dekker et al. (2002), chromosome conformation capture (3C) provides one-

to-one contact frequency data between selected sites on the genome. The method is briefly

described below, with an illustration in Figure 1.2.

1. Formaldehyde is used to cross-link (fix) spatially close DNA segments to each

other.

2. Cross-linked DNA is sheared from non-cross-linked DNA using a restriction

enzyme, such as HindIII.

3. Single ends of the cross-linked segments are ligated, producing new DNA segment

resembling a loop.

4. Cross-linking is reversed leaving ligated DNA segments, with each segment is the

union of two previously spatially close segments.

5. Polymerase chain reaction (PCR) of selected ligation junctions is used to semi

quantitatively assess the frequency with which sites of interest make contact.
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Repeating 3C can provide a one dimensional data set of DNA-DNA contact frequency

between a site of interest on a chromosome. DNA-DNA contact frequency (counts)

measures how many times contacts are detected between two sites, using a 3C based

method.

1.2.2 Chromosome conformation capture-on-chip

Invented by Simonis et al. (2006), chromosome conformation capture-on-chip (4C)

provides a one dimensional (one-to-all) count data between a site of interest and all the

sites on the genome. The method is briefly described below, with illustration in Figure 1.3.

1.- 4. As in 3C process.

5. Second round of shearing and ligation is applied to the ligated DNA segments,

shortening then linking the freshly sheared ends to produce DNA circles.

6. Inverse PCR using primers specific to the site of interest, amplify all the segments

contacting the site of interest.

7. The pool of amplified DNA-DNA contacts data is then counted using large scale

sequencing.

1.2.3 Chromosome conformation capture carbon copy

Invented by Dostie et al. (2006), chromosome conformation capture carbon copy (5C)

provides two dimensional (many-to-many) data between sites of interest on the genome.

The method is briefly described below, with illustration in Figure 1.4.

1.- 4. As in 3C process.
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5. The new DNA segments are mixed with oligonucleotides, which partially overlap

the different restriction sites of interest.

6. Oligonucleotides corresponding to the new DNA segments are juxtaposed and

ligated to them to produce new ligation products.

7. The new ligation products are simultaneously amplified and counted using large

scale sequencing, to produce symmetric matrix of counts between the sites of

interest.

1.2.4 Hi-C

Invented by (Lieberman-Aiden et al., 2009), Hi-C provides two dimensional (all-to-all)

count data between all the sites on the genome. The method is briefly described below,

with illustration in Figure 1.5.

1.- 2. As in 3C process.

3. Restriction ends are filled using biotin-labelled nucleotides then blunt end ligation

is performed.

4. DNA segments are then purified and sheared, leaving the ligation junctions which

have been tagged with the biotin pull down.

5. Ligation junctions are mapped back to the genome using large scale sequencing, to

produce a symmetric matrix of counts between all the sites on the genome.

Chromosome conformation capture based technologies can be abstractly imagined to help

understand them. Imagine the genome as the string in the basket analogy described earlier,

but the string is now multicoloured where colours correspond to different regions of the

chromosome.
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Mb 1 Mb 2 Mb 3 Mb 4 Mb 5 Mb 6 Mb 7 Mb 8 Mb 9 Mb 10
Mb 1 2767 527 113 88 123 190 166 109 118 117
Mb 2 527 3826 440 239 261 183 63 43 23 54
Mb 3 113 440 3522 948 341 156 44 24 25 44
Mb 4 88 239 948 5156 876 139 35 21 19 30
Mb 5 123 261 341 876 5703 492 76 42 27 71
Mb 6 190 183 156 139 492 3854 372 173 132 192
Mb 7 166 63 44 35 76 372 2684 501 342 231
Mb 8 109 43 24 21 42 173 501 2311 530 259
Mb 9 118 23 25 19 27 132 342 530 2096 385
Mb 10 117 54 44 30 71 192 231 259 385 2766

Table 1.1: Sample of the Hi-C count matrix (Lieberman-Aiden et al., 2009), recording the
DNA-DNA contacts made between megabase intervals 1 to 10 in Chromosome 14, from
a karyotypically normal lymphoblastoid cell line.

1. Pour hot toffee through the string and basket, residual blobs of toffee will stick close

segments of string together.

2. Cut the string up, leaving lots of pieces of string with some of the pieces attached

to each other with the blob of toffee.

3. Tie the attached pairs together at one end making loops of string.

4. Chew the toffee off the loops to leave new string segments, with each segment half

from a previously close string segment.

5. Count up the different coloured segments and record, i.e. how many red and green

segments are attached or red and red segments are attached to each other.

1.2.5 Count data to genome structure

Two dimensional chromosome contact data provided by 5C and Hi-C provides a

promising route to elucidate genome structure. Table 1.1 gives a sample of a Hi-C count

matrix, the larger the counts the spatially closer two megabase intervals should be. The
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Hi-C method in particular provides low resolution (≈ 1Mb) data which can be used to

reconstruct the average path of megabase intervals through the genome. Although the

two dimensional count data presents several issues for analysis. The first issue is that

(illustrated in Figure 1.1), human chromosomes are diploid which means chromosomes

come in identical pairs (in Figure 1.1 this is illustrated by chromosome A or chromosome

B). This provides two types of count, intrachromosomal (within the chromosome) counts

are generated from intrachromosomal contacts made on intervals within chromosome

A and B; or interchromosomal (between the chromosomes) counts made between the

same interval on chromosome A and B. Second, the genome is labile so the count data

represents a cell average map of the genomes in differing structures. Finally, the Hi-C data

contains several experimental biases such as the distance between restriction sites, the

mappabilty of the sites, trimmed ligation junctions, Guanine and Cytosine (GC) content

and the distance between restriction sites (Yaffe and Tanay, 2011).

Two approaches have been taken to elucidate genome structure (Dekker et al., 2013).

One approach involves modelling the chromatin as a polymer and using random walk

mathematics to explain contact frequency (counts). Another approach uses the counts to

estimate a spatial distance, treats the problem as an optimization problem and solves it to

find a three dimensional estimated chromosome configuration which minimizes a score

function.

In addition to genome structure, research has uncovered and corrected for biases in Hi-

C data and uncovered topological properties of the genome. Yaffe and Tanay (2011)

identifies several biases in the Hi-C data such as distance between restriction sites, GC

content of trimmed ligation junctions and sequence uniqueness, corrects for the biases

using a probabilistic model and identifies topological features of the genome such as

interchromosomal contacts between GC-content domains and intrachromosomal contacts

around transcription start sites. Lieberman-Aiden et al. (2009) used principle component

analysis on a normalized Hi-C count matrix, to identify that the genome is partitioned



Chapter 1. Introduction 11

Figure 1.1: Illustration of potential cross contacts made between the identical
chromosomes in a homologous pair. The long dashed line , signifies
intrachromosomal contacts made between different megabase intervals on the
chromosome A or chromosome B. The short dashed line , signifies the
interchromosomal contacts made between different megabase intervals of the
chromosome pair. These interchromosomal contacts are confused with intrachromosomal
contacts as chromosomes A or B are identical. The coloured lines , and denote
different megabase intervals on the chromosome, which are identical to the megabase
interval (of the same colour) on the other chromosome.

into two compartments, compartment A consisting of gene-rich like euchromatin and

compartment B consisting of gene-poor and dense heterochromatin. Other approaches

have been used to try to elucidate genome structure such as complex DNA-DNA network

models (Kruse et al., 2013).

1.2.6 Polymer models

Prior to the development of 3C technologies, polymer models were used to try to explain

chromatin structure. Polymer models try to predict the chromosome structure to explain

the data (top-down). Polymer modelling can be used to interpret the distribution of

loop sizes, formation of CT’s, shape of CT’s and physical properties of euchromatin
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and heterochromatin. Sachs et al. (1995) used FISH data to interpret the relationship

between genomic and Euclidean distances, observing giant chromatin loops (≈ 3Mb

long) and that chromatin conforms to the sample path of a loose (less compact) random

walk at low genomic distance (≤ 2Mb) but conforms to the sample path of a tight (more

compact) random walk at large genomic distances (≥ 2Mb). The 3C technologies have

shown chromatin can form loops of differing lengths (Lieberman-Aiden et al., 2009;

Simonis et al., 2006). Two models try to explain this. The dynamic random loops

model (Mateos-Langerak et al., 2009) and the fractal globule model (Lieberman-Aiden

et al., 2009). The dynamic random loop model recognises that Euclidean distances cannot

continue to increase with increasing genomic distance, so it attempts to model Euclidean

distance at small genomic distance and Euclidean distance becomes independent of

genomic distance at large genomic distance. The fractal globule model assumes that

chromatin condenses into a knot free globule, where the chromatin condenses into knot

free structures (resembling a beads on a string configuration) which repeatedly fold into

further knot free structures, providing structure while allowing segments of chromatin

easily to unfold when required. Lieberman-Aiden et al. (2009) used simulations to show

that the relationship between contact probability and genomic distance, is better reflected

in the fractal globule model than the equilibrium globule model, where the equilibrium

globule describes a compact and highly knotted structure.

1.2.7 Restraint models

Restraint models usually transform two dimensional counted data into restraints, these

restraints dictate how close or distant intervals should be placed, according to how the

count size has been interpreted. The restraints are inputted into an optimization procedure

to find the 3D configuration which best respects the restraints. This has been attempted

by numerous groups (Barbieri et al., 2012; Baù et al., 2011; Duan et al., 2010; Hu et al.,

2013; Kalhor et al., 2012; Meluzzi and Arya, 2013; Peng et al., 2013; Rousseau et al.,
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2011; Trieu and Cheng, 2014; Ben-Elazar et al., 2013) five of which are summarized

below.

Duan et al. (2010) combined 4C with massively parallel sequencing to collect count

data on the Saccharomyces Cerevisiae (bakers yeast) genome. Duan et al. assumed an

observed count has the same estimated distance D̃ = (d̃i,j) as the distance needed to

produce the same expected count through polymer packing. Points
¯
xi = (xi,1, xi,2, xi,3)

were fit to minimize the score function

∑
i<j

(d̂i,j − d̃i,j)2,

where d̂i,j = (
∑3

k=1(x̂i,k − x̂j,k)2)
1
2 , with respect to known constraints such as the range

of d̂i,j between intrachromosomal or interchromosomal points or between adjacent points.

The optimization problem was solved using interior point optimizer (Wächter and Biegler,

2006) and gave a Rabl configuration for the yeast genome, with the centromeres clustering

at one end of the nucleus and telomeres clustering at the opposite end.

Peng et al. (2013) corrected experimental sequencing depth bias on the Hi-C data from

various human cell types before applying a similar approach to Duan et al. (2010), where

experimental sequencing depth is where the distribution of contacts differs at different

levels of sequencing depth. The d̃i,j were constructed from the counts using a linear

transform function, where the parameters were determined by the diameter of the fitted

points and the chromatin region. Points were fit into 3D space to minimize the score

function

∑
i<j

(d̂i,j − d̃i,j)2

d̃2i,j
,

subject to similar constraints used by Duan et al. (2010). The optimization problem was

solved using the automatic pipeline AutoChrom3D.
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Baù et al. (2011) combined 5C data with an integrated modelling platform (IMP), to

reconstruct the ENm008 domain (500kb) on human chromosome 16, for K562 cells

and silenced lymphoblastoid cells. Restraints were constructed by taking the logarithm

(base 10) of the observed counts calculating a z-score (using the mean and standard

deviation of the logarithm values) and inputting the z-scores into two linear transforms,

one for adjacent and one for non-adjacent points. The IMP took the restraints and

reconstructed the 3D structure of the domain such that d̂i,j were inversely proportional

to observed counts. The reconstruction produced chromatin clusters with active genes

and gene promoters internally located and inactive genes and restriction fragments more

peripherally located.

Ben-Elazar et al. (2013) used chromosome contact-count data provided by 3C on the

yeast genome (Duan et al., 2010), to estimate chromosome structure. The data was first

filtered to remove false contact-counts caused by noise in the experimental process. Then

natural neighbour interpolation was applied to each chromosome contact-count matrix to

produce a matrix of dissimilarities between sites on the chromosome. The dissimilarity

matrix was fitted into three dimensional Euclidean space using metric multidimensional

scaling (see Section 2.1), to give an initial three dimensional configuration. The

initial three dimensional chromosome configuration and dissimilarity matrix were then

used by non-metric multidimensional scaling (see Section 2.2), to give a refined three

dimensional chromosome configuration in which the interpoint distances better respected

the dissimilarities. Ben-Elazar et al. then used the refined three dimensional chromosome

configuration and data on gene locations, to find how genes co-localize in three

dimensional space.

Hu et al. (2013) used a Bayesian approach to reconstruct the 3D chromosome structure,

using a “Bayesian 3D constructor for Hi-C data“ (BACH). Observed counts M = (mi,j)

were assumed to come from a Poisson distribution with a mean parameter U = µi,j ,
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modelled with the following link function

log(µi,j) = γ0 + γ1log(di,j) + γenzlog(eiej) + γgcclog(gigj) + γmaplog(oioj),

where γ0 determines scale; γ1 determines the relationship between µi,j and the inter point

distances D = (di,j) from the chromosome configuration X = (xi,k). The ei represent

fragment ends in site i; the gi represents mean GC content in site i; the oi represents

mean mappability of fragment ends in site i; then γenz, γgcc and γmap are the respective

coefficients stored in the vector
¯
γ = (γ0, γ1, γenz, γgcc, γmap). The joint likelihood function

P (M|X,
¯
γ) =

∏
i<j

e−µi,jµ
mi,j
i,j

mi,j!

combined with non-informative priors gave the joint posterior distribution

P (X,
¯
γ|M) ∝

∏
i<j

e−µi,jµmi,j . (1.1)

Samples were drawn from (1.1) by assigning nuisance parameters to
¯
γ, then applying

sequential importance sampling to generate a fitted configuration X̂ and finally refining
¯
γ

and X̂ using a Gibbs sampler with hybrid Monte Carlo and adaptive rejection sampling.

Hu et al. (2013) takes into account experimental biases highlighted by Yaffe and Tanay

(2011) and the fact that Hi-C data represents a cell average of multiple genome structures.

Varoquaux et al. (2014) also used the Poisson distribution (similar to Hu et al.) to model

the observed counts from Hi-C. First the observed counts were corrected for experimental

biases, using an iterative correction and eigenvalue decomposition procedure (Imakaev

et al., 2012). Then the mi,j were modelled as Poisson random variables with parameter

µi,j . The parameter µi,j was found using an inverse count to distance transform function

µi,j = a0d
γ1
i,j. (1.2)
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Then using (1.2) a Poisson log-likelihood function was constructed

l(X, a0, γ1) =
∑
i<j≤n

mi,jγ1log(di,j) +mi,jlog(a0)− a0dγ1i,j, (1.3)

where di,j were extracted from the configuration X = (xi,k) using (2.2) with p = 3.

The log-likelihood function (1.3) was then maximised using two approaches. The first

approach inferred γ1 = −3 from relationship information provided by Lieberman-Aiden

et al. (2009), between the observed count size and genomic distance, and between the

genomic distance and Euclidean distance. The a0 parameter was set at a0 = 1 as its

role was trivial. Then an estimated chromosome configuration X̂ = (x̂i,k) was found

which maximized (1.3). The second approach iteratively estimated the parameter γ1 then

found X̂ which maximized (1.3), until optimization. Both maximization routines used

the IPOPT algorithm (Wächter and Biegler, 2006). The Poisson maximum likelihood

approaches were compared with approaches used by other research groups on simulated

data, reporting it performing well.

Trieu and Cheng (2014) reconstructs the 3D chromosome configurations directly from

counts without transforming into estimated distances. Observed counts were pre-

processed to distinguish genuine contacts from spurious contacts (non-contacts), by

generating an interaction frequency matrix F = (fi,j)

fi,j = mi,j

∑
i<jmi,j∑

imi,j

∑
jmi,j

(1.4)

and using a threshold value of 0.66 to differentiate contacts from non-contacts. Points

were considered in contact if d̂i,j was less than some threshold distance dc otherwise they

were non-contacts. Taking the contact & non-contact principle into account and additional

constraints for adjacent and non-adjacent points, a score function was constructed and

optimized using a gradient decent algorithm to recover X̂.
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1.3 Research undertaken in this thesis

The Hi-C method provides a two dimensional genome wide proximity map which

can be used to reconstruct genome structure. Various groups have already attempted

to do this. This research project uses Hi-C count data of Karyotypically normal

human lymphoblastoid cells at 1Mb resolution from Lieberman-Aiden et al. (2009).

Chromosome structure is reconstructed by transforming counts into estimated distances

using a count to distance transform functions. Then fitting the estimated distances

into three dimensional Euclidean space using the statistical method of multidimensional

scaling (MDS). The estimated chromosome configuration is then investigated, by find

comparisons in other research and assessing the robustness of the transformation and

MDS. Symmetric sub matrices of the chromosome contact matrix are transformed and

fitted into Euclidean space to assess how robust the MDS is to large distances and

isolate local structure within the chromosome. The global contact matrix recording

all the intrachromosomal and interchromosomal contacts is transformed and fitted on

multiple resolutions, to assess how robust the fitting is to the sparse information from

the interchromosomal contacts, by comparing features in the fitted configurations with

known genomic features.

The process of transforming counts into estimated distances and fitting them into three

dimensional Euclidean space is investigated using count data generated from known

configurations. Since chromosome configurations are unknown there is nothing avalible

to compare the estimated chromosome configurations against. Using count data from

known configurations allows the fitted configuration to be compared with the original

configuration to observe how the noise in the counted data effects the fitted configuration.

This method discovered biases which inflate the estimated distances and are detrimental

to the fitted configurations.

The effect of the bias on the fitted configurations is investigated, providing a successful
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bias correction and dispersion estimation technique for one method of transforming

counts into distances and fitting into Euclidean space. The investigation also highlights

how a successful bias correction technique is not possible for other methods of

transforming and fitting and why properties of the count to distance transform function

can be detrimental to the fitted configuration or the estimated chromosome configuration.

Techniques of smoothing out noise from the fitted configurations are also discussed.

Properties of metric MDS (one of the MDS methods) are investigated, by dissecting the

fitting of small distance matrices into space and investigating how large distortions in

distance matrices are managed.
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(a)

(b) (c)

(d) (e)

Figure 1.2: Illustration of the 3C process outlined in Section 1.2.1. In Figure 1.2a the
formaldehyde fixes spatially close DNA segments. In Figure 1.2b the fixed DNA has
been sheared from the fixed DNA. In Figure 1.2c fixed DNA segments are ligated. In
Figure 1.2d fixing is reversed leaving the ligated segments. In Figure 1.2e PCR of
ligation junctions of interest, allows assessment of frequency sites of interest to make
contact. In the figures , and denote DNA originating from different parts of the
chromosome (or genome). The formaldehyde is denoted by .
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(a) (b)

Figure 1.3: Illustration of the 4C process outlined in Section 1.2.2, beginning from
Figure 1.2d. In Figure 1.3a a second round of shearing and ligation is applied to the
ligated DNA segments, to produce DNA circles. In Figure 1.3b shows amplification of
all the segments contacting the site of interest. Then the amplified DNA-DNA contacts
are counted using large scaling sequencing. In the figures , and denote DNA
originating from different parts of the chromosome (or genome).
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(a) (b)

(c)

Figure 1.4: Illustration of the 5C process outlined in Section 1.2.3, beginning from
Figure 1.2d. In Figure 1.4a the new DNA segments are mixed with oligonucleotides,
which partially overlap the different restriction sites of interest (green and red). In
Figure 1.4b oligonucleotides corresponding to the new DNA segments are juxtaposed
and ligated to produce new ligation products. In Figure 1.4c the new ligation products are
simultaneously amplified and counted using large scale sequencing. In the figures ,

and denote DNA originating from different parts of the chromosome (or genome).
The oligonucleotides are denoted by and .
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(a) (b)

(c)

Figure 1.5: Illustration of the Hi-C process outlined in Section 1.2.4, beginning from
Figure 1.2b. In Figure 1.5a the restriction ends are filled using a biotin-labelled
nucleotides. In Figure 1.5a blunt-end ligation is performed. In Figure 1.5c second round
of purification and shearing, leaves the ligation junctions with the tagged biotin pull-
down. The finally ligation junctions are mapped back to the genome using large scale
sequencing. In the figures , and denote DNA originating from different parts
of the chromosome (or genome). The biotin pull-down is denoted by .
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Chapter 2

Multidimensional scaling

Multidimensional scaling (MDS) is the statistical field concerned with configuration

recovery from distance (dissimilarity) matrices. MDS can be used for abstract

interpretation such as mapping politicians on to an ideological axis (Diaconis et al., 2008),

or can be used to recover a configuration of physical points such as the positions of cities

within a country. MDS is a wide field with several different methods including metric

MDS (Young and Householder, 1938; Torgerson, 1952); non-metric MDS (Shepard,

1962a,b; Kruskal, 1964a,b); maximum-likelihood MDS (Ramsay, 1977) and Bayesian

MDS (Oh and Raftery, 2001; Hu et al., 2013). These MDS methods have been applied in

a variety of disciplines such as psychology, ecology, political science and are beginning

to play a role in inferring genome structure. This thesis uses metric and non-metric

MDS on distance matrices estimated from Hi-C data to recover chromosome (or genome)

configurations and seeks improvements to the process.

Definition A (n×n) matrix D = (di,j) is a distance matrix if di,i = 0∀ i, di,j ≥ 0 ∀ i 6= j,

it is symmetric di,j = dj,i ∀i 6= j, and satisfies the triangle inequality (2.1). Definition

The triangle inequality states the distance between two points should be the shortest route
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between those points

di,j ≤ di,a + da,j. (2.1)

Let D = (di,j) be the n× n matrix of distances between n points in p dimensional space,

where X is the n× p matrix of points. The di,j can be any kind of distance (Cox and Cox

(2000) page 11) or dissimilarly but here it is an Euclidean distance (2.2).

Definition Euclidean distance di,j between points
¯
xi = (xi,k) and

¯
xj = (xj,k) is given by

di,j =

(
p∑

k=1

(xi,k − xj,k)2
) 1

2

(2.2)

Definition A distance matrix D is Euclidean, if it contains the Euclidean interpoint

distances of the n× p configuration X.

The Euclidean distance matrix D is a map of the configuration X and MDS can be used

to recover this configuration X̂ = (x̂i,k), where X̂ is a n× p matrix of fitted points. If D

contains no error then X and X̂ are identical up to some invariant transformation. If D

contains error then it can be better described as an estimated or perturbed distance matrix

D̃ = (d̃i,j), where d̃i,j = di,j + εi,j or d̃i,j = f(di,j + εi,j), where εi,j is some quantity of

error ε ≥ −di,j and f(. . .) is a monotonic function. The estimated or perturbed distance

matrix D̃ will likely of lost its Euclidean properties, but still contain a fuzzy map of

the configuration X. Multidimensional scaling will recover a configuration X̂, which is

as close as possible the MDS method can get to the true configuration X up to some

invariant transformation.
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2.1 Metric multidimensional scaling

Metric MDS uses matrix algebra to recover a unique n × p fitted configuration X̂

from a distance matrix D. The method of metric MDS begins with an element-wise

transformation on D to obtain the n× n intermediate matrix A = (ai,j) where

ai,j = −1

2
d2i,j. (2.3)

Then A is centred to obtain the centred inner-product matrix B = (bi,j),

B = HAH (2.4)

bi,j = ai,j − n−1
n∑
j=1

ai,j − n−1
n∑
i=1

ai,j + n−2
n∑
i=1

n∑
j=1

ai,j.

where H is the n× n centring matrix

H = In − n−1
¯
1n

¯
1Tn (2.5)

The centred inner-product matrix now has the structure of

B = (HX)(HX)T . (2.6)

The eigenvalue decomposition of B gives the eigenvalues Λ = diag(λ1, . . . , λp, 0, . . . , 0)

and corresponding eigenvectors Γ = (γi,k), which are used to recover X̂:

B = ΓΛΓT (2.7)

X̂ = ΓΛ
1
2 (2.8)

xi,k = γi,kλ
1
2
k .
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The fitted configuration X̂ has the same configuration as X after centring, reflection and

rotation:

X̂ = (HX)R (2.9)

where R is a p× p orthogonal reflection and rotation matrix. Reconstructing B from X̂

B = X̂X̂T

= (HX)RRT (HX)T

= (HX)(HX)T (2.10)

because RRT = I we obtain (2.6). Further information on metric MDS can be found in

Cox and Cox (2000) pages 31-58 and Mardia et al. (1979) pages 397-402.

When fitting an estimated or perturbed distance matrix D̃ into Euclidean space, the metric

MDS produces a fitted configuration which is an approximation to the original, X̂ ≈

(HX)R. This is because the perturbed centred inner product matrix B̃ found from D̃

using (2.4) differs from the true B, and the subsequent fitted eigenvalues Λ̂ = (λ̂k) and

fitted eigenvectors Γ̂ = (ˆ
¯
γ
k
) from applying (2.7) to B̃ differ from the original Λ and

Γ. The number of non-zero eigenvalues in Λ̂ will differ from the original Λ as spurious

positive non-zero eigenvalues are produced, λ̂1 ≥ . . . ≥ λ̂q > 0 where q 6= p (usually

q > p), and if the Euclidean properties of D̃ are broken some spurious negative fitted

eigenvalues are produced 0 ≥ λ̂q+2 ≥ . . . ≥ λ̂n. The negative eigenvalues correspond to

complex dimensions, recruited to absorb over fitted distances in the real dimensions. At

low levels of perturbation in D̃, λ̂k ≈ λk for k = 1, . . . , p, at this point there is a fuzzy

map of X held within D̃. As the perturbation increases in D̃ the fitted eigenvalues grow

more dissimilar to the original eigenvalues until λ̂k 6= λk for k = 1, . . . , p, at this point

the fuzzy map of X held within D̃ has been completely erased.
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Mardia (1978) uses λk to calculate the percentage of information in D that is projected

into the kth dimension:

θk =
|λk|∑n
i=1 |λi|

× 100%, (2.11)

then θk can be summed to give the percentage of information projected into the first p

dimensions

θ1:p =

p∑
k=1

θk. (2.12)

For example the distance matrix D for the configuration X, where the number of points

in X are even and are positioned equally spaced on the circumference of a circle. The

percentages of information (2.11) from D projected into the first two dimensions are

θ1 = 50%, θ2 = 50% and θ1:2 = 100%, this is because the information in D can be equally

projected into the first two dimensions. Now applying some small perturbation to D to

give D̃, the percentages of information from D̃ projected into the first two dimensions

are θ1 = 47.8%, θ2 = 43.7% and θ1:2 = 91.5%. The total information has dropped

from θ1:2 = 100% to θ1:2 = 91.5% after perturbation, this is because spurious non-zero

eigenvalues are produced which projects information into additional dimensions.

In practice, metric MDS can be performed using the cmdscale function in the statistical

software R, which requires a distance matrix D and the number of dimensions k (if

unspecified k=2) and returns the metric MDS configuration. Additional input can be

included in cmdscale with further instruction found on the internet.
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2.2 Non-metric multidimensional scaling

Non-metric MDS uses optimization to recover a n×p fitted configuration X̂ representative

of a dissimilarity matrix ∆ = (δi,j), where the Euclidean properties are relaxed and

δi,j = f(di,j),

where f is a monotonic function such that di,j < du,v implies → δi,j < δu,v. Non-metric

MDS orders the off-diagonal δi,j such that

δi1,j1 ≤ . . . ≤ δim,jm

where m = n(n−1)
2

, and seeks a fitted configuration X̂ = (x̂i,k) in p dimensions, such that

the fitted distances D̂ = (d̂i,j) (found by substituting x̂i,k and x̂j,k in for xi,k and xj,k in

(2.2)) preserves the ordering

d̂i1,j1 ≤ . . . ≤ d̂im,jm .

To measure how the ordering of the elements between ∆ and D̂ differs, the squared stress

is used

S2
p(X̂) =

∑
i<j(d

∗
i,j − d̂i,j)2∑
i<j d̂

2
i,j

, (2.13)

where the p denotes the number of dimensions X̂ is fitted into, the d∗i,j are the δi,j

monotonically regressed (Izenman (2009) pages 493 - 497) onto d̂i,j , this allows the d∗i,j

to share the same ordering as δi,j but are relative to d̂i,j in size. The denominator of (2.13)

makes S2
p(X̂) invariant to uniform scaling. The square root of (2.13) is taken to give the
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stress of fit statistic

Sp(X̂) =

(∑
i<j(d

∗
i,j − d̂i,j)2∑
i<j d̂

2
i,j

) 1
2

. (2.14)

Starting with an initial configuration X̂(0) in p dimensional space, non-metric MDS

iteratively adjusts X̂ and recalculates Sp(X̂), using the method of steepest descent to

minimize Sp(X̂). When Sp(X̂) = 0%, the fitted configuration X̂ is identical to the

original configuration after some invarient transformation X̂ = b(HX)R, where b > 0 is

a scaling constant, H is the centring matrix (2.5) and R is a p × p orthogonal reflection

and rotation matrix.

When fitting a perturbed or estimated dissimilarity matrix, such that the ordering of

perturbed dissimilarities ∆̃ = (δ̃i,j) does not entirely reflect the true ordering in di,j

then Sp(X̂) 6= 0%. In Mardia et al. (1979) page 414 provides the following guide to

assess stress: Sp(X̂) ≥ 20% is poor; Sp(X̂) = 10% is fair; Sp(X̂) ≤ 5% is good and

Sp(X̂) = 0% is perfect. Non-metric MDS does not provide a unique solution and can

locate a local minimum to Sp(X̂) instead of a global minimum. More information on

metric MDS can be found in Cox and Cox (2000) pages 61-90 and Mardia et al. (1979)

pages 413-415.

In practice non-metric MDS is performed using isoMDS in R, which requires a

dissimilarity matrix ∆ and the number of dimensions k (if unspecified k=2) and returns

a configuration and corresponding stress. Additional input can be included in isoMDS.

The initial configuration X̂(0) is the metric solution although any initial configuration

can be specified. To avoid isoMDS locating a local minimum, the fitting process is

repeated 100 times using X̂(0) with elements generated from the uniform distribution

x̂
(0)
i,k ∼ U(−0.5, 0.5), and once using the fitted configuration X̂(0) from metric MDS,

finally the X̂ with the smallest Sp(X̂) (2.14) is chosen as the final configuration.
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2.2.1 Scaling by majorizing a complicated function

As an alternative MDS method the scaling by majorizing a complicated function

(SMACOF) algorithm could be used (De Leeuw, 2011). The SMACOF algorithm uses

an iterative procedure to produce a fitted configuration from a matrix estimated distances

D̃ = (d̃i,j), where the fitted configuration minimizes the stress function

σ(X̂) =
∑
i<j

(d̃i,j − d̂i,j)2. (2.15)

The stress function (2.15) is majorized and a fitted configuration is found which minimizes

the majorization. A function p(x) is majorized when a simple support function q(x, y) is

used instead of p(x). The properties the support function q(x, y) being p(x) ≤ q(x, y) for

all x in the domain of p and p(y) = q(y, y) for all y in the domain of q.

The SMACOF algorithm when applied to dissimilarity data gives similar results to when

non-metric MDS is used. Therefore the SMACOF algorithm was not used for further

analysis.

2.3 Procrustes shape distance

The Procrustes shape distance is the ordinary sum of squares between two configurations

OSS(X, X̂) after optimal reflection, rotation, scaling and translation. If X and X̂ are

centred on the origin, translation is not required and the OSS(X, X̂) can be written as

OSS(X, X̂) =

p∑
k=1

n∑
i=1

(
X− b̂R̂T X̂

)2
(2.16)
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where
¯
xi and

¯
x̂i are coordinate vectors for the ith point, b̂ > 0 is a scaling constant, and R̂

is an orthogonal p× p reflection and rotation matrix. To find b̂ and R̂, let

Z = X̂TX. (2.17)

Applying the singular value decomposition (SVD) to Z gives

Z = VQUT (2.18)

where V and U are p × p orthogonal matrices and Q is a diagonal matrix of singular

values. Then the values for b̂ and R̂ are

R̂ = VUT and b̂ =
tr(Q)

tr(X̂X̂T )
.

A deeper description of the Procrustes distances is given in Cox and Cox (2000) Chapter 5

and Mardia et al. (1979), pages 416-419.

2.4 Horseshoe effect

The horseshoe effect is the tendency for multidimensional scaling to fit a horseshoe-

shaped configuration, from data which do not necessarily arise from such a configuration.

Characteristics of horseshoe configurations are points arranged to form a horseshoe in the

first and second dimensions, and the points taking a cubic polynomial arrangement in the

first and third dimensions.

The horseshoe effect in MDS has been observed in the archaeological, ecological,

political and psychological sciences. Several studies have proposed methods to correct

for horseshoes, Hill (1974) proposed detrended correspondence analysis to unfold the

horseshoe, and Podani and Miklos (2002) investigated raising di,j to different powers in
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(2.3) to find some detrending effect, but it also increased the magnitude of the negative

eigenvalues.

Mardia et al. (1979) page 412 suggests the horseshoe effect is caused by accurate local

distances and inaccurate medium to large distances, causing medium and large distances

to merge and the metric MDS to bring distant points closer together. This decrease in

accuracy with increasing distance was investigated by Diaconis et al. (2008). Diaconis

et al. transformed Euclidean distances so local distances remained accurate and large

distances lost accuracy, showing that the eigenvectors from the B followed trigonometric

functions and produced horseshoes. De Leeuw (2008) supported these findings explaining

the nature of the distance matrices that Diaconis et al. had used would inevitabily result

in horseshoes. De Leeuw (2008) further points out that applying metric MDS to toeplitz

matrices will produce horseshoes. The toeplitz matrix is where the elements of the super-

diagonals and sub-diagonals of the matrix, are a constant value. Figure 2.1 gives an

example of a 5 × 5 symmetric Toeplitz matrix. The horseshoe effect appears to be a


0 a b c d
a 0 a b c
b a 0 a b
c b a 0 a
d c b a 0


Figure 2.1: Example of a 5 × 5 Toeplitz matrix. The matrix is symmetric. The elements
on each sub-diagonal and corresponding super-diagonal of the matrix equal.

product of decreased accuracy in medium and large distances, this is most common when

metric MDS provides an abstract interpretation of object positioning. Poor judgement

in measuring dissimilarities between objects provides the conditions for horseshoes,

in contrast to the estimation where distances between physical objects are measured

accurately.

An example of the horseshoe effect can be given by artificially distorting a distance



Chapter 2. Multidimensional scaling 33

matrix, using a distortion similar to the distortion used by Diaconis et al.. Take a

configuration X of 20 equally spaced points on the unit line, with interpoint distances

D. The distances are distorted to give distorted distances D∗ = (d∗i,j)

d∗i,j = 1− exp(−5× di,j) (2.19)

The distortion (2.19) merges the medium distances of D into large distances (displayed

in Figure 2.2), causing the confusion required for the horseshoe effect in the fitted

configuration. The D∗ are then fitted into three dimensional Euclidean space using metric

MDS, to give the fitted configuration X̂∗. Figure 2.3 displays the fitted configuration

X̂∗. In the first and second dimensions the configuration looks like a parabola with

involution at the ends. In the first and third dimension the configuration looks to have

a cubic polynomial arrangement with involution at the ends.

Figure 2.2: Distorted distances for the horseshoe example. The black circle denotes the
sizes of the distances di,j , between twenty equally spaced points on a unit line. The red
circle denotes the sizes of the distorted distances d∗i,j , where (2.19) gives the distortion.
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Figure 2.3: Perspectives of the fitted configuration for the horseshoe example. The fitted
configuration X̂∗ is found by fitting the distorted distance matrix D∗ (2.19) into three
dimensional Euclidean space using metric multidimensional scaling.
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Chapter 3

Investigation into metric

multidimensional scaling

This chapter investigates some of the properties of metric multidimensional scaling

(MDS). The first part manually performs metric MDS on 2×2 and 3×3 distance matrices,

to glean information on how distances are arranged in the equations for the eigenvalues;

eigenvectors and the fitted coordinates. The latter part distorts distances to the point where

the distance matrix is no longer Euclidean and applies metric MDS, to observe how the

fitted eigenvalues are disrupted by the distortion.

3.1 Fitting small distance matrices using metric MDS

Manually fitting 2 × 2 and 3 × 3 sized distance matrices, can give the fitted eigenvalues;

eigenvectors and the points of the fitted configuration in terms of the distances, opening a

small window on how distance affects the fitted configuration.
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3.1.1 2× 2 distance matrix

The process of fitting a 2× 2 distance matrix D with metric MDS is performed manually,

where the two points are separated by a distance d. Let X = (
¯
x(1),

¯
x(2)) where

¯
x(k) =

(x1,k, x2,k)
T are the point coordinates in dimension k = 1, 2. D first produces the centred

inner product matrix B using (2.4),

D =

0 d

d 0

 and B =

 d2

4
−d2
4

−d2
4

d2

4

 .

The eigenvalue decomposition is applied to B

|B− λI2| = λ2 − 2λ
d2

4
(3.1)

Solving (3.1) for eigenvalues gives,

λ1 =
d2

2
and λ2 = 0,

and corresponding eigenvectors

¯
γ1 =

(
1√
2
,
−1√

2

)T
and

¯
γ2 =

(
1√
2
,

1√
2

)T
.

X is reconstructed using
¯
x(k) =

¯
γkλ

1
2
k to give

¯
x(1) =

(
d

2
,
−d
2

)T
and

¯
x(2) = (0, 0)T (3.2)

The solution (3.2) is trivial as the points only require placing a distance d apart to be

recovered, although it does serve as a warm-up for the 3× 3 distance matrix.
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3.1.2 3× 3 distance matrix

The 3 × 3 case is similar to the 2 × 2, case let X = (
¯
x(1),

¯
x(2),

¯
x(3)), where

¯
x(k) gives

the coordinates of points in dimension k. The 3 × 3 distance matrix D first produces the

centred inner product matrix B using (2.4),

D =


0 a b

a 0 c

b c 0

 and

B =
1

18


4a2 + 4b2 − 2c2 −5a2 + b2 + c2 a2 − 5b2 + c2

−5a2 + b2 + c2 4a2 − 2b2 + 4c2 a2 + b2 − 5c2

a2 − 5b2 + c2 a2 + b2 − 5c2 −2a2 + 4b2 + 4c2

 .

Applying the eigenvalue decomposition to B gives

|B− λI3| =
(
−1

6
(a2b2 + a2c2 + b2c2) +

1

12
(a4 + b4 + c4)

)
λ

+
1

3
(a2 + b2 + c2)λ2 − λ3, (3.3)

solving (3.3) for the eigenvalues gives

λ1 =
1

6
(a2 + b2 + c2 + 2

√
a4 + b4 + c4 − a2b2 − a2c2 − b2c2);

λ2 =
1

6
(a2 + b2 + c2 − 2

√
a4 + b4 + c4 − a2b2 − a2c2 − b2c2)

and λ3 = 0. (3.4)
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To find the corresponding eigenvectors, B is rotated using a Helmert rotation matrix R

R =


1√
3

1√
3

1√
3

−1√
2

0 1√
2

1√
6
−2√
6

1√
6
.



RTBR =


0 0 0

0 b2

2
(−a2+c2)

2
√
3

0 (−a2+c2)
2
√
3

(2a2−b2+2c2)
6

 =


0 0 0

0 σ2
1,1 σ2

1,2

0 σ2
1,2 σ2

2,2

 (3.5)

giving a 2 × 2 symmetric matrix nested within a 3 × 3 null matrix. (3.5) can be solved

using a formula provided by Mardia et al. (1979), page 246, exercise 8.1.1 to give the

eigenvectors of RTBR,

¯
φ1 =


0

σ2
2,2 − σ2

1,1 + Θ

−2σ2
1,2

 and
¯
φ2 =


0

2σ2
1,2

σ2
2,2 − σ2

1,1 + Θ

 (3.6)

where Θ =
√

(σ2
1,1 − σ2

2,2)
2 + 4σ4

1,2. The rotation is reversed by pre-multiplying the

eigenvectors (3.6) by R to recover the eigenvectors of B

¯
γ1 =


b2 − c2 + ∆

−a2 + c2

a2 − b2 −∆

 ¯
γ2 =


2a2 − b2 − c2 −∆

−a2 + 2b2 − c2 + 2∆

−a2 − b2 + 2c2 −∆

 and
¯
γ3 =


1√
3

1√
3

1√
3

 (3.7)
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where ∆ =
√
a4 + b4 + c4 − a2b2 − a2c2 − b2c2. Finally X is reconstructed using

¯
x(k) =

¯
γkλ

1
2
k to give

¯
x(1) = w1


b2 − c2 + ∆

−a2 + c2

a2 − b2 −∆


where

w1 =

(
a2 + b2 + c2 + 2(a4 + b4 + c4 − a2b2 − a2c2 − b2c2)
6((b2 − c2 + ∆)2 + (−a2 + c2)2 + (a2 − b2 −∆)2)

) 1
2

,

¯
x(2) = w2


2a2 − b2 − c2 −∆

−a2 + 2b2 − c2 + 2∆

−a2 − b2 + 2c2 −∆


where

w2 =

(
a2 + b2 + c2 − 2(a4 + b4 + c4 − a2b2 − a2c2 − b2c2)

6((2a2 − b2 − c2 −∆)2 + (2b2 − a2 − c2 + 2∆)2 + (2c2 − a2 − b2 −∆)2)

) 1
2

and
¯
x(3) = (0, 0, 0)T since λ3 = 0.

The constants w1 and w2 are a product of λ
1
2
k and the eigenvector normalisation constant.

The eigenvalues (3.4) and eigenvectors (3.7) explicity show how distances produce

coordinates.

Equation (3.4) can be used to determine if the desired Euclidean properties of D are

violated. Rearranging the equation for the second eigenvalues (3.4) gives

a2 + b2 + c2 ≥ 2
√
a4 + b4 + c4 − a2b2 − a2c2 − b2c2,

and if this inequality holds then D is Euclidean.
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Illustration

Consider three points spaced one unit apart on a line for which

D =


0 1 2

1 0 1

2 1 0

 and D2 =


0 1 4

1 0 1

4 1 0

 .

Increase the distance between points 1 and 2 by adding some quantity ε to the squared

distance gives

D2 =


0 1 + ε 4

1 + ε 0 1

4 1 0

 , (3.8)

where ε ≥ −1 to avoid the squared distance becoming negative. The resulting eigenvalues

using (3.4) are

λ1 =
1

6
(6 + ε+ 2∆) and λ2 =

1

6
(6 + ε− 2∆)

where ∆ =
√

(9− 3ε+ ε2). The λ2 is of most interest and can be categorized into two

states. The first state is when 0 ≤ ε ≤ 8, for which the Euclidean properties of D are

intact because λ2 ≥ 0. The second state is when −1 ≤ ε ≤ 0 or ε > 8 for which the

Euclidean properties are violated because λ2 < 0. The second state is of most interest,

here the second dimension is projected into complex space. The distance contribution of

the second dimension acts to reduce the distance expansion in the first dimension, such

that

d∗1,2 =
√

(x1,1 − x2,1)2 + i2(x1,2 − x2,2)2 =
√

(x1,1 − x2,1)2 − (x1,2 − x2,2)2.
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3.2 Distortion

The eigenvalues from fitting the 3×3 distance matrix (3.4) quantify the robustness of D to

distortion. Manually fitting a 4× 4 distance matrix, would explicitly show how distances

go to produce the eigenvalues and eigenvectors, unfortunately computation increases for

each additional point added, making fitting the 4× 4 distance matrix much more difficult

than fitting the 3× 3 distance matrix D.

To investigate how robust larger D = (di,j) are and gain insight into negative eigenvalues,

distance matrices were deliberately distorted by adding ε to one of the di,j (and the

symmetric dj,i) to give a distorted distance matrix D(ε). These D(ε) were then fitted

into k dimensional Euclidean space using metric MDS and the fitted eigenvalues were

investigated.

3.2.1 Four point problem

The distance matrices D for three different four point configurations were investigated.

One configuration being four points equally spaced on a straight lines (1D); another being

four points on the corners of a square (2D) and another being four points on the corners

of a tetrahedron (3D). The configurations were standardised so the shortest distance was

a unit length. Then some measured error ε was added to one of the unit distances in each

D where −1 ≤ ε ≤ 5 to give the distorted distance matrix D(ε). The matrix D(ε) was

fitted into k dimensional Euclidean space (where k are the dimensions corresponding to

the positive eigenvalues), using metric MDS and the fitted eigenvalues and an assortment

of distances were recorded as ε increased. The assortments of distances were the distorted

distance d∗i,j = di,j + ε; fitted distorted distance d̂∗i,j; the sum of the undistorted distances∑
(l,m)6=(i,j) dl,m and the sum of the fitted undistorted distances

∑
(l,m)6=(i,j) d̂l,m. The

assortment provided information on the distances directly affected by distortion, and the
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distances indirectly affected by distortion. Investigating the assortment of distances as

ε increases, allows the observation of how the undistorted distances are coerced by the

distorted distance. The eigenvalues in Figure 3.4 can be split into two states. In the

first state all the eigenvalues are non-negative hence D(ε) is still Euclidean. The first

state exist briefly for the straight line (ε = 0) and is more persistent for the square and

tetrahedron. The persistence shows the distance matrices are robust to distortion up to a

certain point. The undistorted fitted distances in the first state (Figure 3.5) remain equal to

the undistorted distances hence D(ε) ≈ D̂(ε), as metric MDS accommodates distortion

in the available dimensions.

The second state is characterized by the negative eigenvalues as D(ε) is no longer

Euclidean. The second state can be subdivided into two substates when −1 < ε < 0

and ε > 0. In the first substate distortion reduces d∗i,j to the point where metric MDS

has to increase it to fit with the undistorted distances, this can be observed in the plots of

distances for the straight line and square.

The second substate is characterized by the principle positive and negative eigenvalues

blowing up as ε becomes very large. The negative eigenvalues grow counter to the growth

in the positive eigenvalues, they act to absorb the increase of undistorted and distorted

fitted distances by the metric MDS. The large distorted distance coerces the metric MDS

to increases the undistorted distances in fitting, making the undistorted fitted distances

increase with distortion.

Distortion on 4 × 4 distance matrices display metric MDS accommodating distortion

without breaking the Euclidean properties of D(ε), up to a critical value of ε, then for

larger ε the distortion overwhelms the Euclidean properties of D(ε) to create negative and

positive eigenvalues. Eventually distortion becomes great enough that the lead dimension

is determined by the distorted dimension and the contribution of the undistorted distances

to the lead dimension are negligible.
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
0 1 2 3
1 0 1 + ε 2
2 1 + ε 0 1
3 2 1 0



Figure 3.1: The distorted distance matrix D(ε) and a illustration of the four point straight
line. The red line connects the two points in which the distance is distorted, by the
addition of some quantity ε to the distance.


0 1 + ε 1

√
2

1 + ε 0
√

2 1

1
√

2 0 1√
2 1 1 0



Figure 3.2: The distorted distance matrix D(ε) and a illustration of the four points on the
corners of a square. The red line connects the two points in which the distance is
distorted, by the addition of some quantity ε to the distance.


0 1 + ε 1 1

1 + ε 0 1 1
1 1 0 1
1 1 1 0



Figure 3.3: The distorted distance matrix D(ε) and a illustration of the four points on the
corners of a tetrahedron. The red line connects the two points in which the distance is
distorted, by the addition of some quantity ε to the distance.
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(a) Straight line.

(b) Square. (c) Tetrahedron.

Figure 3.4: The fitted eigenvalues (2.7) from fitting the distorted distance matrices D(ε)

with metric MDS, as distortion increase. Top: four points on a straight line’s fitted
eigenvalues. Bottom left: four points on the corners of a square’s fitted eigenvalues.
Bottom right: four points on the corners of a tetrahedron’s fitted eigenvalues. The red line

denotes the principal eigenvalue; the green line the second eigenvalues; the blue
line , and the black line the eigenvalue of fixed size zero.
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(a) Straight line.

(b) Square. (c) Tetrahedron.

Figure 3.5: The assortment of distances from fitting the distorted distance matrices D(ε)

with metric MDS, as distortion increase. Top: four points on a straight line’s assortment
of distances. Bottom left: four points on the corners of a square’s assortment of distances.
Bottom right: four points on the corners of a tetrahedron’s assortment of distances. The
dashed black line gives the sum of the distances (before distortion) in D(ε) excluding
the distorted distances

∑
(l,m)6=(i,j) dl,m. The solid black line gives the sum of the fitted

distances D̂(ε) from (2.2) (where p is the number of positive eigenvalues), excluding
the fitted distorted distance

∑
(l,m)6=(i,j) d̂l,m. The dashed red line gives the distorted

distance d∗i,j; the solid red line gives the fitted distorted distance d̂∗i,j (2.2) (where p
is the number of positive eigenvalues). The black lines give information on the distances
which are not directly distorted. The red lines give information on the distance which is
directly distorted.
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3.2.2 Lattices

Distortion was applied to lattices of points, to investigate the spurious eigenvalues

generated when the Euclidean properties of the distance matrix are broken.

Using a 4 × 4 lattice of points (Figure 3.6a), where points which are horizontal or

vertical to each other are separated by a unit distance. The distance matrix for the lattice

is distorted by adding ε to one or more of the distances. The fitted eigenvalues from

fitting the distorted distance matrix with metric MDS are investigated. Three examples of

distortion are given in Figure 3.6, to try convey the observations made through distortion.

The first example distorts the distance between points 1 & 2. The second example distorts

the distances between both 1 & 2 and 7 & 11. The final example distorts the distances

between points 1 & 2; 7 & 11 and 15 & 16.

Through distorting different combinations of distances on different lattices, we found

distorting the distance between any pair of given points i1 & j1, produces an additional

positive and negative eigenvalue. Simultaneously distorting a further distance between

points i2 & j2 where (i2, j2) 6= (i1, j1), a further additional positive and negative

eigenvalue is produced.

We found that distorting a small set of p distances, where no point had more than one

of its distances distorted, then p additional positive and p additional negative eigenvalues

were produced. As p increases this observation becomes weaker, such that fewer negative

eigenvalues are produced. If p = n
2

so that each point has one distance distorted, there

only n− 3 additional non-zero eigenvalues can be produced, so n
2

additional positive and
n
2

additional negative eigenvalues will not be produced.

When distorting the distance between points i1 & j1 and i1 & j2 where j1 6= j2, we observe

an additional positive and negative eigenvalue, as removing point i1 from the lattice and its

distances from the distance matrix, gives a new lattice with Euclidean interpoint distances.
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(a) Illustration of the lattice. (b) One distance distorted.

(c) Two distances distorted. (d) Three distances distorted.

Figure 3.6: Illustration of the 4× 4 lattice, and the fitted eigenvalues (2.7) from distorting
combinations of distances between the points on the lattice. Top left: illustration of the
lattice with points numbered. Top right: fitted eigenvalues from distorting the distance
between points 1 & 2. Bottom left: fitted eigenvalues from distorting the distance between
points 1 & 2 and 7 & 11. Bottom right: fitted eigenvalues from distorting the distance
between points 1 & 2, 7 & 11 and 15 & 16. The distances are distorted by simultaneously
adding the same quantity ε to them. The green line denotes the genuine positive fitted
eigenvalues; the blue line denotes the spurious positive fitted eigenvalues and the red
line denotes the spurious negative fitted eigenvalues.
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3.2.3 Interpretation

Matrix algebra can provide some insight into the additional eigenvalues after distortion.

Let A = (ai,j) be the intermediate matrix generated by (2.3) on the undistorted

distance matrix D. Let E be a sparse symmetric matrix with non-zero ε on the entries

corresponding to where distortion is applied, where a point can only have one of its

distances distorted, so each column or row has a maximum of one non-zero entry.

The rank of E is then the number of distorted distances e. Summing A and E gives

A(ε) = A+E as the distorted intermediate matrix. Distortion applied to the intermediate

matrix is easier to handle algebraically than distortion applied to the distance matrix.

Centring A(ε) using (2.4) gives B(ε), the maximum rank of B(ε), ρ(B(ε)) can be found

using matrix algebra (Gentle, 2007).

ρ(B(ε)) = ρ(HA(ε)H)

≤ ρ(HAH) + ρ(HEH)

≤ min(n− 1, k) + min(n− 1, 2e)

≤ k + 2e, (3.9)

where k is the number of dimensions of the original configuration. The result (3.9)

shows if one distance is distorted then there is a maximum of two additional non-zero

eigenvalues.

How the centring of intermediate matrix (2.4) distributes ε about B(ε) from a single

distortion applied in A(ε) can also be investigated, to provide a stepping point for further

analysis of the distortions affect on the eigenvalues.

Let a and b be the points where some distortion added between them, and let i and j be

points with no distortion. The distribution of the distortion through B(ε) can be observed

in Figure 3.7 when distortion is added between points 1 & 2. The level of distortion in
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zones A; B; C and D in Figure 3.7 is given below.

A: ba,b + ε

(
1− 2

n
+

2

n2

)
, (3.10)

B: ba,a + 2ε

(
1

n2
− 1

n

)
, (3.11)

C: ba,j +
ε

n

(
2

n
− 1

)
, (3.12)

D: bi,j + 2
ε

n2
. (3.13)

The zones A; B and C have the strongest distortion as they are associated with the distorted

points, with zones D having the weakest distortion.

Figure 3.7: Illustration of how a single distortion in the intermediate matrix A (2.3) is
distributed about the distorted centred inner product matrix B(ε) (2.4). In this illustrations
some quantity ε has been added to A elements a1,2 and a2,1 to give a distorted intermediate
matrix A(ε). The distorted intermediate matrix A(ε) is centred using (2.3) to give B(ε).
The zones labelled on B(ε) correspond to the distribution of distortion, zone A is given
by (3.10); zone B is given by (3.11); zone C is given by (3.12) and zone D is given
by (3.13).

Using the property trace(B) =
∑n

k=1 λk, the total size change on B(ε) eigenvalues λk(ε)
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for k = 1, . . . , n is

n∑
k=1

λk(ε) =
n∑
k=1

λk − 2
ε

n
, (3.14)

where λk are the eigenvalues from the undistorted B, and ε has been added to elements of

A.

3.3 Conclusion

Manually applying metric MDS to small distance matrices provides an insight into how

the metric MDS works and shows how the computational difficulty of metric MDS

increases as the number of point increases. Distortion in the four point problem offers

insight into how the eigenvalues and distances adjust to accommodate distortion. Further

interpretation of the distortion shows a maximum number of new eigenvalues produced

by distortion, how ε is distributed in B(ε) and how distortion effects the total size of the

eigenvalues.

Manually applying metric MDS to small distance matrices and distortion provide

a glimpse into the workings of metric MDS, but provide little help in elucidating

chromosome or genome structure. Instead broader understanding of noise in the estimated

distance matrix is required.
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Chapter 4

Exploratory analysis

The first part of this chapter details our method of recovering an estimated chromosome

configuration from the Hi-C (Lieberman-Aiden et al., 2009) contact frequency (count)

matrix M of the Karyotypically normal human lymphoblastoid cell line (GM06990) at

one megabase resolution. The first part of the chapter also details our interpretation

and pre-processing of the data to improve the configuration. The latter part of the

chapter details our pre-processing of the global count matrix, which contains the

interchromosomal and intrachromosomal counts for the twenty two chromosome pairs

and the XX chromosome pair in the GM06990 cell line, then applying the methods of

estimated chromosome configuration recovery to estimating the genome configuration.

Let X = (xi,k) be the n× 3 average chromosome configuration where xi,k for k = 1, 2, 3

is the centre of the megabase interval i. Interpoint distances of X are recorded in a n× n

Euclidean distance matrix D = (di,j) (2.2). The Euclidean distances have an unknown

relationship with the hypothetical n× n expected chromosome count matrix U = (µi,j).

The matrix U contains the hypothetical expected intrachromosomal counts between two

megabase intervals or the same megabase interval. The observed chromosome count

matrix M = (mi,j) contains random counts which can be modelled by some count

distribution with mean E(mi,j) = µi,j and variance var(mi,j) = ρµi,j , where ρ denotes
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the level of dispersion in the counts ρ ≥ 1. The matrix M can be regarded as a matrix

of proximities, detailing how close and entwined megabase intervals are, the larger mi,j

the greater the probability that the two megabase intervals i and j are spatially close.

The matrix M can be transformed into an estimated distance matrix D̃ = (d̃i,j) using

a count to distance transform function f( ), where f( ) tries to emulate the relationship

between D and U such that f(µi,j) ≈ di,j . Metric and non-metric multidimensional

scaling (MDS) can be used to fit D̃ into three-dimensional Euclidean space to give an

estimated chromosome configuration X̂ = (x̂i,j). The configuration X̂ = (x̂i,k) can be

used to give fitted distances D̂ = (d̂i,j) by inputting the x̂i,k into (2.2) with p = 3, and

the fitted counts Û = (µ̂i,j) by inverting the count to distance transform µ̂i,j = f−1(d̂i,j).

The average chromosome configuration X; the true interpoint Euclidean distances D;

expected intrachromosomal counts U and the relationship between counts and distances

are unknown; and the objective is to estimate X from M.

4.1 Transform functions and measures of fit

This section outlines the count to distance transform function f( ) and the measures of fit

used to assess X̂. These are the tools used with MDS to recover X̂.

4.1.1 Transform functions

The mi,j are noisy measures of proximity which require transforming into d̃i,j , before

MDS can be used to recover X̂, to do this a count to distance transform function f( ) is

used. To produce f( ) the proximity properties of M are used as a guide.

The first property is the relationship between counts and distances should be
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monotonically decreasing,

f(a) ≤ f(b) ∀ a ≥ b. (4.1)

The monotonically decreasing property comes from the intuition that megabase intervals

of the chromosome spatially distant are likely to produce low counts, whereas spatially

close megabase intervals are likely to produce large counts. This relationship is observed

between count size and genomic distance: megabase intervals i and j which are

genomically close have large mi,j whereas megabase intervals genomically distant have

small mi,j . The genomic distance measured from the centre of the megabase interval, is

the measure of how many base pairs separate megabase intervals. The megabase interval

i and megabase interval j have a genomic distance of |i − j| megabases (Mb), whereas

megabase interval i and megabase interval i+1 abut each other and have genomic distance

of 1 Mb.

The second property is that distance should tend to zero, as count size tends to infinity

f(µi,j) → 0 as µi,j → ∞. (4.2)

The second property can be observed in the counts a megabase interval makes with itself,

found on the diagonal of M. Althoughmi,i 6=∞ they do represent the count size required

to give a distance of zero d̃i,j = 0.

The third property is the rate of decrease in f(µi,j) should tend to zero, as count size tends

to infinity

f ′(µi,j) → 0 as µi,j → ∞. (4.3)

The third property respects the intuition that large counts hold more information on

proximity and the distances should reflect this, for example the decrease in distances
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between µi,j = 1 and µi,j = 2 should be larger than between µi,j = 101 and µi,j = 102.

Exponential transform

The exponential transform used by Makraz (2010) returns distances in the interval di,j =

(0, 1],

f(µi,j) = e−αµi,j (4.4)

where α > 0. The parameter α scales the counts and affects the distribution of distances.

The upper bound on the di,j can be motivated as follows: if two megabase intervals are

too spatially distant to make contact then di,j could be any value between 1 and∞. If the

D contains a di,j =∞ then it cannot be fitted into Euclidean space, also the chromosome

is bounded within a territory which should limit the distances between the megabase

intervals. The inverse exponential transform used to transform distances into counts is

f−1(di,j) = − 1

α
log(di,j), (4.5)

which returns counts in the interval µi,j = (0,∞] for 0 ≤ di,j ≤ 1. Should the fitted

configuration X̂ have an interpoint distance d̂i,j > 1 then a fitted count of µ̂i,j = 0 is used

to avoid negative fitted counts.

Power transform

The power transform reflects the relationship between di,j and genomic distance proposed

by Mateos-Langerak et al. (2009); the relationship between interaction probability and

genomic distance proposed by Lieberman-Aiden et al. (2009) and is a simpler version

of the transform used by Hu et al. (2013). The power transform returns distances in the



Chapter 4. Exploratory analysis 55

interval di,j = (0,∞],

f(µi,j) = (b0µi,j)
β (4.6)

where b0 > 0 and β < 0. The parameter b0 has no effect on the shape of X̂ and we set

it at b0 = 1. The parameter β determines the relationship between counts and distances

and affects the distribution of distances. When using the power transform, an mi,j = 0

is transformed into a di,j = ∞, resulting in a D which cannot be fitted into Euclidean

space. To avoid this all mi,j = 0 in M are replaced with mi,j = 1, this is called the

minimum count adjustment and is denoted by mmin = 1. The minimum count adjustment

can be increase to any required size mmin = a, where all mi,j < a in M are replaced with

mi,j = a, although as larger a are used structural information will gradually be erased

from M. The inverse power transform is

f−1(di,j) =
d

1
β

i,j

b0
, (4.7)

which returns counts in the interval µi,j = (0,∞] for di,j ≥ 0.

4.1.2 Measures of fit

Since X is unknown, measures of fit are employed to assess X̂. These are divided into

score functions which help locate the best fitting configuration, and auxiliary measures

which are used to assess the fit.

Score functions

Score functions identify the best fitting configuration X̂ for the data. Metric MDS uses the

sum of the Pearsons residuals χ2 and non-metric MDS uses the stress of fit S3(X̂) (2.14).
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Metric MDS

Metric MDS is first used to recover the three-dimensional fitted configuration X̂ from the

estimated distance matrix D̃. The fitted distances D̂ = (d̂i,j) are first extracted from X̂

using (2.2) with p = 3. The D̂ can then be used to provide distance based score functions,

such as the stress of fit Sp(X̂) (2.14) used by non-metric MDS. The D̂ can also be used

to recover the fitted counts Û = (µ̂i,j) by using the inverse transform functions (4.5) or

(4.7). The Û allows the use of count based score functions. The sum of the squared

residuals

SSR(M, Û) =
∑
i<j

(mi,j − µ̂i,j)2 (4.8)

can be found, which measures the total squared difference between M and Û. In practice,

SSR(M, Û) can be sensitive to small changes in distances causing large changes in

counts. To counter this, residuals (mi,j − µ̂i,j) in (4.8) are divided by µ̂i,j to give the

sum of the Pearsons residuals

χ2 =
∑
i<j

(mi,j − µ̂i,j)2

µ̂i,j
. (4.9)

Non-metric MDS

Since scale is not preserved in X̂ the Û cannot be recovered. This limits the non-

metric MDS to the stress of fit statistic Sp(X̂) (2.14), where the p denotes the number

of dimensions X̂ is fitted into.

Auxiliary measures

In addition to the score functions, auxiliary measures prove useful in assessing X̂.
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The relationship between mi,j and d̃i,j and the distribution of D̃ provide insight into

properties of the transform function. Using a histogram of D̃ can provide insight into

X̂: if the distribution of d̃i,j are skewed towards large d̃i,j then horseshoe shaped fitted

configurations become more likely. A histogram of D̃ skewed towards the smaller d̃i,j is

preferable, as smaller d̃i,j from large mi,j are more accurate.

When using metric MDS plots of the λ̂k can provide insight into the magnitude of noise

in D̃ and dimensionality of X̂. The sizes of λ̂1, λ̂2 and λ̂3 relative to λ̂k for k = 4, . . . , n

describe the quantity of information captured in the first three dimensions and how much

is distributed into spurious dimensions. The size of the negative λ̂k relative to the positive

λ̂k gives insight how much the Euclidean properties of D̃ are violated. The magnitude

criterion (Sibson, 1979) is helpful for differentiating the genuine eigenvalues from the

spurious eigenvalues. In the magnitude criterion any positive eigenvalues which are

smaller than the absolute magnitude of the lowest negative eigenvalue, can be regarded as

spurious eigenvalues.

Visual inspection of X̂ can be used to assess if MDS has fitted X̂ at a local or global

minimum. Indications that MDS has found a local minimum might be that the majority

of points are clustered together with a select few points at some distance away from the

cluster, or that the points fall into layered flat clusters. Visual inspection might also help

identify if the horseshoe effect (Section 2.4) has influenced X̂.

Plots of the d̃i,j against d̂i,j or the mi,j against µ̂i,j are known as Shepards plots (Cox

and Cox (2000) pages 72-73), these are useful to interpret how the MDS fitting moves

the distances or counts. In an ideal case, the points in a Shepards plot should be linearly

related so a straight line can be plotted through them. In metric MDS, points should line

up along the line of zero intercept and gradient one (identity line). Adding a line of best fit

with zero intercept to the Shepards plots can help summarize the movement of distances

or counts.
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Heatmaps are used to visually compare D̃ with D̂ or M with Û. Patterns in the heatmaps

of D̃ and M relate to structural features of X, and changes in these patterns after fitting

can indicate if features are lost or spurious features gained.

4.1.3 Fitting algorithm

Fitting X̂ involves scanning across the different values for α when using (4.4) or β when

using (4.6), until a D̃ can be found which when fitted into Euclidean space gives a X̂,

which minimizes either χ2 (4.9) or Sp(X̂) (2.14). The process of finding the parameters

α or β, which minimize χ2 (4.9) or Sp(X̂) (2.14) are outlined as follows.

1. Choose an interval within which we presume α or β to lie: α ∈ (0, a] or β ∈ (0, b],

where a or b are chosen such that d̃i,j ≈ 0 for i, j = 1, . . . , n.

2. Scan across the interval repeatedly producing D̃ from M with either the exponential

transform (4.4) or the power transform (4.6). Fitting the D̃ into p dimensional

Euclidean space (p = 1, 2 or 3) with either metric or non-metric MDS, to obtain X̂

and calculating χ2 (4.9) or Sp(X̂) (2.14) recording the values of the score functions.

3. Identify the parameters α̂ or β̂ from the above stage which produces the minimum

χ2 (4.9) or Sp(X̂) (2.14). Then use these values of α̂ or β̂ in the transform

function (4.4) or (4.6) to produce D̃, and fit D̃ into p dimensional Euclidean space

using metric or non-metric MDS to obtain the configuration of best fit X̂.

4.2 Estimated chromosome configuration

This section applies the transform functions, MDS and the fitting algorithm to find X̂.

Combining the two transform functions and metric or non-metric MDS gives four routes
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to recover X̂. These routes are split by MDS method so results between transform

functions can be compared. To help identify which transforms function and MDS method

is used subscript notation is added to all matrices involved, E or P added for exponential

or power transform and M or NM for metric or non-metric MDS respectively; for

example X̂E,M is the estimated chromosome configuration found using the exponential

transform (4.4) with metric MDS, and D̃E,M is the estimated distance matrix which

was obtain by transforming the observed counts M into distances with the exponential

transform and is used by metric MDS to recover X̂E,M .

The count matrix M = (mi,j) from human Chromosome 14’s found using Hi-C

(Lieberman-Aiden et al., 2009) is used as a trial. It is a medium size chromosome

(87 megabases long after removing megabase intervals with poor mapability such as

centromeres and telomeres), allowing any insights gained from fitting M into Euclidean

space, to be applicable to small and large chromosomes. Using a small chromosome

as a trial might highlight issues in the transforming and fitting process which are not

directly applicable to larger chromosomes, the same might be true when using larger

chromosomes as a trial.

When using M from Chromosome 14 with the power transform, only a small fraction of

the count matrix elements require adjusting for the minimum count adjustment. Elements

of M with counts of zero which require adjusting for the mmin = 1 adjustment, are m14,87

(and m87,14). Elements of M with counts of zero or one which require adjusting for

the mmin = 2 adjustment, are m14,87 (and m87,14) and m9,45,m22,84,m22,87,m64,87 (and

m45,9,m84,22,m87,22,m87,64). The mmin = 1 adjustment adjusts 0.0264 % of the elements

of M while the mmin = 2 adjustment adjusts 0.1321 % of the elements of M.

In Chromosome 14 the centromere is removed from the analysis, be deleting the rows and

columns in M corresponding to the centromere, and deleting the row and column of the

megabases abutting the centromere. This leaves 87 megabase intervals to fit into space,

which are not part of the centromere or sit next to it; this is the procedure used where the
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centromere sits at the start of the chromosome. In chromosomes where the centromere sits

in the middle of the chromosome, the rows and columns corresponding to the megabase

intervals of the centromere are deleted from M, and the rows and columns of the abutting

megabase intervals are deleted from M. The abutting megabase intervals are removed as

a precaution, should the neighbouring centromere effect their ability to make contact. As

the centromere is completely removed from M it will have no effect on the points in the

estimated chromosome configuration. Table 4.1 gives the location of the centromere for

each chromosome.

The estimated chromosomes configurations in Appendix Section G have the location of

the centromere marked on by a blue line , the estimated chromosome configurations

with this line missing will have the centromere located at the start of the chromosome.

4.2.1 Estimated chromosome configuration from metric MDS

Table 4.2 gives parameter values α̂ or β̂ which minimize χ2 (4.9), with the corresponding

SSR(M, Û) (4.8) and S3(X̂) (2.14) values. Tables A.1, A.2 and A.3 (Appendix

Section A.1) give the parameter and score function values for each chromosomes

individually.

The power transform results in Table 4.2 show that the fit corresponding mmin = 2

produces a smaller χ2 (4.9), so this result will be used as the best fitting result for the

power transform and will be compared with the exponential transform results. Comparing

the results from the two transforms in Table 4.2, the exponential transform produces the

smallest χ2 and accompanying measures of fit, suggesting X̂E,M is the better estimate of

X.

In Figure 4.2a the relationship between mi,j and d̃i,j (using the exponential transform)

appears to tend to zero quickly, with mi,j < 200 producing large d̃i,j , 200 ≤ mi,j < 600

producing medium d̃i,j and mi,j ≥ 600 producing d̃i,j ≈ 0, this relationship could force
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(a) Heatmap of the observed counts.

(b) Full histogram. (c) Truncated histogram.

Figure 4.1: Top panel: heatmap of Chromosome 14’s Hi-C count matrix. The bright
yellow in the heatmap denote large counts, and as colour moves to darker red count size
decreases. Bottom left panel: full histogram of the elements from the lower triangle
of Chromosome 14’s Hi-C count matrix M = (mi,j). Bottom right panel: truncated
histogram to include all mi,j ≤ 450 from the lower triangle of M.
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Chromosome Length Centromere Total off Total diagonal
Mb location diagonal counts counts

1 226 123-124 842012 736117
2 238 93-94 835841 815125
3 194 92-93 686957 612265
4 187 51-52 577626 532770
5 176 48-49 597039 530822
6 166 60-61 584960 487834
7 154 60-61 521111 452522
8 142 45-46 490413 425553
9 121 49-50 404428 338625
10 132 41-42 474448 400507
11 130 53-54 477916 366903
12 129 36-37 465746 344414
13 96 0-1 3012629 237645
14 87 0-1 316079 212533
15 81 0-1 308043 206365
16 78 37-38 298194 215765
17 78 0-1 317288 182448
18 76 0-1 257251 192580
19 54 26-27 215135 121924
20 59 28-29 244615 154790
21 32 0-1 113223 60394
22 34 0-1 145433 77180
X 150 60-61 422117 419063

Table 4.1: Table summarizing the data in the chromosome count matrix. Column one
gives the chromosome number. Column two gives the length of the chromosome in
megabase intervals, after trimming megabases of poor mapability (centromere region and
abutting megabase intervals). The length of the chromosome is also the number of rows
and columns in the chromosome count matrix M. Column three gives the megbases
intervals the centromere should lie between, 0-1 indicates the centromere is found at the
start of the chromosome. Column four and five give the total diagonal counts in M and
total off-diagonal (lower triangle) counts in M.

adjacent megabase intervals to share di,j ≈ 0. The histogram in Figure 4.2b displays

a large quantity of d̃i,j ≥ 0.6, large d̃i,j over influence X̂E,M and could force it to take

aspects of the horseshoe effect. The clustering of d̃i,j around a constant could cause
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Transform Parmeter Parameter χ2 SSR(M, Û) S3(X̂)
function estimate

Exponential α̂ 0.0095 147172 2.7044×107 16.7813%
transform

Power mmin = 1:β̂ -0.4497 1171886 2.9535×1010 32.0391%
transform mmin = 2:β̂ -0.4796 485658 7.4257×108 23.73281%

Table 4.2: Score function data from using metric MDS to obtain an estimated
chromosome configuration for Chromosome 14. Column one and two state which
transform function has been used and which parameter has been estimated; when using the
power transform (4.6) the row is subdivided according which minimum count adjustment
has been used. Column three and four give the estimated parameter value and the χ2 (4.9)
value it minimizes. Column five and six give the SSR(M, Û) (4.8) and S3(X̂) (2.14)
values found using the estimated parameter values. The α̂ for (4.4) and β̂ for (4.6) are
found by applying the fitting algorithm (Section 4.1.3) using the χ2 score function and
fitting into three dimensional Euclidean space with metric MDS, to Chromosome 14’s
Hi-C count matrix.

problems of indifferentiation (Buja and Swayne, 2002), which in the extreme case where

d̃i,j = c ∀ i 6= j when fitted produces a n−1 dimensional simplex where d̂i,j = c ∀ i 6= j.

In Figure 4.3a the relationship between mi,j and d̃i,j (using the power transform) appears

to tend to zero gradually, with mi,j ≤ 100 producing large d̃i,j and m > 100 producing

medium to small d̃i,j . The histogram in Figure 4.3b displays a large quantity of d̃i,j < 0.4,

reflecting the increased accuracy in smaller distances which are less likely to produce the

horseshoe shaped configurations, as discussed in Section 2.4.

Figure 4.4 gives the scree plots of the fitted eigenvalues Λ̂E,M or Λ̂P,M . Ignoring

magnitude and inspecting the lead three (genuine) eigenvalues relative to the spurious

non-zero eigenvalues, the genuine eigenvalues in Λ̂E,M (Figure 4.4a) appear spaced

better from the spurious eigenvalues, than in Λ̂P,M . The genuine eigenvalues in Λ̂E,M

clearly surpass the largest spurious eigenvalue, whereas for the Λ̂P,M the lead eigenvalue

surpasses the second and third eigenvalue which are a similar size to the largest spurious

eigenvalue. The negative eigenvalues in Λ̂E,M are small with the absolute magnitude
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(a) Relationship between mi,j and d̃i,j . (b) Histogram of D̃E,M .

Figure 4.2: Inspection of the estimated distances D̃E,M = (d̃i,j), found from
Chromosome 14’s Hi-C count matrix M = (mi,j) using the exponential transform (4.4)
with α̂ = 0.0095 (Table 4.2). Left panel: the relationship between mi,j and d̃i,j . Right
panel: histogram of the elements in the lower triangle of D̃E,M .

(a) Relationship between mi,j and d̃i,j . (b) Histogram of D̃P,M .

Figure 4.3: Inspection of the estimated distances D̃P,M = (d̃i,j), found from Chromosome
14’s Hi-C count matrix M = (mi,j) using the power transform (4.6) with the mmin = 2

adjustment and β̂ = −0.4796 (Table 4.2). Left panel: the relationship between mi,j and
d̃i,j . Right panel: histogram of the elements in the lower triangle of D̃P,M .
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(a) Scree plot of Λ̂E,M . (b) Scree plot of Λ̂P,M .

Figure 4.4: Left panel: scree plot of the fitted eigenvalues Λ̂E,M (2.7) found from
fitting D̃E,M into Euclidean space with metric MDS. Right panel: scree plot of the fitted
eigenvalues Λ̂P,M (2.7) found from fitting D̃P,M into Euclidean space with metric MDS.
The three lead fitted eigenvalues are denoted by , and the remaining fitted eigenvalues
are denoted by . The D̃E,M are found by applying the exponential transform (4.4) with
α̂ = 0.0095 (Table 4.2) to Chromosome 14’s Hi-C count matrix M. The D̃P,M are found
by applying the power transform (4.6) with mmin = 2 adjustment and β̂ = −0.4796

(Table 4.2) to M.

of the largest negative eigenvalue smaller than the largest spurious positive eigenvalue,

indicating a good Euclidean D̃E,M . In contrast, the negative eigenvalues in Λ̂P,M

(Figure 4.4b) are almost a symmetrical to the positive eigenvalues, with the absolute

magnitude of the largest negative eigenvalue similar size to the second eigenvalue,

indicating a poor Euclidean D̃P,M . The proportion of information projected into the first

three dimensions tells a similar story, the exponential transform performs better as the

spurious eigenvalues influence θ1:3 (2.12) less than in the power transform.

The fitted configuration X̂E,M in Figure 4.5 appears as a horseshoe when plotted in

the first and second dimensions although in the first and third dimensions the cubic

polynomial relationship arrangement does not appear to be present. The centre of X̂E,M

appears hollow. Following the path of the chromosome in X̂E,M the points appear to
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Figure 4.5: Perspectives of Chromosome 14’s estimated configuration X̂E,M . The origin
of the megabase interval is denoted by the point and the red line denotes the average
path of the DNA along the configuration. The configuration X̂E,M is found by fitting
the estimated distances D̃E,M into three dimensional Euclidean space with metric MDS.
The matrix D̃E,M is found by applying the exponential transform (4.4) with α̂ = 0.0095

(Table 4.2) to Chromosome 14’s Hi-C count matrix.

Figure 4.6: Perspectives of Chromosome 14’s estimated configuration X̂P,M . The origin
of the megabase interval is denoted by the point and the red line denotes the average
path of the DNA along the configuration. The configuration X̂P,M is found by fitting the
estimated distances D̃P,M into three dimensional Euclidean space with metric MDS. The
matrix D̃P,M is found by applying the power transform (4.6) with mmin = 2 adjustment
and β̂ = −0.4796 (Table 4.2) to Chromosome 14’s Hi-C count matrix.
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θ1 θ2 θ3 θ1:3
Exponential 17.887% 11.604% 8.191% 37.682%
transform

Power 16.570% 5.356% 3.875% 25.801%
transform

Table 4.3: Percentage of information projected into the first three dimensions θ1, θ2 and θ3
and total percentage of information projected into the first three dimensions θ1:3. The θ1,
θ2, θ3 and θ1:3 values are found by substituting the fitted eigenvalues in Λ̂E,M (for (4.4)) or
Λ̂P,M (for (4.6)) into (2.11) and (2.12). The fitted eigenvalues Λ̂E,M (2.7) are found from
fitting D̃E,M into Euclidean space with metric MDS. The D̃E,M are found by applying the
exponential transform (4.4) with α̂ = 0.0095 (Table 4.2) to Chromosome 14’s Hi-C count
matrix M. The fitted eigenvalues Λ̂P,M (2.7) are found from fitting D̃P,M into Euclidean
space with metric MDS. The D̃P,M are found by applying the power transform (4.6) with
mmin = 2 adjustment and β̂ = −0.4796 (Table 4.2) to M.

meander and form clusters, which could correspond to features of X captured at a local

scale. The fitted configuration X̂P,M in Figure 4.6 presents a less obvious horseshoe in the

first and second dimensions. In the first and third dimensions the polynomial relationship

does not appear to be present and the centre of X̂P,M appears less hollow. The path of the

chromosome in X̂P,M meanders more chaotically but still forms clusters.

In the Shepards plot of distances from the exponential transform in Figure 4.7a, the fitted

configuration has filled a void in medium distances by increasing small distances and

decreasing large distances, and the gradient of the line of best fit below one suggesting a

general decrease in distances. It is more difficult to interpret the Shepards plot of counts

from the exponential transform in Figure 4.7b. The majority of counts are placed above

the identity line reflecting the decrease in distances, although the line of best fit is below

one this could be biased by a larger decrease in large counts.

In the Shepards plot of distances from the power transform in Figure 4.8a, the plotted

points lie close to identity line with some variation indicating a good fit, and the gradient

of the line of best fit is almost equal to one suggesting a balanced adjustment of distances.
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(a) Distances (b) Counts

Figure 4.7: Left panel: Shepards plot of the fitted distances D̂E,M and estimated distances
D̃E,M . Right panel: Shepards plot of the fitted counts ÛE,M and Chromosome 14’s Hi-
C counts M. In both figures the identity line is denoted by , and the line of best fit
with zero intercept and gradient 0.7980 for distances or 0.6066 for counts is denoted by

. The elements of ÛE,M are obtained by inputting the elements of D̂E,M into the
inverse exponential transform (4.5) with α̂ = 0.0095 (Table 4.2). The elements of D̂E,M

are extracted from Chromosome 14’s estimated configuration X̂E,M , using (2.2) with
p = 3. The estimated configuration X̂E,M is found by fitting the matrix D̃E,M into three
dimensional Euclidean space with metric MDS. The matrix D̃E,M is found by applying
the exponential transform (4.4) with α̂ = 0.0095 to M.

The Shepards plot of counts from the power transform in Figure 4.8b displays a large

average increase in count size. This is driven by small distances decreasing and been

magnified through (4.7) to produce very large increases in large counts, for example

m61,63 = 216 becomes µ̂61,63 = 9375 after fitting. This magnification explains the

SSR(M, Û) (4.8) from the power transform being in the order of the tens of billions.

In Figure 4.9a the relationship between d̂i,j and µ̂i,j for the exponential transform (4.4)

returns the majority of fitted counts µ̂i,j ≤ 200 and only very small d̂i,j produce

µ̂i,j > 200. This can be seen in the histogram in Figure 4.9b with the majority of the

fitted counts situated µ̂i,j ≤ 200. The histogram in Figure 4.9b is similar in shape to the

truncated histogram of the observed counts mi,j Figure 4.1c, showing that the inverse of
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(a) Distances (b) Counts

Figure 4.8: Left panel: Shepards plot of the fitted distances D̂P,M and estimated distances
D̃P,M . Right panel: Shepards plot of the fitted counts ÛP,M and Chromosome 14’s Hi-C
counts M. In both figures the identity line is denoted by , and the line of best fit with
zero intercept and gradient 1.0345 for distances or 1.8128 for counts is denoted by .
The elements of ÛP,M are obtained by inputting the elements of D̂P,M into the inverse
power transform (4.7) with β̂ = −0.4796 (Table 4.2). The elements of D̂P,M are extracted
from Chromosome 14’s estimated configuration X̂P,M , using (2.2) with p = 3. The
estimated configuration X̂P,M is found by fitting the matrix D̃P,M into three dimensional
Euclidean space with metric MDS. The matrix D̃P,M is found by applying the power
transform (4.6) with mmin = 2 and β̂ = −0.4796 to M.

the exponential transform (4.5) recovers the distribution of small mi,j fairly well.

In Figure 4.10a the relationship between d̂i,j and µ̂i,j for the power transform (4.6) returns

the majority of the counts below µ̂i,j ≤ 1000 but very small d̂i,j have the potential to

return very large µ̂i,j . In Figure 4.10b the histogram reveals an extremely long tail with

the majority of the µ̂i,j ≤ 100 and few very large µ̂i,j .

The histogram in Figure 4.10d is similar to the truncated histogram of the observed

counts in Figure 4.1c, indicating that the inverse of the power transform (4.7) recovers

the distribution of small mi,j well but performs poor for large mi,j .

The patterns in the heatmaps in Figure 4.11 are somewhat blurred in D̃E,M and D̃P,M
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(a) Relationship between d̂i,j and µ̂i,j . (b) Histogram of ÛE,M

Figure 4.9: Inspection of the fitted counts ÛE,M = (µ̂i,j), from Chromosome 14’s
estimated configuration’s X̂E,M fitted distances D̂E,M = (d̂i,j). Left panel: the
relationship between d̂i,j and µ̂i,j . Right panel: histogram of the elements in the lower
triangle of ÛE,M . The elements of ÛE,M are obtained by inputting the elements of D̂E,M

into the inverse exponential transform (4.5) with α̂ = 0.0095 (Table 4.2). The elements
of D̂E,M are extracted from Chromosome 14’s estimated configuration X̂E,M , using (2.2)
with p = 3. The estimated configuration X̂E,M is found by fitting the estimated distances
D̃E,M into three dimensional Euclidean space with metric MDS. The D̃E,M is found by
applying the exponential transform (4.4) with α̂ = 0.0095 to Chromosome 14’s Hi-C
count matrix.

but are sharpened in D̂E,M and D̂P,M . This suggests the metric MDS removes a lot

of the noise from the estimated distance matrices. Three patterns can be distinguished.

The first pattern divides the heatmap into nine blocks and subdivides each block into

four smaller blocks. The second pattern is the band of small distances running next to

the main diagonal, corresponding to the band of large counts running next to the main

diagonal of M. The third pattern is additional structure on inside the three blocks found

on the diagonal. Combinations of these patterns can help explain the structure in X̂,

for example the second pattern reflects local structure in X̂ and combined with the first

pattern this reflects clumping of chromatin along the chromosome. Fitting also appears to

remove noise, returning cleaner looking heatmaps for the fitted distance matrices D̂E,M
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(a) Relationship between d̂i,j and µ̂i,j . (b) Histogram of ÛP,M .

(c) Relationship between d̂i,j and µ̂i,j . (d) Truncated histogram of ÛP,M .

Figure 4.10: Inspection of the fitted counts ÛP,M = (µ̂i,j), from Chromosome 14’s
estimated configuration’s X̂P,M fitted distances D̂P,M = (d̂i,j). Figure 4.10a: the
relationship between d̂i,j and µ̂i,j . Figure 4.10b: histogram of the elements in the lower
triangle of ÛP,M . Figure 4.10c: the relationship between d̂i,j and µ̂i,j , truncated to include
all µ̂i,j ≤ 450. Figure 4.10d: histogram of the elements in the lower triangle of ÛP,M ,
truncated to include all µ̂i,j ≤ 450. The elements of ÛP,M are obtained by inputting the
elements of D̂P,M into the inverse power transform (4.7) with β̂ = −0.4796 (Table 4.2).
The elements of D̂P,M are extracted from Chromosome 14’s estimated configuration
X̂P,M , using (2.2) with p = 3. The estimated configuration X̂P,M is found by fitting the
estimated distances D̃P,M into three dimensional Euclidean space with metric MDS. The
D̃P,M is found by applying the power transform (4.6) with mmin = 2 and β̂ = −0.4796 to
Chromosome 14’s Hi-C count matrix.
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(a) D̃E,M . (b) D̂E,M .

(c) D̃P,M . (d) D̂P,M .

Figure 4.11: Row one: heatmaps of estimated distance D̃E,M and fitted distance
D̂E,M matrices found using the exponential transform (4.4) and metric MDS. Row
two: heatmaps of estimated distance D̃P,M and fitted distance D̂P,M matrices found
using the power transform (4.6) and metric MDS. In each heatmap distance increases
as colour brightens from dark red to bright yellow. The matrix D̂E,M is extracted from
Chromosome 14’s estimated configuration X̂E,M using (2.2) with p = 3, where X̂E,M

is found by fitting the matrix D̃E,M into three dimensional Euclidean space with metric
MDS. The matrix D̃E,M is found by applying the exponential transform with α̂ = 0.0095

(Table 4.2) to Chromosome 14’s Hi-C count matrix M. The matrix D̂P,M is extracted
from Chromosome 14’s estimated configuration X̂P,M using (2.2) with p = 3, where
X̂P,M is found by fitting the matrix D̃P,M into three dimensional Euclidean space with
metric MDS. The matrix D̃P,M is found by applying the power transform with mmin = 2

and β̂ = −0.4796 (Table 4.2) to M.
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Transform Parameter Parameter S3(X̂)
function estimate

Exponential α̂ 0.0961 12.1728%
transform

Power β̂:mmin = 1 -0.3040 12.1724%
function

Table 4.4: Score function data from using non-metric MDS to obtain an estimated
chromosome configuration for Chromosome 14. Column one and two state which
transform function has been used and which parameter has been estimated. Column three
and four give the estimated parameter value and the S3(X̂) (2.14) value it minimizes. The
α̂ for (4.4) and β̂ for (4.6) are found by applying the fitting algorithm (Section 4.1.3)
using the S3(X̂) score function and fitting into three dimensional Euclidean space with
non-metric MDS, to Chromosome 14’s Hi-C count matrix.

and D̂P,M .

4.2.2 Estimated chromosome configuration from non-metric MDS

The fitting algorithm in Section 4.1.3 was applied with non-metric MDS, finding the

transform function parameter values α̂ for (4.4) or β̂ for (4.6), which produces the

estimated distances matrix D̃ which minimizes S3(X̂) (2.14). Non-metric MDS relies

on the rank ordering of the distances so little difference is expected between X̂E,NM and

X̂P,NM as the rank ordering of the respective estimated distance will not vary between

transforms. The mmin = 1 adjustment will only be made for the power transform to avoid

d̃i,j = ∞; the mmin = 2 adjustment is not required as non-metric MDS relies on the

rank ordering of the distances. Table 4.4 gives the transform function parameter values

α̂ (4.4) or β̂ (4.6) (mmin = 1) which minimize S3(X̂). Tables A.4 A.5 and A.6 (in

Appendix Section A.2) give the parameter and S3(X̂) score function values for all the

chromosomes.

S3(X̂) (2.14) values in Table 4.4 are almost equal suggesting X̂E,NM and X̂P,NM are
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equally valid estimates of X. Since rank ordering of distances are used, the small

difference in S3(X̂) can be attributed to the small order change from the mmin = 1

adjustment.

The fitted configurations X̂E,NM (Figure 4.12) and X̂P,NM (Figure 4.13) now appear

identical to each other. In both X̂E,NM and X̂P,NM a horseshoe shape is present when

the first and second dimensions are plotted together, although the cubic polynomial shape

is not present when the first and third dimensions are plotted together. The points in

X̂E,NM and X̂P,NM appear to meander about and form cluster. Both fitted configurations

X̂E,NM and X̂P,NM have hollow centres.

The heatmaps in Figure 4.14 share broadly similar patterns to their metric equivalents of

blocks, diagonal bands and patterns at the ends of the bands. The fitting also appears to

remove noise producing cleaner looking heatmaps for fitted distance matrices D̂E,NM and

D̂P,NM .

4.2.3 Discussion

Metric MDS provides more options when measuring fit than non-metric MDS, but suffers

in that it requires a Euclidean distance matrix to recover X̂. When fitting with metric

MDS, the fitted counts µ̂i,j appear sensitive to small changes in small distances, which

can cause score functions to blow up, distance based score functions such as S3(X̂) (2.14)

can avoid this problem.

Since non-metric MDS operates on the rank ordering of the distances simpler transform

functions were tested, (such as d̃i,j = c − mi,j and d̃i,i = 0, where c is some constant

such that c > mi,j ∀ i 6= j). When these estimated distance matrices were fitted with

non-metric MDS similar looking X̂ were obtained.
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Figure 4.12: Perspectives of Chromosome 14’s estimated configuration X̂E,NM . The
origin of the megabase interval is denoted by the point and the red line denotes the
average path of the DNA along the configuration. The configuration X̂E,NM is found by
fitting the estimated distance matrix D̃E,NM into three dimensional Euclidean space with
non-metric MDS. The matrix D̃E,NM is found by applying the exponential transform (4.4)
with α̂ = 0.0961 (Table 4.4) to Chromosome 14’s Hi-C count matrix.

Figure 4.13: Perspectives of Chromosome 14’s estimated configuration X̂P,NM . The
origin of the megabase interval is denoted by the point and the red line denotes the
average path of the DNA along the configuration. The configuration X̂P,NM is found by
fitting the estimated distance matrix D̃P,NM into three dimensional Euclidean space with
non-metric MDS. The matrix D̃P,NM is found by applying the power transform (4.6) with
mmin = 1 adjustment and β̂ = −0.3040 (Table 4.4) to Chromosome 14’s Hi-C count
matrix.
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(a) D̃E,NM . (b) D̂E,NM .

(c) D̃P,NM . (d) D̂P,NM .

Figure 4.14: Row one: heatmaps of estimated distance D̃E,NM and fitted distance D̂E,NM

matrices found using the exponential transform (4.4) and non-metric MDS. Row two:
heatmaps of estimated distance D̃P,NM and fitted distance D̂P,NM matrices found using
the power transform (4.6) and non-metric MDS. In each heatmap distance increases as
colour brightens from dark red to bright yellow. The matrix D̂E,NM is extracted from
Chromosome 14’s estimated configuration X̂E,NM using (2.2) with p = 3, where X̂E,NM

is found by fitting the matrix D̃E,NM into three dimensional Euclidean space with non-
metric MDS. The matrix D̃E,NM is found by applying the exponential transform with
α̂ = 0.0961 (Table 4.4) to Chromosome 14’s Hi-C count matrix M. The matrix D̂P,NM is
extracted from Chromosome 14’s estimated configuration X̂P,NM , using (2.2) with p = 3,
where X̂P,NM is found by fitting the matrix D̃P,NM into three dimensional Euclidean
space with non-metric MDS. The matrix D̃P,NM is found by applying the power transform
with mmin = 1 and β̂ = −0.3040 (Table 4.4) to M.



Chapter 4. Exploratory analysis 77

4.3 Comparing estimated chromosome configurations

The combination of two transform functions and two MDS methods provides four

estimated chromosome configurations X̂’s. To measure the difference between the X̂’s,

two measures of shape difference were used, one based on the Procustes sum of squares

and another based on the fitted distance matrices (Segal et al., 2014). Subscript notation

from the previous section will be retained (E=exponential, P=power, M=metric and

NM=non-metric).

4.3.1 Measuring the difference between estimated chromosome

configurations

Prescaled Procrustes distance

The prescaled Procrustes distance POSS(X,Y) is a modification on the Procrustes

distance OSS(X,Y) (2.16). The prescaled Procrustes distance is

POSS(X,Y) = OSS
(

Y

||Y||
,

X

||X||

)
(4.10)

where ||Y|| = (tr(YYT ))
1
2 . This is one measure of shape difference between

configurations. Prescaling the configurations prevents issues with scaling within the

Procrustes distance such as OSS(Y,X) 6= OSS(X,Y).

Distance differencing

Difference differencing DD(X,Y) calculates the distances between two fitted distance

matrices (2.2), from the fitted configurations. Let DY = (dy,i,j) be the distance matrix
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for configuration Y, and Dx = (dx,i,j) be the distance matrix for configuration X. The

distances are scaled

d∗y,i,j =
dy,i,j∑
i<j dy,i,j

,

then distance is calculated between D∗Y and D∗X by

DD(X,Y) =

(∑
i<j

(d∗y,i,j − d∗x,i,j)2
) 1

2

. (4.11)

4.3.2 Difference between the estimated chromosome configurations

X̂E,M 0.2063 0.0409 0.0411
0.0080 X̂P,M 0.1441 0.1416
0.0033 0.0064 X̂E,NM 0.0002
0.0033 0.0063 0.0002 X̂P,NM

Table 4.5: Matrix of shape difference measures between Chromosome 14’s estimated
configurations (Section 4.2). Upper triangle: POSS(X,Y) (4.10) values. Lower triangle:
DD(X,Y) (4.11) values. Diagonal entries denote which configurations the row or column
values refer to.

From Table 4.5 X̂E,NM and X̂P,NM are almost identical in shape according to both

measures, with X̂E,M very close in shape to these two. The configuration X̂P,M appears

to be dissimilar from the other X̂’s, co-producing the largest distance measures. The X̂’s

can be sorted into two groups of configurations, group one containing X̂E,M , X̂E,NM and

X̂P,NM and group two only containing X̂P,NM .
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4.3.3 All chromosome configurations

Applying the four routes to estimate chromosome configuration gives four estimated

chromosome configurations for each chromosome. Then by measuring the prescaled

Procrustes distances (4.10) between the four configurations, and applying average linkage

cluster analysis, the four configurations can be sorted into two groups of configurations.

Applying this to Chromosome 14 we found group one contained X̂E,M , X̂E,NM and

X̂P,NM , while group two contained X̂P,M , where E or P denoted if the exponential

transform (4.4) or power transform (4.6) was used and M or NM denoted if metric

or non-metric MDS was used. Applying this method to each chromosome we found

two thirds of the chromosomes group like this, and one third of the chromosomes group

differently. In Appendix Section G gives the figures of the two estimated configurations

for each chromosome, where one figure represents the estimated configuration from group

one and the other figure from group two.

4.4 Cluster analysis

The heatmaps of the estimated distance matrices D̃ and fitted distance matrices D̂ (see

Figures 4.11 and 4.14) share a plaid pattern, which divides the matrices into nine blocks

and subdivides the blocks into four smaller blocks. These blocks could represent discrete

units of structure within the Chromosome 14. The three blocks located on the diagonal

of the distance matrices contain the distances between points within the units, and the six

blocks located off the diagonal contain the distance between the points in different units.

4.4.1 Application of cluster analysis

In Figures 4.15a and 4.15b, the blocks in D̂E,M and D̂P,M were investigated using average

linkage clustering (Everitt et al. (2001) pages 55-89). The cluster analysis was combined
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Chromosome Group one Group two
1 (P,M) (E,M), (E,NM), (P,NM)
2 (P,M) (E,M), (E,NM), (P,NM)
3 (P,M) (E,M), (E,NM), (P,NM)
4 (P,M), (E,NM), (P,NM) (E,M)
5 (P,M) (E,M), (E,NM), (P,NM)
6 (P,M) (E,M), (E,NM), (P,NM)
7 (P,M), (E,M), (P,NM) (E,NM)
8 (P,M) (E,M), (E,NM), (P,NM)
9 (P,M) (E,M), (E,NM), (P,NM)

10 (P,M) (E,M), (E,NM), (P,NM)
11 (P,M) (E,M), (E,NM), (P,NM)
12 (P,M), (E,M), (P,NM) (E,NM)
13 (P,M) (E,M), (E,NM), (P,NM)
14 (E,M), (E,NM), (P,NM) (P,M)
15 (P,M) (E,M), (E,NM), (P,NM)
16 (P,M) (E,M), (E,NM), (P,NM)
17 (P,M) (E,M), (E,NM), (P,NM)
18 (E,NM), (P,M) (P,MM), (E,M)
19 (P,M) (E,M), (E,NM), (P,NM)
20 (P,M) (E,M), (E,NM), (P,NM)
21 (E,M), (P,NM) (P,M), (E,NM)
22 (P,M), (E,M), (P,NM) (E,NM)
X (P,M) (E,M), (E,NM), (P,NM)

Table 4.6: Table detailing how the four estimated configuration for each chromosome are
grouped together. The prescaled Procrustes distance (4.10) is found between the estimated
configurations, then average linkage cluster analysis uses these distances to group the
configurations together. The labelling denotes which transform function has been used
E denotes the exponential transform (4.4) and P denotes the power transform (4.6);
then M denotes metric MDS and NM denotes non-metric MDS. For example (P,M)

is the estimated chromosome configuration found using the power transform and metric
MDS; (E,NM) is the estimated chromosome configuration found using the exponential
transform and non-metric MDS.
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with an indicator system, to indicate if the points clustering together could be ordered

sequentially without any missing elements. The indicator system worked as follows: if

the total elements of two branches aggregating at the node could be ordered sequentially

without any missing elements then a green square was place on the node, otherwise a

red circle was placed on the node . For example if the total elements of two branches

aggregating at the node are 1,2,3 and 5 then is placed on the node; if the total elements

of two branches aggregating at the node are 1,2,3,4 and 5 then is placed on the node.

The dendogram from D̂E,M in Figure 4.15a contains three large clusters each containing

sequential elements, each can be subdivided into two non-sequential subclusters, clusters

one contains megabase intervals 1 − 30, cluster two contains megabase intervals 31 −

58 and cluster contains three megabase intervals 59 − 87. The dendogram from D̂P,M

in Figure 4.15b contains two large non-sequential clusters and one small non-sequential

cluster.

4.4.2 Discussion

The elements of the three large clusters on D̂E,M (Figure 4.15a) correspond to the

three blocks on the diagonal of D̂E,M , marking the boundaries of the clusters in M in

Figure 4.16b. They partition the matrix exactly where the blocks abut. Similar partitioning

is not possible for the clusters of D̂P,M (Figure 4.15b) as the clusters are non-sequential.

For the same reason of non-sequentiality, the subclusters of D̂E,M cannot partition M.

The clusters labelled on X̂E,M in Figure 4.16a could correspond to a higher level of

chromatin organisation after the chromatin globule (Sanyal et al., 2011), where globules

are brought together to form chromatin domains. Since the elements of the clusters are

sequential this gives X̂E,M a beads on a string appearance, with the clusters forming the

beads and the megabase intervals on the boundaries of the clusters the string. Megabase

interval 59 is a example of a boundary megabase interval. It is the last element to be
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(a) Dendogram from D̂E,M found using average linkage clustering.

(b) Dendogram from D̂P,M found using average linkage clustering.

Figure 4.15: Top dendogram: found from the fitted distance matrix D̂E,M using average
linkage clustering. Bottom dendogram: found from the fitted distance matrix D̂P,M

using average linkage clustering. The square indicates if the total elements of the two
branches aggregating at a node can be ordered sequentially without any missing elements;
otherwise the circle is used. The matrix D̂E,M is extracted from Chromosome 14’s
estimated configuration X̂E,M using (2.2) with k = 3, where X̂E,M is found in Section 4.2
using the exponential transform (4.4) and metric MDS. The matrix D̂P,M is extracted from
Chromosome 14’s estimated configuration X̂P,M using (2.2) with k = 3, where X̂P,M is
found in Section 4.2 using the power transform (4.6) and metric MDS.
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added to cluster three, and the first megabase interval within the cluster. This indicates

megabase interval 59 could act as a bridge between clusters two and three. This beads on

a string configuration agrees with the fractal globule model (Section 1.2.6) proposed by

Lieberman-Aiden et al. (2009) where chromatin clusters can uncrumple without been

affected by other chromatin clusters. Although the subclusters do not conform with

this fractal globule model as they are non-sequential, these could be driven by the

euchromatin and heterochromatin compartments identified by Lieberman-Aiden et al.

(2009). Therefore Metric MDS on D̃E,M (and non-metric MDS on D̃E,NM or D̃P,M )

has potentially captured some local structure from X in X̂E,M .

(a) Clusters in X̂E,M . (b) Partitioned M.

Figure 4.16: Left panel: the three large clusters identified in Figure 4.15a marked on to
Chromosome 14’s estimated configuration X̂E,M . Right panel: boundaries between the
three clusters identified in Figure 4.15a partitioning Chromosome 14’s Hi-C count matrix.
In Figure 4.16a megabase intervals of the first cluster are denoted by ; the megabase
intervals of the second cluster are denoted by , and the megabase intervals of the third
cluster are denoted by . The dashed line denotes the intervals between the clusters.
The estimated configuration X̂E,M is found using the expontial transform (4.4) and metric
MDS on Chromosome 14’s Hi-C count matrix M (Section 4.2.1).
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4.5 Local structure

Small counts mi,j found at large genomic distance provide less accurate estimated

distances d̃i,j , which can be detrimental in the recovery X̂. Taking symmetric submatrices

from the diagonal of M, contain largemi,j made at low genomic distance and fewer small

mi,j . These submatrices can be transformed and fitted using the same approaches used

to fit M to give an estimated configuration for a subregion of the chromosome. Two

approaches to obtain estimated configurations from submatrices were taken.

Let M(a:b) = (m
(a:b)
i,j ) denote the symmetric submatrix of M from megabase interval a

through to megabase interval b, such that m(a:b)
i,j = mi+a−1,j+b−1, the same superscript

notation is added to all matrices involved.

4.5.1 Single submatrices

This method takes a single symmetric submatrix M(a:b), transforms it into estimated

distance matrix D̃(a:b) using (4.4) or (4.6). Then D̃(a:b) is fitted into Euclidean space

using metric or non-metric MDS. The parameters α̂ for (4.4) or β̂ for (4.6) are found

using the fitting algorithm in Section 4.1.3. Choosing the correct size M(a:b) is important.

Too small a M(a:b) then little new information will be gained. For example a 2× 2 M(a:b)

will provide no new information. Too large a M(a:b) then again little new information

will be gained. For example a (n − 1) × (n − 1) M(a:b) will give little new information.

Medium sized M(a:b) could provide some new information. Medium M(a:b) will not be

as influenced by small counts found at large genomic distance, and instead will contain a

higher proportion of the larger counts found at small genomic distance.

The elements of the three sequential clusters identified from D̂E,M for Chromosome 14

in Section 4.4, provides the megabase intervals to extract M(a:b). These three M(a:b)

will be transformed into estimated distances D̃
(a:b)
E,M using the exponential transform (4.4),
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and fitted into three dimensional Euclidean space using metric MDS, to give the fitted

configurations X̂
(a:b)
E,M . The α̂ parameters which minimize the score function χ2 (4.9) will

be found using the fitting algorithm in Section 4.1.3.

Cluster Megabase α̂ χ2

intervals estimate
1 1:30 0.0058 12370
2 31:58 0.0046 16576
3 59:87 0.0047 22120

Table 4.7: Score function data from fitting single submatrices M(a:b) from Chromosome
14’s Hi-C counts matrix, using the exponential transform (4.4) and metric MDS. Column
one and two identify which large cluster (Section 4.4) the submatrix M(a:b) corresponds
to, and the megabase intervals a : b it is composed of. Column three and four give the
estimated parameter α̂ value and the χ2 (4.9) value it minimizes. The α̂ for the exponential
transform is found by applying the fitting algorithm (in Section 4.1.3) using the χ2 score
function and fitting into three dimensional Euclidean space with metric MDS, to M(a:b).

The fitted configurations X̂
(1:30)
E,M , X̂

(31:58)
E,M and X̂

(59:87)
E,M from the three submatrices all

resemble smaller copies of X̂E,M (Figure 4.5). The points in the first and second

dimensions when plotted resemble a horseshoe shape, and the points in the first and

third dimensions resemble a cubic polynomial. This indicates that the horseshoe effect

(Section 2.4) is present in X̂
(1:30)
E,M , X̂

(31:58)
E,M and X̂

(59:87)
E,M . The centres of the fitted

configurations also appear hollow. The fitted configuration of the second cluster X̂
(31:58)
E,M

can be seen in Figure 4.17.

4.5.2 Windows smoothing

Windows smoothing is an advancement on the single submatrices method. Windows

smoothing takes all the n∗ × n∗ (where n∗ < n) symmetric submatrices from M, stacks

the submatrices into an n∗ × n∗ × (n− n∗ + 1) array, finally the mean is taken down the
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Figure 4.17: Perspectives of Chromosome 14’s estimated configuration for the second
cluster X̂

(31:58)
E,M . The origin of the megabase interval is denoted by and the red line

denotes the average path of the DNA along the configuration. The configuration
X̂

(31:58)
E,M is found by taking the submatrix M(31:58), transforming it into estimated distances

using the exponential transform (4.4) with α̂ = 0.0046 (Table 4.7). Then fitting the
estimated distances into three dimensional Euclidean space with metric MDS. The single
submatrix M(31:58) is taken of megabase intervals 31 to 58 from Chromosome 14’s Hi-C
count matrix.

plates of the array to give a windows smoothed submatrix W(n∗) = (w
(n∗)
i,j ) where

w
(n∗)
i,j = (n− n∗ + 1)−1

n−n∗∑
k=0

mi+k,j+k for i = 1, . . . , n∗, j = 1, . . . , n∗ (4.12)

Windows smoothing intends to capture mean local chromosome structure, by minimizing

influence from the noise in small mi,j .

Taking a window sized 15 × 15 megabase intervals from Chromosome 14’s Hi-C count

matrix M, the windows smoothed submatrix W(15) is transformed and fitted using each

of the two transform functions (4.4) and (4.6) and metric MDS. The score function χ2

(4.9) is minimized using W(15) and the fitted windows smoothed counts Ŵ(15). The

mmin = 1 adjustment for the power transform is unnecessary as w(15)
i,j > 2 ∀i 6= j (all

counts in W(15) are larger than 2). Table 4.8 shows that the power transform (4.6) has

produced a better fitting configuration with a smaller χ2, than the corresponding value

for the exponential transform (4.4). The fitted configurations X̂
(15)
E,M and X̂

(15)
P,M from



Chapter 4. Exploratory analysis 87

Transform Parameter Parameter χ2

function estimate
Exponential α̂ 0.0035 1244
transform

Power β̂ -0.7451 687
transform

Table 4.8: Score function data from fitting a windows smoothed submatrix sized 15× 15

megabases W(15) from Chromosome 14’s Hi-C counts matrix. Column one and two state
which transform function has been used and which parameter has been estimated. Column
three and four give the estimated parameter value and the χ2 (4.9) value it minimizes. The
α̂ for (4.4) and β̂ for (4.6) are found by applying the fitting algorithm (in Section 4.1.3)
using the χ2 (4.9) score function and fitting into three dimensional Euclidean space with
metric MDS, to W(15).

W (15) displayed in Figures 4.18 and 4.19 take a horseshoe shape in the first and second

dimensions, and a cubic polynomial shape in the first and third dimensions. The fitted

configuration for the power transform X̂
(15)
P,M appears to have taken on less aspects the

horseshoe effect than X̂
(15)
E,M . It has minor distortion in the points and no involution at the

ends of the configuration.

4.5.3 Discussion

All the fitted configurations (found from submatrices and windows smoothing) obtained to

investigate local structure, appear to have taken on aspects of the horseshoe effect. Using

smaller matrices has avoided the smaller counts found at large genomic distance, which

produce large spatial distances. This has caused the medium spatial distances to become

the new large distances of the estimated distance matrix, allowing the horseshoe effect to

be repeated. This provides evidence that the transform functions or score functions used

to obtain X̂, X̂(a:b) or X̂(n∗), require modification to avoid the presence of the horseshoe

effect in the fitted configurations.
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Figure 4.18: Perspectives of Chromosome 14’s estimated windows smoothed
configuration X̂

(15)
E,M . The origin of the megabase interval is denoted by and the red

line denotes the average path of the DNA along the configuration. The configuration
X̂

(15)
E,M is found by taking the windows smoothed submatrix W(15), transforming it into

estimated distances using the exponential transform (4.4) with α̂ = 0.0035 (Table 4.8).
Then fitting the estimated distances into three dimensional Euclidean space with metric
MDS. The windows smoothed submatrix W(15) is taken from Chromosome 14’s Hi-C
count matrix using (4.12) with a window sized 15× 15 megabases.

Figure 4.19: Perspectives of Chromosome 14’s estimated windows smoothed
configuration X̂

(15)
P,M . The origin of the megabase interval is denoted by and the red

line denotes the average path of the DNA along the configuration. The configuration
X̂

(15)
P,M is found by taking the windows smoothed submatrix W(15), transforming it into

estimated distances using the power transform (4.6) with β̂ = −0.7451 (Table 4.8). Then
fitting the estimated distances into three dimensional Euclidean space with metric MDS.
The windows smoothed submatrix W(15) is taken from Chromosome 14’s Hi-C count
matrix using (4.12) with a window sized 15× 15 megabases.
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4.6 Additional properties influencing count size

The main assumption underlying the recovery of a true chromosome configuration

X = (xi,k) is mi,j are related to di,j , through some unknown relationship and with the

addition of some noise, although other properties of the chromatin influence themi,j . The

influence of euchromatin and heterochromatin is one property.

Genomic distance N = (νi,j) measures the distance in megabases (Mb) between

megabase intervals along the chromosome. Adjacent megabase intervals i and i+ 1 have

a genomic distance νi,i+1 = 1. Non-adjacent megabase intervals i and j have a genomic

distance νi,j = |i − j|. Genomically close megabase intervals i and j are also spatially

close and tend to have large mi,j . Imagine each megabase interval as a link in a chain:

even when the chain is taut, close links along the chain remain spatially close.

The degree to where chromatin is condensed can also affect the size of mi,j . Euchromatin

is less condensed and is free to make more contacts, whereas heterochromatin is more

condensed and makes fewer contacts.

4.6.1 Generalized linear regression

Generalized linear regression with a logarithmic link function was used to investigate

the direct relationship of mi,j with νi,j (Christensen (1990) pages 349-364, Dobson

and Barnett (2008) pages 165 - 183). Two models were used. The first model (4.13)

(Model A) using log(νi,j) as the explanatory variable, the second model (4.14) (Model

B) augmenting the first model (4.13) to include row
¯
φ = (φi) and column

¯
ψ = (ψj)

factors which could be used to interpret the megabase effect. The megabase effect is how

the proportions of euchromatin or heterochromatin which make up the interval influence

mi,j . If a megabase intervals main constituent is euchromatin, then it should be more

open and make contact frequently, resulting in larger mi,j . If a megabase intervals main
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constituent is heterochromatin, then it should be more close and make fewer contacts,

resulting in smaller mi,j .

Model A

log(E(mi,j)) = c0 + c1log(νi,j). (4.13)

Model A produces a monotonically decreasing relationship between mi,j and νi,j (since

Estimate Standard
error

c0 6.2222 0.0153
c1 -0.8923 0.007
ρ̂ 17.2594

Table 4.9: Coefficient estimates with their standard errors, and the dispersion estimate ρ̂;
from applying Model A (4.13) to Chromosome 14’s Hi-C count matrix.

c1 < 0). Figure 4.20 shows a steep decline in mi,j at 1 Mb ≤ νi,j < 15 Mb then a

steadier decline in mi,j at νi,j ≥ 15 Mb, this is in agreement with Dekker et al. (2013)

description of the count and genomic distance relationship. Dekker et al. (2013) describes

Hi-C (Lieberman-Aiden et al., 2009) data having a steep decline for contact probability

at genomic distance 1 Mb ≤ νi,j < 10 Mb, and a shallow decline for contact probability

at genomic distance νi,j > 10 Mb. The presence of an underlying gradient gives M an

almost Toeplitz structure (see Section 2.4) and could be the cause of the horseshoe shapes

present in X̂ Figures 4.5, 4.6, 4.12 and 4.13. De Leeuw (2008) discusses how Toeplitz

dissimilarity matrices produce horseshoes when fitted using metric MDS. The transition

from steep to steady gradients Figure 4.20b indicates where the blending of medium and

large distance begins and where it becomes difficult to accurately measure distance. For

example, megabase intervals 1 and 21 share a similar E(mi,j) to megabase intervals 1 and

71, E(m1,21) ≈ E(m1,71), due to the plateauing of E(mi,j) at νi,j ≥ 15 Mb.
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The underlying gradient and plateau at νi,j ≥ 15Mb are intrinsic factors in M and

complicate finding a suitable transform and score function.

(a) log(mi,j) against log(νi,j). (b) mi,j against νi,j .

Figure 4.20: Plots of Chromosome 14’s Hi-C counts M = (mi,j) against genomic
distance N = (νi,j). Left panel: log(mi,j) against log(νi,j). Right panel: mi,j against
νi,j . In both plots the red line denotes the line of best fit from Model A (4.13).

Model B

log(E(mi,j)) = c1log(νi,j) + φi + ψj, (4.14)

where
¯
φ = (φi) and

¯
ψ = (ψi) are the row and column effects and i, j = 1, . . . , n. Since

Estimate Standard
error

c1 -1.1660 0.0104
ρ̂ 10.2538

Table 4.10: Coefficient estimates with their standard errors, and the dispersion estimate
ρ̂; from applying Model B (4.14) to Chromosome 14’s Hi-C count matrix.

M is a symmetric matrix, the row and column effects are two incomplete parts of the same
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piece of information. Combining
¯
φ and

¯
ψ will provide the complete piece of information,

a vector of megabase effects
¯
π = (πi), where πi = φi + ψi. The diagonal entries of M

(intramegabase counts) also provide information on the level of condensing in a megabase

interval, larger mi,i would indicate the intervals main constituent is euchromatin and

smaller mi,i would indicate the intervals main constituent is heterochromatin. Given this

the diagonal entries of M,
¯
ω = (ωi) where ωi = mi,i, are compared with

¯
π in Figure 4.21.

The comparison is looking to see if the distribution of peaks and troughs in
¯
π is similar to

¯
ω.

Figure 4.21: Comparison of the megabase effect
¯
pi = (πi) with the intra-megabase counts

¯
ω = (ωi), for Chromosome 14’s Hi-C count matrix M = (mi,j). The megabase effects

¯
π = (πi) are denoted by the black line , with the left axis giving its values. The intra
megabase counts

¯
ω = (ωi) are denoted by the red line , with the right axis giving its

values. The
¯
π values are found by summing the row and column effects (4.14),

¯
π =

¯
φ+

¯
ψ.

The
¯
ω values are the diagonal entries of M,

¯
ω = diag(M).

The distribution of peaks and troughs in Figure 4.21 looks broadly similar for
¯
π and

¯
ω, suggesting either measure could be used to assess the level of condensing within a

megabase. The
¯
ω values were used to determine if a megabase intervals tended produce

large mi,j’s and was more euchromatin-like (extrovert) or small mi,j’s and was more

heterochromatin-like (introvert). If ωi > ω where ω = n−1
∑n

i=1 ωi then megabase i was
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relatively extrovert otherwise if ωi ≤ ω then megabase i was relatively introvert.

In Figures 4.22 and 4.23 the estimated chromosome configurations X̂E,M and X̂P,M for

Chromosome 14, have had the extrovert and introvert megabase intervals labelled on

them. In both estimated chromosome configurations the introverted megabase intervals

cluster together and the extroverted megabase intervals cluster together. Although the two

clusters appear to be almost separated, by some imaginary partition.

The positioning of extroverted and introverted megabases in X̂E,M (Figure 4.22) and

X̂P,M (Figure 4.23) could correspond to the two compartments observed by Lieberman-

Aiden et al. (2009). The extroverted and introverted megabase intervals in X̂P,M broadly

match with the clusters identified in the dendogram of D̂P,M in Figure 4.15b. Clusters

one and three broadly match the extroverted megabase intervals and cluster two broadly

matches the introverted megabase intervals. This matching indicates that the cluster

analysis in D̂P,M detects the compartment feature of the genome.

4.6.2 Discussion

Investigating the relationship between mi,j and νi,j , has drawn attention to the gradient

in how count size declines with increasing genomic distance in M and how the MDS fits

megabase intervals dependent on their level of condensing. The gradient in M implies

that preprocessing or appropriate transform and score functions must be developed to

remove the horseshoe effect in X̂.

4.7 Normalization and filtering

This section looks at ideas to normalize M and filter out small counts from M. The

power transform (4.6) requires all observed counts of zero to be adjusted to one, to

provide a distance matrix which can be fitted into Euclidean space. Alternative methods
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Figure 4.22: Chromosome 14’s estimated configuration X̂E,M found using the
exponential transform (4.4) and metric MDS, with extroverted and introverted megabase
intervals labelled. The green circle denotes if the megabase interval is extroverted
and the red circle denoted if the megabase interval is introverted (Section 4.6). The
configuration X̂E,M is found in Section 4.2.1 from Chromosome 14’s Hi-C count matrix.

Figure 4.23: Chromosome 14’s estimated configuration X̂P,M found using the power
transform (4.6) and metric MDS, with extroverted and introverted megabase intervals
labelled. The green circle denotes if the megabase interval is extroverted and the red
circle denoted if the megabase interval is introverted (Section 4.6). The configuration
X̂P,M is found in Section 4.2.1 from Chromosome 14’s Hi-C count matrix.
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of removing small counts from M are explored as an alternative to the mmin adjustment.

Normalization and filtering aim to preprocess M, fit the preprocessed M with the power

transform and metric MDS, to recover X̂P,M with a less chaotic pattern and remove the

need for the mmin adjustment. The normalization procedure used by Lieberman-Aiden

et al. (2009); Duan et al. (2010); Trieu and Cheng (2014) produces a matrix of “interaction

frequencies” F = (fi,j) giving the ratio of observed to expected count,

fi,j = mi,j ×

(∑n
i=1mi,j

∑n
j=1mi,j∑

i<jmi,j

)−1
, (4.15)

where the second term (inside the brackets) is the reciprocal of the expected count.

Yaffe and Tanay (2011) normalize M for experimental biases in the data caused by

distances between restriction sites in the chromosome; guanine and cytosine (GC) content

of trimmed ligation junctions and sequence uniqueness. Where the distance between

restriction sites, is how the lengths of the fragments produced in the Hi-C experiments

are related to intrachromosomal and interchromosomal contacts. For example short

fragments might produce more intrachromosomal contacts and fewer interchromosomal

contacts. The GC content bias is a bias driven by the nucleotide composition of the

studied DNA. The GC content near restriction ends has an effect on the probability

of interchromosomal contacts been made. Imakaev et al. (2012) applies an iterative

decomposition to M to correct for biases and potential future biases.

4.7.1 Observed count normalization

An alternative normalization uses the diagonal elements of M to normalize M, to give

a normalized observed count matrix M∗ = (m∗i,j) with the intention of reducing the

extrovert-introvert megabase effect observed in Section 4.6. To begin with we constructed



Chapter 4. Exploratory analysis 96

a diagonal matrix Q = (qi,i), such that

qi,i =

√
n−1

∑n
i=1mi,i

mi,i

.

Then obtained the normalized counts M∗ though

M∗ = QMQ. (4.16)

The normalized count matrix M∗ was transformed and fitted using the power transform

(4.6) and metric MDS, although retaining the mmin adjustment.

The χ2 (4.9) results from the normalization in Table 4.11 display an improvement for

the mmin = 1 adjustment and a deterioration for the mmin = 2 adjustment. The fitted

configuration X̂∗P,M for mmin = 2 appears similar to X̂P,M in Figure 4.6, so normalization

has failed to reduce the extrovert introvert megabase effect.

Adjustment Normalized
χ2

mmin = 1 1060582
mmin = 2 533662

Table 4.11: Score function data from fitting Chromosome 14’s normalized Hi-C count
matrix M∗ (4.16), with the power transform (4.6) and metric MDS. Column one states
which count adjustment has been applied to M∗. Column two gives the minimized
χ2 (4.9) values. The minimized χ2 values are found by applying the fitting algorithm
(Section 4.1.3) with the power transform and fitting into three dimensional Euclidean
space with metric MDS, to M∗.

4.7.2 Observed count filtering

Filtering uses a generalized linear regression model with logarithmic link function, to

filter small mi,j from M, as an alternative to the mmin adjustment. Using model A (4.13)
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a matrix of expected counts E(M) = (E(mi,j)) is generated with an estimate for the

dispersion ρ̂ = 17.2594 in M obtained from the model, where var(mi,j) = ρµi,j . Using

the negative binomial distribution (suited for over dispersed counts) with expected counts

E(mi,j) and dispersion ρ̂, a matrix of probabilities P = (pi,j) is constructed such that

pi,j = P (mi,j ≤ E(mi,j)|E(mi,j), ρ̂). The pi,j gives the probability of observing a count

mi,j less than or equal to the expected count E(mi,j). A threshold probability is chosen τ

and a corresponding matrix of mean counts T = (ti,j) at this probability are found using

the negative binomial distribution quantile function, such that ti,j is the lowest integer that

allows P (ti,j ≤ E(mi,j)|E(mi,j), ρ̂) ≥ τ . Then any mi,j with a probability pi,j < τ , are

replaced with the corresponding ti,j , to give a filtered count matrix M̃ = (m̃i,j). The idea

behind this is if mi,j is classified as been too small according to Model A (4.13), then it

can be replaced with a value that is just large enough according to the model. This avoids

drastically increasing the size of the counts. The filtered counts M̃ are then transformed

and fitted using the power transform (4.6) and metric MDS. Three threshold values were

used: τ = 0.05, 0.01 and 0.005. In each case the mmin adjustment was retained, so

filtering failed.

Only at τ = 0.05 did filtering improve χ2 (4.9), while τ = 0.01 and 0.005 lead to

deterioration in χ2. Filtering at τ = 0.05 led to the replacement of 191 individual mi,j

(382 in total). The locations of the replaced mi,j are plotted in Figure 4.24. All the

replacements take place close to the diagonal and no small mi,j were replaced. Therefore

filtering has worked counter to its intention by removing large mi,j and leaving small the

mi,j , with the mmin = 1 adjustment still required.

4.7.3 Discussion

Preprocessing M through normalization or filtering improved some χ2 values, but the

improvements in X̂P,M were not noticeable or the intention of the preprocessing was not

fulfilled. Future normalization of M could use the interaction frequency matrix (4.15)
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Threshold χ2

level
τ = 0.05 858164
τ = 0.01 1746783
τ = 0.005 2614803

Table 4.12: Score function data from fitting Chromosome 14’s filtered Hi-C count matrix
M̃, with the power transform (4.6) and metric MDS. Column one gives the threshold
level τ used in the filtering (Section 4.7.2) to obtain M̃. Column two gives the minimized
χ2 (4.9) values. The minimized χ2 (4.9) values are found by applying the fitting algorithm
(Section 4.1.3) with the power transform (4.6) and fitting into three dimensional Euclidean
space with metric MDS, to M̃ (Section 4.7.2).

used by other research groups while future filtering could fit a generalized linear model

truncated to model the counts made at large genomic distance νi,j ≤ 15Mb. This

would avoid filtering out the large counts made at low genomic distance, which are not

detrimental to the estimated distances or estimated chromosome configuration.

4.8 Estimated genome configuration

In addition to obtaining estimated chromosome configurations, the global contact matrix

can be transformed and fitted into three dimensional Euclidean space, to give an estimated

genome configuration. The global contact matrix G(r) = (g
(r)
i,j ) (where the superscript

notation r denotes the resolution in megabases (Mb)), contains all the intrachromosomal

and interchromosomal counts for the twenty two chromosome pairs and the XX pair.

At 1 Mb resolution, with the rows and columns of poor mapability deleted, G1 is a

2820 × 2820 symmetric matrix. The same method of transforming and fitting M can be

applied to G1 to obtain a fitted genome configuration Ẑ1 = (ẑ
(1)
i,k ) (here Z is used to denote

to the genome configuration to avoid confusion with the chromosome configuration),

although at 1 Mb resolution points are susceptible to noise in the large quantities of small

interchromosomal counts and are more difficult to interpret. To reduce the influence of



Chapter 4. Exploratory analysis 99

noise and number of points to interpret resolution was lowered, setting r = 3; 6; 12 and

24 Mb. Lowering resolution sums g(1)i,j with low counts and poor information into g(r)i,j

with larger counts and richer information. Although lowering the resolution reduces the

level of detail available at high resolution. This is an issue if the individual estimated

chromosome configurations are to be extracted from the estimated genome configurations

for analysis.

4.8.1 Lowering resolution

When lowering resolution it is important that the new g
(r)
i,j do not straddle chromosomes

or cross centromeres. Counts g(r)i,j which violate this provide a mixed information from

different chromosome arms or different chromosomes. This is particularly an issue if g(r)i,j

straddles chromosomes. The process of lowering the resolution from 1 Mb to r Mb is

outlined below.

1. Identify to which chromosome arm each row and column of G(1) belongs. Trim

rows and columns from G(1) to give G(1∗) = (g
(1∗)
i,j ) so the length of chromosome

arms become divisible by r, ensuring the start and ends of the arms are trimmed

equally. This step prevents g(r)i,j straddling chromosomes or centromeres.

2. Sum over r × r submatrices within G(1∗) to produce G(r)

g(r)p,q =

pr∑
i=(p−1)r+1

qr∑
i=(q−1)r+1

g
(1∗)
i,j , (4.17)

4.8.2 Fitted genome configuration

Using the same approach as in Section 4.2 four different estimated genome configurations

Ẑ(r) for each resolution r were obtained, with the same subscript notation used to denote

the transform function and MDS method (E = exponential transform (4.4); P = power
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transform (4.6);M = metric MDS andNM = non-metric MDS). The fitted configuration

Ẑ(r) at resolution r Mb, contains the estimated coordinates of all twenty two human

chromosome pairs and the XX chromosome pair. The first n(r)
1 rows of Ẑ(r) are the

coordinates of Chromosome pair 1. Then rows n(r)
1 + . . . + n

(r)
a−1 + 1 to n

(r)
a of Ẑ(r)

are the coordinates of chromosome pair “a” for a = 2, . . . , 22 and XX (where a = 23 for

XX). Below is a summary of how the estimated genome configurations are found:

1. Lower the resolution of the global Hi-C count matrix G(1) to a desired resolution r

Mb, using the process described in Section 4.8.1 to obtain G(r).

2. Transform G(r) into an estimated distance matrix D̃(r)
.,. using either the exponential

transform (4.4) or the power transform (4.6). The transform parameters α̂ for (4.4)

or β̂ for (4.6) are found using the fitting algorithm (Section 4.1.3), with the score

function χ2 (4.9) if metric MDS is to be used or Sp(X̂) (2.14) if non-metric MDS

is to be used.

3. Fit D̃(r)
.,. into three dimensional Euclidean space using either metric MDS or non-

metric MDS, to obtain an estimated genome configuration Ẑ(r)
.,. .

Take for example Ẑ
(6)
P,NM is the estimated genome configuration at 6 Mb resolution, which

has been found using the power transform and non-metric MDS.

Visual inspection of the estimated genome configurations from metric MDS Ẑ
(r)
E,M

and Ẑ
(r)
P,M (Figure 4.25), displays two flat clusters one suspended above the other,

which is inconsistent with the known chromosomes territories feature of genome

organization (Cremer et al., 1993; Cremer and Cremer, 2010; Heard and Bickmore,

2007). Hence known genomic features are not preserved in Ẑ
(r)
E,M and Ẑ

(r)
P,M , so these

configurations can be disregarded from further analysis.

Visual inspection of the estimated genome configurations from non-metric MDS Ẑ
(r)
E,NM

and Ẑ
(r)
P,NM (Figure 4.26), reveals the genome taking a spherical shape and chromosomes
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occupying individual territories within the sphere, consistent with the chromosome

territories feature of genome organization. The estimated genome configurations Ẑ
(r)
E,NM

and Ẑ
(r)
P,NM both look similar and share similar sized S3(Ẑ) (2.14) values, the shape

difference POSS(Y,X) (4.10) was measured for Ẑ
(r)
E,NM and Ẑ

(r)
P,NM . A random

POSS(Y,X) (4.10) obtained by permuting rows of Ẑ
(r)
E,NM and Ẑ

(r)
P,NM , to serve as a

benchmark to measure the POSS(Y,X) against.

The Table 4.13 shows that Ẑ
(r)
E,NM and Ẑ

(r)
P,NM are similar in shape and share a similar

sized S3(Ẑ) value. In view of this similarity, Ẑ
(r)
P,NM is used here for further analysis. The

stress values in Table 4.13 are poor (Mardia et al., 1979) for both configurations.

r S3(Ẑ
(r)
E,NM) S3(Ẑ

(r)
P,NM) POSS(Ẑ

(r)
E,NM , Ẑ

(r)
P,NM) Random

POSS(Ẑ
(r)
E,NM , Ẑ

(r)
P,NM)

3 27.3527% 27.2148% 0.4087 0.9978
6 23.7179% 23.9368% 0.2883 0.9950

12 22.6204% 22.1785% 0.3713 0.9917
24 20.2633% 21.6625% 0.4360 0.9789

Table 4.13: Measures of prescaled Procrustes POSS(X,Y) (4.10) distance between
estimated genome configurations Ẑ

(r)
E,NM and Ẑ

(r)
P,NM . Column one gives the level of

resolution the global Hi-C count matrix has been lowered to (Section 4.8.1). Column
two and three give the S3(X̂) (2.14) values for Ẑ

(r)
E,NM and Ẑ

(r)
P,NM . Column four

gives the POSS(X,Y) values between Ẑ
(r)
E,NM and Ẑ

(r)
P,NM . Column five gives a mean

random POSS(X,Y) value, found by permuting the rows of Ẑ
(r)
E,NM and Ẑ

(r)
P,NM . The

configurations Ẑ
(r)
E,NM or Ẑ

(r)
P,NM are found using by the exponential transform (4.4) or the

power transform (4.6) and non-metric MDS with further detail given in Section 4.8.2.

4.8.3 Chromosome territories

Lieberman-Aiden et al. (2009) observed that intrachromosomal (within chromosome)

contact probability is always larger than interchromosomal (between chromosome)

contact probability in G(1), thus providing evidence for chromosome territories. The
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size contrast between interchromosomal and intrachromosomal counts in G(r) (where

r = 3; 6; 12 and 24 Mb), will be reversed by the count to distance transform; giving large

interchromosomal distances and small intrachromosomal distances. This size contrast

in the distances, should influence the non-metric MDS to position the chromosomes in

Ẑ
(r)
.,NM into individual territories. Visually inspecting Ẑ

(r)
P,NM (in Figure 4.26) reveals that

chromosomes do appear to localize into individual territories. A test was developed to

see if chromosome territories were preserved during transforming G(r) into estimated

distances, and fitting into three dimensional Euclidean space with non-metric MDS. Let

W(r) = (w
(r)
a,k) be a 23× 3 matrix of the centroids of the human chromosome pairs:

w
(r)
a,k = (n(r)

a )−1
n
(r)
a∑

i=
∑a
c=1 n

(r)
c−1+1

z
(r)
i,k (4.18)

is the centroid of chromosome pair “a” for “a” for a = 1, . . . , 22 and XX, where n(r)
a

is the number of points in Chromosome pair “a” at resolution r Mb and n(r)
0 = 0. The

method is as follows.

1. Calculate the mean of the centroids

w
(r)
.,k =

1

23

23∑
a=1

w
(r)
a,k. (4.19)

Then using w(r)
.,k calculate the variance in the centroids

v(r) =
23∑
a=1

3∑
k=1

(w
(r)
a,k − w

(r)
.,k )2. (4.20)

2. Permute the rows of Ẑ
(r)
P,NM to obtain Z̃

(r)
P,NM . Recalculate the matrix of

centroids W̃(r) using (4.18), ensuring the same ordering of rows are summed over.

Recalculate the mean of the centroids w̃(r)
.,k (4.19) and the variance in the centroids
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ṽ(r) (4.20) for W̃(r). Repeat this step 1000 times, collecting a sample of ṽ(r).

3. Count how many ṽ(r) > v(r) and express as a proportion P (r)

P (r) =
1

1000

1000∑
i=1

I(ṽ
(r)
i > vr). (4.21)

The motivation behind this test is the variance in the centroids of Ẑ
(r)
P,NM , should be larger

than the variance in the centroids of Z̃
(r)
P,NM (which should cluster by the origin), if the

chromosome pairs have been fitted into territories. If the chromosome pair are fitted into

territories, their points should colocalize together, and their centroids should be dispersed

about the genome. If the chromosome pairs are not fitted into territories, their points will

be more dispersed about the genome, and their centroids should colocalize closer to the

origin.

The permutation of the rows of Ẑ
(r)
P,NM , will cause the chromosome pairs to exchange

points. Then after permutation each of the chromosome pairs points will be dispersed

about the genome, causing the centroids to colocalize about the origin. If the chromosome

pairs are fitted into territories then in most cases v(r) > ṽ(r), otherwise if they are not fitted

into territories then in most cases v(r) < ṽ(r).

The results of the test gave P (r) values of zero on all resolutions, suggesting the

chromosome pairs in Ẑ
(r)
P,NM occupy territories. Therefore the fitting has successfully

recovered this aspect of genome organisation.

4.8.4 Chromosome clustering

Using the matrix of chromosome centroids W(r) cluster analysis was performed, to

investigate the positioning of the chromosomes as the resolution was lowered. If the

clusters consistently contained the same chromosomes, then this showed the non-metric
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MDS was recovering aspects from the original genome configuration. If the chromosomes

regularly swapped between clusters as resolution was lowered, then the non-metric MDS

performed poorly at recovering aspects of the original genome configuration. Regularly

swapping between clusters as resolution is lowered is one sign a chromosome is been

positioned differently at different resolutions.

First hierarchical clustering was performed, using the average linkage method (same as in

Section 4.4). At 1Mb interval resolution (Figure 4.27a) the chromosomes are partitioned

into two large clusters. One of these clusters being predominantly composed from large

chromosomes and the other small chromosomes. Then on the next level of resolution 3Mb

(Figure 4.27b) the dendogram changes, with a number of large chromosomes moving into

the smaller chromosome cluster. At the lower levels of resolution (6Mb,12Mb and 24Mb)

the shapes of the dendograms (Figures 4.27c,4.27d and 4.27e) change and appear to show

aspects of chaining. Chaining is where elements are absorbed into a large cluster in each

step of the clustering algorithm, an example of chaining is the dendogram in Figure 4.27c

(at 6Mb resolution).

Due to the changing shape of the dendograms it is hard to distinguish how the clusters

change as resolution decreases, and the chaining effect might be biasing the analysis.

To overcome this k-means clustering (MacQueen et al., 1967) was performed. The k-

means clustering partitions the chromosomes into m predefined clusters, where the total

distance between the elements of the cluster and its centroid is minimized. Here k-means

clustering is used to partition the chromosome centroids into two clusters. The number of

swaps between clusters will be counted as resolution decreases, and used to judge if the

shape of the estimated genome configuration is consistent as resolution is lowered.

In Table 4.14 resolution decreases from 1Mb to 3Mb there is a single swap between the

two clusters; from 3Mb to 6Mb four swaps; from 6Mb to 12Mb another four swaps,

and from 12Mb to 24Mb another single swap. Chromosome 9 swaps between the

two clusters three times; chromosomes 10, 14 and 18 swap between clusters twice and



Chapter 4. Exploratory analysis 105

chromosome 13 once. This small quantity of swaps between the two clusters and by a few

chromosomes, suggest the non-metric MDS is consistently positioning the chromosomes

relative to each other as resolution is lowered. Therefore some aspect of the original

genome configuration is recovered by non-metric MDS.

Chromosome 1 Mb 3 Mb 6 Mb 12 Mb 24 Mb
1 2 2 2 2 2
2 2 2 2 2 2
3 2 2 2 2 2
4 2 2 2 2 2
5 2 2 2 2 2
6 2 2 2 2 2
7 2 2 2 2 2
8 2 2 2 2 2
9 2 1 2 1 1

10 1 1 2 1 1
11 2 2 2 2 2
12 2 2 2 2 2
13 2 2 2 2 1
14 1 1 2 1 1
15 1 1 1 1 1
16 1 1 1 1 1
17 1 1 1 1 1
18 1 1 2 1 1
19 1 1 1 1 1
20 1 1 1 1 1
21 1 1 1 1 1
22 1 1 1 1 1
X 2 2 2 2 2

Table 4.14: Clusters the chromosomes are positioned into, in the estimated genome
configuration Ẑ

(r)
P,NM . Column one lists the chromosome pairs. Column two to six give

the cluster number (1 or 2) the chromosome pair is assigned to, as resolution of Ẑ
(r)
P,NM

decreases. The configuration Ẑ
(r)
P,NM is found using the power transform (4.6) and non-

metric MDS with further detail given in Section 4.8.2. The clustering is found using
k-means clustering on the centroids of the chromosome pairs W(r) (4.18).
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4.8.5 Radial positioning

The radial positioning of the chromosomes in Ẑ
(r)
P,NM can be compared with other studies

(Tanabe et al., 2002; Boyle et al., 2001; Croft et al., 1999; Rohlf et al., 1980) on

chromosome radial positioning to further validate Ẑ
(r)
P,NM . If ordering of chromosome

pairs from the origin matches with other studies, then transforming and fitting G(r)

successfully recovered this aspect of Z in Ẑ
(r)
P,NM . Radial positions were calculated using

the radial distance ξ(r)i of each point in Ẑ
(r)
P,NM

ξ
(r)
i =

(
3∑

k=1

z
(r)2

i,k

) 1
2

. (4.22)

Note non-metric MDS centres the fitted configuration at the origin after each iteration,

so no value requires subtracting from z
(r)
i,k in (4.22). Then the mean radial distance for

chromosome pair 1 is

ξ
(r)

1 = n
(r)−1

1

n
(r)
1∑
i=1

ξ
(r)
i , (4.23)

and the mean radial distance for each chromosome pair “a” for a = 2, . . . , 22 and XX is

ξ
(r)

a = n(r)−1

a

n
(r)
a∑

i=n
(r)
1 +...+n

(r)
a−1+1

ξ
(r)
i . (4.24)

The chromosomes were positioned in increasing order of ξ
(r)

a for for a = a, . . . , 22 and

XX, this is displayed in Table 4.15. In Table 4.15 the radial ordering of the chromosome

pairs from the origin, is different on each resolution used. This lack of consitency in the

radial ordering confounds the interpretation of the data. Chromosome 19 is consistently

fitted on the periphery of Ẑ
(r)
P,NM while chromosome 18 is consistently fitted on the

interior of Ẑ
(r)
P,NM , contradicting Tanabe et al. (2002) and Croft et al. (1999) who observe
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Chromosome 3 Mb 6 Mb 12 Mb 24 Mb
1 12 12 12 9
2 16 16 15 15
3 10 8 8 8
4 20 20 20 21
5 6 11 11 12
6 19 14 16 18
7 15 15 17 14
8 9 10 9 10
9 7 6 4 6
10 5 5 6 4
11 1 1 2 2
12 11 9 10 11
13 17 18 19 20
14 8 7 7 7
15 3 3 3 3
16 13 13 14 16
17 18 17 13 13
18 4 4 5 5
19 23 23 23 23
20 2 2 1 1
21 21 21 21 19
22 14 19 18 17
X 22 22 22 22

Table 4.15: Radial ordering from the origin of the chromosome pairs, in the estimated
genome configuration Ẑ

(r)
P,NM . Column one lists the chromosome pairs. Column two to

five give the radial ordering the chromosome pair takes from the origin, as resolution of
Ẑ

(r)
P,NM decreases. The configuration Ẑ

(r)
P,NM is found using the power transform (4.6)

and non-metric MDS with further detail given in Section 4.8.2. The distance of the
chromosome pairs from the origin is found using (4.22), (4.23) and (4.24).
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chromosome 18 localizes near the nuclear periphery while chromosome 19 localizes

near the nuclear interior. Studies on the ordering of the chromosomes in male human

lymphoblast nucleus Boyle et al. (2001) found chromosomes 1, 16, 17, 19 and 22 localize

near the nuclear interior, chromosomes 5, 6, 10, 14, 15 and 21 localize in an intermediate

region and chromosomes 2, 3, 4, 7, 8, 9, 11, 12, 13, 18 X and Y localize near the nuclear

periphery. The ordering of chromosomes in Ẑ
(r)
P,NM displays almost an opposite ordering

to Boyle et al. (2001) with chromosome which should be located near the interior fitted

to the periphery and vice-versa for the chromosomes which should be located near the

periphery. Lowering resolution, transforming and fitting have failed to recover the radial

positions of the chromosomes in the genome.

4.8.6 Discussion

Lowering the resolution when scaling the genome is useful to lower noise and aid

interpretation. The Ẑ(r) do not recover known features of the genome and can be deemed

poor estimates for the genome. The poor recovery of Ẑ(r) could be driven by the fact

that the interchromosomal counts are very small in comparison to the intrachromosomal

counts, even after lowering resolution. Another factor contributing to the poor Ẑ(r)

could be that chromosome pairs are been fitted into Euclidean space, not the individual

chromosomes. This could be a problem as for example, the copies of chromosome one

could be reflections of each other in the xy-axis (Figure 1.1). Then the fitted chromosome

pair could take the average of the copies location and fit the chromosome pair close to the

origin.
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4.9 Conclusion

Transforming and fitting M from chromosome 14 has recovered some interesting features

in X̂, which could correspond to features of X but also recovers horseshoe shapes which

could be from horseshoe effect (Section 2.4). Applying cluster analysis to D̂E,M has

uncovered features which correspond to the fractal globule model (Section 1.2.6) in

X̂E,M . Inspecting the count frequency in M has uncovered partitioning which correspond

to the two component model in X̂E,M and X̂P,M . This clustering and partitioning shows

that some local structure in X̂ is preserved. Scaling symmetric submatrices from M to

observe local structure without the influence of the horseshoe effect, only serves to make

medium distances the new large distances and the horseshoe effect repeats itself in the

fitted subregion.

Investigating the relationship between mi,j and νi,j , we observe a plateauing of the mi,j

at νi,j ≥ 15Mb. This plateauing confounds estimating di,j at this range, as inaccuracies

in d̃i,j at νi,j ≥ 15Mb will contribute to the horseshoe effect in X̂.

Future recovery of X requires improvement in d̃i,j estimation through investigating

alteration of score and transform functions. Score functions which are distance-based

instead of count-based may be preferable, as the reverse transform function can magnify

changes in small distances to produce very large counts, which can be detrimental to X̂.

Recovery of genome configuration preserves the chromosome territories but does

not preserve ordering of the chromosomes from the origin. The contrast between

intrachromosomal and interchromosomal counts can explain the preservation of

territories. The low interchromosomal counts provide little information on chromosome

positioning even when resolution is lowered. Genome recovery would require more

interchromosomal information to be available to be successful.
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Figure 4.24: Locations of filtered counts from Chromosome 14’s filtered Hi-C counts
matrix M̃. The blue squares denote the filtered counts. The red squares denote the
unfiltered counts. The filtered count matrix M̃ is found by applying the filtering process
in Section 4.7.2 with threshold τ = 0.05, to Chromosome 14’s Hi-C count matrix.
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Figure 4.25: Perspectives of the estimated genome configuration Ẑ
(12)
P,M , found using the

power transform (4.6) and fitting into three dimensional Euclidean space with metric
MDS. Further details on finding Ẑ

(12)
P,M can be found in Section 4.8.2. The colours define

which chromosome pairs the points of Ẑ
(12)
P,M belong to.
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Figure 4.26: Perspectives of the estimated genome configuration Ẑ
(12)
P,NM , found using the

power transform (4.6) and fitting into three dimensional Euclidean space with non-metric
MDS. Further details on finding Ẑ

(12)
P,NM can be found in Section 4.8.2. The colours define

which chromosome pairs the points of Ẑ
(12)
P,NM belong to.
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(a) 1Mb resolution

(b) 3Mb resolution (c) 6Mb resolution

(d) 12Mb resolution (e) 24Mb resolution

Figure 4.27: Dendograms displaying how the chromosome are positioned relative to each
other, in the estimated genome configuration. The estimated genome configuration is
found using the power transform and non-metric MDS at resolution rMb, which gives
Z

(r)
P,NM . Then the 23×3 matrix of chromosome centroids W(r) is found using (4.18).

Finally average linkage cluster analysis is performed to give the above dendograms.
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Chapter 5

Model-based approach

The preceding chapters used the tools of a count-to-distance transform and

multidimensional scaling (MDS) to recover an estimated chromosome configuration (or

estimated genome configuration) from a chromosome count matrix (or global count

matrix). The true chromosome configuration and the true relationship between counts

and distances are unknown. These unknowns mean assumptions about the count to

distance relationship have to be made to produce a suitable transform function, to obtain

estimated distances. The estimated chromosome configuration obtained from fitting the

estimated distances into three dimensional Euclidean space, is assumed to be close to the

true chromosome configuration. Although the counts in the chromosome count matrix

contain noise and little is known on how this noise affects the estimated distances and

the estimated chromosome configuration. To find how the noise in the counts affects

the estimated distances and fitted configuration, a model-based approach was adopted

(MBA). The MBA used known configurations to produce matrices of mean counts, these

were then perturbed to give perturbed count matrices. The perturbed count matrices were

fitted into Euclidean space in a similar way to the chromosome count matrices. Knowing

the original configuration and the true relationship between counts and distances provides

a platform for investigating the affects of noise in the counts.
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The MBA takes an initial configuration X = (xi,k) of n points sitting in p dimensional

space; extracts a Euclidean distance matrix D = (di,j) from X using (2.2) and, then

inverts the count to distance transform function to obtain a matrix of mean counts

U = (µi,j). Using U and a chosen level of dispersion ρ, a matrix of perturbed counts

M = (mi,j) is then simulated, and transformed into perturbed distances D̃ = (d̃i,j).

The perturbed distances are then fitted into p dimensional space using MDS to obtain

a fitted configuration X̂ = (x̂i,k). Finally, MDS internal measures of fit and measures

comparing the initial and fitted configuration are collected. Similar approaches were used

by Sibson et al. (1981), where non-independent perturbation was added to distances, X̂

was recovered using metric; non-metric or least squares MDS and compared with X using

Procrustes statistics. Informally the MBA can be thought of as walking up a mountain

during the day then finding a return path at night, finally comparing start and end points

of the walk. The MBA gives control over the initial configuration; how the counts are

X = (xi,k)
Initial

configuration

D = (di,j)
Original
distances

U = (µi,j)
Mean
counts

M = (mi,j)
Perturbed

counts

D̃ = (d̃i,j)
Perturbed
distances

X̂ = (x̂i,k)
Fitted

configuration

Extraction µi,j = f−1(di,j)

Perturbation

d̃i,j = f(mi,j)X̂ = MDS(D̃)

Figure 5.1: Schematic summarizing the model based approach. Where f(. . .) is the
count to distance transform function (4.4) or (4.6); f−1(. . .) is the inverse transform
function (4.5) or (4.7), and MDS is multidimensional scaling.

transformed into distances; how the counts are perturbed and the method of MDS used,

this control allows adjustments to be made to see how they affect the scaling process and

the fitted configuration. Control over the initial configuration provides a platform for the

MBA. Changing the number of dimensions in the initial configuration and its complexity
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all affect the MBA. For example changing the number of dimensions can decrease count

size, by increasing the Euclidean distances. Changing the complexity of the configuration

can change the size and distribution of counts within U. For example in a straight line with

equally spaced points, U is Toeplitz with count size decreasing on the subdiagonals away

from the main diagonal; for a circle with equally spaced points, U is also Toeplitz with

count size decreasing then increasing on the subdiagonals away from the main diagonal.

Control over the count to distance transform allows the transform used to transform

perturbed counts into perturbed distances to be the same transform which the inverse

transformed the distances into mean counts. It also provides control over the size of the

mean counts. Control over the level of dispersion when simulating the perturbed counts

affects how much information on the initial configuration is retained in the perturbed

counts. Once the controls have been chosen D̃ can be fitted into Euclidean space using

metric or non-metric MDS to find which MDS method performs better. Adjusting these

controls and monitoring how they affect the fitted configuration will give insights to help

improve chromosome configuration estimation.

5.1 Constructing the MBA

5.1.1 Initial configuration

Four initial configurations were used in the MBA: a straight line; a parabola; a semi-circle

and a circle. These shapes were used as initial configurations because of their simplicity

and low dimensionality allowed clear visual comparison between the initial and fitted

configurations, and inspection of the noise in the spare (second or third) dimensions.

Each configuration consisted of n = 100 points: this was considered a sensible amount,

too many points made visual comparison difficult and too few points provided too little

information to obtain useful results. To make the data more comparable each shape was
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scaled to have a maximum distance of one unit (dmax = 1). The initial configurations can

be written as X = (
¯
x(1),

¯
x(2)) where

¯
x(k) = (xi,k) are the vectors of coordinates for the

points i = 1, . . . , 100 in dimensions k = 1, 2.

Straight line

xi,1 = −1

2
+

(i− 1)

99
and xi,2 = 0.

Parabola

xi,1 = −1

2
+

(i− 1)

99
and xi,2

(
−1

2
+

(i− 1)

99

)2

.

Semi-circle

xi,1 =
1

2
cos
( π

99
(i− 1)

)
and xi,2 =

1

2
sin
( π

99
(i− 1)

)
.

Circle

xi,1 =
1

2
cos
(

2π

100
(i− 1)

)
and xi,2 =

1

2
sin
(

2π

100
(i− 1)

)
.

5.1.2 Count to distance transform

In the MBA the transform used to transform the original distances into mean counts is

the same as the transform used to transform the perturbed counts into perturbed distances.

This allows the perturbed distances to hold some resemblance to the original distances

and avoids the need to estimate the transforms parameters. The exponential and power

transforms were investigated independently in the MBA using different parameters to alter
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mean count size. The data generated from the two transforms cannot be compared due to

the different nature of the transforms.

Exponential transform

The exponential transform and its inverse described in (4.4) and (4.5) are respectively,

di,j = e−αµi,j and µi,j = − 1

α
log(di,j).

The exponential transform was investigated on four levels of α, setting α =

0.1; 0.01; 0.001 and 0.0001. As α decreases the mean count size increases.

Power transform

The power transform and its inverse described in (4.6) and (4.7) are respectively,

di,j = (b0µi,j)
β and µi,j =

d
1
β

i,j

b0
.

The power transform was investigated at four levels of b0, setting b0 =

0.1; 0.01; 0.001 and 0.0001. As b0 decreases the mean count size increases. The β

parameter was held constant at β = −0.5 for each level of b0. Themmin = 1 andmmin = 2

adjustments were applied when using the power transform providing two sets of results.

5.1.3 The structure of the noise

The chromosome contact matrix already contains noise embedded within it, whereas in

the MBA the noise is introduced into the µi,j to obtain the mi,j . The distributions best

suited for introducing noise into µi,j are the Poisson or the negative binomial distributions,
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depending on the required level of dispersion ρ. The dispersion measures how many times

larger the variance is with respect to the expectation

ρ =
var(mi,j)

E(mi,j)
. (5.1)

Poisson distribution

The Poisson distribution is used to generate mi,j when ρ = 1

mi,j ∼ Poisson(µi,j), (5.2)

and so E(mi,j) = µi,j and var(mi,j) = µi,j .

Negative binomial distribution

The negative binomial distribution is used to generate mi,j when ρ > 1 (over-dispersed

Poisson),

mi,j ∼ NB(r, l), (5.3)

where r =
µi,j
ρ−1 and l = 1

ρ
, providing E(mi,j) = µi,j and var(mi,j) = ρµi,j . The levels of

dispersion used were ρ = 1; 2; 4 and 8.

The size of the µi,j and ρ play a role in how much perturbation is translated into mi,j ,

which can be explained using the coefficient of variation Cv(µi,j, ρ),

Cv(µi,j, ρ) =

√
var(mi,j)

E(mi,j)
=

√
ρ

µi,j
(5.4)

The larger Cv(µi,j, ρ) is the more noise (perturbation) is translated intomi,j . For example,

for µi,j = 100 and ρ = 1 we have Cv(µi,j, ρ) = 0.1 and a value mi,j = 105 would
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not be unusual. For µi,j = 10 and ρ = 1, we have Cv(µi,j, ρ) = 0.316 and a value

mi,j = 15 would not be unusual. Perturbation adds the same quantity in each case,

but in the first case perturbation increases count size by 5% and the second 50%. The

50% increase in the second case could cause a much larger decrease in distance than the

first. The size of µi,j and ρ determine the amount of perturbation translated into mi,j ,

similar to the intuition that large counts hold more information on distances than smaller

counts. Variation in Cv(µi,j, ρ) is illustrated in Table 5.1 for each transform, using µi,j

corresponding to di,j = 0.5. Both tables display a decrease in Cv(µi,j, ρ) as µi,j increases

(moving down the tables) and a increase in Cv(µi,j, ρ) as ρ increases (moving left to right

in the table).

Exponential transform
α ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.3798 0.5372 0.7597 1.0743
0.01 0.1201 0.1699 0.2402 0.3397
0.001 0.0380 0.0537 0.0760 0.1074
0.0001 0.0120 0.0170 0.0240 0.0340
Power transform
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.1581 0.2236 0.3162 0.4472
0.01 0.0500 0.0707 0.1000 0.1414
0.001 0.0158 0.0224 0.0316 0.0447
0.0001 0.0050 0.0071 0.0100 0.0141

Table 5.1: Illustration of how altering transform parameters and dispersion affect the
coefficient of variation Cv(µi,j, ρ) (5.4). Top table: how Cv(µi,j, ρ) changes for the
exponential transform (4.4) when α decreases and the dispersion ρ increases. Bottom
table: how Cv(µi,j, ρ) changes for the power transform (4.6) when b0 decreases and
ρ increases. The Cv(µi,j, ρ) are found by finding the mean count µi,j for a distance
di,j = 0.5 by using either (4.5) with α or (4.7) with b0 and β = −0.5. The inputting
µi,j with ρ into (5.4).
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5.1.4 Multidimensional scaling

A critical step of the MBA is the recovery of a fitted configuration X̂ from the perturbed

distance matrix D̃. In the MBA, either metric or non-metric multidimensional scaling

(MDS) was used to recover X̂ and accompanying MDS measures of fit θ1:p (2.12) or

Sp(X̂) (2.14) were used (see Chapter 2); where p is the number of dimensions in X.

5.1.5 Assessing the fit

The initial and fitted configurations X and X̂ are compared by measuring shape

difference, expansion in size and through visual comparison. The shape difference

statistic P (X, X̂) measures how well X has been recovered in X̂. This is the most

versatile statistic as it can be applied to X̂ from either MDS method. The size expansion

statistic G(X, X̂) measures how much X̂ has expanded with respect to X. Visual

comparison between X and X̂ is used to assess where the discrepancies lie and how noise

is distributed in X̂. The MDS’s performance is measured using θ1:p (2.12) or Sp(X̂) (2.14)

for metric or non-metric MDS respectively.

Shape difference statistic P (X, X̂)

The shape difference statistic P (X, X̂) is based on the Procrustes shape distance between

X and X̂ (2.16) normalized by X’s size (Mardia et al., 1979),

P (X, X̂) =

(
OSS(X, X̂)

tr(XTX)

) 1
2

, (5.5)

where X̂ is fitted into the same number of dimensions as X. A value of P (X, X̂) = 0

indicates identical shapes and as P (X, X̂) increases X and X̂ grow more dissimilar.
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Size expansion statistic G(X, X̂)

G(X, X̂) is based on the ratio of sum of the squared distance from the origin of the points

in X and X̂.

G(X, X̂) =

(∑n
i=1

∑p
k=1 x̂

2
i,k∑n

i=1

∑p
k=1 x

2
i,k

) 1
2

. (5.6)

If G(X, X̂) > 1 then X̂ is larger than X. If G(X, X̂) = 1 the the two configurations are

of equal size and if G(X, X̂) < 1 then X̂ is smaller than X. The measure G(X, X̂) can

only be applied to metric MDS output, as scale is not preserved by non-metric MDS.

Performance of the MDS

The measures θ1:p and Sp(X̂) measure the performance of metric or non-metric MDS

respectively. The values of θ1:p should ideally maximized and Sp(X̂) should ideally

minimized.

Visual comparison

Information which cannot be summarized through P (X, X̂) and G(X, X̂) might be

observed through visual comparison. Visual comparison plots X and X̂ together (where

X̂ is mapped onto X using a procedure similar to that outlined for OSS(X, X̂) but with

p = 3), to locate discrepancies and gain insight into how noise is distributed within X̂.

5.1.6 Running the model-based approach

A single run of the MBA provides a single set of MDS performance statistics; a single

P (X, X̂) (5.5) value and a singleG(X, X̂) (5.6) value. Repeating the MBA with the same
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conditions several times (1000), several values of MDS performance statistics; P (X, X̂)

andG(X, X̂) values can be obtained. The mean of these values can be found to give more

robust MDS performance statistics; P (X, X̂) and G(X, X̂) values. The combination

of shape, transform function, transform function parameter, mmin adjustment and MDS

method gives 384 distinct ways of running the MBA, providing a rich data set.

5.2 Simulation results

There are 384 distinct ways of running the MBA, providing a broad range of scenarios

to analyse. The simulation results on the MDS performance are analysed first, followed

by the shape difference statistic P (X, X̂) (5.5) and finally the size expansion statistic

G(X, X̂) (5.6). The simulation results for the semi-circle are displayed in the plots and the

simulation results for the other shapes can be found in the Appendix Section B. Comments

made incorporate results from all the shapes.

MDS performance

The trend in the performance of the MDS is the performance improves as coefficient

of variation Cv(µi,j, ρ) (5.4) decreases (when large mean counts are used or lower

dispersion). This trend is observed in each shape, in both transform functions and both

MDS methods. The trend can be explained as there is less perturbation in D̃ as Cv(µi,j, ρ)

decreases, which makes it easier for the MDS to find a fitted configuration, resembling

the initial configuration.

When using metric MDS for either the exponential transform (4.4) or power

transform (4.6) when Cv(µi,j, ρ) is large, less information θ1:p (2.12) is projected into the

first p dimensions. This suggests the perturbation is producing large spurious eigenvalues

which distribute information from the noise into additional dimensions. When using
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non-metric MDS for either the exponential or power transform when Cv(µi,j, ρ) is large,

the Sp(X̂) values are large. Suggesting the perturbation has an effect of permuting the

ordering of the distances, which is inflating the Sp(X̂) values. Only on the lowest level of

Cv(µi,j, ρ) are the Sp(X̂) values better than fair (Mardia et al., 1979) for the exponential

transform. The Sp(X̂) are more robust to perturbation when using the power transform

and only on the highest level of Cv(µi,j, ρ) are the Sp(X̂) values unfair. The mmin

adjustment applied to the power transform, has only produced an improvement to the θ1:p

statistic on the b0 level. The requirement for mmin adjustment diminishes as b0 increases,

as the µi,j become larger and the probability of generating a mi,j = 1, 2 diminishes.

Shape difference statistic P (X, X̂)

Across all shapes and both transforms the trend observed is that P (X, X̂) (5.5) improves

as Cv(µi,j, ρ) decreases. Hence in most cases the fitted configuration is larger than the

original configuration. When using the exponential transform (4.4) the MDS method

which gives best P (X, X̂) values vary from shape to shape, but when Cv(µi,j, ρ) is small

the difference is negliable. When using the power transform (4.6), non-metric MDS

appears to give a better value for P (X, X̂) when Cv(µi,j, ρ) is large, and metric MDS

gives the better values when Cv(µi,j, ρ) is small. The mmin = 2 adjustment denoted by

the dashed lines in Figure 5.3b, only provides an better P (X, X̂) value at b0 = 0.1 when

using metric MDS, although the size of the improvement is substantial.

Size expansion statistic G(X, X̂)

The trend observed across all four shapes and both transform functions with the exception

of the circle using the exponential transform, is G(X, X̂) (5.6) is larger than 1 and

decreases to 1 as the Cv(µi,j, ρ) decreases. For the circle G(X, X̂) increases to 1 as

Cv(µi,j, ρ) decreases. This size increase for the circle could be due to opposing points
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on the circle sharing di,j = 1 give a µi,j = 0 which generates a mi,j = 0 so the distance

between opposing points remains unperturbed, these unperturbed distances preventing the

circle expanding. The mmin = 2 adjustment denoted by the dashed lines in Figure 5.4b

appears to improve G(X, X̂) at b0 = 0.1.

5.2.1 Simulations summary

The trend observed across the simulations is the recovery of the fitted configuration

improves as Cv(µi,j, ρ) decreases. This improvement can be expected as at lower

Cv(µi,j, ρ) less perturbation is present in the perturbed distances. The shape difference

statistic is the strongest indicator, at which MDS method performed better at different

levels of Cv(µi,j, ρ). When using the exponential transform, the preference for metric or

non-metric MDS varied from shape to shape. When using the power transform, non-

metric MDS appeared to perform better when Cv(µi,j, ρ) was large and metric MDS

performed better when Cv(µi,j, ρ) was smaller. The size expansion statistic indicated that

X̂ were becoming larger than the X. This suggests some mechanism in the perturbation is

increasing the size of perturbed distances, and this increase is being translated into X̂. The

poorest X̂ are generated using the power transform and metric MDS with the parameters

b0 = 0.1 and mmin = 1 here the P (X, X̂) and G(X, X̂) values appear more than twice

the size of the next level of b0 (at b0 = 0.01). Although the mmin = 2 adjustment does

provide some improvement to X̂. Therefore simulations give evidence that replacing the

mi,j = 0 or 1 with mi,j = 2 does provide some improvement to X̂.

5.2.2 Visual comparison

Visual comparison was used for a semi-circle generated under conditions which give the

poorest fitting P (X, X̂) (5.5). When the X̂ from metric MDS is displayed, the fitted
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(a) Exponential transform & metric MDS. (b) Power transform & metric MDS.

(c) Exponential transform & non-metric MDS. (d) Power transform & non-metric MDS.

Figure 5.2: MDS performance statistics θ1:2 (2.12) or S2(X̂) (2.14) from the MBA
simulations for a semi-circle. Column one: perturbed distances D̃ are generated
using the exponential transform (4.4). Column two: D̃ are generated using the power
transform (4.6). Row one: θ1:2 values from fitting D̃ into two dimensional Euclidean
space with metric MDS. Row two: S2(X̂) values from fitting D̃ into two dimensional
Euclidean space with non-metric MDS. The red lines for α = 0.1 (4.4) or b0 =

0.1 (4.6); the green lines for α = 0.01 or b0 = 0.01; the blue lines for α = 0.001

or b0 = 0.001, and the pink lines for α = 0.0001 or b0 = 0.0001. In the power
transform figure the solid lines signify the mmin = 1 adjustment has been applied, and
the dashed lines signify the mmin = 2 adjustment has been applied.
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(a) Exponential transform & metric MDS. (b) Power transform & metric MDS.

(c) Exponential transform & non-metric MDS. (d) Power transform & non-metric MDS.

Figure 5.3: Shape difference P (X, X̂) (5.5) values from the MBA simulations for a
semi-circle. Column one: perturbed distances D̃ are generated using the exponential
transform (4.4). Column two: D̃ are generated using the power transform (4.6). Row
one: P (X, X̂) values from fitting D̃ into two dimensional Euclidean space with metric
MDS. Row two: P (X, X̂) values from fitting D̃ into two dimensional Euclidean space
with non-metric MDS. The red lines for α = 0.1 (4.4) or b0 = 0.1 (4.6); the green
lines for α = 0.01 or b0 = 0.01; the blue lines for α = 0.001 or b0 = 0.001,
and the pink lines for α = 0.0001 or b0 = 0.0001. In the power transform figures the
solid lines signify the mmin = 1 adjustment has been applied, and the dashed lines
signify the mmin = 2 adjustment has been applied.
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(a) Exponential transform & metric MDS. (b) Power transform & metric MDS.

Figure 5.4: Size expansion G(X, X̂) (5.6) values from the MBA simulations for a semi-
circle, where the perturbed distances D̃ are fit into two dimensional Euclidean space using
metric MDS. Left panel: D̃ are generated using the exponential transform (4.4). Right
panel: D̃ are generated using the power transform (4.6). The red lines for α =

0.1 (4.4) or b0 = 0.1 (4.6); the green lines for α = 0.01 or b0 = 0.01; the blue lines
for α = 0.001 or b0 = 0.001, and the pink lines for α = 0.0001 or b0 = 0.0001. In

the power transform figures the solid lines signify the mmin = 1 adjustment has been
applied, and the dashed lines signify the mmin = 2 adjustment has been applied.



Chapter 5. Model-based approach 130

eigenvalues λ̂k (2.7) and original eigenvalues will be displayed in a scree plot, to provide

a similar analysis to the eigenvalue scree used in Section 4.2.1.

Exponential transform with metric MDS

The poorest fitting P (X, X̂) for the exponential transform (4.4) and metric MDS, of those

generated occurs at α = 0.1 and ρ = 8. The X and a X̂ generated using these parameters

are displayed in Figure 5.5, with λ̂k in Figure 5.6. The fitted configuration X̂ in Figure

5.5 appears to have retained its semi-circular structure in the first and second dimensions,

with noise forcing the points to meander about the arc. Noise in the third dimension (first

spurious dimension) appears more intense with clustering of points at the ends of the

configuration.

The principal and secondary fitted eigenvalues λ̂1 and λ̂2 denoted by in Figure 5.6

appear much larger than spurious non-zero fitted eigenvalues λ̂k for k = 3, . . . , 100

denoted by , suggesting retention of structure in these dimensions. This is supported

by the magnitude criterion Sibson (1979), which states genuine eigenvalues should have

a magnitude greater than the absolute magnitude of the largest negative eigenvalue. The

λ̂1 and λ̂2 are larger than their original eigenvalue counterparts λ1 and λ2 denoted by the

in Figure 5.6, this difference is most noticeable in the second eigenvalue. The spurious

λ̂k appear to decrease in size linearly, with the absolute magnitude of the largest positive

and negative eigenvalues almost equal.

Power transform with metric MDS

The poorest fitting P (X, X̂) for the power transform (4.6) and metric MDS, occurs at

b0 = 0.1, ρ = 8 and mmin = 1. The X and a X̂ generated using these parameters are

displayed in Figure 5.7, with λ̂k in Figure 5.8. The fitted configuration X̂ in Figure 5.7

appears to have lost its semi-circular structure but it has retained some linear structure
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Figure 5.5: Fitted X̂ and original configurations X for a semi-circle, generated using the
MBA approach with the exponential transform (4.4) using α = 0.1 and dispersion of
ρ = 8. Then the D̃ is fitted into three dimensional Euclidean space using metric MDS.
The denotes a point of X̂ and the red line connects successive points of X̂. The
denotes a point of X and the green line connects successive points of X.

Figure 5.6: Fitted eigenvalues (2.7) from the fitted semi-circle generated in Figure 5.5.
The blue circles denote the genuine fitted eigenvalues λ̂1 and λ̂2; the hollow blue circles

denotes the spurious fitted eigenvalues λ̂k for k ≥ 3, and the green circles denotes the
original eigenvalues λk for k = 1, 2.
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in the first dimension. The intensity of the noise decreases towards the centre of the

configuration, also the intensity of the noise in the third dimension appears to decrease

towards the centre of the configuration. This could be due to small µi,j shared between

points at opposite ends of the configuration being more susceptible to greater noise. The

λ̂1 in Figure 5.8 appears clear of the spurious λ̂k although λ̂2 appears to group with the

spurious λ̂k. The absolute magnitude of the largest negative λ̂k is approximately equal to

the magnitude of λ̂2, the magnitude criterion would classify λ̂2 as a spurious eigenvalue.

This suggests little structure is retained in the second dimension. The λ̂1 is much larger

than its original counterpart λ1, driven by the introduction of noise in λ̂1. The spurious

eigenvalues decline in an “s” shape.

Exponential transform with non-metric MDS

The poorest fitting P (X, X̂) for the exponential transform (4.4) and non-metric MDS,

occurs at α = 0.1 and ρ = 8. The X and one X̂ generated using these parameters are

displayed in Figure 5.9. The X̂ in Figure 5.9 appears to have retained its semi-circular

structure, although the ends appear to have become involuted. Noise appears to distributed

evenly, with the points meandering about the outline of the semi-circle. The stress value

is S2(X̂) = 29.3032% suggesting a poor fit.

Power transform with non-metric MDS

The poorest fitting P (X, X̂) for the power transform (4.6) and non-metric MDS, occurs

at b0 = 0.1; ρ = 8 and mmin = 1. The X and one X̂ generated using these parameters are

displayed in Figure 5.10. The X̂ in Figure 5.10 has warped into a horseshoe with strong

involution of the end points. This horseshoeing could be due to medium distances been

perturbed into larger distances. Noise in X̂ appears weaker, with only minor meandering

of points in X̂. The stress value S2(X̂) = 11.0878% suggesting a fair fit.
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Figure 5.7: Fitted X̂ and original configurations X for a semi-circle, generated using
the MBA approach with the power transform (4.6) using b0 = 0.1 and β = −0.5;
dispersion of ρ = 8 and applying the mmin = 1 adjustment. Then the D̃ is fitted into
three dimensional Euclidean space using metric MDS. The denotes a point of X̂ with
the red line connecting successive points of X̂. The denotes a point of X with the
green line connecting successive points of X.

Figure 5.8: Fitted eigenvalues (2.7) from the fitted semi-circle generated in Figure 5.7.
The blue circles denote the genuine fitted eigenvalues λ̂1 and λ̂2; the hollow blue circles

denotes the spurious fitted eigenvalues λ̂k for k ≥ 3, and the green circles denotes the
original eigenvalues λk for k = 1, 2.
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Figure 5.9: Fitted X̂ and original configurations X for a semi-circle, generated using the
MBA approach with the exponential transform (4.4) using α = 0.1 and dispersion of
ρ = 8. Then the D̃ is fitted into three dimensional Euclidean space using non-metric
MDS. The denotes a point of X̂ and the red line connects successive points of X̂. The

denotes a point of X and the green line connects successive points of X.

5.3 Properties of the perturbed distances

The simulation results from the MBA provide insight into how altering parameters

affects the fitted configuration X̂. One result is the increase in G(X, X̂) (5.6) which

is particularly large when using the power transform. The part of the MBA which is

investigated here is the structure of the perturbed distances D̃ = (d̃i,j).

5.3.1 Delta method

The d̃i,j are products of random variables mi,j passed through a function d̃i,j = f(mi,j).

Thus the d̃i,j are also random variables. The Delta method found in Stuart and Ord

(1994) pages 350-351 and Rao (1966) pages 319 - 320 can be used to make inferences

on the properties of the d̃i,j . The Delta method takes the Taylor-series expansion of the
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Figure 5.10: Fitted X̂ and original configurations X for a semi-circle, generated using
the MBA approach with the power transform (4.6) using b0 = 0.1 and β = −0.5;
dispersion of ρ = 8 and applying the mmin = 1 adjustment. Then the D̃ is fitted into
three dimensional Euclidean space using non-metric MDS. The denotes a point of X̂

with the red line connecting successive points of X̂. The denotes a point of X with
the green line connecting successive points of X.

function around the mean of the random variable passed through it. Then the expectation

and variance of the expansion are found to give approximate values for E(f(mi,j)) and

var(f(mi,j)).

Taking the Taylor-series expansion of f(mi,j) around µi,j to second order gives

f(mi,j) ≈ f(µi,j) + f ′(µi,j)(mi,j − µi,j) +
f ′′(µi,j)

2!
(mi,j − µi,j)2. (5.7)
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Taking the expectation of (5.7) gives

E(f(mi,j)) ≈ f(µi,j) + f ′(µi,j)E(mi,j − µi,j) +
f ′′(µi,j)

2!
E((mi,j − µi,j)2)

≈ f(µi,j) +
f ′′(µi,j)

2!
var(mi,j)

≈ f(µi,j) +
f ′′(µi,j)

2!
ρµi,j. (5.8)

Taking the variance of the first two terms of (5.7) gives

var(f(mi,j)) ≈ f ′(µi,j)
2var(mi,j). (5.9)

Subtracting the original distances from E(f(mi,j)) in (5.8) gives the bias in d̃i,j

Bias(d̃i,j) = E(f(mi,j))− f(µi,j)

=
f ′′(µi,j)

2
ρµi,j. (5.10)

This bias could be responsible for the observed increase in G(X, X̂), applying the delta

method to the exponential transform (4.4) and the power transform (4.6) we can see this

clearer.

5.3.2 Exponential transform

The Taylor-series expansion of the exponential transform (f(mi,j) = e−αmi,j ) to second

order is

f(mi,j) ≈ e−αµi,j − αe−αµi,j(mi,j − µi,j) +
α2

2
e−αµi,j(mi,j − µi,j)2. (5.11)
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Taking the expectation of (5.11) gives

E(f(mi,j)) ≈ e−αµi,j +
α2

2
e−αµi,jρµi,j

≈ di,j

(
1− α

2
log(di,j)ρ

)
. (5.12)

Taking the variance of the first two terms of (5.11) gives

var(f(mi,j)) ≈ α2e−2αµi,jρµi,j = −αρlog(di,j)d
2
i,j. (5.13)

Using (5.12) the bias in the exponential transform is calculated as

Bias(f(mi,j)) ≈ −
α

2
di,jlog(di,j)ρ. (5.14)

In addition to the additive bias a proportional (inflation) bias which expands the distances,

can be taken from (5.12)

Inflation(f(mi,j)) ≈ 1− α

2
log(di,j)ρ. (5.15)

where Inflation(f(mi,j)) > 1.

Figures 5.11 and 5.12 gives plots of E(d̃i,j); var(d̃i,j); Bias(d̃i,j) and Inflation(d̃i,j) all

against di,j . The plots of var(d̃i,j) and Bias(d̃i,j) against di,j , display a maximum which

occurs at di,j = e−
1
2 for var(d̃i,j) and at di,j = e−1 for Bias(d̃i,j). These maximums

indicates the medium distances are becoming less accurate than the larger distances, and

is counter to the intuition that accuracy should decay as distance increases. This maximum

could be contributing to the horseshoe effect seen in X̂E,M and X̂E,NM in Section 4.2.
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(a) E(d̃i,j) vs di,j . (b) var(d̃i,j) vs di,j .

Figure 5.11: Left panel: plot of expected distance for the exponential transform
E(d̃i,j) (5.12) at α = 0.1 and ρ = 8 against original distance di,j , denoted by ; with
the identity line for comparison . Right panel: plot of the variance for the exponential
transform var(d̃i,j) (5.13) at α = 0.1 and ρ = 8 against di,j ; the dashed line
indicated the location of the maximum in the variance at di,j = e−

1
2 .

(a) Bias(d̃i,j) vs di,j . (b) Inflation(d̃i,j) vs di,j .

Figure 5.12: Left panel: plot of bias in the distance for the exponential transform
Bias(d̃i,j) (5.14) at α = 0.1 and ρ = 8 against original distance di,j , denoted by ;
the dashed line indicated the location of the maximum in the bias at di,j = e−1. Right
panel: plot of inflation in the distances for the exponential transform Inflation(d̃i,j) (5.15)
at α = 0.1 and ρ = 8 against di,j .
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5.3.3 Power transform

The Taylor-series expansion of the power transform (f(mi,j) = (b0mi,j)
β) to second order

is

f(mi,j) ≈ bβ0µ
β
i,j + βbβ0µ

β−1
i,j (mi,j − µi,j) +

β

2
(β − 1)bβ0µ

β−2
i,j (mi,j − µi,j)2.

(5.16)

The effect of the mmin adjustment on E(mi,j) and var(mi,j) is ignored for simplicity.

Taking the expectation of (5.16) gives

E(f(mi,j)) ≈ bβ0µ
β
i,j +

β

2
(β − 1)bβ0ρµ

β−1
i,j

≈ di,j

(
1 +

β

2
(β − 1)ρb0d

− 1
β

i,j

)
. (5.17)

Taking the variance of the first two terms of (5.16) gives

var(f(mi,j)) ≈ β2b2β0 ρµ
2β−1
i,j = d

2− 1
β

i,j b0β
2ρ. (5.18)

Using (5.17) the bias in the power transform is calculated as

Bias(f(mi,j)) ≈
β

2
(β − 1)ρb0d

1− 1
β

i,j . (5.19)

and a proportional (inflationary) bias is calculated as

Inflation(f(mi,j)) ≈ 1 +
β

2
(β − 1)ρµ−1i,j . (5.20)

where Inflation(f(mi,j)) > 1.

The plots of var(f(mi,j)) and Bias(f(mi,j)) against di,j in Figure 5.13 and 5.14 reveal
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a maximum at the boundary of di,j used in the original configurations (di,j = 1).

Differentiation shows the maximum occurs at di,j = ∞, hence accuracy continues to

decrease as distance increases. The decrease in accuracy as distance increases is what is

expected in a sensible transform function.

5.4 Unbiased simulations

To gauge the effect of bias in the perturbed distances from (5.14) and (5.19) on the fitted

configuration X̂, the simulations of the MBA were repeated using unbiased perturbed

distances ˜̃D = ( ˜̃di,j). The ˜̃di,j were such that E( ˜̃di,j) = di,j and var( ˜̃di,j) = var(d̃i,j),

and were generated using the normal distribution with mean di,j and variance var(d̃i,j).

Studying the difference between the MBA (biased) and unbiased simulation results should

provide insight into the effect of the bias on X̂, and studying the unbiased simulation

results gave insight into the effect of the variance on X̂.

Exponential transform

Unbiased perturbed distances emulating the exponential transform were simulated using

˜̃di,j ∼ N(di,j,−αρlog(di,j)d
2
i,j), (5.21)

where the variance parameter is from (5.13), and any ˜̃di,j ≤ 0 were replaced with di,j and

all ˜̃di,j > 1 were unaltered.
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(a) E(d̃i,j) vs di,j . (b) var(d̃i,j) vs di,j .

Figure 5.13: Left panel: plot of expected distance for the power transform E(d̃i,j) (5.17)
at b0 = 0.1, β = −0.5 and ρ = 8 against original distance di,j , denoted by ; with the
identity line for comparison . Right panel: plot of the variance for the power transform
var(d̃i,j) (5.18) at b0 = 0.1, β = −0.5 and ρ = 8 against di,j ; the dashed line
indicated the location of the maximum in the variance at di,j = 1.

(a) Bias(d̃i,j) vs di,j (b) Inflation(d̃i,j) vs di,j

Figure 5.14: Left panel: plot of bias in the distance for the power transform
Bias(d̃i,j) (5.19) at b0 = 0.1, β = −0.5 and ρ = 8 against original distance di,j , denoted
by ; the dashed line indicated the location of the maximum in the bias at di,j = 1.
Right panel: plot of inflation in the distances for the power transform Inflation(d̃i,j) (5.20)
at b0 = 0.1, β = −0.5 and ρ = 8 against di,j .
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Power transform

Unbiased perturbed distances emulating the power transform were simulated using

˜̃di,j ∼ N(di,j, d
2− 1

β

i,j b0β
2ρ), (5.22)

where the variance parameter is from (5.18), and any ˜̃di,j ≤ 0 were replaced with di,j .

The unbiased simulations for both transforms were run in a identical manor to the MBA

simulations, but without the mmin adjustment as no counts were used.

5.4.1 Unbiased simulation results

The unbiased simulation results are presented in a similar format to the MBA

simulation results, with the semi-circle results plotted, and comments made incorporating

simulations from all the shapes. The unbiased simulation results can be found in

Appendix Section C.

MDS performance

Comparing the metric biased and unbiased θ1:p (2.12) simulation results, the unbiased

simulations show slightly worst performance for the exponential transform compared

to the power transform. Comparing the non-metric biased and unbiased Sp(X̂) (2.14)

simulation results, the unbiased simulations show worse performance of the exponential

transform compared to the power transform. The margin between the biased and unbiased

MDS performance narrows asCv(µi,j, ρ) (5.4) decreases. As the size of the bias decreases

as Cv(µi,j, ρ) decreases. Studying the unbiased simulations the variance appears to be a

more dominant feature than the bias in influencing MDS performance.
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Shape difference statistic P (X, X̂)

The shape difference P (X, X̂) (5.5) could be a useful measure for correcting bias, as it is

applicable to X̂ from both metric and non-metric MDS. Comparing the metric biased and

unbiased P (X, X̂) simulation results, the unbiased simulations show poorer performance

for the exponential transform but better performance for the power transform. The margin

between biased and unbiased P (X, X̂) for the power transform and metric MDS is quite

wide, indicating its potential for techniques of bias correction. Comparing the non-metric

biased and unbiased P (X, X̂) simulation results, removing the bias makes little difference

to the exponential transforms results and only improves the power transform results when

Cv(µi,j, ρ) (5.4) is large, suggesting non-metric MDS is quite robust to bias. AsCv(µi,j, ρ)

decreases the margin between biased and unbiased P (X, X̂) diminishes. Studying the

unbiased simulation results the variance appears to be a more dominant feature than the

bias in increasing P (X, X̂).

Size expansion statistic G(X, X̂)

Comparing the (metric) biased and unbiased G(X, X̂) (5.6) simulation results, for the

exponential transform the removal of bias makes little difference to G(X, X̂), but for the

power transform, removing bias significantly improves G(X, X̂). The improvement with

the power transform indicates it is a candidate for a bias correction. The margin between

biased and unbiased G(X, X̂) decreases as Cv(µi,j, ρ) decreases. Studying the unbiased

simulation results the variance appears to be a more dominant feature than the bias in

increasing G(X, X̂).
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Unbiased simulations summary

Of the four routes (using either the exponential transform (4.4) or power transform (4.6),

and either metric or non-metric MDS) to obtain an estimated chromosome configuration

X̂ in Chapter 4, the power transform with metric MDS, appears to be in strongest need

for bias correction. The exponential transform with metric or non-metric MDS and the

power transform with non-metric MDS do not appear so influenced by bias. The variance

is a major component in causing a poor X̂: an approach to reduce this variance effect is

discussed in Section 6.4.

5.4.2 Validlity of unbiased simulation

The validity of the unbiased simulations depends on how well ˜̃D emulates D̃, without the

presence of a bias. To assess validity, Shepards plots were used with ˜̃di,j generated when

Cv(µi,j, ρ) is either large or moderate. The plots included a set of d̃i,j generated under the

same levels of Cv(µi,j, ρ). The addition of an identity line, and a 95% confidence interval

for the ˜̃di,j around the identity line to the Shepards plots, should aid interpretation. The

array of information in the Shepards plots indicates where ˜̃di,j and d̃i,j match and where

they differ, how ˜̃di,j is distributed and whether there are any other tell-tale signs of poor

emulation. In addition to the Shepards plots, the percentage of ˜̃di,j simulated below zero

and above one is calculated for the exponential transform (4.4) and percentage of the ˜̃di,j

simulated below zero is calculated for the power transform (4.6). The Shepards plots and

proportions use data from a semi-circle configuration and a single simulation.

Exponential transform

The conditions which lead to large Cv(µi,j, ρ) for the exponential transform (4.4), are

α = 0.1 and ρ = 8, and conditions which lead to moderate Cv(µi,j, ρ) are α = 0.01 and
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(a) Exponential transform & metric MDS. (b) Power transform & metric MDS.

(c) Exponential transform & non-metric MDS. (d) Power transform & non-metric MDS.

Figure 5.15: MDS performance statistics θ1:2 (2.12) or S2(X̂) (2.14) from the unbiased
MBA simulations for a semi-circle. Column one: unbiased perturbed distances ˜̃D (5.21)
emulating the exponential transform (4.4). Column two: ˜̃D (5.22) emulating the power
transform (4.6). Row one: θ1:2 values from fitting ˜̃D into two dimensional Euclidean
space with metric MDS. Row two: S2(X̂) values from fitting ˜̃D into two dimensional
Euclidean space with non-metric MDS. The red lines for α = 0.1 (5.21) or b0 =

0.1 (5.22); the green lines for α = 0.01 or b0 = 0.01; the blue lines for α = 0.001

or b0 = 0.001, and the pink lines for α = 0.0001 or b0 = 0.0001. The dashed lines
give the equivalent MBA simulation values from Figure 5.2.
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(a) Exponential transform & metric MDS. (b) Power transform & metric MDS.

(c) Exponential transform & non-metric MDS. (d) Power transform & non-metric MDS.

Figure 5.16: Shape difference P (X, X̂) (5.5) values from the unbiased MBA simulations
for a semi-circle. Column one: unbiased perturbed distances ˜̃D (5.21) emulating the
exponential transform (4.4). Column two: ˜̃D (5.22) emulating the power transform (4.6).
Row one: P (X, X̂) values from fitting ˜̃D into two dimensional Euclidean space with
metric MDS. Row two: P (X, X̂) values from fitting ˜̃D into two dimensional Euclidean
space with non-metric MDS. The red lines for α = 0.1 (5.21) or b0 = 0.1 (5.22); the
green lines for α = 0.01 or b0 = 0.01; the blue lines for α = 0.001 or b0 = 0.001,
and the pink lines for α = 0.0001 or b0 = 0.0001. The dashed lines give the
equivalent MBA simulation values from Figure 5.3.
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(a) Exponential transform & metric MDS. (b) Power transform & metric MDS.

Figure 5.17: Size expansion G(X, X̂) (5.6) values from the unbiased MBA simulations
for a semi-circle, where the unbiased perturbed distances ˜̃D are fit into two dimensional
Euclidean space using metric MDS. Left panel: unbiased perturbed distances ˜̃D (5.21)
emulating the exponential transform (4.4). Right panel: ˜̃D (5.22) emulating the power
transform (4.6). The red lines for α = 0.1 (5.21) or b0 = 0.1 (5.22); the green lines

for α = 0.01 or b0 = 0.01; the blue lines for α = 0.001 or b0 = 0.001, and the
pink lines for α = 0.0001 or b0 = 0.0001. The dashed lines give the equivalent
MBA simulation values from Figure 5.4.
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ρ = 4.

(a) Large Cv(µi,j , ρ). (b) Moderate Cv(µi,j , ρ).

Figure 5.18: Shepards plots for the exponential transform (4.4) MBA perturbed distances
D̃ and unbiased distances ˜̃D (5.21) emulating the exponential transform. Left panel:
both sets of distances generated using α = 0.1 and ρ = 8; when coefficient of variation
Cv(µi,j, ρ) (5.4) is large. Right panel: both sets of distances generated using α = 0.01

and ρ = 4; when Cv(µi,j, ρ) is moderate. The red points denote elements of ˜̃D, and
the black points denote elements of D̃. The blue line is the identity line and dashed
green line is the 95% confidence interval for ˜̃D found using var(d̃i,j) (5.13).

α ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 3.8251 7.6817 14.2124 23.2878
0.01 0.4466 0.8420 1.5679 3.0533
0.001 0.0584 0.1045 0.1976 0.3653
0.0001 0.0061 0.0126 0.0258 0.0464

Table 5.2: Percentage of unbiased distances ˜̃di,j (5.21) simulated outside the boundary

for the exponential transform (4.4) of ˜̃di,j < 0 and ˜̃di,j > 1, at different levels of α and
dispersion ρ.

The Shepards plots for large Cv(µi,j, ρ) in Figure 5.18a is a good example of poor

emulation. Here the ˜̃di,j do not match the d̃i,j at two locations on the plot. The first
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location a large quantity of d̃i,j lie outside the upper 95% confidence interval of the ˜̃di,j

around 0 < di,j ≤ 0.3. The second location is large quantity of ˜̃di,j > 1. This failure to

match is partly due to the absence of a boundary on ˜̃di,j > 1 and poor variance estimates

at large Cv(µi,j, ρ). The Shepards plot at medium Cv(µi,j, ρ) in Figure 5.18b is an better

example of good emulation. Here both ˜̃di,j and d̃i,j fit inside the 95% confidence interval

for ˜̃di,j , the only location where ˜̃di,j and d̃i,j fail to match is several d̃i,j are simulated

outside the upper 95% confidence interval, although this is expected due to the influence

of the bias. In Table 5.2, when Cv(µi,j, ρ) is large at α = 0.1 and ρ ≥ 2, over 5% of

the ˜̃di,j are simulated outside the boundary, which suggests these simulations should be

discounted.

The unusual nature of the exponential transform (4.4) with the bias and variance peaking

within the range of the di,j = (0, 1] and the upper bound on the size of d̃i,j , makes it

difficult to produce unbiased perturbed distances which can emulate it. If repeating the

unbiased simulations, the lognormal distribution might be more appropriate to simulate
˜̃di,j as this removes the possibility simulating ˜̃di,j < 0.

Power transform

The conditions which produce large Cv(µi,j, ρ) for the power transform (4.6), are b0 =

0.1, β = −0.5 and ρ = 8 and moderate Cv(µi,j, ρ) are b0 = 0.01, β = −0.5 and

ρ = 4. The Shepards plots at large Cv(µi,j, ρ) in Figure 5.19a, displays a good example

of ˜̃D emulating D̃ without the presence of bias. Here there are two locations where
˜̃di,j and d̃i,j fail to match. The first location is the d̃i,j simulated above the upper 95%

confidence interval for ˜̃di,j . The second is the absence of d̃i,j around the lower 95%

confidence interval for ˜̃di,j . These two discrepancies could be due to the presence of the

bias driving the d̃i,j to become larger. At small di,j , both ˜̃di,j and d̃i,j match very well.

The Shepards plot for medium Cv(µi,j, ρ) in Figure 5.19b displays good emulation with
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(a) Large Cv(µi,j , ρ). (b) Moderate Cv(µi,j , ρ).

Figure 5.19: Shepards plots for the power transform (4.6) MBA perturbed distances D̃

and unbiased distances ˜̃D (5.22) emulating the power transform. Left panel: both sets of
distances generated using b0 = 0.1, β = −0.5 and ρ = 8; when coefficient of variation
Cv(µi,j, ρ) (5.4) is large. Right panel: both sets of distances generated using b0 = 0.01,
β = −0.5 and ρ = 4; when Cv(µi,j, ρ) is moderate. The red points denote elements of
˜̃D, and the black points denote elements of D̃. The blue line is the identity line and
dashed green line is the 95% confidence interval for ˜̃D found using var(d̃i,j) (5.18).

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 000000 000000 0.0053 0.1374
0.01 000000 000000 000000 000000
0.001 000000 000000 000000 000000
0.0001 000000 000000 000000 000000

Table 5.3: Percentage of unbiased distances ˜̃di,j (5.22) emulating the power transform,

simulated outside the boundary for the power transform (4.6) of ˜̃di,j < 0, with β = −0.5

and at different levels of b0 and dispersion ρ.

little difference between ˜̃di,j and d̃i,j . In Table 5.3, only at the largest Cv(µi,j, ρ), where

b0 = 0.1, β = −0.5 and ρ ≥ 4, is a tiny proportion of the ˜̃di,j simulated outside the

boundary.
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The Shepards plots and proportions of ˜̃di,j simulated outside the boundary suggest the ˜̃di,j

emulate d̃i,j very well and all the unbiased simulations can be counted.

5.5 Estimating dispersion

Before a bias correction can be applied to the power transforms (4.6) perturbed distances,

an estimate for dispersion ρ is required. The dispersion is a component in the additive

bias and inflationary bias of both transforms, so whichever approach is taken to correct

the bias a suitable estimate of ρ is required.

Given that ρ is assumed uniform across M, a simple way to estimate ρ when using the

power transform and metric MDS would be to use a modification of the χ2 (4.9) score

function

ρ̂ =
2

n(n− 1)

∑
i<j

(mi,j − µi,j)2

µi,j
, (5.23)

where n(n−1)
2

is the size of the upper triangle of the matrix summed over. Each value

contributing to the sum of (5.23) represents an elementwise estimate of ρ, which is made

robust by taking the mean over the matrix. Taking the expectation of (5.23) gives

E(ρ̂) =
2

n(n− 1)

∑
i<j

E((mi,j − µi,j)2)
µi,j

=
2

n(n− 1)

∑
i<j

ρµi,j
µi,j

= ρ,

hence (5.23) is an unbiased estimator. When using U and M in (5.23), good estimates

for ρ are obtained. Unfortunately U is assumed unknown so the fitted counts Û = (µ̂i,j)

(found using the technique outlined in Chapter 4) were used instead. Using Û gave very
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large ρ̂ as can be seen in Table 5.4, with even Û from very small Cv(µi,j, ρ) giving poor

results. The ρ̂ have been inflated by the very large µ̂i,j caused by decreases in the small

distances. To try overcome this inflation, a similar estimate based on (5.18) was used, this

also suffered from very large ρ̂. Finally an algorithm to find ρ̂ using a modification of the

stress score function Sp(X̂) (2.14) as a point estimator was developed and is described in

Section 5.5.1.

The stress Sp(X̂) isotonically regresses the perturbed (or estimated) distances D̃ = (d̃i,j)

onto the fitted distances D̂ = (d̂i,j) (2.2), so they are relative in scale to D̂. When using

metric MDS the scale in the fitted distances is preserved so isotonic regression of the

estimated distances can be ignored. Avoiding the isotonic regression gives a new “simple

stress” score function

Rp(X̂) =

∑
i<j(d̃i,j − d̂i,j)2∑

i<j d̂
2
i,j

. (5.24)

where p denotes how many dimensions have been used to find D̂ = (d̂i,j) in (2.2).

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 75148.73 340634.31 645784.82 1061448.00
0.01 22154.67 38895.33 74542.88 177882.90
0.001 31561.40 69040.25 99582.07 177674.80
0.0001 25323.80 52945.44 105143.71 229512.80

Table 5.4: Estimates for dispersion ρ̂ using the fitted counts Û from a fitted semi-circle
X̂, found using the power transform (4.6) and metric MDS. The ρ̂ values are found by
inputting the elements of Û into (5.23) instead of the mean counts. The process of
extracting Û from X̂ is outlined in Section 4.1.2.

5.5.1 Dispersion estimation algorithm

1. Calculate Rp(X̂) (5.24) for X̂, where X̂ is found using the power transform (4.6)

and metric MDS.
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2. Choose an value of ρ̂ as the initial estimate for the dispersion (a good starting value

is ρ = 1) and using Û as the matrix of mean counts simulate a new matrix of

perturbed counts M̃ = (m̃i,j)

m̃i,j ∼ NB(r, l),where r =
µ̂i,j
ρ̂− 1

and l =
1

ρ̂
.

If ρ̂ = 1 use m̃i,j ∼ Poisson(µ̂i,j). Transform M̃ into ˜̃D = ( ˜̃di,j) using the power

transform (4.6) with the same parameters used to find X̂, and calculate a new simple

stress value

R̃ =

∑
i<j(

˜̃di,j − d̂i,j)2∑
i<j d̂

2
i,j

. (5.25)

Repeat 1000 times to obtain a sample of R̃ (5.25), calculate the sample mean R̃ =

1000−1
∑m

i=1 R̃i and then find δρ̂ = |Rp(X̂)− R̃|.

3. Repeat step 2. using a different value for ρ̂ each time. Eventually choosing the ρ̂

which gives the smallest δρ̂.

The algorithm to find ρ̂ is computationally intensive, to ease computation an interval

where ρ̂ is expected to lie can be scanned across. The interval should start at ρ̂ = 1 and

end at some large ρ̂ such that some structural information is retained in M̃.

The logic behind the algorithm is that if D̂ ≈ D and ρ̂ ≈ ρ then ˜̃D should have similar

structural properties to D̃ and generate a R̃ ≈ Rp(X̂).

5.5.2 Dispersion estimation algorithm results

The algorithm was trialled using the original distances D for D̂ in Rp(X̂) (5.24) and M̃

generated from the mean counts U to test its performance. The algorithm recovered a
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ρ̂ ≈ ρ on each level of dispersion ρ = 1, 2, 4, and 8. The algorithm was applied to the

actual data generated using the MBA for each level of mmin.

The ρ̂ estimates in Tables 5.5 and 5.6 are an improvement on those using (5.23). The ρ̂

values vary depending on the shape the perturbed counts M originated from. The parabola

appears to give the poorest ρ̂, with the ρ̂ values from moderate Cv(µi,j, ρ) giving poorer

estimates than the ρ̂ values from large Cv(µi,j, ρ). The algorithm scans across an interval,

so the poorest dispersion estimates used could be a value from the end of the interval.

This would be ρ̂ = 1 from the lower end of the interval, or a value from the upper end

of the interval. If the interval is wisely chosen, the poorest ρ̂ would not be so large as to

erase structure from M.

Straight line Parabola
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.0439 1.7473 2.8128 3.7023 1.8583 2.7405 3.8978 4.7720
0.01 1.1022 2.1871 4.2588 8.0389 1.2707 2.7453 6.8666 14.9470
0.001 1.1184 2.2242 4.4253 8.8450 1.1592 2.3886 4.7791 10.1632
0.0001 1.1094 2.2220 4.5413 8.9095 1.1506 2.2964 4.6193 9.3123

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.2389 2.5115 3.1172 3.7326 1.0023 1.2644 1.7569 2.4369
0.01 1.0702 2.1404 4.1317 7.7383 1.0042 1.9112 3.6869 6.7579
0.001 1.0957 2.1718 4.3240 8.5964 1.0081 1.9862 3.9675 7.8552
0.0001 1.0948 2.1779 4.3848 8.7811 1.0100 2.0006 3.9949 7.9747

Table 5.5: Table one of dispersion estimates ρ̂ found using the dispersion estimation
algorithm in Section 5.5.1. The fitted configurations used by the dispersion estimation
algorithm are generated using the MBA approach with the power transform (4.6) using
β = −0.5 and the b0 value on the table; with the mmin = 1 adjustment; dispersion ρ on
the table and fitting into one or two dimensional space using metric MDS.
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Straight line Parabola
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.0283 1.7698 2.9020 4.3924 2.1895 3.3145 4.5449 6.2180
0.01 1.0984 2.1721 4.2158 8.0214 1.3007 2.8174 7.3471 15.0040
0.001 1.1197 2.2227 4.3894 8.7735 1.1593 2.3653 4.8158 9.9107
0.0001 1.1004 2.2020 4.4501 8.8886 1.1368 2.2983 4.6078 9.2423

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.1408 2.4918 3.5604 5.2674 1.0021 1.3231 2.1416 3.7566
0.01 1.0697 2.1009 4.1087 7.8479 1.0052 1.9157 3.6684 6.7529
0.001 1.0909 2.1703 4.2954 8.6539 1.0093 1.9827 3.9535 7.8595
0.0001 1.0877 2.2043 4.3779 8.7222 1.0101 1.9939 3.9890 8.0043

Table 5.6: Table two of dispersion estimates ρ̂ found using the dispersion estimation
algorithm in Section 5.5.1. The fitted configurations used by the dispersion estimation
algorithm are generated using the MBA approach with the power transform (4.6) using
β = −0.5 and the b0 value on the table; with the mmin = 2 adjustment; dispersion ρ on
the table and fitting into one or two dimensional space using metric MDS.

5.6 Bias correction

The unbiased simulation results, showed that X̂ from the power transform (4.6) with

metric MDS, appears to be in strongest need for bias correction. There are two routes

available to correct the bias, by removing the additive bias (5.19) from d̃i,j or shrinking

d̃i,j to reduce the inflationary bias (5.20), to give a matrix of bias corrected perturbed

distances D̃∗ = (d̃∗i,j).

Correcting for the additive bias involves estimating each εi,j to remove it from d̃i,j , to give

d̃∗i,j = d̃i,j − εi,j , where εi,j is the bias in d̃i,j described by (5.19). Removing εi,j could

produce some d̃∗i,j < 0 if εi,j > d̃i,j , which would have to be replaced with d̃i,j or d̂i,j to

retain a fittable D̃∗. Correcting for the inflationary bias avoids the d̃∗i,j < 0 problem.

To correct for the inflationary bias, a matrix of coefficients of inflation C = (ci,j) must be

estimated. We may calculate an estimate ĉi,j using (5.20) with µ̂i,j and ρ̂ substituted for
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µi,j and ρ, giving

ĉi,j = 1 +
β

2
(β − 1)ρ̂µ̂−1i,j . (5.26)

We may then obtain bias corrected perturbed distances:

d̃∗i,j =
d̃i,j
ĉi,j

. (5.27)

Finally, the bias corrected perturbed distances D̃∗ = (d̃∗i,j) were fitted into p dimensional

Euclidean space using metric MDS to obtain a corrected configuration X̂∗. The θ1:2 (2.12)

measure of metric MDS performance; shape difference statistic P (X, X̂) (5.5), and size

expansion statistic G(X, X̂) (5.6) for corrected configuration, where all collected and

compared with their equivalents from the MBA simulations. To recover the corrected

fitted counts Û∗ = (µ̂∗i,j) from X̂∗, the corrected fitted distances D̂∗ = (d̂∗i,j) from (2.2)

are first re-inflated before the transform is inverted

µ̂∗i,j = f−1(ĉi,j d̂
∗
i,j), (5.28)

where f−1 is (4.7).

5.6.1 Bias correction results

The bias correction simulation results for the semi-circle are plotted below and comments

are made in view of the results from all the shapes, which can be found in Appendix

Section D.
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(a) Bias corrected θ1:2 values

mmin = 1.

(b) Bias corrected θ1:2 values

mmin = 2.

Figure 5.20: MDS performance statistics θ1:2 (2.12) from the bias corrected MBA
simulations for a semi-circle. Left panel: θ1:2 values are found using the bias corrected
perturbed distances D̃∗ (5.27) for the power transform (4.6) with β = −0.5 and with
the mmin = 1 adjustment. Right panel: θ1:2 values are found using the bias corrected
perturbed distances D̃∗ for the power transform with β = −0.5 and with the mmin = 2

adjustment. The red lines gives values for b0 = 0.1 (4.6); the green lines for
b0 = 0.01; the blue lines for b0 = 0.001, and the pink lines b0 = 0.0001. The
dashed lines give the equivalent MBA simulation θ1:2 values from Figure 5.2.
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MDS performance

The bias correction has a minor decrease in θ1:p compared to the MBA (uncorrected)

simulations, with the decrease narrowing as the coefficient of variation Cv(µi,j, ρ) (5.4)

decreases. The greatest decrease occurs on the parabola with the mmin = 2 adjustment.

This could be driven by the large ρ̂ given in Tables 5.5 and 5.6 for the parabola, over

estimating the coefficient of inflation (5.26). The shrinkage is counter what is expected,

ideally all the information from the perturbed distances should be projected into the first

p dimensions with θ1:p = 100%, but perturbation disrupts information in the genuine

dimensions and distributes information into the spurious dimensions. Reducing the bias

shrinks d̃i,j but preserves the variance, so correction has reduced the bias in both genuine

and spurious eigenvalues. Comparing results from setting mmin = 1 and mmin = 2, the

θ1:p from mmin = 2 appear to be larger, although the adjustment is only of benefit at large

Cv(µi,j, ρ).

Shape difference statistic P (X, X̂)

The bias correction produces an improvement in the shape difference P (X, X̂) (5.5)

values between X and X̂∗ for all shapes, hence an improvement in configuration recovery.

The greatest improvement is seen at large Cv(µi,j, ρ) (5.4) when the bias is most

prominent. As Cv(µi,j, ρ) decreases so does the effect of the improvement. The greatest

improvement is observed in the circle with the results found in Appendix Section D. The

circle perturbed distance matrix is rich in large d̃i,j susceptible to greater perturbation.

Comparing the bias correction P (X, X̂) results for mmin = 1 with those for mmin = 2 in

Appendix Section D, the results from mmin = 2 have the greatest improvement, although

the adjustment is only of benefit at large Cv(µi,j, ρ) where the probability of simulating a

mi,j = 0 or 1 is large.
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(a) Bias corrected P (X, X̂) values

mmin = 1.

(b) Bias corrected P (X, X̂) values

mmin = 2.

Figure 5.21: Shape difference values P (X, X̂) (5.5) from the bias corrected MBA
simulations for a semi-circle. Left panel: P (X, X̂) values are found using the bias
corrected perturbed distances D̃∗ (5.27) for the power transform (4.6) with β = −0.5

and with the mmin = 1 adjustment. Right panel: P (X, X̂) values are found using the bias
corrected perturbed distances D̃∗ or the power transform with β = −0.5 and with the
mmin = 2 adjustment. The red lines gives values for b0 = 0.1 (4.6); the green lines
for b0 = 0.01; the blue lines for b0 = 0.001, and the pink lines b0 = 0.0001. The
dashed lines give the equivalent MBA simulation P (X, X̂) values from Figure 5.3.
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Size expansion statistic G(X, X̂)

(a) Bias corrected G(X, X̂) values

mmin = 1.

(b) Bias corrected G(X, X̂) values

mmin = 2.

Figure 5.22: Size expansion values G(X, X̂) (5.6) from the bias corrected MBA
simulations for a semi-circle. Left panel: G(X, X̂) values are found using the bias
corrected perturbed distances D̃∗ (5.27) for the power transform (4.6) with β = −0.5

and with the mmin = 1 adjustment. Right panel: G(X, X̂) values are found using the bias
corrected perturbed distances D̃∗ for the power transform with β = −0.5 and with the
mmin = 2 adjustment. The red lines gives values for b0 = 0.1 (4.6); the green lines
for b0 = 0.01; the blue lines for b0 = 0.001, and the pink lines b0 = 0.0001. The
dashed lines give the equivalent MBA simulation G(X, X̂) values from Figure 5.4.

The bias correction produces an improvement in G(X, X̂) for all shapes, which can

be observed in Figure 5.22 with the bias corrected values below their corresponding

uncorrected values. The drop in G(X, X̂) gives an indication of how prominent the bias

is at inflating X̂. The greatest improvement is observed at large Cv(µi,j, ρ), in Figure 5.22

the margin between the corrected and uncorrected values at the b0 level highlights this.

The margin of improvement decreases asCv(µi,j, ρ) (5.4) decreases. ComparingG(X, X̂)

results formmin = 1 with those formmin = 2, the results formmin = 2 displays the greatest

improvement, although the adjustment is only of benefit at large Cv(µi,j, ρ).
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Bias correction simulation summary

The bias correction results for shape difference and size expansion display the greatest

improvement. The margin of improvement decreases as Cv(µi,j, ρ) decreases which

is expected as less perturbation is present in the perturbed distances. Therefore bias

correction provides an additional tool to improve the recovery of the original configuration

X from the perturbed count matrix M.

5.6.2 Visual comparison

Figure 5.23: Bias corrected fitted X̂∗ and original configurations X for a semi-circle,
generated using the MBA approach bias correction (5.27) with the power transform (4.6).
The parameters for the power transform are b0 = 0.1, β = −0.5; the dispersion is set at
dispersion ρ = 8 and the mmin = 1 adjustment is used. The matrices D̃ and D̃∗ (5.27) are
fitted into three dimensional Euclidean space using metric MDS. The denotes a point
of X̂∗ and the red line connects successive points of X̂∗. The denotes a point of X and
the green line connects successive points of X.

The bias correction improves the shape difference statistic, but to gain insight into where it

improves the fitted configuration visual comparison can be used. Visual comparison will

plot the X̂∗ corresponding to poorest value of P (X, X̂) from the power transform (4.6)
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and metric MDS, generated at b0 = 0.1; ρ = 8 and mmin = 1. In Figure 5.23 the

metric MDS with the bias correction has managed to recover some structure in the second

dimension, to recover X̂∗ closer to a semi-circle. Unlike the uncorrected X̂ in Figure 5.7

which has lost its semi-circular structure in the second dimension. Although noise is still

present in all three dimensions and continues to inhibit the full recovery of the initial

configuration from M.

5.7 Application to Chromosome contact data

The bias correction can be applied to the estimated chromosome configuration for

Chromosome 14 from Section 4.2.1, found using the power transform (4.6) and metric

MDS X̂P,M on the chromosome count data from Hi-C (Lieberman-Aiden et al., 2009).

To provide a potential improved estimate X̂∗P,M .

No bias correction is applied to the estimated chromosome configurations found using

the exponential transform (4.4) with metric or non-metric MDS. This is because the

MBA simulation results (Appendix Section B) and unbiased simulation results (Appendix

Section C) display the variance in the perturbed distances plays a larger role than the bias

in the perturbed distances, in affecting shape difference. No bias correction is applied

to the estimated chromosome configurations found using the power transform and non-

metric MDS for similar reasons. One useful by-product of the bias correction would be

an estimate of the dispersion in the Hi-C chromosome contact matrix.

To gauge if X̂∗P,M is an improvement on X̂P,M , a comparison of the χ2 (4.9) was made,

found using the fitted counts ÛP.M = (µ̂i,j) and bias corrected fitted counts Û∗P,M = (µ̂∗i,j)

values from (5.28). The process of applying the correction to the chromosome contact

data is outlined below.

1. Apply the mmin adjustment to M then the fitting algorithm from Section 4.1.3 to



Chapter 5. Model-based approach 163

obtain β̂, X̂P,M (three dimensional) and χ2 (4.9). Note we set b0 = 1 as b0 only acts

to uniformly scale distances when transforming counts to distances.

2. The fitted distances D̂P,M and fitted counts ÛP,M from X̂P,M are used to obtain ρ̂

using the dispersion estimation algorithm in Section 5.5.1.

3. The fitted counts ÛP,M and dispersion estimate ρ̂ are used in (5.26) to obtain the

estimated coefficient of inflation Ĉ and find the biased corrected distances D̃∗P,M

using (5.27).

4. The bias corrected distances D̃∗P,M are then fitted into three dimensional Euclidean

space using metric MDS to obtain the bias corrected estimated configuration X̂∗P,M

and the bias corrected score function χ2∗ (4.9).

5.7.1 Bias corrected estimated chromosome configuration

The bias correction was applied to Chromosome 14 to give a three dimensional bias

corrected estimated chromosome configurations for Chromosome 14 X̂∗P,M . With a

similar analysis given to X̂∗P,M , as given to X̂P,M described in Section 4.2.1. The bias

correction results for each chromosomes can be found in Tables 5.9 and 5.10.

Table 5.7 shows the bias correction improves the score functions for both mmin

adjustments. The score function corresponding to the mmin = 1 adjustment produces

the greatest improvement while the score functions corresponding mmin = 2 produces a

smaller improvement. The shape difference between X̂P,M and X̂∗P,M was measured using

POSS(X,Y) (4.10), giving POSS(X̂P,M , X̂
∗
P,M) = 0.2389 for the mmin = 1 adjustment

and POSS(X̂P,M , X̂
∗
P,M) = 0.0366 for the mmin = 2 adjustment. The small change in

shape for the correction corresponding to the mmin = 2 adjustment indicates the bias

correction only makes a small change to the estimated chromosome configuration.
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Adjustment β̂ ρ̂ χ2 SSR(M, Û) S3(X̂)
mmin = 1 -0.4497 2.2452 501915 3.1604×109 21.7088%

(1171886) (2.9535×1010) (32.0391%)
mmin = 2 -0.4796 2.018 355777 9.8337×108 19.82039

(485658) (7.4257×108) (23.73281%)

Table 5.7: Score function data from using metric MDS with the bias correction for
the power transform, to obtain an bias corrected (Section 5.7) estimated chromosome
configuration for Chromosome 14 X̂∗P,M . Column one indicates which mmin adjustment
has been used. Columns two and three give the estimated power transform (4.6) parameter
value β̂ (Table 4.2), and the estimated dispersion ρ̂ found using the dispersion estimation
algorithm Section 5.5.1. Column four gives the minimized χ2 (4.9) values found using
the corrected fitted counts Û∗P,M (5.28), below in brackets the uncorrected value from
Table 4.2. Column five gives the SSR(M, Û) (4.8) values found using Û∗P,M , below in
brackets the uncorrected value from Table 4.2. Column six gives the S3(X̂) (2.14) values
found using X̂∗P,M , below in brackets the uncorrected value from Table 4.2.

The bias correction results corresponding to the mmin = 2 adjustment will be analysed

further, as this produces the lowest value of χ2∗ (4.9).

θ1 θ2 θ3 θ1:3
Corrected 15.283% 5.692% 3.918% 24.893%

(Uncorrected) (16.570%) (5.356%) (3.875%) (25.801%)

Table 5.8: Percentage of information projected into the first three dimensions θ1, θ2 and θ3
and total percentage of information projected into the first three dimensions θ1:3. Row one:
percentages of information for Chromosome 14’s bias corrected estimated configuration
for the power transform (4.6). Row two: percentages of information for Chromosome
14’s estimated configuration for the power transform (Section 4.2.1). The bias corrected
values θ1, θ2, θ3 and θ1:3 values are found by substituting the fitted eigenvalues in Λ̂∗P,M
into (2.11) and (2.12).

In Figure 5.24 X̂∗P,M retains its less severe horseshoe shape in the first and second

dimensions, and still lacks a polynomial relationship between the first and third

dimensions, characteristic of horseshoe configurations. The differences between X̂∗P,M

and X̂P,M appear to be more subtle, with difference seen in the local structure and points
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Figure 5.24: Perspectives of Chromsome 14’s bias corrected estimated configuration
X̂∗P,M . The conifguration X̂∗P,M is found by applying the bias correction technique
(Section 5.6) for the power transform to X̂P,M found in Section 4.2.1. Both distance
matrices D̃ and D̃∗ (5.27) are fitted into three dimensional Euclidean space using metric
MDS. The denotes a point of X̂∗P,M and the red line connects successive points of X̂∗.
The denotes a point of X̂P,M and the green dashed line connects successive points of
X̂P,M .

Figure 5.25: Fitted eigenvalues Λ̂∗P,M from fitting Chromosome 14’s bias corrected
estimated distances D̃∗P,M into three dimensional Euclidean space with metric MDS. The
red circles denote the three lead fitted eigenvalues λ̂∗1, λ̂

∗
2 and λ̂∗3 from Λ̂∗P,M , and the

hollow red circles denote the remaining λ̂∗k for k ≥ 4. The green circles denote the
three lead fitted eigenvalues λ̂1, λ̂2 and λ̂3 from Λ̂P,M (Section 4.2.1), and the hollow
green circles denote the remaining λ̂k for k ≥ 4.
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which jutted out from X̂P,M now slightly closer in X̂∗P,M .

In Figure 5.24 the magnitude of the lead three eigenvalues has decreases, but their

magnitude relative to the spurious eigenvalues appears to have improved. The magnitude

of the third genuine eigenvalue is now larger than the absolute magnitude of the largest

negative eigenvalues, thus satisfying the magnitude criterion and the margin from the first

spurious eigenvalue appears to have increased. The spurious eigenvalues still take an “s”

shape although not as pronounced as before.

Applying the bias correction to the configuration from the chromosome contact matrix,

X̂∗P,M retains the overall shape of X̂P,M but subtle changes appear at a local level. The

magnitude of the genuine eigenvalues improves relative to the spurious eigenvalues,

although the drop in magnitude of the lead eigenvalues, causes the proportion of

information projected into the lead dimensions to be less than before. In Tables 5.9 and

5.10 the bias correction produces an improved χ2 (4.9) on all the chromosomes, with the

exception of Chromosome 2 using the mmin = 1 adjustment and Chromosome 6 and the

X Chromosome with the mmin = 2 adjustment.

5.8 Conclusion

The model-based approach used simulations on known configurations to display how

perturbation in the counts affects the fitted configuration. Investigating how perturbation

is translated into distances, we observe that the exponential transform behaves unusually

with bias and variance in the perturbed distances peaking before the boundary (at

d̃i,j = 1). The power transform behaves sensibly with the bias and variance in the

perturbed distances peaking on the boundary. Unbiased simulations indicated that the

power transform with metric MDS was the best candidate for a bias correction, so an

estimate for dispersion was obtained and a bias correction constructed and applied. The

bias correction improved the recovery of X in X̂∗ and performed better when Cv(µi,j, ρ)
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was large. The bias correction was then applied to the chromosome contact matrices and

produced improved χ2 values for the majority of the chromosomes.

Chromosome Percentage ρ̂ χ2 χ2∗ χ2∗

χ2

mi,j = 0 &1
1 0.2045% 1.0005 2179027 1587384 0.7285
2 0.1879% 1.2075 2192977 2629122 1.1989
3 0.0801% 1.1359 1723729 1313844 0.7622
4 0.1265% 1.0958 1598033 1411594 0.8833
5 0.0909% 1.1565 1450381 1261109 0.8695
6 0.0876% 1.5384 2523582 1352563 0.5360
7 0.0679% 1.4668 1686702 1520920 0.9017
8 0.0699% 1.7270 1188464 1071292 0.9014
9 0.2342% 2.0134 3747273 1632013 0.4355
10 0.0116% 1.4449 954364 924317 0.9685
11 0.0239% 2.2367 2258035 1120401 0.4962
12 0.0363% 1.8071 1915093 660281 0.3448
13 0.0219% 2.4995 948437 600156 0.6328
14 0.0267% 2.4598 1171886 505551 0.4314
15 0.1543% 1.7253 893767 787873 0.8815
16 0.0333% 3.1847 1771469 1288205 0.7272
17 0.0333% 2.4300 985024 670888 0.6811
18 0.0702% 1.7468 424011 297502 0.7016
19 0.0699% 3.3241 1009454 414690 0.4108
20 0.0584% 3.9891 1051830 350008 0.3328
21 0.2016% 2.9644 162856 123058 0.7556
22 0.1783% 2.2021 70514 58464 0.8291
X 0.1074% 2.9378 1626946 1228782 0.7553

Table 5.9: Summary of the bias correction technique (Section 5.7) for the power
transform (4.6) with the mmin = 1 adjustment, when applied to Chromosome 1 to 22
and X’s estimated configurations. Column one lists which chromosome the row of data
is referring to. Column two lists percentage of elements (mi,j = 0) in the chromosome
count matrix M adjusted by the mmin = 1 adjustment. Column three lists the estimates
for dispersion in M (Section 5.5.1. Column four and five list the χ2 (4.9) values before
the bias correction (Table A.1,A.2 and A.3), and after the bias correction χ2 values from
the Chromosomes bias corrected estimated configurations. Column six the ratio of the
after and before χ2 values (the relative improvement).
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Chromosome Percentage ρ̂ χ2 χ2∗ χ2∗

χ2

mi,j = 0, 1 &2
1 1.0423% 1.1231 1445467 1335243 0.9237
2 0.6914% 1.1737 1542520 1461832 0.9477
3 0.3739% 1.1990 1188609 1026257 0.8634
4 0.7073% 1.1774 1135280 1011563 0.8910
5 0.4026% 1.1688 1023446 900981 0.8803
6 0.4162% 1.2723 1121189 1175006 1.0480
7 0.2716% 1.6573 1243815 1125652 0.9050
8 0.2198% 1.5732 744585 678936 0.9118
9 0.8953% 1.9175 1426884 1129849 0.7918

10 0.0347% 1.5664 765634 804244 1.0504
11 0.2385% 2.4250 1253663 1143319 0.9120
12 0.3270% 1.7400 709648 684009 0.9639
13 0.1535% 2.1229 738917 622988 0.8431
14 0.1337% 2.0079 485658 355876 0.7328
15 0.3704% 2.4922 893767 757224 0.8472
16 0.2331% 3.7167 850103 614229 0.7225
17 0.0999% 2.9400 677167 508206 0.7505
18 0.1053% 3.1861 424011 228482 0.5389
19 0.2096% 4.4406 781721 216780 0.2773
20 0.1169% 3.8369 581958 339554 0.5835
21 0.6048% 3.8788 162856 115958 0.7120
22 0.3565% 2.3671 70514 57438 0.8146
X 0.4653% 1.5711 650033 669500 1.0299

Table 5.10: Summary of the bias correction technique (Section 5.7) for the power
transform (4.6) with the mmin = 2 adjustment, when applied to Chromosome 1 to 22
and X’s estimated configurations. Column one lists which chromosome the row of data is
referring to. Column two lists percentage of elements (mi,j = 0&1) in the chromosome
count matrix M adjusted by the mmin = 2 adjustment. Column three lists the estimates
for dispersion in M (Section 5.5.1. Column four and five list the χ2 (4.9) values before
the bias correction (Table A.1,A.2 and A.3), and after the bias correction χ2 values from
the Chromosomes bias corrected estimated configurations. Column six the ratio of the
after and before χ2 values (the relative improvement).
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Chapter 6

Model-based approach: extensions

Chapter 5 used a model-based approach (MBA) to detect a bias when fitting counted

data into three dimensional Euclidean space, measured the biases affecting the perturbed

distances and fitted configurations, and concluded with a successful bias correction

technique for use with the power transform (4.6), and metric multidimensional scaling

(MDS). This chapter supplements Chapter 5 by investigating biases in the fitted

configurations and fitted eigenvalues, identifies the reasons why a bias correction for the

exponential transform will not work, and describes novel approaches to try to correct for

the bias and noise in the exponential transform.

6.1 Fitting the expected perturbed distances

Chapter 5 used visual comparison to interpret how perturbation was translated into the

fitted configuration X̂ = (x̂i,k). This was performed by aligning the original configuration

X = (xi,j) with X̂ and plotting them together. Visual comparison gave insight into

the effect of biases and noises on X̂, but noise dominated the analysis and clouded any

inferences which might have been made on the effect of the bias.
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To obtain a clear impression of the effect of the bias, distance matrices were constructed

using the expected distances found through the delta method (5.8). This give expected

distance matrices E(D̃) = (E(d̃i,j)), where each E(d̃i,j) was constructed by inputting

the original distance di,j into (5.12) for the exponential transforms expected distances

or (5.17) for the power transforms expected distances, the diagonal elements of E(D̃)

remained zero. The matrices E(D̃) were fitted into three dimensional Euclidean space

using metric MDS to give an expected fitted configuration E(X̂) with expected fitted

eigenvalues E(λ̂k) (2.7). Non-metric MDS was excluded from this analysis because it

appeared more robust to bias in the unbiased simulations (Section 5.4). The configurations

E(X̂) and X were aligned using the procedures used for visual comparison and plotted.

To accentuate the biases the parameters which gave the largest bias were used. These

parameters were α = 0.1 for the exponential transform and b0 = 0.1 and β = −0.5 for

the power transform, setting the level of dispersion at ρ = 8 for both cases.

6.1.1 Exponential transform

The expected fitted configurations E(X̂) for the exponential transform (4.4) can be

observed in Figures 6.1 and 6.2, the corresponding expected fitted eigenvalues E(λ̂k)

can be observed in Figures 6.5 and 6.6. In Figures 6.1 and 6.2, all shapes appear to have

warped taking on characteristics of the horseshoe effect, with a horseshoe in the first and

second (third for the line) dimensions and a cubic polynomial relationship in the first

and third (second for the line) dimensions. The circle appears to have contracted while

retaining its shape in the first and second dimensions, and gained additional structure in

the third dimension to resemble a spring washer.

The unusual properties of the exponential transform bias (visible in Figure 5.12a) shift the

middling distances into larger distance and has little effect on the larger distances, creating

confusion between middling and larger distances, creating conditions contributing to the

horseshoe effect.



Chapter 6. Model-based approach: extensions 171

For the circle, an abundance of di,j = 1 distributed uniformly between the points along

with a equal distribution of all the distances, buttress the circle against the bias. The

equal distribution of distances means that each point in X shares the same set of distances

between the other points.

In Figures 6.5 and 6.6, for the straight line, parabola and semi-circle, the magnitude of

the genuine E(λ̂k) is larger than the genuine λk for k = 1, 2. This increase is driven by

the bias, increasing the length of the distances. For the circle, E(λ̂k) < λk for k = 1, 2,

due to the buttressing effect limiting the size of E(λ̂k) and forcing information into the

spurious dimensions. The bias produces spurious E(λ̂k) for k ≥ 2 with a small number

of E(λ̂k) > 0 and the remaining E(λ̂k) = 0. No spurious E(λ̂k) < 0 are produced,

suggestingE(D̃) from the exponential transform does not violate the Euclidean properties

of a distance matrix. The absence of negative expected eigenvalues E(λ̂k) suggests the

fitted eigenvalues λ̂k in Figures 4.4 and 5.6 are the sole product of the noise in D̃.

6.1.2 Power transform

The expected fitted configurations E(X̂) for the power transform (4.6) can be observed in

Figures 6.3 and 6.4, the corresponding expected fitted eigenvalues E(λ̂k) can be observed

in Figure 6.7 and 6.8. In Figures 6.3 and 6.4, the bias appears to have stretched the

shapes and in some cases stretched information out of the first two dimensions. The line,

parabola and semi-circle are related shapes, having successively more information in the

second dimension. The bias stretches the line and parabola into a one dimensional shape.

The semi-circle retains information in the second dimension and gains information in the

third dimension. The circle remains robust to the bias and expands in a similar manner

to when the expected perturbed distances E(D̃) from when the exponential transform are

fitted into Euclidean space, to produce a expected fitted configuration resembling a spring

washer.
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(a) E(X̂) for the straight line.

(b) E(X̂) for the parabola.

Figure 6.1: Expected configurations E(X̂), from fitting the MBA expected exponential
transform distances E(D̃) (5.12) with metric MDS. Row one: E(X̂) for a straight line.
Row two: E(X̂) for a parabola. Each E(D̃) is generated using α = 0.1 and ρ = 8. The

denotes a point of E(X̂) and the red line connects successive points of E(X̂). The
denotes a point of the original configuration X and the green line connects successive

points of X.

The horseshoe effect appears less prominent in E(X̂) from the power transform. The

size of the bias increases as the distance increases, so small distances remain small

distances; medium distances remain medium distances and large distances remain large

distances, lacking the confusion between medium and large distances which contributes

to the horseshoe effect.

In Figures 6.7 and 6.8 for the straight line; parabola and semi-circle, E(λ̂1) > λ1 and

for the parabola and semi-circle E(λ̂2) < λ2, indicating information is lost in the second

dimension. For the circle, E(λ̂k) > λk for k = 1, 2. For the semi-circle and circle,

bias has produced some spurious E(λ̂k) > 0 for k > 2. In all shapes, the bias produces
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(a) E(X̂) for the semi-circle.

(b) E(X̂) for the circle.

Figure 6.2: Expected configurations E(X̂), from fitting the MBA expected exponential
transform distances E(D̃) (5.12) with metric MDS. Row one: E(X̂) for a semi-circle.
Row two: E(X̂) for a circle. Each E(D̃) is generated using α = 0.1 and ρ = 8. The

denotes a point of E(X̂) and the red line connects successive points of E(X̂). The
denotes a point of the original configuration X and the green line connects successive

points of X.

spurious E(λ̂k) < 0 for k ≥ 96, to compensate for the majority of information being

projected into the first dimension. Hence E(D̃) violates the Euclidean properties of a

distance matrix. The negative fitted eigenvalues λ̂k in Figures 4.4 and 5.8 are a product of

bias and noise in D̃; this is why the bias correction reduces the magnitude of the negative

spurious eigenvalues.

6.1.3 Conclusion

The exponential and power transform have different biassing characteristics in E(X̂) and

E(λ̂). The exponential bias (5.14) warps the shapes and utilizes additional dimensions
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(a) E(X̂) for the straight line.

(b) E(X̂) for the parabola.

Figure 6.3: Expected configurations E(X̂), from fitting the MBA expected power
transform distances E(D̃) (5.17) with metric MDS. Row one: E(X̂) for a straight line.
Row two: E(X̂) for a parabola. Each E(D̃) is generated using b0 = 0.1, β = −0.5 and
ρ = 8. The denotes a point of E(X̂) and the red line connects successive points of
E(X̂). The denotes a point of the original configuration X and the green line connects
successive points of X.

to accommodate the bias, middling distances are increased to large distances while

large distances are increased only a little, causing the confusion that forces E(X̂)

to take on aspects of the horseshoe effect, although the exponential transform E(D̃)

retains its Euclidean properties. The power transform bias (5.19) stretches shapes

which are not robust to the bias, drawing information out of the second dimension

and into the first. The power transform bias increases as distance increases avoiding

the confusion between middling and large distances, making the horseshoe effect less

prominent in E(X̂), although the power transforms E(D̃) loses its Euclidean properties

and requires additional complex dimensions to absorb the increase in information in the

lead dimension. Studies similar to using E(D̃) and E(X̂) were undertaken using Kato
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E(X̂) for the semi-circle.

E(X̂) for the circle.

Figure 6.4: Expected configurations E(X̂), from fitting the MBA expected power
transform distances E(D̃) (5.17) with metric MDS. Row one: E(X̂) for a semi-circle.
Row two: E(X̂) for a circle. Each E(D̃) is generated using b0 = 0.1, β = −0.5 and
ρ = 8. The denotes a point of E(X̂) and the red line connects successive points of
E(X̂). The denotes a point of the original configuration X and the green line connects
successive points of X.

approximation (Kato, 1966; Sibson, 1979; Kent et al., 1983). The Kato approximation

provided a linear approximation to the biases effect on the eigenvalues and eigenvectors.

This was used to plot how the bias moved the points in the fitted configuration. The

Kato approximation found for the exponential transform the bias promoted aspects of the

horseshoe effect in the fitted configuration, while for the power transform the bias had

more of a stretching effect.
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(a) E(λ̂k) for the straight line. (b) E(λ̂k) for the parabola.

Figure 6.5: Expected fitted eigenvalues E(λ̂k) (2.7), from fitting the MBA expected
exponential transform distances E(D̃) (5.12) with metric MDS. Left panel: the E(λ̂k)

for a straight line. Right panel: the E(λ̂k) for a parabola. Each E(D̃) is generated using
α = 0.1 and ρ = 8. The blue circles denote genuine E(λ̂k) for k ≤ 2; the hollow
blue circles denote spurious E(λ̂k) for k ≥ 2. The green circles denote the original
eigenvalues λk for k ≤ 2.

6.2 Trials

Chapter 5 identified a bias in both count to distance transform functions and provided a

correction technique when using power transform (4.6) with metric MDS. Four trials were

run to detect if a similar bias correction was possible for the exponential transform (4.4).

The trial displaying the greatest improvement in P (X, X̂) (5.5) might then be used as a

bias correction technique with real Hi-C count data.

The bias correction for the power transform described in Section 5.6 used the fitted counts

Û = (µ̂i,j) and an estimate of dispersion ρ̂ to produce a matrix of estimated inflation

coefficients Ĉ = (ĉi,j). The estimated inflation coefficients Ĉ then corrected D̃ to produce
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(a) E(λ̂k) for the semi-circle. (b) E(λ̂k) for the circle.

Figure 6.6: Expected fitted eigenvalues E(λ̂k) (2.7), from fitting the MBA expected
exponential transform distances E(D̃) (5.12) with metric MDS. Left panel: the E(λ̂k)

for a semi-circle. Right panel: the E(λ̂k) for a circle. Each E(D̃) is generated using
α = 0.1 and ρ = 8. The blue circles denote genuine E(λ̂k) for k ≤ 2; the hollow
blue circles denote spurious E(λ̂k) for k ≥ 3. The green circles denote the original
eigenvalues λk for k ≤ 2.

a bias corrected perturbed distance matrix D̃∗ = (d̃∗i,j) (5.27) where

d̃∗i,j =
d̃i,j
ĉi,j

.

Finally D̃∗ was fit into Euclidean space using metric MDS to obtain a bias-corrected fitted

configuration X̂∗.

The trials reported in this section for the exponential transform work on a similar basis to

the bias correction for the power transform. Each trial used a different expression for the

coefficient of inflation C = (ci,j) calculated from the original distances di,j , allowing the

search for a coefficient of inflation which offers the most promise as a correction. Using

the true values of ci,j in the trials, and not estimates, removes any inaccuracy which could

undermine the success of the trial. If no trials were successful using ci,j then a correction

using ĉi,j would be even less likely.
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(a) E(λ̂k) for the straight line. (b) E(λ̂k) for the parabola.

Figure 6.7: Expected fitted eigenvaluesE(λ̂k) (2.7), from fitting the MBA expected power
transform distances E(D̃) (5.17) with metric MDS. Left panel: the E(λ̂k) for a straight
line. Right panel: the E(λ̂k) for a parabola. Each E(D̃) is generated using b0 = 0.1,
β = −0.5 and ρ = 8. The blue circles denote genuine E(λ̂k) for k ≤ 2; the hollow
blue circles denote spurious E(λ̂k) for k ≥ 2. The green circles denote the original
eigenvalues λk for k ≤ 2.

Stage One of the trials used C to bias correct the D̃ using (5.27) to produce D̃∗, which was

then fitted into Euclidean space using metric MDS to give X̂∗. The corresponding shape

difference statistic P (X, X̂) (5.5) between X and X̂∗ from the trial was then calculated

and compared with the original P (X, X̂) from the MBA simulation. Stage One was

repeated 1000 times to provide a mean value for P (X, X̂) (5.5). The trial providing

the largest improvement in shape difference was then used in Stage Two. Stage Two

used ĉi,j calculated using d̂i,j and ρ. If the shape difference improved in Stage Two then

Stage Three would use ĉi,j calculated using d̂i,j and ρ̂ similar to the power-transform bias

correction (5.26). The trials were tested on D̃ from a parabola with dispersion ρ = 8,

these conditions providing the largest P (X, X̂) (5.5) in the MBA simulations, therefore

providing scope for a correction to improve P (X, X̂). To differentiate between the trials,

additional subscript notation is added to the matrices, for example C1 = (c1,i,j) is the

coefficient of inflation for Trial 1.
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(a) E(λ̂k) for the semi-circle (b) E(λ̂k) for the circle.

Figure 6.8: Expected fitted eigenvaluesE(λ̂k) (2.7), from fitting the MBA expected power
transform distances E(D̃) (5.17) with metric MDS. Left panel: the E(λ̂k) for a semi-
circle. Right panel: the E(λ̂k) for a circle. Each E(D̃) is generated using b0 = 0.1,
β = −0.5 and ρ = 8. The blue circles denote genuine E(λ̂k) for k ≤ 2; the hollow
blue circles denote spurious E(λ̂k) for k ≥ 3. The green circles denote the original
eigenvalues λk for k ≤ 2.

6.2.1 Constructing the trials

Four different expressions for ci,j were found, using the delta method approximation

to the expectations of the perturbed distances f(mi,j) = d̃i,j , and the delta method

approximation to the expectation of the perturbed squared distances g(mi,j) = d̃2i,j .

Trials 1 and 2 used the delta-method approximation to the expectation of f(mi,j). The

Taylor-series expansion of f(mi,j) around µi,j to third order was taken

f(mi,j) ≈ e−αµi,j − αe−αµi,j(mi,j − µi,j)

+
α2

2
e−αµi,j(mi,j − µi,j)2 −

α3

6
e−αµi,j(mi,j − µi,j)3 (6.1)
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Then taking the expectation of (6.1), gives the delta method approximation to the

expectations of f(mi,j) to third order

E(f(mi,j)) ≈ di,j −
α

2
log(di,j)di,jρ+

α2

6
log(di,j)di,jρ(2ρ− 1). (6.2)

Trial 1 used the coefficient of inflation extracted from the first two terms of (6.2)

c1,i,j ≈ 1− α

2
log(di,j)ρ,

which is the same as (5.15). Trial 2 used the coefficient of inflation extracted from the full

expression of (6.2)

c2,i,j = 1− α

2
log(di,j)ρ+

α2

6
log(di,j)ρ(2ρ− 1).

Trials 3 and 4 used the delta-method approximation to the expectation of g(mi,j) =

e−2αmi,j . The Taylor-series expansion of g(mi,j) around µi,j to third order was taken

g(mi,j) ≈ e−2αµi,j − 2αe−2αµi,j(mi,j − µi,j) +
4

2!
α2e−2αµi,j(mi,j − µi,j)2

− 8

3!
α3e−2αµi,j(mi,j − µi,j)3. (6.3)

Then taking the expectation of (6.3), gives the delta method approximation to the

expectations of g(mi,j) to third order

E(g(mi,j)) ≈ d2i,j − 2αd2i,jlog(di,j)ρ+
4

3
α2d2i,jlog(di,j)ρ(2ρ− 1). (6.4)

Trial 3 used the coefficient of inflation extracted from the first two terms of (6.4)

c3,i,j = 1− 2αlog(di,j)ρ.
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Trial 4 used the coefficient of inflation extracted from the full expression of (6.4)

c4i,j = 1− 2αlog(di,j)ρ+
4

3
α2log(di,j)ρ(2ρ− 1).

Trials 1 and 2 corrected D̃ in a way similar to the power transform bias correction in

Section 5.6, and Trials 3 and 4 corrected the perturbed squared distances D̃2 to give

D̃2∗
t = d̃2∗t,i,j

d̃2∗t,i,j =
d̃2i,j
ct,i,j

where t = 3 or 4.

6.2.2 Trial results

The shape difference statistic P (X, X̂) (5.5) for the trials is displayed in Table 6.1

Stage one Stage two
α Original Trial 1 Trial 2 Trial 3 Trial 4 Trial 2
0.1 0.3495 0.3734 0.3091 0.4286 0.3494 0.3485
0.01 0.1962 0.2148 0.2133 0.2538 0.2450 0.2171
0.001 0.0708 0.0712 0.0712 0.0724 0.0720 0.0717
0.0001 0.0225 0.0224 0.0224 0.0225 0.0224 0.0226

Table 6.1: Shape difference P (X, X̂) (5.5) values from the MBA bias correction trials for
the exponential transform (4.4). The trials were run to bias correction for the perturbed
distances for a parabola with dispersion ρ = 8. Column one lists the levels of α the rows
correspond to. Column two the P (X, X̂) values from the MBA simulations (Table B.9).
Column three to six the P (X, X̂) values for Trials 1,2,3 and 4 stage one. Column seven
the P (X, X̂) values from Trials 2 stage two.

The only significant improvement in P (X, X̂) (5.5) in Table 6.1 at Stage one occurs

in Trial 2 for α = 0.1, displaying around a 10% improvement in P (X, X̂). Other

insignificant improvements in Table 6.1 at Stage One occurred in Trials 1, 2 and 4 at

α = 0.0001, which amounts to a 0.5% improvement in P (X, X̂). The remaining results

in Table 6.1 at Stage One show a poorer P (X, X̂). The Trials produce a poorer X̂∗ most
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of the time, and are detrimental to the recovery of X from M. Trial 2 only managed to

show a strong improvement in P (X, X̂) (5.5). Therefore Trial 2 was brought forward for

testing at Stage Two (using the fitted distances d̂i,j and true dispersion ρ).

Table 6.1 shows that Stage Two Trial 2 only marginally improved P (X, X̂) (5.5) at α =

0.1 and on all other levels of α was detrimental to P (X, X̂). Therefore Trial 2 was not

brought forward for testing at stage three.

6.2.3 Conclusion

These trials demonstrate that a successful pre-processing bias correction for the

exponential transform is not easy to produce, with any pre-processing technique

detrimental to the recovery of the original shape. However, the principle of using trials to

find the coefficient of inflation giving the greatest bias correction could be applied to the

power transform to improve the current bias correction.

6.3 Fit-and-Correct approach

The bias correction used information garnered through the delta method to pre-process the

perturbed distances D̃, proving successful for the power transform (4.6) and unsuccessful

for the exponential transform (4.4). An alternative approach to finding a bias correction

for the exponential transform involves a second round of perturbation and fitting into

Euclidean space to observe how the fitted counts and fitted distances alter, then by feeding

the information observed from the second round back into the original perturbed counts or

distances in the form of a correction. We call this the Fit-and-Correct approach. Figure 6.9

provides a schematic of the Fit-and-Correct approach. Fit-and-Correct provides many

different bias-correction techniques, as there are many ways to interpret the changes after

the second round of perturbation and fitting and many ways to feed that information back
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into the original perturbed data. Here one example of the Fit-and-Correct approach will

be given.

M = (mi,j)
&

D̃ = (d̃i,j)
X̂ = (x̂i,k)

Û = (µ̂i,j)
&

D̂ = (d̂i,j)

M(2) = (m
(2)
i,j )

&
D̃(2) = (d̃

(2)
i,j )

X̂(2) = (x̂
(2)
i,k )

Û(2) = (µ̂
(2)
i,j )

&
D̂(2) = (d̂

(2)
i,j )

Fitting Extraction

Perturbation

FittingExtraction

Correction

Figure 6.9: Schematic of the Fit-and-Correct technique.

6.3.1 Fit-and-Correct example

This example uses perturbed counts M from a parabola with dispersion ρ = 8,

transformed into perturbed distances D̃ using the exponential transform (4.5). The

perturbed distance matrix D̃ was first fitted into two-dimensional Euclidean space using

metric MDS to give X̂. Then D̂ and Û were extracted from X̂ using (2.2) and (4.5). A

second round of perturbation was applied using Û as the matrix of mean counts

m
(2)
i,j ∼ NB(

µ̂i,j
8− 1

,
1

8
)

and m
(2)
i,j = m

(2)
j,i for symmetry. The new perturbed count matrix M(2) was then

transformed into D̃(2) using the same transform function and parameters used to transform

M into D̃, and fitted into two-dimensional Euclidean space using metric MDS to give

X̂(2). Then D̂(2) and Û(2) were extracted from X̂(2) using (2.2) and (4.5). Using the new

perturbed distance matrix D̃(2) and new fitted distance matrix D̂(2), a matrix of adjustment
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coefficients Φ = (φi,j) was found, where

φi,j =
d̂
(2)
i,j

d̃
(2)
i,j

,

which measures the extent to which the MDS fitting, inflated the distances. This process

was repeated 100 times to build an three dimensional array, where each plate of the array

was an individual Φ, the mean was taken over the plates of the array to give mean valued

matrix of adjustment coefficients Φ. This gave an empirical description in Φ of how

fitting adjusts the perturbed distances. The mean valued matrix of adjustment coefficients

Φ is unitless, which means when applied to another matrix it does not alter the units of

the matrix. The Φ was used to pre-process D̃ to counter any adjustment made in the first

round of fitting, to give D̃∗ = (d̃∗i,j) where

d̃∗i,j =
d̃i,j
φi,j

.

The distance matrix D̃∗ was then fitted into two-dimensional Euclidean space using

metric MDS to obtain a corrected configuration X̂∗, and the measures of fit used in the

MBA were collected and compared with the original measures of fit. In Table 6.2 the

α Original Adjusted
0.1 0.3495 0.4198
0.01 0.1962 0.2669
0.001 0.0708 0.0741
0.0001 0.0225 0.0226

Table 6.2: Shape difference values from the Fit-and-Correct example. The Fit-and-
Correct was run to provide an improved fitted configuration from the perturbed distances
for a parabola with dispersion ρ = 8. Column one lists the levels of α the rows correspond
to. Column two the P (X, X̂) (5.5) values from the MBA simulations (Table B.9). Column
three gives the P (X, X̂) values from using the Fit-and-Correct approach.

correction deteriorates the shape difference P (X, X̂) (5.5) and therefore is detrimental to
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the recovery of the original configuration.

6.3.2 Conclusion

Several different approaches at trying to remove bias or adjust the perturbed distances

D̃ to improve the recovery of the original configuration were attempted, all proving

unsuccessful. Fit-and-Correct contains several weaknesses preventing it becoming a

successful correction technique. The first weakness is it a recursion of the MBA. The

MBA assumes X is unknown so a correction technique can be found to recover a X̂∗

without having to rely on unknown values, but the X̂∗ can be compared with the original

X to gauge the corrections effect. Now the Fit-and-Correct is making the X̂ become the

unknown, which is unnecessary. The second weakness is that Û contains noise from the

original perturbation and the fitting, a second round of perturbation only adds another

layer of noise making M(2) even more dissimilar to U. The third weakness is that the

second round of perturbation is also adding a second layer of bias to the new perturbed

distances.

6.4 Post-processing with smoothing splines

Post-processing involves the uses of splines to smooth out the noise in X̂ from

metric multidimensional scaling (MDS). This involves finding a balance on how much

smoothing should be applied, between smoothing out the noise from X̂ and avoiding

erasing features of the original configuration X recovered in X̂. Here we describe a

method that combines smoothing splines and the delta-method estimate for the variance

in perturbed distances D̃ = (d̃i,j) to find this balance.
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6.4.1 Splines

Splines are piecewise-polynomial functions (Green and Silverman (1994)) which fit to

the data points (x̂i,k, ti), where x̂i,k and ti are the dependent and explanatory variables

respectively, i = 1, . . . , n and k = 1, 2 is the dimension number. The spline used to

smooth noise out of X̂ is a smoothing spline which tries to fit a piece-wise cubic function

Pk(ti) = yi,k to the data according to some roughness penalty parameter τ > 0. The

function P (ti) tries to minimize the penalized sum of squares

T (Pk) =
n∑
i=1

(x̂i,k − yi,k)2 + τ

∫ tn

t0

(P ′′k (t))2dt,

where the first term is the goodness-of-fit term and the second term is a roughness penalty.

If τ → 0 the spline interpolates the points (under smoothed) and if τ → ∞ the spline

tends to the linear least squares solution (over smoothed). The parameter τ will be used to

control the level of smoothing the spline applies to X̂. The spline will be used to smooth

each dimension of X̂ independently with the same value of τ therefore the same level of

smoothing, to give a smoothed fitted configuration ˆ̂
X = (ˆ̂xi,k).

6.4.2 The smoothing algorithm

To determine the level of smoothing to apply to X̂ a distance based indicator w(D̃) was

developed which used the percentage error between two different estimates for the total

variance in D̃. The first variance estimate was an empirical estimate for the total variance

in D̃:

ṽ(D̃) =
∑
i<j

(d̃i,j − d̂i,j)2. (6.5)
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The fitted distances D̂ = (d̂i,j) are used in place of the original distances D = (di,j), as

the D are unavailable. The second variance estimate used the sum of the delta-method

approximations for the variance in the perturbed distances var(d̃i,j) (5.9):

v̂(D̃) =
∑
i<j

var(d̃i,j), (6.6)

found using D̂ = (d̂i,j) instead of D = (di,j). Both ṽ(D̃) (6.5) and v̂(D̃) (6.6) use D̂

instead of D, this substitution constricts the post-processing to using X̂ from metric MDS

as scale in the distances is preserved. Then the percentage error between ṽ(D̃) and v̂(D̃)

is found to give the variance score:

w(D̃) =
|ṽ(D̃)− v̂(D̃)|

ṽ(D̃)
× 100%. (6.7)

The idea behind w(D̃) is that if ṽ(D̃) and v̂(D̃) were calculated using the original

distances thenw(D̃) should be small, whereas using the fitted distances to calculatew(D̃)

introduces extra error making the value large. The splines smooth noise out of X̂ this

should move the values of D̂ closer to D, correcting some of the error and reducing the

size of w(D̃) (6.7). The smoothing algorithm is described below:

1. Using the fitted distance D̂ and the perturbed distances D̃ (from the MBA) calculate

w(D̃) (6.7) for the fitted configuration X̂, found using metric MDS.

2. Starting at some initial smoothing parameter value of τ = 0, independently smooth

over the p dimensions of X̂ to obtain a smoothed fitted configuration ˆ̂
X = (ˆ̂xi,k).

Extract the fitted distances from ˆ̂
X using (2.2) and recalculate w(D̃) (6.7).

3. Scan across the interval τ = (0,∞], smoothing X̂ to obtain ˆ̂
X and collecting the

corresponding w(D̃) (6.7) values.

4. Choose the ˆ̂
X which gives the minimized w(D̃) value.
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6.4.3 Post-processing for the exponential transform

The delta method estimate of the variance (5.13) in the perturbed distances from the

exponential transform (4.4) is

var(d̃i,j) ≈ −αρlog(di,j)d
2
i,j,

where α is the parameter used by the exponential transform to determine the relationship

between distances and counts, and ρ is the level of dispersion used in perturbing the

counts, the α and ρ parameters are used in the MBA to determine the levels of perturbation

translated into X̂. Substituting the fitted distances in (5.13) for the original distances and

summing over variance estimates for the upper triangle of the distance matrix, gives the

second variance estimate v̂(D̃) (6.6) for the exponential transform

v̂(D̃) = −αρ
∑
i<j

log(d̂i,j)d̂
2
i,j. (6.8)

The smoothing algorithm was applied to X̂ from the MBA generated using the

exponential transform and metric MDS. This was repeated as a simulation, to obtain

a more robust insight into the smoothing algorithms performance. How the smoothing

algorithm was run as a simulation for the exponential transform is described below.

1. Using the same process used in the MBA (Chapter 5) for the exponential transform

and metric MDS, choose an original configuration X, a level of α and dispersion ρ,

then generate X̂.

2. Apply the smoothing algorithm to X̂ to obtain ˆ̂
X. Collect the shape difference

statistics P (X, X̂) (5.5) between X and ˆ̂
X and the minimized w(D̃) (6.7) value.

3. Repeat steps 1. and 2. for 1000 times with the same X, α and ρ, collecting the

P (X, X̂) and w(D̃) values, then find the mean of the P (X, X̂) and w(D̃) values.
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The simulations were run on each of the original configurations (line; parabola; semi-

circle and circle), on each of the levels of α used in the MBA simulations (α = 0.1; 0.01;

0.001 and 0.0001) and each of the four levels of dispersion used in the MBA simulations

(ρ = 1; 2; 4 and 8).

Simulation results

The simulation results when smoothing algorithm was applied to the semi-circle are

displayed in Figure 6.10 and the simulation results for the remaining shapes can be found

in Appendix Section E.

Shape difference statistic P (X, X̂)

In X̂ from the straight line and parabola at each level of α and ρ, the smoothing algorithm

improved P (X, X̂) (5.5). The largest improvement is observed in X̂ for the straight line

generated with α = 0.1 and ρ = 1, here the smoothing algorithm reduces the P (X, X̂)

value by approximately 77.22%. Although the smoothing algorithm fails by causing a

deterioration in the P (X, X̂) value, for the semi-circle at α = 0.1 and ρ = 8 and the

circle at α = 0.1 and ρ ≥ 2 or α = 0.01 and ρ = 8.

Variance score w(D̃)

The variance score statistic w(D̃) (6.7) is not as easy to interpret as P (X, X̂) (5.5). The

w(D̃) values corresponding to where the smoothing algorithm fails are not unusually

larger, than the w(D̃) values for when the smoothing algorithm is successful. The size

of the w(D̃) values vary between the shapes. There is no relationship between the w(D̃)

values and the coefficient of variation Cv(µi,j, ρ) (5.4). Figure 6.10b displays how varied

they can be, with values from α = 0.0001 producing some of the largest w(D̃) values.
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(a) P (X, X̂). (b) w(D̃).

Figure 6.10: Simulation results from using smoothing splines to post-process the fitted

configuration X̂, to give the fitted smoothed configuration ˆ̂
X. The configuration X̂ is

generated from a semi-circle; using the exponential transform (4.4) and metric MDS. The

configuration ˆ̂
X is generated by applying the smoothing algorithm (Section 6.4.2) for the

exponential transform to X̂. Left panel: shape difference values P (X, X̂) (5.5) between

X and ˆ̂
X. Right panel: variance score w(D̃) (6.7) values. The red lines gives values

for α = 0.1 (4.4); the green lines for α = 0.01; the blue lines for α = 0.001, and
the pink lines α = 0.0001. The dashed lines in the left panel give the equivalent
MBA simulation P (X, X̂) values from Figure 5.3.

Visual comparison

Figure 6.11a displays the X̂ and ˆ̂
X for a semi-circle generated using α = 0.1 and

dispersion ρ = 4, (the parameters giving the largest level of Cv(µi,j, ρ) (5.4) before the

smoothing algorithm fails). The smoothing algorithm produces ˆ̂
X which resembles more

of a parabola than a semi-circle. This parabola shape is an indication of over-smoothing

and although the simulation produced and improved P (X, X̂) (5.5) the improvement was

only marginal. The ṽ(D̃) (6.5) and v̂(D̃) (6.8) values neatly meet at τ = 0.1358 giving

a w(D̃) = 0. As τ increases beyond τ > 0.1358 the ṽ(D̃), v̂(D̃) and w(D̃) (6.7)

values become constant which suggests the shape of ˆ̂
X changes little with increased

smoothing. The failure of the smoothing in the semi-circle and circle, could be occurring
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(a) X̂ and ˆ̂
X from the semi-circle.

(b) w(D̃). (c) ṽ(D̃) and v̂(D̃).

Figure 6.11: Individual result from post-processing the fitted configuration X̂, to give a

fitted smoothed configuration ˆ̂
X. The configuration X̂ is generated from a semi-circle

using the exponential transform (4.4) with α = 0.1; with dispersion set at ρ = 4 and

using metric MDS. The configuration ˆ̂
X is generated by applying the smoothing algorithm

(Section 6.4.2) for the exponential transform to X̂. The variance score w(D̃) (6.7) has a

minimized value of w(D̃) = 0 at τ = 0.1358. Top: configurations X̂ and ˆ̂
X. The

denotes a point of X̂ and the red line connects successive points of X̂. The denotes a

point of ˆ̂
X and the blue line connects successive points of ˆ̂

X. Bottom left: the variance
score w(D̃) denoted by the blue line as the smoothing parameter τ increases. Bottom
right: variance estimates ṽ(D̃) (6.5) denoted by the red line , and v̂(D̃) (6.8) denoted
by the green line as τ increases.
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for the parabola and straight line and are passing undetected, as these shapes are used

by the spline Pk(ti). For example the spline could over-smooth the parabola, by fitting a

least squares cubic function to the data, with emphasis on the quadratic term so ˆ̂
X still

resembles a parabola.

6.4.4 Post-processing for the power transform

The post-processing for the power transform (4.6) can be applied to the bias-corrected

configuration X̂∗, to give a pre-processed (for bias) and post-processed (for noise)

configuration ˆ̂
X∗. The bias correction corrects the perturbed distances using (5.27) to

give bias corrected perturbed distances D̃∗ = (d̃∗i,j). To acknowledge the bias correction

the estimates ṽ(D̃) (6.5) and v̂(D̃) (6.6) require adjustment to estimate the total variance

in D̃∗. In ṽ(D̃∗) the D̃∗ are used in place of D̃ to give

ṽ(D̃∗) =
∑
i<j

(d̃∗i,j − d̂i,j)2. (6.9)

The delta-method estimate for the variance in the bias corrected perturbed distances is

var(d̃∗i,j) = b0β
2ρ
d
2− 1

β

i,j

ĉ2i,j
,

this gives a delta method estimate for total variance of

v̂(D̃) = b0β
2ρ
∑
i<j

d̂
2− 1

β

i,j

ĉ2i,j
(6.10)

The smoothing algorithm was applied to the bias corrected fitted configuration X̂∗ from

the MBA, generated using the power transform (4.6) with mmin = 2 adjustment, fitted

in to Euclidean space with metric MDS and corrected using the bias correction (5.27).
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This was repeated in a simulation, to obtain a more robust insight into the smoothing

algorithms performance. How the smoothing algorithm was run as a simulation for the

power transform is described below.

1. Using the same process in the MBA for the power transform and metric MDS, using

an original configuration X, a level of b0 with β = −0.5, a level of dispersion ρ and

the mmin = 2 adjustment, generate X̂.

2. Apply the bias correction technique for the power transform to obtain Ĉ, D̃∗ and

X̂∗. Using the true ρ not the estimated ρ.

3. Apply the smoothing algorithm to X̂∗ to obtain the bias corrected smoothed fitted

configuration ˆ̂
X∗. Collect the shape difference statistics P (X, X̂) (5.5) between X

and ˆ̂
X∗ and the minimized w(D̃) (6.7) value.

4. Repeat steps 1. 2. and 3. for 1000 times with the same X; b0; β; ρ and mmin = 2,

collecting the P (X, X̂) values and w(D̃) values, then find the mean of the P (X, X̂)

and w(D̃) values.

The simulations were run each of the four original configurations (line; parabola; semi-

circle and circle), on each of the levels of b0 used in the MBA simulations (b0 = 0.1; 0.01;

0.001 and 0.0001) with β = −0.5 and on each of the levels of dispersion used in the MBA

simulations (ρ = 1; 2; 4 and 8), with mmin = 2.

Simulation results

The simulation results when smoothing algorithm was applied to the semi-circle are

displayed in Figure 6.12 and the simulation results for the remaining shapes can be found

in Appendix Section E.
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Shape difference statistic P (X, X̂)

In each the simulations the smoothing algorithm has managed to improve P (X, X̂) (5.5).

The largest improvement is observed when the smoothing algorithm is applied to X̂∗

from a straight line, generated using the power transform with b0 = 0.1, β = −0.5

and dispersion ρ = 4, here the smoothing algorithm reduces P (X, X̂) by approximately

95.37%. The mean reduction in P (X, X̂) from the application of the smoothing algorithm

to X̂∗ is approximately 61.09%. These results from the smoothing algorithm simulations

indicate it is a useful tool in the recovery of the original configuration from the perturbed

count matrix.

Variance score w(D̃)

The variance score w(D̃) (6.7) for the power transform simulations appears easier to

interpret that the equivalent for the exponential transform simulations. The value of w(D̃)

appears to increase as the coefficient of variation Cv(µi,j, ρ) (5.4) increases, evidence

that the smoothing algorithm is working for the power transform. The τ values at the

minimized w(D̃) are usually very small (τ ≈ 0), suggesting a little smoothing and more

interpolation has been applied.

Visual comparison

Figure 6.13a displays X̂∗ and ˆ̂
X∗ for a semi-circle generated using b0 = 0.1, β = −0.5

with dispersion ρ = 8 and mmin = 2. The points of ˆ̂
X∗ appear to follow the average

path of the points of X̂∗, giving a smoother configuration. The global structure of ˆ̂
X∗

still resembles a semi-circle. The local structure of ˆ̂
X∗ is much less chaotic with adjacent

points much closer together. The variance estimators ṽ(D̃∗) (6.9) and ˆ̂v(D̃∗) (6.10) in

Figure 6.13c never meet on the range of τ scanned across and the minimized w(D̃∗) is
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(a) P (X, X̂). (b) w(D̃).

Figure 6.12: Simulation results from using smoothing splines to post-process the bias
corrected fitted configuration X̂∗, to give the bias corrected smoothed fitted configuration
ˆ̂
X∗. The configuration X̂∗ is generated from a semi-circle; using the power transform (4.4)
with β = −0.5; with the mmin = 2 adjustment; metric MDS and the bias correction

(Section 5.6). The configuration ˆ̂
X∗ is generated by applying the smoothing algorithm

(Section 6.4.2) for the power transform to X̂∗. Left panel: shape difference values

P (X, X̂) (5.5) between X and ˆ̂
X∗. Right panel: variance score w(D̃) (6.7) values. The

red lines gives values for b0 = 0.1 (4.6); the green lines for b0 = 0.01; the blue
lines for b0 = 0.001, and the pink lines b0 = 0.0001. The dashed lines in
the left panel give the equivalent bias corrected MBA simulation P (X, X̂) values from
Figure 5.21b.

found at τ = 3.1152 × 10−8. This τ value and ˆ̂
X∗ shows the smoothing algorithm was

not overzealous in smoothing noise out from ˆ̂
X∗.

6.4.5 Application to the estimated chromosome configuration

The smoothing algorithm proved successful when applied to X̂∗ from the power

transform (4.6), which means it could be applied to X̂∗P,M (from Section 5.7) for

chromosome 14 from the Hi-C (Lieberman-Aiden et al., 2009) count data. This should
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(a) X̂∗ and ˆ̂
X from the semi-circle.

(b) w(D̃). (c) ṽ(D̃∗) and v̂(D̃∗).

Figure 6.13: Individual result from post-processing the bias corrected fitted configuration

X̂∗, to give a bias corrected fitted smoothed configuration ˆ̂
X∗. The configuration X̂∗ is

generated from a semi-circle using the power transform (4.6) with b0 = 0.1 and β = −0.5;
with dispersion set at ρ = 8; with the mmin = 2 adjustment; using metric MDS and

the bias correction (Section 5.6). The configuration ˆ̂
X∗ is generated by applying the

smoothing algorithm (Section 6.4.2) for the power transform to X̂∗. The variance score
w(D̃) (6.7) has a minimized value of w(D̃) = 54.6499 at τ = 3.1152 × 10−8. Top:

configurations X̂∗ and ˆ̂
X∗. The denotes a point of X̂∗ and the red line connects

successive points of X̂∗. The denotes a point of ˆ̂
X∗ and the blue line connects

successive points of ˆ̂
X∗. Bottom left: w(D̃) values denoted by the blue line as the

smoothing parameter τ increases. Bottom right: variance estimates ṽ(D̃) (6.9) denoted
by the red line , and v̂(D̃) (6.10) denoted by the green line as τ increases.
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provide a pre-processed (for bias) and post-processed (for noise) ˆ̂
X∗P,M if successful.

The smoothing algorithm was applied to the chromosome 14’s bias corrected estimated

chromosome configuration ˆ̂
X∗P,M using the level of dispersion ρ̂ = 2.018 used for the bias

correction. Figure 6.14 gives the bias corrected and post-processed ˆ̂
X∗P,M for chromosome

14 from the Hi-C count data. The smoothing algorithm appears to have made minor

changes at a local scale with ˆ̂
X∗P,M still resembling X̂∗P,M . The w(D̃) (6.7) is minimized

at τ = 4.9461 × 10−9 with a value of w(D̃) = 41.1328, and as τ increases the variance

estimators ṽ(D̃) (6.9) and v̂(D̃) (6.10) diverge.

Figure 6.14: Perspectives of Chromosome 14’s bias corrected and smoothed estimated

configuration ˆ̂
X∗P,M . The configuration ˆ̂

X∗P,M (Section 6.4.5) is found by applying the
smoothing algorithm (Section 6.4.2) for the power transform (4.6), to Chromosome
14’ bias corrected estimated configuration X̂∗P,M . The configuration X̂∗P,M is found in

Section 5.7. The point denotes a megabase interval of ˆ̂
X∗P,M and the blue line connects

successive megabase intervals of ˆ̂
X∗P,M . The point denotes a point of X̂∗P,M and the

dashed green line connects successive points of X̂∗P,M .
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(a) w(D̃). (b) ṽ(D̃∗) and v̂(D̃∗).

Figure 6.15: Chromosome 14’s bias corrected and smoothed estimated configurations
ˆ̂
X∗P,M (Section 6.4.5) variance score valuesw(D̃) (6.7), and variance estimates ṽ(D̃) (6.9)
and v̂(D̃) (6.10). The variance score has a minimized value of w(D̃) = 41.1328 at
τ = 4.9461 × 10−9. Left panel: the variance score w(D̃) denoted by the blue line as
the smoothing parameter τ increases. Right panel: variance estimates ṽ(D̃) (6.9) denoted
by the red line , and v̂(D̃) (6.10) denoted by the green line as the smoothing
parameter τ increases.

6.4.6 Conclusion

The post-processing through the smoothing algorithm proved unsuccessful when applied

to X̂ from the exponential transform, and successful when applied to X̂∗ from the power

transform. The smoothing algorithm failed for the exponential transform as the smooth

algorithm over-smoothed X̂ producing ˆ̂
X’s more dissimilar from X. The w(D̃) (6.7) for

the exponential transform did not help in indicating where the smoothing had failed and

held little relationship with the coefficient of variation. The smoothing algorithm was

successful for the power transform, with only a small amount of smoothing but enough

to improve P (X, X̂). The w(D̃) values from the smoothing algorithm for the power

transform have a relationship with the coefficient of variation, providing some evidence

of success. When the smoothing algorithm was applied to X̂∗P,M only minor adjustments

were made leaving little shape difference between ˆ̂
X∗P,M and X̂∗P,M . The w(D̃) was
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minimized at τ = 4.9461 × 10−9 suggesting improvements could still be made to the

smoothing algorithm.

To improve the smoothing algorithm the variance score could be replaced with the

absolute difference between ṽ(D̃) (6.5) and v̂(D̃) (6.6), such that

w(D̃) = |ṽ(D̃)− v̂(D̃)|.

Alternatively the smoothing algorithm could use a variance score based on the simple

stress functionRp(X̂) (5.24) similar to when estimating the dispersion (in Section 5.5.1).

6.5 Score function investigation

In Chapter 4 the observed Hi-C counts (Lieberman-Aiden et al., 2009) were transformed

into estimated distances, using a transform function with parameters found using the

fitting algorithm (Section 4.1.3) with a specific score function. The estimated distances

were then fitted into three dimensional Euclidean space using multidimensional scaling

(MDS), to give an estimated chromosome configuration. The estimated chromosome

configuration being the configuration which minimized the score function. When using

non-metric MDS, the ordering of the fitted distances (2.2) from the estimated chromosome

configuration were compared with the estimated distances through the stress of fit

Sp(X̂) (2.14) score function. When using metric MDS the fitted counts recovered from

the fitted distances using the inverse transforms (4.5) or (4.7), were compared with the

observed Hi-C counts using the sum of the Pearsons residuals χ2 (4.9) score function. It

was observed that changes in the small fitted distances become magnified to produce very

large counts, and this could be biasing the χ2 values. To remedy this potential bias from

the very large counts a distance based score function such as the stress Sp(X̂) (2.14) could

be used for metric MDS. If Sp(X̂) was used as a score function for metric MDS the fitting
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algorithm could seek an estimated configuration similar to the non-metric MDS solution,

so the simple stress Rp(X̂) (5.24) can be used instead.

6.5.1 Transform function parameter estimation

To investigate which score function is preferable at finding the original transform

parameters when using metric MDS a small set of exploratory simulations were

run. These simulations involved generating a perturbed count matrix M using the

procedure from the model based approach MBA (Chapter 5), with either the exponential

transform (4.4) or power transform (4.6) and a level of dispersion ρ. Then using the

fitting algorithm (Section 4.1.3) with metric MDS and one of the score functions χ2 (4.9)

or Rp(X̂) (5.24), to estimate α̂ for (4.4) or β̂ for (4.6) and obtain a fitted configuration X̂.

The fitted configuration X̂ can then be compared with the original configuration X using

the shape difference P (X, X̂) (5.5). When using the power transform the bias correction

can be applied using β̂ in the estimate for the coefficients of inflation Ĉ = (ĉi,j) (5.26),

to find if the bias correction is still applicable when using an estimated β̂. The true value

for dispersion is used in the estimation of (5.26) to provide more accuracy.

The original configuration X of a semi-circle is used in the simulations. When

generating M using the exponential transform simulations were run to estimate α for

α = 0.1, 0.01, 0.001 and 0.0001. When using the power transform simulations were run

to estimated β for β = −0.3,−0.5 and −0.7 for each level of b0 = 0.1, 0.01, 0.001

and 0.0001. The power transform simulations will use the minimum count adjustment

of mmin = 2. When using the exponential transform P (X, X̂) is measured between the

original configuration X and the fitted configuration X̂. When using the power transform

P (X, X̂) is measured between the original configuration X and the fitted configuration

X̂, and also measured between X and the bias corrected configuration X̂∗.
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Parameter estimation simulation results

The results for the parameter estimation using χ2 (4.9) or Rp(X̂) (5.24) score functions

in the fitting algorithm, are displayed in Tables 6.3 and 6.4 and in Appendix Section F.

ρ = 1 χ2 Rp(X̂)

α α̂ |α−α̂|
α

% α̂ |α−α̂|
α

%
0.1 0.087751 12.249 0.088738 11.2622
0.01 0.009869 1.3094 0.009828 1.7231
0.001 0.000999 0.1403 0.00099 1.0458
0.0001 0.000091 9.2949 0.00009 9.8301

Table 6.3: α estimates (α̂) from the parameter estimation simulations for the exponential
transform (4.4). The α̂ values are found by applying the fitting algorithm (Section 4.1.3),
with either the χ2 (4.9) or Rp(X̂) (5.24) score function and metric MDS, to the perturbed
distance matrix D̃. The matrix D̃ is generated from a semi-circle, using the exponential
transform and with dispersion ρ = 1. Column one gives the different levels of α used.
For each score function the mean α̂ and the mean percentage error between α̂ and α is
given; in columns two and three for the χ2 score function, and in columns four and five
for the Rp(X̂) score function.

When estimating α for the exponential transform the performance of the score function

appears to depend on the size of α. When α is a large size at α = 0.1 the simple stress

Rp(X̂) performs betters in the fitting algorithm, with the margin in performance between

the score functions increasing as dispersion increases. When α is middling size at α =

0.01 or 0.001 both score functions perform well in the fitting algorithm in estimating α.

For large and middling α the accuracy in the estimates improves as α decreases due to the

decrease in the coefficient of variation Cv(µi,j, ρ) (5.4) in the counts. When α is a small

size at α = 0.0001 the accuracy of the estimation deteriorates for both score functions χ2

and Rp(X̂). This deterioration could be due to the small α altering the count to distance

relationship, such that biases appear when fitting large distances of counts. On each level

of α used the accuracy of the estimation deteriorates when using either score function χ2

or Rp(X̂), as the dispersion increases.
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Figure 6.16 gives the shape difference P (X, X̂) (5.5) values for the exponential

transform (4.4) between X and X̂ found using α̂. The P (X, X̂) values found using α̂ are

larger than the original P (X, X̂) values for each level of α. The decrease in estimation

accuracy at α = 0.0001 is reflected in P (X, X̂) for both score functions χ2 and Rp(X̂),

with the P (X, X̂) for α = 0.0001 poorer than P (X, X̂) for α = 0.001.

(a) χ2. (b) Rp(X̂).

Figure 6.16: Shape difference P (X, X̂) (5.5) values from the parameter estimation
simulations for the exponential transform (4.4). The P (X, X̂) values are found between
the original X and fitted X̂ configurations. The fitted configuration X̂ is fitted from the
perturbed count matrix M, using α̂ in the exponential transform and metric MDS. The α̂
is found using the fitting algorithm with either χ2 (4.9) or Rp(X̂) (5.24) score functions.
The matrix M is generated using the MBA approach, from a semi-circle using the original
α values in (4.5). Left panel: χ2 used in the fitting algorithm. Right panel: Rp(X̂) used
in the fitting algorithm. The red lines for α = 0.1; the green lines for α = 0.01;
the blue lines for α = 0.001, and the pink lines for α = 0.0001. The dashed lines

give the equivalent MBA simulation P (X, X̂) values from Figure 5.3a.

The power transform uses two parameters b0 and β. The parameter b0 is used in

the MBA to determine the size of the counts and therefore control the coefficient of

variation Cv(µi,j, ρ) in the perturbed counts. The parameter β determines the shape of the

relationship between counts and distances and this parameter requires accurate estimation

for the power transform to be successful. The simulations were run to estimate β at
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β = −0.3,−0.5 and −0.7, to find if accuracy of the estimate β̂ changed as β changed.

ρ = 1 χ2 Rp(X̂)

b0 β̂ |β−β̂|
β

% β̂ |β−β̂|
β

%

0.1 -0.413679 17.2642 -0.415072 16.9857
0.01 -0.483658 3.2684 -0.48861 2.2781

0.001 -0.500732 0.1463 -0.498822 0.2355
0.0001 -0.499966 0.0069 -0.499903 0.0194

Table 6.4: β estimates (β̂) from the parameter estimation simulations for the power
transform (4.6). The β̂ values are found by applying the fitting algorithm (Section 4.1.3),
with either the χ2 (4.9) or Rp(X̂) (5.24) score function and metric MDS, to the perturbed
distance matrix D̃. The matrix D̃ is generated from a semi-circle using the power
transform with β = −0.5; with the mmin = 2 adjustment and with dispersion ρ = 1.
Column one gives the different levels of b0 used. For each score function the mean β̂ and
the mean percentage error between β̂ and β is given; in columns two and three for the χ2

score function, and in columns four and five for the Rp(X̂) score function.

When estimating β both score functions performed well, with accuracy improving as the

Cv(µi,j, ρ) decreased (when b0 and ρ decreased). The most interesting results are found

at the b0 = 0.1 level as the Cv(µi,j, ρ) is large, where the effect of the bias on P (X, X̂)

is also large. Therefore additional attention will be given to the performance of the score

functions χ2 and Rp(X̂) in estimating β at the b0 = 0.1 level. When β = −0.3 the most

accurate β estimates come from Rp(X̂) when dispersion is small ρ ≤ 2 and then from

χ2 when dispersion is large ρ > 2. When β = −0.5 the most accurate β estimates come

from Rp(X̂) when dispersion is small ρ = 1 and then from χ2 when dispersion is larger

ρ ≥ 2. When β = −0.7 the most accurate β estimates come from χ2 on all levels of

dispersion.

In all the simulations run using the Rp(X̂) score function and most of the simulations run

using the χ2 score function, the β̂ values are greater than the true β values. The difference

between the β̂ and β values continues to increase, as β decreases, this can be observed in

the increase in the mean percentage error values for the estimates. Transforming counts
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into distances using β̂ > β (with b0 = 1) using the power transform (Figure 6.17) has two

effects on the resulting distances. One effect is the distances generated using β̂ are larger

than the distances generated using β. The other effect is the size difference between

the distances generated using β̂ is smaller than the size difference between distances

generated using β. This second effect has an impact on distances generated from small

counts where the coefficient of variation is larger, as it reduces the size of the noise around

large distances.

(a) (b)

Figure 6.17: Illustration of how distances change when using a greater value of β in the
power transform (4.6). The red circles denote distances transformed from counts using
β = −0.3 and b0 = 1 in the power transform. The green circles denote distances
transformed from counts using β = −0.5 and b0 = 1 in the power transform.

Figure 6.18 gives the shape difference P (X, X̂) values for the power transform with β =

−0.5, between X and X̂ and between X and X̂∗ found using β̂. The P (X, X̂) values

found when using β̂ from χ2 are much smaller than the original P (X, X̂) values from the

MBA (in Appendix Section B), and at the larger levels of Cv(µi,j, ρ) are smaller than the

P (X, X̂) values from the MBA bias corrected configuration X̂∗ (in Appendix Section D).

Applying the bias correction to the perturbed distances using the β̂ estimated using χ2

still manages to provide an improve P (X, X̂) when the Cv(µi,j, ρ) is large, and provides

a negligible difference when the Cv(µi,j, ρ) is small. Therefore using a β̂ found with χ2
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to recover X̂ proves more beneficial than using the original β and the bias correction.

Using a β̂ found with χ2 in the bias correction to recover X̂∗, still provides improvement

in the recovery of the original configuration from the perturbed count matrix M. The

shape difference P (X, X̂) values found when using β̂ from Rp(X̂) are much smaller

than the original P (X, X̂) values from the MBA, and at large Cv(µi,j, ρ) are smaller

than MBA bias corrected configuration P (X, X̂) values. Applying the bias correction

to the perturbed distances provides improvement at large Cv(µi,j, ρ) although fails when

b0 = 0.1 and ρ = 8, and at smaller Cv(µi,j, ρ) the difference in P (X, X̂) is negligible.

Therefore using a β̂ found withRp(X̂) to recover X̂ proves more beneficial than using the

original β and the bias correction. Using a β̂ found with Rp(X̂) in the bias correction to

recover X̂∗, still provides improvement in the recovery of the original configuration from

the perturbed count matrix M, most of the time.

6.5.2 Crossing the transform functions

In the model based approach (MBA) perturbed distances D̃ = (d̃i,j) are generated by

taking a configurations true distances D = (di,j) and transforming them into mean

counts U = (µi,j) using an inverse exponential (4.5) or inverse power (4.7) transform

function. The U are then used to simulate perturbed counts M = (mi,j) using the

Poisson or negative binomial distribution. The M are transformed into D̃ using the

same transform function, either the exponential transform (4.4) or power transform (4.6).

For example if the power transform inverse (4.7) was used to obtain U then the power

transform (4.6) is used to obtain D̃, with the same symmetry when using the exponential

transform. This section will investigate the effects of crossing the transform functions; by

producing U with either the inverse exponential transform or the inverse power transform,

then producing D̃ with the other transform function, either the power transform or the

exponential transform. This is relevant when transforming the observed Hi-C counts

(Lieberman-Aiden et al., 2009) as it is assumed the correct transform is used through
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(a) χ2. (b) Rp(X̂).

Figure 6.18: Shape difference P (X, X̂) (5.5) values from the parameter estimation
simulations for the power transform (4.6). The P (X, X̂) values are found between the
original X and fitted X̂ configurations. The fitted configuration X̂ is fitted from the
perturbed count matrix M, using β̂ in the power transform; with the mmin = 2 adjustment
and metric MDS. The β̂ is found using the fitting algorithm with either χ2 (4.9) or
Rp(X̂) (5.24) score functions. The matrix M is generated using the MBA approach,
from a semi-circle using the original β = −0.5 value in (4.7). Left panel: χ2 used in the
fitting algorithm. Right panel: Rp(X̂) used in the fitting algorithm. The red lines for
b0 = 0.1; the green lines for b0 = 0.01; the blue lines for b0 = 0.001, and the pink
lines for b0 = 0.0001. The dotted red line gives the P (X, X̂) value between X

and the bias corrected X̂∗ using β̂ for b0 = 0.1. The dashed lines give the equivalent
MBA simulation P (X, X̂) values from Figure 5.3b.
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either the exponential transform or the power transform. Here a small exploratory set

of simulations are run, which generate M using one transform inverse and transforming

back to D̃ using the other transform. Then fitting D̃ into Euclidean space using metric

multidimensional scaling (MDS) to obtain a fitted configuration X̂. The shape difference

P (X, X̂) (5.5) between the original configuration X and X̂ will be measured, and

compared with the P (X, X̂) from the MBA simulations.

The original configuration X of a semi-circle will be used in the simulations. When

using the inverse exponential transform simulations will be run at different levels of α at

α = 0.1, 0.01, 0.001 and 0.0001; the perturbed counts M will be transformed into D̃ using

the power transform with mmin = 2, b0 = 0.1 and β estimated using the fitting algorithm

with either χ2 or Rp(X̂) score function. The P (X, X̂) values form the simulation using

the exponential transform inverse, are compared with the P (X, X̂) values from the

MBA simulations using the exponential transform (Figure 5.3a). The bias correction

is omitted as the nature of the counts is different. When using the power transform

inverse simulations will be run at different levels of b0 at b0 = 0.1, 0.01, 0.001 and

0.0001, β = −0.5; the perturbed counts will be transformed into D̃ using the exponential

transform with α estimated using the fitting algorithm with either χ2 or Rp(X̂) score

function. The P (X, X̂) values from the simulations using the power transform inverse, are

compared with the P (X, X̂) values from the MBA simulations using the power transform

(Figure 5.3b). The simulations will be run for each level of dispersion ρ = 1, 2, 4 and 8.

Figure 6.19 gives the P (X, X̂) plots when using the inverse exponential transform (4.5)

and the power transform (4.6) to obtain X̂. When using the χ2 (4.9) in the fitting algorithm

to estimate β the P (X, X̂) values are ordered opposite to the level of Cv(µi,j, ρ) (5.4)

in the perturbed counts, so P (X, X̂) deteriorates when α decreases (and as Cv(µi,j, ρ)

decrease). At the α = 0.1 level the P (X, X̂) (5.5) values almost match the original

P (X, X̂) values from the MBA. At the α = 0.1 level the fitting algorithm and χ2 score

function estimated β̂ = −0.8843 (when dispersion ρ = 1). The plot of the relationship

between counts and distances the exponential transform makes at α = 0.1, and the
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Figure 6.19: Shape difference P (X, X̂) (5.5) values from the parameter estimation
simulations for crossing transforms (exponential transform to power transform). The
P (X, X̂) values are found between the original X and fitted X̂ configurations. The
fitted configuration X̂ is fitted from the perturbed count matrix M, with the mmin = 2

adjustment; using β̂ in the power transform (4.6) and metric MDS. The β̂ is found using
the fitting algorithm with either χ2 (4.9) or Rp(X̂) (5.24) score functions. The matrix M

is generated using the MBA approach, from a semi-circle using the original α value in
(4.5). Left panel: χ2 used in the fitting algorithm. Right panel: Rp(X̂) used in the fitting
algorithm. The red lines for α = 0.1; the green lines for α = 0.01; the blue lines

for α = 0.001, and the pink lines for α = 0.0001. The dashed lines give the
equivalent MBA simulation P (X, X̂) values from Figure 5.3a.
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relationship between counts and distances the power transform makes at β̂ = −0.8843,

is displayed in Figure 6.20a. The relationship both transforms make between counts

and distances looks similar. The close P (X, X̂) values will be due ability of the power

transform to capture the relationship the exponential transform makes between counts and

distances at α = 0.1. At the other levels of α (= 0.01, 0.001 and 0.0001) the relationship

between the counts and distances is captured poorly by the power transform. This poor

fit can be observed in Figure 6.20b, where the counts are generated using the inverse of

the exponential transform (4.5); perturbed with dispersion set at ρ = 1 and returned to

perturbed distances using the power transform (4.6) with β = −0.7207. When using the

Rp(X̂) (5.24) in the fitting algorithm to estimate β̂ the P (X, X̂) values are similar to when

χ2 is used in the fitting algorithm, but with a marginal improvement in P (X, X̂). The

P (X, X̂) values deteriorate as Cv(µi,j, ρ) decreases when α decreases, and the P (X, X̂)

values at α = 0.1 are a close match to the original MBA P (X, X̂) values.

(a) Good emulation. (b) Poor emulation.

Figure 6.20: Illustration of how the relationships of the transforms emulate each other.
Left panel: the relationship between counts and distances from using the exponential
transform (4.4) with α = 0.1 and using the power transform (4.6) with β = −0.8843.
Right panel: the relationship between counts and distances from using the exponential
transform with α = 0.01 and using the power transform with β = −0.7207. The red
line denotes distances generated from the exponential transform. The green line
denotes distances generated from the power transform.
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(a) χ2. (b) Rp(X̂).

Figure 6.21: Shape difference P (X, X̂) (5.5) values from the parameter estimation
simulations for crossing transforms (power transform to exponential transform). The
P (X, X̂) values are found between the original X and fitted X̂ configurations. The fitted
configuration X̂ is fitted from the perturbed count matrix M, using α̂ in the exponential
transform (4.4) and metric MDS. The α̂ is found using the fitting algorithm with either
χ2 (4.9) or Rp(X̂) (5.24) score functions. The matrix M is generated using the MBA
approach, from a semi-circle using the original β = −0.5 value in the inverse power
transform (4.7). Left panel: χ2 used in the fitting algorithm. Right panel: Rp(X̂) used in
the fitting algorithm. The red lines for b0 = 0.1; the green lines for b0 = 0.01; the
blue lines for b0 = 0.001, and the pink lines for b0 = 0.0001. The dashed lines
give the equivalent MBA simulation P (X, X̂) values from Figure 5.3b.
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Figure 6.21 gives the P (X, X̂) plots when using the inverse of the power transform (4.7)

and the exponential transform (4.4) to obtain X̂. When using the χ2 in the fitting

algorithm to estimate α the P (X, X̂) values are poorer than the original MBA P (X, X̂)

values, this the exception of P (X, X̂) for b0 = 0.1. The P (X, X̂) values improve as

Cv(µi,j, ρ) decreases when b0 decreases and appear completely unaffected by the level of

dispersion. When using Rp(X̂) in the fitting algorithm to estimate α, the P (X, X̂) values

are an improvement to when χ2 is used in the fitting algorithm, with the P (X, X̂) values

deteriorating as the dispersion increases. The P (X, X̂) values at b0 = 0.1 appears much

lower than the original MBA P (X, X̂) values.

6.5.3 Conclusion

Estimating α or β using a count based score function χ2 (4.9) or a distance based score

function Rp(X̂) (5.24) has provided additional insight useful in fitting the Hi-C count

matrices.

When estimating α for the exponential transform (4.4) both score functions provide

accurate estimates. Although the accuracy in the estimates deteriorates at very small α (at

α = 0.0001). The effect of using α̂ in producing the fitted configuration is a deterioration

in the shape difference P (X, X̂) (5.5), with the size of the deterioration reflected in the

accuracy of α̂ at estimating α.

When estimating β for the power transform (4.6) both score functions perform well, with

the accuracy of the estimate neatly linked to the coefficient of variation Cv(µi,j, ρ) (5.4)

in the counts (improving as Cv(µi,j, ρ) decreased). The use of either score function

in the fitting algorithm produced β̂ values greater than the original β values. Using

a greater β̂ instead of β reduces the amount of variation in the small distances which

improves the recovery of the fitted configuration. Using β̂ in estimating the coefficient of

inflation (5.26) to use to give a bias corrected configuration X̂∗, still improved P (X, X̂).
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The bias correction was not successful when β̂ was estimated using Rp(X̂) in the score

function at b0 = 0.1 and ρ = 8, although at this level it was show using χ2 provided the

more accurate β̂. The β̂ used when fitting the observed Hi-C count matrix (Lieberman-

Aiden et al., 2009) for Chromosome 14 could be much greater than the hypothetical β,

where the hypothetical β is used to transform the distance between the megabase intervals

into the hypothetical mean counts.

The use of the same transform parameter used in the generation of M, might not be

ideal in the recovery of a fitted configuration which resembles the original configuration.

More broader simulations including the use of the straight-line; parabola and circle

could be carried out to see if the β̂ > β and if the bias correction still works when

using β̂. The properties of the perturbed distances when using an incorrect transform

function parameter α̂ 6= α (for the exponential transform (4.4)) or β̂ 6= β (for the power

transform (4.6)), could be investigated further through the delta-method. This could

improve the bias correction technique or find a bias correction which avoids having to

pre-process the perturbed distances.

Crossing the transform functions provides insight into the effects of using the wrong

transform function to obtain the estimated distances.

When using the power transform to emulate the exponential transform, the P (X, X̂)

values deteriorate as the Cv(µi,j, ρ) decreases. This deterioration could be linked to

the inability of the power transform to emulate the exponential transform (illustrated in

Figure 6.20).

When using the exponential transform to emulate the power transform, the P (X, X̂)

values at large Cv(µi,j, ρ) when b0 = 0.1 are an improvement on the original MBA

P (X, X̂) values. The P (X, X̂) values for the other levels of b0 at b0 = 0.01, 0.001 and

0.0001 are a deterioration on the original MBA P (X, X̂) values.

Using the wrong transform function can lead to a deterioration in the P (X, X̂) values as
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the transform function cannot properly capture the original count to distance relationship.

One approach to further studying using the wrong transform function would be to produce

distorted distances, by obtaining the mean counts through either the exponential or power

transform inverse and transform back with the power or exponential transform. The

distorted distances would avoid the perturbation stage and provide a starting point for

investigating the properties of distances from using the wrong transform function. Using

different more complex transform functions such as adapting the Box-Cox function, could

provide transform functions which emulate the original count to distance relationship.
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Chapter 7

Critical summary and directions for

future research

7.1 Critical summary

This thesis applied multidimensional scaling (MDS) to Hi-C data from male human

lymphoblast cells to recover and estimated chromosome (or genome) configuration.

Two contact-count to distance transform functions were used with two methods of

MDS providing four estimated chromosome configurations, three of which shared the

same shape. One prominent feature in the estimated chromosome configurations was

a horseshoe shape caused either by a genuine horseshoe structure of the chromosome,

or most probably by the horseshoe effect. The estimated chromosome configurations

were investigated to try detect known features of the chromosome. The chromosome

contact matrix from Chromosome 14 displays a plateauing of contact-counts at medium

to large genomic distances, making the estimation of Euclidean distances difficult on

the plateau, providing an ingredient for the horseshoe effect. Estimates of genome

configuration capture the established concept of chromosome territory, but fail to capture

experimentally observed radial positioning of the chromosomes.
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The mechanics of metric MDS were also investigated to glean information which could

aid the recovery of the chromosome configuration and gain insight into the negative

eigenvalues found when fitting non-Euclidean distance matrices.

Acknowledging that the true chromosome configuration is unknown, a model-based

approach (MBA) was developed which simulated contact-counts data from predefined

configurations. The MBA identified a bias in both transform functions and tried to

gauge its affect in the fitted configurations. A bias-correction technique and dispersion

estimation method was developed for the power transform when fitting with metric MDS

and applied with success. The bias correction was then applied to the Hi-C data and

produced a reduction in the score function used to measure fit and subtle alterations in

local structure of the estimated chromosome configuration. The affect of the bias on the

fitted configurations and eigenvalues was investigated; highlighting that the horseshoe

in the estimated chromosome configuration found using the exponential transform could

be partly driven by the bias. Combinations of proposed bias correction techniques for

the exponential transform were trialled with no success, leading to the conclusion that

bias cannot easily be corrected for when using the exponential transform. Smoothing

splines were used to post-process the fitted configurations but only proved successful

when using the power transform. An exploratory investigation into which score function

performed better in the fitting algorithm to estimate the original transform parameters

was undertaken. This found that when estimating α for the exponential transform both

score functions performed well at providing a α̂ close to the original α. The exploratory

investigation also found that estimating β for the power transform the β̂ values were

usually greater than the original β values, although using β̂ in the bias correction still

proved to improve the fitted configuration.
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7.2 Directions for future research

Refining the fitting procedure, modelling for the Hi-C data to represent a cell average

of genome configurations and multiple resolution multidimensional scaling are three

directions for future research.

Refining the fitting procedure first involves investigating the effects of using incorrect

transform parameters and how this effects the bias correction for the power transform.

Another refinement would be applying the procedure outlined in the trials Section 6.2

to find a better-performing bias correction, for the power transform when fitting into

Euclidean space with metric MDS. Another refinement would be making the bias

correction for the power transform recursive. This should improve the recovery of

the fitted configuration from the perturbed counts, since after each bias correction

improved fitted distances and counts should obtained, which can be used to give an

improved coefficient of inflation and improve bias corrected perturbed (or estimated)

distances. These improvements can be compounded to aid the recovery of the estimated

chromosome configuration.

The Hi-C data represents a cell average of genome configurations so the estimated

chromosome configuration is also an average of these configurations. Using the same

approach as the MBA, multiple configurations can be used to produce an average

count matrix and corresponding perturbed distance matrix, which can be fitted into

Euclidean space using MDS, to give an average fitted configuration. The average fitted

configuration can be compared with the original configurations, to find which it original

configuration it resembles the most. Methods might then be developed to extract the

multiple configurations from the average contact matrix which can then be applied to the

Hi-C data.

Multiple resolution multidimensional scaling involves reducing the resolution of the

chromosome contact-count matrix from Hi-C or the perturbed contact matrix from the
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MBA, and recovering a fitted configuration from the new matrix. This would involve

applying the procedure outlined in Section 4.8.1 for fitting the genome to the low-

resolution contact-count matrix, taking the lower resolution contact-count matrix and

extracting a low-resolution fitted configuration. The low-resolution fitted configuration

can provide insight into how robust the transforming of contact-count to distances and

MDS is to changes in resolution.

7.3 Conclusion

This thesis has shown that Hi-C data can be transformed into estimated distances, and

an estimated chromosome configuration can be fitted from the estimated distances using

multidimensional scaling. Although the estimated chromosome configurations found

using this procedure are susceptible to the horseshoe effect, which is caused by properties

of the transform function and the nature of the Hi-C data. Attempts were made to

correct and gauge the transforms effect on the estimated chromosome configuration by

using a model based approach as a platform for investigation. Therefore, in conclusion,

sensible investigation of the transform functions and multidimensional scaling is required

to minimize the extent of the horseshoe effect in the estimated chromosome configuration.
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Appendices

A Chromosome score function data

Appendix containing the score function data when obtaining the estimated chromosome

configurations with metric or non-metric multidimensional scaling (MDS), for all 22

chromosomes and the X chromosome.

A.1 Chromosome score function data from metric MDS

Appendix containing the score function data when obtaining the estimated chromosome

configurations using the exponential transform (4.4) or the power transform (4.6), and

using metric MDS.
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Chromosome Transform Parameter Parameter χ2 SSR(M, Û) S3(X̂)%
function estimate

1 Exponential α̂ 0.0167 868908 1.086×108 17.3677
Power β̂ -0.4982 1445467 2.4202×109 19.8895

2 Exponential α̂ 0.0159 9441425 1.0712×108 18.1352
Power β̂ -0.506 1542520 1.618×109 20.1427

3 Exponential α̂ 0.0155 568775 7.0007×107 15.9176
Power β̂ -0.5163 1188609 1.357×109 21.2583

4 Exponential α̂ 0.0171 436020 5.5748×107 16.8751
Power β̂ -0.5137 1135280 1.1494×109 20.8081

5 Exponential α̂ 0.0147 509040 6.8704×107 15.3901
Power β̂ -0.4971 1023446 1.8224×109 20.3237

6 Exponential α̂ 0.0141 493443 6.645×107 16.0704
Power β̂ -0.4914 1121189 3.8213×109 20.3977

7 Exponential α̂ 0.0130 469453 6.2335×107 18.7016
Power β̂ -0.5029 1243815 1.7385×109 24.8679

Table A.1: Score function data for Chromosomes 1 to 7’s estimated configurations, found
using metric MDS. Column one lists the chromosome the row is referring to. Column
two and three list which transform function has been used and which parameter has been
estimated. Column four and five give the estimated parameter value and the χ2 (4.9)
value it minimizes. Column six and seven give the SSR(M, Û) (4.8) and S3(X̂) (2.14)
values found using the estimated parameter values. The data is found by applying the
fitting algorithm (Section 4.1.3) to the chromosome’s Hi-C count matrix, with either the
exponential transform (4.4) or power transform (4.6) with the mmin = 2 adjustment, and
fitting into three dimensional space with metric MDS. The statistics χ2, SSR(M, Û) and
S3(X̂) are then extracted from the fitted configuration.
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Chromosome Transform Parameter Parameter χ2 SSR(M, Û) S3(X̂)%
function estimate

8 Exponential α̂ 0.0123 362217 5.1637×107 15.6740
Power β̂ -0.4938 744585 6.6296×108 23.1395

9 Exponential α̂ 0.0116 276317 4.6751×107 17.1640
Power β̂ -0.4864 1426884 3.9002×109 24.1512

10 Exponential α̂ 0.0114 344447 5.625×107 16.6842
Power β̂ -0.4929 765634 1.0881×109 22.0247

11 Exponential α̂ 0.0125 287594 4.4483×107 16.0595
Power β̂ -0.4556 1253663 1.3172×1010 25.0642

12 Exponential α̂ 0.0124 297651 4.3647×107 16.4353
Power β̂ -0.4632 709648 1.9794×109 22.9011

13 Exponential α̂ 0.011 171307 2.8074×107 16.8519
Power β̂ -0.5903 738917 7.5705×108 31.7842

14 Exponential α̂ 0.0095 147172 2.7044×107 16.8774
Power β̂ -0.4796 485658 7.4257×108 23.9336

15 Exponential α̂ 0.0088 143456 3.0985×107 17.9886
Power β̂ -0.5044 893767 2.7319×109 28.4703

Table A.2: Score function data for Chromosomes 8 to 15’s estimated configurations,
found using metric MDS. Column one lists the chromosome the row is referring to.
Column two and three list which transform function has been used and which parameter
has been estimated. Column four and five give the estimated parameter value and the
χ2 (4.9) value it minimizes. Column six and seven give the SSR(M, Û) (4.8) and
S3(X̂) (2.14) values found using the estimated parameter values. The data is found by
applying the fitting algorithm (Section 4.1.3) to the chromosome’s Hi-C count matrix,
with either the exponential transform (4.4) or power transform (4.6) with the mmin = 2

adjustment, and fitting into three dimensional space with metric MDS. The statistics χ2,
SSR(M, Û) and S3(X̂) are then extracted from the fitted configuration.
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Chromosome Transform Parameter Parameter χ2 SSR(M, Û) S3(X̂)%
function estimate

16 Exponential α̂ 0.0072 182872 4.1018×107 16.6576
Power β̂ -0.4008 850103 5.8201×109 24.9965

17 Exponential α̂ 0.0084 157526 3.036×107 17.4508
Power β̂ -0.4542 677167 4.5271×109 27.0713

18 Exponential α̂ 0.0088 112784 2.18×107 18.534
Power β̂ -0.5667 424011 4.7909×108 31.6188

19 Exponential α̂ 0.0065 70140 1.7563×107 13.8996
Power β̂ -0.4682 781721 1.9125×109 33.8213

20 Exponential α̂ 0.0064 79915 2.1531×107 14.8062
Power β̂ -0.5076 581958 9.7289×108 32.9016

21 Exponential α̂ 0.0051 18880 5.7184×106 13.7343
Power β̂ -0.4116 162856 2.4729×108 21.098

22 Exponential α̂ 0.0024 30214 1.1248×107 15.7555
Power β̂ -0.5135 70515 1.0138×108 16.2532

X Exponential α̂ 0.0159 234026 2.9523×107 16.309
Power β̂ -0.5238 650033 6.7308×108 24.9823

Table A.3: Score function data for Chromosomes 16 to 22 and X’s estimated
configurations, found using metric MDS. Column one lists the chromosome the row is
referring to. Column two and three list which transform function has been used and which
parameter has been estimated. Column four and five give the estimated parameter value
and the χ2 (4.9) value it minimizes. Column six and seven give the SSR(M, Û) (4.8)
and S3(X̂) (2.14) values found using the estimated parameter values. The data is found
by applying the fitting algorithm (Section 4.1.3) to the chromosome’s Hi-C count matrix,
with either the exponential transform (4.4) or power transform (4.6) with the mmin = 2

adjustment, and fitting into three dimensional space with metric MDS. The statistics χ2,
SSR(M, Û) and S3(X̂) are then extracted from the fitted configuration.
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A.2 Chromosome score function data from non-metric MDS

Appendix containing the score function data when obtaining the estimated chromosome

configurations using the exponential transform (4.4) or the power transform (4.6), and

using non-metric MDS.

Chromosome Transform Parameter Parameter S3(X̂)%
function estimate

1 Exponential α̂ 0.1211 13.6395
Power β̂ -0.1686 13.6552

2 Exponential α̂ 0.1775 14.4785
Power β̂ -0.1701 14.4759

3 Exponential α̂ 0.1841 13.3954
Power β̂ -0.128 13.3988

4 Exponential α̂ 0.1111 13.0859
Power β̂ -0.1948 13.0849

5 Exponential α̂ 0.1019 12.3782
Power β̂ -0.2725 12.3432

6 Exponential α̂ 0.1238 13.4278
Power β̂ -0.343 13.4295

7 Exponential α̂ 0.2502 15.9983
Power β̂ -0.1851 14.702

Table A.4: Score function data for Chromosomes 1 to 7’s estimated configurations, found
using non-metric MDS. Column one lists the chromosome the row is referring to. Column
two and three list which transform function has been used and which parameter has been
estimated. Column four and five give the estimated parameter value and the S3(X̂) (2.14)
value it minimizes. The data is found by applying the fitting algorithm (Section 4.1.3) to
the chromosome Hi-C count matrix, with either the exponential transform (4.4) or power
transform (4.6) with the mmin = 1 adjustment, and fitting into three dimensional space
with non-metric MDS. The statistic S3(X̂) is then extracted from the fitted configuration.
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Chromosome Transform Parameter Parameter S3(X̂)%
function estimate

8 Exponential α̂ 0.4294 12.5188
Power β̂ -0.3853 12.4885

9 Exponential α̂ 0.2211 12.3408
Power β̂ -0.154 12.3598

10 Exponential α̂ 0.1877 13.2302
Power β̂ -0.3083 13.2288

11 Exponential α̂ 0.1533 12.676
Power β̂ -0.1486 12.6801

12 Exponential α̂ 0.3034 13.9874
Power β̂ -0.2616 12.9924

13 Exponential α̂ 0.0739 13.5248
Power β̂ -0.3085 13.5243

14 Exponential α̂ 0.0961 12.1728
Power β̂ -0.304 12.1724

15 Exponential α̂ 0.0412 12.2888
Power β̂ -0.3157 12.2927

Table A.5: Score function data for Chromosomes 1 to 7’s estimated configurations, found
using non-metric MDS. Column one lists the chromosome the row is referring to. Column
two and three list which transform function has been used and which parameter has been
estimated. Column four and five give the estimated parameter value and the S3(X̂) (2.14)
value it minimizes. The data is found by applying the fitting algorithm (Section 4.1.3) to
the chromosome Hi-C count matrix, with either the exponential transform (4.4) or power
transform (4.6) with the mmin = 1 adjustment, and fitting into three dimensional space
with non-metric MDS. The statistic S3(X̂) is then extracted from the fitted configuration.
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Chromosome Transform Parameter Parameter S3(X̂)%
function estimate

16 Exponential α̂ 0.0745 12.5066
Power β̂ -0.309 12.5109

17 Exponential α̂ 0.073 12.9384
Power β̂ -0.1102 12.9348

18 Exponential α̂ 0.3802 19.0418
Power β̂ -0.2307 13.82

19 Exponential α̂ 0.0319 10.8232
Power β̂ -0.2366 10.8267

20 Exponential α̂ 0.2165 12.6557
Power β̂ -0.4098 10.9737

21 Exponential α̂ 0.1515 13.6104
Power β̂ -0.3052 9.8415

22 Exponential α̂ 0.3033 15.4072
Power β̂ -0.2834 9.1781

X Exponential α̂ 0.1811 12.4171
Power β̂ -0.2093 12.4245

Table A.6: Score function data for Chromosomes 1 to 7’s estimated configurations, found
using non-metric MDS. Column one lists the chromosome the row is referring to. Column
two and three list which transform function has been used and which parameter has been
estimated. Column four and five give the estimated parameter value and the S3(X̂) (2.14)
value it minimizes. The data is found by applying the fitting algorithm (Section 4.1.3) to
the chromosome Hi-C count matrix, with either the exponential transform (4.4) or power
transform (4.6) with the mmin = 1 adjustment, and fitting into three dimensional space
with non-metric MDS. The statistic S3(X̂) is then extracted from the fitted configuration.



Appendices 226

B Model based approach simulation results

Appendix containing model-based approach (MBA) simulation results, to compliment

results in Section 5.2.

B.1 Metric multidimensional scaling results

Simulation results using the MBA found with metric multidimensional scaling (MDS).

θ1:p Exponential transform
Straight line Parabola

α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 17.5280 13.7420 11.0115 9.0516 19.2844 15.6954 13.1714 11.4195
0.01 40.7642 32.8719 25.9647 20.2632 42.0806 34.2533 27.4567 21.9221
0.001 68.5834 60.7124 52.2316 43.6602 69.5229 61.7720 53.4092 44.9184
0.0001 87.3587 82.9926 77.5445 70.9412 87.8165 83.6021 78.2862 71.8540

Semi-circle Circle
α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 24.0085 19.6464 16.4867 14.1867 32.2633 26.4798 21.8590 18.1601
0.01 49.5337 41.2414 33.6520 27.1904 60.3159 52.0161 43.7954 36.1912
0.001 75.6007 68.6874 60.8670 52.4629 82.7933 77.3000 70.6903 63.1057
0.0001 90.7337 87.3872 83.0481 77.6207 93.8314 91.4926 88.3829 84.3275

Table B.7: Percentage of information projected into the first k dimensions θ1:p (2.11) from
the MBA simulations, found using the exponential transform (4.4) with metric MDS. For
the straight line p = 1 and for the parabola; semi-circle and circle p = 2.



Appendices 227

θ1:p Power transform mmin = 1
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 27.8404 20.1293 13.6644 9.8202 30.7130 24.7237 19.1479 14.3174
0.01 57.6572 48.9282 40.1297 31.7891 58.7113 50.1035 41.5921 33.8346
0.001 81.2577 75.3700 68.3916 60.4241 81.8946 76.1679 69.3219 61.5269
0.0001 93.2063 90.6505 87.2819 82.9114 93.4746 91.0144 87.7434 83.4877

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 24.9252 18.8831 13.7386 10.9278 21.9326 14.8751 10.4338 9.13840
0.01 54.6591 45.8674 37.1914 29.0098 52.1325 43.3325 34.7716 26.7928
0.001 79.3910 73.1468 65.7938 57.5829 77.7440 71.1615 63.5305 55.1377
0.0001 92.4360 89.6187 85.9195 81.1791 91.7041 88.6540 84.6881 79.6137

θ1:p Power transform mmin = 2
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 27.8637 20.4204 14.6388 11.1370 30.7036 24.2488 18.6172 14.6818
0.01 57.5900 48.9094 40.1247 31.8003 58.6961 50.1368 41.5896 33.8635
0.001 81.2557 75.4122 68.4265 60.4729 81.9058 76.1921 69.3358 61.4963
0.0001 93.2115 90.6612 87.2650 82.9057 93.4705 91.0086 87.7531 83.4964

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 24.8325 18.5495 14.3731 12.0332 22.1934 16.0361 12.6126 11.4270
0.01 54.6531 45.8829 37.2032 29.0013 52.2750 43.3092 34.7572 26.8080
0.001 79.3953 73.1522 65.7945 57.5684 77.8475 71.1560 63.5265 55.1326
0.0001 92.4297 89.6134 85.9065 81.1836 91.6675 88.6615 84.6817 79.6197

Table B.8: Percentage of information projected into the first k dimensions θ1:p (2.11)
from the MBA simulations, found using the power transform (4.6) with β = −0.5 and
with metric MDS. For the straight line p = 1 and for the parabola; semi-circle and circle
p = 2. Top table: mmin = 1 adjustment. Bottom table: mmin = 2 adjustment.
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P (X, X̂) Exponential transform
Straight line Parabola

α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.0690 0.0930 0.1224 0.1579 0.2271 0.2666 0.3045 0.3495
0.01 0.0212 0.0229 0.0418 0.0577 0.0800 0.1112 0.1506 0.1962
0.001 0.0067 0.0095 0.0134 0.0189 0.0252 0.3555 0.5020 0.0708
0.0001 0.0021 0.0030 0.0042 0.0060 0.0080 0.0112 0.0160 0.0225

Semi-circle Circle
α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.1901 0.1430 0.1831 0.2276 0.0510 0.0674 0.0860 0.1084
0.01 0.0343 0.0480 0.0668 0.0913 0.0160 0.0224 0.0312 0.0427
0.001 0.0108 0.0153 0.0216 0.0304 0.0051 0.0072 0.0101 0.0142
0.0001 0.0034 0.0049 0.0069 0.0097 0.0016 0.0023 0.0032 0.0045

Table B.9: Shape difference values P (X, X̂) (5.5) from the MBA simulations, found
using the exponential transform (4.4) with metric MDS.
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P (X, X̂) Power transform mmin = 1
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.0665 0.1319 0.2559 0.3420 0.3996 0.5022 0.6112 0.6561
0.01 0.0158 0.0228 0.0331 0.0497 0.0649 0.1002 0.1944 0.3375
0.001 0.0049 0.0070 0.0099 0.0141 0.0193 0.0273 0.0392 0.0570
0.0001 0.0015 0.0022 0.0031 0.0044 0.0060 0.0085 0.0121 0.0171

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.2422 0.5582 0.6301 0.6415 0.0981 0.1742 0.2564 0.2749
0.01 0.0380 0.0544 0.0808 0.1267 0.0223 0.0319 0.0461 0.0681
0.001 0.0117 0.0166 0.0235 0.0334 0.0070 0.0098 0.0139 0.0198
0.0001 0.0037 0.0052 0.0074 0.0104 0.0022 0.0031 0.0044 0.0062

P (X, X̂) Power transform mmin = 2
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.0651 0.1093 0.1767 0.2241 0.3991 0.4797 0.5436 0.5739
0.01 0.0160 0.0227 0.0333 0.0496 0.0648 0.1004 0.1980 0.3367
0.001 0.0049 0.0070 0.0098 0.0140 0.0192 0.0275 0.0392 0.0565
0.0001 0.0016 0.0022 0.0031 0.0044 0.0060 0.0086 0.0120 0.0171

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.2151 0.4604 0.5394 0.5471 0.0913 0.1388 0.1821 0.1999
0.01 0.0379 0.0544 0.0810 0.1277 0.0228 0.0319 0.0461 0.0681
0.001 0.0117 0.0165 0.0235 0.0335 0.0069 0.0098 0.0139 0.0198
0.0001 0.0037 0.0052 0.0074 0.0105 0.0022 0.0031 0.0044 0.0062

Table B.10: Shape difference values P (X, X̂) (5.5) from the MBA simulations, found
using the power transform (4.6) with metric MDS. Top table: mmin = 1 adjustment.
Bottom table: mmin = 2 adjustment.
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G(X, X̂) Exponential transform
Straight line Parabola

α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.0247 1.0436 1.0702 1.0977 1.0595 1.0977 1.1492 1.2068
0.01 1.0026 1.0051 1.0101 1.0190 1.0071 1.0136 1.0256 1.0457
0.001 1.0002 1.0005 1.0010 1.0021 1.0007 1.0014 1.0029 1.0057
0.0001 1.0000 1.0001 1.0001 1.0002 1.0001 1.0001 1.0003 1.0006

Semi-circle Circle
α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.0228 1.0384 1.0589 1.0765 0.9949 0.9890 0.9765 0.9513
0.01 1.0025 1.0047 1.0093 1.0173 0.9995 0.9991 0.9981 0.9961
0.001 1.0002 1.0005 1.0010 1.0020 1.0000 0.9999 0.9998 0.9996
0.0001 1.0000 1.0001 1.0001 1.0002 1.0000 1.0000 1.0000 1.0000

Table B.11: Size expansion valuesG(X, X̂) (5.6) from the MBA simulations, found using
the exponential transform (4.4) with metric MDS.
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G(X, X̂) Power transform mmin = 1
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.0375 1.0854 1.2083 1.4712 1.0758 1.1875 1.4101 1.7622
0.01 1.0031 1.0065 1.0131 1.0268 1.0041 1.0085 1.0190 1.0461
0.001 1.0003 1.0006 1.0013 1.0027 1.0004 1.0008 1.0016 1.0033
0.0001 1.0000 1.0001 1.0001 1.0003 1.0000 1.0001 1.0002 1.0003

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.0583 1.1776 1.3932 1.7370 1.0668 1.1533 1.3524 1.6763
0.01 1.0041 1.0081 1.0166 1.0351 1.0054 1.0108 1.0217 1.0452
0.001 1.0004 1.0008 1.0016 1.0032 1.0005 1.0011 1.0021 1.0042
0.0001 1.0000 1.0001 1.0002 1.0003 1.0001 1.0001 1.0002 1.0004

G(X, X̂) Power transform mmin = 2
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.0370 1.0805 1.1766 1.3559 1.0750 1.1635 1.3156 1.5425
0.01 1.0033 1.0065 1.0132 1.0271 1.0041 1.0085 1.0190 1.0463
0.001 1.0003 1.0006 1.0013 1.0026 1.0004 1.0008 1.0016 1.0032
0.0001 1.0000 1.0000 1.0001 1.0002 1.0000 1.0001 1.0002 1.0003

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.0524 1.1316 1.2815 1.4901 1.0634 1.1404 1.2755 1.4654
0.01 1.0041 1.0081 1.0167 1.0349 1.0047 1.0108 1.0220 1.0451
0.001 1.0004 1.0008 1.0016 1.0032 1.0006 1.0010 1.0021 1.0043
0.0001 1.0000 1.0001 1.0002 1.0003 1.0001 1.0001 1.0002 1.0004

Table B.12: Size expansion valuesG(X, X̂) (5.6) from the MBA simulations, found using
the power transform (4.6) with metric MDS. Top table: mmin = 1 adjustment. Bottom
table: mmin = 2 adjustment.
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B.2 Non-metric multidimensional scaling results

Simulation results using the MBA found with non-metric multidimensional scaling

(MDS).

Sp(X̂) Exponential transform
Straight line Parabola

α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 21.7476 27.9854 34.2747 39.7239 17.3766 22.4655 27.5527 31.5850
0.01 7.2434 10.1676 14.0784 19.0992 6.0564 8.4388 11.6124 15.6956
0.001 2.2221 3.1820 4.5327 6.4265 2.1430 2.8246 3.8657 5.4252
0.0001 0.6055 0.9362 1.3713 1.9764 0.6426 0.9296 1.3404 1.9222

Semi-circle Circle
α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 15.5261 20.3071 25.1777 29.2005 12.8483 16.8108 20.8579 24.3327
0.01 5.2815 7.3932 10.2086 13.9151 4.1562 5.8554 8.1614 11.1793
0.001 1.6728 2.3873 3.3932 4.7216 1.2475 1.8133 2.5965 3.7034
0.0001 0.4234 0.7044 1.0553 1.5343 0.1021 0.3540 0.6976 1.0985

Table B.13: Stress of fit values Sp(X̂) (2.14) from the MBA simulations, found using the
exponential transform (4.4) with non-metric MDS. For the straight line p = 1 and for the
parabola; semi-circle and circle p = 2.



Appendices 233

Sp(X̂) Power transform mmin = 1
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 8.1963 10.6937 13.6593 17.0108 4.0481 5.3433 6.9636 8.9428
0.01 2.8595 3.9825 5.4632 7.3621 1.4809 2.0252 2.7437 3.6832
0.001 0.8581 1.2528 1.7989 2.5489 0.6983 0.7118 0.9669 1.3361
0.0001 0.1667 0.3099 0.4989 0.7560 0.2248 0.3271 0.4741 0.6528

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 5.4050 6.9951 8.9464 11.2338 8.5694 10.9940 13.7361 16.6639
0.01 2.1350 2.8526 3.7786 4.9568 3.3417 4.5238 6.0336 7.9233
0.001 0.7496 1.0422 1.4297 1.9364 1.1241 1.5842 2.2018 3.0278
0.0001 0.2096 0.3194 0.4703 0.6719 0.3113 0.4725 0.6972 1.0050

Sp(X̂) Power transform mmin = 2
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 8.1891 10.6967 13.6682 17.0050 4.0488 5.3459 6.9677 8.9452
0.01 2.8609 3.9811 5.4593 7.3565 1.4810 2.0258 2.7439 3.6817
0.001 0.8573 1.2510 1.7998 2.5487 0.6962 0.7145 0.9687 1.3361
0.0001 0.1669 0.3101 0.4989 0.7567 0.2232 0.3271 0.4814 0.6480

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 5.4056 6.9980 8.9485 11.2341 8.5684 11.0089 13.7463 16.6624
0.01 2.1339 2.8544 3.7772 4.9594 3.3417 4.5238 6.0336 7.9233
0.001 0.7491 1.0435 1.4305 1.9383 1.1241 1.5842 2.2018 3.0278
0.0001 0.2100 0.3194 0.4700 0.6717 0.3113 0.4725 0.6972 1.0050

Table B.14: Stress of fit values Sp(X̂) (2.14) from the MBA simulations, found using
the power transform (4.6) with non-metric MDS. For the straight line p = 1 and for the
parabola; semi-circle and circle p = 2. Top table: mmin = 1 adjustment. Bottom table:
mmin = 2 adjustment.
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P (X, X̂) Exponential transform
Straight line Parabola

α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.0356 0.0425 0.0551 0.0752 0.4663 0.4961 0.5247 0.5270
0.01 0.0111 0.0153 0.0212 0.0286 0.3527 0.3798 0.4126 0.4459
0.001 0.0034 0.0049 0.0069 0.0096 0.0549 0.2376 0.3147 0.3423
0.0001 0.0010 0.0015 0.0022 0.0031 0.0275 0.0290 0.0339 0.0432

Semi-circle Circle
α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.2672 0.2969 0.3319 0.3607 0.0644 0.0849 0.1283 0.2149
0.01 0.1610 0.1832 0.2122 0.2408 0.0134 0.0183 0.0253 0.0355
0.001 0.0819 0.0901 0.0988 0.1474 0.0039 0.0056 0.0079 0.0118
0.0001 0.0034 0.0046 0.0058 0.0094 0.0003 0.0011 0.0022 0.0034

Table B.15: Shape difference values P (X, X̂) (5.5) from the MBA simulations, found
using the exponential transform (4.4) with non-metric MDS.
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P (X, X̂) Power transform mmin = 1
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.0204 0.0276 0.0358 0.0435 0.3909 0.4172 0.4450 0.4732
0.01 0.0051 0.0077 0.0114 0.0167 0.3153 0.3350 0.3570 0.3814
0.001 0.0014 0.0020 0.0029 0.0044 0.1255 0.2682 0.2920 0.3092
0.0001 0.0003 0.0005 0.0008 0.0012 0.0492 0.0618 0.0694 0.0997

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.2445 0.2732 0.3029 0.3333 0.0230 0.0286 0.0343 0.0408
0.01 0.1586 0.1819 0.2073 0.2344 0.0095 0.0123 0.0158 0.0203
0.001 0.0977 0.1134 0.1312 0.1514 0.0032 0.0045 0.0062 0.0084
0.0001 0.0546 0.0674 0.0796 0.0929 0.0009 0.0014 0.0021 0.0029

P (X, X̂) Power transform mmin = 2
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.0203 0.0276 0.0359 0.0436 0.3908 0.4174 0.4449 0.4732
0.01 0.0051 0.0076 0.0114 0.0166 0.3152 0.3350 0.3570 0.3815
0.001 0.0013 0.0020 0.0030 0.0044 0.1262 0.2674 0.2917 0.3093
0.0001 0.0003 0.0005 0.0008 0.0012 0.0523 0.0609 0.0613 0.1044

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.2444 0.2734 0.3032 0.3336 0.0299 0.0288 0.0350 0.0403
0.01 0.1587 0.1818 0.2072 0.2346 0.0095 0.0123 0.0158 0.0203
0.001 0.0977 0.1135 0.1312 0.1514 0.0032 0.0045 0.0062 0.0084
0.0001 0.0544 0.0673 0.0797 0.0930 0.0009 0.0014 0.0021 0.0029

Table B.16: Shape difference values P (X, X̂) (5.5) from the MBA simulations, found
using the power transform (4.6) with non-metric MDS. Top table: mmin = 1 adjustment.
Bottom table: mmin = 2 adjustment.
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C Unbiased MBA simulation results

Appendix containing unbiased model-based approach (MBA) simulation results, to

compliment results in Section 5.4.

C.1 Metric multidimensional scaling

Simulation results using the unbiased MBA found with metric multidimensional scaling

(MDS).

θ1:p% Exponential transform
Straight line Parabola

α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 18.1232 13.7255 10.4529 8.1772 19.7401 15.5430 12.4650 10.3871
0.01 40.8812 32.8552 25.7538 19.7849 42.1234 34.1592 27.1522 21.3354
0.001 68.5887 60.6952 52.2197 43.5959 69.5326 61.7606 53.3779 44.8199
0.0001 87.3442 82.9960 77.5358 70.9382 87.8156 83.5995 78.2852 71.8358

Semi-circle Circle
α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 24.0104 18.5586 14.3490 11.3701 32.2346 24.9538 18.6919 13.5314
0.01 49.5419 41.0156 33.0446 26.0161 60.3183 51.7872 43.1059 34.7738
0.001 75.5989 68.6590 60.7976 52.3137 82.7878 77.2864 70.6369 62.9474
0.0001 90.7331 87.3790 83.0363 77.5971 93.8327 91.4944 88.3834 84.3287

Table C.17: Percentage of information projected into the first p dimensions θ1:p (2.11)
from the unbiased MBA simulations, found using unbiased perturbed distances emulating
the exponential transform (5.21) with metric MDS. For the straight line p = 1 and for the
parabola; semi-circle and circle p = 2.
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θ1:p% Power transform
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 30.5899 24.0084 18.6904 14.6900 32.5093 26.4379 21.5617 17.9681
0.01 57.8888 49.3147 40.8278 32.8846 58.9830 50.5663 42.2604 34.7111
0.001 81.2722 75.4005 68.4488 60.5409 81.9266 76.2179 69.4123 61.6248
0.0001 93.2081 90.6522 87.2742 82.9115 83.4725 91.0162 87.7375 83.4963

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 28.3918 22.3629 17.6879 14.5716 26.3759 20.6088 16.1115 13.0099
0.01 55.0399 46.4456 38.1567 30.6154 52.5690 44.0336 35.8399 28.4991
0.001 79.4252 73.1882 65.9106 57.7595 77.7691 71.2159 63.6485 55.3393
0.0001 92.4243 89.6178 85.9176 81.1940 91.6995 88.6632 84.6755 79.6224

Table C.18: Percentage of information projected into the first p dimensions θ1:p (2.11)
from the unbiased MBA simulations, found using unbiased perturbed distances emulating
the power transform (5.22) with metric MDS. For the straight line p = 1 and for the
parabola; semi-circle and circle p = 2.

P (X, X̂) Exponential transform
Straight line Parabola

α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.0667 0.0947 0.1334 0.1858 0.2630 0.3382 0.3891 0.4258
0.01 0.0212 0.0299 0.0424 0.0597 0.0805 0.1146 0.1636 0.2353
0.001 0.0067 0.0095 0.0134 0.0189 0.0252 0.0357 0.0507 0.0719
0.0001 0.0021 0.0003 0.0042 0.0006 0.0080 0.0113 0.0159 0.0225

Semi-circle Circle
α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.1087 0.1526 0.2103 0.2839 0.0513 0.0736 0.1072 0.1594
0.01 0.0343 0.0484 0.0686 0.0970 0.0160 0.0227 0.0321 0.0456
0.001 0.0108 0.0153 0.0217 0.0306 0.0051 0.0072 0.0101 0.0143
0.0001 0.0034 0.0048 0.0068 0.0097 0.0016 0.0023 0.0032 0.0045

Table C.19: Shape difference values P (X, X̂) (5.5) from the unbiased MBA simulations,
found using unbiased perturbed distances emulating the exponential transform (5.21) with
metric MDS.
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P (X, X̂) Power transform
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.0492 0.0694 0.0979 0.1366 0.0302 0.3824 0.4453 0.5035
0.01 0.0156 0.0220 0.0310 0.0438 0.0629 0.0939 0.1514 0.2634
0.001 0.0049 0.0070 0.0098 0.0140 0.0192 0.0271 0.0388 0.0557
0.0001 0.0015 0.0022 0.0031 0.0044 0.0060 0.0085 0.0122 0.0171

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.1208 0.1790 0.2888 0.4739 0.0687 0.0950 0.1305 0.1719
0.01 0.3690 0.0524 0.0747 0.1068 0.0219 0.0310 0.0436 0.0613
0.001 0.0116 0.0166 0.0232 0.0331 0.0070 0.0098 0.0139 0.0197
0.0001 0.0037 0.0052 0.0073 0.0104 0.0022 0.0031 0.0044 0.0062

Table C.20: Shape difference values P (X, X̂) (5.5) from the unbiased MBA simulations,
found using unbiased perturbed distances emulating the power transform (5.22) with
metric MDS.

G(X, X̂) Exponential transform
Straight line Parabola

α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.0139 1.0274 1.0571 1.1205 1.0441 1.0789 1.1391 1.2456
0.01 1.0013 1.0028 1.0056 1.0114 1.0050 1.0100 1.0193 1.0364
0.001 1.0001 1.0003 1.0006 1.0011 1.0005 1.0010 1.0021 1.0041
0.0001 1.0000 1.0000 1.0000 1.0001 1.0001 1.0001 1.0002 1.0004

Semi-circle Circle
α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.0146 1.0286 1.0567 1.1140 0.9983 0.9963 0.9916 0.9849
0.01 1.0015 1.0030 1.0061 1.0120 0.9999 0.9997 0.9995 0.9987
0.001 1.0002 1.0003 1.0006 1.0013 1.0000 1.0000 0.9999 0.9999
0.0001 1.0000 1.0000 1.0001 1.0001 1.0000 1.0000 1.0000 1.0000

Table C.21: Size expansion values G(X, X̂) (5.6) from the unbiased MBA simulations,
found using unbiased perturbed distances emulating the exponential transform (5.21) with
metric MDS.
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G(X, X̂) Power transform
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.0091 1.0177 1.0355 1.0701 1.0279 1.0548 1.0987 1.1702
0.01 1.0009 1.0017 1.0035 1.0071 1.0024 1.0049 1.0102 1.0218
0.001 1.0001 1.0002 1.0003 1.0006 1.0002 1.0005 1.0010 1.0019
0.0001 1.0000 1.0000 1.0000 1.0001 1.0000 1.0000 1.0001 1.0002

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.0148 1.0303 1.0612 1.1284 1.0146 1.0291 1.0578 1.1161
0.01 1.0015 1.0029 1.0059 1.0119 1.0015 1.0029 1.0059 1.0119
0.001 1.0001 1.0003 1.0006 1.0012 1.0001 1.0003 1.0006 1.0012
0.0001 1.0000 1.0000 1.0000 1.0001 1.0000 1.0000 1.0001 1.0001

Table C.22: Size expansion values G(X, X̂) (5.6) from the unbiased MBA simulations,
found using unbiased perturbed distances emulating the power transform (5.22) with
metric MDS.
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C.2 Non-metric multidimensional scaling results

Simulation results using the unbiased MBA found with non-metric multidimensional

scaling (MDS).

Sp(X̂)% Exponential transform
Straight line Parabola

α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 21.2432 27.5824 33.5729 38.2428 17.6751 22.7543 26.9747 29.6265
0.01 7.1929 10.1345 14.1317 19.3431 6.0609 8.4646 11.7544 16.0850
0.001 2.2227 3.1806 4.5342 6.4307 2.1370 2.8197 3.8641 5.4313
0.0001 0.6046 0.9366 1.3720 1.9783 0.6425 0.9287 1.3413 1.9170

Semi-circle Circle
α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 15.4024 20.1307 24.7785 28.3750 12.4512 16.5272 20.9157 25.1266
0.01 5.2625 7.3685 10.2080 13.9861 4.1522 5.8454 8.1826 11.2910
0.001 1.6694 2.3822 3.3850 4.7205 1.2475 1.8120 2.5972 3.7110
0.0001 0.4244 0.7038 1.0555 1.5339 0.1015 0.3543 0.6989 1.0983

Table C.23: Stress of fit values Sp(X̂) (2.14) from the MBA simulations, found using
unbiased perturbed distances emulating the exponential transform (5.21) with non-metric
MDS. For the straight line p = 1 and for the parabola; semi-circle and circle p = 2.
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Sp(X̂)% Power transform
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 8.3830 11.3437 15.3389 20.5634 4.2018 5.7649 8.0983 11.7332
0.01 2.8609 4.0064 5.5407 7.5909 1.4911 2.0461 2.7934 3.8078
0.001 0.8574 1.2517 1.8000 2.5593 0.7381 0.7457 0.9717 1.3428
0.0001 0.1670 0.3102 0.4988 0.7568 0.2365 0.3600 0.5271 0.7475

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 5.7965 7.9396 11.2415 16.0666 9.5325 12.9781 17.7032 23.0729
0.01 2.1596 2.9033 3.9205 5.2447 3.4118 4.6796 6.3770 8.6593
0.001 0.7553 1.0703 1.4369 1.9666 1.1286 1.5936 2.2262 3.0791
0.0001 0.2116 0.3202 0.4741 0.7078 0.3117 0.4732 0.6986 1.0070

Table C.24: Stress of fit values Sp(X̂) (2.14) from the MBA simulations, found using
unbiased perturbed distances emulating the power transform (5.22) with non-metric MDS.
For the straight line p = 1 and for the parabola; semi-circle and circle p = 2.

P (X, X̂) Exponential transform
Straight line Parabola

α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.0331 0.0428 0.0548 0.0668 0.4406 0.4717 0.5127 0.5538
0.01 0.0108 0.0150 0.0213 0.0300 0.3500 0.3771 0.4070 0.4334
0.001 0.0034 0.0048 0.0069 0.0096 0.0586 0.2390 0.3154 0.3428
0.0001 0.0010 0.0015 0.0022 0.0031 0.0278 0.0298 0.0330 0.0480

Semi-circle Circle
α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.2438 0.2747 0.3244 0.3796 0.0396 0.0561 0.0789 0.1068
0.01 0.1575 0.1818 0.2089 0.2353 0.0132 0.0175 0.0247 0.0355
0.001 0.0817 0.0935 0.1039 0.1487 0.0039 0.0055 0.0079 0.0119
0.0001 0.0032 0.0046 0.0063 0.0098 0.0003 0.0011 0.0022 0.0034

Table C.25: Shape difference values P (X, X̂) (5.5) from the unbiased MBA simulations,
found using unbiased perturbed distances emulating the exponential transform (5.21) with
non-metric MDS.
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P (X, X̂) Power transform
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.0192 0.0273 0.0361 0.0439 0.3945 0.4269 0.4665 0.5124
0.01 0.0051 0.0076 0.0114 0.0171 0.3150 0.3354 0.3587 0.3850
0.001 0.0013 0.0020 0.0029 0.0044 0.1162 0.2512 0.2917 0.3094
0.0001 0.0003 0.0005 0.0008 0.0012 0.0185 0.0056 0.0078 0.0273

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.2524 0.2902 0.3358 0.3831 0.0242 0.0331 0.0485 0.0749
0.01 0.1580 0.1825 0.2092 0.2408 0.0097 0.0127 0.0166 0.0219
0.001 0.0969 0.1113 0.1317 0.1502 0.0032 0.0046 0.0063 0.0087
0.0001 0.0525 0.0664 0.0800 0.0815 0.0009 0.0014 0.0021 0.0029

Table C.26: Shape difference values P (X, X̂) (5.5) from the unbiased MBA simulations,
found using unbiased perturbed distances emulating the power transform (5.22) with non-
metric MDS.
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D Bias correction simulation results

Appendix containing corrected model-based approach (MBA) simulation results, to

compliment results in Section 5.6.1. All the results here use the power transform (4.6)

and metric multidimensional scaling.

θ1:p mmin = 1
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 27.6641 20.1971 13.5770 9.2932 30.1163 23.3146 17.6761 13.0922
0.01 57.5843 48.8636 40.0941 31.7826 58.6994 50.2041 41.6320 33.4073
0.001 81.2340 75.3676 68.3693 60.4333 81.8874 76.1971 69.4243 61.5050
0.0001 93.2328 90.6692 87.2824 82.8996 93.4521 91.0162 87.7429 83.4862

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 24.9544 18.2244 12.9223 9.8966 21.7780 14.7522 10.2674 8.5787
0.01 54.6915 45.7856 37.2079 29.1054 52.1277 43.3316 34.6282 26.7121
0.001 79.3632 73.1630 65.7557 57.6323 77.7610 71.1939 63.4900 55.1194
0.0001 92.4191 89.6242 85.8852 81.1692 91.7106 88.6561 84.6956 79.6223

θ1:p mmin = 2
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 27.8449 20.4622 14.5415 10.5089 30.0553 23.2310 17.5600 13.2833
0.01 57.5867 48.8794 40.0921 31.7644 58.6948 50.1146 41.6229 33.4613
0.001 81.2009 75.4126 68.4244 60.4337 81.9173 76.1680 69.2851 61.5411
0.0001 93.2342 90.6892 87.2926 82.9007 93.4945 90.9954 87.7320 83.5119

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 24.8992 18.3351 13.8181 11.1620 21.9026 15.9170 12.2934 10.5900
0.01 54.6804 45.8860 37.1511 29.0405 52.1268 43.3115 34.7174 26.7251
0.001 79.3781 73.1536 65.8700 57.5531 77.7960 71.2022 63.5694 55.1047
0.0001 92.4390 89.5965 85.9070 81.1780 91.7179 88.6770 84.6779 79.6025

Table D.27: Percentage of information projected into the first k dimensions θ1:p (2.11)
from the bias corrected MBA simulations, found using bias corrected perturbed
distances (5.27) for the power transform (4.6) with metric MDS. For the straight line
p = 1 and for the parabola; semi-circle and circle p = 2. Top table: mmin = 1 adjustment.
Bottom table: mmin = 2 adjustment.
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P (X, X̂) mmin = 1
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.0590 0.0906 0.1314 0.1726 0.2913 0.4087 0.5114 0.5858
0.01 0.0156 0.0226 0.0320 0.0456 0.0631 0.0920 0.1349 0.2317
0.001 0.0050 0.0070 0.0097 0.0141 0.0191 0.0279 0.0387 0.0565
0.0001 0.0016 0.0022 0.0031 0.0044 0.0060 0.0086 0.0122 0.0171

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.1448 0.2906 0.4988 0.5343 0.0895 0.1475 0.1933 0.1848
0.01 0.0371 0.0541 0.0781 0.1109 0.0221 0.0315 0.0453 0.0663
0.001 0.0116 0.0166 0.0231 0.0328 0.0070 0.0098 0.0138 0.0197
0.0001 0.0037 0.0052 0.0074 0.0106 0.0022 0.0031 0.0044 0.0062

P (X, X̂) mmin = 2
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.0566 0.0877 0.1134 0.1233 0.2906 0.3960 0.4664 0.5107
0.01 0.0156 0.0223 0.0314 0.0450 0.0647 0.0932 0.1411 0.2218
0.001 0.0049 0.0070 0.0096 0.0136 0.0190 0.0272 0.0386 0.0546
0.0001 0.0015 0.0022 0.0031 0.0044 0.0060 0.0085 0.0120 0.0171

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.1441 0.2169 0.3082 0.3198 0.0853 0.1231 0.1474 0.1388
0.01 0.0368 0.0525 0.0770 0.1133 0.0223 0.0317 0.0451 0.0656
0.001 0.0116 0.0165 0.0231 0.0336 0.0069 0.0099 0.0139 0.0196
0.0001 0.0037 0.0053 0.0074 0.0104 0.0022 0.0031 0.0044 0.0062

Table D.28: Shape difference values P (X, X̂) (5.5) from the bias corrected MBA
simulations, found using bias corrected perturbed distances (5.27) for the power
transform (4.6) with metric MDS. Top table: mmin = 1 adjustment. Bottom table:
mmin = 2 adjustment.
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G(X, X̂) mmin = 1
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.0111 1.0283 1.0721 1.1701 1.0123 1.0431 1.1127 1.2455
0.01 1.0005 1.0019 1.0033 1.0072 1.0019 1.0036 1.0044 1.0059
0.001 1.0001 1.0001 1.0001 1.0008 1.0002 1.0004 1.0008 1.0016
0.0001 1.0000 1.0000 1.0001 1.0000 1.0000 1.0001 1.0001 1.0002

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.0130 1.0279 1.1240 1.2487 1.0220 1.0806 1.1897 1.3101
0.01 1.0013 1.0025 1.0060 1.0134 1.0016 1.0030 1.0072 1.0168
0.001 1.0001 1.0003 1.0005 1.0011 1.0001 1.0002 1.0005 1.0011
0.0001 1.0000 1.0000 1.0001 1.0001 1.0000 1.0001 1.0001 1.0001

G(X, X̂) mmin = 2
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.0107 1.0272 1.0604 1.1117 1.0041 1.0248 1.0666 1.1187
0.01 1.0004 1.0015 1.0032 1.0066 1.0020 1.0035 1.0035 1.0064
0.001 1.0001 1.0002 1.0003 1.0005 1.0002 1.0005 1.0008 1.0017
0.0001 1.0000 1.0000 1.0001 1.0001 1.0000 1.0000 1.0001 1.0001

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 1.0159 1.0225 1.0657 1.1017 1.0218 1.0684 1.1221 1.1161
0.01 1.0013 1.0028 1.0059 1.0129 1.0013 1.0034 1.0073 1.0173
0.001 1.0001 1.0002 1.0005 1.0011 1.0001 1.0004 1.0005 1.0012
0.0001 1.0000 1.0000 1.0001 1.0000 1.0000 1.0000 1.0001 1.0001

Table D.29: Size expansion values G(X, X̂) (5.6) from the bias corrected MBA
simulations, found using bias corrected perturbed distances (5.27) for the power
transform (4.6) with metric MDS. Top table: mmin = 1 adjustment. Bottom table:
mmin = 2 adjustment.
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E Post-processing simulation results

Shape difference values P (X, X̂) (5.5) and variance score values w(D̃) (6.7), from post-

processing the MBA fitted configurations (or bias corrected fitted configurations) with

smoothing splines (Section 6.4).

P (X, X̂) Exponential transform
Straight line Parabola

α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.0157 0.0629 0.0999 0.1301 0.1007 0.0739 0.2581 0.2622
0.01 0.0103 0.0135 0.0255 0.0452 0.0325 0.0465 0.0668 0.0757
0.001 0.0031 0.0049 0.0071 0.0095 0.0119 0.0153 0.0252 0.0289
0.0001 0.0010 0.0014 0.0018 0.0029 0.0038 0.0052 0.0069 0.0104

Semi-circle Circle
α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.0696 0.0715 0.1629 0.4331 0.0322 0.0881 0.1696 0.2819
0.01 0.0202 0.0279 0.0378 0.0553 0.0087 0.0145 0.0241 0.0471
0.001 0.0071 0.0098 0.0132 0.0180 0.0032 0.0043 0.0060 0.0085
0.0001 0.0023 0.0032 0.0044 0.0064 0.0010 0.0015 0.0021 0.0028

Table E.30: Shape difference values P (X, X̂) (5.5) from the post-processing simulations
for the exponential transform (4.4). The P (X, X̂) values are found between the original

configuration X and the smoothed fitted configurations ˆ̂
X.
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P (X, X̂) Power transform mmin = 2
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.0047 0.0068 0.0053 0.0234 0.1736 0.2120 0.2137 0.3130
0.01 0.004 0.0046 0.0064 0.006 0.0155 0.0211 0.0447 0.1246
0.001 0.0014 0.0019 0.0029 0.0041 0.0068 0.0085 0.0129 0.0168
0.0001 0.0006 0.0007 0.0009 0.0015 0.0025 0.0036 0.0043 0.0067

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.0413 0.0635 0.0855 0.2437 0.0424 0.0552 0.0526 0.0602
0.01 0.0126 0.0173 0.0223 0.0309 0.0121 0.0170 0.0244 0.0352
0.001 0.0052 0.0063 0.0096 0.0126 0.0038 0.0051 0.0075 0.0105
0.0001 0.0019 0.0023 0.0034 0.0046 0.0014 0.0019 0.0025 0.0036

Table E.31: Shape difference values P (X, X̂) (5.5) from the post-processing simulations
for the power transform (4.4) with the mmin = 2 adjustment. The P (X, X̂) values are

found between the original configuration X and the smoothed fitted configurations ˆ̂
X.

w(D̃) Exponential transform
Straight line Parabola

α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 2.9119 2.1623 11.7841 28.3814 0.9946 0.2178 4.0275 20.1807
0.01 1.3038 1.5448 1.6885 3.3319 0.8170 0.4898 0.2145 0.1714
0.001 1.3227 1.5847 1.2776 1.3249 0.7015 0.8372 0.4469 0.5011
0.0001 1.1888 1.2287 1.541 1.1775 0.6890 0.8589 0.9734 0.6406

Semi-circle Circle
α ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 0.7450 0.3391 0.5092 0.3611 0.4029 0.7547 1.0511 1.4260
0.01 0.7590 0.4739 0.2306 0.3024 0.7978 0.5209 0.3016 0.5153
0.001 0.7391 0.7320 0.4245 0.5129 0.6904 0.6531 0.4582 0.3696
0.0001 0.6508 0.8521 0.9660 0.7465 0.6431 0.7431 0.7049 0.8220

Table E.32: Variance score values w(D̃) (6.7) from the post-processing simulations for
the exponential transform (4.4).
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w(D̃) Power transform mmin = 2
Straight line Parabola

b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 15.6367 23.1083 34.0986 53.5346 25.9695 30.7442 41.6738 60.2623
0.01 2.8691 3.5594 2.749 6.1202 3.0600 3.5256 6.8311 16.4996
0.001 2.0324 1.9586 2.0247 2.0499 1.4956 2.0005 2.0119 1.8551
0.0001 1.8199 1.4785 1.9867 1.8530 1.9266 1.8844 1.5389 1.4694

Semi-circle Circle
b0 ρ = 1 ρ = 2 ρ = 4 ρ = 8 ρ = 1 ρ = 2 ρ = 4 ρ = 8
0.1 21.4561 30.2564 41.3704 56.379 24.0485 31.6124 42.9289 67.0777
0.01 3.3914 3.6165 4.8131 8.9179 1.3958 2.6556 4.5349 9.3891
0.001 1.4891 1.7797 1.6724 2.6190 0.7925 1.1133 0.9522 1.3913
0.0001 1.4951 2.0426 1.9536 1.2949 0.5971 0.6042 0.8934 0.6262

Table E.33: Variance score values w(D̃) (6.7) from the post-processing simulations for
the power transform (4.6) with the mmin = 2 adjustment.
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F Parameter estimation results

F.1 Estimating α for the exponential transform
Table of α estimates for dispersion ρ = 1 can be found in Table 6.3.

ρ = 2 χ2 Rk(X̂)

α α̂ |α−α̂|
α

% α̂ |α−α̂|
α

%
0.1 0.082039 17.9611 0.085209 14.7915
0.01 0.009730 2.7039 0.009693 3.0732
0.001 0.001001 0.1187 0.000982 1.768
0.0001 0.000090 9.5576 0.000090 9.8301

Table F.34: α estimates (α̂) from the parameter estimation simulations for the exponential
transform (4.4). The α̂ values are found by applying the fitting algorithm (Section 4.1.3),
with either the χ2 (4.9) or Rk(X̂) (5.24) score function and metric MDS, to the perturbed
distance matrix D̃. The matrix D̃ is generated from a semi-circle, using the exponential
transform and with dispersion ρ = 2. Column one gives the different levels of α used.
For each score function the mean α̂ and the mean percentage error between α̂ and α is
given; in columns two and three for the χ2 score function, and in columns four and five
for the Rk(X̂) score function.

ρ = 4 χ2 Rk(X̂)

α α̂ |α−α̂|
α

% α̂ |α−α̂|
α

%
0.1 0.074034 25.9664 0.084336 15.6635
0.01 0.009468 5.322 0.00946 5.4037
0.001 0.000993 0.666 0.001004 0.3643
0.0001 0.000091 9.2358 0.00009 9.8301

Table F.35: α estimates (α̂) from the parameter estimation simulations for the exponential
transform (4.4). The α̂ values are found by applying the fitting algorithm (Section 4.1.3),
with either the χ2 (4.9) or Rk(X̂) (5.24) score function and metric MDS, to the perturbed
distance matrix D̃. The matrix D̃ is generated from a semi-circle, using the exponential
transform and with dispersion ρ = 4. Column one gives the different levels of α used.
For each score function the mean α̂ and the mean percentage error between α̂ and α is
given; in columns two and three for the χ2 score function, and in columns four and five
for the Rk(X̂) score function.
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ρ = 8 χ2 Rk(X̂)

α α̂ |α−α̂|
α

% α̂ |α−α̂|
α

%
0.1 0.063328 36.6717 0.089217 10.783
0.01 0.009105 8.9452 0.009148 8.5188
0.001 0.000993 0.6503 0.000993 0.7081
0.0001 0.00009 9.609 0.00009 9.8301

Table F.36: α estimates (α̂) from the parameter estimation simulations for the exponential
transform (4.4). The α̂ values are found by applying the fitting algorithm (Section 4.1.3),
with either the χ2 (4.9) or Rk(X̂) (5.24) score function and metric MDS, to the perturbed
distance matrix D̃. The matrix D̃ is generated from a semi-circle, using the exponential
transform and with dispersion ρ = 8. Column one gives the different levels of α used.
For each score function the mean α̂ and the mean percentage error between α̂ and α is
given; in columns two and three for the χ2 score function, and in columns four and five
for the Rk(X̂) score function.

F.2 Estimating the β for the power transform

When β = −0.3

ρ = 1 χ2 Rk(X̂)

b0 β̂ |β−β̂|
β

% β̂ |β−β̂|
β

%

0.1 -0.27032 9.8932 -0.279115 6.9617
0.01 -0.300124 0.0415 -0.297763 0.7456

0.001 -0.300482 0.1608 -0.299788 0.0708
0.0001 -0.30002 0.0065 -0.299986 0.0046

Table F.37: β estimates (β̂) from the parameter estimation simulations for the power
transform (4.6). The β̂ values are found by applying the fitting algorithm (Section 4.1.3),
with either the χ2 (4.9) or Rk(X̂) (5.24) score function and metric MDS, to the perturbed
distance matrix D̃. The matrix D̃ is generated from a semi-circle using the power
transform with β = −0.3; with the mmin = 2 adjustment and with dispersion ρ = 1.
Column one gives the different levels of b0 used. For each score function the mean β̂ and
the mean percentage error between β̂ and β is given; in columns two and three for the χ2

score function, and in columns four and five for the Rk(X̂) score function.
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ρ = 2 χ2 Rk(X̂)

b0 β̂ |β−β̂|
β

% β̂ |β−β̂|
β

%

0.1 -0.253543 15.4858 -0.262938 12.3541
0.01 -0.295274 1.5754 -0.295669 1.4438

0.001 -0.301249 0.4163 -0.299602 0.1328
0.0001 -0.300034 0.0113 -0.299952 0.0159

Table F.38: β estimates (β̂) from the parameter estimation simulations for the power
transform (4.6). The β̂ values are found by applying the fitting algorithm (Section 4.1.3),
with either the χ2 (4.9) or Rk(X̂) (5.24) score function and metric MDS, to the perturbed
distance matrix D̃. The matrix D̃ is generated from a semi-circle using the power
transform with β = −0.3; with the mmin = 2 adjustment and with dispersion ρ = 2.
Column one gives the different levels of b0 used. For each score function the mean β̂ and
the mean percentage error between β̂ and β is given; in columns two and three for the χ2

score function, and in columns four and five for the Rk(X̂) score function.

ρ = 4 χ2 Rk(X̂)

b0 β̂ |β−β̂|
β

% β̂ |β−β̂|
β

%

0.1 -0.241904 19.3653 -0.239686 20.1045
0.01 -0.287838 4.054 -0.292154 2.6154

0.001 -0.302519 0.8396 -0.299155 0.2818
0.0001 -0.300065 0.0215 -0.299891 0.0363

Table F.39: β estimates (β̂) from the parameter estimation simulations for the power
transform (4.6). The β̂ values are found by applying the fitting algorithm (Section 4.1.3),
with either the χ2 (4.9) or Rk(X̂) (5.24) score function and metric MDS, to the perturbed
distance matrix D̃. The matrix D̃ is generated from a semi-circle using the power
transform with β = −0.3; with the mmin = 2 adjustment and with dispersion ρ = 4.
Column one gives the different levels of b0 used. For each score function the mean β̂ and
the mean percentage error between β̂ and β is given; in columns two and three for the χ2

score function, and in columns four and five for the Rk(X̂) score function.
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ρ = 8 χ2 Rk(X̂)

b0 β̂ |β−β̂|
β

% β̂ |β−β̂|
β

%

0.1 -0.231561 22.8131 -0.217662 27.446
0.01 -0.277352 7.5493 -0.284312 5.2294
0.001 -0.301153 0.3845 -0.298336 0.5547

0.0001 -0.30031 0.1032 -0.299827 0.0577

Table F.40: β estimates (β̂) from the parameter estimation simulations for the power
transform (4.6). The β̂ values are found by applying the fitting algorithm (Section 4.1.3),
with either the χ2 (4.9) or Rk(X̂) (5.24) score function and metric MDS, to the perturbed
distance matrix D̃. The matrix D̃ is generated from a semi-circle using the power
transform with β = −0.3; with the mmin = 2 adjustment and with dispersion ρ = 8.
Column one gives the different levels of b0 used. For each score function the mean β̂ and
the mean percentage error between β̂ and β is given; in columns two and three for the χ2

score function, and in columns four and five for the Rk(X̂) score function.

When β = −0.5

Table of β estimates for β = −0.5 and dispersion ρ = 1 can be found in Table 6.4.

ρ = 2 χ2 Rk(X̂)

b0 β̂ |β−β̂|
β

% β̂ |β−β̂|
β

%

0.1 -0.382379 23.5242 -0.369038 26.1924
0.01 -0.470052 5.9895 -0.478742 4.2516

0.001 -0.499881 0.0237 -0.497469 0.5063
0.0001 -0.499976 0.0048 -0.499788 0.0424

Table F.41: β estimates (β̂) from the parameter estimation simulations for the power
transform (4.6). The β̂ values are found by applying the fitting algorithm (Section 4.1.3),
with either the χ2 (4.9) or Rk(X̂) (5.24) score function and metric MDS, to the perturbed
distance matrix D̃. The matrix D̃ is generated from a semi-circle using the power
transform with β = −0.5; with the mmin = 2 adjustment and with dispersion ρ = 2.
Column one gives the different levels of b0 used. For each score function the mean β̂ and
the mean percentage error between β̂ and β is given; in columns two and three for the χ2

score function, and in columns four and five for the Rk(X̂) score function.
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ρ = 4 χ2 Rk(X̂)

b0 β̂ |β−β̂|
β

% β̂ |β−β̂|
β

%

0.1 -0.353238 29.3524 -0.324164 35.1672
0.01 -0.454445 9.1111 -0.461102 7.7796

0.001 -0.496053 0.7894 -0.495197 0.9607
0.0001 -0.500191 0.0381 -0.499512 0.0976

Table F.42: β estimates (β̂) from the parameter estimation simulations for the power
transform (4.6). The β̂ values are found by applying the fitting algorithm (Section 4.1.3),
with either the χ2 (4.9) or Rk(X̂) (5.24) score function and metric MDS, to the perturbed
distance matrix D̃. The matrix D̃ is generated from a semi-circle using the power
transform with β = −0.5; with the mmin = 2 adjustment and with dispersion ρ = 4.
Column one gives the different levels of b0 used. For each score function the mean β̂ and
the mean percentage error between β̂ and β is given; in columns two and three for the χ2

score function, and in columns four and five for the Rk(X̂) score function.

ρ = 8 χ2 Rk(X̂)

b0 β̂ |β−β̂|
β

% β̂ |β−β̂|
β

%

0.1 -0.333863 33.2274 -0.288154 42.3693
0.01 -0.431266 13.7469 -0.434367 13.1265

0.001 -0.48747 2.5059 -0.491157 1.7686
0.0001 -0.500645 0.129 -0.499079 0.1841

Table F.43: β estimates (β̂) from the parameter estimation simulations for the power
transform (4.6). The β̂ values are found by applying the fitting algorithm (Section 4.1.3),
with either the χ2 (4.9) or Rk(X̂) (5.24) score function and metric MDS, to the perturbed
distance matrix D̃. The matrix D̃ is generated from a semi-circle using the power
transform with β = −0.5; with the mmin = 2 adjustment and with dispersion ρ = 8.
Column one gives the different levels of b0 used. For each score function the mean β̂ and
the mean percentage error between β̂ and β is given; in columns two and three for the χ2

score function, and in columns four and five for the Rk(X̂) score function.
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When β = −0.7

ρ = 1 χ2 Rk(X̂)

b0 β̂ |β−β̂|
β

% β̂ |β−β̂|
β

%

0.1 -0.534021 23.7113 -0.511856 26.8777
0.01 -0.655224 6.3966 -0.668485 4.5022

0.001 -0.697656 0.3348 -0.696595 0.4865
0.0001 -0.69991 0.0128 -0.699778 0.0317

Table F.44: β estimates (β̂) from the parameter estimation simulations for the power
transform (4.6). The β̂ values are found by applying the fitting algorithm (Section 4.1.3),
with either the χ2 (4.9) or Rk(X̂) (5.24) score function and metric MDS, to the perturbed
distance matrix D̃. The matrix D̃ is generated from a semi-circle using the power
transform with β = −0.7; with the mmin = 2 adjustment and with dispersion ρ = 1.
Column one gives the different levels of b0 used. For each score function the mean β̂ and
the mean percentage error between β̂ and β is given; in columns two and three for the χ2

score function, and in columns four and five for the Rk(X̂) score function.

ρ = 2 χ2 Rk(X̂)

b0 β̂ |β−β̂|
β

% β̂ |β−β̂|
β

%

0.1 -0.484873 30.7324 -0.44259 36.7728
0.01 -0.631453 9.7924 -0.644745 7.8936

0.001 -0.690457 1.3633 -0.693231 0.967
0.0001 -0.699939 0.0087 -0.699356 0.092

Table F.45: β estimates (β̂) from the parameter estimation simulations for the power
transform (4.6). The β̂ values are found by applying the fitting algorithm (Section 4.1.3),
with either the χ2 (4.9) or Rk(X̂) (5.24) score function and metric MDS, to the perturbed
distance matrix D̃. The matrix D̃ is generated from a semi-circle using the power
transform with β = −0.7; with the mmin = 2 adjustment and with dispersion ρ = 2.
Column one gives the different levels of b0 used. For each score function the mean β̂ and
the mean percentage error between β̂ and β is given; in columns two and three for the χ2

score function, and in columns four and five for the Rk(X̂) score function.



Appendices 255

ρ = 4 χ2 Rk(X̂)

b0 β̂ |β−β̂|
β

% β̂ |β−β̂|
β

%

0.1 -0.446596 36.2006 -0.383448 45.2217
0.01 -0.606545 13.3508 -0.608217 13.1119

0.001 -0.678677 3.0462 -0.686785 1.8879
0.0001 -0.699856 0.0205 -0.698732 0.1811

Table F.46: β estimates (β̂) from the parameter estimation simulations for the power
transform (4.6). The β̂ values are found by applying the fitting algorithm (Section 4.1.3),
with either the χ2 (4.9) or Rk(X̂) (5.24) score function and metric MDS, to the perturbed
distance matrix D̃. The matrix D̃ is generated from a semi-circle using the power
transform with β = −0.7; with the mmin = 2 adjustment and with dispersion ρ = 4.
Column one gives the different levels of b0 used. For each score function the mean β̂ and
the mean percentage error between β̂ and β is given; in columns two and three for the χ2

score function, and in columns four and five for the Rk(X̂) score function.

ρ = 8 χ2 Rk(X̂)

b0 β̂ |β−β̂|
β

% β̂ |β−β̂|
β

%

0.1 -0.420946 39.8649 -0.339711 51.4699
0.01 -0.57111 18.4128 -0.554672 20.7612

0.001 -0.66113 5.5529 -0.674504 3.6423
0.0001 -0.698933 0.1524 -0.697013 0.4267

Table F.47: β estimates (β̂) from the parameter estimation simulations for the power
transform (4.6). The β̂ values are found by applying the fitting algorithm (Section 4.1.3),
with either the χ2 (4.9) or Rk(X̂) (5.24) score function and metric MDS, to the perturbed
distance matrix D̃. The matrix D̃ is generated from a semi-circle using the power
transform with β = −0.7; with the mmin = 2 adjustment and with dispersion ρ = 8.
Column one gives the different levels of b0 used. For each score function the mean β̂ and
the mean percentage error between β̂ and β is given; in columns two and three for the χ2

score function, and in columns four and five for the Rk(X̂) score function.
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G Estimated chromosome configuration

The four estimated chromosome configurations for each chromosome

(X̂E,M , X̂P,M , X̂E,NM and X̂E,NM ) can be sorted into two groups. The configurations

within the groups sharing a similar shape, and comparing configurations in different

groups shape should be different. Grouping the four estimated chromosome configuration

is done using the process outlines in section 4.3.3.

For each of the 22 chromosomes and the X chromosome an estimated configuration

representative of each group is plotted, giving two estimated chromosome configurations

plotted per chromosome. Group one is representative by the red configuration and

group two representative by the green configuration . The blue line denotes

the location of the centromere in the configuration; if no blue line is present then the

centromere is found at the end of the chromosome and has been excluded for the estimated

chromosome configuration. Table 4.6 summarizes how the estimated chromosome

configurations are grouped.
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Chromosome 1 group one (X̂P,M ) estimated configuration.

Chromosome 1 group two (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.
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Chromosome 2 group one (X̂P,M ) estimated configuration.

Chromosome 2 group two (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.

Chromosome 3 group one (X̂P,M ) estimated configuration.

Chromosome 3 group two (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.
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Chromosome 4 group one (X̂P,M , X̂E,NM and X̂P,NM ) estimated configuration.

Chromosome 4 group two (X̂E,M ) estimated configuration.

Chromosome 5 group one (X̂P,M ) estimated configuration.

Chromosome 5 group two (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.
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Chromosome 6 group one (X̂P,M ) estimated configuration.

Chromosome 6 group two (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.

Chromosome 7 group one (X̂P,M , X̂E,M and X̂P,NM ) estimated configuration.

Chromosome 7 group two (X̂E,NM ) estimated configuration.
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Chromosome 8 group one (X̂P,M ) estimated configuration.

Chromosome 8 group two (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.

Chromosome 9 group one (X̂P,M ) estimated configuration.

Chromosome 9 group two (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.



Appendices 262

Chromosome 10 group one (X̂P,M ) estimated configuration.

Chromosome 10 group two (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.

Chromosome 11 group one (X̂P,M ) estimated configuration.

Chromosome 11 group two (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.
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Chromosome 12 group one (X̂P,M , X̂E,M and X̂P,NM ) estimated configuration.

Chromosome 12 group two (X̂E,NM ) estimated configuration.

Chromosome 13 group one (X̂P,M ) estimated configuration.

Chromosome 13 group two (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.
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Chromosome 14 group one (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.

Chromosome 14 group two (X̂P,M ) estimated configuration.

Chromosome 15 group one (X̂P,M ) estimated configuration.

Chromosome 15 group two (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.
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Chromosome 16 group one (X̂P,M ) estimated configuration.

Chromosome 16 group two (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.

Chromosome 17 group one (X̂P,M ) estimated configuration.

Chromosome 17 group two (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.
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Chromosome 18 group one (X̂P,M and X̂E,NM ) estimated configuration.

Chromosome 18 group two (X̂E,M and X̂P,NM ) estimated configuration.

Chromosome 19 group one (X̂P,M ) estimated configuration.

Chromosome 19 group two (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.
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Chromosome 20 group one (X̂P,M ) estimated configuration.

Chromosome 20 group two (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.

Chromosome 21 group one (X̂P,M and X̂E,NM ) estimated configuration.

Chromosome 21 group two (X̂E,M and X̂P,NM ) estimated configuration.
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Chromosome 22 group one (X̂P,M , X̂E,M and X̂P,NM ) estimated configuration.

Chromosome 22 group two (X̂E,NM ) estimated configuration.

Chromosome X group one (X̂P,M ) estimated configuration.

Chromosome X group two (X̂E,M , X̂E,NM and X̂P,NM ) estimated configuration.
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