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Abstract

This thesis focuses on semidirect and Zappa-Szép products in the context of semigroups and
monoids. We present a survey of direct, semidirect and Zappa-Szép products and discuss
correspondence between external and internal versions of these products for semigroups and
monoids.

Particular attention in this thesis is paid to a wide class of semigroups known as restric-
tion semigroups. We consider Zappa-Szép product of a left restriction semigroup S with
semilattice of projections E and determine algebraic properties of it.

We prove that analogues of Green’s lemmas and Green’s theorem hold for certain semi-
groups where Green’s relations R,L,H and D are replaced by R̃E, L̃E, H̃E and D̃E. We
show that if H̃E is a congruence on a certain semigroup S, then any right congruence on the
submonoid H̃e

E (the H̃E-class of e), where e ∈ E, can be extended to a congruence on S. We
introduce the idea of an inverse skeleton U of a semigroup S and examine some conditions
under which we obtain skeletons from monoids . We focus on a result of Kunze [37] for the
Bruck-Reilly extension BR(M, θ) of a monoid M , showing that BR(M, θ) is a Zappa-Szép
product of N0 under addition and a semidirect product M o N0. We put Kunze’s result in
more general framework and give an analogous result for certain restriction monoids.

We consider the λ-semidirect product of two left restriction semigroups and prove that it
is left restriction. In the two sided case using the notion of double action we prove that the
λ-semidirect product of two restriction semigroups is restriction.

We introduce the notion of (A, T )-properness to prove the results analogous to McAlister’s
covering theorem and O’Carroll’s embedding theorem for monoids and left restriction monoids
under some conditions.

We extend the notion of the λ-semidirect product of two restriction semigroups S and T
to develop λ-Zappa-Szép products and construct a category. In the special case where S is a
semilattice and T is a monoid we order our category to become inductive and thus obtain a
restriction semigroup via the use of the standard pseudo-product.
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Preface

In this thesis we study the decomposition of semigroups and monoids into semidirect and
Zappa-Szép products. Zappa-Szép products perhaps first appeared in the work of Neumann
for groups in 1935 [56]. The Zappa-Szép product is a natural generalisation of the semidirect
product of groups, whereas, the semidirect product is a natural generalisation of the direct
product of groups. In the direct product of groups both factors are required to be normal,
whereas in semidirect products this strong condition is replaced by the weaker condition that
only one factor is required to be normal. More generally, in Zappa-Szép products, neither
of the factors is required to be normal. These products have been studied from different
points of view and under different names since 1935. The concept of Zappa-Szép products
for semigroups was developed by Kunze [37] who used the terminology bilateral semidirect
products for Zappa-Szép products. We provide a detailed historical background of these
products in Chapter 3.

We give the basic definitions and results related to regular and inverse semigroups in
Chapter 1. We also provide a brief introduction to non-regular classes of semigroups such as
abundant, weakly abundant, adequate, weakly adequate, ample and weakly ample semigroups
and their one-sided versions.

In Chapter 2 we provide introductory material of restriction semigroups. Restriction
semigroups are a wide and natural class of semigroups to consider. Restriction semigroups
and their one-sided versions have been studied from various points of view under different
names for more than 40 years. Left restriction semigroups are a class of unary semigroups
(that is, semigroups equipped with an additional unary operation) that are precisely the
unary semigroups isomorphic to unary subsemigroups of partial transformation semigroups
PT X where the unary operation + takes a transformation α to the domain of α. Restriction
semigroups are the two-sided version possessing a second unary operation α 7→ α∗. We shall
provide the definition of restriction semigroups as a class of algebras defined by identities.
We shall look at the natural partial order on (left) restriction semigroups and provide the
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results related to this partial order to be used later in the thesis. In subsequent sections of
this chapter we recall definitions of categories, inductive groupoids and inductive categories.
We discuss the famous Ehresmann-Schein-Nambooripad Theorem that explains the category
theoretic connection between inverse semigroups and inductive groupoids. We survey some
results of Lawson from [33], that establish a connection between restriction semigroups and
inductive categories.

Chapter 3 is a survey on direct, semidirect and Zappa-Szép products. We present a
detailed historical background to Zappa-Szép products. We then discuss uniquely factorisable
semigroups and monoids. We know from [7, Lemma 3.4] that if a semigroup U is uniquely
factorisable as U = ST , then there is an idempotent e ∈ S ∩ T which is a right identity for
S and a left identity for T . We provide an alternative proof for this result.

Zappa-Szép products are a natural generalisation of semidirect products whereas semidi-
rect products generalise direct products. Therefore in the next section of Chapter 3 we discuss
direct products. We give definitions of the internal and external direct products of monoids
and semigroups. We see that the internal direct products of monoids are isomorphic to the
external direct products of monoids and vice versa. We notice that for semigroups there is
not such a complete correspondence between internal and external direct products as exists
for monoids. When we consider the internal direct product U = ST of semigroup U with
subsemigroups S and T , then we notice that there is an element e ∈ S ∩ T which becomes
the identity of S and T and hence of U . Thus U is forced to be a monoid with submonoids S
and T which by the previous result is isomorphic to an external direct product of monoids.
Naturally our next step is to see what happens if we consider an external direct product
of semigroups. We see that it is not immediate to obtain an internal direct product from
an external direct product of semigroups, but we can use Preston’s techniques from [64] for
semidirect products to overcome this difficulty.

In the subsequent sections, we discuss equivalence between external and internal versions
of semidirect and Zappa-Szép products of semigroups and monoids. There is a correspondence
between external and internal semidirect and Zappa-Szép products of monoids, but this is not
true for semigroups in general. We discuss the conditions under which we get an equivalence
for semidirect and Zappa-Szép products of semigroups. We discuss some known results
that describe the correspondence between external and internal semidirect and Zappa-Szép
products of monoids and consider why such a correspondence for semigroups does not exist.
Under some conditions, we prove that we can find an equivalence between the external and
internal versions of these products for semigroups.

In Chapter 4, we discuss algebraic properties of the Zappa-Szép product E ./ S of a
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left restriction semigroup S with a semilattice of projections E. We determine the set of
idempotents of E ./ S. We know that E ./ S itself is not left restriction but we prove that
we can find a subset T of E ./ S which is left restriction. We notice that if S is also right
restriction, then T is not always right restriction because, in particular we cannot always
find a right identity of an element in T . Our results can be immediately applied to inverse
semigroups. We characterise generalised Green’s relations for Zappa-Szép products of certain
monoids and semigroups.

Our main work starts in Chapter 5. The contents of Chapter 5 have already appeared
in a joint paper with Victoria Gould [30]. In this chapter, we study semigroups possessing
E-regular elements, where an element a of a semigroup S is E-regular if a has an inverse
a◦ such that aa◦, a◦a lie in E. In Section 5.1, we prove that under certain circumstances
R̃E and L̃E behave like R and L; in general, however, they do not. We show that where
S possesses ‘enough’ (in a precisely defined way) E-regular elements, analogues of Green’s
lemmas hold, where Green’s relations R,L,H and D are replaced by R̃E, L̃E, H̃E and D̃E.
With some extra conditions on our semigroup we also have an analogue of Green’s theorem.
Namely, we show that under these conditions, if a H̃E a

2, then H̃a
E, the H̃E-class of a, is a

monoid with identity from E.
In Section 5.2 we show that if H̃E is a congruence on a certain semigroup S, then any

right congruence on the submonoid H̃e
E, where e ∈ E, can be extended to a congruence on

S. We also have a result for two sided congruences, with some further restrictions on S. We
stress that for regular semigroups with E = E(S) we have K̃E = K∗ = K, so our results can
be immediately applied to maximal subgroups of regular semigroups.

In Section 5.3 we introduce the idea of an inverse skeleton U of a semigroup S. Here U
is an inverse subsemigroup of E-regular elements, such that E ⊆ U and U intersects every
H̃E-class exactly once (it follows that E = E(U)). We examine some conditions under which
we obtain skeletons from monoids having a particular submonoid L of the L̃E-class of the
identity. A monoid with such a submonoid L is called special. Our most complete results
are for restriction monoids in Section 5.4, where we focus on a result of Kunze [37] for the
Bruck-Reilly extension BR(M, θ) of a monoid M , showing that BR(M, θ) is a Zappa-Szép
product of N0 under addition and a semidirect product M o N0. Certainly BR(M, θ) is
special, with L isomorphic to N0. We put Kunze’s result in more general framework and
prove in particular that a special D̃E-simple restriction monoid can be decomposed in an
analogous way. Again, our results apply immediately to inverse monoids.

We study the λ-semidirect product of restriction semigroups in Chapter 6. It is well
known that, in general, the semidirect product S o T of two inverse semigroups S and T
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need not be inverse. To overcome this, Billhardt introduced the concept of a λ-semidirect
product S oλ T [4]. The λ-semidirect product of two inverse semigroups is again inverse.
Further, Billhardt generalised this result to the left ample case, where one component is a
semilattice [5] (but he indicated that it would work for any two left ample semigroups). Again
in this special case, this was extended further to the λ-semidirect product of a semilattice
and a left restriction semigroup by Branco, Gomes and Gould [6]. We complete the picture
to show that if S and T are restriction semigroups, then so is S oλ T subject to certain
conditions on the actions.

We first consider the λ-semidirect product SoλT of two left restriction semigroups S and
T and following Billhardt’s constructions prove that it is again left restriction. In the two
sided case, it is not straightforward that the λ-semidirect product S oλ T of two restriction
semigroups S and T is also right restriction. It turns out that we need both a left and a right
action of T on S (given that restriction semigroups do not possess a natural involution in the
way that groups and inverse semigroups do). This notion of double action was introduced in
[24] to determine the structure of the free ample monoids. We present two proofs that the λ-
semidirect product of two restriction semigroups is also right restriction. First a direct proof
and second, by using the correspondence between the category of restriction semigroups and
that of inductive categories.

In Chapter 7 we present structure theorems for certain monoids and left restriction
monoids analogous to the approach for proper inverse semigroups. The well known McAlis-
ter’s P -theorem [52] for proper (E-unitary) inverse semigroups is important due to McAlis-
ter’s other major result that every inverse semigroup has a proper cover [51]. The P -theorem
determines the structure of all proper inverse semigroups and has many important conse-
quences such as O’Carroll’s embedding theorem [59]. In Section 7.1, we give basic definitions
of proper and proper covers in the context of inverse semigroups. We then define a P -
semigroup and state McAlister’s P - theorem and its consequences. McAlister’s work has
been extended for left ample, weakly left ample and left restriction semigroups. We give
results for left restriction semigroups analogous to McAlister’s theory in Section 7.2.

In Section 7.3, we consider a monoid S such that S = AT for submonoids A, T , where
T acts on A (as a semigroup) satisfying a condition (LAC) analogous to the left ample
condition and introduce the notion of (A, T )-properness. We notice that our notion of (A, T )-
properness generalises the notion of a proper left restriction semigroup. We then show how
to construct an (A, T )-proper monoid from a semidirect product in Section 7.4 and state our
covering theorem for (A, T )-proper monoids. As a second step in this section we present the
embedding theorem for (A, T )-proper monoids subject to certain conditions.
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In the final section of Chapter 7, we consider a left restriction monoid S with submonoids
A, T such that S = AT , where T acts on A as a monoid by (2,1)-endomorphisms. We consider
the λ-semidirect product of A by T to prove the results analogous to those in Section 7.4
for left restriction monoids. We adopted the notion of (A, T )-properness for left restriction
monoids from Section 7.4 and under certain conditions prove the covering and embedding
theorems for left restriction monoids.

In Chapter 8, we consider the λ-Zappa-Szép products of two restriction semigroups. The
Zappa-Szép product of two restriction semigroups is not restriction in general. This is even
the case for the Zappa-Szép product of two inverse semigroups. If Z = S ./ T is a Zappa-
Szép product of two inverse semigroups S and T , then it is known that by picking a certain
subset B./(Z) of Z = S ./ T , B./(Z) is a groupoid under the restriction of the product in
Z. In the special case where S = E a semilattice and T = G a group, this groupoid can be
ordered to become inductive thus yielding an inverse semigroup via the use of the standard
pseudo-product. These constructions are due to Gilbert and Wazzan [25]. We refer to this
as the λ-Zappa-Szép product of S and T .

We extend the concept of the λ-Zappa-Szép product of inverse semigroups to the λ-
Zappa-Szép product of restriction semigroups. In Section 8.1, we give results for the λ-
Zappa-Szép product of inverse semigroups from [77]. We then present a comparison between
the inverse and restriction cases in Section 8.2 and discuss the technical difficulties arising
in the restriction case. We consider the Zappa-Szép product Z = S ./ T of two restriction
semigroups S and T and define two new actions of S and T on each other. We emphasise
here that these new actions do not satisfy Zappa-Szép axioms. We then pick a certain
set of pairs V./(Z) of Z and observe that if S and T are inverse semigroups regarded as
restriction semigroups in the usual way, then B./(Z) = V./(Z). In Section 8.3, we give V./(Z)
the structure of a category. To obtain a restriction semigroup, we consider the Zappa-Szép
product of a semilattice and a monoid. In this special case we order our category to become
inductive and use the equivalence of categories between restriction semigroups and inductive
categories to obtain a restriction semigroup.
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Chapter 1

Regular, inverse, (weakly) abundant,
(weakly) adequate semigroups and
associated classes

In this chapter we provide definitions of Green’s and generalised Green’s relations. We give
a brief introduction to regular and inverse semigroups. We explain how generalised Green’s
relations may be used to define the classes of non-regular semigroups given in the title to
this chapter.

1.1 Green’s relations, regular and inverse semigroups

Green’s relations are five equivalence relations that characterise the elements of a semigroup
in terms of the principal ideals they generate.

Let S be a semigroup and a ∈ S. Given that S need not be a monoid, it is not always
true that

a ∈ aS = {as : s ∈ S}.

To overcome this problem, we need to consider the notion of adjoining an identity.
Let 1 be a symbol not in S. We extend the binary operation in S to S ∪ {1} by defining

1s = s = s1 for all s ∈ S and 11 = 1.

1



Then S ∪ {1} becomes a monoid with identity 1. We write

S1 =

S If S has an identity element

S ∪ {1} otherwise.
(1.1)

We say that S1 is the monoid obtained from S by adjoining an identity if necessary. We also
put S(1) = S ∪{1} and say that S(1) is the monoid obtained from S by adjoining an identity.

We see that
aS1 = aS ∪ {a}

so that a ∈ aS1. Note that aS1 is a subset of S and so will not contain an adjoined identity.
Precisely aS1 is the smallest right ideal of S containing a, known as the principal right ideal
of S generated by a. Dually S1a = Sa∪{a} is a subset of S and will not contain an adjoined
identity. Then S1a is the smallest left ideal of S containing a, known as the principal left
ideal generated by a. Also

S1aS1 = SaS ∪ Sa ∪ aS ∪ {a}

is a subset of S which will not contain an adjoined identity and is the smallest two sided
ideal of S containing a, known as the principal ideal generated by a.

The relations ≤R, ≤L and ≤J depend on the principal ideals mentioned above and are
defined on a semigroup S as follows: for any a, b ∈ S

• a≤R b if and only if aS1 ⊆ bS1;

• a≤L b if and only if S1a ⊆ S1b;

• a≤J b if and only if S1aS1 ⊆ S1bS1.

It is easy to check that ≤R, ≤L and ≤J are pre-orders (quasi-orders) on S, that is, relations
that are reflexive and transitive. We denote the associated equivalence relations by R, L and
J , respectively. Thus for any a, b ∈ S

• aR b if and only if aS1 = bS1;

• aL b if and only if S1a = S1b;

• aJ b if and only if S1aS1 = S1bS1.

The next proposition gives an alternative characterisation of the relations R, L and J .

2



Proposition 1.1.1. [34] Let S be a semigroup and a, b ∈ S. Then
(i) aR b if and only if there exists x, y ∈ S1 such that ax = b, by = a;
(ii) aL b if and only if there exists u, v ∈ S1 such that ua = b, vb = a;
(iii) aJ b if and only if there exists x, y, u, v ∈ S such that xay = b, ubv = a.

We note that ≤R is left compatible, as if a, b, c ∈ S and a≤R b, then aS1 ⊆ bS1, and so
caS1 ⊆ cbS1, that is, ca≤R cb. Dually, ≤L is right compatible. The following two lemmas
give important properties of R and L, the first follows from the observation concerning the
compatibility properties of ≤R and ≤L.

Lemma 1.1.2. [35] Let S be a semigroup. The relation R is a left congruence and L is a
right congruence.

Lemma 1.1.3. [35] Let S be a semigroup. The relations R and L commute.

The relations H and D are derived from R and L by letting H = R∩L be the intersection
and D = R∨ L be the join of R and L. These equivalence relations R, L, J , H and D are
called Green’s relations [31]. As these are equivalence relations on S, each of them yields a
partition of S. The R-class of a is denoted by Ra and similarly for other relations. In view
of Lemma 1.1.3, we have

D = R ◦ L = L ◦ R.

It is convenient to visualise a D-class as an ‘egg box’ in which each row represents an R-class,
each column represents an L-class and each cell represents an H-class.

Ra a

b

Lb

Figure 1.1: D-class

The structure of D-classes helps to determine the properties of a semigroup. The following
important lemma, known as Green’s Lemma, tells us that every R-class and every L-class in
a D-class has the same size. We first explain the maps restricted to particular domains used
in this lemma, known as right translations and left translations.

Let S be a semigroup and s ∈ S. A right translation of S is a map ρs : S → S defined by

xρs = xs for any x ∈ S.
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Dually, a left translation is a map λt : S → S such that

yλt = ty for any y ∈ S.

Green’s Lemma. [34] Let S be a semigroup and a, b ∈ S. Suppose that aD b.
(1) If aR b, let s, s′ ∈ S be such that

as = b, bs′ = a.

Then the right translations ρs : La → Lb and ρs′ : Lb → La are mutually inverse R-class
preserving bijections.

(2) If aL b, let t, t′ ∈ S be such that

ta = b, t′b = a.

Then the left translations λt : Ra → Rb and λt′ : Rb → Ra are mutually inverse L-class
preserving bijections.

A consequence of Green’s Lemma is that if a, b are any D-equivalent elements in a semi-
group S, then |Ha| = |Hb|.

The following theorem, known as Green’s Theorem, is of considerable use in Chapter 5.

Green’s Theorem. [34] Let S be a semigroup. Then the H-class of an element a ∈ S is a
subgroup of S if and only if aH a2.

Definition 1.1.4. An element a of a semigroup S is called idempotent if a = a2.

Given a semigroup S, we denote by E(S) its set of idempotents and we often use E to
denote a subset of E(S).

A consequence of Green’s Theorem is that if e is an idempotent in S, thenHe is a subgroup
of S and no H-class in S contains more than one idempotent.

Definition 1.1.5. Let S be a semigroup. An element a of S is called regular if there exists
x in S such that a = axa.

A semigroup S is regular if all of its elements are regular.

We denote the set of all regular elements in a semigroup S by Reg(S).
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If a is a regular element of S with a = axa, and if b ∈ Ra, then there exist u, v ∈ S1 such
that b = au, a = bv. Then

b = au = axau = axb = b(vx)b

and so b is regular. The dual argument applies to any element in La and hence we have the
following proposition.

Proposition 1.1.6. [34] If a is a regular element of a semigroup S, then every element of
Da is regular.

Thus every element in a D-class D is regular or no element of D is regular. We say that
a D-class is regular if all of its elements are regular and non-regular otherwise.

If a is a regular element of S with a = axa, then clearly ax and xa are idempotents and

axR aLxa.

We conclude that in a regular D-class each R-class and each L-class contains an idempotent.

Definition 1.1.7. An element a′ ∈ S is said to be an inverse of a ∈ S if

a = aa′a and a′ = a′aa′.

We denote the set of inverses of an element a ∈ S by V(a). We notice that an element
with an inverse is necessarily regular, as a regular element necessarily has an inverse for if a
is regular element with a = axa, then by defining a′ = xax, we see that

aa′a = axaxa = axa = a

and
a′aa′ = (xax)a(xax) = x(axa)xax = xaxax = xax = a′,

and hence a′ is an inverse of a.
The following theorem is very useful to understand the structure of regular D-classes.

Theorem 1.1.8. [34] Let a be an element of a regular D-class D in a semigroup S.
(1) If a′ is an inverse of a, then a′ ∈ D and the two H-classes Ra ∩La′, La ∩Ra′ contain

respectively the idempotents aa′ and a′a.
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(2) If b ∈ D is such that Ra ∩Lb and La ∩Rb contain idempotents e, f , respectively, then
Hb contains an inverse a′ of a such that aa′ = e and a′a = f .

(3) No H-class contains more than one inverse of a.

Theorem 1.1.8 and its following easy consequence will be of considerable use in Chapter
5.

Proposition 1.1.9. [34] Let e, f be idempotents in a semigroup S. Then eD f if and only
if there exists an element a ∈ S and an inverse a′ of a such that aa′ = e and a′a = f .

Definition 1.1.10. A semigroup S is said to be inverse if each element a ∈ S has exactly
one inverse.

We will denote the unique inverse of a in S by a−1.
An inverse semigroup is clearly regular, but the converse is not necessarily true.

Definition 1.1.11. A semigroup S is called a semilattice if all elements of S are idempotents
and ab = ba for all a, b ∈ S.

We now explain the concept of a lower semilattice and see that the notion of ‘lower
semilattice’ and ‘semilattice’ are equivalent and interchangeable.

Definition 1.1.12. Let (X,≤) be a partially ordered set and let Y be a non-empty subset
of X. An element c ∈ Y is said to be a lower bound of Y if

c ≤ y for all y ∈ Y .

If the set of all lower bounds of Y is non-empty and has a maximum element l, then we say
that l is the greatest lower bound, or meet of Y . The element l is unique if it exists and we
write

l = ∧{y : y ∈ Y }.

Definition 1.1.13. A lower semilattice is a partially ordered set (X,≤) such that a∧b exists
for all a, b ∈ X.

In a lower semilattice (X,≤) we have that

a ≤ b if and only if a ∧ b = a for all a, b ∈ X.

We see in the following proposition that the notion of ‘lower semilattice’ coincides with
‘semilattice’.
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Proposition 1.1.14. [34, Proposition 1.3.2] Let (E,≤) be a lower semilattice. Then (E,∧)
is a semilattice and

a ≤ b if and only if a ∧ b = a for all a, b ∈ E.

Conversely, suppose that (E, ·) is a semilattice. Then the relation ≤ on E defined by

a ≤ b if and only if ab = a

is a partial order on E, with respect to which (E,≤) is a lower semilattice and the meet of
a, b ∈ E is their product ab.

The following theorem provides equivalent definitions for inverse semigroups.

Theorem 1.1.15. [35] Let S be a semigroup with set of idempotents E(S). Then the follow-
ing are equivalent:

(1) S is an inverse semigroup;
(2) S is regular and E(S) is a semilattice;
(3) every R-class and every L-class contains exactly one idempotent;
(4) every element of S has a unique inverse.

The following proposition provides the elementary properties of inverse semigroups.

Proposition 1.1.16. Let S be an inverse semigroup with semilattice of idempotents E(S).
Then

(i) (a−1)−1 = a for all a ∈ S;
(ii) e−1 = e for all e ∈ E(S);
(iii) (ab)−1 = b−1a−1 for all a, b ∈ S;
(iv) aea−1 ∈ E(S), a−1ea ∈ E(S) for all a ∈ S and e ∈ E(S).

If S is an inverse semigroup with semilattice of idempotents E(S), then the natural partial
order ≤ on S is defined by the rule for a, b ∈ S

a ≤ b if and only if a = eb for some e ∈ E(S).

This partial order on any inverse semigroup is compatible with the operations of multiplica-
tion and inverse. Several alternative characterisations of this partial order can be found in
[34]. We give one of them in the following proposition.
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Proposition 1.1.17. Let S be an inverse semigroup with natural partial order ≤ and let
a, b ∈ S. Then a ≤ b if and only if a = bf for some f ∈ E(S).

If S is an inverse semigroup with semilattice of idempotents E(S), then the restriction of
≤ to E(S) is the usual partial order on E(S). Thus for e, f ∈ E(S)

e ≤ f if and only if ef = e.

Definition 1.1.18. Let S be an inverse semigroup with semilattice of idempotents E(S).
The relation σ on S is defined by for all s, t ∈ S:

s σ t⇔ es = et for some e ∈ E(S).

The following result can be found in [45].

Theorem 1.1.19. Let S be an inverse semigroup. Then
(1) σ is a congruence on S;
(2) S�σ is a group;
(3) if ρ is any congruence on S such that S�ρ is a group, then σ ⊆ ρ.

The congruence σ is called the minimum group congruence.
From now onwards we assume that the reader is familiar with inverse semigroups and

knows the early development made by Preston [61, 62, 63].
Regular D-classes are particularly well understood, given that the left and right trans-

lations afforded by Green’s lemmas result in Green’s theorem. For non-regular D-classes,
indeed for non-regular semigroups, an approach using Green’s relations is not always the
most appropriate. As an alternative, one can make use of the extensions K∗ of Green’s
relations K, where K ∈ {R,L,H,D} or the yet wider relations K̃E, where E is a set of
idempotents. We define these relations and semigroups built using these relations in the next
section.

1.2 Abundant and weakly E-abundant semigroups

This section is concerned with classes of semigroups built using the relations R∗, L∗, R̃E and
L̃E. Such semigroups do not have to be regular.
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Definition 1.2.1. Let S be a semigroup. We define the relations ≤R∗ and ≤L∗ on S by the
rule that for any a, b ∈ S

a≤R∗ b if and only if a≤R b in some oversemigroup of S

and
a≤L∗ b if and only if a≤L b in some oversemigroup of S,

where ≤R and ≤L are defined in Section 1.1.

The following lemma gives an alternative characterisation of relations ≤R∗ and ≤L∗ .

Lemma 1.2.2. [18] Let S be a semigroup. Then the following statements are equivalent:
(i) (a, b) ∈ ≤R∗ ((a, b) ∈ ≤L∗);
(ii) for all x, y ∈ S1, xb = yb implies xa = ya (bx = by implies ax = ay).

It follows from Lemma 1.2.2 that the relations ≤R∗ and ≤L∗ are pre-orders. Also ≤R∗
is left compatible because ≤R is left compatible and ≤L∗ is right compatible because ≤L is
right compatible. We denote the associated equivalence relations by R∗ and L∗ respectively.
Therefore for any a, b ∈ S, aR∗ b if and only if aR b in some oversemigroup of S. The
relation L∗ is defined dually. Clearly R∗ is a left congruence and L∗ is a right congruence.
The following corollary gives an equivalent formulation of relations R∗ and L∗.

Corollary 1.2.3. [18] Let S be a semigroup. Then the following statements are equivalent:
(i) (a, b) ∈ R∗ ((a, b) ∈ L∗);
(ii) for all x, y ∈ S1, xa = ya if and only if xb = yb (ax = ay if and only if bx = by).

We note that an idempotent e of S acts as a left identity for its R∗-class and a right
identity for its L∗-class. Also note that R ⊆ R∗ and L ⊆ L∗. A useful observation is that
unlike Green’s relations, the relations R∗ and L∗ need not commute.

Lemma 1.2.4. Let S be a regular semigroup. Then R = R∗ and L = L∗.

Proof. We have to show that R∗ ⊆ R and L∗ ⊆ L . For this let a, b ∈ S and aR∗ b. Then

xa = ya if and only if xb = yb for all x, y ∈ S1.

As S is regular, we have a = asa and b = btb for some s, t ∈ S. Therefore

1a = asa⇒ b = asb and b = btb⇒ a = bta.
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Hence aR b and thus R = R∗. Dually, L = L∗.

Following the conventions for Green’s relations, the intersection of R∗ and L∗ is denoted
by H∗ and their join by D∗. We denote the R∗-class of an element a by R∗a and similarly for
other relations.

Definition 1.2.5. Let S be a semigroup with set of idempotents E(S). Then S is called left
abundant if each R∗-class contains at least one element of E(S).

Dually S is right abundant if each L∗-class contains at least one element of E(S).

Regular semigroups are abundant as in this case R∗ = R and L∗ = L. The relations
R∗, L∗, H∗ and D∗ play an important role in the theory of abundant semigroups which is to
some extent analogous to that of Green’s relations in the theory of regular semigroups.

If S is an abundant semigroup and a ∈ S, then we denote idempotents in the R∗-class
and L∗-class by a+ and a∗, respectively. Note that it is not necessary for a+ and a∗ to be
unique.

A left (right) abundant semigroup S is said to be left adequate (right adequate) if E(S) is
a semilattice [17]. We say that a semigroup S is adequate if it is both left and right adequate.
If S is an adequate semigroup, then for any a ∈ S, a+ and a∗ are unique. As if a◦R∗ a+,
where a◦, a+ ∈ E(S), then as idempotents are left identities for their R∗-classes,

a+ = a◦a+ = a+a◦ = a◦.

Definition 1.2.6. A left adequate semigroup is said to be left ample if if for all a ∈ S and
e ∈ E(S), the left ample condition holds, that is:

(ae)+a = ae.

Dually, we have right ample semigroups where S is a right adequate semigroup and for all
a ∈ S and e ∈ E(S):

a(ea)∗ = ea.

We say that a semigroup S is ample if it is both left and right ample.

In particular, an inverse semigroup is ample, where a+ = aa−1 and a∗ = a−1a.

Definition 1.2.7. Let S be a semigroup and let E be a non-empty subset of E(S) which we
call a distinguished set of idempotents. The relations ≤R̃E and ≤L̃E on S are defined by the
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rule that for all a, b ∈ S we have a≤R̃E b if and only if

{e ∈ E : eb = b} ⊆ {e ∈ E : ea = a}

and a≤L̃E b if and only if

{e ∈ E : be = b} ⊆ {e ∈ E : ae = a}.

It is clear that ≤R̃E and ≤L̃E are pre-orders on S. The associated equivalence relations
are denoted by R̃E and L̃E, respectively. Thus for any a, b ∈ S we have a R̃E b if and only if
a and b have same set of left identities in E and a L̃E b if and only if a and b have same set
of right identities in E.

Note that any e ∈ E is a left (right) identity for its R̃E-class (L̃E-class). Because, if a ∈ S
and a R̃E e, then since e ∈ E,

ee = e⇒ ea = a.

In fact we can say more about it as we see in the following lemma.

Lemma 1.2.8. [44] Let S be a semigroup and E ⊆ E(S). If a ∈ S and e ∈ E, then a R̃E e

(a L̃E e) if and only if ea = a (ae = a) and for all f ∈ E,

fa = a⇒ fe = e (af = a⇒ ef = e).

It is easy to see that R ⊆ R∗ ⊆ R̃E and L ⊆ L∗ ⊆ L̃E. If S is regular and E = E(S),
then the foregoing inclusions are replaced by equalities. More generally, if e, f ∈ E then
e R̃E f if and only if eR f and e L̃E f if and only if eL f . In general, however, the inclusions
are strict.

We note that E does not necessarily have to be the whole of E(S) but at times we
consider the case when E = E(S). If E = E(S), then we use R̃ and L̃ instead of R̃E and
L̃E, respectively. Certainly, R̃ ⊆ R̃E and L̃ ⊆ L̃E for any E ⊆ E(S).

Following the usual practice for the relations R∗ and L∗, we denote idempotents in the
R̃E-class and L̃E-class of an element a by a+ and a∗, respectively. Note that a+ and a∗ are
not unique unless E is a semilattice. We note that for any distinguished idempotents a+ and
a∗ in R̃E-class and L̃E-class of a respectively, we have that

a+a = a and aa∗ = a.
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Unlike R and R∗, the relation R̃E need not be a left congruence; of course the dual remark
is also true. We say that S satisfies the Congruence Condition (C) with respect to E (or,
more simply, S satisfies (C)) if R̃E is a left congruence and L̃E is a right congruence. A
second observation is that, as is the case with R∗ and L∗, the relations R̃E and L̃E need not
commute. We denote by H̃E and D̃E the intersection and join of R̃E and L̃E respectively.
Note that from the previous remark, it is not usually the case that D̃E = R̃E ◦L̃E = L̃E ◦R̃E.

Deviating slightly from standard terminology, we will denote the R̃E-class (L̃E-class,
H̃E-class, D̃E-class) of any a ∈ S by R̃a

E (L̃aE, H̃a
E, D̃

a
E).

The next remark is folklore, but worth stating as a lemma.

Lemma 1.2.9. If S satisfies (C), then H̃e
E is a monoid with identity e, for any e ∈ E.

Proof. Let x, y ∈ H̃e
E. Then as L̃E is a right congruence, we have

x L̃E e⇒ xy L̃E ey = y L̃E e

so that xy L̃E e. Also as R̃E is a left congruence, we have

y R̃E e⇒ xy R̃E xe = x R̃E e.

Thus xy ∈ H̃e
E. It is clear that e is an identity for all elements in H̃e

E. Hence H̃e
E is a monoid

with identity e.

Definition 1.2.10. Let S be a semigroup with distinguished set of idempotents E. Then S
is called weakly E-abundant if every R̃E- and every L̃E-class of S contains an element of E.

Clearly a regular semigroup S is weakly E(S)-abundant; on the other hand, any monoid
is weakly {1}-abundant. A less extreme example is Mn(R), the monoid of n × n matrices
over a principal ideal domain, under matrix multiplication [19]. In such a monoid we have
R̃E = R∗ and L̃E = L∗, where E = E

(
Mn(R)

)
, and further, every H∗-class contains a

regular element.
If the distinguished set of idempotents E in a weakly E-abundant semigroup S is the

whole set of idempotents E(S), then S is called weakly abundant semigroup.

Definition 1.2.11. A weakly E-abundant semigroup is said to be weakly E-adequate if E is
a semilattice.

Lemma 1.2.12. Let S be a weakly E-adequate semigroup. Then there is a unique idempotent
in the R̃E- and L̃E-class of a ∈ S.
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Proof. For e, f ∈ E, let a R̃E e and a R̃E f . Then e R̃E f . Now as ee = e and ff = f ,
therefore ef = f and fe = e and so

e = fe = ef = f.

Hence there is a unique idempotent in the R̃E-class of a. Dually, there is a unique idempotent
in the L̃E-class of a.

If the distinguished set of idempotents E is the whole set of idempotents in a weakly
E-adequate semigroup S, then S is called a weakly adequate semigroup.

Definition 1.2.13. A weakly adequate semigroup S is said to be weakly ample if S satisfies
C and for all a ∈ S and e ∈ E(S),

ae = (ae)+a and ea = a(ea)∗.

Of course one can give one-sided version of above definition as well, that is we say that S
is weakly left ample if R̃ is a left congruence and left ample condition holds. Dually we have
the notion of weakly right ample semigroups.
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Chapter 2

Restriction semigroups and categories

In this chapter we shall provide basic definitions and results for restriction semigroups. We
then recall some definitions of categories, inductive groupoids and inductive categories. We
explain the category theoretic connection between inverse semigroups and inductive groupoids
and then between restriction semigroups and inductive categories.

2.1 Restriction semigroups

Restriction semigroups and their one sided versions have been studied from various points of
view and under different names since the 1960s. They were formerly called weakly E-ample
semigroups, to emphasize that the class naturally extends the class of ample semigroups.
The terminology weakly E-ample was first used in [21]. In the abstract definition of ‘ample’
the relations R∗ and L∗ were replaced by the generalised relation R̃E and L̃E, where E
is special set of idempotents known as the semilattice of projections or, the distinguished
semilattice. The terminology restriction semigroup has been adopted due to the connection
between semigroup theory and category theory. Whereas (left, right) ample semigroups form
quasi-varieties, that is, class of algebras of a certain type defined by quasi-identities, (left,
right) restriction semigroups form varieties of algebras, where a variety is a class of algebras
of a certain type defined by identities. It is important to note that varieties are closed under
taking subalgebras, homomorphic images and direct products but quasi-varieties are not
necessarily closed under homomorphic images. For detailed studies of the basic properties of
these structures and a historical overview, the reader is referred to [24] and [28].

Definition 2.1.1. A semigroup S is called a unary semigroup if S is equipped with an
additional unary operation.
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If a semigroup S is equipped with two unary operations, then we say that S is a bi-unary
semigroup.

An inverse semigroup S is a unary semigroup (S, ·,−1 ), where −1 represents the the inverse
unary operation on S.

Definition 2.1.2. A left restriction semigroup S is a unary semigroup (S, ·,+ ), where (S, ·)
is a semigroup and + is a unary operation such that the following identities hold:

a+a = a, a+b+ = b+a+, (a+b)+ = a+b+ and ab+ = (ab)+a.

Putting E = {a+ : a ∈ S}, it is easy to see that E is a semilattice, since for a+, b+ ∈ E,
we have that a+b+ = (a+b)+ ∈ E, a+b+ = b+a+ and a+a+ = (a+a)+ = a+. We also notice
that (a+)+ = a+ as

(a+)+ = (a+a+)+ = (a+a)+ = a+.

These idempotents are called projections of S and we call E the semilattice of projections
(formerly distinguished semilattice) of S.

Dually, a right restriction semigroup S is a unary semigroup (S, ·,∗ ), where in this case
the unary operation is denoted by ∗ and the identities that define a right restriction semi
group are:

aa∗ = a, a∗b∗ = b∗a∗, (ab∗)∗ = a∗b∗, a∗b = b(ab)∗

and putting E = {a∗ : a ∈ S}, it is easy to check that E is semilattice of projections of
S. Thus left and right restriction semigroups form varieties of unary semigroups, that is,
semigroups equipped with additional unary operations + and ∗, respectively.

Definition 2.1.3. A restriction semigroup is a bi-unary semigroup S which is both left
restriction and right restriction and which also satisfies the linking identities

(a+)∗ = a+ and (a∗)+ = a∗.

We remark that an inverse semigroup is restriction, where we define a+ = aa−1 and
a∗ = a−1a. Also we will see that ample semigroups are restriction.

If a restriction semigroup S has an identity element 1, then it is easy to see that 1+ =
1∗ = 1. Such a restriction semigroup is naturally called a restriction monoid and we call it
reduced restriction monoid.
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A restriction semigroup satisfies (C) (with respect to E) and is such that the R̃E-class
(L̃E-class) of an element a contains a unique element of E, namely a+ (a∗). The following
lemma provides an alternative characterisation for left (right) restriction semigroups.

Lemma 2.1.4. Let S(S, ·,+ ) be a unary semigroup. Then S is left restriction with semilattice
of projections E if and only if

(i) E is a semilattice;
(ii) every R̃E-class contains an idempotent of E;
(iii) the relation R̃E is a left congruence and
(iv) the left ample condition holds, that is, for all a ∈ S and e ∈ E,

ae = (ae)+a.

The dual result holds for right restriction semigroups and the relation L̃E.
Clearly left (right) restriction semigroups are weakly left (right) E-adequate, so it follows

from Lemma 1.2.12, that a+ (a∗) is the unique idempotent of E in the R̃E-class (L̃E-class)
of a.

We note the following simple condition for an element a ∈ S to be R̃E-related to an
idempotent e ∈ E:

a R̃E e ⇔ ea = a and for all f ∈ E, fa = a⇒ fe = e.

Thus it follows that a+ is the smallest left identity of a and we call it the minimum left
identity of a. Dually a∗ is the minimum right identity in the L̃E-class of a.

If S and T are left (right) restriction semigroups, then we write ES and ET to denote the
semilattice of projections of S and T , respectively.

Definition 2.1.5. Let S and T be left restriction semigroups. A (2,1)-morphism is a map
θ : S → T which preserves both the binary operation and unary operation+.

For e ∈ ES, we have eθ ∈ ET as

eθ = e+θ = (eθ)+.

If S is a left restriction semigroup with semilattice of projections E, then a natural partial
order on S is defined by the rule for a, b ∈ S

a ≤ b if and only if a = eb
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for some e ∈ E. Equivalently

a ≤ b if and only if a = a+b.

To see the equivalence we start with a = eb, where a, b ∈ S and e ∈ E. Then

a+ = (eb)+ = (eb+)+ = eb+,

so that
a = eb = eb+b = a+b.

The converse is clear.
It is easy to check that ≤ is reflexive and transitive. To see that it is anti-symmetric, let

a, b ∈ S and a ≤ b ≤ a. Then
a = a+b and b = b+a,

so that
b = b+a = b+a+b = a+b+b = a+b = a.

Hence ≤ is anti-symmetric. Clearly, ≤ is right compatible and restricts to the usual order on
E. To see that it is left compatible let a, b ∈ S and a ≤ b. Then a = a+b, so that for c ∈ S,

ca = ca+b = (ca)+cb using the left ample condition.

Thus ca ≤ cb and hence ≤ is compatible.

Lemma 2.1.6. If S is a restriction semigroup, then for any a, b ∈ S

a = eb for some e ∈ ES ⇔ a = a+b⇔ a = ba∗ ⇔ a = bf for some f ∈ ES.

Proof. We have seen above that
a = eb⇔ a = a+b.

Dually, it is easy to check that
a = bf ⇔ a = ba∗.
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Now we show that a = a+b if and only if a = ba∗. For this suppose that a = a+b. Then

a = a+b

= b(a+b)∗ using the right ample condition
= ba∗.

Conversely, if a = ba∗, then
a = ba∗ = (ba∗)+b = a+b.

Lemma 2.1.7. Let S be a restriction semigroup. Let a, b ∈ S. Then a ≤ b implies that
a+ ≤ b+ and a∗ ≤ b∗.

Proof. Let a ≤ b, so that a = a+b. Then

a+ = (a+b)+ = (a+b+)+ = a+b+

so that a+ ≤ b+. Dually, a∗ ≤ b∗.

As a+ is the minimum left identity for a, the following lemma follows immediately from
[17].

Lemma 2.1.8. Let S be a left restriction semigroup with partial order ≤ and let a, b ∈ S.
Then (ab)+ ≤ a+.

2.2 Categories

Categories are mathematical structures first introduced by Eilenberg and Maclane in 1945
[13]. Category theory has come to occupy a central position in contemporary mathematics
and theoretical computer science and is also applied to mathematical physics. It is a theory
that allows us to compare many mathematical structures.

Categories consist of two kind of entities: object and arrows, or morphisms, between these
objects. We provide two approaches to categories, first the ‘big categories’- this is the most
standard approach- and second ‘small’ categories which are considered to be a generalisation
of monoids. The following definition of a category is from [36].

Definition 2.2.1. A category C consists of
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• a class Ob(C) of objects;

• a class Mor(C) of morphisms (or arrows) between the objects;

• two assignments, d and r, from Mor(C) to Ob(C). For f ∈ Mor(C) we indicate by

f : A→ B

that d(f) = A and r(f) = B. Let Mor(A,B) = MorC(A,B) denote the set of all
morphisms between A,B ∈ Ob(C);

• if A,B,C,D ∈ Ob(C), then there is a binary operation

Mor(A,B)×Mor(B,C)→ Mor(A,C), (f, g) 7→ f ◦ g,

called composition of morphisms such that if f ∈ Mor(A,B), g ∈ Mor(B,C) and
h ∈ Mor(C,D), then

(f ◦ g) ◦ h = f ◦ (g ◦ h);

• for each A ∈ Ob(C), there exists a morphism 1A ∈ Mor(A,A) such that if B ∈ Ob(C)
and f ∈ Mor(A,B), then

1A ◦ f = f = f ◦ 1B.

A simple example of a category is the category Set of sets. The objects of this category
are sets and the morphisms are functions from one set to another. It is important to note
that the objects of a category need not be sets (with or without additional structure) nor
the morphisms functions between these sets. In particular, a category is called a concrete
category if all objects are (structured) sets, morphisms from A to B are (structure preserving)
mappings, composition of morphisms is the composition of mappings and the identities are
the identity mappings.

Definition 2.2.2. A category C is called a small category if both Ob(C) and Mor(C) are
sets.

We now give the definition of a functor. This is a structure preserving mapping between
two categories, which allow us to compare categories.

Definition 2.2.3. Let C and C′ be categories. A functor F from C to C′ is a pair of maps

F : Ob(C)→ Ob(C′), A 7→ AF
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and
F : Mor(C)→ Mor(C′), f 7→ fF

which maps an element of Mor(G,H) to Mor(GF,HF )

G GF

H HF

f fF

Figure 2.1: Functor: a pair of maps

such that
(i) if ∃ g ◦ f in C, then (g ◦ f)F = gF ◦ fF ;
(ii) for A ∈ Ob(C), 1AF = 1AF .

For any category C, we denote the identity functor by IC. The identity functor assigns
each object and morphism to itself.

Definition 2.2.4. Let C and C′ be categories. Then C and C′ are isomorphic if there exists
functors

F : C→ C′ and G : C′ → C

such that FG = 1C′ and GF = 1C.
In this case we say that F is an isomorphism from C to C′ (so G is an isomorphism from

C′ to C) and call the pair Hom(F,G) an isomorphism between C and C′. The functor G is
called inverse of F (so F is called inverse of G).

We now give the second definition of a category which is convenient for our purposes from
[45] and [33].

Let C be a set and let · be a partial binary operation on C. For x, y ∈ C, whenever we
write ‘∃x ·y’, we mean that the product x ·y is defined, so that when we will write ‘∃ (x ·y) ·z’,
it will be understood that we mean ∃x · y and ∃ (x · y) · z. We say that an element e ∈ C is
idempotent if ∃ e · e and e · e = e. If e is an idempotent of C which satisfies:

∃ e · x⇒ e · x = x and ∃x · e⇒ x · e = x,

then we say that e is an identity for C and we call this identity a local identity for C.
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Definition 2.2.5. Let C = (C, ·,d, r), where · is a partial binary operation on C and
d, r : C → C such that

(C1) ∃ x · y if and only if r(x) = d(y) and then

d(x · y) = d(x) and r(x · y) = r(y);

(C2) ∃ x · (y · z) (so that from (C1), ∃ (x · y) · z), then

x · (y · z) = (x · y) · z;

(C3) ∃ d(x) · x and d(x) · x = x and ∃ x · r(x) and x · r(x) = x.

Let E = {d(x) : x ∈ C}. It follows from the axioms that E = {r(x) : x ∈ C} and C is
a small category in standard sense with set of local identities E and set of objects identified
with E. Further, d(x) is the domain of x and r(x) is the range of x.

Small categories can be seen as generalisations of monoids as if C has precisely one object,
then all products are necessarily defined and thus C is essentially a monoid.

We make it clear that whenever we write C = (C, ·,d, r) for a category C, we mean that
C is a small category, described as in Definition 2.2.5.

We now define what we mean by an ordering on our category C.

Definition 2.2.6. Let C = (C, ·,d, r) be a category with set of local identities E. Let ≤ be
a partial order on C such that for all e ∈ E, x, y ∈ C:

(IC1) if x ≤ y then r(x) ≤ r(y) and d(x) ≤ d(y);
(IC2) if x ≤ y and x′ ≤ y′, ∃ x · x′ and ∃ y · y′, then x · x′ ≤ y · y′;
(IC3) if e ≤ d(x) then ∃ unique e|x ∈ C such that

e|x ≤ x and d(e|x) = e;

(IC4) if e ≤ r(x) then ∃ unique x|e ∈ C such that

x|e ≤ x and r(x|e) = e.

We then say that C = (C, ·,d, r,≤) is an ordered category.

The element e|x of Condition (IC3) is called the restriction of x to e and the element x|e
of Condition (IC4) is called the co-restriction of x to e.
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If C is an ordered category with set of local identities E, then for e, f ∈ E, we denote
the greatest lower bound (meet) of e and f , where it exists, by e ∧ f .

Definition 2.2.7. Let C = (C, ·,d, r,≤) be an ordered category. Then C is an inductive
category if (IC5) holds:

(IC5) (E,≤) is a meet semilattice.

Definition 2.2.8. A functor between two ordered categories is said to be ordered if it is
order preserving. An ordered functor between two inductive categories is said to be inductive
if it preserves the meet operation on the set of identities.

There is a category theoretic connection between inductive categories and restriction
semigroups, but before explaining this we would like to explain the corresponding category
theoretic connection between inverse semigroups and inductive groupoids as restriction semi-
groups generalise inverse semigroups in a natural way.

2.3 Inverse semigroups and inductive groupoids

Lie studied infinite continuous groups in the 1880s which are not groups at all but merely
group-like, called Lie pseudogroups [48, 49]. Veblen and Whitehead generalised this structure
to what they termed as pseudogroups to describe symmetries in differential geometry [76].

Definition 2.3.1. [76, p. 38] A pseudogroup Γ is a collection of partial homeomorphisms
between open subsets of a topological space such that Γ is closed under composition and
inverses, where α, β ∈ Γ are composed if imα = dom β.

Inverse semigroups were only one solution to the problem of finding an abstract charac-
terisation for pseudogroups. If in a pseudogroup, the composition

domαβ = [imα ∩ dom β]α−1

is given, then it is just an inverse semigroup of homeomorphisms between open sets of a
topological space.

Ehresmann found a second solution to the problem of finding an abstract characterisation
for pseudogroups starting from a different definition of the composition of partial bijections.
Ehresmann noticed that a pseudogroup has the structure of an ordered groupoid with the
obvious partial order of restriction of mappings, where an ordered groupoid is essentially an
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ordered category in which all arrows are invertible. As a second step Ehresmann imposed
extra conditions on ordered groupoids and studied the so called inductive groupoids. Ehres-
mann’s category theoretic work began in [14]. The reader is referred to [45] for more details
on Ehresmann’s work. We now recall the full definition of an inductive groupoid.

Definition 2.3.2. An inductive groupoid is an inductive category C = (C, ·,d, r,≤) in which
the following conditions hold:

(IG1) for each x ∈ C, there is an x−1 ∈ C such that ∃x · x−1 and ∃x−1 · x, with

x · x−1 = d(x) and x−1 · x = r(x).

(IG2) x ≤ y implies x−1 ≤ y−1 for all x, y ∈ C.

Thus all elements are invertible in an inductive groupoid. The next proposition justifies
the introduction of inductive groupoids in the context of inverse semigroups.

Proposition 2.3.3. [45, Proposition 4.1.1] Let S be an inverse semigroup. Then (S, ·,d, r,≤)
is an inductive groupoid, where d(a) = aa−1, r(a) = a−1a and ≤ is the partial order on S.
We refer to · as the restricted product on S:

a · b = ab (the product in S) when r(a) = d(b)

Thus an inductive groupoid can be constructed from an inverse semigroup. Conversely,
to construct an inverse semigroup from an inductive groupoid, we need the notion of pseu-
doproduct which was defined by Ehresmann [14, 15] as follows:

Let G be an inductive groupoid and let x, y ∈ G. Then the pseudoproduct x⊗ y of x and
y is defined by:

x⊗ y = (x|d(x)∧r(y))(d(x)∧r(y)|y).

Note that the pseudoproduct is everywhere defined in an inductive groupoid.
The connection between inverse semigroups and inductive groupoids was made explicit

by Schein who proved that to any inverse semigroup there corresponds an inductive groupoid
and vice versa [69, Theorem 3.4]. Later Nambooripad made his contributions to generalise
Schein’s results to the regular case [55] and put Schein’s results in the context of an iso-
morphism between categories. These results were gathered together in a single theorem by
Lawson in [45], who named it The Ehresmann-Schein-Nambooripad theorem to reflect the
diverse origin of its various components. For the definition of prehomomorphisms the reader
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is referred to [45]. Inverse semigroups and semigroup homomorphisms form a category (of
the first kind) as do inductive groupoids and inductive functors.

The Ehresmann-Schein-Nambooripad Theorem. The category of inverse semigroups
and prehomomorphisms is isomorphic to the category of inductive groupoids and ordered
functors; and the category of inverse semigroups and homomorphisms is isomorphic to the
category of inductive groupoids and inductive functors.

2.4 Restriction semigroups and inductive categories

The connection between inverse semigroups and inductive groupoids raised natural questions
to seek generalisations for classes such as ample semigroups which naturally generalise inverse
semigroups. The Ehresmann-Schein-Nambooripad theorem received a succession of general-
isations the first of these due to Armstrong [2]. She used the ‘structure mappings’ technique
of Meakin [53] to study ample semigroups by considering mappings between R∗- and L∗-
classes and extended the Ehresmann-Schein-Nambooripad theorem to ample semigroups and
cancellative categories.

Lawson made two further generalisations of the Ehresmann-Schein-Nambooripad theo-
rem. The first of these was to the case of weakly ample semigroups and inductive unipotent
categories [43] and the second was to the case of restriction semigroups (weakly E-ample
semigroups) and arbitrary inductive categories [44]. For a detailed survey, the reader is
referred to [33] in which Hollings presented a complete historical overview of connection be-
tween semigroups and categories. Theorem 4.7 of [29] put all of these results into a general
picture. We now list some results of Lawson [44] that were presented by Hollings [33] in
terms of restriction semigroups.

The following theorem tells how to obtain inductive categories from restriction semi-
groups.

Theorem 2.4.1. [33, Theorem 7.2.4] Let S be a restriction semigroup. Then
(S, ·,d, r,≤) is an inductive category with set of local identities E, where d(a) = a+ and
r(a) = a∗ and ≤ is the natural partial order on S. We refer to · the restricted product on S
as follows:

a · b = ab (the product in S) when r(a) = d(b).

The restriction e|a in this inductive category is just the product ea in S, because ea ≤ a

and (ea)+ = (ea+)+ = e. Similarly the co-restriction a|e = ae and e ∧ f = ef .
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The pseudoproduct in an inductive category C defined by

a⊗ b = (a|d(a)∧r(b))(d(a)∧r(b)|b)

is everywhere defined in C and coincides with the restricted product · in C (see [33]). Now
we can get a restriction semigroup from an inductive category as we see in the following
theorem.

Theorem 2.4.2. [33, Theorem 7.2.6] If (C, ·,d, r,≤) is an inductive category, then (C,⊗)
is a restriction semigroup.

Let S be a restriction semigroup and following the notation of [33], we will denote the
inductive category associated to S by C(S). Also if C is an inductive category, then S(C)
will denote the restriction semigroup associated to it. Now we can write the following result
from [33, Theorem 7.2.7].

Theorem 2.4.3. Let S be a restriction semigroup and C be an inductive category. Then

S(C(S)) = S and C(S(C)) = C.

Proposition 2.4.4. [33, Proposition 7.2.8] Let S and T be restriction semigroups and ϕ :
S → T be a (2,1,1)-morphism. Define Cϕ : C(S) → C(T ) to be the same function on the
underlying sets. Then Cϕ is an inductive functor with respect to the restricted product in
C(S) and C(T ).

Let ψ : C → D be an inductive functor of inductive categories C and D and define
Sψ : S(C)→ S(D) to be the same function on the underlying sets. Then Sψ is a morphism
with respect to the pseudoproduct in S(C) and S(D).

Further S(C(ϕ)) = ϕ and C(S(ψ) = ψ.

Theorems 2.4.1, 2.4.2, 2.4.3 and Proposition 2.4.4 give the desired result which is gener-
alisation of the Ehresmann-Schein-Nambooripad theorem for restriction semigroups.

Theorem 2.4.5. [33, Proposition 7.2.9] The category of restriction semigroups and (2,1,1)-
morphisms is isomorphic to the category of inductive categories and inductive functors.
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Chapter 3

Decomposition of semigroups and
monoids

This chapter is a survey to direct, semidirect and Zappa-Szép products of semigroups and
monoids. We shall provide historical background to Zappa-Szép products in the first section.
In the second section we discuss uniquely factorisable semigroups. We discuss external and
internal versions of direct, semidirect and Zappa-Szép products in the subsequent sections.
We explain the correspondence between inernal and external versions of these products for
semigroups and monoids.

The semidirect product of two inverse semigroups is not inverse in general. We provide
results of Nico [58] and Preston [64] that tell us when the semidirect product of two inverse
monoids (semigroups) is inverse. We consider the semidirect product of a right (left) restric-
tion semigroup and a monoid and provide necessary and sufficient conditions for it to be
right (left) restriction.

3.1 Historical background

The Zappa-Szép product is a natural generalisation of the semidirect product of groups,
whereas, the semidirect product is a natural generalisation of the direct product of groups.
In the direct product of groups both factors are required to be normal, whereas in semidirect
products this strong condition is replaced by the weaker condition that only one factor is
required to be normal. More generally, in Zappa-Szép products, neither of the factors is
required to be normal.

The concept of Zappa-Szép products was perhaps first studied in 1935 for groups by
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Neumann, who used the terminology general decompositions for these products [56]. The first
systematic study of such products was done by Zappa in 1940 [79]. Further developments in
the theory for groups were made by Casadio [9], Redei [65] and Szép [68, 71, 72, 73] from
1941 to the early 60s. Szép introduced the term skew products for Zappa-Szép products.
The relations of Zappa-Szép products were introduced by Szép [71] to study the structural
properties of groups. He also initiated the study of similar products in setting other than
groups in [72] and [73]. The terminology Zappa-Szép product was suggested by Zappa.

Definition 3.1.1. Let U be a semigroup. We say that U is factorisable (with factors S and
T ) if there are subsemigroups S and T of U such that U = ST . If each element u ∈ U can
be uniquely written as a product of an element of S and an element of T , then we say that
U is uniquely factorisable.

It is worth to mention here that this is also the definition of an internal Zappa-Szép
product which we will discuss later in this chapter.

In Definition 3.1.1, if U is a group, then U is factorisable if in addition S and T are
subgroups of U .

All possible factorisations of sporadic simple groups and all maximal factorisations of all
finite simple groups and their automorphism groups have been completely determined. For a
detailed history from the group theoretic point of view and for a complete list of references,
the reader is referred to [77].

The concept of factorisable semigroups have been studied by Tolo in 1969 [74]. He char-
acterised direct products of semigroups and found sufficient conditions for a semigroup to
be factorisable, but the concept of Zappa-Szép product for semigroups was properly devel-
oped by Kunze in 1983 and he then continued his work on this subject in subsequent years
[37, 38, 39, 40]. Kunze focused attention on transformation monoids and automata theory
and termed Zappa-Szép products as bilateral semidirect products. He gave applications of
Zappa-Szép product to translational hulls, Bruck-Reilly extensions and Rees matrix semi-
groups. He studied aperiodic transformation semigroups (X,S) and investigated a strong
decomposition of its elements in terms of idempotents.

In 1997, the term general products for Zappa-Szép products was introduced by Lavers
[41, 42] who found applications of these products in the theory of vine monoids and monoid
presentations [41]. Lavers found conditions under which the Zappa-Szép product of two
finitely presented monoids is itself finitely presented. Araújo [1] did a survey on finite repre-
sentability of several semigroup constructions including Zappa-Szép products in 2002.
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Coleman and Easdown [10] developed a decomposition theory for submonoids and sub-
groups of (S, ◦), where S is a ring not necessarily with identity and the ◦ operation is defined
by

a ◦ b = a+ b− ab.

They expressed these decompositions in terms of uniqely factorisable semidirect, reverse
semidirect and Zappa-Szép products. Group presentations were obtained in terms of (S,+)
and (S, ◦) by applying decomposition theory to ring of matrices over S when S is radical.
A ring S is called radical if S = J (S), where J (S) is known as the Jacobson radical and
is defined to be the largest ideal of S consisting of quasi-invertible elements of S, where an
element s ∈ S is said to be quasi-invertible if there is an element t such that

s ◦ t = t ◦ s = 0.

Brin recorded the behaviour of Zappa-Szép products in connection with properties that
are needed to work with categories, monoids and group of fractions of monoids in 2005 [7]. He
extended the family of Thompson’s groups by constructing a braided version of Thompson’s
group that surjects onto Thompson’s group using a Zappa-Szép product of the monoid of
binary forests and the braid group on infinitely many strands.

In 2008, Zappa-Szép products of a free monoid and a group from the view of self similar
group actions are studied by Lawson [46] who completely determined their structure by
describing a correspondence between a class of left cancellative monoids and self similar
group actions.

Gilbert and Wazzan studied Zappa-Szép products from the point view of regular and
inverse semigroups. They generalised some results of Lawson and found necessary and suffi-
cient conditions for these products to be regular and inverse [77]. Further, they generalised
the concept of a λ-semidirect product of inverse semigroups to Zappa-Szép products by in-
troducing the notion of a λ-Zappa-Szép product of a semilattice and a group [25]. By giving
it the structure of an inductive groupoid, they proved that it is an inverse semigroup.

The concept of congruence pairs for a Zappa-Szép product P = E ./ G of a semilattice
E with an identity and a group G is introduced by Xiao and Li [78]. They prove that every
congruence on P can be described by a congruence pair and the congruence lattice of P is
isomorphic to a lattice of all congruence pairs for P . Group congruences for this Zappa-Szép
product are also characterised.

Recently, Brownlowe and at al [8] used Zappa-Szép products to identify the class of C∗-
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algebras associated to quasi-lattice ordered groups and self similar actions. Following Li’s
constructions [47], they produced a full C∗-algebra and provided its new presentation via
generators and relations. An example of C∗-algebras associated to a self similar actions of a
semigroup is also described.

3.2 Uniquely factorisable semigroups

We have seen the definition of uniquely factorisable semigroups in Section 3.1. In this section
we discuss a result for such semigroups which is useful for our purpose later in this chapter.

If a semigroup U is uniquely factorisable as U = ST , then from [7, Lemma 3.4] there is
an idempotent e ∈ S ∩T which is a right identity for S and a left identity for T . We provide
an alternative proof of this result in the following.

Lemma 3.2.1. Let U be a semigroup and suppose U is uniquely factorisable as U = ST ,
where S and T are subsemigroups of U . Then there exists an idempotent e ∈ S ∩ T which is
a right identity for S and a left identity for T .

Proof. Let s ∈ S. Then s can be written as

s = uv for u ∈ S, v ∈ T .

For t ∈ T ,
st = uvt for all t ∈ T

so that
t = vt for all t ∈ T .

Thus v is a left identity for T and in particular v = v2.
Next as v ∈ T , so we can write v as

v = pq for p ∈ S, q ∈ T .

For w ∈ S
wv = wpq for all w ∈ S

so that
w = wp for all w ∈ S
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which implies p is a right identity for S and in particular, p = p2, so that

v = pq = ppq = pv.

Thus for p ∈ S, there exits an element l = l2 ∈ T which is a left identity for T and we can
write p as p = pl. Now

v = pv

⇒ vl = pvl

⇒ l = pl because v is a left identity for T
⇒ l = p because p = pl.

Hence l = p = e ∈ S ∩ T which is a right identity for S and a left identity for T .

As Zappa-Szép products generalise semidirect products and semidirect products are natu-
ral generalisations of direct products, we start discussing direct products in the next section.

3.3 Direct products of semigroups and monoids

In this section we give definitions of direct products of semigroups and monoids. We discuss
the equivalence between internal and external direct products of monoids and semigroups in
the subsequent subsections.

Definition 3.3.1. Let S and T be semigroups and let

S × T = {(s, t) : s ∈ S, t ∈ T}.

Define a binary operation on S × T by the rule

(s, t)(u, v) = (su, tv).

Then S × T is a semigroup and is known as the (external) direct product of semigroups S
and T .

If S and T are monoids, then S × T is a monoid with identity (1S, 1T ) and we say that
S × T is the external direct product of monoids S and T .

We now explain what we mean by an internal direct product of semigroups and monoids.
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Definition 3.3.2. Let U be a semigroup and S and T are subsemigroups of U . Then U is
the internal direct product of S and T if

(1) U is uniquely factorisable with factors S and T ;
(2) for all s ∈ S and for all t ∈ T , st = ts.

If U is a monoid with submonoids S and T in the above definition, then we say that U is
an internal direct product of submonoids S and T .

3.3.1 Internal and external direct products of monoids

We now see that there is an equivalence between internal and external direct product of
monoids.

Proposition 3.3.3. Let U be a monoid and S, T be submonoids of U . Suppose U is the
internal direct product of S and T . Then U is isomorphic to the external direct product
S × T .

Conversely, suppose that U = S × T is the external direct product of monoids S and T .
Then there are submonoids S ′ and T ′ of U such that S ∼= S ′, T ∼= T ′ and U = S ′T ′ is the
internal direct product of S ′ and T ′.

Proof. Suppose U is the internal direct product of monoids S and T . Then U is uniquely
factorisable and st = ts for all s ∈ S and all t ∈ T . Define a map

ϕ : S × T → U

by (s, t)ϕ = st. Then ϕ is well defined and one-one due to unique factorisation. Also ϕ is
onto. To check that ϕ is a morphism, let (s, t), (s′, t′) ∈ S × T . Then

((s, t)(s′, t′))ϕ = (ss′, tt′)ϕ
= ss′tt′

= sts′t′ because st = ts for all s ∈ S and all t ∈ T
= (s, t)ϕ(s′, t′)ϕ.

Thus ϕ is morphism and hence U ∼= S o T .
Conversely suppose that U = S × T is the external direct product of monoids S and T .

Let
S ′ = {(s, 1T ) : s ∈ S} and T ′ = {(1S, t) : t ∈ T}.
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Clearly S ′ and T ′ are submonoids of U . It is easy to check that S ∼= S ′ and T ∼= T ′ under
the maps

s 7→ (s, 1T ) and t 7→ (1S, t)

respectively. Also each element (s, t) ∈ U can be uniquely written as

(s, t) = (s, 1T )(1S, t).

Finally we note that elements of S ′ and T ′ commute, as for (s, 1T ) ∈ S ′ and (1S, t) ∈ T ′

(s, 1T )(1S, t) = (s, t) = (1S, t)(s, 1T ).

Hence U is the internal direct product of S ′ and T ′.

3.3.2 Internal and external direct products of semigroups

There is not such a complete equivalence between internal and external direct products
of semigroups as we have seen for monoids. When we consider internal direct product of
semigroups, then we do not get an external direct product of semigroups but what we obtain
is an internal direct product of monoids as we see in the following lemma.

Lemma 3.3.4. Let U be a semigroup and S and T be subsemigroups of U . Suppose U is the
internal direct product of S and T . Then U is a monoid and S and T are submonoids of U .

Proof. As U is uniquely factorisable, so by Lemma 3.2.1, there exists an element e ∈ S ∩ T
such that

se = s for all s ∈ S and et = t for all t ∈ T .

We note that for s ∈ S
es = se = s,

because elements of S and T commute, so that e is identity of S. Thus for all s ∈ S and for
all t ∈ T

est = st,

implies that e is left identity for U . Dually e is right identity for U and hence U is a monoid
with submonoids S and T . Thus U is the internal direct product of S and T , which by
Proposition 3.3.3 is isomorphic to the external direct product S × T .
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From the above lemma, we observe that S ∩ T = {e} as if w ∈ S ∩ T is another element,
then

w = ew = we

gives w = e because of unique factorisations. Hence S ∩ T = {e}.
But S ∩ T = {e} does not imply that elements of U commute as it not true even in the

group case.
Thus an internal direct product of semigroups is just an internal direct product of monoids.

Now we would like to see what happens if we consider an external direct product of semi-
groups. It is not obvious to get an internal direct product from an external direct product
of semigroups because for semigroups there do not exist such mappings s 7→ (s, 1T ) and
t 7→ (1S, t) as they exists for monoids, but we can use Preston’s techniques from [64] for
semidirect products to get round this difficulty.

Lemma 3.3.5. Suppose S and T are semigroups and U = S × T is the external direct
product of S and T . Let S(1) and T (1) be the semigroups obtained from S and T , respectively
by adjoining an identity and let V = S(1) × T (1). Then there are subsemigroups S ′ and T ′ of
V = S(1) × T (1) with S ∼= S ′, T ∼= T ′ such that U = S ′T ′ and every element of U is uniquely
factorisable as u = st for s ∈ S ′ and t ∈ T ′.

Proof. Let S(1) and T (1) be the semigroups obtained from S and T , respectively by adjoining
an identity and suppose V = S(1) × T (1). Let

S ′′ = {(s, 1); s ∈ S(1)} and T ′′ = {(1, t) : t ∈ T (1)}.

By Proposition 3.3.3, S ′′ and T ′′ are submonoids of V = S(1) × T (1) and V = S ′′T ′′ is the
internal direct product of S ′′ and T ′′ where

α : S(1) → S ′′ and β : T (1) → T ′′

are isomorphisms. Next let

S ′ = {(s, 1) : s ∈ S} and T ′ = {(1, t) : t ∈ T}.

Clearly S ′ and T ′ are subsemigroups of S ′′ and T ′′ and hence of V = S(1) × T (1). Then

α|S : S → S ′ and β|T : T → T ′
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are isomorphisms. Also each element (s, t) ∈ U can be written as

(s, t) = (s, 1)(1, t) where (s, 1) ∈ S ′ and (1, t) ∈ T ′.

Moreover elements of S ′ and T ′ commute. Hence U = S ′T ′ is a subsemigroup of V =
S(1) × T (1).

3.4 Semidirect products of semigroups and monoids

The term semidirect product for semigroups was first used by Neumann [57] to construct
wreath products of semigroups. We first explain that what we mean by an action of a
semigroup T on a set X.

Definition 3.4.1. Let T be a semigroup and X be a set. Then T acts on X on the left if
there is a map

T ×X → X, (t, x) 7→ t · x

such that for all x ∈ X and for all t1, t2 ∈ T we have
(S1) t1t2 · x = t1 · (t2 · x).
If T is a monoid and acts on a set X, then for a monoid action we insist that for all x ∈ X
(S2) 1 · x = x.
Dually, T acts on the right of X if there is a map

X × T → X, (x, t) 7→ xt

such that for all x ∈ X and for all t1, t2 ∈ T we have

xt1t2 = (xt1)t2 .

Definition 3.4.2. Let S and T be semigroups and suppose that T acts on S on the left
satisfying (S1). We say that T acts on S by endomorphisms if for all t ∈ T and s1, s2 ∈ S
we have

(S3) t · (s1s2) = (t · s1)(t · s2).

This is equivalent to saying that there is a homomorphism

θ : T → EndS
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where EndS is monoid of endomorphisms of S. Diverting from usual practice, we multiply
elements of EndS from right to left, that is, for θ, ϕ ∈ EndS, to compute θϕ we first do ϕ
then θ. Therefore we write θ on the right of the argument and for each t ∈ T , we denote
(θ(t))s by t · s.

If S and T are monoids, then T acts on S by endomorphisms if θ : T → EndS is a monoid
morphism, that is,

(θ(t))(1) = 1 for all t ∈ T .

This translates to t · 1 = 1 for all t ∈ T .

Definition 3.4.3. Suppose S and T are semigroups such that T acts on the left of S by
endomorphisms. Define a binary operation on S × T by

(s, t)(s′, t′) = (s(t · s′), tt′).

We check that this binary operation is associative. For this let (s1, t1), (s2, t2), (s3, t3) ∈ S×T .
Then (

(s1, t1)(s2, t2)
)
(s3, t3) = (s1(t1 · s2), t1t2)(s3, t3)

= (s1(t1 · s2)(t1t2 · s3), (t1t2)t3)
= (s1(t1 · s2)(t1 · (t2 · s3)), t1(t2t3)) using (S1)
= (s1(t1 · (s2(t2 · s3))), t1(t2t3)) using (S3)
= (s1, t1)(s2(t2 · s3), t2t3)
= (s1, t1)

(
(s2, t2)(s3, t3)

)
.

Hence associativity holds and thus S × T is a semigroup known as an (external) semidirect
product of S by T and denoted by S o T .

Lemma 3.4.4. Let S and T be semigroups and suppose that SoT is the external semidirect
product of S by T . If T acts on S trivially, then S o T becomes the external direct product
S × T .

Proof. Suppose T acts on S trivially. Then t · s = s for all t ∈ T and for all s ∈ S. In this
case for (s, t), (s′, t′) ∈ S o T ,

(s, t)(s′, t′) = (s(t · s′), tt′) = (ss′, tt′)

and hence S o T is the external direct product S × T .
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Lemma 3.4.5. If S and T are monoids and T acts on the left of S by endomorphisms
satisfying (S1), (S2) and (S3), then S o T is a monoid with identity (1S, 1T ).

Proof. We know that SoT is a semigroup. Now as θ(t) is a monoid morphism and t · 1 = 1,
so (1S, 1T ) becomes identity of S o T , because for (s, t) ∈ S o T

(s, t)(1S, 1T ) = (s(t · 1S), t1T ) = (s1S, t) = (s, t),

and
(1S, 1T )(s, t) = (1S(1T · s), 1T t) = (s, t).

Hence SoT is a monoid with identity (1S, 1T ) and we call it the external semidirect product
of monoids S and T .

Dually, we have the notion of reverse semidirect product, when S acts on T on the right
by endomorphisms. Multiplication in a reverse semidirect product is defined by

(s, t)(s′, t′) = (ss′, ts′t′).

We denote the reverse semidirect product of S by T by S n T .
We now give the definition of an internal semidirect product from [64].

Definition 3.4.6. Let U be a semigroup and S be a subset of U . An element u ∈ U is said
to be left permutable with S if

uS ⊆ Su.

If T is a subset of U , then T is said to be locally left permutable with S if each element of T
is left permutable with S.

Definition 3.4.7. Let U be a semigroup and S, T be subsemigroups of U . Then U is the
internal semidirect product of S and T if U is uniquely factorisable with factors S and T and
T is locally left permutable with S.

If U is a monoid and S, T are submonoids of U in the above definition, then we say that
U is the internal semidirect product of monoids S and T .

We now see that if U is the internal semidirect product of semigroups S and T , then there
is an action of T on the left of S and thus we can get an external semidirect product.

Lemma 3.4.8. Let U be a semigroup and suppose that U = ST is the internal semidirect
product of subsemigroups S and T . Then T acts on S such that ts = (t · s)t for all s ∈ S
and t ∈ T and U ′ = S o T is the external semidirect product of S and T .
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Proof. As U = ST is the internal semidirect product of subsemigroups S and T , so for each
s ∈ S and t ∈ T , there exists a unique element t · s of S such that

ts = (t · s)t.

By associativity we have that (tt′)s = t(t′s) for any t, t′ ∈ T and s ∈ S. Now

(tt′)s = ((tt′) · s)tt′

and
t(t′s) = t((t′ · s)t′) = (t · (t′ · s))tt′.

By uniqueness we have tt′ · s = t · (t′ · s) and so (S1) holds.
Next for t ∈ T and s, s′ ∈ S

t(ss′) = (t · (ss′))t

and
(ts)s′ = (t · s)ts′ = (t · s)(t · s′)t.

By associativity and uniqueness, we have that

t · (ss′) = (t · s)(t · s′),

and thus (S3) holds. Hence we can form an external semidirect product U ′ = SoT of S and
T .

We see in the following lemma that if U is the internal semidirect product of subsemigroups
S and T , then one of the factors is forced to be a monoid.

Lemma 3.4.9. Let U be a semigroup and suppose that U = ST is the internal semidirect
product of subsemigroups S and T . Then there exists an element e ∈ S ∩ T which is a right
identity for S and a left identity for T such that

e · s = es, e = t · e for all s ∈ S and t ∈ T .

Moreover T is a monoid with identity e.

Proof. As factorisations are unique, so from Lemma 3.2.1 there exists an element e ∈ S ∩ T
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which is a right identity for S and a left identity for T . Now for s ∈ S

es = (e · s)e.

But e is right identity for S, so that

es = e(se) = (es)e.

Thus (es)e = (e · s)e and by uniqueness es = e · s.
Next for t ∈ T

te = (t · e)t.

But e is a left identity for T , so that

te = (et)e = e(te).

Thus e(te) = (t · e)t and by uniqueness e = t · e and te = t. Hence

e · s = es, e = t · e for all s ∈ S and t ∈ T .

Also as te = t for all t ∈ T , so e is a right identity for T and hence T is a monoid.

We now explain the correspondence between external and internal semidirect products of
monoids and semigroups in the following subsections.

3.4.1 Internal and external semidirect products of monoids

There is an equivalence between internal and external semidirect products of monoids as we
see in the following theorem.

Theorem 3.4.10. Let U be a monoid and let U = ST be the internal semidirect product of
submonoids S and T . Then there exists an external semidirect product U ′ = S o T such that
U ∼= U ′.

Conversely, let U = S o T be the external semidirect product of monoids S and T . Let

S ′ = {(s, 1T ) : s ∈ S} and T ′ = {(1S, t) : t ∈ T}.

Then S ′ and T ′ are submonoids of U such that T ′ is locally left permutable with S ′ and U is
uniquely factorisable with factors S ′ and T ′. Further S ∼= S ′ and T ∼= T ′.
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Proof. Suppose U = ST is the internal semidirect product of submonoids S and T . As
factorisations are unique, so from Lemma 3.4.8, (S1) and (S3) hold. Also as U is a monoid
and 1U = 1 ∈ S ∩ T , so for s ∈ S, we see that

s1 = 1s = (1 · s)1

and by uniqueness 1 · s = s. Thus (S2) holds. Hence we can form an external semidirect
product U ′ = S o T of S and T . Now define a map

ϕ : U → U ′

by (st)ϕ = (s, t). By uniqueness of factorisation, it is easy to see that ϕ is well defined and
one-one. Clearly ϕ is onto. To show that ϕ is a morphism, let st, s′t′ ∈ U . Then

(st)ϕ(s′t′)ϕ = (s, t)(s′, t′)
= (s(t · s′), tt′)
= (s(t · s′)tt′)ϕ
= (s(ts′)t′)ϕ
= ((st)(s′t′))ϕ.

Also 1ϕ = (1, 1). Hence U ∼= U ′.
Conversely, let U = S o T be the external semidirect product of monoids S and T . As

t · 1 = 1 for all t ∈ T , it is easy to see that U contains submonoids

S ′ = {(s, 1T ) : s ∈ S} and T ′ = {(1S, t) : t ∈ T}.

We note that every element of U has a unique expression

(s, t) = (s, 1T )(1S, t).

Let s′ = (s, 1T ) ∈ S ′ and t′ = (1S, t) ∈ T ′. Then

t′s′ = (1S, t)(s, 1T )
= (t · s, t)
= (t · s, 1T )(1S, t)
= (t′ · s′)t′.
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Thus t′S ′ ⊆ S ′t′ and hence T ′ is locally left permutable with S ′. Thus S o T is the internal
semidirect product of S ′ and T ′. Now define maps α : S → S ′ and β : T → T ′ by

s 7→ (s, 1T ) and t 7→ (1S, t),

respectively. Then it is easy to check that S ∼= S ′ and T ∼= T ′.

3.4.2 Internal and external semidirect products of semigroups

There is not such a complete equivalence between internal and external semidirect products
of semigroups. It is not difficult to get an external semidirect product of semigroups from an
internal semidirect product of semigroups as we have seen in Lemma 3.4.8, but the converse
is not obvious, because for semigroups there do not exist such mappings

s 7→ (s, 1T ) and t 7→ (1S, t)

as they exist for monoids. However we can characterise those external semidirect products
of semigroups which are also internal semidirect products.

Theorem 3.4.11. Let U be a semigroup and let U = ST be the internal semidirect product
of subsemigroups S and T . Then there exists an external semidirect product U ′ = SoT such
that U ∼= U ′. Moreover there exists an element e ∈ S ∩ T which is a right identity for S and
an identity for T such that

e · s = es, e = t · e for all s ∈ S and t ∈ T .

Conversely, suppose that U = S o T is the external semidirect product of semigroups S
and T such that S has a right identity eS and T is a monoid with identity eT and

eT · s = eSs, eS = t · eS for all s ∈ S and t ∈ T .

Let
S ′ = {(s, eT ) : s ∈ S} and T ′ = {(eS, t) : t ∈ T}.

Then S ′ and T ′ are subsemigroups of U , S ∼= S ′, T ∼= T ′ and U = S ′T ′ is the internal
semidirect product of S ′ and T ′.

Proof. Suppose U = ST is the internal semidirect product of subsemigroups S and T . Then
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because T is locally left permutable with S and factorisations are unique, so associativity
and uniqueness gives us (S1) and (S3). Therefore we can form an external semidirect product
U ′ = S o T as in Theorem 3.4.10, so that U ∼= U ′. Also from Lemma 3.4.9, there exits an
element e ∈ S ∩ T which is a right identity for S and an identity for T such that

e · s = es, e = t · e for all s ∈ S and t ∈ T .

Conversely, let U = SoT be the external semidirect product of semigroups S and T such
that S has a right identity eS and T has an identity eT with

eT · s = eSs, eS = t · eS for all s ∈ S and t ∈ T .

Put
S ′ = {(s, eT ) : s ∈ S} and T ′ = {(eS, t) : t ∈ T}.

Define maps α : S → S ′ and β : T → T ′ by

sα = (s, eT ) and tβ = (eS, t),

respectively. Then it is easy to see that S ∼= S ′ and T ∼= T ′. Also each element in (s, t) ∈ U
can be written as

(s, t) = (s, eT )(eS, t)

and this decomposition is unique. Next let s′ = (s, eS) ∈ S ′ and t′ = (eS, t) ∈ T ′. Then

t′s′ = (eS, t)(s, eT )
= (eS(t · s), teT )
= ((t · eS)(t · s), t) because eS = t · eS and teT = t

= (t · (eSs), t) using (S3)
= (t · (eT · s), t) because eT · s = eSs

= (teT · s, t) using (S1)
= (t · s, t) because teT = t

= (t · s, eT )(eS, t)
∈ S ′t′.

Thus t′S ′ ⊆ S ′t′ and so T ′ is locally left permutable with S ′. Hence U = S ′T ′ is the internal
semidirect product of S ′ and T ′.
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Preston provided a characterisation of external semidirect products of semigroups and
proved that it is always possible to consider a semidirect product of semigroups as a sub-
semigroup of semidirect product of monoids [64]. His construction works as follows:

Let S and T be semigroups and U = S o T be an external semidirect product with
θ : T → EndS. Let S(1) and T (1) be semigroups obtained from S and T , respectively by
adjoining an extra element 1, that acts as an identity element as explained in Section 1.1 of
Chapter 1. Let t · 1 = 1 and define θ(1) : T (1) → EndS(1) to be the extension of θ where
θ(1) = 1S1 . Set W = S(1) o T (1). Then α : s 7→ (s, 1) and β : t 7→ (1, t) embed S and T ,
respectively in W . Observe that Sα ∩ Tβ = ∅ because if x = sα = tβ, then (s, 1) = (1, t),
which is impossible. Therefore by identifying S with Sα and T with Tβ, S and T become
disjoint subsemigroups of W . Thus we have the following result:

Theorem 3.4.12. [64, Theorem 8] Let S and T be semigroups and U = SoT be an external
semidirect product with θ : T → EndS. Then setting W = S(1) o T (1) and θ1 as above, S
and T are subsemigroups of W and U ′ = ST is a subsemigroup of W . Moreover, U ∼= U ′.

3.5 Semidirect products of inverse and right (left) re-
striction semigroups

The semidirect product of two inverse semigroups is not inverse in general. Nico provided
necessary and sufficient conditions for the semidirect product of two inverse monoids to be
inverse [58]. Nico considered the reverse semidirect product, that is, when S acts on T on
the right by endomorphisms, but we state the result for semidirect products.

Theorem 3.5.1. [58, Theorem 2.6] Let S and T be inverse monoids and U = S o T be a
semidirect product of S and T . Then U is an inverse monoid if and only if

(i) S and T are inverse monoids and
(ii) for every e ∈ E(T ), e · s = s for all s ∈ S.

Preston generalised Nico’s result by replacing monoids with semigroups in [64, Theorem
6]. His theorem is stated in the same way as Nico’s but with a different proof.

We now consider the semidirect product of a right restriction semigroup and a monoid
and give necessary and sufficient conditions for this semidirect product to be right restriction.

Theorem 3.5.2. Let S be a monoid and T be a right restriction semigroup. Suppose T acts
on the left of S by endomorphisms such that t · 1 = 1 for all t ∈ T . Then A = S o T is right
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restriction with (s, t)∗ = (1, t∗) if and only if e · s = s for all s ∈ S and all e ∈ ET , where ET
is the semilattice of projections of T .

Proof. Suppose that e · s = s for all s ∈ S and all e ∈ ET . We have to show that A is right
restriction. We put EA = {(1, e) : e ∈ ET}. Since e · 1 = 1 for all e ∈ ET , clearly, EA is a
semilattice isomorphic to ET .

For any (s, t) ∈ A, we define (s, t)∗ = (1, t∗). We now check that the four identities that
define a right restriction semigroup hold. For this let (s, t) ∈ A. Then

(s, t)(s, t)∗ = (s, t)(1, t∗) = (s(t · 1), tt∗) = (s, t),

because tt∗ = t as T is right restriction. Next let (s, t), (u, v) ∈ A. Then

(s, t)∗(u, v)∗ = (u, v)∗(s, t)∗

because EA is a semilattice isomorphic to ET . Also

((s, t)(u, v)∗)∗ = ((s, t)(1, v∗))∗

= (s(t · 1), tv∗)∗

= (s, tv∗)∗

= (1, (tv∗)∗)
= (1, t∗v∗) because T is right restriction, so (tv∗)∗ = t∗v∗

= (1, t∗)(1, v∗) because EA is isomorphic to ET
= (s, t)∗(u, v)∗.

Finally, let (s, t) ∈ A and (1, e) ∈ EA. Then

(s, t)((1, e)(s, t))∗ = (s, t)(1(e · s), et)∗

= (s, t)(1, (et)∗)
= (s(t · 1), t(et)∗)
= (s, et) using t · 1 = 1 and the right ample condition
= (1, e)(s, t) because e · s = s.

Thus all four identities are satisfied for elements of A and hence A = SoT is right restriction.
Conversely, suppose that A = S o T is right restriction with (s, t)∗ = (1, t∗). Let s ∈ S,

e ∈ ET . We have to show that
e · s = s.
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Let t ∈ T . Then (s, t) ∈ A, (1, e) ∈ EA and as the right ample condition holds in A, we have

(s, t)((1, e)(s, t))∗ = (1, e)(s, t)
⇒ (s, t)(e · s, et)∗ = (1(e · s), et)
⇒ (s, t)(1, (et)∗) = (e · s, et)
⇒ (s(t · 1), t(et)∗) = (e · s, et)
⇒ (s, et) = (e · s, et).

Hence e · s = s as required.

The left-right dual of Theorem 3.5.2 also holds as we see in the following corollary.

Corollary 3.5.3. Let S be a left restriction semigroup and T be a monoid. Suppose S

acts on T by endomorphisms such that 1s = 1. Then A = S n T is left restriction with
(s, t)+ = (s+, 1) if and only if te = t for all t ∈ T and e ∈ ES where ES is the semilattice of
projections of S.

3.6 Zappa-Szép products

For the convenience of the reader we begin by recalling the basic definitions relating to
Zappa-Szép products.

Definition 3.6.1. Let S and T be semigroups and suppose that we have maps

T × S → S, (t, s) 7→ t · s and T × S → T, (t, s) 7→ ts

such that for all s, s′ ∈ S, t, t′ ∈ T :

(ZS1) tt′ · s = t · (t′ · s); (ZS3) (ts)s′ = tss
′ ;

(ZS2) t · (ss′) = (t · s)(ts · s′); (ZS4) (tt′)s = tt
′·st′s.

From (ZS1) and (ZS3), we see that T acts on S from the left and S acts on T from the right,
respectively. Also note that (ZS2) and (ZS4) are replacing the conditions we saw in the
semidirect product case that the actions are by homomorphisms. Define a binary operation
on S × T by

(s, t)(s′, t′) = (s(t · s′), ts′t′).
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We check that this binary operation is associative. Let (s1, t1), (s2, t2), (s3, t3) ∈ S×T . Then
(
(s1, t1)(s2, t2)

)
(s3, t3) = (s1(t1 · s2), ts2

1 t2)(s3, t3)
=

(
s1(t1 · s2)(ts2

1 t2 · s3), (ts2
1 t2)s3t3

)
=

(
s1(t1 · s2)(ts2

1 · (t2 · s3)), (ts2
1 )t2·s3ts3

2 t3
)

using (ZS1) and (ZS4)
=

(
s1(t1 · s2(t2 · s3)), ts2(t2·s3)

1 ts3
2 t3

)
using (ZS2) and (ZS3)

= (s1, t1)(s2(t2 · s3), ts3
2 t3)

= (s1, t1)
(
(s2, t2)(s3, t3)

)
.

Thus associativity holds and hence S×T is a semigroup, referred to as the (external) Zappa-
Szép product of S and T and denoted by S ./ T .

Note that if one of the above actions is trivial (that is, one semigroup acts by the identity
map), then the second action is by morphisms, and we obtain the semidirect product S o T
(if S acts trivially) or S n T (if T acts trivially).

If S and T are monoids, then we insist that the following four axioms also hold:

(ZS5) t · 1S = 1S; (ZS7) 1T · s = s;
(ZS6) t1S = t; (ZS8) 1sT = 1T .

(ZS6) and (ZS7) are saying that the actions are monoid actions and (ZS5) and (ZS8) are
telling us that the identities are fixed under the actions. Then S ./ T becomes a monoid
with identity (1S, 1T ).

We now give definition of an internal Zappa-Szép product and then we explain the cor-
respondence between external and internal Zappa-Szép products of semigroups and monoids
in the following subsections.

Definition 3.6.2. Let U be a semigroup and S, T be subsemigroups of U . Then U is the
internal Zappa-Szép product of S and T if U is uniquely factorisable with factors S and T ,
that is, U = ST and every element u ∈ U has a unique expression as

u = st where s ∈ S and t ∈ T .

If U is a monoid with submonoids S and T in the above definition, then we say that U is
the internal Zappa-Szép product of submonoids S and T .

In the following lemma we see that we can get an external Zappa-Szép product from an
internal Zappa-Szép product of semigroups.
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Lemma 3.6.3. Let U be a semigroup and suppose that U = ST is the internal Zappa-Szép
product of subsemigroups S and T . Then there is an action of T on the left of S and an
action of S on the right of T such that (ZS1)-(ZS4) hold and U ∼= S ./ T .

Proof. As each element u ∈ U has a unique expression of the form u = st for s ∈ S and
t ∈ T , therefore for s ∈ S, t ∈ T , there exists unique s′ ∈ S and t′ ∈ T such that ts = s′t′.
Writing s′ = t · s and t′ = ts, we have two functions

T × S → S, (t, s) 7→ t · s and T × S → T, (t, s) 7→ ts.

Thus ts = (t · s)ts and for all s, s′ ∈ S, t, t′ ∈ T we have that

(st)(s′t′) = s(t · s′)ts′t′.

The associativity of the semigroup U and the uniqueness property of the decomposition give
the axioms (ZS1)-(ZS4) for these actions. By associativity we have that t(ss′) = (ts)s′. Now

t(ss′) = (t · ss′)tss′

and
(ts)s′ = (t · s)tss′ = (t · s)(ts · s′)(ts)s′ .

By uniqueness we have:
(ZS2) t · ss′ = (t · s)(ts · s′);
(ZS3) tss′ = (ts)s′ .
Thus (ZS2) and (ZS3) hold. Dually (ZS1) and (ZS4) hold. Hence we can form an external

Zappa-Szép product S ./ T of S and T .
Now define a map α : U → S ./ T by (st)α = (s, t). Clearly α is well defined, one one

and onto. Also α is homomorphism as

((st)(s′t′))α =
(
s(t · s′)ts′t′

)
α

= (s(t · s′), ts′t′
)

= (s, t)(s′, t′)
= (st)α(s′t′)α.

Hence U ∼= S ./ T .
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3.6.1 Correspondence between internal and external Zappa-Szép
products of monoids

There is an equivalence between internal and external Zappa-Szép products of monoids due
to Kunze [37] as we see in the following theorem.

Theorem 3.6.4. [37] Let U be a monoid and S, T be submonoids of U . Suppose that U = ST

is the internal Zappa-Szép product of S and T . Then there is an action of T on the left of S
and an action of S on the right of T such that (ZS1)-(ZS8) hold and U ∼= S ./ T .

Conversely, suppose that U = S ./ T is the external Zappa-Szep product of S and T . Let

S ′ = {(s, 1T ) : s ∈ S} and T ′ = {(1S, t) : t ∈ T}.

Then S ′ and T ′ are submonoids of U isomorphic to S and T respectively and U = S ′T ′ is
the internal Zappa-Szép product of S ′ and T ′.

Proof. Suppose that U = ST is the internal Zappa-Szép product of submonoids S and T .
Then from Lemma 3.6.3 there is an action of T on the left of S and an action of S on the
right of T such that (ZS1)-(ZS4) hold. Also as U = ST is a monoid and 1U ∈ S ∩ T , thus

1U t = t = t1U = (t · 1U)t1U

and
s1U = s = 1Us = (1U · s)1sU .

Therefore by uniqueness:
(ZS5) t · 1U = 1U ;
(ZS6) t1U = t;
(ZS7) 1U · s = s;
(ZS8) 1sU = 1U .
Thus the external Zappa-Szép product S ./ T is a monoid Zappa-Szép product. Now

defining a map ϕ : U → S ./ T by (st)ϕ = (s, t), it is easy to see that U ∼= S ./ T .
Conversely, suppose U = S ./ T is the external Zappa-Szep product of monoids S and T .

Let
S ′ = {(s, 1T ) : s ∈ S} and T ′ = {(1S, t) : t ∈ T}.
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It is then immediate that S ′ and T ′ are submonoids and S ∼= S ′ and T ∼= T ′ under the maps

s 7→ (s, 1T ) and t 7→ (1S, t).

Also each element (s, t) ∈ U can be written as

(s, t) = (s, 1T )(1S, t)

and this decomposition is evidently unique. Hence U = S ′T ′ is the internal Zappa-Szép
product of S ′ and T ′.

3.6.2 Correspondence between internal and external Zappa-Szép
products of semigroups

We have seen an equivalence between internal and external Zappa-Szép product of monoids
in Theorem 3.6.4. In general, there is no such correspondence between internal and external
Zappa-Szép product of semigroups. It is not difficult to get an external Zappa-Szép product
from an internal Zappa-Szép product of semigroups as we have seen in Lemma 3.6.3 but the
converse is not obvious. However we can characterise those external Zappa-Szép products of
semigroups which are also internal ones.

Lemma 3.6.5. [77, Lemma 2.1.3] Let U be a semigroup and suppose U is uniquely factoris-
able as U = ST , where S and T are subsemigroups of U . Then there exists an idempotent
e ∈ S ∩ T which is a right identity for S and a left identity for T such that for s ∈ S, t ∈ T

es = e · s, e = es and t · e = e, te = te.

Proof. As U is uniquely factorisable with factors S and T , so from Lemma 3.2.1, there is an
idempotent e ∈ S ∩T which is a right identity for S and a left identity for T . Next for s ∈ S
we have

es = (e · s)es because of unique factorisations.

But s = se, because e is right identity for S, so that

es = e(se) = (es)e
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and as factorisations are unique, hence

es = e · s, es = e.

Dually for t ∈ T
te = (t · e)te.

But t = et, because e is a left identity for T . Thus

te = (et)e = e(te)

and as factorisations are unique, therefore

t · e = e, te = te.

Theorem 3.6.6. Let U be a semigroup and suppose that U = ST is the internal Zappa-Szép
product of subsemigroups S and T . Then there is an action of T on the left of S and an
action of S on the right of T such that (ZS1)-(ZS4) hold and U ∼= S ./ T . Further, there
exists an idempotent e ∈ S ∩ T such that e is right identity for S and left identity for T with

es = e · s, e = es and t · e = e, te = te

for all s ∈ S and t ∈ T .
Conversely suppose that U = S ./ T is an external Zappa-Szép product of semigroups S

and T such that S has a right identity eS and T has a left identity eT with

eSs = eT · s, eT = esT and t · eS = eS, t
eS = teT

for all s ∈ S and t ∈ T . Let

S ′ = {(s, eT ) : s ∈ S} and T ′ = {(eS, t) : t ∈ T}.

Then S ∼= S ′, T ∼= T ′ and U = S ′T ′ is the internal Zappa-Szép product of S ′ and T ′.

Proof. If U = ST is the internal Zappa-Szép product of subsemigroups S and T , then from
Lemma 3.6.3 there is an action of T on the left of S and an action of S on the right of T
such that (ZS1)-(ZS4) hold and U ∼= S ./ T . Also as factorisation is unique, therefore from
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Lemma 3.6.5 there exists an idempotent e which is a right identity for S and a left identity
for T such that

es = e · s, e = es and t · e = e, te = te

for all s ∈ S and t ∈ T .
Conversely, let U = S ./ T be an external Zappa-Szép product of S and T . Suppose

there is a right identity eS of S and a left identity eT of T satisfying

eSs = eT · s, eT = esT and t · eS = eS, t
eS = teT

for all s ∈ S and t ∈ T . Put

S ′ = {(s, eT ) : s ∈ S} and T ′ = {(eS, t) : t ∈ T}.

Define a map α : S → S ′ by
sα = (s, eT ).

Clearly α is well defined, one-one and onto. To check that α is a homomorphism, let s, s′ ∈ S.
Then

(ss′)α = (ss′, eT )
= (seSs′, eT ) because eS is right identity for S
= (s(eT · s′), es

′
T eT ) because eT · s′ = eSs

′ and es′T = eT by our supposition
= (s, eT )(s′, eT )
= (sα)(s′α).

Hence S ∼= S ′. Similarly defining a map β : T → T ′ by tβ = (eS, t) it is easy to check that
T ∼= T ′. Now for (s, eT ) ∈ S ′ and (eS, t) ∈ T ′, we see that

(s, eT )(eS, t) = (s(eT · eS), eeST t)
= (seS, eT t) because eT · eS = eS and eeST = eT

= (s, t) because eS is right identity of S and
eT is left identity of T .

Thus each element (s, t) ∈ U can be written as

(s, t) = (s, eT )(eS, t)
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and this composition is evidently unique. Hence U = S ′T ′ is the internal Zappa-Szép product
of S ′ and T ′.

We can also use Preston’s technique to get an internal Zappa-Szép product from an
external Zappa-Szép product S ./ T of semigroups S and T by adjoining identities to S and
T and extending the actions to S(1) and T (1).

Theorem 3.6.7. Let S and T be semigroups and let U = S ./ T be the external Zappa-Szép
product of S and T . Let S(1) and T (1) be the semigroups obtained from S and T , respectively
by adjoining an identity. Then, setting t · 1 = 1 and 1s = 1 and defining

(1, s) 7→ 1 · s = s, (t, 1) 7→ t1 = t

to be the identity maps, the extended actions satisfy (ZS1)-(ZS8). Thus we can form the
Zappa-Szép product S(1) ./ T (1) of S(1) and T (1). Moreover
S ∼= S ′ = {(s, 1) : s ∈ S} under the map s 7→ (s, 1) and T ∼= T ′ = {(1, t) : t ∈ T} under the
map t 7→ (1, t) and U = S ′T ′ is a subsemigroup of S(1) ./ T (1), and is uniquely factorisable
with factors S ′ and T ′.

Proof. We first check that S(1) ./ T (1) satisfies all axioms of a Zappa-Szép product.
(ZS1) Let t, t′ ∈ T (1) and s ∈ S(1). Then to check that tt′ · s = t · (t′ · s), we have eight

cases as follows:
(i) t = t′ = s = 1;
(ii) t = 1, t′ 6= 1 and s = 1 ;
(iii) t 6= 1, t′ 6= 1 and s = 1;
(iv) t 6= 1, t′ = 1 and s = 1;
(v) t = 1, t′ = 1 and s 6= 1 ;
(vi) t = 1, t′ 6= 1 and s 6= 1 ;
(vii) t 6= 1, t′ = 1 and s 6= 1;
(viii) t 6= 1, t′ 6= 1 and s 6= 1 ;
(i)-(iv) are obvious because s = 1 in all four cases and t · 1 = 1 for all t ∈ T (1). For (v)

we see that
tt′ · s = 11 · s = 1 · s = s = 1 · (1 · s) = t · (t′ · s).

For (vi),
tt′ · s = 1t′ · s = t′ · s = 1 · (t′ · s) = t · (t′ · s).
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For (vii)
tt′ · s = t · s = t · (1 · s) = t · (t′ · s).

For (viii) because t 6= 1, t′ 6= 1 and s 6= 1 and S(1) and T (1) are semigroups obtained from
S and T , respectively by adjoining an identity, so t, t′ ∈ T and s ∈ S. Also as S ./ T is the
external Zappa-Szép product of S and T , we have

tt′ · s = t · (t′ · s).

Hence T (1) acts on S(1) from the left and thus (ZS1) holds.
(ZS2) Let t ∈ T (1) and s, s′ ∈ S(1). We need to check that t · ss′ = (t · s)(ts · s′). Now

again we have eight cases as follows:
(i) t = s = s′ = 1;
(ii) t = 1, s = 1 and s′ 6= 1;
(iii) t = 1, s 6= 1 and s′ = 1;
(iv) t = 1, s 6= 1 and s′ 6= 1;
(v) t 6= 1, s = 1 and s′ = 1;
(vi) t 6= 1, s = 1 and s′ 6= 1;
(vii) t 6= 1, s 6= 1 and s′ = 1;
(viii) t 6= 1, s 6= 1 and s′ 6= 1;
(i)-(iv) are clear because t = 1 in all four cases and 1 · s = s, 1s = 1 for all s ∈ S . For

(v), we see that t · (ss′) = t · 11 = t · 1 = 1 = (t · 1)(t1 · 1) = (t · s)(ts · s′). For (vi)

t · (ss′) = t · s′ = (t · 1)(t1 · s′) = (t · s)(ts · s′).

For (vii)
t · (ss′) = t · s = (t · s)(ts · 1) = (t · s)(ts · s′).

For (viii) because t 6= 1, s 6= 1 and s′ 6= 1 and S(1) and T (1) are semigroups obtained from S

and T , respectively by adjoining an identity, so t ∈ T and s, s′ ∈ S. Also as S ./ T is the
external Zappa-Szép product of S and T , we have

t · (ss′) = (t · s)(ts · s′).

Hence (ZS2) holds.
(ZS3) is dual of (ZS1)and (ZS4) is dual of (ZS2).
Also (ZS5)-(ZS8) hold because of the way in which we have extended our actions of S on
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T and T on S to actions of S(1) on T (1) and T (1) on S(1) respectively. Hence we may form
the Zappa-Szép product V = S(1) ./ T (1) of the monoids S(1) and T (1).

Next let
S ′′ = {(s, 1) : s ∈ S(1)} and T ′′ = {(1, t) : t ∈ T (1)}.

From Theorem 3.6.4, S ′′, T ′′ are submonoids of V and V = S ′′T ′′ is the internal Zappa-Szép
product of S ′′ and T ′′. Moreover

α : S(1) → S ′′ and β : T (1) → T ′′

are isomorphisms. Now let

S ′ = {(s, 1) : s ∈ S} and T ′ = {(1, t) : t ∈ T}.

Then S ′ and T ′ are subsemigroups of S ′′ and T ′′, respectively and hence of V . Clearly

α|S : S → S ′ and β|T : T → T ′

are isomorphisms.
Note that any element (s, t) ∈ U can be written as

(s, t) = (s, 1)(1, t) for (s, 1) ∈ S ′ and (1, t) ∈ T ′

and this decomposition is unique.
Thus U = S ′T ′ is uniquely factorisable with factors S ′ and T ′.
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Chapter 4

Some algebraic properties of
Zappa-Szép products

In this chapter, we determine some algebraic properties of Zappa-Szép products. We consider
a left restriction semigroup S with semilattice of projections E and define left and right actions
of S on E and E on S, respectively, to form the Zappa-Szép product E ./ S. We further
investigate the properties of E ./ S. We find a subset of E ./ S which is left restriction.
We consider Zappa-Szép products of monoids and semigroups and characterise generalised
Green’s relations R∗, L∗, R̃E and L̃E for these Zappa-Szép products.

4.1 Zappa-Szép product of a left restriction semigroup
and a semilattice

In this section we consider a left restriction semigroup with semilattice of projections E. By
defining a left action of S on E and a right action of E on S, we see that E ./ S becomes a
Zappa-Szép product. We determine the set of idempotents of E ./ S. We see that E ./ S is
not itself left restriction but it contains a subsemigroup which is left restriction.

Lemma 4.1.1. Let S be a left restriction semigroup with semilattice of projections E. Define
an action of S on E by s · e = (se)+ and an action of E on S by se = se. Then Z = E ./ S

is a Zappa-Szép product of S and E.

Proof. We check that these two actions satisfy the axioms of a Zappa-Szép product.
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(ZS1) For s1, s2 ∈ S and e ∈ E

s1 · (s2 · e) = s1 · (s2e)+

= (s1(s2e)+)+

= (s1(s2e))+

= ((s1s2)e)+

= s1s2 · e.

Hence (ZS1) holds.
(ZS2) Let s ∈ S and e, f ∈ E. Then

(s · e)(se · f) = (se)+(se · f)
= (se)+((se)f)+

= ((se)f)+ using Lemma 2.1.8 that (ab)+ ≤ a+ for any a, b ∈ S
= (s(ef))+

= s · ef.

Thus (ZS2) holds.
(ZS3) For s ∈ S and e, f ∈ E, we have

(se)f = (se)f = (se)f = s(ef) = sef .

Hence (ZS3) holds.
(ZS4) For s1, s2 ∈ S, e ∈ E

ss2·e
1 s2

e = s
(s2e)+

1 (s2e)
= s1(s2e)+s2e

= s1(s2e)
= (s1s2)e
= (s1s2)e.

Hence (ZS4) holds. Thus Z = E ./ S is a Zappa-Szép product under the binary operation

(e, s)(f, t) = (e(sf)+, sft).

If S is left restriction, then the Zappa-Szép product E ./ S obtained as above is the
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standard Zappa-Szép product of E and S.
We now compute the set of idempotents of Z = E ./ S .

Lemma 4.1.2. Let S be a left restriction semigroup with semilattice of projections E. Sup-
pose that Z = E ./ S is the standard Zappa-Szép product of S and E. Then

E(Z) = {(e, s) : e ≤ s+, s = ses}.

Also E = {(e, e) : e ∈ E} is a semilattice isomorphic to E and if E(S) = E, then E = E(Z).

Proof. Let (e, s) ∈ Z. Then

(e, s) ∈ E(Z) ⇔ (e, s)2 = (e, s)
⇔ (e, s)(e, s) = (e, s)
⇔ (e(se)+, ses) = (e, s)
⇔ e = e(se)+ and s = ses.

Now s = ses⇒ sR se R̃E (se)+, so that s+ = (se)+. Hence

(e, s) ∈ E(Z) ⇔ (es+, ses) = (e, s)
⇔ e ≤ s+ and ses = s.

Also E ⊆ E(Z). It is easy to check that E is a semilattice isomorphic to E.
Now if E(S) = E, then E = E(Z), for if (e, s) ∈ E(Z), then from s = ses we obtain

se = sese = (se)+ = s+. Also we have

s = ses = (se)es = s+es = es

giving s+ ≤ e, so that as e ≤ s+ it follows that s+ = e. Hence s = ses = s2 = s+ = e.

We now record some of the properties of Z = E ./ S.

Definition 4.1.3. Let S and T be semigroups and let A ⊆ S. Let ϕ : S → T be a morphism.
We say that ϕ is A-separating if for a, b ∈ A

aϕ = bϕ⇒ a = b.

If A = E(S), we say that ϕ is idempotent separating.
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Proposition 4.1.4. Let S be a left restriction semigroup with semilattice of projections E.
Suppose that Z = E ./ S is the standard Zappa-Szép product of S and E. Let (e, s) ∈ Z,
then:

(a) E = {(e, e) : e ∈ E} is a semilattice isomorphic to E(S);
(b) there is a morphism α : Z → S separating the idempotents of E;
(c) (g, g)(e, s) = (e, s) if and only if ge = e and es = s;
(d) (e, s) has a left identity in E if and only if es = s;
in this case (e, s) R̃E (e, e) if and only if es = s;
(e) (e, s)(f, f) = (e, s) if and only if e ≤ s+, s = sf ;
(f) for (e, s) ∈ Z, (e, s) L̃E (f, f) where (f, f) ∈ E if and only if e ≤ s+ and s L̃E f ;
(g) (g, g) R̃E (e, s) L̃E (f, f) for some g, f ∈ E implies (e, s) = (s+, s).

Further, there is a canonical embedding of S into Z = E ./ S under s 7→ (s+, s).

Proof. (a) From Lemma 4.1.2, we know that E is a semilattice isomorphic to E(S).
(b) Define α : Z → S by

(e, s)α = es.

Clearly α is a surjection. To check that α is a homomorphism, let (e, s), (f, t) ∈ Z. Then

((e, s)(f, t))α = (e(sf)+, sft)α
= e(sf)+sft

= e(sf)t
= esft

= (e, s)α(f, t)α.

Thus α is a homomorphism. Also for any (e, e), (f, f) ∈ E, we have

(e, e)α = (f, f)α ⇔ e = f,

and so α separates idempotents of E.
(c) Let (e, s) ∈ Z and (g, g) ∈ E. Then

(g, g)(e, s) = (e, s)
⇔ (g(ge), ges) = (e, s)
⇔ ge = e and ges = s

⇔ ge = e and es = s.
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(d) Suppose now (e, s) R̃E (h, h). By (c) we have es = s.
Conversely, if es = s, we note that (e, e) is a left identity of (e, s) as

(e, e)(e, s) = (e, es) = (e, s).

Next suppose that (g, g) ∈ E exists with (g, g)(e, s) = (e, s). Then ge = e from (c), so that,
as E ∼= E, we have (g, g)(e, e) = (e, e). Hence (e, e) R̃E (e, s).

(e) For (e, s) ∈ Z and (f, f) ∈ E,

(e, s)(f, f) = (e, s) ⇔ (e(sf)+, sff) = (e, s)
⇔ e(sf)+ = e and sf = s

⇔ e ≤ s+ and sf = s.

(f) Let (e, s) L̃E (f, f), then (e, s)(f, f) = (e, s) gives e ≤ s+ and sf = s.
Now suppose that sg = s for some g ∈ E, then

(e, s)(g, g) = (e(sg)+, sg) = (e, s),

and thus (f, f)(g, g) = (f, f) as (e, s) L̃E (f, f). Since E ∼= E, we have fg = f , so that
s L̃E f .

Conversely if e ≤ s+ and s L̃E f , then

sf = s⇒ (e, s)(f, f) = (e, s)

and if (e, s)(g, g) = (e, s), then sg = s and so fg = f , giving

(f, f)(g, g) = (f, f).

Hence (e, s) L̃E (f, f).
(g) It is straight forward to prove that (g, g) R̃E (e, s) L̃E (f, f) for some g, f ∈ E implies

that (e, s) = (s+, s) using (c) and (e).
Now let

U = {(s+, s) : s ∈ S}.
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To prove that U is a subsemigroup of Z, let (s+, s), (t+, t) ∈ U , then

(s+, s)(t+, t) = (s+(st+)+, st+t)
= ((s+st)+, st)
= ((st)+, st) ∈ U.

Clearly S ∼= U under s 7→ (s+, s), so that U is a left restriction subsemigroup of Z where

(s+, s)+ = ((s+)+, s+) = (s+, s+) ∈ U.

The Zappa-Szép product Z = E ./ S of a left restriction semigroup S and E is not left
restriction in general. However we have shown in Proposition 4.1.4 that Z contains the left
restriction subsemigroup U , which is isomorphic to S. We now find a left restriction sub-
semigroup T of Z containing U , which, in view of Proposition 4.1.4 (d), is clearly maximum.

Theorem 4.1.5. Let S be a left restriction semigroup with semilattice of projections E.
Suppose that Z = E ./ S is the standard Zappa-Szép product of S and E. Let

T = {(e, s) : s+ ≤ e} = {(e, s) : es = s}.

Then T is a left restriction subsemigroup of Z with (e, s)+ = (e, e).

Proof. We first check T is a subsemigroup of Z = E ./ S. For this let (e, s), (f, t) ∈ T . Then
es = s, ft = t, so that

(e, s)(f, t) = (e(sf)+, sft)
= ((esf)+, st)
= ((sf)+, st).

Now (sf)+st = sft = st gives (e, s)(f, t) ∈ T . Hence T is subsemigroup of Z. Clearly E ⊆ T .
To show that T is left restriction, let (e, s) ∈ T . Then (e, s)+ R̃E (e, e) follows from

Theorem 4.1.4 (c) and the fact that E ⊆ T .
Note that for any (e, s), (f, t) ∈ T ,

(e, s) R̃E (f, t)⇔ e = f.

To prove that R̃E is a left congruence, let (e, s), (f, t) ∈ T be such that (e, s) R̃E (f, t), that
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is e = f . Then for any (g, u) ∈ T ,

((g, u)(e, s)) = (g(ue)+, ues) R̃E (g(uf)+, uft) = (g, u)(f, t).

Therefore (g, u)(e, s) R̃E (g, u)(f, t) and so R̃E is a left congruence.
Finally to show that the left ample condition holds, let (e, s) ∈ T, (f, f) ∈ E. Then

((e, s)(f, f))+(e, s) = (e(sf)+, sff)+(e, s)
= ((sf)+, sf)+(e, s)
= ((sf)+, (sf)+)(e, s)
= ((sf)+((sf)+e)+, (sf)+es)
= ((sf)+e, (sf)+s) because es = s

= (e(sf)+, sf)
= (e, s)(f, f).

Hence T is left restriction.

It is important to note that, if S is also right restriction, then

T = {(e, s) : s+ ≤ e} = {(e, s) : es = s}

is not always right restriction, because we cannot always find a right identity of (e, s) ∈ T .
Also in the inverse case, if Z = E ./ S is the Zappa-Szép product of an inverse semigroup S

and its semilattice E, then T = {(e, s) : es = s} is not inverse. However, from Theorem 4.1.4
there is a subsemigroup of T which is inverse.

Corollary 4.1.6. Let Z = E(S) ./ S be the standard Zappa-Szép product of an inverse semi-
group S and semilattice of idempotents E(S) and let T = {(e, s) : es = s} be a subsemigroup
of Z. Then there is a canonical embedding of S into Z = E ./ S under s 7→ (ss−1, s).

4.2 Generalised Green’s relations on Zappa-Szép prod-
ucts

In this section we consider Zappa-Szép products of semigroups and monoids and record the
behaviour of the relations R∗, L∗, R̃E and L̃E.
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Lemma 4.2.1. If Z = S ./ T is a Zappa-Szép product of monoids S and T , then (a, b)R∗ (c, d)
if and only if for all x, u ∈ S and for all y, v ∈ T

x(y · a) = u(v · a) and yab = vab

⇔ x(y · c) = u(v · c) and ycd = vcd.

Proof. Let (a, b), (c, d) ∈ Z. Then (a, b)R∗ (c, d) if and only if for all (x, y), (u, v) ∈ Z,

(x, y)(a, b) = (u, v)(a, b)
⇔ (x, y)(c, d) = (u, v)(c, d)

if and only if for all x, u ∈ S and for all y, v ∈ T ,

x(y · a) = u(v · a) and yab = vab

⇔ x(y · c) = u(v · c) and ycd = vcd.

Proposition 4.2.2. Suppose Z = S ./ T is a Zappa-Szép product of monoids S and T . Then
the following hold:

(1) if b, d ∈ T and bR∗ d, then (a, b)R∗ (a, d) in Z;
(2) if a, c ∈ S and aL∗ c, then (a, b)L∗ (c, b) in Z.

Proof. (1) Suppose that bR∗ d for some b, d ∈ T . Let x, u ∈ S and y, v ∈ T , then

x(y · a) = u(v · a) and yab = vab

⇔ x(y · a) = u(v · a) and yad = vad because bR∗ d.

By Lemma 4.2.1 (a, b)R∗ (a, d) in Z.
The proof of (2) is dual.

Proposition 4.2.3. Let S, T be monoids and Z = S ./ T be the Zappa-Szép product of S
and T . Then

(1) (a, b)R∗ (c, d) in Z implies aR∗ c in S;
(2) (a, b)L∗ (c, d) in Z implies bL∗ d in T .

Proof. (1) Suppose (a, b)R∗ (c, d) in Z. To show that aR∗ c in S, let x, u ∈ S be such that

xa = ua.
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Then
x(1 · a) = u(1 · a) and 1ab = 1ab,

so by Lemma 4.2.1, x(1 · c) = u(1 · c), that is, xc = uc. Thus together with the opposite
direction, we obtain aR∗ c in S.

The proof for L∗ is dual.

Definition 4.2.4. Let S and T be semigroups and α : S → T be a map from S to T . We
define Kerα to be the relation

Kerα = {(s, t) ∈ S × S : sα = tα}.

For more complete results, we now consider the reverse semidirect product SnT of S and
T and use the Lemma 4.2.1 in the context when one of the actions is trivial, because in the
Zappa-Szép product S ./ T of monoids (semigroups) S and T if one of the actions is trivial
(that is, one semigroup acts by the identity map), then the second action is by morphisms,
and we obtain the semidirect product SoT (if S acts trivially) or SnT (if T acts trivially).

Lemma 4.2.5. Suppose Z = S n T is a semidirect product of semigroups S and T , where T
is right cancellative. Also suppose that for any a, c ∈ S, aR∗ c implies Ker a = Ker c (where
Ker a is the kernel of the map induced by the right action of a). Then aR∗ c in S implies
that (a, b)R∗ (c, d) in Z.

Proof. Suppose aR∗ c in S and let x, u ∈ S and y, v ∈ T . Then

xa = ua and yab = vab

⇔ xa = ua and ya = va because T is cancellative
⇔ xc = uc and yc = vc because aR∗ c and Ker a = Ker c
⇔ xc = uc and ycd = vcd because T is cancellative.

Thus Lemma 4.2.1 gives (a, b)R∗ (c, d) in Z.

Corollary 4.2.6. Suppose Z = S n T is a semidirect product of monoids S and T , where
T is right cancellative. Also suppose that S acts on T injectively. Then aR∗ c in S implies
that (a, b)R∗ (c, d) in Z.

Definition 4.2.7. LetM be a monoid and X be a set. An action ofM on X is called faithful
if for m,n ∈M with m 6= n, there exists an x ∈ X such that m · x 6= n · x.
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Theorem 4.2.8. Let Z = S ./ T be a Zappa-Szép product of monoids S and T , where T is
right cancellative. Suppose S acts faithfully on the right of T and for any a, c ∈ S, aR∗ c
implies Ker a = Ker c. Then aR∗ c in S implies that (a, b)R∗ (c, d) in Z.

Proof. Suppose (a, b), (c, d) ∈ Z and aR∗ c in S. To show that (a, b)R∗ (c, d) in Z, let
x, u ∈ S and y, v ∈ T be such that

x(y · a) = u(v · a) and yab = vab.

Then ya = va, as T is right cancellative. Also as Ker a = Ker c, we have yc = vc and thus

ycd = vcd.

Now for any z ∈ T ,
(zxy)a = zx(y·a)ya = zu(v·a)va = (zuv)a

and so as Ker a = Ker c,
(zxy)c = (zuv)c,

gives
zx(y·c)yc = zu(v·c)vc.

But yc = vc and T is right cancellative, therefore

zx(y·c) = zu(v·c).

As this is true for any z ∈ T , and S acts faithfully, we have

x(y · c) = u(v · c).

Together with the opposite argument, Lemma 4.2.1 gives (a, b)R∗ (c, d) in Z.

Theorem 4.2.9. Let S, T be monoids and let Z = S ./ T be the Zappa-Szép product of S
and T . Let E ⊆ E(S) and F ⊆ E(T ). Put

E = {(e, 1) : e ∈ E} and F = {(1, f) : f ∈ F}.

Then E and F are sets of idempotents in Z and
(1) (a, b) R̃E (c, d) in Z if and only if a R̃E c in S;
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(2) (a, b) L̃F (c, d) in Z if and only if b L̃F d in T .

Proof. It is easy to check that E ∪ F ⊆ E(Z).
(1) Suppose (a, b) R̃E (c, d) in Z. Let e ∈ E. Then

ea = a ⇔ e(1 · a) = a by action of T on S
⇔ (e, 1)(a, b) = (a, b)
⇔ (e, 1)(c, d) = (c, d) because (a, b) R̃E (c, d)
⇔ e(1 · c) = c

⇔ ec = c.

Hence a R̃E c in S.
Conversely suppose that a R̃E c in S and let (a, b) ∈ Z. Then for (e, 1) ∈ E we have

(e, 1)(a, b) = (a, b)
⇔ (e(1 · a), 1ab) = (a, b)
⇔ (ea, b) = (a, b)
⇔ ea = a

⇔ ec = c because a R̃E c

⇔ (ec, d) = (c, d)
⇔ (e(1 · c), 1cd) = (c, d)
⇔ (e, 1)(c, d) = (c, d).

Hence (a, b) R̃E (c, d).
The proof for L̃E is dual.

Theorem 4.2.10. Let S and T be semigroups and Z = S ./ T be the Zappa-Szép product of
S and T . Let E ⊆ E(S) and F ⊆ E(T ). Suppose there exists a right identity e for S and a
left identity f for T such that

b · e = e, be = b for all b ∈ T

f · a = a, fa = f for all a ∈ S.
(RLI)

Put
E = {(h, f) : h ∈ E} and F = {(e, g) : g ∈ F}.

Then E and F are sets of idempotents in Z and
(i) (a, b) L̃F (c, d)⇒ b L̃F d and (a, b) R̃E(c, d) ⇒ a R̃E c;
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(ii) (a, b)L∗ (c, d)⇒ bL∗ d and (a, b)R∗ (c, d)⇒ aR∗ c.

Proof. We first check thatE and F are sets of idempotents in Z. For this let (h, f) ∈ E.
Then

(h, f)(h, f) = (h(f · h), fhf)
= (hh, ff) using (RLI)
= (h, f).

Thus E ⊆ E(Z) and similarly F ⊆ E(Z).
(i) Let (a, b), (c, d) ∈ Z and suppose that (a, b) L̃F (c, d). Let g ∈ F be such that bg = b.

Then beg = b using (RLI). Now as b · e = e and ae = a, we have

(a, b)(e, g) = (a, b)
⇒ (c, d)(e, g) = (c, d) because (a, b) L̃E (c, d)
⇒ c(d · e) = c and deg = d,

giving dg = d. Together with the opposite direction, we obtain b L̃F d.
Dually (a, b) R̃E (c, d) implies a R̃E c.
(ii) Suppose that (a, b)R∗ (c, d) and let u, v ∈ S be such that ua = va. Then,

u(f · a) = v(f · a) using (RLI)
⇒ (u, f)(a, b) = (v, f)(a, b)
⇒ (u, f)(c, d) = (v, f)(c, d) because (a, b)R∗ (c, d)
⇒ u(f · c) = v(f · c)
⇒ uc = vc.

Further,
a = va

= v(f · a)
⇒ (a, b) = (v, f)(a, b)
⇒ (c, d) = (v, f)(c, d) because (a, b)R∗ (c, d)
⇒ c = v(f · c)
⇒ c = vc.

Together with the dual, we obtain aR∗ c.
Dually (a, b)L∗ (c, d) implies that bL∗ d.
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Chapter 5

Semigroups with inverse skeletons and
Zappa-Szép products

The content of this chapter has already appeared in a joint paper with Victoria Gould [30].

Throughout this chapter, E denotes a set of idempotents of a semigroup S.
The aim of this chapter is to study semigroups possessing E-regular elements, where an

element a of a semigroup S is E-regular if a has an inverse a◦ such that aa◦, a◦a lie in E. In
Section 5.1, we show that where S possesses ‘enough’ (in a precisely defined way) E-regular
elements, analogues of Green’s lemmas and even of Green’s theorem hold, where Green’s
relations R,L,H and D are replaced by R̃E, L̃E, H̃E and D̃E. With some extra conditions
on our semigroup we also have an analogue of Green’s theorem. Namely, we show that under
these conditions, if a H̃E a

2, then H̃a
E, the H̃E-class of a, is a monoid with identity from E.

In Section 5.2 we show that if H̃E is a congruence on a certain semigroup S, then any
right congruence on the submonoid H̃e

E, where e ∈ E, can be extended to a congruence on
S. We also have a result for two sided congruences, with some further restrictions on S. We
stress that for regular semigroups with E = E(S) we have K̃E = K∗ = K, so our results can
be immediately applied to maximal subgroups of regular semigroups.

In Section 5.3 we introduce the idea of an inverse skeleton U of a semigroup S. Here U
is an inverse subsemigroup of E-regular elements, such that E ⊆ U and U intersects every
H̃E-class exactly once (it follows that E = E(U)). We examine some conditions under which
we obtain skeletons from monoids having a particular submonoid L of the L̃E-class of the
identity. A monoid with such a submonoid L is called special. Our most complete results
are for restriction monoids in Section 5.4, where we focus on a result of Kunze [37] for the
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Bruck-Reilly extension BR(M, θ) of a monoid M , showing that BR(M, θ) is a Zappa-Szép
product of N0 under addition and a semidirect product M o N0. Certainly BR(M, θ) is
special, with L isomorphic to N0. We put Kunze’s result in more general framework and
prove in particular that a special D̃E-simple restriction monoid can be decomposed in an
analogous way. Again, our results apply immediately to inverse monoids.

5.1 The relations R̃E, L̃E and analogues of Green’s lem-
mas

In this section, we will show that, under certain circumstances, R̃E and L̃E behave like R
and L. In general, however, they do not.

We remind the reader from Chapter 1 that a semigroup S satisfies the congruence condi-
tion (C) if R̃E is a left congruence and L̃E is a right congruence.

Lemma 5.1.1. Let S be a semigroup satisfying (C). Then if a, b ∈ S and a R̃E e L̃E b, for
some e ∈ E, we have that a L̃E ba R̃E b.

Proof. As a R̃E e and R̃E is left congruence, we have ba R̃E be = b. Dually, ba L̃E a.

e a

b ba

Figure 5.1: ‘Egg box’ picture depicting behaviour of R̃E and L̃E in S

Definition 5.1.2. An element c ∈ S is E-regular if c has an inverse c◦ such that cc◦, c◦c ∈ E.

We emphasise that the notation c◦ will always be used with this meaning. Of course, if c
is E-regular, then so is c◦. Observe that if c ∈ S is E-regular and g, h ∈ E with g R̃E c L̃E h,
then cc◦R c R̃E g and c◦cL c L̃E h, so that by an earlier remark from Chapter 1 that for
e, f ∈ E, e R̃E f if and only if eR f , we have cc◦R g and c◦cLh. It follows from standard
results for regular elements that c has an inverse c′ such that cc′ = g and c′c = h.

Lemma 5.1.3. Let S be a semigroup and suppose that h, k ∈ S are E-regular. Then h R̃E k

(h L̃E k, h H̃E k) if and only if hR k (hL k, hH k).
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Proof. As h, k are E-regular, so hh◦, kk◦ ∈ E. Suppose that h R̃E k. Then

hh◦ R̃E h R̃E k R̃E kk
◦

so that we have hh◦R kk◦. Thus there exists u, v ∈ S1 such that

hh◦u = kk◦ and kk◦v = hh◦.

Hence h(h◦uk) = kk◦k = k and k(k◦vh) = hh◦h = h gives hR k.
The reverse statement is clear because R ⊆ R̃E (L ⊆ L̃E,H ⊆ H̃E).

Next we show that analogues of Green’s Lemmas hold with R, L replaced by R̃E, L̃E
where there is a suitable E-regular element.

Lemma 5.1.4. Suppose that L̃E is a right congruence and S has an E-regular element c
such that e = cc◦ and f = c◦c. Then the right translations

ρc : L̃eE → L̃fE and ρc◦ : L̃fE → L̃eE

are mutually inverse R̃E-class preserving bijections.

ρc

λc0

e c

s sc

tc◦ t

c◦ f

Figure 5.2: R̃E and L̃E-class preserving bijections

Proof. Notice that eR cL f . Let s ∈ L̃eE. Since L̃E is a right congruence, sc L̃E ec = c so
there is a map ρc : L̃eE → L̃fE defined by sρc = sc. Now s = se = scc◦R sc, so that certainly
ρc is R̃E-class preserving. Dually, ρc◦ : L̃fE → L̃eE is R̃E-class preserving.

For any s ∈ L̃eE and t ∈ L̃fE we have s = se = s(cc◦) = sρcρc◦ and similarly, t = tρc◦ρc, so
that ρc and ρc◦ are mutually inverse on the specified domains.
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Note that we are not assuming that the D̃E-class depicted above is an “egg-box”, since
as R̃E and L̃E need not commute, some of the cells may be empty.

For convenience we now state the dual of Lemma 5.1.4.

Lemma 5.1.5. Suppose that R̃E is a left congruence and S has an E-regular element c such
that e = cc◦ and f = c◦c. Then the left translations

λc◦ : R̃e
E → R̃f

E and λc : R̃f
E → R̃e

E

are mutually inverse L̃E-class preserving bijections.

Corollary 5.1.6. Let S be a semigroup with (C). Let c be an E-regular element of S such
that e = cc◦ and f = c◦c. Then H̃e

E
∼= H̃f

E.

Proof. By Lemmas 5.1.4 and 5.1.5, ρc : H̃e
E → H̃c

E and λc◦ : H̃c
E → H̃f

E are bijections. Now
For any x, y ∈ H̃e

E we have

(xy)ρcλc◦ = c◦xyc

= c◦xcc◦yc as cc◦ = e

= (xρcλc◦)(yρcλc◦).

Thus ρcλc◦ is an isomorphism and hence H̃e
E
∼= H̃f

E.

If we have enough E-regular elements, then we can say much more than in Corollary 5.1.6.

Lemma 5.1.7. If every H̃E-class contains an E-regular element, then S is weakly E-abundant.
Moreover if S has (C), then R̃E ◦ L̃E = L̃E ◦ R̃E (so that D̃E = R̃E ◦ L̃E) and if a, b ∈ S
with a D̃E b, then |H̃a

E| = |H̃b
E|.

Proof. The first statement is clear. Suppose that a, c ∈ S with a R̃E ◦ L̃E c.

b◦b

a bb◦ b

cb◦a c

Figure 5.3: Picture showing that R̃E ◦ L̃E = L̃E ◦ R̃E
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There exists an E-regular b ∈ S such that a R̃E b L̃E c. Choose an inverse b◦ of b such
that bb◦, b◦b ∈ E. Notice that c L̃E b◦b and a R̃E bb

◦. Using (C), cb◦a R̃E cb
◦b = c and

cb◦a L̃E bb◦a = a. Then a L̃E ◦ R̃E c. Together with the dual argument we have that

R̃E ◦ L̃E = L̃E ◦ R̃E.

In view of the remarks following Definition 5.1.2, the proof of the final statement follows
easily from Lemmas 5.1.4 and 5.1.5.

Green’s theorem, a pivot of classical semigroup theory, states that if k ∈ S and kH k2,
then Hk is a group. We now consider semigroups with (C) such that the analogue of Green’s
theorem holds, by which we mean, if k H̃E k

2, then H̃k
E is a monoid with identity an element

of E: in view of Lemma 1.2.9, this is equivalent to containing an element of E.
The set of idempotents E(T ) of any semigroup T may be endowed with the two pre-orders

≤R and ≤L, under which it has the structure of a biordered set; if T is regular, then E(T ) is
a regular biordered set. Conversely, any biordered set is the biordered set of idempotents of a
semigroup, which is regular if E is regular [55, 12]. Suppose now that S is our semigroup with
E ⊆ E(S); [55, Theorem 1.3] gives necessary and sufficient conditions such that E generates
a regular subsemigroup S ′ = 〈E〉 of S such that E(S ′) = E. Clearly, if these conditions hold,
and if h ∈ S ′ with h H̃E h

2 in S, then as E ⊆ S ′ we have h H̃E h
2 in S ′. It follows that hH h2

in S ′ so that hH u in S ′ for some u ∈ E(S ′) = E. Certainly then H̃h
E (in either S or S ′)

contains u.
To obtain a more general result, we need to introduce the following concept.

Definition 5.1.8. We say that E ⊆ E(S) is closed under E-conjugation if for any e ∈ E

and E-regular c ∈ S (with cc◦, c◦c ∈ E), if cec◦ ∈ E(S), then cec◦ ∈ E.

Notice that the above definition is symmetric, since (c◦)◦ = c.

Lemma 5.1.9. Let S be a restriction semigroup, let c ∈ S be E-regular and let e ∈ E. Then
cec◦ (and hence also c◦ec) lie in E.

Proof. Let c, e be as above. Then

cec◦ = (ce)+cc◦ ∈ E

as E is a semilattice.
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The next lemma follows the pattern for regular semigroups, as stated in [32, Result 2].
However, we need a little care as E need not consist of all the idempotents of S.

Lemma 5.1.10. The E-regular elements of S form a subsemigroup T with E = E(T ) if and
only if ef is E-regular for any e, f ∈ E, and E is closed under E-conjugation.

Proof. Let T denote the set of E-regular elements of S. The direct statement is clear.
Conversely, suppose that ef is E-regular for any e, f ∈ E, and E is closed under E-

conjugation. Let h, k ∈ T and choose inverses h◦, k◦ of h and k respectively, such that
hh◦, f = h◦h, e = kk◦, k◦k ∈ E. Let u be an inverse of fe such that ufe, feu ∈ E. It is easy
to check that k◦uh◦ is an inverse of hk. We then have (hk)(k◦uh◦) ∈ E(S) and

(hk)(k◦uh◦) = hf(kk◦)uh◦ = h(feu)h◦,

so that (hk)(k◦uh◦) ∈ E as feu ∈ E and E is closed under E-conjugation. Similarly,
(k◦uh◦)hk ∈ E. Thus hk ∈ T as required.

Corollary 5.1.11. Suppose that ef is E-regular for any e, f ∈ E, and E is closed under
E-conjugation. If h ∈ S is E-regular and h H̃E h

2, then H̃h
E contains an idempotent of E;

hence if S satisfies (C), then H̃h
E is a monoid with identity from E.

Proof. From Lemma 5.1.10 we have that the E-regular elements of S form a subsemigroup
T with E = E(T ). Certainly h, h2 ∈ T with h H̃E h

2 in T . Then hH h2 in T so that as
E = E(T ) we have H̃h

E (in either T or S) contains an idempotent of E.

Whereas the previous result uses Green’s theorem, the next does not, but has rather
restrictive hypotheses.

Lemma 5.1.12. Suppose that E ⊆ E(S) is a band, every H̃E-class contains an E-regular
element, H̃E is a congruence and S satisfies (C). Then for k ∈ S with k H̃E k

2, we have
E ∩ H̃k

E 6= ∅.

Proof. Notice that as H̃E is a congruence and k H̃E k
2, we have that H̃k

E is a subsemigroup.

h k, ef hh◦ = e

h◦h = f h◦ fe

Figure 5.4: Examining the behaviour of H̃k
E

71



By hypothesis there exists an E-regular element h ∈ H̃k
E

such that hh◦ = e, h◦h = f ∈ E. Then

h◦ = h◦hh◦ H̃E h
◦hhh◦ = fe ∈ E.

By Lemma 5.1.1, ef ∈ H̃k
E and ef ∈ E as E is a band. Hence E ∩ H̃k

E 6= ∅.

5.2 Extending congruences

Let M be a subsemigroup of a semigroup S and let ρ be a congruence (respectively, right
congruence) on M . We denote by ρ̃ (respectively, ρ̄) the congruence (respectively, right
congruence) on S generated by ρ. We briefly review the circumstances under which

ρ = ρ̃ ∩ (M ×M) or ρ = ρ̄ ∩ (M ×M),

where M = H̃e
E for some e ∈ E, in the context of the conditions discussed in this chapter.

Definition 5.2.1. A subsemigroupM of a semigroup S has the (right) congruence extension
property in S if for any (right) congruence ρ on M we have

ρ = ρ̃ ∩ (M ×M) (respectively, ρ = ρ̄ ∩ (M ×M)).

Lemma 5.2.2. Let S be a weakly E-abundant semigroup with (C). Suppose that H̃E is a
congruence. Let e ∈ E. Then M = H̃e

E has the right congruence extension property in S.

Proof. Let ρ be a right congruence on M . Clearly ρ ⊆ ρ̄ ∩ (M ×M). Let a ∈ M, b ∈ S and
suppose a ρ̄ b. Then either a = b (so that clearly a ρ b) or there exists a sequence

a = c1t1, d1t1 = c2t2, · · · , dntn = b

for some n ∈ N, where (ci, di) ∈ ρ, ti ∈ S, 1 ≤ i ≤ n (see, for example, [36, Chapter 1]). As
a, c1, d1, · · · , cn, dn ∈M , which has identity e, we have

a = c1t
′
1, d1t

′
1 = c2t

′
2, · · · , dnt′n = b where t′i = eti.

Since H̃E is a congruence we have

a = c1t
′
1 H̃E et

′
1 = t′1 H̃E d1t

′
1 = c2t

′
2 H̃E et

′
2 = t′2 H̃E · · · H̃E et

′
n = t′n.
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We conclude that t′1, · · · , t′n ∈M and so b ∈M and a ρ b. Hence M has the right congruence
extension property.

Note that what we have shown above is something a little stronger than claimed, namely
that ρ̄ saturates M , where ρ saturates M if

a ρ b⇒ (a ∈M if and only if b ∈M),

or equivalently, M is the union of ρ-classes.

Corollary 5.2.3. Let S be a regular semigroup such that H is a congruence. Then for any
e ∈ E(S), the maximal subgroup He has the right congruence extension property.

Note that it was shown in [23, Lemma 6.3] that every subgroup of a semigroup has the
right congruence extension property and we are thankful to Maria Szendrei for making it
explicit for us (in a private communication). Our result is in a sense stronger that we don’t
require H̃E to be a subgroup, but it is also weaker, because we need H̃E to be a congruence.

Let M be a subsemigroup of S and let ρ be a congruence on M . We say that ρ is
closed under E-conjugation if for u, v ∈ M with u ρ v and for any E-regular c ∈ S with
cuc◦, cvc◦ ∈ M , we have cuc◦ ρ cvc◦; if E = E(S), we simply say that ρ is closed under
conjugation.

Proposition 5.2.4. Let S be a semigroup with (C) such that every H̃E-class contains an
E-regular element, H̃E is a congruence and if k H̃E k

2, then H̃k
E contains an idempotent of

E. Let e ∈ E and M = H̃e
E and let ρ be a congruence on M . Then

ρ = ρ̃ ∩ (M ×M),

if and only if ρ is closed under E-conjugation.

Proof. It is clear that if ρ = ρ̃ ∩ (M ×M), then ρ is closed under E-conjugation.
Conversely, suppose that ρ is closed under E-conjugation. Let a ∈M, b ∈ S and suppose

that
a = cpd, cqd = b,

where (p, q) ∈ ρ and c, d ∈ S1. As p H̃e

E q and H̃E is a congruence, we see that b ∈ M . It
follows that

a = c′pd′, c′qd′ = b,
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where c′ = ece and d′ = ede. Then

a≤R̃E c
′≤R̃E e R̃E a,

so that a R̃E c
′. Dually, a L̃E d′.

e a v◦ c′ u

u◦ f

d′ v u∗ g d′c′ w

Figure 5.5: Congruence extension property

From the comments following Definition 5.1.2, there exist E-regular elements
u ∈ H̃c′

E and v ∈ H̃d′
E such that uu◦ = e, u◦u = f ∈ E and v◦v = e, vv◦ = g ∈ E. Now

vu ∈ R̃v
E ∩ L̃uE by Lemma 5.1.1 and vu H̃E d

′c′. Since

uv H̃E c
′d′ = c′ed′ H̃E c

′pd′ = a H̃E e

we have
vuvu H̃E veu H̃E vu.

By assumption, there exists an idempotent w ∈ E ∩ H̃d′c′
E . Let u∗ ∈ H̃d′

E be an inverse of u
such that uu∗ = e and u∗u = w. Then

a = c′wpwd′ = (c′u∗)(upu∗)(ud′) and b = c′wqwd′ = (c′u∗)(uqu∗)(ud′).

Now u∗ H̃E d
′ gives that c′u∗ H̃E c

′d′ H̃E e, so c′u∗ ∈ M and similarly u H̃E c
′ gives that

ud′ H̃E c
′d′ H̃E e, so that ud′ ∈M . Further,

upu∗ = e(upu∗)e H̃E (c′u∗)(upu∗)(ud′) = a ∈M,

and similarly, uqu∗ ∈ M . Since ρ is closed under E-conjugation it follows that upu∗ ρ uqu∗

and so a ρ b.
Now consider h ∈ M,k ∈ S with h ρ̃ k. Either h = k (so that certainly h ρ k), or h is
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connected to k via a ρ-sequence

h = c1p1d1, c1q1d1 = c2p2d2, · · · , cnqndn = k,

for some n ∈ N, where (pi, qi) ∈ ρ, ci, di ∈ S1, 1 ≤ i ≤ n (see, for example, [34, Chapter 1]).
It follows from the above that ciqidi ∈M and h ρ ciqidi for 1 ≤ i ≤ n. Hence h ρ k and

ρ = ρ̃ ∩ (M ×M).

Corollary 5.2.5. Let S be a regular semigroup such that H is a congruence. Let
G = He be the maximal subgroup with identity e ∈ E(S). Then for any right congruence ρ
on G we have ρ = ρ̃ ∩ (G×G) if and only if ρ is closed under conjugation.

Note that if E is a band, then from Lemma 5.1.12, the remaining hypotheses of Proposi-
tion 5.2.4 will guarantee that H̃k

E contains an idempotent of E.
We remark here that if S is a completely semisimple semigroup, that is if J = D and the

principal factors are completely 0-simple, then ρ is closed under conjugation. In this case if
G = He is the maximal subgroup with identity e ∈ E(S), then ρ = ρ̃ ∩ (G×G).

In the following, M is a monoid with identity e.

Example 5.2.6. Let B be a band. With E = {e} × B, the direct product M × B satisfies
the hypotheses of Proposition 5.2.4.

The next three examples are essentially folklore, but they can all be found in [11].

Example 5.2.7. Let S = B◦(M, I) be a Brandt semigroup. That is,

S = (I ×M × I) ∪ {0}

with multiplication given by

(i,m, j)(j, n, k) = (i,mn, k),

all other products being 0. Then with

E = {(i, 1, i) : i ∈ I} ∪ {0}
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we have that for any (i,m, j), (k, n, l) ∈M

(i,m, j) R̃E (k, n, l) if and only if i = k

and
(i,m, j) L̃E (k, n, l) if and only if j = l.

It follows that S is restriction with distinguished semilattice E, H̃E is a congruence on S and
with

U = {(i, e, j) : i, j ∈ I} ∪ {0}

we have that U is an inverse subsemigroup of E-regular elements, intersecting every H̃E-class
exactly once. In particular, S satisfies the hypotheses of Proposition 5.2.4.

Example 5.2.8. Let S = BR(M, θ), where θ : M →M is a monoid morphism. That is,

S = N0 ×M × N0

and multiplication is given by

(m, a, n)(h, b, k) = (m− n+ u, aθu−nbθu−h, k − h+ u) where u = max (n, h).

With
E = {(m, e,m) : m ∈ N0}

we have that for any (m, a, n), (h, b, k) ∈ S,

(m, a, n) R̃E (h, b, k) if and only if m = h

and
(m, a, n) L̃E (h, b, k) if and only if n = k.

It is then easy to see that H̃E is a congruence on S and S is restriction. Moreover, with

U = {(m, e, n) : m,n ∈ N0}

we have that U is an inverse subsemigroup of E-regular elements of S intersecting every
H̃E-class exactly once. In particular, S satisfies the hypotheses of Proposition 5.2.4. Note
that S is a monoid with identity (0, e, 0).
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Note that the assumption in [11] that the image of θ is contained in H̃1
E, is not needed

for the above.

Example 5.2.9. Let S = BR(M,Z, θ) be the extended Bruck-Reilly extension of a monoid
M . The underlying set is

S = Z×M × Z

and the semigroup operation on S is defined as in Example 5.2.8. The semigroup S has the
same properties as in that example, with the exception of being a monoid.

Example 5.2.10. Let S = [Y ;Sα;χα,β] be a strong semilattice Y of monoids Sα, α ∈ Y ,
with connecting morphims χα,β for α > β. Denoting the identity of Sα by eα we have that S
is restriction with

E = {eα : α ∈ Y } ∼= Y,

and the Sαs are the H̃E-classes. Certainly then H̃E is a congruence on S and S satisfies the
hypotheses of Proposition 5.2.4.

5.3 Semigroups with skeletons

We continue to examine semigroups with ‘enough’ E-regular elements, now moving towards
decompositions of such semigroups. It is clear from Lemma 5.1.7 that if every H̃E-class of
a semigroup S with (C) contains an E-regular element, and e D̃E a where e ∈ E, then every
element of H̃a

E has a unique decomposition as upv, where u, v are fixed E-regular elements
and p ∈ H̃e

E. For results leading further to structure theorems, we will concentrate in this
section on the case where E is a semilattice.

Definition 5.3.1. Let V ⊆ W be subsets of a semigroup S such that W is a union of
H̃E-classes. We say that V is an H̃E-transversal of W if

|V ∩ H̃a
E| = 1 for all a ∈ W.

Lemma 5.3.2. Let E be a semilattice and let c ∈ S be E-regular. Then there is only one
choice of c◦. Moreover, if d ∈ S is E-regular and c H̃E d, then c◦ H̃E d

◦.

Proof. If c◦, c′ are both inverses of c with cc◦, cc′, c◦c, c′c ∈ E, then we have

c L̃E c◦c L̃E c′c and cc◦ R̃E c R̃E cc
′.
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Since E is a semilattice, any R̃E-class or L̃E-class contains at most one idempotent of E,
so that c◦c = c′c = e and cc◦ = cc′ = f say. Thus c◦, c′ ∈ Re ∩ Lf so that (as any H-class
contains at most one inverse of c) we have c◦ = c′.

The proof of the second statement is similar.

Clearly the above shows that if E is a semilattice and c ∈ S is E-regular, then (c◦)◦ = c.
We recall that S is said to be weakly E-adequate if S is weakly E-abundant and E is a
semilattice. In this case there is a unique idempotent in the R̃E-class (L̃E-class) of a ∈ S,
which we denote by a+ (a∗, respectively).

Note 5.3.3. Let S be a weakly E-adequate semigroup and let c ∈ S be E-regular. Then

c R̃E c
+ R̃E cc

◦,

so that we must have c+ = cc◦ and similarly c∗ = c◦c. Hence also (c◦)+ = c◦c and (c◦)∗ = cc◦.

Proposition 5.3.4. Let S be weakly E-adequate with R̃E ◦ L̃E = L̃E ◦ R̃E, and let e ∈ E.
Suppose there is an H̃E-transversal L of L̃eE such that every c ∈ L is E-regular, and e ∈ L.
Then:

(1) R = {c◦ : c ∈ L} is an H̃E-transversal of R̃e
E;

(2) D = LR is an H̃E-transversal of D̃e
E;

(3) if S has (C), then every element of D̃e
E has a unique decompostion as cpd◦, where

c, d ∈ L and p ∈ H̃e
E.

Proof. (1) Let c ∈ L. As E is a semilattice and c L̃E e, we must have that e = c◦c so that
e R̃E c

◦. From Lemma 5.3.2, clearly R intersects any H̃E-class at most once. On the
other hand, let a ∈ R̃e

E. Then a L̃E f ∈ E and as R̃E ◦ L̃E = L̃E ◦ R̃E, we have that
f R̃E c for some c ∈ L. It follows that a H̃E c

◦, so that R is an H̃E-transversal of R̃e
E.

(2) It is clear from Lemma 5.1.1 that for any c, d ∈ L we have cd◦ ∈ R̃c
E ∩ L̃d

◦
E . Since

D̃E = L̃E ◦ R̃E, it follows that D is an H̃E-transversal of D̃e
E, as required.

(3) This follows from Lemmas 5.1.4 and 5.1.5.

We anticipate that Proposition 5.3.4 can be used to develop structure theorems for classes
of weakly E-adequate semigroups analogous to those for inverse semigroups.
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Definition 5.3.5. Let U be an inverse subsemigroup of S consisting of E-regular elements
such that E ⊆ U . If U is an H̃E-transversal of S, then U is an inverse skeleton of S.

Example 5.3.6. The semigroups of Examples 5.2.7, 5.2.8 and 5.2.10 all have inverse
skeletons, with E being the skeleton in Example 5.2.10.

Lemma 5.3.7. Let S be a semigroup containing an inverse skeleton U . Then
E = E(U) is a semilattice, S is weakly E-adequate and if in addition S has (C), we have
R̃E ◦ L̃E = L̃E ◦ R̃E.

Proof. We are given that E ⊆ E(U). If u ∈ E(U), then as u is E-regular, uRuu◦ ∈ E. We
are given that E(U) is a semilattice and so u = uu◦ ∈ E. The remainder of the lemma is
immediate from Lemma 5.1.7.

Naturally, we say that S is D̃E-simple if it is a single D̃E-class.

Theorem 5.3.8. Let S be a D̃E-simple weakly E-adequate monoid with
R̃E ◦ L̃E = L̃E ◦ R̃E. Suppose there is a submonoid H̃E-transversal L of L̃1

E such that every
c ∈ L is E-regular and for all c ∈ L, e ∈ E we have cec◦, c◦ec ∈ E. Let

R = {c◦ : c ∈ L}.

(1) R is a submonoid H̃E-transversal of R̃1
E;

(2) RL ⊆ R̃1
E ∪ L̃1

E if and only if E is a chain;

(3) if S is restriction then U = 〈R ∪ L〉 is an inverse subsemigroup of S with E(U) = E;

(4) if S is restriction and RL ⊆ R ∪ L, then U = LR and U is an inverse skeleton for S.

Proof. From the condition that cec◦, c◦ec ∈ E for all c ∈ L, and the fact that E is a semilat-
tice, it is easy to see that for any u, v ∈ R ∪ L we have uv is E-regular with suitable inverse
v◦u◦.

(1) From Proposition 5.3.4, we know that R is an H̃E-transversal of R̃1
E. Let c, d ∈ L so

that c◦, d◦ ∈ R. From the above, cd is E-regular with (cd)◦ = d◦c◦. As cd ∈ L we have
d◦c◦ ∈ R. Clearly, 1 = 1◦ ∈ R, so that R is a submonoid.

(2) Let e, f ∈ E and let c, d ∈ L be such that cc◦ = e, dd◦ = f . As above, c◦d is E-
regular with (c◦d)◦ = d◦c. We have c◦d ∈ R̃1

E if and only if 1 = c◦dd◦c, which implies
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(multiplying on the front by c and the back by c◦) that e = efe so that e ≤ f . On the
other hand, if e ≤ f , then c◦d R̃E c

◦ef = c◦e = c◦ R̃E 1. Similarly, we see that c◦d ∈ L̃1
E

if and only if f ≤ e. Statement (2) follows.

(3) Let u = x1x2 . . . xk ∈ U , where xi ∈ L ∪ R for 1 ≤ i ≤ n. We show by induction on k
that u is E-regular with u◦ = x◦k . . . x

◦
1. Clearly this is true for k = 1 and we commented

above that this is true for k = 2.

Suppose now that k > 3 and the result is true for words in U of shorter length. Our
inductive hypothesis gives that x1 . . . xk−1 is E-regular with inverse x◦k−1 . . . x

◦
1. Then

(x1 · · ·xk)(x◦k · · ·x◦1)(x1 · · ·xk) = (x1 · · ·xk−1)(xkx◦k)[(x◦k−1 · · ·x◦1)(x1 · · ·xk−1)]xk
= (x1 · · ·xk−1)[(x◦k−1 · · ·x◦1)(x1 · · ·xk−1)](xkx◦k)xk
= x1 · · ·xk−1xk

and
(x1 · · ·xk)(x◦k · · ·x◦1) = x1(x2 · · ·xkx◦k · · ·x◦2)x◦1 ∈ E

by induction and hypothesis. Together with the dual argument, we obtain that
u = x1 · · · xk is E-regular with u◦ = x◦k · · ·x◦1.

Certainly E ⊆ E(U). To show that U is inverse, we use the fact that S is restriction.
Let e ∈ E(U). Then

e+ = ee◦ = eee◦ = ee+

so that using the identity xy+ = (xy)+x we have

e+ = ee+ = (ee)+e = e+e = e,

so that E(U) = E. Hence E(U) is a semilattice and U is inverse.

(4) To see that U = LR, let u ∈ U . Since R and L are submonoids, we can write
u = l1r1l2r2 · · · lmrm where l1, . . . , lm ∈ L and r1, . . . , rm ∈ R and m is least with
respect to such a decomposition of u. If m > 2, then either r1l2 ∈ R or r1l2 ∈ L, so
that as

u = l1(r1l2r2) · · · lmrm = (l1r1l2)r2 · · · lmrm

we have violated the minimality of m. Hence m = 1 and U = LR. From Proposi-
tion 5.3.4, U is an H̃E-transversal of S, so that U is an inverse skeleton of S.
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Example 5.3.9. Let S = BR(M, θ) and put

L = {(m, e, 0) : m ∈ N0}.

We have that L is a submonoid H̃E-transversal of L̃1
E consisting of E-regular elements and

S × S = R̃E ◦ L̃E = L̃E ◦ R̃E. With

R = {(0, e,m) : m ∈ N0} = {(m, e, 0)◦ : m ∈ N0}

we see that RL ⊆ R ∪ L. Then U defined as in Theorem 5.3.8 coincides with U as given in
Example 5.2.8.

5.4 D̃E-simple monoids and Zappa-Szép products

We build on the results of previous sections to show how certain D̃E-simple restriction
monoids decompose as Zappa-Szép products of submonoids. In particular, we show how
Kunze’s [37] result for the Bruck-Reilly extension of a monoid may be put into a general
framework.

Definition 5.4.1. Let S be a monoid. We say that S is special if there is a submonoid
H̃E-transversal L of L̃1

E such that every c ∈ L is E-regular.

Example 5.4.2. We have observed in Example 5.3.9 that S = BR(M, θ) is special with

L = {(m, e, 0) : n ∈ N0}

being a submonoid H̃E-transversal of L̃1
E. Moreover, H̃E is a congruence on S.

Theorem 5.4.3. Let S be a weakly E-adequate monoid with (C). Then S is D̃E-simple with
R̃E ◦ L̃E = L̃E ◦ R̃E and special if and only if S is the internal Zappa-Szép product of L and
R̃1
E, where L is a submonoid H̃E-transversal of L̃1

E.

Proof. Suppose that S is the internal Zappa-Szép product of L and R̃1
E, where L is a sub-

monoid H̃E-transversal of L̃1
E.

Let a, b ∈ S and write a = lr, b = l′r′ where l, l′ ∈ L and r, r′ ∈ R̃1
E. Then lr′, l′r ∈ S,

a = lr R̃E lr
′ L̃E l′r′ = b
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and
a = lr L̃E l′r R̃E l

′r′ = b.

Thus L̃E ◦ R̃E = R̃E ◦ L̃E = S × S. Finally we need to show that L consists of E-regular
elements. For this let l ∈ L and write l+ = uv where u ∈ L and v ∈ R̃1

E. Then u R̃E l so
that u = l, since |L ∩ H̃a

E| = 1 for all a ∈ L.

1 v = l◦

l = u l+ = uv

Figure 5.6: E-regular elements in H̃E-transversal of L̃1
E

Therefore l+ = lv and l = l 1 = l+l = l(vl) and vl ∈ H̃1
E by Lemma 5.1.1. By uniqueness

of factorisation, vl = 1. Thus v = vlv and lv, vl ∈ E, so that l is E-regular as required. Thus
S is special.

Conversely, suppose that L̃E ◦ R̃E = R̃E ◦ L̃E = S × S and S is special. Let s ∈ S.
Then 1 L̃E l R̃Es for some l ∈ L and as l is E-regular we have s = l+s = ll◦s. Now observe
that l◦s R̃E l

◦l = 1 so that l◦s ∈ R̃1
E. To see that this factorisation is unique, suppose that

s = lr = kt where l, k ∈ L and r, t ∈ R̃1
E. Now R̃E is a left congruence, so that l R̃E k, giving

l = k. As l is E-regular, we have 1 = l◦l and we deduce that r = t. Thus S is the internal
Zappa-Szép product of L and R̃1

E.

We now examine the actions in the situation where the hypotheses of Theorem 5.4.3 hold.
For r ∈ R̃1

E and l ∈ L we have
rl = (rl)+rl = dd◦rl

where d ∈ L. Observe now that d◦rl R̃E d
◦(rl)+ = d◦dd◦ = d◦R̃E 1. It follows that

r · l = d and rl = d◦rl where rl R̃E d ∈ L.

We explain these actions with the help of a picture.
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1 r rl = d◦rl
l

r · l = d rl

Figure 5.7: Actions of R̃1
E and L on each other

We can proceed further in Theorem 5.4.3 to decompose R̃1
E as a Zappa-Szép product,

under the additional hypothesis that for all c ∈ L and e ∈ E we have cec◦, c◦ec ∈ E. Recall
from Theorem 5.3.8 that this guarantees that R = {c◦ : c ∈ L} is a submonoid H̃E-transversal
of R̃1

E.

Theorem 5.4.4. Let S be a weakly E-adequate monoid with (C) such that S is D̃E-simple
with R̃E ◦ L̃E = L̃E ◦ R̃E and special. Suppose in addition that for all c ∈ L and e ∈ E we
have cec◦, c◦ec ∈ E. Then R̃1

E is the internal Zappa-Szép product of H̃1
E and R.

It follows that R̃1
E
∼= H̃1

E ./ R. Further, if H̃E is a congruence on S, then the action of
H̃1
E on R is trivial and R̃1

E
∼= H̃1

E oR.

Proof. Let t ∈ R̃1
E. For r ∈ R with r H̃E t, we have rr◦ = 1 and r◦r = f ∈ E and certainly

f L̃E r. From Lemma 5.1.4, ρr : H̃1
E → H̃r

E is a bijection. Thus every element of R̃1
E has a

unique decomposition as hr for some h ∈ H̃1
E and r ∈ R, that is, R̃1

E = H̃1
ER is the internal

Zappa-Szép product of H̃1
E and R.

It follows that R̃1
E
∼= H̃1

E ./ R. We now examine the mutual actions of H̃1
E and R.

Let h ∈ H̃1
E, r ∈ R and let t ∈ R be such that rh H̃E t, so that rh L̃E f = t◦t. Then

rh = (rh)f = (rh)(t◦t) and rht◦ ∈ H̃1
E, again by Lemma 5.1.4. Hence

r · h = rht◦ and rh = t :

1 h r · h = rht◦ r t = rh rh

t◦ t◦t

Figure 5.8: Decomposition of R̃1
E as a Zappa-Szép product of H̃1

E and R

Finally, if H̃E is congruence, then rh H̃E r1 = r, so that t = r and rh = r.
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5.5 Some applications and examples

If S is such that every H̃E-class contains an E-regular element and S has (C), then we have
noted in Lemma 5.1.7 that R̃E ◦L̃E = L̃E ◦R̃E. Moreover, if S is special and restriction, then
we immediately see from Lemma 5.1.9 that for all c ∈ L and e ∈ E we have cec◦, c◦ec ∈ E.
In particular, if S is an inverse monoid, then certainly with E = E(S), S is restriction,
every H̃E-class contains an E-regular element and R̃E ◦ L̃E = L̃E ◦ R̃E (since K̃E = K, for
all relevant K). We thus immediately deduce from Theorems 5.4.3 and 5.4.4 the following:
notice that we have reverted to the more usual notation of Ka for the K-class of a ∈ S.

Theorem 5.5.1. Let S be an inverse monoid. Then S is bisimple and special if and only
if S is the internal Zappa-Szép product of L and R1, where L is a submonoid H-transversal
of L1. Moreover, in this case, R1 is the internal Zappa-Szép product of H1 and R where
R = {r−1 : r ∈ L}, and is a semidirect product if H is a congruence.

Now we deduce [37, Section 5.4].

Corollary 5.5.2. Let S = BR(M, θ). Then with

L = {(n, e, 0) : n ∈ N0} and R = {(0, e, n) : n ∈ N0}

we have that
S ∼= N0 ./ (M oN0).

Proof. We have observed that S is restriction and special with L and R as given. Moreover,
S × S = R̃E ◦ L̃E = L̃E ◦ R̃E and H̃E is a congruence. From Theorems 5.4.3 and 5.4.4 we
have S ∼= L ./ (H̃1

E oR) and then as L ∼= N0, H̃1
E
∼= M and L ∼= N0, we deduce the result.

We now consider the relevant actions. For (n, e, 0) ∈ L and (0, a,m) ∈ R̃1
E, with

k = max(m,n) we have

(0, a,m)(n, e, 0) = (k −m, aθk−m, k − n)

so that from the recipe in Theorem 5.4.3 we have

(0, a,m) · (n, e, 0) = (k −m, e, 0) and (0, a,m)(n,e,0) = (0, aθk−m, k − n).

Considering now the action of R on H̃1
E we have

(0, e,m) · (0, a, 0) = (0, e,m)(0, a, 0)(m, e, 0) = (0, aθm, 0).
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Using the natural isomorphisms (n, e, 0) 7→ n, (0, e,m) 7→ m and (0, a, 0) 7→ a we have that
N0 acts on S by

m · a = aθm

giving the semidirect product SoN0 and then SoN0 and N0 act on each other mutually by

(a,m) · n = k −m and (a,m)n = (aθk−m, k − n).

Of course, the above can be applied to the bicyclic monoid (withM trivial) or to bisimple
inverse ω-semigroups (with M a group).

We have set up the tools for further investigation. A structure theorem for D̃E-simple
restriction semigroups with ω-chain of idempotents using "weakly" Bruck-Reilly extensions is
proved by S. Ma, X. Ren and Y. Yuan in [50]. It is proved that if S is a D̃E-simple restriction
semigroups with ω-chain of idempotents , then S ∼= WBR(T, θ), where WBR(T, θ) is a
"weakly" Bruck-Reilly extension of a monoid T where T ∼= H̃e

E. Their result generalises the
structure theorem of ∗-bisimple type A ω-semigroups given by U. Asibong-Ibe in 1985 [3].
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Chapter 6

λ-Semidirect products of restriction
semigroups

The semidirect product of two inverse semigroups is not inverse in general [60]. Billhardt
showed how to modify the definition of a semidirect product of two inverse semigroups to
obtain what he termed as a λ-semidirect product [4]. The λ-semidirect product of two inverse
semigroups is again inverse. This result was generalised to the left ample case, again by
Billhardt, where one component is a semilattice [5] (but he indicated that it would work for
any two left ample semigroups). Again in this special case, this was extended further to the
λ-semidirect product of a semilattice and a left restriction semigroup by Branco, Gomes and
Gould [6]. Indeed [6] considers a yet more general λ-semidirect product, with one component
a left regular band.

In this chapter following Billhardt’s construction, we consider the λ-semidirect product of
two left restriction semigroups and prove that it is left restriction.

In the two sided case, we show that if a restriction semigroup is acting doubly on another,
then the λ-semidirect product is again restriction. We provide two proofs of this result. First
a direct proof and second, by constructing an inductive category and then equipping it with
the standard pseudo-product.

In the first section we provide background for λ-semidirect products and the work done so
far regarding the λ-semidirect product of inverse, left ample and left restriction semigroups.
We consider the λ-semidirect product of two arbitrary left restriction semigroups in the
second section and prove that it is again left restriction. We then consider the two-sided
case and by using the notion of double action prove that the λ-semidirect product of two
restriction semigroups is again restriction. In the final section of this chapter, we consider the
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λ-semidirect product of two restriction semigroups and give it the structure of an inductive
category. By defining a pseudo-product on this inductive category, we obtain a restriction
semigroup in a standard way.

6.1 λ-semidirect product of inverse, left ample and left
restriction semigroups

We begin by defining the notion of the λ-semidirect product of two inverse semigroups.

Definition 6.1.1. [4] Let S and T be inverse semigroups and suppose that T acts on the
left of S by endomorphisms. Put

S oλ T = {(a, t) ∈ S × T : tt−1 · a = a}.

Define a binary operation on S oλ T by

(a, t)(b, u) =
(
((tu)(tu)−1 · a)(t · b), tu

)
.

We say that S oλ T is the λ-semidirect product of S by T .

We will see later that this is a special case of the λ-semidirect product of left restriction
semigroups. The following result is the consequence of Definition 6.1.1

Proposition 6.1.2. [4] Let S and T be inverse semigroups such that T acts on the left of
S by endomorphisms. Then S oλ T is an inverse semigroup. If in addition, S and T are
monoids, then S oλ T is an inverse monoid with identity (1, 1).

The following proposition provides two special cases of this construction.

Proposition 6.1.3. [45] Let S and T be inverse semigroups such that T acts on the left of
S by endomorphisms.

(1) If T is a group, then S oλ T = S o T is the semidirect product of S by T .
(2) If S and T are both groups, then S oλ T = S o T is a group.

In [77], Wazzan gave an alternative proof of Proposition 6.1.2, by using the correspondence
in the Ehresmann-Schein-Nambooripad Theorem [Chapter 1] between inverse semigroups and
inductive groupoids.
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Theorem 6.1.4. [77] Let S and T be inverse semigroups and let P = SoT be the semidirect
product of S by T . Then

B(P ) = {(a, t) ∈ S × T : tt−1 · a = a}

is an inductive groupoid under the restriction of binary operation in P where

d(a, t) = (aa−1, tt−1), r(a, t) = (t−1 · a−1a, t−1t)

and with partial order on B(P ) defined by for (a, t), (b, u) ∈ B(P ),

(a, t) ≤ (b, u) if and only if a ≤ tt−1 · b and t ≤ u.

The set of local identities is then

EB(P ) = {(e, f) ∈ P : e2 = e, f 2 = f, f · e = e}

and for (a, t) ∈ B(P ),
(a, t)−1 = (t−1 · a−1, t−1).

The restriction and co-restriction are defined for (a, t) ∈ B(P ), (e, f) ∈ EB(P ) by

(e,f)|(a, t) = (e(f · a), ft)

and
(a, t)|(e,f) = ((tft−1 · a)(tf · e), tf).

Further, under the standard pseudo-product, B(P ) = S oλ T .

Billhardt later extended his construction, in the case where one component was a semi-
lattice, to left ample semigroups [5]. This was extended further to the λ-semidirect product
of a semilattice and a left restriction semigroup by Branco, Gomes and Gould [6].

Definition 6.1.5. Let T be a left restriction semigroup. Suppose T acts on a semigroup S
by endomorphisms. Put

S oλ T = {(a, t) ∈ S × T : t+ · a = a}.
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Define a binary operation on S oλ T by

(a, t)(b, u) = (((tu)+ · a)(t · b), tu).

We say that S oλ T is the λ-semidirect product of S by T .

Lemma 6.1.6. Let T be a left restriction semigroup such that T acts on a semigroup S on
the left by endomorphisms. Then

S oλ T = {(a, t) ∈ S × T : t+ · a = a}

is a semigroup.

Proof. Let (a, t), (b, u) ∈ SoλT . We first show that (a, t)(b, u) = ((tu)+ ·a)(t·b), tu) ∈ SoλT .
We see that

(tu)+ · (((tu)+ · a)(t · b)) = ((tu)+ · ((tu)+ · a))((tu)+ · (t · b))
= ((tu)+(tu)+ · a

)
((tu)+t · b)

= ((tu)+ · a)(tu+ · b) using the left ample condition
= ((tu)+ · a)(t · (u+ · b))
= ((tu)+ · a)(t · b).

Thus multiplication is closed.
Now to check associativity, let (a, t), (b, u), (c, v) ∈ S oλ T . Then

(
(a, t)(b, u)

)
(c, v) =

(
((tu)+ · a)(t · b), tu

)
(c, v)

=
((

(tuv)+ · (((tu)+ · a)(t · b))
)
(tu · c), (tu)v

)
=

(
((tuv)+ · ((tu)+ · a)))((tuv)+ · (t · b))(tu · c), t(uv)

)
=

(
((tuv)+(tu)+ · a)((t(uv)+)+t · b)(tu · c), t(uv)

)
=

(
((tuv)+ · a)(t(uv)+ · b)(tu · c), t(uv)

)
=

(
((t(uv))+ · a)(t · (((uv)+ · b)(u · c)), t(uv)

)
= (a, t)

(
((uv)+ · b)(u · c), uv

)
= (a, t)

(
(b, u)(c, v)

)
.

Thus the associative law holds and hence S oλ T is a semigroup.

Proposition 6.1.7. [6] Let E be a semilattice and T be a left restriction semigroup such that

89



T acts on the left of E by endomorphisms. Then E oλ T is a left restriction semigroup with

(e, t)+ = (e, t+).

Then
ESoλT = {(e, t+) ∈ E × T : t+ · e = e}

is the semilattice of projections of S oλ T .

We extend the above in two ways. First, we consider the λ-semidirect product of arbitrary
left restriction semigroups and prove that it is again left restriction. Using the notion of
double actions taken from [24], we then introduce the λ-semidirect product of (two-sided)
restriction semigroups. We give a direct argument that our construction yields a restriction
semigroup. Then following Wazzan’s technique we construct an inductive category and obtain
the corresponding restriction semigroup.

6.2 λ-semidirect product of restriction semigroups

In this section we first consider the λ-semidirect product of two left restriction semigroups.

Theorem 6.2.1. Let S and T be left restriction semigroups such that T acts on the left of
S by endomorphisms of S regarded as a left restriction semigroup. Then

S oλ T = {(a, t) ∈ S × T : t+ · a = a}

is left restriction under the binary operation defined by

(a, t)(b, u) = (((tu)+ · a)(t · b), tu)

where (a, t)+ = (a+, t+) and

F = {(a+, t+) : t+ · a+ = a+}.

is the semilattice of projections of S oλ T .

Proof. Note that by hypothesis,

t · a+ = (t · a)+ for any t ∈ T and a ∈ S.
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Now if (a, t) ∈ S oλ T , then
t+ · a+ = (t+ · a)+ = a+,

so that F ⊆ S oλ T . From Lemma 6.1.6, we know that the binary operation is associative.
We now check the four identities that define a left restriction semigroup hold. For this let
(a, t) ∈ S oλ T . Then

(a, t)+(a, t) = (a+, t+)(a, t)
=

(
((t+t)+ · a+)(t+ · a), t+t

)
= ((t+ · a+)a, t) because t+ · a = a

= (a+a, t) because t+ · a+ = a+

= (a, t).

Next let (a, t), (b, u) ∈ S oλ T . Then

(a, t)+(b, u)+ = (a+, t+)(b+, u+)
=

(
(t+u+)+ · a+)(t+ · b+), t+u+

)
=

(
(t+u+ · a+)(t+ · b+), t+u+

)
=

(
(u+ · (t+ · a+))(t+ · b+), t+u+

)
=

(
(u+ · a+)(t+ · b+), t+u+

)
because t+ · a+ = a+

= (b, u)+(a, t)+,

the last step by symmetry.
Next we see that(

(a, t)+(b, u)
)+

=
(
(a+, t+)(b, u)

)+

=
(
((t+u)+ · a+)(t+ · b), t+u

)+

=
(
(t+u+ · a+)(t+ · b), t+u

)+

=
(
((t+u+ · a+)(t+ · b))+, (t+u)+

)
=

(
(t+u+ · a+)(t+ · b+), t+u+

)
= (a+, t+)(b+, u+)
= (a, t)+(b, u)+.
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Finally we show that the left ample condition holds. For this we see that
(
(a, t)(b, u)

)+
(a, t) =

(
((tu)+ · a)(t · b), tu

)+
(a, t)

=
(
(((tu)+ · a)(t · b))+, (tu)+

)
(a, t)

=
((

(tu)+t)+ · (((tu)+ · a)(t · b))+
)
((tu)+ · a), (tu)+t

)
=

((
(tu)+ · (((tu)+ · a)(t · b))+

)
((tu)+ · a), tu+

)
as (tu)+t = tu+ in T

=
(
(((tu)+ · (((tu)+ · a)(t · b)))+((tu)+ · a), tu+

)
using t · a+ = (t · a)+

=
(
(((tu)+ · ((tu)+ · a))((tu)+ · (t · b)))+((tu)+ · a), tu+

)
=

(
(((tu)+ · a)((tu)+t · b))+((tu)+ · a), tu+

)
=

(
(((tu)+ · a)(tu+ · b))+((tu)+ · a), tu+

)
as (tu)+t = tu+ in T

=
(
((tu)+ · a)(tu+ · b)+, tu+

)
as (rs)+r = rs+ in S

=
(
((tu)+ · a)(tu+ · b+), tu+

)
= (a, t)(b+, u+) because u+ · b+ = b+

= (a, t)(b, u)+.

Thus all the four identities hold and hence S oλ T is left restriction with (a, t)+ = (a+, t+).
It is clear that

F = {(a+, t+) : t+ · a+ = a+}

is the semilattice of projections of S oλ T .

Notice that in the above result,

(a+, t+)(b+, u+) = (((t+u+)+ · a+)(t+ · b+), t+u+)
= ((t+u+ · a+)(t+ · (u+ · b+)), t+u+) because b+ = u+ · b+

= ((t+u+ · a+)(t+u+ · b+), t+u+)
= (t+u+ · a+b+, t+u+),

so that (a+, t+) ≤ (b+, u+) if and only if

(a+, t+)(b+, u+) = (a+, t+)
⇔ (t+u+ · a+b+, t+u+) = (a+, t+)
⇔ t+u+ · a+b+ = a+ and t+u+ = t+

⇔ t+ · a+b+ = a+ and t+u+ = t+

⇔ (t+ · a+)(t+ · b+) = a+ and t+u+ = t+

⇔ a+(t+ · b+) = a+ and t+u+ = t+

⇔ a+ ≤ t+ · b+ and t+ ≤ u+.
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In Theorem 6.2.1, we notice that F has an alternative description as

F = {(f · e, f) : f ∈ ET , e ∈ ES},

for, if (a+, t+) ∈ F , we have t+ · a+ = a+. So

(a+, t+) = (t+ · a+, t+).

On the other hand, for f = f+ ∈ T and e = e+ ∈ S, we have

f · e = f+ · e+ = (f+ · e)+

and clearly f+ · (f · e) = f · e. Hence (f · e, f) ∈ F .

6.2.1 Two sided case

We now consider the λ-semidirect product of two restriction semigroups. We have seen that
the λ-semidirect product of two left restriction semigroups is again left restriction, but in
general it is not easy to check that the λ-semidirect product of two restriction semigroups
is also right restriction. We use the notion of double action introduced in [24] to determine
the structure of the free ample monoids to obtain a right restriction semigroup from the
λ-semidirect product of two right restriction semigroups,.

Definition 6.2.2. Let S and T be restriction semigroups. Then T acts doubly on S if T
acts by restriction semigroup morphisms on the left and right of S satisfying the following
compatibility condition:

(t · s) ◦ t = s ◦ t∗ = t∗ · s

t · (s ◦ t) = s ◦ t+ = t+ · s
(CP1)

for all s ∈ S and t ∈ T .

We notice that for all s ∈ S and for all f ∈ ET ,

f · s = s ◦ f.

Theorem 6.2.3. Let S and T be restriction semigroups. Suppose T acts doubly on S. Then

S oλ T = {(a, t) ∈ S × T : t+ · a = a}
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is a restriction semigroup where

(a, t)+ = (a+, t+) and (a, t)∗ = (a∗ ◦ t, t∗);

further,
F = {(a+, t+) : t+ · a+ = a+}

is the semilattice of projections of S oλ T .

Proof. From Theorem 6.2.1, we know that S oλ T is a left restriction semigroup with

(a, t)+ = (a+, t+).

We now prove that S oλ T is also right restriction.
We first notice that for (a, t) ∈ S oλ T , (a∗ ◦ t, t∗) ∈ F as

t∗ · (a∗ ◦ t) = (a∗ ◦ t) ◦ t∗ because f · s = s ◦ f for all s ∈ S and f ∈ ET
= a∗ ◦ tt∗

= a∗ ◦ t.

Also we note that ((a, t)+)∗ = (a, t)+ and ((a, t)∗)+ = (a, t)∗, as

((a, t)+)∗ = (a+, t+)∗

= ((a+)∗ ◦ t+, (t+)∗)
= (a+ ◦ t+, t+) because S and T are restriction
= (t+ · a+, t+) using (CP1)
= (a+, t+) because t+ · a+ = a+

= (a, t)+,

and
((a, t)∗)+ = (a∗ ◦ t, t∗)+

= ((a∗ ◦ t)+, (t∗)+)
= (a∗ ◦ t, t∗) because a∗ ◦ t ∈ ES and t∗ ∈ ET
= (a, t)∗.

Next we check that the four identities that define a right restriction semigroup hold. Let
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(a, t) ∈ S oλ T . Then

(a, t)(a, t)∗ = (a, t)(a∗ ◦ t, t∗)
=

(
((tt∗)+ · a)(t · (a∗ ◦ t), tt∗

)
=

(
(t+ · a)(t+ · a∗), t

)
using (CP1)

=
(
a(t+ · a)∗, t

)
because action preserves ∗

= (aa∗, t)
= (a, t).

Next let (a, t), (b, u) ∈ S oλ T . Then clearly (a, t)∗(b, u)∗ = (b, u)∗(a, t)∗, because F is a
semilattice.

Next we see that(
(a, t)(b, u)∗

)∗
=

(
(a, t)(b∗ ◦ u, u∗)

)∗
=

(
((tu∗)+ · a)(t · (b∗ ◦ u)), tu∗

)∗
=

(
(((tu∗)+ · a)(t · (b∗ ◦ u)))∗ ◦ tu∗, (tu∗)∗

)
=

(
(((tu∗)+ · a)∗(t · (b∗ ◦ u)))∗ ◦ tu∗, t∗u∗

)
=

(
(((tu∗)+ · a∗)(t · (u∗ · (b∗ ◦ u))))∗ ◦ tu∗, t∗u∗

)
=

(
((tu∗ · (a∗ ◦ tu∗))(tu∗ · (b∗ ◦ u)))∗ ◦ tu∗, t∗u∗

)
using (CP1)

=
(
((tu∗ · ((a∗ ◦ t) ◦ u∗))(tu∗ · (b∗ ◦ u)))∗ ◦ tu∗, t∗u∗

)
=

(
((tu∗ · (u∗ · (a∗ ◦ t))(tu∗ · (b∗ ◦ u)))∗ ◦ tu∗, t∗u∗

)
using (CP1)

=
(
((tu∗ · (a∗ ◦ t))(tu∗ · (b∗ ◦ u)))∗ ◦ tu∗, t∗u∗

)
=

(
((tu∗ · ((a∗ ◦ t)(b∗ ◦ u)))∗ ◦ tu∗, t∗u∗

)
=

(
((tu∗ · ((a∗ ◦ t)(b∗ ◦ u))∗) ◦ tu∗, t∗u∗

)
because action preserves ∗

=
(
((tu∗)∗ · ((a∗ ◦ t)(b∗ ◦ u)), t∗u∗

)
using (CP1)

=
(
(t∗u∗ · ((a∗ ◦ t)(b∗ ◦ u)), t∗u∗

)
=

(
((t∗u∗ · (a∗ ◦ t))(t∗u∗ · (b∗ ◦ u)), t∗u∗

)
=

(
(t∗u∗ · (a∗ ◦ t))(t∗ · (u∗ · (b∗ ◦ u))), t∗u∗

)
=

(
(t∗u∗ · (a∗ ◦ t))(t∗ · ((b∗ ◦ u) ◦ u∗)), t∗u∗

)
using (CP1)

=
(
(t∗u∗) · (a∗ ◦ t))(t∗ · (b∗ ◦ uu∗)), t∗u∗

)
=

(
(t∗u∗ · (a∗ ◦ t))(t∗ · (b∗ ◦ u)), t∗u∗

)
= (a∗ ◦ t, t∗)(b∗ ◦ u, u∗)
= (a, t)∗(b, u)∗.
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Finally to check the right ample condition, let (a, t), (b, u) ∈ S oλ T . Then

(a, t)
(
(b, u)(a, t)

)∗
= (a, t)

(
((ut)+ · b)(u · a), ut

)∗
= (a, t)

((
((ut)+ · b)(u · a)

)∗
◦ ut, (ut)∗

)
=

(
((t(ut)∗)+ · a)

(
t ·
(
(((ut)+ · b)(u · a))∗ ◦ ut

))
, t(ut)∗

)
=

(
((u∗t)+ · a)

(
t ·
(
((((ut)+ · b)(u · a))∗ ◦ u) ◦ t

))
, u∗t

)
because T is
right restriction

=
(
(u∗t+ · a)

(
t+ ·

(
((((ut)+ · b)(u · a))∗ ◦ u)

)
, u∗t

)
using (CP1)

=
(
(u∗ · (t+ · a))

(
((((ut)+ · b)(u · a))∗ ◦ u) ◦ t+

)
, u∗t

)
using (CP1)

=
(
(u∗ · a)

(
(((ut)+ · b)(u · a))∗ ◦ ut+

)
, u∗t

)
=

(
(u∗ · a)

(
(((ut)+ · b)∗(u · a))∗ ◦ ut+

)
, u∗t

)
because S is
right restriction

=
(
(u∗ · a)

(
(((ut)+ · b∗)(u · a))∗ ◦ ut+

)
, u∗t

)
because action
preserves ∗

=
(
(u∗ · a)

(
((ut · (b∗ ◦ ut))(u · a))∗ ◦ ut+

)
, u∗t

)
using (CP1)

=
(
(u∗ · a)

(
((u · (t · ((b∗ ◦ u) ◦ t)))(u · a))∗ ◦ ut+

)
, u∗t

)
=

(
(u∗ · a)

(
((u · (t+ · (b∗ ◦ u)))(u · a))∗ ◦ ut+

)
, u∗t

)
using (CP1)

=
(
(u∗ · a)

(
((u · (b∗ ◦ ut+))(u · a))∗ ◦ ut+

)
, u∗t

)
=

(
(u∗ · a)

(
((u · ((b∗ ◦ ut+)a))∗ ◦ ut+

)
, u∗t

)
=

(
(u∗ · a)

(
(u · ((b∗ ◦ ut+)a)∗) ◦ ut+

)
, u∗t

)
=

(
(u∗ · a)

(
((u · ((b∗ ◦ ut+)a)∗) ◦ u) ◦ t+

)
, u∗t

)
=

(
(u∗ · a)

(
(u∗ · ((b∗ ◦ ut+)a)∗) ◦ t+

)
, u∗t

)
using (CP1)

=
(
(u∗ · a)

(
t+ · (u∗ · ((b∗ ◦ ut+)a)∗)

)
, u∗t

)
using (CP1)

=
(
(u∗ · a)

(
t+u∗ · ((b∗ ◦ ut+)a)∗

)
, u∗t

)
=

(
(u∗ · a)

(
u∗t+ · ((b∗ ◦ ut+)a)

)∗
, u∗t

)
=

(
(u∗ · a)

(
(u∗t+ · (b∗ ◦ ut+))(u∗t+ · a)

)∗
, u∗t

)
=

(
(u∗ · a)

(
((u∗t)+ · (b∗ ◦ ut+))(u∗ · (t+ · a))

)∗
, u∗t

)
=

(
(u∗ · a)

(
((u∗t+ · (b∗ ◦ ut+))(u∗ · a)

)∗
, u∗t

)
because t+ · a = a

=
(
(u∗ · a)

(
((u∗t+ · ((b∗ ◦ u) ◦ t+)))(u∗ · a)

)∗
, u∗t

)
=

(
(u∗ · a)

(
((u∗t+ · (t+ · (b∗ ◦ u)))(u∗ · a)

)∗
, u∗t

)
using (CP1)

=
(
(u∗ · a)

(
((u∗t+ · (b∗ ◦ u))(u∗ · a)

)∗
, u∗t

)
=

(
(u∗t+ · (b∗ ◦ u))∗(u∗ · a), u∗t

)
because S is
right restriction

=
(
((u∗t)+ · (b∗ ◦ u)∗)(u∗ · a), u∗t

)
=

(
((u∗t)+ · (b∗ ◦ u))(u∗ · a), u∗t

)
= (b∗ ◦ u, u∗)(a, t)
= (b, u)∗(a, t).
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Thus all the four identities hold and hence S oλ T is restriction.

Now we check that (CP1) holds in the following example.

Example 6.2.4. Let T be a restriction semigroup and let S = ET = E. Suppose T acts on
the left and right of S by

t · e = (te)+

and
e ◦ t = (et)∗

It is shown in [24] that T acts on E by morphisms. We check that (CP1) holds. For this let
t ∈ T and e ∈ E, then

(t · e) ◦ t = (te)+ ◦ t = ((te)+t)∗ = (te)∗.

Also
e ◦ t∗ = (et∗)∗ = (t∗e)∗ = (te)∗

and
t∗ · e = (t∗e)+ = ((te)∗)+ = (te)∗.

Hence we see that
(t · e) ◦ t = e ◦ t∗ = t∗ · e.

Dually it is easy to check that

t · (e ◦ t) = e ◦ t+ = t+ · e

and hence (CP1) holds.

6.3 Inductive categories and restriction semigroups

In this section we provide another proof that S oλ T is a restriction semigroup. We consider
the semidirect product of two restriction semigroups and from the underlying set of S oλ T

we construct a category C. We then order this category so that it becomes inductive which
yields a restriction semigroup via the use of the standard pseudo-product.

We first prove a result that is needed later to show that C is an inductive category.
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Lemma 6.3.1. Let T be a semigroup acting on the left of a left restriction semigroup S by
endomorphisms of S regarded as a left restriction semigroup. Then the action of T preserves
≤ on S (and hence on ES).

Proof. Let a, b ∈ S and t ∈ T and let a ≤ b. Then a = a+b, so that

t · a = t · (a+b)
⇒ t · a = (t · a+)(t · b) because action is by morphisms

= (t · a)+(t · b) because action preserves +

⇒ t · a ≤ t · b.

Theorem 6.3.2. Let S and T be restriction semigroups. Suppose T acts doubly on S satis-
fying (CP1) and let U = S o T . Let

C = S oλ T = {(a, t) ∈ S × T : t+ · a = a}.

Then C = (C, •,d, r) is a category under the restriction of the binary operation in U with
set of local identities

EC = {(f · e, f) : f ∈ ET , e ∈ ES}

where
d(a, t) = (a+, t+) and r(a, t) = (a∗ ◦ t, t∗).

Proof. We refer to • as the restricted product in C:

(a, t) • (b, u) = (a(t · b), tu) if r(a, t) = d(b, u).

We first check that • is a closed binary operation. For this let (a, t), (b, u) ∈ C such that
(a, t) • (b, u) is defined. Then

(a∗ ◦ t, t∗) = (b+, u+).

We see that

(tu)+ · (a(t · b)) =
(
(tu)+ · a

)(
(tu)+ · (t · b)

)
=

(
(tt∗)+ · a

)(
(tu)+t · b)

)
because t∗ = u+

= (t+ · a)(tu+ · b) because T is restriction
= a(t · (u+ · b)) because t+ · a = a

= a(t · b) because u+ · b = b.
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Hence (a, t) • (b, u) ∈ C.
Next we note that C is closed under d and r, for if (a, t) ∈ C, then

t+ · a+ = (t+ · a)+ = a+,

so that d(a, t) = (a+, t+) ∈ C;
further,

t∗ · (a∗ ◦ t) = (a∗ ◦ t) ◦ t∗ because e · s = s ◦ e for all s ∈ S and e ∈ ET
= a∗ ◦ tt∗

= a∗ ◦ t,

so that r(a, t) = (a∗ ◦ t, t∗) ∈ C.
It is easy to check that for any (a, t) ∈ C,

d(r(a, t)) = r(a, t) and r(d(a, t)) = d(a, t)

and
im d = im r = {(f · e, f) : f ∈ ET , e ∈ ES}.

Now we show that C satisfies the axioms of a category.
(C1) Let (a, t) , (b, u) ∈ C and suppose ∃ (a, t) • (b, u). Then r(a, t) = d(b, u) so that

(a∗ ◦ t, t∗) = (b+, u+).

Therefore

d((a, t) • (b, u)) = d(a(t · b), tu)
=

(
(a(t · b))+, (tu)+

)
=

(
(a(t · b)+)+, (tu+)+

)
=

(
(a(t · b+))+, (tt∗)+

)
because t∗ = u+

=
(
(a(t · (a∗ ◦ t)))+, t+

)
because a∗ ◦ t = b+

=
(
((t+ · a)(t+ · a∗))+, t+

)
using (CP1) and the fact t+ · a = a

=
(
(t+ · (aa∗))+, t+

)
= (a+, t+)
= d(a, t)
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and thus d((a, t) • (b, u)) = d(a, t). Now

r((a, t) • (b, u)) = r(a(t · b), tu)
=

(
(a(t · b))∗ ◦ tu, (tu)∗

)
=

(
(a∗(t · b))∗ ◦ tu, (t∗u)∗

)
=

(
((t+ · a)∗(t · b))∗ ◦ tu, (t∗u)∗

)
because t+ · a = a and t∗ = u+

=
((

(t+ · a∗)(t · b)
)∗
◦ tu, (u+u)∗

)
=

((
(t · (a∗ ◦ t))(t · b)

)∗
◦ tu, u∗

)
using (CP1)

=
((
t · ((a∗ ◦ t)b)

)∗
◦ tu, u∗

)
=

(
(t · (b+b))∗ ◦ tu, u∗

)
because a∗ ◦ t = b+

=
(
(t · b)∗ ◦ tu, u∗

)
=

(
(t · b∗) ◦ tu, u∗

)
=

(
((t · b∗) ◦ t) ◦ u, u∗

)
=

(
(t∗ · b∗) ◦ u, u∗

)
using (CP1)

=
(
(u+ · b∗) ◦ u, u∗

)
because t∗ = u+

=
(
(u+ · b)∗ ◦ u, u∗

)
=

(
b∗ ◦ u, u∗

)
because u+ · b = b as (b, u) ∈ C

= r(b, u)

and hence r((a, t) • (b, u)) = r(b, u).
(C2) This directly follows from (C1) and the fact that multiplication in a semidirect

product is associative.
(C3) Let (a, t) ∈ C. Then r(d(a, t)) = d(a, t). Thus ∃ d(a, t) • (a, t) and

d(a, t) • (a, t) = (a+, t+) • (a, t)
= (a+(t+ · a), t+t)
= (a+a, t)
= (a, t).
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Also d(r(a, t)) = r(a, t). Thus ∃ (a, t) • r(a, t) and

(a, t) • r(a, t) = (a, t) • (a∗ ◦ t, t∗)
= (a(t · (a∗ ◦ t))), tt∗)
= (a(t+ · a∗), t) using (CP1)
= (a(t+ · a)∗, t)
= (aa∗, t)
= (a, t).

Hence C = (C, •,d, r) is a category.

Now we order our category C to obtain an inductive category.

Theorem 6.3.3. Let S and T be restriction semigroups. Suppose T acts doubly on S satis-
fying (CP1) and let U = S o T . Let

C = S oλ T = {(a, t) ∈ S × T : t+ · a = a}.

Then C = (C, •,d, r,≤) is an inductive category under the restriction of the binary operation
in U with set of local identities

EC = {(f · e, f) : f ∈ ET , e ∈ ES}

where
d(a, t) = (a+, t+) and r(a, t) = (a∗ ◦ t, t∗)

The partial order ≤ on C is defined by

(a, t) ≤ (b, u) if and only if a ≤ t+ · b , t ≤ u.

For (a, t) ∈ C and (f · e, f) ∈ EC, the restriction is defined by

(f ·e,f)|(a, t) = ((f · e)(f · a), ft) = (f · ea, ft)

where (f · e, f) ≤ d(a, t) and co-restriction is defined as:

(a, t)|(f ·e,f) =
(
((tf)+ · a)(t · (f · e)), tf

)
where (f · e, f) ≤ r(a, t).
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Proof. From Theorem 6.3.2, we know that C is a category. We now show that C is an
inductive category.

We first check that ≤ is a partial order on C. It is clear that ≤ is reflexive.
Let (a, t), (b, u) ∈ C and suppose that

(a, t) ≤ (b, u) and (b, u) ≤ (a, t).

Then a ≤ t+ · b , t ≤ u and b ≤ u+ · a , u ≤ t, so that

t ≤ u , u ≤ t⇒ t = u,

and a ≤ t+ · b implies
a = a+(t+ · b)

= a+(u+ · b) because t = u

= a+b

and so a ≤ b. By symmetry b ≤ a and so a = b. Thus (a, t) = (b, u) and hence ≤ is
antisymmetric.

Next let (a, t), (b, u), (c, v) ∈ C be such that

(a, t) ≤ (b, u) and (b, u) ≤ (c, v).

Then a ≤ t+ · b, t ≤ u and b ≤ u+ · c, u ≤ v. Now

t ≤ u , u ≤ v ⇒ t ≤ v,

and a ≤ t+ · b, b ≤ u+ · c implies

a = a+(t+ · b)
= a+

(
t+ · (b+(u+ · c))

)
because b ≤ u+ · c, so b = b+(u+ · c)

= a+(t+ · b+)(t+ · (u+ · c)))
= a+(t+ · b)+(t+u+ · c)
= a+(t+ · c) because a+ = a+(t+ · b)+ and t+ ≤ u+.

Thus a ≤ t+ · c and
t ≤ v ⇒ t+ ≤ v+,

giving (a, t) ≤ (c, v). Hence ≤ is a partial order on C.
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(IC1) Let (a, t), (b, u) ∈ C and let (a, t) ≤ (b, u). Then

a ≤ t+ · b and t ≤ u

To show that
d(a, t) ≤ d(b, u),

we see that
a ≤ t+ · b

⇒ a+ ≤ (t+ · b)+ using Lemma 2.1.7
⇒ a+ ≤ t+ · b+.

Also t ≤ u implies that t+ ≤ u+. Thus

(a+, t+) ≤ (b+, u+).

Hence d(a, t) ≤ d(b, u). Next we show that

r(a, t) ≤ r(b, u), that is, (a∗ ◦ t, t∗) ≤ (b∗ ◦ u, u∗),

we need to check that
a∗ ◦ t ≤ t∗ · (b∗ ◦ u) and t∗ ≤ u∗.

Now t ≤ u implies t∗ ≤ u∗ by Lemma 2.1.7. Also

a ≤ t+ · b
⇒ a∗ ◦ t ≤ (t+ · b)∗ ◦ t using Lemma 6.3.1

= (t+ · b∗) ◦ t
= (b∗ ◦ t+) ◦ t using (CP1)
= b∗ ◦ t+t
= b∗ ◦ t.

Hence
(a∗ ◦ t)(t∗ · (b∗ ◦ u)) = (a∗ ◦ t)((b∗ ◦ u) ◦ t∗) using (CP1)

= (a∗ ◦ t)(b∗ ◦ ut∗)
= (a∗ ◦ t)(b∗ ◦ t) because t ≤ u

= a∗ ◦ t.
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Thus
(a∗ ◦ t, t∗) ≤ (b∗ ◦ u, u∗),

and hence r(a, t) ≤ r(b, u).
(IC2) Let (a, t), (b, u), (c, v), (d, p) ∈ C be such that

(a, t) ≤ (b, u), (c, v) ≤ (d, p)

so that
a ≤ t+ · b , t ≤ u and c ≤ v+ · d , v ≤ p.

Suppose also ∃ (a, t) • (c, v) and ∃ (b, u) • (d, p). Then

r(a, t) = d(c, v) and r(b, u) = d(d, p),

so that
(a∗ ◦ t, t∗) = (c+, v+) and (b∗ ◦ u, u∗) = (d+, p+).

To show that
(a, t) • (c, v) ≤ (b, u) • (d, p),

we need to check that (
a(t · c), tv

)
≤
(
b(u · d), up

)
.

Now t ≤ u , v ≤ p implies that tv ≤ up. Also

a(t · c) = a+(t+ · b)
(
t · (c+(v+ · d))

)
because a ≤ t+ · b and c ≤ v+ · d

= a+(t+ · b)(t · c+)(t · (v+ · d))
= a+(t+ · b)(t · c)+(tv+ · d)
= a+

(
(t+ · b)(t · c)+

)+
(t+ · b)((tv)+t · d) using left ample condition

=
(
a+(t+ · b)(t · c)

)+
((tt∗)+ · b)((tv)+t+u · d) because t ≤ u

= (a(t · c))+((tv+)+ · b)((tv)+ · (u · d)) because a ≤ t+ · b and t∗ = v+

= (a(t · c))+((tv)+ · b)((tv)+ · (u · d))
= (a(t · c))+((tv)+ · (b(u · d)))

⇒ a(t · c) ≤ (tv)+ · b(u · d).

Hence (a(t · c), tv) ≤ (b(u · d), up) giving

(a, t) • (c, v) ≤ (b, u) • (d, p).
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(IC3) Let (f · e, f) ∈ EC and (a, t) ∈ C be such that

(f · e, f) ≤ d(a, t) = (a+, t+)

so that
f · e ≤ f · a+ and f ≤ t+.

We show that (f · (ea), ft) is the unique element of C such that

(f · (ea), ft) ≤ (a, t) and d(f · (ea), ft) = (f · e, f).

We first check that (f · (ea), ft) ∈ C. For this we see that

(ft)+ · (f · (ea)) = ft+f · (ea)
= f · (ea) because f = ft+ as f ≤ t+

Thus (f · (ea), ft) ∈ C. Now

f ≤ t+ ⇒ ft ≤ t+t⇒ ft ≤ t.

Also
f · (ea) = (f · e)(f · a)

≤ (f · a+)(f · a)
= f · a
= ft+ · a
= (ft)+ · a.

Thus (f · (ea), ft) ≤ (a, t). Also

d(f · (ea), ft) =
(
(f · (ea))+, (ft)+

)
=

(
f · (ea)+, ft+

)
= (f · (ea+), f) because f = ft+ as f ≤ t+

= ((f · e)(f · a+), f)
= (f · e, f) because f · e ≤ f · a+.

Next suppose that (r, s) is another element such that

(r, s) ≤ (a, t) and d(r, s) = (f · e, f).
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Then
r ≤ s+ · a

⇒ r ≤ f · a because s+ = f

⇒ r = r+(f · a)
⇒ r = (f · e)(f · a) as r+ = f · e
⇒ r = f · (ea).

Also
s ≤ t⇒ s = s+t = ft.

Hence (f · (ea), ft) is the unique element such that

(f · (ea), ft) ≤ (a, t) and d(f · ea, ft) = (f · e, f).

Hence (f · (ea), ft) = (f ·e,f)|(a, t).
(IC4) Let (a, t) ∈ C, (f · e, f) ∈ EC be such that

(f · e, f) ≤ r(a, t) = (a∗ ◦ t, t∗),

so that
f · e ≤ f · (a∗ ◦ t) and f ≤ t∗.

We will prove that
(
((tf)+ · a)(t · (f · e)), tf

)
is the unique element such that

(
((tf)+ · a)(t · (f · e)), tf

)
≤ (a, t) and r

(
((tf)+ · a)(t · (f · e)), tf

)
= (f · e, f).

We first check that
(
((tf)+ · a)(t · (f · e)), tf

)
∈ C. For this we see that

(tf)+ · ((tf)+ · a)(t · (f · e)) =
(
(tf)+ · ((tf)+ · a)

)(
(tf)+ · (tf · e)

)
= ((tf)+(tf)+ · a)((tf)+(tf) · e)
= ((tf)+ · a)(tf · e)
= ((tf)+ · a)(t · (f · e)).

Hence
(
((tf)+ · a)(t · (f · e)), tf

)
∈ C. Now

f ≤ t∗ ⇒ tf ≤ tt∗ ⇒ tf ≤ t.
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Also since t · (f · e) = tf · e ∈ ES, therefore

((tf)+ · a)(t · (f · e)) ≤ (tf)+ · a.

Hence (
((tf)+ · a)(t · (f · e)), tf

)
≤ (a, t).

Also

r
(
((tf)+ · a)(t · (f · e)), tf

)
=

((
((tf)+ · a)(tf · e)

)∗
◦ tf, (tf)∗

)
=

((
((tf)+ · a)∗(tf · e)

)∗
◦ tf, t∗f

)
=

(
((tf)+ · a∗)(tf · e) ◦ tf, ft∗

)
=

((
tf · (a∗ ◦ tf)

)
(tf · e) ◦ tf, f

)
using (CP1) and f ≤ t∗

=
((
tf · ((a∗ ◦ t) ◦ f)

)
(tf · e) ◦ tf, f

)
=

((
tf · (f · (a∗ ◦ t))

)
(tf · e) ◦ tf, f

)
using (CP1)

=
(
((tf · (a∗ ◦ t))(tf · e)

)
◦ tf, f

)
=

(
(tf · ((a∗ ◦ t)e)) ◦ tf, f

)
=

(
(tf)∗ · ((a∗ ◦ t)e), f

)
using (CP1)

=
(
(t∗f)∗ · ((a∗ ◦ t)e), f

)
=

(
f · ((a∗ ◦ t)e), f

)
because f ≤ t∗

=
(
(f · e)(f · (a∗ ◦ t)), f

)
= (f · e, f) because f · e ≤ f · (a∗ ◦ t).

Thus r
(
((tf)+ · a)(tf · e), tf

)
= (f · e, f). Next suppose that (m,n) is another element such

that
(m,n) ≤ (a, t) and r(m,n) = (f · e, f),

so that
m ≤ n+ · a , n ≤ t , m∗ ◦ n = f · e and n∗ = f.

Then n ≤ t implies
n = tn∗ = tf.
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Also m ≤ n+ · a implies

m = (n+ · a)m∗

= ((tf)+ · a)m∗ because n = tf

= ((tf)+ · a)(n+ ·m∗) because m∗ = (n+ ·m)∗ = n+ ·m∗

= ((tf)+ · a)(n · (m∗ ◦ n)) using (CP1)
= ((tf)+ · a)(tf · (f · e)) because n = tf and m∗ ◦ n = f · e
= ((tf)+ · a)(tf · e).

Hence
(
((tf)+ · a)(t · (f · e)), tf

)
is the unique element such that

(
((tf)+ · a)(t · (f · e)), tf

)
≤ (a, t) and r

(
((tf)+ · a)(t · (f · e)), tf

)
= (f · e, f)

and so we write
(
((tf)+ · a)(t · (f · e)), tf

)
= (a, t)|(f ·e,f).

(IC5) To show that (EC,≤) is a meet semilattice, let (f · e, f), (h · g, h) ∈ EC. We show
that (f · e, f) ∧ (h · g, h) exists and

(f · e, f) ∧ (h · g, h) = (fh · (eg), fh).

Clearly (fh · (eg), fh) ∈ EC and fh ≤ f, h. Also as eg ≤ e, so

fh · (eg) ≤ fh · e using Lemma 6.3.1
= fhf · e
= fh · (f · e).

Thus
(fh · (eg), fh) ≤ (f · e, f).

Similarly
(fh · (eg), fh) ≤ (h · g, h).

Next let (m · l,m) ∈ EC be such that

(m · l,m) ≤ (f · e, f) and (m · l,m) ≤ (h · g, h).

This implies that

m · l ≤ m · (f · e) , m ≤ f and m · l ≤ m · (h · g) , m ≤ h.
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Now m ≤ f, m ≤ h implies that m ≤ fh and

m · l ≤ (m · (f · e))(m · (h · g))
= (mh · (f · e))(mf · (h · g)) because m ≤ f and m ≤ h

= (m · (hf · e))(m · (fh · g))
= m · ((fh · e)(fh · g)
= m · (fh · (eg)))

⇒ m · l ≤ m · (fh · (eg)),

so that (m · l,m) ≤ (fh · (eg), fh). Hence (f · e, f) ∧ (h · g, h) exists and

(f · e, f) ∧ (h · g, h) = (fh · (eg), fh).

Thus EC = {(f · e, f) : f ∈ ET , e ∈ ES} is a meet semilattice.
Hence C = (C, ·,d, r,≤) is an inductive category.

We now consider the pseudo-product on C and show that it coincides with the λ-
semidirect product.

Theorem 6.3.4. Let C = (C, • ,d, r,≤) be the inductive category as defined in Theo-
rem 6.3.3. Let (a, t), (b, u) ∈ C and define ⊗ by the rule

(a, t)⊗ (b, u) = ((a, t)|r(a,t)∧d(b,u))(r(a,t)∧d(b,u)|(b, u)).

Then as a restriction semigroup, (C,⊗) = S oλ T .

Proof. We first compute r(a, t) ∧ d(b, u). We have

r(a, t) ∧ d(b, u) = (a∗ ◦ t, t∗) ∧ (b+, u+)
=

(
(t∗u+ · a∗ ◦ t)(t∗ · b+), t∗u+

)
=

(
(u+ · (t∗ · (a∗ ◦ t)))(t∗ · b+), t∗u+

)
=

(
(u+ · (a∗ ◦ t))(t∗ · b+), t∗u+

)
.

Now

((a, t)|r(a,t)∧d(b,u)) = ((a, t)|((u+·(a∗◦t))(t∗·b+),t∗u+))
=

((
(t(t∗u+))+ · a

)(
t · ((u+ · (a∗ ◦ t))(t∗ · b+)

)
, tt∗u+

)
=

((
(tu)+ · a

)(
t · (u+ · (a∗ ◦ t))

)(
t · (t∗ · b+)

)
, tu+

)
=

(
((tu)+ · a)(tu+ · (a∗ ◦ t))(t · b+), tu+

)
.
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Also

(r(a,t)∧d(b,u)|(b, u)) = (((u+·(a∗◦t))(t∗·b+),t∗u+)|(b, u))
=

(
(u+ · (a∗ ◦ t))(t∗ · b+)(t∗u+ · b), t∗u+u

)
=

(
(u+ · (a∗ ◦ t))(t∗ · b+)(t∗ · b), t∗u

)
because u+ · b = b

=
(
(u+ · (a∗ ◦ t))(t∗ · b), t∗u

)
.

Thus

(a, t)⊗ (b, u) = ((a, t)|r(a,t)∧d(b,u))(r(a,t)∧d(b,u)|(b, u))
=

(
((tu)+ · a)(tu+ · (a∗ ◦ t))(t · b+), tu+

)
•
(
(u+ · (a∗ ◦ t))(t∗ · b), t∗u

)
=

(
((tu)+ · a)(tu+ · (a∗ ◦ t))(t · b+)

(
tu+ · ((u+ · (a∗ ◦ t))(t∗ · b)

)
, tu+t∗u

)
=

(
((tu)+ · a)(tu+ · (a∗ ◦ t))(t · b+)(tu+ · (u+ · (a∗ ◦ t)))(tu+ · (t∗ · b)), tu

)
=

(
((tu)+ · a)(tu+ · (a∗ ◦ t))((t · b+)(tu+ · (a∗ ◦ t))(tu+ · b), tu

)
=

(
((tu)+ · a)(tu+ · (a∗ ◦ t))(tu+ · (a∗ ◦ t))(t · b+)(t · b), tu

)
as u+ · b = b

=
(
((tu)+ · a)(tu+ · (a∗ ◦ t)))(t · (b+b)), tu

)
=

(
((tu)+ · a)((tu)+t · (a∗ ◦ t)))(t · b), tu

)
=

(
((tu)+ · a)((tu)+ · (t · (a∗ ◦ t))))(t · b), tu

)
=

(
((tu)+ · a)((tu)+ · (t+ · a∗))(t · b), tu

)
using (CP1)

=
(
((tu)+ · a)((tu)+ · a∗)(t · b), tu

)
=

(
((tu)+ · (aa∗))(t · b), tu

)
=

(
((tu)+ · a)(t · b), tu

)
.

Hence ⊗ coincides with the λ-semidirect product. Also note that + and ∗ correspond as
well.
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Chapter 7

Monoids and left restriction
semigroups decomposed into
products: an analogue of the approach
for E-unitary inverse semigroups

A remarkable structure theorem for proper (E-unitary) inverse semigroups, now known as
the ‘P -theorem’ was given by McAlister [52], which is important due to McAlister’s other
major result that every inverse semigroup has a proper cover [51]. The P -theorem determines
the structure of all proper inverse semigroups and has many important consequences such as
O’Carroll’s embedding theorem [59], which states that any proper inverse semigroup can be
embedded into a semidirect product of a semilattice by a group.

In this chapter, we aim to generalise O’Carroll’s embedding theorem [59] for certain
monoids and left restriction semigroups. We consider a monoid S such that S = AT for
submonoids A, T , where T acts on A (as a semigroup) satisfying a condition analogous to
the left ample condition. We then introduce the notion of (A, T )-properness for S and prove
covering and embedding theorems analogous to those of McAlister.

To prove the corresponding results for left (right) restriction semigroups is not so easy.
The semidirect product of two left (right) restriction semigroups need not be left (right)
restriction in general as we explained in Chapter 6. We therefore consider λ-semidirect
products of left restriction monoids to obtain covering and embedding theorems analogous
to the monoid case. We consider a left restriction monoid S with submonoids A, T and use
the notion of (A, T )-properness defined for the monoid case to prove that a left restriction
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monoid has an (A, T )-proper cover and that every (A, T )-proper left restriction monoid can
be embedded in the λ-semidirect product of two left restriction monoids.

7.1 Inverse semigroups: coverings, P -theorems and con-
sequences

We start this section by giving the definitions of proper and proper covers in the context of
inverse semigroups. We first give the definition of an E-unitary semigroup.

Definition 7.1.1. Let S be a semigroup and let E = E(S) be the set of idempotents of S.
Then S is E-unitary if for all e ∈ E and for all s ∈ S

es ∈ E ⇒ s ∈ E.

This definition is two sided due to the following proposition, which is true for regular
semigroups (see [34]), but we prove it for an arbitrary semigroup.

Proposition 7.1.2. Let S be a semigroup with set of idempotents E = E(S). Then S is
E-unitary if and only if for s ∈ S and e ∈ E,

se ∈ E ⇒ s ∈ E.

Proof. Suppose that S is E-unitary. Let s ∈ S, e ∈ E and suppose that se ∈ E. Then

(ese)2 = (ese)(ese) = e(se)(se) = ese

and so ese ∈ E. Next we see that (es)2 ∈ E as

(es)2(es)2 = (eses)(eses)
= e(se)3s

= eses because se ∈ E
= (es)2,

and hence (es)4 = (es)2 ∈ E. Thus ese ∈ E and (ese)s ∈ E implies s ∈ E because S is
E-unitary.

The converse argument is dual.
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Now we give the definition of a proper inverse semigroup.

Definition 7.1.3. Let S be an inverse semigroup with semilattice of idempotents E. Let σ
be the minimum group congruence on S. Then S is proper if and only if R∩ σ = ı.

We remind the reader from Chapter 1 that if S is inverse, the least group congruence σ
is given by the rule for all s, t ∈ S:

s σ t⇔ es = et for some e ∈ E(S).

Proposition 7.1.4. [34]. Let S be an inverse semigroup and let σ be the least group congru-
ence on S. Then the following are equivalent:

(i) S is proper;
(ii) L ∩ σ = ı;
(iii) S is E-unitary.

Definition 7.1.5. Let S be an inverse semigroup. A proper cover of S is a proper inverse
semigroup U together with an onto, idempotent separating morphism ψ : U → S.

We comment in the above definition that ψ|E(U) : E(U)→ E(S) is an isomorphism.

McAlister’s Covering Theorem. [51] Every inverse semigroup S has a proper cover.

To define a P -semigroup and state McAlister’s P -theorem and its consequences, we first
have a look at some ideas needed for our purpose.

Definition 7.1.6. Let G be a group and (X ,≤) be a partially ordered set. Then G acts on
X by order automorphisms if G acts on X and for A,B ∈ X , g ∈ G

A ≤ B ⇔ g · A ≤ g ·B.

Definition 7.1.7. Let (X ,≤) be a partially ordered set and Y be a subset of X . Then Y is
an order ideal of X if for all A,B ∈ X ,

A ∈ Y and B ≤ A⇒ B ∈ Y .

To give the definition of a P -semigroup, we first need to define a McAlister triple.

Definition 7.1.8. Let G be a group acting on a partially ordered set (X ,≤) by order
automorphisms. Let Y be a subset of X and suppose that the following conditions hold:
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(P1) Y is a semilattice with respect to ≤;
(P2) GY = X ; that is, for every X ∈ X there exists g ∈ G and Y ∈ Y such that g ·Y = X;
(P3) Y is an order ideal of X ;
(P4) for all g ∈ G, g · Y ∩ Y 6= ∅.
Then (G,X ,Y) is called a McAlister triple.

We now give the definition of a P -semigroup.

Definition 7.1.9. Let (G,X ,Y) be a McAlister triple and let

P (G,X ,Y) = {(A, g) ∈ Y ×G : g−1 · A ∈ Y}.

Define a binary operation on P (G,X ,Y) by the rule

(A, g)(B, h) = (A ∧ g ·B, gh)

for (A, g), (B, h) ∈ P (G,X ,Y).

Lemma 7.1.10. If (G,X ,Y) is a McAlister triple, then P (G,X ,Y) is a semigroup.

We call the semigroup P (G,X ,Y) in Lemma 7.1.10 a P -semigroup.
We now state McAlister’s P -theorem which determines the structure of all proper inverse

semigroups.

McAlister’s P -Theorem. [52] Let P be a P -semigroup. Then P is a proper inverse semi-
group. Conversely, any proper inverse semigroup is isomorphic to a P -semigroup.

An important consequence of McAlister’s P -theorem is O’Carroll’s embedding theorem
which tell us that any proper inverse semigroup can be embedded into a much simpler struc-
ture than a P -semigroup.

O’Carroll’s Embedding Theorem. [59] Let S be an inverse semigroup. Then S is proper
if and only if S can be embedded into the semidirect product of a semilattice by a group.

The McAlister’s P -theorem for proper inverse semigroups prompted work for larger classes
of semigroups, see for example [22, 70, 75]. McAlister’s work has been extended in several
directions, we mention here two of these, one to keep the condition of S being regular but
weaken the condition that E(S) forms a semilattice. The other direction is to drop the
regularity of S but retain commutativity of idempotents.
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7.2 Left restriction semigroups: coverings, P -theorems
and consequences

A theory analogous to that for inverse semigroups has been developed for left ample, weakly
left ample and left restriction semigroups.

Definition 7.2.1. Let S be a left restriction semigroup with semilattice of projections E.
The relation σE on S is defined by

σE = {(a, b) ∈ S × S : ∃e ∈ E such that ea = eb}.

This relation is the least congruence on S identifying all the elements of E [28]. It is
explained in [28] that σE can be regarded either as a semigroup congruence or a congruence
in the augmented signature. When E = E(S), we just write σ for σE. If S is inverse, then
σ = σE is the least group congruence on S. If S is left ample, then it is known that σ = σE

is the least right cancellative monoid congruence on S [16] and if S is a weakly left ample
monoid, then σ is the least unipotent congruence on S [27].

Dually, if S is right restriction, then a σE b if and only if af = bf for some f ∈ E. Thus
σE is again the least congruence identifying all the elements of E. Hence if S is restriction,
then either characterisation of σE will suffice.

Definition 7.2.2. A left (right) restriction semigroup is proper if

R̃E ∩ σE = ı (L̃E ∩ σE = ı).

A restriction semigroup is proper if it is proper as both a left and as a right restriction
semigroup.

If a restriction semigroup Sres is obtained from an inverse semigroup S by putting
a+ = aa−1, a∗ = a−1a, then we have observed that σE is the least group congruence on
S, R̃E = R and so Sres is proper if and only if S is E-unitary. Thus the relation σE

generalises the least group congruence on an inverse semigroup and the notion of a proper
restriction semigroup generalises that of an E-unitary inverse semigroup. Moreover, the
role played among inverse semigroups by groups is taken over among restriction semigroups
by monoids, because groups are inverse semigroups with one idempotent and monoids are
reduced restriction semigroups, that is, restriction semigroups in which a+ = 1 = a∗ for all
elements a. For inverse semigroups, we know that each inverse semigroup has a proper cover
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and proper inverse semigroups are just the inverse subsemigroups of the semidirect products
of semilattices by groups [51, 52, 34]. There is an analogous theory for restriction semigroups
where groups are replaced by monoids. This theory was developed in [20] for left ample
semigroups.

Definition 7.2.3. Let S be a left restriction semigroup with semilattice of projections E. A
cover of S is a left restriction semigroup U together with an onto morphism

ψ : U → S,

which separates idempotents of E.

Corresponding to McAlister’s covering theorem, a covering theorem has been given for
left restriction semigroups in [24, Lemma 6.6] and [6, Theorem 6.4].

Theorem 7.2.4. [6] Every left restriction semigroup has a proper cover.

A structure theorem analogous to McAlister’s P -theorem has been given for left restriction
semigroups in terms of monoids (regarded as left restriction semigroups) acting on semilattices
[6].

Definition 7.2.5. Let M be a monoid acting by morphisms on the left of a semilattice X .
Let Y be a subsemilattice of X and suppose that Y has an upper bound ε ∈ X such that the
following hold:

(a) for all m ∈M , there exists e ∈ Y such that e ≤ m · ε;
(b) for all e, f ∈ Y and all m ∈M ,

e ≤ m · ε⇒ e ∧m · f ∈ Y .

Then the triple (M,X ,Y) is called a strong leftM-triple.

Given a strong leftM-triple (M,X ,Y), define

M =M(M,X ,Y) = {(e,m) ∈ Y ×M : e ≤ m · ε}

with binary operation defined by

(e,m)(f, n) = (e ∧m · f,mn)

for (e,m), (f, n) ∈M. ThenM(M,X ,Y) is a semigroup and is called a strongM-semigroup.
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Lemma 7.2.6. [6, Lemma 7.1] Let (M,X ,Y) be a strong leftM-triple. ThenM(M,X ,Y)
is a proper left restriction semigroup with

(e,m)+ = (e, 1), E = {(e, 1) : e ∈ Y} ∼= Y andM(M,X ,Y)/σE ∼= M.

Moreover, if ε ∈ Y, thenM(M,X ,Y) is a monoid with identity (ε, 1).

Theorem 7.2.7. [6, Theorem 7.2] A semigroup (monoid) S is proper left restriction if and
only if it is isomorphic to a strongM-semigroup (monoid) of the formM(S/σE,X ,Y) where
Y ∼= ES.

The above results are specialised to (weakly) left ample semigroups because a left re-
striction semigroup with E = E(S) is weakly left ample and if R̃E(S) = R∗, then S is left
ample. In Lemma 7.2.6 M is unipotent for weakly left ample semigroups (monoids) and is
right cancellative for left ample semigroups (monoids). In Theorem 7.2.7 S/σE is unipotent
if S is weakly left ample and right cancellative if S is left ample.

We notice that the above results present a theory analogous to McAlister’s theory and
O’Carroll’s work for inverse semigroups, but the order in which things were done in the
inverse case is different. Namely, in inverse semigroups we start with a partially ordered set
as, an inverse semigroup is proper if and only if it is isomorphic to a P -semigroup P (G,X ,Y),
where G is a group, X is a partially ordered set containing a semilattice Y as a sub-partially
ordered set, subject to certain conditions. We also note that if S is proper inverse, then
S ∼= P (S/σ,X , E(S)), where E(S) is the set of idempotents of S and σ is the least congruence
identifying idempotents of E(S). In the left restriction case we start with a semilattice and
we notice that, though we take X to be a semilattice, we lose the condition GX = Y , which
appears in McAlister’s result.

7.3 (A, T )-proper monoids

In this section we consider semidirect products of monoids A and T and introduce the notion
of (A, T )-proper monoids. We aim to find an (A, T )-proper monoid U and an onto morphism
from U to S, where S is the internal product of A and T .

Let A and T be monoids with identities 1A, 1T (we drop the subscripts where convenient)
and suppose that Ao T is the (external) semidirect product of A by T where T is acting on
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the left of A by semigroup endomorphisms, that is, we do not insist that t · 1 = 1. Let

A′ = {(a, 1) : a ∈ A} and T ′ = {(t · 1, t) : t ∈ T}.

Clearly, A′ is a submonoid of Ao T with identity (1A, 1T ) and A ∼= A′. To check that T ′ is
a submonoid of Ao T , let (t · 1, t), (u · 1, u) ∈ T ′. Then

(t · 1, t)(u · 1, u) =
(
(t · 1)(t · (u · 1)), tu

)
=

(
t · (1(u · 1)), tu

)
= (t · (u · 1), tu)
= (tu · 1, tu) ∈ T ′.

Clearly (1A, 1T ) is an identity of T ′ and hence T ′ is a submonoid of A o T which clearly is
isomorphic to T .

Example 7.3.1. Let S be a left restriction semigroup and let E = ES. Then S acts on E
by semigroup morphisms by s · e = (se)+. We check that this is an action by morphisms.
For this let s, t ∈ S and e ∈ E. Then

st · e = (ste)+ = (s(te)+)+ = s · (te)+ = s · (t · e).

Also for s ∈ S and e, f ∈ E

s · (ef) = (s(ef))+ = (sef)+ = ((se)+sf)+ = (se)+(sf)+ = (s · e)(s · f),

and hence S is acting on E by semigroup morphisms.
Note that if S (and hence E) is a monoid, then this is not a monoid action unless S is

reduced.

We cannot immediately call upon the results of Chapter 3 to write Ao T as an internal
semidirect product, since T does not necessarily act on A by monoid morphisms. We therefore
show that U = A′T ′ is a monoid subsemigroup of Ao T .

Lemma 7.3.2. Let S = Ao T be the semidirect product of monoids A and T , where T acts
on A by semigroup endomorphisms, and let

U = {(a, t) ∈ A× T : a(t · 1) = a}.
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Then U is a subsemigroup of S. Further, U is a monoid with identity (1A, 1T ) containing
the submonoids A′ and T ′, U = A′T ′ and each element u ∈ U can be uniquely written as a
product of an element of A and an element of T .

Proof. First we observe that t · 1 is an idempotent, as

t · 1 = t · (11) = (t · 1)(t · 1).

Next let (a, t), (b, u) ∈ U . Then

a(t · 1) = a and b(u · 1) = b.

We see that

a(t · b)(tu · 1) = a(t · b)(t · (u · 1))
= a(t · (b(u · 1)))
= a(t · b) because b(u · 1) = b.

Hence (a, t)(b, u) ∈ U . Also

(1, 1)(a, t) = (a, t) and (a, t)(1, 1) = (a(t · 1), t) = (a, t).

Thus U is a monoid. Clearly A′, T ′ are submonoids of U as t · 1 is idempotent for all t ∈ T
and each element (a, t) ∈ U can be written uniquely as

(a, t) = (a, 1)(t · 1, t) where (a, 1) ∈ A′ and (t · 1, t) ∈ T ′.

Hence U = A′T ′.

Example 7.3.3. If S is a left restriction monoid, A = ES, T = S with action as in Exam-
ple 7.3.1, then

U = {(e, s) : e = e(s · 1)} = {(e, s) : e ≤ s+}.

Lemma 7.3.4. Let S = AoT be a semidirect product of monoids A and T where T acts on
A by semigroup endomorphisms. Then T ′ acts on A′ by (t · 1, t)� (a, 1) = (t · a, 1) such that
the action satisfies

(t · 1, t)(a, 1) =
(
(t · 1, t)� (a, 1)

)
(t · 1, t).

Proof. We first check that the action of T ′ on A′ is a monoid action. For this let

119



(t · 1, t), (u · 1, u) ∈ T ′ and (a, 1) ∈ A′. Then

(t · 1, t)�
(
(u · 1, u)� (a, 1)

)
= (t · 1, t)� (u · a, 1)
= (t · (u · a), 1)
= (tu · a, 1)
= (tu · 1, tu)� (a, 1)
=

(
(t · 1, t)(u · 1, u)

)
� (a, 1).

Also
(1A, 1T )� (a, 1) = (1T · a, 1T ) = (a, 1).

Hence action of T ′ on A′ is a monoid action. Also it is easy to check that the action of T ′ on
A′ is by homomorphisms. Next we see that

(t · 1, t)(a, 1) =
(
(t · 1)(t · a), t

)
= (t · a, t)
= (t · (a1), t)
= ((t · a)(t · 1), t)
= (t · a, 1)(t · 1, t)
=

(
(t · 1, t)� (a, 1)

)
(t · 1, t).

Hence the action of T ′ on A′ satisfies (t · 1, t)(a, 1) =
(
(t · 1, t)� (a, 1)

)
(t · 1, t).

We now consider a monoid S with submonoids A, T such that S = AT and we are
supposing that T acts on A (as a semigroup) satisfying

ta = (t · a)t (LAC)

Then for any t ∈ T we can write t = (t · 1)t, so that at = a(t · 1)t. Since t · 1 is idempotent
for any t ∈ T , we have for any s ∈ S

s = at where a = a(t · 1) .

Example 7.3.5. If S is left restriction, then S = ES, and with action as in Example 7.3.1,
for s ∈ S and e ∈ E

(s · e)s = (se)+s = se.

Definition 7.3.6. Let S be a monoid with submonoids A, T such that S = AT where T acts
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on A (as a semigroup) satisfying (LAC). Let E = {t · 1 : t ∈ T} so that E ⊆ E(S). Define
σA on T by

t σA u⇔ et = fu for some e, f ∈ 〈E〉.

It is clear that σA is reflexive, symmetric and right compatible. To check that it is also
left compatible let t σA u. Then

et = fu where e = (u1 · 1) · · · (uh · 1) and f = (v1 · 1) · · · (vk · 1).

For w ∈ T ,

w(u1 · 1) · · · (uh · 1)t = w(v1 · 1) · · · (vk · 1)u
⇒ (w · (u1 · 1))w(u2 · 1) · · · (uh · 1)t = (w · (v1 · 1))w(v2 · 1) · · · (vk · 1)u
⇒ (wu1 · 1)(wu2 · 1)w · · · (uh · 1)t = (wv1 · 1)(wv2 · 1)w · · · (vk · 1)u

... ...
⇒ (wu1 · 1)(wu2 · 1) · · · (wuh · 1)wt = (wv1 · 1)(wv2 · 1) · · · (wvk · 1)wu.

Hence σA is left compatible. Thus σtA, where σtA is the transitive closure of σA, is a congruence.
If idempotents in E commute, then σA = σtA. For if t, u, v ∈ T and t σA uσA v, then

et = fu and gu = hv,

so that
get = gfu = fgu = fhv

and hence t σA v.

Example 7.3.7. If S is left restriction, A = E and T = S, then σE (as σA) is the same σE
as usual because E is a semilattice.

Now we give the definition of an (A, T )-proper monoid. We will see later in this chapter
that this definition can be adopted for left restriction monoids with an extra condition.

Definition 7.3.8. Let S = AT , where S is a monoid with submonoids A, T such that T acts
on A (as a semigroup) satisfying (LAC). Suppose the idempotents in E = {t · 1 : t ∈ T}
commute. We say that S is (A, T )-proper if for a, b ∈ A, t, u ∈ T
where a = a(t · 1), b = b(u · 1),

at = bu⇔ a = b and t σA u.
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Note that if S is (A, T )-proper, and t σA u, then putting a = b = (t · 1)(u · 1) we deduce
that

(t · 1)(u · 1)t = (t · 1)(u · 1)u,

so that (u · 1)t = (t · 1)u because idempotents in E commute.
The following Lemma shows that our notion of (A, T )-properness generalises the notion

of a proper left restriction semigroup.

Lemma 7.3.9. Suppose S is a left restriction monoid with semilattice of projections E. Then
S is proper if and only if S is (E, S)-proper.

Proof. Suppose that S is (E, S)-proper and let s, t ∈ S be such that s (R̃E ∩ σE) t. Then
s+ = t+ and s σE t. Now by the above remark, as S is (E, S)-proper,

s σE t⇒ t+s = s+t,

so that s = t as s+ = t+ and hence S is proper.
Conversely we suppose that S is proper. Let e, f ∈ E and t, s ∈ S with e ≤ s+ and

f ≤ t+. To prove that S is (E, S)-proper, we need to show that

es = ft⇔ e = f and s σE t.

First we suppose that es = ft. Clearly s σE t by definition. Further,

e = es+ R̃E es = ft R̃E ft
+ = f.

Thus e = f .
Conversely, let e = f and s σE t. Then

t+s σE s
+t,

and
t+s R̃E t

+s+ = s+t+ R̃E s
+t.
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Therefore t+s (R̃E ∩ σE) s+t giving t+s = s+t, because S is proper. Now

t+s = s+t

⇒ et+s = es+t

⇒ ft+s = es+t because e = f

⇒ fs = et because e = es+ and f = ft+

⇒ es = ft because e = f.

Hence S is (E, S)-proper.

7.4 Covering and embedding theorems for monoids

We now see in the following lemma how to construct an (A, T )-proper monoid.

Lemma 7.4.1. Let S = Ao T , where A and T are monoids such that T is acting on A (as
a semigroup) and let E = {t · 1 : t ∈ T} be a set of commuting idempotents. Then T ′ acts on
A′ by (t · 1, t)� (a, 1) = (t · a, 1) and satisfies (LAC). Let

U = {(a, t) ∈ A× T : a(t · 1) = a},

so that U = A′T ′ and U is a monoid subsemigroup of Ao T . Moreover, σA′ = ıT ′ and U is
(A′, T ′)-proper.

Proof. From Lemma 7.3.2 and 7.3.4, we need only to show that σA′ = ıT ′ and U is (A′, T ′)-
proper.

Clearly E ′ = {(t ·1, 1) : t ∈ T} is a set of commuting idempotents, because idempotents in
E commute. It is easy to check that σA′ = ıT ′ as for (t·1, t), (u·1, u) ∈ T ′ if (t·1, t)σA′ (u·1, u),
then

(p1 · 1, 1) · · · (pm · 1, 1)(t · 1, t) = (q1 · 1, 1) · · · (qn · 1, 1)(u · 1, u)
⇒ ((p1 · 1) · · · (pm · 1)(t · 1), t) = ((q1 · 1) · · · (qn · 1)(u · 1), u)
⇒ (p1 · 1) · · · (pm · 1)(t · 1) = (q1 · 1) · · · (qn · 1)(u · 1) and t = u

and thus (t · 1, t) = (u · 1, u).
Now to show that U is (A′, T ′)-proper, let (a, 1), (b, 1) ∈ A′ and (t · 1, t), (u · 1, u) ∈ T ′

such that

(a, 1) = (a, 1)
(
(t · 1, t)� (1A, 1T )

)
and (b, 1) = (b, 1)

(
(u · 1, u)� (1A, 1T )

)
,
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that is,

(a, 1) = (a, 1)(t · 1, 1) = (a(t · 1), 1) and (b, 1) = (b, 1)(u · 1, 1) = (b(u · 1), 1).

Suppose (a, 1)(t · 1, t) = (b, 1)(u · 1, u). Then

(a(t · 1), t) = (b(u · 1), u)
⇒ a(t · 1) = b(u · 1) and t = u

⇒ a = b and t = u

⇒ (a, 1) = (b, 1) and (t · 1, t) = (u · 1, u).

Hence (t · 1, t)σA′ (u · 1, u). On the other hand if

(a, 1) = (b, 1) and (t · 1, t)σA′ (u · 1, u)

then clearly (a, 1)(t · 1, t) = (b, 1)(u · 1, u) because σA′ = ıT ′ . Hence U is (A′, T ′)-proper.

From Lemma 7.4.1, we see how to construct a monoid U which is (A′, T ′)-proper. Now
we can state our covering theorem.

Theorem 7.4.2. Suppose S is a monoid. Let A, T be submonoids of S such that S = AT ,
where T acts on A (as a semigroup) satisfying (LAC) and E = {t · 1 : t ∈ T} is a set of
commuting idempotents. Then there is an (A′, T ′)-proper monoid U and an onto morphism
θ : U → S such that θ|A′ : A′ → A is an isomorphism.

Proof. From Lemma 7.4.1, we know that U = {(a, t) ∈ A×T : a(t ·1) = a} is (A′, T ′)-proper.
Define

θ : U → S

by (a, t)θ = at. We need to check that θ is a morphism. Let (a, t), (b, u) ∈ U . Then

((a, t)(b, u))θ = (a(t · b), tu)θ
= a(t · b)tu
= atbu

= (a, t)θ(b, u)θ.

Let s ∈ S. Then there exists a ∈ A, t ∈ T such that s = at = (a, t)θ. Hence θ is an onto
morphism.

Finally, it is easy to check that θ|A′ defined by (a, 1)θ|A′ = a is an isomorphism.
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If S is a left restriction monoid, A = ES = E and T = S, then from Examples 7.3.1, 7.3.3, 7.3.5
and 7.3.7 we know that S acts on E by semigroup morphisms where s · e = (se)+,

U = {(e, s) : e = e(s · 1)} = {(e, s) : e ≤ s+},

for s ∈ S and e ∈ E, (s·e)s = se and σE (as σA) is the same as that defined in Definition 7.2.1,
since

{s · 1 : s ∈ S} = {s+ : s ∈ S}.

Also from Lemma 7.3.9, we know that S is proper if and only S is (E, S)-proper. Hence we
deduce the following from [6]

Corollary 7.4.3. [6, Theorem 6.4] Let S be a left restriction monoid with semilattice of
projections E. Suppose that S = ES where S acts on E by semigroup morphisms by
s · e = (se)+. Then there is a proper left restriction monoid U and an onto morphism
θ : U → S.

We now show that for an (A, T )-proper monoid, there exists a semidirect product in which
S embeds.

Lemma 7.4.4. Suppose S is an (A, T )-proper monoid, where S = AT , A, T are submonoids
of S, T acts on A (as a semigroup) satisfying (LAC) and E = {t · 1 : t ∈ T} is a set of
commuting idempotents. Then for e, f ∈ E and t, u ∈ T

et = fu⇒ e(t · a) = f(u · a) for all a ∈ A.

Proof. Let e, f ∈ E and t, u ∈ T . Then

et = fu

⇒ eta = fua

⇒ e(t · a)t = f(u · a)u using (LAC)
⇒ e(t · a)(t · 1)t = f(u · a)(u · 1)u because t = (t · 1)t and u = (u · 1)u
⇒ e(t · a)(t · 1) = f(u · a)(u · 1) because S is (A, T )-proper
⇒ e(t · a) = f(u · a).

Theorem 7.4.5. Let S = AT where S is a monoid with submonoids A, T such that T acts
on A (as a semigroup) and let E = {t · 1 : t ∈ T}. Suppose that S is (A, T )- proper and E
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is central in A, so that, idempotents in E commute . Then there exists a semidirect product
U = A o T/σA where A contains a submonoid A′ ∼= A and an embedding θ : S → U such
that θ|A : A→ A′ × {1} is an isomorphism.

Proof. Let I = {H ⊆ A : H〈E〉 = H}. Then I is a subsemigroup of subsets of A. Let
A = IT/σA = {f : T/σA → I} be the set of all maps from T/σA to I with pointwise
multiplication, that is,

[t](fg) = ([t]f)([t]g)

for all [t] ∈ T/σA and f, g ∈ A, which is clearly associative. Define an action of T/σA on the
left of A by setting

[u]([t] ? f) = [ut]f for all [u] ∈ T/σA.

We show that this action is a monoid action. For this let [t], [u], [v] ∈ T/σA and f ∈ A. Then

[u]
(
[t] ? ([v] ? f)

)
= [ut]([v] ? f)
= [(ut)v]f
= [u(tv)]f
= [u]([tv] ? f)
= [u]([t][v] ? f),

so [t] ? ([v] ? f) = [t][v] ? f . Also,

[u]([1] ? f) = [u1]f = [u]f,

implies [1] ? f = f . Hence the action is a monoid action.
Finally, we check that the action is by homomorphisms. For this let [t], [u] ∈ T/σA and

f, g ∈ A. Then
[u]([t] ? fg) = [ut]fg

= [ut]f [ut]g
= [u]([t] ? f)[u]([t] ? g).

Thus [t] ? fg = ([t] ? f)([t] ? g).
For any a ∈ A, we define a map fa : T/σA → I by

[u]fa = {u′ · a : u′ σA u}〈E〉.

Then fa ∈ A. Now define ϕ : A → A′ = {fa : a ∈ A} by aϕ = fa. This map is clearly well
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defined. We check that it is an isomorphism. For this let a, b ∈ A. Then

aϕ = bϕ

⇒ fa = fb

⇒ [1]fa = [1]fb.

Now as [1]fa = {k · a : k σA 1}〈E〉, so

a = (1 · a)1 ∈ [1]fa

which implies a ∈ [1]fb, so that we can write a = (k · b)e where k σA 1 and e ∈ 〈E〉. Now

k σA 1⇒ (k · 1)1 = (1 · 1)k ⇒ k · 1 = k

and so k ∈ 〈E〉. Further

k · b = (k · b)(k · 1) = (k · b)k = kb.

Thus a = kbe = hb, where h = ke ∈ 〈E〉, because E is central. Similarly b = h′a for some
h′ ∈ 〈E〉. Hence

a = hh′a = hh′h′a = h′hh′a = h′hb = h′a = b.

It is clear that ϕ is onto. To see that it is a homomorphism, let a, b ∈ A and [u] ∈ T/σA.
Then

[u]((ab)ϕ) = [u]fab = {u′ · ab : uσA u′}〈E〉

and
[u](aϕbϕ) = ([u](aϕ))([u](bϕ))

= ([u]fa)([u]fb)
= {u′ · a : uσA u′}〈E〉{u′′ · b : uσA u′′}〈E〉
= {(u′ · a)(u′′ · b) : uσA u′ σA u′′}〈E〉 as E is central.

We need to show that

{u′ · ab : uσA u′}〈E〉 = {(u′ · a)(u′′ · b) : uσA u′ σA u′′}〈E〉.

Clearly,
{u′ · ab : uσA u′}〈E〉 ⊆ {(u′ · a)(u′′ · b) : uσA u′ σA u′′}〈E〉.
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To check the reverse inclusion, let (u′ · a)(u′′ · b)g ∈ {(u′ · a)(u′′ · b) : uσA u′ σA u′′}〈E〉. Then
as uσA u′ σA u′′, we have

(u′ · 1)u′′ = (u′′ · 1)u′,

by the comment succeeding Definition 7.3.8, so that (u′ · 1)(u′′ · b) = (u′′ · 1)(u′ · b) using
Lemma 7.4.4. Thus

(u′ · a)(u′′ · b)g = (u′ · a)(u′ · 1)(u′′ · b)g
= (u′ · a)(u′′ · 1)(u′ · b)g because (u′ · 1)(u′′ · b) = (u′′ · 1)(u′ · b)
= (u′ · a)(u′ · b)(u′′ · 1)g because E is central
= (u′ · ab)(u′′ · 1)g ∈ {u′ · ab : uσA u′}〈E〉.

Thus (ab)ϕ = fab = fafb = (aϕ)(bϕ). Hence ϕ is an isomorphism.
Next define θ : S → Ao T/σA by

(at)θ = (fa, [t]) where a = a(t · 1).

Clearly, θ is well defined because S is (A, T )-proper. Let at, bu ∈ S. Then

(at)(bu) = a(tb)u = a(t · b)tu,

where a(t · b)(tu · 1) = a(t · (b(u · 1))) = a(t · b), so that
(
(at)(bu)

)
θ =

(
a(t · b)tu

)
θ

= (fa(t·b), [tu]).

To prove that (fa(t·b), [tu]) = (fa, [t])(fb, [u]) we need to show that fa(t·b) = fa([t] ? fb). We see
that for any [u] ∈ T/σA

[u]
(
fa([t] ? fb)

)
= [u]fa[ut]fb
= {u′ · a : u′ σA u}〈E〉{w · b : w σA ut}〈E〉
= {u′ · a : u′ σA u}{w · b : w σA ut}〈E〉
= {(u′ · a)(w · b) : w σA ut and u′ σA u}〈E〉,

and
[u]fa(t·b) = {v · a(t · b) : v σA u}〈E〉

= {(v · a)(v · (t · b)) : v σA u}〈E〉
= {(v · a)(vt · b) : v σA u}〈E〉.
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Clearly [u]fa(t·b) ⊆ [u]
(
fa([t]fb)

)
.

To check the reverse inclusion, let (u′ · a)(w · b)g ∈ [u]
(
fa([t] ? fb)

)
, where w σA ut and

u′ σA u, so that ut σA u′t. Now

w σA u
′t⇒ (w · 1)u′t = (u′t · 1)w by the comment succeeding Definition 7.3.8

which further implies that

(w · 1)(u′t · b) = (u′t · 1)(w · b) using Lemma 7.4.4.

Now

(u′ · a)(w · b)g = (u′ · a(t · 1))(w · b)g because a = a(t · 1)
= (u′ · a)(u′t · 1)(w · b)g
= (u′ · a)(w · 1)(u′t · b)g because (u′t · 1)(w · b) = (w · 1)(u′t · b)
= (u′ · a)(u′t · b)(w · 1)g ⊆ [u]fa(t·b) by our assumption that E is central.

Thus fa(t·b) = fa([t] ? fb) which implies that (fa(t·b), [tu]) = (fa, [t])(fb, [u]). Hence

((at)(bu))θ = (at)θ(bu)θ.

Next to show that θ is one-one, let s = at, s′ = bu ∈ S where a = a(t · 1), b = b(u · 1). Then

(at)θ = (bu)θ
⇒ (fa, [t]) = (fb, [u])
⇒ a = b and t σA u

⇒ at = bu because S is (A, T )-proper.

Hence θ is an embedding.
Finally, as A′ = {fa : a ∈ A} ∼= A, so clearly θ|A : A→ A′ × {1} given by aθ|A = (fa, [1])

is an isomorphism by above.

We specialise Theorem 7.4.5 to the following result which appeared in [26] in the context
of proper weakly left ample semigroups but can be adapted for left restriction semigroups as
decomposed in Theorem 5.3 and the comments in Theorem 7.2 of [6].

Corollary 7.4.6. [6, 26] Let S be a left restriction monoid with semilattice of projections E
and suppose that S = ES where S is acting on E by s · e = (se)+. Suppose that S is proper.
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Then S is embeddable into a semidirect product of a semilattice by a left restriction monoid.

7.5 Covering and embedding theorems for left restric-
tion monoids

In this section we give covering and embedding theorems for certain left restriction monoids.
We consider the λ-semidirect product of left restriction monoids and define the notion of
(A, T )-properness to prove covering and embedding theorems for left restriction monoids
analogous to those in Section 7.4. We comment here that the techniques to prove embedding
theorem for left restriction monoids will be little different from those used to prove the
embedding theorem (Theorem 7.4.5) for monoids. In Theorem 7.4.5, we chose I to be the
set of all subsets of A closed under multiplication with 〈E〉 (on the right). But in the left
restriction case, the elements of I have to satisfy an extra condition.

Let S be a left restriction monoid and A, T be left restriction submonoids of S with
identities 1A, 1T , respectively (we drop the subscripts where convenient). Suppose that T acts
(as a monoid) on the left of A by (2,1)-endomorphisms. As action is by (2,1)-endomorphisms,
so it preserves +, that is for a ∈ A, t ∈ T , we have (t · a)+ = t · a+.

We know that t · 1 is an idempotent for all t ∈ T . Now we notice that t · 1 ∈ EA as

(t · 1)+ = t · 1+ = t · 1.

Therefore {t·1 : t ∈ T} ⊆ EA and thus idempotents in E commute. Moreover, (t·1)(u·1) ∈ EA
for any t, u ∈ T .

From now on in this chapter, whenever we say that a left restriction semigroup acts on
another one, then we mean that the action must preserves +.

From Chapter 6, we know that A oλ T = {(a, t) ∈ A × T : t+ · a = a} is left restriction
with semilattice of projections EAoλT = {(a+, t+) : t+ · a+ = a+}. Multiplication in A oλ T

is defined by the rule
(a, t)(b, u) =

(
((tu)+ · a)(t · b), tu

)
.

Now let
A′ = {(a, 1) : a ∈ A} and T ′ = {(t · 1, t) : t ∈ T}.

It is easy to check that A′ = {(a, 1) : a ∈ A} is a left restriction submonoid of A oλ T

with identity (1A, 1T ) and A′ ∼= A. We now check that T ′ = {(t · 1, t) : t ∈ T} is also a left
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restriction submonoid of AoλT with T ∼= T ′. Clearly T ′ ⊆ AoλT . Let (t ·1, t), (u ·1, u) ∈ T ′.
Then

(t · 1, t)(u · 1, u) =
(
((tu)+ · (t · 1))(t · (u · 1)), tu

)
=

(
((tu)+ · (t · 1))((tu)+(tu) · 1), tu

)
=

(
((tu)+ · ((t · 1)(tu · 1))), tu

)
=

(
((tu)+ · (t · (1(u · 1))), tu

)
=

(
((tu)+ · (tu · 1)), tu

)
= (tu · 1, tu) ∈ T ′.

It is clear that t 7→ (t · 1, t) is an embedding, so that T ′ is a monoid subsemigroup of Aoλ T .
Now we are going to prove a result analogous to Lemma 7.3.2, where we show that

U = A′T ′ is a monoid subsemigroup of Aoλ T .

Lemma 7.5.1. Let A, T be left restriction monoids and let

Aoλ T = {(a, t) ∈ A× T : t+ · a = a}

be the λ-semidirect product of A and T where T acts (as a monoid) on A by (2,1)-endomorphisms.
Then

U = {(a, t) ∈ Aoλ T : a(t · 1) = a}

is a left restriction subsemigroup of A oλ T . Also U is a monoid with identity (1A, 1T )
containing the submonoids A′, T ′. Moreover U = A′T ′.

Proof. We first check that U is a left restriction submonoid of Aoλ T . For this let
(a, t), (b, u) ∈ U . Then

a(t · 1) = a and b(u · 1) = b.

We need to check that (a, t)(b, u) =
(
((tu)+ · a)(t · b), tu

)
∈ U . For this we see that

((tu)+ · a)(t · b)(tu · 1) = ((tu)+ · a)(t · b)(t · (u · 1))
= ((tu)+ · a)(t · (b(u · 1)))
= ((tu)+ · a)(t · b).

Hence (a, t)(b, u) ∈ U .
Next let (a, t) ∈ U . Then as a = t+ · a and action preserves +, so a+ = t+ · a+. Thus

a+(t+ · 1) = (t+ · a+)(t+ · 1) = t+ · (a+1) = t+ · a+ = a+
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and hence (a, t)+ = (a+, t+) ∈ U .
Also for (a, t) ∈ U

(a, t)(1, 1) = ((t+ · a)(t · 1), t) = (a(t · 1), t) = (a, t)

and
(1, 1)(a, t) = ((t+ · 1)a, t) = ((t+ · 1)(t+ · a), t) = (t+ · a, t) = (a, t).

Hence U is a submonoid of AoλT . Clearly A′ and T ′ are contained in U . Now for (a, t) ∈ U ,
we see that

(a, t) = (a(t · 1), t) because a = a(t · 1)
= ((t+ · a)(t · 1), t)
= (a, 1)(t · 1, t).

Thus each element in U can be written as a product of an element of A′ and an element of
T ′.

Lemma 7.5.2. Let A, T be left restriction monoids and let

Aoλ T = {(a, t) ∈ A× T : t+ · a = a}

be the λ-semidirect product of A and T where T acts (as a monoid) on A by (2,1)-endomorphisms.
Then T ′ acts on A′ by (t · 1, t)� (a, 1) = (t · a, 1) such that the action satisfies (LAC).

Proof. The proof that T ′ acts on A′ is similar to Lemma 7.3.4. We now show that the action
satisfies (LAC). For this let (a, 1) ∈ A′ and (t · 1, t) ∈ T ′. Then

(t · 1, t)(a, 1) = ((t+ · (t · 1))(t · a), t)
= (t · 1)(t · a), t)
= (t · a, t)
= ((t · a)(t · 1), t)
= (t · a, 1)(t · 1, t)
=

(
(t · 1, t)� (a, 1)

)
(t · 1, t).

Hence the action satisfies (LAC).

Definition 7.5.3. Let S be a left restriction monoid with submonoids A, T such that
S = AT , where T acts (as a monoid) on A by (2,1)-endomorphisms satisfying (LAC). Define

132



σA on T by
t σA u⇔ et = fu for some e, f ∈ EA.

We notice that the above definition is different from Definition 7.3.6 for monoid case in
the sense that in Definition 7.3.6, we defined σA using 〈E〉 where E = {t · 1 : t ∈ T}. But
in the above definition we define σA on EA because we need E to be semilattice later in this
section.

It is clear that σA is reflexive, symmetric and right compatible. Transitivity of σA follows
from the fact that idempotents in EA commute. To check that σA is left compatible, let
t σA u. Then

et = fu for some e, f ∈ EA.

For v ∈ T
vet = vfu

⇒ (v · e)vt = (v · f)vu using (LAC)
⇒ (v · e)+vt = (v · f)+vu because action preserves +

and thus vt σA vu. Hence σA is a congruence. We now check that σA preserves +. For this
let t, u ∈ T and suppose that t σA u. Then

et = fu for some e, f ∈ EA.

Now et = fu ⇒ et+ = fu+, because S is left restriction and thus, t+ σA u+. Hence σA
preserves +.

To prove covering and embedding theorems for left restriction monoids, we need to sup-
pose that if s = at ∈ S for a ∈ A and t ∈ T , where a = a(t · 1), then

a(t · 1) = t+ · a. (P)

We see that Condition (P) holds in the following example.

Example 7.5.4. Let S be a left restriction monoid, A = ES, S = T . Then S acts on A

by s · e = (se)+. From Example 7.3.1 we know that this action is by semigroup morphisms.
Now let e ∈ ES and s ∈ S. Then

e(s · 1) = es+ = s+e = (s+e)+ = s+ · e.

We now define the notion of (A, T )-properness for left restriction monoids.
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Definition 7.5.5. Let S be a left restriction monoid with submonoids A, T such that
S = AT , where T acts (as a monoid) onA by (2,1)-endomorphisms satisfying (LAC). Suppose
that S satisfies condition (P). We say that S is (A, T )-proper if for a, b ∈ A, t, u ∈ T where
a = a(t · 1) and b = b(u · 1)

at = bu⇔ a = b and t σA u.

As S satisfies condition (P), we have

a = a(t · 1) = t+ · a and b = b(u · 1) = u+ · b.

We notice that if S is (A, T )-proper and t σA u, then putting a = b = (t · 1)(u · 1) we see that

a = (t · 1)(u · 1) = (t · 1)(t · 1)(u · 1) = (t · 1)(u · 1)(t · 1) = a(t · 1) = t+ · a.

Similarly b = b(u · 1) = u+ · b. Thus

(t · 1)(u · 1)t = (t · 1)(u · 1)u

and hence (u · 1)t = (t · 1)u.

Lemma 7.5.6. Let A, T be left restriction monoids and let

Aoλ T = {(a, t) ∈ A× T : t+ · a = a}

be the λ-semidirect product of A and T where T acts (as a monoid) on A by (2,1)-endomorphisms.
Then T ′ acts on A′ by

(t · 1, t)� (a, 1) = (t · a, 1)

satisfying (LAC). Let
U = {(a, t) ∈ Aoλ T : a(t · 1) = a}.

Then U = A′T ′ and U is a monoid left restriction subsemigroup of AoλT . Moreover σA′ = ıT ′

and U is (A′, T ′)-proper.

Proof. From Lemma 7.5.1 and 7.5.2, we only need to show that σA′ = ıT ′ and U is (A′, T ′)-
proper.
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We know that E = {t · 1 : t ∈ T} ⊆ EA, therefore as A ∼= A′, it is easy to check that

E ′ = (t · 1, 1) : t ∈ T}

is a set of commuting idempotents, because idempotents in EA commute. To check that
σA′ = ıT ′ , let (t · 1, t), (u · 1, u) ∈ T ′ and suppose that (t · 1, t)σA (u · 1, u). Then

(e, 1)(t · 1, t) = (f, 1)(u · 1, u) for some (e, 1), (f, 1) ∈ EA′
⇒ ((t+ · e)(t · 1), t) = ((u+ · f)(u · 1), u)
⇒ (t+ · e)(t · 1) = (u+ · f)(u · 1) and t = u

and thus (t · 1, t) = (u · 1, u). Hence σA′ = ıT ′ .
To show that U is (A′, T ′)-proper let (a, 1), (b, 1) ∈ A′ and (t · 1, t), (u · 1, u) ∈ T ′ such

that
(a, 1) = (a, 1)

(
(t · 1, t)� (1A, 1T )

)
, (b, 1) = (b, 1)

(
(u · 1, u)� (1A, 1T )

)
and

(a, 1) = (t · 1, t)+ � (a, 1), (b, 1) = (u · 1, u)+ � (b, 1)

so that

(a, 1) = (a, 1)(t · 1, 1) = (a(t · 1), 1), (b, 1) = (b, 1)(u · 1, 1) = (b(u · 1), 1)

and

(a, 1) = (t · 1, t+)� (a, 1) = (t+ · a, 1), (b, 1) = (u · 1, u+)� (b, 1) = (u+ · b, 1).

Thus
a = a(t · 1) = t+ · a and b = b(u · 1) = u+ · b.

Suppose
(a, 1)(t · 1, t) = (b, 1)(u · 1, u).
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Then

((t+ · a)(t · 1), t) = ((u+ · b)(u · 1), u)
⇒ (a(t · 1), t) = (b(u · 1), u) because a = t+ · a and b = u+ · b by above
⇒ a(t · 1) = b(u · 1) and t = u

⇒ a = b and t = u

⇒ (a, 1) = (b, 1) and (t · 1, t) = (u · 1, u).

Hence (t · 1, t)σA′ (u · 1, u). On the other hand if

(a, 1) = (b, 1) and (t · 1, t)σA′ (u · 1, u)

then clearly (a, 1)(t · 1, t) = (b, 1)(u · 1, u) because σA′ = ıT ′ . Hence U is (A′, T ′)-proper.

Now that we know how to construct a left restriction monoid which is (A′, T ′)-proper, we
are in a position to state our covering theorem for left restriction monoids.

Theorem 7.5.7. Suppose S is a left restriction monoid. Let A, T be submonoids of S such
that S = AT where T acts (as a monoid) on A by (2,1)-endomorphisms satisfying (LAC).
Let A oλ T = {(a, t) ∈ A × T : t+ · a = a} and suppose that ea = ae for all a ∈ A, e ∈ ET .
Then there is an (A′, T ′)-proper left restriction submonoid U of AoλT and an onto morphism
θ : U → S such that θ|A′ : A′ → A is an isomorphism.

Proof. From Lemma 7.5.6, there is a left restriction submonoid

U = {(a, t) ∈ A× T : a(t · 1) = a}

of Aoλ T which is (A′, T ′)-proper.
Now define θ : U → S by (a, t)θ = at.
To check that θ is onto, let s ∈ S, where s = at for a ∈ A and t ∈ T . We see that

at = at+t

= t+at by supposition that ea = ae for all a ∈ A, e ∈ ET
= (t+ · a)t+t using (LAC)
= (t+ · a)t
= (t+ · a1)t
= (t+ · a)(t+ · 1)(t · 1)t.
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We notice that at = bt, where b = (t+ · a)(t+ · 1)(t · 1). We see that

t+ · b = t+ · ((t+ · a)(t+ · 1)(t · 1))
= (t+ · (t+ · a))(t+ · (t+ · 1))(t+ · (t · 1))
= (t+ · a)(t+ · 1)(t · 1)

and thus t+ · b = b. Also

b(t · 1) = (t+ · a)(t+ · 1)(t · 1)(t · 1) = (t+ · a)(t+ · 1)(t · 1) = b.

Thus we can assume that s = at where a = t+ · a = a(t · 1). Hence (a, t) ∈ U and
s = at = (a, t)θ and thus θ is onto.

To check that θ is a morphism, let (a, t), (b, u) ∈ U . Then
(
(a, t)(b, u)

)
θ =

(
((tu)+ · a)(t · b), tu

)
θ

= ((tu)+ · a)(t · b)tu
= ((tu)+ · a)tbu
= ((tu)+ · a)tu+bu as u+b = (u+ · b)u+ = bu+

= ((tu)+ · a)(tu)+tbu

= (tu)+atbu

= a(tu)+tbu by supposition that ea = ae for all a ∈ A, e ∈ ET
= atu+bu

= atbu

= (a, t)θ(b, u)θ.

Hence θ is an onto morphism. Also it is clear that A′ ∼= A.

We now give a result that is needed in the proof of the embedding theorem which is
analogous to Lemma 7.4.4.

Lemma 7.5.8. Let S = AT , where S is a left restriction monoid with submonoids A, T such
that T acts (as a monoid) on A by (2,1)-endomorphisms. Suppose that S is (A, T )-proper.
Then for e, f ∈ EA, and t, u ∈ T

et = fu⇒ e(t · a) = f(u · a) for all a ∈ A.
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Proof. Let e, f ∈ EA and t, u ∈ T . Then

et = fu

⇒ eta = fua

⇒ e(t · a)t = f(u · a)u using (LAC)
⇒ e(t · a)(t · 1)t = f(u · a)(u · 1)u because t = (t · 1)t and u = (u · 1)u
⇒ e(t · a)(t · 1) = f(u · a)(u · 1) because S is (A, T )-proper
⇒ e(t · a) = f(u · a).

Next we give the main theorem of this section, that is, the embedding theorem for left
restriction monoids.

Theorem 7.5.9. Let S be a left restriction monoid with submonoids A, T such that S = AT

where T acts (as a monoid) on A by (2,1)-endomorphisms. Suppose that S is (A, T )-proper.
Assume that EA and ET are central in A. Then there exists a λ-semidirect product

U = Aoλ T/σA

where A contains a submonoid A′ ∼= A and an embedding θ : S → U such that
θ|A : A→ A′ × {1} is an isomorphism.

Proof. Let
I = {U ⊆ A : EAU = U, a+b = b+a for all a, b ∈ U }1.

We first check that I is left restriction with semilattice of projections

EI = {F : F is an ideal in EA}

and for U ∈ I
U+ = {u+ : u ∈ I}.

First we show that EI is a semilattice. For this let F ∈ EI . Then clearly EAF = F because
F is an ideal in EA. Also for any f, g ∈ F

f+g = g+f.
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Thus EI ⊆ I. Next let F, F ′ ∈ EI . Then

EA(FF ′) = (EAF )F ′ = FF ′

because F is an ideal in EA. Next for any e, f ∈ F and g, h ∈ F ′, it is clear that

(ef)+gh = (gh)+ef.

Hence EI is a semilattice.
Next let U, V ∈ I. Then

EA(UV ) = (EAU)V = UV.

Let ab, cd ∈ UV where a, c ∈ U, b, d ∈ V . Then

(ab)+cd = (ab)+a+cd

= (ab)+c+ad because a+c = c+a

= c+(ab)+ad

= c+ab+d

= c+ad+b because b+d = d+b

= c+(ad)+ab

= (c+ad)+ab

= (a+cd)+ab

= a+(cd)+ab

= (cd)+ab.

Thus UV ∈ I.
Next let U+ = {u+ : u ∈ U}. Then

eu+ = (eu)+ ∈ U+,

and so EAU+ ⊆ U+. Also for u+ ∈ U+, we have

u+ = (u+ · 1)u+ ∈ EAU+

so that U+ ⊆ EAU
+. Thus EAU+ = U+. Also e+f = f+e for all e, f ∈ U+. Hence U+ ∈ I.

Now we see that
U+U = {u+v : u, v ∈ U} ⊆ EAU = U.
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Clearly U ⊆ U+U . Thus U = U+U .
Now if F ∈ EI and FU = U , then fu ∈ U for all f ∈ F, u ∈ U . Therefore

(fu)+ = fu+ ∈ U+ ⇒ FU+ ⊆ U+.

Next let u ∈ U . Then u = fv for some f ∈ F and v ∈ U , so u+ = fv+ ∈ FU+ and hence
U+ = FU+.

It is easy to see that the left congruence condition holds in I. We check that the left
ample condition holds. For this we see that

(UV )+U = {(uv)+z : u, z ∈ U, v ∈ V }.

Then
(uv)+z = (uv)+u+z

= (uv)+z+u

= z+(uv)+u

= z+uv+

⊆ UV +.

It is easy to check that UV + ⊆ (UV )+U . Hence (UV )+U = UV +. Thus I is left restriction.
Let A = IT/σA = {f : T/σA → I}. Then A is a left restriction monoid with identity

defined by [t]1̄ = 1 and for all [t] ∈ T/σA and for all f, g ∈ A,

[t](fg) = ([t]f)([t]g) and [t]f+ = ([t]f)+.

Define the action of T/σA on A by

[u]([t] ? f) = [ut]f for all [u] ∈ T/σA .

Similar by the proof of Theorem 7.4.5, it is easy to see that this action is a monoid action.
We check that the action preserves +. Let f ∈ A and [u], [t] ∈ T/σA. Then

[u]([t] ? f)+ =
(
[u]([t] ? f)

)+
= ([ut]f)+ = [ut]f+ = [u]([t] ? f+).

Thus [t] ? f+ = ([t] ? f)+. Also [u]([t] ? 1̄) = [ut]1̄ = 1 = [u]1̄ implies [t] ? 1̄ = 1̄. Thus the
action of T/σA on A is by (2, 1, 0)-morphisms.
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Let fa : T/σA → P(A), where P(A) is the power set of A, be defined by

fa : [t]fa = EA{t′ · a : t′ σA t}

where [t] ∈ T/σA. We want to show that fa ∈ A, that is, [t]fa ∈ I for all t ∈ T . For this let

t σA t
′ σA t

′′.

Then
(t′ · 1)t′′ = (t′′ · 1)t′ because S is (A, T )-proper

⇒ (t′ · 1)(t′′ · a) = (t′′ · 1)(t′ · a) using Lemma 7.5.8.

We want (e(t′ · a))+(f(t′′ · a)) = (f(t′′ · a))+e(t′ · a), where e, f ∈ EA. For this we see that

(f(t′′ · a))+e(t′ · a) = (f(t′′ · 1)(t′′ · a))+e(t′ · a)+(t′ · a)
= (f(t′′ · 1)(t′′ · a)+)+e(t′ · a)+(t′ · a)
= f(t′′ · 1)(t′′ · a)+e(t′ · a)+(t′ · a)
= f(t′′ · a)+(t′′ · 1)e(t′ · a)+(t′ · a)
= (f(t′′ · a))+(e(t′ · a))+(t′′ · 1)(t′ · a)
= (f(t′′ · a))+(e(t′ · a))+(t′ · 1)(t′′ · a) because (t′′ · 1)(t′ · a) = (t′ · 1)(t′′ · a)
= (f(t′′ · a))+(t′ · 1)(e(t′ · a))+(t′′ · a)
= (f(t′′ · a))+((t′ · 1)e(t′ · a))+(t′′ · a)
= (f(t′′ · a))+(e(t′ · a))+(t′′ · a)
= (e(t′ · a))+(f(t′′ · a)).

Thus fa ∈ A. Define θ : S → Aoλ T/σA by

(at)θ = ([t]+ ? fa, [t]) where a = a(t · 1) = t+ · a.

Clearly θ is well defined because S is (A, T )-proper. Now to show that θ is one-one, let

(at)θ = (bu)θ where a = a(t · 1) = t+ · a, b = b(u · 1) = u+ · b
⇒ ([t]+ ? fa, [t]) = ([u]+ ? fb, [u])
⇒ [t]+ ? fa = [u]+ ? fb and [t] = [u] .

141



As [1]([t]+ ? fa) = EA{s · a : s σA t+}, we have

a = a(t · 1)
= t+ · a by condition (P) as S is (A, T )-proper
= 1(t+ · a) ∈ [1]([t]+ ? fa)

⇒ a ∈ [1]([u]+ ? fb)
⇒ a = g(s · b)

where s σA u+ and g ∈ EA. Now

s σA u
+ ⇒ (s · 1)u+ = (u+ · 1)s because S is (A, T )-proper

so that (s · 1)(u+ · b) = (u+ · 1)(s · b), by Lemma 7.5.8. Also

s σA u
+ ⇒ s+ σA u

+ σA s,

so that
(s · 1)s+ = (s+ · 1)s = (s+ · 1)s+s = s+1s = s+s = s

implies s = (s · 1)s+ ∈ ES, so that s ∈ ET . Therefore

a = g(s · b)
= g(su+ · b)
= g(u+s · b) because s, u+ ∈ ET
= g(u+ · (1(s · b)))
= g(u+ · 1)(u+s · b)
= g(u+ · 1)(su+ · b) because s, u+ ∈ ET
= g(u+ · 1)(s · b)
= g(s · 1)(u+ · b) because (s · 1)(u+ · b) = (u+ · 1)(s · b)
= g(s · 1)b

gives a = eb for some e ∈ EA and similarly b = fa for some f ∈ EA. Hence

b = fa = feb = efeb = efa = eb = a.

Now as S is (A, T )-proper, so a = b and t σA u implies that at = bu. Hence θ is one-one.
Next to show that θ is a morphism, let at, bu ∈ S where a = a(t · 1) = t+ · a and
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b = b(u · 1) = u+ · b. Then by the proof of Theorem 7.5.7 we know that (at)(bu) = ((tu)+ ·
a)(t · b)tu. Also

((tu)+ · a)(t · b)(tu · 1) = ((tu)+ · a)(t · b)(t · (u · 1))
= ((tu)+ · a)(t · b(u · 1))
= ((tu)+ · a)(t · b) because b = b(u · 1).

Thus (
(at)(bu)

)
θ =

(
((tu)+ · a)(t · b)tu

)
θ =

(
[tu]+ ? f((tu)+·a)(t·b), [tu]

)
. (A)

On the other hand,

(at)θ(bu)θ = ([t]+ ? fa, [t])([u]+ ? fb, [u])
=

(
(([t][u])+ ? ([t]+ ? fa))([t] ? ([u]+ ? fb)), [t][u]

)
=

(
([tu]+[t]+ ? fa)([t]([u]+ ? fb)), [tu]

)
,

so that
(at)θ(bu)θ =

(
([tu]+ ? fa)([tu+] ? fb), [tu]

)
. (B)

We want to show that (A)= (B). For this let [v] ∈ T/σA. Then

[v]([tu]+ ? f((tu)+·a)(t·b)) = [v(tu)+]f((tu)+·a)(t·b)

= EA{k · (((tu)+ · a)(t · b)) : k σA v(tu)+}
= EA{(k(tu)+ · a)(kt · b) : k σA v(tu)+}
⊆ EA{(k(tu)+ · a) : k σA v(tu)+}{(kt · b) : k σA v(tu)+}.

Now
[v]([tu]+ ? fa) = EA{k · a : k σA v(tu)+}

and
[v]([tu+] ? fb) = EA{h · b : hσA v(tu+)}.

Also
k σA v(tu)+ ⇒ k(tu)+ σA v(tu)+ σA k

and
hσA v(tu)+ ⇒ ht σA v(tu)+t = v(tu+).

Thus [v]([tu]+ ? f((tu)+·a)(t·b)) ⊆ [v]
(
([tu]+ ? fa)([tu+] ? fb)

)
.

To prove the reverse inclusion, let w ∈ [v]
(
([tu]+ ?fa)([tu+]?fb)

)
. Then w = g(k ·a)(h · b)

143



where
k σA v(tu)+ and hσA v(tu+).

Now hσA v(tu+) = v(tu)+t σA kt, so that

(h · 1)kt = (kt · 1)h because S is (A, T )-proper

which further implies

(h · 1)(kt · b) = (kt · 1)(h · b) using Lemma 7.5.8.

Also
k · a = k · (a(t · 1)) = (k · a)(kt · 1).

Thus
w = g(k · a)(kt · 1)(h · b)

= g(k · a)(h · 1)(kt · b) because (h · 1)(kt · b) = (kt · 1)(h · b)
= g(h · 1)(k · a)(kt · b) because EA is central
= g′(k · a)(kt · b).

Now
kt · b = kt · (b(u · 1))

= (kt · b)(ktu · 1)
= (kt · b)(k(tu)+ · (tu · 1))
= (kt · b)(k(tu)+ · (1(tu · 1)))
= (kt · b)(k(tu)+ · 1)(k(tu)+ · (tu · 1))
= (k(tu)+ · 1)(kt · b)(kt · (u · 1))
= (k(tu)+ · 1)(kt · (b(u · 1)))
= (k(tu)+ · 1)(kt · b).

Also as
k σA v(tu)+ ⇒ k(tu)+ σA k,

therefore
(k(tu)+ · 1)k = (k · 1)k(tu)+ because S is (A, T )-proper
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which implies (k(tu)+ · 1)(k · a) = (k · 1)(k(tu)+ · a) using Lemma 7.5.8. Thus

w = g′(k · a)(kt · b)
= g′(k · a)(k(tu)+ · 1)(kt · b) because kt · b = (k(tu)+ · 1)(kt · b)
= g′(k · 1)(k(tu)+ · a)(kt · b) because (k(tu)+ · 1)(k · a) = (k · 1)(k(tu)+ · a)
⊆ [v]([tu]+ ? f((tu)+·a)(t·b)).

Hence ((at)(bu))θ = (at)θ(bu)θ. To finish the proof that θ is an embedding, finally we want
to show that θ preserves +. For this let s = at ∈ S, where a = a(t · 1) = t+ · a. Then

a+ = (a(t · 1))+

= ((t · 1)a)+ because EA is central in A
= ((t · 1)a+)+

= (t · 1)a+

= a+(t · 1)

and a+ = (a(t · 1))+ = (t+ · a)+ = t+ · a+. Now

((at)θ)+ = ([t]+ ? fa, [t])+

= (([t]+ ? fa)+, [t]+)
= ([t]+ ? f+

a , [t]+).

Also
(at)+θ = (a(t · 1)t)+θ

= ((t+ · a)t)+θ because a(t · 1) = t+ · a
= ((t+ · a)t+)+θ

= (t+a)+θ using (LAC)
= (t+a+)θ
= (a+t+)θ
= ([t]+ ? fa+ , [t]+).

Now to show that ((at)θ)+ = (at)+θ, we need to check that

[t]+ ? f+
a = [t]+ ? fa+ .
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For this we see that
[u]([t]+ ? f+

a ) = [ut+]f+
a

= ([ut+]fa)+

= (EA{g · a : g σA ut+})+

= EA{g · a+ : g σA ut+}
= [u]([t]+ ? fa+).

Hence ((at)θ)+ = (at)+θ and thus θ preserves +. Hence θ is an embedding.

The work in this chapter is not polished but forms the basis for further investigations.
We are still in process of developing this theory and trying to find some natural examples.
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Chapter 8

λ-Zappa-Szép products of restriction
semigroups

The Zappa-Szép product of two inverse semigroups is not inverse in general. This is even the
case for semidirect products as we have mentioned in Chapter 6. Gilbert and Wazzan gener-
alised the concept of λ-semidirect product to λ-Zappa-Szép products [25, 77]. They found a
subset of the Zappa-Szép product S ./ T of two inverse semigroups S and T with a modified
binary operation such that the resulting subset is a groupoid. In the special case where
S = E a semilattice and T = G a group, they ordered this groupoid to become inductive and
hence obtained an inverse semigroup. In order to define new modified binary operation on
this subset, they used the equivalence of categories between inverse semigroups and inductive
groupoids. This equivalence is established by the Ehresmann-Schein-Nambooripad Theorem
[45].

In this chapter we consider λ-Zappa-Szép products of restriction semigroups. The Zappa-
Szép product of two restriction semigroups S and T need not be restriction in general.
By taking a certain set of pairs of S × T , we construct a category. In case where S is a
semilattice and T is a monoid, we order this category so that it becomes inductive, yielding
thus a restriction semigroup via the use of the standard pseudo-product. Our constructions
specialise to those of Gilbert and Wazzan [25] in the inverse case.

8.1 λ-Zappa-Szép product of inverse semigroups

We begin this section by discussing the λ-Zappa-Szép products of inverse semigroups. For
convenience of the reader, we give results for λ-Zappa-Szép products of inverse semigroups
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fromWazzan’s Thesis [77], although they can be found in a joint paper of Gilbert and Wazzan
[25]. We first see that by considering a special subset of the Zappa-Szép product of any two
inverse semigroups S and T we can construct a groupoid.

Theorem 8.1.1. [77, Theorem 4.5.6] Let Z = S ./ T be a Zappa-Szép product of inverse
semigroups S and T . Put

B./(Z) = {(a, t) ∈ S×T : tt−1·a−1 = a−1, tt−1·a−1a = a−1a, (t−1)a−1a = t−1, (tt−1)a−1a = tt−1}.

Then B./(Z) is a groupoid under the restriction of the binary operation in Z with set of local
identities

E(B./(Z)) = {(e, f) ∈ E(S)× E(T ) : f · e = e, f e = f},

where for (a, t) ∈ B./(Z)

d(a, t) = (aa−1, (tt−1)a−1), r(a, t) = (t−1 · (a−1a), t−1t),

and
(a, t)−1 = (t−1 · a−1, (t−1)a−1).

In this general case, it is not possible to order this groupoid to become inductive because
the partially ordered set of identities do not form a meet semilattice. Thus the construction
does not proceed any further. However Gilbert and Wazzan made this process work in a
special case where S = E is a semilattice and T = G is a group. In this case E(B./(Z)) ∼= E

and by extending the ordering on E to an ordering on B./(Z), they obtained an inductive
groupoid and hence an inverse semigroup.

Theorem 8.1.2. [77, Proposition 4.5.19] Let Z = E ./ G where E is a semilattice and G is
a group. Then

B./(Z) = {(e, g) ∈ E ×G : (g−1)e = g−1}

is an inductive groupoid under the restriction of the binary operation in Z with set of local
identities

E(B./(Z)) = {(e, 1) : e ∈ E}

where
d(e, g) = (e, 1), r(e, g) = (g−1 · e, 1) and (e, g)−1 = (g−1 · e, g−1).
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Also the partial order on B./(Z) is defined by the rule

(e, g) ≤ (f, h)⇔ e ≤ f and g = hh
−1·e

and as a semilattice, E(B./(Z)) ∼= E. For (e, g) ∈ B./(Z) and (f, 1) ∈ EB./(Z), the restriction
is defined by

(f,1)|(e, g) = (f, gg−1·f )

and co-restriction is defined by

(e, g)|(f,1) = (e(g · f), gf ).

By defining a pseudo-product on B./(Z) we obtain an inverse semigroup which follows
from its construction as a pseudo-product on an inductive groupoid.

Theorem 8.1.3. [77, Theorem 4.5.20] Let E be a semilattice, G be a group and Z = E ./ G.
Then

B./(Z) = {(e, g) ∈ E ×G : (g−1)e = g−1}

is an inverse semigroup with multiplication defined by

(e, g)(f, h) =
(
e(g · f), gfhh−1g−1·e

)
.

8.2 Comparing the inverse and restriction cases

We want to extend the above ideas to Zappa-Szép products of restriction semigroups. For
this we need to use the notion of double action.

Definition 8.2.1. Let S and T be restriction semigroups and suppose that Z = S ./ T is a
Zappa-Szép product of S and T . We say that S and T act doubly on each other if we have
two extra maps

S × T → T, (s, t) 7→ st and S × T → S, (s, t) 7→ s ◦ t

such that for all s, s′ ∈ S, t, t′ ∈ T :

(1) ss′t = s( s′t); (2) s ◦ tt′ = (s ◦ t) ◦ t′
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and the actions satisfy the following compatibility conditions:

(t · s) ◦ t = s ◦ t∗ = t∗ · s

t · (s ◦ t) = s ◦ t+ = t+ · s
(CP1)

and

(st)s = ts
∗ = s∗t

s(ts) = ts
+ = s+

t.
(CP2)

We will consider the Zappa-Szép product Z = S ./ T of two restriction semigroups S
and T where S and T are acting doubly on each other. By choosing a certain set of pairs of
S × T , we will construct a category. Let

V./(Z) = {(a, t) ∈ S × T : t+ · a∗ = a∗, (t+)a∗ = t+, at+ · a = a, ta
∗◦t = t}.

We first prove that if S and T are inverse semigroups and are regarded as restriction semi-
groups in the usual way, then B./(Z) = V./(Z).

Lemma 8.2.2. Let S and T be inverse semigroups regarded as restriction semigroups in the
usual way. Suppose Z = S ./ T is a Zappa-Szép product of S and T . Define two extra maps

S × T → S, (s, t) 7→ s ◦ t and S × T → T, (s, t) 7→ st

by s ◦ t = t−1 · s, st = ts
−1, respectively. Then (CP1) and (CP2) are satisfied. Moreover

B./(Z) = V./(Z).

Proof. We first check that (CP1) is satisfied. Let s ∈ S and t ∈ T . Then

(t · s) ◦ t = t−1 · (t · s) = t−1t · s = t∗ · s = s ◦ t∗

and
t · (s ◦ t) = t · (t−1 · s) = tt−1 · s = t+ · s = s ◦ t+.

Hence (CP1) is satisfied. The proof for (CP2) is dual. By definition

B./(Z) = {(a, t) ∈ S×T : tt−1·a−1 = a−1, tt−1·a−1a = a−1a, (t−1)a−1a = t−1, (tt−1)a−1a = tt−1}
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and

V./(Z) = {(a, t) ∈ S×T : tt−1 ·a−1a = a−1a, (tt−1)a−1a = tt−1, (tt−1)a−1 ·a = a, tt
−1·a−1a = t}.

Let (a, t) ∈ B./(Z). From [77, Lemma 4.5.3], we know that

tt
−1·a−1a = t and (tt−1)a−1 · a = a.

Thus (a, t) ∈ V./(Z), so that B./(Z) ⊆ V./(Z).
Conversely, let (a, t) ∈ V./(Z). We want to show that tt−1 ·a−1 = a−1 and (t−1)a−1a = t−1.

We see that

a = aa−1a

= a(tt−1 · a−1a) as tt−1 · a−1a = a−1a

= a(tt−1 · a−1)((tt−1)a−1 · a) using (ZS2)
= a(tt−1 · a−1)a because (tt−1)a−1 · a = a,

and

(tt−1 · a−1)a(tt−1 · a−1) = (tt−1 · a−1)((tt−1)a−1 · a)(tt−1 · a−1) because (tt−1)a−1 · a = a

= (tt−1 · a−1a)(tt−1 · a−1) using (ZS2)
= (tt−1 · a−1a)((tt−1)a−1a · a−1) because tt−1 = (tt−1)a−1a

= (tt−1 · a−1aa−1) again using (ZS2)
= tt−1 · a−1.

Hence tt−1 · a−1 = a−1. By left-right duality we must also have (t−1)a−1a = t−1. Checking,

t = tt−1t

= (tt−1)a−1at

= tt
−1·a−1a(t−1)a−1at using (ZS4)

= t(t−1)a−1at because tt−1·a−1a = t
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and

(t−1)a−1at(t−1)a−1a = (t−1)a−1att
−1·a−1a(t−1)a−1a because tt−1·a−1a = t

= (t−1)a−1a(tt−1)a−1a using (ZS4)
= (t−1)tt−1·a−1a(tt−1)a−1a because tt−1 · a−1a = a−1a

= (t−1tt−1)a−1a using (ZS4)
= (t−1)a−1a.

Thus (t−1)a−1a = t−1 and hence (a, t) ∈ B./(Z), so that V./(Z) ⊆ B./(Z).

Hence in the inverse case, the set of pairs chosen by us are the same as those chosen in
[25] and [77]. The following lemma was an important tool to prove that B./(Z) is a groupoid.

Lemma 8.2.3. [77, Lemma 4.5.2] Let S and T be inverse semigroups and Z = S ./ T be a
Zappa-Szép product of S and T .

(i) If tbb−1 = t, then (t · b)−1 = tb · b−1;
(ii) If t−1t · b = b, then (tb)−1 = (t−1)t·b.

Lemma 8.2.3 gives us the following lemma which was used frequently by Wazzan to prove
that B./(Z) is a groupoid, though she did not mention it explicitly.

Lemma 8.2.4. Let S and T be inverse semigroups and Z = S ./ T be a Zappa-Szép product
of S and T . Then

tbb
−1 = t⇒

(t · b)−1(t · b) = tb · b−1b

(t · b)(t · b)−1 = t · bb−1
and t−1t · b = b⇒

(tb)−1tb = (t−1t)b

tb(tb)−1 = (tt−1)t·b.

Proof. Let tbb−1 = t. We show that (t · b)−1(t · b) = tb · b−1b and (t · b)(t · b)−1 = t · bb−1. From
Lemma 8.2.3 we know that (t · b)−1 = tb · b−1. Thus

(t · b)−1(t · b) = (tb · b−1)(t · b) because (t · b)−1 = tb · b−1

= (tb · b−1)(tbb−1 · b) because tbb−1 = t

= tb · b−1b using (ZS2),

and
(t · b)(t · b)−1 = (t · b)(tb · b−1) because (t · b)−1 = tb · b−1

= t · bb−1 using (ZS2).
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Dually, we can show that

t−1t · b = b⇒

(tb)−1tb = (t−1t)b

tb(tb)−1 = (tt−1)t·b.

Although Lemma 8.2.4 could be reformulated in the restriction case, its proof involves
writing an element s ∈ S as ss−1s and uses (ZS2) on this decomposition, and similarly
for elements of T uses (ZS4). Therefore unlike in the inverse case, we cannot get these
results in our case, because we are considering Zappa-Szép products of restriction semigroups
and in restriction semigroups we do not have inverses, so we cannot make use of these
decompositions.

We can show that if tb+ = t, then

t · b+ = t · b+b+ = (t · b+)(tb+ · b+) = (t · b+)(t · b+)

and
t · b = t · b+b = (t · b+)(tb+ · b) = (t · b+)(t · b).

If t · b+ ∈ ES, then t · b+ > (t · b)+, but we cannot deduce equality. Thus it is reasonable to
suppose

tb
+ = t⇒

(t · b)∗ = tb · b∗

(t · b)+ = t · b+
(8.1)

and

t∗ · b = b⇒

(tb)∗ = (t∗)b

(tb)+ = (t+)t·b.
(8.2)

as extra conditions to prove that V./(Z) is a category.
We notice that in the inverse case, if (a, t) ∈ B./(Z), then t−1 · (a−1a) ∈ E(S), as

(t−1 · (a−1a))(t−1 · (a−1a)) = (t−1 · (a−1a))((t−1)a−1a · (a−1a)) because (t−1)a−1a = t−1

= t−1 ·
(
(a−1a)(a−1a)

)
using (ZS2)

= t−1 · (a−1a).

Dually (tt−1)a−1 ∈ E(T ).
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8.3 λ-Zappa-Szép product of two restriction semigroup

In this section we define a partial binary operation on V./(Z) such that under certain extra
conditions, it becomes a category.

Theorem 8.3.1. Let S and T be restriction semigroups and suppose that Z = S ./ T is the
Zappa-Szép product of S and T where S and T are acting doubly on each other satisfying
(CP1) and (CP2). Let

V = V./(Z) = {(a, t) ∈ S × T : t+ · a∗ = a∗, (t+)a∗ = t+, at+ · a = a, ta
∗◦t = t}.

For (a, t) ∈ V , we suppose that a∗ ◦ t ∈ ES and at+ ∈ ET . Also suppose that (8.1) and
(8.2) hold. Then V is a category under the restriction of the binary operation in Z with set
of local identities

EV = {(e, f) ∈ ES × ET : f · e = e, f e = f}

where
d(a, t) = (a+, at+) and r(a, t) = (a∗ ◦ t, t∗).

Proof. We denote the restricted product in V by •. We first note that for any (b, u) ∈ V

u+ · b∗ = b∗, (u+)b∗ = u+, bu+ · b = b, ub
∗◦u = u.

Now we prove some preliminary results needed to show that V is a category.

Lemma 8.3.2. Let (a, t), (b, u) ∈ V be such that (a, t) • (b, u) is defined. Then
(1) tb+ = t and t∗ · b = b;
(2) a∗ = t · b+ and (t∗)b = u+;
(3) (tbu)+ = (tb)+;
(4) a(t·b)(tbu)+ = at+;
(5) (a(t · b))+ = a+;
(6) (a(t · b))∗ = (t · b)∗;
(7) (a(t · b))∗ ◦ tbu = b∗ ◦ u;
(8) (tbu)∗ = u∗.

Proof. As (a, t) • (b, u) is defined, r(a, t) = d(b, u), so that (a∗ ◦ t, t∗) = (b+, bu+) gives

a∗ ◦ t = b+ and t∗ = bu+.
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(1) We have

tb
+ = ta

∗◦t = t and t∗ · b = bu+ · b = b, because (a, t), (b, u) ∈ V .

(2) From a∗ ◦ t = b+, we have

t · (a∗ ◦ t) = t · b+

⇒ t+ · a∗ = t · b+ using (CP1)
⇒ a∗ = t · b+ because t+ · a∗ = a∗

and t∗ = bu+ implies
(t∗)b = ( bu+)b

⇒ (t∗)b = (u+)b∗ using (CP2)
⇒ (t∗)b = u+.

(3) From (1) and (2) proved above , we have that t∗ · b = b and (t∗)b = u+. Hence

(tbu)+ = (tbu+)+ =
(
tt
∗·b(t∗)b

)+
=
(
(tt∗)b

)+
= (tb)+.

(4) We see that

a(t·b)(tbu)+ = a(t·b)(tb)+ by (3) proved above
= a(t·b)

(
(t+)t·b)

)
using (8.2)

= a
(
t·b((t+)t·b)

)
= a((t+)(t·b)+) using (CP2)
= a((t+)t·b+) using (8.1)
= a((t+)a∗) from (2) proved above
= a( a∗t+) using (CP2)
= aa∗t+

= at+.

(5) From (8.1), we know that (t · b)+ = t · b+ and from (2) proved above, we have that
t · b+ = a∗. Hence

(a(t · b))+ = (a(t · b)+)+ = (a(t · b+))+ = (aa∗)+ = a+.

Conditions (6), (7) and (8) are dual of (3), (4) and (5), respectively.
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Now we give the proof of Theorem 8.3.1.
We first check that • is a closed partial binary operation. For this let (a, t), (b, u) ∈ V

such that (a, t) • (b, u) is defined. We have to show that

(a, t) • (b, u) = (a(t · b), tbu) ∈ V.

For this we need to check that

(tbu)+ · (a(t · b))∗ = (a(t · b))∗, ((tbu)+)(a(t·b))∗ = (tbu)+,
a(t·b)(tbu)+ · (a(t · b)) = a(t · b) and (tbu)(a(t·b))∗◦tbu = tbu.

We now calculate

(tbu)+ · (a(t · b))∗ = (tb)+ · (t · b)∗ from Lemma 8.3.2 ((3) and (6))
= (tb)+ · (tb · b∗) from Lemma 8.3.2 (1) and (8.1)
= (tb)+tb · b∗ using (ZS1)
= tb · b∗

= (t · b)∗ by (8.1)
= (a(t · b))∗ from Lemma 8.3.2 (6).

Also, (
(tbu)+

)(a(t·b))∗
=

(
(tb)+

)(t·b)∗
from Lemma 8.3.2 ((3) and (6))

=
(
(t+)t·b

)(t·b)∗
from Lemma 8.3.2 (1) and (8.2)

= (t+)t·b

= (tb)+ using (8.2)
= (tbu)+ from Lemma 8.3.2 (3).

Next,

a(t·b)(tbu)+ · (a(t · b)) = at+ · (a(t · b)) from Lemma 8.3.2 (4)
= ( at+ · a)(( at+)a · (t · b)) using (ZS2)
= a((t+)a∗ · (t · b)) as (a, t) ∈ V and using (CP2)
= a(t+ · (t · b)) as (a, t) ∈ V
= a(t · b).
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Finally,
(tbu)(a(t·b))∗◦tbu = (tbu)b∗◦u from Lemma 8.3.2 (7)

= (tb)u·(b∗◦u)ub
∗◦u using (ZS4)

= (tb)u+·b∗u by (CP1) and as (b, u) ∈ V
= (tb)b∗u as (b, u) ∈ V
= tbu.

Hence (a(t · b), tbu) ∈ V .
Next for e ∈ ES and f ∈ ET , we show that

(e, f) ∈ V ⇔ f · e = e, f e = f.

For this let (e, f) ∈ V . Then clearly

f · e = e, f e = f.

Conversely, if f · e = e and f e = f , then

ef · e = f e · e = f · e = e

and
f e◦f = f f ·e = f e = f.

Thus (e, f) ∈ V .
Now let (a, t) ∈ V . By definition, d(a, t) = (a+, at+) and by our assumption, at+ ∈ ET .

Thus to show that d(a, t) ∈ V , we need only to show that

( at+)a+ = at+ and at+ · a+ = a+.

We see that
( at+)a+ = a+( at+) = a+a(t+) = at+

and thus
at+ · a+ = ( at+ · a)+ = a+,

using (8.1).
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Dually, r(a, t) = (a∗ ◦ t, t∗) ∈ V . Next we see that

d(e, f) = (e, ef) = (e, f e) = (e, f)

and
r(e, f) = (e ◦ f, f) = (f · e, f) = (e, f).

Thus
d(e, f) = (e, f) = r(e, f)

where (e, f) ∈ EV , e ∈ ES and f ∈ ET . Hence EV is the set of local identities of V .
We now prove that V satisfies the axioms of a category.

(C1) Let (a, t), (b, u) ∈ V and suppose ∃(a, t) • (b, u), so that (a∗ ◦ t, t∗) = (b+, bu+). Thus

d
(
(a, t) • (b, u)

)
= d

(
a(t · b), tbu

)
=

(
(a(t · b))+, a(t·b)(tbu)+

)
= (a+, at+) from Lemma 8.3.2 ((5) and (4))
= d(a, t),

and

r
(
(a, t) • (b, u)

)
= r

(
a(t · b), tbu

)
=

(
(a(t · b))∗ ◦ tbu, (tbu)∗

)
= (b∗ ◦ u, u∗) from Lemma 8.3.2 ((7) and (8))
= r(b, u).

Hence (C1) is satisfied.

(C2) This directly follows from (C1) and the fact that multiplication is associative in a
Zappa-Szép product.

(C3) Let (a, t) ∈ V . Then

r(d(a, t)) = d(a, t) because d(e, f) = (e, f) = r(e, f) for all (e, f) ∈ EV .
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Hence there exists d(a, t) • (a, t) and then

d(a, t) • (a, t) = (a+, at+) • (a, t)
= (a+( at+ · a), ( at+)at)
= (a+a, (t+)a∗t) using (CP2)
= (a, t+t) because (a, t) ∈ V
= (a, t).

Dually,

d(r(a, t)) = r(a, t) because d(e, f) = (e, f) = r(e, f) for all (e, f) ∈ EV .

Hence there exists (a, t) • r(a, t) and then

(a, t) • r(a, t) = (a, t) • (a∗ ◦ t, t∗)
= (a(t · (a∗ ◦ t), ta∗◦tt∗)
= (a(t+ · a∗), tt∗) using (CP1) and because (a, t) ∈ V , so ta∗◦t = t

= (aa∗, t) because (a, t) ∈ V
= (a, t).

Hence V = V./(Z) is a category.

8.4 λ-Zappa-Szép product of a semilattice and a monoid

We now specialize Theorem 8.3.1 to the case where we consider the Zappa-Szép product of
a semilattice and a monoid. We suppose that in this case (ZS7) 1 · e = e and (ZS8)1e = 1
hold. As a monoid T is a reduced restriction semigroup with

t+ = 1 = t∗ for all t ∈ T ,

we note that in this special case (8.1) and (8.2) are satisfied trivially.
The existence of the additional actions

E × T → E, (e, t) 7→ e ◦ t
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and
E × T → T, (e, t) 7→ et

satisfying (CP1) and (CP2) is equivalent to the action of T on the left of E being by
bijections (so that we may define e ◦ t = f where t · f = e) and et being equal to te. Thus in
this case, it is not strictly necessary to introduce the two new actions. However, we retain
the action ◦ for convenience. We therefore suppose that

e = (t · e) ◦ t = t · (e ◦ t) (CP3)

for all e ∈ E and t ∈ T . Now

V = V./(Z) = {(a, t) ∈ S × T : t+ · a∗ = a∗, (t+)a∗ = t+, at+ · a = a, ta
∗◦t = t}

reduces to
V = V./(Z) = {(e, t) ∈ E × T : t = te◦t}.

We now prove that in this special case, V can be made into an inductive category if the extra
condition

e ≤ f ⇒ tf · e = t · e (D)

holds, where e, f ∈ E and t ∈ T .

Theorem 8.4.1. Let Z = E ./ T be a Zappa-Szép product of a semilattice E and a monoid
T . Suppose that 1 · e = e, 1e = 1 and the action of T on E satisfies (CP3). Also suppose
that the condition (D) holds. Then

V = V./(Z) = {(e, t) ∈ E × T : t = te◦t}

is an inductive category under the restriction of the binary operation in Z with set of local
identities EV = {(e, 1) : e ∈ ES}, where

d(e, t) = (e, 1) and r(e, t) = (e ◦ t, 1).

The partial order ≤ on V is defined by

(e, s) ≤ (f, t) if and only if e ≤ f and s = te◦t.
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Also for (e, 1) ∈ E, (f, t) ∈ V where (e, 1) ≤ d(f, t), the restriction is defined by

(e,1)|(f, t) = (e, te◦t)

and where (e, 1) ≤ r(f, t), the co-restriction is defined as:

(f, t)|(e,1) = (f(t · e), te).

Proof. Before giving the proof of Theorem 8.4.1, we record some preliminary computations.

Lemma 8.4.2. Let (e, s), (f, t) ∈ V./(Z), then;
(1) ef ◦ s = (e ◦ s)(f ◦ s);
(2) if (e, s) ≤ (f, t), then e ◦ s = e ◦ t and e ◦ t ≤ f ◦ t;
(3) for e, f ∈ E and t ∈ T , if e ≤ f , then t · e ≤ t · f .

Proof. (1) We have.

(e ◦ s)(f ◦ s) =
(
s · ((e ◦ s)(f ◦ s))

)
◦ s using (CP3)

=
(
(s · (e ◦ s))(se◦s · (f ◦ s))

)
◦ s using (ZS2)

=
(
e(s · (f ◦ s))

)
◦ s because s = se◦s and using (CP3)

= ef ◦ s using (CP3).

(2) Suppose that (e, s) ≤ (f, t). Then e ≤ f and s = te◦t. To prove that e ◦ s = e ◦ t, we see
that

(e ◦ s)(e ◦ t) =
(
s · ((e ◦ s)(e ◦ t))

)
◦ s using (CP3)

=
(
(s · (e ◦ s))(se◦s · (e ◦ t))

)
◦ s using (ZS2)

=
(
e(s · (e ◦ t))

)
◦ s using (CP3) and s = se◦s

=
(
(t · (e ◦ t))(te◦t · (e ◦ t))

)
◦ s using (CP3) and s = te◦t

=
(
t · ((e ◦ t)(e ◦ t))

)
◦ s using (ZS2)

= e ◦ s using (CP3)
⇒ e ◦ s ≤ (e ◦ t).
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and

(e ◦ t)(e ◦ s) =
(
t · ((e ◦ t)(e ◦ s))

)
◦ t using (CP3)

=
(
(t · (e ◦ t))(te◦t · (e ◦ s))

)
◦ t using (ZS2)

=
(
e(s · (e ◦ s))

)
◦ t because s = te◦t and using (CP3)

= e ◦ t using (CP3)
⇒ e ◦ t ≤ e ◦ s.

Thus e ◦ t = e ◦ s. Next we see that

(e ◦ t)(f ◦ t) = ef ◦ t from (1) above
= e ◦ t because e ≤ f.

Hence e ◦ t ≤ f ◦ t.
(3) Suppose e ≤ f . Then e = ef , so that

t · e = t · (ef)
= t · (fe)
= (t · f)(tf · e) using (ZS2)

and hence t · e ≤ t · f .

We now give the proof of Theorem 8.4.1.

From Theorem 8.3.1, V is a category with set of local identities EV = {(e, 1) : e ∈ ES}
where

d(e, t) = (e, 1) and r(e, t) = (e ◦ t, 1).

We notice that for (e, 1), (f, 1) ∈ EV

(e, 1) ≤ (f, 1)⇔ e ≤ f.

Now we show that V is an inductive category. First we prove that ≤ is a partial order. It is
clear that ≤ is reflexive. Let (e, s), (f, t) ∈ V and suppose that

(e, s) ≤ (f, t) and (f, t) ≤ (e, s).
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Then e ≤ f ≤ e implies e = f and

s = te◦t = tf◦t = t.

Hence ≤ is antisymmetric.
To check transitivity, let (e, s), (f, t), (g, u) ∈ V and suppose that

(e, s) ≤ (f, t) and (f, t) ≤ (g, u).

Then e ≤ f ≤ g, s = te◦t and t = uf◦u. Now e ≤ f ≤ g implies that e ≤ g and

s = te◦t

= (uf◦u)(e◦uf◦u) because t = uf◦u

= u(f◦u)(e◦uf◦u)

= u

(
u·((f◦u)(e◦uf◦u))

)
◦u using (CP3)

= u

(
(u·(f◦u))(uf◦u·(e◦uf◦u))

)
◦u using (ZS2)

= ufe◦u using (CP3)
= ue◦u.

Hence (e, s) ≤ (g, u) and thus ≤ is a partial order on V .
We now show that V satisfies the axioms of an inductive category.
(IC1) Let (e, s), (f, t) ∈ V and suppose that (e, s) ≤ (f, t). Then e ≤ f and s = te◦t.

Clearly d(e, s) ≤ d(f, t). Now to show that r(e, s) ≤ r(f, t), we need to check that e◦s ≤ f ◦t.
From Lemma 8.4.2, we see that

e ◦ s = e ◦ t ≤ f ◦ t,

as required.
(IC2) Let (e, s), (f, t), (g, u), (h, v) ∈ V and (e, s) ≤ (f, t), (g, u) ≤ (h, v). Then

e ≤ f, s = te◦t and g ≤ h, u = vg◦v.

Suppose that ∃(e, s) • (g, u) and ∃(f, t) • (h, v). Then

r(e, s) = d(g, u) and r(f, t) = d(h, v),

163



so that
(e ◦ s, 1) = (g, 1) and (f ◦ t, 1) = (h, 1).

To prove that (e, s) • (g, u) ≤ (f, t) • (h, v), that is, (e(s · g), sgu) ≤ (f(t · h), thv), we need to
show

e(s · g) ≤ f(t · h) and sgu = (thv)e(s·g)◦thv.

We see that
e(s · g) = e(s · (e ◦ s)) = ee = e,

and
f(t · h) = f(t · (f ◦ t)) = ff = f,

so that e(s · g) ≤ f(t · h). Now

sgu = se◦su

= su because s = se◦s

= te◦tvg◦v because s = te◦t, u = vg◦v

= tv·((e◦t)◦v)v(e◦s)◦v using (CP3) and g = e ◦ s
= tv·((e◦t)◦v)v(e◦t)◦v because e ◦ s = e ◦ t from Lemma 8.4.2 (2)
= (tv)(e◦t)◦v using (ZS4)
= (tf◦tv)e◦tf◦tv because t = tf◦t

= (thv)(e(s·g))◦thv because h = f ◦ t and e = e(s · g).

Hence (e, s) • (g, u) ≤ (f, t) • (h, v).
(IC3) Let (e, 1) ∈ EV and (f, t) ∈ V be such that (e, 1) ≤ d(f, t). Then (e, 1) ≤ (f, 1), so

e ≤ f . We first note that (e, te◦t) ∈ V as

(te◦t)(e◦te◦t) = t(e◦t)(e◦t
e◦t)

= t

(
t·((e◦t)(e◦te◦t))

)
◦t using (CP3)

= t

(
(t·(e◦t))(te◦t·(e◦te◦t))

)
◦t using (ZS2)

= te◦t.

Clearly d(e, te◦t) = (e, 1) and (e, te◦t) ≤ (f, t).
We show that (e, te◦t) is the unique element with these properties. Let (g, u) be another
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element such that (g, u) ≤ (f, t) and d(g, u) = (e, 1). Then

g ≤ f, u = tg◦t and (g, 1) = (e, 1).

Thus g = e and u = tg◦t = te◦t. Hence (e, te◦t) is unique and we thus define the restriction

(e,1)|(f, t) = (e, te◦t).

(IC4) Let (e, 1) ∈ E and (f, t) ∈ V be such that (e, 1) ≤ r(f, t). Then
(e, 1) ≤ (f ◦ t, 1), so that e ≤ f ◦ t. We want to show that (f(t · e), te) is the unique element
in V such that

(f(t · e), te) ≤ (f, t) and r(f(t · e), te) = (e, 1).

We first check that (f(t · e), te) ∈ V . First we notice that as e ≤ f ◦ t, so t · e ≤ t · (f ◦ t) = f ,
by Lemma 8.4.2 (3). Next we see that

(te)(f(t·e))◦te = (te)(t·e)◦te because t · e ≤ f , so f(t · e) = t · e
= (te)(te·e)◦te since e ≤ e, then te · e = t · e by our assumption
= (te)e using (CP3)
= te.

Hence (f(t · e), te) ∈ V . Clearly f(t · e) ≤ f and

t(f(t·e))◦t = t(t·e)◦t because t · e ≤ f

= te.

Hence (f(t · e), te) ≤ (f, t). Also

r(f(t · e), te) = ((f(t · e)) ◦ te, 1)
= ((t · e) ◦ te, 1) because t · e ≤ f

= ((te · e) ◦ te, 1) since e ≤ e, then te · e = t · e by our assumption
= (e, 1).

Next to prove the uniqueness of (f(t · e), te), let (g, u) be another element in V such that
(g, u) ≤ (f, t) and r(g, u) = (e, 1). Then

g ≤ f, u = tg◦t and g ◦ u = e.
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Now
f(t · e) = f(t · (g ◦ u)) because e = g ◦ u

= f(t · (g ◦ t)) because g ◦ u = g ◦ t from Lemma 8.4.2 (2)
= fg

= g,

and
u = tg◦t = tg◦u = te.

Hence (f(t · e), te) is unique and we thus define co-restriction

(f, t)|(e,1) = (f(t · e), te).

(IC5) It is clear that EV = {(e, 1) : e ∈ E} is a meet semilattice with

(e, 1) ∧ (f, 1) = (ef, 1).

Hence V is an inductive category.

Next we define a pseudo-product on our inductive category to obtain a restriction semi-
group.

Theorem 8.4.3. Let E be a semilattice and T be a monoid and Z = E ./ T . Suppose that
1 · e = e, 1e = 1 and the action of T on E satisfies (CP3). Also suppose that the condition
(D) holds. Suppose that (V, •,d, r,≤) is the inductive category as defined in Theorem 8.4.1.
Let (e, s), (f, t) ∈ V . Defining the pseudo product on V by the usual rule

(e, s)⊗ (f, t) = ((e, s)|r(e,s)∧d(f,t))(r(e,s)∧d(f,t)|(f, t)),

V is a restriction semigroup. Here the multiplication simplifies to

(e, s) • (f, t) =
(
e(s · f), sf t(e◦st)

)
.

Proof. We first see that

r(e, s) ∧ d(f, t) = (e ◦ s, 1) ∧ (f, 1) = ((e ◦ s)f, 1).
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Now
(e, s)|r(e,s)∧d(f,t) = (e, s)|((e◦s)f,1)

=
(
e(s.((e ◦ s)f)), s(e◦s)f )

=
(
e((s · (e ◦ s))(se◦s · f), sf

)
= (e(s · f), sf ).

and
r(e,s)∧d(f,t)|(f, t) = ((e◦s)f,1)|(f, t)

= ((e ◦ s)f, t((e◦s)f)◦t).

Thus

(e, s)⊗ (f, t) = (e(s · f), sf )((e ◦ s)f, t((e◦s)f)◦t)
=

(
e(s · f)(sf · ((e ◦ s)f)), (sf )(e◦s)f t((e◦s)f)◦t

)
=

(
e(s · (f 2(e ◦ s)), s(e◦s)f t((e◦s)f)◦t

)
using (ZS2)

=
(
e(s · (f(e ◦ s)), s(e◦s)f t((e◦s)f)◦t

)
=

(
e(s · ((e ◦ s)f), s(e◦s)f t((e◦s)f)◦t

)
=

(
e(s · (e ◦ s))(se◦s · f), sf t((e◦s)f)◦t

)
using (ZS2) and (CP3)

=
(
e(s · f), sf t((e◦s)◦t)(f◦t)

)
from Lemma 8.4.2 (1)

=
(
e(s · f), sf (tf◦t)(e◦st)

)
=

(
e(s · f), sf t(e◦st)

)
because tf◦t = t .

Hence the fact that V is a restriction semigroup follows from its construction as the pseudo-
product on an inductive category.

From Lemma 8.2.2, we know that the map

S × T → S, (s, t) 7→ s ◦ t

is defined by s ◦ t = t−1 · s. Thus we see that

(e, s)⊗ (f, t) =
(
e(s · f), sf t(e◦st)

)
=

(
e(s · f), sf t((st)−1·e)

)
because s ◦ t = t−1 · s

=
(
e(s · f), sf tt−1s−1·e

)
.

Which is the same multiplication as we have seen in Theorem 8.1.3 for inverse semigroups.

Now we consider the usual Zappa-Szép product E ./ T of a semilattice E and a monoid
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T . By defining two new actions we construct a Zappa-Szép product T ./ E.

Lemma 8.4.4. Let E ./ T be a Zappa-Szép product of a semilattice E and a monoid T .
Suppose that there are two extra maps

E × T → T, (e, t) 7→ et and E × T → E, (e, t) 7→ e ◦ t

and suppose that the action of T on E satisfies (CP3). We define a new action of E on T
by the following.

e � t = te◦t

Then the actions (e, t) 7→ e � t and (e, t) 7→ e ◦ t satisfy (ZS1)-(ZS4) and we can form a
Zappa-Szép product T ./ E.

Proof. We show that these actions satisfy the Zappa-Szép axioms.
(ZS1) Let e, f ∈ E and t ∈ T . Then

e � (f � t) = e � (tf◦t)

=
(
tf◦t

)(e◦tf◦t)

= t

(
t·((f◦t)(e◦tf◦t))

)
◦t using (CP3)

= t

(
(t·(f◦t))(tf◦t·(e◦tf◦t)

)
◦t using (ZS2) as E ./ T is a Zappa-Szép product

= tfe◦t using (CP3)
= tef◦t

= ef � t.

Hence (ZS1) is satisfied.
(ZS2) Let e ∈ E and t, u ∈ T . Then

e � tu = (tu)e◦tu

= tu·(e◦tu)ue◦tu using (ZS4) as E ./ T is a Zappa-Szép product
= tu·((e◦t)◦u)u(e◦t)◦u

= te◦tu(e◦t)◦u using (CP3)
= (e � t)((e ◦ t) � u).
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(ZS3) Let e ∈ E and t, u ∈ T . Then by assumption,

e ◦ tu = (e ◦ t) ◦ u.

(ZS4) Let e, f ∈ E and t ∈ T . Then

ef ◦ t = fe ◦ t
=

(
(t · (f ◦ t))(tf◦t · (e ◦ tf◦t))

)
◦ t using (CP3)

= (t · ((f ◦ t)(e ◦ tf◦t))) ◦ t using (ZS2)
= (f ◦ t)(e ◦ tf◦t) using (CP3)
= (e ◦ tf◦t)(f ◦ t) because E is a semilattice
= (e ◦ (f � t))(f ◦ t).

Hence T ./ E is a Zappa-Szép product with multiplication defined by

(t, e)(u, f) = (tue◦u, (e ◦ u)f)

for all (t, e), (u, f) ∈ T ./ E.

The results in this chapter can be specialised to inverse semigroups but we are looking
for some more concrete examples.
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