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Abstract 
 
This research challenges the existing geodemographics ethos by investigating 

the benefit to be gained from a move away from conventional areal unit 

categorisation to systems capable of classifying at the individual level. This 

research will present a unique framework through which classifications can be 

developed at this level of resolution.     Inherently methodological, a local 

classification for Leeds (UK) will be presented plus further examples of this 

applied framework.  Issues such as ecological fallacy, Modifiable Areal Unit 

Problem and generalisation are aspects to be considered when interpreting 

spatially aggregated data. A move away from such problems is one of the 

central objectives of this research. Data variables from the UK’s 2001 Small 

Area Microdata file underpin this research. These variables undergo 

transformation from categorical states into scale variables based on gross 

monthly income data present in the British Household Panel Survey therefore 

enabling effective clustering. Micro-simulation is then employed to create an 

individual-level population.  

 

The framework presented comprises entirely census variables but also 

demonstrates a linkage capability to other non-census datasets, such as the 

British Household Panel Survey (now Understanding Society), for deeper 

profiling, classification validation and enrichment. 
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Chapter 1: Introduction: 
Research Outline, Justification, 
Aims and Objectives 
 
1.1. Brief Introduction to the Research Project 
 
This research project builds on work undertaken in the past, from early area 

classifications such as Charles Booth's poverty mapping (1889), identified by 

Rothman (1989) as the first form of urban classification, to more recent work in 

the sphere of geodemographics.  Such recent academic work, for example the 

2001 Output Area Classification (Vickers, 2006), and certain private sector 

influences, including the efforts of Acxiom and Experían to classify at the 

household level, have acted as inspiration for this project.   

 
Geodemographics, relative to the notion of area classification, is relatively new 

having surfaced as a technique within the last 40 years (Harris et al., 2005).  

Brown (1990) states how the availability of enumeration district (ED) level data 

in the 1960’s coupled with an interest in quantitative methods through the 

quantitative revolution arguably led to the sudden rise of geodemographics as 

a discriminatory tool, albeit initially only in the private sector.  Brown (1990) 

points to a pragmatic shift in marketing strategy and a movement from mass 

marketing in the 1950’s and 1960’s to niche marketing in the 1970’s as 

another reason for its rise to prominence and hence a need to identify the right 

type of consumer for a given good/service. 

 

With an estimated worth (in 2003) of circa £200 million per annum, the 

benefits to be gained from adopting geodemography are clear and not only to 

business and retail industries.  With geodemographics now adopted across 

industries as diverse as motor insurance and policing, the benefit of knowing 

what people in certain areas ‘look like’ as far as their characteristics are 

concerned is of tangible benefit. 

 

With geodemographics having been firmly rooted in area-based 

methodologies since its inception, this research aims to challenge existing 

methodologies and propose alternative means of classifying populations.  

Geodemography is now used real-time for ‘pay as you drive’ motor insurance 
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through insurers such as Norwich Union (Osborne, 2006) and with novel 

datasets now being incorporated into research, such as Twitter and cell phone 

usage (Day, 2009), there is no reason for geodemographics to move away 

from its dated areal unit foundations.  With the increase in computational 

power and availability of fine-level datasets, this work aims to be one of the 

first academic research projects designed to classify at the level of the person.  

 
It is widely accepted that problems exist in any area-level classification 

scheme, whether geodemographic or otherwise, and these are well 

documented (Fotheringham and Rogerson, 2009; Openshaw 1984; Wong 

1995; Greenland and Robins 1994).  Issues such as ecological fallacy, the 

Modifiable Areal Unit problem (MAUP), and generalisation are three aspects 

to be considered when interpreting any spatially aggregated data.  One 

fundamental purpose of this research is to add value to the notion of modern-

day geodemographics through the creation of a system capable of 

discriminating at the level of the person.  This research aims to prove that any 

system with the ability to classify populations at this finest level of detail will by 

far surpass existing schemes which are primarily confined to areal units.  

 
1.2. Aim 
 
The research adopts one over-arching aim.  This is as follows: 

 
To investigate the benefit of adopting individual-level data in 

geodemographic classification schemes through the creation of a 

framework designed to enhance existing area-based methodologies 

through person-level classification. 

 
1.3. Objectives 
 

In order to fulfil this broad aim, a series of independent objectives has been 

formulated.  These objectives range from positioning this work amongst the 

existing literature to devising a sophisticated framework to enable individual-

level classification.  Rationale for each objective is also included below. 

 

 #1 Conduct a review of the literature pertaining to (1) 

geodemographic classifications and (2) population generation 

techniques.   
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The purpose of this is to investigate not only the evolution and 

application of geodemographics but also the tension between the 

aggregate and the individual.  Alternative (and potentially 

complementary) means of population generation techniques will also 

be explored. 

 

 #2 Present an assessment of common methodologies adopted 

when formulating geodemographic classification schemes.  

This objective is crucial given the research remit of producing a 

framework through which individual-level classification can take place.  

In order to achieve this, existing approaches must be explored and 

means of modifying/adapting such methods considered. 

  

 #3 Formulate a framework through which general-purpose 

individual-level geodemographic classification schemes can be 

generated. 

 Without doubt, a leading output from this research should be a 

 framework through which individual-level classifications can be readily 

 generated.  This framework must be transferable to different regions 

 and provide effective clustering methods based on individual-level 

 datasets. 

 

 #4 Apply the classification framework to two case study locations 

and investigate the performance relative to these. 

In order to determine the robustness and transferability of the 

framework, this will be applied to two areas of differing demographic 

composition to ensure that the framework is able to differentiate 

between individual people-types. 

 

 #5 Facilitate a link from the classification to other social scientific 

datasets for the purpose of validation and enrichment. 

 Over and above individual-level geodemographics, which alone is 

 highly  novel, the ability to append the classification codes to external 

 datasets to allow for wider profiling represents innovation and will be 

 presented as part of this research. 
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1.4. Thesis Structure 
 

This thesis is sub-divided into nine chapters.  Each chapter links to the 

objectives stated in section 1.3 as follows: 

Chapter 1 (this chapter): Introduction: Project Outline, Research 

Justification, Aims and Objectives.  

Chapter 2: Classifications and Geodemographics – From the 

Beginning… 

This chapter presents a comprehensive review of general object 

classifications, area classifications and geodemographics.  It includes 

information on evolution, formulation and applications of the above and hence 

addresses objective #1. 

Chapter 3: Methods for Creating Realistic Synthetic Populations.  

This chapter reviews several methodologies through which synthetic 

populations have been created and validated.  This addresses objective #1. 

Chapter 4: Conventional Geodemographics:  A Dated Approach? 

This chapter provides a detailed look at how common area-based 

geodemographic systems are formulated and considers factors such as 

variable inclusion, cluster methodologies and interpretation.  This chapter (in 

addition to chapter 5) will consider if such approaches are applicable today 

and suitable for finer-level classifications.  This addresses objective #2. 

Chapter 5: Proposing A Framework: From Raw Data to Individual-Level 

Classification. 

This chapter, with reference to general observations made in chapters 2 and 

4, presents a detailed framework through which an individual-level 

geodemographic classification can be created.  A novel approach to 

classification is put forward and one that can be regarded as the first of its kind 

in geodemographic academic research.  This framework is one of the key 

outputs expected from this research.  This chapter addresses objective #3. 
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Chapter 6: Presenting the SAM Individual-Level Classification 

This chapter applies the framework set out in chapter 5 and demonstrates the 

extent to which it is able to differentiate between different people-types and 

cluster individual into homogeneous groups.  This chapter addresses objective 

#4 

Chapter 7:  Linking to Microsimulated and External Datasets 

This chapter extends the application of the framework through facilitating the 

link to both a microsimulated dataset (for complete population modelling and 

to aid visualisation) and other external non-census datasets (for general 

validation and enrichment).  This chapter addresses objectives #4 and #5. 

Chapter 8: Summary, Conclusions and Way Forward 

This chapter completes the thesis by revisiting each of the above listed 

objectives and stating how each have been addressed. By re-visiting the 

objectives, this chapter completes the research circle and reviews the 

framework/outcomes generated.  The relative merits of individual-level 

geodemographics as a discriminative tool are also discussed in addition to 

research limitations, extension opportunities and adopting the framework more 

widely.   
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Chapter 2: Classifications and 
Geodemographics – From the 
Beginning… 
 
2.1. Introduction and Chapter Preface 
 

The concept of geodemographics is relatively new, having risen to prominence 

from simple coarse scale census-based classifications to sophisticated 

address-based systems over the past 40 years (Harris et al., 2005) and 

developed into an endemic resource in both the public and private sectors; 

however, the notion of area classification is more dated and has been around 

since the late nineteenth century. It is the work of Charles Booth (1889), as 

identified by Rothman (1989), which is recognised as being the first form of 

urban area classification.  Since then, area classification has developed at a 

rapid rate progressing from work by Park and Burgess (1925) on Urban 

Ecology in Chicago and climaxing with today’s multimillion pound 

geodemographic systems with an estimated worth of £200 million per annum - 

an increase of almost 90% on 1992 (Sleight, 2003).  Sleight (2003) points to 

the growing number of end-users spending vast amounts of funds on securing 

these data, techniques and software for this swift rise.  Mid-decade estimates 

suggest that the market growth of geodemographics is increasing at a rate of 

circa 10% per annum (ibid).   

This chapter will present a comprehensive review of work in the field of area 

classification schemes and, more specifically, geodemographic systems.  The 

review covers a series of aspects relating to development and evolution and is 

structured as follows; definitions (2.2), history and origins (2.3), construction 

(2.4), applications (2.5), known problems associated with area-based 

classifications (2.6), present-day systems and their purveyors (2.7), system 

ethics (2.8), and recent and future directions, including a move towards 

individual- or household-level systems as the ultimate means of classification 

(2.9).   

 

 



 
Chapter 2: Classifications and Geodemographics - From the Beginning... 

7 
 

2.2. Classifications: Simple, Area and Geodemographic 
 
The starting point of this review is the concept of general classification.  The 

human brain embraces classification on a daily basis.  The following quotation 

emphasises the importance of grouping analogous entities in a bid to improve 

comprehension; 

“An intelligent being cannot treat every object it sees as a unique entity unlike 

anything else in the universe.  It has to put objects in categories so that it may 

apply its hard-won knowledge about similar objects encountered in the past, to 

the object at hand” (Pinkner, 1997, p.1, cited in Everitt et al., 2001). 

Furthermore, Bowker and Star (1999, p.1) state how “to classify is human” 

because “human physical abilities are limited so the amount of information 

provided to us is constrained by our ability to see” (Weinberger, 2007, p.4, 

cited in Singleton, 2007). 

For example, the human brain can, on average, distinguish between up to ten 

million colours through the eye, however, if the number of identifiable colours 

is exceeded, then the brain immediately assigns the colour in view into a 

comparable category; red, blue, green, etc thus making it far easier to process 

(Pointer and Attridge, 1998).  Area classification and geodemographic 

schemes adopt a similar principle – that of simplifying reality.   In 

geodemographics, this is largely achieved through capturing the socio-

economic status of underlying populations through a relatively small number of 

groupings.  In turn, groupings then describe an area’s socioeconomic standing 

or conditions, often on a hierarchical geodemographic scale.  Vickers (2006) 

discusses how this principle is far from new and likens area classifications in 

geography to physical groupings in other fields, for example elements on the 

periodic table being grouped by properties, or animals in a biological sense 

being categorised by physical features; mammals, birds, reptiles etc.  A 

possible difference in geography is the supplementing of such methods with 

areal units in a bid to capture, measure and classify phenomena over space.  

Without geographical classification and this ability to simplify multivariate 

datasets, how could one distinguish between 1.8 million postcodes or 28 

million individual addresses (Withnall, 2014; PAF, 2014)?  In short, this would 

be near impossible and would most likely utilise more brain and computer 

power than deemed efficient. 
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The Dictionary of Human Geography, Fifth Edition (2009), expresses area 

classification as “procedures for combining individual observations into 

categories” and “splitting a population into mutually exclusive categories on 

predetermined criteria” (Gregory et al., 2009, p.89).  More specifically, a 

definition of geodemographics appears for the first time in the Fourth Edition 

(2000), thus highlighting the extent of recent growth and interest in the topic in 

the mid-to late 1980’s, as emphasised by Birkin (1995).  In this instance, 

geodemographics is depicted as “the analysis of social and economic data in 

a geographical context for commercial purposes related to marketing, site 

selection, advertising and sales forecasting” (Johnston et al., 2000, p.297).   

Definitions of geodemographics are quite varied and often open to criticism. 

For example, Birkin and Clarke (1998, p.88) state that “Demography is the 

study of population types and their dynamics therefore geodemographics may 

be labelled as the study of population types and their dynamics as they vary 

by geographical area”. This description emphasises the importance of 

population structure and that fundamentally geodemographics is concerned 

with the analysis of this overlying structure in relation to areal units.  

Debenham (2003) argues, however, that this definition is slightly misleading 

as geodemographics is in no way dynamic given that it is based purely upon 

the characteristics of an area in a single census year (or even day) and is 

therefore completely static in nature.  In many ways, the recent provision of 

lifestyle data acts to lessen this over-reliance on ‘static’ data with such ‘soft’ 

datasets being more readily available and accessible on a more frequent 

basis, thus opening up the opportunity for a more dynamic approach. 

Despite the small disagreements and generally wide-ranging descriptions 

which surround geodemographics, Rothman (1989) provides two indisputable 

premises.  The first premise, which is strongly allied to Tobler’s first law of 

geography (1970), states that the concept is based fundamentally on the fact 

that “two people who live in the same neighbourhood are more likely to have 

similar characteristics than are two people chosen at random” (p.1).  

Secondly, Rothman (1989) discusses how “neighbourhoods can be 

categorised in terms of the characteristics of the population which they 

contain, and two neighbourhoods can be placed in the same category, i.e. can 

contain similar types of people, even though they are widely separated” 

(Rothman, 1989, p.1, cited in Debenham, 2003, p.10). 



 
Chapter 2: Classifications and Geodemographics - From the Beginning... 

9 
 

If a simple and logical definition is sought, Birkin (1995, p.105) best provides 

this; he refers to homeland geodemographics as “a classification of the entire 

UK population according to the type of area in which they live.”  One could 

argue that this reference to geodemographics fuelled Sleight’s (1997, p.16) 

conjecture referring to the concept as; “the analysis of people by where they 

live.”  The latter statement is now regarded as synonymous with 

geodemographics and in many ways has been adopted as the marketing 

techniques’ tagline. 

Birkin (1995) and Harris et al. (2005) both emphasise the broad range of 

indicator variables used in such systems; housing, socioeconomic and 

demographic characteristics, which, when supplemented by geography, 

reaffirm the term and its composition, hence geography plus demography and 

its name of ‘geo-demo-graphics’. 

2.3. Evolution 
 

As stated in section 2.2, area classification has a long history and can be 

dated back to as early as 1889 and the work of Charles Booth, a philanthropist 

and social researcher.  Revolutionary at the time, Booth produced a series of 

coded maps reflecting social class in London with data acquired largely from 

visiting each street in the city (Feardon, 2007).  Spatial units were defined by 

individual streets and these were categorised based on the number of rooms 

occupied per family, estimated family income and level of overcrowding 

(Charles Booth On-line Archive, 2002).  Booth’s primary goal with this 

assessment was to prove that past analyses of London’s poverty position 

were exaggerated.  The Social Democratic Federation (SDF) concluded that 

of London’s total population, circa one quarter were living below the poverty 

line (Hyndman, 1911).  What followed was far from expected.  Assisted by his 

wife, brother and a team of researchers, Booth concluded that in excess of 

30% of London’s residents were living below the poverty line (CSISS, 2009), a 

result which exceeded the SDF’s study by approximately 5%. 

The final classification for Booth’s assessment of London was completed by 

combining the notes made by both himself and his team of researchers with 

information from school board visitors who, over a period of time, visited all 

addresses which housed children of school attending age.  Figure 2.1 

illustrates this final classification for the St Pancras region of Greater London 

together with the seven groupings used to code (or classify) each individual 
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street.  Each grouping is based upon observations made by Booth and his 

researchers and range from the lowest class (black shading) to the most 

affluent (yellow shading).  The classification is therefore hierarchical - a 

structure many of today's leading purveyors also adopt. 

 

 

 

 

 

     

 

 

 

 
In spite of Booth’s seemingly early development of an area classification 

scheme, further notable strides in the field failed to materialise until 1925, this 

 
BLACK: Lowest class. Vicious, semi-criminal. 

 
DARK BLUE: Very poor, casual. Chronic want. 

 LIGHT BLUE: Poor. 18s. to 21s. a week for a moderate family 

 
PURPLE: Mixed. Some comfortable others poor 

 
PINK: Fairly comfortable. Good ordinary earnings. 

 
RED: Middle class. Well-to-do. 

 
YELLOW: Upper-middle and Upper classes. Wealthy. 

Figure 2.1. Charles Booth Online Archive [St. Pancras, London] (2002). 
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time through Park and Burgess and the ‘Chicago School’ and work on urban 

ecology and the development of the concentric zone theory (first published in 

The City (Park and Burgess, 1925)).  This work instigated paradigmatic 

interest among sociologists and geographers alike in determining the 

principles underpinning the spatial and social structure of cities (Harris et al., 

2005).  Ultimately, the work culminated with features of an urban structure / 

system being summarised through a multidimensional classification.  The 

Burgess model, comprising five urban ‘zones’, and the Hoyt model, split by a 

series of wedges extending from the central business district (CBD), were two 

such depictions (ibid).  Figure 2.2 provides pictorial representation of these 

structures - both of which are inherently different and examples of both exist in 

the developed world. 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

Figure 2.2. The 

Burgess and Hoyt 

land use models.  

Top left and right: 

The Burgess model 

[Rees (1970) in 

Berry and Horton 

(1970, p.308)]. 

Left: The Hoyt 

model [Hoyt (1939) 

in Singleton 

(2007)].   
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There was then a further lull of activity until the 1960’s, which was a key period 

in area classification history, most likely fuelled by the increasing availability of 

census data at Enumeration District (ED) level (ibid). Brown (1990) in 

particular argues that the surfacing of geodemographics as a discriminatory 

tool in the private sector corresponded with the availability of ED-level data 

together with a sudden interest in quantitative methods, as part of the 

quantitative revolution.  Brown (1990) specifically highlights the move from 

mass marketing in the 1950’s and 1960’s to ‘niche marketing’ in the 1970’s 

and 1980’s as a key motivator behind the rise of geodemographics.  This 

increased the need to target the right type of consumer due to the more 

sharply segmented makeup of consumer markets (Beaumont and Inglis, 1989, 

cited in Brown, 1990).  Rees (1970) also presents a study of city structures, 

this time in relation to residential and social geographical patterns in Chicago, 

USA.  This work illustrates how both of the city depictions shown in Figure 2.2 

co-exist within Chicago, the city in which the both these models were first 

developed.  

Although Richard Webber is recognised as being the so-called father of 

geodemographics following his development of both the ACORN (1979) and 

Mosaic (1985) systems respectively (Ronson, 2005), a study by Baker et al. in 

1979 proved to be momentous in its rapid rise to prominence.  This work 

found that respondents in different neighbourhood types showed considerably 

different propensities to purchase specific products and services.  The 

research deemed the newly created classification system (in essence, the 

forerunner to ACORN) to be a far more effective discriminator than methods 

previously adopted, for example social class (Baker et al., 1979).  What Baker 

et al. (1979) showed was how a simple neighbourhood classification scheme 

could add very useful segmentation to the target group index. Sleight (1995) 

attributes this work by Baker and his colleagues as being the first 

commercially available geodemographic classification system.  

2.4. Creating a Geodemographic System 
 

The end product of a standard geodemographic system is a simplified 

depiction of reality.  Harris et al. (2005) and Gibson and See (2006) both 

present detailed descriptions of how geodemographic systems are formulated.  

Given that this chapter is fundamentally a review of past work within the field 

of geodemographics, knowledge of the composition and construction of a 
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system is unimportant.  For this reason, this section will not be drawn into 

presenting a stepwise discussion of system formulation and instead acts as a 

signpost to Chapter 4 where a full explanation of how systems are built is 

presented.  Given the cross-cutting nature of this review, mention of how 

systems are built is important hence this section’s inclusion. 

2.5. The Applications of Geodemographics 
 

Geodemographic systems offer highly useful information capable of 

supplementing additional intelligence and pinpointing primary population 

areas.  Classic uses include targeting a specific market, identifying people at 

risk (e.g. from health or crime cases) or identifying areas of affluence and 

deprivation.  This does not mean, however, that a classification is of automatic 

benefit.  The key to making effective use of geodemographics is based upon 

using the classification system for the most relevant applications. 

In terms of previously adopted and broad application areas, CACI (1993) 

(cited in Birkin et al., 2002, p.206) identified nine application areas for its 

flagship ACORN product.  Modern day applications listed by CACI (2003) are 

almost in direct parallel to those given below. 

o Site analysis      

o Sales planning 

o Planning for public services 

o Media buying 

o Database analysis 

o Market research sample frames 

o Direct mail 

o Coding 

o Door-to-door leaflet campaigns 

 
Wallace et al. (1995) discuss how the call for area classification schemes, 

whether geodemographic or otherwise, transpired from a need for an 

uncomplicated and robust indicator of socio-economic information capable of 

contrasting the similarities and differences between small areas.  In many 

ways, the list of application areas given above clearly demonstrates the 

importance and uses of socio-economic area differentiation within the private 

sector.   
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Brown (1990) discusses how the technique can also be used in retail site 

analysis and store location, credit scoring and target marketing, while more 

recently, Sleight (2004) outlines its uses more generally in retail and 

catchment analysis, marketing and media applications and market share 

studies.  With regards to marketing, and in particular direct mailing, as put 

forward as a key application area by CACI, Openshaw (1989) argues the case 

for geodemographics and emphasises how the technique can add intellect to 

direct mailing campaigns through targeting the right kind of consumer.  Even a 

one percent response rate is deemed a success with respect to returned 

surveys and questionnaires so distributing such material to the correct 

segment of the population in the first instance is both time and cost effective 

(ibid).    

Debenham (2003, p.25) discusses the work of Birkin (1995), Clarke (1999) 

and Birkin et al. (2002) and emphasises how links must be made between 

geodemographics and GIS for effective retail analysis and thus effective 

Marketing Management Information Systems (or MMIS).  Clarke (1999) best 

exemplifies this through the use of a grocery retailing example to show how 

the information in a geodemographic classification scheme can be used in 

combination with GIS and retail modelling to find the most profitable site for a 

new supermarket.   

Johnson (1989), cited in Brown (1990), discusses how geodemographics can 

be applied when assessing the most appropriate range of products to be 

offered at different branches of a store and even the most appropriate 

arrangement of products in terms of display and shelving.  Brown (1990) 

emphasises the usefulness of cross-referencing the Target Group Index (TGI) 

with one or more geodemographic systems in a bid to successfully determine 

the propensity of individual household types to consume a particular product 

or service.   

Sleight (2004) presents an array of general retail, media and marketing 

applications of geodemographic systems, including innovative uses by ITV 

and Cable TV in the UK.  Sleight (2004) points to the ability of advertisers to 

broadcast a number of advertisements simultaneously and thus select the 

most appropriate advert for screening at a given household as a pioneering 

use of geodemographics.  Although such systems undoubtedly operate at the 

small-area level, this method provides an efficient technique for differentiating 
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between households most suited to viewing different types of advertisement 

as a means of increasing product sales through intelligence.  Categorising 

households by small-area presents a far more effective discriminator than 

blanketing the entire country under one generalised or averaged perception.  

Despite this so-far effective use of separation through small areal units, some 

authors still believe it to be ineffective (Harris and Longley, 2004; Harris and 

Johnston, 2003).  Harris and Longley (2004) criticise the use of small areas for 

census related applications or any other area-led analysis.  The authors rightly 

argue that such areal units assume uniformity over space and fail to display 

any form of diversity, hence a forced assumption of homogeneity.  Harris and 

Longley (2004) condemn this unavoidable supposition when making use of 

aggregate area-level data.  However, they also introduce the possible 

worthwhile sacrifice of within-area diversity in a bid to enhance generalisation.  

Clearly, any simple depiction of reality through classification must find the 

optimal balance between simplicity of separation of space and diversity.   One 

may argue that the resolution of the system needs to hold some form of 

meaning within the context of its overriding purpose if an area-based system is 

to be deemed fit-for-purpose.  For example, a classification of small areas in 

one sense may refer to neighbourhoods whereas in a totally separate study 

any given small-area may be deemed representative of so-called crime zones.  

It is possible that an assumption of homogeneity within such zones is 

acceptable if the areas are indeed fit-for-purpose with respect to the final 

classification.  Harris and Johnston (2004) discuss how electoral wards are 

often used in the UK as a means of describing the loose definition of 

neighbourhood.  This is an example of a set geography being taken on board 

and ‘made to fit’ a problem, as opposed to vice versa.  This is an example 

where making assumptions about individuals who fall into arbitrary (or easy-fit) 

groupings can lead to problems, thus, an individual-level classification as 

proposed in this research would be one step towards overcoming these 

problems.  Further discussions on problems surrounding areal units and data 

dissemination are presented in Chapter 3 (Methods for Creating Realistic 

Synthetic Populations).        

Vickers (2006) presents a brief synopsis of geodemographic usage and, 

although he reiterates its importance commercially by presenting some of the 

usages detailed above, he also mentions how such classifications are now 

widespread across the public sector and within the academic community and 
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how such systems range from general purpose classifiers to highly specific 

and bespoke systems.  Vickers (2006) points to Rees et al. (1996) as a 

pioneering use of geodemographics within academia.  In this case, Rees and 

colleagues made use of ONS’ classification of districts to contrast rates of 

internal migration in the UK.  With regards to public sector usage, Vickers 

(2006) lists a series of examples ranging from public health and crime to 

education.  Abbas et al. (2009) emphasise how geodemographics is becoming 

increasingly recognised within the field of health, largely due to its capabilities 

of differentiation; 

“Evidence has shown that different neighbourhood types are characterized by 

varying types and levels of deprivation. Accordingly, the ‘one size fits all’ 

approach will not work in public policy making.  Policy makers are increasingly 

concerned with effective delivery of workable results at the local level. This 

can only be realized by appropriating differentiation strategies such that 

resources can be allocated effectively” (Abbas et al., 2009, p.35).  

Furthermore, Ashby and Longley (2005) also discuss how geodemographics 

can be effectively employed within the public sector, and specifically within 

policing, to assist attempts to ensure an equitable deployment of resources 

across police units.  In this instance, a general purpose classification, albeit 

tailored to suit, by far surpasses alternative methods adopted by other 

authorities.  Crime is just one area for the deployment of geodemographics on 

a public sector scale and Shepherd (2006) illustrates this through the 

development of a neighbourhood profiler and classification for use in 

community safety.  Longley (2005) also provides further examples 

In spite of the apparent intellect that geodemographic area classification 

schemes undoubtedly offer, this tool also has some fundamental flaws. 

2.6. Problems Surrounding Area-Based Classifications 
 

Making use of any area classification scheme, whether this be 

geodemographics, the index of multiple deprivation or any other categorisation 

which requires continuous space to be subdivided into a series of arbitrary 

features,  presents problems which can often go unnoticed.  Such problems 

include differences in observed patterns when mapping at different spatial 

scales or using different units (Modifiable Areal Unit Problem (MAUP)), basing 

assumptions about individuals on aggregate data (ecological fallacy) and 
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common generalisation.  Elaborations on such problems common in the 

analysis of any spatial aggregate data are presented in sections 2.6.1 to 2.6.3.  

Further problems identified by fuzzy geodemographics (both geographical and 

in attribute space) are discussed in Section 2.9. 

2.6.1. The Modifiable Areal Unit Problem 
 
The Modifiable Areal Unit Problem (or MAUP) was coined by Openshaw and 

Taylor (1979) through the assessment of correlation coefficients and, in 

particular, how these values can change when smaller areal units are 

aggregated to form larger areal units, either hierarchically or otherwise.  The 

conclusion reached was that the coefficient can carry a range of values over 

different levels of spatial aggregation.  Thus fundamentally, the MAUP lies 

with the division of artificial or ad hoc boundaries which are used to divide 

continuous space.  Ultimately, when boundaries are drawn to demarcate 

space, analyses of data tabulated according to different boundaries may 

provide very different results (Fotheringham and Rogerson, 2009).  For the 

purpose of this review, the concept of MAUP need only be recognised given 

the use of varying areal units within modern day geodemographic ‘area’ 

classifications (output areas, postcodes etc).  Comprehensive reviews of the 

problem, including thorough discussions on the zoning and scale effects, have 

been written by Openshaw (1984), Wong (1995), and, more recently, 

Fotheringham and Rogerson (2009).        

2.6.2. Ecological Fallacy 
 

The ecological fallacy is concerned with the false assumption that 

relationships observed for groups also hold for individuals.  Thus, any analysis 

conducted at area level using aggregate statistics cannot be assumed to apply 

to the individual level without due consideration.  For example, if an area in 

Belfast has a majority Protestant population, this does not mean that all 

individuals are Protestants (Freedman, 2001).  Such an inference may prove 

correct but is only weakly supported by aggregate-level data (ibid).  Greenland 

and Robins (1994) present a broad review of this aggregate versus individual 

inference problem and Openshaw (1984) presents a very detailed review of 

how this concept applies to the collection and dissemination of census data in 

the UK. 
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More recently, Singleton (2004) states how the ecological fallacy is a general 

caveat to the use of geodemographic systems.  He discusses how 

geodemographic systems naturally fall foul of ecological fallacy through the 

prediction of individual behaviour from variables pertaining to areal 

aggregations.  Tranmer and Steel (1998) argue that these aggregation effects 

take place because individuals who live in close proximity to one another tend 

to exhibit similar characteristics (hence area homogeneity and a notion in 

geodemographics that "birds of a feather flock together" (Nelson, 2003, p.1)).  

Arguably, however, the strength of this association depends on the precise 

area of aggregation being examined (Martin, 1991). 

 
2.6.3. Misrepresentation in a Classification 
 

It is inevitable when clustering data into homogeneous groups that some 

areas will fit the cluster description far better than others.  This is something 

unavoidable in geodemographics, and is a clear example of where cluster 

labels may not portray an area’s correct image.  Furthermore, Birkin (1995) 

provides two examples where cluster labels are not always indicative of 

continuous populations.  For the ‘SuperProfiles Lifestyle’ classification, Birkin 

points to clusters labelled “Young Married Suburbia” and “Metro Singles” and 

emphasises how these names are more than slightly misleading.  For the 

former cluster, this grouping in fact accounts for over one quarter of the 

population whose age is 45 plus.  Meanwhile, for the latter named cluster, this 

category encompasses only 21% of single workers – rather misleading when 

you consider the cluster label contains the words “metro” and “single”.  The 

potential error with regards to targeting the wrong type of consumer is 

substantial and is in many ways fuelled by a desire to pursue traditional 

classification methods in standard geodemographic systems.  Chapter 4 

provides further evidence of this inaccuracy within conventional area-based 

geodemographics.           

All of the above issues could be improved upon by implementing a 

geodemographic classification that classifies at the individual / household level 

as opposed to an areal unit.  A classification of this nature would (1) alleviate 

problems surrounding MAUP as the spatial scale in use would most likely be 

as fine as is achievable, (2) reduce the need to generalise and infer 

characteristics about persons based on their neighbours (hence, ecological 

fallacy) and, (3) enable cluster labels to be far more accurate in describing 
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what would be individuals as opposed to collections of people with vaguely 

similar traits.  

One point to bear in mind, however, is the importance of neighbourhood. 

Drilling down to the lowest geography (or person / household) is not always 

the optimal solution as emphasised by Harrop and Heath (1991).  In this 

article, the authors discovered how voting behaviour was impacted upon by 

locality – and how this had a far greater bearing on behaviour than household. 

This implies that that the purpose to which such a proposed individual-based 

classification is applied must be carefully considered. 

2.7. Today’s Systems and Their Purveyors 
 

The ACORN and Mosaic systems, as developed by Webber during his time at 

now-named CACI and Experían, are just two of the geodemographic 

classifications available commercially today.  According to Birkin (1995), these 

two systems remain the most important tools for planning and business in the 

UK.   

As with most current systems, CACI’s ACORN and Experían’s Mosaic 

systems follow a hierarchical structure.  ACORN operates with six categories, 

seventeen groups and fifty-six types (CACI, 2003) whereas Experían’s Mosaic 

functions with 11 groups, 61 types and 243 segments (Experían, 2007).  The 

similarities, however, lie in the vast array of consumer variables used for 

classification; ACORN alone uses over 125 demographic statistics and 257 

lifestyle variables (CACI, 2003).  It is the more recent adoption of lifestyle 

variables that has revolutionised geodemographics and lessened its over-

reliance on census, and hence more static, data.   

The following four subsections provide more information on individual 

schemes and in particular detail three leading commercial and one academic 

geodemographic classification system.   It is important to note that each of the 

systems adopt ‘crisp technology’ thus allowing for a one-to-one mapping of 

areas to cluster types with no overlap or exception (Birkin et al., 2002).   

An additional point should also be raised prior to presenting the following 

product descriptions.  Such is the nature of private sector geodemographics 

(thus, three of the four systems which follow) and the lack of methodological 

transparency which surrounds these systems, any second-hand explanations 

can only be as detailed as the information available in the public domain.  
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Unfortunately, an inability to penetrate this secrecy prohibits detailed 

descriptions of the data, methodologies and processes which surround 

ACORN, Cameo and Mosaic.  The OAC, on the other hand, is of complete 

contrast with fully accessible documentation available given its total 

transparency.  Arguably, only the Output Area Classification (OAC) passes the 

test of scientific rigour for this reason.   

2.7.1.  ACORN (CACI) 
 

The name ACORN is an acronym for the description “A Classification Of 

Residential Neighbourhoods.” CACI Online (2003) defines the ACORN system 

as “…the leading geodemographic tool used to identify and understand the UK 

population and the demand for products and services.” 

ACORN was first developed in 1979 as CACI moved from its ‘SITE’ census 

analysis system on a bureau basis to the more up-to-date ACORN 

classification system.  ACORN is still regarded as the company’s flagship 

product over thirty years hence and is now in its fourth version (Sleight, 2003). 

The 2001 system operates at postcode level, having previously functioned at 

enumeration district then output area level during its embryonic stages.  The 

system currently combines six categories, seventeen groups and fifty-six types 

to form a postcode level area classification.  The system classifies all 2.1 

million UK postcodes into categories, groups and types using in excess of 125 

demographic variables and 287 lifestyle indicators across the UK (CACI, 

2003). This classification thus encompasses each of the UK’s 28 million 

addresses, albeit based on an area-level classification.  Until 2000, ACORN 

was purely a census-based classification tool and it was not until after this 

period that lifestyle and market research data were added to enrich the 

classification.  At present, census, income, house price, shareholdings, 

lifestyle surveys, electoral roll, PAF and neighbourhood statistics are all 

employed in the classification process (Sleight, 2003). CACI’s classification 

procedure is two-fold; firstly census output areas are clustered before 

postcode level data are added at stage two with data not matching the OA 

classification being reassigned using a complex best-fit algorithm (ibid).   

The three-tier hierarchical nature of the ACORN system means that the most 

affluent population groups are generally categorised in the upper reaches of 

the classification, for example ‘Wealthy Achievers’ being the top category, with 
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this then scaling down to those less prosperous groups, such as ‘Moderate 

Means’ and ‘Hard Pressed’.  This makes for an easily understandable and 

interpretable system for businesses, planning practitioners, and any further 

persons looking to embrace this marketing product. 

The success of the general-purpose ACORN system in particular and the 

continued uptake of geodemographics commercially led CACI to develop 

more specialised products; Financial ACORN and Health ACORN.  These 

new products now sit firmly alongside the company’s flagship classification 

and highlight the ever-growing demand for products capable of differentiating 

consumers and, as a result, enabling effective consumer targeting. 

2.7.2. CAMEO (EuroDirect) 
 

The CAMEO system (previously named Neighbours & Prospects) is described 

by EuroDirect (2006) as “A hugely powerful and well-established consumer 

geodemographic classification developed for the analysis and targeting of UK 

consumers.”  Previous versions of the CAMEO system adopted purely 

census-based variables but more recent versions have spanned out to 

incorporate a wide range of consumer and lifestyle variables.  Current 

datasets inputted into the classification include consumer credit data (in 

conjunction with sister organisation, Callcredit), Household Council Tax Band 

and Property Valuation Data and individual shareholder data.  Such datasets, 

EuroDirect (2006) argue, introduces the wealth aspect not covered by the 

Census.  EuroDirect (2006) also claim that the fusion of individual and 

household-level data enables a methodical differentiation of UK postcodes 

(ibid). 

The system classifies small areas based what it calls “ten key marketing 

groups” (ibid) and fifty-seven neighbourhood types and is an example of a 

two-tier non-hierarchical scheme.  

2.7.3. Mosaic (Experían) 
 

Experían Online (2007) advertise the Mosaic system as a product that 

“provides decision makers with the tools and services they need to 

successfully implement micromarketing strategies within their business.”  The 

latest system, Mosaic UK, is Experían’s most advanced Mosaic area 

classification tool that covers the whole of the United Kingdom.  It is 
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Experían’s third British version and builds on the first Mosaic as launched in 

1986 under the influence of Webber (Sleight, 2003). 

The system cuts the population into 11 groups and 61 types and is thus 

another two-tier classification system.  A key principle regarding the Mosaic 

system is that it operates at both household and postcode level (ibid). 

The system comprises 400 data variables, 54% from the 2001 census and the 

remaining 46% derived directly from Experían’s consumer segmentation 

database providing data on all of the UK’s 46 million adult residents and 23 

million households (Experían, 2007).  Additional datasets incorporated into the 

classification include house price and tax information, ONS local area 

statistics and the edited electoral roll. With the exception of the 2001 census 

data, Experían endeavours to update all its data annually to maintain an 

advanced classification scheme (ibid). The company’s classification 

development methods are given added value through links to the TGI, the 

British Crime Survey, MORI Financial Research and Forrester 

Technographics & Internet User Monitor (Sleight, 2003). 

The system categorises postcodes into groupings from “Symbols of Success” 

to “Rural isolation” and unlike ACORN the categories do not appear to fall into 

a hierarchical pyramid of affluence but are juxtaposed together.  Experían 

adopted a ‘bottom up’ approach to clustering, beginning with collating 

residents and household-level data before combining those datasets with 

higher levels of geography, namely postcode and output areas to form the 

classification (ibid).   

Mosaic is the only member of the leading group of systems thus far to attempt 

household-level classifications and therefore the functioning at this level is a 

key differentiator between Mosaic and its rivals.  In a recent brochure, 

Experían (2009) discuss how 62% of the information used to build the Mosaic 

UK system was sourced from privacy-compliant datasets.  The leading dataset 

referred to is Experían's own Consumer Dynamics Database which is 

formulated based on a range of datasets including personally completed 

surveys and externally purchased information such as house sale prices.  This 

move towards household-level classification is very much in its infancy in the 

commercial sector. 
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Mosaic’s classification at the household-level appears to have advanced 

further in the Netherlands with a 'Mosaic Household' brochure now available 

(Experían Netherlands, 2013).  This classification segments households into 

one of forty-four types (across ten groups) and was built under the guidance of 

Professor Richard Webber from University College London.  The classification 

comprises household types such as 'Conservative Students', 'Homes for the 

Elderly' and 'Young in Apartments'.  The UK-version comprises ten leading 

groups and is evolving with Warwickshire local authority currently making use 

of the system (Warwickshire Observatory, 2011). 

2.7.4. Output Area Classification (ONS) 
 

The Output Area Classification (OAC) is a non-commercial geodemographic 

classification scheme which categorises at output area level.  Initially ninety-

one census variables were selected to comprise the scheme but this was later 

reduced to forty-one through rejection and merging of indicator variables 

(Rees et al., 2005).  The input variables used span demographic, household, 

socio-economic and employment data and create 9,145,460 individual data 

points (ibid).  The final classification encompasses seven super groups, 

twenty-one standard groups and fifty-two subgroups all based purely on 

census data.  The difference with this system is that the third-level of 

classification is not named (or given a pen-portrait description).  It was claimed 

that the time and effort needed for this process was not justified (Vickers & 

Rees, 2006).  The scheme employs census data only and differs from more 

commercially dominated systems both in terms of its output level and a lack of 

‘soft’ variables which strongly relate to lifestyle / wealth.  GB Profiles is another 

example of a similar public sector geodemographic classification scheme. 

2.7.5. Other Systems 
 

Smaller companies, such as Beacon Dodsworth and Claritas, have also 

developed areal unit segmentation systems such as the P2 People & Places 

Scheme and SuperProfiles respectively, the latter now discontinued.  The P2 

system adopts 14 Trees, subdivided into 41 Branches, with a lower level made 

up of 157 Leaves and again follows the standard structure for hierarchical 

geodemographic segmentation (Beacon Dodsworth, 2007).  

Other companies with post-2001 geodemographic systems include; AFD 

Software Ltd., Allegram Ltd., The Clockworks, Claritas (with PRIZM), MapInfo 
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Predictive Analytics (previously GeoBusiness Solutions Ltd, now rebranded as 

Pitney Bowes), Intermediary Systems Ltd. and Streetwise Analytics Ltd. 

(Sleight, 2003).  Acxiom have also developed the PersonicX system and this 

will be further discussed in section 2.9. 

Table 2.1 provides a summary of the four leading geodemographic systems 

currently available. 

 

System 
Purveyor 

Divisions Variables Finest Level 

of Operation 
Tier 1 Tier 2 Tier 3 Census Other 

ACORN CACI 5 17 56 120 280 Unit 

Postcode 

CAMEO 

UK 

EuroDirect 10 57 - 116 (Census to 

Other variable 

ratio unknown) 

Unit 

Postcode 

Mosaic 

UK 

Experían 11 61 - 216 184 Unit 

Postcode 

OAC ONS 7 21 52 41 - Output Area 

Table 2.1. Overview of four leading geodemographic systems (CACI, 2003; 
EuroDirect, 2006; Experían, 2007; Rees et al., 2005). 

Table 2.1 clearly illustrates the differences between each of the four systems.  

Although inherently business tools, ACORN, Cameo UK and Mosaic UK are 

widely embraced in other sectors, such as local government and public sector 

planning (Birmingham City Council, 2010).  Although very little research has 

been undertaken contrasting the effectiveness of each system, Brown (1990), 

Leventhal (1995) and Voas and Williamson (2000) do provide some 

assessment of systems available at the times of writing but fail to conclude on 

any obvious superiority.  Leventhal (1995), in particular, states that “…no 

single classification outperformed all others and that the differences between 

them were generally small” (p.8).  It therefore fails to be proven if a higher 

number of clusters, greater number of variables or mix between census and 

behavioural inputs lead to more discriminative systems. 

 

As can be seen in Table 2.1, each of the leading systems widely embraced 

today segment the population based on aggregate data and hence into distinct 

geographical areas (such as output areas).  The exception is in the case of 

postcode classifications albeit with uses almost exclusively for business 
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applications.  This doctoral research will extend such methodologies such that 

individual-level classifications are possible and, given the transparent 

framework that will emerge, application-areas beyond the business sector can 

benefit. 

 
2.8. Issues Pertaining to Privacy and Ethics 
 
The purveyors of geodemographic systems claim that "if you're trying to find a 

person with particular attributes, we can point you to his doorbell" (Hill [CEO 

Experían], 1990, cited in Roberts, 1992, p.26), and that, if you "tell me 

someone's zip code ... I can predict what they eat, drink, drive or even think" 

(Robin, 1980, cited in Weiss, 1988, p.1).  Understandably, such suggestions 

have fuelled the imagination of various companies with the need to target 

consumers and although this has propelled the geodemographic industry to its 

standpoint today, one may point to matters of privacy and ethics.  

  

It is often the case that when devising any form of classification, whether this 

be of areas, households or individuals, there is the assumption that reality can 

be precisely portrayed by the typologies which describe such areas or 

individuals.  Singleton (2007) points to the dangers that such assumptions can 

bring, particularly when adopting geodemographics in the public sector where 

the application of such a technique may directly impact upon the life chances 

of those classified – either accurately or otherwise.  Although Singleton fails to 

mention any areas within the public sector where geodemographics has 

resulted in disadvantage, education, health and crime are potential areas of 

worry.  It is also foreseeable that life chances may also be affected by the use 

of area-level geodemographics within the private sector, perhaps most notably 

through house prices and the classification of so-called ‘desirable’ and ‘less 

desirable’ residential neighbourhoods.  Other private sector dominated life 

chances include insurance (house or car), life assurance and eligibility to bank 

accounts/loans, etc (Vickers, 2006).  With respect to the latter, Levene (1999) 

writes how an unnamed bank stipulated that customers from ‘less desirable’ 

postcodes needed to source and deposit larger initial sums of money when 

first opening a bank account when compared to customers from a preferable 

geodemographic group.  Sui (1998) discusses how such classifications can 

cause harm, particularly when the social position of a researcher or system 

purveyor is totally independent from the research he/she generates.  Singleton 

(2007) embraces this statement and implies that data-led empirical 
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investigations, such as geodemographics, may not always be adequate when 

attempting to represent complex and highly dynamic real world social 

processes. 

When you consider statements such as the following two, it is no surprise that 

geodemographic classification schemes are criticised for their ethical 

functioning: 

 
[1] “We and a couple of hundred other companies are going to appropriate 

your name, match it, store it, rent it, swap it; we'll evaluate your 

geodemographic profile, determine your ethnic heritage, calculate your 

propensity to consume.  We'll track you the rest of your consuming life, pitch 

you baby toys when you're pregnant, condos when you're fifty. In return for the 

use of your name, we won't pay you a penny.” (Larson, 1992, cited in Goss 

1995, p.178). 

 
[2] “Using caller ID to call up a postcode, company call centres can move 

you to the front of a queue if they think you are more likely to buy their goods, 

divert your call to a call centre in India, or let you hang on if you are likely to 

sap their profits.” (Highfield and Fleming, 2007). 

 
It is surprising that no regulatory body exists within this area capable of 

monitoring geodemographics, both in terms of composition and application, to 

ensure that it operates within the bounds of ethical principles.  

  
Goss (1995) is one strong critic of geodemographics, largely on two fronts.  

Firstly, he states that it is often the case that simple misspecification in a 

database can unconsciously discriminate even if the use of the data are 

legitimate in lawful terms.  Goss’ (2005) second privacy concern, and perhaps 

the one which holds most weight when data collection is considered, concerns 

data being fit for purpose.  He states how it is often the case in 

geodemographics that data collected for one purpose are then re-used for 

another without the permission of the data subject.  Singleton (2007) 

elaborates on this and discusses how “off the shelf” systems are formulated 

using only legally available data.  However, Goss’ (2005) second concern only 

transpires when such systems append to external data sources.  This issue of 

data matching is also a problem flagged by Curry (1997).   

 



 
Chapter 2: Classifications and Geodemographics - From the Beginning... 

27 
 

2.9. Innovations in Geodemographics 
 

Before exploring the possible future of geodemographics, it would be sensible 

to assess any key innovations to have taken place since the inception of the 

technique in 1979.  Arguably, the primary shift in emphasis arrived courtesy of 

Openshaw (1989) and his suggested movement from Boolean to fuzzy 

geodemographic clustering.  In short, fuzziness is concerned with uncertainly 

which transpires from imprecision and ambiguity and, within 

geodemographics, there are two different types (Feng and Flowerdew, 1998).  

The first kind of fuzziness is in attribute space and this refers to small areas 

being classified within one grouping but residing very closely within the 

taxonomic space to one or more others (ibid).  An example is one area, say an 

output area, having only marginally different characteristics to one another but 

being categorised into a very different cluster based on the simplicity of the 

algorithm and a Boolean approach to clustering. 

 

The second form of fuzziness relates to geographical fuzziness, and this can 

be further split into two types.  The first is concerned with linking postcodes to 

census geographies.  This linkage problem arises from different causes and 

results in the associated error that incorrect postcodes are included and 

correct postcodes excluded from a cluster (Openshaw, 1989 cited in Feng and 

Flowerdew, 1998).  Perhaps more importantly in fuzzy terms, the second form 

of geographical fuzziness is that of the neighbourhood effect.  Given that 

census or postal geography boundaries are by no means an accurate 

disaggregation of populations based on socioeconomic conditions, as 

emphasised by Morphet (1993), one may argue that residents from a 

neighbouring area to that formally classified are rather likely to possess the 

same (or similar) lifestyle traits to residents classified in the target area (Feng 

and Flowerdew, 1998).  Openshaw (1989) stresses how, based on Boolean 

geodemographics, such neighbourhood effects are simply overlooked.  

 

Considering the above notion of fuzziness, it can be argued that 

geodemographics has seen two phases in its development to date, that of 

conventional Boolean area-level geodemographics as we know it and that of 

fuzzy geodemographics.  This research seeks to take geodemographics into 

its third development phase and ensures that many of the issues discussed in 

previous sections are considered.   
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There has been much written on the projected path of geodemographics into 

the future, including work by Debenham (2003) on integrating more supply-

side variables and Singleton and Longley’s (2009) research into more 

innovative geodemographic visualisation techniques and real-time or on-the-

fly type systems – the latter of which has already been trialled (and recently 

discontinued) through ‘pay as you drive’ car insurance by Norwich Union 

(Osborne, 2006).  However, in many ways the definitive level classification will 

be one capable of operating at the finest resolution, that of the household or, 

ultimately, the individual.     

   

The idea of classifying households is not a new one.  Both Claritas and 

Acxiom have developed and utilised systems capable of classifying individual 

households, and, at present, this remains the most extreme level of 

geodemographic disaggregation.  The two systems, PRIZM Household and 

PersonicX respectively, are described in more details in the sections that 

follow.  Again, however, all descriptions are based only on information the 

vendors are happy for the customer to be made aware of – often via enticing 

brochures or advertising literature.   

 
2.9.1. PersonicX Household (v2.1) 
 

PersonicX Household version 2.1 is a consumer segmentation system that 

classifies each UK household into one of one hundred and fifty micro-clusters 

and then fifty-two PersonicX clusters (Acxiom, 2009).  The system, initially 

proposed in 2004, comprises in excess of five hundred variables collected 

from twenty-five million households which in turn feed into the clustering 

algorithm and develop each of the cluster types, for example: Just Retired, 

High Flying Solos, Rich Returner's etc (ibid).  Variables are largely behaviour 

orientated and include; hobbies, car ownership, internet usage, credit card 

usage, TV, education, financial products, newspaper readership, grocery 

shopping, residence type, mobile phone usage, charity donations etc (ibid).   

 

What Acxiom omits from their marketing material is that a large proportion of 

the data which are input into the system is in fact modelled or simulated.  The 

exact proportion is unknown.  However, estimates suggest that as much as 

30% of the variables are modelled so as to ensure 100% coverage 

(Bradbrook, 2009).  The remaining 70% comes as a result of the many 
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questionnaires issued by the marketing company at various intervals per year.  

This idea of simulation is discussed by Farr and Webber (2001) with respect to 

the division of an individual-level classification.  

 

A brief methodology of how the system is constructed, together with detailed 

cluster descriptions and illustrations, can be found in Acxiom (2009).   

 
2.9.2. PRIZM Household 
 

Information on Claritas’ PRIZM Household system is far less available than 

Acxiom’s equivalent, perhaps largely due to its dated nature.  However, 

standard non-methodological information is available publicly.  Similar to all 

other types of geodemographic classification, the PRIZM system divided the 

population (in this case, households) in to a series of segments.  The PRIZM 

classification operates with sixty-six “demographically and behaviourally 

distinct types” in a bid to aid marketers discern those consumers’ likes, 

dislikes, lifestyles, purchase behaviours and media partiality (Neilson, 2005).  

The clusters, arranged hierarchically by estimated household income, range 

from type 1; Blue Blood Estates (income: ~ US$113,000) through to the final 

type; Southside City (income: ~ US$15,800) (Weiss, 2000).  

 
2.10. Why the Individual? 
 

Based on the review of existing geodemographic systems (as summarised in 

Table 2.1), it is clear that the majority of existing systems are based on areal 

units. Moreover, those that are based on postcodes have generally been 

classified at the area level initially and the postcode level classification has 

been modelled based on further individual-based data. The innovations of the 

Axciom and PersonicX systems represent a step forward towards smaller 

scale classifications, namely at the level of the household.  Nevertheless, 

present-day systems typically fall foul of the following issues: ecological 

fallacy, the Modifiable Areal Unit Problem (MAUP) and generalisation as 

discussed in section 2.6.  In this research, the focus is on constructing a 

classification at the individual level making use of microsimulation with 

sample-based data from the census to start at the level of the individual.  This 

research represents the first attempt at such a classification in the academic 

literature and hence the thesis will propose a framework for further exploration 

and extension. 



 
Chapter 2: Classifications and Geodemographics - From the Beginning... 

30 
 

Given that a classification at this finest of levels has never been attempted 

before, robust methodologies do not exist in the same way as for area-level 

schemes.   However, Farr and Webber (2001) discuss three possible 

alternatives for generating an individual-level population capable of 

classification.  Full details of this and other means of synthesising populations 

can be found in Chapter 3. 

 

One reason for producing an individual-level classification over a system 

output at a larger spatial unit is that it has far less scope for error or 

misinterpretation, as noted previously with reference to ecological fallacy, 

MAUP and generalisation.  Consider the two following fundamental points as 

described previously: 

 
 Modifiable Areal Unit Problem:  A classification output at the level 

of the person is disaggregated down to its finest level thus negating 

the possibility of changing spatial patterns when viewed at differing 

scales.  The presentation of a classification at this scale is predicted 

to nullify the needs to view the classification through any alternative 

means of aggregation and reduce the generalisation of more 

conventional systems operating at higher spatial resolutions.  

 
 Ecological Fallacy: In conventional geodemographics there is the 

erroneous assumption that patterns observed for a body of people 

collected together in a specified spatial unit are also directly 

applicable to the individuals, for example everyone in a “Young 

Married Suburbia” area is deemed to be young and married.  Due to 

generalisation which inevitably transpires when classifying through 

areal units, such assumptions are unavoidable.  One may argue that 

ecological fallacy even exists, albeit to a lesser degree, in Axiom and 

Claritas’ products if a household contains more than one resident.  A 

classification at the level of the person would supersede previous 

classifications and improve the longstanding notion of ecological 

fallacy within geodemographics by providing a classification to the 

most detailed of levels.      

 
Another interesting issue that can be addressed is the static nature of 

geodemographic systems and their incompatibility.  This incompatibility is 

caused primarily by changing zonal systems over time.  By developing 
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synthetic populations for the specified time periods (or obtaining suitable SAM 

samples),  individual-level classifications can be built and assessed to 

compare changes in the populations, neighbourhoods and key demographics 

(such as affluence and deprivation) which have taken place across census 

periods. 

 
2.11. Summary and Conclusions 
 

This chapter has presented a detailed overview of both area classification and 

latterly geodemography.  Information on history and early beginnings, 

evolution, a taster on system formulation, specific problems linked to area-

based classifications, many of which this research aims to overcome, 

applications, current leading systems, ethical considerations and possible 

future directions for the discipline.  The latter point of crucial importance given 

the focus of this research and hence a move towards person-based 

classification.  Furthermore, given the deep-rooted foundations of 

geodemographics in area-based classification theory and little evolution in the 

recent past, an increase in computational power means such methods can be 

challenged.  Examples of this computational power are shown in chapter 3 

where methods for generating synthetic populations are discussed.  Such 

population data being of paramount importance if an individual-level 

classification is to be developed.  

 



 
Chapter 3: Methods for Creating Realistic Synthetic Populations 

32 
 

Chapter 3: Methods for Creating 
Realistic Synthetic Populations 
 
3.1. Introduction and Chapter Preface 
 

As discussed in Chapter 1, the purpose of this research is to overcome the 

spatial and generalisation issues surrounding geodemographic classifications 

constructed using aggregate or area-level data.  Ecological fallacy, MAUP, 

misrepresentation, and erroneous or misleading cluster labelling are 

fundamental problems which are largely unavoidable when producing area 

portraits based on collective data.  Given the general lack of data available at 

the person-level of nationwide coverage, previous analyses have been 

restricted and have often succumbed to the aforementioned  problems.   

The main focus of this chapter is to explore a series of methods for population 

synthesis, in particular; deterministic reweighting (Smith et al., 2009), 

conditional probability (or Monte Carlo simulation) (Birkin and Clarke, 1988; 

1989) and simulated annealing (or combinatorial optimisation) (Openshaw and 

Rao, 1995; Williamson et al., 1998; Voas and Williamson 2000; 2001).  

Consequently, this chapter is structured as follows: introduction (3.2), 

synthetic versus aggregate data critique (3.3), discussion of the various 

population synthesis algorithms (3.4), an overview of synthetic data 

applications (3.5), a more specific illustrative discussion on making use of 

individual data within geodemographics (3.6), and how this relates to the 

research undertaken here (3.7).  

3.2. Overview of Population Generation Techniques 
 

The use of population generation techniques have seen a rapid rise in recent 

years with many applications now requiring realistic individual-level data or 

complete synthetic populations.  This trend can be attributed to a number of 

factors including: an increase in computational power and storage, a wealth of 

individual-level data of acceptable geographical coverage (for example, the 

British Household Panel Survey or Understanding Society as it is now known) 

and the appearance of new computational paradigms, such as cellular 

automata and agent-based modelling (Harland et al., 2009a). 
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Static (as opposed to dynamic) spatial microsimulation produces a synthetic 

population (i.e. a population built from true but anonymous data at the person-

level) which accurately portrays the observed ground population in a certain 

geographical zone for a given collection of criteria, for example: sex, age, 

social economic position, etc.  Uses of such synthetic data are very wide-

ranging and span research/policy areas from health (Smith et al., 2009; 

Tomintz and Clarke, 2008) to water demand (Williamson et al., 1996).  Smith 

et al. (2009) also list taxation, child benefit policy, crime and education as past 

areas of research with respect to population synthesis.  A fuller review of 

diverse application areas can be found in Ballas and Clarke (2008) and Ballas 

et al. (2005) and in section 3.5 in this Chapter.   

3.3. Synthetic versus Aggregate Data 
 

Synthesised data by far surpasses the aggregate-level equivalent available 

primarily from the Census.  Sources such as CASWEB (2001), InFuse (2011) 

and Neighbourhood Statistics [courtesy of ONS] (2001) enable the free 

downloading of area-level datasets.  CASWEB (2001) has recently opened its 

services to all whereas InFuse (2011) remains restricted to academic users 

only.  Such datasets provide statistics similar to those given in Figure 3.1 

(note: such statistics are for illustrative purposes only and do not reflect the 

ground situation in any given output area). 

 
Output Area: Example001 

Total Population: 325 

Males: 200 Females: 125 

Age 0-4: 22  Age 5-9: 35  Age 10-15: 21  Age 16-19: 43  Age 20-24: 32 … 

Single: 158  Married: 100  Widowed/Divorced: 67 

White British: 290  White Irish: 4  Other White: 1  Indian: 10  Pakistani: 6 

… 

Figure 3.1. Example of aggregate-level statistics available from online sources. 

 
As can be seen from Figure 3.1, such statistics can provide informative 

results, for example in this area there is a 200:125 male-female ratio and a 

population which is single dominated.  Furthermore, and despite authorities’ 

efforts to manage output area populations for reasons of confidentiality, 
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percentages can be calculated given a total population statistic, i.e. 61.5% 

males, 38.5% females, or a total single population of 48.6%.  Such figures can 

assist marketers and business planners to target the correct type of consumer 

with respect to a given product/service if presented at the small-area level.  A 

plethora of high quality research has also been undertaken making use of data 

disseminated at this level (see; Longley and Batty, 2002; Stillwell and Clarke, 

2004 as examples).  However, one might argue that that is where the 

usefulness ends.  Although the census clearly collects data at the level of the 

individual (hence completing a household form with individual/household-level 

data), confidentiality prohibits its distribution at this level and instead 

geographical zones are used as a means of release.  Consequently, as the 

resolution of a census area become coarser (e.g. output area to lower super 

output area) and the risk of data disclosure diminishes, the availability of 

attributes increases (Harland et al., 2009a).   

Aggregate area-level data such as that shown in Figure 3.1 are very abstract 

and provide only an overview of the ground situation in any given census area.  

There is also an assumption of uniformity over space.  Based on the data 

available from the census or that provided in Figure 3.1, it is not possible to 

determine the total number of single males within a given area or the number 

of married persons aged 20-24 without requesting commissioned cross-

tabulations of variables.  Observations such as these can only be generated 

through synthetic (estimated) populations whereby each individual is assigned 

a series of personal traits through simulation.  Table 3.1 presents an example 

and makes use of the same illustrative output area as in Figure 3.1.   

 

Table 3.1. Example of a synthesised population dataset. 

  Person# / 

Characteristic 

Sex Age Marital Status Ethnicity More 

Traits… 

1 / 325 Male 0-4 Single White British … 

2 / 325 Male 25-29 Married White British … 

3 / 325 Female 20-24 Single Pakistani … 

4 / 325 Male 65-74 Widowed/Divorced White Irish … 

… / 325 … … … … … 

325 / 325 Female 25-29 Married White British … 
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In this instance, assuming a complete population, one could determine the 

total number of married persons aged 20-24, or, for example, the number of 

single females aged 20-24 of Pakistani origin.  It is possible to deduce the total 

number of persons who share any series of traits when making use of 

synthetic data.   

Harland et al. (2009a) describe how making use of a synthetic population is 

equivalent to filling in the blanks with respect to the added dimension the data 

provides when compared to that of aggregate-level census outputs.  

Furthermore, Wilson (2000, p.98 cited in Ballas and Clarke, p.278) describes 

microsimulation as “a critical concept in the future development of modelling 

because it provides a way of handling complexity that cannot be handled 

analytically.” 

3.4. Microsimulation Algorithms 
 

There are several established methodologies for generating synthetic 

populations which enable the creation of populations with traits in line with the 

above.  The following sections will discuss deterministic reweighting (Smith et 

al., 2009), conditional probability (Monte Carlo simulation) (Birkin and Clarke, 

1988, 1989) and simulated annealing (combinatorial optimisation) (Openshaw, 

1995; Williamson, Birkin and Rees, 1998; Voas and Williamson, 2000, 2001).  

These methods were selected due to their common application in geography. 

Many recent spatial microsimulation studies including Anderson (2007), Ballas 

et al. (2005), Voas and Williamson (2000, 2001), Tomintz et al. (2008) Smith 

et al. (2009) and Morrissey et al. (2008) have adopted a variation of at least 

one of these three approaches.  Harland et al. (2009a) discuss similar 

findings.  

Despite the varying microsimulation algorithms open for use, including the 

three mentioned in the preceding paragraph, all share one condition.  In order 

to formulate an accurate synthetic population there is a requirement for a 

sample population from which to construct the synthetic populace.  This 

sample population tends to be a dataset such as the British Household Panel 

Survey [BHPS] (Ballas et al., 2005; 2007), Health Survey of England (Smith et 

al., 2009) or other survey-based dataset.  To further supplement the sample 

dataset, aggregate-level data such as that in Figure 3.1 is incorporated into 

the modelling process in the form of univariate (i.e. sex) or cross-tabulated 

(i.e. sex by marital status) constraint tables (Harland et al., 2009b).  Such 
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area-level data usually span both the attributes and areas in use (age, sex, 

marital status.....zone1, zone2, zone3....etc). 

3.4.1. Deterministic Re-Weighting    
 

The deterministic reweighting method produces a synthetic population by 

reweighting a survey population (such as the BHPS) or household dataset to 

fit to individual or household characteristics known at the small-area level 

through standard census variables (Smith et al., 2009).  This algorithm follows 

a two-stage process when synthesising data for small areas and is a large 

iterative proportional fitting routine (Harland et al., 2009b).  Firstly, a weight is 

calculated denoting the likelihood of each individual record from within the 

sample population residing within the zone in question using information 

looked-up from the constraint tables (ibid).  Secondly, the weights are then 

proportionally fitted to the known population for the zone and then repeated 

thereafter for each zone until a population of full coverage is generated (Smith 

et al., 2009 cited in Harland et al., 2009b).  This form of population synthesis is 

very time-efficient with populations often generated within minutes on 

machines of modest computing power.  Furthermore, Harland et al. (2009b) 

discuss how deterministic re-weighting is affected by the order of constraint 

incorporation and thus, as a result, the approach can integrate various model 

configurations for zones which may share similar characteristics.  Such a 

possibility enables the incorporation of changing relationships between 

attributes over space.  The authors provide the example of two economically 

active persons, one living on the city fringes and the other in the city.  

Although both these individuals share the same economic status, the person 

residing on the city fringe may be more likely to own a car than his/her 

counterpart in the heart of the city.          

Harland et al. (2009b), in addition to Smith et al. (2009), list various 

shortcomings associated with using this method.  In particular, the model is 

sensitive to the order in which the constraints are entered and the results are 

equally sensitive to constraint misconfiguration which can ultimately lead to 

overall data inaccuracy.  With this considered, Harland et al. (2009b) note how 

the result from each model must be vigorously examined in a bid to ensure 

robustness and identify any error at an early stage. 
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3.4.2. Conditional Probability 
   
This model, as developed by Birkin and Clarke (1988), is a further example of 

a reweighting algorithm.  The algorithm is capable of operating with or without 

survey data or a sample population. 

 As the name suggests, the model operates chiefly on probabilities and in 

particular the likelihood of individuals residing in geographical zones and 

possessing a given series of traits.  To take a hypothetical example, a 

geographical zone contains 150 males and 150 females where three quarters 

of the males and 80% of the females are economically active.  The probability 

of being a male or female in this area is 0.5.  To determine the number of 

economically active males one would multiply both the probability of being 

male with that of the probability of being economically active, in this case 0.5 

multiplied by 0.75 giving a probability of 0.375 (or 56[.25] persons).  This 

example is inherently simplistic and, inevitably, as the number of constraints 

increase, the calculation of conditional probability distribution becomes far 

more sophisticated.  Birkin and Clarke (1989) provide a full review of this 

means of population synthesis. 

In a bid to further ensure accurate populations are constructed, once the 

probability calculation has been established, its outcome is compared to 

counts in the observed population and the conditional probabilities are 

adjusted iteratively until a near match develops (Harland et al, 2009b).  

Harland et al. (2009a) present a more detailed description on how this 

comparison process is undertaken.  Once a match is developed, the sample 

population is searched (assuming one is used) to find individuals that best 

represent the traits needed using a Monte-Carlo search algorithm (ibid).           

Harland et al. (2009b) present a concise synopsis of the above technique, 

paying attention to its strengths and weaknesses.  In summary, the specified 

population synthesis technique operates rather time-efficiently with respect to 

population allocation – albeit not quite as fast as deterministic reweighting.  

The authors discuss how conditional probability can synthesise a population of 

circa one million residents in less than three hours if running on an adequately 

resourced platform.  The authors do mention, however, that this form of 

simulation creates entities (in this case individuals or households) which are 

‘likely’ to appear in a given geographical area.  It cannot be deemed to 

replicate the population with respect to matching records.  By this, one means 
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that conditional probability creates a predicted population but it is by no means 

assured that a record in the simulated population will appear in the sample. 

The overarching advantage of adopting conditional probability over other 

techniques is its non-reliance on a sample population.  As mentioned 

previously, if a sample population is unavailable, this synthesis technique can 

construct a population using solely aggregate-level data.  At the time when 

this method was first developed, sample populations were scarce, thus 

resulting in the method being required to synthesise without such datasets.  In 

instances where a sample does not exist, Iterative Proportional Fitting can be 

used to create an initial probability distribution for individual/households likely 

to be contained within the population using the separate aggregate categories 

in the constraint tables (Harland et al., 2009b).  Birkin and Clarke (1989) 

provide further details.        

3.4.3. Simulated Annealing 
 

Simulated annealing is a technique coined in statistical mechanics in 1983 as 

a method for optimizing functions of many variables (Buckham, 1999).  

Buckham (1999) discusses how simulated annealing is a heuristic approach 

that provides a means for optimisation of non-deterministic polynomial time 

(NP) complete problems, for example those for which an exponentially 

increasing number of steps are required to generate an exact solution.  

Buckham (1999) lists various uses for simulated annealing, principally within 

engineering.  Examples include: the travelling salesman problem (see also; 

Press et al., 1992; Harland et al., 2009b), image reconstruction, integrated 

circuit design, path generation, and Planar Mechanism Synthesis.  The 

process, however, can also be successfully applied within social science.  

Harland et al. (2009b) state how, in the social sciences, combinatorial 

optimisation problems tend to demand the minimisation of a given fitness 

statistic or measure representing the extent to which a certain configuration 

matches observed information.  The named authors present a flow diagram 

illustrating the simulated annealing process when applied to synthetic 

population generation as shown in Figure 3.2.  
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Figure 3.2. Simulated annealing algorithm used to construct synthetic population 

(Harland et al., 2009b) 

Harland et al. (2009a; 2009b) present a detailed discussion of the algorithm’s 

functionality.  In short, the simulated annealing process begins with a synthetic 

population as arbitrarily generated from the sample survey population for a 

specified geographical zone.  The fit of the synthetic population can be 

assessed to determine how well or otherwise it reproduces the traits of the 

zone, i.e. the individual characteristics, using a conventional goodness of fit 

statistic such as Chi-Squared or, as suggested by Harland et al. (2009b), 

Standardised Residual Mean Squared Error [SRMSE].  Various authors 

provide a review of such statistics, including; Lemeshow and Hosmer (1982), 

McKinley and Mills (1985), Legates and McCabe (1999) and more recently, 
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Genest et al. (2009).  Voas and Williamson (2001) also present research 

specifically on the assessment of goodness-of-fit measures for synthetic data 

and concur with Legates and McCabe (1999) who criticise the ongoing use of 

such statistics often regarded as misleading.   

The main testing process in simulated annealing involves the swapping of 

members from the synthetic and sample populations on a one-to-one basis 

with the synthetic population re-tested following each exchange.  This test 

enables the fit of the known characteristics of the area to be contrasted with 

those in the synthetic population, if the new population sees an improvement 

of fit then the exchange is accepted by default.  If the fit has not seen an 

improvement (or has worsened), a decision on whether to accept/reject the 

change is made through the use of the Metropolis algorithm (see Metropolis et 

al., 1953).  It is the inclusion of this Metropolis algorithm which differentiates 

the simulated annealing process from that incorporating the combinatorial 

algorithm (see Voas and Williamson, 2000).  The enabling of a ‘backward 

step’ at a time when the match has worsened allows for the true best-fit 

solution to be determined by also rejecting as opposed to accepting any 

change. 

Harland et al. (2009b) again critique this process by assessing its positive and 

negative aspects, in the same way as for the preceding methods.  One rather 

obvious observation is the high number of exchanges necessary to facilitate 

the division of the optimum synthetic population.  Although simulated 

annealing would appear very successful at synthesising populations from 

sample datasets, these exchanges impact heavily on both time and 

computational power, something also discussed by Goffe et al. (1994).  

However, large strides in computational capabilities in recent years mean that 

array indexing and further developments enable simulated annealing to 

function in a similar time frame to the other methods discussed, assuming 

comparable populations and conditions.  Furthermore, this method requires by 

far the least pre-processing of input data when compared to both conditional 

probability and deterministic re-weighting.   

3.5. Application areas within Social Science 
 

So far this chapter has explored the functionality of three techniques capable 

of population synthesis.   Although application areas have been discussed in 
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passing, particularly with reference to the added usefulness a synthetic 

population can provide over more conventional aggregate data, no more than 

brief mentions of wide-ranging applications have been provided.  This section 

will provide a review of synthetic population usage. 

Although, according to Ballas and Clarke (2008), the first geographical 

application of microsimulation came about in 1967 by Hagerstrand with 

respect to the spatial diffusion of innovation (see Hagerstrand, 1967), arguably 

the basis for microsimulation of households/individuals was introduced by 

Wilson and Pownall (1976) when assessing traditional models of urban 

systems.  More recently, however, microsimulation has spanned a variety of 

research and policy areas.  Ballas and Clarke (2008) provide an illustrative 

overview of its wide diffusion.  Figure 3.3 displays the results from an 

academic journal search when filtering for ‘microsimulation’ in the title and/or 

abstract of published research. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.  The distribution of ‘microsimulation’ in ScienceDirect academic studies in 

the period 1967-2003.  Source:  Ballas and Clarke (2008) in Fotheringham and 

Rogerson (2009).    

As can be seen in Figure 3.3, the predominant segment of microsimulation 

applications during the specified period was undertaken in applied economics 

with very little in core geography (3%).  One may argue, however, that 

research in health (5%), population (6%) and transportation (16%) hold strong 
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links with modern day social geography and its disaggregation into such 

categories does not represent geography’s true uptake.  As referred to by 

Smith et al. (2009), taxation and income modelling is one application area to 

have seen a healthy uptake in microsimulation methods, and Ballas and 

Clarke (2008) point to work by Neilson (1993), Propper (1995), and Birkin and 

Clarke (1989) as examples.  Research by the latter was probably the first 

attempt to forecast income by small-area available in the literature (Ballas and 

Clarke, 2008).  For a detailed critique of applications in tax, labour and 

housing markets, transport and land-use models, and retail, Ballas and Clarke 

(2008) and Ballas et al. (2005) provide concise discussions.   

A further example of a microsimulation application, this time more central to 

the conventional perception of geography, is that of water demand.  

Williamson et al. (1996) discuss how water authorities bill households based 

on arbitrary estimates of water consumption.  The lack of water metres in most 

UK households has meant that households were often charged a standard flat 

rate across a given area rather than a fee more in line with resource 

consumption; often rates were set based on the rateable value of properties in 

an area.  Williamson et al. (1996) made use of microsimulation in a bid to 

define an individual household’s propensity to consume and hence set up an 

infrastructure for a more equitable water billing procedure.  This is a prime 

example of making use of microsimulation to advance the understanding of a 

social phenomenon and generate individual information from sample sources 

– something this research will explore.   

3.6. Microsimulation and Individual-Level Geodemographics 
 

Synthetic populations and, more specifically, individual-level classifications, 

have been the topic of discussion within geodemographics for a number of 

years.  Evidence for this is provided by EuroDirect, amongst other sources.  

EuroDirect is continually investigating the possibility of incorporating person-

level data into their ‘Cameo UK’ system with the view to creating an individual-

level system (Bradbury, personal communication, 16/12/2009).  As discussed 

at various junctures previously, a classification at this resolution possesses a 

series of advantages and overcomes a multitude of problems which surround 

both Boolean and fuzzy area-based schemes.  Farr and Webber (2001) 

describe the benefits to be gained from moving from aggregate systems to 

systems capable of individual-level classification as being “intuitively obvious” 
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(p.58), particularly with reference to the added discrimination such systems 

provide.  The same authors also suggest that previous analyses have proven 

this observation but fail to list any such examples.  Farr and Webber (2001) 

exemplify their concerns regarding area-based systems by describing a 

hypothetical example.  The authors suggest that two types of neighbourhood 

(or small-area) deemed to encompass similar concentrations of, for example, 

unemployment, lone parenthood and overcrowding, may in fact be far more 

diverse than any aggregate classification can suggest.  It is not beyond reason 

that one neighbourhood may contain high numbers of persons suffering from 

all three disadvantages or even none at all whilst the other may only house 

residents suffering from one or two of the disadvantages.  Farr and Webber 

(2001) concur that blanketing populations under one label is both wasteful and 

often ill-informing, particularly if the purpose is to identify individual people at 

risk.  Such classifications may also be regarded as quite dangerous if the 

interpreter does not have some prior knowledge as to their formulation.       

Farr and Webber (2001) suggest that attempts to construct geodemographic 

person-level classifications fall into three categories; the first is those making 

use of lifestyle survey datasets (e.g. those collected by Experían), while the 

second, largely influenced by the failing results of the previous attempt, are 

those integrating solely publicly available datasets (e.g. from the electoral roll).  

The final method is those adopting data from the census’ Sample of 

Anonymised Records (SARs).  This research falls into the final category and, 

according to Farr and Webber (2001), presents a highly practical method for 

classifying at the person-level.  An overview of each method is presented 

below.  

According to the authors, previous attempts at making use of commercial 

lifestyle survey data (including work undertaken by the authors themselves) to 

generate a classification fail as, inevitably, such datasets are highly 

behavioural and fail to correlate with one another.  For example, basing a 

classification on responses to questions such as ‘do you play golf?’ or ‘do you 

drive a company car?’ result in clusters which discriminate very poorly on the 

input variables.  Webber and Farr (2001) argue that this is primarily caused by 

low correlations between data characteristics and a general lack of ‘natural’ 

clusters within the data.  Furthermore, one may argue that respondents to 

such surveys are by no means representative of the population as a whole 
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and the authors do make reference to this by means of considering strong 

geographical disparities in response rates.  

Farr and Webber (2001) discuss how the failings associated with this method 

of person-level classification influenced a second method, that of using only 

publicly available data – for example, that held in the electoral roll.  This 

method has seen a healthy uptake, albeit to varying extents, by commercial 

geodemographic vendors including Experían, Claritas and CACI (ibid).  Again, 

however, one must understand that not everybody completes the electoral roll 

and those who do not are not likely to be a random representative sample.  

The authors argue how this then has implications for ‘social exclusion’ and 

represents a negative point for means of classification which on the whole has 

been well embraced.       

The final method for individual-level classification construction involves 

adopting data from the census’ Sample of Anonymised Records (SARs).  The 

authors also state that such is the geographically referenced nature of SARs 

data, it is possible to analyse the frequencies of personal classifications on an 

area-basis.  As this forms the root of this research, adopting this approach will 

be consider in greater depth in chapter 5. 

3.7. Summary and Conclusions 
 
This chapter has reviewed different methodologies through which individual 

population datasets can be constructed, specifically the chapter has discussed 

deterministic reweighting, conditional probability and simulated annealing (or 

combinatorial optimisation) and through an assessment of the pros and cons 

of each, a method for use in my research has been determined. 

This research will incorporate synthetic data formulated through the 

combinatorial optimisation using the simulated annealing method.  As 

discussed previously and emphasised by Harland et al. (2009a; 2009b), this 

method presents the most accurate means of synthesising populations despite 

its rather intensive computational requirements.  Furthermore, with support 

from the work of Farr and Webber (2001) suggesting that a census-based 

approach (from the SAR) is the most effective way forward, this research will 

also pursue this route in bid to create an effective classification of individuals. 

The following chapter will explore common methodologies adopted in 

geodemographic classification systems through the presentation of a stepwise 
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approach to system formulation.  It will be argued that such methodologies 

remain firmly rooted in the disciple (hence the continual persistence with area-

based /aggregate data classifications). 
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Chapter 4: Conventional 
Geodemographics:  A Dated 
Approach?  
 
4.1. Introduction and Chapter Preface 
 

The purpose of this chapter is to build on the foundations set out in section 2.4 

regarding the building blocks of geodemographic systems.  Presented 

herewith is a detailed review and explanation of common methods adopted in 

geodemographic system formulation.  This chapter takes a sequential 

approach to reviewing the key phases commonly regarded as necessary in 

the construction of any such system. 
4.2. Geodemographic System Formulation 
 

Although the end product of a geodemographic system is a simplified 

depiction of reality (as per any geographical model) typically through the 

creation of a series of clusters each linked to a geographical area, the 

underpinning processes required to reach this are far from straightforward.  

Harris et al. (2005) and Gibson and See (2006) both present detailed 

descriptions of how geodemographic systems are constructed, the former 

describing the processes adopted by Experían when creating the Mosaic 

system (see section 2.7.3), the latter presenting a more generic approach 

albeit later linked to uses within sustainable development.  Milligan (1996) also 

presents a seven phase approach, albeit more dated, similar to that proposed 

by Gibson and See (2006) for common cluster analysis.  Figure 4.1 illustrates 

the stages involved in creating a geodemographic system. 
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Figure 4.1. Flow diagram showing the processes required to devise a 
geodemographic area classification scheme (Gibson and See in Campagna, 2006, 
p.214). 

Figure 4.1 illustrates a minimum of seven phases required when constructing 

any such system.  However, it is not uncommon to re-visit or loop back to 

previously accomplished steps when striving for the optimal classification.   

The first two phases are relatively uncomplicated.  Ensuring a successful 

output from a geodemographic system is determined primarily by the following 

three phases; Pre-Processing, Clustering, and Labelling.  This report will take 

a stepwise approach to discussing each phase - with particular emphasis 

placed on these three fundamental phases.  Given that the purpose of this 

chapter is to discuss system creation, the final two phases of 

'Application/Evaluation' and 'Integration with a GIS' will not be discussed here 

and will instead become apparent in later chapters as part of visualisation and 

evaluative measures. 

4.3. Defining the Purpose 
 

The commencement point in system development is to define the purpose of 

the classification - that is, is a general-purpose all-encompassing system 

desired, one that is designed to paint a picture of ground conditions in an area 

independent of any specific application.  Many of today's leading commercial 

systems are general-purpose and they are built in this way to ensure market 

penetration.  Any system designed in this way can, theoretically, be sold to a 

range of organisations and markets and potentially achieve a goal.  General 

purpose systems may incorporate a range of variables, for example, UK 

census variables such as age, sex, car ownership, ethnicity, etc plus, if 
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available, a plethora of more behavioural variables that define propensities to 

buy high-end goods, eat foreign food or watch live sport amongst other things. 

Gibson and See (2006) argue that although together, variables within multi-

purpose systems can be used to develop a range of diverse area typologies, 

more bespoke systems are often more fit for purpose.  

Systems designed with a specific purpose in mind are now more widespread 

than ever before.  Conventional geodemographic vendors are releasing more 

explicit classifications, for example Experían (2013) now has a portfolio of 

systems ranging from CAMEO UK (the flagship product) to CAMEO Property, 

CAMEO Choices and CAMEO Welfare.  The former of these is designed to 

understand levels of affluence through house prices, the second to understand 

purchasing behaviour and the latter for evaluating economic hardship.  These 

are just three in a portfolio of seventeen classifications offered by EuroDirect 

(2013).  In academia, systems built for specific purposes are also apparent.  

Abbas et al. (2009) presents a system within the domain of health intelligence 

and Burns (2009) also emphasises how geodemographics can be tailored to 

the health/deprivation sector.    

4.4. Selecting the Data 
 

The second phase in system formulation is to determine the data or input 

variables.  In the UK, given that the census is the most comprehensive dataset 

available, both in terms of depth and coverage, it naturally forms the bulk of 

variables utilised in geodemographic systems.  This may well change moving 

forward with the uncertainty surrounding future national censuses but for now 

it is seen as the leading repository for geographically-referenced demographic 

data.  Gibson and See (2006) do, however, put forward cases for using 

alternative data sources such as share ownership, unemployment, county 

court judgments (CCJs), and registers of company directors as these tend to 

provide more financial input to the classification.  Webber (2007) also 

emphasises how, in many countries, non-census data can prove useful and 

lists the electoral registers (UK, Australia, Spain), the files of mail order 

companies (Netherlands), car registration files (Italy), Property Registers 

(Germany, New Zealand, UK), registers of shareholders and of directors (UK), 

statistics on house prices and on council tax bands (UK) and registers of 

addresses (Australia, UK) as prime examples. Webber (2007) also states that 

in the Netherlands, where census statistics are not published at the small-area 
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level, market research respondent files are used to add value to 

classifications. 

Webber (2007) is a strong advocate of using non-census data in 

geodemographics and states that such sources of information can be useful 

for three key reasons.  Firstly, questions in national censuses justifiably tend 

to centre more strongly on measures of disadvantage than on measures of 

affluence or prosperity, asking their populations about their literacy (Brazil, 

China), long term illness (UK) or unemployment (Australia).   Information from 

non-census sources, such as those mentioned above, is often helpful in 

redressing this prejudice and in providing greater detail about the location of 

more privileged population groups.  

 

A second advantage of using non-census sources is that, in many instances, 

the data are available at a finer level of geographical detail than that at which 

census statistics are published. This latter point is very apparent in the UK 

with the 2001 census data released at its finest resolution to output area level 

and, on average, each output area being comprised of up to five postcodes.  

Inevitably, in instances such as this the scope for finer-level analysis is clear 

but this is only the case if aggregate census data forms no part of the data 

input process. 

 

The third advantage put forward by Webber (2007) is that in many markets the 

use of non-census sources makes it relatively easy and highly advisable to 

update the classification codes given to existing areas (or clients) as their 

population character changes over the interval between censuses (decennial 

in the UK). Furthermore, Webber (2007) states that by using alternative data 

sources it is possible to assign classification codes to neighbourhoods built 

since the date of the previous census and hence ensure systems are kept 

current. 

  

This phase is arguably one of two largely subjective junctures in devising a 

classification - the second being in determining the total number of clusters or 

sub-clusters (see section 4.6).  Deciding on which variables to input and how 

many should underpin the final classification is a topic that has seen much 

research.  Openshaw and Wymer (1995) citied in Gibson and See (2006) 

argue that one should attempt to make use of the smallest number of 
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variables for the purpose required and that one should also try to avoid 

variables that are highly correlated (hence a need to assess all variables for 

multi-collinearity prior to classification). The data should also be examined for 

outliers or rogue data, which should be duly removed or verified prior to 

classification.  Openshaw and Wymer (1995) emphasise that there is no 

unique or correct single set of variables to use, hence the subjectivity at this 

phase.  The authors do, however, stress the need to treat this phase as being 

"iterative" (p.215) in a bid to eliminate subjectivity and find the optimal 

classification output.  

A slightly different viewpoint is offered by Webber (2007) who states that 

generally, the more variables that are used in the clustering process and the 

greater the breath of sources they come from, the more meaningful the 

resulting clusters are likely to be.  Webber (2007) does, however, concur with 

previous authors that only variables that claim to be of value to the specific 

nature of the classification should be included. 

4.5.  Pre-Processing the Data 
 

In pre-processing, various techniques can be employed; however, the simplest 

procedure is that of normalisation.  Normalisation is carried out to ensure that 

all variables operate on equal grounding, thus variables with large ranges are 

equally weighted against variables which have much smaller ranges.  This 

method typically linearly re-scales data on to a scale of zero to one (Gibson 

and See, 2006).  Alternative procedures for data preparation can also be 

employed, for example Principal Component Analysis (PCA), or the related 

technique of factor analysis.  Voas and Williamson (2001) present a detailed 

discussion of the former.  In summary, these are a series of methods used to 

isolate the key differentiating factors (or ‘components’) of a collection of 

correlated variables (Robinson, 1998).  Gibson and See (2006) argue that 

PCA is not the ideal method for data pre-processing due to its sensitivity 

toward skewed variables.  This apparent lack of support for the PCA process 

is also endorsed by Harris et al. (2005) and, ultimately, Experían, who 

according to Harris et al. (2005, p.157), failed to make use of this technique in 

their Mosaic system due to its tendency to “blur rather than clarify fine 

distinctions between cluster types”.  It should be noted though that PCA has 

been successfully employed in pre-processing techniques involved in the 
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construction of other geodemographic systems, notably the post-1981 UK 

census version of the SuperProfiles classification (Brown and Batey, 1994). 

4.6. Clustering Overview 
 

The next phase is the clustering phase and this is arguably what separates a 

geodemographic classification from a simple hybrid index.  In the simplest of 

terms, this process reduces multivariate datasets into a descriptive and 

manageable number of area typologies (Gibson and See, 2006).  Harris et al. 

(2005) discuss how clustering algorithms can take one of two forms; stepwise, 

top-down methods or iterative allocation-reallocation methods.  Alternatives, 

however, do exist and include simulated annealing and neural network 

classifiers – see Openshaw and Wymer (1995).  There are several 

methodologies in place which allow for crisp or fuzzy approaches to clustering 

and Gibson and See (2006) point to a comprehensive review of such 

multivariate clustering techniques/algorithms by Krzanowski and Marriott 

(1995) for a fuller description. 

Gibson and See (2006) emphasise how there are many different clustering 

algorithms available, ranging from commonly adopted K-Means approaches to 

algorithms developed in the field of artificial intelligence, examples include the 

self-organizing map and sophisticated machine learning techniques. The 

authors also refer to fuzzy clustering algorithms that can assist to characterize 

areas more accurately in cases where they could easily belong to more than 

one defined cluster-type.  

 
Deciding on the correct number of clusters is a rather subjective process with 

many systems, such as Mosaic (from Experían) and ACORN (from CACI), 

choosing to segment areas into an odd number of clusters – 5, 7, 9 groupings 

seen as popular amongst smaller classifications.  In the latest manifestations, 

Experían opted for fifteen key groups and CACI seven.  Milligan (1996, p.343) 

describes the process of determining a set number of clusters as being very 

difficult “if no a priori information exists as to the expected number of clusters 

in the data.”  Gibson and See (2006) also emphasise the subjectivity linked to 

cluster number selection and add that, in the main, the best method for 

deducing this is to create multiple classifications and assess the changes in 

the slope of the scree or information loss. 
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4.7. Labelling and Interpretation 
 

Upon completion of the clustering processes, a phase synonymous with 

devising a geodemographic scheme is that of cluster labelling.  Harris et al. 

(2005) discuss how geodemographic system purveyors do not purposely set 

out with the intention of creating X number of clusters with names of rural 

isolation, mortgaged families and so on, but in fact such groupings naturally 

emerge from the classification and, as a result, require the assigning of a 

descriptive label.  This label is usually a short-hand description of the 

characteristics of the population which the given cluster encompasses and is 

often supplemented by a more detailed area pen portrait (ibid).   

Although these more detailed ‘portraits’ are used for more thorough analyses, 

the short-hand labels are necessary for more everyday and generalised 

interpretation.  Gibson and See (2006) discuss the importance of comparing 

the individual cluster centres (or average behavioural characteristics) with the 

global average before assigning any descriptive labels.  The global average in 

this instance refers to the mean characteristics of the whole area spanned by 

the analysis.  One common approach, according to Gibson and See (2006) 

and Harris et al. (2005), is to determine z-scores.  Z-scores describe the 

deviations from the global average for each individual variable which then 

enables clusters to be labelled based on their standing with respect to the 

global (national, regional or more local) average.  Harris et al. (2005) refer to 

the importance of assigning true labels to clusters in a bid to portray an area in 

the most accurate fashion, however, the authors discuss how short-hand 

labels can often detract from the longer area portraits and even paint a less 

than accurate area description.  With the continuing growth of 

geodemographics in the private sector, and in marketing especially, one can 

understand the over-reliance placed on short-hand area labels and, in 

particular, the ‘favourable massaging’ (or bias) of such labels in a bid to 

describe all areas in a positive light.        

Experían’s Mosaic system, itself an example of a private sector scheme, 

adopts both short-hand labels and descriptive portraits and four partial 

examples of these are shown in Figures 4.2 and 4.3.  Figure 4.2 illustrates two 

of the highly ranked cluster-types whereas Figure 4.3 provides examples of 

the more deprived segments of society. 
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Figure 4.2. Two examples of Mosaic’s cluster types.  Group A and Group B represent 
more affluent members of society.  Experían (2009). 
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Figure 4.3. Two examples of Mosaic’s cluster types.  Group K and Group L represent 
less affluent members of society.  Experían (2009). 

As can be seen from Figure 4.2 and 4.3, the inclusion of typical imagery 

indicative of the ground situation in these clusters together with photographs 

of stereotypical members are designed to immerse the reader into painting 

their own mental image of life in these areas.  The commercial element is 

further enhanced by the naming conventions, ranging from ‘Alpha Territory’ to 

‘Elderly Needs’.  Furthermore, adopting person names such as ‘Henry and 
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Violet’ (Group L) and ‘Piers and Imogen’ (Group A) and other names that one 

may instinctively relate as falling into a certain demographic grouping helps 

the lay reader to convey a sense of understanding of the people-types who 

inhabit such areas.  Although the pen portraits are purely descriptive in nature, 

they do offer the reader some insight into the conditions, people, facilities, 

behaviour and affluence levels present in areas categorised into each 

grouping. 

4.8. A Dated Approach? 
 

On top of a review of methodologies and the stages surrounding the creation 

of geodemographic systems, a second objective of this chapter is to assess 

how fit for purpose such methods are today.  With all commonly available and 

trusted systems operating at the small-area level, the conventional methods 

discussed above do tend to provide suitable enough discrimination to render 

them effective.  However, ambiguity in geodemographics is a word that comes 

to the fore quite often, hence discussions on a move towards a more fuzzy-

based approach to cater for areas that do not fit a single stereotype.  As this 

research proposes a classification at the individual-level, the level of ambiguity 

brought about through crisp (or best-fit) cluster matching should diminish.   

As a fore-runner to creating the individual-level classification, several tests 

were undertaken on the Output Area Classification (OAC) as devised by 

Vickers (2006) and now widely used by the Office for National Statistics 

(ONS).  Although the OAC is an area-based classification, the transparent 

methodology means that tests such as those discussed below can be freely 

undertaken without a fear of prejudice.  This testing process involves 

contrasting the OAC with some 2001 simulated data for Leeds and hence data 

similar to that which will be utilised for the creation of an individual-level 

classification.  

The 2001 pre-simulated data used in this analysis comprises six variable 

constraints; Age, Marital Status, Sex, Highest Qualification, Socio-Economic 

Classification, and Ethnicity and was formulated through combinatorial 

optimisation (simulated annealing) by Heppenstall (date unknown).  The data 

are complete for Leeds (715,402 persons) and synthesised at output area 

level (2,439 areas) with constraint data acquired from the Census of 

Population via CASWEB (2001) and survey data courtesy of the British 

Household Panel Survey. 
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A simple summation of the total number of people who possess each 

characteristic per output area can, when contrasted with the Output Area 

Classification (OAC), generate interesting findings and highlight some of the 

problems associated with conventional systems which classify populations at 

the area (aggregate) level.  Given the simplicity of the data required for this 

analysis, data used in the following examples could easily have been 

extracted from CASWEB (2001) given that only aggregate data are required.  

However, for the purpose of validation, the 2001 synthetic data was used as a 

substitute. 

As discussed by Birkin (1995), area cluster labels can be far from indicative of 

the populations to which they are expected to encompass.  Recall from 

Section 2.6.3 and the SuperProfiles example.  Areas in clusters labelled 

“Young Married Suburbia” and “Metro Singles” contained rather different 

populations to those implied by the cluster labels.  One area classified under 

the former label encompassed in excess of one quarter of residents over the 

age of 45 whilst a separate area within the latter contained only circa 20% of 

single workers (ibid).  Such labels are very weak short-hand descriptors of the 

populations to which they are expected to describe rather accurately.  

Furthermore, such labels are wrongfully misleading and could easily result in 

failure or inaccurate population targeting when applied to a given scenario, in 

either the public or private sector, if interpreted by somebody with no 

understanding of how geodemographic systems operate.      

The use of Leeds’ 2001 simulated data together with the open source nature 

of ONS’ Output Area Classification (by Vickers (2006)) enables similar 

contrasts to be made.  The OAC comprises seven super-groups, twenty-one 

standard groups and fifty-two subgroups and is a system constructed from 

purely census data.  The following pages will present an analysis of several 

clusters and standard groups within this wider OAC when contrasted with 

individual-level data simulated to encompass the six personal characteristics 

stated above.  The observations made here highlight the key reasons for 

moving away from area-based classification towards finer-level systems. 

The OAC cluster selected for discussion here is the “Multicultural” cluster 

(Super-group 7).  This cluster is disaggregated into two standard groups; 

“Asian Communities” (Group 7a) and “Afro-Caribbean Communities” (Group 

7b) with both of these groups further split into three and two subgroups 
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respectively.  However, given that these final-tier groups possess no explicit 

label and for the purpose of this testing process, this assessment will operate 

down to tier-two of the OAC only.    

The analysis that follows is made possible through the availability of an 

ethnicity characteristic in the 2001 synthesised population.    

It is reasonable to make the assumption that any output area selected from 

the 2,438 which comprise the district of Leeds and which falls into either of the 

“Asian Communities” or “Afro-Caribbean Communities” categories should, one 

would expect, contain a high concentration of the given ethnicity; Asian or 

Afro-Caribbean.  Furthermore, one would also expect any “Multicultural” area 

classified within the “Asian Communities” group to contain a higher 

percentage of persons of Asian ethnicity than those of Afro-Caribbean, and 

vice versa.  However, an assessment of the OAC proves this to be correct for 

the majority of cases but this observation is by no means consistent across 

the 273 output areas classified as “Multicultural” across Leeds.  In fact, of the 

217 areas deemed to be in the “Asian Communities” subgroup, 30 (13.82%) 

actually contain higher concentrations of Afro-Caribbean residents.  A similar 

observation is also evident when the assessment is reversed.  Of the 55 areas 

categorised within the “Afro-Caribbean Communities” subgroup, 22 (40%) 

include a higher percentage of Asian inhabitants.  In one extreme case, the 

number of Asian residents in an “Afro-Caribbean Communities” area 

exceeded the Afro-Caribbean population by over one-fifth (22.9%). 

Based on the pre-simulated data used in this comparison and the availability 

of the six population characteristics, further contrasts could also be made to 

assess the composition of areas classified as “Older Blue Collar”, “Older 

Workers” and “Young Blue Collar” (using the Age and Socio Economic 

Classification (SEC) variables) and “Senior Communities” (using the Age 

variable).  Results show that the patterns observed with regards to age and 

economic status replicate those as seen with ethnicity.  Thus, rather large 

disparities exist.  Contrasts such as these, however, are more open to the 

interpretation of the researcher, unlike ethnicity.  In these cases, definitions of 

‘Senior’, ‘Young’ and ‘Older’ with regards to age and ‘Blue Collar’ in terms of 

socio-economic classification are required.         

To take the “Senior Communities” subgroup as an example.  This subgroup 

accounts for fifty-eight of Leeds’ total output areas.  If ‘Senior’ in this case is 
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defined as 65 and over (hence what is commonly regarded as retirement age 

for females), then of the ten output areas containing the highest concentration 

of ‘senior’ residents, seven are captured by the “Senior Communities” cluster 

with the remaining three described as “Settled in the City” – the latter not 

influenced by age.  One may argue that this is a reasonable returns ratio.  

However, one must also consider the concentrations of ‘Senior’ residents 

within an area compared to both other areas and alternative age groups.  In 

this instance, of the 58 small areas classified as being within the “Senior 

Communities” subgroup, the range of concentrations of persons aged 65 plus 

is quite extreme.  Concentrations vary from 12.18% to 75.29% and, when it is 

considered that output areas are designed to enclose circa 300 inhabitants, 

such a variation is rather large (63.11%).  Furthermore, areas categorised 

within the lower reaches of “Senior Communities” (e.g. with concentrations 

closer to 12.18%) enclose higher percentages of people in other age ranges; 

however, this again depends on how the age structure is disaggregated.       

The above analysis is enough to suggest that a classification constructed at 

the level of the person will discriminate to a far greater extent than current 

systems operating at higher resolutions, such as the OAC.  Furthermore, the 

issues surrounding generalisation, cluster concentrations and, to some extent, 

erroneous cluster labelling, can be overcome.          

4.9. Summary and Conclusions 
 

Geodemographics is widely embraced for consumer or person targeting.  With 

the issues discussed above, the success of such operations is largely 

restricted and often succumbs to the error imposed when making decisions 

based on collective data.  In the public sector, it is often necessary to identify 

specific people ‘at risk’ from a given phenomenon, something very difficult 

when adopting a classification based on aggregate and hence ‘averaged’ data 

(as per the examples above).  As a result, people ‘at risk’ often go unnoticed 

due to the resolution at which systems are constructed.  A classification at the 

level of the person would eliminate such problems and enable a far more 

efficient means of population targeting.  

This chapter has presented a stepwise approach to formulating an area-based 

geodemographic system, following the flow diagram structure proposed by 

Gibson and See (2006).  The chapter has presented a detailed synopsis of 

each stage in the process ranging from the importance of identifying a 
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purpose (for variable selection, scale etc) to more ambiguous stages including 

how to select variables, how many variables and the number of clusters.  A 

key point to be taken from this chapter is the analysis undertaken on the OAC 

and the issues that transpire when attempting to attribute a cluster label to 

aggregate data – hence, the notion and problem of ecological fallacy and 

something an individual-level classification may not eradicate but could 

certainly improve upon.  

The methods presented in this chapter are commonplace when constructing 

area-based systems.  However, given the need in this research to formulate a 

classification at the level of the person, new and adapted methods are 

required.  One key objective of this research is to propose a universal 

framework through which individual-level classification can take place and 

these methods are discussed in the following chapter (chapter 5).   
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Chapter 5: Devising a 
Framework: From Raw Data to 
Individual-Level Classification 
 
5.1. Introduction and Chapter Preface 
 

As mentioned at various junctures in this research, the predominant aim of this 

project is to develop a framework through which an individual-level 

classification can be created.  The purpose of this chapter is, therefore, to 

present the methods through which a classification at this level will be 

developed.  The development phases as put forward by Gibson and See 

(2006) in chapter 4 are loosely followed for the purpose of structure but 

adapted to suit a classification being constructed at the individual level. 

5.2. Defining a Purpose & Proving Rationale 
 

As discussed in chapter 4, classifications can be developed such that they are 

designed for a specific purpose such as health (see Abbas, 2009) or 

deprivation (see Burns, 2009) or they can adopt a wider appeal through being 

general purpose.  Given that this research will make use of entirely census 

variables (see section 5.5), a wide selection of variables has been used in 

order to create a general purpose classification to demonstrate the system’s 

usefulness across a broader set of applications.    In many ways, a 

classification of this nature can be likened to the Index of Multiple Deprivation 

(IMD) which, although a simple index by definition, is often applied to a wide 

range of problem areas given its composition of: income variables (22.5% of 

total), employment (22.5%), health (13.5%), education (13.5%), housing 

(9.3%), crime (9.3%) and environment (9.3%) (Data.Gov.UK, 2010). 

A key motivator behind the construction of a classification at this level is 

discrimination and the added benefit to be gained by moving away from areal 

unit categorisation, regardless of whether the system is general purpose or 

application-specific. 

Aggregate systems, by definition, have to contend with a plethora of different 

variables which are expected to describe the population in these areas.  

Although such area populations are largely homogeneous based on the 
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premise that "birds of a feather flock together" (Harris et al., 2005, p.16) and 

hence people with similar traits tend to gravitate to similar locations, with an 

increase in variables comes an increase in prospective error as demonstrated 

in Figure 5.1.   

Figure 5.1. Problems in aggregate level classification caused by increasing variables 
and people traits.   

In Figure 5.1, two hypothetical areas exist; Area A and Area B. If Area A was 

taken independently and clustered into a crisp 'best fit' grouping, one may 

expect that based solely on one variable, that of person shading, this area 

would be assigned to a ‘red shaded’ dominated cluster.  By doing this, even 

with one solitary variable, collective error is apparent given that all members of 

this area do not fit this typology.   There are in fact four people types resident 

in this area; nevertheless the level of error is minimal when focusing on one 

variable.  When a second variable is introduced, that of person height, the 

collective error increases yet further.  In Area B, two variables are apparent - 

person shading and person height.  If this area were to be assigned to a single 

‘best fit’ cluster, it may fall into a ‘tall blue’ grouping (or similar).  In this 

instance, the ambiguity is greater and the ability to classify with minimum error 

becomes more difficult.  Therefore, it is clear that as variable numbers are 

increased, the level of collective error that transpires as a result also 

increases, making it near impossible to accurately position areas into groups 

based on large numbers of variables. This demonstrates the need to keep 

variable numbers to a minimum when adopting a cluster-led approach to data 

analysis, which is also supported by Openshaw and Wymer (1995) cited in 

Gibson and See (2006).  

The above observations may seem rather obvious and somewhat critical, 

even when based upon such a simplistic and hypothetical example.  However, 
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given that geodemographics is seen by many as a type of modelling and 

hence a simplification of reality, the intention is to reduce complexity and aid 

understanding, and, by grouping people with 'similar' traits into best-fit 

groupings, it effectively achieves this purpose.  Nonetheless, being able to 

classify persons independently of their geography (hence individually) should 

reduce the collective error discussed above and allow for more meaningful 

clusters to be formulated.  As discussed in section 4.8, both through the 

SuperProfiles example as put forward by Birkin (1995) and the independent 

analysis undertaken on the OAC, cluster labels that do not accurately describe 

the populations that they are attributed to can be seen as poorly representing 

the population. Although this may merely be down to poor interpretation of the 

data, if such collective error is apparent at the area level then accurate cluster 

descriptors or pen portraits are difficult to assemble.  By classifying at the 

person level, one expects this process to be far simpler and hence clusters 

should be more homogeneous than under present area-based schemes. 

5.3. Defining the Geographical Scope 
 

Section 5.2 has clearly put forward reasons for constructing a classification at 

the individual level, plus explicitly defined the nature of the system, hence a 

general purpose system comprising census variables.  In order to formulate a 

strong framework, a case study region (or regions) must be selected and 

carried forward to demonstrate how this process works.  For reasons of 

familiarity, Leeds (UK) will be the primary case study region on which the 

methodology will be applied.   The selection of Leeds as a case study region is 

sensible for two reasons; firstly, given the level of personal familiarity with the 

region and its social geography, and secondly given that only London (7.17 

million) and Birmingham (977,099) had greater populations in 2001 (the data 

year chosen for this research) (CASWEB, 2001).  This therefore ensures that 

the Leeds classification is conducted on enough records to deem it meaningful 

and with an ability to test the general robustness of the framework. 

Furthermore, with Leeds residing extremely closely to the UK national average 

for a myriad of fundamental census statistics (Rees, 2013, personal 

communication), it makes sense to utilise Leeds to see how well or otherwise 

the classification methods segment the city’s population. 

So to further test the methodology, a second area will also be subjected to the 

same process.  The second area selected is Richmondshire (UK).  Both Leeds 
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and Richmondshire were selected from within the Yorkshire region due to 

familiarity and to enable ease of validation.  Both Leeds and Richmondshire 

represent sensible districts through which to apply this methodology due to 

their differing population sizes and different classifications on the Office for 

National Statistics' (ONS) Local Authority classification.  Leeds, with a 

population (in 2001) of 715,402 is classified in the Cities and Services 

supergroup and Regional Centres subgroup whereas Richmondshire, in 2001, 

had an official population of 47,010 and fell into the ONS classification 

supergroup of Prospering UK and subgroup of Prospering Smaller Towns.  

With such different population sizes and structure and contrasting 

classifications on ONS' Local Authority divisions, both areas will test the level 

to which this research can accurately segment people-types.  Table 5.1 

presents each of the districts / unitary authorities in the Yorkshire region 

(sorted by population size, smallest to largest) and clearly shows how the two 

selected areas differ - both in terms of basic demographics and regional 

classification.  For ease of presentation, the final tier of the ONS classification 

has been removed from Table 5.1 given that it offers no new cluster naming 

over and above tier 2.  Tier 3 naming conventions include 'Prospering Smaller 

Towns - A', 'Prospering Smaller Towns - B', 'Prospering Smaller Towns - C' 

etc.  
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Table 5.1. Districts and Unitary Authorities (Local Authorities) within the Yorkshire 
region sorted by population size.  Red shading denotes two selected areas. 

 
Furthermore, with both Leeds (Metropolitan District, West Yorkshire) and 

Richmondshire (Non-Metropolitan District, North Yorkshire) being situated in 

different parts of the region, they are also geographically dissimilar.  The 

Euclidean distance between the centroids of the two districts is close to 40 

miles. See Figure 5.2 for a visual representation of the location of both case 

study districts relative to the rest of the region. 

Zone Name 

Area Type 
Metropolitan 
District (NM 
Dist), Non-

Metropolitan 
District (NM Dist) 

or Unitary 
Authority (UA) 

AC Supergroup Label 
(Tier 1 ) 

AC Group Label (Tier 2) 
Population 
(Smallest 

to Largest) 

Richmondshire NM Dist Prospering UK Prospering Smaller Towns 47010 

Ryedale NM Dist Coastal and Countryside Coastal and Countryside 50872 

Craven NM Dist Coastal and Countryside Coastal and Countryside 53620 

Selby NM Dist Prospering UK Prospering Smaller Towns 76468 

Hambleton NM Dist Prospering UK Prospering Smaller Towns 84111 

Scarborough NM Dist Coastal and Countryside Coastal and Countryside 106243 

Harrogate NM Dist Prospering UK Prospering Smaller Towns 151336 

North Lincolnshire UA Mining and Manufacturing Manufacturing Towns 152849 

North East 
Lincolnshire 

UA Mining and Manufacturing Manufacturing Towns 157979 

York UA Prospering UK Prospering Smaller Towns 181094 

Calderdale M Dist Cities and Services Centres with Industry 192405 

Barnsley M Dist Mining and Manufacturing Manufacturing Towns 218063 

Kingston upon 
Hull, City of 

UA Mining and Manufacturing Industrial Hinterlands 243589 

Rotherham M Dist Mining and Manufacturing Manufacturing Towns 248175 

Doncaster M Dist Mining and Manufacturing Manufacturing Towns 286866 

East Riding of 
Yorkshire 

UA Prospering UK Prospering Smaller Towns 314113 

Wakefield M Dist Mining and Manufacturing Manufacturing Towns 315172 

Kirklees M Dist Cities and Services Centres with Industry 388567 

Bradford M Dist Cities and Services Centres with Industry 467665 

Sheffield M Dist Cities and Services Regional Centres 513234 

Leeds M Dist Cities and Services Regional Centres 715402 
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Figure 5.2. The North Yorkshire Region and Leeds:  Showing locations of Leeds and 

Richmondshire (in red) (Adapted from Invest North Yorkshire, 2013).  

 
5.4. Selecting the Raw Data Source 

Once a purpose and rationale for the classification have been established and 

a geographical region determined, the variables for use in the classification 

must be chosen.  In this research all variables will be census characteristics 

and will come from the Small Area Microdata (SAM) file.  SAM is the term 

used for an individual-level sample of anonymised records from the 2001 

Census (ONS, 2008). The SAM is similar to the SAR (Sample of Anonymised 

Records) with regards to variable inclusion, however, broader banding is 

adopted to preserve individuals' confidentiality given the personal nature of the 

multivariate dataset.  Furthermore, the SAM provides a finer geography-level 

to aid analysis releasing data at the local authority level (as opposed to 

government office region in the standard SAR).  The SAM sample accounts 

for 5% of the population and contains circa 2.9 million records from people in 

the UK (and ~35,000 for the Leeds metropolitan district (SAM code 67) and 

~2,350 from Richmondshire (SAM code 279)) (CCSR, 2001).  Across the 

SAM, each record is identifiable down to local authority level across a broad 

range of census topics, including; employment, personal demographics (such 

as age, sex, ethnicity etc) and residential arrangements (ibid).  Northern 

= Straight line distance, ~39.8 

miles 
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Ireland is an exception, however, and is only available at Parliamentary 

constituency level. 

The data held in this file varies by type and each variable categorised into one 

distinct category of (1) individual, (2) household, or (3) family.  The file 

contains a total of seventy-four real variables, one unique identifier, plus 

thirteen ONS / DEFRA variables and additional imputed variables - the latter 

not considered for the purpose of this classification (see Appendix A for 

comprehensive list).  Some of variables include; number of cars / vans owned 

or available for use (household category),   presence / number of dependent 

children in family (family category) and fundamental demographic variables 

such as age / sex / ethnicity / social-economic classification of respondents 

(individual category).  

Such is the nature of individual-level data when compared to small-area 

aggregations, which are also controlled for data disclosure using similar 

methods, great care is taken to ensure that no information is included which 

would allow an individual to be identified (ibid).  The SAM does, however, seek 

to maintain a balance whereby an optimum point is reached at which 

information is maximised whilst ensuring the risk of disclosure remains 

negligible (CCSR, 2009).  For this reason, SAM data are ideal for such fine-

level classifications and will be incorporated in this research. 

The SAM and SAR files are currently held by the UK Data Service in Essex 

and are available free of charge to researchers in academia and for a small 

fee to those in a business or local authority environment (UKDS, 2014).  With 

2011 individual-level data unavailable at the time of this project, this research 

adopts 2001 data under the premise that future census iterations (if 

applicable) can be used to update the classification.  However, with future 

censuses still under consideration, proposing a framework through which such 

segmentation can take place is of primary concern. 

Alternative datasets were considered for use, including the British Household 

Panel Survey (BHPS) (now Understanding Society).  However, given than 

such a dataset contains only 10,300 individuals (at wave 1) from 250 areas of 

Great Britain, the SAM represents a far more comprehensive selection.  Other 

datasets also failed to compare for reasons of completeness (hence surveys) 

and validity. 
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5.5. Methods for Variable Selection 
 

As with any geodemographic classification, one of the principle decisions 

which governs success or failure is the number and choice of input variables 

(see Section 4.4).  However, this decision is made all the more difficult when 

constructing a general-purpose system, largely due to the fact that any such 

system lacks an overriding function through which input variables are 

expected to predict or describe.   

Abbas (2009) presents work in the growing field of health geodemographics 

and any system designed to identify small areas by health risk is likely to 

make use of census variables such as self-reported health, limiting long-term 

illness and even the number of care hours provided.  Clearly, a classification 

of this nature has a very clear purpose or question through which the 

classification is expected to inform and hence the selection of variables follows 

a logical procedure.  Furthermore, any variable weighting decisions will also 

follow a similar process and be instigated as a result of the perceived level of 

importance.     

For the purpose of this research, the final classification is expected to inform 

the Generative e-Social Science for Socio-Spatial Simulation project 

(GENESIS) and thus variables have been selected to closely align with the 

project’s key themes (UCL, 2009).  These themes, chosen to span key policy 

areas in social science, include planning and problem solving with respect to 

healthcare, housing, transportation and retail.  Further themes including 

education, crime and employment will also supplement GENESIS’ primary 

themes in a bid to ensure that variables are selected across the breadth of 

social science and therefore provide reason for inclusion within a broad 

general-purpose classification scheme.  Table 5.2 illustrates the seven themes 

which arguably underpin social science in addition to British survey datasets 

which may be expected to best capture the associated phenomena.        
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Table 5.2. Seven broad themes through which classification variables will be selected. 

As can be seen in Table 5.2, it is possible to source a comparable survey 

dataset relative to each of the broad social science themes listed.  One would 

expect each of these surveys to contain variables of a similar nature (for 

example, the British Crime Survey should provide details on the Crime theme).  

Each of these datasets are made available to academic communities free of 

charge subject to agreeing to the respective terms and conditions.  One would 

expect the datasets listed to provide extensive details on the social scientific 

phenomena.  Common datasets include the BHPS and Health Survey for 

England, amongst others.  These survey datasets will each be used to 

determine the SAM variables put forward for inclusion in the individual-level 

classification.  This process of selection will be conducted as described in 

section 5.6. 

Theme (A-Z) 

GENESIS 

Project 

Theme 

Generic 

Social 

Science 

Theme 

Parallel-most Survey/s 

Crime   British Crime Survey (BCS) 

Education   

Pupil Level Annual Schools 

Census (PLASC) 

Employment   Labour Force Survey (LFS) 

Health(care)   

Health Survey for England 

(HSE) 

Housing 

  

General Household Survey 

(GLS) /  General Lifestyle 

Survey (GLS) 

British Household Panel 

Survey (BHPS) 

Retail (and 

consumption)   

Expenditure and Food 

Survey (EFS) 

Transportation   

National Travel Survey 

(NTS) 
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5.6. Selecting the Input Variables 
 

In order to select the SAM variables for inclusion in the classification, each of 

the sixty-eight real variables contained in the SAM file was contrasted with the 

eight surveys listed in Table 5.2 and a matrix was formulated denoting the 

level of inclusion.  For example, the variable ‘Accommodation Type’ (acctypa), 

as present in the SAM file, was searched for in each of the eight surveys.  

Depending on the number of times this variable was found (up to a maximum 

of eight), this value was recorded as that variable’s 'inclusion value'.  This 

process assigned each SAM variable with a rank value to then assist with 

variable selection (ranging from 0 (no reference) to 8 (reference in all eight 

surveys)).   

Table 5.3 shows this matrix and the resultant output from the rating process.  

Table 5.3 was sorted by SAM variable type; Individual (I), Household (H) or 

Family (F) as defined by the SAM data dictionary.   A green tick in Table 5.3 

denotes inclusion and a red cross denotes an absence in the survey datasets.  

The 'inclusion value' for each variable can then be seen in the right-hand most 

column. 

A lookup table for SAM variable abbreviations/definitions can be found in 

Appendix A.1. 
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 Table 5.3. (part 1): Sixty-eight SAM variables (2001) and their presence or non-presence in other survey 
datasets (sorted in order of appearance in the SAM file). 
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Accommodation Type

H
       

6

Use of Bath/Shower/Toilet

H
       

2

Cars/Vans owned or available for use

H
       

4

Type of communal establishment

H
       

2

Central heating

H
       

3

Status in communal establishment

H
       

0

DEFRA: Urban/rural

H
       

3

No. Residents per room

H
       

1

Accommodation furnished (Scotland)

H
       

4

Household education indicator

H
       

0

Household employment indicator

H
       

0

Household housing indicator

H
       

0

Household health & disability indicator

H
       

0

Household headship

H
       

2

No. Carers in the household

H
       

1

No. Employed adults in household

H
       

3

No. of household members with LLTI

H
       

3

No. of household members with poor health

H
       

2

No. usual residents in household

H
       

5

Social grade of household reference person

H
       

5

ID within country

H
       

0

Lowest floor level of household living 

accommodation

H
       

1

Occupancy rating of household

H
       

0

ONS LA indicator

H
       

1

Relationship to HRP

H
       

4

Number of floor levels (N.Ireland)

H
       

1

Number of rooms occupied in household space

H
       

1

Accommodation self-contained

H
       

Household with students away during term time

H
       

1

Tenure of accom. (country specific)

H
       

5

Family Type

F
       

0

Dependent children in family

F
       

5

Economic position of FRP

F
       

4

NS-SEC of FRP

F
       

4

Sex of FRP

F
       

3



 
Chapter 5: Devising a Framework: From Raw Data to Individual-Level Classification 

71 
 

 

 

Table 5.3. (Part 2): Sixty-eight SAM variables (2001) and their presence or non-presence in other survey 
datasets (sorted in order of appearance in the SAM file). 
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Age of respondents

I
       

8

County of birth

I
       

4

Community background - religion or religion brought 

up in (N.Ireland)

I
       

1

Country

I
       

5

Distance of move for migrants

I
       

0

Distance to work (inc. study in Scotland)

I
       

1

Economic activity (last week)

I
       

5

Ethnic group (country specific)

I
       

7

Ever worked

I
       

5

Generation indicator

I
       

0

General health over the last 12 months

I
       

2

Hours worked weekly

I
       

6

Local authority (GB) or Parliamentary Constituency 

(N.Ireland) [or other geography]

I
      

6

Year last worked

I
       

4

LLTI

I
       

2

Marital status

I
       

7

Migration indicator

I
       

0

Region of origin

I
       

0

NS-SEC (8 classes)

I
       

7

Record identified within country

I
       

0

Population base qualifier

I
       

0

Professional qualification (England and Wales)

I
       

5

Number of hours care provided per week

I
       

2

Level of highest qualification (16-74) (country 

specific)

I
       

5

Region of usual residence

I
       

4

Religion (country specific)

I
       

1

Sex

I
       

8

Schoolchild / student in full-time education

I
       

4

Supervisor/Foreman

I
       

0

Term-time address of students / schoolchild

I
       

0

Transport to work, UK (inc to study in Scotland)

I
       

3

Size of workforce

I
       

3

Workplace

I
       

2
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An inspection of Table 5.3 suggests that very few variables possess 

particularly high inclusion values.  Only two SAM variables were contained in 

each of the eight survey datasets and unsurprisingly, these are fundamental 

person-level characteristics; the age and sex of the respondent.  To the 

contrary, it is surprising that 25% of the SAM variables were not included 

across any of the surveys, however, one must be aware that such data do 

include more unconventional variables such as ‘Population Base Quantifier’ 

and ‘Supervisor/Foreman’ and may be defined subtly differently by the 

respective survey data dictionaries.   The latter mentioned variables are only 

included in the list for the purpose of completeness.  Such variables will not be 

considered for inclusion in the final classification.         

Table 5.4 summarises the counts given in Table 5.3 though cumulative 

summation where X = total number of survey datasets. 

Threshold 

(X = Number of 

Survey Datasets) 

Number of SAM Variables 

Percentage (%) 

Inclusion 

(to two decimal 

places) 

x=8 2 2.94 

x≥ 7 5 7.35 

x≥ 6 8 11.76 

x≥ 5 17 25.00 

x≥ 4 26 38.24 

x≥ 3 33 48.53 

x≥ 2 41 60.29 

x≥ 1 51 75.0 

x≥ 0 68 100.00 

 

  Table 5.4.   SAM variable inclusion values across all eight survey datasets. 
 

As stated by Openshaw and Wymer (1995), variable numbers should be kept 

to a minimum; one should test for multi-collinearity and not be afraid to make 

selections based on intuition or, according to Gibson and See (2006), trial and 
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error (iteration).  For the purpose of demonstrating this framework, any SAM 

variable with an inclusion value equal to or greater than five is used (thus, a 

variable present in at least half of the survey datasets).  The classification 

therefore comprises seventeen independent person-level variables (~23% of 

the SAM file) as listed in Table 5.5. In addition, variables defined as Scotland, 

Wales or Northern Island are included here should the framework need to be 

applied to alternative regions of the UK outside of England.  The list also 

includes the unique record identifier.  Further rationale for the selection 

process is provided in section 5.5. 

Variable Type 

Country Nominal 

Record identifier within country Nominal 

Local authority (GB) or parliamentary constituency 
(NI) Nominal 

Age of Respondents Interval 

Cars/Vans Owned or Available for Use Interval 

Central Heating Dichotomous 

Country of Birth Nominal 

Ethnic Group for England and Wales Nominal 

Ethnic Group for Northern Ireland Nominal 

Ethnic Group for Scotland Nominal 

Family Type Nominal 

General Health Over the Last Twelve Months Nominal 

Number of Usual Residents in Household Interval 

Hours Worked Weekly Interval 

Marital Status Nominal 

Relationship to HRP Nominal 

Number of Hours Care Provided per Week Interval 

Level of Highest Qualifications (Aged 16-74, EWN) Ordinal 

Level of highest qualifications (16-74) Ordinal 

Sex Dichotomous 

NS-Social Economic Classification - 8 Classes Nominal 

Table 5.5. Selection of variables for SAM individual-level classification. 

It is important to note that each of the variables put forward for adoption in the 

classification (Table 5.5.) are present in the BHPS.  As discussed later in 

section 5.12, this is fundamental to the proposed framework.  Also 

fundamental are the data types, again shown in Table 5.5, and discussed in 

detail in section 5.10. 

The variables in Table 5.5 were also compared to those included in  the 

Output Area Classification (see Vickers, 2006) plus other more purpose-

specific classifications which focus on subject-areas closely aligned to 

GENESIS’ key themes (Crime, Education, Employment, Health(care), 
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Housing, Retail (and consumption), Transportation).  Examples include Abbas 

et al. (2009), Burns (2009) and Picket and Pearl (2001).  It was determined 

that only (1) Relationship to Family Reference Person, (2) Sex and (3) 

Number of Hours Worked per Week were not present in the OAC (2001) but 

they were present in related classifications (e.g. Abbas et al., 2009, Burns 

(2009) and Picket and Pearl (2001)). Thus the choice of variables in the 

individual-based classification presented in this research aligns closely to 

previous area-based classifications that use census data. 

5.7. Proposed Technique/s for Classification 
 

The classification for this research will be undertaken through implementing a 

cluster algorithm, as opposed to any simple index calculation (like the IMD).  

Clustering can be defined as the process of organising objects in a database 

into clusters (or groups) such that objects within the same cluster have a high 

degree of similarity, while objects belonging to different clusters have a high 

degree of dissimilarity (Kaufman and Rousseeuw, 1990).  See section 2.2 for 

a greater discussion of clustering techniques.  

 
Given the dependence on individual-level data in this research, it is difficult to 

make use of standard classification techniques which partition data to form 

homogeneous clusters, for example K-Means, in their standard form.  

Furthermore, the variables in the SAM are of three kinds: dichotomous, 

categorical – nominal and categorical – ordinal, which do not lend themselves 

to simple K-Means operating on continuous variables only.  The definitions of 

these data types are presented in Sections 5.7.1 to 5.7.3.   

5.7.1. Nominal (Categorical) 
 

A nominal variable is represented by categories with no intrinsic ranking (from 

the point of view of intensity); for example, nominal variables contained in the 

SAM include religious affiliation and ethnic group. Further common examples 

of nominal variables include region, postcode, or any other geographical 

reference (SPSS Log, 2006). 

5.7.2. Ordinal (Categorical) 
 

A variable can be treated as ordinal when its values represent categories with 

some intrinsic ranking (SPSS Log, 2006); for example, ordinal variables in the 

SAM include age and highest level of qualification. It should be noted that 
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although such variables represent some degree of polarity, it is not usually 

possibly to conduct arithmetic operations with them as it depends on the 

relations among categories (Rezanková, 2009). 

 
5.7.3. Dichotomous  
 

Dichotomous variables are often coded by the values zero and one and 

contain two opposite categories. Although dichotomous variables are often 

likened with nominal data, for similarity measuring it is necessary to take into 

account whether the variables are symmetric or asymmetric. To use SAM 

examples, in the first case, both categories have the same importance, for 

example Sex: male and female. In the second case, one category is regarded 

as more important (depending on the classification purpose), for example, 

ever worked: yes or no (Rezanková, 2009). 

 

5.8. Why Not Conventional K-Means? 
 

As mentioned in section 5.7, conventional classification methods are 

inappropriate in their common form due to the data types contained within the 

SAM file.  K-Means clustering is widely used for partitioning large datasets into 

homogeneous clusters and is often the first technique considered when 

pursuing a cluster-led approach (Jain and Dubes, 1988).  K-Means is defined 

as an iterative relocation algorithm based upon an error sum of squares 

measure (ibid). The fundamental operation of the algorithm is to move a case 

from one cluster to another to see if the move would enhance the sum of 

squared deviations within each cluster (Aldenderfer and Blashfield, 1984 cited 

in Vickers, 2008).  The case will then be allocated (or re-allocated) to the 

cluster to which it brings the maximum improvement. The next iteration takes 

place when all the cases have been processed. A stable classification is 

therefore achieved when no moves occur during a full iteration of the data.  

After clustering is complete, it is then possible to inspect the means of each 

cluster (or cluster centres) for each case in order to gauge the distinctiveness 

of the clusters (Everitt et al., 2001 cited in Vickers, 2008). 

Despite K-Means' widespread usage within geodemographics and clustering 

in general, it is not always applicable.  Batcher (2000) lists three 

disadvantages with the technique.  Firstly, variables must be commensurable 

(Fox, 1982 cited in Batcher, 2000).  This means that interval, ratio or any non-

continuous variable must be reconfigured in scale format.  Secondly, each 
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pattern (or case) is assigned deterministically to one cluster and one cluster 

only (hence ‘crisp’ geodemographics) and thirdly, no accepted statistical basis 

exists for the technique, although it seems that many approaches are currently 

available, for example Bryant (1991). 

It is the first of these three points, as raised by Batcher (2000), which is of 

greatest relevance in this research.  As mentioned previously, conventional 

clustering algorithms are unable to handle data of differing types.  K-Means 

classifications (and related methods) are capable of effectively handling 

continuous numerical data once standardisation and polarity have been 

ensured.  Polarity, in this case, refers to incorporating only data that run in the 

same direction – hence where high values in all variables are positive and low 

values negative (excluding any variables than may be regarded as neutral).  

Such algorithms can also successfully work with ordinal data (hence a degree 

of ranking). These methods then proceed through a clustering algorithm to 

formulate X number of distinct clusters as defined by the user of the relevant 

software package (such as SPSS).  However, such methods will not usually 

successfully classify data based on a combination of, for example, categorical 

ordinal and nominal variables.  Batcher (2000) does propose a solution to this 

issue which involves the replacement of distances (as used in K-Means) with 

probabilities to form a probabilistic clustering model, however, the 

assessments were less than favourable. 

San et al. (2004) also present an alternative extension of the K-Means 

algorithm to ensure the successful clustering of mixed data; categorical 

(nominal and ordinal) and scale / numerical.  This method introduces a new 

notion of cluster centres called representatives for categorical objects.  This 

works on the basis that arithmetic operators are totally redundant with 

categorical objects and thus fuzziness is applied to define representatives 

instead of arithmetic cluster means (ibid).  With this notion, the authors state 

how it is also possible to formulate a clustering procedure of categorical 

objects as a partitioning problem in a fashion similar to that of K-Means 

clustering. 

 
As K-Means in its conventional form is not appropriate, two other classification 

approaches were considered here; Decision Tree Classification and Adapted 

K-Means Classification.  Sections 5.9 and 5.10 will discuss both of these 

approaches in turn. 
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5.9. Decision Tree Classification 
 

With the variables contained in the SAM spanning both nominal (e.g. family 

type) and ordinal (e.g. age) data-types, and even variables such as NS-SEC 

which, although nominal by design, are perceived to follow an ordinal 

structure, it is important to make use of a technique capable of handling such 

categorical data and decision trees are one such approach.    

There has been considerable work in the field of ‘decision tree learning’ with 

regards to variable categorisation and cluster analysis when working with data 

of differing types, including some work in a geographical context.  Rokach and 

Maimon (2005) present an assessment of modern-day methods for using 

decision trees as a means of classification. 

Rokach and Maimon (2005) discuss how decision trees are structured in a 

data mining context; “A decision tree is a classifier expressed as a recursive 

partition of the instance space” (p.2).  This means that decision trees conduct 

a separation of all available examples until a solution is reached.  A tree’s 

structure consists of nodes which form a rooted tree, meaning it is a directed 

tree with a node called a root that has no incoming edges.  All remaining 

nodes have just one incoming edge. A node with an outgoing edge is termed 

an internal node (hence, within the tree structure – below the root itself).  And 

any remaining nodes are classed as leaves (ibid).   

 
In the decision tree, each internal node splits the instance space (or available 

examples) into two or more subspaces according to a certain function of the 

input attributes values. In the simplest and most frequent case, each test 

considers a single attribute, such that the instance space is partitioned 

according to the attribute’s value. In the case of numeric attributes, the 

condition refers to a range (ibid).   

 
Each leaf is allocated to one class representing the most suitable target value. 

Alternatively, the leaf may hold a probability vector indicating the probability of 

the target value having a specific value. 

 
Instances are classified by navigating from the root of the tree down to a leaf, 

according to the outcome of the tests along the path (ibid). 
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Such an approach would seem a sound choice given its ability to (1) handle 

data of differing types (including data not in continuous / scale format) and (2) 

successfully partition data until effective clusters are reached.  Hence, it has 

an ability to work with data applicable to this research project and determine 

best-fit groupings through a process of cluster analysis.  

 
5.10. Adapted K-Means Classification 
 
The second proposed approach concerns the use of conventional K-Means 

classification methods albeit using modified data.  For example, Huang (1998) 

proposes two algorithms which extend the K-Means algorithm to categorical 

domains and domains with mixed numeric and categorical values but 

concludes that the complexities associated with such approaches are not 

necessarily worth the time expense when contrasted with alternative 

approaches.   

 

The point made by Huang (1998) is that any data of a categorical nature is 

very difficult to incorporate into a K-Means algorithm in its original state.  In 

this research, all SAM variables are coded in this way, for example, Marital 

Status is nominal; 1 = Single, 2 = Married, 3 = Separated / Widowed / 

Divorced.  Running such values through a hierarchical K-Means algorithm will 

not produce effective results, largely due to the fact that the data are 

categorical and clustering will take place based on the value alone which is 

unlikely to be indicative of the individual as it does not have any direct 

meaning.  Furthermore, the mathematical difference (magnitude) in value 

between 1 and 2 (Single and Married) and 2 and 3 (Married and Separated / 

Widowed / Divorced) is the same and thus the clustering algorithm will 

partition the data with equal separation between categories even if, in reality, 

the difference is likely to be more pronounced.  For example, a person 

attributed with a value of 2 (Married), based on clustering nominal data, is 

equally like somebody who is 1: Single and 3: Separated / Widowed / 

Divorced.  In reality, one may expect persons Married or Separated / Widowed 

/ Divorced to be more like each other than somebody defined as Single. 

 

If three clusters were formed based on the above example (one variable) and 

adopting the nominal data structure, one may except results similar to those 

given in Figure 5.3 (a).  However, in reality the data should identify how close 

or otherwise people in the groups are relative to one another and look more 
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like Figure 5.3 (b).  In order to achieve this, an independent variable must be 

employed to convert certain data types (nominal and sometimes ordinal) into a 

continuous format to enable the effective clustering of individuals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. (a) Nominal marital status data clustering and (b) Continuous marital status 
data clustering. 

 

The above discussions and illustration given in Figure 5.3 consequently 

provides reason to convert the SAM data into a continuous format based on 

an independent variable and adopt an adapted K-Means approach.   

 

5.11. Completing the Categorical to Continuous Conversion Process 
 

In order to make the transition from categorical to continuous data, various 

openly available independent variables were considered.  Variables reflecting 

income and/or wealth were favoured given the need for a continuous scale.  

With no such variables present in the census (excluding proxy measures), the 

British Household Panel Survey (BHPS) was selected.  The ‘Monthly Gross 

Income’ variable is the fundamental variable from within this dataset that 

reflects income (BHPS ref: RPAYG) and hence this was selected over other 

less complete options such as 'Last Payment Received', 'Income in X Month', 

'Annual Labour Income', 'Household Income', etc.   The variable selected for 

this process is most complete with regards to individual responses.  Gross 

Monthly Income also offers the possibility of re-scaling to annual (estimated) 

income if necessary. 

= Cluster 
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ID Country LA Code Age Sex

Car 

Ownership

Central 

Heating Health

Marital 

Status

11283325 1 67 30 2 2 1 1 3

11283381 1 67 30 1 1 2 2 1

11283448 1 67 30 1 1 2 1 1

11283449 1 67 30 1 0 2 1 2

11283450 1 67 30 1 0 1 1 2

11284353 1 67 30 2 2 1 2 3

11284354 1 67 30 2 1 1 1 2

11284355 1 67 30 2 2 2 1 1

Each of the variables selected to form this classification were transformed into 

monetary values based on this BHPS variable.  This was achieved by 

sourcing the equivalent SAM variable in the BHPS and recording the average 

gross monthly income for persons falling into each category.   Inevitably, in 

order for this process to work efficiently, each of the variables selected for use 

in the classification had to be present in the BHPS and this was also taken into 

account at the variable selection phase.    

 
Table 5.6 illustrates the original categorical data and Table 5.7 displays the 

results of this transition process.  This process was largely automated through 

a program developed in Fortran designed to look-up and replace values in 

large datasets. 

 
It should be noted that the data displayed in Table 5.6 and Table 5.7 is only a 

subset of the data to be used in the classifications (in this instance for Leeds), 

in terms of the number of individual records and the number of variables.  It 

does, however, give a clear indication of the results of the conversion process. 

 

Table 5.6. Original SAM data prior to conversion to gross monthly income. 

Table 5.7. Newly created gross monthly income values for each SAM category based 

on BHPS. 
 

Continuing with the marital status example discussed earlier in this section, 

recall that the value ‘1’ under Marital Status (Table 5.6) denotes that the 

individual listed in this record is Single (never married).  The value ‘2’ denotes 

Marriage, and the value ‘3’ denotes that this person is Separated / Widowed / 

Divorced.  Once converted to grossly monthly income, the results are as 

ID Country LA Code Age Sex Car Ownership

Central 

Heating Health

Marital 

Status

11283325 1,131.58 67 1,702.20 1,392.84 1,077.38 1,793.19 1,826.79 1,468.27

11283381 1,131.58 67 1,702.20 2,225.09 923.26 1,478.51 1,626,93 1,516.29

11283448 1,131.58 67 1,702.20 2,225.09 923.26 1,478.51 1,826.79 1,516.29

11283449 1,131.58 67 1,702.20 2,225.09 549.68 1,478.51 1,826.79 2,006.11

11283450 1,131.58 67 1,702.20 2,225.09 549.68 1,793.19 1,826.79 2,006.11

11283453 1,131.58 67 1,702.20 1,392.84 1,077.38 1,793.19 1,626,93 1,468.27

11283454 1,131.58 67 1,702.20 1,392.84 923.26 1,793.19 1,826.79 2,006.11

11283455 1,131.58 67 1,702.20 1,392.84 1,077.38 1,478.51 1,826.79 1,516.29



 
Chapter 5: Devising a Framework: From Raw Data to Individual-Level Classification 

81 
 

follows; Single individuals have an average gross monthly income of 

£1,516.29 (Table 5.7), those married earn on average £2,006.11, whereas 

those who are now separated / widowed / divorced tend to take home around 

£1,468.27 gross income per month.  As can be seen from these statistics, 

people who are legally defined as single are far more similar to those who are 

separated / widowed / divorced than they are to those involved in a marriage 

as far as income is concerned.  The movement of data from a categorical 

(nominal) format into a continuous format is therefore hugely beneficial for 

clustering purposes.  If clustering were to take place using the original 

categorical variables, naturally somebody defined as single (value 1) and 

somebody separated (value 3) would be regarded as being highly dissimilar 

on a 1 to 3 scale with individuals involved in a marriage (value 2) residing 

somewhere in-between. 

 
One should also note that the gross income figures listed above are averaged 

across the entire population (including those out of work, e.g. under 16’s, 

retired, unemployed) and are therefore lower than any average official salary 

estimates noted elsewhere.  Without incorporating the entire population, the 

process would be misleading.  Nevertheless, for the purpose of effective 

clustering, it is the magnitude and level of difference of values between 

groupings which is of most importance – more so than producing accurate 

salary estimates.  This is a key point to raise as simply attributing individuals 

with estimates of income is not the principal purpose of this process. 

 
In order to fully facilitate the process shown above, each of the SAM variables 

selected for inclusion in the classification were sourced within the BHPS.  

Once located, the variables were extracted together with the Gross Rate of 

Pay Per Month variable (ref: RPAYG variable in BHPS table RINDRESP).  

This then enabled the gross monthly income to be calculated by taking the 

average of the income variable once broken-down by SAM grouping. 

 

A certain re-coding of the data was necessary due to the structure / 

aggregation of the data between the SAM and BHPS.  For example, some 

variables in the BHPS are continuous (e.g. age, hours worked per week, 

number of care hours provided) and therefore needed to be aggregated up to 

match the categories as put forward by the SAM.  This was a simplistic 

summation process.  However, other BHPS variables are also categorical and 
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if the categorical variables in the BHPS fail to match the categorical variables 

in the SAM then some data matching is necessary – and this is not always 

straightforward.  For example, the BHPS contains a far greater number of 

groupings for Marital Status than the SAM thus requiring some interpretation 

and matching.  For example, taking Marital Status as an example once more, 

the SAM groups all individuals into one of three [legal] categories; Single 

(never married), Married / re-married and Separated (but still legally married) / 

divorced / widowed.  The BHPS separates individuals into nine groupings – 

including several extra categories not covered by the SAM, for example: Living 

as a couple, Have a dissolved civil partnership, Separated from a civil 

partnership and Surviving partner of a civil partnership.  Clearly, matching 

these individuals into the categories as put forward by the SAM required some 

decisions to be made. Nevertheless, by following these principles and making 

some informed decisions, each variable was transformed into a monetary 

value and therefore of a format more suitable for a K-Means algorithm.  Figure 

5.4 illustrates the process through which Marital Status within the BHPS was 

matched to that in the SAM.  A similar matching process was also necessary 

for several other variables, including: Relationship to HRP (30 BHPS vs. 6 

SAM categories), NS-SEC (33 BHPS vs. 8 SAM categories). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4. Example of problems faced when re(aggregating) data from BHPS to 
match SAM categories.  
 

The completed table of results for each of the variables selected for the 

classification and their respective gross monthly income values can be seen in 

Table 5.8.  For the purpose of ease of interpretation / reading, alternative rows 

have been made bold. 
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Table 5.8 clearly indicates a widespread distribution of gross monthly earnings 

across each of the variables and their separate aggregation categories.  As 

mentioned previously, the monetary values are marginally less than one would 

expect individuals to earn per month in many cases, however, such is the 

need to encompass the full population within the classification, all earnings 

were averaged across the full spectrum of society and thus take into 

consideration those out of or ineligible to work (hence an income of zero – with 

any additional payments, e.g. benefits, excluded).  The age variable is a 

perfect example of this and demonstrates that the chosen method does work 

and that the results reflect some degree of expectancy – across a normal 

distribution in this case. 

Each of the variables listed in Table 5.8 display results that one would expect 

– at least with respect to the differences between variable categories.  Socio-

Economic Classification does show some unexpected variations as does 

Ethnic Group and Number of Hours Worked per Week, however, the latter can 

probably be explained by more menial employment requiring longer working 

hours and hence less overall pay.  There is also some unexpected variation in 

Country (of residence), however, for the purpose of the England 

classifications, this does will not affect the results. 
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SAM Variable Ref# SAM Variable 
Name 

Average Monthly Gross Earnings 
(from BHPS, (re)aggregated based on 

SAM categories) [UK£] 

2 Country England: £1,131.58 
Scotland: £972.54 
Wales: £1,209.62 
Ireland: £1,462.50 
Other: £1,197.32 

7 Age of 
Respondents 

0-4: £0.00 
5-9: £0.00 
10-15: £0.59 
16-19: 411.34 
20-24: £839.86 
25-29: £1,467.78 
30-39: £1,702.20 
40-49: £1,837.32 
50-59: £1,582.41 
60-64: £1,107.10 
65-74: £547.64 
75-84: £21.31 
85+: £0.00 

9 Cars/Vans Owned 
or Available for 
Use 

3+: £1,021.09 
2: £1,077.38 
1: £923.26 
0: £549.68 

11 Central Heating Yes: £1,793.19 
No: £1,478.51 

13 Country of Birth England: £1,131.58 
Scotland: £972.54 
Wales: £1,209.62 
Ireland: £1,462.50 
Other: £1,197.32 

20 Ethnic Group for 
England and 
Wales 

White British: £1,138.49 
White Irish: N/A 
Other White: £1,027.00 
Mixed – White & Black Carib/Black 
African/Black Other: £2,500 
Mixed - White and Asian/Other 
Mixed/Other: £2,500 
Indian (Asian/Asian British): N/A 
Pakistani (Asian/Asian British): N/A 
Bangladeshi (Asian/Asian British): 
N/A 
Other Asian (Asian/Asian British): 
£1,946.50 
Caribbean (Black/Black British): N/A 
African (Black/Black British): £1,208.00 
Chinese: £944 
Other N/A 

 
Table 5.8. (Part 1): Results of categorical to continuous conversion process.  Income 
values are gross per month and are extracted from latest wave (18) of BHPS.  Bold 
vs. standard text on alternate is lines are simply to aid readability. 
 
 
 
 
 



 
Chapter 5: Devising a Framework: From Raw Data to Individual-Level Classification 

85 
 

 
 

SAM Variable Ref# SAM Variable 
Name 

Average Monthly Gross Earnings (from 
BHPS, (re)aggregated based on SAM 

categories)  [UK£] 

24 Family Type Lone parent: £1,298.31 
Married /cohabiting couple - no children: 
£1,952.67 
Married/ cohabiting couple – children: 
£1,761.74 
Ungrouped individual (not in a family): 
£2,021.30 

31 General Health 
Over the Last 
Twelve Months 

Good: £1,826.79 
Fairly Good: £1,626,93 
Not Good: £1,550.65 

41 Number of Usual 
Residents in 
Household 

0-1: £2,002.65 
2-4: 1,020.31 
5+: £496.26 

42 Hours Worked 
Weekly 

1-15: £393.24 
16-30: £1,021.02 
31-37: £2,197.04 
38-48: £2,111.21 
49+: £2,759.27 

47 Marital Status Single (nvr married): £1,516.29 
Married: £2,006.11 
Sep/Div/Wid: £1,468.27 

53 Number of Hours 
Care Provided per 
Week 

0: £1,799.41 
1-19: £1,698.63 
20-49: £0.00 
50+: £0.00 

54 Highest 
Qualification 

No Quals: £1,172.70 
Level 1: £1,244.60 
Level 2: £1,269.28 
Level 3: £1,656.19 
Level 4/5: £2,602.94 
Other: 1,654.20 

60 Relationship to 
HRP 

Household Reference Person: £1,813.24 
Husband or wife: £1,425.60 
Partner: £1,279.45 
Son or daughter/ Step-child: £190.90 
Other related: £361.83 
Unrelated: £466.47 
Unknown: £1,382.20 

64 Sex Male: £2,225.09 
Female: £1,392.84 

74 NS-SEC 8 
Classes 

Large employers & higher managerial 
occupations: £3,906.41 
Higher professional occupations: £2,770.11 
Lower managerial and professional 
occupations: £2,263.30 
Intermediate occupations: £1,411.17 
Small employers and own account 
workers: £0.00 
Lower supervisory and technical 
occupations: £1,820.76 
Semi-routine: £989.87 
Routine occupations: £1,105.30 
Never worked and long-term 
unemployed: £0.00 

Table 5.8. (Part 2): Results of categorical to continuous conversion process.  Income 
values are gross per month and are extracted from latest wave (18) of BHPS.   

 



 
Chapter 5: Devising a Framework: From Raw Data to Individual-Level Classification 

86 
 

5.12. Refinements to Data Structure 
 

At this stage, data for both Leeds and Richmondshire were in a form ready for 

clustering following the data conversion process described in section 5.11.  

However, in line with previously stated observations made about the SAM age 

variable (see Table 5.8) and the gross income BHPS variable used to instigate 

this categorical to continuous conversion, some slight alterations were made 

to the data.  Figure 5.5 illustrates how, under the current structure, 

differentiating between the young and elderly is difficult given that both are 

attributed very similar levels of gross (earned) income. 

 

Figure 5.5.  Graph illustrating results from age variable transformation into gross 

monthly income.  

As can be seen in Figure 5.5, persons in age groups 0-4, 5-9 and 10-15 

unsurprisingly do not earn form any income.  The graph then proceeds in an 

upward direction whereby an individuals' gross monthly income increases by 

age, peaking at circa fifty years of age.  Monthly earned income then gradually 

starts to decrease (excluding pensions, benefits etc) before falling in line with 

those in the early age groups when it reaches persons 85+.  Due to the curved 

nature of the graph and the mirroring of average income across age groups, 

variables deemed to be ordinal in their structure and of a format suitable for 

clustering in their original forms will remain as such.  The variables in question 

are: (1) Age, (2) Number of Hours Worked Per Week, (3) Number of Care 

Hours Provided, (4) Number of Residents in Household and (5) Number of 

Cars/Vans Available for Use.   
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With further irregularities identified in the income transition process for certain 

of the above named variables (for example, persons with access to 2 cars/van 

earning more per month than those with access to 3+ cars), this would seem 

like a rational decision. 

For the purpose of completeness, it should be noted that in the SAM file all 

age groups are recorded by the first age to form that category.  For example, 

somebody residing on the 0-4 age group is recorded as 0, somebody in the 5-

9 age group is recorded as 5.  Such values are deemed suitable for the 

purpose of illustrating this framework.  With regards to 'Hours Worked per 

Week' and 'Number of Care Hours Provided', the values provided are linked to 

groupings, for example 1 refers to 1-15 hours.  In cases such as this, the 

higher number of the category is utilised.  Therefore, in the example 1-15 

hours, fifteen is put forward for clustering.  A similar process is employed with 

the variable 'Number of Usual Residents in Household'.  

The National Socio-Economic Classification (NS-SEC 8 Classes) variable also 

underwent some refinements.  This variable was considered suitable for 

classifying under its original data structure (despite being nominal by 

definition) in the same way as the five variables stated above (e.g. 1 - Large 

employers & higher managerial occupations, 2 - Higher professional 

occupations, 3 - Lower managerial and professional occupations etc).  

Leaving this variable in its original form was considered mainly due to the fact 

that two of the categories are incomplete.  However, regardless of the fact that 

this variable is not designed to be hierarchical (ONS, 2010) it was decided to 

keep this in continuous monetary form and estimate the two missing 

categories based on a combined average of the two nearest categories, or, in 

the case of the final category, an overall positional average.  Similar to the 

importance of gauging how (dis)similar individuals in the marital status 

category are, the same thought process applies here. 

Table 5.9 displays the full collection of variables and the data structures 

adopted. 
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Table 5.9. (Part 1): Final variables and their composition ready for classification. Bold 
vs. standard text on alternate are lines is simply to aid readability. 

 
  

SAM 
Variable 

Ref# 

SAM Variable Name Data format Format Recorded for 
Classification Illustration 

2 Country Gross Monthly 
Income 

England: £1,131.58 
Scotland: £972.54 
Wales: £1,209.62 
Ireland: £1,462.50 
Other: £1,197.32 

7 Age of Respondents Original Data 0-4: 0 
5-9: 5 
10-15: 10 
16-19: 16 
20-24: 20 
25-29: 25 
30-39: 30 
40-49: 40 
50-59: 50 
60-64: 60 
65-74: 65 
75-84: 75 
85+: 85 

9 Cars/Vans Owned or 
Available for Use 

Original Data 3+: 3 
2: 2 
1: 1 
0: 0 

11 Central Heating Gross Monthly 
Income 

Yes: £1,793.19 
No: £1,478.51 

13 Country of Birth Gross Monthly 
Income 

England: £1,131.58 
Scotland: £972.54 
Wales: £1,209.62 
Ireland: £1,462.50 
Other: £1,197.32 

20 Ethnic Group for 
England and Wales 

Gross Monthly 
Income 

White British: £1,138.49 
White Irish: N/A 
Other White: £1,027.00 
Mixed – White & Black 
Carib/Black African/Black 
Other: £2,500 
Mixed - White and Asian/Other 
Mixed/Other: £2,500 
Indian (Asian/Asian British): 
N/A 
Pakistani (Asian/Asian British): 
N/A 
Bangladeshi (Asian/Asian 
British): N/A 
Other Asian (Asian/Asian 
British): £1,946.50 
Caribbean (Black/Black 
British): N/A 
African (Black/Black British): 
£1,208.00 
Chinese: £944 
Other N/A 



 
Chapter 5: Devising a Framework: From Raw Data to Individual-Level Classification 

89 
 

SAM 
Variable 

Ref# 

SAM Variable Name Data format Format Recorded for Classification 
Illustration 

24 Family Type Gross Monthly 
Income 

Lone parent: £1,298.31 
Married /cohabiting couple - no 
children: £1,952.67 
Married/ cohabiting couple – 
children: £1,761.74 
Ungrouped individual (not in a family): 
£2,021.30 

31 General Health Over the 
Last Twelve Months 

Gross Monthly 
Income 

Good: £1,826.79 
Fairly Good: £1,626,93 
Not Good: £1,550.65 

41 Number of Usual 
Residents in Household 

Original Data 
(average) 

0-1: 1 
2-4: 4 
5+: 5 

42 Hours Worked Weekly Original Data 
(average) 

1-15: 15 
16-30: 30 
31-37: 37 
38-48: 48 
49+: 49 

47 Marital Status Gross Monthly 
Income 

Single (nvr married): £1,516.29 
Married: £2,006.11 
Sep/Div/Wid: £1,468.27 

53 Number of Hours Care 
Provided per Week 

Original Data 
(average) 

0: 0 
1-19: 19 
20-49: 49 
50+: 50 

54 Highest Qualification Gross Monthly 
Income 

No Quals: £1,172.70 
Level 1: £1,244.60 
Level 2: £1,269.28 
Level 3: £1,656.19 
Level 4/5: £2,602.94 
Other: 1,654.20 

60 Relationship to HRP Gross Monthly 
Income 

Household Reference Person: 
£1,813.24 
Husband or wife: £1,425.60 
Partner: £1,279.45 
Son or daughter/ Step-child: £190.90 
Other related: £361.83 
Unrelated: £466.47 
Unknown: £1,382.20 

64 Sex Gross Monthly 
Income 

Male: £2,225.09 
Female: £1,392.84 

74 NS-SEC 8 Classes Gross Monthly 
Income (+ one 
averaged 
category) 

Large employers & higher 
managerial occupations: £3,906.41 
Higher professional occupations: 
£2,770.11 
Lower managerial and professional 
occupations: £2,263.30 
Intermediate occupations: £1,411.17 
Small employers and own account 
workers: £1,615.57 
Lower supervisory and technical 
occupations: £1,820.76 
Semi-routine: £989.87 
Routine occupations: £1,105.30 
Never worked & long-term unemp: 
£0 

Table 5.9. (Part 2): Final variables and their composition ready for classification. 
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5.13. Cluster Analysis 
 

The clustering K-Means method was then applied in the same manner as 

outlined in section 4.6.  The number of clusters was experimented with based 

on suggestions made by Milligan (1996) and Gibson and See (2006) until an 

optimal solution was reached.  The results are presented and critiqued in 

chapters 6 and 7.  

5.14. Supplementing with Small-Area Geography 
 

As emphasised by Farr and Webber (2001), the benefits of moving from areal 

to individual-level classification are “intuitively obvious” (p.58). However, 

despite the distinct advantages, it is also important to emphasise the value of 

geography to the classification and steer clear of a sociological classification 

of individuals.  

Despite the fact that a system classifying individuals is predicted to bypass 

many of the problems observed in area-based systems, it is important to 

consider the notion of space and this is best emphasised by Harrow et al. 

(1991).  Harrow et al. (1991) discuss the social characteristics of 

neighbourhood on voting behaviour and conclude that the immediate area in 

which people live is strongly correlated with how they vote, and this 

relationship persists despite controlling for individual characteristics.  Likewise, 

Rice and Sumberg (1997) emphasise how newspaper readership may be as 

much a function of education as it is community and thus, the decision on 

which newspaper to read is not merely a decision made solely by the 

individual but one impacted upon by various external pressures. 

 

The above information is important in the context of this classification as not 

only is it necessary to maintain the geographical element given the research 

area but also a firm understanding is required of how an individual’s 

characteristics arise.  SAM variables such as ‘general health over the last 

twelve months’ may be influenced as much by environment as the individual 

themselves and this must not be overlooked.  Classifications constructed at 

the postcode or output area level can easily identify such patterns, however, 

when working with SAM data which is referenced only to local authority level 

in England, Scotland and Wales and parliamentary constituency level in 

Northern Ireland, such observations are far easier to overlook.  As a result, 

this classification must make use of a novel method to incorporate 
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neighbourhood into its findings.  This will be achieved by linking the 

classification to a microsimulated dataset. 

 

The datasets in question have been produced through combinatorial 

optimisation (simulated annealing) by Heppenstall (date unknown).  In the 

case of Leeds, the data are complete (715,402 persons (2001)) and 

synthesised at output area level (2,438 areas) with constraint data acquired 

from the Census of Population via CASWEB (2001) and survey data courtesy 

of the British Household Panel Survey. 

 

The sole purpose of this link is to attribute each member of the complete 

population a cluster code based on the classification generated on the 

modified SAM data.  This will then ensure all members of the population have 

a cluster code (indicative of their behaviour, traits etc) and also an output area 

reference enabling the aforementioned notion of neighboured to be assessed.  

Should this be based purely on the SAM data, any analysis would be 

restricted to the local authority level and hence the influence of neighbourhood 

would be lost. 

This link is instigated through converting all variables common between the 

microsimulated dataset and the SAM file into SAM-identical format (hence 

monetary income values or equivalent).  Then, through a process akin to that 

of Sum of Squares, the cluster codes are matched across.  This is instigated 

by calculating the Euclidean distance between the variables in the 

microsimulation and the cluster centres from the classification.  Then the 

cluster with the minimum distance is assigned to that microsimulated 

individual.  

5.15. Validation and Enrichment 
 

The final phase of this research will undertake a combined validation and 

enrichment exercise.  Given the predominant census make-up of the 

classification (supplemented by BHPS), the ability to link the final output to 

external non-census datasets will provide a means of profiling far deeper 

against more behavioural (or non-census) datasets.  No only will this add 

value to the classification but it can also be used for validation.  For example, 

one may expect any cluster categorised as being predominantly young, city-

living types to being technologically advanced.  Given that a system built 
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entirely on census variables cannot benchmark against such a variable, the 

ability to link the classification to survey datasets like the BHPS which contains 

variables of this nature adds real value.  Furthermore, although the 

presentation of a framework to enable the construction of an individual-level 

general-purpose classification is the primary objective of this work, the ability 

to link (or 'bolt on') the classification to external datasets, such as those 

presented in Table 5.2, is a means of adopting the classification for a specific 

purpose should this be necessary.  For example, attaching the classification to 

the British Crime Survey or National Travel Survey enables the classification 

to adopt a firmer focus.  It also gives users of these external datasets an 

alternative method through which to view their data.  Chapters 6-7 will 

demonstrate this statistical link and the added benefit this can generate - both 

in terms of validation and enrichment. 

As with linking to the microsimulated dataset, this process will be achieved 

through statistical matching and the Sum of Squares technique and will be 

illustrated in forthcoming chapters. 

5.16. Summary and Conclusions 
 

This chapter has presented a detailed review of the framework through which 

an individual-level geodemographic system will be generated.  Although 

loosely linked to the structure proposed by Gibson and See (2006) and 

discussed in detail in chapter 4, the framework comprises a series of phases 

ranging from data selection (in this case linked to ‘inclusion values’) and data 

preparation (with regards to SAM-adapted data). 

The proposed framework is highly transferable and, given the sole reliance on 

census (SAM) data, can be applied readily for different regions of different 

data years (based on availability).  The framework proposed handles data of 

differing types and makes use of income data from the BHPS to re-code 

categorical data where necessary in a bid to emphasise the differences that 

exist between sub-variables (for instance, the variation in marital status 

between those recorded as Single, Married and 

Separated/Widowed/Divorced).  This data adaptation means that more 

conventional clustering methodologies can be employed to partition the data 

given its cluster-ready format.  The transferability of the framework for both 

further research and industrial applications is further emphasised in chapter 8 

where a flow diagram and process discussion is presented for wider adoption.     
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The following chapter will begin employing this framework on the case study 

regions of Leeds and Richmondshire.  As discussed in section 5.3, Leeds 

represents a sensible district on which to apply the methodology given 

personal social geography familiarity and due to a meaningful population size.  

Richmondshire, due to its dissimilarity to Leeds, also represents a useful 

district on which to test the framework. 
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Chapter 6: Presenting the SAM 
Individual-Level Classification 
 
6.1. Introduction and Chapter Preface 
 

The purpose of this chapter is to present the results generated from following 

the framework set out in chapter 5.  Specifically, this chapter will focus on 

classifying the populations of both Leeds and Richmondshire using the SAM-

adapted data.  This will be followed by as assessment of both areas' 

populations relative to the clusters produced. 

Chapter 7 will then extend this analysis through the linkage to a 

microsimulated dataset (for complete population modelling) and external non-

census datasets (for validation and enrichment). 

6.2. Framework Validation 
 

In line with the framework put forward in chapter 5, two classifications were 

developed, for Leeds and Richmondshire, using the cluster-ready SAM data.  

This cluster-ready (adapted) data refers to the newly coded data once 

transformed from categorical data into gross monthly income data (where 

applicable).  Recall that certain variables, such as Number of Cars per 

Household, remained in their initial formats given the ordinal structure and 

data direction / polarity (hence 0, 1, 2, 3+ etc). 

For the purpose of validating the framework, five clusters were agreed upon 

for both classification schemes.  This decision was largely down to the data 

loss that is generally experienced when extending beyond a higher number of 

groupings, something illustrated by the percentage of Within cluster Sums of 

Squared (%WSS) and to ensure ease of comparability between districts.  A 

test-run with five clusters also produced, on the most part, a sensible 

distribution of areas per cluster.    Furthermore, when classifications with 

greater/less than five clusters were trialled, the results were far from 

satisfactory and often resulted in individual clusters being highly dominant 

and, in many cases, one cluster describing in excess of sixty percent of the 

individuals.  For the purpose of completeness, it should be noted that the initial 

seed starting points were randomised during the K-Means classification 

process in a bid to ensure the classifications were not constructed based on 
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SPSS' default starting points.  This process involved providing an additional 

file containing the starting seeds which SPSS could read prior to segmenting 

the data.  Figure 6.1 illustrates how this process of seed randomisation is 

instigated in IBM SPSS (v.21).  Multiple classification runs with different initial 

seeds were generated so as to enable the classification with the optimal 

cluster differentiation to be selected in both cases.  In both cases, up to twenty 

runs were instigated and the most favourable outputs selected based on even 

cluster membership distribution and results. 

 

Figure 6.1.  IBM SPSS (v.21) 'K-Means Cluster Analysis' window showing the facility 
to read-in a file specifying cluster centres. 

An overview of the results of both the Leeds and Richmondshire 

classifications are shown in the following section.  

It should also be noted that although the selection of five clusters is likely to 

affect the outcome of the classification, given that the overarching purpose of 

this research is to propose a framework through which individual-level 

classifications can be undertaken, the number of proposed clusters is far less 

important than a demonstration of methods operating as planned.  Naturally, 

the level of differentiation and the extent to which the population is segmented 
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is dependent on the number of clusters in a geodemographic system, 

however, such a selection does not determine the success or failure of the 

underlying methods.  Differentiation can be evident at various levels and this 

framework aims to demonstrate this using a five cluster approach.  

6.3. Overview of Classification Results 
 

In the results that follow, sixteen variables are eligible for classification having 

been adapted in line with the individual-level classification framework (chapter 

5).  The only variable not deemed to add value to either of the proposed 

classifications to be illustrated here is the Country variable.  Given that Leeds 

and Richmondshire both reside in the country of England, the value attributed 

to this variable will not affect the classification outcome and has hence been 

removed.  Should this framework be used to develop a UK-wide classification 

or to contrast two areas in different countries (England, Wales, Scotland or 

Northern Island) then such a variable is worthy of use - hence its inclusion as 

part of the wider framework.  In this case, however, and in line with data 

redundancy rules, it has been removed.  The two classifications that follow 

therefore segment populations based on the remaining fifteen individual-level 

variables as shown in Figure 6.2. 

 

 

 

 

 

 

Figure 6.2.  Fifteen variables used in SAM-adapted classifications  
of Leeds and Richmondshire, England. 
 

Although all variables have been adapted and converted to monetary values in 

cases where an inherently categorical (nominal) structure was previously 

adopted (e.g. Marital Status), this conversion does not make the data entirely 

continuous.  The conversion was designed to move categories away from 

using nominal data structures (e.g. 1= Single, 2= married, 3= 

Widowed/Separated/Divorced) and instead emphasise the differences 

Age of Respondents 
Cars/Vans Owned or Available for Use 
Central Heating 
Country of Birth 
Ethnic Group for England and Wales 
Family Type 
General Health Over the Last Twelve Months 
Number of Usual Residents in Household 
Hours Worked Weekly 
Marital Status 
Relationship to HRP 
Number of Hours Care Provided per Week 
Level of Highest Qualifications (Aged 16-74, EWN) 
Sex 
NS-Social Economic Classification - 8 Classes 
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between categories (hence, replacing the above 1-3 codes with gross monthly 

income values to emphasise the differences / magnitude between sub-

categories).  For this reason, testing for multi-collinearity is not appropriate as 

the majority of variables are not in true scale format.  Standard classification 

evaluation techniques are also more difficult (for example, benchmarking 

against a global average) given the format of the classification and the use of 

predominantly categorical variables (e.g. those with sub-categories as 

opposed to simple scale values on a linear trajectory).  However, an approach 

similar to this is presented in a bid to understand cluster composition.   

 

True evaluation of these classifications will come as a result of linking to a 

microsimulated dataset (to add finer-level geography, down to output area 

level) and external non-census datasets as shown in chapter 7.  For example, 

do individuals from area X, described by this classification as being married, of 

high socio-economic classification and with 2+ cars, have a tendency to travel 

abroad (using a variable from, for example, the British Household Panel 

Survey) more frequently than those classified into a less favourable cluster, 

such as one described with high unemployment, low qualifications and poor 

health status?   

 
Given that the above will be assessed in chapter 7, this chapter will assess 

each cluster based predominantly on an analysis of the final cluster centres.  

Such an assessment will be conducted on both the Leeds and Richmondshire 

classifications. 

 
With regards to cluster membership, the output for both classifications is 

shown in Tables 6.1 and 6.2.   
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Table 6.1. Cluster membership, Leeds.  
      

 

 

 

 
 

 

 

 

 
Table 6.2. Cluster membership, Richmondshire. 
 

As can be clearly seen in Tables 6.1 and 6.2, Leeds has a greater number of 

cases (individuals) making up its population even when incomplete records 

are removed (as evidenced as part of Leeds’ case study selection process).  

Incomplete records (of individuals) are defined as records where two or more 

of the variables are missing.  In cases where one variable is omitted, a 

process of averaging across the region is undertaken to fill in the blanks.  In 

cases of two or more omissions, the individual is removed to prevent over-

averaging and hence the risk of creating a false predominantly homogeneous 

population – something one may argue is over-representative in area-based 

systems.  

 
Cluster centres are an important way of analysing cluster composition.  A 

cluster centre refers to the average of a set of observations in a given cluster 

Cluster 

Number 
 

Total 

Number of 

Cases 

% of 

Cases 

per 

Cluster 

Cluster 

1 10772.000 29.9 

2 4738.000 13.2 

3 1488.000 4.1 

4 324.000 0.9 

5 18664.000 51.9 

Valid 35986.000 100.0 

Missing 0.000  

Cluster Number  

Total 

Number of 

Cases 

% of 

Cases 

per 

Cluster 

Cluster 

1 157.000 14.9 

2 92.000 8.7 

3 154.000 14.6 

4 178.000 16.9 

5 473.000 44.9 

Valid 1054.000 100.00 

Missing 0.000 .000 
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(hence ‘means’ in the term K-Means) where K refers to the number of clusters.  

Figure 6.3 illustrates this through diagrammatic representation.   

 

Figure 6.3.  An illustration of cluster centres.  Adapted from See (2009). 

As can be seen in Figure 6.3, two clusters exist.  The first, as detailed in the 

accompanying table, with average observations for percentage employment 

and percentage 2+ cars resulting in a centre of 2,7.  This can easily be 

represented in two dimensional space given the inclusion of only two variables 

in the classification.  When more variables are clustered, the process 

becomes more complex but functions in exactly the same way making use of 

average calculations of each observation in order to gauge the cluster centre 

in often multi-dimensional space. 

With regards to final cluster centres for the two case study regions, these are 

displayed in Tables 6.3 and 6.4.  A lookup table for the variable names is 

available in Appendix A.2 if required. 

 

 

 

 

 

 

 

 

1 
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 Cluster 

1 2 3 4 5 

Age 37 12 27 34 62 

CarVan 2 1 1 1 1 

CenHeat 1763.04 1734.71 1710.29 1688.30 1727.87 

CoB 1501.15 1501.15 1501.15 1501.15 1501.15 

EthGrp 1240.7823 1321.7341 1332.7169 1292.8687 1324.4129 

HholdFamTyp 1728.85 1732.57 1726.25 1777.04 1856.35 

Health 1779.41 1798.71 1763.25 1753.40 1735.88 

No.UsualRes 4 4 2 3 2 

HrsWrkdWkly 37 42 40 37 39 

MarStat 1789.32 1535.78 1750.31 1978.24 1773.27 

HrsCareWkly 3 1 3 3 2 

ReltoHRP 1597.48 241.13 446.55 1586.08 1664.01 

Sex 1785.56 1784.42 1788.36 1781.15 1780.24 

NS-SEC 2170.17 1708.64 867.35 732.26 1587.72 

Qual 2491.07 1566.84 1304.71 1323.25 1344.75 

Table 6.3.  Final cluster centres for Leeds classification. 
 
 
 

 Cluster 

1 2 3 4 5 

Age 38 56 43 26 36 

CarVan 2 2 1 1 1 

CenHeat 1785.17 1786.35 1776.84 1782.58 1783.21 

CoB 1133.03 1131.83 1131.39 1144.84 1135.29 

EthGrp 1137.78 1147.27 1137.77 1150.66 1141.37 

HholdFamTyp 1808.52 1857.88 1860.43 1764.40 1820.60 

Health 1784.71 1672.20 1760.53 1800.11 1780.27 

No.UsualRes 4 1.99 2.03 2.19 1.98 

HrsWrkdWkly 40 37 40 37 39 

MarStat 1810.09 1816.82 1824.02 1468.15 1811.52 

HrsCareWkly 1.16 1.10 1.10 1.12 1.13 

ReltoHRP 1467.29 1686.80 1650.69 686.30 1705.85 

Sex 1726.80 2107.49 1981.90 1748.18 1876.71 

NS-SEC 2205.88 3449.42 .00 1226.53 1798.26 

Qual 2596.91 2200.70 1268.58 1363.47 1337.65 

Table 6.4.  Final cluster centres for Richmondshire classification. 

 
The results from the final cluster centres provide indications as to the 

population groups within each cluster.  However, in order to fully understand 

the composition it is necessary to translate the data in Tables 6.3 and 6.4 from 

current monetary format (or original format in five cases) to something easier 
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to interpret.  In cases where variables are scale (five cases - age, cars/van 

ownership, number of residents per household, hours worked per week and 

number of car hours provided), such variables can be readily interpreted, 

however, the re-categorised variables require translation.   

6.3.1. Interpretation of the Results (Leeds) 
 
The results presented in Table 6.5 define the translated final cluster centres 

(for Leeds) as discussed in section 6.3.  These results are somewhat best-fit 

based on how each variable is best categorised and do not show how near or 

far a variable is from falling into a separate category (fuzziness).  Although this 

process was automated in some cases, it does give us a qualitative indication 

as to how the clusters look in terms of predominant individual-level 

demographics.   

 
Cluster 

1 2 3 4 5 

Age 37 12 27 34 62 

CarVan 2 1 1 1 1 

CenHeat Yes Yes Yes Yes Yes 

CoB England England England England England 

EthGrp White British White British White British White British White British 

HholdFamTyp Married/Child Married/Child Married/Child Married/Child Married 

Health Good Good Good/Fair Fair Fair 

No.UsualRes 4 4 2 3 2 

HrsWrkdWkly 37 42 40 37 39 

MarStat Married Single Single Married Married 

HrsCareWkly 3 1 3 3 2 

ReltoHRP Husband/wife Son/Daughter Unrelated Husband/wife Husband/wife 

Sex M/F M/F M/F M/F M/F 

NS-SEC Large manag. Small emps Semi-Routine Semi-Routine Lower manag. 

Qual Level 4/5 Level 3 Level 2 Level 2 Level 2 

Table 6.5. Final cluster centres for Leeds SAM classification translated to predominant 
variable sub-categories to add meaning. 

 
From both Tables 6.4 and 6.5, it is possible to infer five quite distinct clusters.  

These are described overleaf through simple and descriptive pen portraits and 

cluster names designed to describe the typical residents in each grouping. 
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Cluster 1: Affluent Managers 

This cluster is a middle-aged cluster with an average age of thirty-seven 

years.  Typically households are quite affluent as reflected by access to two 

cars and being employed in large managerial capacities.  Members of this 

cluster provide some weekly care for relatives and work typical hours.  

Members tend to be married and live in households with circa four people, 

likely to include children.  Individuals in this cluster are typically of White 

British ethnicity and well educated. 

Cluster 2: Young People living with Family 

This cluster contains a youthful and healthy demographic with an average age 

of twelve years.  These individuals live with their parents who are married, 

have good general health and are of White British ethnicity.  The household 

has access to one car, is heated and on average houses around four people.  

They are the son/daughter of the head of household. 

Cluster 3: Co-habiting Couples 

This cluster is categorised by young individuals with start-up families.  

Members of this cluster tend to be single by legal definition but may be 

cohabiting.  Individuals are in their mid/late twenties, have access to a car and 

work predominantly in semi-routine occupations with employment taking up to 

circa forty hours per week.  Members have some education and are typically 

in good to fair health. 

Cluster 4: Average Resident 

This cluster is categorised by individuals in their mid thirties who are married 

with children.  Health is recorded as fair and members have some education 

and working typical length weeks.  Households typically contain three 

individuals with care provided for family on a weekly basis.  Education levels 

are fair and access to a car is common.     

Cluster 5: Nearing Retirement 

This cluster contains an elderly demographic with a typical age of sixty-two.  

Members tend to be married without children at home and in fair health.  Of 

those still working, most work in lower managerial occupations and have some 
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education.   The average sized household is two persons with most married 

and of a White British Ethnicity. 

6.3.2. Interpretation of the Results (Richmondshire) 
 

In line with interpreting the Leeds results in section 6.3.1, the same will now be 

undertaken for Richmondshire.  Table 6.6 presents the qualitative 

interpretation based on best-fit assignment to variable sub-categories. A 

descriptive insight into each cluster composition then follows. 

 Cluster 

1 2 3 4 5 

Age 38 56 43 26 36 

CarVan 2 2 1 1 1 

CenHeat Yes Yes Yes Yes Yes 

CoB England England England England England 

EthGrp White British White British White British White British White British 

HholdFamType Married/Child Married Married Married/Child Married/Child 

Health Good Good/Fair Good Good Good 

No.UsualRes 4 2 2 2 2 

HrsWrkdWkly 40 37 40 37 39 

MarStat Married Married Married Single Married 

HrsCareWkly 1 1 1 1 1 

ReltoHRP Husband/Wife HRP Husband/Wife Unrelated HRP 

Sex M/F M M/F M/F M/F 

NS-SEC Lower manag. Higher prof. Unemp Intermediate Lower super. 

Qual Level 4/5 Level 4/5 Level 1 Level 2 Level 2 

      

Table 6.6. Final cluster centres for Richmondshire SAM classification translated to 
predominant variable sub-categories to add meaning. 

 
From this, as previously undertaken for Leeds, it is possible to infer five 

different clusters as summarised below by pen portrait description and a 

cluster name designed to describe the typical resident. 

Cluster 1: Long hours, Middle-Management 

This cluster is categorised by individuals in their late thirties who fall into the 

lower managerial socio-economic classification.  Individuals tend to have 

access to two cars (per household), be of White British ethnicity and married 

with children who still live at home.  Typically, members work in lower 
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managerial occupations working the average number of hours per week.  

Health status is generally good.    

Cluster 2: Educated Professionals 

Members of this cluster are in their mid/late fifties and have access to two 

cars.  Health status is good to fair with most members being White British 

persons.  The cluster has a heavy male presence although the majority of 

individuals are married.  Level of education is high and members tend to work 

in higher professional occupations and work typical length weeks.  

Cluster 3: Middle-Aged Unemployed 

This cluster contains individuals in the early forties with good health.  

Members tend to live in two-person households, usually with spouse.  

Unemployment is widespread in this grouping although members do have 

access to one car.  Education levels are low. 

Cluster 4: Start-up Families 

This is the youngest of the five clusters with members typically in their mid/late 

twenties with access to one car and starting families, although single by legal 

definition.  Households tend to be two to three person residences and 

members have good general health.  Employment is within the intermediate 

occupations domain and members have some education.   

Cluster 5: Average Resident 

This cluster contains members in their mid/late thirties with, on average, 

access to a single car.  Members are of White British ethnicity with some 

education and work marginally above average length weeks in lower 

supervisory occupations.   Health status is good and households are typically 

two-person in size, usually with spouse. 

6.4. Discussion of Clustering Outcomes 
 

As presented in sections 6.3.1 and 6.3.1, two five-cluster schemes have been 

overviewed for both case study districts of Leeds and Richmondshire.  On 

both occasions, the final cluster centres (Tables 6.3 and 6.4) were interpreted 

and transformed into word-based descriptors (Tables 6.5 and 6.6) in cases 

where the numeric values were hard to interpret.  This, in turn, led to a pen 
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portrait being developed for each cluster and, in most cases, an accurate 

cluster name tag designed to give a snapshot view of the cluster. 

The tabular results and associated pen portraits describe distinctly different 

clusters in most cases.  For Leeds, one can identify a youthful cluster with 

children living with parents ranging to a more elderly (but not retired) cluster 

containing individuals living with their spouse.  It is clear that some variables 

differentiate the population particularly well and, in general, correlate with 

variables one would expect.  For example, single co-habiting couples living in 

households with a size of two-persons and higher education leading to higher 

socio-economic classification (and employment) status.  Such is the format of 

the data and efforts to make it somewhat continuous, these patterns of 

correlation do corroborate the framework adopted and in particular the SAM 

data adaptation that has taken place.  However, with fully continuous datasets, 

such observations of multi-collinearity could have been identified at earlier 

stages through correlation or regression analysis.  The data adopted in this 

research is not purely continuous/scale nor is it entirely categorical hence the 

selected novel approach.     

Although some variables do appear to segment the population particularly 

well, for example age given the broad clusters produced, it is clear from the 

results that certain variables do not differentiate between the population 

groups to quite the same level.  Such variables include sex, ethnic group, 

country of birth and central heating in particular.  The inclusion of sex as a 

fundamental demographic characteristic was included given its very high 

inclusion value (when assessed based on its presence in eight survey 

datasets) and inclusion in other geodemographic systems.  Ethnic group and 

country of birth were included for the same reason, however, suffered as a 

result of incomplete records and hence either a process of global averaging or 

omission.  These variables may well differentiate populations more effectively 

in different areas assuming completeness or when employed on a wider basis, 

for example a nationwide classification.  Central heating, again incorporated 

due to its inclusion score and as a proxy for deprivation,  failed to differentiate 

in any cases and, similar to sex, may simply be due to its binary format - yes 

or no - with no variation or further sub-categories.    

Of the remaining variables, most segment the population rather well.  Age, as 

discussed, given its breadth of values, arguably forms the best segmentation 
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and this very much supports the decision to leave age in its original format and 

not convert to monetary values.  Other variables in pure continuous format 

(e.g. those not transformed to monetary values given their suitable original 

format) also add value to the classification, in particular; number of residents 

per household, hours worked per week and cars/van available for use.  The 

'number of care hours provided per week' variable also suffers from 

incompleteness and small numbers and hence averaging/omissions.  Of those 

variables transformed, marital status, socio-economic classification and 

highest-level of qualification are three that effectively partition the data and 

formulate distinct groupings. 

As evidenced from Tables 6.5 and 6.6, some variables do contradict 

themselves.  For example, within the Leeds classification in cluster 3, certain 

individuals were described as single by legal marital status definition but within 

a married with children family-type environment.  Such contractions do not 

impact greatly on the ability of the classification to segment the population, 

however, for the purpose of any further classifications adopting this 

framework, it is a consideration to be taken forward and assessed as part of 

the variable selection process. 

6.5. Summary and Conclusions 
 

This chapter has shown how the framework put forward in chapter 5 leads to 

meaningful and largely effective clustering outcomes.  The ability to handle 

both continuous variables (such as age) in addition to categorical variables 

(both ordinal and nominal) demonstrates the success of the framework in the 

data adaptation process.  However, as evidenced in section 6.4, this route is 

by no means error free.  These problems will be discussed in chapter 7 in 

addition to demonstrating the remaining phases of the framework, including 

linking to a microsimulated population and external datasets for reasons of 

modelling and validating/enrichment.  The latter is a highly innovative focus of 

this research and hence demonstrates an ability to profile individuals against 

alternative data. 
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Chapter 7: Linking to 
Microsimulated and External 
Datasets 
 
7.1. Introduction and Chapter Preface 
 

The purpose of this chapter is to evidence the remaining phases of the 

framework not discussed in chapter 6.  Specifically, this refers to linking the 

classification results to both a microsimulated dataset and other external 

datasets; the former to aid visualisation though supplementing the 

classification with finer-level geography and the latter to add value to the 

classification through enrichment but also to validate the results.   

Following the above, a visual representation of the classification for Leeds will 

be presented in addition to examples of the link facilitated to external non-

census data. 

One fundamental aim of this chapter is to illustrate that the framework 

presented is robust enough to be carried forward and used in future individual-

level classifications and modelling. 

7.2. Linking to Microsimulated Dataset 
 

As described in chapter 5, the individual-level classifications developed as part 

of this research are constructed based solely on the use of census data 

through the SAM file which is a 5% sample of records (CCSR, 2001).  The 

SAM file, for reasons pertaining to risk of data disclosure, only geographically 

references individuals to the Government Office Region (GOR) to which they 

belong.  England is divided into nine GORs (moving up from ten in 1998 when 

Merseyside was combined with the North West) (ONS, 2011).  More recently, 

GORs have inherited the name 'regions' (as of April 2011) but still maintain the 

original GOR names in the 2001 SAM.  Both classifications presented in 

chapter 6 reside in the Yorkshire and the Humber GOR (or Region).  Reasons 

for this rather coarse identification are fully understandable but far from ideal 

when it comes to classification visualisation.  The cluster membership and 

composition analysis presented in chapter 6 provides an indication as to the 

individual-level demographics and people types that inhabit Leeds and 
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Richmondshire based on this sample, however, given the geographical focus 

of this research, simple sociological identification of people types is only the 

beginning.  By linking the classification to a microsimulated dataset containing 

small-area references, one will be able to provide a visual/spatial analysis 

through cartography and model the complete populations.  This chapter will 

demonstrate this approach using the Leeds SAM.   

In order to add this fine-level geography, the SAM classification will be linked 

to a microsimulated dataset.  As initially referred to in chapter 3, the 2001 

microsimulated data used in this analysis comprises six variable constraints; 

Age, Marital Status, Sex, Highest Qualification, Socio-Economic Classification, 

and Ethnicity and was formulated through combinatorial optimisation 

(simulated annealing) by Heppenstall (date unknown).  The data are complete 

for Leeds (715,402 persons) and synthesised at output area level (2,439 

areas) with constraint data acquired from the Census of Population via 

CASWEB [now UK Data Service, UKDS] (2001) and survey data courtesy of 

the British Household Panel Survey (BHPS) (more recently known as part of 

Understanding Society). 

Inevitably, a dataset with such a fine geographical resolution supercedes one 

at the GOR (or Region) level for the purpose of visualisation and detailed 

analysis.  Although this work has set out a framework to enable individual-

level classification, given the inability to visualise at a level beyond the GOR 

unit, linking the classification codes (1-5) to the population data generated 

through the microsimulated dataset will enable each output area to be 

assigned a predominant (modal) cluster code.  Furthermore, the relative 

popularity of each cluster per output area can also be calculated and spatially 

visualised as necessary (fuzziness). 

As previously referred to in section 5.14, in order to complete this linking 

process, all variables common between the microsimulated dataset and the 

SAM file require translation into SAM-identical format (hence monetary income 

values or equivalent, as opposed to categorical data).  Then, through a 

process of statistical matching using the Sum of Squares technique, the 

cluster codes can be transferred.  This statistical link was achieved by 

calculating the Euclidean distance between the variables in the 

microsimulated dataset and the final cluster centres from the classification.  

Once complete, the cluster with the minimum distance was automatically 
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assigned to that microsimulated individual.  Figure 7.1 clearly illustrates this 

process in addition to the formulae adopted as undertaken in Microsoft Excel.  

As shown in Figure 7.1, the eight variables common between both datasets 

were extracted from the microsimulated dataset and the Euclidean distance 

calculated to the final cluster centres of the SAM classification.  The final 

distance was divided by 10,000 in all cases to reduce the magnitude of the 

values and allow for ease of interpretation.  Each individual was then assigned 

to its best-fit cluster based on the shortest distance.  This allocation process 

was automated as evidenced in column O in Figure 7.1.  This matching 

process was conducted on all 715,402 of Leeds' individuals hence classifying 

the entire Leeds population in to one of five distinct groups (see Figure 6.5 for 

a review of Leeds’ cluster descriptors).  For the purpose of visualisation, each 

output area (column A in Figure 7.1) can be used to aggregate individuals and 

produce cartographical representation showing the principal (most popular) 

cluster per output area. 
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Figure 7.1. Visual illustration of SAM classification to microsimulated dataset linking process.   

Subset of spreadsheet shown. 

Page 110. 

 

Output area code of each individual 

in microsimulated dataset. 

Individual person ID in Microsimulated 

dataset. 

Variables common between 

microsimulated dataset and SAM 

Classification.  Only a subset shown for 

purpose of illustration. 

Euclidean distances between microsimulated 

variables and final cluster centres from SAM 

classification. 

In this analysis, the final cluster centre values 

(see Tables 6.3 and 6.4) were held in a 

separate Excel tab called 'FinalCC'. 

Hence, the classification to calculate distances 

for cluster one (Dist-1), record one (cell K2) in 

this example was:  

=(($C2-FinalCC!C$2)^2+($D2-

FinalCC!C$3)^2+($E2-FinalCC!C$4)^2+($F2-

FinalCC!C$5)^2+($G2-FinalCC!C$6)^2+($H2-

FinalCC!C$7)^2+($I2-FinalCC!C$8)^2)+ ($J2-

FinalCC!C$9)^2)/10000 

Automated 

process 

adopted to 

determine 

nearest 

match. 

Formula: 

=MATCH(

MIN(K2:O2

),K2:O2,0) 

1
1
0
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7.3. Spatial Visualisation the Results 
 

 By following the route described in section 7.2 and illustrated in Figure 7.1, it 

was possible to generate the number of individuals per output area who were 

classified into each of the five clusters.  A lengthy sample list of these results 

are shown in Appendix B.2 (full list available on request - see Appendix C for 

details) and the first ten are presented in Table 7.1 for illustrative purposes.  

The 2001 CAS ward name is also included to assist with interpretation.  It 

should be noted that in the twelve cases where two clusters shared the 

highest count of individuals, individuals were automatically assigned to the first 

cluster numerically.  This was deemed a suitable process given such few 

occurrences and as the principle focus is the highlight the functionality of the 

framework.  Such cases are noted in the appendix (B.1). 

Table 7.1. First ten Leeds output areas (sorted A-Z) and associated cluster codes. 

As can be seen in Table 7.1 (and Appendix B.2), the linking process does 

differentiate between individuals pairing them with different clusters.  As this 

matching process makes use of circa half (eight of the fifteen) SAM 

classification variables given their presence in the microsimulated datasets, 

there is clearly scope for improvement, however, upon studying the spatial 

distribution of clusters by Leeds output area (presented in Figure 7.2), one can 

see patterns that may be expected given a knowledge of cluster composition.  

For example, Cluster 1, categorised by individuals in higher managerial 

occupations and in 2+ car households tends to be distributed in the more 

affluent areas of the city, in particular to the north and with some presence in 

the east.  To the contrary, Clusters 3 and 4, which may be regarded as the 

less affluent cluster-types given the semi-routine occupations (probably 

OA_Code Ward_Name 
Total 
Pop. 

Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Cluster 
Member-

ship 

00DAFA0001 Aireborough 304 71 182 8 6 37 2 

00DAFA0002 Aireborough 286 84 93 47 16 46 2 

00DAFA0003 Aireborough 436 255 5 75 62 39 1 

00DAFA0004 Aireborough 437 25 62 56 237 57 4 

00DAFA0005 Aireborough 294 103 37 46 61 47 1 

00DAFA0006 Aireborough 363 141 50 51 48 73 1 

00DAFA0007 Aireborough 370 32 21 211 95 11 3 

00DAFA0008 Aireborough 318 19 122 70 45 62 2 

00DAFA0009 Aireborough 384 110 96 100 37 41 1 

00DAFA0010 Aireborough 287 65 58 49 64 51 1 
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leading to longer working weeks as also identified in the classification), fair 

health and, in the case of cluster 3, persons sharing houses who are 

unrelated, show different patterns.  These clusters are focused more around 

inner Leeds (in the case of cluster 4) and to a lesser extent cluster 3, the latter 

also being more sporadic it its spatial patterns.  
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Figure 7.2.  Leeds-wide 

illustrative map of five 

cluster types by output 

area.  CAS Wards 

overlaid to add context. 

See Table 6.5 for full 

details of cluster types. 

Cluster 1: Affluent 

Managers 

Cluster 2: Young 

People living with Family 

Cluster 3: Co-habiting 

Couples 

Cluster 4: Average 

Resident 

Cluster 5: Nearing 

Retirement 
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British National Grid 

Projection (EPSG: 27700). 

Below: Contextual Map locating 

Leeds within the country of the 

United Kingdom. 

Below: Contextual Map locating 

Leeds within the country of the 

United Kingdom. 
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1
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To take a more statistical stance and to contrast the results with an alternative 

system, of the two clusters from the 2001 Output Area classification (OAC) 

that appear to match those clusters in this research (by definition), 'Typical 

Traits' from the OAC and 'Average Resident' from this work and 'Prospering 

Suburbs' from the OAC and 'Affluent Managers' from this research, both do 

correlate in terms of classification of areas.  The former categorises 572 

output areas (as opposed to 447 in this work) and the latter 530 output areas 

(versus 591 in this research).  When a spatial assessment is undertaken 

looking at cases where these classifications classify the same area in the said 

clusters, the results are mixed.  Of the 572 output areas categorised into the 

'Typical Traits' cluster by the OAC, 41 fall into the 'Average Resident' grouping 

in this work (7.6%).  Whereas, of the 592 small areas deemed to reside in the 

'Prospering Suburbs' cluster in this research, 325 from the OAC fall into the 

'Prospering Suburbs' cluster (54.9%).  Such results support differentiation 

towards the top of the hierarchy but less so for the more disadvantaged 

segments of society.  As this is by no means a like-for-like comparison, true 

evaluation of the classification is presented in later sections. 

Regardless of how well or otherwise one interprets the spatial patterns 

presented in Figure 7.2 (based on any local knowledge of the social 

geography of Leeds or other statistical analysis similar to that given above), 

the fact of the matter is an individual-level classification has been generated 

based on SAM data and visualised through a linkage to a microsimulated data 

with fine-level geographical units.  This represents new ground within the 

domain of geodemographics.  Although arguably the process of visualisation 

and hence aggregating individual-level cluster assignments to pre-determined 

geographical units and taking the modal occurrence to then map at the output 

area level may be regarded as returning to the conventional format of area-

based geodemographics, one must be aware of the benefits.  At a time when 

Experían is pushing its household-level classification (see section 2.7.3), 

systems capable of classifying to this level of detail are no doubt on the rise.  

Visualisation is particularly difficult with individual-level data, however, the 

linkage to the microsimulated dataset is not entirely for visualisation purposes 

alone.  This link has generated a complete population classification for the city 

of Leeds (715,402 individuals) through the sample classification conducted on 

the 5% SAM file (~35,000 individuals).  It is this tabular data that is arguably of 

greater benefit given a knowledge of how many people per output area fit into 
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each grouping - as opposed to a simplified visualisation process highlighting 

the predominant cluster per output area, the results of which (by output area) 

can be found in Appendix B.2.  By this, an element of fuzziness is introduced 

given an awareness of how close or otherwise an output area is to residing in 

a different cluster.  Table 7.2 illustrates this for the same group of records. 

Table 7.2.  Percentage cluster composition of ten selected Leeds output areas, 2001. 

As evidenced from assessing Tables 7.1 and 7.2, certain output areas are 

very close to being re-categorised into different best-fit (or crisp) clusters, for 

example output areas 00DAFA0009 and 00DAFA0010 are both within 

fourteen and seven re-classified individuals of having the predominantly-

allocated cluster changed.  This relative fuzziness is evident from the data 

when available in tabular format but is very hard to visualise cartographically.  

One could assign symbology to each zone indicating the cluster spread, as 

visualised in Figure 7.3, using the data from Table 7.2 and labelled by the 

reference ID for the ten named output areas. Adopting such visualisation 

techniques for a wider area would lead to problems such as symbology 

overlap and, consequently, poor means of interpretation.  This very much 

supports the statement made earlier that the tabular output when working at 

the level of the individual, even when aggregated to the zone level, is the most 

suitable means of outputting such research. 

Ref 
ID 

OA_Code Ward_Name 
Cluster 
1 (%) 

Cluster 
2 (%) 

Cluster 
3 (%) 

Cluster 
4 (%) 

Cluster 
5 (%) 

Cluster 
Member-

ship 

1 00DAFA0001 Aireborough 23.36 59.87 2.63 1.97 12.17 2 

2 00DAFA0002 Aireborough 29.37 32.52 16.43 5.59 16.08 2 

3 00DAFA0003 Aireborough 58.49 1.15 17.20 14.22 8.94 1 

4 00DAFA0004 Aireborough 5.72 14.19 12.81 54.23 13.04 4 

5 00DAFA0005 Aireborough 35.03 12.59 15.65 20.75 15.99 1 

6 00DAFA0006 Aireborough 38.84 13.77 14.05 13.22 20.11 1 

7 00DAFA0007 Aireborough 8.65 5.68 57.03 25.68 2.97 3 

8 00DAFA0008 Aireborough 5.97 38.36 22.01 14.15 19.50 2 

9 00DAFA0009 Aireborough 28.65 25.00 26.04 9.64 10.68 1 

10 00DAFA0010 Aireborough 22.65 20.21 17.07 22.30 17.77 1 
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Figure 7.3.  Visual representation of cluster spread per 
Leeds output area using selected output areas from Tables 
7.1 and 7.2 (Aireborough, North-West Leeds). Numerical labelling refers to output 
area ID as shown in Table 7.2.   

    

One distinct advantage of being able to visualise the classification at the 

output area level is that it enables the results of this individual-level 

classification to be critiqued, to some extent, against previously created 

systems at the areal unit level.  This has already been demonstrated to some 

extent with statistical comparisons with the OAC (see section 4.8).  Although 

such critiques are inherently visual by nature, Figure 7.4 shows the OAC, as 

developed by Vickers (2006), also using 2001 data - at the aggregate level.  

Even though the system devised by Vickers (2006) segments output areas 

into one of seven pre-determined groupings (as opposed to five in this 

research), some common visual patterns are apparent.  Firstly, output areas 

categorised by Vickers as falling into the 'Countryside' grouping do mirror the 

patterns observed in this research with regards to Cluster 1: Affluent 

Managers.  There is also some correlation between Vickers’ 'Typical Traits' 

grouping and Cluster 4: Average Resident in this work (as evidenced 

previously).  Such assessments are, however, incredibly visual and alternative 

British National 

Grid Projection 

(EPSG: 27700). 
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means are necessary to determine the true validity of the 

framework/classification.  Section 7.4 presents such an approach. 



 
Chapter 7: Linking to Microsimulated and External Datasets 

118 
 

Figure 7.4.  Leeds-

wide illustrative map 

2001 OAC by output 

area.  CAS Wards 

overlaid to add 

context. 
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British National Grid 

Projection (EPSG: 27700). 

Below: Contextual Map locating 

Leeds within the country of the 

United Kingdom. 

Below: Contextual Map locating 

Leeds within the country of the 
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7.4. Adding Value and Validation: Linking to Non-Census Datasets 
 

Through adopting a process akin to the statistical matching method as 

discussed in section 7.2 (and illustrated in Figure 7.1), that of Sum of Squares, 

it was possible to link the SAM classification to external datasets based on 

common variables.  This is particularly useful for validation but it also allows 

the classification to be 'bolted-on' to more behavioural datasets to profile 

alongside non-census characteristics - providing of course there are some 

common variables between the two datasets to enable the cluster codes to be 

matched.  Therefore, for reasons pertaining to both validation and enrichment 

of the classification, a link to the BHPS (wave 18) was established.  This link 

enabled each of the five clusters to be assigned directly to one individual in 

the BHPS – and hence, each record in the BHPS was assigned a cluster code 

1-5.   

 
The variables present in the BHPS are designed to describe socio-economic 

conditions at both individual and household level (ISER, 2011). Variable 

categories include; household organisation, employment, accommodation, 

tenancy, income and wealth, housing, health, socio-economic values, 

residential mobility, marital and relationship history, social support, and 

individual and household demographics (ISER, 2011) and hence add value 

over and above the variables present in the original SAM file. 

 
Given that this research is set to inform the GENESIS project, one or two 

variables per GENESIS theme were selected for validation purposes (recall 

the themes in Table 5.2).  A deliberate attempt was made to ensure that the 

selected variables were of a lifestyle / behavioural type and thus in no way 

similar to the census variables which comprise the classification.  The selected 

BHPS variables are shown in Table 7.3. 
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Theme 

GENESIS 

Project 

Theme 

Generic 

Social 

Science 

Theme 

BHPS Variable 

Crime  X 
• Not available 

Education  X 
• Has a degree? 
• Has a higher degree? 
• Political allegiance  

Employment  X 
• Job satisfaction 

Health(care) X X 
• Any recent health 

problems? 
• 'Meals on wheels' uptake 
• Play/participate in sport? 

Housing X X 
• Value of property 
• Type of property 
• Internet in property 

Retail (and consumption) X X • Regularity of eating out in 
restaurants 

Transportation X X • Number of flights taken in 
last twelve months 

 

Table 7.3. Selecting lifestyle / behavioural BHPS variables in line with GENESIS’ key 
themes. 

7.5. Linking SAM Classification to BHPS 
 

Achieving this linkage process again required some rather novel methods and 

these are summarised in the sections which follow.  Further details are 

available in earlier chapters given the repeated process. 

At this point in the overall framework, a completed SAM classification (for 

Leeds) has been devised with each of the 35,986 individuals assigned to a 

single cluster (1-5) on a one-to-one best-fit basis - often referred to as crisp 

geodemographics.  Fuzziness values were also available following the 

Euclidean distance to cluster centres calculation.  A city-wide classification 

has also been formed following the microsimulation linkage process with 

fuzziness values again available, although, for the purpose of analysis and 

visualisation, crisp membership to single output areas was again adopted.   

In order to facilitate the linkage of the SAM classification to the BHPS file, 

each of the fifteen SAM variables were searched for in the BHPS, fourteen 

were located (with the exception of Family Type), and extracted into a new file.  

Table 5.3 shows the relationship between variables in the SAM and BHPS.  

The person ID variable was also extracted so as to enable a join process at a 

later stage should this be required.  These variables were then re-coded under 
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the SAM structure (e.g. sub-variable definitions – similar to that discussed in 

section 5.11) and assigned the same gross monthly income values.   

With a newly generated BHPS file containing variables quantified based on 

income by SAM definition, it was then possible to deduce an individual’s 

proximity to each of the five SAM clusters.  This was again achieved by 

calculating the Euclidean distance between each of the fifteen variables (per 

individual) and the final cluster centres – hence, a process of statistical 

matching was adopted as described previously.  This then produced a value 

indicating the relative distance between the BHPS individual and each of the 

five SAM clusters.  As before, the smaller the value, the closer that individual 

to the said cluster.  A automated process of identifying the smallest value from 

a list was then employed in Excel and each of the 14,419 BHPS individuals 

were assigned a best-fit single cluster.  Naturally, and to re-emphasise, the 

scope to incorporate a fuzzy classification is once more apparent at this stage 

given the proximity of individuals to cluster centres, however, for the purpose 

of this evaluative work and to validate the framework's functionality, a crisp 

classification was deemed sufficient. 

7.6. Reviewing the SAM-BHPS Link Results 
 

The presence of more behavioural variables, such as the frequency of dining 

out and an individual’s political alignment, makes the critique all the more 

interesting.  Furthermore, the vast array of variables in the BHPS across each 

of the GENESIS themes (with the exception of crime) and the widespread 

coverage such variables provide with respect to social science make the 

critique incredibly encompassing of extra datasets, all of which can be used to 

supplement the classification output and add a lifestyle / behavioural angle.  A 

selection of the results from this data linkage process can be seen in Table 7.4 

with four BHPS variables contrasted with the five clusters.   

Recall the five Leeds cluster definitions and their make up (see Tables 6.3 and 

6.5): 

Cluster 1: Affluent Managers 

Cluster 2: Young People living with Family 

Cluster 3: Co-habiting Couples 

Cluster 4: Average Resident 

Cluster 5: Nearing Retirement 
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Table 7.4. Contrasting SAM Classification with BHPS Individuals and extracting new 
Information 

 

As can be seen in Table 7.4, if taking the full cluster descriptors into 

consideration (section 6.3.1), the results appear to corroborate the cluster 

characteristics to some degree, however, there are a series of anomalies 

which may be explained by the methods adopted. 

As reflected in Table 7.4 and the accompanying pen portraits, Cluster 2 is 

categorised by predominantly young individuals (circa aged 12) living with 

family.  One should therefore not be surprised that this cluster is one of the 

least likely to dine out on a monthly basis and is one of the more active 

clusters when it comes to sport and physical activity but one of the least active 

when it comes to attending costly sporting events.  Furthermore, the 

categorisation of individuals in this cluster being of non-voting age is 

supported by BHPS statistic which denotes that 18.6% of individuals in this 

cluster are ineligible to vote in elections.  The results referred to here suggest 

Cluster Dine Out? Play Sport? 
Political Allegiance  

(if voting tomorrow)? 

Watch Live Sport 

(at sporting 

venue)? 

1 

Once Per Month – 60% 

Several Times per Year 

– 22% 

Once per week – 

3% 

No vote – 50% 
Conservative – 25% 
Other Party – 8.3% 

Labour – 8% 
LibDem – 8% 

 

Several Times per 
Year – 20% 

2 

Once Per Month – 35% 

Several Times per Year 

– 40% 

Once per week – 

7% 

No vote – 40% 
Can’t Vote – 18.6% 

Labour – 12% 
Conservative – 9.3% 

LibDem – 5.8% 

Several Times per 
Year – 8% 

3 

Once Per Month – 47% 

Several Times per Year 

– 30% 

Once per week – 

6% 

No vote – 50.4% 
Conservative – 12.2% 

Labour – 8.5% 
LibDem – 6% 

Several Times per 
Year – 14% 

4 

Once Per Month – 44% 

Several Times per Year 

– 31% 

Once per week – 

6% 

No vote – 48.2% 
Conservative – 11.7% 

Labour – 10% 
Can’t Vote – 8% 
LibDem – 6.2% 

Several Times per 
Year – 14% 

5 

Once Per Month – 36% 

Several Times per Year 

– 31% 

Once per week – 

8% 

No vote – 47.5% 
Conservative – 12.5% 

Labour – 12.5% 
LibDem – 7% 

Several Times per 
Year – 9% 
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some degree of success with regards to this matching process as far as 

validation goes.  

An second example can be seen from assessing Cluster 1 (Affluent 

Managers).  As many of the variables presented in Table 7.4 can be linked to 

availability of disposable income, it is unsurprising that members of this cluster 

have a high tendency to dine out once per month (greater than other clusters) 

and attend sporting venues.  The high proportion of members willing to vote 

(the only cluster where 'No Vote' is not highly ranked) in addition to an 

alignment towards the Conservative Party are also statistics one can contend 

with.  The low percentage partaking in sport is rather surprising but not one 

which should mask what appear to be statistics that corroborate a health data 

match. 

A key observation to be highlighted is the use of Leeds’ final cluster centres 

when classifying the complete BHPS (wave 18).  Naturally, different parts of 

the UK look rather different in terms of their demographic profiles and the use 

of Leeds’ cluster centres may have impacted on the results of this BHPS 

linkage process – particularly given that the BHPS is UK-wide.  Furthermore, 

adopting the complete BHPS file as opposed to a more regionalised subset 

may also have had some bearing on the results presented in Table 7.4. 

It should be noted that the results presented in Table 7.4 represent a selection 

of the variables assessed.  As overviewed in Table 7.3, alternatives were also 

explored, however, those put forward in Table 7.4 display the greatest level of 

perceived corroboration to the classification.  Variables where the match 

brought about results one may regard as unexpected, in particular with 

reference to number of flights taken and recent health problems, suggest that 

although in its infancy, the framework and/or linking process may require 

further testing before being deemed robust.    

The linkage demonstrated in this research was undertaken on the BHPS for 

two reasons.  Firstly, due to the array of behavioural variables matching those 

of GENESIS' themes and secondly due to the high number of common 

variables between the SAM classification and BHPS thus enabling an effective 

match.  Other datasets, such as the British Crime Survey (eight common 

variables), Health Survey for England (nine) and National Travel Survey (six) 

would make for interesting linkages albeit based on fewer variable matches. 



 
Chapter 7: Linking to Microsimulated and External Datasets 

124 
 

7.7. Summary and Conclusions 
 

This chapter has built upon the SAM classification presented in chapter 6 by 

evidencing the linkage process between the base classification and both a 

microsimulated dataset (for complete population modelling and visualisation) 

and external survey dataset (BHPS) for validation and classification 

enrichment. 

 
The linkage to microsimulation is of particular importance given that the SAM 

classification is constructed based on a 5% sample of Leeds' individuals 

(35,986 in 2001).  The linkage enables each of Leeds' 715,402 individuals to 

be attributed with a cluster code (1-5 in this case) denoting their positioning 

across the give groupings.  The link is facilitated through a statistical matching 

process using the Sum of Squares Technique whereby the Euclidean 

distances between variables and cluster centres are calculated.  Although 

each individual is assigned one single cluster code, the scope to incorporate 

fuzziness is clear given the availability of the Euclidean  distances.  

Classification at this level goes some distance to reducing the problems of 

MAUP and ecological fallacy often regarded as synonymous with 

geodemographics.  Furthermore, the availability of individual fuzziness scores 

and hence a knowledge of how near/far an individual is from re-categorisation 

arguably reduces such problems further.   

The ability to link to the microsimulated dataset also offers a means to 

visualise.  By making use of the small-area geography in the simulated data, 

cartographical outputs could be generated denoting crisp clustering (Figure 

7.2) and fuzziness (Figure 7.3) when aggregating by output area.  Although 

such aggregation arguably returns geodemographics to the point of area-

based functionality, such methods are useful not only for visualisation but also 

to contrast with alternative data/systems in operation at the area level.   

The final sections of this chapter discussed further linkage abilities, this time to 

external and non-census datasets for validation and in-depth profiling.  The 

BHPS was selected as the dataset to demonstrate this on given the number of 

common variables (fourteen) between this and the SAM base classification.  

The linkage enabled non-census variables such as the propensity to dine (eat) 

out and sport participation to be profiled alongside the five clusters.  The 

results enabled a corroboration of the clusters and framework in addition to 
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generating value-added information over and above variables used within the 

classification process.  

Chapter 8 will summarise the research presented and emphasise the 

usefulness of the proposed framework for future classifications of this nature 

whilst also providing discussion on some of its limitations.  In particular, the 

processes required to classify at the level of the individual will be illustrated 

and explained such that the framework can be replicated for further research 

and non-academic usage. 
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Chapter 8:  Summary, 
Conclusions and Way Forward 
 
8.1. Introduction and Chapter Preface 
 

This final chapter of the thesis is divided into four main sections.  Firstly, the 

objectives as initially presented in chapter 1 are re-visited and a summary of 

the research findings relating to each is presented (8.2).  Secondly, a final 

word is given on the framework put forward in chapter 5 with particular 

reference given to its utilisation in a wider context (8.3) and its strengths, 

limitations and suggestions for improvement (8.4).  Finally, further research 

opportunities are briefly discussed (8.5). 

8.2. Research Outcomes 
 

This section will provide a summary of the research outcomes relating to each 

of the five research objectives as initially set out in chapter 1. 

Objective #1: Conduct a review of the literature pertaining to (1) 

geodemographic classifications and (2) population generation 

techniques.   

The literature pertaining to geodemographics very much positions the 

discipline/technique as an area-based procedure designed to partition 

aggregate data into what it perceives to be homogeneous groupings.  The 

operation at the aggregate/areal level is not without its problems though, as 

discussed at various junctures in this thesis.  The Modifiable Areal Unit 

Problem (MAUP) (predominantly the scale effect), particularly within 

commercial systems with a tendency to operate at different spatial scales (e.g. 

postcode and output area), is highly apparent.  Changing geographical units or 

boundaries impacts noticeably on the categorisation of areas given how the 

data are partitioned.  For example, analysis undertaken at Lower Layer Super 

Output Area (LSOA) level may result in different patterns to the same analysis 

conducted at Middle Layer Super Output Area (MSOA) level given the 

different spatial resolutions of the individual zones.  This leads onto the 

second problem, and one arguably more rife within area-based 

geodemographics, that of ecological fallacy.  When areas are best-fitted to 

crisp clusters, the general assumption, particularly from those not aware of the 
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methodologies that underpin such systems, is that clusters with names such 

as 'Young Married Suburbia' or 'Metro Singles' encompass exclusively people 

categorised by those tag lines.  Section 8.3 explores these problems in more 

depth when discussing the need for a system capable of classifying to the 

person level and, more importantly, how the framework proposed in this 

research lessens such issues. 

The review of literature established that although geodemographics has 

remained firmly rooted in area-based classification since its inception, more 

recently the emergence of Experían's household Mosaic system in addition to 

Acxiom's PersonicX system suggests that a pragmatic shift is commencing 

such that future geodemography can classify beyond the areal unit level.  

When problems such as those discussed above are considered, the benefits 

are apparent (and will be illustrated in section 8.4).   

With regards to synthetic populations, the key observation to be drawn from 

the literature is the rise of computational power since the early days of 

geodemography.  With such powerful machines and sophisticated algorithms, 

an ability to formulate accurate synthetic populations from aggregate 

constraint data means that classifications beyond those of areal units can be 

developed.  Methods such as simulated annealing, deterministic re-weighting 

and conditional probability have all been employed with success in other 

research and, with the benefit to be gained from person level classification, 

such methods represent a sensible and largely accurate approach. 

Objective #2: Present an assessment of common methodologies 

adopted when formulating geodemographic classification schemes.  

As discussed earlier in this section under the research outcomes of objective 

#1, standard geodemographic clustering methodologies have not changed 

greatly since the early days of use and nor have the units used to release 

such classifications (hence, remain area-based).  Clustering methodologies 

such as hierarchical or stepwise K-Means in software packages such as IBM's 

SPSS lead the way for classifications to be undertaken with certain leading 

commercial vendors adopting more sophisticated and specialist approaches. 

The methodology (flow-diagram) put forward by Gibson and See (2006) in 

chapter 4 is commonplace in area-based system formulation and begins with 

identifying a purpose, whether this be general or application-specific, and 
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includes data selection, pre-processing, clustering approaches, 

labelling/interpretation, application/evaluation and, in most cases, integration 

with a GIS such as ESRI's ArcGIS or Pitney Bowes' MapInfo product.  

Such methods are somewhat suitable for geodemographic clustering but, 

given the reliance on aggregate data (for which they are designed), the 

problems as previously referred to in this thesis transpire (ecological fallacy, 

MAUP, generalisation etc).  Furthermore, given that this research has a clear 

remit of devising a framework through which individual-level classifications can 

be achieved, such methods in their original form are not entirely suitable.  

Knowledge of their composition is, however, important and links to objective 

#3. 

Objective #3: Formulate a framework through which general-purpose 

individual-level geodemographic classification schemes can be 

generated. 

This objective represents the root of the research, not least to overcome the 

aforementioned problems, but also to challenge the current geodemographic 

ethos and progress towards more efficient means of population targeting. 

The framework put forward makes use of microdata from the 2001 SAM file 

and outlines the phases to develop a general-purpose system at the level of 

the person.  The framework adopts data-handling methods such that both 

categorical (ordinal and nominal) data are equally incorporated into the system 

and no bias ensues when handling differing data types.  This is achieved 

through the re-coding of, in particular, nominal variables with gross monthly 

income data extracted from an external dataset (BHPS).  This re-coding 

emphasises the magnitudinal variances between variable sub-categories (e.g. 

marital status: single vs. married vs. separated/widowed/divorced) and hence 

ensures effective data partitioning. 

The framework adopted represents the first of its kind available in the public 

domain and certainly within academia.  The framework has been devised with 

updatability and transferability in mind.  As such, the proposed route to system 

formulation is based on census products, in this research from 2001.  The 

updating of the system to classify 2011 data is also achievable once data 

availability is confirmed given likely comparable formats.  The system may 

require revision beyond 2011 to cater for other census-replacement datasets 
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(see section 8.4).  Furthermore, the ability to append the classification to 

external datasets adds value, not only for validation (as illustrated), but more 

importantly for future users to profile against external datasets.  In this work, 

the BHPS was demonstrated given the plethora of non-census variables 

present in the dataset and parallelism of such variables to the broad field of 

social science and GENESIS. 

Objective #4: Apply the classification framework to two case study 

locations and investigate the performance relative to these. 

This objective highlighted the functionality of the framework in terms of its 

ability to successfully partition and differentiate between the individual data, 

whether this be continuous or categorical.  The primary case study region of 

Leeds and also that of Richmondshire were presented, both selected due to 

their differing locations, population sizes and general demographics.       

The results identified five largely distinct clusters in both cases, ranging from 

clusters of individuals with high levels of education and employment 

attainment to those with very low education/qualifications and unemployed 

statuses.  Such clusters suggest that, on the most part, the framework and 

methods are able to handle and partition data of this nature into homogeneous 

clusters.    

Objective #5:  Facilitate a link from the classification to other social 

scientific datasets for the purpose of validation and enrichment. 

Although the framework proposal represents the key innovation behind this 

research, an ability to link the classification to other datasets is of great 

benefit.  This was demonstrated in this research for validation purposes first 

and foremost and latterly for enrichment and added value.   

Through a statistical matching routine, cluster codes can be appended to 

datasets sharing at least some common variables (the greater the number of 

common variables, the more accurate the match).  This process was 

illustrated on the BHPS where all but one of the SAM variables were present 

hence enabling a strong statistical match.  The linkage corroborated the 

cluster centres and pen portrait definitions for the most part although 

anomalies were evident.  However, given the novel approach taken in this 

research, limitations and modifications moving forward were always likely.  
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8.3. Adopting the Individual-Level Geodemographic Framework in a 
Wider Context 
 
The framework presented and discussed in this research is designed to be 

transferable such that it can be applied by other researchers and practitioners 

in a variety of contexts.  Although applied more generally in this research 

through the construction of a general-purpose classification designed to 

highlight the framework's functionality, other applied opportunities include 

health, crime and retail profiling (see section 2.5).  Local authorities therefore 

may be one such beneficiary of this research.  

 

The flow diagram presented in Figure 8.1 acts as an illustrative guide through 

which interested parties can employ the framework with alternative data 

(outside academia).  The diagram comprises eight phases, some comparable 

to those listed by Gibson and See (2006) when formulating area-based 

classifications [see section 4.2], and others that involve new steps designed to 

enable the handling of individual data.  The following sections discuss each 

phase in turn and provide supplementary information to that presented in 

Figure 8.1. 
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Phase 8 

Validate/enrich classification 

Similar to Phase 6, it is possible to corroborate 
and add value to the classification by linking to 

other datasets not made use of in the 
classification. 

Phase 7 

Visualisation 

This phase is optional.  Should cartographic 
visualisation be desired, the outcome from 
Phase 6 can be utilised and linked to data 

through a GIS. 

Phase 6 

Link to geography 

If appropiate and the data bears no 
geographical reference (or a level deemed too 
coarse), statistically match to external dataset 

containing desired geographical level. 

Phase 5 

K-means classification process 
Adopt K-means classification process on 

cluster-ready variables.  A randomisation of 
initial seeds in recommended if using SPSS. 

Phase 4 

Determine suitability of re-scaled 
variables 

Graphically assess results from Phase 3 to 
ensure suitability.  For example, do variables 

retain their meanings when transformed. 

Phase 3 

Transform/re-scale variables if not in 
continuous format 

If variables selected in Phase 2 are of different 
type (e.g. categorical), perform transformation 

based on independent continuous  variable. 

Phase 2 

Select input variables 
Based on the decision in Phase 1, select input 

variables suitable for the classification.  

Phase 1 

Define a purpose 
Determine whether the classification is to be 
built for a given purpose or if it is to be multi-

purpose.  

Figure 8.1.  Demonstrating the transferability of the individual-level framework. 
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8.3.1 Phase 1: Define a Purpose 
 
As with area-based classifications, knowledge of a given purpose to which the 

classification is expected to support is of particular benefit, in particular with 

reference to input variable selection.  However, general-purpose 

classifications are commonplace in the market and have been discussed in 

this thesis (ACORN, Mosaic and CAMEO being three such examples).  This 

research made use of the framework to construct a multi-purpose 

classification.  This development phase is common to the construction of area-

based systems. 

8.3.2 Phase 2: Select Input Variables 
 
As discussed in section 4.4, input variable selections are often aided by an 

overriding purpose which the classification is designed to support, for example 

health profiling (see Abbas, 2009).  The presence of a specific purpose makes 

selection easier as it narrows down the scope of the classification.  This work 

has presented a multi-purpose classification and therefore variables were 

selected based on other means.  One such approach is to consider variables 

included in alternative multi-purpose geodemographic systems or those found 

in datasets spanning key domains within areas of interest.  This work took a 

high-level approach and considered variables from the breadth of social 

science and selected those variables common across datasets such as the 

British Crime Survey and National Travel Survey.  Naturally, this resulted in 

fundamental census variables being put forward to demonstrate the 

framework's functionality.  This phase is common to the construction of area-

based systems and variable selection methods such as those discussed can 

be adopted.    

8.3.3 Phase 3: Transform/Re-Scale Variables 
 
This phase represents one of the novel aspects of this research and 

distinguishes it from area-based classification.  Individual-level data are often 

stored in a categorical format, for example ordinal, nominal or dichotomous.  

Such data types, particularly if conflicting or mixed, are not suited to 

conventional clustering methodologies such as K-Means.  It is often therefore 

necessary to transform variables into a (quasi)continuous state suitable for a 

clustering process.  The framework achieves this by making use of an 

independent continuous variable (in this case, monthly earned income from 

the BHPS) and converting all categorical data into this format.  The conversion 
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process is facilitated by sourcing an external dataset with an independent 

continuous variable and also each of the variables selected for input to the 

classification algorithm.  The average value from the independent variable is 

then attributed to the categorical data, for example: male and female would 

receive two separate valuations, in this research linked to average income.  If 

a single external dataset containing all input variables is not sourceable, 

alternatives can be used to ensure each variable is re-coded onto a quasi-

continuous scale.  If more than one external dataset is used, a process of 

standardisation will be required to linearly re-scale all data and ensure parity.   

 
In some cases, it may be acceptable to retain the format of ordinal variables 

(such as highest level of qualification where values range from 0 for no 

qualifications to 5 for highest possible level of qualification) or interval 

variables (such as age, e.g. 0-4, 5-10 etc).  In the case of interval data, one of 

the lower, middle or highest values per interval can be used providing this 

remains consistent throughout.  Should certain variables remain in their 

original form, normalisation/re-scaling may be required as discussed 

previously.   

Variable polarity should also be considered at this stage.                

 
8.3.4 Phase 4: Determine Suitability of Re-Scaled Variables 
 
Regardless of whether the previous phase is applied to all or a selection of the 

input variables, it is necessary to ensure the meaning of any variable is not 

lost by the conversion from one data type to another.  This research has 

demonstrated this through the age variable but other cases may exist when 

adopting this framework with new data.  Age is stored in interval format such 

that individuals may be 0-4, 5-10 years of age etc.  Retaining the interval 

format (or lowest value per interval, for example 0, 5...) for each individual 

preserves the meaning of the variable.  If this is instead converted into a 

continuous format based on an average earned income value as per other 

variables, a great deal of meaning is lost.  For example, those individuals 

below the working age (<18) and those in retirement (>~70) inherit highly 

comparable earned incomes making them inseparable when it comes to 

classification.  This is the case in this example as the continuous variable used 

represents earned income only and fails to take into account benefits or any 

other forms of financial support. 
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8.3.5 Phase 5: K-Means Classification Process 
 
This phase is comparable to any classification created using aggregate data 

given that the variables have been converted to continuous formats where 

appropriate (phase 3).   

A recommendation at this stage is to randomise the initial seeds of the cluster 

centres prior to commencing the clustering algorithm (if the software chosen 

does not do this by default).  This research was conducted using IBM's SPSS 

package and therefore seed randomisation was required manually.  

8.3.6 Phase 6: Link to Geography 
 
In many instances, individual-level data are not available with a fine-level of 

geography given sensitivity and confidentiality.  This is certainly the case with 

census data but may be different with company-specific data (e.g. data 

collected by retailers on customers).  If a finer-level of detail is desired, it is 

possible to link the classification codes generated in phase 5 to a dataset 

offering this level of detail.  This process is termed 'statistical matching' in this 

research and is detailed in depth in section 7.2. 

 
If the framework is being pursued with company or self-collected data, the 

resolution to which the data are captured may be sufficient.   

 
The purpose of this phase is to enable a greater understanding of the spatial 

patterns of the clusters.  It is also required to fulfil phase 8. 

 
This research also made use of the statistical matching process to obtain a 

fuller dataset, thus moving from the 5% SAM sample to that of a complete 

population dataset for the case study regions.  As with completing this phase 

to obtain finer-level geographies, if the data collected by an organisation are of 

a suitable sample then statistical matching is not necessarily a requirement.   

 

8.3.7 Phase 7: Visualisation 
 
This is an optional phase and feeds on from phase 6 where finer-level 

geography was introduced (if required).  Linking the attribute data to 

geographical boundaries through a GIS enables spatial patterns/relationships 

to be easily identified and decisions made on population targeting with respect 

to retail/sales marketing, at-risk population identification, resource prioritisation 

etc. 
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8.3.8 Phase 8: Validation and Enrichment 
 
Although phase 7 denotes the completion of building and visualising the 

classification and making use of its output, this phase represents an 

opportunity to both validate and enrich the results with supplementary 

information.  Through a process of statistical matching (identical to phase 6), 

as discussed in section 7.2, the cluster codes from the classification can be 

appended onto other datasets enabling deeper profiling.  In the case of this 

research, it was possible to match the cluster codes onto the BHPS dataset 

and profile the results against other variables (principally behavioural) such as 

one's propensity to dine out of an evening or take flights abroad during the 

course of a twelve month period.  Such outcomes not only add value and 

enrich the classification but also offer an opportunity to corroborate the 

clustering process.  For example, to take a crude case, one may opt to 

validate the affluent-most cluster of a classification against the BHPS with 

particular reference to the aforementioned flights abroad variable. One would 

expect the affluent-most clusters to demonstrate a greater propensity to take 

air travel than other clusters in the classification. 

 
This phase completes the framework and is very much supplementary to the 

remainder of the development phases but is a useful tool for validation, 

enrichment and/or profiling against other datasets if required. 

8.4. Strengths, Weaknesses and Considerations of the Individual-
Level Geodemographic Classification Framework 
 
As discussed at previous junctures in this research, an approach to individual-

level classification has not been attempted before in academic literature, 

therefore the framework put forward in this work is designed to offer a first 

route to classification.  However, inevitably the framework is not the finished 

product nor is it without its problems.  It does, however, function and produce 

homogeneous clustering outcomes.  Pros and cons of the framework are 

discussed below. 

 
8.4.1. Strengths 
 
The key strengths to be drawn from this research can be linked to the two 

problems identified at the outset of this chapter; those of MAUP and ecological 

fallacy.   
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As brought to attention earlier, area-based geodemographic systems rarely 

classify small areas into best-fit groups without some degree of ambiguity and 

the example in section 4.8 under the heading of 'misrepresentation in 

classifications' is a prime example.  Recall the 'Metro Singles' example 

discussed by Birkin (1995) when assessing the SuperProfiles Lifestyle 

classification; the true composition of this cluster when compared to what one 

may expect is very different.  In fact, rather than exclusively (or even 

principally) encompassing single workers, the cluster in fact only accounts for 

21% of such a demographic meaning that circa 80% of the cluster is 

categorised by people not recorded as single and working.  This is 

misrepresentation.  The 'Young Married Suburbia' example also returns the 

same findings with over 25% of the cluster recorded as aged over forty-five 

years.   

Birkin's (1995) assessment of ecological fallacy within geodemographics was 

built upon by new research in this thesis which critiqued a more recent and 

fully open-source system, the Output Area Classification (OAC) (2001).  

Despite the OAC being made available circa twenty years after SuperProfiles 

was first released in the early/mid 1980's (Harris et al., 2005), the same 

problems were highlighted.  This research identified, in particular, the 

'Multicultural' cluster (amongst others) in Leeds and how its two sub-groups, 

'Asian Communities' and 'Afro-Caribbean Communities' did not truly describe 

the population demographics of areas categorised in these clusters.  The 

former grouping in fact contained over 13% more Afro-Caribbean persons 

than Asians and in the latter 40% more Asians than Afro-Caribbeans, 

observations that one may have expected in reverse given the cluster 

definitions. 

The above discussion suggests that a movement away from areal-unit 

categorisation would make for far more effective and focused methods for 

population targeting.  However, one must also bear in mind that similar to 

geographical modelling and the notion of simplifying reality (words discussed 

in chapter 2 as part of the dictionary definition of classification), 

geodemographics cannot be expected to describe the real world down to 

infinite detail.   The ability to segment areas very much aids understanding 

even if errors transpire.  Nevertheless, reducing the frequency and magnitude 

of such errors is something this research looked to address.   
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Farr and Webber (2001) describe the benefits to be gained from moving from 

aggregate systems to systems capable of individual-level classification as 

being “intuitively obvious” (p.58), particularly with reference to the added 

discrimination such systems provide.  Arguably, it is a combination of added 

discrimination and improved levels of ecological fallacy that this research has 

overcome through operating at the level of the individual.  If a system is 

deemed to discriminate better than alternatives then it will, as a consequence, 

reduce the level of ecological fallacy as the clusters are likely to be more 

homogeneous.  As discussed in section 5.2, as the quantity of variables 

increases in an aggregate-data classification, the scope for misrepresentation 

also increases as fewer people are likely to fit the described cluster 

demographic.  At the level of the person, although this is also the case, it is 

easier to maintain a greater level of homogeneity as one individual can easily 

be re-classified should he/she not fit a given cluster definition.  At the area 

level, for a small-area to be re-classified, a bigger shift is required and even 

then, the degree of homogeneity is likely to be less than that of a system 

operating at the level of the person.   

This research has demonstrated the above by aggregating from the individual-

level to output area.  As can be seen from the data subset in Table 7.2 and the 

list in Appendix B.2, although area-based systems profess to cluster areas 

based on homogeneity, as evidenced in the two said tables, a variety of 

individuals reside in these clusters and by simply allocating an area to a crisp 

cluster, this variety (or heterogeneity) is lost.  Take output area '00DAFA0015' 

in Aireborough CAS ward (2001), in north-west Leeds as an example.  Any 

area-based classification would attribute a cluster code to this area (for 

example, in the OAC this is 'Prospering Suburbs' (super group) and 'Thriving 

Suburbs' (group)).  Whereas, in reality, the variation that exists in this area is 

captured to a greater extent by classifying at the level of the individual as, 

although the area may have some degree of homogeneity, finer-level 

classifications pick up any heterogeneity that exists.  In this research, this 

particular output area clearly has a predominant cluster ('Affluent Managers') 

but it also has variations within, as evidenced in Table 8.1, something an area-

based system very much overlooks. 

OA 
Zone_Code 

Ward_Name TotalPop Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Cluster 
M'Ship 

00DAFA0015 Aireborough 385 132 109 125 4 15 1 

Table 8.1. Example output area and the benefits of individual-level classification. 
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A further strength evidenced in this research is the ability to aggregate the 

classification to chosen geographies with relative ease.  This has been shown 

through a linkage to output area geography.  At times when changing 

geographical boundaries making spatial-temporal analysis difficult, a 

classification at the individual level enables aggregations to chosen 

geographies for the purpose of benchmarking and analysis.      

8.4.2. Weaknesses and Considerations 
 
As referred to in chapters 6 and 7, certain variables do not appear to 

differentiate between individuals particularly well.  Such variables include 

ethnic group and sex amongst others.  Even though these variables may be 

termed fundamental census characteristics (and poses high inclusion values 

when looking for occurrences in survey data sets), later versions of this 

framework may be required to make more detailed decisions on the variables 

included.  Given the format of the data and the relative inability to test for 

multicollinearity and other common statistical measures, such patterns are 

best evidenced through classification iteration and hence may be re-

considered before a final variable set is decided upon.  The same can also be 

said for deciding on a number of clusters, the key here was to propose a 

framework and any fine-tunings (and decision on number of clusters) are likely 

to be as much a function of the purpose of the classification as the framework 

itself.  This work has proposed a multi-purpose classification in a bid to test 

the framework's functionality.  Having a clear purpose to the classification will 

aid decision making on such aforementioned matters.     

More generally, and having discussed ecological fallacy at length, it is 

important to emphasise that the interpretation of results generated from this 

framework should not fall foul of exception fallacy.  Exception fallacy, being 

the reverse of ecological fallacy, is the process whereby inferences are made 

about the characteristics of groups based on individual traits.  Should results 

be aggregated to a selected geography, as in this work, for the purpose of 

visualisation, this renders the problem insignificant, however, if results are 

interpreted in tabular format (e.g. all 715,402 Leeds individuals) with some 

form of geography attached then it is a consideration.  Visualisation of the 

classification results remains difficult and exploration of innovative means to 

achieve this would go some way to improving the usability of the outputs and 

negating both ecological and exception fallacies.     
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Finally, given this classification’s total reliance on census data for its input 

variables, continued use of the framework remains achievable for the 

foreseeable future given the recent announcement of a further census in 2021 

(albeit predominantly online census replacing the traditional paper-based 

approach) (ONS, 2014).  With no confirmation of a national census beyond 

2021, the framework may require adaptation with possible alternative datasets 

including Post Office records, local government data and credit checking 

agency data. 

8.5. Further Research Opportunities 
 
The inter-disciplinary opportunities that profiling at this level generates, in 

particular with an ability to profile against external datasets, offers a broad 

appeal to further research using this framework.  This work has demonstrated 

an ability to link to the BHPS and explore behavioural datasets over and 

above pure census characteristics held directly within the classification.  

Opportunities therefore exist to profile against datasets such as the Health 

Survey for England, British Crime Survey and National Travel Survey to name 

three.  When one considers the refinement of the framework in addition to 

such diverse profiling opportunities, scope for research extension is clear and 

policy implications brought about from more accurate and finer-level 

classifications offer incentive to pursue this research avenue.  Given the new 

approaches put forward in this research and the lack of any directly parallel 

methods, the framework can no doubt be enhanced based on further research 

and testing, however, once fine-tuned, the benefits of such fine-level 

classification are highly apparent.    
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Appendix A 
 
A.1. Full SAM Variable List (in format: SAM code – SAM description) 
 
Below is a list of SAM variables as referred to in the SAM data dictionary.  

acctypa - Accommodation Type  
agea - Age of Respondents  
bathwc - Use of Bath/Shower/Toilet  
carsh - Cars/Vans Owned or Available for Use  
cemtyp - Type of communal establishment 
cenheat0 - Central Heating  
ceststat - Status in Communal Establishment  
cobirta - Country of Birth 
combgn - Community Background - Religion or Religion Brought Up In 
(N.Ireland)  
country - Country 
defra - DEFRA: urban/rural type (numerical) 
densitya - No. of Residents per Room  
dfdisp - DEFRA: Dispersed Pop  
dflgmtwn - DEFRA: Large Market Twn Pop 
dflgurb - DEFRA: Large Urb Pop  
dfmjurb - DEFRA: Major Urb Pop  
dfothurb - DEFRA: Other Urb Pop  
dfrutnp1 - DEFRA: Rural Twn Pop  
dfrutnp2 - DEFRA: Rural Twn Pop (Includ Lrge Market Twn Pop) 
dftotal - DEFRA: Total Pop 
dftotrupa - DEFRA: Total Rural Pop (Includ Lrge Market Twn Pop) 
dftotrupb - DEFRA: Total rural % (Includ Lrge Market Twn Pop) 
dftoturb - DEFRA: Total Urb Pop(Exclud. Lrge Market Twn Pop) 
dfvilp - DEFRA: Village Pop 
distmova - Distance of Move for Migrants (km)  
distwrka - Distance to Work (Including Study in Scotland) 
econach - Economic Activity (last week) 
edisdono - Number of times information donated  
ethewa - Ethnic Group for England and Wales 
ethn - Ethnic Group for Northern Ireland 
ethsa - Ethnic Group for Scotland  
everwork - Ever Worked  
famtypa - Family Type  
fndepcha - Dependent Children in Family  
freconac - Economic Position of Family Reference Person  
frnssec8 - NS-SEC Social-Economic Classifications of Family Reference 
Person  
frsex - Sex of Family Reference Person  
furn - Accommodation Furnished (Scotland) 
genind - Generation Indicator  
health - General Health Over the Last Twelve Months 
hedind - Household Education indicator  
hempind - Household Employment indicator  
hhsgind - Household housing indicator  
hhtlhind - Household health & disability indicator  
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hmptpuk - Hhd headship (ODPM)  
hncarers - Number of Carers in the Household  
hnearnra - Number of Employed Adults in Household  
hnllti - Number in Household with Limiting Long-term Illness  
hnprhlth - Number of Household Members with Poor Health 
hnresida - Number of Usual Residents in Household  
hourspwg - Hours Worked Weekly  
hrsocgrd - Social Grade of Household Reference Person 
id - ID within country  
lacode - local authority (GB) or parliamentary constituency (NI)  
lastwrka - Year Last Worked 
llti - Limiting Long Term Illness  
lowflora - Lowest floor level of household living accommodation  
marstata - Marital Status  
miginda - Migration Indicator  
migorgn - region of origin 
nssec8 - NS-SEC 8 classes  
occupncy - Occupancy Rating of Household 
oncperim - One Number Census status 
onscode - ONS LA indicator 
pnum - record identifier within country 
popbasea - Population Base qualifier  
profqual - Professional Qualification (England and Wales) . 
provcare - Number of Hours Care Provided per Week 
qualvewn - Level of Highest Qualifications (Aged 16-74, EWN) 
qualvs - Level of highest qualifications (16-74) (Scotland) 
regiona - Region of usual residence  
relgew - Religion (England and Wales) 
relgn - Religion (Northern Ireland) 
relgs1 - Religion Belongs to (Scotland) 
reltohra - Relationship to HRP  
roomsflr - Number of Floor Levels (Northern Ireland) 
roomsnum - Number of Rooms Occupied in Household Space 
selfcont - Accommodation Self-Contained  
sex - Sex  
stahuka - Household with Students Away During Term Time 
student - Schoolchild or Student in Full-Time Education . . . 
supervsr - Supervisor/Foreman 
tenurewa - Tenure of Accommodation, England and Wales 
tenursna - Tenure of Accommodation, NI, Scotland  
termtima - Term time Address of Students or Schoolchildren . 
tranwrka - Transport to Work, UK (Including to Study in Scotland)  
workforc - Size of Work Force 
wrkplcea - Workplace 
zacctypa - acctypa imputation flag 
zagea - agea imputation flag 
zbathwc - bathwc imputation flag  
zcarsh - carsh imputation flag  
zcemtyp - cemtyp imputation flag 
zcenheat - cenheat imputation flag 
zceststa - ceststat imputation flag  
zcobirta - cobirta imputation flag  
zcombgn - combgn imputation flag 
zdensity - density imputation flag 
zdistmov - distmov imputation flag  
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zdistwrk - distwrka imputation flag  
zeconach - econach imputation flag 
zethewa - ethewa imputation flag  
zethn - ethn imputation flag  
zethsa - ethsa imputation flag  
zeverwor - everwork imputation flag  
zfamtypa - famtypa imputation flag 
zfndepch - fndepch imputation flag  
zfrecona - frecona imputation flag  
zfrnssec - frnssec imputation flag 
zfrsex - frsex imputation flag  
zfurn - furn imputation flag  
zgenind - genind imputation flag 
zhealth - health imputation flag  
zhedind - hedinid imputation flag 
zhempind - hempind imputation flag  
zhhlthin - hhtlhind imputation flag  
zhhsgind - hhsgind imputation flag 
zhmptpuk - hmptpuk imputation flag  
zhncarer - hncarer imputation flag  
zhnearnr - hnearnr imputation flag  
zhnllti - hnllti imputation flag  
zhnprhlt - hnprhlt imputation flag  
zhnresid - hnresid imputation flag 
zhourspw - hourspw imputation flag  
zhrsocgr - hrsocgr imputation flag 
zlastwrk - lastwrk imputation flag  
zllti - llti imputation flag  
zlowflor - lowflor imputation flag 
zmarstat - marstat imputation flag  
zmiginda - miginda imputation flag  
zmigorgn - migorgn imputation flag  
znssec8 - nssec8 imputation flag  
zoccupnc - occupncy imputation flag  
zprofqua - profqual imputation flag  
zprovcar - provcare imputation flag  
zqualvew - qualvew imputation flag 
zqualvs - qualvs imputation flag  
zregiona - regiona imputation flag  
zrelgew - relgew imputation flag  
zrelgn - relgn imputation flag  
zrelgs1 - relgs1 imputation flag  
zreltohr - reltohr imputation flag  
zroomsfl - roomsflr imputation flag 
zroomsnu - roomsnum imputation flag 
zselfcon - selfcont imputation flag  
zsex - sex imputation flag  
zstahuka - stahuka imputation flag 
zstudent - student imputation flag 
zsupervs - supervsr imputation flag 
ztenure - tenure imputation flag 
ztenursn - tenursni imputation flag  
 
Full 2001 SAM Codebook available online at: 
http://www.ccsr.ac.uk//sars/2001/sam/variables/samcodebook20070604.pdf 

http://www.ccsr.ac.uk/sars/2001/sam/variables/samcodebook20070604.pdf
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A.2. SAM Variable Look-Up 
 

Below is a look-up table for SAM variables as referred to at various junctures 

in this thesis, particularly chapter 6 (Tables 6.3 to 6.6) when referring to the 

fifteen selected variables. 

 

 

SAM-listed Variable SAM Variable Description 

Age Age (in Years) 

CarVan Car/Vans available for use (per household) 

CenHeat Central Heating provision 

CoB Country of Birth 

EthGrp Ethnic Group 

HholdFamTyp Family Type 

Health Self-Reported health status 

No.UsualRes Number of residents in household (typically) 

HrsWrkdWkly 

Number of hours in paid employment per week 
(typically) 

MarStat Legal marital status 

HrsCareWkly 

Number of hours spent caring for relative(s) per 
week (typically) 

ReltoHRP Relationship to Household Reference Person 

Sex Legal sex definition 

NSSEC National-Statistics Socio-Economic Classification 

Qual Highest Level of Qualification 
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Appendix B  

 
B.1. Individual to 2001 OA Special Case Assignments 
 

In cases where two or more clusters share the same highest count of 

individuals per output area, the first cluster (numerically) is assigned as its 

membership.  For the purpose of completeness, those output areas in 

question are listed below together with the final cluster membership.  Green 

highlighting denotes instances where output areas share equal cluster count.  

The final column in the table, Cluster M'Ship, specifies the final cluster 

assignment based on the aforementioned ruling. 

Given that this research is primarily to highlight a framework through which 

individual-level classifications can take place, taking this approach for output 

areas with more than one highest cluster value seems appropriate as a means 

of testing the model.   

 

OA 
Zone Code 

Ward  
Name 

Total 
Population 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 
M'Ship 

00DAFE0022 Bramley 309 79 79 18 71 62 1 

00DAFF0001 Burmantofts 312 62 73 52 52 73 2 

00DAFF0034 Burmantofts 272 58 56 52 58 48 1 

00DAFL0076 Halton 258 65 65 43 28 57 1 

00DAFM0033 Harehills 283 78 34 64 29 78 1 

00DAFQ0043 Hunslet 235 64 3 8 80 80 4 

00DAFR0035 Kirkstall 307 62 58 66 55 66 3 

00DAGA0017 Pudsey South 282 72 4 69 72 65 1 

00DAGA0061 Pudsey South 330 82 69 29 68 82 1 

00DAGB0017 Richmond Hill 322 92 67 61 10 92 1 

00DAGC0057 Rothwell 294 26 78 41 78 71 2 

00DAGF0066 University 234 38 12 56 64 64 4 
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B.2. Individual to 2001 OA Lookup Table 
 

This section lists a sample of 2001 Leeds census output areas with context 

added through the inclusion of census ward names.  The total number of 

individuals classified into each of the five clusters per output area are shown.  

The final column indicates the cluster membership based on the highest 

presence of individuals in each of the five clusters. 

Included for the purpose of illustration are Leeds output areas in: Aireborough 

(north-west), Armley (central/west), Whinmoor (central/east) and Wetherby 

(north-east).  See map below. 

Location of OA's included in lookup table on 

following pages of Appendix B.2. 

 

 

 

The full lookup table is available on the CD-ROM at the back of this thesis 

(Appendix C) should this copy include one (file name: OALookupTable.pdf).  

Otherwise, it can be obtained by contacting Luke Burns at: 

L.P.Burns@leeds.ac.uk.  

file:///C:/Users/Luke/Desktop/L.P.Burns@leeds.ac.uk
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OA Zone 
Code 

Ward  
Name 

Total 
Population 

Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Cluster 
M'Ship 

00DAFA0001 Aireborough 304 71 182 8 6 37 2 

00DAFA0002 Aireborough 286 84 93 47 16 46 2 

00DAFA0003 Aireborough 436 255 5 75 62 39 1 

00DAFA0004 Aireborough 237 25 62 56 237 57 4 

00DAFA0005 Aireborough 294 103 37 46 61 47 1 

00DAFA0006 Aireborough 363 141 50 51 48 73 1 

00DAFA0007 Aireborough 370 32 21 211 95 11 3 

00DAFA0008 Aireborough 318 19 122 70 45 62 2 

00DAFA0009 Aireborough 384 110 96 100 37 41 1 

00DAFA0010 Aireborough 287 65 58 49 64 51 1 

00DAFA0011 Aireborough 298 66 74 27 59 72 2 

00DAFA0012 Aireborough 271 88 40 31 56 56 1 

00DAFA0013 Aireborough 291 101 32 44 87 27 1 

00DAFA0014 Aireborough 359 97 75 35 61 91 1 

00DAFA0015 Aireborough 385 132 109 125 4 15 1 

00DAFA0016 Aireborough 333 90 88 51 24 80 1 

00DAFA0017 Aireborough 204 45 50 18 44 47 2 

00DAFA0018 Aireborough 312 30 111 70 29 72 2 

00DAFA0019 Aireborough 287 2 51 92 93 49 4 

00DAFA0020 Aireborough 329 71 72 30 84 72 4 

00DAFA0021 Aireborough 338 87 91 68 90 2 2 

00DAFA0022 Aireborough 310 45 98 54 40 73 2 

00DAFA0023 Aireborough 253 15 115 21 11 91 2 

00DAFA0024 Aireborough 343 108 67 63 103 2 1 

00DAFA0025 Aireborough 157 41 31 44 19 22 3 

00DAFA0026 Aireborough 279 48 64 50 63 54 2 

00DAFA0027 Aireborough 307 65 85 65 77 15 2 

00DAFA0028 Aireborough 303 68 81 46 46 62 2 

00DAFA0029 Aireborough 108 18 11 28 26 25 3 

00DAFA0030 Aireborough 342 126 91 6 102 17 1 

00DAFA0031 Aireborough 143 19 38 42 34 10 3 

00DAFA0032 Aireborough 314 30 107 49 77 51 2 

00DAFA0033 Aireborough 300 94 76 37 40 53 1 

00DAFA0034 Aireborough 263 44 70 52 39 58 2 

00DAFA0035 Aireborough 245 77 43 71 31 23 1 

00DAFA0036 Aireborough 414 106 53 49 105 101 1 

00DAFA0037 Aireborough 225 2 81 38 48 56 2 

00DAFA0038 Aireborough 242 58 42 17 109 16 4 

00DAFA0039 Aireborough 309 9 114 9 122 55 4 

00DAFA0040 Aireborough 288 1 16 155 16 100 3 

00DAFA0041 Aireborough 311 44 76 54 66 71 2 

00DAFA0042 Aireborough 254 57 72 11 58 56 2 

00DAFA0043 Aireborough 362 63 50 64 97 88 4 

00DAFA0044 Aireborough 325 98 46 41 86 54 1 
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OA Zone 
Code 

Ward  
Name 

Total 
Population 

Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Cluster 
M'Ship 

00DAFA0045 Aireborough 303 112 46 92 18 35 1 

00DAFA0046 Aireborough 285 67 69 26 84 39 4 

00DAFA0047 Aireborough 253 8 70 65 77 33 4 

00DAFA0048 Aireborough 269 32 72 71 61 33 2 

00DAFA0049 Aireborough 258 59 117 23 40 19 2 

00DAFA0050 Aireborough 299 22 56 111 84 26 3 

00DAFA0051 Aireborough 285 16 38 100 53 78 3 

00DAFA0052 Aireborough 240 24 12 79 86 39 4 

00DAFA0053 Aireborough 347 118 69 91 64 5 1 

00DAFA0054 Aireborough 288 19 112 3 89 65 2 

00DAFA0055 Aireborough 314 69 65 65 57 54 1 

00DAFA0056 Aireborough 309 29 59 77 84 60 4 

00DAFA0057 Aireborough 258 4 88 45 118 3 4 

00DAFA0058 Aireborough 322 80 18 77 69 78 1 

00DAFA0059 Aireborough 312 126 0 36 59 91 1 

00DAFA0060 Aireborough 291 59 62 113 56 1 3 

00DAFA0061 Aireborough 272 44 78 75 28 47 2 

00DAFA0062 Aireborough 334 92 61 29 87 65 1 

00DAFA0063 Aireborough 268 13 97 50 81 27 2 

00DAFA0064 Aireborough 319 92 62 63 34 68 1 

00DAFA0065 Aireborough 257 25 58 59 74 41 4 

00DAFA0066 Aireborough 321 114 50 101 28 28 1 

00DAFA0067 Aireborough 236 14 48 25 70 79 5 

00DAFA0068 Aireborough 307 6 98 69 87 47 2 

00DAFA0069 Aireborough 209 54 74 69 0 12 2 

00DAFA0070 Aireborough 210 12 66 9 113 10 4 

00DAFA0071 Aireborough 258 75 67 53 23 40 1 

00DAFA0072 Aireborough 248 26 124 41 7 50 2 

00DAFA0073 Aireborough 351 169 22 79 62 19 1 

00DAFA0074 Aireborough 305 101 62 93 38 11 1 

00DAFA0075 Aireborough 225 0 110 3 50 62 2 

00DAFA0076 Aireborough 265 73 86 72 8 26 2 

00DAFA0077 Aireborough 257 40 57 32 78 50 4 

00DAFA0078 Aireborough 271 30 23 71 62 85 5 

00DAFA0079 Aireborough 208 47 42 52 47 20 3 

00DAFA0080 Aireborough 304 128 53 59 28 36 1 

00DAFA0081 Aireborough 328 51 73 110 86 8 3 

00DAFA0082 Aireborough 271 53 41 75 70 32 3 

00DAFA0083 Aireborough 230 57 59 51 58 5 2 

00DAFA0084 Aireborough 278 31 142 19 49 37 2 

00DAFA0085 Aireborough 232 62 38 45 38 49 1 

00DAFA0086 Aireborough 343 53 111 46 60 73 2 

00DAFA0087 Aireborough 250 35 80 42 28 65 2 

00DAFA0088 Aireborough 282 98 74 45 21 44 1 



 
Appendix B 

158 
 

OA Zone 
Code 

Ward  
Name 

Total 
Population 

Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Cluster 
M'Ship 

00DAFA0089 Aireborough 262 68 55 51 35 53 1 

00DAFB0001 Armley 428 50 65 68 80 165 5 

00DAFB0002 Armley 427 84 43 107 62 131 5 

00DAFB0003 Armley 301 67 1 112 58 63 3 

00DAFB0004 Armley 336 64 93 145 7 27 3 

00DAFB0005 Armley 374 109 60 25 73 107 1 

00DAFB0006 Armley 537 19 187 25 181 125 2 

00DAFB0007 Armley 310 71 21 71 64 83 5 

00DAFB0008 Armley 352 63 140 70 41 38 2 

00DAFB0009 Armley 274 12 68 81 26 87 5 

00DAFB0010 Armley 285 44 25 34 38 144 5 

00DAFB0011 Armley 283 78 36 40 43 86 5 

00DAFB0012 Armley 315 75 66 60 95 19 4 

00DAFB0013 Armley 288 72 8 103 55 50 3 

00DAFB0014 Armley 277 11 11 91 107 57 4 

00DAFB0015 Armley 308 38 89 83 52 46 2 

00DAFB0016 Armley 262 41 1 105 35 80 3 

00DAFB0017 Armley 251 63 56 33 84 15 4 

00DAFB0018 Armley 297 56 88 77 12 64 2 

00DAFB0019 Armley 353 1 122 78 47 105 2 

00DAFB0020 Armley 250 13 61 42 94 40 4 

00DAFB0021 Armley 281 55 33 29 72 92 5 

00DAFB0022 Armley 325 50 51 129 84 11 3 

00DAFB0023 Armley 286 12 78 87 45 64 3 

00DAFB0024 Armley 333 11 44 88 111 79 4 

00DAFB0025 Armley 293 83 43 152 10 5 3 

00DAFB0026 Armley 333 77 42 113 74 27 3 

00DAFB0027 Armley 299 46 99 40 30 84 2 

00DAFB0028 Armley 250 35 102 7 42 64 2 

00DAFB0029 Armley 337 12 1 175 113 36 3 

00DAFB0030 Armley 315 51 152 3 63 46 2 

00DAFB0031 Armley 373 220 21 23 25 84 1 

00DAFB0032 Armley 297 7 29 123 68 70 3 

00DAFB0033 Armley 224 38 44 9 63 70 5 

00DAFB0034 Armley 375 114 27 113 112 9 1 

00DAFB0035 Armley 353 74 118 103 6 52 2 

00DAFB0036 Armley 386 19 128 96 26 117 2 

00DAFB0037 Armley 243 44 25 120 31 23 3 

00DAFB0038 Armley 379 30 95 105 99 50 3 

00DAFB0039 Armley 264 25 126 19 16 78 2 

00DAFB0040 Armley 319 42 120 33 111 13 2 

00DAFB0041 Armley 247 29 65 16 87 50 4 

00DAFB0042 Armley 253 16 86 90 21 40 3 

00DAFB0043 Armley 158 17 32 13 44 52 5 
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OA Zone 
Code 

Ward  
Name 

Total 
Population 

Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Cluster 
M'Ship 

00DAFB0044 Armley 209 61 14 7 65 62 4 

00DAFB0045 Armley 288 21 59 81 45 82 5 

00DAFB0046 Armley 369 25 139 70 64 71 2 

00DAFB0047 Armley 280 50 40 46 88 56 4 

00DAFB0048 Armley 196 54 0 51 25 66 5 

00DAFB0049 Armley 319 93 89 57 21 59 1 

00DAFB0050 Armley 183 40 50 35 54 4 4 

00DAFB0051 Armley 309 66 9 120 27 87 3 

00DAFB0052 Armley 263 100 10 23 71 59 1 

00DAFB0053 Armley 220 62 12 11 62 73 5 

00DAFB0054 Armley 289 82 13 72 3 119 5 

00DAFB0055 Armley 294 67 19 89 36 83 3 

00DAFB0056 Armley 290 59 20 105 58 48 3 

00DAFB0057 Armley 193 38 41 46 48 20 4 

00DAFB0058 Armley 665 182 173 207 6 97 3 

00DAFB0059 Armley 297 72 76 15 78 56 4 

00DAFB0060 Armley 278 86 19 89 41 43 3 

00DAFB0061 Armley 323 22 96 102 76 27 3 

00DAFB0062 Armley 229 31 34 47 69 48 4 

00DAFB0063 Armley 199 30 36 43 40 50 5 

00DAFB0064 Armley 267 56 66 29 74 42 4 

00DAFB0065 Armley 337 26 71 140 53 47 3 

00DAFB0066 Armley 233 62 6 148 14 3 3 

00DAFB0067 Armley 270 70 4 133 24 39 3 

00DAFB0068 Armley 310 18 121 17 28 126 5 

00DAFB0069 Armley 223 37 47 64 2 73 5 

00DAFB0070 Armley 182 14 23 25 54 66 5 

00DAFB0071 Armley 219 21 13 61 56 68 5 

00DAFB0072 Armley 260 4 98 31 114 13 4 

00DAFB0073 Armley 281 29 50 79 61 62 3 

00DAFB0074 Armley 328 61 105 66 94 2 2 

00DAGH0001 Wetherby 359 108 5 93 54 99 1 

00DAGH0002 Wetherby 353 94 84 30 59 86 1 

00DAGH0003 Wetherby 313 98 52 23 92 48 1 

00DAGH0004 Wetherby 395 200 45 43 100 7 1 

00DAGH0005 Wetherby 266 74 56 39 46 51 1 

00DAGH0006 Wetherby 339 99 98 59 53 30 1 

00DAGH0007 Wetherby 360 121 84 76 4 75 1 

00DAGH0008 Wetherby 302 42 113 50 84 13 2 

00DAGH0009 Wetherby 267 108 53 7 85 14 1 

00DAGH0010 Wetherby 280 32 84 63 17 32 2 

00DAGH0011 Wetherby 294 92 91 33 75 3 1 

00DAGH0012 Wetherby 325 101 24 7 96 97 1 

00DAGH0013 Wetherby 296 65 56 51 61 63 1 
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OA Zone 
Code 

Ward  
Name 

Total 
Population 

Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Cluster 
M'Ship 

00DAGH0014 Wetherby 249 89 25 75 29 31 1 

00DAGH0015 Wetherby 246 16 60 7 156 7 4 

00DAGH0016 Wetherby 305 145 28 45 61 26 1 

00DAGH0017 Wetherby 288 28 89 105 66 0 3 

00DAGH0018 Wetherby 312 64 91 22 75 60 2 

00DAGH0019 Wetherby 278 38 65 16 125 34 4 

00DAGH0020 Wetherby 242 10 84 50 62 36 2 

00DAGH0021 Wetherby 322 98 30 78 55 61 1 

00DAGH0022 Wetherby 294 104 46 46 61 37 1 

00DAGH0023 Wetherby 294 163 34 1 11 85 1 

00DAGH0024 Wetherby 352 102 69 53 64 64 1 

00DAGH0025 Wetherby 184 64 68 36 4 12 2 

00DAGH0026 Wetherby 305 105 40 47 25 88 1 

00DAGH0027 Wetherby 326 88 31 71 89 47 4 

00DAGH0028 Wetherby 234 15 91 42 85 1 2 

00DAGH0029 Wetherby 281 81 39 73 73 15 1 

00DAGH0030 Wetherby 317 72 62 50 70 63 1 

00DAGH0031 Wetherby 295 76 87 47 82 3 2 

00DAGH0032 Wetherby 289 95 57 22 62 53 1 

00DAGH0033 Wetherby 225 74 74 47 21 9 1 

00DAGH0034 Wetherby 343 149 35 62 15 82 1 

00DAGH0035 Wetherby 308 95 82 27 48 56 1 

00DAGH0036 Wetherby 331 90 82 78 45 36 1 

00DAGH0037 Wetherby 299 76 44 74 76 29 1 

00DAGH0038 Wetherby 352 157 35 115 36 9 1 

00DAGH0039 Wetherby 252 82 74 1 17 78 1 

00DAGH0040 Wetherby 260 99 3 9 67 82 1 

00DAGH0041 Wetherby 256 101 72 6 52 25 1 

00DAGH0042 Wetherby 301 123 65 36 67 10 1 

00DAGH0043 Wetherby 265 23 78 59 83 22 4 

00DAGH0044 Wetherby 273 85 66 73 40 9 1 

00DAGH0045 Wetherby 367 162 3 59 30 113 1 

00DAGH0046 Wetherby 324 152 9 8 39 116 1 

00DAGH0047 Wetherby 260 93 89 17 24 37 1 

00DAGH0048 Wetherby 305 89 85 4 74 53 1 

00DAGH0049 Wetherby 818 239 161 121 216 81 1 

00DAGH0050 Wetherby 217 65 28 51 21 52 1 

00DAGH0051 Wetherby 369 29 132 116 66 26 2 

00DAGH0052 Wetherby 305 87 72 80 44 22 1 

00DAGH0053 Wetherby 332 130 65 106 26 5 1 

00DAGH0054 Wetherby 290 86 19 31 69 85 1 

00DAGH0055 Wetherby 488 163 54 59 105 107 1 

00DAGH0056 Wetherby 302 135 52 7 39 69 1 

00DAGH0057 Wetherby 246 45 86 5 33 77 2 
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OA Zone 
Code 

Ward  
Name 

Total 
Population 

Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Cluster 
M'Ship 

00DAGH0058 Wetherby 251 99 15 13 48 76 1 

00DAGH0059 Wetherby 287 66 88 19 108 6 4 

00DAGH0060 Wetherby 351 103 102 57 68 21 1 

00DAGH0061 Wetherby 300 91 24 37 77 71 1 

00DAGH0062 Wetherby 317 84 47 73 56 57 1 

00DAGH0063 Wetherby 329 125 10 33 92 69 1 

00DAGH0064 Wetherby 361 131 88 127 10 5 1 

00DAGH0065 Wetherby 593 237 4 149 140 63 1 

00DAGH0066 Wetherby 286 88 13 87 63 35 1 

00DAGH0067 Wetherby 187 19 62 25 41 40 2 

00DAGH0068 Wetherby 271 73 69 63 22 44 1 

00DAGH0069 Wetherby 292 147 41 38 61 5 1 

00DAGH0070 Wetherby 311 87 13 57 75 79 1 

00DAGH0071 Wetherby 311 113 79 32 59 28 1 

00DAGH0072 Wetherby 326 93 35 78 90 30 1 

00DAGH0073 Wetherby 228 79 68 71 4 6 1 

00DAGH0074 Wetherby 287 93 58 38 67 31 1 

00DAGH0075 Wetherby 169 17 27 46 8 71 5 

00DAGH0076 Wetherby 236 88 5 40 77 26 1 

00DAGH0077 Wetherby 297 74 57 46 48 72 1 

00DAGH0078 Wetherby 301 101 22 84 63 31 1 

00DAGH0079 Wetherby 267 108 51 7 97 4 1 

00DAGH0080 Wetherby 322 4 126 78 1 113 2 

00DAGH0081 Wetherby 263 12 1 123 113 14 3 

00DAGH0082 Wetherby 291 79 70 85 56 1 3 

00DAGH0083 Wetherby 195 34 16 37 47 61 5 

00DAGH0084 Wetherby 367 45 60 60 157 45 4 

00DAGH0085 Wetherby 278 155 8 49 20 46 1 

00DAGH0086 Wetherby 379 136 53 5 126 59 1 

00DAGH0087 Wetherby 170 40 22 24 23 61 5 

00DAGJ0001 Whinmoor 287 26 84 41 35 101 5 

00DAGJ0002 Whinmoor 301 64 2 11 95 129 5 

00DAGJ0003 Whinmoor 324 58 8 61 93 104 5 

00DAGJ0004 Whinmoor 365 3 90 84 87 101 5 

00DAGJ0005 Whinmoor 309 99 44 3 142 21 4 

00DAGJ0006 Whinmoor 250 25 9 20 87 109 5 

00DAGJ0007 Whinmoor 339 113 17 92 40 77 1 

00DAGJ0008 Whinmoor 308 68 123 10 51 56 2 

00DAGJ0009 Whinmoor 264 5 3 181 33 42 3 

00DAGJ0010 Whinmoor 367 111 1 78 97 80 1 

00DAGJ0011 Whinmoor 271 73 46 100 37 15 3 

00DAGJ0012 Whinmoor 330 33 162 23 39 73 2 

00DAGJ0013 Whinmoor 325 118 10 90 5 102 1 

00DAGJ0014 Whinmoor 219 47 10 5 60 97 5 
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OA Zone 
Code 

Ward  
Name 

Total 
Population 

Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Cluster 
M'Ship 

00DAGJ0015 Whinmoor 244 59 8 67 49 61 3 

00DAGJ0016 Whinmoor 342 76 75 142 10 39 3 

00DAGJ0017 Whinmoor 350 87 41 77 79 66 1 

00DAGJ0018 Whinmoor 374 87 111 19 50 107 2 

00DAGJ0019 Whinmoor 279 7 40 93 72 67 3 

00DAGJ0020 Whinmoor 237 24 33 71 36 73 5 

00DAGJ0021 Whinmoor 329 138 33 23 34 101 1 

00DAGJ0022 Whinmoor 299 77 26 74 81 41 4 

00DAGJ0023 Whinmoor 289 79 53 32 57 68 1 

00DAGJ0024 Whinmoor 326 57 13 103 96 57 3 

00DAGJ0025 Whinmoor 339 50 58 41 95 50 4 

00DAGJ0026 Whinmoor 300 77 63 50 28 82 5 

00DAGJ0027 Whinmoor 271 51 7 66 66 81 5 

00DAGJ0028 Whinmoor 275 51 46 17 5 156 5 

00DAGJ0029 Whinmoor 314 92 12 96 2 112 5 

00DAGJ0030 Whinmoor 193 44 28 39 34 48 5 

00DAGJ0031 Whinmoor 236 22 34 3 73 104 5 

00DAGJ0032 Whinmoor 206 31 33 52 33 57 5 

00DAGJ0033 Whinmoor 334 23 87 76 92 56 4 

00DAGJ0034 Whinmoor 352 81 71 79 121 0 4 

00DAGJ0035 Whinmoor 287 25 66 39 35 122 5 

00DAGJ0036 Whinmoor 310 42 54 2 90 122 5 

00DAGJ0037 Whinmoor 348 68 27 97 109 47 4 

00DAGJ0038 Whinmoor 266 4 63 58 65 76 5 

00DAGJ0039 Whinmoor 275 49 49 14 71 92 5 

00DAGJ0040 Whinmoor 252 41 27 55 26 103 5 

00DAGJ0041 Whinmoor 338 56 39 91 30 122 5 

00DAGJ0042 Whinmoor 291 49 52 76 85 29 4 

00DAGJ0043 Whinmoor 293 19 20 88 113 53 4 

00DAGJ0044 Whinmoor 300 38 30 107 88 37 3 

00DAGJ0045 Whinmoor 321 3 94 47 80 97 5 

00DAGJ0046 Whinmoor 261 33 75 19 54 80 5 

00DAGJ0047 Whinmoor 374 165 66 4 41 98 1 

00DAGJ0048 Whinmoor 293 78 36 98 75 6 3 

00DAGJ0049 Whinmoor 345 33 75 103 113 21 4 

00DAGJ0050 Whinmoor 300 61 112 11 23 93 2 

00DAGJ0051 Whinmoor 144 7 27 38 44 28 4 

00DAGJ0052 Whinmoor 227 8 68 46 32 73 5 

00DAGJ0053 Whinmoor 253 77 7 50 93 26 4 

00DAGJ0054 Whinmoor 271 62 25 73 47 64 3 

00DAGJ0055 Whinmoor 424 128 89 52 58 97 1 

00DAGJ0056 Whinmoor 342 85 83 59 63 52 1 

00DAGJ0057 Whinmoor 298 50 121 5 120 2 2 

00DAGJ0058 Whinmoor 288 53 69 67 37 62 2 
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Appendix C 

C.1. CD-ROM of Thesis and Supporting Data 
 
Electronic copy of thesis (L.Burns_Thesis.pdf) and full OA Lookup Table 

(OALookupTable.pdf) available on CD-ROM located on inside of back cover. 
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