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Abstract 

The P2Y12 receptor is an important amplifier of thrombosis. P2Y12 is activated by 

ADP, inducing release of α and dense granules from the platelet. α-granules contain 

a myriad of proteins including pro-inflammatory mediators involved in vascular 

inflammation. P2Y12 antagonists are used in the treatment and prevention of 

arterial thrombosis and also reduce levels of inflammatory mediators, indicating 

that P2Y12 may play a role in inflammation. α granules also release antimicrobial 

peptides suggesting that P2Y12 may also be involved in resistance to infection.  

Zebrafish embryos represent an excellent model to study thrombosis, inflammation 

and infection in vivo. Transgenic lines enable visualisation of leukocyte migration, 

whilst inoculation with pathogens enables modelling of resistance to infection. 

Temporary gene knockdown is achieved by injection of morpholino 

oligonucleotides and recent advances have enabled targeted mutation of specific 

gene loci.  

This thesis describes my investigations into the role of P2Y12 in thrombosis, 

inflammation and infection in these zebrafish models. I found that p2y12 

knockdown significantly reduced thrombus area in response to vessel injury. I also 

investigated the effect of knockdown of several platelet microRNAs on thrombosis. 

I found that knockdown of miR-223 significantly increased thrombus area after 

vessel injury, a novel finding which indicates a previously unsuspected role of miR-

223 in thrombus formation. Leukocyte migration to sites of inflammation was 

examined in both control and p2y12 morphants however I found no significant 

difference, suggesting P2Y12 does not play a role in leukocyte migration in this 

model.  

I investigated resistance to S. aureus infection and found a statistically significant 

reduction in survival of p2y12 morphants. I generated a p2y12 mutant which results 

in a frame shift proximal to the N-terminus, however I observed no effect on 

thrombosis or resistance to infection. This requires further investigation. My data 

shows that the function of P2Y12 in thrombosis is conserved in the zebrafish and 

that P2Y12 may play a role in resistance to S. aureus infection. 
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Chapter 1 : General Introduction  

 

This thesis describes an investigation into the role of the P2Y12 receptor in 

thrombosis, inflammation and infection using a novel zebrafish model. 

The platelet plays a central role in primary haemostasis to maintain vessel integrity 

after injury.  Platelets play a key role in atherothrombotic diseases. Anti-thrombotic 

drugs prevent further thrombotic events after myocardial infarction (MI) 

((Mackman, 2008) for review) and since many of these target the P2Y12 receptor, it 

is vital to understand the role of this receptor in physiological processes. My project 

seeks to validate the zebrafish model via the well characterised role of P2Y12 in 

thrombosis, before investigating the indistinct role of the receptor in inflammation 

and response to infection. The zebrafish has been utilised for this investigation as it 

possesses many advantages over other in vivo models. This introduction will discuss 

some of the relevant literature relating to the P2Y12 receptor with regards to 

platelet function, pharmacology and signalling pathways of the P2Y12 receptor, in 

the context of thrombosis, inflammation and infection. 

 1.1 The platelet 

Platelets are anucleate cell fragments, derived from the megakaryocyte and the 

second most abundant cell in the circulation. Platelets are vital to maintaining 

haemostasis and circulate for approximately 10 days before being cleared by 

macrophages (Harker, 1977). There are many different receptors expressed on the 

surface of platelets which are involved in adhesion, activation and aggregation. 

Alterations to endothelial surfaces caused by vessel damage or atherosclerotic 

plaques induce platelet activation, leading to platelet cytoskeletal remodelling to 

change shape from the spherical resting state to an activated state with extending 

lamellipodia and filopodia.  
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1.1.1 Thrombus Formation 

Damage to endothelium, such as that by atherosclerotic plaque rupture, exposes 

von Willebrand factor (vWF) and collagen in the subendothelium of the vessel wall. 

Circulating platelets roll and tether to the vessel wall via binding of vWF to adhesion 

receptors glycoprotein (GP) Ib-IX-V and then adhere more firmly upon binding of 

collagen to receptors α2β1 and GP VI. Platelets then become activated via thrombin 

and release of adenosine diphosphate (ADP) from platelet dense granules, red 

blood cells and damaged endothelial cells (Mills et al., 1968, Hollopeter et al., 

2001). ADP activates two ADP receptors on the surface of the platelet, P2Y1 and 

P2Y12; activation of both of these receptors is required for a full aggregation 

response (Daniel et al., 1998) (Jin and Kunapuli, 1998).  

1.2 The P2Y12 receptor  

The P2Y12 receptor is a G protein-coupled  receptor (GPCR) which has been 

established as a key amplifier of platelet aggregation in response to vessel injury 

and platelet activation (Hollopeter et al., 2001). The P2Y12 receptor is a seven trans 

membrane domain receptor coupled to the heterotrimeric guanosine 5’-

triphosphate (GTP)-binding Gi protein. P2Y12 is activated by binding of ADP and the 

more potent 2-methylthio-ADP (2-MesADP), it is activated to a lesser extent by ATP 

(Schmidt et al., 2013). Binding of these agonists activates the Gi protein coupled to 

the receptor, leading to inhibition of adenylyl cyclase (AC) activity and 

phosphatidylinositol 3-Kinase (PI3-K) activation (Geiger et al., 1999, Kunapuli et al., 

2003). These mechanisms amplify and potentiate platelet aggregation initiated by 

thrombin, thromboxane A2 (TXA2) and P2Y1 activation (Garcia et al., 2010, Jin et al., 

2002, Li et al., 2003).  

1.2.1 P2Y12 activation 

Platelet activation induces release of ADP from platelet dense granules, which 

activates P2Y12 and, in a positive feedback mechanism, induces further dense 

granule release, thus amplifying the platelet aggregation response. P2Y12 amplifies 

many processes involved with activation and aggregation of platelets, including 

release of dense granules and α granules, activation of the fibrinogen receptor 
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GPIIb/IIIa (αIIbß3) and generation of TXA2 (Kauffenstein et al., 2001) . P2Y12 sustains 

activation of GPIIb/IIIa to amplify and sustain platelet aggregation (Kauffenstein et 

al., 2001, Kamae et al., 2006). GPIIb/IIIa binds fibrinogen to enable cross-linking of 

fibrinogen between platelets, thus forming a stable thrombus. In addition, P2Y12 

activation amplifies platelet procoagulant activity with increased thrombin 

generation that not only activates platelets but also leads to formation of fibrin 

which forms  a mesh to further stabilise thrombus (Dorsam et al., 2004).  P2Y12 is 

particularly important in enhancing thrombus formation at high shear such as in 

arterial thrombosis (Nergiz-Unal et al., 2010).  
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Figure 1.1 A schematic of the activated platelet. 

The platelet is activated by a variety of agonists such as fibrinogen, collagen, TXA2, 5HT, 
thrombin and ADP. The P2Y12 receptor activation by released ADP induces a positive 
feedback mechanism to amplify platelet aggregation via dense granule release, GP IIb/IIIa 
activation and thrombin generation. Schematic adapted with permission from (Storey, 
2006). 
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1.2.2 Intracellular signalling 

P2Y12 signalling activates the intracellular coupled G protein inducing a 

conformational change that uncouples subunits of the Gi protein. The P2Y12 linked 

Gi protein has 3 subunits; αi, β and γ subunits, with β and γ forming a complex. The 

αi subunit is involved in the inhibition of AC, which under normal conditions 

synthesises cAMP from ATP. Therefore the inhibition of AC reduces levels of cAMP, 

leading to a reduction in phosphorylation of the vasodilator-stimulated 

phosphoprotein (VASP) by protein kinase A (PKA), which sustains platelet 

aggregation (Geiger et al., 1999). 

The β and γ subunits dimerise to form a complex that dissociates from the αi 

subunit upon activation of the receptor. This dimer activates PI3K, which results in 

activation of both Akt and the small GTPase Rap1b (Figure 1.2) (Li et al., 2003, 

Woulfe et al., 2002). These interactions are involved in granule secretion and 

activation of GPIIb/IIIa which amplifies the platelet aggregation response (Fontana 

et al., 2003, Quinton et al., 2004). P2Y12 signalling potentiates generation of the 

secondary mediator TXA2 from arachidonic acid, to promote activation and 

recruitment of platelets to the site of aggregation via interaction with the 

thromboxane-prostanoid (TP) receptor. 
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Figure 1.2 Intracellular pathways of the P2Y12 receptor. 

Intracellular pathways involved in amplification of platelet aggregation following P2Y12 
receptor activation. Uncoupling of the Gi linked protein subunits α and the βγ complex 
induces two distinct pathways; the inhibition of adenylyl cyclase leading to a reduction of 
phosphorylated vasodilator-stimulated phosphoprotein resulting in platelet aggregation.  
Also the activation of PI3K, leading to granule secretion and GP IIb/IIa acitivation, resulting 
in platelet aggregation. Figure adapted, with permission, from (Angiolillo et al., 2008). 

  



7 
 

 

1.2.3 Ligand interactions 

ADP binds to P2Y12 at the binding pocket in the extracellular portion of the 

receptor, between transmembrane (TM) regions 3, 5, 6 and 7 (Schmidt et al., 2013). 

The extracellular loop (EL) 2 is believed to be important in recognition of the ligand. 

In the human P2Y12 receptor, Y105, E188, R256, Y 259 and K280 are proposed as 

important residues involved in ligand interaction, with K280  particularly important 

for ligand binding pocket function (Hoffmann et al., 2008, Schmidt et al., 2013, 

Ignatovica et al., 2012). These residues are highlighted by red circles in Figure 1.3. 

The DRY motif in the second intracellular loop is highly conserved in GPCRs and is 

important for intracellular trafficking, G protein interaction and localisation of P2Y12 

(highlighted by a red box in Figure 1.3)(Patel et al., 2014, Nygaard et al., 2009).  
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Figure 1.3 Predicted structure of the human P2Y12 receptor. 

A predicted structure for the human P2Y12 receptor with the following key residues 
highlighted with red circles; Y105, E188, R256, Y 259 and K280 and the red box highlights the DRY 
motif.  Disulphide bonds are shown in pink between Cys17 and Cys270 and Cys97 and Cys175 . 
Figure adapted from (von Kügelgen, 2006) with permission.  
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1.2.3 P2Y12 expression 

P2Y12 is predominantly expressed on platelets, however it is also present in vascular 

smooth muscle cells (VSMC), microglia and macrophages (Hollopeter et al., 2001, 

Haynes et al., 2006, Wihlborg et al., 2004, Sasaki et al., 2003, Kronlage et al., 2010). 

There is some contention as to whether P2Y12 is expressed on leukocytes other than 

macrophages (Diehl et al., 2010).  

1.3 Platelet degranulation  

Activated platelets release over 300 different proteins, contained within three 

different organelles: α granules, dense granules and lysosomes (Coppinger et al., 

2004). Platelet degranulation is vital for a full thrombotic response, particularly in 

response to low agonist concentrations (Li et al., 2010). Degranulation occurs when 

there is fusion between the secretory vesicle and the plasma membrane, releasing 

granular contents. Activation of P2Y12 by ADP contributes to the degranulation of 

dense granules, α granules and lysosomes from the platelet by amplifying 

intracellular responses initiated through activation of various receptors such as 

thrombin, TXA2 and P2Y1 (Hechler et al., 1998, Quinton et al., 2004). 

1.3.1 α granules  

α granules constitute the foremost secretory organelle, comprising the majority of 

different proteins released from the platelet.  They contain factors involved in 

thrombosis, inflammation and immunity, including fibrinogen, vWF, platelet factor 

4 and P-selectin (CD 62P) (Coppinger et al., 2004). α granules contain a 

heterogeneous population of proteins ranging from coagulation factors and pro-

inflammatory mediators to antimicrobial peptides. These distinct populations of 

different factors often have contrary effects. It is suggested that pro-angiogenic 

factors such as vascular endothelial growth factor (VEGF) are contained within a 

separate population of α granules to anti-angiogenic factors such as Endostatin, 

with differential release depending on activation of receptors PAR1 or PAR4 

respectively (Italiano et al., 2008, Sehgal and Storrie, 2007). vWF and fibrinogen are 

also segregated into distinct populations of α granules, whilst P-selectin is 

distributed throughout both populations. α granule subsets are proposed to consist 
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of spherical (comprising the majority) and tubular (not present in every platelet), 

containing different factors which can be differentially released (van Nispen tot 

Pannerden et al., 2010). For example, spherical α granules contain vWF and β-

thromboglobulin which are not present in tubular α granules (van Nispen tot 

Pannerden et al., 2010) . It is however unclear as to the mechanism of differential 

release; whether this is due to activation of different receptors or due to different 

packaging of proteins such as vWF and fibrinogen within the α granule (Sehgal and 

Storrie, 2007). Activation of P2Y12 regulates the small G protein Rap1b, which is 

particularly important in degranulation of α granules (Lova et al., 2002). This is 

demonstrated by P2Y12 receptor antagonism reducing release of P-selectin from α 

granules and decreasing the subsequent expression on the platelet surface 

(Quinton et al., 2004). 

1.3.2 Dense granules 

Dense granules contain calcium ions and small molecules that contribute to the 

further activation of platelets including ADP, ATP and 5HT (Tranzer et al., 1966, 

Mills et al., 1968). Dense granule release is induced by several agonists such as 

collagen, TXA2 and thrombin. Upon degranulation, released ADP forms a positive 

feedback mechanism to amplify the aggregation response through further 

activation of the P2Y12 receptor and, to a lesser extent, P2Y1 (Hechler and Gachet, 

2011). 
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Table 1.1 A selection of peptides released from α granules. 

A variety of peptides are released from α granules upon degranulation, a selection of these 
are shown in the table below, along with references. These peptides are involved in many 
different processes including coagulation, angiogenesis, adhesion, chemotaxis and 
microbial defence.  

 

 

 

  

 Peptides released Reference 

Coagulation 
factors 

Fibrinogen 

Factor V 

Thrombospondin 

(Gerrard et al., 1980) 

(Vicic et al., 1980) 
(George, 1978) 

Pro-angiogenic VEGF (Wartiovaara et al., 1998) 

Anti- angiogenic Endostatin  (Ma et al., 2001) 

Pro- Inflammatory PDGF 

P-Selectin 

CD40 ligand (CD 154) 

(Witte et al., 1978) 

(Stenberg et al., 1985) 

(Kamykowski et al., 2011) 

Adhesive ligands vWF (Cramer et al., 1985) 

Platelet 
microbicidal 
proteins 

Platelet Basic Protein (PBP) 

PF-4 

RANTES (CCL5) 

IL-8 (CXCL8) 

CTAP 3 

(Holt et al., 1986) 

(Senior et al., 1983) 

(Klinger et al., 1995) 

(Schaufelberger et al., 1994) 

(Castor et al., 1983) 

Chemokines Neutrophil Activating Protein 2 
(CXCL7) 

RANTES (CCL5) 

β-Thromboglobulin 

Growth Regulating Oncogene-α 
(GRO- α)(CXCL1) 

PF-4 (CXCL4) 

Monocyte Inflammatory Protein 
(MIP-1 α) 

Monocyte Chemotactic Protein-3  
(MCP-3) 

(Piccardoni et al., 1996) 

 

(Klinger et al., 1995) 

(Gerrard et al., 1980) 

 

(Oquendo et al., 1989) 

 

 

(Klinger et al., 1995) 

 

(Power et al., 1995) 

Cytokine TGF β (Assoian and Sporn, 1986) 

Proteolysis Vitronectin (Seiffert and Schleef, 1996) 
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1.4 Platelet and leukocyte interaction 

P-selectin (CD 62P) is an adhesion receptor which is translocated to the surface of 

activated platelets from α granules upon degranulation. P-selectin is a key releasate 

from α granules and is a marker of platelet activation (Stenberg et al., 1985). P-

selectin, once expressed on the surface of activated platelets binds to its ligand P-

selectin glycoprotein ligand-1 (PSGL-1) which is present on monocytes, neutrophils 

and endothelial cells, as shown in Figure 1.3. P-selectin enables platelets to roll on 

and adhere to activated endothelium and form platelet-leukocyte conjugates. 

Platelets are able to bind to monocytes, neutrophils and lymphocytes, leading to 

leukocyte activation and subsequent cytokine production, phagocytosis and release 

of neutrophil lysosomal enzymes (von Hundelshausen and Weber, 2007, Storey et 

al., 2002). This interaction between the platelet and the monocyte also induces 

production of tissue factor (TF) which further activates the coagulation cascade 

(Celi et al., 1994, Lindmark et al., 2000).  

CD40 ligand (CD154) is an immunomodulating ligand that is translocated from α 

granules to the platelet surface as shown in Figure 1.4. CD40 ligand binds to the 

CD40 receptor expressed on monocytes, macrophages and endothelial cells. This 

interaction induces the expression of TF on the monocytes surface and endothelial 

cells to release chemokines to recruit leukocytes (Lindmark et al., 2000, Henn et al., 

1998, Mach et al., 1997). Leukocytes, such as neutrophils and monocytes, adhere 

via these receptors to activated platelets in thrombi, and can contribute to 

thrombin generation for further fibrin deposition (Palabrica et al., 1992, Kirchhofer 

et al., 1997). 
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Figure 1.4 Schematic of platelet leukocyte interactions.  

The activated platelet interacts with monocytes via P-selectin and CD154 expressed on the 
cells surface. These peptides are released from α granules and are translocated to the cell 
surface where they interact with the ligand and receptor respectively. The monocyte binds 
to P-selectin via its ligand PSGL-1 and CD154 via its receptor CD40. This interaction induces 
tissue factor expression on the surface of the monocyte. The platelet also interacts with 
neutrophils via binding of P-selectin to its ligand PSGL-1. 
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1.5 P2Y12 antagonists  

There are several different classes of P2Y12 antagonists with variable mechanisms of 

action. The irreversibly binding thienopyridine class requires conversion to active 

metabolites for effect, which extends the time to onset of action. As 

thienopyridines irreversibly antagonise the receptor, they also have an increased 

time to offset of action, as this is dependent on the lifespan of the platelet which in 

humans is 7-10 days (Harker, 1977). Reversibly-binding antagonists have a shorter 

offset of action which can be beneficial in the pre-surgical situation. The new 

generation of cyclopentyl-triazolo-pyrimidines (CPTP) antagonists bind non-

competitively and require no conversion to active metabolite, therefore have a 

quicker onset of action.  

1.5.1  Clopidogrel  

The thienopyridine clopidogrel is an irreversibly-binding P2Y12 antagonist which 

requires hepatic conversion to its active thiol metabolite via the hepatic 

cytochrome P450 (CYP) enzymes, particularly CYP3A4 and CYP2C19 isoenzymes 

(Savi et al., 1994, Clarke and Waskell, 2003, Hulot et al., 2006). The active 

metabolite interacts with extracellular cysteine residues on the receptor to form a 

disulphide bridge with the extracellular target residue cysteine 97 to irreversibly 

interfere with ADP binding (Ding et al., 2003, Savi et al., 2006). Functional P2Y12 

oligomers are associated with cell membrane lipid rafts; when active metabolite 

binds P2Y12, it dissociates these into dimers and monomers which become 

partitioned out of the lipid raft and thus disrupts ligand binding (Savi et al., 2006). 

Clopidogrel has been shown to induce a variable response between patients, partly 

due to genetic polymorphisms in the hepatic cytochrome enzymes, which impact 

upon conversion of the pro-drug to the active metabolite. It has been shown that 

up to 30% of Caucasians have a loss-of-function polymorphism in the CYP2C19 gene 

which reduces the pharmacodynamic effect of clopidogrel (O'Connor et al., 2011). 
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 1.5.2 Prasugrel 

Prasugrel is a thienopyridine irreversibly-acting prodrug which is rapidly converted 

to its active metabolite via cytochrome isoenzymes, particularly CYP3A4/5 and 

CYP2B6 as well as CYP2C9 and CYP2C19 in a manner which is unaffected by 

polymorphic mutations in CYP2C9 or CYP2C19 (Brandt et al., 2007). It has a similar 

mechanism of action to clopidogrel in which the active metabolite forms a 

disulphide bond with the receptor, preventing agonist binding (Algaier et al., 2008).  

Prasugrel induces greater and more consistent inhibition of P2Y12 than clopidogrel, 

but incurs increased risk of bleeding which, when combined with a slow offset time, 

highlighting the disadvantages of thienopyridines (Wiviott et al., 2007) . 

1.5.3 Cangrelor 

Cangrelor is an ATP analogue which is directly acting and rapidly reversible. It binds 

to P2Y12 competitively with a short half-life of approximately 5 minutes, requiring 

intravenous administration (Storey et al., 2001). As a result, cangrelor has a quick 

onset and offset mode of action. 

 1.5.4 Ticagrelor 

Ticagrelor is a CPTP antagonist which reversibly and non-competitively binds P2Y12 

at a site distinct from the ADP binding site. This allosteric binding prevents 

conformational change of the receptor to activate the Gi protein, therefore 

preventing signal transduction caused by binding of ADP (van Giezen, 2008). 

Ticagrelor has rapid onset and offset with levels of inhibition directly correlating to 

the plasma concentration of drug (Gurbel et al., 2009). Ticagrelor induces a greater 

and more consistent inhibition than thienopyridines (van Giezen et al., 2009). Side 

effects of ticagrelor include dyspnoea and increased incidence of bradyarrhythmia 

both of which are proposed to be due to prevention of adenosine reuptake into red 

blood cells leading to an excess of extracellular adenosine (Gurbel et al., 2009, 

Cannon et al., 2007, Scirica et al., 2011). This area requires further investigation in 

order to determine the effects of ticagrelor on systems other than the P2Y12 

receptor.  
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1.6 P2Y12 antagonism in thrombosis 

Remijn et al. (2002) compared blood from a patient deficient in P2Y12 to blood 

samples from healthy volunteers either without treatment or after treatment with 

cangrelor. Both P2Y12 deficient and cangrelor treated samples showed reduced 

platelet adhesion to fibrinogen and the formation of smaller thrombi on collagen 

under conditions of flow (Remijn et al., 2002). The P2Y12 receptor has also been 

studied in several animal models, establishing differing techniques to elucidate the 

P2Y12 receptors’ involvement in thrombosis following vessel injury. Van Gestel et al.  

(2003) injured the mesenteric arterioles of rabbits by vessel wall puncture which 

were exposed to P2Y12 antagonists clopidogrel and cangrelor (formerly AR-

C69931MX) to study their effect on thrombosis. This investigation found that 

antagonism of P2Y12 reduces the size of thrombus by decreasing platelet adhesion 

to fibrinogen without effecting thrombus stability (van Gestel et al., 2003). The 

most common animal model for studying P2Y12 is the P2Y12 knockout mouse (P2Y12 -

/-) which has been utilised to investigate thrombotic response to vessel injury such 

as induced by ferric chloride (FeCl3), femoral wire and laser irradiation technique 

(Foster et al., 2001) (Andre et al., 2003, Evans et al., 2009, Patil et al., 2010). P2Y12 -

/- mice have an increased bleeding time in response to amputation of the tail tip, 

with a reduced sensitivity to thrombin and collagen (Foster et al., 2001). In contrast 

to the Van Gestel investigation, Andre et al (2003) used the P2Y12 -/- mouse after 

FeCl3 injury to study stabilisation of thrombi and found that P2Y12 -/- mice appeared 

to show increased embolization of thrombi when compared to wildtype, indicating 

that thrombi forming in the P2Y12 -/- mice were more unstable than those in 

wildtypes (Andre et al., 2003). However P2Y12 -/+ mice do not appear to have 

altered thrombosis response compared to wildtype (Andre et al., 2003). Treatment 

with ticagrelor mirrors the response in the P2Y12 -/-  mouse with reduced thrombus 

formation after laser-induced vessel injury of arterioles in the cremaster muscle 

(Patil et al., 2010). Platelets are believed to be an important contributor to 

restenosis after percutaneous coronary intervention (PCI), leading to the role of 

P2Y12 to be investigated in neointima formation after vessel injury (Patil et al., 

2010). Our group found that P2Y12 knockout or antagonism of P2Y12 reduces 
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neointima formation after vessel injury when compared to wildtype mice, 

indicating that the early thrombosis response after vessel injury is a vital stage in 

the development of neointima (Evans et al., 2009). 

There are several techniques utilising different mechanisms of vessel injury to 

induce thrombosis. FeCl3 induces oxidative damage to the vessel when applied 

externally to the artery and thus diffuses through the wall to damage the vessel and 

expose its basement membrane to flowing blood (Kurz et al., 1990, Eckly et al., 

2011). This mechanism for vessel damage is sufficient to induce thrombosis 

however there is little exposure of the internal elastic lamina, media or adventitia, 

which may affect the interactions for example of collagen with GPVI (Eckly et al., 

2011). Femoral wire injury involves damaging the vessel wall via a guide wire 

passed within the femoral artery, resulting in a denudation of the wall and 

subsequent thrombosis (Roque et al., 2000). Wire injury is reported to be a weaker 

stimulus for thrombosis when compared to FeCl3 injury (Evans et al., 2009). Laser 

irradiation of the vessel wall, such as in the mouse ear, induces heat damage which 

enables a non-invasive mechanism for damage of the vessel endothelium 

sufficiently to generate thrombosis (Rosen et al., 2001). This technique has also 

been utilised to monitor thrombus formation in the cremaster muscle of the 

mouse, which requires invasive surgery to open the cremaster, allowing the 

developing thrombus to be visualised in vivo (Patil et al., 2010). We have selected 

this laser irradiation technique for initiation of thrombosis in the zebrafish model, 

which enables in vivo visualisation of thrombus development, as above, in addition 

to a range of fluorescently labelled transgenic lines and an increased throughput, in 

comparison to the mouse. 

1.7 P2Y12 mutations and the effect on thrombosis 

Several mutations in human P2RY12 have been documented, with effects ranging 

from impaired ADP binding, reduced P2Y12 activation after ADP binding or reduced 

cell surface expression. Cattaneo et al. (2003) observed a compound heterozygote 

for two different allelic mutations, R256Q and R265W, which resulted in a bleeding 

phenotype with reduced P2Y12 activation and Gi signalling but without impaired 

ADP binding or cell surface expression (Cattaneo et al., 2003). Fontana et al. (2009) 
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showed haploinsufficiency of P2RY12 in an individual heterozygous for a 378delC 

mutation, resulting in a frame shift and truncation of P2RY12 downstream of the 

third transmembrane domain (Fontana et al., 2009, Conley  2001). This patient 

showed a mild platelet dysfunction including abnormal platelet aggregation, slight 

deficiency in [33P]2MeS-ADP binding sites and a secretion defect (Cattaneo et al., 

2000). Daly et al. (2009) investigated a patient with impaired ligand binding after a 

substitution mutation of K174E in P2RY12, a mutation which affects the second 

extracellular loop of P2Y12  (Daly et al., 2009). In addition to this mutation, this 

patient also had mild type 1 von Willibrand disease and a VWF defect, resulting in a 

bleeding tendency (Daly et al., 2009).  Patel et. el (2014) studied a patient 

homozygous for R122C substitution within the highly conserved DRY motif of 

P2RY12 whom showed reduced ADP-stimulated platelet aggregation and a 

reduction in P2Y12 cell surface expression with a high proportion of P2Y12 located 

intracellularly (Patel et al., 2014). This patient also had a polymorphism in F2 R 

resulting in a reduced expression of PAR-1 and reduced aggregation in response to 

PAR-1 activating peptide  (Patel et al., 2014).  

In other species, a naturally occurring deletion of serine 173 (173Sdel) in P2Y12 was 

detected in the Greater Swiss Mountain Dog, resulting in excessive post-operative 

bleeding (Boudreaux and Martin, 2011). Considerable work has been undertaken 

on the P2Y12 -/- mouse (Foster et al., 2001), however  the P2Y12 -/+ mouse does not 

appear to have altered thrombosis response, therefore there does not appear to be 

the same haploinsufficiency of mouse P2Y12 compared to human P2RY12 (Andre et 

al., 2003). 

1.8 P2Y12 antagonism in inflammation  

P2Y12 activation plays a role in inflammation through the amplification of α and 

dense granule release. α granules contain a myriad of factors (Table 1.1), some of 

which are required for inflammation, such as the chemoattraction of leukocytes via 

chemokines and pro-inflammatory mediators (Steinhubl et al., 2007). P2Y12 is 

proposed to work in conjunction with P2Y2 and A3 adenosine receptors to amplify 

chemotactic response of macrophages (Kronlage et al., 2010). P2Y12 may play an 

important role in inflammation. Treatment of acute coronary syndrome (ACS) 
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patients with P2Y12 antagonists reduces inflammatory markers such as P-selectin, C 

reactive protein (CRP) and CD40L, therefore reducing platelet-leukocyte 

aggregation (Steinhubl et al., 2007). As P2Y12 is important in the release of α 

granules from the activated platelet, antagonism of this receptor reduces granule 

release. P-selectin and CD40L are both proposed to be important in development of 

atherosclerotic plaques. Recent work by our group has shown that it is vessel wall 

P2Y12 rather than platelet P2Y12 which plays a role in early development of 

atheroma (West et al., 2014). 

As previously discussed, ticagrelor is a P2Y12 antagonist which also blocks reuptake 

of adenosine. There are 4 cell surface adenosine receptors; A1, A2A, A2B and A3. 

These receptors are present on a variety of different cell types including smooth 

muscle, endothelial cells, macrophages, and platelets. Adenosine is produced by 

the break-down of ATP, and is proposed to have both anti and pro inflammatory 

effects depending on which adenosine receptor is activated. Activation of A1 and A3 

receptors, which are both linked to the Gi protein, increases neutrophil chemotaxis, 

adhesion to endothelium and phagocytosis (Cronstein et al., 1992) (Chen et al., 

2006). Kronlage et al. (2010) propose that A3 signalling complements purinergic 

receptor signalling from P2Y2 and P2Y12 to amplify chemotactic signalling of 

macrophages (Kronlage et al., 2010). A2A is linked to the Gs protein, and A2B is linked 

to both the Gs and Gq proteins; activation of these receptors inhibits neutrophil 

and macrophage degranulation  (Nakav et al., 2008) (Fredholm, 2007). Therefore 

there is a differential effect of adenosine on inflammatory processes, dependent 

upon which receptors are activated. This emphasises that the role of excess 

adenosine in inflammation during ticagrelor treatment requires further 

investigation.  

1.9 P2Y12 in infection 

Platelets play a role in host defence against bacterial, viral, protozoan and fungal 

infections. Circulating platelets are the first cells to respond to chemotactic signals 

and accumulate at sites of vascular injury and infection (Yeaman and Bayer, 1999). 

Activated platelets are capable of internalising pathogens such as bacteria or 

viruses, into the open canalicular system (OCS) (Youssefian et al., 2002). 
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Degranulation of α granules releases many antimicrobial proteins, chemokines and 

cytokines involved in killing pathogens and recruiting leukocytes to sites of infection 

(Table 1.1). P2Y12 is an important activator of intracellular pathways required for α 

granule degranulation and therefore may play a role in the platelet response to 

infection. 

1.9.1 Antimicrobial peptides 

Antimicrobial peptides can directly interact with pathogens via surface receptors 

enabling the internalisation of pathogens. Many antimicrobial peptides have been 

identified, some of which act as chemokines, cytokines or directly to destroy the 

pathogen such as thrombocydins or kinocidins, termed platelet microbicidal 

proteins (PMPs) or platelet kinocidins (PK). Examples of antimicrobial peptides 

contained within platelets are demonstrated in Table 1.1, for example PF-4 is a 

kinocidin (Yeaman et al., 2007, Tang et al., 2002). These peptides are specialised to 

function in the acidic pH associated with inflammatory conditions thus contributing 

to host defence against invading pathogens (Tang et al., 2002). Platelets express 

chemokine receptors, such as CXCR4, CCR1, CCR3 and CCR4, and are capable of 

autocrine and paracrine signalling (Boehlen and Clemetson, 2001).  

1.9.2 P2Y12 antagonism and infection 

A previous study has suggested that antagonism of the P2Y12 receptor may increase 

risk of post-operative infection after coronary artery bypass graft (CABG) surgery, 

although it is unclear whether P2Y12 antagonism itself or dual therapy with both 

aspirin and clopidogrel increased risk (Blasco-Colmenares et al., 2009).  It would be 

interesting to investigate the effect of dual therapy with other combinations of 

P2Y12 antagonists or a non- P2Y12 antagonist, since this effect may be due to a 

decrease in anti-microbial peptide release or instances of reoperation (perhaps due 

to bleeding complications) associated with anti-platelet treatment (Blasco-

Colmenares et al., 2009). In the PLATO study, patients treated with ticagrelor 

showed a reduced rate of mortality and infection compared to those treated with 

clopidogrel (Varenhorst et al., 2012, Storey et al., 2013). Post hoc analysis has 

suggested that partly this may be due to differential effects of the drugs on 
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susceptibility to pulmonary infection and its complications (Storey et al., 2013). 

These results have caused some controversy as to the reliability of the trial, for 

example Serebrauny (2011) criticised the perceived high death rates documented in 

PLATO, suggesting these were higher than previous ACS trials and the inclusion of 

an alive patient initially reported as dead (Serebruany, 2011). However this 

suggestion was rebutted by both Ohman and Roe (2011) and Wallentin et al. (2011) 

who defended the results of the trial stating that all the data was correctly 

interpreted (Ohman and Roe, 2011) (Wallentin et al., 2011). Although unconfirmed, 

there are several plausible reasons for a differential effect of P2Y12 antagonists on 

susceptibility to infection. These drugs have different mechanisms of action, with 

ticagrelor binding P2Y12 at a distinct site away from the ADP binding pocket and also 

preventing adenosine re-uptake. Therefore it is possible that it is this excess of 

adenosine which is contributing to the potential protective effects of ticagrelor 

compared to clopidogrel. 

Staphylococcus aureus infection is known to induce the release of PMP and  

kinocidins from the platelet (Trier et al., 2008). Treatment of rabbit platelets with 

P2X1 antagonist and cangrelor inhibited staphylocidal response via a reduction in 

levels of platelet microbicidal proteins and kinocidins (Trier et al., 2008). Therefore, 

P2X1 and P2Y12 positive feedback systems are proposed to mediate the release of 

microbicidal proteins and kinocidins (Trier et al., 2008). This emphasises the 

important role P2Y12 plays in peptide release from α granules. P2Y12 receptor 

involvement in defence against malarial parasites has been investigated and it was 

found that the P2Y1 receptor, rather than P2Y12, mediates defence against this type 

of infection (McMorran et al., 2009). 

This represents an area which requires further investigation to ascertain the role of 

P2Y12 activation and α granule release in defence against parasite, bacterial, viral 

and fungal infections. P2Y12 antagonists are widely used clinically therefore it is vital 

to fully elucidate the effects of P2Y12 antagonism on resistance to infection.  
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1.10 The use of zebrafish to model thrombosis, inflammation and 

infection response 

1.10.1 Zebrafish background 

The zebrafish (Danio rerio) is a small tropical freshwater fish originating in India, 

Bhutan and Pakistan, which grows up to 4cm in length. The zebrafish possesses 

many advantages, including low maintenance costs and a short generation time 

with high fecundity: each female produces approximately 200-300 embryos per 

week from 3 months of age, enabling high-throughput investigations requiring large 

animal numbers, such as mutagenesis screens. The zebrafish has a fully functioning 

circulation by approximately 25 hours post fertilisation (hpf), however the embryo 

is able to obtain enough oxygen via diffusion in the first few days of development 

so that circulation is not required (Rombough, 2002). This enables the investigation 

of some embryonically lethal malformations or interventions which would be 

impossible in other models. Zebrafish embryos are optically transparent, enabling 

easy visualisation of cardiac function and blood circulation, via low powered light 

microscopy. This represents a considerable advantage for use of the zebrafish, as 

although visualisation of circulation is possible in the mouse model, the zebrafish 

model enables use of a variety of fluorescently labelled transgenic lines, and ease of 

genetic manipulation enable high throughput investigations of inflammatory and 

infective responses, which are limited in current mammalian models. 

1.10.2 Genetic manipulation of zebrafish 

The zebrafish genome has been fully sequenced, facilitating reverse genetic studies 

of gain-of-function and loss-of-function of candidate genes, via overexpression or 

knockdown. Gene overexpression is possible via injection of synthesised mRNA into 

1-2 cell stage embryos. Gene knockdown can be achieved by injecting 1-2 cell stage 

embryos with a synthetic antisense morpholino oligonucleotide (MO), which binds 

complimentarily to the sense strand of the mRNA to prevent translation, therefore 

inducing targeted knockdown for several days post fertilisation (dpf). Both these 

techniques have been widely used to investigate the function of specific genes. 

Recently, newer methods have been developed enabling targeted stable mutation 
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of genes of interest. Two examples of these are: context dependent assembly 

(CoDA) zinc finger nuclease (ZFN) and transcription activator-like effector 

nucleotides (TALENs), which induce a targeted cleavage of specific gene loci so that 

a subsequent mutation occurs via erroneous nonhomologous end joining 

(NHEJ)(Mussolino et al., 2011, Sander et al., 2011). I will discuss these more fully in 

Chapter 5, in which I exploit these to generate a stable p2y12 mutant zebrafish line. 

Transgenesis has allowed generation of many transgenic lines expressing 

fluorescent reporter proteins or other constructs under the control of gene 

promoters to induce cell type specific expression. This allows identification and 

tracking of fluorescently labelled cells. Table 2.1 summarises some examples of 

transgenic lines relevant to my research.  

Approximately 70% of human protein coding genes possess at least one zebrafish 

orthologue (Howe et al., 2013). This relatively high degree of conservation 

determines a great similarity to mammals in many different systems such as 

cardiovascular, digestive and nervous systems. The zebrafish ancestry has 

undergone a genome duplication leading to several transcript variants of some 

genes (Amores et al., 1998).  

Zebrafish have increasingly been utilised for small molecule screens due to their 

suitability for high-throughput investigations. Drug treatment can be achieved via 

addition of the pharmaceutical agent to the media. Zebrafish can withstand low 

concentrations of dimethyl-sulfoxide (DMSO), therefore this is often utilised for 

dissolving hydrophobic drugs. In zebrafish embryos, agents are primarily taken up 

through the skin (Rombough, 2002). 
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1.10.3 Limitations of zebrafish models 

There are some disadvantages of the zebrafish as a model. There are currently few 

antibodies raised against zebrafish proteins, restricting the use of western blotting 

for the detection of proteins, unless there is sufficient cross-reactivity with existing 

antibodies, which is rare. The adaptive immune system of the zebrafish develops 

approximately 4-6 weeks post fertilisation and has been suggested to be less 

evolved than the innate system (Lam et al., 2004). However this delay in 

development of the adaptive immune system could represent an advantage for 

studying the innate system in isolation (Sullivan and Kim, 2008). The presence of 

one or more transcript variants, due to the zebrafish genome duplication event,  

can complicate the functional assessment of genes after knockdown (Amores et al., 

1998). The genetic divergence between mammals and zebrafish limits the 

investigation of some genes which do not possess a zebrafish orthologue. There are 

also obvious anatomical differences between mammalian models and zebrafish 

such as an absence of lungs and a lack of heart septation. 

The zebrafish nevertheless represents a useful model for investigation of many 

diseases and signalling pathways, particularly when used in conjunction with other 

animal models, to explore physiological processes for which the zebrafish offers a 

simplified model. 

1.10.4 Zebrafish p2y12 

p2y12 is expressed on microglia where it is involved in the detection of purinergic 

signals required to induce chemotaxis to sites of central nervous system (CNS) 

injury (Haynes et al., 2006). p2y12 has been investigated in the zebrafish with 

regards to its function in microglial cells (Sieger et al., 2012). Sieger et al. (2012) 

generated a p2y12::P2Y12-GFP transgenic by the fusion of GFP to the C’ terminus of 

p2y12. This transgenic was used to visualise microglial migration to sites of injury in 

the optic tectum in vivo. Two different translation-blocking p2y12 morpholinos 

were used; P2Y12mo and P2Y12mo2 (See Table 2.3). Injection of these morpholinos 

blocked microglial response to injury and reduced expression of P2Y12-GFP (Sieger 

et al., 2012). It is important to note that this work was published during the course 
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of my project and that this study did not investigate the role of platelet P2Y12 in 

thrombosis, inflammation or infection. 

1.10.5 Zebrafish haematopoiesis 

Haematopoiesis in the zebrafish occurs in 2 waves; the primitive wave and the 

definitive wave. The primitive wave occurs before 24 hpf and originates in the 

posterior lateral mesoderm (PLM), which later becomes the intermediate cell mass 

(ICM) and is the site of erthryopoiesis, and the anterior lateral mesoderm (ALM), 

which later becomes the rostral blood island (RBI) and is the site of myelopoiesis 

(Davidson et al., 2003, Bennett et al., 2001, Detrich et al., 1995). A transient wave 

of haematopoiesis, generating erythromyeloid progenitors (EMP), occurs at 

approximately 24 hpf, at the start of circulation, in the posterior blood island (PBI) 

(Bertrand et al., 2007).  The definitive wave originates in the aorta-gonad 

mesonephros (AGM) region located in the ventral region of the dorsal aorta, which 

was previously the ICM and which is where haematopoietic stem cells (HSC) are 

produced (Murayama et al., 2006). By 36 hpf the PBI becomes the caudal 

haematopoietic tissue (CHT), the site of definitive erythropoiesis and myelopoiesis 

(Jin et al., 2009, Galloway et al., 2005). HSC’s from the AGM seed the thymus for 

lymphopoeisis and the kidney for further generation of HSCs and definitive 

haematopoeisis in the larval stage (Murayama et al., 2006, Kissa et al., 2008).  

1.10.6 Zebrafish thrombocytes 

Thrombocytes are the nucleated equivalent of human platelets, found in non-

mammalian vertebrates. 6% of the blood cell population comprises of 

thrombocytes, which first appear in circulation at approximately 36 hpf  

(Jagadeeswaran et al., 1999). Thrombocytes possess many key platelet receptors 

such as P2Y1, GP IIb/IIIa and GP Ib (Jagadeeswaran et al., 1999, Gregory and 

Jagadeeswaran, 2002). Thrombocytes have been shown to be activated by agonists 

such as ADP, arachidonic acid, ristocetin and collagen, consequently they are able 

to adhere, secrete, phagocytose and form aggregates with filopodia-like projections 

upon activation (Gregory and Jagadeeswaran, 2002, Tournoij et al., 2010). Zebrafish 

thrombocytes are also able to secrete ATP upon activation by collagen and 
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arachidonic acid (Jagadeeswaran et al., 1999). Gregory and Jagadeeswaran (2002) 

labelled zebrafish thrombocytes with the thrombocyte-specific lipophilic dye DiI-

C18 in whole blood samples, of which 4 µl were obtained from an adult fish. DiI-C18 

only labelled 50% of the thrombocytes, prompting investigation as to why the 

entire population of thrombocytes were not labelled with this method (Gregory and 

Jagadeeswaran, 2002). It is proposed  that DiI distinguishes two different 

populations of thrombocytes; rapidly activated young thrombocytes that initiate 

thrombosis, which are DiI+, and less active DiI- mature thrombocytes (Thattaliyath 

et al., 2005). Treatment with the P2Y1 receptor antagonist adenosine-3’,5-

bisphosphate (A3P5P) inhibited thrombocyte activation in response to ADP, 

establishing the presence of this receptor, however there was no investigation into 

P2Y12 presence on thrombocytes  (Gregory and Jagadeeswaran, 2002). 

Zebrafish possess orthologues of many key proteins involved in thrombocyte 

aggregation including P-selectin, CD154 and vWF (Sun et al., 2010) (Gong et al., 

2009, Carrillo et al., 2010).  Zebrafish homology to mammalian P-selectin and CD41 

is 39% and 40% respectively (Sun et al., 2010, Lin et al., 2005). However, zebrafish 

lack the collagen receptor GPVI (Hughes et al., 2012). Conservation of these 

proteins supports the use of zebrafish as a model for investigation into functions 

and processes of the platelet. A transgenic line with green fluorescent protein (GFP) 

reporter expressed under the control of the CD41 promoter (CD41:GFP), the α 

subunit of GP IIb, was generated to visualise thrombocytes in vivo (Lin et al., 2005). 

This transgenic labels haematopoietic stem cells (HSC) in a GFPlow level of 

fluorescence and thrombocytes in a GFPhigh level of fluorescence (Lin et al., 2005). 

The HSC identity of GFPlow cells has been confirmed by reconstitution of the 

haematopoietic lineage from GFPlow cells transplanted into irradiated adult fish (Ma 

et al., 2011). GFP positive cells appear at 33-35 hpf between the posterior cardinal 

vein and the dorsal aorta in an area of mesenchyme similar to the mammalian 

aorta/gonad/mesonephros region (AGM). These then migrate via the axial vein to 

the thymus and caudal haematopoietic tissue (CHT) and enter circulation at 

approximately 48 hpf (Kissa et al., 2008). By 5 dpf the site of thrombopoiesis moves 

from the CHT to the kidney (Lin et al., 2005) 
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1.10.7 Using zebrafish to model thrombosis 

The most common method for investigation of thrombosis in zebrafish uses 

targeted laser irradiation to injure vessel endothelium, sufficient to induce 

thrombosis (Gregory et al., 2002). This was developed to enable quantification of 

time to occlusion (TTO) of the vessel, time to attachment (TTA) of the first cell to 

the damaged endothelium and time to dissolution (TTD) of the thrombus (Gregory 

et al., 2002, Jagadeeswaran, 2005).  The developing thrombus can be imaged in vivo 

and O’Connor et al (2009) introduced a method for measurement of thrombus 

surface area (TSA) by the use of ImageJ software, enabling quantification of 

thrombus area (O'Connor et al., 2009). Since development of this method, it has 

been utilised to ascertain the effect of antisense MO knockdown of proteins or 

receptors involved in aggregation. Knockdown of prothrombin resulted in a 

prolonged TTO upon vessel injury showing similarities with the prothrombin -/- 

mouse (Day et al., 2004).  Knockdown of PKCα and PKCβ resulted in attenuated 

thrombus formation, determined by quantification of TSA, recapitulating the 

phenotypes observed in the PKCα -/- mouse (Williams et al., 2011). Table 1.2 

summarises the previously published studies of thrombosis using the zebrafish.  



28 
 

 

Table 1.2 Summary of thrombosis studies using the zebrafish. 

Many genes have been investigated by knockdown and laser induced thrombosis in the 
zebrafish model. The effect of gene knockdown on thrombus formation can be quantified 
using; time to attachment (TTA), time to occlusion (TTO) and thrombus surface area (TSA).  
This table shows the genes investigated, the function of the gene, the location of vessel 
injury and the effect of gene knockdown on the thrombosis response. (N.S  non-significant, 
↓ decrease, ↑ increase, TM transmembrane.)  

 

 

 

 

Gene  Function of gene Anatomical 
location of 
injury 

Phenotype of 
gene knockdown 

Reference 

Factor VII 

Factor VIIi 

Coagulation factor Caudal vein  ↑ TTO 

↓ TTO 

(Gregory et al., 2002) 

Prothrombin Coagulation factor II Caudal vein ↑ TTO (Day et al., 2004) 

GPIIb 

FVIII 

ANTXR2 

BAMBI 

DCBLD2 

ESAM 

LRRC32 

Platelet receptor 

Coagulation factor 

Platelet TM protein 

Platelet TM protein 

Platelet TM protein 

Platelet TM protein 

Platelet TM protein 

Dorsal aorta TTA  N.S, ↓ TSA 

TTA  N.S, ↓TSA 

TTA  N.S , TSA N.S 

↑ TTA, ↓ TSA 

TTA N.S, ↑ TSA 

TTA N.S, ↑ TSA 

↑ TTA, ↓ TSA 

(O'Connor et al., 2009) 

PKCα  

PKCβ 

Platelet kinase Ventral wall 
dorsal aorta 

↑ TTA, ↓ TSA 

 TTA N.S, ↓ TSA 

(Williams et al., 2011) 
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1.10.8  Using zebrafish to model inflammation  

The zebrafish immune system is highly conserved and comprises both innate and 

adaptive immune systems. The adaptive system, as mentioned, develops later, but 

does still possess antigen-presenting cells, T and B cells (Neely et al., 2002). The 

innate system consists of neutrophils, macrophages and eosinophils, with 

eosinophils appearing at 5 dpf (Lieschke et al., 2001).  

Neutrophils are the most abundant circulating leukocyte and the first inflammatory 

cell to respond to injury (Lieschke and Trede, 2009). They travel to sites of damaged 

tissue via chemotaxis then degranulate to release enzymes such as 

myeloperoxidase (MPO) and also produce reactive oxygen species (ROS). 

Neutrophils are also capable of limited phagocytosis of debris or pathogens and 

their removal by either apoptosis or retrograde chemotaxis contributes to 

inflammation resolution (Mathias et al., 2009, Renshaw et al., 2006).  Lieschke et al. 

(2001) identified the neutrophil specific gene myeloperoxidase (mpo also referred 

to as mpx) coding for the granulocytic protein myeloperoxidase (Lieschke et al., 

2001). Expression of this gene is first detected at 18 hpf in the posterior 

intermediate cell mass (ICM), these mpo positive cells then migrate to the anterior 

yolk sac by 20 hpf, and reach the circulation by approximately 24 hpf (Lieschke et 

al., 2001, Bennett et al., 2001).  

Tail fin injury by transection or needle injury has become established as a model for 

tissue injury sufficient to induce an inflammatory response (Lieschke et al., 2001, 

Renshaw et al., 2006, Mathias et al., 2006). Renshaw et al. (2006) generated the 

MPO:GFP transgenic with expression of the GFP reporter under the control of the 

mpo promoter, enabling live tracking of neutrophils in vivo (Renshaw et al., 2006). 

Mathias et al. (2006) also generated a zMPO:GFP transgenic and utilised this line to 

investigate neutrophil response to needle induced ventral tail fin injury and 

resolution of inflammation. It was noted that neutrophils underwent bidirectional 

chemotaxis from the vasculature both towards the site of injury and resolved 

inflammation upon retrograde migration returning to the vasculature (Mathias et 
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al., 2006). Both of these injury methods induced a peak in neutrophil numbers at 

the site of injury at 6 hours post injury (hpi) and resolution by 24 hpi. 

The primary function of the macrophage is to phagocytose debris, dead cells and 

infective pathogens. Macrophages are slower to respond to and migrate towards 

sites of tissue damage than neutrophils. They remain at sites of injury longer than 

neutrophils, resolving inflammation and enabling tissue regeneration (Ellett et al., 

2011, Li et al., 2012b). Macrophages originate from dorsally derived blood 

progenitors in the rostral blood island (RBI) and first appear in the yolk sac at 

approximately 24 hpf before migrating to the circulation (Herbomel et al., 1999, 

Warga et al., 2009). There are two key markers used to identify macrophages; 

colony stimulating factor 1 receptor (CSFR1) expressed on macrophages and 

xanthophores (skin pigmentation cells) and mpeg1 (macrophage expressed gene 1) 

expressed specifically on macrophages (Gray et al., 2011, Ellett et al., 2011).  

Macrophages can be visualised in a CSFR1:Gal4;UAS:mCherry-nt (fms:nfsB.mCherry) 

transgenic line where the CSFR1 promoter (fms) is used to drive Gal4 expression 

which in turn activates the UAS promoter to drive expression of a mCherry-

nitroreductase fusion protein, thus labelling macrophages with mCherry (Gray et 

al., 2011). This was crossed to the mpo:GFP transgenic to produce a double 

transgenic (fmsgal4;UNM;mpoGFP) enabling tracking of both macrophages and 

neutrophils (Gray et al., 2011).  This transgenic was utilised in the tail transection 

model of inflammation to assess migration of both neutrophils and macrophages to 

the site of inflammation. Macrophage numbers at the site of tail transection 

continue to increase until 48 hours post injury  (Gray et al., 2011).  

1.10.9 Using zebrafish to model the response to infection  

Zebrafish are a useful model for studying the response to pathogenic infection. Due 

to the later development of the adaptive immune system, these studies have 

primarily investigated the response of the innate immune system. Zebrafish have 

been infected with various pathogens to investigate the host response including 

Escherichia coli, Streptococcus and Burkholderia cenopacia (Neely et al., 2002, 

Vergunst et al., 2010). A systemic or localised infection can be specified by 
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intravascular injection or intramuscular injection (Benard et al., 2012). Inoculation 

with fluorescently labelled bacteria, such as Ds-Red expressing Salmonella 

typhimurium or GFP expressing Staphylococcus aureus, enabled tracking of infective 

pathogens and monitoring phagocytosis by macrophages (van der Sar et al., 2003, 

Prajsnar et al., 2008, Colucci-Guyon et al., 2011). Van de Sar et al. (2003) utilised 

DsRed-expressing Salmonella typhimurium to enable visualisation of pathogen 

phagocytosis by macrophages (van der Sar et al., 2003). Although most bacteria 

were lysed, some were able to further divide, eventually killing the macrophage 

(van der Sar et al., 2003). Vergunst et al. (2010) utilised both DsRed and GFP 

expressing Burkholderia cenopacia (Bcc) to visualise the interaction of this pathogen 

with both neutrophils and macrophages. This showed that Bcc was able to survive 

phagocytosis by macrophages and replicate to create an intramacrophage niche, 

enabling further dissemination of infection (Vergunst et al., 2010). Prajsnar et al. 

(2008) inoculated embryos with GFP expressing S. aureus, which was taken up into 

both neutrophils and macrophages in control fish but remained free in circulation in 

fish with depleted myeloid cells (Prajsnar et al., 2008). This highlights the 

importance of myeloid cells in internalizing pathogens and maintaining the immune 

response.  

Zebrafish response to bacterial derived proteins has been studied utilising 

chemoattractants such as; E. coli, Pseudomonas aeruginosa and Salmonella enterica 

derived lipopolysaccharide (LPS) and N-formyl-methionyl-leucyl-phenylalanine 

(fMLP) (Medearis et al., 1968, Marasco et al., 1984, Novoa et al., 2009, Taylor, 2010, 

Elks et al., 2011). Novoa et al. (2009) bathed 2 dpf embryos in both E. coli and P. 

aeruginosa derived LPS in order to assess tolerance to LPS after previous exposures. 

Varying concentrations of LPS were utilised ranging from 5 to 150 µg/ml for E. coli 

derived and 5 to 100 µg/ml of P.  aeruginosa derived LPS and it was found that 

previous exposure to LPS increased tolerance upon a second exposure (Novoa et 

al., 2009). Taylor (2010) assessed neutrophil migration to sites of tail fin injury in 4 

to 6 dpf embryos after bathing them in E. coli derived LPS at a concentration of 1 to 

10 µg/ml. It was found that LPS exposure increased neutrophil numbers at the site 

of tail fin injury (Taylor, 2010). Elks et al. (2011) exposed 2-3 dpf embryos to 100 nM 
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fMLP after tail fin transection, finding that the neutrophil chemoattractant fMLP, 

increased speed of neutrophil migration  and reduced meandering of movement 

towards injury (Elks et al., 2011, Marasco et al., 1984).  

The zebrafish immune response to viral infections has been modelled via 

intravascular introduction of infectious haematopoietic necrosis virus (IHNV) 

(Ludwig et al., 2011). This was shown to disrupt vessel integrity of the endothelium, 

particularly in veins (Ludwig et al., 2011). 

Fungal infection has been modelled in the zebrafish by infection with Candida 

albicans via injection into the hindbrain or yolk of 30 hpf embryos, whereupon the 

yeast form changes to the hyphal form within 34 hours post infection (hpi) (Chao et 

al., 2010). Brothers et al (2011) found that C. albicans, which was injected into the 

hindbrain, replicated and  disseminated throughout the embryo, overwhelming half 

of the population of injected fish within 48 hpi (Brothers et al., 2011). This 

developing infection was visualised via the use of GFP or yCherry expressing C. 

albicans (Brothers et al., 2011). 

These studies demonstrate the advantages of the zebrafish for modelling infection, 

particularly when coupled with the use of transgenic lines. Tracking and assessing 

pathogen and leukocyte behaviour and interactions are not currently possible in 

other animal in vivo models, for example the mouse, rat or rabbit, which have 

previously been utilised in the investigation of P2Y12. Therefore the establishment 

of the zebrafish for modelling the response to infection offers an opportunity to 

investigate the role of P2Y12 in these processes. 

1.11 Platelet MicroRNAs 

MicroRNAs (miRNAs or miRs) are short non coding RNAs, approximately 21-25 

nucleotides long, which post-transcriptionally regulate gene function. MicroRNAs 

bind to the 3’UTR (untranslated) region of mRNA and repress translation via binding 

at low complementarity, or target mRNA for degradation via binding with high 

complementarity, therefore subsequently silencing gene expression (Bartel, 2004). 

Platelets contain a large number of miRNAs involved in many different processes 

including platelet activation, granule exocytosis, angiogenesis and platelet 
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aggregation (Nagalla et al., 2011, Urbich et al., 2008). A cluster of miRNAs highly 

expressed in platelets have been identified via microarray screening to be 

implicated in MI; miR-21, miR-24, miR-126, miR-223 and miR-197 (Zampetaki et al., 

2012).  

MiR-24 regulates apoptosis and angiogenesis and is expressed in endothelial cells 

and cardiomyocytes (Fiedler et al., 2011, Qian et al., 2011). MiR-24 has differential 

regulative effects depending on the cellular expression. Endothelial expression of 

miR-24 is increased in hypoxic conditions, such as after MI. Overexpression of miR-

24 induces apoptosis in endothelial cells whereas antagonism reduces apoptosis 

(Fiedler et al., 2011). MiR-24 has been previously investigated in zebrafish: Fiedler 

et al. (2011) injected zebrafish embryos with miR-24 precursors to overexpress miR-

24, which induced abnormal vascular development and blood accumulation. 

Knockdown of the miR-24 targets PAK4 and GATA2, a method to mimic miR-24 

overexpression, resulted in a similar phenotype (Fiedler et al., 2011). In 

cardiomyocytes, miR-24 regulates the pro-apoptotic protein Bim and expression 

decreases in ischaemic conditions such as the border zone of the left ventricle after 

MI, thus exacerbating apoptosis (Qian et al., 2011).  

MiR-223 is a myeloid specific miRNA which regulates myeloid differentiation and 

may regulate maturation (Johnnidis et al., 2008, Fazi et al., 2005). In the Bruneck 

study, miR-223 was inversely associated with risk of MI (Zampetaki et al., 2012). 

There is a miRNA-223 binding site in the 3’ UTR of the P2RY12 mRNA, indicating 

miR-223 may regulate P2y12 protein expression (Landry et al., 2009).  Recent work 

by Leierseder et. al (2013) in the miR-223 null mouse showed that there is no 

significant effect on platelet activation, aggregation and bleeding time although 

there was a modest reduction in platelet production (Leierseder et al., 2013). 

However using miRNA prediction databases there is currently no prediction of a 

miR-223 binding site in mouse P2Y12, www.mirBase.org, therefore these results are 

consistent with a lack of miR-223 regulation of P2Y12 in the mouse. There is no 

literature regarding miR-233 regulation of p2y12 in the zebrafish, with prediction 

software also not currently predicting a binding site for miR-223 in p2y12. It is 

possible that P2RY12 may be regulated by other miRNAs as four more miRNA 

http://www.mirbase.org/
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binding sites that are predicted in the mRNA 3’ UTR; miR-21, miR-221, let-7i and let-

7g (Landry et al., 2009).  

MiR-126 is expressed in endothelial cells and is associated with Vascular Endothelial 

Growth Factor (VEGF) signalling, angiogenesis and vascular integrity (Wang et al., 

2008, Fish et al., 2008). MiR-126 was positively associated with risk of MI 

(Zampetaki et al., 2012). Knockdown of this miRNA in the zebrafish affects vascular 

integrity inducing haemorrhaging and also ectopic vessel branching from inter 

segmental vessels (Fish et al., 2008, Nicoli et al., 2010). MiR-126 regulates c-myb 

which negatively regulates megakaryocytopoiesis, therefore promoting the 

thrombocyte cell fate. Previous studies showed that knockdown of miR-126 

reduced numbers of thrombocytes and increased erythrocytes numbers (Grabher 

et al., 2011). 

Platelet miRNAs miR-223 and miR-126 expression is sensitive to anti platelet 

therapy, with reduced expression upon treatment with prasugrel (Willeit et al., 

2013). Therefore platelet miRNAs have been suggested as biomarkers for platelet 

activation. Further investigation is required to assess the role of platelet miRNAs in 

a number of different processes such as aggregation and vascular inflammation.  
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1.12 Aims 

The role of the P2Y12 receptor in thrombosis is well proven in various model 

systems. However little is currently known about the role of P2Y12 on the innate 

immune response and on response to infection, although clinical data suggests that 

P2Y12 antagonism may influence the risk of infection in humans. In addition, much 

remains to be understood about the regulation of platelet responses, particularly 

the role of platelet microRNAs.  

The aims of my work were therefore to; 

 Characterize the role of P2Y12 in thrombosis in the zebrafish 

 Assess the effect of morpholino antisense mediated knockdown of platelet 

miRNAs on thrombus formation in vivo in the zebrafish 

 Investigate the role of P2Y12 on leukocyte migration in the zebrafish 

 Investigate the role of P2Y12 in the response to infection in the zebrafish  

1.13 Hypothesis 

I hypothesised that knockdown of the P2Y12 receptor in the zebrafish would reduce 

thrombus formation after vessel injury. I also hypothesised that knockdown of 

P2Y12 would impair inflammatory response to injury and resistance to infection, due 

to a reduced release of pro-inflammatory mediators and antimicrobial peptides 

from thrombocyte α granules. 
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Chapter 2 : Materials and methods 

 

2.1 Materials 

All plastic ware was obtained from Starlab, Milton Keynes, UK, except for 90 mm 

petri dishes which were obtained from Sterilin, Newport, UK. All enzymes and 

enzyme buffers were, unless otherwise stated, obtained from New England BioLabs, 

Ipswich, USA. All reagents used in the in situ hybridization protocol, unless 

otherwise stated, were obtained from Sigma-Aldrich, Gillingham, UK. Distilled, 

deionized and ultra filtered water (MQ H2O) was obtained from Millipore, MA, USA. 

MS222 (PharmaQ, Hampshire, UK) was obtained by the aquaria staff and pH 

adjusted to pH 7. LPS was obtained from Alexis Biochemistry, serotype R515, pH 7. 

Adenosine was obtained from Sigma-Aldrich (Gillingham, UK) with a molecular 

weight of 267.24 g/mol. Prasugrel active metabolite (molecular weight 497.57) was 

obtained from SiChem, Bremen, Germany. Ticagrelor (molecular weight 522.57) 

was obtained from Sequoia Research Chemicals, Pangbourne, Berkshire, UK. 

2.2 Zebrafish husbandry 

2.2.1 Home office regulations 

Zebrafish were maintained according to Home Office regulations, under the licence 

number 40/3434 held by Dr TJA Chico and my personal licence number 10235. 

Zebrafish were raised in the Centre for Developmental Biomedical Genetics (CDBG) 

and fed Artemia (ZMSystems, Hampshire, UK) by the aquaria staff. Zebrafish were 

maintained with a light: dark cycle of 14:10 hours.  

2.2.2 Embryo collection  

Breeding tanks were placed in adult fish tanks the night before embryos were 

required. Breeding tanks consisted of an opaque plastic tub with a wire mesh 

separator containing marbles which encourage breeding, the mesh separator 

allows embryos to pass into the collection tub and prevent the fish from consuming 

them. Embryos were collected with the use of a tea strainer the following morning 

and were then incubated at 28°C with 40 embryos per petri dish containing E3 
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media  (2.8 g 5 mM NaCl,0.48g 0.33mM CaCl2, 0.127g 0.17 mM KCl, 0.817g 0.33 mM 

MgSO4 in distilled H2O with 150 µl 0.01% Methylene Blue).  Embryos which were 

not used for investigations were incubated for a maximum duration of 5.2 dpf at 

which point they were anaesthetised with MS222 (PharmaQ, Hampshire, UK) and 

destroyed with bleach. Pair mating of individual fish was utilised for the generation 

of embryos from specific fish, such as for screening of F0 mutants and crossing of 

founders. This consisted of an individual pair mating tank with an insert enabling 

embryos to pass through and a separator to keep the male and female separated. 

Removal of the separator enables the fish to mate and generate embryos at a 

required time.  

2.2.3 Fin clipping  

Adult fish were anaesthetised in 4.2% MS222 in system water for approximately 45 

seconds, the latter 1/3rd of the tail was transected with scissors and forceps used to 

transfer the fin clip to an individually labelled 0.2 ml tube. Fish were then deposited 

into a correspondingly labelled tank and fin clip gDNA extracted with Red Extract, in 

order to screen for mutations. 

2.2.4 Zebrafish lines used 

Table 2.1 lists the various transgenic zebrafish lines used in this thesis. The 

CD41:GFP line was a kind gift from Dr Martin Gering, University of Nottingham, 

Queens Medical Centre, UK. The p2y12::P2Y12-GFP  line was a kind gift from Dr 

Francesca Peri, EMBL Heidelberg, Germany. Nacre were used for assessment of 

thrombosis response as the lack of pigmentation facilitated imaging of the forming 

thrombus (Lister et al., 1999) . London wild type (LWT) were utilised for the 

assessment of resistance to infection. For the generation of mutant lines, ZFN and 

TALEN RNA was injected into the ABWT background. 
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Table 2.1 Summary of fluorescent transgenic lines. 

A list of some frequently used transgenic lines, relevant to this thesis, including the gene 
and promoter driving the fluorescent reporter, alongside references. 

 

 

  

Transgenic line Gene and promoter Reference 

CD41:GFP GFP driven by thrombocyte receptor 
GPIIb 
  

(Lin et al., 2005) 

Fli1:GFP GFP driven by endothelial cell marker 

 

 

(Lawson and Weinstein, 
2002) 

fmsgal4;UNM;mpoGFP mCherry driven by CSFR1 promoter 
for macrophages and GFP by 
neutrophil specific mpo promoter 

(Gray et al., 2011) 

Gata1:DsRed DsRed driven by erythroid specific 
transcription factor 

 

(Traver et al., 2003) 

mpeg1:GFP GFP driven by macrophage specific 
mpeg1 

 

(Ellett et al., 2011) 

MPO:GFP GFP driven by neutrophil specific 
mpo promoter 

 

(Renshaw et al., 2006) 

zMPO:GFP GFP driven by neutrophil specific 
mpo promoter 

 

(Mathias et al., 2006) 

p2y12::P2Y12-GFP C- terminus p2y12 fused to GFP 

 

 

(Sieger et al., 2012) 
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2.3 General zebrafish methods 

2.3.1 Morpholino injections  

Morpholinos (MO) were custom made by GeneTools (www.gene-tools.com) and 

diluted to 1 mM with MQ H2O. The optimum concentration for each morpholino 

was titrated in order to minimise non-specific toxicity. MOs were diluted to the final 

concentration in MQ H2O and 100% Phenolred (Sigma-Aldrich, Gillingham, UK). The 

volume of morpholino injected was quantified by injection onto mineral oil on a 

graticule prior to embryo injection. The morpholino was injected into the yolk of 1-

2 cell stage embryos using pulled microcapillary needles and a micromanipulator. 

Table 2.2 shows the list of MOs used in this thesis. Table 2.3 shows a list of 

previously published MOs relevant to this thesis.  

 

  

http://www.gene-tools.com/
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Table 2.2 Morpholinos used in this thesis. 

This table lists the morpholinos used in this thesis, including names, sequences, quantities 
injected and the mode of action of the morpholino. The amount of standard control 
morpholino was matched corresponding to the amount of active morpholino injected. 

 

 

Table 2.3 Previously published morpholinos relevant to the work in this thesis. 

This table lists the morpholino names, sequences, quantities injected and the relevant 
references. Both P2Y12 morpholinos listed are ATG blocking, and the miR-126 morpholino is 
a multi blocker morpholino, enabling the blocking of several different stages of miRNA 
maturation. 

 

Morpholino Sequence 5’-3’ Amount 
injected (ng) 

Mechanism 
of action 

Standard 
control 

CCTCTTACCTCAGTTACAATTTATA Corresponding 
amount  to 
active 
morpholino 

No biological 
activity 

P2Y12 AGCTGAGCTGCGTTGTTTGCTCCAT 1.2 Translation 
blocking 

P2Y12mo2 

 
GGACTTCATTACTTCACCCAGCAGG 0.3 nl of 0.3 

mM  
Translation 
blocking 
(Sieger et al., 
2012) 

miR-126 TGCATTATTACTCACGGTACGAGTT 4.22  Targets miR 
guide strand 

miR-223 

 
GGGTATTTGACAAACTGACACCCCT 3.49 Targets  miR  

guide strand 

miR-24  ACCTGTTCCTGCTGAACTGAGCCAG 4.22 Targets 
mature miR 

Morpholino Sequence 5’-3’ Amount 
injected (ng) 

Reference 

P2Y12-mo 

 

P2Y12-mo2 
 

AGCTGCGTTGTTTGCTCCATTGAT 

 

GGACTTCATTACTTCACCCAGCAGG 

0.3mM, 
unlisted 
volume 

(Sieger et 
al., 2012) 

miR-126 TGCATTATTACTCACGGTACGAGTTTGAGTC 4-8 

 

7-20 

(Fish et 
al., 2008, 
Nicoli et 
al., 2010) 
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2.3.2 Mounting  

For laser injury, 3 dpf fish were anaesthetised with 4.2% MS222 (Sigma-Aldrich, 

Gillingham, UK) in E3 and immobilised for imaging, mounted laterally in 1% low 

melting point (LMP) (VWR, Lutterworth, UK) agarose on a square coverslip (Menzel-

Gläser, Braunschweig, Germany). This was inverted onto mounting slide with a 

rectangular aperture containing E3. For confocal imaging of inflammatory response, 

embryos were mounted on a circular cover slip (Menzel-Gläser, Braunschweig, 

Germany) with 1% LMP agarose, which was allowed to set before more agarose 

was added. Once the agarose had set, the coverslip was sealed with petroleum jelly 

to a small petri dish with a pre-lathed circular hole in the middle. The embryos were 

subsequently immersed in E3 in order to prevent dehydration of the agarose. For 

imaging of microglia, 3 dpf embryos were mounted in 1% LMP agarose with the 

dorsal aspect of the head closest to the coverslip. These were then inverted on to a 

slide with a viewing chamber and sealed with nail varnish for imaging at x40 

magnification. 

2.3.3 Image capture of microglia 

An Olympus LV 1000 with x40 (oil immersion) magnification was utilised to image 

GFP fluorescence in the 3 dpf p2y12::P2Y12-GFP transgenic embryos. Prior to 

imaging, 24 hpf embryos had been exposed to 0.002% Phenylthiourea (PTU)(Sigma-

Aldrich, Gillingham, UK) in E3 to prevent melanisation, to aid visualisation of the 

brain. Z slices were taken at 1.5 µm intervals ranging over approximately 40 µm and 

stacked in ImageJ.  

2.3.4 Image capture of thrombocytes 

3 dpf embryos of either CD41:GFP or p2y12::P2Y12-GFP transgenic background 

were mounted laterally in LMP and imaged using x10 or x20 magnification on a 

Perkin Elmer (Cambridge, UK) UltraVIEW Vox spinning disk microscope with 

Volocity software. Z slices were taken every 0.5 µm over a range of 50 µm. These 

slices were then stacked in Volocity. 
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2.3.5 Laser injury 

An Olympus IX2-UCB inverted microscope with a Micropoint (Andor, Belfast, UK) N2 

pulsed laser through 440 nm coumarin dye was utilised. A mirrored slide was 

utilised to assess the position and size of the ablation site. 6 pulses of laser at 

medium power with the attenuator plate at half way, were directed to the ventral 

wall of the dorsal aorta at somite 17, opposite the cloaca, at a magnification of x20.  

The extent of vessel injury was controlled for by visually assessing the ablation of 

endothelium.  

2.3.6 Image capture of thrombosis 

I captured images with Video Savant software via the use of a Basler high speed 

camera. Videos were recorded for 10 minutes after laser injury, with a frame delay 

of 90. Thrombus area was monitored every 15 seconds for the first 2 minutes, then 

every minute from 2 minutes until 10 minutes post injury (see Table 2.4).  

2.3.7 Thrombosis image analysis 

Approximately 6 frames of recording for each time point were exported and saved 

as a sequence in TIFF format. These image sequences were then analysed using 

ImageJ software, in which the free draw properties of this software were used to 

draw around the thrombus and calculate the thrombus area in pixels. Thrombus 

area for each time-point was plotted on a graph in GraphPad Prism6 and the area 

under the curve was utilised as the final result representing total thrombus area. 
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Table 2.4 Selection of frames for thrombus development analysis.  

Thrombus area was analysed after laser injury every 15 seconds for the first 2 minutes, 
then every minute until 10 minutes. Images were recorded at approximately 10 frames per 
second. For each time point listed below, 6 frames were exported for thrombus area 
analysis in ImageJ.  

  

 

  

Time point 
(seconds) 

Frame selection for 
export 

0 0 

15 150-156 

30 300-306 

45 450-456 

60 601-607 

75 751-756 

90 901-907 

105 1052-1058 

120 1202-1208 

180 1803-1809 

240 2404-2410 

300 3006-3012 

360 3607-3613 

420 4208-4214 

480 4809-4815 

540 5410-5416 

600 6012-6018 
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2.3.8 Tail fin transection 

3 dpf fmsgal4;UNM;mpoGFP embryos were anaesthetised with 4.2% MS222 

(Sigma-Aldrich, Gillingham, UK) in E3 and placed on a strip of parcel tape on a petri 

dish lid. All excess media was removed and a scalpel blade (Swann-Morton) was 

utilised to transect the tail fin by a smooth rolling motion of of the blade, at the site 

of pigmentation distal to the gap in pigmentation seen at the position of the loop in 

circulation. This site of transection does not damage the blood vessel in the tail. The 

embryos were then immersed in E3 media and allowed to recover for 

approximately 30 minutes before being placed individually into wells in a 24 well 

plate containing 500 µl of E3 with the addition of 50 µl of MS222.  Fluorescent 

macrophages and neutrophils were visualised at x20 magnification on an Olympus 

IX2-UCB inverted microscope. Macrophage and neutrophil numbers were counted 

within the region of interest at 1, 4 and 8 hours post injury. The region of interest 

consisted of the site of fin transection to the loop in circulation, a region of 

approximately 100 µm. 

2.3.9 Ventral tail fin incision 

3 dpf fmsgal4;UNM;mpoGFP embryos were anaesthetised with 4.2% MS222 

(Sigma-Aldrich, Gillingham, UK) in E3, and placed on a strip of parcel tape on a petri 

dish lid. All excess media was removed and an incision of approximately 20 µm was 

made into the ventral tail fin opposite the gap in pigmentation, using a 5 mm micro 

scalpel. The fish were allowed to recover in E3 media before being anaesthetised 

and mounted in for spinning disk confocal imaging as per section 2.3.2. Images 

were captured using x10 magnification on a Perkin Elmer (Cambridge, UK) 

UltraVIEW Vox spinning disk microscope with Volocity software. Z slices were 

obtained at 1, 4, 8 and 12 hours post injury. The z slices were taken approximately 2 

µm slices over a range of 60 µm, these slices were combined to form a stacked 

image. For macrophage and neutrophil analysis, Z slices were stacked into an 

extended focus view and a circle with a diameter of 200 pixels centred at the site of 

injury. The number of macrophages and neutrophils were counted within this 

region of interest at each time point imaged. 
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2.3.10 Vessel injury for assessment of inflammation response 

3 dpf fmsgal4;UNM;mpoGFP embryos were anaesthetised with 4.2% MS222 

(Sigma-Aldrich, Gillingham, UK) in E3 and mounted laterally in 1% low melting point 

agarose on a slide. Several fish were mounted on one slide and 30 pulses of laser at 

medium power were directed to the circulatory loop in the tail. Each embryo was 

deposited to a single well in a 24 well plate containing 500 µl of E3 with the 

addition of 50 µl of MS222. Macrophages and neutrophils were visualised and 

numbers were counted within the region of interest at 1 hour, 4 hour and 8 hour 

post injury. The region of interest consisted of 200 µm; 100 µm either side of the 

site of injury. 

2.4 Embryo exposure methods 

2.4.1 Ticagrelor 

Ticagrelor was diluted from a stock concentration of 2500 µM in 100% dimethyl-

sulfoxide (DMSO) (Sigma-Aldrich, Gillingham, UK) to 20 µM and 25 µM in E3 

(without methylene blue). 55 hpf nacre embryos were exposed to final 

concentrations of 20 µM and 25 µM ticagrelor and incubated overnight at 28°C. A 

control group was incubated with corresponding concentrations of DMSO in E3 

without methylene blue, to control for any possible effect of DMSO. 3 dpf embryos 

were then laser injured and the thrombosis response quantified as in section 2.3.5. 

2.4.2 Prasugrel active metabolite (PAM) 

Prasugrel active metabolite stock concentration of 10 mg/ml (20 mmol/L) in 100% 

DMSO was diluted to 20 µM and 50 µM. Control solutions of E3 containing 

corresponding concentrations of DMSO were used control for DMSO effect. 3 dpf 

Nacre embryos were exposed to either control solutions or solutions containing 

PAM approximately 1 hour before laser injury, as per section 2.3.5.  

2.4.3 Adenosine exposure after tail fin transection 

7 mg of adenosine (Sigma-Aldrich, Gillingham, UK) was dissolved in 2 ml system 

water to give a stock concentration of 13 mM. This stock was then serial diluted in 

system water to 100 nM and 10 nM. System water alone was used as a control. 3 
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dpf fmsgal4;UNM;mpoGFP embryos were anaesthetised and the tail fin transected 

as discussed in section 2.3.8. These embryos were then placed in individual wells of 

a 24 well plate and 500 µl of either control, 10 nM or 100 nM adenosine solution 

was added to the embryos. Leukocytes were visualised as in 2.3.8 and macrophage 

and neutrophil counts were assessed over a time course of 8 hours. 

 2.4.4 LPS exposure after tail fin transection 

Tail fin transection was conducted as documented in 2.3.8. Embryos were placed in 

individual wells of a 12 well plate and 500 µl of an E. coli derived LPS (serotype R515 

Alexis Biochemistry) solution or E3 control was added to each well. LPS was diluted 

to a final concentration of 1 µg/ml of LPS in E3 media (without methylene blue). 

Macrophages and neutrophils were visualised as in 2.3.8 and numbers were 

monitored over 8 hours.  

2.4.5 fMLP exposure after tail fin transection 

Tail fin transection was conducted as documented in 2.3.8, with a sterile scalpel 

blade briefly immersed in f-met-leu-phe (fMLP) 20 nM. These embryos were placed 

in individual wells of a 12 well plate with 500 µl E3 (without methylene blue). Tail 

fins of the control embryos were transected with a sterile scalpel blade and were 

then transferred to individual wells with 500 µl E3 (without methylene blue). 

Macrophages and neutrophils were visualised as in 2.3.8 and numbers were 

monitored over 8 hours. 

2.4.6 Staphylococcus aureus preparation and injection 

The S. aureus for injection was prepared from a stock of SH1000 strain which was 

stored at -80°C contained on small beads. One bead was removed and spread on a 

brain heart infusion (BHI) LB plate overnight at 37°C. One colony from this plate was 

used to inoculate 10 ml BHI LB broth which was then incubated overnight at 37°C 

250 rpm. 500 µl of culture was added to 50 ml BHI LB broth, shaken at 250 rpm and 

incubated at 37°C for 2 hours. The optical density of the bacterial culture was 

determined via spectrophotometry (Beckman Coulter, High Wycombe, UK), using a 

blank with 1 ml LB media and another cuvette with 900 µl media plus 100 µl 

bacterial solution. Wavelength was set to 600 nm and calibrated to the blank media 
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sample. The OD value of the bacterial sample was then analysed. 40 ml of the 

bacterial solution was centrifuged at 4,500 g for 10 minutes at 4°C. The OD value 

was used to calculate the volume of sterile PBS to resuspend the pellet in, such that 

the OD600 was equivalent to 1. The bacterial concentration was assessed by serial 

dilutions plated on BHI LB agar plates. SH1000 samples were stored at -80°C, for a 

maximum of 2 months, and were defrosted and vortexed before use. 

10 µl of bacterial suspension was loaded into a microinjection needle. For injection, 

embryos were anaesthetised in 0.02% MS222 and immobilised in 3% 

methylcellulose on a slide. Bacterial suspension was microinjected onto a graticule 

and adjusted to a volume of 1 nl. 1 nl was injected directly into the circulation of 30 

hpf embryos at the point of the yolk sac circulation valley (duct of Cuvier). A PBS 

control was taken after the completion of injection of each slide, with 4nl injected 

into 1 ml of sterile PBS.  Any embryos which were damaged or bleeding were 

removed and the remaining embryos immersed in E3 media. These embryos were 

then transferred to individual wells of a 96 well plate. For the PBS control 

experiment, 10 µl of sterile PBS was loaded into a microinjection needle and 1 nl 

injected directly into 30 hpf embryos as above. Following injection 4 nl of PBS 

solution was injected into 1 ml of sterile PBS. 3 x 10 µl of each slide PBS control was 

plated onto BHI LB agar plates and incubated overnight at 37°C. Mean CFU counts 

were determined the following morning for each slide and were recorded. Each S. 

aureus injection needle was used for a maximum of 1 hour, after which point 

bacterial aggregates were prone to block the needle and increase the CFU count 

per 1 nl injection. Embryo survival was monitored over the time course of 

approximately 90 hours post infection (hpi), and mortality was recorded at each 

time point. These results were then plotted on a Kaplan-Meier plot. Care was taken 

to quantify the CFU of each injection in order to establish a matched CFU count 

between control and p2y12 morphants to enable a suitable range of bacterial load 

between experiments for comparison. This range in CFU counts incorporates a 

certain amount of variation between experiments due to technical challenges of 

precise injection directly into the circulation and blockage of the microinjector 

needle by bacterial aggregates at the needle tip. 
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After injection of p2y12sh340 mutants, gDNA of embryos was extracted using Red 

Extract protocol within 12 hours after death. Following completion of this 

experiment, a PCR and test digest was used to genotype the embryos and correlate 

this genotype to survival. 

2.5 Molecular methods 

2.5.1 Primer design 

All primers were designed in Primer3 software (http://frodo.wi.mit.edu/primer3/) 

using the Ensembl cDNA sequence for p2y12. The online genomic database 

(www.ensembl.org) was searched and the following gene sequence 

(ENSDARG00000069945) which had previously been annotated as the P2Y12 

receptor-like (Zv9), was utilised. A list of all primers used in this thesis is shown in 

Table 2.6. 

2.5.2 RNA extraction 

Approximately 20 embryos at the desired time point were collected into a 1.5 ml 

tube and all excess E3 media removed. 100 µl DEPC-treated H2O was added to wash 

the embryos. This H2O was then removed and 250 µl TRIzol (Life Technologies, 

Paisley, UK) reagent was added and the embryos homogenized with a 23 gauge 

needle. This solution was incubated at room temperature for 5 minutes then 50 µl 

of chloroform was added and mixed by inversion. This was then incubated at RT for 

3 minutes then centrifuged for 15 minutes at 4°C and 16.3 g. The top layer of 

supernatant was removed (~ 100 µl) and transferred to a new tube. 85 µl of 

isopropanol was added and inverted to mix. This was incubated at RT for 10 

minutes then centrifuged at 16.3 g for 15 minutes at 4°C. The supernatant was 

poured off to leave a pellet, to which 250 µl 75% ethanol was added, this was 

briefly vortexed then centrifuged at 16.3 g for 10 minutes at 4°C. The supernatant 

was then removed from the pellet and the pellet was allowed to air dry for 2-3 

minutes at RT. This RNA pellet was then resuspended in 15 µl DEPC-H2O and stored 

at -80°C. RNA was used to produce cDNA via a reverse transcriptase (RT) reaction 

using the Verso (Thermo Scientific, UK) kit. 

 

http://frodo.wi.mit.edu/primer3/
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2.5.3 PCR protocols 

Several different polymerase chain reaction (PCR) protocols were used, as 

documented in Table 2.5. For each 10 µl PCR reaction I added approximately 600 ng 

of cDNA per reaction tube, diluted to 1 µl with MQ H2O, 5 µl Biomix (Bioline, 

London, UK), 1 µl forward primer, 1 µl reverse primer and 2 µl MQ H2O. The 

annealing temperature was optimised for each primer set using a gradient PCR 

reaction.  
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Table 2.5 PCR parameters used in this thesis. 

Below are the PCR parameters used within this thesis, including general PCR conditions 
which were utilised for the majority of PCR reactions, also included are specific conditions 
utilised in the process of Zinc Finger Nuclease (ZFN) generation of mutants. 

 

 

 Segment Number of 
cycles 

Temperature Duration 

General PCR 
conditions 

1 1 95°C 3 minutes 

2 31 95°C 30 seconds 

3 50-65°C 30 seconds 

4 72°C 1 minute 

5 1 72°C 5 minutes 

6 1 10°C hold 

 

ZFN cycle 
conditions 

1  95°C 2 minutes 

2 19 95°C  20 seconds 

3 50°C  20 seconds 

4 72°C  5 minutes 

5  72°C  3 minutes 

6  10°C hold 

 

ZFN colony 
PCR 
conditions 

1 1 94°C 2 minutes 

2 29 94°C 20 seconds 

3 60°C (reducing 
0.2°C each cycle) 

20 seconds 

4 72°C 45 seconds 

5 1 72°C 3 minutes 

6 1 10°C hold 

 

ZFN 
titanium 
PCR 
conditions 

1 1 98°C 30 seconds 

2 14 or 34 98°C 10 seconds 

3 55°C 15 seconds 

4 72°C 5 seconds 

5 1 72°C 5 minutes 

6 1 10°C hold 

 

Phusion 
High Fidelity 
conditions 

1 1 98°C 30 seconds 

2 35 98°C 10 seconds 

3 66°C 30 seconds 

4 72°C 20 seconds 

5 1 72°C 10 minutes 
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Table 2.6 Primers used in this thesis. 

A list of all primers used in this thesis, including names, sequence and the purpose for the 
primers. 

 

 

  

Primer Sequence 5’-3’ Purpose 

P2Y12 1st half left CTTCACCCAGCAGGACTCAT  
 
Sequencing p2y12 

P2Y12 1st half right CTCTACAAGTCGTACGCCCG 

P2Y12 2nd half left ACCCCAAACGTCTACTGCAC 

P2Y12 2nd half 
right 

AAACACTGGGGCTTGTTCTG 

P2Y12 F4 AGCTCAGCTTCTCCAACAGC P2Y12 probe generation 

P2Y12 R3 GCACAGAATTGAGGGAGGAC 

LCS2 GAAAAGTTCCGCATGCAAAT  
 
 
 
 

CoDA ZFN mutagenesis 

goodRCS2 CACCTAAAAACCCACCTGAG 

LseqCS2 TGCAGGATCTGCCACCAT 

RseqCS2 TCCTTGATCCACCCAAATGT 

LseqFok GCCAGAAATTCCACTCAGGA 

RseqFok CCCCCTGAACCTGAAACATA 

SP7 left 1 CAGCAAATCCCACTTCATCA 

SP7 right 1 GTAGACGTTTGGGGTTGGTG 

SP5 left 1 GTTGGCCGTGTTTTTCATTT 

SP5 right 1 AGCACAGAATTGAGGGAGGA 

A titanium CGTATCGCCTCCCTCGCGCCATCAG 

B titanium CTATGCGCCTTGCCAGCCCGCTCAG 

TAL_R2 GGCGACGAGGTGGTCGTTGG  
TALEN mutagenesis SeqTALEN_5-1   CATCGCGCAATGCACTGAC 

Bam Left 3 GCGTCTCCAACAGTTCATCC 

Bam Right 2 AAGGGGAATGTGAGGGTCAT 

Forward P2Y12 
ultramer with EcoRI 

ATAACGGTGGAGGAATTCATGGAACAGACC 
ACACAACTCAGCTTCTCCAACAGCAGC 

 

p2y12 mRNA synthesis 
Reverse P2Y12 
Primer with XbaI 

GGAGTCAGTGTCTAGAGTCATGTCAGTGCG 
TTTCCCTGT 
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2.5.4 RNA injection 

RNA was stored at -80°C and defrosted on ice before injection. Needles were 

prepared in sterile conditions and 2 µl of RNA loaded into the needle. RNA volume 

was calibrated using a graticule and was then injected into 1 cell stage wildtype 

embryos, either into the yolk or directly into the cell. 

2.5.5 DNA sequencing 

DNA sequencing was conducted at the Core Genomic Facility at the University of 

Sheffield, UK. DNA samples were submitted at approximate concentrations of 50 

ng/µl and primers were submitted at approximate concentrations of 1 pmol/µl. 

DNA sequencing chromatograms were analysed using FinchTV software. 

2.5.6 p2y12 mRNA synthesis 

mRNA was synthesised using alternate codons to those targeted by the p2y12 

morpholino, but which coded for the same amino acids. The changing of codons at 

the morpholino target ensured that the synthesised mRNA would be less likely to 

bind the morpholino directly, therefore would not interfere with the interaction of 

the morpholino with the native p2y12. Specific primers were designed for this 

process; an ultramer forward primer with the altered codons and EcoRI restriction 

site, and a reverse primer matching the C terminus sequence, with an XbaI site 

included (shown in Table 2.6). A Phusion (New England BioLabs, Ipswich, USA) 

reaction was used with 234 ng DNA template (3.5 µl), 29.5 µl MQ H2O, 10 µl 5x 

Phusion HF buffer, 2 µl 5mM dNTPs, 2.5 µl  Forward P2Y12 primer with EcoRI site, 

2.5 µl Reverse primer with XbaI site, 0.5 µl Phusion DNA polymerase, under the 

conditions shown in Table 2.5. This reaction was run in duplicate and combined to 

form 100 µl, the PCR product was assessed on a 2% gel, and purified in a QIAquick 

PCR purification column, as per manual instructions (Qiagen, Manchester, UK), and 

eluted into a volume of 50 µl.    

The vector pCS2 was utilised, 5µg was digested at 37 °C for 2 hours, in the following 

reaction; 28.6 µl pCS2 vector, 2 µl EcoRI-HF, 2 µl XbaI, 5 µl 10x Cut smart buffer 

(New England Biolabs, Ipswich, USA), 13 µl MQ H2O. This reaction was then treated 

with 2.5 µl shrimp alkaline phosphatase (SAP, New England Biolabs, Ipswich, USA) 
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and incubated for a further 30 minutes, then inactivated at 65°C for 5 minutes. 1.98 

µg of P2Y12 template for insert was digested at 37 °C for 2 hours in the following 

reaction; 33 µl template, 2 µl EcoRI-HF, 2 µl XbaI, 5 µl 10x Cut smart buffer, then 

purified using a QIAquick PCR purification column (Qiagen, Manchester, UK), and 

eluted with MQ H2O into a volume of 30 µl.   The vector and insert were ligated 

together at a 3:1 molar ratio at room temperature for 5 minutes in the following 

reaction; 97 ng/µl vector, 42 ng/µl insert, 8.4 µl MQ H2O, 10 µl 2x ligation buffer, 1 

µl Quick T4 DNA ligase (New England Biolabs, Ipswich, USA). A ligation control 

containing vector without insert, controlled for self -ligation of the vector. 2 µl of 

each reaction was transformed into 25 µl NEB 10 beta competent cells and 

transformed as per manual instructions. 70 µl transformed cells were streaked on 

carbenicillin LB agar (50 µg/ml in 35% LB agar) plates and incubated at 37°C 

overnight. 1 colony was picked and grown overnight in 100 ml LB broth containing 

ampicillin, for Nucleobond midi prep (Macherey-Nagel, Germany), as per manual 

instructions. The correct insertion of template was assessed by digestion of the 

midi-prep for 1 hour at 37 °C in the following reaction; 0.5 µl midi-prep, 1 µl EcoRI-

HF, 1 µl XbaI, 2 µl 10x Cut smart buffer and 15.5 µl MQ H2O, and gel electrophoresis 

to confirm the correct band size of insert. To further confirm the correct insert, the 

0.5 µl midi-prep was incubated at 37 °C for an hour, with 1 µl NotI, 1 µl XhoI and 7.5 

µl buffer 3.1.  5 µg of midi-prep was linearised in a digest with 3 µl NotI, 5 µl 10x Cut 

smart buffer and 39.4 µl MQ H2O, and incubated for 2 hours at 37 °C. Complete 

linearisation was assessed by gel electrophoresis, then the reaction was purified 

using the QIAquick PCR purification column, as per manual instructions. 3 reactions 

of SP6mMessage mMachine kit  were run in triplicate, with 600 ng of purified 

linearised plasmid added to each reaction; 6 µl plasmid, 10 µl 2x NTP/CAP, 2 µl 10x 

reaction buffer and 2 µl enzyme mix, incubated for 2 hours at 37 °C. 1 µl TURBO 

DNase was added, and incubated for a further 15 minutes, then all 3 reactions 

combined and purified and by phenol:chloroform extraction as per manual 

instructions, and eluted into 20 µl MQ H2O, ready for injection. 
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2.5.7  Whole mount in situ hybridization p2y12  probe manufacture 

Primers were designed towards p2y12 to produce a PCR product of 800-1200 base 

pairs these were P2Y12 F4 and P2Y12 R3, with PCR conditions as per Table 2.5, with 

an annealing temperature of 60°C. This PCR product was purified using Mini Elute 

PCR purification kit (Qiagen, Manchester, UK), and quantified using a nanodrop 

spectrophotometer (Beckman Coulter, High Wycombe, UK) then stored at -20 °C. 

4µl of the purified PCR product was incubated for 30 minutes at room temperature 

with 1 µl of TOPO vector (Invitrogen, Paisley, UK) and 1 µl of salt solution (4:1 ratio 

with MQ H2O). 100 µl of competent cells (Invitrogen, Paisley, UK) were defrosted on 

ice and 5 µl of transformed TOPO vector was added and incubated on ice for 30 

minutes. These cells were transformed using heat shock by incubation for 2 

minutes at 42 °C in a water bath then 2 minutes on ice. 900 µl of SOC was added to 

the transformed cells and incubated for 1 hour at 37°C, shaken at 225 rpm. 30 µl of 

0.1M IPTG and 30 µl XGAL (20 µg/µl) was added to LB agar plates, then 100 µl of 

the transformed cells were plated and incubated at 37°C overnight. 

These plates were incubated at 4°C for 1 hour for a blue reaction to develop in 

colonies without the correct insertion and leaving the colonies with the correct 

insertion white. A colony PCR was run on several of the white colonies, by dabbing 

a pipette tip onto the colony, and inoculating the PCR master-mix, then finally into 

a Falcon containing 3ml of LB culture, including a blank as a control. This LB culture 

was incubated overnight at 37°C. The PCR master-mix contained forward and 

reverse primers for M13 as per the TOPO kit (Invitrogen). This PCR product was run 

on a 1% agarose gel to check if the sequence has been inserted. 500 µl of this 

culture was aliquotted into a 1 ml 100% glycerol and stored at -80°C. For 

linerisation of the probe the remainder of the culture was purified via a MiniPrep 

kit (Qiagen, Manchester, UK), and quantified by nanodrop spectrophotometry. 

Some of the purified culture was sequenced and then checked against the genetic 

sequence of interest via BLAST. Specific cleavage enzymes were selected according 

to their restriction sites in order to ensure they would not cut the PCR product 

sequence. 
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For the antisense probe, 5 µg of the purified plasmid was used- 15 µl was digested 

with 2.5 µl of HIND3 enzyme, 5 µl of NEB2 buffer and 27.5 µl of MQ H2O, by 

incubation at 37°C for 2 hours. An undigested control was run alongside, omitting 

the plasmid. 4 µl of these products were run on a 1% agarose gel with 1 µl loading 

buffer (Bioline), to check the plasmid had been linearised. 0.5 µl of 25mg/ml 

Proteinase K and 2.5 µl SDS 10% was added to the linearised plasmid and incubated 

at 37°C for 30 minutes. This plasmid was purified using the MinElute kit (Qiagen, 

Manchester, UK), and quantified by nanodrop spectrophotometry.  

In order to transcribe the antisense probe, 1050 ng of cut plasmid was incubated 

for 2 hours at 37°C with 2 µl of buffer, 1 µl RNAase inhibitor, T7 Polymerase, 6 µl 

MQ H2O and 2 µl DIG RNA labelling kit. After 2 hours, 2 µl of DNAase I (BioLabs) was 

added to destroy the plasmid this was incubated for a further 30 minutes at 37°C, 

then run on a 1% agarose gel, to check for a smeared band. 10 µl of ammonium 

acetate 7.5 M and 60 µl 100% ethanol both of which ice cold, were added and 

inverted to purify the probe. The probe was centrifuged at 16.3 g for 15 minutes at 

4°C. The supernatant was poured off and the pellet washed with 100 µl of 70% 

ethanol and re-spun at 16.3 g for 5 minutes. Supernatant was poured off and the 

remaining pellet was air dried for 3 minutes before being resuspended in 30 µl 

MQH2O and 70 µl formamide. This probe was then stored at -80°C.  

2.6 Histochemical methods 

2.6.1 Whole mount in situ hybridization 

Whole mount in situ was performed as per Thisse et al. (1993) protocol (Thisse et 

al., 1993). 24 hpf embryos were exposed to PTU and then fixed at desired time 

points 24-72 hpf, in 4% paraformaldehyde made in 1x PBS (1 PBS tablet (Sigma-

Aldrich, Gillingham, UK) in 200 ml MQ H2O). The fixed fish were stored in 100% 

methanol, at -20°C with approximately 20 embryos per 1.5 ml eppendorf. These 

embryos were re-hydrated by successive 5 minute incubations with 500 µl 

methanol and PBT (0.1% TWEEN-20 in 1x PBS ) per eppendorf; 75% methanol and 

25% 1x PBT, then 50% methanol and 50% 1x PBT, followed by 25% methanol and 

75% 1xPBT and finally washed 4 times with 100%  1x PBT.  The fixed embryos were 
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then permeabilized by incubation at RT with 10µg/ml of proteinase K ((Roche)in 

PBT) for varying times according to level of development; 1 dpf embryos for 8 

minutes, 2 dpf for 20 minutes and 3 dpf for 60 minutes. Embryos were then re-fixed 

with 4% PFA (in PBS) for 20 minutes at RT followed by 4 washes in PBT for 5 

minutes each. Embryos were then pre-hybrized in 250 µl of pre-heated 

hybridization mix A (50% formamide, 5x SSC, Heparin (50 ml of 50mg/ml), TWEEN-

20 0.1%, tRNA (500 µg/ml), citric acid in MQ H2O 50ml pH 6) for 3 hours at 68°C. 

This hybridization mix was replaced with 100 µl of 98 µl hybridization mix A and 2 µl 

of RNA probe and incubated at 68°C overnight. 

The hybridization mix containing the probe was removed and stored at -20°C for 

further in situs. The embryos were washed with successive 15 minute incubations 

with hybridization mix B (50% formamide, 5x SSC, TWEEN-20 0.1%, citric acid in MQ 

H2O 50ml pH 6)  with 2x SCC (NaCl 17.53g, citric acid trisodium salt 8.82g in 1 L MQ 

H2O at pH 7)  at 68°C. First; 75% Hybridization mix B and 25% 2x SSC, then 50% Hyb 

B and 50% 2xSSC, followed by 25% Hyb B and 75% 2x SSC. The embryos were then 

washed with pre-warmed 2xSSC for 15 minutes at 68°C, then  2 washes of pre-

warmed 0.2x SSC at 68°C for 30 minutes each. The fixed embryos were then 

washed in successive 10 minute incubations at RT of 0.2x SSC and 1xPBT. The first 

wash with 75% 0.2x SSC and 25% 1xPBT, then 50% 0.2x SSC and 50% 1x PBT, 

followed by 25% 0.2x SSC and 75% 1x PBT. Finally the embryos were incubated for 

10 minutes with 100% 1xPBT at RT. The embryos were then incubated with 500 µl 

of blocking buffer (2mg/ml bovine serum alubumin (BSA) (Sigma-Aldrich, 

Gillingham, UK), 2% sheep serum in 1x PBT) at RT for 3 hours. This was replaced 

with blocking buffer containing 1:5000 dilution of Anti-DIG antibody, and incubated 

at 4°C overnight. 

This blocking buffer and antibody was removed and the embryos were washed 6 

times with 1x PBT in 15 minute incubations, whilst protected from light. Embryos 

were equilibrated with 3x 5 minute washes with NTMT buffer (0.1M Tris HCL pH 

9.5, 50 mM MgCl2, 0.1M NaCl, 0.1% TWEEN-20 in MQ H2O). 1 ml staining solution 

(0.35% 5-Brono-4-chloro-3-indolyl-phosphate (BCIP), 0.45% NBT (Sigma-Aldrich, 

Gillingham, UK) in blocking buffer) was added per well and protected from light. 
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Embryos were monitored every 15 minutes to check for staining. Once staining had 

occurred it was stopped by removing the staining solution and washing 3 times in 

1xPBT for 5 minutes each wash. Background staining was removed by methanol 

clearing; 5 minutes with 50% 1xPBT/50% Methanol, 30 minutes in 100% methanol, 

followed by 5 minutes in 50% 1xPBT/50% methanol. Embryos were then washed 3 

times in 1xPBT for 5 minutes each wash and fixed in 500 µl 4% PFA in PBS for 20 

minutes at RT. The PFA was washed off in 3 successive washes of 1xPBT of 5 

minutes each step. The embryos were then added to glycerol for storage purposes, 

first 25% glycerol for 10 minutes, then 50% glycerol for 10 minutes followed by 75% 

and stored at 4°C. 

2.7 Zebrafish mutagenesis methods 

2.7.1 ZFN mutagenesis protocol 

Target regions for ZFN mutagenesis were chosen using the Ensembl cDNA sequence 

for p2y12 and the software on http://zifit.partners.org/ZiFiT/ChoiceMenu.aspx. IDT 

ultramers at a concentration of 4 nmole were ordered corresponding to F1 and 

F2F3 for both left and right subunits for each ZFN. This ultramer is specific to the 

p2y12 sequence and have the zinc finger sequences as 5’ extensions which are 

added to the generic backbone. The following generic plasmid backbones were 

used; LtalpidCS2 and RtalpidCS2 suitable for ZFN with 5-6bp spacers and CS2 7aL 

and CS2 7aR for the 7bp spacer ZFN. Each plasmid was linearised individually with 

Age1 enzyme, in the following reaction; 1 µl 259 ng/µl plasmid, 34 µl water, 5 µl 10x 

NEB buffer 1 and 1 µl Age1. This reaction was mixed and incubated at 37°C for 1 

hour, then cleaned using Qiaquick PCR kit and eluted into 50 µl. The linearised 

plasmid was amplified with the following primers; LCS2 and goodRCS2 (see Table 

2.6). 1 µl linearized plasmid, 14 µl water, 4 µl 5x Herculase buffer, 0.5 µl 10mM 

dNTPs, 0.5 µl LCS2 primer, 0.5 µl goodRCS2 primers, 0.4 µl Herculase II. This was 

added to a thermocycler under the conditions shown in section ZFN cycle 

conditions in Table 2.5. 1 µl Dpn1 was then added and incubated at 37°C for 1 hour. 

This amplicon was purified from a 0.8 % seakem agarose gel with a Qiaquick gel 

extraction kit, and eluted into 200 µl. This forms the generic backbone to which 

specific zinc fingers can be added. Ultramer primers were designed specifically for 

http://zifit.partners.org/ZiFiT/ChoiceMenu.aspx
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the p2y12 sequence with 5’ extensions of the zinc finger motifs, enabling the 

addition of these motifs to the amplicon backbone. These ultramers were termed 

F1 for the first ZF motif and the second and third motifs were both added to the 

F2F3 ultramer. 

2.7.2 Addition of zinc fingers to the generic backbones 

The left and right monomers for each ZFN were assembled individually using the 

different generic backbone amplicons produced from the above reactions. These 

reactions were assembled on ice; 1 µl generic backbone amplicon (e.g left or right), 

14 µl water, 4 µl 5x Herculase II buffer, 0.5 µl 10 mM dNTPs, 0.5 µl µM F1 primer, 

0.5 µl µM F2F3 primers and 0.4 µl Herculase II. This was cycled on the above ZFN 

cycle program. 2 µl of PCR product was run on a 0.8% seakem agarose gel 

electrophoresis and check for a 5069bp band. A Qiaquick PCR clean up kit (including 

the HCl step) was used to purify the product and it was eluted into 44 µl. 

This product was then digested with Age1 enzyme, by assembling 44 µl PCR 

product, 34 µl water, 5 µl 10X NEB buffer1 and 1 µl Age1 and incubating it at 37°C 

for 1 hour. The product was purified with a Qiaquick PCR clean up kit (including the 

HCl step) and eluted into 50 µl. 10 µl of this product was run on a 0.8% gel 

electrophoresis to check for a 5059bp band. This PCR product DNA fragment was 

ligated to create a circular plasmid with the following reaction; 2 µl of the Age1 cut 

eluted product, 2.5 µl 2xNEB quick ligase buffer and 0.5 µl NEB quick ligase 

incubated at room temperature for 5 minutes. This reaction was transformed into 

NEB 10 beta competent cells, the 50 µl aliquot of cells were divided into 12.5 µl 

each tube, 1 µl of reaction was added to the cells and incubated on ice for 30 

minutes. These cells were heat shocked at exactly 42°C for 30 seconds, then placed 

immediately on ice for 5 minutes. 250 µl of room temperature SOC was added to 

each tube and incubated at 250 rpm at 37°C for 1 hour. 50 µl of each reaction was 

streaked on carbenicillin LB agar (50 µg/ml in 35% LB agar) plates and incubated at 

37°C overnight. 

8 colonies were selected for each plate and a colony PCR using the following 

primers was performed; LseqCS2 and RseqCS2 (see Table 2.6). The RT-reaction was 
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as follows; 9 µl water, 10 µl reddymix, 1 µl 10 µM LseqCS2 and 1 µl 10 µM RseqCS2, 

with PCR conditions as shown in the ZFN colony PCR section of Table 2.5. Each PCR 

tube was inoculated with a different colony. 5 µl of the PCR products were run on a 

1.5% agarose gel and a product of 602bp was assessed. 6 colonies were sequenced 

using the LseqCS2 and RseqCS2 primers, to check for correct insertion of ZF motifs. 

The FokI nuclease domain of one of these clones with the correct sequence was 

further checked by PCR (705bp product) and sequencing with FokI primers; LseqFok 

and RseqFok (see Table 2.6). Upon confirmation of the correct FokI nuclease 

domain, a midi prep (Qiagen, Manchester, UK high speed midi kit) was prepared 

from this colony by inoculating 50 ml LB broth (20% LB agar broth) containing 

carbenicillin.  

2.7.3 Preparation of ZFN mRNA for injection 

Both the left and right ZFN plasmids were linearised individually in the following 

reaction; 6 µg (left/right) ZFN SC2 plasmid, 30 µl 10x NEB buffer 3, 3 µl 10 mg/ml 

BSA NEB, 2.5 µl Not1 and water to a total volume of 300 µl. This reaction was 

incubated at 37°C for 2 hours. 1 µl of the linearised product was run on a 0.8% gel 

electrophoresis alongside 1 µl unlinearised product, to check for complete 

linearization. The Not1 digested reaction was then purified with a Qiaquick PCR 

clean up kit and eluted into 30 µl of MQ water and concentration quantified by 

spectrophotometry. mRNA was synthesised using Ambion SP6 mMessageMachine 

kit, with the following reaction; 3 µl 400 ng/µl DNA, 5 µl NTP CAP mix, 1 µl 10x 

buffer and 1 µl enzyme mix. This reaction was mixed then incubated at 37°C for 2 

hours. 1 µl of this reaction was aliquotted out for testing and 1 µl of DNAase turbo 

was added to the 10 µl reaction and incubated for a further 20 minutes. 1 µl of 

synthesised mRNA without DNAase treatment was run on a 0.8% gel 

electrophoresis alongside 1 µl of DNAase treated mRNA to test for DNA 

contamination. This DNAase treated mRNA reaction was purified using Qiagen 

RNeasy MinElute kit (Qiagen, Manchester, UK) and eluted into 14 µl MQ water. 1 µl 

for each left and right was quantified with spectrophotometry and then the mRNA 

was immediately stored at -80°C. Equal ng of left and right mRNA was mixed 
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together and injected into 1 cell stage wildtype embryos at 0.5, 1 and 1.5 nl. Gel 

loading tips were used to load 3 µl of mRNA into the needle for injection. 

2.7.4 Screening for ZFN mutations 

454 deep sequencing was used for the screening of mutations in the F1 progeny of 

F0 injected fish. Deep sequencing sequences many different amplicons which have 

been pooled together. 6 F0 fish were in-crossed and the F1 offspring were pooled 

and genomic DNA extracted, these F0 fish were then placed in a separate tank and 

a specific multiplex identifier sequence (MID) primer was assigned to the gDNA 

samples from this tank. The assignment of specific barcoded primers enabled 

sequences to be assigned back to a tank. Therefore if a mutation was present in 

samples with a particular MID sequence, this could be tracked to a tank of 6 fish 

which would then need sequencing individually to identify a founder. During PCR 

amplification often the primers are not fully amplified, therefore some nucleotides 

can be missing from the end of the primers. For 454 sequencing to be effective, full 

length amplicons are required, therefore titanium primers were used, which are 

added as 5’ extensions to the gene specific primers and prevent them from being 

truncated (see Table 2.6).  An MID was added between the titanium primer and the 

gene specific primer to enable identification.  

gDNA was extracted from pooled embryos from 1 tank containing 6 fish. 

Approximately 60 embryos per pair at 72 hpf were added to a 1.5 ml tube on ice 

and all excess media removed. 700 µl of embryo digestion buffer was added (10 

mM Tris-HCL pH 8, 1mM EDTA, 0.3% Tween 20 and 0.3% NP40). The embryos plus 

this buffer were heated to 98°C for 10 minutes, then 30 µl 25mg/ml proteinase K 

(Roche) was added on ice. The samples were then incubated at 55°C for 3 hours, 

then 98°C for 10 minutes. 450 µl of lysate was added to 250 µl 7.5 M ammonium 

acetate, and spun at room temperature at 13,000 g for 5 minutes. The supernatant 

was removed and added to 700 µl isopropanol and centrifuged at 16.3 g at 4°C for 

30 minutes. The supernatant was removed and discarded and the pellet washed 

with 70% ethanol, then spun at room temperature for 5 minutes, the ethanol was 

then removed and the pellet allowed to air dry for 1 minute. This pellet was then 
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resuspended in 100 µl MQ water. gDNA samples from each pair in a tank were 

combined to form a pool of gDNA from 1 tank. This gDNA was then amplified with 

primers with specific MID sequence in a first PCR reaction and a second PCR with 

titanium primers alone extends and re-amplifies the amplicon to ensure the 

amplicon is of full length. For the first PCR reaction the following was assembled on 

ice; 1 µl of x20 diluted gDNA sample form one tank, 14 µl MQ water, 4 µl 5x phusion 

high fidelity (HF) buffer, 0.4 µl 10mM dNTPs, 1 µl left (MID) primer 10 µM, 1 µl right 

(MID) primer 10 µM and 0.2 µl phusion enzyme. This reaction was run with the PCR 

conditions shown in Table 2.5, section ZFN titanium primer PCR conditions, for 34 

cycles. 5 µl of this product was run on a 2% gel electrophoresis. The remaining 15 µl 

of product was purified using a Qiaquick PCR clean up kit (with HCl step) and eluted 

into 300 µl MQ water. This product was then re-amplified with titanium primers 

alone; 1 µl eluted PCR product, 14 µl MQ water, 4 µl 5x phusion HF buffer, 0.4 µl 

10mM dNTPs, 1 µl 10 µM a titanium primer, 1 µl 10 µM b titanium primer and 0.2 

µl phusion enzyme. This was cycled using the same program as listed in the ZFN 

titanium PCR section of Table 2.5, but for only 14 cycles. This reaction was purified 

and eluted into 30 µl MQ H2O. 2 µl of this reaction was run on a 2% gel 

electrophoresis to check for the 223bp band. These amplicons each with individual 

MID sequences were then combined into 1 sample and submitted for 454 deep 

sequencing. 

2.7.5 TALEN mutagenesis protocol 

The following TALEN mutagenesis protocol is based on the protocol from Cermak et 

al. (2011) and modified by Stone Elworthy (CDBG, University of Sheffield) (Cermak 

et al., 2011). A TALEN target site was chosen using the software available at 

https://boglab.plp.iastate.edu/node/add/talen and inputting the p2y12 sequence 

obtained from Ensembl. The parameters were changed to 15-21bp spacer and to be 

flanked by Ts, so that the final repeat variable di-residue (RVD) is NG. The minimum 

spacer length was 15 and maximum was 21. The minimum array length was set to 

15 and a maximum array length was set to 21. Boxes with the following were un-

ticked; ‘Require C, G or T at position (not A)’, ‘percent composition’, ‘do not allow 

sites to end in a G’ and ‘require A, C or G at position 1 (not a T)’. Ticked was ‘require 

https://boglab.plp.iastate.edu/node/add/talen
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a T at position N’. A TALEN site was chosen which contained a 15bp spacer region 

and 15 RVD left subunit and 15 RVD right subunit. The target site within the spacer 

region had a BamHI restriction enzyme recognition site. 

2.7.6 TALEN RVD assembly 

Each subunit was first assembled as two halves, an A and a B for both the left and 

right subunit. The A and B parts were added together along with the final RVD upon 

addition to the destination vector. Constituent plasmids combined to form the A 

and B parts. Part A was combined into the pFusA plasmid with the first 10 RVDs and 

B containing the other RVDs minus the last RVD, into the pFusB plasmid. As the 

array lengths are variable, there are several B plasmids available, depending on the 

number of RVDs in the array. The final RVD is not added at the first golden gate 

reaction stage so the RVD number in the B part is one less than the full 

complement, therefore pFusB4 was utilised. Each RVD corresponds to a plasmid 

labelled with a well number from the original plate, a list of these plasmids can be 

found at: http://www.addgene.org/TALeffector/goldengate/voytas/Plate1/ . All 

plasmids were defrosted on ice, then gently mixed and pulse spun. Each of the four 

golden gate reactions were prepared separately in 0.2 ml tubes on ice. 

Part A contained; 1 µl on each RVD plasmid at a 100 ng/ µl, 1 µl pFusA at 100 ng/ µl, 

4 µl H2O, 2 µl T4 ligase buffer (NEB), 2 µl T4 ligase (NEB), 1 µl Bsa1 (NEB). 

Part B contained; 1 µl on each RVD plasmid at a 100 ng/ µl, 1 µl appropriate pFusB 

plasmid at 150 ng/ µl, 2 µl 10x T4 DNA ligase buffer (NEB), 2 µl T4 ligase (NEB), 1 µl 

Bsa1 (NEB). 

Each reaction was gently mixed and placed in a TALEN cycling program without the 

Hot-lid option, of 10x (37°C/ 5 minutes + 16°C/ 10 minutes) + 50°C/ 5 minutes + 

80°C/ 5 minutes. After completion of this cycling, 0.3 µl of 25mM rATP and 1 µl 

plasmid safe nuclease was added, the reaction was gently mixed and incubated at 

37°C for 1 hour. Each golden gate reaction was transformed into NEB10Beta 

competent cells. 50 µl of cells were thawed and carefully divided into 4 x 2 ml tubes 

with 12.5 µl each, on ice. 1 µl of reaction was added to each tube and incubated on 

ice for 30 minutes. These cells were then heat shocked at exactly 42° for 30 

http://www.addgene.org/TALeffector/goldengate/voytas/Plate1/
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seconds, then placed immediately back on ice for 5 minutes. 250 µl of room 

temperature SOC was added to each tube and then placed horizontally on a shaker 

at 250 rpm at 37°C for 1 hour. 50 µl of each reaction was streaked on warmed LB 

agar (35% LB agar) selection plates containing spectinomycin (50 µg/ml) Xgal (20 

mg/ml) and incubated overnight at 37°C. 3 well separated white colonies were 

picked for each reaction, and grown at 250 rpm overnight at 37°C in 6 ml of LB 

medium (20% LB broth) containing spectinomycin in a 25 ml universal with a loose 

lid. 

The universal tubes containing the overnight culture were spun down for 30 

minutes at 4°C at 16.3 g. The supernatant was then poured off and the pellet 

purified by QIAprep miniprep kit on 1 of the 3 LB cultures per unit, following the 

Qiagen protocol and eluting the DNA in 50 µl MQ H2O. 

The A and B part for each plasmid was then checked by an NheI XbaI digest. The 

mastermix used contained 22 µl H2O, 5 µl NEB2 buffer, 0.5 µl 10mg/ml BSA, 1 µl 

NheI and 2 µl XbaI, on ice. 6 µl of the mastermix was transferred to 4 µl of mini prep 

in a 0.2 ml tube and incubated at 37°C for 1 hour. 2 µl of 5x loading dye (Bioline) 

was added and the reaction was run on a 1.1% seakem agarose gel alongside 5 µl, 2 

µl and 1 µl loadings of 5 x diluted NEB 2log DNA ladder. Band sizes were checked 

against the expected sizes of 266bp, 2132bp and 500 bp-1100 bp depending on the 

number of RVDs. The band intensities were used to approximate the plasmid 

concentration, such that at least 150 ng of plasmid will be added to the 2nd golden 

gate reaction. 

The 2nd golden gate reaction combines the A and B part of each subunit, along with 

the final RVD which corresponds to the well labelled E4. The mastermix for each 

subunit was; 5 µl H2O, 4 µl A miniprep, 4 µl B miniprep, 1 µl 150ng/ µl plasmid E4, 1 

µl 75 ng/ µl pCAGT7TALEN, 2 µl 10x T4 ligase buffer (NEB), 2 µl T4 DNA ligase (NEB), 

1 µl Esp3I. This reaction was gently mixed and cycled in the same TALEN incubation 

cycle as above. Each golden gate reaction was then transformed in NEB10Beta 

competent cells in which the 50 µl of cells were carefully separated into 2 tubes 

each with 25 µl, and 2 µl of reaction was added. This reaction transformed as above 
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and 50 µl of the transformation was streaked onto pre-warmed carbenillin Xgal LB 

agar plates. The plates were grown overnight at 37°C and one well separated white 

colony was picked for each subunit. This was then grown up overnight in 100 ml of 

LB carbenicillin (50 µg/ml) media in a baffled flask at 250 rpm and 37°C. A 

NucleoBond midi prep (Macherey-Nagel, Germany) was used for purification of 

each culture, following the instruction booklet, with the final precipitation in 6 

individual 1.5 ml eppendorf tubes per plasmid culture. The tubes were spun at 4°C 

at 16.3 g for 30 minutes, after which the supernatant was removed and the pellet 

was washed with 1 ml 70% ethanol. The tubes were spun again, then all excess 

ethanol was removed and the pellets were air dried for 1 minute on the bench top. 

Each tube was resuspended in 20 µl H2O and vortexed, the 6 individual tubes were 

then pooled for each plasmid to give a 120 µl final volume per by 

spectrophotometry (A260 Beckman Coulter, High Wycombe, UK). 20 µl of 100 ng/ 

µl of each preparation was sent for sequencing with the following primers: TAL_R2 

and SeqTALEN_5-1 (see Table 2.6). These sequences were checked alongside the 

predicted sequences for each construct, utilising the combination of sequence 

fragments for each RVD and the sequence of the plasmid backbone for each FusB. 

These array sequences were then inserted into the pCAGT7TAL backbone sequence. 

Each plasmid was tested with a BamHI and XbaI digest to check for the correct 

insertion of RVDs into the plasmid. Each digest should give bands between 4346bp 

and 3669bp, depending on the number of RVDs. For each plasmid the following was 

assembled on ice; 7 µl H2), 1.5 µl 100ng/ µl DNA, 1 µl 10x NEB3 buffer, 0.1 µl 100x 

BSA, 0.5 µl BamHI, 0.5 µl XbaI. This reaction was gently mixed and incubated for 1 

hour at 37 °C. The digested samples were then run on a 0.7%  seakem agarose gel, 

alongside  5 µl, 2 µl and 1 µl of 5x diluted NEB 1kb DNA ladder. 

The left and right pCAGT7TAL constructs were then linearised with NotI, with the 

following reaction; 6 µg L construct, 6 µg R construct, 30 µl 10x NEB3 buffer, 3 µl 10 

mg/ml BSA, 2.5 µl  NotI and made up to a total volume of 300 µl  with H2O. This 

reaction was gently mixed then incubated at 37 °C for 1 hour. It was then purified 

using 2 QIAquick PCR clean up columns (Qiagen, Manchester, UK) and eluted with 

H2O, with the eluent of the first tube used to elute the 2nd, so that the total eluent 
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volume was 30 µl. 1 µl of NotI linearization was added to 15% ficol with loading dye 

and 6 µl, 3 µl and 1 µl of this was loaded on the same 0.7% gel as the BamHI and 

XbaI digest above. The relative intensities of the NotI bands were used to quantify 

the concentration of the linearised plasmid. 

2.7.7 Preparation of TALEN mRNA for injection 

mRNA for injection was prepared from the NotI linearised plasmid using an 

Epicenter T7 MessageMax ARCA kit. The following reaction was prepared on ice; 5.5 

µl  400 ng/ µl  DNA, 2 µl  10x Buffer, 8 µl NTP CAP mix, 2 µl  100mM DTT, 0.5 µl  

scriptguard, 2 µl  enzyme mix. This was gently mixed and incubated at 37 °C for 3 

minutes. 1 µl of DNAase was then added and mixed gently before being incubated 

for a further 15 minutes at 37°C. This reaction was purified using a Qiagen RNA 

MinElute column, following the kit instructions, and then eluted into 14 µl of H2O. 

0.5 µl of the eluent was added to 1 µl 5x loading dye and 4.5 µl H2O and run on a 

0.7% seakem agarose gel. After confirmation of a band with no DNA contamination, 

the RNA was stored at -80°C.  

RNA was microinjected into 1 cell stage embryos with 3 nl injected into the yolk and 

1 nl injected directly into the cell. 24 hpf embryos were inspected for signs of 

toxicity such as small heads or delayed development and the optimised dose was 

termed sufficient to induce a minority of embryos (approximately 30%) with toxic 

phenotype. The somatic mutation rate induced by the TALEN RNA was assessed via 

gDNA extraction of 6 individual 72 hpf embryos injected with TALEN RNA and 

between 2-4 uninjected controls. The gDNA was amplified by PCR with specific 

primers designed to incorporate the target site and produce a product of 220bp. 

Digestion of the PCR product with the restriction enzyme BamHI was used to test 

for somatic mutations. A full cleavage of the product indicated that there was no 

mutation to the target site, whereas a partial cleavage of the product indicated that 

there was a mutation to the target region. The following protocol was used for 

gDNA extraction from individual embryos; single dechorionated embryos were 

added to a 0.2 ml tube on ice and all excess media removed. 50 µl of embryo 

digestion buffer was added. The embryo plus this buffer were heated to 98°C for 10 
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minutes, then 4 µl 25mg/ml proteinase K (Roche) was added on ice. The samples 

were then incubated at 55°C for 3 hours, then 98°C for 10 minutes, then added to 

100 µl of H2O. This lysate was spun at 4°C for 30 minutes and the supernatant was 

utilised for PCR reaction. 

For amplification of the gDNA, an annealing temperature of 61°C was used, with 

standard PCR conditions as shown in Table 2.5. A 10 µl reaction was prepared for 

each sample comprising of 5 µl 2x Biomix Red, 1 µl 10 µM forward primer, 1 µl 10 

µM reverse primer, 2 µl H2O and the addition of 1 µl  gDNA. For each PCR reaction 2 

µl of a control sample was removed to be used as an undigested control. 1 µl of 

BamHI enzyme was added to each tube and incubated for 3 hours at 37°C.  9 µl of 

this digestion reaction was then run on a 2% gel alongside 5 µl of low molecular 

weight ladder (NEB). The presence of an undigested band in the TALEN mRNA 

injected gDNA indicated that a mutation was present and the remaining embryos 

from this RNA injection were raised. 

2.7.8 Screening for TALEN mutations 

Potential founder fish were screened for mutation via in-crossing a male and female 

fish from the F0 injected groups. gDNA from the F1 embryos of this in-cross was 

extracted at 72 hpf by the pooling of 3 embryos per tube and the above screening 

PCR and enzyme digest was utilised to screen for mutations in the target site. When 

a partial digest was present, the male and female from that pair were out-crossed 

to wildtypes, so the founder could be identified via the screening of these embryos. 

F1 gDNA of 24 embryos was extracted using Red Extract kit (Sigma-Aldrich, 

Gillingham, UK) using the following protocol; 3x 72 hpf embryos were added to 

each of 8x 0.2 ml tubes and all excess media was removed. 25 µl of extraction 

solution and 6.25 µl of tissue solution were added to each tubes and vortexed. The 

samples were incubated at room temperature for 15 minutes then vortexed. The 

tubes were incubated at 95°C for 3 minutes then allowed to cool, and finally 25 µl 

of neutralization solution was added. 1 µl of gDNA from each of the 8 pools of 

embryos was added to a 10 µl PCR reaction. 1 µl of BamHI was added to the PCR 

product and incubate for 3 hours at 37°C, the digested product was then run on a 2 
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% gel to screen for mutations. gDNA from 8 individual embryos were screened for 

the out-cross of potential founders. This enabled the sequencing of gDNA from an 

individual F1 embryo carrier of the mutation. From this sequencing 2 mutations 

were determined; p2y12sh338 with a 6bp deletion and p2y12sh340 with a 10bp 

deletion. F1 embryos from these out-crosses to nacre were raised. 

The adult F1 fish were fin clipped to identify carriers for the above mutations 

(section 2.2.3). The above screening PCR and digest were run for each fin clip 

enabling the identification of heterozygotes for each mutation. Non carriers for the 

mutations were culled. 

2.8 Statistical analysis methods 

2.8.1 Experimental design 

Experimental design within this thesis was approached with the initial consideration 

that each individual embryo represents an experimental unit. This is consistent with 

the Home Office licence held by Dr Tim Chico and my personal licence. In order to 

adhere to the 3 Rs, (“Replacement, Reduction and Refinement”) with particular 

consideration to “Reduction”, the fewest possible animals were utilised for each 

experiment (Russell, 1959). To test reproducibility of results, the majority of 

experiments were repeated on 3 separate occasions, representing 3 experimental 

replicates. Where there are replicates of 3 or more, I have included statistical 

analysis of the data. Where data represents a single experiment or 2 experimental 

replicates, I have presented the data but not statistically analysed it.  

I was blinded in all experiments involving MO, drug exposure and embryo 

inoculation with S. aureus. For experiments with p2y12sh338 or p2y12sh340 I 

phenotyped the embryos subsequent to data generation and analysis. This 

approach ensured I generated unbiased data. 

2.8.2 Data handling 

Pseudoreplication is briefly defined as using inferential statistics to test replicates 

which are not statistically independent (Hurlbert, 1984). Therefore in order to avoid 

this, results of 3 or more experiments have been handled in 2 different ways. The 
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first approach combined each experimental replicate into a single mean, for 

example 3 mean values from 3 experimental replicates, this is shown as a column 

plot. The second approach considered each embryo (from all experimental 

replicates) as a separate experiment, for example 30 values if 10 embryos were 

utilised per experiment with 3 replicates, this is shown as a scatter plot. The first 

approach reduces the statistical power of the data as it is a comparison of 3 values 

as opposed to 30. To my knowledge the second approach is commonly used to 

analyse animal model data, with each embryo representing a single experimental 

unit, as each procedure for each embryo is an independent event and this enables a 

thorough statistical analysis without using statistics to generate a mean of a mean. I 

sought independent advice from a statistician located in the Mathematics and 

Statistics department, for statistical analysis of my data. Data in all graphs are 

shown as mean ± standard error of the mean (SEM).  

There are some possible genetic similarities between the embryos used per 

experiment as they are generated from the same tank containing approximately 30 

adults. However in all experiments requiring setting up of pairs, embryos from each 

pair were pooled to ensure a mix of genetic variance. In experiments with embryos 

obtained from marbling, this pooling of embryos occurred naturally.  

2.8.3 Statistical tests used in this thesis 

Several different statistical tests were used depending on the data type. Data 

presented considering all embryos as independent experiments (ie n=30), was 

subjected to a D'Agostino & Pearson omnibus test for Gaussian distribution. In 

cases where 2 groups were assessed and data was not normally distributed, or a 

mix of both, a Mann Whitney test was used, for example in the area under the 

curve data. For analysis of data representing the mean of each experimental 

replicate (ie n=3) there were often too few data values to obtain a normality 

assessment, in which case, a non-parametric test was used, for example a Mann 

Whitney.   

A contingency table with a Fishers exact statistical test was used for the comparison 

of percentage thrombus formation in control and p2y12 morphants. For the 
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comparisons of macrophage and neutrophil numbers over a time course, with 3 or 

more replicates, numbers were plotted against time and shown as mean ± SEM. A 

test for multiple comparison was utilised, such as a 2way ANOVA with Sidak’s 

multiple comparison test for 2 groups or Tukey’s post test for more than 2 groups. 

Embryo survival after inoculation with S. aureus was plotted on a Kaplan-Meier 

survival plot and analysed with a Mantel-Cox test.   
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Chapter 3 : The role of P2Y12 in thrombosis in the 

zebrafish 

 

P2Y12 is an important amplifier of thrombosis, and drugs that antagonise P2Y12 are 

frequently used as treatments for atherothrombotic diseases (for review 

(Mackman, 2008)). It is, therefore, vital to fully understand the roles of P2Y12 and 

further investigate the mechanisms by which these drugs work. The effect of P2Y12 

receptor knockout and antagonism has previously been studied in several animal 

models, primarily the mouse, in which P2Y12 knockout or antagonism reduces 

thrombus formation and increases bleeding times (Foster et al., 2001, Andre et al., 

2003). P2Y12 has not previously been investigated in the zebrafish in terms of 

thrombosis. Therefore, it was necessary to first confirm the p2y12 genetic sequence 

and expression pattern before investigating the effect of gene knockdown. This 

chapter will show results of p2y12 expression studies in zebrafish embryos and the 

effect of knockdown and antagonism of P2Y12 on thrombosis. It was important to 

assess the thrombosis response after p2y12 knockdown in order to validate the use 

of the model for further investigations into inflammation and infective responses. 

This chapter will also discuss work investigating the role of platelet microRNAs in 

thrombus formation after vessel injury. 

3.1 Results 

3.1.1 Is P2Y12 expressed in the zebrafish? 

3.1.1.1 Zebrafish P2Y12 homology 

I first sought to establish similarities between the zebrafish p2y12 and human 

P2RY12, to determine whether the zebrafish would be a viable model for 

investigation of the P2Y12 receptor. p2y12 is currently uncharacterized and no 

details are available on www.ncbi.nlm.nih.gov regarding this gene in zebrafish. 

However, a predicted p2y12 sequence is available at www.ensembl.org described 

as p2Y purinoceptor 12-like with the Ensembl identification of 

http://www.ncbi.nlm.nih.gov/
http://www.ensembl.org/
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ENSDARG00000069945, at the locus of CU571333.2-201 and the transcript 

identification of ENSDART00000102224.  

I used ClustalW alignment software to compare the protein sequences of human, 

mouse, rat and zebrafish P2y12. Conservation of residues would indicate which 

elements of the protein are functionally important.  There is 52% identity and 76% 

similarity between zebrafish and human P2y12 protein sequence, with many key 

residues involved in ligand binding and activation conserved in the zebrafish. 

Highlighted in yellow are the conserved residues that are known to be vital for 

ligand binding: Y105, E188, R256, Y259 and K280 (Schmidt et al., 2013, Ignatovica et 

al., 2012, Hoffmann et al., 2008) (Figure 3.1 A). There is a partial conservation of 

the DRY motif, highlighted by the red box, which is known to play an important role 

in trafficking and G protein interaction (Nygaard et al., 2009). There are several 

differences between these orthologues, particularly the number of exons; zebrafish 

p2y12 has one exon, human has three and the mouse has four.  
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Figure 3.1 Alignment and phylogenetic analysis of P2y12 protein sequence. 

A shows the alignment of human, mouse, rat and zebrafish protein sequence, [*] represent 
identical residues, [:] represents conserved substitution and [.] represents semi-conserved 
residues. The colours correspond to the physicochemical properties of the residues; Red is 
for small hydrophobic, Blue is for acidic, Magenta is for Basic-H and Green is for hydroxyl, 
sulfhydryl, amine or G. Highlighted in yellow are the conserved residues which are known 
to be vital for ligand binding: Y105, E188, R256, Y259 and K280 (Schmidt et al., 2013, 
Ignatovica et al., 2012, Hoffmann et al., 2008). The red box shows the partial conservation 
of the DRY motif in zebrafish. B shows a phylogenetic tree showing the evolutionary 
relationship of human, rat, mouse, zebrafish and xenopus P2Y12 sequences. 
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3.1.1.2 p2y12 expression in the developing zebrafish embryo 

It was necessary to determine the time course for p2y12 expression in the 

developing embryo to ascertain whether it would be suitable for knockdown. MOs 

induce transient knockdown which lasts approximately 3 days from injection at the 

1 cell stage; therefore to assess the effect of knockdown, it must be expressed at 

these early time points. This was investigated by RT-PCR utilising primers 

(highlighted red), designed to the cDNA sequence for zebrafish p2y12 from the 

Ensembl predicted sequence (Figure 3.2 A). RNA was extracted from 1 dpf to 5 dpf 

embryos. Figure 3.2 B shows that p2y12 is expressed in the developing zebrafish 

embryo from 1 dpf onwards and C shows a control for Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH), an enzyme which catalyses glycolysis of glucose, which is 

known to be expressed at these time points and acted as my control.  

3.1.1.3 Zebrafish p2y12 sequence  

To confirm the zebrafish p2y12 gene sequence, two pairs of primers were designed 

to the span the whole gene, from the predicted p2y12 sequence on Ensembl. The 

first primer pair started at the 5’ untranslated region (UTR) to base pair 671 and the 

second pair starting at 429 through to the 3’-UTR. Individual wildtype embryo cDNA 

was utilised for the PCR reaction with these primer pairs (Figure 3.3). This PCR 

product was sequenced, finding seven single nucleotide polymorphisms (SNPs), 

however these SNPs did not change the protein sequence (Table 3.1). 
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Figure 3.2 Expression of P2Y12 and GAPDH control in 1 dpf to 5 dpf zebrafish embryos. 

The cDNA sequence of the zebrafish p2y12 is shown in A, with primers highlighted in red 
and the start codon underlined. The untranslated (UTR) sequences both up and 
downstream of the cDNA sequence are in lower case. B shows expression of P2Y12 in 
wildtype zebrafish embryos from 1 dpf to 5 dpf. The final channel is a blank sample, which 
is a negative for cDNA. C shows expression of the GAPDH control primer pair, with a blank 
sample negative for cDNA in the final channel. 
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Figure 3.3 Zebrafish p2y12 sequence. 

Underlined is the sequence targeted by the ATG MO designed for this thesis. Highlighted 
are primer sites for sequencing the gene; purple shows the primer pair for the 1st half of 
the gene ranging from the 5’ untranslated (lower case) region to 671bp. Blue shows the 
primer pair for the 2nd half of the gene ranging from 429bp to the 3’ untranslated region.  

 

Table 3.1: SNPs found by sequencing zebrafish p2y12. 

Several SNPs were found after sequencing p2y12. The position is shown along with the 
base change, these SNPs do not change the protein sequence. 
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3.1.1.4 Tissue distribution of p2y12 expression 

A p2y12 specific antisense riboprobe was generated to bind to the p2y12 mRNA in 

the zebrafish embryo, enabling spatial assessment of p2y12 expression. I utilised 

whole mount in situ hybridisation (WISH) to determine the p2y12 expression 

pattern at 24 hpf, 32 hpf, 48 hpf and 72 hpf. A sense riboprobe was used as a 

control. Figure 3.4 shows that there is little staining with the sense probe, however 

staining can be clearly seen in the antisense probe at 24 hpf, 32 hpf, 48 hpf and 72 

hpf. This staining is evident in haematopoietic regions at 24 hpf, 32 hpf, 48 hpf and 

72 hpf. Staining for p2y12 can be seen at 24 hpf in the intermediate cell mass (ICM) 

a site of the primitive wave of haematopoiesis (Lin et al., 2005). By 32 hpf there is 

staining in the ICM and in the posterior blood island (PBI), consistent with the 

location of thrombocytes before they enter circulation. These sites are areas of 

definitive haematopoiesis; the ventral region of the dorsal aorta is also known as 

aorta-gonad mesonephros (AGM) region and the PBI becomes the caudal 

haematopoietic tissue (CHT) after 36 hpf (Chen and Zon, 2009). By 48 hpf, staining 

is present in the AGM (previously the ICM) and the CHT (previously PBI). There is 

also increased staining in the dorsal aorta and caudal vein, indicating that p2y12 

expressing cells are in circulation rather than exclusively at sites of haematopoiesis. 

At 72 hpf there is reduced staining in the CHT however there are some cells stained 

corresponding to the kidney, which is a site of definitive haematopoiesis. The 

decrease in staining at 72 hpf may be due to a reduction in static thrombocytes 

residing in the tissues as they migrate to and enter the circulation. The presence of 

staining in the ventral dorsal aorta region and the PBI corresponds to the origins of 

thrombocytes, erythrocytes and neutrophils. Jagadeeswaran et al. (1999) showed 

that thrombocytes appear in circulation at approximately 36 hpf, however Warga et 

al. (2009) propose that they can be discerned as early as 24 hpf along the ICM 

(Jagadeeswaran et al., 1999, Warga et al., 2009).    It was important to establish the 

identity of the p2y12 stained cells, as P2RY12 is not only expressed on 

thrombocytes but also vascular smooth muscle, macrophages and an as yet 

unknown leukocyte population identified in humans, by Diehl et al. (2010). It was, 

however, possible to exclude vascular smooth muscle from this investigation as this 
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is not present in zebrafish embryos prior to 72 hpf (Santoro et al., 2009). 

Macrophages are present in the ICM and PBI by 30 hpf, so it was important to 

distinguish between the p2y12 stained cells as either thrombocytes, leukocytes or a 

combination of both (Bennett et al., 2001, Bertrand et al., 2007). I used a probe for 

L-plastin which is specific for macrophages and early neutrophils (Figure 3.5) to 

compare expression patterning to p2y12, to assess whether p2y12 was expressed 

on macrophages. If the p2y12 in situ was detecting expression on macrophages, it 

might be expected that there would be a comparable level of staining between 

p2y12 and L-plastin in situs. However the in situ for L-plastin showed considerably 

more staining at 48 and 72 hpf when compared to the p2y12 in situ, indicating that 

more cells express L-plastin, at these time points, than p2y12. This does not exclude 

the possibility of a population of macrophages expressing p2y12, as it is possible 

the increased staining with the L-plastin probe may be accounted for by early 

neutrophils. However, as the p2y12 expression pattern corresponds to sites of 

haematopoiesis and reduces by 72 hpf, it is likely that the majority of p2y12 

expressing cells are thrombocytes and their precursors. 
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Figure 3.4 p2y12  expression patterning in 24 hpf, 32 hpf, 48 hpf and 72 hpf embryos. 

p2y12 is expressed in haematopoietic regions in the mid trunk and tail in the anti-sense 
column. Staining for p2y12 is evident in the intermediate cell mass (ICM) highlighted by the 
green arrow head and posterior blood island (PBI) highlighted by the black arrow head in 
the 24 hpf and 32 hpf embryos. At 48 hpf staining is present in the aorta-gonad-
mesonephros (AGM, shown by the purple arrow head) and caudal haematopoietic tissue 
(CHT shown by the red arrow head) with some staining also in the caudal vein and the 
dorsal aorta (yellow arrow head). At 72 hpf there is reduced staining in the AGM however 
there is still staining present in the CHT, dorsal aorta and caudal vein. Scale bars indicate 
200 µm. 
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Figure 3.5 Expression patterning of L-plastin marker for leukocytes. 

Expression patterning for L-plastin, staining is evident at 24 hpf in the intermediate cell 
mass (ICM, shown by the green arrow head) and posterior blood island (PBI, shown by the 
black arrow head). At 48 hpf in the aorta-gonad-mesonephros (AGM, shown by the purple 
arrow head) and caudal haematopoietic tissue (CHT, shown by the red arrow head). At 72 
hpf there is considerable staining in the CHT and in the dorsal aorta (yellow arrow head). 
Scale bars indicate 200 µm. 
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3.1.2 Knockdown of zebrafish p2y12 

3.1.2.1 Knockdown of p2y12 does not affect gross morphology 

The predicted zebrafish p2y12 gene is a single exon, preventing the use of a splice 

modifying MO. Therefore, I utilised an ATG start site MO designed for this work, 

which prevents translation of mRNA to protein via sterically blocking the translation 

initiation complex. The concentration of MO was optimised such that only a 

minority of embryos showed signs of non-specific toxicity such as small heads, 

cardiac oedema and delayed development, as documented in Table 3.2. 1.2 ng was 

selected as a suitable amount of morpholino to be injected and Figure 3.6 shows 3 

dpf embryos injected with 1.2 ng of control MO (termed control morphant) and 

p2y12 MO (termed p2y12 morphant). There were no gross morphological 

differences between control and p2y12 morphants. It was necessary to assess 

whether p2y12 knockdown affected vessel development which could impede 

assessment of thrombus formation. Figure 3.7 shows 3 dpf control and p2y12 

morphants in the Fli1:GFP transgenic background, in which endothelial cells express 

GFP. There was no significant difference between vascular anatomy in control and 

p2y12 morphant groups, indicating that p2y12 knockdown did not affect vascular 

development. This enabled subsequent testing of the role of P2Y12 in thrombosis.  
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Table 3.2 The optimisation of p2y12 morpholino amount for injection. 

The amount of p2y12 morpholino for knockdown was optimised to an amount which 
caused a toxic phenotype in only a minority of embryos. This table shows the amount of 
morpholino injected (ng) and percentages of embryos with toxic phenotypes, such as small 
head, delayed development or cardiac oedema. This table also includes the percentage of 
viable embryos – embryos deemed suitable for experimental use, with no non-specific toxic 
phenotype.  

 

Amount of 
p2y12 
morpholino 
(ng) 

Percentage 
embryos with 
toxic effects (%) 

Percentage 
viable embryos 
(%) 

Volume 
injected (nl) 

Number of 
embryos 
injected 

4.2 100 0 1 68 

2.1 28 72 0.5 65 

1.2 17 83 0.5 66 

1.0 21 79 0.5 30 

 

 

 

 

 

 

Figure 3.6 Gross morphology of 3 dpf control and p2y12 morphants.  

3 dpf control and p2y12 morphants embryos are shown, in the wildtype background.There 
apears to be no significant difference in gross morphology between control and p2y12 
morphants. The scale bar represents 1 mm. 
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Figure 3.7 Vascular morphology of 3 dpf control and p2y12 morphants in Fli1:GFP.  

This transgenic has vascular endothelial cells expressing GFP, there appears to be no 
significant difference in vasculature between control and p2y12 morphants. White arrow 
head shows dorsal longitudinal anastomotic vessel, red show intersegmental vessels, 
yellow shows caudal veins and blue shows dorsal aortas. Scale bar represents 100 µm. 
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3.1.2.2 The effect of p2y12 knockdown on thrombocyte number 

I attempted to ascertain whether there was a difference in thrombocyte number 

between the p2y12 morphant and control morphant groups, as this could impact 

upon thrombus development. A CD41:GFP transgenic was utilised in which 

haematopoietic stem cells (HSC) express a low level of GFP (GFPlow) and 

thrombocytes express a high level of GFP (GFPhigh) (Lin et al., 2005). The caudal 

haematopoietic region (CHT) of 3 dpf control and p2y12 morphants was imaged, 

and the number of GFPhigh cells was quantified. Figure 3.8 shows preliminary data 

obtained from this single experiment. There appeared to be no difference in 

thrombocyte number between p2y12 morphants and control morphants, from this 

single experiment, however as the experiment was not repeated, no statistical test 

was performed. 
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Figure 3.8 GFP positive thrombocytes in 3 dpf CD41:GFP embryos. 

A shows a 3 dpf CD41:GFP embryo, the blue box highlights the region of interest. B shows 
the overlay of bright field and GFP+ thrombocytes in both control and P2Y12 morphant 3 
dpf embryos. C shows a scatter graph of the number of CD41:GFP positive thrombocytes in 
the caudal haematopoietic region of both control and p2y12 morphant fish, with each 
individual embryo represented. Data shown are mean ± SEM,  with 9 embryos in each 
group. These data represent a single experiment therefore no statistical test was used. 
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3.1.2.3 The effect of p2y12 knockdown on P2y12 protein expression in the 

p2y12::P2Y12-GFP transgenic. 

Sieger et al. (2012) generated a p2y12::P2Y12-GFP transgenic in which GFP is fused 

to the C-terminus of  p2y12 driven under the native p2y12 promoter. Sieger et al. 

(2012) demonstrated that after injection with a p2y12 ATG MO, GFP fluorescence in 

microglia was significantly reduced (Sieger et al., 2012). I obtained this transgenic 

and injected my p2y12 ATG morpholino which was virtually identical to the first of 

two p2y12 morpholinos (P2Y12-mo) utilised by Sieger et al. (2012) (see Table 2.3). I 

imaged the dorsal region of the head of 3 dpf control and p2y12 morphants and 

found an apparent reduction in GFP fluorescence and fewer branched microglia 

present in the p2y12 morphants. However fluorescence was not quantified 

therefore this represents preliminary data indicating that my MO may reduce, if not 

completely prevent, protein translation (Figure 3.9).  
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 Figure 3.9 Dorsal view of zebrafish brain in p2y12::P2Y12-GFP. 

A shows the dorsal view of the head of a 3 dpf embryo, the region of interest has been 
highlighted by a blue box. B shows both control and p2y12 morphants, branched microglia 
in the control morphant are evident in the control morphant only (highlighted by an arrow 
head). Scale bars represent 50 µm. 
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3.1.2.4 The effect of p2y12 knockdown on thrombocytes in the p2y12::P2Y12-GFP 

transgenic. 

I found that that knockdown of p2y12 appeared to reduce fluorescence of microglia 

in the p2y12::P2Y12-GFP transgenic, but did not appear to affect thrombocyte 

numbers in the CD41:GFP transgenic. I then investigated whether the fluorescence 

of GFP positive thrombocytes were affected by p2y12 knockdown. Figure 3.10 

shows a wildtype 3 dpf embryo in A, and in B the caudal haematopoietic region 

(CHT) of 3 dpf control and p2y12 morphants. GFP positive cells are visible in the 

CHT region of control morphants, there appears to be fewer GFP positive cells in 

the CHT of the p2y12 morphants. The low fluorescence of this transgenic 

determined a relatively long exposure time, which was too long for the imaging of 

individual GFP positive cells within the circulation. Therefore, in these images, the 

dorsal aorta and caudal vein appear outlined by blurred GFP, due to circulating GFP 

positive cells within the vessel.  Due to this low fluorescence, the thrombocyte 

fluorescence was not quantified, therefore this is preliminary data representative of 

a single experiment, without quantification.  There appears to be reduced 

fluorescence in the CHT of the p2y12 morphant which might suggest a possible 

reduction in translation of P2y12 protein, however this would require further 

experimentation to confirm. 
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Figure 3.10 The caudal haematopoietic tissue (CHT) region of control and p2y12 
morphant 3 dpf p2y12::P2Y12-GFP embryos.  

A wildtype 3 dpf embryo is shown in A, with the region of interest highlighted by a blue 
box. B shows both control and p2y12 morphants in the p2y12::P2Y12-GFP transgenic line. 
The asterisk highlights the dorsal aorta and the arrow head highlights the caudal vein, with 
the CHT region between these vessels. Scale bars represent 50 µm. 
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3.1.2.5 The effect of p2y12 knockdown on thrombosis in zebrafish embryos  

Knockout of the P2Y12 receptor in mice significantly reduces thrombus formation 

after vessel injury (Foster et al., 2001, Andre et al., 2003). Therefore, I hypothesised 

that knockdown of p2y12 in the zebrafish would similarly reduce thrombosis after 

vessel injury. To investigate this, I used a laser to injure vessel endothelium and 

induce thrombosis. The ventral wall of the dorsal aorta, at the position opposite the 

cloaca, was selected as an easily identified location to induce arterial thrombosis.  

Our lab has previously established that this technique is sufficient to ablate the 

endothelium (Quaife and Chico, 2012). Thrombosis was induced by laser injury and 

thrombus area quantified over time using ImageJ software. Figure 3.11 shows 

examples of a developing thrombus in two different transgenic backgrounds; 

CD41:GFP and CD41:GFP;Gata1:Dsred (a movie of B is available on the attached 

DVD). Both P2Y1 and P2Y12 are required to produce a full aggregation response to 

ADP in humans (Jin and Kunapuli, 1998). P2Y1, alongside other receptors, instigate 

thrombus formation, whereas P2Y12 amplifies and sustains this initial platelet 

activation response (Daniel et al., 1998). I observed thrombosis for 10 minutes, in 

order to observe both initial thrombus development and, importantly, the 

amplification of thrombosis which is driven by the P2Y12 receptor, subsequent to 

this.  
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Figure 3.11 Thrombus development after vessel injury. 

A wildtype 3 dpf embryo is shown in A with a blue box highlighting the region of B and C. B 
shows a thrombus in the CD41:GFP background, the arrow indicates the site of laser 
induced injury on the ventral wall of the dorsal aorta, the asterisk indicates the dorsal 
aorta.  The thrombus can be seen in brightfield, with thrombocytes in green fluorescence, 
(a movie of this thrombus development is available on the attached DVD). C shows a 
thrombus in the CD41:GFP;Gata1:dsRed background, with erythrocytes  in the thrombus 
fluorescing red and thrombocytes, shown as yellow, fluorescing green. Scale bars represent 
100 µm. 
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Figure 3.12 shows the time course of thrombus development in 3 dpf control MO 

injected CD41:GFP;Gata1:Dsred transgenic embryos. In this transgenic, 

thrombocytes express GFP and erythrocytes express red fluorescent protein DsRed. 

A shows a bright field image of the region of interest, and B shows development of 

thrombus over 10 minutes. The thrombus occluded the vessel and blocked blood 

flow to the tail by 2 minutes after vessel injury, and subsequently embolised by 

approximately 8 minutes, enabling blood to flow past the site of injury and reach 

the tail. The composition of the thrombus can be seen to consist of both Dsred+ 

erythrocytes and GFP+ thrombocytes. A movie of this time course can be seen on 

the attached DVD. 
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Figure 3.12 Thrombosis in CD41:GFP;Gata1:DsRed 3 dpf embryos. 

A shows a bright field image of the mid trunk region of a 3 dpf embryo. B shows thrombus 
development over 10 minutes after laser induced injury. The white arrow head indicates 
the site of laser injury. The vessel fully occludes after 2 minutes and embolises after 
approximately 8 minutes. CD41:GFP labelled thrombocytes are evident at the site of 
thrombus highlighted by a white arrow. The yellow arrow head indicates the caudal vein, 
the blue indicates the dorsal aorta and the white asterisk indicates the occluding thrombus.  
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3.1.2.6 p2y12 knockdown significantly reduces thrombosis 

Control and p2y12 morphants, in groups of 4-6, underwent laser induced injury to 

the ventral wall of the dorsal aorta and the thrombus area was quantified over ten 

minutes. This was repeated on four different days. Figure 3.13 A shows a plot of 

thrombus area over ten minutes after injury, where each embryo has been 

considered as a separate experiment (control n=21 and p2y12 morphants n=20). 

Figure 3.13 B shows a statistically significant reduction in the mean area under the 

curve of p2y12 morphants compared to control when analysed by combining each 

experimental replicate into a single mean (n=4 p=0.02). C shows a statistically 

significant reduction in thrombus area in p2y12 morphants with each embryo 

representing a separate experiment (control n= 21 and p2y12 morphants n=20, 

p<0.0001). Figure 3.14 shows a significant reduction in thrombi development in 

p2y12 compared to control morphants, with 77% of p2y12 morphants forming 

thrombi compared to 100% of control morphants. These results are consistent with 

the reduction in thrombosis seen in the P2Y12 -/- mouse (Foster et al., 2001).  
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Figure 3.13 The effect of p2y12 knockdown on arterial thrombosis.  

Groups of 4-6 p2y12 morphant or control embryos underwent laser induced aortic injury 
and thrombus area was quantified over 10 mins. Four replicate experiments were 
performed on different days. A shows a plot of thrombus area over 10 minutes following 
laser induced aortic injury, where every embryo has been considered as a separate 
experiment (n=21 control and n=20 p2y12 morphants). B shows the mean area under the 
curve in p2y12 morphants or controls where data has been analysed by combining each 
experimental replicate into a single mean (n=4, p=0.02).  C shows a scatter graph with each 
individual embryo represented as an experimental unit (p<0.0001). A Mann Whitney test 
was applied for analysis of both B and C, data is presented as mean ± SEM.   
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Figure 3.14 The effect of p2y12 knockdown on arterial thrombi formation.  

Groups of 4-6 p2y12 morphant or control embryos underwent laser induced aortic injury 
and embryos were observed to determine whether or not a visible thrombus was 
generated. Four replicate experiments were performed on different days, and data from 
each replicate was combined into a single mean (ie n=4). Fishers exact test was used for 
analysis P<0.001. 
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3.1.2.7 Does p2y12 knockdown, by the published P2Y12-mo2, affect thrombus 

formation? 

In order to assess whether the previous data showing a significant reduction in 

thrombus area after p2y12 knockdown was a specific phenotype rather than a 

potentially non-specific effect of the p2y12 morpholino, I obtained the published 

P2Y12-mo2 morpholino (Sieger et al., 2012). This morpholino, as shown in Figure 

3.15 A, targets the 5’ UTR region of p2y12 thus acting as a translation blocking 

morpholino. I injected the morpholino amount as documented by Sieger et al. 

(2012) and this resulted in no significant morphological differences in the P2Y12-

mo2 morphants (Figure 3.15 B). I quantified the thrombosis response of groups of 

6-7 control or P2Y12-mo2 morphants at 3 dpf, by laser induced aortic injury in three 

replicate experiments, performed on different days. Figure 3.16 A shows a plot of 

thrombus area over 10 minutes following injury, where every embryo has been 

considered as a separate experiment. There is a non-significant trend for reduced 

thrombus area in the P2Y12-mo2 morphants, when analysing the data by combining 

each experimental replicate into a single mean, as in Figure 3.16 B (n=3, p=0.1). 

However, I found that there was a statistically significant reduction in thrombus 

area in the P2Y12-mo2 morphant compared to control morphants, when considering 

each embryo as a single experimental unit in Figure 3.16 B (p<0.0001, control n=22 

and P2Y12-mo2 morphants n=21). 
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Figure 3.15 P2Y12-mo2 target and morphant morphology at 3 dpf. 

A shows, highlighted in red, the target of the published P2Y12-mo2 within the 5’ 
untranslated region of p2y12 (Sieger et al., 2012). Underlined is the p2y12 morpholino 
custom designed for my project. B shows the morphology of both control and P2Y12-mo2 
morphant 3 dpf embryos in the nacre background, there appears to be no significant 
morphological difference. Scale bars represent 500 µm. 
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Figure 3.16 The effect of P2Y12-mo2 on thrombosis.  

The published P2Y12-mo2 morpholino was utilised to knockdown p2y12 (Sieger et al., 2012). 
The thrombotic response after laser induced injury of the aorta was assessed as in Figure 
3.13. Groups of 6-7 P2Y12-mo2 morphant or control embryos underwent laser induced 
aortic injury and thrombus area was quantified over 10 mins. Three replicate experiments 
were performed on different days. A shows a plot of thrombus area over 10 minutes 
following laser induced aortic injury, where every embryo has been considered as a 
separate experiment (n=22 control and n=21 P2Y12-mo2 morphants). B shows the mean 
area under the curve in P2Y12-mo2 morphants or controls where data has been analysed by 
combining each experimental replicate into a single mean (n=3, p=0.1).  C shows a scatter 
graph with each individual embryo represented as an experimental unit (p<0.0001). A 
Mann Whitney test was applied to both B and C, data is presented as mean ± SEM.   
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3.1.3 Investigating the specificicity of the p2y12 morpholino effect 

3.1.3.1 Investigation into possible cross-reacting P2Y12 antibodies 

One method for confirming that morpholino knockdown has reduced translation of 

RNA to protein, is by western blotting. This requires a specific antibody to the 

zebrafish peptide sequence. I investigated whether there would be suitable 

antibodies available for detection of P2y12 in the zebrafish. Figure 3.17 shows an 

alignment of the human and zebrafish P2y12 peptide sequences, with the epitopes 

targeted by currently available antibodies highlighted. Table 3.3 shows the details 

of these antibodies, including the currently known species cross reactivity. I found a 

relatively low sequence homology between human and zebrafish in the epitopes 

recognised by these antibodies. This precluded using western blotting to confirm 

protein knockdown.   
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Figure 3.17 P2Y12 antibody peptide targets  

This shows a ClustalW alignment of human P2RY12 and zebrafish P2y12, highlighted are 
examples of peptide sequences targeted by commercially available P2Y12 antibodies. 
Highlighted in yellow is the antibody available from Alomone labs APR-012(Israel), red font  
underlined shows the antibody available from Sigma Aldrich, UK. Blue highlighting shows 
the antibody available from Alomone labs APR-020 (Israel), and purple shows the antibody 
available from Novus Biologicals, USA.  

 

Table 3.3 Currently available P2Y12 antibody target sequences and their percentage 

identity. 

Examples of antibody targets in the human P2RY12 sequence is shown along with the 
zebrafish p2y12 percentage identity of this target. Also included are details of the species 
reactivity and product information. 

P2Y12 amino acid target 
in the human sequence 

Percentage identity of 
target sequence 
between human and  
zebrafish (%) 

Species tested 
in  

Product 
information 

(C)KTTRPFKTSNPKNLLGA
K 

55 Human, rat and 
mouse 

Alomone Labs, 
Israel, #APR-012 

YQKTTRPFKTS 36 Human Sigma Aldrich, 
Gillingham, UK 
#6997 

CTAENTLFYVKES 38 Human, rat and 
mouse 

Alomone Labs, 
Israel, #APR-020 

SLSQDNRKKEQDGGDPNE
ETPM 

9 Human and 
primate 

Novus Biologicals, 
USA NBP1-78249 
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3.1.3.2 Does overexpression of zebrafish p2y12 mRNA rescue the effect of the 

p2y12 morpholino on thrombosis? 

In an attempt to assess the specificity of my custom designed p2y12 ATG 

morpholino, I synthesised a p2y12 mRNA construct to which the morpholino should 

not bind, but which would produce the correct P2Y12 peptide. This was achieved by 

changing the codons in the sequence targeted by the morpholino to synonymous 

codons to which the MO was not complementary (Figure 3.18). In dose ranging 

optimisation studies, Table 3.4, I found that co-injection of 34.6 pg mRNA with 

1.2ng of either a control or p2y12 MO induced a 7% rate of abnormality (similar to 

injections with a control morpholino or uninjected embryos in other experiments). 

Bright field micrographs of 3 dpf embryos after co-injection of p2y12 RNA with 

control or p2y12 MO, are shown in Figure 3.19.  
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Figure 3.18 p2y12 sequence with both the original sequence and the amended sequence 
with the morpholino target under lined. 

The ATG start site of p2y12 is shown in blue font, the morpholino target is underlined, and 
the primer target is in italics. I changed a nucleotide from each codon to ensure the same 
peptide was translated but that the morpholino should not bind.  

 

Table 3.4 Optimisation of p2y12 RNA amount for co-injection with p2y12 morpholino. 

The amount of RNA was optimised  by co-injecting several different amounts of miss 
matched p2y12 RNA along with 1.2 ng of either control or p2y12 morpholino. The amount 
of RNA in picograms is shown, along with the percentage of embryos with toxic phenotype 
compared to percentage of viable embryos. 34.5 pg was selected as the highest amount of 
RNA which only resulted in a minority of embryos with a toxic phenotype, such as delayed 
development, cardiac oedema or small heads.  

Amount of 
p2y12 RNA 
injected 
(pg) 

Percentage of embryos 
with toxic phenotype 
(%) 

Percentage  of viable 
embryos (%) 

Number of embryos 
injected 

Control 
mo 

p2y12 
mo 

Control 
mo 

p2y12 
mo 

Control 
mo 

p2y12 
mo 

277 31 56 69 44 60 87 

138.5 20 30 80 70 40 60 

69.25 12 23 88 77 42 68 

34.6 13 7 87 93 14 107 
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Figure 3.19 Gross morphology of 3 dpf embryos after injection of control morpholino 
with/without p2y12 RNA and p2y12 morpholino with/without RNA.  

The gross morphology of control morphants, p2y12 morphants, control morphants co-
injected with p2y12 RNA and p2y12 morphants co-injected with p2y12 RNA are shown at 3 
dpf. There appears to be no significant dfference in gross morphology of embryos after 
p2y12 RNA and morpholino co-injection. Scale bar represents 1 mm.   
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I then assessed the effect of mRNA injection on laser-induced thrombosis in 3 dpf 

embryos co-injected with p2y12 or control morpholino. Figure 3.20 A shows the 

thrombus area plotted over 10 minutes, B shows the area under the curve of this 

data as means per replicate, and C shows the data from each individual embryo. 

Injection of p2y12 mRNA into control morphants was associated with a non-

significant reduction in thrombus after injury, compared with control morpholino 

alone. As expected, p2y12 knockdown significantly reduced thrombosis. Co-

injecting p2y12 morphants with p2y12 mRNA was associated with a slightly less 

pronounced reduction in thrombosis, with the result that there was no significant 

difference in thrombosis between control morphants and p2y12 mRNA/p2y12 MO 

injected embryos, although there remained a clear trend to a reduction in 

thrombosis. The p2y12 mRNA was therefore unable to definitively rescue the 

morphant phenotype. 
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Figure 3.20 Thrombosis response in control and p2y12 morphants with and without co-
injection of p2y12 RNA. 

The thrombotic response after laser induced injury of the aorta was assessed as in Figure 
3.13. Groups of 3-4 p2y12 morphant or control embryos with or without co-injection with 
p2y12 RNA, underwent laser induced aortic injury and thrombus area was quantified over 
10 mins. Three replicate experiments were performed on different days. A shows a plot of 
thrombus area over 10 minutes following laser induced aortic injury, where every embryo 
has been considered as a separate experiment (n=11 control, n=10 p2y12 morphants, n=11 
control co-injected with p2y12 RNA and n=13 p2y12 morphants co-injected with p2y12 

RNA). B shows the mean area under the curve in p2y12 morphants or controls where data 
has been analysed by combining each experimental replicate into a single mean (n=3) 
There is a significant reduction in thrombus area between control and p2y12 morphants (* 
= mean rank difference 8.33).  C shows a scatter graph with each individual embryo 
represented as an experimental unit. There is a significant reduction between control 
morphant and p2y12 morphant (***= mean rank difference 23.21), control morphant and 
p2y12 morphant with RNA (** = mean rank difference 18.4). There is a significant increase 
between p2y12 morphant and control morphant with RNA (* = mean difference -15.49). A 
Kruskal-Wallis with Dunn’s multiple comparison test was applied. These data and are 
presented as mean ± SEM.    
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3.1.4 Does treatment with P2Y12 antagonists reduce thrombus formation?  

Treatment of mice with ticagrelor reduces thrombus formation to a similar extent 

as seen in P2Y12 -/- mice (Patil et al., 2010). I therefore investigated whether 

clinically used P2Y12 antagonists have similar effects in the zebrafish model. 2 dpf 

embryos were incubated overnight with the reversible P2Y12 antagonist ticagrelor 

and the effect on thrombosis was assessed. Preliminary data from this single 

experiment showed that exposure to 25 µM ticagrelor may reduce heart rate, 

however in this preliminary single experiment, no clear evidence of an effect on 

thrombus area was observed compared to controls (Figure 3.21). Ticagrelor has 

been shown to induce ventricular pauses in patients with acute coronary syndrome 

and so any effect on heart rate would be interesting and potentially relevant 

(Scirica et al., 2011). I therefore repeated this experiment with a lower 

concentration of ticagrelor (20 µM), which appeared to induce no difference in 

heart rate or thrombus area, between control and ticagrelor exposed embryos 

(Figure 3.22).  These preliminary results suggest that treatment with ticagrelor at 

these concentrations has no significant effect on thrombus formation. The effect of 

25 µM ticagrelor on heart rate indicates that the drug may have penetrated 

sufficiently to induce a physiological effect, though it is possible that this was 

insufficient to affect thrombosis. These data represent 1 and 2 experimental 

replicates respectively, therefore no statistical analysis was applied and they 

require replication before their results can be interpreted. 
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Figure 3.21 Effect of 25 µM ticagrelor on thrombus formation in 3 dpf embryos. 

Groups of 10 control  and 11 ticagrelor exposed embryos underwent laser induced aortic 
injury and thrombus area was quantified over 10 mins. A shows a plot of thrombus area 
over 10 minutes following laser induced aortic injury. B shows a scatter plot of the area 
under the curve of thrombus and C shows a scatter plot of heart rate in control and 
ticagrelor exposed embryos. This data represents a single experiment with out replication, 
with each embryo representing a single experimental unit.  Therefore no statistical test was 
applied. Data is presented as mean ± SEM. 
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Figure 3.22 Effect of 20 µM ticagrelor on thrombus formation in 3 dpf embryos.  

Groups of 10-11 control  and ticagrelor exposed embryos underwent laser induced aortic 
injury and thrombus area was quantified over 10 mins. Two replicates were performed on 
different days (control n=21 and ticagrelor n=20). A shows a plot of thrombus area over 10 
minutes following laser induced aortic injury. B shows a scatter plot of the area under the 
curve of thrombus and C shows a scatter plot of heart rate in control and ticagrelor 
exposed embryos. This data represents 2 independent experiments, with each embryo 
representing a single experimental unit.  Therefore no statistical test was applied. Data is 
presented as mean ± SEM. 
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The irreversible P2Y12 antagonist prasugrel usually requires activation by liver 

cytochrome isoenzymes to its active metabolite, prasugrel active metabolite (PAM). 

I therefore next investigated the effect of PAM on thrombosis. I treated 3 dpf 

embryos with 20 µM PAM, two hours before laser injury. Figure 3.23 A and B shows 

that there appears to be no difference in thrombosis between control groups and 

PAM treated groups. Increasing the concentration of PAM to 50 µM (Figure 3.23 C 

and D) also appeared to have no effect on thrombosis. These data are the result of 

single experiments respectively therefore no statistical analysis was applied to this 

data. Further experimentation would be required to identify if PAM affects 

thrombosis response in this model. 
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Figure 3.23 Effect of 20 µM and 50 µM prasugrel active metabolite (PAM) on thrombosis 
in 3 dpf embryos. 

Groups of 5-8 control and PAM exposed embryos underwent laser induced aortic injury and 
thrombus area was quantified over 10 mins. 3 dpf embryos were exposed to PAM at 20 µM 
(A and B) and 50 µM (C and D). A and C shows plots of mean thrombus area against time 
over 10 minutes. Graphs B and D show scatter plots with each individual embryo 
represented as an independent experimental unit. Data presented as mean ± SEM. All 
graphs represent a single experimental replicate, with each embryo representing a single 
experimental unit, therefore no statistical test was applied.   
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3.1.5 Do platelet microRNAs play a role in thrombosis? 

3.1.5.1 Selection of platelet miRNAs for investigation 

A cluster of miRNAs which are highly expressed by platelets have been implicated in 

MI risk, however their functional involvement in thrombosis is unknown (Zampetaki 

et al., 2012).  miR-24, miR-126 and miR-223 were selected from these differentially 

expressed miRNA  species to investigate their roles in thrombosis. miR-223 has a 

predicted binding site in the 3’ UTR region of P2RY12 mRNA in humans, indicating a 

potential role for regulation of P2y12 protein expression (Landry et al., 2009). Both 

miR-223 and miR-126 levels are reduced after anti-platelet therapy, indicating a 

possible use as biomarkers for platelet activation. I therefore sought to investigate 

the previously undetermined roles of miR-223, miR-126 and miR-24 in thrombosis.  

3.1.5.2 Knockdown of miR-24, miR-126 and miR-223 does not affect vascular 

development 

Before assessing any effect on thrombosis, it was important to ascertain whether 

knockdown of these miRNAs affected vascular development. I therefore used MO 

induced knockdown of each miRNA in Fli1:GFP transgenic embryos and examined 

the vasculature at 3 dpf (Figure 3.24). I detected no abnormality in vascular 

development, such as aberrant branching or looping, in the miR morphants 

compared with controls. 
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Table 3.5  Optimisation of morpholino amounts for each miRNA morpholino 

The dose response of each miRNA morpholino was optimised for injection. An appropriate 
amount was deemed sufficient to cause a toxic phenotype in only a minority of embryos. 
This table shows the amount of morpholino injected (ng) and percentages of embryos with 
toxic phenotypes, such as small head, delayed development or cardiac oedema. This table 
also includes the percentage of viable embryos – embryos deemed suitable for 
experimental use, with no non-specific toxic phenotype. The following amounts were 
selected: miR-223 3.49 ng, miR-126 4.22 ng and miR-24 2.1 ng. 

 

 

Morpholino 
target 

Amount of 
miR 
morpholino 
(ng) 

Percentage 
embryos 
with toxic 
effects (%) 

Percentage 
of viable 
embryos (%) 

Volume 
injected (nl) 

Number 
of 
embryos 
injected 

miR223 6.98 64 36 1 30 

3.49 28 72 0.5 50 

miR-126 7 73 27 1 40 

4.22 27 73 1 78 

mir-24 4.21 96 4 1 40 

3.49 32 67 0.5 43 

2.1 28 72 0.5 40 
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Figure 3.24 Vascular morphology in miR morphant 3 dpf Fli1:GFP embryos. 

The vasculature of the trunk is shown for control, miR-126, miR-24 and miR-223 morphants 
at 3 dpf, in the Fli1:GFP genetic background. Scale bars represent 100 µm. 
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3.1.5.3 Knockdown of either miR-24 or miR-126 does not affect thrombosis 

Figure 3.25 shows the effect of miR-24 knockdown on thrombus after laser injury. 

Three experimental replicates of n=9-10 embryos/group were performed. Figure 

3.25 A shows the area of thrombus over 10 minutes following injury with each 

embryo considered as a single experiment (n=29-30/group). I analysed the area 

under the curve for the data shown in Figure 3.25 A, and expressed this as either 

the mean value per replicate experiment (n=3/group, Figure 3.26 B) or by individual 

embryo (n=30-31/group, Figure 3.26 C). No statistically significant differences 

between groups were detected by either approach. 

Figure 3.26 shows the effect of miR-126 knockdown on thrombus after laser injury 

in the same assays, after three experimental replicates on separate days. Figure 

3.26 A shows the area of thrombus over 10 minutes with each embryo considered a 

single experimental unit (n=31-30/group). I then analysed the area under the curve 

of this data and in Figure 3.26 B this is expressed as mean value per replicate 

(n=3/group) and for Figure 3.26 C as individual embryos (n=31-30/group).  As for 

miR-24, I did not detect any statistically significant effect of miR-126 knockdown on 

thrombosis. 

It is important to note that the laser system used for the data obtained previously 

in this chapter was changed prior to investigation of the effect of miRNA 

knockdown. Therefore, there is a difference when comparing control thrombus 

area from the previous laser system to the laser system utilised for investigation of 

miRNA. However, it is equally important to state that this laser system remained 

unchanged throughout the investigation of miRNA effect, therefore miRNA results 

can be compared to each other.  
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Figure 3.25 Effect of miR-24 knockdown on thrombosis response.  

Groups of 9-10 miR-24 morphant or control embryos underwent laser induced aortic injury 
and thrombus area was quantified over 10 mins. Three replicate experiments were 
performed on different days. A shows a plot of thrombus area over 10 minutes following 
laser induced aortic injury, where every embryo has been considered as a separate 
experiment (n=30 control and n=29 miR-24 morphants). B shows the mean area under the 
curve in miR-24 or control morphants where data has been analysed by combining each 
experimental replicate into a single mean (n=3/group p=0.9).  C shows a scatter graph with 
each individual embryo represented as an experimental unit (p=0.73). A Mann Whitney test 
was applied to both B and C, data is presented as mean ± SEM.   
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Figure 3.26 Effect of miR-126 knockdown on thrombosis response.  

Groups of 10-11 miR-126 morphant or control embryos underwent laser induced aortic 
injury and thrombus area was quantified over 10 mins. Three replicate experiments were 
performed on different days. A shows a plot of thrombus area over 10 minutes following 
laser induced aortic injury, where every embryo has been considered as a separate 
experiment (n=31 control and n=30 miR-126 morphants). B shows the mean area under the 
curve in miR-126 or control morphants where data has been analysed by combining each 
experimental replicate into a single mean (n=3 p=0.9).  C shows a scatter graph with each 
individual embryo represented as an experimental unit (p=0.77). A Mann Whitney test was 
applied to both B and C, data is presented as mean ± SEM.   
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3.1.5.4 Knockdown of miR-223 significantly increases thrombus area 

The 3’ UTR of P2RY12 mRNA contains a miR-223 binding site, indicating that miR-

223 may regulate P2y12 protein expression (Landry et al., 2009). miR-223 

expression level is also inversely associated with MI risk (Zampetaki et al., 2012). 

Therefore, I hypothesised that miR-223 may play a role in thrombosis after vessel 

injury. I investigated the thrombosis response of both control and miR-223 

morphants.  

Figure 3.27 shows the effect of miR-223 knockdown on thrombus after laser injury. 

Three experimental replicates of n=8-10 embryos/group were performed. Figure 

3.25 A shows the area of thrombus over 10 minutes following injury with each 

embryo considered as a single experiment (n=27-28/group). I analysed the area 

under the curve for the data shown in Figure 3.27 A, and expressed this as either 

the mean value per replicate experiment (n=3/group, Figure 3.27 B) or by individual 

embryo (n=30-31/group, Figure 3.27 C). Analysing the data by mean of each 

replicate showed a non-significant trend towards an increase in thrombus area in 

miR-223 morphants (Figure 3.27 B p=0.13). If each embryo is considered a separate 

experiment, then this difference becomes highly significant (Figure 3.27 C 

p=0.0013). These results suggest that knockdown of miR-233 may increase 

thrombus area and hence that miR-223 negatively regulates thrombus formation by 

some mechanism. 
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Figure 3.27 Effect of miR-223 knockdown on thrombosis response.  

Groups of 8-10 miR-223 morphant or control embryos underwent laser induced aortic 
injury and thrombus area was quantified over 10 mins. Three replicate experiments were 
performed on different days. A shows a plot of thrombus area over 10 minutes following 
laser induced aortic injury, where every embryo has been considered as a separate 
experiment (n=27 control and n=28 miR-223 morphants). B shows the mean area under the 
curve in miR-223 or control morphants where data has been analysed by combining each 
experimental replicate into a single mean (n=3 p=0.2).  C shows a scatter graph with each 
individual embryo represented as an experimental unit (p=0.002). A Mann Whitney test 
was applied to both B and C, data is presented as mean ± SEM.   
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3.2 Discussion 

I have shown that p2y12 is expressed in the zebrafish, at the mRNA level. The key 

residues involved in ligand binding in the human P2Y12 receptor, such as Y105, E188, 

R256, Y 259 and K280, are conserved in the zebrafish genome. The expression 

patterning for p2y12 in the developing embryo via whole mount in situ 

hybridisation was consistent with what might be expected (Figure 3.4), 

corresponding to sites of both primitive haematopoiesis and definitive 

haematopoiesis. The expression pattern is similar to GFP positive cells in the 

CD41:GFP transgenic embryos, with clustering of GFP positive cells at 33-35 hpf in 

the AGM region before migrating to the CHT and thymus by 48 hpf (Kissa et al., 

2008).  The morphology and size of the expressing cells are consistent with 

thrombocytes, as they are larger than HSC and round, unlike macrophages. This, 

combined with the location of the staining, means it is likely that many of the cells 

expressing p2y12 are thrombocytes. However, as sites of haematopoiesis also 

produce myeloid cells, and P2RY12 is believed to be expressed on macrophages, it 

is possible that p2y12 expressing cells include a subpopulation of macrophages. 

There are fewer stained cells in the p2y12  in situ when compared to an in situ for 

the leukocyte specific L-plastin (Figure 3.5), suggesting that p2y12 is not present on 

both macrophages and neutrophils, however this will require further work to 

investigate whether there is co-localisation of p2y12 and leukocytes. This would be 

possible by conducting an in situ for p2y12 alongside an antibody stain against GFP 

in mpo:GFP or mpeg:GFP. It would also be possible to perform in situ hybridisation 

for P2Y12 in an anaemic mutant line in which no thrombocytes were present and 

any staining would indicate the presence of p2y12 on alternative cells to 

thrombocytes. 

A p2y12 specific ATG MO was utilised to knockdown expression of the P2Y12 

receptor. No significant differences in gross morphology or vessel development in 

p2y12 morphants was observed (Figures 3.6 and 3.7), enabling this MO to be 

utilised for further investigation of the effect of p2y12 knockdown. To investigate 

whether there was a loss of function of P2Y12 in the morphants, a laser was utilised 

to injure the endothelium of the ventral wall of the dorsal aorta. This injury was 
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sufficient to induce thrombosis (although this was somewhat variable, necessitating 

large group sizes). This mechanism for inducing vessel damage activates the tissue 

factor pathway and leads to thrombin formation (Falati et al., 2002). Therefore, this 

assay encompasses many factors involved in thrombus development and required 

for accurate modelling of thrombosis response, such as thrombus development, 

stability and embolization. I found that knockdown of p2y12 significantly reduced 

thrombus formation after laser-induced injury (p<0.0001) (Figure 3.13). In the 

p2y12 morphants, some thrombi did form after injury (Figure 3.14) but there were 

significantly fewer than observed in control morphants (p<0.0001). These results 

are consistent with those seen in the P2Y12 -/- mouse, in which thrombus formation 

is reduced and bleeding times after tail transection are increased (Foster et al., 

2001, Andre et al., 2003, Patil et al., 2010). Increased embolization of thrombi was 

also observed in P2Y12 -/- mice, corresponding to the results shown above in the 

p2y12 morphants (Andre et al., 2003). My results suggest that P2Y12 receptor 

mediated amplification of thrombosis is conserved in the zebrafish and blocking of 

translation of p2y12 by an ATG MO is sufficient to produce a loss of function 

phenotype in the 3 dpf embryo. The mechanisms for P2Y12 activation and the 

subsequent downstream signalling are yet to be elucidated in the zebrafish, and 

further work will be required to investigate whether the signalling pathways and 

mechanism in mammals are also conserved in the zebrafish. 

The effects of splice modifying MO on target mRNA can be determined by RT-PCR 

to identify aberrant splicing. ATG start site MO, however, do not affect splicing of 

the gene therefore it is not possible to confirm the effect of the MO by RT-PCR. This 

presented a challenge to assess whether the p2y12 MO was truly inducing a loss of 

function of P2Y12. One solution to this would be a western blot to determine 

presence of the P2y12 protein in the p2y12 morphants. However, as shown in 

Figure 3.15 and Table 3.3, although there are several commercial P2Y12 antibodies 

available, the epitopes targeted by these antibodies show a relatively low homology 

to the zebrafish. During the course of my work a p2y12::P2Y12-GFP transgenic 

became available (Sieger et al., 2012). Sieger et al. (2012) utilised the p2y12::P2Y12-

GFP transgenic line to quantify fluorescence of p2y12 expressing microglia in p2y12 
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and control morphants, showing a reduction in fluorescence in p2y12 morphants. I 

obtained this transgenic, imaged both control and p2y12 morphants, and also 

observed a reduction in GFP fluorescence in microglia in my p2y12 morphants, 

(using my own morpholino, not the similar MO used by Sieger). In addition to this I 

sought to investigate whether thrombocytes expressed GFP in this transgenic. I 

imaged the CHT region of both control and p2y12 morphants and observed an 

apparent reduction in fluorescence in p2y12 morphants. Due to the low 

fluorescence of this transgenic, difference in fluorescence between control and 

p2y12 morphants was not quantified, therefore this would require quantification to 

confirm whether translation of the P2y12 protein is reduced in the p2y12 

morphants. The GFP positive cells I observed in the CHT mostly corresponded to the 

thrombocytes seen in the same regions seen in the CD41:GFP transgenics. 

However, it is also possible that some of the p2y12::P2Y12-GFP positive cells are a 

subpopulation of macrophages, as P2Y12 is proposed to be expressed on 

macrophages and this transgenic, as previously shown, has been utilised to visualise 

microglia. Therefore these results indicate that the morpholino generated for this 

thesis is indeed reducing, if not fully preventing, translation of P2Y12. 

In addition to using the p2y12::P2Y12-GFP transgenic to attempt to assess the 

effect of my p2y12 morpholino, I also obtained the p2y12 morpholino (P2Y12mo2) 

published along with this transgenic (Sieger et al., 2012). I sought to investigate 

whether injection of P2Y12mo2, which targets the 5’ UTR region of p2y12, would 

have a similar effect on thrombosis after laser induced vessel injury. Knockdown 

with this morpholino showed a trend for reduced thrombus formation in P2Y12mo2 

morphants, which was not statistically significant when analysed with a single mean 

for each experimental replicate (p=0.1). This reduction was statistically significant 

when analysed with each embryo representing a separate experiment (p<0.0001 

Figure 3.17 C). Therefore, this would require further replication to allow firm 

conclusions to be drawn. However, taken together with my data from my other 

morpholino, these results suggest that morpholino knockdown of p2y12 induces a 

loss of function of P2Y12, leading to a reduction in thrombosis (Sieger et al., 2012).   
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Since morpholinos may induce off-target effects, I sought to confirm the specificity 

of the effect of the morpholino by attempting to rescue its effects by 

overexpression of p2y12 mRNA engineered to be non-complementary to the 

morpholino sequence. To do this, I generated p2y12 mRNA with alternate codons at 

the morpholino binding portion of the RNA, enabling the correct peptide to be 

translated, but preventing interaction of the co-injected mRNA with the 

morpholino. I found that co-injection of p2y12 RNA with control and P2Y12 

morpholino may have diminished the reduction in thrombosis seen in p2y12 

morphants alone (Figure 3.20). It is important to note that global mRNA 

overexpression will overexpress the construct in a mosaic fashion throughout the 

embryo. p2y12 mRNA overexpression did not increase thrombosis compared with 

controls; in fact there was a trend to reduced thrombosis. The observation that the 

p2y12 mRNA blunted the effect of the p2y12 morpholino suggests that, although 

co-injection with this altered p2y12 RNA does not fully rescue the reduced 

thrombosis phenotype of p2y12 morphants, it may induce a partial rescue of 

thrombosis response. 

There are several potential reasons for p2y12 mRNA not fully rescuing the anti-

thrombotic phenotype of the p2y12 morphants; when designing the mismatched 

portion of RNA, I changed 6 nucleotides since I matched alternate codons according 

to the prevalence of those codons (as per www.ZFIN.com). Therefore, it is possible 

that a change of 6 nucleotides, although evenly distributed throughout the 

morpholino target sequence, may still be sufficient for some binding with the 

morpholino. It is also possible that the p2y12 mRNA has degraded by 3 dpf, and 

therefore was not able to exert sufficient effect. It would be possible to examine 

thrombosis at 2 dpf instead, as there is an increased chance that the RNA will be 

present, or to generate a GFP labelled construct to confirm expression at the time 

points of interest. However, I chose to examine 3 dpf embryos to be consistent with 

my previous studies and I did not have time to generate a labelled construct. It 

would be possible to use the thrombosis model at 2 dpf instead, as there is an 

increased chance that the RNA will be present. 
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MOs are known to induce non-specific toxicity of varying levels according to the MO 

sequence and dose, leading to a risk of attributing any subsequent MO off-target 

phenotypes to an effect of gene knockdown. Examples of this are delayed 

development, small heads and cardiac oedema. It is generally accepted that many 

of these off-target effects occur via activation of the p53 pathway (Robu et al., 

2007). Therefore co-injection of the p2y12 morpholino with a p53 morpholino 

would be another approach to determine whether the effects of the p2y12 

morpholino are specific. Due to recent improvements in generation of targeted 

mutations, it is possible to validate phenotypes observed after gene knockdown by 

comparison with a stable or transient mutant. In chapter 5, I detail my efforts to 

generate such a stable p2y12 mutant. 

My preliminary data on the effect of ticagrelor and prasugrel active metabolite 

contrasts with data obtained from mouse models, as preliminary data indicates that 

neither ticagrelor nor prasugrel active metabolite appeared to affect thrombosis in 

my studies.  Data obtained from a single experiment showed exposure of embryos 

to 25 µM of ticagrelor, but not 20 µM, may reduce heart rate compared to the 

control group (Figure 3.21 and 3.22). This indicates the drug may have entered the 

circulation sufficiently to induce a physiological effect, as ticagrelor increases the 

incidence of bradycardia and bradyarrhythmia, such as ventricular pauses (Cannon 

et al., 2007). It is proposed that this effect may be due to off-target effects of 

ticagrelor on adenosine reuptake (Scirica et al., 2011). The implication of my 

preliminary findings is that ticagrelor may be reaching the circulation of the embryo 

but not exerting any effects on thrombus formation. However, caution should be 

taken when interpreting these results, as these data represents a single 

experimental replicate; it will require further investigation to discover if this 

antagonist is sufficiently active in zebrafish to induce off-target effects on 

adenosine re-uptake but is insufficient to induce targeted effects on thrombosis. 

This serves to highlight that there are differences between animal models, and that 

there is a possibility that although the key functions of the P2Y12 receptor are 

conserved in the zebrafish, different mechanisms for activation may be present. 

Although the residues for the ADP binding site are conserved in zebrafish p2y12, 
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ticagrelor binds P2Y12 at a site distinct from this, the location of which is not 

currently known; therefore we do not know whether these residues are conserved 

in the zebrafish. Biochemical and signalling studies would be required to investigate 

this further, which were outside the scope of my project. The mechanism for 

exposure of the embryos to these antagonists could also provide a reason for the 

lack of effect, as drugs were dissolved in DMSO and added to the media. The 

development of zebrafish embryos is affected if DMSO is above a 1% final 

concentration, therefore this was never exceeded. However, this concentration of 

DMSO may have been insufficient. Drugs are primarily taken up into circulation via 

entry through the skin and a lower concentration of DMSO may have impaired this 

(Rombough, 2002). It is an increasingly common practice to expose zebrafish 

embryos in this way for drug screening, therefore some agents are evidently 

reaching circulation for an effect to be seen. It remains to be seen whether any 

other P2Y12 antagonists influence thrombosis in the zebrafish. The effect of 

clopidogrel on zebrafish embryos remains untested for several reasons. Firstly 

clopidogrel is insoluble in water requiring dissolution in DMSO. However, when I 

attempted to examine the effect of clopidogrel, the drug came out of solution upon 

addition to the embryo media. Also clopidogrel requires activation by liver P450 

enzymes to be converted to its active metabolite which delays onset of function 

and these mechanisms are not well characterised in zebrafish (Savi et al., 1994). As 

part of my investigations the ATP analogue cangrelor was injected into the 

circulation of 3 dpf embryos and thrombosis was assessed in response to laser 

injury (data not shown). There were, however, technical challenges with this assay, 

as the short half-life of cangrelor (approximately 5 minutes) (Storey et al., 2001), 

required immediate injury of the embryos after injection. There was no significant 

difference on thrombosis induced by injection of cangrelor when compared to 

controls but the limitations of the assay may have masked any effect.  

My preliminary results suggest that treatment of zebrafish with P2Y12 antagonists 

may not recapitulate the effect seen in humans or mouse. The indication of a lack 

of effect of P2Y12 antagonists on the zebrafish thrombosis response requires further 

investigation, and it would be beneficial to further explore the reasons why P2Y12 
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antagonists may not be functional in zebrafish. However, it is important to note 

that these experiments did not contain a positive control to confirm whether these 

agents were entering the circulation. The apparent trend for reduced heart rate in 

the preliminary results obtained from the ticagrelor 25µM treated group indicates 

that perhaps, at this concentration, ticagrelor was indeed entering the embryo to 

some extent. Although there is increasing interest in the zebrafish as a platform for 

drug screening ((Mathias et al., 2012) for review), my results suggest caution as my 

assay would not have detected therapeutic activity with clinically proven 

antiplatelet agents.  

Platelets are known to contain many miRNAs, some of which have been linked to a 

risk of MI in a study by Zampetaki et al (2012), however these have not been 

investigated for their roles in thrombosis (Zampetaki et al., 2012). I investigated the 

effect of knocking down three of these platelet miRNAs on laser induced 

thrombosis. miR-24 has previously been investigated in the zebrafish. Knockdown 

of the miR-24 targets PAK4 and GATA2 resulted in an abnormal vessel phenotype, 

similar to that seen after miR-24 overexpression (Fiedler et al., 2011). I found that 

knockdown of miR-24 resulted in no abnormal vascular phenotype (Figure 3.24). 

Therefore, this indicates that PAK4 and GATA2 are required for normal vessel 

development, (Fiedler et al., 2011) however miR-24 may not be. miR-126 has also 

previously been investigated in the zebrafish model. Fish et al (2008) and Nicoli et 

al. (2010) injected a miR-126 morpholino with the same sequence, except 6 bases 

longer than the morpholino used in my experiments, and found ectopic vascular 

branching and also haemorrhaging. In contrast to these data, I did not observe 

either phenotype during my investigations (Figure 3.24). This may be due to 

differences in morpholino dose or sequence. For example, Fish et al (2008) injected 

4-8 ng and Nicoli et al. (2010) injected 7- 20 ng MO compared to a maximum of 4.22 

ng in my investigations. These differences may explain the lack of vascular 

phenotype seen in my miR-126 morphants. Neither miR-24 nor miR-126 knockdown 

affected thrombosis in 3 dpf embryos after vessel injury (Figure 3.25 and 3.26). 

miRNA-223 has not previously been examined in the zebrafish, however it is 

predicted to have a binding site in the 3’UTR region of  P2RY12 mRNA indicating 
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that miR-223 may regulate translation of P2RY12 mRNA to protein, and therefore 

reduce P2Y12 expression  (Landry et al., 2009). My results in Figure 3.27 showed 

that knockdown of miR-223 significantly increased thrombus area after vessel 

injury, when analysed considering each embryo as an individual experiment 

(p=0.0013). However, such analysis may be prone to confounding if embryos 

injected on the same day are not truly independent. When the means of each 

experimental replicate were analysed, this resulted in a similar trend, although this 

was non-significant (p=0.13) due to the reduction in statistical power. My data 

suggest that miR-223 may regulate thrombus generation, potentially via reducing 

expression of p2y12. These results are exciting since therapeutic modalities for 

modulating miR expression are already being clinically studied. 

3.3 Conclusion 

I used a p2y12 ATG MO to knockdown receptor expression. This reduced 

fluorescence in a p2y12::P2Y12-GFP transgenic background, suggesting p2y12 

expression was truly reduced. P2Y12 morphants had significantly reduced thrombus 

formation after laser injury of the aorta when compared to control embryos 

(p=0.0005), an effect also seen with a second, non-overlapping morpholino 

targeting the 5’ UTR of p2y12 (p<0.0001). My results are consistent with previous 

data obtained from the P2Y12 -/- mouse, in which thrombus formation was 

significantly reduced in the P2Y12 knockout mice (Foster et al., 2001, Andre et al., 

2003). Therefore, I conclude that the p2y12 MO successfully induces a loss of 

function of p2y12 in 3 dpf zebrafish embryos. These results gave me sufficient 

confidence that I was able to modulate p2y12 expression to go on to examine a less 

studied aspect of its function in the next chapter; the role of P2Y12 on inflammation 

and the response to infection. 
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Chapter 4 : The role of P2Y12 in inflammation and 

resistance to infection 

 

The P2Y12 receptor amplifies the release of α granule contents including a multitude 

of pro-inflammatory mediators and anti-microbial peptides (Zhang et al., 2011). I 

hypothesised that knockdown of the P2Y12 receptor would affect inflammatory 

processes including leukocyte migration to sites of injury. In order to investigate 

this, I used a transgenic line with fluorescent reporters under the control of 

macrophage and neutrophil specific promoters to model an inflammatory response 

and enable the tracking of leukocytes to sites of injury. I utilised a Staphylococcus 

aureus inoculation model to investigate P2Y12 morphants’ resistance to systemic 

infection. S. aureus is a Gram-positive bacterium which is a common cause of sepsis 

(Fowler et al., 2005). Previous investigations have shown that P2Y12 plays a key role 

in the amplification and release of PMP and platelet kinocidins after exposure to S. 

aureus (Trier et al., 2008). Therefore, I hypothesised that knockdown of p2y12 

would affect host resistance to infection. 

4.1 Results 

4.1.1 Investigating the effect of p2y12 knockdown on leukocyte response 

4.1.1.1 Does knockdown of p2y12 affect total number of leukocytes? 

I first assessed whether knockdown of p2y12 affected total number of leukocytes in 

the developing embryo, as a difference in leukocyte number would affect 

interpretation of leukocyte numbers at the site of injury. I assessed total 

macrophage and neutrophil counts in the transgenic line fmsgal4;UNM;mpoGFP in 

control and p2y12 morphant groups. Figure 4.1 A shows a representative 3 dpf 

embryo, with red labelled macrophages and green labelled neutrophils. I found no 

significant difference in either total macrophage number (B,C) or total neutrophil 

number (D,E), in the p2y12 morphants compared to control.  
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Figure 4.1 Total leukocyte number in 3 dpf control and p2y12 morphant embryos. 

Groups of 5-7 p2y12 morphant or control embryos were assessed for total macrophage and 
neutrophil numbers. Three replicate experiments were performed on different days. A 
shows a 3 dpf fmsgal4;UNM;mpoGFP embryo, scale bar 160 µm. B shows a column plot of 
total macrophage number in both control and p2y12 morphants, where data has been 
analysed by combining each experimental replicate into a single mean (n=3  p= 0.3), and C 
shows a scatter plot where every embryo has been considered as a separate experiment 
(n=17 p= 0.1). D shows a column plot of the total neutrophil number in control and p2y12 
morphants where data has been analysed by combining each experimental replicate into a 
single mean (n=3  p=0.42), and E a scatter plot where every embryo has been considered as 
a separate experiment (n=21 p=0.56). A Mann Whitney test was applied and data are 
presented as mean  ± SEM.  
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4.1.1.2 Modelling of inflammatory response in zebrafish  

I used  three different models to investigate if knockdown of p2y12 affected 

migration of leukocytes to sites of tissue injury (Figure 4.2); full transection of the 

tail fin (A), a small incision to the ventral fin (B) or laser induced vessel injury (C).  

The regions of interest in which numbers of macrophages and neutrophils were 

quantified, are highlighted in Figure 4.2. The two fin injury models were intended to 

induce inflammatory responses of different severities. A laser was used to injure 

the vessel endothelium and activate thrombocytes to model a vascular 

inflammatory response. 
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Figure 4.2 Models of inflammatory response in fmsgal4;UNM;mpoGFP. 

A shows a full tail transection with the region of interest from the loop of circulation to the 
injury site highlighted by a blue box. B shows a small incision into the ventral tail fin, the 
region of interest is highlighted by a white circle. C shows the region of interest highlighted 
by a blue box after vessel injury.  Scale bars represent 200 µm. 
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4.1.1.3 Does knockdown of p2y12  affect leukocyte migration to site of tail fin 

transection? 

The distal portion of the tail fin was transected with the region of interest spanning 

from the loop in circulation to the distal injury site. For each experimental replicate, 

groups of n=11-12 embryos were utilised, and three replicates were performed on 

separate days. Results for macrophage and neutrophil counts after full tail 

transection are shown in Figure 4.3. Data is presented either considering all 

embryos as independent experiments (control morphants n=35 p2y12 morphants 

n=36, A and C), or as the mean of each experimental replicate (n=3, B and D). A and 

B show that macrophage recruitment to the site of injury increases until at least 8 

hours, with no significant difference between the control and p2y12 morphants. C 

and D show that neutrophil recruitment peaks at 4 hours post injury, with no 

significant difference in neutrophil numbers between control and p2y12 

morphants. These data reproduce previous research from our group which found 

that neutrophils respond and migrate to sites of injury more quickly than 

macrophages (Gray et al., 2011).  My results indicate knockdown of p2y12 does not 

significantly affect migration of neutrophils and macrophages to sites of fin 

transection within 8 hours after injury. 
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Figure 4.3 Number of leukocytes at site of tail transection over 8 hours post injury. 

Tail fins of  p2y12 morphant or control embryos were transected, in groups of 11- 12, and 
leukocyte numbers were monitored at the injury site over 8 hours after injury. Three 
replicate experiments were performed on different days. A and B represents the number of 
macrophages at the site of injury after 8 hours with every embryo has been considered as a 
separate experiment (A, control n= 35 P2Y12 n=36), and where data has been analysed by 
combining each experimental replicate into a single mean (B, n=3). C and D  represents the 
number of neutrophils at the site of injury after 8 hours, where every embryo has been 
considered as a separate experiment (C, control n= 35 P2Y12 n=36) and where data has 
been analysed by combining each experimental replicate into a single mean (D, n=3). A 
2way ANOVA with Sidak’s multiple comparison test was applied and data is presented as 
mean ± SEM.   
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4.1.1.4 Does knockdown of p2y12 affect leukocyte migration to sites of ventral fin 

incision? 

An incision into the ventral fin opposite the gap in pigmentation enabled the 

modelling of a less severe inflammatory response than complete tail fin transection. 

This injury induced fewer leukocytes migrating to the site of injury compared to tail 

fin transection. I quantified macrophage and neutrophil number in the injured 

region over 12 hours. Figure 4.4 shows these data presented either considering all 

embryos as independent experiments (control morphants n=16 p2y12 morphants 

n=14 A and C), or as the mean of each experimental replicate (n=2, B and D). There 

is a peak in both macrophages and neutrophils at 2 hours post injury, with a 

possible trend to a reduction in macrophage numbers at this time point in the 

p2y12 morphants compared to control morphants (A and B). There also may be a 

reduction in neutrophil numbers in p2y12 morphants at 8 hours post injury (C and 

D). However, it is not possible to fully interpret these results as they represent only 

2 experimental replicates, with a great deal of variation, as shown by the wide and 

overlapping error bars. As these data were obtained from two experimental 

replicates preformed on different days, no statistical test was applied. This method 

of inducing an inflammatory response was too variable in terms of ensuring 

consistency of injury and the technical difficulty of mounting embryos after tail fin 

injury for successful confocal imaging. Therefore, no further replicates were 

performed. 
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Figure 4.4 Leukocyte migration to site of ventral tail fin incision over 12 hours. 

Groups of 7-8 p2y12 morphant or control embryos underwent tail fin incisions and 
leukocyte numbers were monitored at the injury site over 12 hours after injury. Two 
replicate experiments were performed on different days. A and B represents the number of 
macrophages at the site of injury after 12 hours with every embryo has been considered as 
a separate experiment (A, control morphants n= 16, p2y12 morphants n=14), and where 
data has been analysed by combining each experimental replicate into a single mean (B, 
n=2). C and D  represents the number of neutrophils at the site of injury after 12 hours, 
where every embryo has been considered as a separate experiment (C, control n= 16 P2Y12 
n=14) and where data has been analysed by combining each experimental replicate into a 
single mean (D, n=2). No statistical test was applied.   
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4.1.1.5 Does p2y12 knockdown affect migration of leukocytes to sites of vessel 

injury? 

As P2Y12 is primarily present on platelets, I wished to examine a model of 

inflammation in which thrombocyte activation occurred. I used a laser to injure the 

endothelium at the site of the circulatory loop in the tail. I used an increased 

number of laser pulses than previously in the thrombosis model, to damage the 

endothelium such that it was sufficient to induce leukocyte migration. Injury to the 

endothelium induced leukocyte migration to the region of injury and this was 

quantified over 8 hours. This experiment was repeated on 3-4 different days. Figure 

4.5 shows the number of leukocytes in the region of interest over 8 hours post 

vessel injury. A and C show data considering all embryos as independent 

experiments (control morphants n=20-33 p2y12 morphants n=20-34, A and C), and 

B and D show the mean of each experimental replicate (n=3 and n=4 respectively). 

There is no significant difference in macrophage or neutrophil number at the region 

of interest after vessel injury, between control and p2y12 morphants.  These 

leukocyte migration results encompassed a certain amount of variability, however 

the time consuming nature of these assays limited the number of experimental 

replicates. Therefore care should be taken in the interpretation of these results, 

however it appears p2y12 knockdown did not significantly affect leukocyte 

migration to sites of tail fin or vessel injury. 
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Figure 4.5 Leukocyte numbers at sites of vessel injury. 

Groups of 6-8 p2y12 morphant or control embryos had the endothelium in the tail loop 
damaged by a laser and leukocyte numbers were monitored at the injury site over 8 hours 
after injury. Three to four replicate experiments were performed on different days. A and B 
represents the number of macrophages at the site of injury after 8 hours where every 
embryo has been considered as a separate experiment (A,  n= 20), and where data has 
been analysed by combining each experimental replicate into a single mean (B, n=3). C and 
D  represents the number of neutrophils at the site of injury after 8 hours, where every 
embryo has been considered as a separate experiment (C, control morphant n= 33 p2y12 
morphant n=34) and where data has been analysed by combining each experimental 
replicate into a single mean (D, n=4). Data are presented as mean ± SEM. A 2way ANOVA 
with Sidak’s multiple comparison test was applied. 

 

 

  



137 
 

4.1.2 Does adenosine exposure affect leukocyte migration to sites of injury? 

Ticagrelor antagonises the P2Y12 receptor, however it also blocks reuptake of 

adenosine. Adenosine is proposed to have differing roles in inflammation 

depending upon which receptor is activated. Activation of A1 or A3 enhances 

leukocyte chemotaxis and phagocytosis, whereas activation of A2A or A2B inhibits 

leukocyte degranulation and cytokine production (Cronstein et al., 1992, Chen et 

al., 2006, Nakav et al., 2008).  I hypothesised that this excess of adenosine may 

induce benefits to survival after pulmonary infection and sepsis, potentially via the 

enhancement of leukocyte chemotaxis and activation (Storey et al., 2013). In order 

to investigate the effect of adenosine on leukocyte migration, 3 dpf embryos were 

exposed to a range of adenosine concentrations via addition to the media after fin 

transection, then macrophage and neutrophil numbers were assessed over 8 hours. 

Under normal physiological conditions levels of adenosine are in the nanomolar 

range, therefore I selected a range of concentrations from 1 mM to 100 nM. 

However, adenosine has a very short half-life being cleared from the plasma in 

approximately 1.5 seconds (Fredholm, 1997, Moser et al., 1989).  Figure 4.6 shows 

macrophage and neutrophil numbers over a time course of 8 hours after exposure 

to a range of adenosine concentrations. This was repeated on three different days 

for each adenosine concentration and on five different days for the control. A and C 

show data considering all embryos as independent experiments (control n=29, 1 

mM n=18, 100 µM n=17, 10µM n=17, 100 nM n=18), and B and D shows the mean 

of each experimental replicate (n=3 for each adenosine concentration 100 nM-

1mM and n=5 for control). There was no significant difference in number of 

macrophages or neutrophils migrating to sites of injury after exposure to adenosine 

at any of the tested concentrations when compared control, over 8 hours. However 

it is important to note that this experiment did not contain a positive control to 

ascertain whether adenosine was reaching the circulation, and was active. In light 

of the possible effects of ticagrelor on heart rate (Figure 3.21), it would have been 

interesting to assess heart rate in embryos exposed to adenosine as a possible 

indication whether adenosine was entering the blood stream however this was not 

recorded in this experiment.  
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Figure 4.6 Leukocyte migration to tail transection after exposure to a range of adenosine 
concentrations. 

Groups of 5-6 embryos had the tail fin transected and were then exposed to control or 100 
nM-1 mM adenosine and leukocyte numbers were monitored at the injury site over 8 
hours after injury. This was repeated on three on different days for each adenosine 
concentration and five for control. A and B represents the number of macrophages at the 
site of injury after 8 hours where every embryo has been considered as a separate 
experiment (A,  control n=29,  1 mM n=18, 100 µM n=17, 10µM n=17, 100 nM n=18), and 
where data has been analysed by combining each experimental replicate into a single mean 
(B, adenosine 100 nM to 1 mM n=3 and control n=5). C and D  represents the number of 
neutrophils at the site of injury after 8 hours, where every embryo has been considered as 
a separate experiment (C, control n=29,  1 mM n=18, 100 µM n=17, 10µM n=17, 100 nM 
n=18) and where data has been analysed by combining each experimental replicate into a 
single mean (D, adenosine 100 nM to 1 mM n=3 and control n=5). A 2way ANOVA with 
Tukey’s multiple comparison post test was applied, data are presented as mean ± SEM.   
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4.1.3 Does p2y12  knockdown affect resistance to S. aureus systemic infection? 

I next assessed the resistance to S. aureus infection of control and p2y12 

morphants. 30 hpf embryos were inoculated with S. aureus, by microinjection 

directly into the circulation via the duct of Cuvier. In order to visualise bacterial 

expansion, I injected GFP labelled S. aureus. Figure 4.7 shows both control and 

p2y12 morphants 1 and 24 hours post infection (hpi). After 1 hpi, GFP labelled S. 

aureus is clearly visible in the cardiac region, at the site of entry and also in 

circulation. By 24 hpi S. aureus was no longer present in the circulation; however, it 

was in the yolk sac in both control and p2y12 morphants.  This indicates that S. 

aureus had either been cleared from the circulation by leukocytes or had exited the 

circulation. However the presence of S. aureus in the yolk sac indicated that the 

infection was spreading, as the yolk sac is an immune protected area with few 

leukocytes to combat infection. Within the yolk sac, bacteria are free to multiply 

until lesions form on the border with the heart, and the embryo is overwhelmed by 

the infection. Figure 4.8 shows an example of the location of S. aureus injection at 

30 hpf and a 30 hpi embryo with a developing lesion on the border of the heart and 

yolk sac, which represents the final stages of infection. 

  



140 
 

 

Figure 4.7 Control and p2y12 morphants 1 and 24 hours after inoculation with GFP 
labelled S. aureus. 

Fluorescent S. aureus is visible in the cardiac region and in the circulation in both control 
and P2Y12 morphants at 1 hpi. At 24 hpi GFP labelled  S. aureus has exited the circulation 
and is contained within the yolk sac. White scale bars represent 200 µm. 

 

 

 

Figure 4.8 Site of injection and a developing S. aureus lesion in an embryo.  

The site of injection of S. aureus is shown in A in a 30 hpf embryo. The arrow in B indicates 
the site of a developing lesion in an embryo 30 hpi with S. aureus. Scale bars indicate 200 
µm. 
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I investigated whether there was a differential response in survival between control 

and p2y12 morphants after the trauma caused by injection alone. Figure 4.9 A 

shows a Kaplan-Meier survival plot of both control and p2y12 morphants after 

injection with sterile PBS. There was no significant difference in survival between 

the control and p2y12 morphants, with minimal death subsequent to injection. 

Figure 4.9 B shows a Kaplan-Meier survival plot comparing control and p2y12 

morphants after inoculation with S. aureus, over a time course of approximately 90 

hpi. I determined an appropriate bacterial colony forming units (CFU) concentration 

sufficient to cause 50% survival after approximately 90 hpi, in the control group. 

Control morphants were inoculated with a mean CFU count of 2176 and p2y12 

morphants were inoculated with a mean CFU count of 2244. There was a 

statistically significant reduction in the survival of p2y12 morphants, compared to 

control morphants (p<0.0001). Therefore, these results demonstrate that p2y12 

morphants have an increased mortality when challenged with S. aureus infection. 
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Figure 4.9 Survival of control and p2y12 morphants inoculated with PBS and S. aureus. 

A shows the survival of control and p2y12 morphants after injection of a sterile PBS control 
containing no S. aureus, 59 embryos were utilised in each group, in 1 experimental 
replicate (n=59). Therefore no statistical test was applied to A. The survival of control and 

p2y12 morphants after inoculation with S. aureus is shown in B. p2y12 morphants have a 
statistically significant reduction in survival when compared to control morphants. There 
was a mean CFU count of 2176 for controls and 2244 for P2Y12 morphants. (144 embryos 
were utilised in each group where every embryo has been considered as a separate 
experiment n=144, p<0.0001 in 3 experimental replicates).   
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4.1.4 Does exposure to bacterially derived protein affect migration of leukocytes 

to sites of tail fin transection? 

In order to investigate the possible mechanism behind the increased mortality of 

p2y12 morphants when challenged by S aureus infection, I sought to investigate 

whether there was a reduced ability of p2y12 morphant leukocytes to sense 

bacterial protein, thus impeding defence against bacterial pathogens. I first 

investigated whether exposure to bacterial proteins affected leukocyte migration to 

sites of injury. Lipopolysaccharide (LPS) is an endotoxin derived from the cell wall of 

the Gram-negative bacterium E.coli. 3 dpf embryos were exposed to LPS in the 

media directly after tail fin transection at a concentration of 1 µg/ml as per Taylor 

(2010). Figure 4.10 shows macrophage and neutrophil numbers at the site of tail fin 

injury over 8 hours after exposure to a control solution or LPS, this was repeated on 

three different days. A and C show data considering all embryos as independent 

experiments (control n=21 LPS n=23,), and B and D show the mean of each 

experimental replicate (n=3).  Macrophage numbers increase over 8 hours, whilst 

neutrophil numbers appear to plateau after 4 hours. Statistical analysis of these 

data shows that there was no significant difference in macrophage or neutrophil 

migration after exposure to this concentration of LPS.  

I also exposed 3 dpf embryos to the bacterially derived protein N-formyl-methionyl-

leucyl-phenylalanine (fMLP) via immersion of the scalpel blade in 200 nM fMLP 

immediately prior to transection of the tail fin. I monitored macrophage (A and B) 

and neutrophil (C and D) migration to the site of injury over 8 hours (Figure 4.11). A 

and C show data considering all embryos as independent experiments (control n=5 

fMLP n=10 A and C), and B and D show the single mean (n=1). Preliminary data 

from this single experiment appeared to show no significant effect of fMLP 

exposure on leukocyte migration, although this data was not subjected to statistical 

analysis. Therefore, in these preliminary studies, I found no evidence for an effect 

on leukocyte migration of either LPS or fMLP, at the concentrations used. 
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Figure 4.10 Leukocyte migration to the site of fin transection after LPS exposure. 

Groups of 7-8 embryos underwent tail fin transection and were then exposed to either a 
control or 1 µg/ml LPS solution, this was repeated on three different days. A and B 
represents the number of macrophages at the site of injury after 8 hours where every 
embryo has been considered as a separate experiment (A,  control n=21,  LPS n=23) and 
where data has been analysed by combining each experimental replicate into a single mean 
(B n=3). C and D  represents the number of neutrophils at the site of injury after 8 hours, 
where every embryo has been considered as a separate experiment (C, control n=21,  LPS 
n=23) and where data has been analysed by combining each experimental replicate into a 
single mean (D n=3). Data are presented as mean ± SEM. A 2way ANOVA with Sidak’s 
multiple comparison test was applied.  
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Figure 4.11 Leukocyte migration to the site of fin transection after fMLP exposure. 

Groups of 5-10 embryos had their tail fins transected, either with a blade dipped in a 
control, or dipped in fMLP. Leukocyte numbers were monitored at the injury site over 8 
hours after injury. The number of macrophages (A) and neutrophils (B) is shown at the site 
of injury with with every embryo has been considered as a separate experiment  (control 
n= 5 fMLP n=10). This represents a single experiment, which was not repeated, therefore 
no statistical test was applied. Data are presented as mean ± SEM. 
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4.2 Discussion 

The transgenic fmsgal4;UNM;mpoGFP was utilised for investigation of the 

inflammatory response of both control and p2y12 morphants at 3 dpf. There was 

no significant difference in total macrophage and neutrophil number between the 

control and p2y12 morphants, although there was a possible trend for reduction in 

neutrophil number, however this was not statistically significant (Figure 4.1).  

Three different models of inflammation were used to investigate the effect of 

p2y12 knockdown on inflammatory response: full tail fin transection, a small tail fin 

incision and laser induced vessel injury (Figure 4.2). Tail fin injury models for 

inflammation response are accepted techniques for investigation into leukocyte 

migration in the zebrafish (Lieschke et al., 2001, Renshaw et al., 2006, Mathias et 

al., 2006). I found that there was no significant difference in leukocyte migration to 

tail fin transection (Figure 4.3). I also investigated the inflammatory response to fin 

incision, preliminary results for this investigation appear to show no difference in 

leukocyte migration, however the technical challenges associated with mounting 

the embryos for confocal imaging after incision without further damaging the tail, 

limited the number of replicates for this experiment (Figure 4.4).  As p2y12 is 

particularly expressed on thrombocytes it was possible that an inflammatory model 

in which thrombocytes were directly activated would reveal a role of P2Y12 in the 

inflammatory response.  In order to damage the endothelium of the vessel loop in 

the tail, I used an increased number of laser pulses than used for the investigation 

of thrombosis response. Upon examination of macrophage and neutrophil response 

to these different stimuli, I found that there was no significant difference in 

leukocyte numbers migrating to these injury sites between control and p2y12 

morphants (Figure 4.5). Therefore I have not detected a role for P2Y12 in leukocyte 

migration in these models. There was a certain amount of variation in these 

inflammation assays which made the results difficult to interpret with absolute 

confidence. I believe a proportion of this variability can be attributed to the 

challenge of standardising the extent of fin and vessel injury. An increase in 

experimental replicates would limit leukocyte number differences due to differing 
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severities of injury, and would enable interpretation of these results with greater 

confidence.   

During the course of my studies I attempted to investigate whether the migratory 

behaviour of leukocytes was altered in p2y12 morphants, by utilising cell tracking to 

a site of injury. Tracking software can measure cell velocity, distance and 

meandering index for directionality over time. Unfortunately I encountered 

challenges with the optimisation of this assay to track individual cells over time. It 

was possible to manually track each individual cell but this was very time 

consuming and resulted in an insufficient data set for accurate interpretation.  

Ticagrelor antagonises the P2Y12 receptor but also blocks reuptake of adenosine, 

which is proposed to have differential effects on leukocytes; this depends on which 

of the 4 receptors is activated, inducing either pro or anti-inflammatory properties 

(Fredholm, 2007). Storey et al. (2013) suggest that in the PLATO study ticagrelor 

reduced mortality related to pulmonary infection and sepsis in patients, compared 

to clopidogrel treatment (Storey et al., 2013). Therefore it was proposed that an 

excess of adenosine, rather than P2Y12 antagonism, may contribute to a differential 

activation of leukocytes enabling an increased resistance to infection (Storey et al., 

2013). I investigated leukocyte response to adenosine by exposure of 3 dpf 

fmsgal4;UNM;mpoGFP embryos to a range of concentrations from 1 mM to 100 

nM, added to the media after tail fin transection. I found that there was no 

significant difference in macrophage or neutrophil migration to the site of injury 

(Figure 4.6). However it is possible that this method of exposure to adenosine is not 

suitable to enable an accurate interpretation of the possible effects of adenosine on 

leukocytes. Adenosine is labile and has a very short half-life, therefore this posed a 

challenge in terms of method of exposure. Embryos were exposed to adenosine via 

addition to the media at concentrations comparable to physiological levels 

(Fredholm, 1997). However no positive control for this experiment was included, 

therefore it is not possible to confirm that the adenosine used was active and 

indeed entering the circulation. A possible control for this may have been to assess 

the effect of adenosine exposure on heart rate, as previous data described in this 

thesis indicated that ticagrelor may affect heart rate, possibly through off-target 
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effects on adenosine re-uptake. However these data were not recorded for this 

experiment. It is possible that a higher adenosine concentration may be required to 

produce an effect on leukocyte migration. Further investigation into the effect of 

adenosine is warranted as this represents novel data in the zebrafish model; 

however a modification to the method of exposure, such as exposure exclusively at 

the site of injury, might be beneficial. 

Figure 4.7 shows that GFP labelled S. aureus appears to clear from the circulation of 

infected control and p2y12 morphants, however by 24 hpi this infection has 

infiltrated the yolk sac, with lesions forming near the heart. The use of time lapse 

monitoring of control and p2y12 morphants would enable the monitoring of the 

dissemination of fluorescently labelled S. aureus from the circulation into the yolk 

sac. It would be interesting to assess the timescale of S. aureus exit from the 

circulation and the development of lesions, which represent the latter stages of 

infection. 

The resistance of p2y12 morphants to S. aureus infection was assessed and I found 

that p2y12 morphants had significantly reduced survival compared to control 

morphants (Figure 4.9 p<0.0001). This reduction in survival in the p2y12 morphant 

group is seen after approximately 18 hours post infection (hpi), and is maintained 

throughout every subsequent time point. This is a novel finding which indicates that 

P2Y12 may play a role in defence from systemic infection. This is an interesting 

result in light of current literature regarding a possible beneficial effect of ticagrelor 

on sepsis compared to clopidogrel (Varenhorst et al., 2012, Storey et al., 2013). A 

possible explanation for this might be that antagonism of P2Y12 reduces resistance 

to infection, the effects of which may be negated by the off-target effect of 

ticagrelor blocking re-uptake of adenosine (Storey et al., 2013). As previously 

discussed, my results regarding the effect of adenosine on leukocyte migration 

showed no significant effect however this experiment would require further 

measures to confirm effective uptake of adenosine.  

It was postulated that p2y12 morphants may have a reduced leukocyte response to 

invading pathogens either through a reduced ability to recognise pathogens or 
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incapacity to dispose of them. I sought to investigate this via the addition of LPS 

which is derived from the Gram-negative bacteria E. coli. 3 dpf embryos which had 

undergone tail fin transection were exposed to 1 µg/ml of LPS in the media. Upon 

examination of leukocyte migration to the site of injury I found there was no 

significant difference in numbers of leukocytes (Figure 4.10). As embryos were 

exposed to LPS via addition to the media, LPS was not exclusively present at the site 

of injury. It would be interesting to utilise a different method for exposure to LPS 

such as a reservoir of media containing LPS delivered locally at the site of injury. 

This assay may also require a greater concentration of LPS, in order to assess p2y12 

morphant leukocyte response. I selected a concentration of 1 µg/ml as per Taylor 

(2010). However Novoa et al. (2009) used 50 µg/ml as a standard exposure 

concentration and showed that up to 150 µg/ml can be tolerated by 2 dpf embryos. 

I also exposed embryos to fMLP in order to induce an inflammatory response, 

however this preliminary data appeared to show no significant effect on leukocyte 

migration (Figure 4.11).  It is, however, important to state that these data represent 

a single experimental replicate therefore further investigation, perhaps with an 

increased concentration of fMLP, would be required to ascertain whether there was 

an effect on leukocyte migration in response to exposure. 

The CFU of each injection was monitored between control and p2y12 morphants, to 

enable a careful matching of CFU for each experiment. However it would also be 

interesting to investigate the response of p2y12 morphants to S. aureus CFU counts 

which in the control groups are not sufficient for mortality. This would demonstrate 

whether there is a reduced capability of the p2y12 morphants to respond to 

moderate infection. There is no literature available discussing the function and 

interaction of zebrafish thrombocytes in defence against systemic infection, 

therefore this represents an area of research which requires considerable further 

study. However, mammalian platelets are known to participate in anti-microbial 

defence, they adhere to bacteria, activate and aggregate upon exposure to S. 

aureus pathogens in the blood stream (Bayer et al., 1995). Therefore, it is possible 

that the knockdown of P2Y12 on zebrafish thrombocytes impedes host defence 

against systemic S. aureus infection. It was previously shown by Trier et al. (2008) 
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that antagonism of P2Y12 abolished staphylocidal responses after exposure to S. 

aureus (Trier et al., 2008). Potentially a reduction in anti-microbial release from 

thrombocyte α granules could reduce the capacity to combat S. aureus infection in 

the first instance, thus allowing the infection to spread more rapidly than in 

controls. Trier et al. (2008) showed that reduced numbers of platelets increased 

susceptibility to infection. However, as shown in Figure 3.8, there was no significant 

difference in thrombocyte number in p2y12 morphants at 3 dpf, which is the 

earliest time point available to assess thrombocyte number using the CD41:GFP 

transgenic. Embryos were inoculated with S. aureus at 30 hpf, at which time 

thrombocyte numbers have not been quantified, therefore it is possible that any 

delay in thrombocyte development or reduction in thrombocyte number, before 3 

dpf, may account for a reduced defence against S. aureus. It may be thrombocytes 

themselves which participate in resistance to S. aureus infection via the release of 

PMPs and PKs. It would be interesting to examine whether anaemic mutants with 

reduced numbers of thrombocytes, have a similar resistance to infection as p2y12 

morphants. S. aureus induces aggregation of platelets therefore this is another 

avenue which could be further investigated in the zebrafish model (Bayer et al., 

1995). The use of CD41:GFP labelled thrombocytes and fluorescently labelled S. 

aureus would enable visualisation of the interaction between these cell types after 

inoculation.  

Macrophages are the primary cell which respond to, phagocytose and ultimately 

clear pathogens from the circulation of inoculated zebrafish embryos (Prajsnar et 

al., 2008). However, as P2Y12 is believed to be expressed by macrophages, it is 

possible that p2y12 knockdown may impair monocyte/macrophage interaction with 

pathogens. Therefore, further investigation is required to assess the involvement of 

P2Y12 in the response to S. aureus infection and whether there is a reduced 

sensitivity of thrombocytes or leukocytes to bacterial pathogens in p2y12 

morphants. Any compromise to bacterial sensing may affect the ability to mount an 

effective response to prevent systemic infection. A model of localised infection in 

CD41:GFP or fmsgal4;UNM;mpoGFP, such as by injection of S. aureus into the otic 

vesicle, hind brain or somite in p2y12 morphants, would enable the examination of 
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thrombocyte or leukocyte interaction with pathogens. It would also be interesting 

to investigate whether exposure of S. aureus inoculated embryos to an optimised 

concentration of adenosine would affect resistance to infection. As previously 

discussed, it has been suggested that excess adenosine may reduce susceptibility to 

infection in ticagrelor treated patients, therefore an investigation into the effect of 

both p2y12 knockdown and adenosine exposure on inoculated embryos would 

serve to further elucidate a possible role for adenosine in resistance to infection 

(Storey et al., 2013). 

 It is important to emphasise that these results show the response of p2y12 

morphants after S. aureus infection alone. It would be beneficial, as previously 

discussed, to utilise other methods for bacterial, viral and fungal infection to further 

investigate whether a reduced resistance to systemic infection after p2y12 

knockdown is exclusive to S. aureus infection. 

4.3 Conclusion 

I investigated the effect of p2y12 knockdown on leukocyte migration to sites of 

inflammation and resistance to S. aureus infection. I found that p2y12 knockdown 

did not significantly affect leukocyte migration to sites of tail fin injury or vessel 

injury. However, p2y12 morphants had significantly reduced survival after systemic 

infection with S. aureus. The results from this chapter indicate a possible role for 

the P2Y12 receptor in resistance to infection. As previously discussed, the effect of 

morpholinos is limited to approximately 3 days and some can induce non-specific 

toxicity phenotypes. I therefore next sought to generate a stable p2y12 mutant in 

order to further investigate thrombosis, inflammation and infection in a p2y12 

mutant, enabling assessment after 3 dpf.  The next chapter details the process of 

generating such a mutant and the results of investigations into thrombosis and 

infection response.  
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Chapter 5 : Generating a p2y12 mutant line 

 

Recent improvements in site-directed mutagenesis have increased the efficiency for 

generating stable mutants with targeted mutations. A stable p2y12 mutant would 

greatly add to my ability to assess the role of P2Y12 in thrombosis, inflammation and 

infection. I therefore utilised two different methods to generate a mutation in the 

p2y12 gene; CoDA ZFN and TALEN, both of which are discussed in this chapter. 

5.1 Results 

5.1.1 CoDA ZFN for the generation of a stable p2y12 mutant 

Zinc finger nucleases (ZFN) have been utilised for targeting genome editing and 

context dependent assembly (CoDA). CoDA ZFN utilises 2 custom designed ZF DNA 

binding proteins, a left and a right, which are fused to the FokI endonuclease 

cleavage domain. Each binding protein consists of 3 ZF motifs with each ZF motif 

binding 3 nucleotides. Each binding protein binds either side of a target region for 

mutagenesis, termed spacer region, of 5-7 nucleotides. Upon dimerization of the 2 

binding proteins, the FokI nuclease domain cleaves DNA in the target region, 

inducing a double strand break (DSB) which is often erroneously repaired via non-

homologous end joining (NHEJ), introducing insertions or deletions. Suitable ZFN 

cleavage sites are situated approximately every 500bp depending on DNA sequence 

(Sander et al., 2011).  

5.1.1.1  Selection of a CoDA ZFN target site for mutagenesis 

I chose two sites for mutagenesis; one site in the 3rd transmembrane (TM) domain, 

as this region is proposed to be important in ligand binding, and one in the 7th TM 

domain, a site which is linked to receptor recycling (shown in Figure 5.1). I will refer 

to them according to the spacer length; SP7 for the target in TM3 and SP5 for the 

target in TM7. Sites for mutagenesis are chosen in anticipation that frame shift 

mutations would result in a truncation of the protein at the target site.  
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Figure 5.1 ZFN target sites in p2y12. 

The predicted P2Y12 receptor is shown in A with both the ZFN target sites labelled. The 
position of SP7 ZFN target, proximal to the N-terminus is shown in B and C shows the 
position of SP5 proximal to the C- terminus. (P2Y12 prediction from Sosui). 
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5.1.1.2 ZFN assembly 

ZFN are assembled in stages starting with the addition of zinc finger motifs to a 

generic plasmid backbone. The zinc finger motifs were added to the generic 

backbone via amplification of the custom designed ultramers with the Herculase 

enzyme. A digestion with NotI enzyme linearised the plasmids, which were then 

used to synthesise mRNA for injection. The gel electrophoresis for these stages are 

shown in Figures 5.2 and 5.3. mRNA was injected into 1 cell stage wildtype embryos 

at various concentrations. The optimum amount of SP7 mRNA for injection was 

titrated starting from the highest does of 1.3 ng to 0.52 ng (Tables 5.1). When 

optimizing the amount of mRNA for injection for mutagenesis, the accepted 

protocol in our department is to achieve approximately a 30% toxicity rate. Such 

that the mRNA is shown to have an effect with the majority of the embryos 

appearing morphologically normal, and with 30% showing some morphological 

signs of toxicity, such as small heads, delayed development or cardiac oedema. I 

calculated the toxicity rate for each mRNA amount I injected, this ranged from 

100% with the highest amount to 30% with the lowest. Therefore, for SP7 0.52 ng 

was selected as a suitable amount of mRNA to induce toxic effects in a minority of 

embryos. I optimised the amount of SP5 mRNA for injection to 0.425 ng by injection 

of a range of mRNA amounts from 1.7 ng to 0.425 ng (Table 5.2). The toxicity rate 

ranged from 100% at the highest amount to 25% at the lowest, therefore 0.425 ng 

was selected as a suitable amount of mRNA to induce toxic effects in a minority of 

embryos. Embryos injected with the optimum concentration of ZFN mRNA were 

raised to adulthood then in-crossed. Genomic DNA from the F1 embryos was 

extracted and embryo gDNA from 3 pairs was pooled. Each pool of gDNA from 6 

adults was assigned an MID tagged titanium primer, for tank identification. A PCR 

with this pooled gDNA was run with the MID primers and these products were then 

re-amplified with titanium primers to ensure a full length amplicon was available 

for 454 deep sequencing. 
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Figure 5.2 Assembly of SP 7 ZFN. 

A shows the left and right amplicon at 5069bp, after addition of the zinc finger motifs. The 
left was re-amplified as initially there was no band. B shows the Age1 digest producing a 
5059bp band. C shows the NotI unlinearised (NotI -) and linearized (NotI +) plasmid. This 
plasmid was then used to synthesise mRNA shown in D, before and after addition of 
DNAase, the second band showing that DNA contamination disappears after addition of 
DNAase (+ DNAase). E shows the PCR products from the 1st PCR with the MID tagged 
primers, T1 is tagged primer pair for the 1st tank of 6 fish, T2 is the tagged primer pair for 
the 2nd tanks and T3 is for primer pair for the 3rd tank of fish. F shows the PCR products 
after the second round of PCR with the titanium primers. 

  



156 
 

 

Figure 5.3 Assembly of SP5 ZFN. 

A shows the left and right amplicon at 5069bp, after addition of the zinc finger motifs. B 
shows the Age1 digest producing a 5059bp band. C shows the NotI unlinearised (NotI -) and 
linearized (NotI +) plasmid. This plasmid was then used to synthesise mRNA shown in D, 
before and after addition of DNAase, the second band showing DNA contamination 
disappears after addition of DNAase (+ DNAase). E shows the PCR products from the 1st PCR 
with the MID tagged primers, T1 is tagged primer pair for the 1st tank of 6 fish, T2 is the 
tagged primer pair for the 2nd. F shows the PCR products after the second round of PCR 
with the titanium primers. 
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Table 5.1 Percentage rate of toxicity in embryos injected with varying concentrations of 

SP7 ZFN mRNA. 

The optimum amount of mRNA for injection was titrated starting from the highest amount 
1.3 ng to the lowest of 0.52 ng. Toxic phenotype were defined such as as small heads, 
delayed development and cardiac oedema. The percentage of toxic phenotype in injected 
embryos was calculated to determine the optimum amount of mRNA-such that it induced a 
toxic phenotype in approximately 30% of injected embryos. 0.52 ng of mRNA was selected 
as the optimised concentration to induce toxic phenotype in a minority of embryos, and 
these embryos were raised. 

 

mRNA amount 
(ng) 

Volume of mRNA 
injected (nl) 

Number of 
embryos injected 

Percentage 
with toxic 
phenotype 
(%) 

1.3 1 60 67 

1.04 1 60 35 

0.65 0.5  80 55 

0.52 0.5 296 30 

 

Table 5.2 Percentage rate of toxicity in embryos injected with varying concentrations of 

SP5 ZFN mRNA. 

The optimum amount of mRNA for injection was titrated starting from the highest amount 
1.7 ng to the lowest of 0.425 ng. Toxic phenotype were defined such as as small heads, 
delayed development and cardiac oedema. The percentage of toxic phenotype in injected 
embryos was calculated to determine the optimum amount of mRNA-such that it induced a 
toxic phenotype in approximately 30% of injected embryos. 0.425 ng of mRNA was selected 
as the optimised concentration to induce toxic phenotype in a minority of embryos and 
these embryos were raised. 

 

mRNA amount 
(ng) 

Volume of mRNA 
injected (nl) 
 

Number of 
embryos injected 

Percentage 
with toxic 
phenotype 
(%) 

1.7 1 50 100 

1.36 1 65 91 

0.85 1 51 60 

0.85 0.5 58 66 

0.68 0.5 70 43 

0.425 0.5 50 25 
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5.1.1.3 ZFN mutagenesis quantification by deep sequencing 

Deep sequencing was utilised to assess the mutation rate associated with each ZFN 

site.  The mutation rate was defined as a percentage of all mutations found from 

the total number of sequences submitted; this was 3.4% for SP5 and 2.4% for SP7. 

The sequences containing mutations were assessed to investigate the number of bp 

deleted or inserted. However, it was difficult to determine whether mutations were 

genuine or possible errors in sequencing, for example I frequently saw a single A 

addition after a run of 3 or more As in the wildtype sequence, which can be an 

artifact of sequencing (Gilles et al., 2011). Therefore, I determined that this 

uncertainty combined with a relatively low mutation rate made screening of each 

potential founder by individual sequencing unfeasible. Therefore, I sought to 

generate a p2y12 mutant via TALEN, a more recently described and more efficient 

method for mutagenesis. 

5.1.2 TALEN for the generation of a stable p2y12 mutant 

Transcription activator-like effector nucleotides (TALEN) have been utilised for 

targeted mutation, as TAL effectors bind DNA and when fused to a FokI nuclease, 

enable cleavage at specific target regions. FokI is fused to the C-terminus and 

cleaves as a dimer, therefore a pair of TAL subunits are required; one for the sense 

strand and one for the antisense strand of DNA sequence, with the FokI domains 

dimerising at a spacer region between the two subunits, determined as the target 

site. As in CoDA ZFN, dimerisation of FokI induces a DSB in the DNA sequence, thus 

often introducing mutations or deletions. TAL effector sites occur approximately 

every 35bp, therefore there is often a large selection of possible TAL sites per gene 

(Cermak et al., 2011). A chosen target site encompasses a restriction enzyme 

recognition site, so mutation within this target region will prevent recognition at 

the enzyme site, thus preventing enzyme cleavage. This enables the use of a 

restriction enzyme digest as an efficient method for screening for mutants. These 

TALENs are generated by fusing an array of repeat-variable diresidues (RVDs) to 

generate a sequence specific DNA binding protein fused to FokI. 
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I generated 4 TALENs for p2y12 with different target regions, however only one 

successfully produced mutations. The target region for each TALEN is shown in 

Figure 5.4, however only the successful TALEN is discussed in further detail in this 

chapter.  

5.1.2.1 Selection of a target site for mutagenesis 

The target site of the successful TALEN can be seen in Figure 5.5. I chose this region 

for mutagenesis as it is proximal to the N-terminus, therefore any frame shift 

mutation would be likely to truncate the receptor, potentially impairing its function. 

The target site is well conserved, however there is no known function for the 

chosen residues in terms of receptor signalling, so any point mutation at this site 

might also be of interest. During target selection, several criteria were required 

including the spacer length and the efficiency of the restriction enzyme to be used. 

A mutation will only be detected by this method if it occurs within the specific 

recognition sequence of the enzyme, so enzymes with wide spanning recognition 

sites such as MwoI (11bp) are more likely to detect any mutation within the spacer 

region, when compared to shorter spanning recognition sites. A short spacer length 

is proposed to increase efficiency of the TALEN (Christian et al., 2010), therefore I 

prioritised spacer length over the use of a wide spanning restriction enzyme. I chose 

a target with a 15bp spacer region containing a BamHI recognition site. BamHI is 

easily available and digests in a variety of buffers, although the recognition site is 

relatively short spanning (6bp).    
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Figure 5.4 Locations of the four TALEN target sites within p2y12. 

Target sites selected for TALEN directed mutagenesis are shown in zebrafish p2y12. The 
first designed TALEN is shown in blue, 2nd in green, 3rd in pink and 4th in yellow. Out of these 
TALENs only TALEN 3 (pink) was successful in generating two mutations. 
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Figure 5.5 TALEN target sites in zebrafish p2y12. 

A shows a predicted model of the zebrafish P2Y12 receptor, with the mutagenesis target 
region highlighted with a red box. B shows the position of the TALEN target region in p2y12 
proximal to the ATG start site, incorporating the BamHI restriction enzyme recognition site. 
(P2Y12 prediction model obtained from Sosui). 
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5.1.2.2 TALEN array assembly 

Each subunit was constructed in two halves (A and B) in which individual RVDs were 

ligated together during a single golden gate reaction, using two different array 

plasmids for A and B respectively. An NheI and XbaI digest was utilised to verify the 

correct RVD plasmid sizes in the A and B plasmids (Figure 5.6 A and B). Subunit RB 

was partially digested; after the first digest this was repeated with halved 

concentration of product, resulting in a full digestion and confirmation of insertion 

of the correct RVD number. A and B subunits were then ligated into a full length 

array together with the last RVD unit in a second golden gate reaction, into the 

backbone vector containing the FokI domain. Sequencing for the left and right 

subunit confirmed correct insertion of RVD modules. The left and right subunits 

were then digested with BamHI and XbaI to test for the correct inclusion of 

subunits. A NotI reaction was then utilised to linearise the L and R constructs into 

the final construct. This final construct was synthesised into capped mRNA for 

injection. Figure 5.6 shows the gel electrophoresis images of these stages of subunit 

assembly, verification and linearisation. 

5.1.2.3 Screening of injected embryos for a somatic mutation 

p2y12 TALEN mRNA concentration was optimised in order to limit toxic effects such 

as delayed development, small heads, cardiac oedema but to induce a reasonable 

mutation rate (Table 5.3). Genomic DNA was extracted from 3 dpf individual 

embryos to screen for partial digestion, and therefore possible mutation, via 

restriction enzyme digest (Figure 5.7). After confirmation of an ability to induce 

mutations, subsequently injected embryos were raised to adulthood. These F0 fish 

were in-crossed and their offspring genotyped to identify founders carrying 

mutations in their germ line.  
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Figure 5.6 Assembly of p2y12 TALEN RVDs and generation of mRNA for injection. 

A shows the A and B parts for the left and right subunits, after the 1st golden gate reaction 
and transformation. LA, LB and RA have fully digested after the NheI and XbaI digest, 
however RB was partially digested. B shows a fully digested repeat reaction of RB with half 
the concentration of product. C shows the left and right subunits after the 2nd golden gate 
reaction to combine the A and B parts for the construct BamHI and XbaI digest, which were 
linearised with NotI. D shows the capped p2y12 TALEN mRNA. 
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Table 5.3 Rate of toxicity of embryos injected with TALEN p2y12 mRNA. 

I injected a range of amounts of TALEN p2y12 to optimise an amount of mRNA sufficient to 
produce toxic phenotype in a minority of embryos. 1.5 ng of TALEN p2y12 mRNA was 
selected as an optimised amount, as the maximum volume of I injected into the yolk which 
resulted in a 19% toxicity phenotype, and these embryos were raised. I also raised embryos 
which were injected with 0.5 ng of TALEN p2y12 mRNA which was injected directly into the 
cell resulting in a 35% toxicity phenotype, these amounts were selected as optimum 
concentrations to induce toxic phenotype, such as delayed development, small heads and 
cardiac oedema, in a minority of embryos. 

 

 

 

 

Figure 5.7 Screening gel for F0 TALEN RNA injected embryos. 

The red arrow highlights the partial digest of TALEN RNA injected embryo gDNA PCR 
product after BamHI incubation (wells 4-10), which indicates a mutation. Low molecular 
weight ladder was used, the 1st well shows control gDNA PCR product without BamHI, wells 
2 and 3 show control embryo gDNA PCR product after incubation with BamHI, both of 
which are fully digested.  

mRNA 
amount (ng) 

Volume of 
mRNA 
injected (nl) 

Location of 
mRNA 
injection 

Number of 
embryos  
Injected 

Percentage 
of 
viable 
embryos 
(%) 

Percentage 
of embryos 
with toxicity 
Phenotype 
(%) 

1.5 3 Yolk 146 60 19 

1.0 2 Yolk 33 84 9 

0.5 1 Yolk 39 94 5 

0.5 1 Cell 132 53 35 
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5.1.3 Identification of two TALEN induced mutant alleles of  p2y12. 

5.1.3.1 Identification of p2y12sh338 and p2y12sh340 mutant alleles in F1 screen 

Two founders were discovered upon screening of the F1 embryos from the in-cross 

of the F0 TALEN RNA injected fish. Each founder possessed a different mutation, 

and were from the group injected with 0.5 ng of RNA directly into the cell. This 

suggests that for a TALEN with low activity such as this, injection directly into the 

cell may be the most efficient way of inducing a mutation. Each mutation was in the 

target site and was detected by partial cleavage of PCR product after incubation 

with BamHI restriction enzyme. Sequencing of these mutations revealed one 

founder with a 6bp deletion (termed p2y12sh338) and the other founder with a 10bp 

deletion (termed p2y12sh340). In order to approximate a mutation rate for each 

allele, gDNA from 3 embryos was pooled for restriction enzyme digest, per reaction. 

I used 8 reactions, therefore screening a total of 24 embryos per founder. For 

p2y12sh338, 2 of 8 pooled gDNA samples tested were partially digested, therefore 

out of 24 embryos approximately 2 embryos were carriers for the mutation 

indicating a somatic transmission rate of 8%. This 6bp deletion results in a deletion 

of an arginine (R55) and isoleucine (I56) (Figure 5.8). For p2y12sh340, 6 out of 8 pooled 

gDNA samples showed partial digestion with a bright undigested band in sample 8, 

indicating the possibility of 2 out of the 3 embryos within that reaction being 

carriers for the mutation, therefore the approximate somatic transmission for this 

allele was 25%.  This 10bp deletion is predicted to result in a frame shift and 

premature stop codon, 9 amino acids downstream of the target region (Figure 5.9).  
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Figure 5.8 Identification of a TALEN induced 6bp deletion mutant of p2y12 (p2y12sh338). 

A shows the screening restriction digest gel, in which each channel contains PCR product of 
3 dpf genomic DNA pooled from 3 embryos. Both channels 2 and 4 show an undigested 
band at 200bp, indicating a mutation in one of the 3 embryos. B shows the wildtype 
sequence chromatogram, with the target site for TALEN mutagenesis highlighted blue. C 
shows the sequence chromatogram of a p2y12sh338 mutant showing a 6bp deletion within 
the blue highlighted target region. D shows the effect of the deletion of R55 and I56 on the 
peptide sequence. 
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Figure 5.9 Identification of a TALEN induced 10bp deletion mutant of p2y12 (p2y12sh340). 

A shows the screening restriction digest gel, in which each channel contains PCR product of 
3 dpf genomic DNA pooled from 3 embryos. Channels 1, 2, 3, 4, 5 and 8 show an 
undigested band at 200bp, indicating a mutation. B shows the wildtype sequence 
chromatogram, with the target site for TALEN mutagenesis highlighted blue. C shows the 
sequence chromatogram of p2y12sh340 10bp deletion. D shows the premature stop codon 
appearing downstream of the TALEN target site.  
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Both p2y12sh338 and p2y12sh340 F0 founders were out-crossed to nacre and the F1 

progeny were raised then genotyped by fin clipping to identify heterozygotes, as 

shown in Figure 5.10. F1 heterozygotes for both alleles are viable and 

morphologically normal. F1 heterozygotes with the same mutation were in-crossed 

to produce approximate Mendelian ratios of 50% heterozygotes, 25% homozygotes 

and 25% wildtype F2 embryos. There was no gross morphological difference 

between wildtype, heterozygous and homozygous siblings, for either mutant allele 

(Figure 5.11 and 5.12). These embryos were utilised in the following investigations 

for thrombosis and resistance to infection. 
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Figure 5.10 Schematic demonstrating the screening of TALEN generated mutants. 

Embryos in red represent mutants, embryos in blue represent wildtypes. Approximately 
156 embryos were raised after injection with TALEN RNA. The surviving 136 adult fish were 
screened for mutations in the target region of p2y12. 2 founders were discovered, one with 
a 6bp deletion (p2y12sh338) and the other with a 10bp deletion (p2y12sh340). The images in 
this figure are adapted, with permission, from (Lieschke and Currie, 2007). 
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Figure 5.11 Morphology of 3 dpf and 5 dpf p2y12sh338 mutants. 

Morphology of 3 dpf and 5 dpf p2y12sh338 mutants, there appears to be no significant 
morphological difference between wildtype, heterozygous and homozygous siblings. Scale 
bar shows 500 µm. 

  



171 
 

 

 

Figure 5.12 Morphology of 3 dpf and 5 dpf p2y12sh340 mutants. 

Morphology of 3 dpf and 5 dpf p2y12sh340 mutants, there is appears to be no significant 
morphological difference between wildtype, heterozygous and homozygous siblings. Scale 
bar shows 500 µm. 
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5.1.3.2 Does a 6bp deletion of residues R55 and I56 affect thrombus formation? 

I investigated the thrombosis response of 3 dpf embryos from a p2y12sh338 

heterozygote in-cross. It is possible that this 6bp deletion may affect the receptor 

structure, however I hypothesised that this mutation would not affect thrombosis 

response, as the deletion did not result in a frame shift, and did not include 

residues known to be involved in P2Y12 activation. Genomic DNA was extracted 

from each embryo subsequent to laser induced thrombosis and a PCR and 

restriction digest was used to genotype the embryos. The thrombosis response of 

21-23 embryos of a wildtype, heterozygote or homozygote background was 

assessed by laser induced aortic injury, and the thrombus area was quantified over 

10 minutes. The preliminary data for this investigation, consisting of 2 experimental 

replicates, performed on different days is shown in Figure 5.13. A shows a plot of 

thrombus area over 10 minutes after injury, where every embryo has been 

considered as a separate experiment (wildtype n=12, heterozygote n=26 and 

homozygote n=5). B shows the mean area under the curve of thrombus in wildtype, 

heterozygote and homozygotes where data has been analysed by combining each 

experimental replicate into a single mean (n=2).  C shows a scatter graph with each 

individual embryo represented as a separate experiment (wildtype n=12, 

heterozygote n=26 and homozygote n=5). As this consists of 2 replicates the data 

was not subjected to statistical analysis. However, overlapping of the SEM error 

bars appears to indicate no difference in thrombosis response between wildtype, 

heterozygous and homozygous siblings. This mutation was not further investigated 

due to the prioritisation of investigating the second mutation consisting of a 10bp 

deletion. 
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Figure 5.13 The effect of the 6bp p2y12sh338 mutation on thrombosis in 3dpf embryos.  

21-23 embryos of a wildtype (wt), heterozygote (het) or homozygote (hom) background 
underwent laser induced aortic injury and thrombus area was quantified over 10 mins. The 
embryos were genotyped by PCR and restriction enzyme digest after completion of the 
thrombosis assay. Two replicate experiments were performed on different days. A shows a 
plot of thrombus area over 10 minutes following laser induced aortic injury, where every 
embryo has been considered as a separate experiment (wildtype n=12, heterozygote n=26 
and homozygote n=5). B shows the mean area under the curve in wildtype, heterozygote 
and homozygotes where data has been analysed by combining each experimental replicate 
into a single mean (n=2).  C shows a scatter graph with each individual embryo represented 
as an experimental unit. No statistical test was applied. Data are presented as mean ± SEM.  
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5.1.3.3 Does a 10bp deletion resulting in a premature stop codon affect thrombus 

formation? 

I next investigated the thrombosis response of p2y12sh340 3 dpf embryos obtained 

from a heterozygote in-cross. This 10bp deletion is predicted to induce a premature 

stop codon 9 amino acids downstream of the target region; homozygotes for this 

mutation should theoretically have a non-functional P2Y12 receptor, therefore I 

hypothesised that this mutation would reduce thrombus area after laser injury, 

Figure 5.14 show the results for this investigation. The thrombosis response of 20-

22 embryos of wildtype, heterozygote or homozygote background was assessed by 

laser induced aortic injury, and quantification of the developing thrombus over 10 

minutes. This was repeated 4 times on different days and the embryos were 

genotyped by PCR and restriction enzyme digest after completion of each 

experiment. Figure 5.14 A shows a plot of thrombus area over 10 minutes after 

injury with each embryo represented as a separate experiment (wildtype n=19, 

heterozygote n=46 and homozygote n=20). B shows the mean area under the curve 

of thrombus formation in wildtype, heterozygote and homozygote with each 

experimental replicate combined into a single mean (n=4). C shows the area under 

the curve data with each embryo represented as an individual experiment (wildtype 

n=19, heterozygote n=46 and homozygote n=20). I found that there was no 

significant difference in thrombus area between wildtype, heterozygote and 

homozygote siblings. This result was surprising, as it was expected that a frame shift 

and premature stop codon would result in a non-functional receptor. One 

possibility was that maternally contributed wildtype p2y12 RNA present in the early 

embryo may be sufficient for a full thrombosis response. 
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Figure 5.14 The effect of the 10bp p2y12sh340 mutation on thrombosis in 3dpf embryos.  

Groups of 20-22 embryos of a wildtype (wt), heterozygote (het) or homozygote (hom) 
background underwent laser induced aortic injury and thrombus area was quantified over 
10 mins. The embryos were genotyped by PCR and restriction enzyme digest after 
completion of the thrombosis assay. Four replicate experiments were performed on 
different days. A shows a plot of thrombus area over 10 minutes following laser induced 
aortic injury, where every embryo has been considered as a separate experiment (wildtype 
n=19, heterozygote n=46 and homozygote n=20). B shows the mean area under the curve 
in wildtype, heterozygote and homozygotes where data has been analysed by combining 
each experimental replicate into a single mean (n=4).  C shows a scatter graph with each 
individual embryo represented as an experimental unit. A Kruskal-Wallis test was applied. 
Data are presented as mean ± SEM.  
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I next examined thrombosis in 5 dpf embryos, at which point maternally derived 

RNA should no longer be present. Due to the transient nature of MO, I have not 

previously utilised 5 dpf embryos in the examination of thrombosis response. 

Figure 5.15 shows the results for the thrombosis response of 5 dpf embryos, after 

laser induced aortic injury of 12-13 embryos of a wildtype, heterozygote or 

homozygote background. The embryos were genotyped by PCR and restriction 

enzyme digest after completion of the thrombosis assay. Three replicate 

experiments were performed on different days. A shows a plot of thrombus area 

over 10 minutes after injury, where every embryo has been considered as a 

separate experiment (wildtype n=7, heterozygote n=24 and homozygote n=5). B 

shows the mean area under the curve of wildtype, heterozygote and homozygotes 

where data has been analysed by combining each experimental replicate into a 

single mean (n=3).   C shows the thrombus area under the curve with each embryo 

considered as a separate experiment (wildtype n=7, heterozygote n=24 and 

homozygote n=5). I found that there was no significant difference in thrombosis 

response between wildtype, heterozygous and homozygous siblings. 
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Figure 5.15 The effect of the 10bp p2y12sh340 mutation on thrombosis in 5 dpf embryos.  

Groups of 12-13 embryos of a wildtype (wt), heterozygote (het) or homozygote (hom) 
background underwent laser induced aortic injury and thrombus area was quantified over 
10 mins. The embryos were genotyped by PCR and restriction enzyme digest after 
completion of the thrombosis assay. Three replicate experiments were performed on 
different days. A shows a plot of thrombus area over 10 minutes following laser induced 
aortic injury, where every embryo has been considered as a separate experiment (wildtype 
n=7, heterozygote n=24 and homozygote n=5). B shows the mean area under the curve in 
wildtype, heterozygote and homozygotes where data has been analysed by combining each 
experimental replicate into a single mean (n=3).  C shows a scatter graph with each 
individual embryo represented as an experimental unit. A Kruskal-Wallis test was applied, 
data are presented as mean ± SEM.  
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5.1.3.4 Is p2y12 expressed in maternal RNA? 

I investigated whether p2y12 was expressed in maternally derived wildtype mRNA 

contributed from the heterozygous mother. RNA was extracted from unfertilised 

embryos and an RT-PCR reaction with P2Y12 and GAPDH control primers was 

conducted. Figure 5.16 shows that amplification with control GAPDH primers gives 

an amplified product in both the unfertilised cDNA and control cDNA well, whereas 

amplification with P2Y12 primers shows amplified product in the control cDNA well 

exclusively therefore there has been no amplification of p2y12 cDNA. This suggests 

that there is no significant maternal contribution of p2y12 RNA.  
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Figure 5.16 Assessment of maternally contributed p2y12 expression. 

P2Y12 and control GAPDH primers were utilised to assess whether there was maternally 
contributed p2y12 RNA. RNA from unfertilised embryos was extracted and an RT- PCR with 
P2Y12 and GAPDH primers was conducted. There was no band in the lane for unfertilised 
cDNA with P2Y12 primers, however there was with GAPDH primers. There was a band in 
both control cDNA lanes with P2Y12 and GAPDH primer respectively. There are no bands in 
the controls; without reverse transcriptase enzyme (-RT enz), without RNA (-RNA) and the 
PCR blank (BL). 
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5.1.3.5 Does a 10bp deletion affect resistance to S. aureus infection? 

I investigated the resistance to S. aureus infection of the p2y12sh340 mutants, to 

assess whether the mutants would reproduce the reduction in survival observed in 

the p2y12 morphants. Embryos were inoculated with S. aureus directly into the 

circulation at 30 hpf, and survival was monitored over 90 hpi. Embryos which died 

during the experiment were genotyped within 12 hours of death, and all surviving 

embryos were genotyped at 90 hpi, at the conclusion of the experiment. This 

preliminary data representing 2 experimental replicates is shown in Figure 5.17. 

There appeared to be no difference in survival between the wildtype, 

heterozygotes and homozygote siblings. In order to assess whether the mortality 

shown in A was not due to trauma of injection alone, I injected the same volume of 

sterile PBS into p2y12sh340 mutants, B shows that there was minimal death 

subsequent to injection. As these data represents 2 experimental replicates, no 

statistical test was applied. However, these results do not appear to reproduce my 

previous data in which p2y12 morphants showed significantly reduced survival after 

inoculation with a similar CFU of S. aureus. 

  



181 
 

 

Figure 5.17 Survival of p2y12sh340 mutants after sterile PBS injection and S. aureus 
inoculation. 

Wildtype (wt), heterozygotes (het) and homozygotes (hom) were injected with either a 
control of sterile PBS (A) or S. aureus  (B), and their survival was monitored over 90 hours 
post injection. Embryos were genotyped either after death or after 90 hours post injection 
for surviving embryos. A  shows the a Kaplan-Meier plot of survival of wt (n=4), het (n= 14) 
and hom (n=9) siblings after injection with a sterile PBS, in 2 experimental replicates on 
different days. B shows a Kaplan-Meier plot of survival after S. aureus infection of wt 
(n=23), het (n=55) and homs (n=30). A mean CFU count of 2201 was injected in 2 
experimental replicates on different days. No statistical test was applied for analysis. 
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5.2 Discussion 

ZFN mutagenesis was utilised in an attempt to generate a stable p2y12 mutant, 

however the results of deep sequencing of pooled gDNA from F1 embryos showed 

a mutation rate (including all mutated alleles) of 2% for the SP5 and 3% for SP7. I 

considered these mutation frequencies too low to enable time and cost efficient 

screening for founders via sequencing. It was also difficult to confirm genuine 

mutations from pooled samples. A benefit of TALEN mutagenesis is the relative 

ease with which F0 fish can be screened for somatic mutations via the use of a 

restriction enzyme digest, as opposed to deep sequencing. This method for 

screening of TALEN F0 enabled the identification of 2 mutant alleles after the 

screening of approximately 100 fish. Therefore, although the mutation rate is 

similar for ZFN and this particular TALEN, the identification of founders is simpler 

and quicker. The TALEN mutant alleles were confirmed with sequencing and these 

mutants were selected for further investigation.  

I identified both a 6bp deletion (p2y12sh338) (Figure 5.8) and a 10bp deletion mutant 

allele (p2y12sh340) (Figure 5.9). The 6bp deletion mutation resulted in a deletion of 

residues R55 and I56. I investigated this mutant in terms of thrombus formation and 

found that there was no significant difference in thrombosis between wildtype 

siblings, heterozygotes and homozygotes (Figure 5.13). The 10bp deletion mutant 

allele was predicted to induce a frame shift and premature stop codon 9 amino 

acids downstream of the target site. I hypothesised that a homozygote with a frame 

shift and premature stop codon would have a reduced thrombosis response after 

vessel injury.  

My thrombosis results indicate that a 10bp deletion, and subsequent premature 

stop codon within the first intracellular loop, does not significantly affect thrombus 

formation in 3 dpf embryos, after vessel injury (Figure 5.14). This was a surprising 

finding as I anticipated that the frame shift mutation proximal to the N-terminus 

would be sufficient to induce a loss of function phenotype that would reduce 

thrombosis. I also investigated the effect of this 10bp deletion on thrombosis in 5 

dpf embryos, however once more there was no significant difference in thrombus 

area between the wildtype, heterozygote and homozygote (Figure 5.15). It is worth 
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noting the relatively low numbers of homozygotes and wildtypes in these assays 

when compared to heterozygotes, due to the in-cross of heterozygote F1s. The in-

cross of F2 homozygotes would enable a high throughput approach to thrombosis 

assessment which was not available for my studies. This would be beneficial to 

investigate whether there is indeed a subtle difference in thrombosis response, as 

Figure 5.14 suggests the possibility of a trend of reduction in thrombus area in the 

heterozygotes and homozygotes at 3 dpf, but was not statistically significant. 

Several previously investigated mutations in the human P2RY12 gene have shown a 

range of effects such as impaired ADP binding, reduced platelet secretion and 

limited cell surface expression of P2Y12, resulting in extended bleeding times 

(Cattaneo et al., 2000) (Cattaneo et al., 2003, Patel et al., 2014, Daly et al., 2009). 

Fontana et al. (2009) suggest that a heterozygote with a P2RY12 mutation resulting 

in a truncated protein is haploinsufficient and showed a bleeding phenotype with 

increased bleeding times compared to wildtype (Fontana et al., 2009). Considering 

this previous literature, it is interesting that there does not appear to be reduced 

thrombosis in p2y12sh340 mutants, neither heterozygotes nor homozygotes. There 

are several possible explanations for this; I largely excluded the possibility of a 

maternally derived contribution of wildtype p2y12 RNA being sufficient for 

thrombosis response (Figure 5.16). It is possible that this thrombosis assay was not 

sufficient to determine a loss of function effect of P2Y12, for example if too much 

vessel injury was sustained this may trigger various alternative platelet activation 

pathways, which could mask P2Y12 effect. However, as this assay previously 

detected reduced thrombosis in p2y12 morphants, this seems unlikely. Another 

possible explanation for the lack of effect on thrombosis is that, in the p2y12 

morphants, translation of p2y12 mRNA is blocked, therefore there theoretically is 

no P2y12 protein produced and translocated to the cell surface, whereas in the 

mutant the truncated protein may retain some function. Anecdotal evidence 

presented by Nathan Lawson at the ‘Zebrafish Disease Models Workshop 2013’ 

suggests that a lack of phenotype in TALEN generated mutants is a relatively 

common occurrence.  
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The true mechanism is not currently known and this would require further 

investigation. It would be interesting to do a western blot on these mutants to 

ascertain whether protein is produced and of what length, however as previously 

discussed in chapter 3 there is no currently available antibody, suitable for this.  As 

zebrafish have a genome duplication for many genes, there may be a transcript 

variant of p2y12 which has not previously been described, which could rescue 

function of the receptor (Taylor et al., 2003), although it is hard to know why this 

redundancy would exist for mutants but not morphants. I have found no 

discrepancy with the Ensembl listed sequence for p2y12, except for the presence of 

several SNPs, and morpholinos designed against the ATG site of this gene produce  

the expected of reduction in thrombosis. The ATG MO I used for these studies also 

very closely resembles the ATG MO used by Sieger et al. (2012) which represents 

the first publication of p2y12 knockdown in zebrafish and showed the same effect 

of reduction in GFP fluorescence in p2y12::P2Y12-GFP embryos as I observed.  I also 

observed the reduced thrombosis phenotype with the P2Y12-mo2 published by 

Sieger et al. (2012). Therefore, this suggests that the Ensembl sequence for p2y12 

utilised in this thesis is consistent with the P2Y12 receptor and that p2y12 

translation is being reduced in the morphants. 

I investigated the resistance to infection of the p2y12sh340 mutant siblings to 

ascertain whether the 10bp deletion in p2y12 would affect the response to S. 

aureus infection. Previous data shown in this thesis documents that knockdown of 

p2y12 significantly reduces resistance to S. aureus infection (p<0.0001).   However, 

my preliminary data suggest that survival of neither p2y12sh340 heterozygotes nor 

homozygotes differed to that of the wildtype sibling after S. aureus inoculation 

(Figure 5.17). Besides the mutation, there is a genetic difference between the 

mutant and morphant embryos as for the morphant experiments LWT line was 

utilised, however the genetic background of the TALEN fish is ABWT out-crossed to 

nacre. Therefore there may be some genetic difference in susceptibility which is not 

due to the p2y12 mutation alone. Anecdotal evidence suggests that ABWT, may be 

more susceptible to S. aureus infection in this model,  therefore this may partially 

explain the reduced survival of wildtypes when compared to previous control 
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morphants. This would require further work to fully investigate the infection 

response of p2y12sh340 in homozygotes from a homozygous in-cross. 

Cattaneo et al. (2011) reviewed the different p2y12 mutations found in patients 

with bleeding disorders; several of these patients had frame shifts in the open 

reading frame leading to a truncation of the protein (Cattaneo, 2011a). The effect 

of P2RY12 truncation was analysed by the quantification of binding sites for 2MeS-

ADP and platelet aggregation in response to ADP.  Exposure of thrombocytes to 

ADP should induce a full and irreversible aggregation response, and p2y12 

deficiency would result in a reduced aggregation and reversible aggregation in 

response to ADP. Gregory and Jagadeeswaran (2002) selectively labelled 

thrombocytes in blood obtained from adult fish in order to assess the response of 

P2Y1 to ADP. Therefore, this would be an interesting, if somewhat technically 

challenging, alternative to the thrombosis assay to interpret whether there is a loss 

of function of P2Y12 in my mutants.  

5.3 Conclusion 

I generated two p2y12 mutants via TALEN mutagenesis, resulting in a 6bp deletion 

(p2y12sh338) and a 10bp deletion (p2y12sh340). Upon assessment of these mutants I 

found that there was no significant difference in thrombosis response in either 

p2y12sh338 or p2y12sh340. Resistance to infection was preliminarily examined in 

p2y12sh340 only, and I found that there appeared to be no difference in survival after 

inoculation with S. aureus. These findings conflict with my previous data generated 

with the use of an ATG MO targeting p2y12. Although I have found no significant 

thrombosis or infection phenotype during my investigations using my TALEN 

generated mutants, the functional effect of this mutation requires further 

examination. The assessment of whether there is a true loss of function of the 

receptor is vital. A western blot for P2y12 or an assessment of ADP binding 

capability of thrombocytes would give a good indication of the functional effect of 

the mutation.  
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Chapter 6 : General discussion, conclusion and future 

directions 

6.1 General discussion 

P2Y12 has an established role in thrombosis with antagonists to this receptor 

frequently used as anti-thrombotic therapy for the treatment of acute coronary 

syndromes ((Mackman, 2008) for review). The aim of this thesis was to investigate 

whether P2Y12 also plays a role in inflammation and resistance to infection. I initially 

utilised an ATG morpholino to induce knockdown of the zebrafish homologue 

p2y12. I then investigated the thrombosis response to endothelial injury of p2y12 

morphants and observed significantly reduced thrombus area compared to control 

morphants. This data is consistent with previous experimental work in the mouse 

model in which P2Y12 knockout or treatment with P2Y12 antagonists reduced 

thrombus formation and increased embolization (Foster et al., 2001, Andre et al., 

2003, Patil et al., 2010). During the course of my project, Sieger et al. (2012) 

generated the p2y12::P2Y12-GFP transgenic line for investigation of the microglial 

response to injury, in addition they utilised a p2y12 morpholino (P2Y12mo2) which 

targeted a different region to my morpholino. I utilised this line to investigate the 

effect of my p2y12 morpholino on p2y12 expression. I found my morpholino 

reduced GFP fluorescence of microglia, as previously reported in the experiment by 

Sieger et al. (2012) with P2Y12mo2. I also obtained this P2Y12mo2 morpholino and 

again found a significant reduction in thrombus area in p2y12 morphants. To 

attempt to further ascertain the specificity of the effect of the morpholino studies, I 

generated a modified p2y12 mRNA construct to which the p2y12 morpholino would 

not bind. I co-injected this RNA with the p2y12 morpholino and found that in the 

RNA co-injected morphants there was a suggestion that this ameliorated the effect 

of p2y12 knockdown on thrombosis, although this was not statistically significant.   

Therefore, taken together with studies of P2Y12 in other species, it seems likely that 

the effect of the p2y12 morpholino on thrombosis is truly due to p2y12 knockdown 

rather than off-target or non-specific effects, although it is difficult to exclude these 

entirely. 
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After confirming that p2y12 morpholino knockdown induced the expected effect on 

thrombosis. I moved on to assess the effect of p2y12 knockdown on the 

inflammatory response. I first established that p2y12 knockdown did not 

significantly affect total numbers of macrophages and neutrophils. I then found that 

p2y12 knockdown did not significantly affect migration of either macrophages or 

neutrophils to sites of tail fin transection, tail fin incision or laser induced vessel 

damage in zebrafish embryos. Therefore, my data indicate that P2Y12 does not play 

a role in leukocyte migration in these models of inflammatory response. This is an 

interesting negative result which indicates that P2Y12 may not be directly involved 

in leukocyte migration to sites of injury. It is possible that the role of P2Y12 in 

inflammation is related to the amplified release of pro-inflammatory mediators 

from α granules, rather than a more direct role in sensing of inflammatory cues. In 

which case, it is likely that the models of leukocyte migration for assessing 

inflammatory response used in this thesis may not be ideal for determining a more 

subtle inflammatory effect of thrombocyte releasates. It may be possible to 

develop a zebrafish assay for identification of pro-inflammatory mediator and 

chemokine release from activated thrombocytes, to enable assessment of 

leukocyte response. Another model for inflammation, for example chronic 

inflammation such as the atherosclerosis model in the P2Y12 -/- mouse would allow 

good assessment of inflammatory response  (Li et al., 2012a).  

An off-target effect of ticagrelor is to block reuptake of adenosine, therefore I 

sought to investigate whether adenosine exposure affected leukocyte migration to 

sites of inflammation, however I found no significant difference in leukocyte 

migration in the concentrations of adenosine selected. This experiment lacked the 

necessary control to confirm that the adenosine was actively taken up into the 

blood stream of the embryos. The short half-life and labile nature of adenosine 

suggests that this would require further work to fully optimise an assay for 

investigation into the effect of adenosine. 

I next investigated the resistance of p2y12 morphants to S. aureus infection and 

even though I had found no effect of p2y12 knockdown on inflammatory cell 

recruitment, I found that p2y12 morphants suffered a statistically significant 
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increase in mortality after introduction of systemic infection. This finding indicates 

that the P2Y12 receptor may play a role in defense against systemic S. aureus 

infection. My data may support work by Trier et al. (2008) showing reduced levels 

of platelet microbicidal proteins and kinocidins released from rabbit platelets, 

abolishing the staphylocidal capabilities, after exposure to both P2X1 and P2Y12 

antagonists (Trier et al., 2008). It is possible that knockdown of p2y12 reduces 

release of antimicrobial peptides from α granules, therefore impairing the defense 

against pathogens 

It would be interesting to assess the functionality of α granules in the p2y12 

morphants, as a typical assessment of platelet activation is the detection of P-

selectin release from α granules.  An assessment of P-selectin release from p2y12 

morphant thrombocytes would indicate whether p2y12 knockdown affects α 

granule release. However, human P2RY12 is present on macrophages and although 

my in situ for zebrafish p2y12 expression on macrophages was inconclusive, it is 

established to be present on microglia which arise from a phagocytic lineage shared 

by macrophages (Sieger et al., 2012). Therefore, it is possible that knockdown of 

p2y12 impedes the response of macrophages to pathogens, and as macrophages 

are the primary cell responsible for combatting microbes this may explain the 

reduced survival of the p2y12 morphants. It would be possible to utilise GFP 

labelled S. aureus and various transgenic lines, previously discussed, to investigate 

the interaction of thrombocytes, macrophages or neutrophils with S. aureus in vivo. 

Inoculating embryos with S. aureus after antagonism of the P2Y12 receptor would 

indicate whether antagonism of the receptor, as opposed to knockdown, would be 

sufficient to increase susceptibility to S. aureus, as shown in p2y12 morphants. 

However, during the course of my studies I have not observed anti-thrombotic 

effect of clinically used P2Y12 antagonists on thrombus in the zebrafish model. This 

may be due to the challenges of delivering a sufficient systemic dose of drug by 

immersion, but also raises the possibility these antagonists may not be functional in 

zebrafish. Zebrafish are increasingly being used as a platform for drug screening, 

however my results suggest that clinically used P2Y12 antagonists may not have 

been identified for an anti-thrombotic effect during a drug screen. Therefore, 
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further investigation and optimisation is required to determine whether P2Y12 

antagonists are functional in the zebrafish model and whether they can be used for 

the further investigation of inflammation and infective response in addition to 

thrombosis. 

It would be interesting to assess the response of the P2Y12 -/- mouse model to 

systemic S. aureus infection, in order to ascertain whether the results 

demonstrated in this thesis are reproduced in a mammalian model of P2Y12 

deficiency. Exposure of mice to P2Y12 antagonists, such as ticagrelor, has resulted in 

a reduction in thrombosis, therefore this model would also enable the investigation 

of the effects of P2Y12 antagonists on resistance to S. aureus infection (Patil et al., 

2010). P2Y12 antagonists are frequently used in anti-platelet therapy and S. aureus 

infection is a relatively common infection of hospitalized patients, therefore any 

possible reduction in defense against S. aureus would have implications for the 

current clinical use of P2Y12 antagonists. This area requires further research to 

ascertain whether antagonism or deficiency of the P2Y12 receptor increases 

susceptibility to S. aureus infection.  

As previously discussed, the PLATO study showed a reduction in mortality 

associated with pulmonary infection and sepsis in ticagrelor treated patients 

compared to clopidogrel treated patients (Storey et al., 2013). Although this has 

caused some controversy it is an interesting finding. Recent unpublished data from 

our group has found that P2Y12 antagonists reduce pro-inflammatory cytokines TNF 

and IL-6 release after systemic LPS administration in healthy volunteers, confirming 

that these drugs do indeed modulate the immune response in humans. The 

possible differential effect of ticagrelor and clopidogrel on susceptibility to infection 

remains unexplained, although it is possible that antagonism of P2Y12 increases 

susceptibility to infection which, in the case of ticagrelor, is somewhat offset by 

other effects such as the action of adenosine on leukocytes. It would be interesting 

to examine whether adenosine was able to reduce mortality in p2y12 morphant 

embryos after inoculation with S. aureus to address this question. 
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During the course of my studies I examined the effect of knockdown of miR-223, 

miR-126 and miR-24 on thrombosis after vessel injury. It is noteworthy that none of 

these morpholinos reduced thrombosis, implying that general off-target or non-

specific effects of morpholinos are unlikely to explain the reduction in thrombosis 

seen in p2y12 morphants. When I assessed thrombosis in miR-223 morphants, I 

found that knockdown of this microRNA significantly increases thrombus formation 

after vessel injury. This is novel data which offers an intriguing insight into the 

epigenetic regulation of thrombosis. It has been suggested that P2RY12 can be 

regulated by miR-223 (Landry et al., 2009), providing a potential mechanism for my 

observation. Interestingly, recent work investigating thrombosis in the miR-223 null 

mouse has shown no significant effect on platelet activation and aggregation 

(Leierseder et al., 2013). This lack of effect on thrombosis in the mouse may be 

explained as there is currently no predicted miR-223 binding site in the 3’ of mouse 

P2Y12, by www.mirBase.org. However, neither does www.mirBase.org predict a 

miR-223 binding site in zebrafish p2y12, therefore more investigation is required to 

determine whether miR-223 regulates P2Y12 expression in species other than 

humans. miRNA research is a rapidly developing topic, however this contrasting 

data between different species serves to highlight the importance of a broad 

approach, encompassing different species, to investigate gene regulation by 

miRNAs. 

In contrast to previously published investigations into knockdown of miR-126 in the 

zebrafish, I did not find ectopic vasculature or a haemorrhagic phenotype as 

described by Fish et al. (2008) and Nicoli (2010). This may be explained by either 

the difference in the morpholino used in my experiments, which was 6 nucleotides 

shorter, or the fact that I optimised 4.22 ng as the best morpholino amount to 

inject, as opposed to 4-8 ng by Fish et al (2008) and 7- 20 ng by Nicoli et al. (2010).  

Morpholinos have been a mainstay for zebrafish research allowing for the 

knockdown of gene function in a relatively inexpensive and efficient manner. The 

use of either translation blocking or splice site morpholinos enable the knockdown 

of gene function until approximately 3 dpf. In the case of splice site blocking 

morpholinos, altered splicing such as intron inclusion or exon skipping can be 
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detected by RNA extraction and RT-PCR (although this does not confirm that any 

observed phenotype is due to specific effects on mRNA translation). However, the 

effect of translation blocking morpholinos cannot be detected by PCR. Ideally, this 

would require a western blot to prove a reduction in protein level, although this is 

rarely possible due to a lack of suitable antibodies. Morpholinos can induce non-

specific toxicity which varies significantly depending on the gene target and 

morpholino design. Signs of non-specific toxicity in embryos include delayed 

development, cardiac oedema and small heads which can make interpretation of 

data generated in morpholino studies difficult. There is also a wide variation in 

injection volumes and amounts of morpholinos used in the literature, with up to 20 

ng of morpholino injected, although for my studies the maximum amount of 

morpholino injected was 4.2 ng. Injection of large volumes or concentrations of 

morpholino is likely to increase the risk of non-specific effects which mask true 

effects of gene knockdown or produce a false positive result. It is clear therefore, 

that studies that rely entirely on morpholino knockdown are subject to technical 

considerations that make corroboration by other methods highly desirable. 

Recent advances in mutagenesis have enabled the generation of mutants in a time 

and cost efficient manner. As well as reducing the chances of off-target effects 

being interpreted as the effect of gene knockdown, generation of stable mutants 

enables the study of stages of development later than is possible using morpholinos.   

The use of ZFN and TALEN mutagenesis techniques enable specific gene loci to be 

targeted for mutagenesis and the generation of different mutant alleles gives the 

possibility of assessing mutants with differing functional consequences. TALEN 

mutagenesis possesses advantages over ZFN mutagenesis as it is more time and 

cost efficient. There is an increased choice for target sites, with TAL sites occurring 

approximately every 35bp compared to 500bp for ZFN (Cermak et al., 2011, Sander 

et al., 2011). Screening for mutations in ZFN is primarily via sequencing rather than 

restriction digest, which increases the time and cost of confirming mutagenesis has 

been successful. The use of restriction enzyme digests for screening, which 

represents an advantage for TALEN mutagenesis, may be applied to ZFN 

mutagenesis. However the number of suitable ZF sites is considerably less 
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compared to TALEN, offering less chance of the target region coinciding with a 

suitable restriction enzyme digestion site. Both methods for generation of a mutant 

utilise the FokI cleavage domain to introduce a double strand break to introduce 

mutations via NHEJ. This technique appears to be a robust mechanism for 

introducing mutations. I generated 4 TALEN constructs and 2 ZFN constructs, 

however only one of the TALENs lines generated mutant alleles. Therefore, my 

results appear to show that there is a variation in levels of success depending on 

the method and positioning of the target region. This would require further 

investigation as to whether there is an optimum position of target sites for 

mutagenesis success, for example due to accessibility of the target region for 

mutagenesis. 

My experience with TALEN mutagenesis suggests the possibility that injection of 

TALEN RNA directly into the cell as opposed to the yolk or cell/yolk border 

maximises the efficiency of mutagenesis of a TALEN with previously low efficiency. 

Both mutant alleles I discovered were raised from embryos injected with RNA 

directly into the cell, with no mutants found from injections of RNA into the yolk. 

Embryos were exclusively injected at 1 cell stage therefore, in the case of yolk 

injection, RNA should still be transported into the cell by cytoplasmic streaming. 

However, this is an interesting finding which highlights that mutagenesis may be 

more efficient when injected directly into the cell, which is an important 

consideration to increase efficiency of mutagenesis. It is also of note that the 

previous 3 TALENs and ZFNs were injected into the yolk, therefore it is possible that 

these TALEN and ZFN generated RNAs would also be successful if I changed my RNA 

injection method. However, others in our group have successfully induced stable 

mutants without needing repeated attempts using different TALEN or ZFN pairs, 

suggesting that p2y12 truly is more challenging to mutate than other loci. 

Due to the need for repeated attempts and the time required to raise potential 

founders for screening, successful generation of TALEN-induced p2y12 mutants 

occupied a large amount of my time during this project. However, ultimately, I was 

able to identify two separate p2y12 mutant alleles successfully generated by this 

approach, although by the time these were identified I only had limited time to 
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characterize their phenotype. The p2y12sh338 allele induced a six base pair deletion 

that would only cause a loss of two amino acids. This may have only minor or silent 

effects on the overall function of p2y12, and it was not surprising that no apparent 

effect on thrombosis was observed in these embryos. However, the p2y12sh340 allele 

that is predicted to induce an early stop codon was not associated with clear effects 

on thrombosis, which is surprising in the context of my morpholino data and the 

existing literature on the role of p2y12 in this process.  

The effects of mutations in P2RY12 have been studied by a number of groups, many 

of which are reviewed by Cattaneo (2011)(Cattaneo, 2011b). A substitution 

mutation which affects the second extracellular loop of P2Y12  was shown by Daly et 

al (2009) to impair ligand binding and result in a bleeding phenotype when in 

combination with a mild type 1 von Willibrand disease and a VWF defect (Daly et al., 

2009). An individual homozygous for R122C substitution within the highly 

conserved DRY motif of P2RY12 was shown to have impaired ADP stimulated 

aggregation and a reduction in P2Y12 cell surface expression resulting in a bleeding 

disorder (Patel et al., 2014). Fontana et. al (2009) identified haploinsufficiency of 

P2RY12, in a heterozygote for a deletion downstream of the third transmembrane 

domain, resulting in a truncation of P2Y12 protein (Fontana et al., 2009, Conley  

2001). This individual showed reduced platelet aggregation, reduced platelet 

secretion and a mild bleeding phenotype (Cattaneo et al., 2000). This study 

indicates that heterozygosity for a truncated protein is sufficient to result in a 

bleeding phenotype. Therefore, the absence of an effect on thrombosis in my 

p2y12sh340 homozygous mutant is all the more intriguing.  

The reason for the failure of the p2y12 mutants to reproduce the morphant 

phenotype with regard to either thrombosis or mortality after systemic infection 

remains unclear. There are several possible explanations. The wrong locus may 

have been mutated, but this is unlikely since these were confirmed by sequencing 

therefore they are present in the genome, in the coding region annotated as p2y12, 

and this is the gene which the morpholinos target. It is possible that there is a 

mechanism in the developing embryo which enables rescue of gene function 

perhaps via redundancy. Although zebrafish p2y12 is currently listed on Ensembl 
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(www.ensembl.org) as a single orthologue of mammalian P2Y12, it is possible that, 

due to evolutionary genome duplication, there is an as yet unknown second 

orthologue of p2y12 which can compensate for the mutation. Investigation into the 

thrombosis response of P2Y12 -/+ mice found that there was no significant 

difference in thrombotic response compared to wildtype, therefore in this model 

one functional copy of P2Y12 appears to be sufficient for a normal thrombosis 

response (Patil et al., 2010). This is in contrast to the haploinsufficiency of human 

P2RY12, in which a single mutated allele (resulting in a truncated protein) caused 

impaired aggregation, secretion and reduced binding sites (Fontana et al., 2009). 

However, the possibility of a second orthologue of p2y12 does not explain why the 

p2y12 morphants, in which the morpholino was designed according to the same 

cDNA sequence as my p2y12 mutants, produces an effect on thrombosis consistent 

with previous mouse models of P2Y12. It is possible that the observed effect of the 

p2y12 morpholino on thrombosis is caused not by specific p2y12 knockdown but by 

other, off-target or non-specific effects. This would imply that zebrafish p2y12 does 

not play a role in thrombosis. This is possible but it is noteworthy I have not seen a 

reduction in thrombosis induced by multiple other morpholinos, so an off-target 

effect would have to be specific to the sequences of both p2y12 morpholinos that I 

examined, and this seems unlikely. If indeed loss of function of p2y12 does not 

reduce thrombosis, this would indicate a very different function for p2y12 in 

zebrafish than in any other species so far examined. This is again possible, although 

the previously demonstrated conservation of thrombotic pathways between 

zebrafish and mammals would make it surprising. 

The explanation that best fits my data in the context of the known functions of 

p2y12 is that the mutant alleles retain sufficient function to allow normal 

thrombosis. This might be expected for p2y12sh338, but is a surprising finding for 

p2y12sh340. To confirm this would require proteomic analysis in the zebrafish 

mutants to confirm the consequences of the mutation on protein primary structure 

(it is perhaps possible that the predicted stop codon does not cause a halt in 

translation). If indeed there is premature truncation of zebrafish p2y12 in these 

mutants, then expression studies in cell culture would be interesting to assess the 

http://www.ensembl.org/
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functional consequences of the mutation. The p2y12sh340 mutation is predicted to 

produce a stop codon upstream of the key residues associated with activation of 

P2Y12 such as Y105, E188, R256, Y259 and 280 (which are conserved in the zebrafish) 

(Hoffmann et al., 2008, Ignatovica et al., 2012, Schmidt et al., 2013). There is also a 

partial conservation of the DRY motif, which is involved in trafficking and G protein 

interaction, downstream of the p2y12sh340 mutation (Nygaard et al., 2009). These 

sequence similarities indicates their functional importance in P2Y12, therefore the 

disruption of these residues, for example as seen in the DRY motif mutation noted 

by Patel et al. (2014), could result in a bleeding phenotype (Patel et al., 2014), 

however no such effect was observed in p2y12sh340. 

There is an indication that that several TALEN generated mutants lack the 

phenotype associated with the morphants for that gene. This evidence, in addition 

to my data presented in this thesis, serves to highlight current difficulty in 

interpreting results obtained from morphants compared to mutants, in the 

zebrafish model. 

6.2 Future directions 

It would be interesting to further investigate the relationship between P2Y12 and 

miR-223 in the zebrafish model of thrombosis. Overexpression studies of miR-223 

would enable the investigation of the role of miR-223 in regulation of P2Y12. As miR-

223 may regulate translation of the p2y12 mRNA to protein, overexpression of miR-

223 would potentially produce the same phenotype as p2y12 knockdown, which 

acts by sterically blocking translation of mRNA to protein. Co-injection of miR-223 

MO with p2y12 MO may rescue the reduction of thrombosis in the p2y12 morphant 

and increase in thrombosis in the miR-223 morphant, respectively. It would be 

interesting to investigate whether co-injection of both of these MOs would cancel 

out each phenotype or whether p2y12 MO would prevent overexpression due to 

blocking translation. It may be possible to quantify GFP fluorescence in the 

p2y12::P2Y12-GFP transgenic, after injection with the miR-223 MO, thus enabling 

the assessment of the role of miR-223 in regulation of p2y12 translation.  
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There were time limitations impeding the investigation of the p2y12 mutants. For 

example, it would be beneficial to assess the thrombosis, inflammation and 

infection response of embryos generated from a homozygous in-cross. This would 

enable high through put of investigations which were limited in this thesis by only 

being able to obtain the 25% Mendelian ratio of homozygotes from a heterozygous 

in-cross.  Unfortunately I have conducted no investigation into the inflammatory 

response of the p2y12sh340, as there was insufficient time to cross the mutant allele 

into the transgenic mpo:GFP or fmsgal4;UNM background. It would be possible to 

investigate migration of macrophages and neutrophils to sites of injury in p2y12sh340 

mutants via the use of an in situ probe for L-plastin and an antibody for MPO. 

However, since the morpholino did not induce an effect and I consider it most likely 

that the p2y12sh340 allele does not induce loss of function of p2y12 (despite its 

predicted effect on protein structure), I would expect not to detect a marked effect 

on inflammation in these mutants. 

 6.3 Conclusion 

The involvement of P2Y12 in thrombosis is well documented in many models, 

however, until this thesis, it has not to my knowledge, been investigated in the 

zebrafish. The results discussed in this thesis demonstrate that p2y12 morphants 

show a statistically significant reduction in thrombus area after vessel injury when 

compared to control morphants. This is consistent with previous studies in which 

P2Y12 -/- mice show reduced thrombosis response and increased embolization of 

thrombus when compared to wildtype mice (Andre et al., 2003, Foster et al., 2001) 

(Patil et al., 2010). This data also confirms that the function of P2Y12 in thrombosis 

is conserved in the zebrafish. I found no significant difference in leukocyte 

migration to injury in the p2y12 morphants, indicating that p2y12 is not involved in 

leukocyte migration to sites of tail or vessel injury in this model. However I found 

that p2y12 morphants had significantly reduced survival after inoculation with S. 

aureus. This is a novel finding which indicates that the P2Y12 receptor may play a 

role in defence against systemic S. aureus infection via an unknown mechanism. I 

generated 2 TALEN p2y12 mutants, however I found that neither the 6bp deletion 

nor 10bp deletion mutation phenocopied my morphant generated data, which I 
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consider likely to be due to the mutations not altering protein function sufficiently. 

During my investigations into the involvement of known platelet microRNAs in 

thrombosis, I discovered that knockdown of miR-223 significantly increases 

thrombus area after vessel injury. As miR-223 is proposed to regulate P2RY12 

(Landry et al., 2009), this is an important finding to begin to understand the role of 

miR-223 in thrombosis. 
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