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Abstract 

 

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative 

disorder that rapidly leads to paralysis and death. Currently the treatment 

options for ALS are limited and there is a desperate need for new therapeutic 

agents to combat the disease. Zebrafish were highlighted as having the 

potential of being both an excellent model for ALS and as a drug screening 

system due to their rapid development, large numbers, optical clarity and 

susceptibility to genetic manipulation. This work describes the use of a 

zebrafish model of ALS that overexpresses the mutant G93R SOD1 gene 

alongside a hsp70-DsRed stress readout. This has been used to 

demonstrate that the hsp70- DsRed readout is activated by sod1 toxicity and 

that in the embryo stages it is characterised by expression in the glycine 

positive inhibitory interneurons. Further investigation of these neurons 

identified defective glycinergic transmissions from the stressed neurons. In 

the adults, the motor neurons of the spinal cord are primarily affected, and 

also show defective neuromuscular junctions (NMJ’s). This suggests that 

ALS is a disease which does not start at symptom onset but is a progressive 

disorder, where specific neuronal subtypes are initially dysregulated, followed 

by the dysregulation within other neuronal subtypes. Based upon this 

fluorescence readout, a high-throughput drug screen using the zebrafish was 

designed, optimised and validated which has the capability to screen 100’s of 

compounds with a sensitivity and specificity of over 90%. This assay has 

been utilized to screen a small molecule library of 2000 compounds in order 

to identify potential therapeutics for ALS. This screen highlighted novel 

therapeutics that can potentially ameliorate sod1 toxicity and some that 

upregulate the heat shock response, a known cellular repair 

pathway. Selamectin, a macrocyclic lactone with known neuroprotective 

properties, was identified as the most promising hit from the screen. By 

combining Selamectin and Riluzole, a reduction in neuronal stress was 

seen, which offered the potential for a therapy with reduced side effects e.g. 

sedation. In conclusion, this work has highlighted the potential of a novel 

therapeutic for the treatment of ALS that should be taken towards mouse 

trials. 
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1. Introduction                   

                                                                                      

Motor Neuron Disease (MND) is a rapid onset neurodegenerative disorder 

where typically sufferers die within 3-5 years from the onset of disease 

symptoms, usually from respiratory failure due to muscle paralysis (Pasinelli 

& Brown 2006). The initial symptoms of MND include rapidly progressing 

muscular weakness and atrophy throughout the body together with 

symptoms of dysarthria (speech difficulties), dysphagia (difficulty swallowing), 

dyspnea (breathing problems) and paralysis. 25% of MND cases are bulbar 

in onset which usually presents as slurred speech and difficulty swallowing. 

The other 75% of MND cases present with individual limb weakness in an 

arm or leg which over time progresses to other limbs. MND onset usually 

occurs at around 55 years of age and is more commonly seen in males with 

a male/female ratio of 1.5:1 (Johnston et al 2006). The incidence rate of MND 

is ~2 in 100,000 based on various population studies (Abhinav et al 2007, 

Chio et al 2009). MND was first identified and documented in France in 1869 

by Jean-Martin Charcot and was initially labelled la maladie de Charcot 

(Charcot's disease) (Krajewski et al 2000). In most commonwealth countries 

the disease is known as motor neuron disease but is more commonly known 

worldwide as Amyotrophic Lateral Sclerosis (ALS) or in the USA as its 

common household name Lou Gehrig disease after the famous baseball 

player who was diagnosed with the disease in 1939. There is no cure for ALS 

and very limited treatment options. Currently there is only one FDA and NICE 

approved drug for the treatment of the disease, Riluzole, which is believed to 

function by decreasing glutamate excitotoxicity but the method of action is 

poorly understood. The majority of treatments for ALS are palliative 

treatments such as assisted ventilation. ALS is caused by a progressive loss 

of motor neurons in the brain and spinal cord which leads to muscle 

dennervation, paralysis and death. The exact causes of ALS remain unclear 

with only approximately 10% of cases occurring due to an identifiable genetic 

cause. ALS has been linked to fronto-temporal dementia (FTD) which is a 

progressive neuronal loss in the frontal and temporal cortex leading to 

behavioural changes and is the second most common form of young-onset 

dementia after Alzheimer’s disease (Van Langenhove et al 2012). FTD and 



 

 
17 

ALS have been linked by common genetic causes of TDP-43, FUS and 

C9orf72 and it is predicted that 15% of FTD positive patients also showed 

features of MND (DeJesus-Hernandez et al 2011, Lagier-Tourenne et al 

2012, Ringholz et al 2005) . TDP-43 mis-localisation has been shown as a 

linked mechanism between FTD and ALS as TDP43 positive inclusions are 

seen in both ALS and FTD (Arai et al 2006, Neumann et al 2006). Fused in 

Sarcoma (FUS) mutations are also seen in familial ALS and rare cases of 

FTD suggesting another genetic link between the two diseases (Kwiatkowski 

et al 2009). ALS and FTD can now be brought together under a broad 

spectrum neurodegenerative disorder with overlapping clinical symptoms.  

 

1.1 Sporadic ALS 

 

95% of ALS cases are sporadic in nature and the exact causes of the 

disease are unknown, though several genetic and environmental factors 

have been potentially identified in disease pathogenesis. Factors such as 

diet, geographical location and smoking have been implicated as causative 

factors in ALS (Armon 2003). One potential factor is occupational hazards 

such as prolonged exposure to heavy metals, which has been implicated in 

causing an increased risk of developing ALS (Mitchell 1987). Furthermore a 

trend has been identified between people who engage in high levels of 

physical activity and ALS. In Italy footballers have been shown to have a 

higher risk of developing ALS in later life in comparison to the normal 

population (Chio et al 2005). In addition, it has been shown that people who 

spend their career in the armed forces also have an increased incidence rate 

of ALS, suggesting that  physical exercise may be linked to the development 

of ALS (Weisskopf et al 2005). Although multiple studies suggest a link 

between physical exercise and ALS this theory is unproven and may be 

purely coincidental. One possible link between physical activity and ALS is 

that increased physical strain and exercise may lead to higher neuronal 

stress levels and in people with an underlying genetic predisposition for ALS 

this may be a trigger that leads to the development of the disease in later in 

life. Another feature of sporadic ALS is the more common occurrence of the 
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disease in males. A combinatorial study looked at 2 possibilities of the effect 

of gender on disease. They looked at the incidence and the prevalence of the 

disease in men and women and showed that the incidence was higher in 

males with a rate of 1.11-1.39 compared to females (Uruguay omitted with a 

ratio of 2.32). The study also showed that men had an earlier onset than 

women, but that gender did not have an effect on survival (McCombe & 

Henderson 2010). This suggests that in sporadic ALS there are multiple 

factors that influence the disease and it is a cumulative effect of multiple 

factors that may ultimately lead to disease onset.  

 

1.2 Familial ALS 

 

5-10% of ALS cases are familial in nature and usually show an autosomal 

dominant inheritance pattern (Bento-Abreu et al 2010). The genes were 

identified by various techniques including linkage, Sanger sequencing, 

Homozygosity mapping and newer techniques such as whole exsome 

sequencing, repeat-primed PCR and genome wide association studies 

(GWAS). GWAS studies in ALS are difficult as they require large sample 

sizes and this is challenging in rarer diseases, such as ALS. More recently 

GWAS is being used to identify pathways involved in disease allowing a 

better understanding of disease pathogenesis. Below is a table summarising 

the major familial genes associated with ALS. 
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Locus Chromosome Gene ID Protein/function Inheritance Onset 

ALS1 21q22.11 SOD1 Superoxide dismutase 1, 

oxidative stress 

AD & AR Adult 

ALS2 2q33.2 ALS2 Alsin/Rho Nucleotide 

exchange factor 

AR Juvenile 

ALS4 9q34.13 SETX Senataxin, RNA/DNA 

helicase 

AD Juvenile 

ALS5 15q21.1 SPG11 Spatacsin protein, 

transmembrane protein 

AR Juvenile 

ALS6 16p11.2 FUS Fused in sarcoma, RNA 

binding protein 

AD Adult 

ALS7 20p13 * * AD Adult 

ALS8 20q13.33 VAPB Vesicle associated 

membrane protein, 

vesicular trafficking 

AD Adult 

ALS10 1p36.22 TARDBP TAR DNA binding protein, 

transcriptional processing, 

splicing regulation 

AD Adult 

ALS12 10p13 OPTN Optineurin, membrane and 

vesicle trafficking 

AD & AR Adult 

ALS14 9p13.3 VCP Valosin containing protein, 

vesicle transport and 

fusion 

AD Adult 

ALS15 Xp11.21 UBQLN2 Ubiquilin 2, degredation X Linked Juvenile 

& Adult 

ALS16 9p13.3 SIGMAR1 Sigma non-opiod 

intracellular receptor 1, ER 

chaperone 

AR Juvenile 

ALS-FTD 9p21.2 C9ORF72 Chromosome 9 open 

reading frame 72 

AD & 

Sporadic 

Adult 

Table 1.1: Summary of the major known genes implicated as causative in 

ALS. (*= currently unknown data) 
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1.2.1 SOD1 

 

The most common familial genetic cause of ALS is mutation in the 

superoxide dismutase 1 gene (SOD1) which was identified in 1993 and found 

at chromosome position 21q22.1 (Rosen et al 1993). SOD1 is one of three 

human superoxide dismutase enzymes. The SOD1 gene one of the most 

common causative factor of familial ALS and is also the most researched. 

SOD1 is implicated in approximately 20% of familial cases and 2% of all ALS 

cases (Rosen et al 1993). SOD1 is an enzyme consisting of 153 amino acids 

and is active when expressed as a homodimer. It is a Cu/Zn binding protein 

whose function is to facilitate the conversion of superoxide free radicals to 

hydrogen peroxide which is then further catalysed to water and oxygen by 

glutathione peroxidase or catalase. More than 150 mis-sense mutations 

occurring throughout the SOD1 protein have been identified as causative for 

familial ALS with the majority of these are dominant mutations (Turner & 

Talbot 2008). The majority of mutations are missense mutations and include 

mutations in regions that have no effect on the catalytic activity of the protein, 

which suggests that the cause of neuronal death is not only due to altered 

dismutase activity, but also to altered protein structure and folding (Rosen et 

al 1994). This is further supported by mouse data where a complete knockout 

of SOD1 protein did not lead to the onset of ALS and the mice lived an 

uncompromised lifespan (Reaume et al 1996). This suggests that altered 

protein function rather than non-functional protein is a causative factor for 

ALS and that mutant SOD1 leads to a toxic gain of function.  More recently 

this theory has been brought into question as SOD1 knockout mice showed 

denervation, muscle atrophy and weakness comparable with SOD1 mutant 

models (Fischer et al 2012). These studies ran for longer and show a 

progressive degeneration of the motor neurons. This data supports the idea 

that a loss of SOD1 is enough to lead to ALS and loss of SOD1 function may 

cause disease. SOD1 has been shown to become misfolded, leading to its 

targeting for degradation via the ubiquitylation pathway, although this has 

been shown to fail, somehow allowing mutant SOD1 to form aggregates 

(Basso et al 2006). Misfolded SOD1 appears to be resistant to the 

degradation pathways leading to impairment of the proteosomal and 
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autophagy pathways, with increased numbers of autophagosomes detectable 

in rodent models and ALS patients (Morimoto et al 2007, Sasaki 2011). The 

mutant SOD1 aggregates have also been shown to induce a stress response 

in affected cells, leading to activation of the unfolded protein response (UPR) 

and microglial activation (Saxena et al 2009, Saxena & Caroni 2011). Mutant 

SOD1 has then been shown to cause cellular toxicity via multiple pathways to 

lead to disease (See chapter 1.3 What causes ALS?). In mutant SOD1 the 

aggregates appear as TDP-43 negative cytoplasmic inclusions (Mackenzie et 

al 2007). This may suggest that SOD1 and TDP-43 mediated ALS are 

mediated through different pathways, although evidence suggests that TDP-

43 interacts with mutant SOD1 specifically (Higashi et al 2010). WT SOD1 

has also been shown to have an increased propensity to become misfolded, 

aggregation prone and toxic to motor neurons when oxidised, which 

implicates WT SOD1 as a potential cause of sporadic ALS after a secondary 

modification leading to misfolding (Bosco et al 2010, Ezzi et al 2007). This 

has been confirmed in some sporadic ALS cases where SOD1 positive 

aggregates were observed in cases with no SOD1 mutation present (Bosco 

et al 2010). This is still a controversial finding and other groups have failed to 

replicate these findings in different sporadic ALS cohorts, so a SOD 

dependant pathway common to sporadic and familial ALS is still unconfirmed 

(Brotherton et al 2012). In general SOD1 mutations are less associated with 

fronto-temporal dementia (FTD) than other familial causes of ALS e.g. 

C9orf72 

.  

1.2.2 ALS2 

 

More recently other genes have been implicated in ALS. Juvenile forms of 

ALS have been associated with the ALS2 gene found on chromosome 2q33 

which encodes the alsin protein (Hadano et al 2001). Juvenile ALS is a rare 

form of ALS which has an early onset and slightly different disease course 

compared to the adult disease progression.  It occurs under both sporadic 

and familial circumstances (Grunnet et al 1989, Lerman-Sagie et al 1996).  

The ALS2 gene encodes a 1657 amino acid protein alsin which acts via 
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activation of small GTPases. Alsin mutation is a relatively rare cause of ALS 

resulting in juvenile and infantile onset and has been detected in 

consanguineous families from Europe, North Africa and the Middle East 

(Devon et al 2003). Generally juvenile onset ALS patients will have a slower 

disease progression with a far longer survival compared to patients who 

develop the adult-onset disease. A common feature of mutations in ALS2 is 

decreased protein stability, which suggests that the resulting loss of ALS2 is 

causative for the motor neuron death seen in these patients (Yamanaka et al 

2003). ALS2 deficient mice show a range of defects such as age dependent 

loss of motor ability, increased anxiety and susceptibility to stress, although 

little neuropathology was seen (Cai et al 2005).  When the cellular 

mechanisms involved were further probed in the mouse model, progressive 

axonal degeneration could be seen in the lateral spinal cord particularly 

affecting the descending axons of the upper motor neurons, but the lower 

motor neurons were preserved (Yamanaka et al 2006). Taken into context 

this suggests that these juvenile forms of ALS are quite distinct to the 

classical forms and that these disease pathways sit somewhere between 

hereditary spastic paraparesis and ALS.  

 

1.2.3 TDP-43 

 

Recently the TARDBP (Transactivating response element DNA binding 

protein-43) gene on chromosome 1p36 was identified as a causative gene for 

ALS (Sreedharan et al 2008). TARDBP encodes the TDP-43 protein and 

mutations in the glycine rich carboxyl-terminal encoded in the 6th exon have 

been linked to ALS, although the pathway by which TDP-43 causes the 

disease is still unknown. TDP-43 has been identified as a major component 

of the ubiquitinated inclusions seen in sporadic ALS and mutations in the 

TARDBP gene are present in ~4% of familial ALS cases (Mackenzie et al 

2010, Neumann et al 2006). TDP-43 positive inclusions are present in a 

range of neurological disorders including ALS and have a probable role in the 

disease pathogenesis.  TDP-43 is known to be highly conserved and to have 

a key role in transcription and splicing regulation (Kuo et al 2009). Mouse 
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models of TDP-43 mutations showed significant alterations in splicing even in 

the absence of TDP-43 aggregation (Arnold et al 2013). TDP-43 has been 

shown to bind approximately 30% of the mouse transcriptome which shows 

the wide range of regulation that TDP-43 controls (Tollervey et al 2011). 

TDP-43 function is auto-regulated via a negative feedback loop to control 

mRNA degradation mechanisms (Ayala et al 2011). The majority of 

pathogenic mutations are found in the C-terminus and this is required for the 

auto-regulation so potentially it is this dysregulation that leads to aggregation 

and pathogenesis. This has been further proven by overexpression of normal 

TDP-43 in mice which leads to an overall reduction in functional protein (Igaz 

et al 2011, Xu et al 2010).The mechanisms of TDP-43 proteinopathy and 

toxicity are poorly understood. Given the range of binding partners, it is 

predicted that neuronal function could easily be altered by mutations. Full 

length TDP-43 has been shown to intrinsically aggregate, a process which 

requires all of the C domain, N terminus and RNA binding domain, 

suggesting that RNA binding and aggregation lead to toxicity (Voigt et al 

2010). TDP-43 structural analysis highlighted prion like domains within the C 

terminus which suggests that TDP-43 toxicity may spread in a prionoid- like 

dispersion which has been observed in ALS patients (Ravits & La Spada 

2009). Although aggregation as a disease mechanism has supporting 

evidence from human data, the animal models continue to show toxicity in 

the absence of aggregates. This suggests that aggregation may not be a pre-

requisite for TDP-43 mediated toxicity. It is hypothesised that the aggregates 

may accelerate the disease progression as has been shown in sporadic ALS 

patients (Nishihira et al 2009). Recently, multiple labs have shown in a 

zebrafish model of Tdp-43 mediated ALS, knockdown of Tdp-43 did not show 

a phenotype and this was due to a compensatory mechanism by a novel 

splice isoform, known as tardbpl, which had the capability to produce the full 

length protein. By knocking down both genes, a severe phenotype was seen 

with shortened motor axons, locomotor defects and death at around 10 days 

post fertilisation (Hewamadduma et al 2013, Schmid et al 2013). These data 

suggest that the two genes work in tandem to auto-regulate themselves and 

that mutations are needed in both to induce the phenotype in zebrafish.  
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1.2.4 FUS 

 

Another gene implicated in ALS is the FUS gene, a 526 amino acid protein 

which is also known as translocated in liposarcoma (TLS) and is found on 

chromosome 16 and is present in ~2% of familial ALS cases (Kwiatkowski et 

al 2009). FUS has also been implicated in cancer as an oncogene, but 

mutations in FUS lead to aggregation and accumulation of mutant proteins 

which is associated with neuronal toxicity and neuronal death in the spinal 

cord (Valdmanis et al 2009). Both FUS and TDP-43 are proteins which bind 

RNA/DNA, suggesting this could be a major pathway in ALS pathogenesis, 

possibly via alternative splicing (Kwiatkowski et al 2009, Vance et al 2009). 

FUS protein has been found to accumulate and aggregate in the cytoplasm 

of FUS positive ALS cases (Vance et al 2009). The FUS protein also 

contains a SYGQ domain which has been implicated as having prion like 

properties which may explain why aggregates of FUS are seen (Cushman et 

al 2010, Kato et al 2012). Alongside increased FUS protein in the cytoplasm, 

reduced nuclear staining is seen in FUS positive cases, which suggests that 

problems in nuclear transport may occur (Dormann & Haass 2011). FUS 

positive inclusions also contain stress granule markers such as ubiquitin and 

p62, suggesting that cellular stress and autophagy are common mechanisms 

of FUS-mediated ALS. In mice, wild-type FUS overexpression leads to an 

aggressive neurodegenerative phenotype in the homozygous mouse, but no 

degeneration was seen in the heterozygous animals. Both the homozygous 

and heterozygous FUS overexpressing mice showed higher protein levels 

both in the nucleus and in the cytoplasm. Despite only small differences in 

FUS expression between the heterozygous and the homozygous mice, only 

the homozygous showed the motor dysfunction alongside FUS positive 

inclusions and gliosis (Mitchell et al 2013). More work is needed to fully 

understand the pathways by which FUS mediated toxicity leads to disease. 
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1.2.5 VCP 

 

Other recently identified mutations in ALS are mutations in valosin containing 

protein (VCP). VCP mutations have been shown to lead to TDP-43 

depositions which are a hallmark of ALS pathology (Shaw 2010). It has been 

identified in some forms of fronto- temporal dementia (FTD) associated with 

Paget’s disease and was found to be a candidate gene of ALS through next 

generation sequencing of families in Italy and the USA (Johnson et al 2010). 

The ALS phenotype arising from VCP mutations appears to be a rare 

manifestation and VCP is a low risk factor for ALS (Koppers et al 2012, 

Tiloca et al 2012). Heterozygous knock in VCP mutations have been 

performed in mice but they did not lead to a reduction in lifespan, although 

weakness and weight loss were seen at the later stages of life and a loss of 

50% of motor neurons was seen in the spinal cord at 20 months of age (Yin 

et al 2012). Upon further inspection of the spinal cords of these mice, gliosis, 

TDP-43 positive inclusions and evidence of oxidative stress were present. 

Homozygous expression of human mutant VCP mutations in mice leads to a 

much more severe phenotype, with average survival only 21 days and severe 

motor defects observed (Nalbandian et al 2012). These data appear to show 

the very strong deleterious effect of VCP mutations in ALS. 

 

 

1.2.6 OPTN 

 

Optineurin is a protein encoded by the OPTN gene and has been implicated 

as causative in open angle glaucoma. Mutations in OPTN leading to ALS 

were first identified in Japanese patients (Maruyama et al 2010). Optineurin 

has many known functions including cellular morphogenesis, membrane 

trafficking, vesicle trafficking and various mutations have been identified in 

optineurin that stop it from inhibiting the activation of nuclear factor kappa B 

(NF-κB) (Maruyama et al 2010). This upregulated NF-κB has been 

highlighted as causative for ALS and also as a major target for new 
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therapeutic development. Optineurin positive inclusions have also been seen 

to co-localise in familial and sporadic cases with SOD1 mutations 

(Hortobagyi et al 2011). OPTN mutations may be linked to longer survival as 

various studies showed family members with survival over ten years although 

some OPTN patients had a rapid disease progression (Tumer et al 2012) 

 

1.2.7 C9orf72 

 

Two groups identified the C9ORF72 mutations as causative for ALS. They 

found a hexanucleotide repeat (GGGGCC)n within intron 1 to be causative 

for ALS and FTD (DeJesus-Hernandez et al 2011, Renton et al 2011a). 

Controls are found to have up to 30 hexanucleotide repeats, but in ALS 

patients between 700-4400 have been seen, suggesting that large numbers 

of repeats lead to disease, although an exact pathogenic number is unknown 

(Beck et al 2013) (Gómez-Tortosa et al 2013). ALS cases containing the 

C9ORF72 expansion have been shown to express TDP-43 positive 

inclusions and have a generally faster disease progression when compared 

to non-C9ORF72 ALS patients (Cooper-Knock et al 2012). C9ORF72 is 

implicated as causative in 39.7% of familial ALS cases in Caucasian patients 

and 7% of sporadic ALS cases (Majounie et al 2012). The mutation therefore 

accounts for approximately 10% of all ALS cases and is the most common 

causative gene for both familial and sporadic ALS. C9ORF72 is expressed 

across the CNS in most tissues and has its highest expression within the 

cerebellum (Renton et al 2011b). Three transcripts of ALS have been 

identified. The 1 and 3 transcripts encode a long isoform of 481 amino acids, 

whereas transcript 2 encodes a shorter form 222 amino acids in length 

(Gijselinck et al 2012). Multiple pathways have been implicated as disease 

causing in C9ORF72 positive ALS cases which link in with the causative 

factors in non-C9ORF72 ALS. The exact way in which the hexanucleotide 

expansion causes disease is unknown, but 3 potential pathways have been 

hypothesised: haploinsuffciency, RNA toxicity and repeat associated non-

ATG (RAN) translation of dipeptide repeat (DPR) proteins. Haploinsuffciency 

has been highlighted as, in cells expressing the expansion, levels of 
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transcript 1 mRNA were found to be decreased by 38% (DeJesus-Hernandez 

et al 2011). Also, reduced levels of C9ORF72 mRNA have been seen in the 

cerebellum and the frontal cortex of patient tissue (Gijselinck et al 2012, Mori 

et al 2013b). The second hypothesis suggests that the expansion leads to a 

toxic gain of function via an alteration of RNA processing. Nuclear and 

cytoplasmic RNA foci were identified in the frontal cortex and spinal cord of 

C9ORF72 positive patients (Cooper-Knock et al 2012). Evidence has also 

suggested that the hexanucleotide repeat RNA has the ability to fold and 

form G-quadruplexes which may sequester and silence RNA binding proteins 

(RBP) (Reddy et al 2013). Further supporting evidence for this hypothesis of 

RNA toxicity comes from other diseases such as Fragile X associated 

tremor/ataxia and Myotonic Dystrophy where repeat expansions are seen 

and RNA sequestration has been shown to be a causative factor. The final 

hypothesis suggests that the repeat sequence is translated into a toxic DPR 

protein (Ash et al 2013). DPR proteins have previously been shown to 

aggregate and be involved in the formation of p62 positive, tdp-43 negative 

inclusions in multiple CNS tissues (Mori et al 2013a).     

 

1.3 Pathogenesis of ALS? 

 

ALS is seen clinically as the progressive degeneration of motor neurons 

resulting in muscle weakness, fatigue and eventually in muscle paralysis. 

This progressive degeneration has been shown in mutant SOD1 mouse 

models of ALS where 40% denervation of neuromuscular junctions was seen 

by day 47, 60% denervation by day 80 and widespread motor neuron loss by 

day 100 (Fischer et al 2004). The symptoms of ALS include muscle 

weakness initially followed by atrophy, spasticity and eventually paralysis. 

This muscular paralysis shows clinically as wasting of the cranial muscles 

(Bulbar onset) or in the limbs (Spinal onset) (Eisen 2009). In ALS there is not 

a complete loss of all motor neurons but a loss of specific 

subtypes/populations of neurons. Motor neurons innervating the eye muscles 

and pelvic floor muscles (Onuf’s nucleus) are less vulnerable to the disease 

process compared to spinal motor neurons. Also in the neurons that 
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degenerate there are certain neuronal subtypes that degenerate faster than 

others (Pun et al 2006). It has been shown that neurons innervating fast 

muscle fibres degenerate much faster than neurons innervating slow muscle 

fibres. This observation has led to the hypothesis about a pathway where the 

neurons innervating the fast muscle fibres undergo progressive degeneration 

and are affected earlier in the disease progression before the onset of slow 

muscle fibre neuron degeneration. This hypothesis is supported by studies 

which show higher levels of slow fibre neurons in the mutant in comparison to 

the wildtype SOD1 mouse, suggesting a decrease in fast muscle fibres. It is 

suggested that this is caused by a progression where fast muscle neurons 

change into slow muscle neurons, leading to higher levels of slow muscle 

neurons (Frey et al 2000, Pun et al 2006). ALS is a disease that also affects 

other neuronal pathways, for example, in the frontal region of the brain, 

Approximately 5% of ALS patients show signs of fronto-temporal dementia 

and up to 50% of cases show subtle evidence of fronto-temporal dysfunction 

(Phukan et al 2007).  

 

1.3.1 Oxidative stress 

 

Oxidative stress is caused by the production of reactive oxygen species 

(ROS) usually as a by-product of aerobic metabolism (Coyle & Puttfarcken 

1993). This leads to an incomplete reduction of oxygen leaving O2
- and H2O2 

which are further reacted to make strong oxidants causing protein, lipid and 

DNA damage. Evidence from ALS post-mortem tissue shows increased 

oxidative stress in the spinal cord and motor cortex of sporadic ALS patients 

(Ferrante et al 1997). Increased levels of oxidised DNA were also seen, 

using 9-OHdG staining, in the spinal cord of ALS patients (Fitzmaurice et al 

1996).  These data suggest that at some stage of ALS progression oxidative 

stress is causing cellular damage. Oxidative stress has also been linked to 

other pathogenic mechanisms as increased oxidative stress has been shown 

to increase glutamate levels in ALS patients, leading to potential 

excitotoxicity (Shaw et al 1995). ROS exposure has also been shown in glial 

and neuronal cell models to reduce glutamate transporter function (Trotti et al 
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1996, Volterra et al 1994). Mitochondrial dysfunction is also linked to 

oxidative stress in ALS. Mitochondria are an important site for creating and 

dealing with ROS and cumulative damage from ROS over time may lead to 

decreased mitochondrial efficiency over time (Mecocci et al 1993).  SOD1 

mutations have also been shown to cause damage to mitochondria before 

symptom onset, also leading to higher levels of ROS (Higgins et al 2002). As 

the function of SOD1 is to remove oxygen free radicals to prevent 

accumulation of oxidative stress, it can be hypothesised that mutations in 

SOD1 would lead to increased free radical levels in the motor neurons and 

the supporting cells. Increased oxidative stress has been identified by 

proteomic analysis in SOD1 models via a dysregulation in the NRF2-ARE 

stress response pathway (Bergemalm et al 2009). This has been confirmed 

by over expressing NRF2, which led to delayed disease onset and an 

extended lifespan in a SOD1 mouse model (Vargas et al 2008). It is widely 

agreed that oxidative stress has a major role in motor neuron death, but this 

is most likely a downstream effect due to defects in organelles of the motor 

neurons and the surrounding supporting cells, leading to an increase in 

reactive oxygen species or a decrease in clearance. Anti-oxidants have been 

identified as potential therapeutic agents in cell and in vivo studies 

suggesting they may have a role in slowing down ALS disease progression 

but currently all have failed to show positive effects in clinical trials. Future 

trials may work to exploit the NRF2-ARE pathway to find compounds that 

activate the pathway to mimic the beneficial effects seen with NRF2 over-

activation.  

 

1.3.2 Axonal transport defects 

 

Axonal transport is an integral part of all mammalian cells and is the process 

of moving cellular cargos from one part of the cell to another. This is 

particularly important for neurons, as cellular cargos are made in the cell 

body and need to be transported along axons and dendrites. Axonal 

transport defects have been identified in ALS (De Vos et al 2007) where 

SOD1 has been shown to slow axonal transport (Williamson & Cleveland 
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1999). SOD1 effects on axonal transport are likely to be mediated via 

multiple pathways including mitochondrial dysfunction, reduced ATP supply 

to the neurons and dysfunctional signalling. Studies in the G93R SOD1 

mouse model showed defects in the fast retrograde axonal transport of the 

sciatic nerve motor neurons. This corresponds with the defective anterograde 

axonal transport seen in mice of the same age, suggesting a link between 

defective axonal transport mechanisms (Bilsland et al 2008, Pun et al 2006).  

Defects have also been shown in the axonal transport of mitochondria which 

links SOD1 with mitochondrial defects seen in 85 day old G93A SOD1 mice 

(Perlson et al 2009). Proteomic analysis revealed that the SOD1 mutants 

show increased expression of axonal proteins involved in the death/stress 

pathway (Caspase 8 and p75NTR), decreased expression of axonal transport 

survival proteins (P-Trk) and extracellular signal regulated kinases (P-Erk) 

(Perlson et al 2009).  

 

1.3.3 Mitochondrial defects 

 

 Mitochondria are a key organelle involved in energy production, cellular 

homeostasis and apoptosis. Mitochondrial defects have been implicated in 

ALS progression and abnormal pathology can be seen in the form of 

vacuoles and swelling within the mitochondria in combination with respiratory 

pathway defects in rodent and human ALS (Jung et al 2002, Mattiazzi et al 

2002). Mitochondrial clustering and aggregation of the membranes has been 

observed in tdp-43 and SOD1 mouse models (Guo et al 2010, Sotelo-Silveira 

et al 2009). When looking at changes in mitochondrial function, alterations in 

NAD(P)H and Ca2+ buffering capacity both led to an increased risk of Ca2+ 

overloading in the motor neurons (Jaiswal & Keller 2009, Loizzo et al 2010). 

Dysfunctional mitochondria are not just motor neuron specific. Defects in the 

mitochondria of astrocytes lead to defective respiratory function, decreased 

O2 consumption and decreased membrane potential (Zhou et al 2010). This 

suggests that defective mitochondrial function may be present in many cells 

including muscle, glia, astrocytes and motor neurons and that this may lead 

to decreased motor neuron survival (Joyce et al 2011). Mitochondrial 
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dysfunction may cause motor neuron death via hypersensitivity to deficient 

energy production and in motor neurons this may lead to an upregulation of 

pro-apoptotic factors and activation of the apoptosis pathway (Soriano & 

Scorrano 2010).Evidence of increased apoptosis has been seen downstream 

of the mitochondria by upregulation of caspase 3 which has been seen in 

SOD1 and tdp-43 rodent models (Nagai et al 2001).  

 

1.3.4 Protein aggregation 

 

Another hypothesis for the cause of ALS is the intracellular accumulation of 

proteins which was highlighted by live cell imaging and showed that two 

SOD1 mutations led to protein aggregation (Matsumoto et al 2005). SOD1 

accumulation has also been shown in motor neurons of patients, mouse and 

cell models of ALS (Shibata et al 1994). Antibody staining for misfolded 

SOD1 also showed strong staining for aggregates in the motor neurons of 

familial ALS patients. These accumulations are a key feature seen in ALS 

sufferers. Another ALS linked gene, TDP-43 a mainly nuclear protein, has 

been identified as a major component of the inclusions seen in the cytoplasm 

of ALS patient cells (Neumann et al 2006). It is not clear how SOD1 and 

TDP-43 cause protein aggregation, but altered protein folding seems the 

most likely cause. Another hypothesis is that the aggregates seen may have 

a toxic effect on the cells and in particular the motor neurons. It has been 

suggested that initially the aggregation formation is slow and in low 

abundance but that the number of aggregates increase rapidly towards the 

disease end stage via aggregate interactions which may explain the rapid 

onset of symptoms and death seen in ALS patients (Chia et al 2010, 

Johnston et al 2000, Karch & Borchelt 2008). This has been brought into 

question by drug treatments such as edaravone which decreased the 

aggregate size and reduced the motor phenotype but failed to alter survival in 

the G93A mouse, suggesting that aggregates may not lead to the ALS 

disease phenotype and are more likely a secondary effect (Ito et al 2008). 

Arimoclomol is a drug which up-regulates the unfolded protein response 

(UPR) via activation of heat shock factor 1 (HSF1). HSF1 is present as 
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monomers with the inactive heat shock proteins, but upon cellular stress, 

trimerisation occurs and the HSF1 translocates into the nucleus and activates 

the heat shock response (Shamovsky & Nudler 2008).  Arimoclomol has 

been shown to delay the disease progression in SOD1 transgenic mice by 

reducing the amount of misfolded protein being generated (Kalmar et al 

2008). Evidence for upregulation of the UPR has been shown by activation of 

the HSP27 protein which delayed symptom onset by 11days but had no 

effect on survival (Sharp et al 2008). 

 

1.3.5 Excitotoxicity 

 

Another causative factor implicated in ALS pathogenesis is neuronal 

excitotoxicity. The normal role of glutamate is as an excitatory 

neurotransmitter in the CNS which mediates its effects via cellular receptors 

and ion channels. Excitotoxicity is a process that leads to neuronal damage 

caused by excessive glutamate receptor activation either by excessive 

glutamate release, defective reuptake or receptor over expression (King et al 

2007). This excess of glutamate causes neuronal damage by disrupting 

intracellular homeostasis, ROS generation and altered mitochondrial function 

(Arundine & Tymianski 2003). A role for glutamate excitotoxicity in the motor 

neurons of ALS sufferers has been identified due to their high expression of 

Ca++ permeable AMPA receptors which leads to increased calcium levels in 

the neurons (Van Den Bosch et al 2000). It is suggested that neuronal death 

could arise due to over-stimulation of the AMPA receptors, leading to 

increased intracellular calcium, causing excitotoxicity in the neuron and that 

the high numbers of AMPA receptors in motor neurons underpin 

susceptibility to excitotoxicity (Van Den Bosch et al 2006). This links into the 

early degeneration of fast muscle neurons, as these express the highest 

levels of the AMPA receptors, suggesting a link between the AMPA receptors 

and degeneration in ALS (Hollmann & Heinemann 1994). Neuronal 

excitability has been identified in G93A mice by electrophysiology which 

showed the hypoglossal motor neurons and superior colliculus interneurons 

showed hyperexcitiability as early as postnatal day 4 (van Zundert et al 
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2008).  Excitotoxicity as a primary disease mechanism in ALS is 

questionable, as neuronal loss will lead to increased glutamate levels and it 

is currently unknown if excitotoxicity is a cause or consequence of neuronal 

loss in ALS (Foran & Trotti 2009).The function of Riluzole is most likely by 

modulation of the excitotoxicity pathway as it is known to block presynaptic 

glutamate release (Cheah & Kiernan 2010). However other anti-

gluatamatergic agents have not shown the same effect, which suggests that 

Riluzole may act on multiple pathways in ALS. 

 

1.3.6 Activation of non-neuronal cells 

 

Motor neuron death has been shown to be a non-cell autonomous process 

with glial cells playing a crucial role. Neuronal death in ALS via non neuronal 

cells has been shown as activation of these cell types in ALS patients and 

has been shown to accelerate the disease (Beers et al 2008). It has been 

shown that glial cells expressing mutant SOD1 can lead to the death of 

normal motor neurons when surrounding them (Clement et al 2003). When 

mutant SOD1 expressing motor neurons were surrounded by normal glial 

cells, disease progression was slowed by 50% (Boillée et al 2006). 

Expressing mutant SOD1 in astrocytes has been shown not to cause an ALS 

phenotype, but astrocytes expressing mutant SOD1 from rats had toxic 

effects on motor neurons from mouse and humans (Di Giorgio et al 2008, 

Nagai et al 2007). This suggests that mutant SOD1 inhibits the astrocyte’s 

ability to provide the trophic support required by the motor neurons. The role 

of non-neuronal cells needs to be further investigated to identify exactly what 

roles these cells play in the disease and to improve the possibility of using 

these cell types as a potential therapeutic target in ALS.  
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1.3.7 Dysregulated transcription and RNA processing 

 

TDP-43 is a protein identified in ALS with a known role as a RNA-DNA 

binding protein and as a major component of the inclusions seen in ALS, 

although this is not seen in SOD1 or FUS related ALS (Mackenzie et al 2010, 

Neumann et al 2006). This highlighted the role of RNA processing as a 

disease mechanism in ALS, as TDP-43 has roles in RNA processing, mRNA 

processing, transcriptional regulation and alternative splicing. FUS is also 

implicated in this pathway as it is another RNA-DNA binding protein found to 

be mutated in ALS cases with FUS positive stress granules seen in patient 

cells (Ito et al 2011). How these mutant proteins mediated the toxic effect is 

unknown.  One hypothesis is that loss of normal nuclear function in both 

types of mutation causes cytoplasmic accumulation and depleted nuclear 

expression. The other hypothesis is that a toxic gain of function mutation 

leads to toxicity. Both are involved in the transport complexes for mRNA and 

thus neuronal damage may occur due to defective mRNA transport in the 

cells. Other evidence suggests that mutant TDP-43 causes alternative 

splicing defects in the mRNA (Kirby et al 2010). It was shown that mutant 

TDP-43 in fibroblasts led to widespread RNA splicing changes which include 

splicing changes in genes known to be implicated in ALS disease 

pathogenesis. As previously discussed, C9orf72 also causes major changes 

in RNA processing. The exact way in which the hexanucleotide expansion 

causes disease is unknown but 3 potential pathways have been 

hypothesised: haploinsuffciency, RNA toxicity and repeat associated non-

ATG (RAN) translation of dipeptide repeat (DPR) proteins. These data 

suggest strongly that in certain ALS subtypes, major changes in RNA 

processing are occurring and contributing to motor neuron injury.  

 

1.3.8 Endoplasmic Reticulum (ER) Stress 

 

Protein misfolding and aggregation (Kaufman 2002) is known to induce ER 

stress and activate the unfolded protein response (UPR) in an attempt to 
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rectify aberrant proteins. The ER has a central role in lipid synthesis, protein 

folding and protein maturation and stress leads to dysregulation of these 

pathways. ER stress signals have been shown to be upregulated in patient 

tissue samples and CSF, as well as in SOD1 mice, with strong colocalization 

to SOD1 positive inclusions (Atkin et al 2006, Atkin et al 2008).  Further 

evidence is seen in NSC-34 cell lines exposed to CSF of ALS patients that 

led to upregulation of ER stress markers including the UPR and caspase 

activation although it is not understood what in the CSF causes the ER stress 

(Vijayalakshmi et al 2011). Although the UPR is thought to be 

neuroprotective, as it works to correct cellular stress mice lacking X-box 

binding protein 1, a key component of the UPR, show improved ER protein 

degradation, enhanced autophagy and reduced aggregation of mSOD1 (Hetz 

et al 2009).  Recently, further support for this hypothesis of reducing the UPR 

has come from the neurodegenerative field where inhibitors of PERK, a key 

translational inhibitor in the UPR pathway, leads to the prevention of 

neurodegeneration in prion infected mice (Moreno et al 2013). This suggests 

that sustained activation of the UPR in the prion-infected cells leads to 

translational inhibition which effectively leads to the death of the cells by loss 

of key proteins needed for survival. By inhibiting PERK-mediated translation 

silencing the cell has the ability to cope with the prion proteins and survive, 

thus preventing cellular loss. In ALS this may mean that by preventing the 

UPR in neurons, the cells may be able to cope with mSOD1 and continue to 

survive as repression of key neuronal proteins would be inhibited, thus 

reducing neurodegeneration. 

 

1.3.9 Neuro-inflammation 

 

In ALS patients, inflammatory component activation with activated microglia 

and infiltrating lymphocytes (Henkel et al 2004), as well as increased pro-

inflammatory signalling is seen in the CSF (Mantovani et al 2009). Further 

evidence for neuro-inflammation in ALS comes from reduced numbers of 

TREG cells and monocytes in early ALS patients, suggesting the 

neurodegeneration is leading to recruitment of these cells to the CNS (Kipnis 
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et al 2004). This is further supported by CD4 knockout mice carrying mSOD1 

that develop a much more aggressive disease phenotype which it is possible 

to rescue via bone marrow transplantation (Beers et al 2008). Further 

supporting evidence is provided by intra-peritoneal injections of CD40L- 

specific monoclonal antibody into SOD1G93A mice which delayed disease 

onset, extended survival and led to reduced expression of neuro-

inflammatory markers (Lincecum et al 2010). These data suggest that 

activation of the immune response leads to neuro-inflammation and 

ultimately neuronal death and modulation of these pathways may be 

neuroprotective in ALS models.  

 

1.3.10 Deregulated endosomal trafficking 

 

Endosomal trafficking is the process of taking extracellular molecules into the 

cell via a network of organelles known as the endosomal network. 

Dysregulation of this pathway is seen in multiple diseases, including ALS, 

with a higher prevalence in rarer mutations such as ALS2, VAPB, VCP and 

CHMPB2. Dysregulation of the endosomal pathways in ALS is still not a 

completely understood pathway, but most likely arises because of the 

susceptibility of motor neurons due to the large size of the axons and 

dendrites and the high metabolic needs of the cells.  

 

1.4 Current treatments 

 

Riluzole is the only FDA and NICE approved drug for the treatment of ALS. 

Riluzole is a drug from the benzothiazole class of compounds which slows 

down the degeneration of the motor neurons and typically gives sufferers a 

life extension of 3-5months (Bensimon et al 1994). The IUPAC name for 

Riluzole is 6-(trifluoromethoxy) benzothiazol-2-amine. The exact function of 

Riluzole is not fully understood, but it is hypothesised that it exerts its 

neuroprotective effect by having an anti-glutamatergic role. Riluzole is a 
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sodium channel blocker which inhibits the release of glutamate from pre-

synaptic terminals, thereby ameliorating excitotoxicity caused by excessive 

stimulation of post-synaptic neuronal glutamate receptors (Irifune et al 2007). 

This hypothesis has been brought into question as other anti-excitotoxic 

drugs such as topiramate and gabapentin have not shown the same 

extension of lifespan as Riluzole (Gurney et al 1996, Skradski & White 2000). 

This suggests that Riluzole may function by other pathways such as 

modulation of NMDA receptors and the blocking of TTX sensitive sodium 

channels which have been linked to damaged neurons (Song et al 1997). 

Although there are several hypotheses for how Riluzole functions, the exact 

pathways and mechanisms remain unknown. 

 

 

Fig 1: Structure of the Riluzole molecule. Although its exact neuroprotective 

pathway is unknown, it is known to increase the lifespan of ALS sufferers by 

3-5 months. 

 

Other drugs have been tested for efficacy in treating ALS such as anti-

excitotoxic agents, anti-oxidants, anti-apoptotic and anti-inflammatory drugs, 

but none have been shown to have a clinical response. Current clinical trials 

include NMDA receptor antagonists, anti-oxidants, glutamate antagonists and 

SOD1 inhibitors and it is hoped that some of these may show a positive 

effect in human ALS (Aggarwal & Cudkowicz 2008). A number of drugs 

targeting disease pathways highlighted in ALS have undergone clinical trials 

with some examples shown in Table 1.2. 
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Table 1.2: Clinical trials in ALS and the study outcomes. Composed from 
data included in (Joyce et al 2011) 
 

Clinical trial Outcome 

 

Dexpramipexole 

An enantiomer of pramipexole, a current treatment for 

Parkinson’s Disease. It functions by scavenging reactive 

oxygen species and by inhibiting the caspase cascade (Cheah 

& Kiernan 2010). Failed to show efficacy in a phase 3 ALS trial.  

 

Olesoxime 

Binds the mitochondrial permeability transition pore and is 

hypothesised to stabilise the mitochondria (Bordet et al 2007). 

Failed to show efficacy in phase 2/3 ALS clinical trial. Currently 

in a phase 2 clinical trial for SMA. 

 

Creatine 

Stimulates mitochondrial respiration and showed a positive 

effect in SOD1 mouse models (Klivenyi et al 1999). Clinical 

trials have failed to replicate this effect in ALS patients, but the 

safety of this compound means it has the possibility of being 

used in combination therapies. 

 

Edaravone  

Reduces lipid peroxides and hydroxyl radicals in the G93A 

mouse model(Ito et al 2008). Currently undergoing phase 3 

studies in Japan 

 

AEOL-10150 

Manganese porphryin molecule currently undergoing a phase 2 

trial. Has been shown to reduce oxidative stress and extend 

disease duration of G93A SOD1 mice by upto 3-fold (Benatar 

2007). 

 

L-745870 

A dopamine receptor agonist with a hypothesised role in 

inhibiting oxidative stress. Has been shown to delay disease 

onset and extend survival in SOD1 mouse models (Okada et al 

2005). Showed no effect in clinical trials. 

 

Sodium 

phenylbutyrate 

A histone deacetylase inhibitor with a role in aggregate 

clearance and preventing transcriptional irregularities (Chuang 

et al 2009). Has shown efficacy in animal models of ALS and is 

currently in a phase 3 trials (Cudkowicz et al 2009).  
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In the clinic, Riluzole is usually prescribed alongside symptomatic treatments 

such as nutritional and respiratory support measures. In ALS the main cause 

of death is by respiratory failure and one of the major treatment options used 

in the USA and Japan is assisted/mechanical ventilation. Assisted ventilation 

has been shown to be very effective in extending the lifespan of sufferers as 

the respiratory muscles are supported (Borasio et al 1998, Bourke et al 

2003). It is important to remember that assisted ventilation may extend 

survival but does not slow down the disease progression.  

Riluzole is among a group of drugs which activate the NF-E2-related factor 

2/antioxidant response element (Nrf2/ARE) pathway (Chang et al 2010). Nrf2 

is a transcription factor which has been shown to bind the ARE, a cis-acting 

enhancer sequence which up-regulates gene expression in cells undergoing 

oxidative stress (Moi et al 1994, Rushmore et al 1991). Nrf2 functions by 

forming a translation complex with musculo-aponeurotic fibrosarcoma 

proteins (Maf) that bind to the promoter region of ARE which leads to up-

regulation of 250 genes involved in encoding detoxifying proteins and 

antioxidant enzymes (Kwak et al 2003, Neymotin et al 2011). Reduced Nrf2 

mRNA levels were seen in the brain and spinal cord and it is suggested that 

this reduction in Nrf2 may cause the increased stress seen in ALS motor 

neurons (Sarlette et al 2008). This pathway may be an exciting avenue for 

investigation of new treatments for ALS by reducing the neuronal stress seen 

in ALS patients by up-regulating the Nrf2 pathway. In a study using the G93A 

SOD1 mouse model, treatment with Nrf2/ARE activators caused a significant 

increase in survival, further highlighting the Nrf2 pathway as a strong drug 

target (Neymotin et al 2011). The study used CDDO-EA and CDDO-TFEA 

(Triterpenoids) as they had been highlighted to induce activation of the Nrf2 

pathway in cell and mouse models of ALS. The cell models show that both 

drugs increased Nrf2 activation and in the mouse model, the drugs had a 

neuroprotective effect and extended survival.  
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1.5 Current drug screen studies 

 

One of the major steps in drug development is to test therapeutic agents in 

an in vivo model. Currently the process of drug development takes on 

average 12-15 years and costs tens of millions of dollars for each drug, with 

only a 1% success rate. This is due to the current method of drug discovery 

which is target driven. A major limitation to this process is the lack of useful in 

vivo high throughput screening systems.  

 

 

Fig 2: Diagram of the current pathway of drug discovery. This process takes 
up to 15 years and compounds fail at every stage due to problems such as 
toxicity and low specificity. Diagram adapted from (Bowman & Zon 2010). 

 

The idea of using an in vivo model to perform high throughput drug screening 

raises the possibility of shortening the time taken to get a potential 

therapeutic agent through to a clinical trial and reducing the number of drugs 

that fail at later stages due to problems that occur in vivo. Drugs that have 

toxic effects or efficacy issues in the early high throughput screen could be 

eliminated, meaning less money and time is spent on ineffective drugs. This 

has huge implications for drug companies, as the potential to not only find 
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drugs faster but to identify any biological properties at an earlier stage makes 

these models both scientifically interesting and potentially lucrative. This is 

where the advantages of using a zebrafish model to pre-screen compounds 

are highlighted. Zebrafish have the potential to allow screening of thousands 

of compounds in an in vivo model as a pre-clinical screen before taking hit 

compounds into a mouse model. The zebrafish has the advantage in that it 

can be used to screen large numbers of compounds more quickly and 

economically compared to mice, with the advantage of being a vertebrate 

organism compared to Drosophila and C.elegans. The use of zebrafish in 

drug screening is currently of great interest to commercial companies due to 

the potential of reducing the costs incurred in generating hit compounds 

compared to murine screening systems. One such drug study looking at 

aortic coarctation in zebrafish screened 5000 drugs for an effect in the 

gridlock mutant, yielding lead molecules which affected the VEGF pathway 

and angiogenesis (Peterson et al 2004). If a zebrafish model of ALS could be 

developed as a high throughput drug screening system for ALS disease 

modifiers, it would raise the possibility of identifying novel treatments.  

Drug screens have been performed in various ALS models. One such study 

looked at compounds which activated the glial glutamate transporter EAAT2 

which plays a key role in glutamate clearance from the synaptic cleft (Colton 

et al 2010). Using an astrocyte cell model they screened 140,000 compounds 

and identified 293 initial hits which caused an upregulation in EAAT2 

expression. This has implications for the field of ALS, as reducing glutamate 

levels will decrease excitotoxicity and potentially reduce neuronal stress. Due 

to the limited number of screens performed in ALS models, it is important that 

new models are generated to further understand the biological processes of 

the disease so that new drug targets can be identified.  

 

1.6 Models of ALS 

 

Human models of ALS are difficult to use as it is a disease of the CNS and 

thus no patient tissue is available until after death when most of the motor 
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neurons have already been lost to the disease. This presents researchers 

with a problem when investigating the early stages of disease and possible 

causative factors in the early stages of disease progression as no early stage 

human CNS tissue is available. Cell models can be generated from tissue 

samples such as skin to generate fibroblast lines and blood or cerebrospinal 

fluid (CSF) can be taken from patients, but none of these are the tissues 

directly affected by the disease. Animal models of ALS are used as 

surrogates and one of the most commonly used models in ALS research is 

the mouse model. The first ALS mouse model developed showed a similar 

phenotype to the human form of the disease by showing muscle tremor, 

weakness, paralysis and early death (Gurney 1994). This mouse model had 

a mutation of  glycine (residue 93) to alanine (G93A) and is the most 

commonly used mutant SOD1 mouse model and has been used extensively 

in the testing of therapeutic agents (Turner & Talbot 2008). Although this 

mutation is a relatively rare form, it is one of the most studied and best 

understood. This model has been questioned as a viable tool for testing 

therapeutic agents because compounds identified as active in the mouse 

model have failed to show positive effects in human trials (Aggarwal & 

Cudkowicz 2008).  These differences are blamed on poor experimental 

design such as not being significantly powered (low n-numbers used in the 

study) and over-extrapolating effects seen in mice as a positive result, which 

would be clinically insignificant. Also many murine studies commence before 

disease onset which is clearly not possible in patients thus making the 

relevance and value of these animal studies open to question. Mouse models 

are also often highly inbred and over-express the mutant proteins which may 

not accurately reflect the human condition. This brings the animal model in to 

question and raises the need for the development and validation of new ALS 

models. Currently there are 12 different human SOD1 mutations expressed 

in the mouse, some of which affect copper binding or truncate the protein 

(Joyce et al 2011, Turner & Talbot 2008). An interesting observation in the 

SOD1 mouse is that over expression of the wild-type protein does induce a 

motor phenotype and this is caused by axonopathy (Jaarsma et al 2008). 

This suggests that over expression of SOD1 can lead to neuronal defects 

without the presence of pathogenic mutations. Rat models of ALS have also 
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been generated with mutations in SOD1 at G93A and H46R (Howland et al 

2002, Nagai et al 2001). The rat models show a similar phenotype to the 

mouse, but have a more aggressive and variable disease course. 

Another animal model of ALS is the invertebrate model Caenorhabditis 

elegans. C.elegans is a useful model for studying ALS as it has transparent 

embryos, allowing easy visualisation and a simple, fully mapped nervous 

system comprised of 302 neurons (Watts & Strogatz 1998). It also has the 

advantages of being an inexpensive model to keep and is easily manipulated 

by genetic techniques such as RNA interference. SOD1 mutants have been 

shown to cause locomotor defects in C.elegans (Wang et al 2009). The 

locomotor defects in the mutants were linked to the presence of soluble and 

insoluble SOD1 aggregates. Another group screened 75000 compounds in 

inducible TDP-43 expressing PC12 cells to identify compounds that reduced 

TDP-43 inclusion size without causing cellular toxicity. The 16 hits were then 

screened in a C. elegans model to replicate the hit effects in a simple model 

to identify potential ALS therapeutics (Boyd et al 2013). C.elegans was also 

used to show that methylene blue had the ability to supress toxicity and 

rescue the toxic phenotype in both TDP-43 (A315T and G348C) and FUS 

models (S57∆ and R521H) (Vaccaro et al 2012).  

Another key model in ALS research is the Drosophila melanogaster. This 

invertebrate fly model is a useful tool in research due to its fully sequenced 

genome, short generation time and its susceptibility to genetic manipulation 

(Adams et al 2000). Drosophila models which express the mutant human 

SOD1 protein have been generated (Watson et al 2008). These models 

showed defects in climbing, accumulation of stress in glial cells, defective 

neural circuits and SOD1 protein aggregation. The problems with these 

models are that they do not show the motor neuron loss, paralysis and death 

that are seen in the human disease. TDP-43 models in Drosophila, either 

overexpression WT TDP-43 or mutant forms, led to vacuolar degeneration in 

the photoreceptors in the retina with more degeneration in the mutants (Ihara 

et al 2013). By abolishing the RNA binding motif on TDP-43 they showed 

complete normalisation, highlighting the key role of the RNA binding domain 

in TDP-43 toxicity.  
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Cell models of ALS are useful as they give a uniform population of one cell 

type with a characterised, specific genetic background to screen compounds 

for effect. Cells also have the advantage in compound screening with large 

numbers of cells available for screening and the ability to screen 1000’s of 

compounds in a matter of weeks, as well as the ability to genetically alter cell 

lines to carry transgenes and fluorescent readouts. Cells usually show less 

variability as they are from a defined genetic background unlike in vivo 

models and they are easy to use for readouts with imaging and other well 

characterised techniques. Cell models have been used to identify potential 

therapeutics for the treatment of ALS. One screen used mouse and patient 

fibroblast models to identify compounds working on the NRF2-ARE pathway 

in ALS (Mead et al 2013). Two thousand compounds from the Spectrum 

library were screened for NRF2 activation and S[+]-Apomorphine was 

identified. This was then taken into the SOD1G93A mouse model where CNS 

penetrance was shown, NRF2 induction was seen and attenuation of motor 

dysfunction occurred. Another cell based screen in ALS used NSC34 motor 

neuron cells expressing mutant SOD1 to identify antioxidant compounds with 

potentially neuroprotective effects (Barber et al 2009). Using cell based 

assays, in silico analysis and a review of the published literature they 

identified three possible new therapeutics which could be taken forward for in 

vivo testing. 
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 Neural 

groove 

Neural tube Spontaneous 

movement 

Free living 

Human 23dpf 4wpf 9-10wpf 40wpf 

Mouse 8.5dpf 9.5dpf 12dpf 21dpf 

 Neural 

thickening 

Neural keel Spontaneous 

movement 

Free living 

Zebrafish 10.3hpf 11-16hpf 17-24hpf 56-72hpf 

Table 1.3: Comparison of neural development stages in Humans, Mice and 

Zebrafish. Dpf – Days post fertilisation, wpf – weeks post fertilisation, hpf- 

hours post fertilisation 

 

1.7 Zebrafish model of Neurodegeneration 

 

The Zebrafish (Danio rerio) is an excellent model for neurological disorders 

such as ALS because it has transparent embryos, allowing visualisation of 

the nervous system. The zebrafish is also a vertebrate which gives it 

advantages over invertebrate models such as C.elegans and Drosophila. The 

zebrafish nervous system is also simpler than other higher vertebrate models 

(Doyon et al 2008). Zebrafish also have the advantage of reaching sexual 

maturity at 3-4 months of age and can produce viable embryos all year 

round, giving it an advantage over other higher vertebrate models which have 

long gestation periods. Zebrafish also produce large numbers of embryos 

with each cross and these embryos develop externally, allowing easy 

manipulation from larval stages. Large numbers of embryos make the 

zebrafish an ideal choice for large scale drug studies and mutagenesis 

screens. The zebrafish also has a conserved and simplified nervous system, 

allowing the generation of transgenic and knock-out models of disease which 

closely model the human nervous system. Zebrafish have been used to 

model various neurological disorders such as a model of DJ-1 mutations in 

Parkinson’s Disease (Bretaud et al 2007), poly-glutamine mutations in 
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Huntington’s Disease (Karlovich et al 1998), knockout mutations of the 

survival motor neuron gene in Spinal Muscular Atrophy (Bertrandy et al 1999) 

and studying presenilin mutations in Alzheimer’s Disease (Campbell et al 

2006). 

 As with all models, there are limitations when modelling a disease in an 

organism or cell. Modelling disease is a double edged sword in which 

simplicity can be an advantage, but it can also mean the relevance of 

findings is brought into question, whereas complexity can introduce difficulty 

in elucidating real effects. It is important to remember that the zebrafish still 

has the limitations of being a more simplistic model than higher models such 

as mouse or primates. Also the genetics are highly conserved but not 

identical, likewise the architecture of the nervous system and other organs 

has subtle differences. As with all models there are advantages and 

limitations and it is important to recognise and understand both so that all 

results can be understood and interpreted correctly. 

  

1.7.1 Zebrafish models of ALS 

 

Several genetic models of ALS in zebrafish exist for sod1 as well as other 

genetic causes. Zebrafish transiently overexpressing sod1A4V were shown to 

develop an axonopathy in a dose-dependent manner (Lemmens et al 2007). 

Further from this they showed that vascular endothelial growth factor 

(VEGF), a known ALS disease modifier, had a role in modulation of the 

axonopathy. Reduction in VEGF levels led to a more severe phenotype, 

whereas overexpression of VEGF rescued the axonopathy. A stable Sod1 

model that was generated expressed T70I mutant Sod1 in zebrafish 

generated by TILLING (targeting induced local lesions in genomes) (Da 

Costa et al 2013). The model has the advantage over murine models of 

having mutant SOD1 expression level as a physiological level that is much 

closer to the expression in human ALS patients. The model also showed an 

NMJ phenotype and a susceptibility to oxidative stress, highlighting the 

potential of this model for further investigation into the mechanisms of ALS 
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and therapeutic development. Another group showed that transient 

expression of G93A SOD1 by microinjection in zebrafish led to early defects 

including defective axon growth and branching (Sakowski et al 2012). 

Upregulation of the growth factor IGF-1 was then shown to have the ability to 

rescue the early defects. They took this model further and generated a stable 

G93A-SOD1 mutant model and showed that the model has behavioural 

defects including decreased activity, NMJ defects, neuronal loss and altered 

patterning. FUS has also been modelled in zebrafish where morphlino 

knockdown of FUS and expression of mutant FUS (R521H) both led to 

impaired motor activity and reduced NMJ synaptic fidelity in embryos 

(Armstrong & Drapeau 2013). It was also possible to rescue the knockdown 

phenotype by injection of WT FUS but not mutant FUS. As previously 

discussed Tdp-43 has also been modelled in zebrafish where mutants of 

tardbp or tardbpl show no phenotype but the double mutants show muscle 

degeneration, reduced circulation, reduced motor neuron length and early 

death (Hewamadduma et al 2013, Schmid et al 2013). Recently C9orf72 has 

also been modelled using zebrafish. Knockdown of zebrafish C9orf72 was 

performed using morphlino injection and led to a significant axonopathy and 

showed rescue of the axonopathy with injection of the long transcript human 

C9orf72 (Ciura et al 2013). They also showed that knockdown of C9orf72 led 

to reduced swimming in the embryos but co-injection with human C9orf72 

rescued the swimming defect. These models of ALS show that zebrafish are 

an important model for neurodegeneration and ALS modelling and have the 

potential to play a key role in further understanding the disease and the 

potential to screen therapeutic agents due to the beneficial properties of 

zebrafish over other in vivo models.  

 

1.8 Background to the project 

 

A transgenic fish expressing the fish form of mutant Sod1 protein was 

generated in Ohio (Ramesh et al 2010). This model expresses the 

mutant form of fish Sod1 at moderate levels. The wildtype Sod1 was 

not used as humans regulate their temperature at 37°C whereas 
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zebrafish regulate around 28°C. To generate the mutant line, a 

bacterial artificial chromosome (BAC) which contained the zebrafish 

sod1 gene was used. To track the transgene expression, heat shock 

protein 70 (HSP70) was used to drive the fluorescent protein Ds-Red. 

It is important to note that in this construct the sod1 gene is driven 

from a sod1 promoter and the DsRed fluorescence is driven by the 

hsp70 promoter. This means that each gene is driven independently 

so that the DsRed signal is not just a result of increased sod1 

expression but a true readout of hsp70 up regulation. This is 

confirmed by comparison of the mutant sod1 and wild type sod1 lines 

where increased sod1 expression leads to increased DsRed in the 

mutant line, but doesn’t lead to an increase in DsRed expression in 

the wild type overexpression line. This shows us that it is a mutant 

specific effect, not an overexpression effect caused by readthrough. 

 

Fig 3: Structure of the hsp70-DsRed tagged to the sod1 transgene to 
facilitate the tracking of cellular stress mediated by mutant sod1 protein 
expression (Ramesh et al 2010). 

 

Various zebrafish lines were generated which expressed different levels of 

mutant Sod1 and wild-type Sod1. By performing quantitative PCR (qPCR) 

and western blots, the steady-state protein expression levels could be 

determined. The G93Ros10 line was shown to have a 4x higher Sod1 

expression level in comparison to the WT. To confirm that over-expression of 

the mutant protein led to a mutant phenotype, the neuromuscular junctions 

were visualised using immunohistochemistry by co-localising for the SV2 

antibody (motor neuron) and α-bungaro-toxin (Muscle ACh receptors). It was 

shown that at both larval and adult stages of development, alterations in 

neuromuscular junctions could be seen, with reduced co-localisation in 
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comparison to over-expressing wild type fish.  In the larval stages there was 

a significant decrease in colocalization and post synaptic volume and at adult 

stages the total NMJ volume was significantly decreased. To examine 

changes in the motor ability of the mutant sod1 model, the fish were 

examined using a swim tunnel. This functions by testing the ability of the fish 

to swim against an increasing current over time (Pagala et al 1998, Plaut 

2000). The swim tunnel test showed that the mutant sod1 lines could not 

maintain performance in the swim tunnel and had endurance defects in 

comparison to the wild type lines. The study also measured the optimal force 

and fatigability of muscles by direct stimulation of the muscles. Neither of 

these were affected, which corresponds with the disease progression in 

humans in that it is not a muscular defect but a degeneration of the neural 

inputs to the muscle. At disease end stage the G93Ros10 spinal cord 

showed a significant reduction in ChAT positive motor neurons compared to 

the non-transgenic fish. The mutant lines also showed reduced survival in 

comparison to the wild type expression lines, another hallmark of ALS. 

Electron microscopy also revealed significant alterations to the muscle and 

the mitochondria of spinal cord motor neurons in the mutant sod1 zebrafish. 

Now that this model has been validated as over-expressing the mutant sod1 

protein and as a model for ALS, the next step is to develop its use to set up a 

high throughput drug screen for drug development in ALS. One measurable 

way of detecting changes caused by therapeutic agents would be to detect 

changes in protein expression such as altered sod1 level, or changes in 

DsRed expression. 

 

1.9 Heat shock proteins 

 

Heat shock proteins (HSP’s) are ubiquitously expressed proteins found in all 

organisms. These proteins are up-regulated in response to increased 

temperature as well as other forms of stress. (De Maio 1999). Heat shock 

proteins were first identified in 1962 in a Drosophila model where an increase 

in temperature was seen to induce new RNA synthesis (Ritossa 1996). The 
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different forms of HSP are named after their molecular size such as HSP70 

which is 70KDa and HSP90 which is 90KDa. 

HSP70 has 3 functional domains (Flaherty et al 1990): 

1. N-terminal ATPase domain which hydrolyses ATP to ADP. 

2. Substrate binding domain which has an amino acid binding region which 

can hold peptides in place. 

3. C-terminal domain which has 2 roles dependent on its binding state: 

a. ATP bound-binds and releases peptides rapidly 

b. ADP bound- tightly binds and holds peptides 

HSP70 has many functions in the body and acts as a regulatory protein. One 

of its major roles is as a chaperone protein which binds tightly to partially 

synthesised peptides, stabilising the peptide until complete synthesis occurs 

(Tavaria et al 1996). HSP70 has been shown to prevent protein aggregation, 

a hallmark of ALS, as well as preventing non-functional protein assembly and 

promotion of neurite outgrowth (Takeuchi et al 2002). HSP70 has also been 

shown to play a key role in protecting cells from damage by thermal and 

oxidative stress. This is done by HSP70 binding partially unfolded and 

denatured proteins caused by the stress which in turn prevents further 

misfolding and aggregation, giving proteins and peptides time to refold. 

Recently, heat shock proteins have been highlighted as a potential 

therapeutic target due to their ability to protect neurons from stress, 

aggregation and damage.  In the G93A mouse model of ALS, it has been 

shown that over-expression of HSP70 confers a neuroprotective role and 

increases the lifespan of the mice (Gifondorwa et al 2007). By injecting 

recombinant human HSP70 three times per week from postnatal day 50, the 

mice showed increased survival, delayed onset of symptoms, prolonged 

motor neuron survival and maintained motor function. A follow- up study 

showed that administration of recombinant human HSP70 from postnatal day 

30 did not prevent the denervation of NMJ’s and did not maintain the 

morphology of the peripheral nerve axons compared to the control 

(Gifondorwa et al 2012). In addition, it was shown that recombinant human 
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HSP70 injections led to increased glia and astrocyte activation which may be 

a key mechanism in maintaining neuronal integrity. Inhibition of glia has been 

shown to be neuroprotective and give an extension in survival for SOD1 mice 

which were treated with minocycline, a microglial activation suppressor 

(Edgar & Nave 2009, Kriz et al 2002). In contrast to this, injection of 

minocycline in symptomatic late stage mice led to increased gliosis and 

altered astrocyte activity (Keller et al 2011). This suggests that a balance 

exists between when suppression of glia is beneficial in slowing disease 

progression and when adverse effects occur. The pathway by which HSP70 

confers a neuroprotective role is not understood, but it is suggested that it 

may function by maintaining neuromuscular junction integrity and skeletal 

muscle innervation. Muscle cells have been shown to secrete HSP70 and 

expression is seen in muscle and peripheral tissue but not spinal cord and 

brain, suggesting that any effect of increased HSP70 expression is due to 

effects at the NMJ (Hoshino et al 2011, Robinson et al 2005). This has also 

been shown in cell models and mouse models by using drugs which 

upregulate the heat shock response. In symptomatic mice dosed from 75 

days with arimoclomol an extension in survival and motor performance was 

seen and in mice dosed from 90 days, improved motor performance but no 

extension in survival was seen (Kalmar & Greensmith 2009, Kalmar et al 

2008). Using arimoclomol, primary motor neuron cultures were protected 

from chemical stresses such as hydrogen peroxide, whereas other HSP70 

inducers like celastrol conferred no protective effect. This suggests that, 

although the heat shock response is upregulated, this does not necessarily 

mean it is neuroprotective. HSP70 has been shown to increase the number 

of chaperone proteins in SOD1 mouse models by binding the BAG1 protein 

(Rohde et al 2008). It was hypothesised that this would prevent toxicity due 

to reduced aggregate formation, although this was not the case and no 

extension in mouse survival was seen. Elevated levels of HSP70 have also 

been shown to have no effect on disease onset or survival in several SOD1 

mutant mouse models, suggesting no benefit from elevating HSP70 (Liu et al 

2005). These conflicting results from various studies into the role of HSP70 in 

ALS suggest we still do not know exactly how it functions to protect the 

neuron from stress.  
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HSP70 is expressed in stressed motor neurons making it a good marker for 

stressed neurons and further studies should be performed to look at its 

potential as a therapeutic target. As HSP70 is expressed at areas of stress 

and is expressed in motor neurons, it may be used as a biomarker of motor 

neuron stress. This model allows visualisation of areas of stress in the 

zebrafish embryos by tagging the HSP70 promoter to a fluorescent molecule. 

By tagging the HSP70 promoter to a Ds-Red fluorescent molecule, it is 

possible to visualise where the HSP70 protein is being expressed. 

 Ds-Red is a 28kda fluorescent protein which is taken from the oral disc of 

the coral species Discosoma genus. It has an emission wavelength of 583nm 

or 602nm and is a particularly useful fluorescent probe due to its ability to 

resist extreme pH changes and photo bleaching and its ability to be used in 

co-localisation studies with GFP (Baird et al 2000). By looking at the number 

of normal neurons in comparison to the number of stressed neurons, it 

becomes possible to quantify the level of stress. This could have key 

implications on the testing of therapeutic agents as the stress levels in the 

neurons will be quantifiable after drug treatment and drug effect can be 

measured. This has the potential to be developed for use in large scale drug 

studies which could rapidly identify new therapeutic targets for ALS 

treatment. 
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1.10 Hypothesis and aims 

 

We hypothesis that mutant Sod1 in the zebrafish, leads to increased cellular 

dysfunction and an ALS phenotype. We hypothesise that the mutant Sod1 

model can be utilised as a tool to further understand the cellular mechanisms 

involved in ALS. Furthermore we hypothesise that the Hsp7-DsRed readout 

can be utilised as a readout of stress, and be used to develop and implement 

a high-throughput drug screen to identify neuroprotective compounds in an in 

vivo model. 

 

Aims: 

1. To investigate the cellular events occurring at different embryonic and 

adult stages to identify the cell types showing the hsp70-DsRed 

expression and identify the dysfunction. 

2. To develop and validate a high-throughput drug screen using the 

zebrafish stress readout, and to identify modifiers of neuronal stress 

by screening a compound library. 

3. To take the hits from the primary screen into secondary screens to 

identify compounds having a genuine positive effect in reducing 

neuronal stress caused by mutant Sod1 as a potential therapeutic. 
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Methods 

 

2.1 Animals  

 

The transgenic lines G93Ros10, G93Ros10, G85Ros6 and WTos4 were 

initially developed at the Ohio State University, Columbus, OH and were 

imported to the University of Sheffield, Sheffield, UK, in 2010. These sod1 

mutant zebrafish lines were generated according to the protocols previously 

outlined in (Ramesh et al 2010). The transgenic lines utilized for this study 

included the Tg(sod1:sod1WT;hsp70:DsRed)os4-Sh4 (Sh-Sheffield line), the 

line expressing the highest level of WTSod1 (x3.3 as compared to non-

transgenic lines), referred to as WTos4-Sh4 line; 

Tg(sod1:sod1G93R;hsp70:DsRed)os10-Sh1, referred to as G93Ros10-Sh1 

(high expresser with Sod1 expression increased x3 and comparable to 

WTos4); Tg(sod1:sod1G93R;hsp70:DsRed)os6-Sh2, referred to as 

G93Ros6-Sh2 (moderate expresser with Sod1 expression increased x2.5); 

and Tg(sod1:sod1G85R;hsp70:DsRed)os6-Sh3 line, referred to as G85Ros6-

Sh3 (low expresser with Sod1 expression increasedx1.5). When both G93R 

and G85R lines are discussed, they are referred to as MUTsod1 lines. All 

other lines used in this thesis were internally sourced from the University of 

Sheffield CDBG aquarium.  

 

 All zebrafish that were imported to the facility were kept in quarantine and 

the embryos obtained were bleached at 24hpf and then transferred to the 

University of Sheffield, MRC zebrafish facility.  Adult and larvae zebrafish 

(Danio rerio) were maintained at 28.5°C and bred according to established 

procedures (Westerfield & ZFIN. 2000).  Animal protocols were undertaken in 

line with a Home Office approved project licence. The care and maintenance 

of animals were performed under the Home Office project licence as per the 

animals (scientific procedures) act of 1981 (ASPA) 

(http://www.homeoffice.gov.uk/publications/science-research-

statistics/animals/transposition_of_eudirective/aspa_amendment_regulations

). 
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2.2 Zebrafish crossing  

 

Paired matings were set up with a divider between a male and female 

zebrafish the day prior to collection, to prevent mating. For timed matings, the 

divider was removed the following morning or at specified time to allow the 

fish to mate and lay eggs. Later the same day the fish were removed from 

the tank and the water drained from the pair mating tank through a fine sieve 

to filter out the fertilised eggs. The eggs were placed into a petri dish, topped 

up with embryo medium (E3 – NaCL-5.03mM, KCl-0.17mM, CaCl2 .2H2O-

0.33mM, MgSO4.7H20-0.33mM) and placed in an incubator at 28°C until the 

appropriate stage of development was reached. 

 

2.3 Dechorinating method 

 

The removal of the chorion can be performed at any stage after 24hpf. Fine 

forceps are used to pull the chorion apart and release the embryo using a 5X 

light microscope for guidance. After removing the embryos from the chorion a 

sterile embryo medium change is performed to remove chorion debris from 

the plate to avoid fungal contamination and allow maximum embryonic 

survival. 

 

2.4 Adult tissue collection, fixing and sectioning 

 

The adult zebrafish were terminally anaesthetized in Tricaine and 

decapitated as per the project licence procedure list.  Muscle and spinal cord 

were dissected from the zebrafish using fine micro dissection tools under a 

microscope and fixed in freshly made 4% paraformaldehyde (PFA) overnight 

at 4ºC.  The spinal cord was taken whole from the body before removal of the 

vertebrae from the spinal cord by fine dissection. The tissues were 

embedded in Optimal cutting temperature compound (O.C.T) (Tissue-Tek) 

and snap frozen in isopentane (-80°C). Orientation of the embedded tissue 
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was confirmed under a light microscope. Serial cryostat sections (20 m) of 

the tissue performed on a Leica CM3050S cryostat set at -20°C for both the 

objective temperature and chamber temperature. The protocol was updated 

later to embed the tissue in fish gelatin rather than O.C.T solution. For 50ml 

of the embedding solution (27.5ml of fish gelatin (Sigma, Cat: G7765), 7.5g 

sucrose and the remaining volume was dH2O) was gently heated and stored 

on a roller until the solution was completely dissolved. The sectioning was 

performed as before with an objective temperature of -33°C and a chamber 

temperature of -26°C.  The sections were collected on superfrost plus slides 

(ColePalmer) and stored at -80ºC until later processing. The muscle sections 

were taken as lateral sections to give the best NMJ structures for imaging, 

whereas spinal cord sections were taken as cross-sections. 

 

2.5 Immunostaining of muscle samples 

 

Muscle staining in adult fish was performed using synaptic vesicle 2 (SV2-

a presynaptic marker), -bungarotoxin (BTX-a post synaptic 

neuromuscular junction marker) and DsRed (stress response marker).  

The samples were washed 5x10mins in phosphate buffer containing 1% 

bovine serum albumin, 1% DMSO and 0.5% Triton-X100 (PBDT).  The 

samples were blocked using PBDT with 5% normal goat serum (NGS)  for 

20 min and then incubated for  30min  in PBDT containing 2% NGS along 

with  alexa 488 conjugated -bungarotoxin (Molecular Probes, 1:100, Cat 

No: B14322) at room temperature (RT). Following this the samples were 

washed for 15 minutes with 6 changes in PBDT (6 x 15min) (phosphate 

buffer containing 1% bovine serum albumin, 1%DMSO and 0.5% Triton-

X100). The samples were then incubated with primary antibody solution 

containing mouse monoclonal anti-SV2 antibody (Developmental studies 

hybridoma bank, 1:50) and rabbit anti-DsRed antibody (1:100, Clontech, 

Cat No: 632393) in blocking solution for 24 hours at 40C. The following 

day the samples were washed 6x20 minutes in PBDT and incubated with 

the secondary antibody solution containing goat anti-mouse 633 and goat 

anti-rabbit 568 (1:200) in blocking solution containing 2%NGS and 
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incubated for 24 hours at 4°C overnight (ON). The samples were then 

washed 6 times with 30mins washes in PBDT and the slides were 

mounted with coverslip using Vectashield Hardest with DAPI (Vector 

Labs) and imaged using confocal microscopy (TCS SP5 2, Leica). 

Quantitative analysis of confocal images was performed on image stacks 

of 16-20 m thickness (0.5-1m /section) obtained and processed using 

Image J Software (National Institutes of Health).  For quantitation of the 

fluorescence intensity of individual neurons, an outline around the 

fluorescent cells was drawn and the average fluorescence intensity 

measured.  A minimum of 50 DsRed positive neurons from multiple larval 

samples were pooled for analysis in quantifying the average DsRed 

fluorescence of G93Ros6-sh2 and WTos4-sh4 lines.  Image analysis for 

NMJ analysis was performed using NIH ImageJ software and quantitative 

analysis of the NMJ was performed using a colocalization analysis plugin 

(Costes et al 2004, Li et al 2004). 

 

2.6 Spinal cord staining 

 

Spinal cord staining in adult fish was performed using choline 

acetyltransferase (CHAT- a presynaptic neuronal marker) and DsRed (Stress 

response marker).  The sample slides were washed in phosphate buffer 

containing 1% bovine serum albumin, 1%DMSO and 0.5% Triton-X100 

(PBDT) for 5x10mins before blocking in PBDT with 10% normal donkey 

serum in PBDT  for 60 min. This was followed by a 3 day incubation at 4°C in 

goat polyclonal anti-ChAT antibody (1:100, Chemicon International, Cat: 

AB143) and rabbit anti-DsRed antibody (1:100, Clontech). The samples were 

gently washed 6x15mins in PBDT and incubated in alexa 633 donkey anti-

goat (Invitrogen, Cat No A21082, 1:250) and alexa 568 donkey anti-rabbit 

(Invitrogen, Cat No: A10042 1:250) in blocking solution containing 5% NDS in 

PBDT at 4°C overnight (ON). The samples were then washed for 6x30mins 

with PBDT and mounted with coverslip using Vectashield Hardest with DAPI 

(Vector Labs) and imaged using confocal microscopy (TCS SP5 2, Leica).   
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2.7 Zebrafish drug screening – initial screen 

 

The G93Ros10-sh1 line was used to identify drugs that inhibit neuronal 

stress as this showed the brightest fluorescence and a stable measurable 

increase in fluorescence over several days. 24hpf embryos were obtained by 

timed matings and were dechorinated.  The embryos were put in plates (25-

50 embryos/plate) containing the appropriate concentration of the test 

compound in embryo medium. The stock solutions of the drugs were made 

using DMSO as a solvent at a final concentration of 10mM. For the assay, 

the final concentration of drugs was 10µM leading to a final well DMSO 

percentage of 1:1000 or 0.1%.  Zebrafish embryos can tolerate up to 2% 

DMSO so at 0.1% DMSO embryos are generally healthy and grow normally.  

The drug-containing media was changed daily and maintained for 5 days.  At 

5dpf, the embryos were sorted for DsRed expression by fluorescence using a 

standard fluorescent microscope to determine expression in the brain and 

spinal cord. Transgenic and non-transgenic embryos were then sorted and 

separated.  The non-transgenic samples were used to set minimal threshold 

for fluorescence as these are non-transgenic and show background 

fluorescence.  The transgenic embryos were put into tubes with 3 

embryos/tube before sonication in 100µl phosphate buffer saline (PBS) for 5 

seconds and 25% amplitude (Vibracell, Sonics and materials).  After 

sonication, the transgenic samples were centrifuged at 1300RCF for 10 

minutes (CWS ALC PK120 centrifuge, T536 Rotor).  The supernatant (75µl) 

was pipetted to 96 well fluorescent clear bottom plates (96 well black, µClear, 

Greiner Bio One, Cat No: 655096)  and the well fluorescence measured 

using a FLUOstar Omega (415-0153) plate reader (BMG Labtech, Offenburg, 

Germany) at the excitation wavelengths 560 and 544 and emission 

wavelengths 645 and 590 respectively.  The fluorescence of all transgenic 

samples (control and treated), were subtracted by the average fluorescence 

of transgenic negative samples to remove the effects of background 

fluorescence.  The negative controls used in drug studies contained only 

solvent (DMSO) alone at the highest concentration used for the test 

compounds (Spectrum library is at 5mM and 400nl is added to each test well, 

400nl of DMSO in 200µl =0.2% DMSO per well). The treatment effect was 
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measured and analysed by t-test and compared to vehicle treated samples.  

To allow for a comparison between different experiments, the percent 

inhibition of the fluorescence signal by test compounds as compared to 

vehicle in each study was used for standardization. Riluzole (10µM), a drug 

used clinically for treatment of ALS (Bensimon et al 1994), was used as a 

positive control for validation of the assay.  The other compounds tested 

were Apomorphine-S, Epigallocatechin gallate (EGCG) and Tricaine and they 

were studied at 10µM, 20 µM and 610 µM doses respectively. 

 

2.8 Genotyping embryos at 2dpf using the InCell microscopy 

system 

 

G93Ros10 (male) x Ab embryos were collected and manually dechorinated 

at 24hpf. At 48hpf individual embryos were loaded into 96 well plates (96 well 

black, µClear, Greiner Bio One, Cat No: 655096) in 50µl of E3 media. The 

plates were scanned on the INCell analyser 2200 plate reader (GE 

healthcare) to determine TG’s from NTG’s based upon fluorescence at the 

DsRed wavelength (543 excitation and 604 emission) in the hindbrain and 

SC. The InCell analyser is a fast, sensitive modular lamp based system 

allowing high-throughput imaging to be performed in multiple wavelengths, 

multiple plate types and different conditions. The 96 well plates containing 

the embryos were loaded into the Incell before the protocol for genotyping 

was designed on the InCell analyser software. The wavelengths selected 

were both from Polychroic QUAD2 for brightfield (0.03s exposure) and 

DsRed (2.500s exposure) wavelengths to identify any damage to the 

embryos, the presence of developmental abnormality and to confirm 

expression of the DsRed. The 2X Nikon, Plan Apo, CFI/60 lens was chosen 

as it took a whole well image. The camera used was the large chip CCD 

camera which uses a CoolSNAP K4 2048x2048 pixel array (7.40µm square 

pixel). This camera has the advantage of delivering high resolution images in 

low light applications with a large field of view. For the genotyping process, 

binning was set at 4x4 to ensure even the faintest DsRed expression was 

detectable. The image processing was performed using 2-D deconvolution as 
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this provided both the speed and quality of image required for genotyping 

large numbers of embryos rapidly as well as reducing the blurring effect 

caused by the objective lens. Flat field correction was also applied to each 

well due to the curvature of lenses as this corrects for the focus at the edge 

of wells. Laser autofocus at 1% power was used to focus on each well for 

optimum imaging. The laser-based HWAF (Hardware autofocus) uses a 

785nm laser to focus onto a target while the z-axis is moved to determine the 

exact location of the target.  

 

2.9 Genotyping embryos at 6dpf using the InCell microscopy 

system 

 

At 6dpf, individual embryos were loaded into 96 well plates (96 well black, 

µClear, Greiner Bio One, Cat No: 655096) in 200µl of E3 media and 

anaesthetised using Tricaine (MS-222 at 4.2ml/100ml E3 media). The plates 

were scanned on the INCell plate reader (GE healthcare) to look at the 

fluorescence in the DsRed wavelength and a brightfield image to look at 

general zebrafish morphology and structure. The settings on the InCell were 

kept identical to the 48h protocol except the exposures for brightfield and 

DsRed were reduced to 0.03s and 0.400s respectively due to the increased 

DsRed signal of older larvae. The larvae were imaged at this stage to 

investigate any abnormalities in the development of the fish such as organ 

malformation and death. It also allowed the confirmation of DsRed 

fluorescence expression at the end of the assay to ensure no NTG fish had 

been included in the assay. 
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2.10 Printing of the spectrum library 

 

The spectrum library is stored in deep well storage plates within the SPOD 

system (Roylan) to prevent library deterioration. The SPOD system is a 

specialised drug storage system to extend the lifespan of compound libraries 

by controlling environmental conditions (pressure of 0.5PSI, Oxygen level 

<10%, Relative humidity <5%).The classical method of drug storage was to 

utilize a freeze thaw cycle exposing the drugs to repeated oxidation and 

water exposure. Using the SPOD system the drugs are kept in the dark to 

prevent UV exposure and damage to the drugs and in a low oxygen high 

nitrogen environment which prevents oxidation of the drugs. The compounds 

are also kept under a positive pressure that forces moisture out of the 

storage pods preventing hydrolysis of the libraries. To utilise the library using 

the Echo550 liquid handling system, the plates were imprinted onto low dead 

volume (LDV) 384 well plates (Echo™ Qualified 384 well polypropylene 

microplate, clear, flat bottom, Cat #P-05525) using the Thermo Scientific 

Platemate Plus (Matrix Technologies Corp, Thermo Scientific) a robotics 

liquid handling system that imprints from 4x96 well plates into quadrants on 

the 384 well source plate. The system was set to dispense 12µl of drug from 

each 96 well deep storage plate into the 384 well LDV library plate. Between 

each dispense a tip wash of 5 cycles was performed using filtered water and 

the tips were changed for each plate to ensure that no cross contamination of 

compounds occurred during the transfer.  

 

2.11 Loading of drugs into plates using the Echo550 liquid 

handling system 

 

Zebrafish dosing plates were generated using 96 well plates (96 well black, 

µClear, Greiner Bio One, Cat No: 655096) loaded with 20µl of E3 media 

which had the drugs added from the library using the Echo 550 liquid 

handling system. The Echo 550 liquid handling system is a state of the art 

fluidics system that can dispense very low volumes of compound libraries 



 

 
62 

into destination plates rapidly and accurately. It is a powerful tool in high-

throughput screening due to its tipless transfer of solution with transfers of 

solutions as low as 2.5nl.  This allows for assay miniaturisation and reduces 

cross contamination and costs. It also allows library management due to its 

ability to measure DMSO concentration, hydration level and total well volume 

allowing easy management of the library health over time. The Echo system 

works by using acoustic energy to disrupt the well meniscus and transfer 

2.5nl droplets from a source plate to a destination plate. The system allows 

for the transfer of 200 droplets per second (500nl). Using the Echo plate 

reformat software (Echo550 liquid handling control software) protocols 

designed to dispense the desired volume of drug from a source plate 

(Echo™ 384 LDV plates) into a destination plate (96 well black, µClear, 

Greiner Bio One, Cat No: 655096). Before usage the Echo550 system is 

calibrated to ensure that the dispensing process is uniform and stable 

throughout the experimental procedure. 20µl aliquots of embryo medium are 

added to the destination wells (WellMate, Thermo Scientific, Matrix) so that 

the Echo system dispenses into a larger volume of embryo media meaning 

the drug does not degrade due to exposure to the environment. This volume 

must remain low so that the forces in the plate do not allow the solution to 

drop out during the inversion of the plate which occurs at the beginning of the 

dispensing process. The destination plate (96 well plate) is taken into the 

Echo550 system and inverted while a drug source plate (385 LDV plate) is 

brought into the machine and manoeuvred close to the destination plate so 

that the dispensing distance is as low as possible. An anti-static bar removes 

any static energy from the plate at the beginning of the process to avoid any 

interference with the transfer of compounds between the plates. Once the 

dispensing process has been completed the plates are backfilled up to 150µl 

again using the WellMate system. Once the drug dosing process has been 

completed, the fish are then added to the well in 50µl to make a final well 

volume of 200µl at the desired final concentration 
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2.12 High-throughput drug screening readout 

 

At 6dpf the fish were terminally anaesthetised using Tricaine (4.2ml per 

100ml) and imaged using the InCell for fluorescence and brightfield to identify 

death and malformation before being loaded into 96 well V bottom plates (V 

bottom, Clear, Greiner Bio One, Cat No: 651101) in 50µl of media. The wells 

were then individually sonicated at 25% for 5 seconds using the Vibracell 

sonication system (Sonics and Materials, Inc) before being centrifuged at 

1300G for 15 minutes (CWS ALC PK120 Centrifuge, T536 Bucket). 20µl of 

the supernatant was then loaded on to 384 well plates (384 well, µClear, 

Greiner Bio One, Cat No: 781096) before the fluorescence was measured 

using the OmegaStar plate reader system at the excitation wavelengths 560 

and 544 and emission wavelengths 645 and 590 respectively. 

 

2.13 Pherastar  

 

Pherastar analysis was performed in 384 well plates (µClear, Greiner Bio 

One, Cat No: 781096). The Pherastar FS system (BMG Labtech, Offenburg, 

Germany) was set to a 15x15 well-scan with 3mm width using the bottom 

optic. The optic module 520-20, 590-20 was used with the gain set at 1018. 

2.14 Spectrum library 

 

The spectrum library was sourced from Microsource Discovery systems Inc. 

(Gaylordsville, CT, 06755, U.S.A.). The Spectrum library is a preselected 

library of compounds with a wide and diverse range biological activities and 

structural subtypes designed for use in screening and assay development. 

The spectrum library provides information on drugs, biochemical profiles and 

molecular structures. All compounds in the library are provided at >95% 

purity. The libraries were then stored under negative pressure, in the dark 

with a low oxygen/high nitrogen environment to prevent degeneration of the 
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library by oxidation, hydrolysis and UV using the Roylan Development SPOD 

system.  

 

2.15 Zebrafish behavioural analysis 

 

Zebrafish were recorded using the tracking equipment and related software 

included in the Viewpoint analysis suite (Viewpoint Lab Sciences, Inc). 

Tracking was performed to identify compounds which were increasing 

zebrafish behaviour (hypermobility) or were leading to a sedative/anaesthetic 

effect (immobility or hypomobility). By controlling the light and dark settings 

within the zebrabox system we can also identify behavioural changes in 

response to the presence or absence of light. Using the zebrabox 

attachment, 96 well plates (96 well µClear, Griener Bio One) containing one 

embryo per well, the larvae were imaged at 6dpf using the tracking software. 

The plate size information was added to the system and it used the locations 

and size of the top left, top right and bottom right wells to automatically draw 

areas of measurement around each of the 96 wells. Tracking was performed 

for 20mins while the lighting controls were changed at the ten minute stage. 

Ten minutes of movement were measured in bright conditions followed by a 

separate ten minute measurement in total darkness. The detection threshold 

colour was set as transparent with the maximum threshold set at 120. The 

movement detection parameters for small/fast behaviour were set at 6.0 

whereas the inactive/small was set at 3.0.  This allows the user to investigate 

the data more thoroughly and identify fish spending more time in rapid 

movement phases and fish which are more sedentary.  

 

2.16 Statistics used in high throughput screening plate screening 

 

The statistical test used to determine hits in the screen was the strictly 

standardised median difference (SSMD) (Zhang 2011). SSMD works by 

measuring the effect size by comparing it to any two groups with random 
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values. SSMD expressed most simply is a measure of the fold change of the 

drug effect but this is penalised based upon the variability of the fold change. 

This means that each compound gets an effect which is representative of the 

difference between the compound and the negative control.   

 

 

Xi = measured value for a tested well 

XN = Sample median 

nN = Sample size 

sN = Median absolute deviation 

K = nN – 2.48 

The SSMD result for each individual well corresponds to a  β-Value as 

depicted in Table 2.1. This method is suitable for high-throughput hit 

selection as it allows the grading of hits based upon strength of effect 

compared to the negative control. This is advantageous over other methods 

such as the z-score which just gives a yes/no answer. Table 2.1 shows the 

grading system from extremely strong to an extremly weak effect for both 

inhibiton of fluoresence (negative SSMD) and activation of fluoresence 

(positive SSMD). 

The SSMD* measurement assumes that the tested plate is primarily 

composed of inactive test compounds. Thus, the majority of compounds in 

the plate containing test compounds would have SSMD score of around 0, 

while a true hit would have an SSMD score significantly above or below 0. 

Compounds with a SSMD* score of below 0 are inhibitors, while those 

showing SSMD* above 0 are activators. The threshold for a hit in this screen 

was set at +0.5 or +1 for moderate and strong hits 
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Effect subtype 
Thresholds for negative 

SSMD 

Thresholds for positive 

SSMD 

Extremely strong β < -5 β > 5 

Very strong − 5 < β < − 3 5 > β > 3 

Strong − 3 < β < − 2 3 > β > 2 

Fairly strong − 2< β < − 1.645 2 > β > 1.645 

Moderate − 1.645 < β < − 1.28 1.645 > β > 1.28 

Fairly moderate − 1.28 < β < − 1 1.28 > β > 1 

Fairly weak − 1 < β < − 0.75 1 > β > 0.75 

Weak − 0.75 < β < − 0.5 0.75 > β > 0.5 

Very weak − 0.5 < β < − 0.25 0.5 > β > 0.25 

Extremely weak − 0.25 < β < 0 0.25 > β > 0 

No effect β = 0  

Table 2.1: β value scoring system for SSMD with positive and negative hits  

 

2.17 Quality control statistical analysis 

 

Quality control is essential in hit selection as it statistically confirms the 

validity and integrity of hit compounds from the screen. Quality control of 

each plate tested with test compounds was performed using the β-numbers 

of positive and negative controls in each plate.  The sensitivity of an assay 

shows how many hit compounds are being detected and needs to be 

maintained as high as possible to ensure hits are not missed by the screen.  
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The specificity of an assay informs of how many true negative compounds in 

the screen are showing up as true negatives and must remain as high as 

possible so that false hits do not occur among the negative controls. To 

perform the QC experiments the positive control and negative control data for 

all the plates in each replicate was used and the following equations were 

used to calculate the sensitivity and specificity. 

Sensitivity = (true positives/(True positives + false negatives)) x 100 

Specificity = (true negatives/(True negatives + false positives)) x 100 

 

2.18 Electrophysiology 

 

Whole cell voltage clamp recordings were conducted in 4 dpf larvae as 

previously described (Drapeau et al 1999).  The fish were perfused with 

Evans physiological saline containing the neuromuscular blocker D-

tubocurarine (10µM), the sodium channel blocker tetrodotoxin (TTX; to 

synaptically isolate neurons), kynurenic acid (2.5mM, to block spontaneous 

glutamatergic currents), and bicuculline (25µM), to block spontaneous 

gamma-aminobutyric acidergic [GABAergic] currents). Cells were voltage 

clamped at -75mV, a potential at which the chloride conducting glycine 

receptors generate inward currents. Sulforhodamine (0.1%) was included in 

the electrode solution to visually identify the cell type. The frequency of 

glycinergic miniature postsynaptic currents (mPSCs) was determined by 

averaging the number of events in a 300-second period. To examine the rise 

time, decay, and amplitude of mPSCs, the first 50 mPSCs were selected 

from each recording and averaged across each experimental condition. 
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Chapter 3: Cellular changes in a zebrafish model of ALS and 

the identification of drug effect in this model 

 

ALS is a progressive neurodegenerative disease with poorly understood 

disease mechanism and pathways. An important step in furthering our 

understanding of the disease would be to elucidate exact cell types affected 

during the disease course and to understand at what stages they become 

affected. Knowing the exact cell types involved and the pathways they are 

associated with means that more targeted therapeutic approaches can be 

developed that have a direct role at the affected cell. Zebrafish are an 

excellent model for elucidating the cell types involved. The zebrafish is 

advantageous because it is optically clear during development, amenable to 

genetic manipulation and it has a fully developed central nervous system 

which is well characterised. Using transgenic zebrafish lines, 

immunolabelling and in situ hybridisation we have tracked the progression of 

the disease between multiple cell types during the disease course and have 

begun to identify how ALS progression occurs and which cells may show the 

strongest susceptibility to mutant Sod1 toxicity. Identifying the cell types 

affected also raised the hypothesis that the hsp70-DsRed expression system 

could be used as the readout for therapeutic effect. The idea behind this 

would be that inhibition of the DsRed fluorescence could be a sign that Sod1 

mediated cellular toxicity was lowered and therefore the heat shock pathway 

activation was lowered. The flipside of this argument is that compounds 

inducing a large increase in fluorescence could be over-activating the heat 

shock pathway which is a cellular repair pathway in an effort to counter the 

Sod1 toxicity. The cellular toxicity was investigated in the zebrafish embryos 

to identify the cells first affected by Sod1 toxicity.  
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3.1 Investigating the Hsp70-DsRed response in G93Ros10 

zebrafish embryos 

 

Utilising the model previously described by Ramesh et al (2010), experiments 

were designed to identify what cellular changes were occurring in the 

G93Ros10 Sod1 mutant model of ALS. Our interest in this field was to 

extrapolate and identify a timeline of the cellular disease progression based 

upon the cells expressing the hsp70-DsRed stress response pathway. Using 

DsRed fluorescence arising from the hsp70-DsRed gene expression 

particular structures and cell types were observed which were commonly 

switched on in the mutant fish (Fig 3.1). Identification of which cell types were 

primarily affected in zebrafish embryos and which cell types were affected in 

adult fish were used to identify a timeline of the propagation of neuronal 

stress between cell types in this model. The original findings of Ramesh et al 

(2010) showed that heat shocked G93Ros10 zebrafish containing the hsp70-

DsRed construct expressed the DsRed fluorescence throughout the fish (Fig 

3.1). This was to be expected and showed that the construct is expressed 

throughout the G93Ros10 zebrafish and that the hsp70 gene is activated in 

the presence of a heatshock stimulus. The interesting finding was that when 

the zebrafish were left to develop in the absence of a heatshock, the DsRed 

expression was still seen in specific zebrafish anatomical structures. Upon 

further inspection, the majority of the DsRed fluorescence was seen in the 

spinal cord, hind brain, eyes and the neuromast cells (zebrafish neuronal 

cells found on the surface of developing embryos). This suggested that the 

cells affected were predominantly from the central nervous system and were 

most likely of a neuronal subtype based upon what is known about ALS and 

the cell types present in these areas. When studied at a higher magnification, 

it became more apparent that the cells showing the largest DsRed 

fluorescence were neuronal based upon their morphology and location 

(fig3.1). It is important to note that heatshock of the zebrafish does not lead 

to any changes in survival and the fish have an uncompromised lifespan. 
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Fig 3.1: G93Ros10 Zebrafish in the presence of heatshock (+HS, Left) and in 
the absence of heatshock (-HS, Right). Top images show the whole zebrafish 
embryo at 4dpf. The magnified images are of the spinal cord of zebrafish 
embryos at 4dpf. Note in the absence of heatshock the DsRed expression is 
seen in certain cell types, especially the hindbrain and spinal cord. The 
images below show the expression pattern in the WT overexpression line 
(WTos4). The HS+ fish shows expression throughout the fish and the HS- 
WTos4 line shows the lower DsRed expression seen in this line.  

 

3.2 Investigating the Hsp70-DsRed stress response in Sod1 

mutant zebrafish 

 

Green fluorescent protein (GFP) transgenic lines and immunostaining were 

used to identify the cell types showing co-localization with the hsp70-DsRed 

mediated fluorescence. This was to identify the specific cell types showing 

hsp70-DsRed activation as a result of Sod1 mediated toxicity. The initial 

experiments were focused on investigating the expression of motor neuron 

markers as these cells are classically what would be expected to show 

pathophysiological changes in a motor neuron disease model. 

 

G93ROs10 +HS G93ROs10 -HS 

WTos4 +HS WTos4 -HS 
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Fig 3.2: Staining G93Ros10 zebrafish spinal cords for motor neuron markers 
at 72hpf. Hb9 and islet 1 are markers of differentiating motor neurons and 
ChAT is a marker of mature motor neurons. Olig 2 is a marker for migrating 
oligodendroctes and GFAP is a marker of astrocytes and radial glial cells. 
The first column is the GFP marker (Green), the middle column is the DsRed 
(Red) and the final column is a merged image. Images were taken at 72hpf 
as this is when many of the neuronal markers are easily detectable. All scale 
bars show 10µM. 

 

Crossing our mutant Sod1 zebrafish with zebrafish carrying fluorescent 

markers for different cell types allows the identification of individual cell types 

that are involved in the mutant Sod1 stress process. Following crossing of 

our G93Ros10 line with the islet-1-GFP fish which is a marker of motor 

neuron differentiation we did not see co-localization with the DsRed stress 
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response suggesting that it is not the early motor neurons that are stressed 

(Fig 3.2). To confirm this, a crossing of our G93Ros10 mutant line with the 

hb9-GFP fish (Fig 3.2) (marker of neuronal differentiation) was carried out 

and again we did not see co-localization with the DsRed stress response 

suggesting that it is not the early motor neurons that are stressed and that 

the motor neurons were not expressing a stress response during the 

neuronal differentiation process. The next step was to determine if it was 

mature motor neurons that were showing the stress response at the early 

stages. This was carried out by staining for the mature motor neuron marker 

ChAT (Choline acetyl transferase) to identify if fully mature motor neurons 

showed hsp70-DsRed activation. Again it was found that the ChAT positive 

neurons were not affected at these early stages and did not co-localize with 

the DsRed signal. From this it is proposed that the motor neurons were not 

the first cell type affected by the G93R Sod1 mutation and that a different cell 

type must be stressed prior to motor neurons. The cells expressing the 

DsRed signal showed neuronal morphology, but to confirm this an 

investigation of other cell types present in the spinal cord was undertaken. 

The G93Ros10-Sh1 zebrafish was crossed with the olig2-GFP 

(Oligodendrocyte marker) and GFAP-GFP (Astrocyte marker) fish to identify 

any non-neuronal cells which expressed the DsRed fluorescence. The 

immunostaining showed that the GFAP and Olig2 positive non-neuronal cell 

types were not showing an upregulation of the hsp70-DsRed response and 

that a different cell type was expressing the stress response. Based upon the 

morphology of the cells showing the stress response (fig 3.1, -HS) we further 

investigated different neuronal subtypes. Staining for these markers could 

only be performed in the high-expressor line as DsRed expression in the 

other mutant lines was too low to detect. Staining was not performed in the 

WTos4 line as the data from the electrophysiology showed no neuronal 

dysfunction in this line (Fig 3.4). 
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3.3 Inhibitory interneurons show the stress response prior to 

motor neurons in the mutant Sod1 zebrafish 

 

These data indicated that it was possible that spinal interneurons were 

affected first. The hypothesis behind this was that if the interneurons show 

the stress response and become deregulated, then when this stress and 

damage builds up to a certain threshold, the cellular mechanisms cannot 

cope and they lose the ability to correctly input and regulate the motor 

neurons and this disregulation leads to the stress response in the motor 

neurons at later stages. Interneurons have also been implicated in ALS as 

previously discussed in the introduction. In order to test this, investigation of 

the expression of DsRed fluorescence in these cells was undertaken.  
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Fig 3.3: Whole mount immunostaining for DsRed, pax2 and glycine in the 
g93ros10 zebrafish at 48hpf. White arrows indicate co-localization between 
the marker and DsRed fluorescence. A shows staining for neuronal marker 
pax2, DsRed and a merge image. B shows glycine staining mainly for 
inhibitory interneurons, DsRed and a merged image. Scale bars in A show 
10µM, Scale bars in B show 5µM. 

 

In order to show that the stressed cells were of a neuronal subtype, staining 

for the inter-neuron marker, pax2, was carried out. This showed that the 

DsRed co-localized very well with the pax2 marker as shown in fig 3.3 part A. 

This indicated that the stressed cells in the early stages are of an interneuron 

nature. Immunostaining for the glycine antibody which is a marker for 
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inhibitory interneurons was then undertaken. It was found that a majority of 

cells stained positive for glycine which indicates that at these early stages it 

is the inhibitory interneurons that are showing the stress response, not the 

motor neurons, and that potentially some form of propagation mechanism is 

occurring by which the stress transfers from one cell type to another over 

time. As the glycinergic interneurons had been identified as the key cell 

population showing the stress response, they were further probed using 

electrophysiology to understand the dysregulation occurring at the cellular 

level. Staining was not performed in WTos4 zebrafish as the antibody had 

large background and masked the DsRed signal. This work has been taken 

further with InSitu hybridization techniques and the data is available in 

McGown et al, 2013. 

3.4 mutant Sod1 zebrafish have impaired glycine interneuron 

activity 

 

The electrophysiological profiles of the glycine positive stressed interneurons 

were investigated to determine what was happening to these affected 

interneurons. In collaboration with Jonathan McDearmid from Leicester 

University, individual neurons from 4dpf G93Ros10 mutant zebrafish were 

whole cell voltage clamped and the current measured as per the protocol 

previously used (Drapeau et al 1999).  
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Fig 3.4: Reduced glycinergic transmissions onto motor neurons of Sod1 
zebrafish larvae. (A) Representative traces depicting voltage clamp (holding 
potential 5 275mV) recordings of spontaneous glycinergic miniature 
postsynaptic currents (mPSCs) in motor neurons of wild-type (WT), WT Sod1 
over-expressor (WTos4-Sh4), and Sod1 mutant (G93Ros10-Sh1) fish at 4 
days post-fertilization. Downward deflections represent occasional quantal 
release of glycine from presynaptic terminals. (B) Average of 30 consecutive 
glycinergic mPSCs from each experimental condition. (C) Bar chart depicting 
mean mPSC frequency for each experimental condition. GlyR 5 glycine 
receptor; mIPSC 5 miniature inhibitory postsynaptic current. **WT vs. G93R 
p < 0.001. (D) Cumulative probability plots of mPSC amplitude, rise time, and 
half-life (p < 0.05) in WT (black lines) and G93Ros10-Sh1 (grey lines) motor 
neurons. 
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Fig 3.4 A shows representative traces of the potential of the impulses from 

glycinergic inhibitory interneurons from G93Ros10 mutant zebrafish, WTos4 

overexpressing WT Sod1 and wild type fish. The traces show a reduced 

frequency and strength of spontaneous presynaptic potentials in the 

G93Ros10 mutants when compared to the WT and WT overexpressing 

zebrafish models. Fig C shows the mean frequency of mPSC (Hz) for each of 

the models which confirm that the frequency of glycine currents is reduced in 

the mutant Sod1 model when compared to the WT. This shows that the 

DsRed positive glycinergic interneurons have abnormal behaviour in the 

model and that interneuron dysfunction is occurring at the embryonic stages. 

Based upon these findings at the embryo stages, the disease progression in 

the adults was probed to see how the disease pathology changed over time.  

 

3.5 Investigating the stress response of motor neurons in the 

spinal cord of mutant and wild type zebrafish 

 

Based upon these findings, the next stage was to investigate which of the 

neuronal cell subtypes were affected at each stage and identify which cells 

were particularly susceptible to neuronal stress in the Sod1 mutant model. In 

adult spinal cord, ChAT (Choline acetyltransferase) immunolabelling was 

carried out to identify spinal cord motor neurons and co-localize these with 

DsRed fluorescence (stress marker) in the spinal cord. The high expressor 

mutant line (G93Ros10-Sh1) shows highly elevated levels of DsRed 

expression in the spinal cord which co-localize largely with the ChAT staining 

indicating that the mature motor neurons in the high expressing mutant Sod1 

model are undergoing a large stress response (Fig 3.5 A-D). In the 

G93Ros10-Sh1 line, all motor neurons showed the stress response, 

indicating how widespread the stress response is in the spinal cord.  Many 

neurons also appear to show the DsRed signal but no ChAT staining, 

suggesting that a strong DsRed signal indicates complete neuronal 

dysfunction and thus the cells no longer express the ChAT signal and are 

most likely undergoing apoptosis. In the G85Ros6-Sh3 line, a lower 

expressing mutant line, the neuronal stress is still seen in the spinal cord, but 

the overall levels are significantly lower than the high-expressor line (Fig 3.5 



 

 
78 

E-H). A study of the co-localization of the stress response with the motor 

neurons showed some motor neurons exhibit a significant upregulation of the 

heat shock response, whereas others showed no co-localization. This can be 

seen in fig 3.5 (H) which identifies the presence of ChAT positive motor 

neurons showing the stress response alongside ChAT positive motor 

neurons showing no DsRed co-localization. This suggests that certain motor 

neuron subtypes are more susceptible to cellular stress than others or that 

the toxicity from the Sod1 has not reached a sufficient level to activate the 

response. In the wild-type expressor line very little DsRed expression was 

seen, with no co-localization with the ChAT staining, showing that the motor 

neurons are unstressed and that mutant Sod1 mediated toxicity, but not wt-

Sod1,  is leading to an activation of the hsp70-DsRed response in ChAT 

positive motor neurons in adult zebrafish (Fig 3.5 I-L). 
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Fig 3.5: Symptomatic adult mutant Sod1 zebrafish show induction of HSR in 
the large spinal motor neurons:  Spinal cord cross sections from 1-1.5 year 
old symptomatic adults stained with DAPI (A,E,I),DsRed antibody (B,F,J) and 
ChAT antibody (C,G,K) show robust induction of HSR (B,F) and co-
localization of DsRed with ChAT in the high expressor (3X) G93Ros10-Sh1 
line (A,B,C,D), and the moderate expressor (2X) G85Ros6-Sh3 line 
(E,F,G,H) .  High expressor (3X) WTos4-Sh4 line shows little DsRed staining 
and the DsRed label does not co-localize with the large ChAT positive motor 
neurons (I,J,K,L).   

 

3.6 Mutant Sod1 leads to abnormal NMJ morphology 

 

Based upon the stress seen in the 1-1.5y old Sod1 mutant fish, it was 

decided to look at the muscle tissue to investigate whether changes were 

seen in the NMJ innervation of the muscle alongside the stress response 

seen in the spinal cord ChAT positive motor neuron cell bodies. Problems at 

the level of the NMJ would be expected if death and dysregulation was 

occurring in the motor neurons. The fish chosen for this analysis were 

selected at the ages which showed defects in the swimming tunnel test 

(Ramesh et al 2010). The reasons for looking at the NMJ’s are that they are 

the key boundary between the muscle and the neurons and are the site of 
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innervation to the muscle. As paralysis and denervation is a key pathology of 

ALS sufferers, this area is an important region to investigate. Sections from 

body muscle samples from 1-1.5y old fish were stained using SV2 to 

demonstrate presynaptic neurons, α-bungarotoxin to stain post synaptic 

NMJ’s and DsRed as a marker of neuronal stress. From this any defects in 

the pre- or post- synaptic components can be identified using the DsRed 

fluorescence. The staining showed that in the high expressor mutant line (fig 

3.6 B) neuronal stress could be seen co-localizing with the SV2 marker and 

the bungarotoxin indicating that the fish showed a large stress response 

throughout the NMJ. This stress response also appears to coincide with an 

absence of complete NMJ’s with only punctate and sparse co-localization 

between SV2 and bungarotoxin. This is also seen in the lower expressing 

mutant (Fig 3.6 C) to a lesser degree with small levels of pre- and post-

synaptic markers present along with DsRed expression suggesting disruption 

of normal NMJ morphology. The arrows show the presence of a stressed and 

unstressed NMJ where an almost complete loss of co-localization is 

observed in the presence of the stress response. In the WT expressor (fig 3.6 

A) line normal pre- and post- synaptic expression is seen with no DsRed 

expression, which again shows that the hsp7-DsRed fluorescence is a direct 

result of the mutant Sod1 toxicity.



 
 

 

Fig 3.6: Immunostaining of NMJ in mutant Sod1 adult zebrafish body muscle. Muscle sections labeled with synaptic vescicle-2 (SV2) 

antibody (blue), α-bungarotoxin (green), and DsRed (red) in high expressor WTos4-Sh4 (A), G85Ros6-Sh3 (B), and G93Ros10-Sh1 

(C).  Normal NMJs’ are indicated by arrows. The arrowheads in B and C show denervation occurring in the samples.



 
 

 
82 

After showing that defects in innervation can be seen in the mutant lines, the 

size of the NMJ in stressed and unstressed axons in the low expressor 

mutant line was investigated to determine whether the stressed NMJ’s that 

were present had an altered morphology. From the imaging in figure 3.7 it 

can be seen that stressed neurons result in aberrant NMJ’s which leads to 

denervation of muscle. This provided an appropriate control for us to quantify 

changes in the morphology of the NMJ within the same specimen in the 

presence of stressed versus non-stressed axons.  Using the Image J co-

localization software, the NMJ volume was measured in stressed and 

unstressed axons. The stressed axons showed reduced NMJ volume in 

comparison to the unstressed axons which suggests that the Sod1 mutation 

is leading to neuronal problems which eventually leads to muscle innervation 

problems and supports the data found in the previous swim tunnel testing 

when the mutant fish failed to continue swimming for as long as the WT fish 

(Ramesh et al 2010). 

 

 

 

 

 

 

 

Fig 3.7: Stressed motor axons in mutant Sod1 fish show reduction in NMJ 
Volume. A measurement of NMJ volume in stressed versus non-stressed 
motor axons of low expressor G85Ros6-Sh3 line was carried out.  Muscle 
sections were immunostained with antibodies to DsRed, SV2 and labeled α- 
bungarotoxin. 113 NMJs from multiple sections were measured for NMJ 
volume from confocal stacks in SV2 positive-DsRed negative axons and SV2 
positive-DsRed positive axons using co-localization software from NIH Image 
J and analyzed by unpaired t-test.  Significant reduction in NMJ volume was 
observed in stressed motor axons as compared to the non-stressed axons. 
The mean is represented as a line over the distribution.  Each dot represents 
the volume of an individual NMJ. p<0.00001. Representative images of 
stressed and unstressed NMJ’s are in A and C of Fig 3.6. 

                Unstressed                 Stressed 
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3.7 Riluzole reduces the Hsp70-DsRed response in a dose 

dependent manner 

 

Knowing that the DsRed upregulation was a direct result of neuronal stress 

caused by the mutant Sod1 expression and that the major cell type affected 

in the embryos was inhibitory interneurons, it was hypothesized that 

measuring the DsRed expression levels would allow us to determine a 

baseline stress level in the mutant zebrafish which could then be utilized as a 

way of measuring drug effect. Using this baseline DsRed readout allows an 

investigation of test compounds for their efficacy in reducing neuronal stress 

by looking for compounds which showed reduced DsRed fluorescence, as 

this could arise due to reduced neuronal stress and lead to the identification 

of lead molecules for further analysis. It also allows the identification of 

compounds that activate the stress response as potential candidates for 

neuronal protection via upregulation of the cellular repair pathways. Riluzole 

was the first compound tested, as it is the available neuroprotective treatment 

for human ALS patients and thus adds the most validity to the model’s use in 

showing drug effect. The effect of this drug is measured as its ability to 

reduce the neuronal stress, which can be quantified as a reduction in DsRed 

expression correlating with a reduction in HSP70 expression. The embryos 

were chronically immersed in a drug solution from 24hpf to 5days of age with 

daily drug changes in the plate. Drug effect can be seen to act in a dose 

dependent manner as increasing dose of Riluzole causes a progressive 

reduction in DsRed fluorescence. 
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Fig 3.8: Measurement of DsRed Fluorescence in 5dpf G93Ros10 zebrafish. 
Zebrafish DsRed expression was measured after 4days exposure by 
immersion in Riluzole. The DMSO control was used as baseline readout of 
neuronal stress and the reduction in stress was measured by increasing 
dose. The higher doses of Riluzole (10uM) showed a reduction of 70% in 
comparison to the Control dose. This can be used as readout for drug effect. 
The error bars represent the SD. N= 14 fish per group 

 

The results show Riluzole has the ability to reduce neuronal stress in a dose 

dependent manner. At 1µM Riluzole has no significant effect when compared 

to the control zebrafish with fluorescence readings around the 6000 region. 

At 5µM a slight reduction in fluorescence was seen, but this was not found to 

be significant. At 10µM we saw a reduction of over 60% in fluorescence. This 

suggests that at 10µM the Riluzole is reducing the neuronal stress 

significantly when compared to the control zebrafish. This was a major step 

in validating our assay as it shows that Riluzole, the current treatment for 

human ALS, was showing a positive effect in our mutant Sod1 zebrafish 

model. This gave the model more strength and highlighted the ability of 

Riluzole to function as a positive control of drug effect when screening further 

compounds or for designing a high-throughput screen. To confirm that this 

was a positive effect of the drug, Riluzole was also tested in the wild type 

overexpression line, WTos4. As Fig 3.9 shows Riluzole at 10µM shows a 

significant reduction in fluorescence, but the reduction is around 20%, less 

than the 60% reduction in the mutant Sod1 line. This suggests that the 

toxicity from WT overexpression is less than the mutant Sod1 toxicity.  
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Fig 3.9: Measurement of DsRed Fluorescence in 5dpf WTos4 zebrafish. 
Zebrafish DsRed expression was measured after 4days exposure by 
immersion in Riluzole. The DMSO control was used as baseline readout of 
neuronal stress and the reduction in stress was measured by increasing 
dose. The higher doses of Riluzole (10uM) showed a reduction of 20% in 
comparison to the Control dose. The error bars represent the SD. N= 14 fish 
per group 

 

3.8 Riluzole and other neuroprotective compounds reduce the 

neuronal stress in mutant Sod1 zebrafish 

 

Further validation studies were undertaken with compounds that had been 

shown to be neuroprotective in ALS (Apomorphine S)(Mead et al 2013) and 

with a general neuroprotective effect (EGCG Epigallocatechin gallate)(Yu et 

al 2010)  to investigate their effect on DsRed expression in the G93Ros10 

model.  
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Fig 3.10: Effect of drug treatment in a 5dpf zebrafish model.  Zebrafish 
DsRed expression was measured after 4days chronic exposure to various 
compounds known to show neuroprotection in other models of ALS. The 
DMSO control was used as the baseline readout of neuronal stress and the 
reduction in stress was measured for each compound. The higher doses of 
Riluzole (10uM) showed a reduction of 70% in comparison to the Control 
dose. This can be used as the readout for drug effect. The error bars 
represent the SD. N= 10 fish per group. 

 

ApoS at 10µM and EGCG at 100µM both showed a significant reduction in 

fluorescence which was lower than the effect of Riluzole. Both compounds 

led to a significant reduction in the fluorescence compared to the control 

treated fish. These data suggest that drug effect is measurable and that the 

size of effect can be measured for individual compounds. This highlights that 

the sensitivity possible with this model means it is ideal for the development 

of high-throughput screening assays where large numbers of compounds 

could be screened and compounds with strong and weak effects would be 

detectable and distinguishable. 

 

3.9 Comparison of different enantiomer’s of Apomorphine for drug 

effect in a zebrafish screening model for ALS 

 

The zebrafish DsRed fluorescence model was used to determine drug effect 

with the R and S enantiomers of the NRF2 activator molecule Apomorphine. 

The ability to distinguish the difference between these structurally similar 
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compounds is a good measure of the sensitivity of the model in expressing 

the difference in drug effect. 

 

Fig 3.11: Comparison of the ability to reduce neuronal stress with the R and 
S enantiomer’s of the compound Apomorphine. DsRed expression was 
measure after 4days of immersion in 10µM solution of the Apomorphine 
compound. Both drugs managed to induce a reduction in neuronal stress 
with R-Apomorphine (ApoR) causing a reduction of over 35%, whereas S-
Apomorphine (ApoS) caused a reduction of over 20% compared to the 
DMSO control. There is no significant difference between ApoS and ApoR. 

 

The effects of the two enantiomers of Apomorphine showed that the different 

enantiomers had different efficacies in reducing the neuronal stress. ApoS 

reduced the neuronal stress by 20% whereas the R enantiomer led to a 

reduction of over 35% showing that the different structures have different 

abilities to lower the neuronal stress. This was further evidence that this 

assay has the capability to distinguish drug effect even between different 

enantiomers of compounds and that it is possible to utilize this model for 

high-throughput screening. ApoS has been highlighted recently as a potential 

treatment for ALS (Mead et al 2013) whereas ApoR was identified primarily 

as a treatment for Parkinson’s disease as it is a potent dopamine agonist 

unlike ApoS (Kempster et al 1990). This suggests that both of these 

compounds have the ability to cross the BBB and have neuroprotective 

properties.  
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3.10 Discussion 

 

The aim of the project was to identify the different stage and cell populations 

which were more susceptible to Sod1 mediated neuronal stress. By 

investigating the cell types affected, we could begin to generate a timeline of 

the propagation of cellular stress in the Sod1 mutant model. When 

heatshocked, the G93Ros10 zebrafish carrying the hsp70-DsRed lead to 

complete expression of the fluorescence throughout the fish which is what 

would be expected due to the activation of the hsp70 response. When the 

G93Ros10 zebrafish were raised in the absence of any heatshock the hsp70-

DsRed activation was still seen in specific anatomical structures, particularly 

in the spinal cord and hindbrain. This was not seen in the WTos4 zebrafish 

carrying WT Sod1 alongside the hsp70-DsRed gene where very little 

activation of the DsRed was seen and expression was not confined to a 

particular cell type. This strongly supports the hypothesis that the mutant 

Sod1 is leading to the cellular stress. In Sod1 mediated ALS the disease 

pathways mainly occur due to the loss of motor neurons in the spinal cord 

and the mutant zebrafish model strongly supports this as the hsp70 pathway, 

a cellular repair pathway, is highly upregulated in these cells suggesting 

cellular problems are occurring. Mutant Sod1 is causing many of the cellular 

problems such as excitotoxicity, mitochondrial defects, aggregation and 

oxidative stress and these are leading to an upregulation of the hsp70 

pathway in an attempt by the cell to rectify the problems. Hsp70 activation is 

a common cellular response to an insult and in many cases has the ability to 

repair the cell via the unfolded protein response and protein stabilization and 

targeting proteins to the ubiquitination and proteolysis pathways (Mayer 

2013). Based upon findings from the G93Ros10 zebrafish, this activation of 

the hsp70 response is not enough to protect the cell types affected and 

possibly a stronger response is needed to protect the cells. This identified a 

potential therapeutic pathway to investigate by up-regulation of the hsp70 

response to a higher level to maximize the protective pathways within the cell 

so that the cell may protect itself from the toxic insult from mutant Sod1. In 

the spinal cord of 1.5y old G93Ros10 mutant zebrafish, the stress response 

is seen throughout the spinal cord with particularly strong expression in the 
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ChAT positive motor neurons. This is in contrast to the WTos4 zebrafish 

expressing WT Sod1, where very little hsp70-DsRed activation and no co-

localization with the ChAT motor neuron staining is observed. This is further 

evidence that in ALS, a disease leading to the death of motor neurons, the 

mutant Sod1 is leading to the cellular problems and death, the same 

phenotype seen in the zebrafish. In the G93Ros10 the hsp70-DsRed 

response is strongest in the ChAT positive motor neurons which suggest that 

the motor neurons are particularly sensitive to the Sod1 toxicity compared to 

other cell types. The motor neurons may be more susceptible to the cellular 

insults such as oxidative stress than other cell types (Bosco et al 2010). 

Further support for the hypothesis that mutant Sod1 leads to cellular stress 

and hsp70 activation, is given by the G85Ros6 Sod1 mutant transgenic line. 

This line has a lower mutant Sod1 copy number than the G93Ros10 line and 

this leads to reduced Sod1 toxicity. This translates to less DsRed 

fluorescence in the spinal cord as lower levels of mutant Sod1 lead to a 

slower disease course and less DsRed fluorescence.  The lower copy 

number also allows the identification of individual ChAT positive neurons that 

are showing the stress response as well as neurons not showing the stress 

response. This is very useful in investigating the timeline of disease 

progression as the slower disease course allows the imaging of the disease 

progression over time and the identification of the different cell types being 

affected.  

Stress and loss of motor neurons is a key pathological feature in ALS and as 

these input to neuromuscular junctions immunostaining was performed to 

look at the pre and post synapse alongside the hsp70-DsRed fluorescence. 

We found that in the WTos4 WT Sod1 expressing line no stress was seen 

and fully functional NMJ’s were formed. In the G93Ros10 mutant Sod1 line a 

drastic stress response was seen in the majority of NMJ’s still expressing the 

pre- and post- synaptic markers. The NMJ’s still expressing the markers and 

stress response appeared smaller and more punctate in nature suggesting 

defects at the neuron-muscle boundary. NMJ defects have been highlighted 

in ALS and are the major cause of the paralysis at late stage disease due to 

the loss of innervation to the muscle. In a zebrafish mutant FUS model and a 

FUS knockout model the NMJ’s showed reduced and aberrant patterning 
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showing defective NMJ formation (Armstrong & Drapeau 2013). In G93A 

Sod1 mutant mice a timeline of NMJ defects was generated which showed 

clinical weakness at 80 days and death by 130 days. This is in contrast to 

what is happening at the NMJ level where they found 40% denervation at 47 

days and 60% loss by 80 days (Fischer et al 2004). These data, alongside 

our findings, suggest that stress in the motor neurons and the dysfunction 

that result means the NMJ’s become dysfunctional. Mutant Sod1 is causing 

motor neuron problems and stress which propagates to the end plates and 

eventually affects the neuron muscle boundary leading to weakness and 

paralysis after total loss of innervation. Upon further investigation using the 

lower mutant Sod1 expressor line (G85Ros6), it appeared that certain 

neurons may be more susceptible to the stress response than others or that 

some neurons may have some protection from the Sod1 toxicity. This 

selective vulnerability has been seen in mice with G93A Sod1 mutations, 

where fast fatigable motor neurons appeared to be selectively affected first, 

long before symptom onset, whereas the slow motor neurons appeared to be  

resistant to the Sod1 toxicity (Pun et al 2006). Again this leads to a 

hypothesis that ALS is a progressive disease with a propagation of the stress 

from the most vulnerable neurons to Sod1 toxicity to other more resistant 

neurons over the disease duration. It also suggests that this neuronal stress 

is not something that occurs at a late stage and just appears at symptom 

onset,  but that neuronal pathophysiological changes could be happening 

from a young age and only when the stress has reached a critical level in 

certain neuronal subtypes and the dysregulation is large enough a clinical 

phenotype occurs. Based upon the literature the NMJ morphology was 

investigated in the G93Ros10 mutant Sod1 model to investigate the effect of 

mutant Sod1. In the mutant sod1 zebrafish the NMJ’s were found to have a 

lower volume when compared to the WT Sod1 line.  These data provide 

further evidence that mutant Sod1 mediated toxicity is causing problems in 

the spinal cord and at the NMJ which correlates with the clinical pathways 

seen in human ALS patients. This zebrafish Sod1 model highlights the 

disease progression and closely mimics what is seen in both mouse models 

and human patients with ALS. It highlights the potential of this model for 

further modeling the disease pathways and for potential therapeutic 
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development with the utilization of the stress response readout as a measure 

of drug effect.  

To investigate the cell progression fully, the cellular subtypes affected in the 

embryos were examined to identify the cells affected by the hsp70-DsRed 

expression. Identifying the cellular changes at embryo stages would be a 

much more usable way to develop a screen over a number of days rather 

than months, allowing the screening of large numbers of compounds rapidly. 

The initial experiments focused on identifying the cell types affected at the 

embryo stage to find where the stress is localised. Initially ChAT 

immunostaining was performed on the embryos to look at the motor neuron 

co-localization with the stress response. The G93Ros10 zebrafish hsp70-

DsRed response did not co-localise with the ChAT staining which leads to 

the hypothesis that at the early stages of ALS it is not the motor neurons that 

show the Sod1 toxicity but other cell types. The G93Ros10 zebrafish was 

crossed with transgenic lines with motor neuron reporter fluorescent markers 

to identify co-localization with other motor neuron markers or markers of 

neuron progenitors. No co-localization was seen with Hb9 or islet-1 markers 

for motor neurons with the DsRed, which suggests again that at the early 

embryo stages of the Sod1 mutant fish it is not the motor neurons showing 

the stress response, but another cell type. G93Ros10 zebrafish were crossed 

with transgenic lines for oligodendrocytes and astrocytes to identify if these 

supporting cells were expressing the DsRed response. None of these cells 

show the stress response in our model which suggests that it is not these 

supporting cells that are having the stress response in the early stages. This 

is in contrast to the literature which highlights the possible role of astrocytes 

as a toxic mechanism in ALS. Astrocytes are the largest cell population in the 

CNS and in ALS patients, reactive astrogliosis is seen around the neurons 

(Nagy et al 1994, Schiffer & Fiano 2004). This is also seen in mice, where 

astrocyte activation is observed in the grey matter of the spinal cord where 

low activity is normally seen (Barbeito et al 2004). This astrogliosis is seen as 

early as 5 weeks of age in the spinal cord (Wong et al 1995). Data from 

mouse studies also suggest that astrocytes are essential for ALS 

pathogenesis as expression of mutant Sod1 in only astrocytes or neurons did 

not lead to disease (Gong et al 2000, Pramatarova et al 2001). These data, 
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alongside our findings, suggest that ALS is not caused by astrocytes but that 

mutant Sod1 toxicity leads to activation of astrocytes, which in turn 

accelerates the degeneration of the neurons. The G93Ros10 model infers 

that astrocytes are not stressed directly by the Sod1 toxicity as the astrocytes 

are not directly expressing the DsRed fluorescence but are most likely in an 

activated state due to stress in neighbouring cell types. A future experiment 

would be to stain these cells with GFAP markers and examine whether 

astrocytes were in an activated state when surrounding the stressed DsRed 

expressing motor neurons. Another avenue of research is into therapeutics 

that target the astrocytes in ALS. Compounds that protect the motor neurons 

and reduce the astrogliosis have the potential to prevent the neuronal 

degeneration and thus therapeutics targeting astrocytes are an interesting 

avenue of research. 

Based upon the findings from imaging of the stress response, the 

morphology of the stressed cells appeared to be neurons and this was further 

supported by the lack of a stress response in the supporting cells. As the 

stressed neurons were not mature motor neurons, further investigation was 

needed of other cell types to identify the stressed cells. To elucidate the cell 

types affected, staining was done for interneurons which have been 

implicated in ALS. The glycine positive inhibitory interneurons were found to 

be highly expressing the DsRed fluorescence suggesting that interneurons 

are primarily affected long before the motor neurons and that loss of 

interneuron function may lead to the later problems in motor neurons. Normal 

interneurons function in a regulatory role throughout the brain and CNS and 

interneurons are strongly involved in the spinal reflex arc. Evidence from ALS 

models has supported our findings that interneurons may be a particularly 

sensitive neuronal population to Sod1 toxicity. In histological studies, cortical 

and spinal interneuron numbers were found to be drastically reduced, with 

increased loss as the disease progressed (Nihei et al 1993, Stephens et al 

2001). Neurophysiological studies using transcrainal magnetic stimulation 

showed sporadic ALS patients had higher cortical excitability compared to 

healthy controls (Yokota et al 1996). This has also been shown in spinal 

interneurons in the mouse which identified defects in the interneuron control 

of the motor neurons, particularly from the glycine interneurons and Renshaw 
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cells (Chang & Martin 2011, Jiang et al 2009, Mazzocchio & Rossi 2010). 

Interneurons are a cell population with a pivotal role in the CNS and thus 

normal function is essential for survival. The interneuron susceptibility to 

neuronal stress has been identified as a possible early causative factor for 

disease progression in ALS. This highlights the possible therapeutic target of 

providing drugs earlier to patients so that these cell populations are exposed 

to the drug earlier to try and slow disease progression and protect these vital 

cell types. This also provides evidence as to why Riluzole has such a modest 

effect in patients and that possibly the damage is already done by the time 

clinical symptoms present, meaning that Riluzole can only have a small role 

in delaying the disease. A future experiment would be to treat zebrafish 

and/or mice with Riluzole from very early stages to see if the effects over a 

long period might give a better survival. Further work must look into 

elucidating some of the model weaknesses to ensure all the effects seen are 

a real disease progression that can be mapped using the DsRed readout. As 

with all models there are strengths and weaknesses that are limitations to the 

data they produce. One such limitation in zebrafish is the regenerative 

capacity which may mask any neuronal loss making it difficult to model a 

disease of degeneration. Further work into understanding how much 

regenerative capacity the zebrafish CNS possesses at different stages and 

which areas are more affected will help to give further support and strength to 

this model system. Further understanding of the exact cell types involved and 

the brain structures in a zebrafish compared to a human will also help to 

strengthen this model as a useful tool for modelling human disease. 

The DsRed response in the G93Ros10 model produces a readout of 

neuronal stress based upon the DsRed fluorescence. As this stress response 

was a direct response of toxicity cause by the presence of mutant Sod1, a 

hypothesis was formed in which compounds could be screened in the model 

and drug effect quantified as a significant change in DsRed fluorescence. 

Reduction in DsRed fluorescence was highlighted as a positive screen 

readout as this may implicate reduced hsp70 activation suggesting that cells 

are being protected by the compounds with reduced activation of the heat 

shock response. Conversely, an increase in fluorescence may also be a 

positive screen readout as the heat shock response is designed to protect 
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cells and thus a large increase could be neuroprotective. The first compound 

screened in the model as a validation of the screen was Riluzole, the only 

approved treatment for ALS in patients. A dose response experiment was 

performed in G93Ros10 zebrafish embryos from 24h-5dpf. The zebrafish 

were chronically treated with the drug throughout the screen, before overall 

fluorescence was measured. Riluzole showed a positive reduction in 

fluorescence in a dose dependant manner. These data showed that using 

this readout of DsRed fluorescence a positive reduction in fluorescence could 

be seen using a known neuroprotective compound and thus this model had 

the potential for use in therapeutic identification and optimisation with 

Riluzole being employed as a positive control in further screening. The 

positive effect of Riluzole also adds further support that the zebrafish model 

is truly modelling the human disease, as treatments that are effective in 

humans show a positive role in the zebrafish.  

To provide further validation of the potential to test therapeutics using the 

mutant Sod1 model, known neuroprotective compounds were screened in 

the model to show a reduction in hsp70 activation. Apomorphine was 

selected as it is a known neuro-therapeutic that has been historically used in 

the treatment of Parkinson’s disease and is a potent dopamine agonist 

(Millan et al 2002). Apomorphine has also been recently highlighted as an 

activator of the NRF2-ARE pathway with a potential therapeutic role in ALS 

via reduction of oxidative stress as NRF2-ARE activation leads to expression 

of antioxidant enzymes (Mead et al 2013). Epigallocatechin gallate (EGCG) 

was selected as a validation for the screen as it is a known antioxidant 

compound which is found in green tea. EGCG has also been highlighted as a 

potential treatment for multiple cancers as well as a neuroprotective 

compound in SMA,  Alzheimer’s and Parkinson’s diseases due to its ability to 

reduce ion accumulation, implicating a possible role in preventing 

aggregation (Wang et al 2012). EGCG and Apomorphine both showed a 

neuroprotective effect compared to the DMSO control, although this was not 

as strong as the effect of Riluzole. This is supporting evidence for the ability 

of this screen to show drug effect using the zebrafish hsp70-DsRed readout. 

Apomorphine that had recently been shown to have an effect in ALS via the 

NRF2-ARE pathway was shown to be effective in reducing the neuronal 
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stress. Also Epigallocatechin gallate, a known antioxidant compound, which 

is a pathway heavily implicated in ALS pathogenesis, showed effects in the 

model suggesting that compounds mediating different pathways can all be 

detected in the assay. As a further validation for the screen, the S and R 

enantiomers of Apomorphine were screened in the model to explore the 

sensitivity of the model and show if the assay has the ability to pick up the 

difference in effect between enantiomers of the same compound. Both the S 

and R enantiomers of Apomorphine showed reduction in fluorescence with 

the S enantiomer reaching a reduction of 20% whereas the R enantiomer 

had a reduction over 40%. Apomorphine R is a CNS penetrant, non-selective 

dopamine D1/D2 agonist with a more potent effect on D2 receptors (Millan et 

al 2002). It was originally highlighted for use as an emetic and is 

administered as a treatment for Parkinson’s disease during off episodes 

(Quinn 1995). Apomorphine S, unlike the R enantiomer, is not a dopamine 

agonist and does not activate the dopamine receptors at 25 times the 

concentration required by Apomorphine R (Saari & King 1973). Both the S 

and R enantiomers have a known antioxidant activity and both have been 

shown to directly scavenge reactive oxygen species (Gassen et al 1996). 

This suggests that the reduction in DsRed fluorescence that is seen is due to 

the antioxidant capabilities of these compounds as both have an effect. It 

appears that in this assay, the dopaminergic agonist activity may also be 

beneficial to the fish as we see a stronger reduction with the Apomorphine R. 

This highlights the need to further understand and characterise the potential 

role of dopaminergic neurons and how they input and regulate motor 

neurons.  

In conclusion, we have begun the elucidation of the pathway of 

neurodegeneration in the G93Ros10 zebrafish. We have identified the early 

stress response of glycine inhibitory interneurons at the embryonic stages 

which appear to propagate and lead to degeneration of motor neurons at the 

adult stages. The next steps in this project are to further understand the 

cellular processes involved and to generate a complete timeline of the stress 

response from embryonic stages to adulthood. It is also key to understand 

how the stress response appears to transfer from one cellular subtype to 

another. One possible hypothesis is to look at the prion like process of Sod1 



 

 
96 

toxicity and aggregation. Sod1 aggregation is commonly seen in mutants and 

both native and mutant Sod1 easily form aggregates that are resistant to 

proteloytic degradation (Grad et al 2011, Hasegawa et al 2011).There is a 

potential for neuron to neuron propagation where mutant Sod1 is secreted by 

affected motor neurons and taken up by normal motor neurons (Urushitani et 

al 2006). In G93A SOD1 mice immunised with antibodies specific for 

misfolded SOD1 the mice had lower levels of mutant SOD1 in the spinal cord 

and showed a modest extension in lifespan (Urushitani et al 2007). Glia cells 

have also shown an ability to propagate a toxic effect to the neurons. Human 

mutant SOD1 expressing astrocytes were inserted into mice and death of 

wild type motor neurons was seen (Papadeas et al 2011). Also siRNA 

knockdown of SOD1 in astrocytes significantly reduced the stress of adjacent 

motor neurons (Haidet-Phillips et al 2011). Based upon clinical investigation 

of propagation and data from models it is possible to make the conclusion 

that ALS progression has a prion like process. This has big implications on 

the future of therapeutic targets for disease attenuation. The ability to show 

drug effect as a change in the basal DsRed fluorescence has also been 

shown using the G93Ros10 model. This has highlighted the possibility of 

scaling up this assay to screen a drug library. The next chapter is focused on 

the improvement of this low throughput assay to design and validate a high-

throughput screen utilising the G93Ros10 model and to screen a compound 

library for potential hit compounds. 
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Chapter 4: Screen optimization and high throughput 

development 

4.1 Library selection 

 

One of the first considerations when designing a high-throughput screen is to 

ensure the user selecting the correct library for generating the data they 

desire. Selecting the correct library is imperative in ensuring the most 

informative data output is obtained from the screen. There are many 

commercially available libraries which provide different types of information 

such as pathways & enzymes involved as well libraries of known chemical 

structures and subtypes that identify compounds that are efficacious in an 

assay. Choosing the correct library for the purpose of the screen can lead to 

the identification of new disease mechanisms and pathways or the 

identification of potential new therapeutic areas.  To this end the Spectrum 

library (Microsource Inc) was chosen for this assay, as it provides us with the 

ability to identify possible future therapeutics and pathways involved in the 

disease, with the added advantage that the library consists of mainly of small 

drug-like molecules which are predicted to be blood brain barrier (BBB) 

penetrant.   

The Spectrum library is made up of: 

 US Drug Collection: 1040 drugs that have reached clinical trial stages in 

the USA. A small percentage of these compounds are on patent for the 

treatment of various diseases in the US. The majority of the drugs in this 

section are synthetic or semi-synthetic, with pharmacological and 

toxicological profiles available. 

The International Drug Collection: 240 drugs that are marketed in Europe 

and/or Asia but have not been introduced in the US. The majority of the 

drugs in this section are synthetic or semi-synthetic, with pharmacological 

and toxicological profiles available. 

The Natural Products Collection: 800 compounds, which are a unique 

collection of pure natural products and their derivatives. These compounds 

generally have unknown biological activity. 



 

 
98 

As is shown in the components of the Spectrum library there is a diverse 

collection of compounds from multiple sources to improve the ability to 

identify a larger range of compounds showing effect. Another advantage of 

choosing the Spectrum library is that it is optimized for medical research, as 

many of the drugs are FDA approved, having been shown to be safe and 

efficient for human treatment which means any future clinical trials would be 

rapidly accelerated. Also drugs that achieved FDA-approved status have 

literature available on potential pathways and mechanisms involved in animal 

and human models facilitating the understanding of drug effects. The FDA 

approved drugs within the Spectrum library have shown efficacy in different 

diseases and therefore human toxicity, safety and dosage data are already 

available. The Spectrum library is dissolved within DMSO at 5mM 

concentration and stored in deep well plates within the multipod system 

(Roylan Dev) under positive pressure in an environment of high nitrogen and 

low oxygen, to prevent oxidation and hydrolysis of compounds in the plates 

until use. The system uses positive pressure to drive out moisture which 

prevents hydrolysis of the drugs and the drugs are kept in the dark to prevent 

UV damage to any light sensitive compounds within the library.  The Echo 

liquid handling system (Labcyte) was used to dispense compounds from the 

Spectrum library into destination plates containing 20µl of E3 media. The 

Echo 550 liquid handling system is a pharmaceutical grade, state of the art, 

tipless liquid handling system that transfer drugs using acoustic energy to 

dispense droplets of drug in 2.5nl volumes. Once the compounds have been 

transferred, the plates are backfilled with 130µl of E3 so a final volume of 

150µl was attained. Zebrafish are then added to the plates in 50µl to obtain a 

final plate volume of 200µl per well and a final drug concentration of 10µM. 

400nl of 5mM library compound in 200µl of E3 leads to a final DMSO 

concentration in the well of 0.2% for the Spectrum library compounds and 

controls. This concentration of DMSO is well within the safe limits of 

tolerance for zebrafish with studies showing an LD0 (maximal concentration 

with no effect on embryo survival) of 1.25% DMSO in embryos dosed from 

the 4 cell stage (1hpf) to 4hpf (Lahnsteiner 2008). 
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4.2 High-throughput screen readout 

 

Optimization of the readout was performed to maximize sensitivity, so that 

drug effect was detectable even if the effect size was relatively small, to gain 

the maximum data from each experiment and which could potentially allow 

the recovery of the fish to raise to adulthood. In the original screen, embryos 

were grouped prior to sonication and fluorescence analysis. This was a 

relatively crude method which required large numbers of embryos for each 

drug and excluded the possibility of rescuing the fish after the screen. In 

order to optimize the methods, we tested three potential screen readouts for 

use on individual embryos. These were:  

 

 The Omega plate reader system which had the limitation of culling the 

fish as sonication is required. 

 The Pherastar plate reader system which can carry out 30x30 well 

scanning for fluorescence, thus keeping the fish alive.  

 The InCell system which captures fluorescent images of the fish for 

use with analysis software to segment the key structures and look at 

fluorescence in the spinal cord and hindbrain.  

 

Pherastar 

 

The Pherastar system (Pherastar Plus, BMG Labtech) is a high-throughput 

microplate reader with the ability to measure fluorescent intensity, 

polarization, and FRET. The aim of selecting the Pherastar was to measure 

the fluorescence of the zebrafish using a 30x30 well scanning mode and be 

able to quantify the fluorescence along the spinal cord. This had the 

advantage of being able to keep the zebrafish alive after the assay for 

raising, further treatments and behavioral analysis. The Pherastar is a far 

more sensitive readout than the sonication assay, but certain limitations 

reduced its applicability in a high-throughput screen. Firstly the Pherastar 

system uses a 30x30 well scanning system which is ideal for square wells 

such as 384 well plates. In a circular 96 well plate the Pherastar misses the 
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edges of wells so any fish which does not lie central in the well may be 

missed or risks being inaccurately calculated. Another limitation when using 

the Pherastar system is the speed of the assays. To perform a 30x30 points 

per well scan in 384 well plates takes a relatively long period of time, which 

severely limited the numbers of plates which could be analyzed per day, 

slowing down the screening process and limiting the throughput. Another 

problem when using the Pherastar system for this analysis is common across 

all platforms of readout when using live animals. If the animal moves during 

the assay, the data for that well is completely lost. We found that even under 

anesthesia with Tricaine, any small involuntary movement in the zebrafish or 

incorrect orientation completely invalidated the data from that well. Fig 4.5 

shows that it is possible to see the difference between Riluzole treated and 

DMSO treated G93Ros10 zebrafish, but even with 30x30 point scanning the 

clarity is not high enough to distinguish changes in distinct anatomical 

features. Based upon these four key areas of concern, we opted not to use 

the Pherastar system for our analysis in the primary screen as there was a 

risk of losing wells to mis-placed or moving fish, meaning more repeats and 

the time constraints on using the system, thus reducing the throughput of the 

assay.  

 

Fig 4.1: Pherastar readout of G93Ros10xAb zebrafish dosed with Riluzole at 
10µM (A +B), and DMSO (C) scanned in a 30x30 point well scan for DsRed 
fluorescence.  
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InCell analyzer 2000 

 

 The InCell analyzer 2000 is an automated, modular lamp based microscope 

that can rapidly image plates in multiple wavelengths. By taking fluorescent 

images of the zebrafish it was postulated that quantification of the reduction 

in fluorescence would be detectable by analyzing the images. GE healthcare 

provides a plug-in which links the InCell microscope system to a computer 

program which automatically segregates the zebrafish image into anatomical 

structures such as spinal cord, liver and brain. It was hypothesized that the 

use of this would allow the examination of fluorescence in the zebrafish 

spinal cord and brain in live embryos whilst keeping the embryos alive for 

further experiments or tissue collection. The InCell system is already utilized 

at the end stage of the assay to ensure the embryos are morphologically well 

(Brightfield image) and are expressing the DsRed protein (DsRed image) and 

it was hypothesized that the system could be used to measure changes in 

fluorescence within the spinal cord and hindbrain of the zebrafish. 

Unfortunately this plug in was designed for zebrafish at day 4 and our screen 

finishes at day 6 so the results were variable and segregation was not always 

correct when confirmed by eye (Fig 4.2). This meant at 6dpf the software was 

not accurately segmenting the fish and therefore was not suitable for use in 

high-throughput analysis. Another major problem encountered when using 

the InCell as the screen readout was that the zebrafish is not always 

positioned in the correct orientation for imaging of the spinal cord and if the 

fish moves during the imaging or rests at an angle, then imaging becomes 

impossible and the data from the well is lost (Fig 4.3). If imaging is not 

possible then the analysis cannot be performed and the data from the well 

would be lost leading to missed data points and requirement for repetition.  
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Fig 4.2: Image showing the body segregation software plugin supplied by GE 
Healthcare for use with the INCELL imaging system. This image is taken 
using the 2X lens on a MS222 treated 4dpf AB zebrafish. Image taken from 
the promotional material supplied with the InCell 2000 system. 

 

 

 

 

 

 

 

Fig 4.3: Images of G93Ros10 zebrafish taken at 6dpf on the Incell 
microscope using a 2x lens measuring for DsRed fluorescence. Image A 
shows a zebrafish in the correct orientation to allow quantification of 
fluorescence in the spinal cord and hindbrain. Image B is a zebrafish that is 
out of focus due to movement or proximity to the edge of the well. 

 

 

FLUOstar Omega 

 

The FLUOstar Omega (BMG Labtech) microplate reader is a high-throughput 

multi-mode plate reader with the capability to measure absorbance and 

fluorescence intensity. This system does not have the sensitivity of the 

Pherastar system, so keeping the zebrafish alive for the assay was not 

possible. This required the use of the original screen format of sonication and 

centrifugation before measuring the supernatant on the FLUOstar Omega 

plate reader. In the original screen, three embryos per dose were sonicated 

in 100µl and overall fluorescence measured. This was scaled this down to 

one embryo per well in 50µL to reduce the number of fish needed for 

A B 
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screening the library per drug. This means throughput is increased and the 

number of animals used for experiments is lowered which links in with the 

3R’s principles. 96 well V-bottom plates were evaluated for the sonication 

step as this allowed the easy sonication and formation a pellet when the 

centrifugation step was performed.  We found that this method was perfectly 

suited to the screening, as it was possible to replicate the findings from the 

original screen. The downside to this screen was the inability to keep the 

zebrafish alive after the screen due to the need to sonicate. This updated 

screen showed that Riluzole caused a reduction in fluorescence of 56.4% 

compared to the control. This demonstrated that a 96 well plate format using 

the automated liquid handling to load drugs onto the plates can accurately 

detect drug effect in both our negative and positive controls and therefore 

have the ability to screen for hit compounds using this assay. 

 

 

Fig 4.4: Graph of G93Ros10 zebrafish dosed in 96 well plates with DMSO 
control and Riluzole at 10µM. The error bars show the SD. N= 29 fish per 
group. 
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4.3 Plate selection 

 

Selection of the optimal screening plates was a key part of scaling up the 

high-throughput assay, as ideally the plate should contain the maximum 

number of drugs possible to screen on one plate to reduce plate to plate 

variation together with large numbers of controls per plate to provide assay 

confidence. This would give strong datasets for each plate and reduce 

variability due to the large numbers of controls. In cell based assays 1564 

and 384 well plates are regularly used for screening. The wells of 1564 well 

plates were too small to fit the embryos so were not taken forward for testing. 

Another advantage of using large numbers of wells per plate is that this 

reduces the volumes of drugs needed per well for the screen which reduces 

costs. Another key consideration was to ensure the plates were compatible 

with the liquid handling and automated imaging systems available.  

 

 

The key criteria for plates were: 

 Large numbers of wells – allows large numbers of controls per plate 

 Low volumes required per well – Reduced library usage  

 Compatibility – Allows improved throughput via usage of automated 

systems 

 

384 well plates 

 

Three hundred and eighty four well plates were investigated due to the 

attractive properties of these plates. The low volumes required per well mean 

that very low quantities of the libraries are used for each assay and large 

numbers of compounds can be screened on each plate, improving assay 

throughput and the cost effectiveness. Both of these properties make 384 

well plates very attractive when designing a high-throughput compound 

screening using zebrafish. A literature survey of past screens showed that 

zebrafish were viable in 384 well plates although these did not cover the 
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timescale (4 days) used in our protocol. (Tran et al 2007). A study on the 

viability of embryos in 384 well plates was undertaken using microscopy to 

identify death and malformation in the embryos. The fish were able to survive 

normally in 100µl volume of E3 media from 48h-6dpf and appeared normal in 

morphology under the microscope.  The next step was to validate the 384 

well plate assay using compounds which were identified in the preliminary 

assays to show drug effects in the zebrafish. 

 

 

Fig 4.5: 384 well plate average fluorescence of G93Ros10 mutant zebrafish 
after treatment with various compounds at 10µM (except Tricaine which was 
dosed at 610µM). Error bars show the SD. n=12 fish per group. 

 

These data show that in 384 well plates a reduction in fluorescence is 

observed in Riluzole and Tricaine treated zebrafish compared to control 

(DMSO only) treated zebrafish. The reduction in DsRed fluorescence by 

these compounds correlates with what was seen in the original validation 

assay. A reduction of around 40% was seen in Riluzole and Tricaine dosing 

using the 384 well formats. The problem is that the reduction is not as large 

as was seen in the original assay when dosing in Petri dishes. There are also 

much larger error bars, suggesting that conditions in the wells have 

increased variability compared to conditions where larger volumes are used 
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such as in petri dishes. It was therefore decided to omit 384 well plates as a 

viable option for high-throughput screening. Although they have the benefit of 

large numbers of drugs per plate and the low volumes of drugs required, the 

384 well plates have the limitations of high variability and decreased 

sensitivity compared to the original method. This means that detecting hit 

compounds would be more difficult as drug effect is lowered. Using these 

plates to measure changes in fluorescence would be difficult to quantify and 

detect due to the variability also seen, leading to reduced sensitivity and 

specificity and bringing the validity of any hits identified in the screen down. 

This is shown in fig 4.6 which compares the fluorescence of the fish kept in 

384 well plates with those in petri dishes meaning any drug effect would be 

smaller and thus harder to detect.  

 

Fig 4.6: Average fluorescence of undosed G93Ros10 zebrafish kept in 
different conditions from 48phf to 6dpf. N = 12 per group and error bars are 
SD. 

One hypothesis for seeing a reduced change in fluorescence and increased 

variability between fish is that the wells in a 384 well plate are too small for 

the fish. In our screen over 4 days in such a small area and volume the fish 

may have a buildup of toxic conditions and waste, along with reduced oxygen 

in the well due to a smaller surface to volume area. This may lead to 

increased toxic environment in the well, such as pH changes, leading to the 
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induction of stress in the fish which could potentially activate the heat shock 

response. If this is the case then any drug effect could be masked by hsp70 

activation leading to an activation of fluorescence. The wells of the 384 well 

plates are square which also leads to problems with blurring in the corner of 

wells. 

 

Twenty four well plates 

 

Twenty four well plates were identified as a possibility to screen zebrafish 

due to the large well size and the ability to dose multiple fish per well giving 

multiple readouts per drug. The advantage of using larger volume wells is 

lower concentrations of toxin build up over the screen and the higher n-

numbers possible in each well would give less variable results. The limitation 

of using 24 well plates was the large volume of drugs needed for each well 

(µl quantities) which uses larger quantities of the libraries, thus increasing 

costs and decreasing the life span of the drugs in the library. 24 well plates 

are also not suitable for use on the robotic handling systems or the echo 550 

liquid handling system, thus increasing the potential for human error. When 

used in preliminary screening, 24 well plates showed drug effect and were 

suitable for screening but due to the high cost implications, 24 well plates 

were not used for the screen as it did not fit into the high-throughput 

screening profile due to their limited compatibility with the hardware available. 

In the end we chose not to use 24 well plates for screening as they do not fit 

the properties required for a high-throughput drug screen.  

 

96 well plates 

 

As a compromise between the 24 and the 384 well plates, the use of a 96 

well plate format was investigated as this had the potential to provide the 

consistent and accurate data while being suitable for maintaining a fairly 

high-throughput approach to screening. The original readout of sonication 

was maintained as a standard in this experiment to test the applicability of 96 
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well plates for screening zebrafish. Using 96 well plates for zebrafish 

compound screens is standard practice in the zebrafish community so that 

survival in the wells and drug delivery would not be an issue. 96 well plates 

have the advantage of having enough wells to test many compounds and 

space to allow a large number of control wells to add statistical validity to the 

data from every plate. They also have the advantage of relatively low 

volumes required in each well with 200µl being small enough to reduce 

unnecessary use of drugs from the library, whilst being high enough for the 

embryos to develop normally from 48hpf to 6dpf. Another key aspect of 96 

well plates is that they are compatible with the robotics and liquid handling 

systems available in house which is a major advantage over 24 well plates 

due to the ability to rapidly dose, screen and analyze the data accurately 

when compared to a manual screen thus increasing the screen throughput.  

 

Fig 4.7: Screening of G93Ros10 Sod1 mutant zebrafish in a 96 well plate. 
The zebrafish were dosed with DMSO and Riluzole (10µM) from 48hpf to 
6dpf. N=25 embryos per group. 

 

These data show that 96 well plates are suited for high-throughput compound 

screening. The screen is able to detect a large difference between the 

positive and negative control as the Riluzole fluorescence is 44.66% of the 

total control fluorescence. The SD shows us that the variability between fish 

is low and smaller than the other plate types. These data show that the 96 
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well plates are best suited to high-throughput screening when using 

zebrafish. Based upon the findings from the 3 different plate types, the 96 

well plates were chosen for the screen as they offered the optimal balance 

between cost, readout and the number of embryos to provide the best 

sensitivity and specificity possible for our assay, while delivering the lowest 

variability.  

When using the 96 well plates a drying effect on the edge wells was 

observed which occasionally led to embryo death. This is a common effect 

seen in fan assisted incubators due to a constant circulation of air leading to 

an evaporation effect particularly to the edge wells. To reduce the drying 

effect size we introduced a water tray to the incubator and used lids on each 

plate. To further reduce the risk of losing any of the screening data, a firewall 

was introduced on each plate in the top and bottom rows (A & H). The rows 

were filled with E3 but no test compound or fish to act as a barrier. The edge 

columns (1 and 12) were used for positive and negative controls. The 

positive and negative controls were placed at both ends with one inside the 

plate and one outside the plate so any adverse effects from drying would be 

detectable. To ensure any edge effect on the wells was not having a strong 

effect on baseline fluorescence, multiple plates were analyzed for average 

fluorescence. 

Plate Edge DMSO wells 

average 

Inside DMSO wells 

average 

% difference 

1 45077 49208 9% 

2 79686 76947 3% 

3 116091 100494 13% 

4 38964 39751 -2% 

5 9196 9029 2% 

Fig 4.8: Table of 5 replicates showing the average fluorescence of DMSO 
treated G93Ros10xAB zebrafish based on the edge wells vs the inside wells. 
N=6 fish per location for each replicate. 

 

As fig 4.8 shows the edge drying has a minimal effect on the average 

fluorescence of the wells with only small manageable differences between 
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outside and inside. Any effect this may have on the screen is reduced further 

due to large numbers of controls on each plate and not having any test 

compounds situated within edge wells, to eliminate the risk of missing 

compounds with a weak effect. 

 Throughout the screening no adverse effect from drying was observed at the 

edges when the firewall was used. This plate layout incorporated 12 positive 

controls, 12 negative controls and 48 test compounds on each plate. This 

has the advantage of testing a relatively large number of drugs per plate, with 

the strength added from having extensive data from large numbers of 

controls for each plate.  

 1 2 3 4 5 6 7 8 9 10 11 12 

A             

B Riluzole Ctrl 1 2 3 4 5 6 7 8 Riluzole Ctrl 

C Riluzole Ctrl 9 10 11 12 13 14 15 16 Riluzole Ctrl 

D Riluzole Ctrl 17 18 19 20 21 22 23 24 Riluzole Ctrl 

E Riluzole Ctrl 25 26 27 28 29 30 31 32 Riluzole Ctrl 

F Riluzole Ctrl 33 34 35 36 37 38 39 40 Riluzole Ctrl 

G Riluzole Ctrl 41 42 43 44 45 46 47 48 Riluzole Ctrl 

H             

Fig: 4.9: Spectrum zebrafish screen plate layout: A firewall is maintained in 
rows A and H. Riluzole (+ve control) is maintained in columns 1 and 11 and 
DMSO (-ve control) is maintained in columns 2 and 12. The numbers from 1-
48 show where the test compounds sit on the plate.  

 

4.4 Final screen layout 

 

From the data collected from different plate types, layouts, screen lengths 

and assays analysed the final screen was brought together. Below is a flow 

chart of the screening process. 
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Fig 4.10: Flow chart of the final high-throughput screening protocol. The 
screen has optimised and utilised many of the high-throughput systems 
available.  

 

The screen was performed on dechorinated 48hpf G93Ros10 zebrafish that 

were loaded into 96 well plates before being genotyped on the InCell system 

based upon DsRed transgene expression. 96 well plates were dosed using a 

combination of the Platemate system (E3 backfilling) and the Echo 550 

system (compound loading) upto a volume of 150µl. the transgenic 

G93Ros10 zebrafish in 50µl were added to the plate to make the final volume 

of the well 200µl with a final concentration of 10µM. The zebrafish were then 

chronically dosed in the well at 28°C until 6dpf at which stage death and 

genotyping was confirmed again using the InCell system before loading into 

V bottom plates in 50µl. A single dose was used as this is the only viable way 

for high-throughput screening to maintain the throughput and to reduce the 

variability involved with multiple dosing. Riluzole was also shown to be stable 

and efficacious in the drinking water of a mouse for 1 week so it was 
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assumed the drug would be stable in the zebrafish media throughout the 4 

day assay (Waibel et al 2004).  The embryos were then sonicated before 

centrifugation to form a pellet and supernatant. 20µl of the supernatant was 

then loaded onto a 384 well plate and a raw value for the DsRed 

fluorescence measured on the OMEGAstar fluorescent plate reader system. 

4.5 Assay statistics 

 

Selecting the optimal statistical analysis for the assay is a key part of assay 

design as inappropriate statistical methods and poorly implemented statistics 

can lead to missed hit compounds and false positives. Many cell based high-

throughput screening assays utilise a Z-score as the statistical tool for hit 

selection. Z-score measures the statistical effect for each compound and 

judges if each compound in the assay has a large enough effect to warrant 

further investigation. Generally it is utilised alongside the 3-sigma rule which 

selects hits based upon them being within 3 standard deviations of the mean 

(Zhang 2011). The problem of the Z-score method comes when the data are 

not uniformly distributed such as in a high-throughput screen utilising an in-

vivo model where variability can be high from plate to plate. Due to this we 

implemented a statistical test called Strictly Standardised Median Difference 

(SSMD*). SSMD is applicable for a screen with replicates as it accounts for 

the inter plate variability thus is far more applicable for a screen using 

zebrafish with replicates. For more information on SSMD please refer to the 

materials and methods (Chapter 2 Section 2.16). 

 

4.6 Screening quality control and results 

 

With the high-throughput assay developed, 2000 compounds were screened 

from the Spectrum library to identify key modulators of Sod1 mediated 

neuronal stress. Experiments were performed in duplicate to identify double 

activators and inhibitors and these were taken forward for secondary 

screening as hits. To ensure that the screening protocol was being 
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implemented correctly, statistical analysis was used to ensure that specificity 

and sensitivity were maintained. Data sets were analysed at multiple SSMD 

threshold values to ensure the statistics were as strong as possible and 

maintain the best balance of the highest specificity and sensitivity so as to 

not miss hits and reduce false positives. To do this the plates were analysed 

based upon an SSMD score of <-0.5 and <-1.0. False positive and false 

negative numbers were recorded for each plate and analysed to allow the 

calculation of the sensitivity and specificity of each plate for quality control. 

False positives were calculated as the number of negative controls that show 

up as a hit based upon the SSMD threshold. False negatives were calculated 

as the number of positive controls that do not reach the hit SSMD threshold. 

Based upon the false positive and false negative rates, it is possible to 

calculate the sensitivity and specificity. Sensitivity is a measure of how many 

hits are detected and specificity is a measure of how accurate the assay is. 

Sensitivity is measured as the percentage of true positives compared to false 

negatives. The specificity is measured as the percentage of true negatives 

compared to the false positive.



 
 

 

Replicate 1 Quality control (SSMD cut off of <-0.5) 

 

Plate 
True 
positives 

False 
negative 

True 
negatives 

False 
positive Sensitivity Specificity 

1 12 0 10 2 100 83.33333333 

2 11 1 12 0 91.66666667 100 

3 9 2 12 0 81.81818182 100 

4 12 0 11 0 100 100 

5 6 0 10 1 100 90.90909091 

6 4 1 10 1 80 90.90909091 

7 5 0 7 4 100 63.63636364 

8 10 0 12 0 100 100 

9 8 0 11 1 100 91.66666667 

10 6 0 9 0 100 100 

11 6 0 8 3 100 72.72727273 

12 10 0 8 3 100 72.72727273 

13 10 2 10 2 83.33333333 83.33333333 

14 11 0 9 3 100 75 

15 11 0 8 0 100 100 

16 12 0 11 0 100 100 

17 9 2 6 5 81.81818182 54.54545455 

18 5 0 8 2 100 80 

19 6 0 8 3 100 72.72727273 

20 5 1 9 1 83.33333333 90 

21 12 0 9 3 100 75 

22 12 0 12 0 100 100 



 

 

23 12 0 10 1 100 90.90909091 

24 12 0 9 3 100 75 

25 12 0 11 0 100 100 

26 11 0 10 0 100 100 

27 9 2 10 2 81.81818182 83.33333333 

28 8 4 9 2 66.66666667 81.81818182 

29 12 0 11 1 100 91.66666667 

30 8 4 10 1 66.66666667 90.90909091 

31 11 0 9 2 100 81.81818182 

32 12 0 9 3 100 75 

33 12 0 9 1 100 90 

34 12 0 10 1 100 90.90909091 

35 12 0 10 2 100 83.33333333 

36 11 0 10 2 100 83.33333333 

37 11 0 6 5 100 54.54545455 

38 11 0 6 5 100 54.54545455 

39 9 3 11 1 75 91.66666667 

40 12 0 11 1 100 91.66666667 

Average 9.725 0.55 9.525 1.675 94.8030303 85.17424242 

SD 2.541829545 1.108244165 1.601081365 1.4743534 9.849662233 13.20546647 

SEM 0.417874203 0.182194218 0.263216155 0.242382206 1.619274496 2.170965314 

Table 4.1: Table showing the quality control data for all 40 plates in the first replicate based upon an SSMD score of <-0.5 being a hit. 
The table shows the true positive and negative rates as well as the incidence rate of false positive and negatives to give a sensitivity and 
specificity percentage.
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Table 4.1 shows that with a hit threshold of <-0.5 on the SSMD scale, false 

negatives very rarely show up in the screen, ensuring a sensitivity of 

94.8%. This is an excellent score in an in vivo primary screen and 

suggests that the assay is missing very few hit compounds. The use of 

this low threshold allows for the possibility of only missing a small 

percentage of hit compounds showing up as false negatives. This is due to 

the variability of using an in vivo model and the weak effect of certain 

compounds being under the detection threshold. The specificity of the 

screen at <-0.5 was 85.2% for the first replicate. Although this manifests 

as a problem due to the risk of false positives within the assay, upon 

replication of these assays false positive and negatives will be detected 

and removed from the hit list. To attempt to increase our specificity we 

analysed the same data set based upon the SSMD hit threshold being <-1



 
 

 

Replicate 1 Quality control (SSMD cut off of <-1.0) 

 

Plate 
True 
positives 

False 
negative 

True 
negatives 

False 
positive Sensitivity Specificity 

1 9 3 12 0 75 100 

2 5 7 12 0 41.6666667 100 

3 6 5 12 0 54.5454545 100 

4 12 0 11 0 100 100 

5 6 0 11 0 100 100 

6 4 1 11 0 80 100 

7 3 2 8 3 60 72.7272727 

8 10 0 12 0 100 100 

9 8 0 11 1 100 91.6666667 

10 6 0 9 0 100 100 

11 6 0 11 0 100 100 

12 8 2 11 0 80 100 

13 5 7 11 1 41.6666667 91.6666667 

14 10 1 12 0 90.9090909 100 

15 110 0 8 0 100 100 

16 12 0 11 1 100 91.6666667 

17 0 11 11 0 0 100 

18 5 0 10 0 100 100 

19 5 1 10 0 83.3333333 100 

20 5 1 10 1 83.3333333 90.9090909 

21 3 9 12 0 25 100 

22 10 2 12 0 83.3333333 100 



 

 

23 12 0 11 0 100 100 

24 12 0 12 0 100 100 

25 12 0 11 0 100 100 

26 10 1 11 0 90.9090909 100 

27 8 3 12 0 72.7272727 100 

28 6 6 9 2 50 81.8181818 

29 12 0 11 1 100 91.6666667 

30 6 6 10 1 50 90.9090909 

31 0 11 11 0 0 100 

32 12 0 11 1 100 91.6666667 

33 12 0 10 0 100 100 

34 12 0 11 0 100 100 

35 12 0 10 2 100 83.3333333 

36 11 0 12 0 100 100 

37 11 0 10 1 100 90.9090909 

38 6 5 12 0 54.5454545 100 

39 7 5 11 1 58.3333333 91.6666667 

40 12 0 12 0 100 100 

Average 10.525 2.225 10.875 0.4 79.3825758 96.5151515 

SD 16.72199 3.244012 1.064708 0.715171997 28.3897764 6.32150918 

SEM 2.749078 0.533312 0.175037 0.117573552 4.66725049 1.03924971 

 

Table 4.2: Table showing the quality control data for all 40 plates in the first replicate based upon an SSMD score of <-1.0 being a hit. 
The table shows the true positive and negative rates as well as the incidence rate of false positive and negatives to give a sensitivity and 
specificity percentage. 
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Table 4.2 shows that if the hit ratio is shifted to a lower SSMD threshold of 

<-1.0 then this causes a change in the measured sensitivity and specificity 

of the assay. At <-1.0 a larger number of false negatives were detected, 

which leads to a reduced sensitivity at 79.4%. This may miss some of the 

weaker hits as they are not eliciting a strong enough effect to be detected 

by this assay. The advantage of analysing the data with the threshold at <-

1.0 is that the false positive rate is low in every plate. This means that the 

specificity of the assay is maintained in the first replicate at 96.5%, so very 

few false hits are detected.



 
 

 

Replicate 2 Quality control (SSMD cut off of <-0.5) 

 

Plate 
True 
positives 

False 
negative 

True 
negatives 

False 
positive Sensitivity Specificity 

1 5 0 7 1 100 87.5 

2 10 0 11 1 100 91.66666667 

3 12 0 12 0 100 100 

4 8 0 11 1 100 91.66666667 

5 9 0 7 0 100 100 

6 11 1 12 0 91.66666667 100 

7 11 0 12 0 100 100 

8 6 6 11 1 50 91.66666667 

9 12 0 11 1 100 91.66666667 

10 12 0 12 0 100 100 

11 12 0 11 0 100 100 

12 11 0 11 1 100 91.66666667 

13 12 0 11 0 100 100 

14 12 0 10 0 100 100 

15 12 0 12 0 100 100 

16 12 0 9 2 100 81.81818182 

17 11 0 12 0 100 100 

18 12 0 8 1 100 88.88888889 

19 11 1 6 3 91.66666667 66.66666667 

20 12 0 12 0 100 100 

21 11 1 12 0 91.66666667 100 

22 11 0 12 0 100 100 



 

 

 

 

Table 4.3: Table showing the quality control data for all 40 plates in the second replicate based upon an SSMD score of <-0.5 being a hit. 
The table shows the true positive and negative rates as well as the incidence rate of false positive and negatives to give a sensitivity and 
specificity percentage.

23 10 2 12 0 83.33333333 100 

24 12 0 10 1 100 90.90909091 

25 12 0 12 0 100 100 

26 10 2 12 0 83.33333333 100 

27 12 0 12 0 100 100 

28 12 0 10 1 100 90.90909091 

29 11 0 12 0 100 100 

30 10 1 10 2 90.90909091 83.33333333 

31 12 0 11 1 100 91.66666667 

32 10 1 8 3 90.90909091 72.72727273 

33 12 0 10 2 100 83.33333333 

34 12 0 9 3 100 75 

35 12 0 10 1 100 90.90909091 

36 12 0 9 3 100 75 

37 12 0 11 0 100 100 

38 11 0 11 1 100 91.66666667 

39 12 0 11 0 100 100 

40 11 1 12 0 91.66666667 100 

Average 11 0.4 10.6 0.75 96.62878788 93.2165404 

SD 1.601281538 1.057330941 1.614040955 0.980580676 8.834692314 9.007383942 

SEM 0.263249063 0.173824136 0.265346699 0.16120647 1.45241447 1.480804798 
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Table 4.3 shows the quality control data for each plate from the second 

replicate of the screen based upon the SSMD hit threshold being <-0.5. At this 

threshold it was found that the sensitivity and specificity were maintained at a 

high level for both assays. The false negative rate for each plate on average 

was 0.4 fish on average per plate meaning that very few hits were missed and 

the sensitivity was maintained at 96.6%. The false positive rate on average over 

the 40 plates was 0.75 fish per plate which means that very few negatives were 

showing as positives which is reflected in the specificity being maintained at 

93.2%.



 
 

 

Replicate 2 Quality control (SSMD cut off of <-1.0) 

 

Plate 
True 
positives 

False 
negative 

True 
negatives 

False 
positive Sensitivity Specificity 

1 5 0 8 0 100 100 

2 7 3 12 0 70 100 

3 12 0 12 0 100 100 

4 8 0 12 0 100 100 

5 9 0 7 0 100 100 

6 11 1 12 0 91.6666667 100 

7 11 0 12 0 100 100 

8 6 6 12 0 50 100 

9 12 0 12 0 100 100 

10 12 0 12 0 100 100 

11 12 0 11 0 100 100 

12 11 0 12 0 100 100 

13 12 0 11 0 100 100 

14 10 2 10 0 83.3333333 100 

15 12 0 12 0 100 100 

16 12 0 10 1 100 90.9090909 

17 11 0 12 0 100 100 

18 4 8 8 1 33.3333333 88.8888889 

19 11 1 8 1 91.6666667 88.8888889 

20 0 12 12 0 0 100 

21 11 1 12 0 91.6666667 100 

22 0 11 12 0 0 100 



 

 

23 0 12 12 0 0 100 

24 12 0 11 0 100 100 

25 6 6 12 0 50 100 

26 2 10 12 0 16.6666667 100 

27 11 1 12 0 91.6666667 100 

28 12 0 11 0 100 100 

29 9 2 12 0 81.8181818 100 

30 8 3 12 0 72.7272727 100 

31 12 0 12 0 100 100 

32 5 6 11 0 45.4545455 100 

33 12 0 11 1 100 91.6666667 

34 12 0 12 0 100 100 

35 12 0 11 0 100 100 

36 12 0 9 3 100 75 

37 12 0 11 0 100 100 

38 11 0 12 0 100 100 

39 12 0 11 0 100 100 

40 9 3 12 0 75 100 

Average 9.2 2.2 11.175 0.175 81.125 98.3838384 

SD 3.79875 3.719591 1.367642 0.555915313 31.7183031 4.911974 

SEM 0.624511 0.611497 0.224839 0.091391915 5.21445692 0.80752355 

 

Table 4.4: Table showing the quality control data for all 40 plates in the second replicate based upon an SSMD score of <-1.0 being a hit. 
The table shows the true positive and negative rates as well as the incidence rate of false positive and negatives to give a sensitivity and 
specificity percentage.  
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Table 4.4 shows the quality control data from all 40 plates from the second 

replicate based upon the SSMD being <-1.0. It shows that the false 

negative rate per plate was 2.2 fish which led to an average sensitivity of 

81.1%, which suggests the weaker hits would be missed using this 

threshold. The false positive rate of only 0.175 fish per plate leads to an 

average specificity of 98.4% suggesting that very few negatives falsely get 

through the assay. 

From this it can be confirmed that the specificity and the sensitivity was 

highly maintained at both <-0.5 and <-1.0 SSMD. By setting the hit 

threshold at <-0.5 it introduces a reduction in the specificity due to the low 

threshold and therefore the risk that some false positives may occur with 

percentages of 85% and 93% in the replicates. The advantage of having 

the screen at <-0.5 is the improved sensitivity which at over 94% and 96% 

in the replicates ensures that very few hits are missed and the hits from 

the screen analysed at <-0.5 are true hits. When analysed with a threshold 

of <-1.0, an increased specificity due to the high stringency associated 

with the higher threshold was observed. This is advantageous to the 

screen as false hits are not occurring with the specificity maintained at 

98% and 95% across the replicates. The downside to having the hit 

threshold at <-1.0 is the reduction in sensitivity to 79% and 81% across the 

replicates. This means that weaker hits are being missed, which reduces 

the accuracy of the screen.  

 

When the duplicates of the screen to detect the number of hits were 

calculated we looked at multiple SSMD scores to ensure that all hit 

compounds were being investigated. When the SSMD threshold was set 

at -0.5 for the β Value, 1.9% of compounds showed as a hit both times. 

When the SSMD threshold was set at -1.0 only 0.35% showed as double 

hits, but this was due to the higher stringency requited to be classed as a 

hits. Both of these show the specificity of the assay and demonstrate that 
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SSMD as a statistical tool has sorted the compounds into a manageable 

number to be taken forward for secondary screening. 

SSMD 

Threshold 

Number of 

replicated   hits 

Number 

screened 

Percentage hits 

Below -0.5 38 2000 1.9% 

Below -1.0 7 2000 0.35% 

Table 4.5: Collated assay statistics for compounds showing fluorescence 
inhibition in duplicate. 
 

Analysis was also performed on strong activators of fluorescence which 

had an SSMD threshold of over 1.0. 20 compounds were found to induce 

a large increase in DsRed fluorescence after a 4 day exposure. The 

compounds that caused death in both repeats of the screen were also 

investigated to determine how much of the library had a toxic effect, at 

10µM. 142 compounds from the spectrum library were identified as toxic in 

the replicates and this equates to 7.1% of the library.  

SSMD 

Threshold 

Number of 

replicated hits 

Number 

Screened 

Percentage hits 

Above 1.0 20 2000 1% 

Caused  death 142 2000 7.1% 

Table 4.6: Collated assay statistics for compounds showing fluorescence 
activation and compounds causing embryo death. 
 

4.7 Discussion 

 

Optimisation of preliminary assays to high-throughput assays is a well-

documented and highly debated area of research. The primary aims of 

optimisation and scaling up of an assay is to achieve the highest possible 

return of data in a short time frame, while maintaining low costs and a high 

quality of data. High-throughput screening is a form of screening that 

utilises robotics and liquid handling systems to greatly improve the speed 
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and accuracy of screening via automation and the reduction of human 

intervention. Zebrafish compound screening has been performed for many 

years, but speed of assays and readout has always been a major 

bottleneck in improving the throughput of assays. One of the first 

considerations in developing the screen was to select a compound library 

that provided information on classes of compounds and therapeutic 

targets in Sod1 mutants while also highlighting possible future 

therapeutics. The Spectrum library from Microsource Inc was selected as it 

fits both of the criteria. The library contains FDA approved compounds so 

the toxicity information is known and therefore future potential therapeutic 

compounds can be identified. As these drugs have reached a stage of 

FDA approval, there is generally literature available that suggest 

mechanisms of action and pathways involved which further improves the 

understanding of the model and the disease pathways. When scaling up 

the assay, the main aim was to ensure that the consumables used in the 

screen had compatibility with the liquid handling and high-throughput 

systems available as well as the assay readout system so that the majority 

of the screen could easily be streamlined.  

 

Original Assay High-throughput Assay 

Ungenotyped fish (50% TG) Genotyped fish (100% TG) 

20-30 fish per dose 3 embryos per drug/dose (3 

replicates of 1 fish) 

Manual technique throughout 

assay 

Nearly complete automation of 

assay 

Possible 3-4 drugs per week 200-300 drugs screened per week 

Table 4.7: Comparison of the original screening assay to the high-
throughput assay. The table highlights the major differences provided by 
using the automation systems.  

 

As fig 4.7 shows, the screen was scaled up so that it was possible to 

utilise the DsRed stress readout to screen hundreds of compounds per 
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week rapidly and with high sensitivity and specificity. To reduce costs and 

the number of fish required per compound, the style of plate was 

investigated. 24 well, 96 well and 384 well plates were selected as 

plausible candidates for zebrafish screening based upon the literature and 

communications within the zebrafish community. 384 well plates were 

identified as a possible candidate due to the large numbers of fish per 

plate but were unsuitable for the screen as over the 4 days of the assay 

the build-up of metabolites and well volume led to increased background 

stress in the model which masked the size of the effect from the positive 

control (Riluzole). 24 well plates had the advantage of multiple fish per 

plate and thus more data points for each drug. The disadvantage of 24 

well plates was the incompatibility with the high-throughput systems and 

the library stock usage associated with large volumes of drugs required 

per well. 96 well plates represented the ideal middle ground with both the 

large numbers of fish per plate and the relatively low volume of compound 

per well. The use of 96 well plates is also supported by other recent 

screens published in the literature. One such screen was the identification 

of glucocorticoid signalling in a zebrafish luciferase reporter system in 

which the fish were dosed in 96 well plates from 4 days – 6days (48h 

exposure) to identify positive modulators of the pathway, without the 

negative side effects commonly seen by current pathway modulators with 

long term exposure (Weger et al 2013). Another recent screen also 

showed the applicability of 96 well plates in zebrafish screening for 

neurological disorders in epilepsy where fish were incubated for 90mins in 

the Spectrum library compounds to identify anti-convulsants (Baxendale et 

al 2012). This is evidence that the 96 well plates are well tolerated by the 

fish, as well as a neurological role of compounds within the Spectrum 

library.  

One of the major concerns when scaling up the screen was the lost wells 

due to un-genotyped fish. The original screen genotyped the fish based 

upon DsRed fluorescence post screen, manually using a fluorescence 

microscope, but this would lead to wasted library as compounds would 

need repeated multiple times until a TG fish was randomly assigned. The 
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InCell system was chosen for genotyping as it has the capacity to perform 

automated imaging in fluorescent wavelengths rapidly. Using the 

G93Ros10 zebrafish on the InCell system it is possible to genotype the 

fish with >99% accuracy based upon DsRed fluorescence at 48hpf. 

Genotyping was possible at 24hpf using the InCell but only 34% of fish 

screened could be confidently genotyped on fluorescence per plate due to 

a weak signal, thus the throughput of the assay was reduced. Due to this 

observation, the screen was shifted from dosing at 24h-5dpf to 48h-6dpf. 

This meant that all the fish used in the screen were genotyped, which 

increased throughput and protected the library stocks. It also had the 

advantage that the fish at 48h is further developed than at 24h. At 48h the 

zebrafish has a developed heart and liver as well as other organs, 

meaning the drugs are likely to have less of an effect on developmental 

processes and any positive effect is more likely to represent a real 

neuroprotective drug effect.  

The Echo 550 liquid handling system was selected for loading drugs onto 

the assay plates as it provides unparalleled accuracy down to volumes of 

2.5nl. Previously, less advanced system would be used for high-

throughput dosing that dispensed in the microliter range which required 

serial dilutions of drugs to be performed, which in turn leads to errors and 

wastage of valuable libraries. These systems also used tips which led to 

small errors in dispensing and the risk of cross contamination. The Echo 

550 system addressed both these problems by using sonic energy to 

transfer nl volumes of compounds via tipless transfer. The Echo 550 

system, when compared to tip based serial dilutions, led to differences in 

IC50 for some compounds by orders of magnitude. The work goes on to 

highlight how much  of a source of error traditional tip based transfer 

generates and the effect this can have in biological systems and assays 

(Ekins et al 2013). The most time consuming part of the assay and the 

major area of future research to take this assay to the highest throughput 

possible is the development of automated systems for moving zebrafish. 

Currently, with the systems available, accuracy and speed are not high 

enough and the systems cannot distinguish fish based upon DsRed 
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fluorescence. In the literature various systems are being developed for 

embryo transfer such as in one publication where the system could 

dechorinate and load a 96 well plate in 8-10mins but at the expense of 

2.8% mortality, 1.2% missed wells and embryo malformation was seen in 

2x as many embryos compared to manual loading (Mandrell et al 2012).  

One system commercially available is the EggSorter from Noldus 

Information technologies. This system has the ability to load a plate within 

5 minutes, but only has an accuracy of 96% and is primarily designed for 

embryos still with the chorion. With the current systems available, the 

quickest and most accurate way to dispense the fish is by hand using a 

manual pipette, but future research should focus on developing systems 

that can transfer the fish rapidly and accurately between plates based 

upon fluorescence, thus reducing the human input.  

The readout was a major consideration, as ensuring the maximum 

information is gained from each embryo used is essential for identifying 

the best compounds. Unfortunately due to the limitations of the hardware 

and software available, it was not possible to keep the embryos alive post 

assay and still obtain the fluorescence data. The InCell still provided the 

imaging capabilities to ensure DsRed positive fish were used in the screen 

at 2dpf and 6dpf as well as ensuring the fish were developmentally normal 

using the brightfield channel. The sonication readout method was 

performed as this was shown to be able to detect drug effect in a dose 

dependent manner and to show different drug effects. In the final screen 

the embryos were sonicated individually well by well with a clean between 

each sample, but a future development would be to investigate plate 

sonication. Currently the sonication method is a manual and relatively slow 

process and plate sonication would be much quicker and eliminate the risk 

of sample cross contamination via the probe. Plate sonication would need 

to be investigated fully to ensure equal sonication throughout the plate as 

a common problem with water bath based plate sonicators is uneven 

sonication throughout the plate. Eventually further development and 

research into imaging of the embryos will allow the successful imaging and 
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quantification of embryos so that further assays will be possible that 

ensure the embryos are kept alive and embryo sonication is not essential. 

When the dataset was analysed, the numbers of duplicate hits for each of 

the screens at different SSMD’s showed that when the threshold was β<-

0.5 there were 38 compounds that showed a reduction in fluorescence 

both times in the duplicate screens. When the SSMD threshold was set at 

β<-1.0 this number dropped to 9 compounds. This highlights the sensitivity 

and specificity of the assay as we identify reasonable numbers of hit 

compounds which it is possible to work with. We took all 38 compounds 

through to further testing based upon the -0.5 threshold as it is possible 

the compounds may work better at different concentrations and the 

smaller effect might be substantially larger at a different dose. It is 

important to highlight that these compounds may not all be hits. Based 

upon the sensitivity and specificity previously discussed, there is a small 

risk of false positives showing up in the screen. Also some of these 

compounds may not have any effect in the model and may just be 

quenching the DsRed fluorescence, so it is important to validate a positive 

effect in the model via immunostaining and behavioural analysis. The 

activators showed 20 compounds that showed a strong increase in DsRed 

fluorescence with a β Value of >1.0. This was equivalent to 1% of the 

library and highlights a list of potential heat shock promoters. It is 

important to point out that these compounds may be fluorescent molecules 

themselves and thus it is the compound leading to the increase in 

fluorescence rather than the activation on the heat shock response. The 

interest in compounds that activate the heat shock pathway as being 

beneficial stems from the idea that upregulation of the unfolded protein 

response (UPR) and other cell repair pathways is beneficial in protecting 

the cell and using compounds to induce a large UPR could potentially 

further protect the cell. This was highlighted in a mouse study using the 

compound arimoclomol which is currently in phase 2/3 clinical trials. 

Arimoclomol has been shown to protect motor neurons and improve motor 

performance and fatigue in treated mice (Kieran et al 2004).  In addition, 

the mice also showed an extension in survival of 22%. Arimoclomol was 
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shown to be up-regulating the heatshock pathway, particularly hsp70 and 

hsp90, which strongly suggests that upregulation of the heat shock 

pathway has the potential to be neuroprotective.  

Compounds with a toxic effect also have the risk of activating the DsRed 

fluorescence just by stressing the cell, so it is important to distinguish 

between activator compounds having a potentially beneficial effect and 

those inducing a non-therapeutic increase in DsRed expression. The 

number of compounds that lead to death in both replicates at 10µM was 

also investigated as the death could be due to various reasons. In the 

screen, 142 compounds led to death in both replicates. This could be due 

to the toxic nature of the drugs but could also be associated with 

administration at too high a concentration. The screen was performed at 

10µM as this was an optimal dosing regime for Riluzole, but other 

compounds may show a higher efficacy at a lower concentration. A further 

experiment will be to screen the double death compounds at 1µM to 

identify drugs that may have a positive effect at lower concentrations.  

 

Many screens have been performed in the zebrafish model with readouts 

including developmental defects, toxicity/death and mRNA expression 

evaluated by in situ hybridisation. These are all valid readouts of drug 

effects, but are time consuming, costly and not compatible with a high-

throughput screen. Using this DsRed fluorescence readout, we have 

designed and implemented a high-throughput compound screen that is 

easily implemented, rapid and with a clear and concise readout making it a 

very powerful tool for screening in vivo models.  

In conclusion we have scaled up, validated and performed a high-

throughput pharmacological screen utilising a Sod1 mutant zebrafish to 

identify modulators of neuronal stress. In this screen we have optimised 

the consumables used, liquid handling systems, automated systems, 

readout and statistics to provide a screen which can rapidly identify 

neuronal modulators. The next stage for this project was to validate these 
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hits and identify a lead molecule to take forward for secondary screening. 

To further understand how the lead molecules are working dose 

responses, behavioural analysis, functional data and adult dosing should 

be performed.  
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Chapter 5: Secondary screening and lead molecule validation 

 

Once the primary screen was completed the next step was to design and 

implement secondary screens to identify the compounds eliciting the 

following effects: 

 having a true effect in this model  

 having off-target effects that mask fluorescence such as toxicity 

 having an activator effect on the heat shock pathway 

Implementing stringent and accurate secondary screening is important in 

lead identification and validation as it confirms a positive drug response 

and identifies any false hits. Secondary screens are designed to be more 

informative than the original screen with the key aims of defining the 

optimal dose to benefit ratio whilst identifying any side effects such as 

behavioural changes, developmental changes and toxicity. By performing 

secondary screens on hits from the primary screen we aim to identify our 

strongest hits which are having a real effect in this model and take them 

forward to screening in different models with the aim to potentially identify 

new therapeutics for the treatment of ALS. Compounds of interest taken 

forward for secondary screening include those molecules which cause a 

reduction in fluorescence as this is a possible indicator of reduction of 

neuronal stress, compounds which show heat shock protein activation as 

a cellular protection pathway and compounds that were toxic at 10µM as 

these may have an effect at a lower dose. 

 

5.1 Fluorescent inhibitors secondary screening 

 

The initial aim was to confirm the activity of the inhibitors of DsRed 

fluorescence identified in the first screen. This was carried out by 

repetition of experiments to confirm activity and to give confidence in the 

observed effects. The top 24 inhibitors were studied.  



 

 

 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average 

RILUZOLE -4.91549 -4.75603 -2.97837 -3.02651 0.382654 -2.20735 -3.5621 -3.70252 -1.0889 -0.81433 -2.6669 

2,4-
DICHLOROPHENOXYBUTYRIC 
ACID, METHYL ESTER 0.301766 -0.48856 -1.52289 -0.76337 -1.87351 -2.26309 -4.04613 -3.36519 -0.15665 -1.49511 -1.56727 

MYCOPHENOLIC ACID 1.952136 -4.27729 -1.88839 -1.603 Dead Dead Dead Dead Dead -1.21671 -1.40665 

OXICONAZOLE NITRATE -4.22414 -4.17407 Dead -2.24658 Dead Dead Dead Dead Dead Dead -3.54826 

PROPANIL -3.10874 -2.88574 -1.75436 -0.44292 -3.49399 Dead -1.8199 Dead -0.62825 Dead -2.01913 

CEFDITORIN PIVOXIL -5.40116 -4.54497 -2.92175 Dead 2.029808 1.371881 -0.31117 -0.33385 1.0114 -0.63136 -1.08124 

2-HYDROXYXANTHONE Dead -2.56799 Dead Dead -0.10903 -0.35361 -0.8789 -0.20763 -0.88609 -1.02503 -0.86118 

PINOSYLVIN -1.35053 5.757425 0.995229 -1.99932 -0.15948 1.58995 4.579677 -0.13191 0.303948 -2.21885 0.736615 

PEFLOXACINE MESYLATE Dead Dead -4.01173 -2.42452 2.160231 2.500586 3.695976 -0.14989 -0.25738 -0.19531 0.164746 

SELAMECTIN -4.9721 -4.21182 -2.01318 -2.95488 Dead -2.12652 -2.28453 -1.1923 -1.37187 -1.36885 -2.49956 

NERIIFOLIN -4.43636 -2.96354 -0.93938 -0.6043 -3.76204 -3.83945 Dead Dead Dead Dead -2.75751 

ESTRADIOL DIACETATE -0.75817 -1.54002 1.635735 -0.74719 -0.42544 -0.60167 -0.07215 -0.50127 -0.31897 0.062058 -0.32671 

WARFARIN 0.067979 -1.5797 1.79018 1.68619 -1.06779 0.337798 -0.3936 -0.46497 -0.338 -0.19768 -0.01596 

11-OXOURSOLIC ACID 
ACETATE -1.38635 -0.79591 2.139512 1.148134 Dead Dead 0.74822 -0.51009 Dead Dead 0.223918 

7-OXOCHOLESTERYL ACETATE -5.42735 -1.1437 0.390158 -2.60131 -1.13382 -0.05394 3.308407 -0.62201 Dead Dead -0.91045 

ROCCELLIC ACID 2.623454 2.770581 3.658161 1.084199 -0.44799 -0.90482 2.278614 -0.59476 -0.32255 Dead 1.12721 

NONOXYNOL-9 -1.37672 0.156949 -0.90433 0.628181 -0.22737 -1.71317 -0.45559 -0.60291 -0.35105 -1.34442 -0.61904 

CHOLESTAN-3beta,5alpha,6beta-
TRIOL -1.03779 -2.58995 0.379759 -3.05078 -0.44404 -1.13754 -0.17234 -0.67495 0.342388 Dead -0.93169 

LORATADINE -0.01521 -0.37533 2.313215 -0.29849 Dead Dead Dead Dead Dead Dead 0.406045 

TROXERUTIN Dead Dead Dead Dead 1.355608 -1.12568 7.627509 0.253874 -0.06951 -0.45916 1.263774 

ACRISORCIN Dead Dead Dead Dead -1.08058 -3.75646 Dead -0.93419 0.240614 -0.49162 -1.20445 

PRALIDOXIME MESYLATE Dead Dead Dead Dead -0.89459 0.080207 -2.46257 -0.17078 -0.30629 Dead -0.7508 

CRESOL -0.79745 -1.35631 0.861197 1.110389 -2.14163 -1.0192 0.595985 -1.41111 Dead Dead -0.51977 

RESVERATROL 4'-METHYL 
ETHER -0.36609 -2.46246 0.964802 -0.98252 0.589809 -0.85228 0.97808 -0.84651 Dead Dead -0.37215 

Table 5.1: Table of the top 24 fluorescence inhibitors identified in the high-throughput screen. The data show the SSMD values for ten G93Ros10 
zebrafish dosed with the relevant compound from 48hpf to 6dpf. The average fluorescence over the ten runs is shown in the final column. 
Green shows SSMD <-1.0, Yellow shows SSMD < -0.5, Blue shows SSSMD > 1.0 and Red indicates death of the embryo. 
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From the fluorescence data, response to stimulus (touch), imaging and 

measuring the heartbeat under a dissection microscope we identified the 

compounds which consistently reproduced a strong reduction in fluorescence 

and did not lead to death or toxicity of the embryo. Riluzole showed a strong 

reduction in fluorescence in 9/10 assays which shows the robustness of our 

positive control and our ability to reproducibly detect drug effect. We set our 

criteria for hit compounds based upon the Riluzole scores and took a hit as 

any drug which showed effect 9 times out of 10 and had less than one death 

in order to eliminate drugs which had a strong toxic effect on the embryo. 

These data show that some of the compounds showed high levels of toxicity 

when repeated ten times. This is due to the more stringent examination of 

each fish for a heartbeat and developmental toxicity which was not possible 

in the original screen of 2000 compounds. A compound having a toxic effect 

on an embryo may lead to a detrimental effect in the zebrafish, leading to a 

false reduction in DsRed fluorescence showing as a positive result. Also if 

the toxicity led to death but the compound preserved the embryo, it may 

appear as normal with reduced fluorescence. This highlights the importance 

of secondary screening to carefully identify the real effects of compounds. 

Based upon our findings and literature searches the compound that satisfied 

our hit selection criteria was Selamectin. Selamectin was selected as the 

primary hit compound to take forward as it was the only compound that fitted 

our hit selection criteria by having a survival rate of over 90%, caused a 

reduction in fluorescence similar to Riluzole in 90% of samples, looked 

morphologically normal under inspection, had a normal heart rate compared 

to control fish and had the ability to respond to a touch stimulus. Furthermore 

upon performing a literature search, Selamectin fitted the profile for a 

compound that would be biologically relevant and a potential therapeutic for 

ALS based upon its proposed mechanisms of action. Other compounds that 

showed an effect and had good survival were also investigated, but 

Selamectin was selected for further analysis as it was the strongest lead. 

Future work will involve investigating the other hits in the assay to identify 

other therapeutic agents that are efficacious in this model.  
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5.2 Identification and validation of Selamectin 

 

Once Selamectin had been identified as a candidate lead molecule, a dose 

response study was performed to identify the optimal dose for reduction of 

DsRed fluorescence. Zebrafish were treated with concentrations of 

Selamectin between 0.1 and 10µM. 10µM was the maximum tolerated dose, 

with toxicity and death seen at higher doses in the fish.  

 

Fig 5.1: Graph of the reduction in average SSMD of DsRed fluorescence in 
Selamectin treated G93Ros10 zebrafish. N= 17 fish per group. Error bars 
represent the SD. 

 

Figure 5.1 shows Selamectin led to a reduction in DsRed fluorescence in a 

dose dependent manner with an IC50 between 3-4µM and a maximum 

reduction in fluorescence seen at 7µM when the compound was incubated 

48h-6dpf. When compared to with Riluzole (fig 5.2) it can be seen that 

Selamectin elicits a reduction in fluorescence to a similar level suggesting 

both the compounds have similar potencies in reducing the neuronal stress.  
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Fig 5.2: G93Ros10 x AB zebrafish fluorescence when dosed with Riluzole or 
Selamectin from 2dpf-6dpf. Error bars show the SD and n=23 per group. 

 

The data were also analysed using the Pherastar system as it has a more 

sensitive readout of the fluorescence by performing a 15x15 point well scan 

and the results showed a large reduction in DsRed expression which further 

supported the hypothesis that these compounds were reducing neuronal 

stress. An interesting outcome of screening using the Pherastar was the 

identification of a strong reduction in fluorescence around the head area of 

the fish as shown in fig 5.3.This led to the hypothesis that these drugs were 

acting to reduce the neuronal stress in the CNS with a particularly strong 

effect in the hindbrain. 
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Fig 5.3: Representative Pherastar readout showing G93Ros10 zebrafish 
scanned for DsRed fluorescence in a 15x15 well scan. The heat map scale 
runs from pink = low fluorescence to Red = high fluorescence. 

 

When the overall well fluorescence was quantified from the Pherastar 

readout, it confirmed that the compounds were leading to a large decrease in 

DsRed fluorescence (fig 5.4). This is in agreement with the OmegaStar 

sonication method and further validated that our compounds were having a 

real effect at a cellular level. 
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Fig 5.4: Pherastar readout of G93Ros10 zebrafish dosed with Riluzole and 
Selamectin at 10µM. Error bars show the SD and n= 23 fish per group. 

 

The InCell microscope system was used to take images of the G93Ros10 

zebrafish following Riluzole treatment, Selamectin treatment or in control 

(DMSO) fish. This was to confirm the Pherastar finding that the majority of 

the DsRed fluorescence reduction was concentrated in the hindbrain, eye 

and spinal cord regions. 
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Fig 5.5: Representative image of a DMSO treated G93Ros10 zebrafish 
imaged using the InCell system. The left image shows the DsRed expression 
and the right image shows a brightfield image.  

 

Fig 5.5 shows that in the G93Ros10 zebrafish treated with DMSO the 

majority of the DsRed fluorescence is seen in the eye, hindbrain, spinal cord 

and the neuromast cells. These are some of the key areas known to be 

potentially disease relevant as they are affected in ALS mice and patients. 

This provides supporting evidence that the stress response is accurately 

highlighting the cells affected by Sod1 toxicity. Based upon the location of 

the fluorescence in untreated fish (fig 5.3) and the reduction in head 

fluorescence identified by the Pherastar system when treated with Riluzole 

and Selamectin, the zebrafish were imaged to identify which anatomical 

structures and cell types showed the largest reduction in DsRed 

fluorescence. 
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Fig 5.6: Representative image of 6dpf G93Ros10 Zebrafish dosed with 
Riluzole at 10µM from 48h-6dpf and imaged using the InCell system. The left 
image shows DsRed expression and the right image shows a brightfield 
image.  

 

Fig 5.6 shows the reduction in DsRed fluorescence following Riluzole 

treatment is noticeable upon visual inspection. The major DsRed reduction is 

seen in the hindbrain, eye and proximal spinal cord which are anatomical 

areas linked to ALS. This suggests that Riluzole is having a specific effect on 

the neuronal cells showing Sod1 toxicity in the CNS and is reducing stress in 

the DsRed expressing cells. To confirm Selamectin was having an effect in 

similar cell types to Riluzole, the G93Ros10 zebrafish dosed with Selamectin 

were also imaged using the InCell system. 
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Fig 5.7: Representative image of 6dpf G93Ros10 Zebrafish dosed with 
Selamectin at 10µM from 48h-6dpf and imaged using the InCell system. The 
left image shows DsRed expression and the right image shows a brightfield 
image. 

 

The reduction in fluorescence is apparent in the Selamectin treated 

G93Ros10 fish (fig 5.7). The reduction in DsRed fluorescence is strongest in 

the hindbrain, eye and proximal spinal cord. The similarities between 

Selamectin and Riluzole suggest that both compounds are having a positive 

role in reducing neuronal stress. As a validation of this a lower concentration 

of Riluzole was imaged to show that this reduction in DsRed fluorescence is 

dose specific and not a general side effect of Riluzole treatment.  
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Fig 4.8: Representative image of 6dpf G93Ros10 Zebrafish dosed with 
Riluzole at 1µM from 48h-6dpf and imaged using the InCell system. The left 
image shows DsRed expression and the right image shows a brightfield 
image. 

In the 1µM Riluzole treated G93Ros10 zebrafish (fig 5.8), we do not see a 

reduction in fluorescence such as is seen at 10µM. This suggests that the 

reduction in fluorescence is dose dependent and supports the findings from 

earlier screens that Riluzole at 1µM is not effective in reducing neuronal 

stress.  

 

 

 

 

 

 

 

Fig 5.9: Representative images of 6dpf G93Ros10 Zebrafish dosed with 
DMSO, Selamectin and Riluzole at 10µM from 48h-6dpf and imaged using 
the InCell system. The images show the DsRed fluorescence for each of 
compounds. A: DMSO treated, B: Selamectin treated (10µM), C: Riluzole 
treated (10µM). 
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From the images, it is apparent that the compounds are leading to a large 

reduction in fluorescence within distinct anatomical structures. The eye, 

hindbrain and proximal spinal cord all show large reductions in the DsRed 

fluorescence when treated with either Riluzole and Selamectin at 10µM. 

Based upon these findings, Selamectin was taken forward as a candidate 

molecule for further screening. The DsRed expression is still relatively strong 

in the tail region with all of the drug treatments. This is most likely caused by 

the stability of the DsRed protein. At 48h when drug treatment commences 

the DsRed expression is switched on in the tail region and slightly in the 

hindbrain which is the basis for one of the main methods for genotyping. As 

the DsRed is very stable and is already expressed in these regions prior to 

drug treatment, it persists at 6dpf.  

Performing the behavioural analysis gives us data on the behavioural effects 

of these test compounds. Using the Viewpoint behavioural tracking system it 

is possible to measure the movement of the zebrafish in 96 well plates whilst 

controlling the lighting conditions. By altering the thresholds of detection 

rapid and slow movements can be distinguished, allowing accurate and 

detailed analysis of the behavioural profiles of the fish. By comparing the 

level of movement of fish in the DMSO treated control zebrafish, compounds 

which are having a sedative effect can be identified. Riluzole has a known 

sedative effect (Doble 1996), so compounds which have a sedative effect are 

not discarded, but caution should be taken to ensure that the fish can 

recover. The screen also allows the identification of compounds which lead 

to a hyperexcitiability state in the fish. This can be identified by large 

amounts of movement and increased levels of rapid movement in 

comparison to the DMSO treated zebrafish. By controlling the light cycle 

within the Viewpoint system we also investigated the behavioural changes in 

response to light and dark by performing the assay for 10mins in the light 

followed my 10mins in darkness. 
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Fig 5.10: Readout from the Viewpoint analysis system showing 
G93Ros10xAB zebrafish treated with DMSO, Riluzole and Selamectin at 
10µM for 10mins in darkness. The green line represents slow movement and 
the red line represents burst movement. 

 

Fig 5.10 shows the DMSO treated fish continue to move around as would be 

expected with movement throughout the well in a combination of both slow 

and burst movement in all areas. The Riluzole treated fish showed little 

movement and this correlates with previous observations. The Selamectin 

treated fish also showed no signs of movement which suggests, as with 

Riluzole, that the drug has a sedative effect at this dose. This may link the 

drugs with a common mechanism of action or that both have off target 

effects on neurotransmission that lead to sedation. To ensure that the 

reduction in fluorescence was not as a direct effect of sedation/lack of 

movement in the fish, we went back to the original screen results and looked 

for other compounds with a known sedative effect. These compounds did not 

cause a reduction in fluorescence as seen in Riluzole and Selamectin which 

suggests that this is an effect of the drug and not as a result of side effects, 

such as sedation. 

 

5.3 Selamectin and structurally similar compounds 

 

The next step to investigate the effect of Selamectin was to screen a small 

panel of structurally similar compounds and other members of the 

macrocyclic lactone family.  The effects of Ivermectin (Sigma-Aldrich, Cat 

No: 18898), Moxidectin (Sigma-Aldrich, Cat No: 33746) and Eprinomectin 

Riluzole (10µM) 

DMSO treated 

Selamectin (10µM) 
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(Sigma-Aldrich, Cat No: 32526) were investigated. Dose responses studies 

were carried out using these compounds to investigate the pathways 

involved in the reduction of fluorescence and to determine if this was a 

Selamectin specific effect or a common effect of macrocyclic lactone 

compounds. A major issue in the dose responses with other compounds 

from the macrocyclic lactone family was high levels of toxicity. Even at low 

doses that are well tolerated in the G93Ros10 zebrafish with Riluzole and 

Selamectin, high levels of heart oedema and death were observed (Fig 

5.11). This was particularly so for ivermectin, with death in all fish at 1µM and 

above, moxidectin at 1µM and above and eprinomectin at concentrations 

above 1µM. eprinomectin had no effect at any tolerated concentration which 

suggests it has a very narrow therapeutic window or no effect. moxidectin 

caused a reduction of 40% in fluorescence at 0.1µM but had no effect at 

0.01µM. Ivermectin at 1µM led to a reduction in fluorescence of over 50% but 

had no effect at 0.1µM. This data suggests that the other compounds similar 

to Selamectin may have a positive effect in the model but that they have a 

small therapeutic window with toxicity seen at higher concentrations. This 

suggests that in the zebrafish, Selamectin has a much safer toxicity profile 

and is generally better tolerated. 
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Fig 5.11: Fluorescence reduction after treatment with different 
concentrations of macrocyclic lactones. N=10 fish per treatment. Treatment 
was from 48hpf to 6dpf in G93Ros10 zebrafish. 
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Fig 5.12: Chemical structures of Selamectin, Ivermectin, Eprinomectin and 

Moxidectin, highlighting the structural similiarities. Images taken from 

PubChem.  

 

5.4 Combining Riluzole and Selamectin. 

 

As both Riluzole and Selamectin show sedative effects when used at 

concentrations which elicit a strong reduction in fluorescence, the drugs were 

given in combination at a lower dose to determine whether it is possible to 

maintain the reduction in fluorescence whilst showing a reduction in the 

sedative effects. This would allow chronic drug administration into adulthood 

as the fish would still have the ability to move and feed throughout the 

treatment. This method of combination treatment would also allow the 

identification of any synergistic effects between the drugs which would help 

to elucidate the pathways involved. To perform this, both compounds were 

Selamectin Ivermectin 

Eprinomectin Moxidectin 
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screened together using a matrix of low and high concentrations. 

Behavioural analysis and fluorescence measurements were carried out to 

determine the sedative profile of these combinations and to identify possible 

synergistic dosing regimes. Figure 5.13 shows combinations of Riluzole 

between 0-10µM with Selamectin between 1-5µM. These data correlate with 

the previous dose-response studies where increasing concentrations of 

either drug results in a greater reduction in fluorescence. This is shown as 

increasing concentration of Riluzole cause a greater reduction as the 

concentration increases. The same is seen for Selamectin (Horizontal axis). 

It is important to point out that a combination of the two lower concentrations 

of drug leads to a reduction in fluorescence comparable with that of either 

compound at a higher concentration. With Riluzole at 2µM-4µM and 

Selamectin at 2-3µM the reduction in fluorescence is around 50% which is 

comparable to the reduction seen with Selamectin and Riluzole at 10µM (Fig 

5.2). 

 

Fig 5.13: Graph of fluorescence inhibition by combinatorial dosing of Riluzole 
and Selamectin. Error bars show the SEM. N=4 fish per group. 
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A major advantage of dosing at lower drug concentrations is the potential to 

reduce any side effects of the individual drugs. By combining two drugs at a 

lower concentration it may be possible to reduce the anasthetic effect of 

Riluzole and Selamectin seen at 10µM. In Fig 5.14 the combination dosing 

regime was focused on the lower doses to indentify the lowest possible 

combinatorial dose with the strongest effect. A concentration of Selamectin 

of 1.5µM combined with Riluzole upto 4µM results in a lower reduction in 

fluoresence than is seen for Riluzole or Selamectin alone (individually) at 

10µM. The optimal dose was highlighted as 2.5µM Selamectin in 

combination with 2-3µM Riluzole as this had the ability to reduce the 

fluoresence acitvation to a level comparable to the hit compounds 

individually. Overall the effects appear to be addative rather than synergistic 

or antagonistic. 

 

Fig 5.14: Graph of fluorescence inhibition by low concentrations of Riluzole 
and Selamectin in combination. Error bars show the SEM. N=6 fish per 
group. 
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Fig 5.15: Representative image of viewpoint readout for zebrafish treated 

with different combinations of Riluzole and Selamectin. A- 10µM Selamectin 

only, B- DMSO control, C- 2.5µM Selamectin only, D- 2µM Riluzole+2.5µM 

Selamectin, E- 10µM Riluzole only.  Green shows slow movement, Red 

shows fast movements. 

Behavioural analysis was performed using the Viewpoint system to measure 

the movement of the combination dosed zebrafish.  In fig 5.15 both the 

Selamectin at 10µM (A) and Riluzole at 10µM (E) show no movement due to 

sedation by the drug as was shown in fig 5.10. The DMSO control dosed 

group (B) show normal movement. Panel C shows that fish treated with 

Selamectin alone at 2.5µM still has the ability to move with a slight reduction 

in total movement compared to the DMSO treated (B). When the zebrafish 

were treated with a combination of 2µM Riluzole and 2.5µM Selamectin (D) 

the movement of the fish is greatly reduced suggesting an additive sedative 

effect of the drugs when used together. This may suggest that the 

compounds work through a similar pathway synergistically or that the 

compounds both have a sedative effect on different pathways which leads to 

a cumulative effect. It is important to note that there is still some movement 

from these fish as shown in D and the sedative effect is not as strong as 

either hit compound individually at 10µM. 
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5.5 Double death screening 

 

Compounds that led to death in both of the replicates at 10µM were taken 

forward to screen at a lower concentrations. At high concentrations the 

beneficial effect of a drug may have toxic side effects but at lower doses a 

therapeutic effect may be seen. The double death screening was performed 

following the same protocol as the main Spectrum screen except all drugs 

were used at 1µM instead of the original 10µM. This concentration was 

obtained by using the Echo 550 liquid handling system to dispense 20nl of 

the library at 5µM into 200µl of E3 zebrafish media to obtain the final desired 

concentration. One hundred and forty drugs were screened at 1uM (Table 

5.2) and from this subset of compounds 16 were found to show a toxic effect 

and induce death at 1µM. These are most likely highly toxic compounds 

which continued to cause death even at the lower concentration.  From the 

140 compounds screened a further 26 also caused a significant activation of 

the stress response but this is most likely linked to the toxic properties of the 

compounds which at 1uM may not be strong enough to induce death but do 

cause an increase in neuronal stress, toxicity and hsp70 activation. The 

majority of compounds showed a non-significant change in fluorescence 

suggesting they had no neuroprotective effect in the Sod1 mutant zebrafish 

model. Six compounds showed a mild inhibition of fluorescence, while 2 

compounds showed a strong inhibition of fluorescence. It is important to note 

that the reduction in fluorescence may be an off-target effect, as a result of 

toxicity such as in the case of Rotenone which is a known piscicide used to 

control invasive fish populations (Kurji et al 2006). It is important to highlight 

these compounds as of interest and further investigation should be 

undertaken to identify any real hits from this 1µM cohort and take these 

forward for lead candidate screening. 
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Drug SSMD 

FLAVOKAWAIN B 2.19659 

2,6-DIMETHOXYQUINONE 0.990309 

PRISTIMERIN 0.883906 

1-BLOBENZYLOXY- 
CARBONYLAMINOPHENETHYL  

CHLOROMETHYL KETONE 0.668374 

DISULFIRAM -0.41411 

PENTACHLOROPHENOL -0.36783 

ZEARALENONE 2.262879 

DEOXYSAPPANONE  
B 7,3'-DIMETHYL 

 ETHER ACETATE 2.24425 

SAPPANONE A 7-METHYL ETHER 0.994796 

COLFORSIN 1.22093 

HEXESTROL -0.45221 

DYCLONINE HYDROCHLORIDE -0.18063 

SIMVASTATIN Dead 

ESTRADIOL METHYL ETHER 0.695976 

ELAIDYLPHOSPHOCHOLINE 0.225611 

FLURBIPROFEN Dead 

HEXACHLOROPHENE -0.07249 

CARAPIN -0.17213 

METHOXYCHLOR -0.02078 

4'-METHOXYFLAVONE 0.993865 

PEMPIDINE TARTRATE 0.260159 

DIENESTROL 0.540018 

NIMESULIDE 0.100994 

DICLOFENAC SODIUM -0.19663 

beta-DIHYDROGEDUNOL 1.288797 

4'-HYDROXYCHALCONE 1.498911 

AZELASTINE HYDROCHLORIDE 0.347867 

GEMFIBROZIL -0.11337 

DICAMBA -0.07814 

CEDRELONE -0.71424 

PINOSYLVIN METHYL ETHER 0.808345 

beta-DIHYDROROTENONE 1.480898 

AVOCATIN A 1.457783 

IBUPROFEN -0.2417 

MITOXANTHRONE 
 HYDROCHLORIDE -0.49568 

ETHINYL ESTRADIOL -0.0834 

4-ACETOXYPHENOL 1.336889 

TETRAC  Dead 

THYROXINE Dead 

DIFLUNISAL -0.09064 

CHOL-11-ENIC ACID -0.00945 

CHLOROXINE -0.45465 

HYDROQUINONE 1.00121 

BIFONAZOLE 1.055534 

BIOCHANIN A 1.731128 

TYROTHRICIN -0.55012 

5-NITRO-2-PHENYLPROPYL 
AMINOBENZOIC ACID [NPPB] -0.11886 

THIMEROSAL 0.006114 

MENADIONE Dead 

CAMPTOTHECIN -0.69368 

2,4-DINITROPHENOL -0.0172 

IOPANIC ACID -0.00506 

BRETYLIUM TOSYLATE 2.619769 

ISOROTENONE 0.678014 

ALEXIDINE HYDROCHLORIDE -0.26258 

HELENINE 0.567623 

FENOFIBRATE 0.005063 

ALLODEOXYCHOLIC ACID 0.210417 

DIFFRATIC ACID 3.296111 

PRISTIMEROL -0.18754 

GENTIAN VIOLET 0.032769 

FLUFENAMIC ACID 0.067305 

SALINOMYCIN, SODIUM -0.33643 

2,4-DICHLOROPHENOXY 
BUTYRIC ACID 0.848162 

AUSTRICINE 2.497006 

DIHYDROMUNDULETONE 4.78073 

CHLOROACETOXYQUINOLINE -0.82466 

DICHLOROPHENE -0.42518 

2,4-DICHLOROPHENOXYACETIC  
ACID, METHYL ESTER 0.073228 

LASALOCID SODIUM 0.419734 

STREPTOMYCIN SULFATE Dead 

DIHYDROROTENONE Dead 

5,7-DIHYDROXY 
-4-METHYLCOUMARIN 0.512356 

MICONAZOLE NITRATE -0.45384 

PHOSALONE -0.78845 

2,4,5-TRICHLOROPHENOXY 
ACETIC ACID, METHYL ESTER -0.17483 

LOVASTATIN Dead 

CEAROIN 3.400961 

SODIUM MECLOFENAMATE -0.30543 

SWIETENOLIDE-3-ACETATE -0.19976 

CHAULMOOGRIC ACID -0.12596 

PURPUROGALLIN 0.178938 
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IRIGENIN, 7-BENZYL ETHER 0.109866 

2-ISOPROPYL 
-3-METHOXYCINNAMIC ACID 5.197216 

CHRYSIN -0.05914 

BITHIONOL 0.682409 

TOLFENAMIC ACID Dead 

ARISTOLOCHIC ACID Dead 

PIMPINELLIN 6.305521 

MUNDOSERONE 5.359913 

NIFLUMIC ACID -0.07982 

MEBENDAZOLE -0.06668 

TETRACHLORO 
ISOPHTHALONITRILE -0.35993 

STROPHANTHIDINIC  
ACID LACTONE ACETATE 0.298596 

GANGALEOIDIN 3.869896 

CETYLPYRIDINIUM CHLORIDE 4.975765 

CETRIMONIUM BROMIDE -0.10047 

RESVERATROL -0.19057 

TOTAROL -0.30679 

DIGITONIN 0.668805 

TETRAHYDROGAMBOGIC ACID 2.609897 

NARASIN Dead 

TRIPTONIDE Dead 

LAPACHOL 1.043109 

CENTAUREIN 0.536003 

SAPINDOSIDE A 0.456019 

CARPROFEN 0.039279 

EBSELEN -0.27125 

ABIETIC ACID -0.19761 

CHLORHEXIDINE -0.6492 

DEQUALINIUM CHLORIDE 0.105634 

TRIPTOPHENOLIDE -0.11735 

QUINALIZARIN -0.21139 

TOMATINE -0.07974 

FENBENDAZOLE 0.646859 

GITOXIN -0.2239 

alpha-MANGOSTIN -1.47223 

CANTHARIDIN 0.081654 

MEFENAMIC ACID -0.16079 

CLOTRIMAZOLE -0.23182 

RHODOMYRTOXIN 1.508112 

DIHYDROCELASTROL 0.9328 

CICLOPIROX OLAMINE 0.831324 

2,3,4-TRIHYDROXY-4'-
ETHOXYBENZOPHENONE 0.29438 

METHAZOLAMIDE 0.39282 

CINCHONIDINE Dead 

ROTENONE -0.88666 

CELASTROL -0.48844 

OXIBENDAZOLE 0.138023 

METHYLBENZETHONIUM 
 CHLORIDE 0.302485 

PEUCEDANIN 0.207656 

LAWSONE 0.900563 

ORTHOTHYMOTINIC ACID 0.280902 

MUNDULONE Dead 

ETHAVERINE HYDROCHLORIDE 0.955627 

THIOXOLONE 0.108306 

ATORVASTATIN CALCIUM -1.36484 

PODOFILOX 0.386172 

PERILLIC ACID (-) -0.56323 

ROTENONIC ACID, 
 METHYL ETHER 1.145131 

LASALOCID SODIUM 0.419734 

STREPTOMYCIN SULFATE Dead 

DIHYDROROTENONE Dead 

             5,7-DIHYDROXY-4-
METHYLCOUMARIN 0.512356 

MICONAZOLE NITRATE -0.45384 

Table 5.2: Table of the SSMD scores 
for all the compounds screened at 
1µM after showing double deaths 
when screened at 10µM. Compounds 
in Blue showed fluorescence 
activation, compounds in yellow show 
weak fluorescence inhibition and in 
green are strong fluorescence 
inhibitors. 
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5.6 Fluorescent activators secondary screening 

 

Secondary screens were performed on DsRed stress response activators to 

identify molecules which were up-regulating the heat shock pathway whilst 

not causing increased stress to the fish or which were themselves 

fluorescent compounds within the DsRed spectrum. To identify these 

compounds behavioural assays, high-quality imaging and repeat of the 

fluorescence assay to identify key compounds were carried out. The first 

step was to repeat the studies on positive compounds to identify molecules 

that reliably and reproducibly elicited an activation of fluorescence over 

multiple repeats. 

 

 

 

 

 



 

 

Table 5.3: Replicate screen of the twenty compounds that led to the strongest fluorescence activation. The table shows the fluorescence 
readout from ten G93Ros10 zebrafish dosed with the respective compound from 48hpf to 6dpf. Dead fish are highlighted in Red and 
compounds with an SSMD of >1.0 highlighted in blue.

MOLENAME Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average 

HOMIDIUM BROMIDE 6.396827 6.689371 21.73816 21.44723 Dead 3.471581 4.788994 5.158843 15.10147 11.8838 10.74181 

CALCEIN 3.997016 2.785236 9.999373 9.694776 2.009453 1.658812 3.42658 5.496258 2.395518 4.71864 4.618166 

RUTILANTINONE 2.999166 3.916562 4.814146 12.90389 1.215844 0.835649 2.529274 2.151867 -0.73832 Dead 3.40312 

CHLORPROMAZINE 1.488583 1.066245 2.772024 7.994029 0.060597 Dead -1.39422 Dead 1.004166 3.141461 2.016611 

LIMONIN 1.122029 -0.03397 5.097054 4.145069 0.651337 -0.13047 -0.69939 -0.28813 6.45468 Dead 1.813134 

PHYSOSTIGMINE 
SALICYLATE 0.0776 1.528533 3.586798 3.454775 -0.19193 0.538117 0.192971 0.078021 Dead -0.01934 1.027283 

CIANIDANOL 0.397759 1.048939 3.887623 1.688016 -0.69614 0.924993 0.26294 1.149957 0.345305 0.366343 0.937574 

PROPARGITE 1.285883 -0.59972 3.015325 2.071356 -0.87872 1.956186 Dead -1.17835 1.737798 Dead 0.926219 

CARNOSINE 1.050965 0.473795 1.978939 3.215246 0.287735 -1.29658 1.384113 -0.45397 0.377927 -0.02956 0.698861 

NILUTAMIDE 0.086437 -0.92154 4.772653 2.964873 -1.16332 -0.41605 -0.08654 0.346422 -0.63908 1.997213 0.694108 

DIBENZOTHIOPHENE -0.32338 -0.2768 1.415953 2.78334 0.167473 0.053839 -0.911 -0.30293 0.683806 3.168134 0.645842 

ACTINONIN 0.266308 -0.28969 1.810138 4.858468 0.699677 -0.12704 -0.63374 -0.95399 Dead -0.20957 0.602286 

PROCYCLIDINE 
HYDROCHLORIDE 1.993583 1.331541 3.208645 3.015796 -1.12629 -3.11901 -0.81584 0.641847 0.547598 0.246074 0.592394 

PERUVOSIDE 1.713007 -0.58002 1.693203 3.119057 0.056298 -1.82361 0.082093 Dead 0.384315 0.054683 0.522113 

VERATRIDINE 1.260292  Dead 0.906316 0.299598 0.56998 1.883464 -0.20722 -0.34827 -0.13347 -0.44743 0.420361 

alpha-CYANO-3-
HYDROXYCINNAMIC 
ACID 0.415802 1.106564 0.681808 1.249509 0.143074 -0.48593 -1.06231 -0.33316 1.296681 0.357584 0.336962 

LYCORINE -0.38303 1.157746 0.796736 0.064862 -0.7829 1.155138 -1.39522 -2.10306 -0.20178 0.524601 -0.11669 

RHOIFOLIN -0.24348 0.264283 0.551793 -1.15153 -1.99778 -1.43523 0.367523 -0.34494 0.656539 0.393259 -0.29396 

COSMOSIIN -0.51688 -0.05422 -1.47677 -0.2432 0.35064 0.339185 -0.3064 -0.53848 -1.17592 Dead -0.40245 

MANDELIC ACID, 
METHYL ESTER 1.158298 0.562533 -0.30309 -0.19808 -0.29247 -2.85894 -0.11597 -4.51125 0.036285 -0.25195 -0.67746 
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It was found that a majority of the compounds which repeatedly showed a 

significant increase in fluorescence were naturally orange and red in nature 

and therefore expressed a natural fluorescence which overlapped with the 

emission spectrum of DsRed. Compounds such as Calcein (commonly used 

as an orange dye) and Homidium bromide (Red colour) showed up as having 

a strong signal but this was most likely due to the compound being taken up 

by the fish and building up or staining the fish tissue rather than an increase 

in hsp70 leading to DsRed overexpression. Further work is needed on the 

activators to identify which compounds are having a genuine effect in 

increasing the DsRed fluorescence via hsp70 and which compounds are just 

inducing stress or are fluorescent. One potential experiment would be to 

plate the DsRed protein and measure baseline fluorescence before adding 

the activator compounds to the plate. The genuine hsp70 inducers and 

compounds that cause stress should have no effect on the fluorescence as 

there is no target to act on, but any fluorescent molecules will lead to an 

increase in fluorescence which can be detected and these compounds can 

be disregarded from further analysis. This assay could also be used to 

identify compounds that are quenching the fluorescence signal rather than 

reducing stress. 

 

5.7 Utilising a derivative of Arimoclomol to investigate heat shock 

protein activation 

 

An amine derivative of Arimoclomol, an activator of the heat shock proteins 

highlighted as a potential future therapeutic for ALS, was synthesised and 

screened in the zebrafish. Unfortunately Arimoclomol was not available at 

the time of the study and so a derivative was used. The aim was to show if 

this derivative of Arimoclomol induced an increase in fluorescence via 

activation of the heat shock response. The difference between the derivative 

used and Arimoclomol was an amine group was present instead of the 

chlorine group as shown.  
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Fig 5.16: Chemical structure for Arimoclomol with the amine for chlorine 
swap highlighted as is present in the derivative used for this screen. 
Arimoclomol chemical name is N-{[(2R)-2-hydroxy-3-piperidin-1-
propyl]oxy}pyridine-3-carboximidoyl chloride 1-oxide, C14H20CIN3O3, MW-
313.78g/mol. 

 

When the drug was screened in the hsp-GFP fish to show that the compound 

was increasing the fluorescence via the heat shock pathway, no increase in 

fluorescence was seen at any concentration. This is shown in fig 5.17 where 

there is no difference in hsp-GFP expression between DMSO treated, 1µM, 

10µM and 100µM treatment from 48h-6dpf. All the fish in the experiment 

were developmentally normal and the compound had no anaesthetic effect. 

The compound was also screened in the G93Ros10 and WTos4 Sod1 

zebrafish to identify an increase in DsRed or a mutant Sod1 specific effect of 

the Arimoclomol derivative.  Both of these transgenic lines showed no 

increase in hsp70-DsRed expression and the G93Ros10 zebrafish showed 

no increase in fluorescence when sonicated and analysed. When treated 

with the derivative, no increase in hsp70 is detected which suggests that this 

arimoclomol derivative has no effect on the heat shock pathway in zebrafish. 

The next step to investigate this is to synthesise the halide form of 

Arimoclomol and check if it has the potential to activate the heat shock 

response which would be very informative on chemical structures and heat 

shock protein binding. One potential reason for the lack of effect is that 

Arimoclomol is a co-inducer of the HSR and is known to stabilise Hsf1 in its 

tri-merised active form (Kiernan et al, 2004). The compound was screened in 

a wild type model with only a normal background stress, meaning that active 
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Hsf1 levels would be very low and thus no large increase would be seen. 

This experiment should be repeated in the mutant Sod1model in which active 

Hsf1 levels will be much higher and by stabilisation with Arimoclomol, an 

increase in heat shock activation will be seen.  

 

 

Fig 5.17: Image of hsp-GFP zebrafish dosed with an Arimoclomol derivative 
from 48hpf-6dpf. No increase in GFP expression is present and the only 
detectable GFP is in the eye which shows stable expression between all the 
doses.  
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5.8 Discussion 

 

In this chapter the aim was to further characterise hit compounds arising 

from the primary screen on 2000 compounds from the Spectrum library. This 

is a key part of screening as it involves taking the positive compounds from a 

high-throughput screen and further validating their activity via multiple 

techniques to confirm that the drug effect seen in the primary screen was a 

real effect and not a false positive. Secondary screens have the advantage 

of a lower number of pre-selected lead compounds and therefore a larger 

number of low-throughput and intensive screens can be performed to 

investigate the drug effects. The cost implications of false positives being 

taken forward are huge and therefore secondary screens to confirm drug 

effect are essential.  

The first confirmation assay was to investigate the fluorescence inhibitors by 

repeating studies on the best lead compounds (ten times) to confirm that the 

result from the primary screen was reproducible. Compounds causing a 

reduction in fluorescence are of particular interest as these may be indicative 

of a reduction in neuronal stress and therefore hit compounds may have 

neuroprotective effects within the CNS. The ten repeats were combined with 

heartbeat measurements and careful inspection for any developmental 

toxicity to ensure no toxicity or death had occurred which was missed in the 

original screen. We set our criteria for a hit as showing an inhibition of 

fluorescence in 9/10 experiments and no more than one death. These criteria 

were based on Riluzole where 9/10 experiments showed a significant 

inhibition of fluorescence. This 90% hit ratio is a strong threshold for hit 

selection.  We have shown (Table 5.1) that the majority of the compounds 

did not show a reproducible effect to match our hit criteria. A large proportion 

of the compounds showed an increase in fluorescence, a probable side 

effect of toxicity. Many of the zebrafish that died after being treated with the 

compounds appeared normal upon visual inspection but were found to have 

no heartbeat which may explain why they showed low fluorescence in the 

original screen and were taken forward as hits originally. Based upon the 
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criteria for hit selection, only one compound was identified as a potential lead 

compound: Selamectin.  

Sold under the trade names Revolution and Stronghold, Selamectin is a 

topical parasiticide and anti-helminthic compound that is used in the 

treatment of infections from heartworms, fleas, ear mites, sarcoptic mange 

and ticks. Selamectin is part of a family of compounds known as macrocyclic 

lactones and they are widely used in vetinary medicine for the treatment of 

parasitic diseases (Shoop et al 1995). Many macrocyclic lactones are 

commercially available for the treatment of parasites in cats and dogs such 

as the Avermectins, including Ivermectin (HEARTGARD) and Selamectin 

(STRONGHOLD, REVOLUTION), and the milbemycins such as Moxidectin 

(ADVOCATE, ADVANTAGE MULTI) and milbemycin oxime (MILBEMAX, 

PROGRAM PLUS) (Geyer et al 2009).Macrocyclic lactones are generated 

via semi synthesis from natural fermentation of the by-products from 

Streptomycetes bacteria. 

 

Fig 5.16: Chemical structure of Selamectin. Selamectin formula: C43H63NO11. 
MW: 769.96g/mol (Drawn using www.emolecules.com) 

 

 Macrocyclic lactones are thought to have a mechanism of action in treating 

parasitic infection by inducing neuronal toxicity. It is thought they bind and 

block GABA gated chloride channels in the central nervous system leading to 

death (Dawson et al 2000, Sigel & Baur 1987) and activate glutamate-

activated chloride ion channels which has been found to lead to ataxia and 

http://www.emolecules.com/
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death in arthropods (Bloomquist 2003, Martin 1997). In Arthopods the 

macrocyclic lactones have been shown to interfere with transport along 

nervous and muscle cells by inhibiting the GABA receptors at the 

neuromuscular junction in both vertebrates and invertebrates but with 100x 

more affinity for invertebrate receptors (Schaeffer & Haines 1989). 

Ivermectin, a compound from the same family as Selamectin, has previously 

been highlighted as a possible treatment for amyotrophic lateral sclerosis. It 

was shown that Ivermectin had the ability to reduce AMPA mediated toxicity 

in cultured rat neurons, a pathway highlighted as leading to ALS disease 

progression (Andries et al 2007). These authors found in neuronal cultures 

from 14 day old Wistar rats an 8h pre-incubation treatment with Ivermectin at 

1µM led to an almost complete protection from neuronal death by 300µM 

kainate treatment to induce excitotoxicity. SOD1 mutant G93A mice were 

then dosed with Ivermectin from 50days of age (Symptom onset) in the 

drinking water. With 4.8mg/l and 12mg/l of Ivermectin in the drinking water 

an extension in survival of 8.7 days (6.2%) and 12.8 days (9.1%) respectively 

was seen.  In the lumbar spinal cord, ivermectin was shown to significantly 

increase the numbers of large ventral neurons and the average root area 

occupied by neurons.  

 

Ivermectin and other members of the avermectin family of compounds have 

been shown to bind the glycine receptor chloride channel leading to 

activation in a dose dependent manner (Lynagh et al 2011).They 

interestingly found that Selamectin showed a much weaker potency for 

activation of the α1 glycine receptor compared to Ivermectin and the other 

related compounds. The study found that Selamectin needed concentrations 

of 30µM to activate a glycine current in wild type glycine receptors. However 

they did show that Selamectin potentiates glycine currents suggesting that 

selamectin binds the receptor with an equal affinity to Ivermectin, but does 

not have the same affinity to activate the receptor (Lynagh et al 2011). This 

may suggest that rather than direct activation of the receptor, Selamectin 

may have more of a modulatory role to control glycine currents.  
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Macrocyclic lactones are generally regarded as safe for the treatment of 

mammals as P-glycoprotein efficiency has been shown to restrict the 

penetration of the blood brain barrier (Schinkel et al 1994). P-Glycoproteins 

were identified in the mid 1970’s and were found to be a drug efflux 

transporter which is located within the plasma membrane (Juliano & Ling 

1976). P-glycoproteins are 170-kDa proteins with six trans-membrane 

spanning domains and an intracellular ATP binding site which is well 

conserved and a member of the ABC superfamily of transporters (Borst & 

Elferink 2002, Higgins 1992). They are expressed in many tissues, with high 

expression in the major organs of drug absorption, distribution and excretion.  

Some of the tissues which express high levels of P-glycoprotein include the 

intestinal epithelial cells, hepatocytes, kidney proximal tubule cells, luminal 

membrane capillary cells and cells within the blood brain barrier (Thiebaut et 

al 1987). This has been shown in MDR1 P-glycoprotein negative dogs which 

showed lower tolerance and higher toxicity to treatment with macrocytic 

lactone compounds. The studies found that treatment with Ivermectin and 

Doramectin at 0.2-1.0 mg/kg leading to neurotoxicity, tremor and ataxia 

(Geyer et al 2007, Hopper et al 2002, Paul et al 1987). This is in contrast to 

Selamectin, Moxidectin and Milbemycin which at therapeutic doses did not 

lead to any toxicity in the MDR1 reduced dogs (Bishop et al 2000, Novotny et 

al 2000, Tranquilli et al 1991).  

These data suggest that the different macrocyclic lactones have different 

affinities for the P-glycoproteins or that they bind different proteins based 

upon their structure. In vitro studies have shown equal transportation of 

Selamectin and Ivermectin by P-glycoproteins expressing Caco-2 

monolayers (human intestinal epithelial cell monolayers)  and canine 

peripheral blood lymphocytes (PBL) which suggests that the difference is not 

due to affinity for the P-glycoproteins (Griffin et al 2005). This was not 

confirmed by mdr1a,b P-glycoprotein deficient knockout mice which reported 

that Selamectin accumulation (5-10 fold higher) in  the brain was massively 

reduced compared to Ivermectin accumulation (36-60 fold higher) in the P-

glycoprotein knockout (Geyer et al 2009). This supports a further study which 

showed that Ivermectin had a much higher ability to modulate the ATPase 
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activity of P-glycoproteins when compared to Selamectin (Lespine et al 

2007). The difference in receptor affinity may be due to the structural 

differences between Selamectin and Ivermectin. Selamectin has a 

monosaccharide group whereas Ivermectin has a disaccharide group on the 

macrocycle which may lead to different abilities to cross the blood brain 

barrier.  

Based upon the literature and the ability to repeatedly reduce the neuronal 

stress to a similar level as Riluzole, Selamectin was taken forward as a lead 

molecule for secondary screening. A dose response experiment was 

undertaken utilising Selamectin to identify the optimal working dose. The 

dose response showed that Selamectin has no effect on DsRed fluorescence 

levels at concentrations below 1µM and death was seen at concentrations 

above 10µM. The IC50 was between 3-4µM with a maximum reduction in 

DsRed fluorescence at 7µM.  

These data suggest that the Selamectin has a working concentration range 

similar to that of Riluzole. For further confirmation of the similarities between 

Riluzole and Selamectin treatments, 23 embryos treated with DMSO, 

Riluzole and Selamectin were imaged using the InCell system, analysed 

using the Pherastar system and overall fluorescence measure using the 

OMEGAstar system. Fig 5.2 shows when the fish were sonicated and overall 

fluorescence measured a reduction in DsRed fluorescence of around 50% 

was seen in both the Riluzole and Selamectin treated (10µm) G93Ros10 

zebrafish. Prior to sonication the Pherastar system was used as it is a higher 

sensitivity system. Fig 5.4 shows the final fluorescence readout from the 

Pherastar showing a reduction in fluorescence with Riluzole (10µM) of 78% 

and a reduction in Selamectin (10µM) of 65%. Another interesting 

observation from the Pherastar using the heat maps of DsRed generated 

from the 15x15 well scan mode highlighted the high DsRed expression 

visible in the head region of DMSO treated G93Ros10 zebrafish (fig 5.5). 

The Selamectin and Riluzole treated zebrafish did not show a strong 

activation of the DsRed expression in the head region which suggests that 

these compounds are having an acting in this area and are leading to 

reduced neuronal stress and heat shock activation.   
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To further investigate the DsRed expression, the InCell images were 

analysed to identify which particular cell types and anatomical structures 

showed the largest reduction in fluorescence. As fig 5.9 shows, the 

Selamectin and Riluzole treated zebrafish at 10µM had significantly reduced 

neuronal stress throughout the zebrafish, with the strongest reduction in the 

hindbrain, spinal cord and eye compared to the DMSO. This reduction in 

fluorescence was not present in the 1µM Riluzole treated zebrafish which 

shows that the drug effect is mediated in a dose dependent manner. The 

hindbrain and spinal cord are key areas of neurodegeneration in ALS with 

high levels of neuronal stress and loss seen in these areas. Identification of a 

reduction in hsp70/DsRed activation in these areas is a key indicator that 

both of these compounds are having a neuroprotective role at these sites 

and are reducing the neuronal stress leading to lower DsRed expression. 

Validating that these drugs are acting at these sites provides evidence that 

both of these compounds are having a positive role within the CNS and are 

actively working against the Sod1 mediated toxicity and are protecting the 

stressed neurons.  

Further evidence for an effect at a neuronal level is the anaesthetic effect 

seen using the Viewpoint system. When the behaviour of Selamectin and 

Riluzole fish at 10µM was measured in light and dark conditions, no 

movement was seen, suggesting a strong sedative effect of the compounds. 

Riluzole has  sedative effect in both mice and rats with a known role in 

altering the glutamate neurotransmitter system (Mantz et al 1992).  

Selamectin is also a known neuromodulator that is known to replace 

glutamate at the synapse and at high enough concentrations leads to 

neuromuscular paralysis (Bishop et al 2000). This is of concern when 

investigating a treatment that may be used for a number of years, so the 

possibility of combinatorial dosing or Riluzole and Selamectin together at sub 

sedative doses while maintaining the positive reduction in neuronal stress 

was investigated. Combination dosing of the compounds identified a range of 

combinations that had the ability to reduce the fluorescence signal to a 

comparable level with Selamectin and Riluzole at 10µM (Fig 5.12). This 

means that side effects could be reduced as lower drug concentrations are 
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being used and the positive benefit of two compounds effects could mean 

multiple disease pathways are ameliorated leading to a stronger therapeutic 

effect. Also the ability of the fish dosed with a lower combination dose to 

continue to swim shows that in combination the drugs are having less of a 

sedative effect, suggesting the side effects are being reduced. It also opens 

up the opportunity to perform adult dosing studies as the fish will be able to 

swim and feed. 

From the primary screen 142 drugs were identified that had a strong toxic 

effect and led to death in the high-throughput screen. Death from compound 

toxicity is a sign of developmental toxicity and general zebrafish toxicity 

which can be observed with many compounds at high concentrations. 

However these data do not exclude the possibility that the agents may show 

activity at lower (non-toxic) concentrations. A lower dose of compound is also 

more beneficial, as giving lower concentrations of drugs as a general rule 

leads to less unwanted side effects. We re-screened all the compounds that 

caused death in both primary replicates at 1µM. A small number of the 

compounds showed death at both concentrations suggesting that these 

agents are generally toxic to zebrafish and thus they were excluded from any 

further screens. A number of compounds at the lower dose led to an 

increase in fluorescence, suggesting that they are still having a toxic effect 

on the zebrafish but that the effect is not strong enough to cause death, just 

an increase in stress leading to hsp70 activation. The majority of the 

compounds led to a non-significant effect which suggests at 1µM dose they 

are no longer inducing stress via toxicity but also have no role in reducing 

neuronal stress as they did not achieve a significant SSMD score. A small 

collection of the compounds at 1µM did achieve a significant reduction in 

fluorescence. These compounds are of interest as they have the potential to 

be used at lower concentrations where they may show reduced toxicity. The 

next step for these compounds will be to repeat the screen multiple times to 

ensure the reproducibility of these results and that a true effect was seen, 

before dose response studies carried out to identify an optimal therapeutic 

window. It is important to be careful with any results from these compounds 

as they are toxic at higher concentrations and care must be taken to ensure 
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that it is not toxicity to the fish that gives rise to the reduction in DsRed 

expression, rather than a reduction in neuronal stress resulting in lower 

hsp70 activation.  

Activators of the heat shock response are of interest as they potentially hold 

the key to helping the cell protect itself from neuronal stress (Kalmar & 

Greensmith 2009). Compounds that induce a big increase in the heat shock 

response may allow the cell to overcome the Sod1 mediated toxicity and use 

the cells own mechanisms to protect it from neuronal stress. The heat shock 

response has been highlighted as a possible pathway in neuroprotection and 

in ALS. Heatshock proteins including HSP70 have a role in preventing 

protein aggregation and the formation of non-functional proteins and thus 

have a key role in preventing the cells from damage and stress, both seen in 

ALS (Takeuchi et al 2002). HSP70 overexpression has been shown to be 

neuroprotective in mice with delayed symptom onset, increased survival and 

maintained function, while treatment with Arimoclomol, an activator of 

HSP70, also showed similar results (Gifondorwa et al 2012, Kalmar et al 

2008).  

Based upon the positive effect of activation of the heat shock response seen 

in other ALS models, activators of the fluorescence in our screen were taken 

forward for secondary analysis to identify true heat shock activators. The top 

twenty strongest activators of fluorescence from both replicates were taken 

forward for secondary analysis to identify true activators of fluorescence. The 

majority of the compounds screened had large variability in inducing the heat 

shock response which suggests they were more likely inducing mild toxicity 

to increase fluorescence rather than an increase in heat shock activation. 

Also, some induced death in a large number of the repeats also suggesting a 

toxic function of the compound in the zebrafish. Four compounds had the 

ability to repeatedly induce a large increase in fluorescence in the G93Ros10 

model. These four activators of fluorescence revealed natural fluorescence in 

the orange-red spectra. Homidium Bromide, has intense orange 

fluorescence as does Rutilantinone which is bright red in colour. Calcein is 

another fluorescent dye which has the appearance of orange crystals. 

Chlorpromazine is an interesting candidate molecule as it is a dopamine 
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antagonist used in psychotic disorders with known antiadrenergic, 

anticholinergic and anti-serotonergic effects and has a role in the CNS. In the 

replicates secondary screen Chlorpromazine led to a few deaths and thus 

the compound was not taken forward for secondary screening although it is 

of interest as it is a compound with known CNS effects. In general the 

activators are a difficult group of compounds to validate as an increase in 

fluorescence can translate too many different biochemical changes, not all of 

which are beneficial.  

In future work the secondary assays must be carefully designed and 

developed to give the assays the ability to distinguish between fluorescent 

molecules, toxic compounds leading to neuronal stress and true activators of 

the heat shock response. It is more likely that the strongest activators of 

fluorescence are not the key group to investigate as these are more likely 

due to side effects of the compound or natural fluorescence which leads to 

an abnormally large increase in DsRed expression. Some of the weaker 

activators are possibly much more likely to be having a real effect on heat 

shock protein levels by inducing a moderate increase in fluorescence which 

is more indicative of an increase in heat shock protein rather than general 

stress due to off target effects. Another key experiment that needs to be 

performed for all hit compounds is to confirm that the reduction in 

fluorescence is not as a result of toxicity and neuronal loss. If the cells are 

dying then a false readout of a reduction in stress will be seen. To confirm 

that the drug is not having a toxic effect cell counts and TUNEL assays can 

be performed to ensure that the level of cell death/loss is comparable 

between mutant and WT fish. 

Arimoclomol is a compound that has been shown to activate the heat shock 

response and has been shown to have a neuroprotective effect in mutant 

SOD1 mice (Kalmar et al 2008). The compound was identified as a potential 

validation compound to show activation of the heat shock response and 

could be used as a potential positive control for activators. Unfortunately the 

compound is currently in clinical trials (Clincialtrials.gov No: NCT00706147) 

and obtaining the compound from any source was not possible. The 

compound was synthesised as per the protocol stated within the patent but 



 

 
170 

the final synthesis step, swapping the amine for chlorine, was not completed. 

Unfortunately the Arimoclomol derivative showed no effect in multiple 

zebrafish lines with and without mutant Sod1. This raises some interesting 

questions based upon the chemical structure and difference between 

Arimoclomol and the derivative. The next step in this project is to synthesise 

the halide version of Arimoclomol and see if this has the ability to activate the 

heat shock response in the zebrafish. If the compound has no effect, then it 

demonstrates that this class of chemical does not have the ability to induce 

the heat shock response in zebrafish. If activation is seen with Arimoclomol, 

it will be very informative about the chemistry of the compound and the 

importance of the chlorine in binding heat shock proteins as well as 

identifying a positive control for screening activators using the hsp70-DsRed 

readout.  

 

In conclusion we have identified a compound showing a genuine effect in 

reducing fluorescence to a similar level as the current treatment for ALS, 

Riluzole. In repeated screening Selamectin showed an ability to reduce 

neuronal stress consistently and had a dose dependent effect.   
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Chapter 6: Discussion 

 

The need for new and improved models that more closely mimic the human 

aspects of disease is a constant theme in many neurodegenerative 

disorders, but particularly in ALS. Many of the current models have 

limitations that impact on their applicability for modelling disease and for 

screening and identifying novel therapeutic compounds.  The SOD1 G93A 

mouse was the first mouse model generated for ALS and it exhibits many of 

the physical symptoms of ALS such as hind limb tremor and muscular 

weakness, together with changes at the cellular level where motor neuron 

loss and NMJ defects are seen. One limitation of the mouse model is how 

early the symptoms become apparent which is followed by death within 4 

months (normal life span is ~2years). As a result, many of the symptoms 

occur early in age compared to the disease progression seen in human ALS 

patients where the disease occurs in later life. This brings into question how 

applicable it is to use this mouse to model disease and identify therapeutics 

and highlights the continued need for new models of ALS.  These mice have 

SOD1 activity approximately 11 times higher than normal due to the large 

gene copy numbers. In terms of drug discovery and development in ALS, the 

major disappointment of the mouse models has been the inability to translate 

a positive drug effect in the mouse to a positive effect in a human clinical 

trial. Many compounds have shown a positive effect in increasing survival 

and delaying onset in the mouse but have failed to show similar effects in 

humans. An analysis of over 30 compounds identified in mouse trials has 

failed to show a positive effect in a human clinical trial of ALS. Some of this 

poor translation may be attributed to poor study design and the limitations of 

the model. With clinical trials costing in excess of $100 million, few 

pharmaceutical houses are likely to embark on clinical studies based solely 

on the findings from the SOD1 transgenic mouse model.  

In an attempt to ameliorate this issue we have developed and characterised 

a zebrafish model of motor neuron disease which closely resembles the 

human disease at both cellular and physiological levels. In the later stages of 

life this model shows reduced motor neurons numbers in the spinal cord 
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alongside increased numbers of abnormal neuromuscular junctions. Both of 

these features are seen in both the mouse and human disease. In the 

zebrafish this corresponds to reduced swimming ability which in mammalian 

models manifests as the decreased motor performance seen in mouse, rat 

and human SOD1 ALS patients. This is further validation that this zebrafish 

model closely mimics the phenotypes seen in both the mouse and human 

forms of SOD1 mediated ALS.  

One of the major advantages of using zebrafish is the optical clarity of the 

embryos and the ability to image the tissues easily. This has allowed the 

investigation of the cellular changes occurring in the zebrafish in real time. 

An interesting finding from the zebrafish model was the identification of the 

stress response within the interneurons and not the motor neurons at the 

early stages. The motor neurons in the spinal cord did not show the stress 

response until later stages in adulthood. This raises the possibility that ALS 

is not primarily a disease of the motor neuron in the early stages, but an 

interneuron disorder. Normal interneuron function is to provide control to the 

motor neurons either by inhibitory or excitatory signals which control the 

firing properties of motor neurons. In ALS, interneurons have been 

postulated as being deregulated with evidence of widespread loss of GABA 

inhibitory interneurons in the motor cortex and fronto-temporal regions 

(Maekawa et al 2004, Nihei et al 1993).  

Neurophysiological studies can be used to probe interneuron function by 

measuring the delivery of paired stimuli for a response time. In sporadic ALS 

cases this has been used to identify increased excitability in the cortical 

neurons which suggests a similar pathway to the Sod1 zebrafish data where 

loss of interneuron inhibition may lead to over excitation in the motor neurons 

(Yokota et al 1996). Longitudinal studies of asymptomatic SOD1 carriers 

show a big increase in excitability just before the onset of ALS symptoms 

(Vucic et al 2008).  Further evidence for the role of interneurons in the 

disease pathway is seen in patients carrying D90A SOD1 mutations 

associated with slow disease progression that have preserved inhibitory 

interneuron circuits which suggests that the loss of inhibition by the 
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interneurons precedes the onset of the disease symptoms (Weber et al 

2000, Wittstock et al 2007).  

In ALS there is a broad range of evidence for inhibitory interneuron loss 

preceding motor neuron dysfunction as a key pathway in ALS pathogenesis. 

This zebrafish model along with patient data suggests that ALS is potentially 

an ‘interneuronopathy’ where the interneurons are most susceptible to the 

SOD1 toxicity and, once the interneurons are sufficiently stressed and 

dysfunctional, the motor neurons begin to develop problems and degenerate. 

This highlights the potential of targeting the interneurons therapeutically to try 

and ameliorate and delay the disease onset by improving the inhibitory 

influence, thus restoring the balance. This model has the advantage of being 

one of the first in vivo models to show an interneuronopathy phenotype in 

ALS.  

Future experiments are planned, aiming to characterise the cell types 

affected to further understand exactly which cells are affected at each time 

point. This will also allow the identification of when the loss of interneurons is 

sufficient to lead to the activation of the stress response within motor 

neurons. It will also allow further investigation into the loss of interneurons, 

coinciding with the onset of motor symptoms in the zebrafish as was seen in 

the longitudinal patient studies. One advantage of the zebrafish that should 

be utilised is the generation of a stable interneuron marker transgenic line 

which would allow real time monitoring of interneurons in the Sod1 model 

over the disease course to truly monitor the cellular and neuronal network 

changes occurring in ALS. This could be correlated with the 

electrophysiological profiles of the glycine positive interneurons in the 

zebrafish and could give rise to a novel class of potential therapeutics that 

ameliorate the deterioration in synaptic firing seen in the interneurons.  

 Therapeutic testing of compounds using zebrafish has long been performed 

in multiple disciplines including cancer, cardiovascular science and 

development. It has led to the identification of many compounds that have a 

toxic effect in zebrafish, as well as compounds that have a positive role in 

modulating and ameliorating different conditions. In neuroscience, zebrafish 
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have not been utilised as extensively as in other disciplines. They have the 

potential to be an excellent model for neuroscience and particularly in CNS 

disorders as they have a similar neuronal network to humans in both the 

genetic and anatomical senses. The majority of the screens that have been 

performed have relied on having to use smaller numbers of compounds 

combined with difficult final readouts such as behavioural data (Vaccaro et al 

2012) which, although informative of the effect of the compound, give little 

information on the role of the compound at a cellular level. Other 

investigators have performed large screens, but in a low throughput 

mechanism such as performing an in situ hybridisation or 

immunohistochemistry screen on every sample to look or for changes in 

expression of genes (Baxendale et al 2012). Both of these readouts are 

exciting and innovative ways of detecting compounds having a positive effect 

in a neurodegenerative model.  

However, our mutant Sod1 zebrafish model has the advantage of utilizing an 

hsp70-DsRed stress marker to monitor cellular dysfunction in real-time. It 

allows real-time monitoring of drug effect by simple fluorescence microscopy 

which easily allows the detection of drug effect and the anatomical structures 

where the compound is acting. This has the potential for utilisation in many 

different disease models as the hsp70-DsRed construct is separate from the 

disease modifying gene and therefore can be applied in multiple disorders in 

neurodegeneration and other fields.  

In the zebrafish mutant Sod1 model, the activation of the DsRed response in 

the absence of heatshock is specific to individual tissues and cell types 

whereas no activation is seen in the WT Sod1 line. Expression was also 

seen in the key anatomical areas and cell types affected in ALS and this is 

further evidence of the DsRed response being a viable readout of cellular 

toxicity in the model. Further support for utilising the Hsp70-DsRed 

measurement as readout of Sod1 toxicity is found by using Riluzole, the only 

compound licensed for the treatment of ALS. The demonstration of a 

reduction in activation of a key marker of cellular stress following 

administration of Riluzole is evidence that this model can be used to detect 

potential novel therapeutics. Riluzole has a modest effect in humans, with an 
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extension in survival of 3months on average, so the ability to show it having 

a role in the zebrafish model is key for validating this model. These 

experiments also highlight the specificity and sensitivity of this construct 

when used to detect cellular stress in specific tissues, together with the 

ability to show drug effects. This applicability should allow the DsRed readout 

to become a key marker in different zebrafish models for screening in the 

future.  

Although no criteria exist for what is designated as a high-throughput screen, 

the assay outlined in this study is highly optimised, utilising multiple robotic 

systems to deliver a semi high-throughput compound screen using an in vivo 

model. New technologies have become available that can be implemented to 

improve throughput, which could give rise to a completely automated screen. 

The major advance in automation to improve the throughput would be to 

develop zebrafish handling systems that have the ability to load plates with 

embryos without the need for human intervention. Automated sorters that 

rapidly and accurately transfer embryos into assay plates are now becoming 

more affordable, but until these systems are combined with the technology to 

select zebrafish based upon DsRed fluorescence, the advantages of 

implementing these systems in this assay will be minimal as genotyping 

using the InCell Bioanalyser will still be required.  

The high-throughput screen using the transgene as readout is one of the first 

examples of the utilisation of robotic systems to allow a significant increase 

in throughput which cannot be achieved with other readouts. Further 

improvements to the screen would be the adoption of in silico screening prior 

to utilisation of the zebrafish model. In silico screens utilise computer 

algorithms and historical data to predict the effect of a compound. In terms of 

drug screening, this may mean predicting that if a compound binds at a 

certain site on an enzyme it will show a response. With these methods, 

millions of compounds can be screened in a virtual setting for predicted 

effect. These assays will become more important as the algorithms improve.  

Currently the major limitation of these assays is the data that the system 

begins with. By furthering our understanding of Sod1 and how it acts, then 
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the in silico screen will be improved as more functional data will be available. 

Screening in a high-throughput fashion is not possible in higher models such 

as mice due to the difficulty in obtaining high enough numbers of samples for 

significance, the cost implications and the duration of the assays. Cellular 

based assays and lower organisms allow high-throughput assays on well 

characterised systems but they lack the complexity of higher organisms with 

only single cell types or simple organisation of the nervous system. The 

zebrafish has advantages as a model as it has a CNS closer to that seen in 

humans together with rapid development, optical clarity, ease of compound 

administration plus the ability to obtain large numbers of embryos rapidly. All 

of these factors make zebrafish an excellent candidate as an in vivo model 

capable of bridging between cellular assays and higher mammalian 

organisms such as the mouse.  

The zebrafish will not be able to replace therapeutic screening in the mouse 

but the zebrafish has the ability to compliment mouse models by rapidly 

providing information on how compounds may be acting, identifying 

efficacious dose ranges and at what anatomical sites the drug is acting, 

which means that subsequent mouse and/or human studies can be better 

designed.  The zebrafish model also allows the identification of lead 

molecules which can be screened in the mouse, bridging the large jump in 

development and complexity between cell and mouse. Data from the 

zebrafish model will give greater confidence in mouse screens, as drugs will 

have previously shown effects in another in vivo model. This will reduce the 

time, cost and most importantly the number of mice needed to identify new 

therapeutic agents undergoing pre-clinical screening.  

Riluzole was originally identified for its anaesthetic and anticonvulsant 

properties (Wokke 1996). Its ability to help treat ALS is most likely thought to 

stem from its anti-glutamatergic action by stopping the excitotoxicity from 

excessive glutamate. Further evidence for this mechanism comes from 

spinal cord injury models where glutamate excitotoxicity is known to cause 

problems and treatment with Riluzole  has been shown to reduce the 

damage (Dumont et al 2001). Its anti-glutamatergic effect is thought to be 

mediated by inhibition of Na+ channels causing reduction of pre-synaptic 
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glutamate release (Chéramy et al 1992). This pathway has been brought into 

question by the failure of other anti-glutamatergic treatments that do not 

show the same effect as Riluzole in ALS or spinal cord injury. This suggests 

that Riluzole is acting by other mechanisms to prevent motor neuron loss.  

Elucidating these other pathways and developing a better understanding of 

how Riluzole is acting in ALS will facilitate the identification and development 

of future therapeutic agents.  

Riluzole has been shown to upregulate glutamate transporters levels in glial 

cells suggesting a new role in glutamate uptake modulation (Carbone et al 

2012). Riluzole treatments from 0.1µM- 10µM have been shown to increase 

glutamate receptor affinity while higher concentrations such as 100µM had 

no effect and even increased toxicity in response to acute glutamate 

exposure (Frizzo et al 2004).  

Another potential therapeutic pathway for ALS is via suppression of neuronal 

excitability by modulation of the sodium current. Neuronal excitability has 

been postulated as a causative factor in ALS. The voltage gated sodium 

channels affected by Riluzole are abundant in interneurons and motor 

neurons (Harvey et al 2006, Tazerart et al 2007) and thus this may explain 

the beneficial effect of Riluzole in the zebrafish screen. Riluzole has been 

shown to modulate these neurons by stopping repetitive firing of action 

potentials.  However, this pathway is brought into question as a sodium 

channel blocker, tetrodotoxin, failed to stop neurodegeneration induced by 

glutamate excitotoxicity (Mazzone & Nistri 2011). 

 

One of the most important discoveries in the work of this thesis was the 

identification of Selamectin as a novel therapeutic agent for the treatment of 

ALS. There is a desperate need for new compounds to treat and delay the 

disease progression in ALS and Selamectin may have the ability to fulfil this 

role. Selamectin is a macrocyclic lactone, with a known modulator function 

for GABA and glutamate receptors. Selamectin and other macrocyclic 

lactones are currently marketed worldwide as a treatment for parasite 

infections in animals. Its proposed mechanism of action in disabling the 
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parasites is by replacing glutamate at the muscle synapse and activating 

chloride channel opening leading to neuromuscular paralysis. GABA is a 

major inhibitory neurotransmitter in the CNS and has a major role in 

controlling neuronal excitability, including in motor neurons. As previously 

discussed, inhibitory interneurons are implicated in the development of ALS 

and thus the known effects of Selamectin on these receptor subtypes 

suggest that it may have a beneficial role in protecting the interneurons. 

Selamectin is most likely re-establishing and boosting the capacity of the 

interneurons to provide inhibitory signals to the motor neurons. If this is the 

case then over time there should be a continued reduction in fluorescence 

and a protection of the motor neurons.  

The mechanisms of action of Riluzole and Selamectin show lots of crossover 

and appear to act via similar pathways. Both are known to modulate AMPA 

receptors which are involved in excitotoxicity, a mechanism in ALS. Both are 

also implicated as modulators of GABA and glycine currents which have 

been implicated as involved in ALS disease progression. This highlights the 

strong pathway crossover of the compounds and highlights an excitotoxicity 

mechanism of action for both drugs. This does not mean that the drug should 

not be further investigated as it may be more potent, affect different 

receptors and has the potential to be used in combination with Riluzole. 

It is important to remember that these treatments are focused on altering the 

disease in the early stages. The embryos are treated at 24h and 48h 

whereas a human patient will not begin treatment until the symptoms have 

manifested and are clear enough for a diagnosis on ALS. This is the true 

battle for ALS as many of the compounds which have a positive effect at the 

early pre-symptomatic stages may have no role once the motor neurons 

have been lost and the symptoms have begun. If the cells have already been 

lost due to SOD1 toxicity, then no drug can prevent disease progression. 

This highlights the need for the generation and identification of new and 

novel techniques as well as a panel of biomarkers to screen for ALS.  

Biomarkers are measurable biological changes that reflect a specific disease 

state such as a change in gene expression or the presence of a specific 
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antibody. If a panel of specific ALS biomarkers could be identified for use 

with an easily accessible tissue sample such as blood or CSF then screening 

for pre-symptomatic ALS patients could be performed and treatments 

undertaken at earlier stages. This may mean that compounds such as 

Riluzole and Selamectin have a stronger effect as well the possibility that 

compounds which failed pervious trials may be effective at earlier stages.  

One potential biomarker for ALS is from microRNAs (miRNAs) which are 

small RNA molecules with a regulatory role. They have been shown to have 

altered levels in multiple disease subtypes including in neurodegeneration. 

Multiple miRNAs have been shown to be up and/or down regulated in ALS 

as well as other diseases, so a panel would need to be designed which is 

specific to ALS and will allow the identification of the disease before 

symptom onset (Goodall et al 2013). Biomarkers, once validated, will also 

have the ability to show if a particular treatment regime is effective, as an 

efficacious treatment could lead to restored biomarker levels back to a 

baseline over time. Biomarkers are a rapidly advancing and exciting field of 

research and have great potential in the diagnosis and treatment of ALS, as 

well as for the development of therapeutics. ALS has the potential to become 

a manageable disease if biomarker monitoring is combined with personalised 

medicine. This could result in the disease being sufficiently slowed down so 

that it may never progress far enough for the onset of symptoms to occur. 

Thus ALS would become a ‘chronic’ disease whereby continuous therapy 

would enable the patient to live an extended or even normal lifespan.  

A potential treatment option may be to use stem cells to replace the cells lost 

in ALS. Cell therapies and stem cells can be implemented to supply trophic 

support in an attempt to protect the stressed cells. The possibility of inserting 

stem cells into the affected spinal cord before using trophic factors to force 

differentiation into motor neurons could potentially allow the reversal of the 

ALS disease. This has been shown in mouse models where stem cell 

insertion into the spinal cord led to a significant delay in symptom onset and 

a significant increase in survival (Kim et al 2013).These therapies are still 

unproven as insertion has been shown to be safe into the spinal cord 

(Feldman et al 2014) but no positive effects on disease progression have 
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been seen In human patients and this may be due to the environment of 

insertion already being too toxic.    

Zebrafish have a relatively well characterised capacity to regenerate, 

including within the CNS. This has been shown in multiple organs such as in 

limb wound models and in the heart where wounds are shown to quickly heal 

before regeneration occurs at the site of injury. Clearly this is not possible in 

humans. Multiple regeneration factors have been identified such as FGF-1 

which can lead to regeneration of tissues that have been damaged or lost. 

This is a fascinating process that does not happen in the human. If these 

markers could be utilised in the human then there is the possibility of being 

able to induce regeneration by expressing these factors. The ability of the 

zebrafish to regenerate brings into question their ability to model a 

degenerative disorder. Although the Sod1 mutant zebrafish has the ability to 

regenerate, it is still possible to model the degeneration of motor neurons as 

can be seen by their loss in the adult spinal cord. The regeneration of the 

model may make it easier to model these diseases as the process of 

degeneration will be slowed and therefore easier to investigate. Further 

research into the effects of regeneration is required and it will be interesting 

to look at which regenerative factors/markers colocalise with the 

degeneration of the motor neurons. 

Another potential intervention is gene therapy to knock down the expression 

of disease-causing mutant genes. This could be particularly useful in SOD1 

mediated ALS where knockdown of SOD1 has been shown to slow disease 

progression. AAV9 viral mediated knockdown of mutant SOD1 led to 

increased survival and reduced disease progression in SOD1 mouse models 

(Foust et al 2013). AAV9 targets the knockdown to motor neurons 

specifically alongside astrocytes. There is evidence that knocking down 

mutant SOD1 in motor neurons and astrocytes protects against ALS. This is 

currently being further validated in primate models with the goal of starting 

clinical trials in humans in the near future.  

Future work in this project is to take Selamectin and Riluzole forwards as a 

combination therapy for the treatment of ALS. Initial experiments should be 
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focused on elucidating the role of the compounds and the effect they have.  

A better understanding of the disease and how these compounds act to 

ameliorate the symptoms/progression will allow the design of better drugs. 

By using combination dosing, it may be possible to have the beneficial 

effects of both drugs to boost the neuroprotective effect while removing the 

negative sedative side effects known to arise from these compounds. The 

sedative effects arise from the inhibition of sodium channels which inhibit 

action potentials. Combinations of these drugs at lower concentrations has 

been shown to be less sedative than either drug at higher concentrations 

individually with the fish showing small amounts of movement in the absence 

of stimulus. This will allow long term treatments to study the benefit of 

prolonged exposure to the drugs. If Riluzole is having a sedative effect in 

human patients then by reducing this via combination with other therapies 

patients may give rise to improvement in their condition as sedation is 

reduced.  

In conclusion we have designed, validated and implemented an innovative 

and novel high-throughput drug screen to identify novel therapeutics to treat 

ALS, using a zebrafish in vivo model. Utilising this model we have identified 

pathways involved in the disease progression, novel ways to screen drug 

effect in zebrafish and a potential new treatment for ALS.  
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