The University of Sheffield

Department of Computer Science

SIQXC: Schema Independent Queryable XML

Compression for Smartphones

Submitted for the degree of Doctor of Philosophy

(PhD Thesis)

Otlhapile Dinakenyane
July 2014

Supervisor: Dr Siobhan North

ABSTRACT

The explosive growth of XML use over the last decade has led to a lot
of research on how to best store and access it. This growth has resulted in
XML being described as a de facto standard for storage and exchange of data
over the web. However, XML has high redundancy because of its self-
describing nature making it verbose. The verbose nature of XML poses a
storage problem. This has led to much research devoted to XML compression.
It has become of more interest since the use of resource constrained devices is
also on the rise. These devices are limited in storage space, processing power
and also have finite energy. Therefore, these devices cannot cope with storing
and processing large XML documents. XML queryable compression methods
could be a solution but none of them has a query processor that runs on such
devices. Currently, wireless connections are used to alleviate the problem but
they have adverse effects on the battery life. They are therefore not a

sustainable solution.

This thesis describes an attempt to address this problem by proposing
a queryable compressor (SIQXC) with a query processor that runs in a
resource constrained environment thereby lowering wireless connection
dependency yet alleviating the storage problem. It applies a novel simple 2
tuple integer encoding system, clustering and gzip. SIQXC achieves an average
compression ratio of 70% which is higher than most queryable XML
compressors and also supports a wide range of XPATH operators making it
competitive approach. It was tested through a practical implementation
evaluated against the real data that is usually used for XML benchmarking. The
evaluation covered the compression ratio, compression time and query
evaluation accuracy and response time. SIQXC allows users to some extent
locally store and manipulate the otherwise verbose XML on their

Smartphones.

DECLARATION

[declare that this thesis is my own work and effort. Where other sources of
information have been used, they have been acknowledged. This work
contains no material that has been submitted previously, in whole or in part,

for the award of any other degree or qualification except as specified.

Otlhapile Dinakenyane

ACKNOWLEDGEMENTS

[would like to thank God who granted me this opportunity and sustained me

through this journey.

To my family and friends: thank you for your love and support.

[wish to express my sincere gratitude to my supervisor Dr Siobhan North for
her unwavering support. I appreciate the time and advice she offered in this

thesis.

API

CR

CT

DOM

DTD

IR

J2ME

LOB

P-C

QEP

RDBMS

SAX

Sid

SIQXC

SGML

W3C

XML

XPATH

XQuery

XSLT

LIST OF ABBREVIATION

Ancestor-Descendant

Application Programming Interface
Compression Ratio

Compression Time

Document Object Model

Document Type Definition

Information Retrieval

Java 2 Micro Edition

Large Binary Object

Parent-Child

Query Execution Plan

Relational Database Management System
Simple API for XML

Sub tree Identity

Schema Independent Queryable XML Compressor
Standard Generalized Markup Language
World Wide Web Consortium

Extensible Markup Language

XML Path Language

XML Query Language

XML Style sheet Language Transformation XML

TABLE OF CONTENTS

CHAPTER Tt sssssssesssss s ss s ss s s ss s s ssssss s ssssssesas 1
INTRODUCTION ..oteiririesereeereesseesseessesssssssesssssssesssssessesssssssesssssssesssssssessssssssssssssssesssssssesssssssesas 1
1.1 INErOAUCHION cceuteeeeeeeereeer s es et s s s sennaees 1
1.2 The TRESIS SEIUCTUTE ..o sees s sessss s seesssssesssees 2
1.3 Chapter SUMMIATY ...ooueeeseseseesssssessanes 4
CHAPTER 2.ttt ss s ss s ssssss s s ssssss s ssssssenas 5
THE XML BACKGROUND ...rvvirrerreeeerseereesseesseessesssenssessssssssssse s sssssesssesssssssesssssssessssesesas 5
228 B 0 0 U 0T L U 0 (0) UOP PPN 5
2.2 OVETVIBW cereecereeeeereessessseessesssssse s sss st sess s sess s s ss s ss s s s sess s sasssens 5
2.3 BaSIiC XML SYNTAX...iuriurererrereereerernessesesessessssessesssssesessss st sssssessesssssssssssssssssssessssssssssses 6
2.4 Well Formedness and Validity...mmssssssssssssssssssssssssssssees 9
2.5 XML STOTAZE.c..irrererriersessissssssessessaness 10
2.5 XML ParSiNg...oscrerssessesessssssessessaness 12
2.6 XML QUETY cooeueeeereererresessesessesessss s sessessesesssss s sssssesssssssssss s sssssessssssssses 13
2.6. 1 XPATH o ssss s sessssns st ss s sesssssssesns 14

2.7 Chapter SUMIMATY c.cceresssessssessess 16
CHAPTER 3. es s ss s s sss st snssse s 17
QUERY PROCESSING AND OPTIMIZATION......vcrieeeereeseeserserssessesseeseesseesseessesssessenns 17
700 0 0 oL 0T L U 0 (0) o WO 17
3.2 QUETY e ses e s s e st 17
3.2.1 QUETY PrOCESSING ..coeereerereeerereerisressesesssssssessessessesssssssssessessessssssssssssessessessssssanes 18

3.3 QUETY OPtiMIZAtiON e 19
3.3.1 INAEXING eurtrrrrererrerssesessessssssessss s s sssssesse s sssssssssssssssssssssssssssssssssssness 20
3.3.1 SUMIMATY eeverererereeseeressessesesssssssessessessesssssssssessessessesssssssssessessesssssssssssssssessessenssanes 24
3.3.2 Labelling SCheMES ... sssssssssssssssssssssssssssssssssssees 24
3.3.2 SUIMIMATY oevererereeeseeressessesesssssssessessessessssssssssessessessessssssssssessessessesssssssssessessessesssanes 28
3.3.3 Hybrid Methods...cocmenerernineseinsinsessssssssesssees 29
3.3.4 TWig QUETY ProCeSSING....ccoieriereerereeersereeseesessesessssssssessessesessssssssessessessessssees 30
3.3.4 SUIMIMATY ooverereeeeereeressessesesssssssessessessessssssssssessessessesssssssssessessessesssssssssessessessssssanes 32
3.3.5 VIBWS ettt s s sess s s s s 32

3.4 Chapter SUMIMATY .ressssssesesssess 33

Vi

(00 3 U2 o U D 34

RESOURCE CONSTRAINED DEVICES ... seessesssssssesssssssenns 34
3 9 U oY 10 ot () o VNPT 34
4.2 Databases for Limited DeVICES ... seessesssesssesssesssesaseenns 35

4.2.1 Database for JAVA PRONES ... sssssesssassssns 36
4.2.2 XMLDB for Embedded SYyStemS......ccueemnenmeninsensenssssessesssssessesssssssssssees 36
4.2.3 Platform DePEeNdENncCeunennernrinsenessssssessssssssssesssssssssssssssssssssssssssssssees 37
4.2.4 SUIMNIMATY overeereureseeessesessessessesssssssssessessesssssssssssssessesssssssssssssssssssessssssssssssssssessssssssses 37
4.3 The use of Wireless CONNECION ..ccveueereereneeeesersereesseesens s sesssesssesssesaseenns 38
4.3.1 Limited POWET SUPPLY covrrrvrererrrinsesernsessesessssssessssssssssesssssssssssssssssssssssssssssssees 38
4.3.2 Data integrity and SECUTILY ... ssssssssesssssssaees 40
4.3.3 SUIMIMATY overeereureseeessesessessessesssssssssessessesssssssssssssessessessssssssssssssssessssssssssssssssessessssses 40
4.4 Chapter SUMIMATY .oieeesssasssns 42

CRAPLET 5ttt s s 43

XML COMPRESSION METHODS.......ocereemeererseeserseesesssesssessessssessesssssssesssesssessesssssssssaees 43
ST 0 001 o e L Ui o) o 0PSO 43
5.2 XML Blind COMPTIESSOTS ..cuurnireurermiresessisssesesssssssssesssasess 44
5.3 XML CONSCIOUS COMPIESSOTIS w.currrrirneresrirmesessesssssessess 46

5.3.1 Schema Dependency ClassifiCation.......neeenenensenessseeees 46
5.3.2 Non-Queryable COMPIESSOTS .memrnmenessesssssssssesssssssssesssssssssssssssssssssees 47
5.3.2 SUIMIMATY currtrirreureererssesesssssssssesssssssssssssssssssssessess 51
5.2.3 Queryable COMPIESSOTS .umrnmeessssssessessesssssssssesssssssssssssssssssssssssssssssees 52
5.2.3 Summary QUeryable COMPIESSOTS ...ommrmmenrsessssssssessssssessssssssssssssees 64
5.4 Chapter SUMMATYocerreesssssesssness 64

CHAPTER 6.t ssse s ssss s s ss s sesss st sss s sssssssesas 66

MOTIVATION AND PROBLEM FORMULATIONovmremerrereresseseeeseesseesseessenssessenns 66
L300 0 0 U 0T L U 0 (o) U 66
6.2 XML OVEIVIEW .o ssss s sssssssss s sssssens 66
6.3 SINATEPNONES oo s 67

6.3.1 Wireless connections as @ SOIULION ... eereeeereeserseessereeessesseesseessenssenssenns 68
6.4 XML COMPIESSION...ceiueurereeerersessessessesesess s sessessessesssss st sseasesssssssssssssssssssessesssssses 69
6.5 Labelling SCREIMES ... sssssss s sssssssssssssssssasess 70
6.6 HYPOTNESIS ..ottt ssss s s s ssss s ssss s sssaness 70
6.6.1 ODJECHIVES..vuirrererrrrssesessssssssessssss s s s s s s ssss s saness 71
6.7 Chapter SUMIMATY c.cenressesssaess 72

vii

00 3 U2 o 1 D 73

SCHEMA INDEPENDENT QUERYABLE XML COMPRESSOR ..o 73
78 B0 801 o Te L Ui o) o FOPE PP 73
7.2 SYSTEIM OVETVIEW ..eeurereiereeressessessssssssessessess s sssssessesssss s s sssssessesssssssssssssssssssssssses 73

7.2.1 The COMPIESSOT wuuieeererseesserssssessesssssssssessess 76
7.2.2 The QUETY PrOCESSOT . sesessesssesessees 76
7.2.3 The DECOMPTIESSOT ..ucurirreerrerssrsesessssssesessssssessees 77
7.3 Chapter SUMMIATY ...ovcereeessesssssessessssssssessness 77

CHAPTER 8. ssse s ss s sssss s ss s e sss st sssssssesas 78

THE COMPRESSOR AND DECOMPRESSORciiieeerereeseereeseesseessesssesssesssesseenns 78
£S 700 B 0 0L 0T L U 0 (0) o UOE PSP 78
8.2 THe COMPIESSOT cuuiiiieeersrissrsessssssssssssssssssessss s ssssss s ssss s sssssssssssaness 78

8.2.1 Compression PrOCESS OVETVIEWcoereerenensesssssssessessesesssssssssessessessesssees 80
8.2.2 XML PaTISING ..ceovereereererreureseseessesessessessessssssssssessessessessssssssssessessessesssssssssessessessessssnes 80
8.2.3 ENCOAING .ottt ssssss s sssssssessness 81
8.2.4 CIUSLEIING covvrvrreueererssesessessssssessss st s ssssss s ssssssss s ssssssssssssssssssssssssssssness 83
8.2.5 Back end COMPIeSSION..miererssissesessesssessessesssesssssssssssssssssssssssssssssssssssssees 84
8.3 The DECOMPIESSOT ueueurerreernersssssrssesssssssssesssssssssssssssssssss s ssssss s sssssssssssssssssssssssess 85
8.4 Chapter SUMIMATY ..cieressssssrssaness 86

CHAPTER 9t ss s ss s s sss st sssssssenns 87

THE QUERY PROCESSOR. ...ttt ssssssssesss st sesssssssssssssssssssesssssnns 87
120 B 91 /0T 15 ot () o VN PP 87
9.2 XML Query Processing OVEIVIEWcoerrerensensenssseesessessessessesssssssessessessessessees 87

9.2.1 General XML Query Classificationesenessssesseees 88
9.3 SIQXC Query Processing OVeIrVIEWerenensenseseesessessessessessssessessessessessessenes 89
9.4 SIQXC Query Classification OVerVIEWcoenenssnesesssssesssssssesessssssssseens 90

9.4.1 Non Predicate QUETIES. ...crenessissnsssessesesss s sssss s sessssssesssssssses 90

9.4.2 Predicate QUETIES ... ssessssss s sssssss s s sssssesssassasses 91
9.5 Detailed Discussion Query Types and Their Evaluation ..., 91

9.5.1 KEYWOTIA QUETY ceurererreeenerssessrssessssssessesssness 92

9.5.2 SIMple PAth QUETY et sssssssssssssssssssees 92

9.5.3 Same node PrediCate QUETY ... emeseesssssssssssssssesssssssssssssssssssssssssees 93

9.5.4 Divergent prediCate QUETY .. sseesssess 93

9.5.5 Single OPErator QUETY ..ueeenenessssssrsssees 95

9.5.6 Multiple 0perator QUETY ...oeeeneesnsssees 95

0.5 SUIMMATY coururrirrireeeiseisesssssssssss s sssss s sssssss s sssssssasssssssssssssssssssssssssssssssssssssssasesns 97

9.6 Chapter SUMIMATY .ceieeessrsssasesns 97
CHAPTER 10 couceeeeetreeseesreessessseessessssssesssesssessessssessessssessesssssssessssssss st sesssssssssssesssssssesas 99
EXPERIMENTAL DESIGN....coirieesereeeserseessessessssessesssessesssesssssssesssssssessssssessssssssssessssssesss 99

L0200 I 00 0 L U o) o PSSP 99

10.2 A Description of the Evaluated Factors......msssessessenns 100

10.3 The EXPeriMentS...urnesemssseesssssssessans 101

10.3.1 The Compressor EXPeriment. ... emensesssssssssessssssssssssssssssees 101
10.3.2 The Query Processor EXperiment. ... eneesssssssssessssees 102
10.4 Implementation of the SIQXC Prototype Overview and Test
ENVIFONMENES ..ot ssssssns 103
10.4.1 The Prototype Implementation ... 103
10.4.2 Test ENVIFONMENTS ..o sssssees 104
10. 5 Document Corpus and XML Benchmarksccueonnennensnenensensensenns 105
10.5.1 XML DAtASELS ..veureeuerrererreeseessesssessesssesssesssesssssssesesssesssesssesssssssssssesssssssesssenes 105
10.5.2 XML Benchmarks ReVIEWc..overeeneennereeensersees e 106

10.6 Comparison with Other COMPIESSOIS ..mmrnresssessrsessssssssessssssssseans 109

10.7 Comparison with Other QUery ProCessors ... msnsessssssssseans 109

10.8 Chapter SUMIMATY ..o ocrereeeresssrssessesss s ssans 110
CHAPTER 11 oo eeseessessses e essse s s s sess st sessss s sesssssssessanes 111
RESULTS AND EVALUATION ..ot ieiereeeererserssesssesessseessssssessssssssssssssssssesssssssessssssessaees 111

0 0 00 0 T L U o) o PP 111

11.2 The COMPIESSOT acuiirirrieeererssrsessessans 111

11.2.1 ComPressSion RAtIO ..c.ccereererensensineeseesessesesesssssssessessessesssssssssessessesssssssssees 112
11.2.2 COMPTeSSION TIME ..o sssssssessessessssssssssees 118

11.3 The QUETY PrOCESSOT et sssans 120

11.4 Chapter SUMIMATY .cveeererssesessesssssessesssans 122
CHAPTER 12 .ot eseessessses s sssse s s sess et sessss s sssssssssassaees 123
CONCLUSION AND FUTURE WORK....vierereesernsereeeseesseessesssesssessssessssssessssssessssssessaees 123

720 T 0 0 0 Ta L U m o) o PP 123

12.2 Main contributions of this reSearch ... 123

12.3 Relating Research Results to the Hypothesis......conennnsennensnsennenn. 124

12.4 FULUTE WOTK .ottt sesssssssesssessssssss s sasssnas 124
CHAPTER 13 ot es et ssses s s s ss s sessss s sesssssssesssees 126
REFERENCES ...ttt sess et sessss s sssssssssessanes 126

APPENDIX 1 oottt sssssssssssssssssssssssos 143

FULL RESULTS FOR THE COMPRESSOR ...t seeseessesseessssesseeseesseessensaees 143
The Compressor EXPeriments.... i ieinssesssssssessssssssssssssssssssssssssssanes 143
CoMPreSSION RATIO .. sss st sessessessessssssssses 143

COMPIeESSION TIME ... s 143

CHAPTER 15 ot ssses e sss st s ssss s seessesssessanes 144

APPENDIX ILcoieteeteeereeseessenseessessessse s sessesssesssssssesssessssssse s sssssssesssesssesssssssesssssssesas 144
THE QUERY PROCESSOR ... sssessse s ssssssessessssssesssssssessaees 144

QUETIES et s s 144
The virtual deVice USEd ... ssessssssesssees 146
SIQXC installed as an applicatioN......cenennenenernseessresesesssssseseans 147
The First SIQXC SCrEEMN ...ttt ssssssss s ssssssssssssessns 147
Results from running a keyword query on customer.Xmlcocoeeereerrernenn. 148
Results of a disjunction query with (]) operator.......neeen. 148

CHAPTER 16 ot sssss s sssse s sss s st sessss s ssesssssssassanes 149

APPENDIX IILcooioeteeeeeseeereemeessesseessessesessseesseessesssssssesssessssssse st ssessesssesssesssssssesssssssesas 149
COMPARISON OF THE COMPRESSORSorierreereetreemeessenssenssessesessseensenssensees 149

QUETY SUPPOTE ceerceeceeeeeseeresrissessssssssessessess s sssess s s sssssessesssssssses 149
Average COMPreSSION Fati0 .. ereeererseeseeressesessssssse e ssssessessesssssssssees 149

LIST OF FIGURES

Figure 2.1: An illustration of the XML StrUCTUIEccccvunererniensesesssensesessessssssessssssessenns 6
Figure 2.2: An empty XML tag....cccoennrenereneseenesssesessessesessssssssessessessesssssssssssessessssssssssees 7
Figure 2.3 B: XML tT€E ..o ssss s s sssssssessessessssssssssssssssessessssssssssnes 7
Figure 2.3 A: XML SNIPPEL...resereerrereesessesesssssssssessessessesssssssssssssesssssssssssssssssssessessssssssssnes 7
Figure 2.4: The smartphone XML SNIPPet....cnmnnenineesnsessssssssssssssssssssssseans 8
Figure 2.6: XPATH expressions and descriptions.......eeneessssseneens 15
Figure 2.7: XPATH operators with eXamples ... 15
Figure 3.1: Query processing in XMLcconnnnenennenssseseesesesesssssssssessessessesssees 19
Figure 5.1: XML blind COMPIESSOTS ...vrrirnenreerirnsrsessssssesessessssssssssssssssssesssssssssssssssssesns 45
Figure 5.2: XML CONSCIOUS COMPIESSOLS uuvuueurirrnressessssessessssssessssssssssssssssssssssesssssssssesns 47
Figure 7.1: System overview design for SIQXC......oumrmrnennmmsnensesnssnsesesssssesseens 74
Figure 7.2: Complete SIQXC deSigN...comnenrninersrssinessessssssesssssssssssssssssssssessssssssesns 75
Figure 8.1: XML document SNIPPEL...ccrrenerrmrnesrssssensesssssssssesssssssssssesssssssssssssssssssesns 79
Figure 8.2: The cOompPressor deSiZN ... iiessieesssssessssssssssssssssssssessssssssesns 80
Figure 8.3: XML tree repreSentation ... esesesssssssesessessesessssssssssssessessesssses 81
Figure 8.4: Encoded XML tree representation ... emeessssssesssssseeens 83
Figure 8.5: XML Data grouped into CONtaiNers.......umineenmnsesesssssesesssssseseens 84
Figure 8.6: The decompressor deSiZNenminenesnssessssssssssssssssssesssssssssesns 85
Figure 9.1: The quUery processor deSIZNcmineesnssnesssssseesssssssssessssssssesns 89
Figure 9.2A: CONTAINET 3.AZE ... sss s s sssssssessessessssssases 94
Figure 9.2B: Container 3.NAME......ccorerereneineeseeseeressesessssssssessessessesssssssssssssessessessssses 94
Figure 9.3: Container 3.Age, 2.Employee and 3.Name with selected results.... 96
Figure 11.1: Compression Ratio s of different datasets........cuenemneensessrnsennns 113
Figure 11.2: Compression Ratio with and without Zipccoumenrenerneesserirnnennns 114
Figure 11.3: Compression Ratio against file SiZe ... 115
Figure 11.4: Average compression ratios against QCccovnnerneneressessesennenns 116
Figure 11.5: Average compression ratio against NQCc.cccunrnenrernsrssessessssssenes 117
Figure 11.7: Compression time against file SiZe.......mneorennesnenneesseensnsenns 119
Figure 11.8: Compression time with and without DOM.......ccouveerenineenreeniinnennns 119
Figure 11.9: Query Response time on different sized XMarKk files.......ccccvurrrennee 121

xi

LIST OF TABLES

Table 10.1: Tested factors on the SIQXC components

Table 11.1: Datasets and their SiZes.......vvcieeveieinne

xii

CHAPTER 1

CHAPTER 1

INTRODUCTION

1.1 Introduction

The verbose nature of XML has led to much research devoted to XML
compression [Tolani and Haritsa, 2000; Min, Park and Chung, 2003; Leighton,
Miildner and Diamond, 2005; Arion et al,, 2007; Cheng and Ng, 2004; Wei and
Wei, 2012; Rocco, Caverlee and Liu, 2005; Ng et al., 2006; Lin et al., 2005;
Wang et al., 2004; Wong, Lam and Shui, 2007; Ferragina et al., 2006; Arroyuelo
et al, 2010; League and Eng, 2007; Hariharan and Shankar, 2005; Skibinski
and Swacha, 2007; Leighton et al., 2005; Adiego, de la Puente and Navarro,
2004; Cheney, 2001; Li, 2003; Liefke and Suciu, 2000]. This has become more
of interest since the use of resource constrained devices is also on the rise.
These devices are limited in terms of storage space, processing power and
they also have finite energy provided by their lithium battery [Oliver, 2009;
Fei, Zhong and Jha, 2008; Hu et al., 2010].

These limitations make it difficult for the resource constrained devices
to cope with storing and processing XML given that it is verbose. XML
queryable compression methods could be a solution but none of them has a
query processor that runs on a resource constrained device. Currently,
wireless connections (WI-FI, 3G, and 4G) are being used to alleviate the
storage problem by loading only the necessary data when required. However
wireless connections drain the finite energy [Oliver, 2009; Chareen et al,,
2008, Lindholm, 2009] that these devices depend on, therefore, though it
solves the memory problem it is not an ideal solution. The adverse effects that

wireless connections have on the battery life cannot be ignored.

INTRODUCTION

This thesis describes an attempt to address this problem by proposing
a queryable XML compression system with a query processor that runs on a
resource constrained environment thereby lowering wireless connections

dependency yet alleviating the storage space problem.

1.2 The Thesis Structure

The thesis is structured in way that lays out the basics about XML
leading to a discussion of related work like query processing and optimization,
resource constrained devices and XML compression. Having been established
from the literature the motivation of this work is presented highlighting the
objectives. The last chapters of the thesis focus on the design and the
experimental evaluation of SIQXC, the proposed system. The chapters are as

follows:

Chapter 1: Introduction. This chapter gives a brief overview of XML
and outlines the thesis structure giving a brief summary of what each chapter

covers.

Chapter 2: XML Background. The basic syntax of XML, its storage,
parsers and query languages are briefly discussed in this chapter to lay a

foundation of the broad topic of this thesis; XML.

Chapter 3: Query Processing and Optimization. Ideas from labelling
schemes and query processing were used in this work therefore this chapter
presents the core operations behind query processing and also reviews the

existing optimization schemes.

Chapter 4: Resource Constrained Devices. This chapter discusses the
limitations that come with using resource constrained devices. It describes the

existing solutions and highlights their limitations.

Chapter 5: XML Compression. This chapter discusses the existing,
commonly used XML compression methods. It classifies these compression
methods and also highlights their limitations with regards to resource

constrained devices.

INTRODUCTION

Chapter 6: Motivation. The motivation chapter defines the problem
that this work seeks to address by giving an overview of the motivation,
stating the hypothesis, goals and showing the contribution that this work

makes.

Chapter 7: Schema Independent Queryable XML Compression. In this
chapter an overview of the Schema Independent Queryable Compression
method (SIQXC) is made. The chapter presents the components of SIQXC
giving a brief outline of each component. A complete system design is also

shown in this chapter.

Chapter 8: The Compressor and Decompressor. This chapter explains
the two components of SIQXC that run on a resource rich platform; the
compressor and decompressor. The processes that are carried out in each

component are discussed with examples.

Chapter 9: The Query Processor. In this chapter the two components
of the query processors are explained. The supported query types are

discussed showing how they are evaluated.

Chapter 10: Experimental Design. This chapter presents the design of
experiments that are used to evaluate the functionality and performance of
the different components of SIQXC. It also discusses real world datasets that
are usually used to evaluate XML applications and the most widely used XML
benchmarks. The chapter also covers the possibilities of comparative analysis

with existing systems.

Chapter 11: Results and Evaluation. The results from the experiments
described in Chapter 10 are presented and evaluated in this chapter. The
results describe the compression ratios, compression times, query response

times and decompression times of different datasets.

Chapter 12: Conclusion and Future Work. The findings of this
research are summarised in this chapter. The chapter also suggests areas of
future work based on the limitations discussed under the Results and

Evaluation chapter.

INTRODUCTION

1.3 Chapter Summary

This thesis proposes an XML compression system with a query
processor that runs on a resource constrained environment to allow the
verbose XML to some extent be stored and processed in that environment. The
thesis describes the background of XML and discusses research work that has
been done that is related to this work. It also outlines the design of the
proposed system, the experimental design to test it, results and their
evaluation and lastly states the findings and suggests areas of future work

from the limitations that the results reveal.

CHAPTER 2

CHAPTER 2

THE XML BACKGROUND

2.1 Introduction

This Chapter provides a background on XML and XML databases. It introduces
the XML language and its origin. The chapter discusses basic concepts of XML
including its syntax, the subject of validity and well-formedness, parsing and
XML query languages emphasising XPATH since it is the most widely used

query language. This lays the foundation upon which this research is based.

2.2 Overview

The Extensible Markup Language (XML) is a self-describing semi structured
markup language that is widely used for storing and exchanging data. It has
been described as a de facto standard for storage and exchange of data over
the web [Sakr, 2009; Ng et al., 2006; Lu and Cheng, 2004; Nicola and Van der
Linden, 2005; Weiner, Mathis and Harder, 2008; Su-Cheng et al., 2009; Haw
and Lee, 2007; Zhou et al.,, 2009; Wang et al., 2009; Mlynkova and Necasky,
2009; Grimsmo and Bjgrklund, 2010; O’Connor and Roantree, 2010; Zhang
and Ozsu, 2010; Byun and Park, 2010, Xin, He and Cao, 2010]. XML was
derived from SGML in 1996 and was later recommended by W3C in 1998
[W3(C, 2010; Tidwell, 2002]. Unlike other markup languages such as HTML its
focus is not on the appearance of data but storage and exchange. This semi-
structured language is popular for its self-describing nature because it carries

semantics about the data it represents.

THE XML BACKGROUND

XML is platform independent [Nicola and Linden, 2005] therefore it
provides interoperability between different applications [Gulhane and Ali,
2012; Morgan, 2007]. Furthermore, it is readable by both machines and
people [Kirk et al., 2005]. Its syntax is fairly simple and it has an extensible
vocabulary where tags are user-defined. These attractive features have led to
an increased availability of XML databases spread among different domains

ranging from medicine, biology, business and ecommerce.

2.3 Basic XML Syntax

The XML syntax includes elements, attributes, comments and
sometimes processing instructions. An element is the basic unit of XML
markup. The markup describes the structure of an XML document. In this
markup, an element is made up of two matching tags; the opening tag ‘<>’ and
closing tag ‘</>". Each of these tags encloses a tag name. The tag name is
normally a description of the data that is held therein if any. Tags are named
following specific rule, for example, the name is case sensitive and cannot start
with xml or XML. An element usually contains content enclosed between the

opening tag and closing tag as shown in the example below:

Content

\

<Phone> Galaxy S4 </Phcone>

Opening tag o
osing tag

Figure 2.1: An illustration of the XML structure

THE XML BACKGROUND

Sometimes an element can be empty. An empty element is represented

as a self-closing tag. See the example below:

"

<Image file= "54.jpeg"/>

Figure 2.2: An empty XML tag

Elements can also have attributes that describe their static values.
These attributes are enclosed in the opening tag. The syntax of an attribute is
such that it has a name and a value. The value is normally surrounded by
quotation marks as shown in the Image’ example shown above. This element

has an attribute name ‘file’ with a value ‘S4.jpeg’.

In addition to having attributes and content an element can contain
other elements; child elements. The rule is that all child elements must be
closed before the parent’s closing tag. The nesting of elements can go on as
deep as required resulting in a hierarchical structure (see Figure 2.3 B and 2.3
B below). Figure 2.3 A is a snippet of an generated XML document and Figure
2.3 B shows the elements tree representation of the XML document in Figure

2.3 A

<?xml version="1.0"7> Midha
<Media>
<Image>
<Photo type="portrait"> CS Lewis Image
<File size>785 KB</File size>
</Photo>
<Photo type="landscape”>Rockies Photo Photo
<File size>912 KB</File size>
</Photo>
</Image> File size File size
</Media
Figure 2.3 A: XML snippet Figure 2.3 B: XML tree

XML documents may contain an optional piece called the prolog which
comes before the first element (root element). This is where the XML
declaration which indicates the version of XML used in the document is
specified. This declaration starts with ‘<?’ and ends with ‘?>’. It forms part of

the important markup called the processing instructions (PI). In addition to

THE XML BACKGROUND

the XML declaration, the PI may specify the style sheet that a browser has to
comply with in displaying the XML document. Figure 2.4 shows XML

document with the PI discussed.

8"?>

" href="cdcataleg.css"?>

?xml version="1.0

<Smartphones>

<Phone> Galaxy 54

<05> Android 4.2.2 </05>
<Image file= "S4.jpeg"/>
</Phone>

<Phcne> iPhone 4

<05> ios 7 </05>

<Image file= "IPhoned.jpeg"/>
</Phone>

</Smartphcnes>

Figure 2.4: The smartphone XML snippet

An XML document may also have comments that provide further
description. They can be added anywhere in the document. Note that,
comments are not part of the textual content of the document therefore some
XML processors may not even read them. An XML comment begins with ‘<!--’

and ends with ‘-->". The XML file in Figure 2.4 is shown below with a comment.

<?xml versiocn="1.0

]
0
o
o
s
Il
—
-
|
i
|
o0
v

<?xml-stylesheet href="cdcataleg.css"?>
<Smartphones>
<!-- This file has to updated quarterly -->

<Phone> Galaxy 5S4
<05> Android 4.2.
<Image file= "54.
</Phone>

L
A
o
0
v

peg"/>

<Phone> iPhone 4

<05> iocs 7 </05>

<Image file= "IPhoned.jpeg"/>
</Phone>

</Smartphcnes>

Figure 2.5: The smartphone XML snippet with a comment

THE XML BACKGROUND

2.4 Well Formedness and Validity

Although XML tags are user defined, XML specifies rules that every
document must comply with for it to be considered a well formed document.
According to these rules, every XML document must have one root element;
the first element of the document. Each element should have an opening and
closing tag. Tags must be properly nested with no overlapping; tags of
subsequent elements must be closed before the parent tag is closed.
Furthermore, the opening and closing tags of an element are case sensitive.
For most applications it is enough that an XML document is well formed but
for some a document has to adhere to additional rules specified in a separate

document called a schema.

A schema specifies the structure of an XML document
[Papakonstantinou and Vianu, 2000; Fan and Libkin, 2002; Guerrini et al,,
2005]. An XML document that has to comply with a certain schema has to be
validated against a specific schema to ensure that it meets the requirements
outlined therein. There are two widely used schema languages, the Document
Type Definition (DTD) and XML Schema (XSD) [Lee and Chu, 2000; Vitali et al.,
2003]. The DTD was the first schema language to be used. In 2004 XSD was
passed as a W3C standard and it is the mostly widely used schema.
Restrictions included in a schema are; the order in which elements should
appear, the number of children an element can have, attributes and sometimes
the number of occurrences of an element. This information is helpful in that it
maintains data integrity. It can also be exploited to accelerate query execution
[Park et al.,, 2002, Bing-zhang et al.,, 2010] and to improve the compression
ratio of some XML compressors like XAUST [Hariharan and Shankar, 2005],
RNGZIP [League and Eng, 2007] and XCQ [Ng et al., 2006].

The XSD is the most widely used schema [Bex, Neven and Van den
Bussche, 2004; Bex, Neven and Vansummeren, 2007] because besides offering
more restrictions like the use of namespaces and typing, it is written in XML.
This allows it to use one tool (validator) for validation and checking the well

formedness of a document whereas with a DTD a different tool has to be used.

THE XML BACKGROUND

2.5 XML Storage

An XML file can either be data centric or document centric. The data
centric XML file assumes a highly structured format whereas the document
centric file is semi structured text [Sun and Wang, 2011; Noaman and
Almansour, 2012]. With a document centric file a few tags are used around
text to describe what the text represents. A good example of this is an XML

representation of a newspaper article.

Data centric XML files are highly structured and have a high tag to text
ratio. This would be best illustrated as an XML representation of a telephone
directory. The structured nature of data centric documents makes it easier for
them to be processed by machines than the document centric ones which are

more human readable.

XML can be considered a database because data can be stored and
retrieved from it like other databases. It also shares some other features with
the existing database like having a schema and query languages. It also
provides interface for programming languages; SAX and DOM (see Section
2.5). It however has some limitations that raised a debate as to whether it
should be treated as a database or not [Sun and Wang, 2011; Noaman and
Almansour, 2012]. These limitations include lack of security, multi access and
recovery [Bourret, 2005; Noaman and Almansour, 2012; Noaman and
Almansour, 2012]. As a database, XML can be stored in three different ways

described below:

= LOB: In this approach the original XML document is store in a column
as a large object.

= Extended relational: This model disintegrates the XML document by
shredding it so it can be stored in tables and columns.

= Native: This approach uses a tree structured data model to store XML

which is hierarchical by nature.

There are two types of XML databases; Native XML databases and XML
Enabled Relational Databases [Haw and Rao, 2005; Bourret, 2005; Noaman
and Almansour, 2012]. The first two approaches above are used in the XML

Enabled databases and the native approach is used in the Native XML

10

THE XML BACKGROUND

databases as the name suggests. The way data is stored facilitates query
processing [Zhang and Ozsu, 2010; Wong, Lam and Shui, 2007] therefore

there are costs and benefits of using each of the storage models.

The XML Enabled Relational Databases are relational databases that have
the capability of handling XML data by either storing it as a LOB [Simalango,
2010, Tatarinov, et al., 2002] or shredding it into object relational tables and
columns [Simalango, 2010]. When stored as LOB, XML can be expensive to
manipulate especially if it is a large document because it will have to be loaded

in to the memory as a whole.

Shredded XML data on the other hand is easier to manipulate but creates a
time overhead because of the mapping and joins that have to be done when
executing queries. These processes are necessary because the shredded XML
is disintegrated therefore cannot be manipulated in the state it is stored in.
XML is shredded to turn its hierarchical model into a tabular one that be
stored in relational databases since they are flat. The challenge in these
databases is to find a mapping approach [Suei et al.,, 2009, Haw and Lee, 2010]

that preserves semantics at a low cost.

Relational databases are not designed to handle XML data in its native
form so manipulating XML in these databases can be costly in terms of
efficiency and performance. However they are still needed to handle critical
data because they have been used for many years and are very stable. Much
research has been done to improve their security, integrity of data,
transactions and query optimization which is an advantage over native XML

database.

Native XML databases are not as mature as relational databases [Bourret,
2005] nor are they intended to replace them but they handle XML better
[Winer and Harder, 2010] because they store it in its hierarchical model. This
preserves the semantics held in XML that would otherwise be lost during
shredding and normalisation that is required in XML enabled relational
databases. Native XML databases store XML as an XML INFOSET, Document
Object Model (DOM) or Simple API for XML (SAX) (See the Section 2.5 for the
discussion on DOM and SAX).

11

THE XML BACKGROUND

These models are designed to handle hierarchical data making the cost of
query processing low by eliminating the joins and mappings required when
using enabled relational databases. Of the three models mentioned, DOM and
SAX are the most commonly used. The former supports breath-first traversal
access pattern through the JAVA getChildNodes method from the Node class
whereas the latter demonstrates the depth-first traversal access pattern where
a pair of begin- and end-events is generated for each node [Zhang and Ozsu,
2009]. The native approach introduces operators that are optimized for tree
navigation, deletion, insertion and update [Zhang and Ozsu, 2009]. This work
assumes a native XML storage approach therefore, the discussion on query
processing and optimization in Chapter 3 covers some of these operators and

how they have been implemented and optimized.

2.5 XML Parsing

An XML document has to be parsed to be used with any application
[Zhao and Bhuyan, 2006, Haw and Rao, 2007]. Parsing XML prepares it to be
accessible so that processes like query evaluation can be executed.
Programming languages like JAVA provide XML Application Programming
Interfaces (API) for XML parsing. There are two main XML APIs; Document
Object model (DOM) and Simple API for XML (SAX) [Nicola and John, 2003;
Zhao and Bhuyan, 2006; Haw and Rao, 2007]. These APIs define the way in
which XML documents are accessed and manipulated; DOM for random access
and SAX for serial access. DOM parses an XML document as a whole creating
an in memory tree representation [Zhao and Bhuyan, 2006] whereas SAX is an
event driven parser that creates tokens or events instead of an in memory tree
representation [Nicola and John, 2003, Zhao and Bhuyan, 2006]. With SAX all
the processing on a document is done in one cycle whereas in DOM processing
can be done as many times as necessary. The type of parser used therefore
affects performance [Nicola and John, 2003]. SAX is best for streaming

application whereas DOM is suitable for databases [Lam et al., 2006].

12

THE XML BACKGROUND

2.6 XML Query

An XML query is essentially a path expression or a series of steps
which when followed to navigate the XML tree should return the desired node
or nodes if they exist [Flesca et al., 2003]. In XML query processing, a user
specifies what data they want by giving a path expression that is then followed
to extract such data. There are generally two types of XML queries; structural
and full text queries [Su-Cheng, 2009]. This classification is discussed further
in Chapter 3. Structural queries vary from simple selection to more complex
operations such as range queries and structural joins. As stated earlier XML is
hierarchical by nature so it can be viewed as a tree with different types of
nodes. The nodes in an XML tree include the element nodes, the root node,
text nodes (textual content of an element) and attribute nodes. The core
operation in XML query processing is identifying the relationships that exists
among these nodes [Yun and Chung, 2008; Gou and Chirkova, 2005; Lu et al.,
2004; Jiang et al.,, 2004; Chen et al,, 2005; Chen et al,, 2006; Xu et al,, 2009;
Jiang et al., 2009, Lu et al,, 2011].

There are three types of relationships; Parent-Child (P-C), Ancestor-
Descendent (A-D) and siblings [Yun and Chung, 2007, Su-Cheng; Haw and Lee,
2008, Haw and Lee, 2009]. Assuming the smartphone XML document shown

in Figure 2.3 the stated relationships are as follows:

= P-C: This relationship exists between Phone and Image with Phone as
a parent
= A-D: OSis a descendant of Smartphone

= Sibling: OS and Image are siblings

XML is queried through an XML query language. The language defines the
way queries are processed and operation that are supported. The most widely
used XML query languages are the XML Path Language (XPATH) [W3C, 1999]
and XML Query Language (XQUERY) [W3C, 2007]. These languages are used

to update, retrieve, and delete data.

XPATH is however limited in its expressive power therefore does not
support complex processes such as transforming the result set like sorting.

However, despite its limitations, XPATH is still used by many applications for

13

THE XML BACKGROUND

its simplicity. It was the first query language so it forms the basis for other
XML query languages including XQUERY. Both XPATH and XQUERY are World
Wide Web Consortium (W3C) recommendations. Other XML query languages
recommended by W3C are the XML Pointer Language (XPointer) and the XML
Linking Language (XLink). In addition to these there are other languages also
used to process XML documents, these include, the XML Style sheet Language
Transformation XML (XSLT) , Lorel [Abiteboul et al., 1997], XML QL [Deutsch
et al,, 1999], XQL [Robie et al.,, 1999] and QUILT [Chamberlin et al., 2000].
These languages are not discussed further because they are beyond the scope
of this work. This work supports XPATH since it is simple and effective and is
widely used and supported by applications as stated earlier. This language is

therefore discussed further in the following section.

2.6.1 XPATH

An XPATH query is made up of a path expression formulated by nodes
separated with backward slashes ‘/’. Each slash indicate structural
relationships among nodes. A path expression that only has singles slashes
shows an absolute path of a desired node from the root node. This indicates a

P-C relationship. Consider the following examples:

Smartphones/Phone/0S «——— Absolute path
Or

Smartphones//0S <«—————— Relative path

The absolute path is evaluated from the root node while the relative
path is evaluated from the context node. The example in Figure 2.6 below

shows some of the syntax used in XPATH expressions

14

THE XML BACKGROUND

Description
nodename Selects all nodes with the name "nodename"
/ Selects from the root node
/! Selects nodes in the document from the current node that match the selection no matter

where they are

Figure 2.6: XPATH expressions and descriptions [W3Schools]

Optionally a function or predicate is included in this path expression
enclosed in square brackets ‘[]’. A predicate specifies comparative and
arithmetical operations to be performed. XPATH supports relational
operations like <, >, =, and !=. It also supports logical operations such as ‘AND’
and ‘OR’. The following table indicates a summary of operations supported by

XPATH

Operator Description Example Return value

| Computes two node-sets //book | //cd Returns a node-set with all
book and cd elements

+ Addition 6+4 10
- Subtraction 6-4 2
* Multiplication 24
6*4
div Division 8 div 4 2
= Equal price=9.80 true if price is 9.80

false if price is 9.90

1= Not equal price!=9.80 true if price is 9.90
false if price is 9.80

< Less than price<9.80 true if price is 9.00
false if price is 9.80

<= Less than or equal to price<=9.80 true if price is 9.00
false if price is 9.90

> Greater than price=9.80 true if price is 9.90
false if price is 9.80

>= Greater than or equal to price>=9.80 true if price is 9.90
false if price is 9.70

or or price=9.80 or price=9.70 true if price is 9.80
false if price is 9.50

and and price=9.00 and price<9.90 true if price is 9.80
Tase M pICE 15 8,50

Figure 2.7: XPATH operators with examples [W3Schools]

The XPATH query below requires the OS of a smartphone that has an
image with attribute file of value S4.jpeg. Assuming the smartphone XML

document in Figure 2.5 the result is ‘Android’.

/Smartphones/Phone/Image[@file= “S4.jpeg”] /OS

15

THE XML BACKGROUND

2.7 Chapter Summary

This chapter outlined the basic concepts of XML by discussing its
syntax, the way it is stored, parsed and retrieved. It is identified that XML
documents can either be document or data centric with data centric
documents being more structured. They can be stored in enabled relational
databases or in native XML model. Each storage model has cost and benefits
therefore careful considerations must be made before choosing the model to

use for storing XML data.

It has also been discussed that XML has to be parsed using an API like
DOM to be accessible. The parsed XML can be queried and updated through a
query language. The most widely used languages are XPATH and XQUERY
[Brenes Barahona, 2011]. Query processing in XML heavily depends on the
structural relationship among nodes in an XML tree therefore any system that
supports query evaluation should ensure that these relationships are retained
when the data is stored. Many query optimization schemes and compression
methods that support queries somehow retain the relationship among nodes

as described in the next chapter.

16

CHAPTER 3

CHAPTER 3

QUERY PROCESSING AND OPTIMIZATION

3.1 Introduction

XML is hierarchical by nature therefore it can be viewed as a tree with
different types of nodes as described in the previous chapter. Querying XML
therefore is essentially searching for a path or tree pattern of the specified
nodes from this tree. The tree structure of XML makes querying easy in that a
specific node can be identified by its relationship with the current node or
root node. The relationship among nodes is vital because identifying them is
the core operation of query processing in XML [Yun and Chung, 2007, Lu et al,,
2004, Jiang et al., 2004, Chen et al., 2005, Chen et al., 2006, Zhu et al., 2008, Xu
et al, 2009, Jiang et al., 2009, Lu et al,, 2011]. As mentioned in Section 2.7 any
system that supports query evaluation has to consider retaining these
relationships as much as possible. This chapter discusses the fundamental

ideas of query processing and query optimization.

3.2 Query

An XML query in its simplest form is a path expression or a series of
steps which when followed to navigate the XML tree return the desired node
or nodes if they exist [Flesca et al, 2003]. A query should define the
information that the user is looking for, the scope through which it is to be
found and the context in which it should be presented [Schlieder, 2002]. The
path expression includes steps (node names) separated by a slash (/) and a

qualifier or a predicate.

17

QUERY PROCESSING AND OPTIMIZATION

For example: /book/author[@date = "2009"]/title. The query simply
means give all titles of books with an author that has an attribute date of value
2009. This query shows the two basic parts of a query; location path
‘/book/author{@date = "2009"]’ and an output expression ‘/title’ [Peny et al,,
2003]. This is discussed further in Chapter 9.

There are generally two types of XML queries; structural and full text
queries [Su-Cheng, 2009; Scioscia and Tinelli, 2011]. Full text queries are
keyword based. They do not require a user to know the structure of the XML
beforehand. Processing full text queries is mostly Information Retrieval (IR)
inclined therefore uses techniques that are borrowed from this discipline.
Structural queries are divided further into twig and simple path queries [Haw
and Lee, 2009]. A simple path query defines a query based on one element
usually from the root element (simple path expression) while a twig query
defines a query based on two or more elements (branching path expression).
The way a query is processed is dependent on the type of query. The next

section discusses query processing.

3.2.1 Query Processing

As mentioned above the type of query determines the way it is
processed. The other factor that influences the approach used in query
processing is the model in which data is stored. Processing XML queries
therefore can either be join-based or navigational [Madria et al., 2007]. If data
is highly disintegrated, processing is join-based. This approach mostly
followed in enabled relational database. As discussed in Chapter 2 Section 2.5,
sometimes data is disintegrated or shredded to be stored in relational
databases hence the need to perform several joins during query processing.
Joins can also be necessary when dealing with twig queries in native XML
storage model. For example, in queries where a disjunction operator is
employed joins cannot be avoided. The navigational approach is followed

when processing simple path queries on native XML storage model.

18

QUERY PROCESSING AND OPTIMIZATION

Generally query processing involves receiving a query as input,
followed by analysis where the syntax and semantics of the query are checked
to see if it is valid. If the query is valid redundant parts are removed and a
query graph is produced. The query graph is then mapped to a Query
Execution Plan (QEP). One of these plans is then executed to get the desired
result set [Weiner et al., 2008]. This process is depicted in Figure 3.1 below.

Optimization and

code generation Execute
Analysis

Query 5| QueryGraph Query Execution
Plan

I 5| Result

Figure 3.1: Query processing in XML

Several query languages that are mentioned in Section 2.6 are used for
query processing to retrieve information; XPATH being the most used because
of its simplicity but XQUERY supports more operations. Efficiency is important
to every system so in addition to the XML query languages, optimization
schemes have been developed to improve query processing performance in
terms of response time. Section 3.3 discusses query optimization schemes
highlighting their use of structural relationship among nodes to improve

query performance.

3.3 Query Optimization

Optimizing query execution in XML is achieved in many ways among
which include; indexing [Goldman and Widom, 1997; Rizzolo and Mendelzon,
2001; Wang et al., 2003; Chen et al, 2003; Zhang et al, 2006], labelling
schemes [Weigel et al,, 2005; Cohen et al,, 2002; O’Neil et al., 2004; Duong and
Zhang, 2005; Lee and Hsu, 2004; Yun and Chung, 2008], and views [Vidal and
Casanova, 2003; Zhou, 2010; Lo et al.,, 2010; Gao et al,, 2010; Liu et al,, 2010;
Phillips et al., 2010]. Some approaches use a combination of the above

methods; the hybrid methods. An example of this is where indexing is used

19

QUERY PROCESSING AND OPTIMIZATION

with labelling resulting in a technique called INLAB [Lee and Haw, 2007].
INLAB is an acronym for INdexing and LABelling. In rare cases a schema can
also be used sometimes to optimize query processing [Wang et al., 2003]. This

is because it is not always advisable to use schema as discussed in Chapter 8.

Optimization schemes have been adopted by some compressors
because of their effectiveness in producing structural summaries and
efficiency in identifying structural relationship (see Section 4.2.3.2.3).The
following sub sections discuss indexing and labelling techniques to illustrate
how they improve performance in query processing through structural

summaries.

3.3.1 Indexing

Indexing is one of the widely used optimization techniques. Indexing
techniques usually group nodes according to their structural similarities
[Zhang and Ozsu, 2006]. It prunes the XML document resulting in a summary
that represents the original XML tree [Chen et al., 2005]. The resulting smaller
tree is easier to traverse during query evaluation thereby reducing query
execution time. Though they improve query processing efficiency, indexes can
consume a lot of space thereby exacerbating the XML storage problem. The
compressors that adopt indexing usually compromise compression ratio to

increase query support.

An intelligent index consumes less space while optimizing query
execution. The structure of an index dictates the type of queries the index can
process efficiently because an index suggests the way data is stored which
influences the way queries are processed. Researchers over the years
developed indexes such as DataGuides [Goldman and Widom, 1997], 1-index
[Milo and Suciu, 1999], ToXin [Rizzolo and Mendelzon, 2001], MIS [Lian et al.,
2005], ViST [Wang et al,, 2003], FIX [Zhang et al., 2006], APEX [Chung et al.,
2002], A (k)-index [Kaushik et al,, 2002] and D (k)-index [Chen et al., 2003]

to optimize query processing.

20

QUERY PROCESSING AND OPTIMIZATION

Each of the above indexing techniques is generated using a unique idea
that distinguishes it from others. The idea behind the index determines the
structure of the index which influences the size of the index and the queries it
can process efficiently. This idea also contributes to some of the existing index
classifications. The indexing techniques classifications include; Manandhar’s
accurate and approximate indexes [Manandhar, 2007], Madria et al’s name,
value and path indexes [Madria et al., 2007], Moro et al.’s bisimilarity driven,
DataGuides, suffix tree [Moro et al., 2005], Ahn et al.’s sequence, structural,
numbering and keyword indexes [Ahn et al.,, 2005] and lastly Haw and Lee’s
traditional, similarity based, Forward and backward and advanced indexes

[Haw and Lee, 2008].

According to Manandhar accurate indexes are those that reflect the
true structure of the source whereas approximate indexes group nodes
according to the local structure. An example of accurate index is a DataGuide.
APEX and A (k) - index are examples of approximate indexes. This
classification is the simplest of those mentioned above. Accurate indexes have
an advantage over approximate indexes in that an answer can be derived
without traversing the source since these indexes contain full paths from the
root for each node. However, accurate indexes suffer from the index size
problem which places a high cost on memory. Another shortfall of these

indexes is that they do not support branching queries.

Approximate indexes are very effective in pruning the XML tree and
give accurate results for short queries. The pruned XML tree is very small
because the index does not represent full paths of nodes based on the idea
that not all paths are necessary for query evaluation. This assumption is
normally based on the workload of XML database which is mined over time.
For that reason these indexes fall short in processing long path queries
especially if it is a query that has never been executed before. Though accurate
indexes consume a lot of space, some compressors still adopt them. The

DataGuide is used in XQuec [Arion et al., 2007], a queryable compressor.

21

QUERY PROCESSING AND OPTIMIZATION

Haw and Lee (2008) proposed a classification method that is more
detailed than Manandhar’s. In their work indexes are classified into four
categories. The traditional indexes which are an equivalent of Manandhar's
accurate indexes. The other three classes indexes are equivalent to
Manandhar‘s approximate indexes; these are similarity based indexes which
groups nodes according to local similarity, forward and backward indexes
which cover the backward and forward path and advanced indexes which are

indexes that have been recently proposed like FIX.

The widely used indexes are discussed below outlining the techniques

used in creating each index and some of their limitations and strengths:

A DataGuide [Goldman and Widom, 1997] is a path index that shows a
structural summary of the database. It gives the actual structure of the
database therefore it can be seen as a descriptive schema. According to Chung
et al [Chung et al., 2002] and Haw and Rao [Haw and Rao, 2007] the algorithm
for creating a DataGuide is like the conversion from non-deterministic finite
automaton to deterministic finite automaton [Haw and Rao, 2007; Chung et
al, 2002]. This index is an accurate index according to Manandhar’s
classification discussed above. All the paths that exist in the source are
represented but each path is represented only once. It only supports forward
traversals from the root so it does not support twig or branching queries, only

simple path queries.

A DataGuide can either be minimal or strong [Haw and Rao, 2005]. The
minimal DataGuide is compact but has shortcomings. When using the minimal
DataGuide the source and the DataGuide has to be traversed simultaneously
because the DataGuide does not preserve hierarchical relationships [Haw and
Lee, 2008] so it is normally not sufficient to use to process queries. The
simultaneous traversal creates a time overhead so a minimal DataGuide is not
ideal for query processing especially for large databases. DataGuides are
generally not efficient for query optimization because of the space they

require for storage.

APEX [Chung et al., 2002] also known as Adaptive Path IndEX is an
approximate index that uses two structures; the Hash tree (Hapex) and the

Graph (Gapex) [Haw and Lee, 2008]. The Gapex keeps the structural summary of

22

QUERY PROCESSING AND OPTIMIZATION

paths that are visited frequently. The Hapex on the other hand keeps
information about the incoming label path to the respective nodes. Unlike the
DataGuide, APEX uses most frequently used paths identified by a sequential
data mining [Haw and Lee, 2007] that is performed to formulate the Gapex. An
algorithm is run to identify these paths to generate an index. These paths do
not necessarily start from the root. Because of its nature of gathering
information about frequently used paths, it is sometimes viewed as a
workload aware index [Moro et al, 2008]. This index cannot efficiently
process new queries because they would not appear in the Gapex. The
sequential data mining is expensive [Haw and Rao, 2005] and like the

DataGuide, this index does not support branch queries [Haw and Lee, 2008].

The A(k)-index [Kaushik et al., 2002] was made with the assumption
that queries are normally short so the index does not necessarily have to
represent all the paths that exist in the source or database. Frequently used
paths are used to group nodes along them according to local similarity [Haw
and Lee, 2007, Wang et al, 2005]. The variable k is set by the user. It
determines the size of the index and the extent to which it can offer accurate
results. The size of k is directly proportional to the index size. If k is a bigger
number then the index will be bigger too. The accuracy of the results is
dependent on the length of the query and k. This index provides accurate
results for queries with paths whose length is less than k only [Lian et al.,
2005]. Approximation is used to evaluate expressions that have a path longer
than k but this at times does not give accurate results [Haw and Rao, 2005].

This is an approximate index that only supports simple path queries.

The Feature based IndeXing, FIX, is based on the spectral graph theory
[Zhang et al., 2006]. The XML database is broken down into twig or branched
patterns and distinctive features are extracted from each twig pattern to
calculate its feature vector based on structural properties. The feature vector
is then used as a key or signature for that particular twig. All the keys for
different twig patterns are stored in a B* tree. When calculating the feature
vectors a twig pattern and its value are treated as an object. Incoming queries
go through the same process to generate their keys which are then used in the
matching process. To evaluate a twig query therefore is mainly looking up for

a key from the B+ tree. In their evaluation of indexes, Haw and Lee [Haw and

23

QUERY PROCESSING AND OPTIMIZATION

Lee, 2008] suggested that FIX has a high pruning power thus efficient in
optimizing query processing. This index supports twig queries because of the

way it is generated.

3.3.1 Summary

The main aim of indexes is to make data easily accessible by making
the XML tree smaller or storing only relevant data to shorten query execution
time. The efficiency of an index depends on the data it stores and its structure.
In pruning the XML tree relationships are preserved to facilitate efficient

query processing.

Some indexes like DataGuides come with a high storage cost because
they represent full paths for each node rendering the index inefficient. In the
attempt to make an improvement to reduce storage cost, methods which do
not represent full paths like A(K) index were developed. The A(K) index
however, cannot process queries that have paths that are longer than k
efficiently. Other methods only store frequently used information instead of
representing the whole database. These indexes work well until they

encounter a new query that is not represented in the index.

When proposing an indexing technique, the challenge is that the index
has to be small yet allow a wide range of queries without the need to traverse
the original XML tree. Several compressors have adopted indexes to improve
accessibility of the compressed data [Ferragina and Manzini, 2005; Arion et
al, 2007; Wong et al,, 2007; Liao, Hsu and Chen, 2010; Jedidi, Arfaoui and
Sassi-Hidri, 2012]

3.3.2 Labelling Schemes

Like indexing a labelling scheme is also a structural summary of an
XML tree or the relationships that exist therein [Weigel et al., 2005]. Although
they are both structural summaries, labelling schemes are said to be better
than indexing techniques in that they require smaller storage space [Li and
Ling, 2005; Khaing and Thein, 2006]. The focus in labelling is on individual

nodes not paths. Labelling achieves a structural summary by having a unique

24

QUERY PROCESSING AND OPTIMIZATION

label for each node in an XML tree with order [O'Connor and Roantree 2010]
preserving relationships among nodes. A node label can be either numeric,
alphabetic or alphanumeric [0'Connor and Roantree 2010]. Relationships
among nodes are necessary for efficient query processing as mentioned
earlier in this chapter. Labels are used to identify the relationship between a
pair of nodes quickly. As mentioned in the previous chapter, this process is a
core operation in query processing [Yun and Chung, 2008; Gou and Chirkova,
2005; Lu et al,, 2004; Jiang et al., 2004; Chen et al., 2005; Chen et al., 2006; Xu
etal,, 2009; Jiang et al., 2009, Lu et al., 2011].

There are many approaches used to label nodes among which include
the Dewey ID [Tatarinov et al., 2002], ORDPATH [O’Neil et al., 2004], BIRD
[Weigel et al., 2005], HLSS [He et al., 2005], Simple prefix [Cohen et al.,, 2002],
Prime Number labelling scheme [Wu et al., 2004] and Dynamic interval
based labelling scheme [Yun and Chung, 2008]. These techniques are

discussed and evaluated below.

Labelling schemes can be grouped according to their similarities
[Wang et al., 2008, Haw and Lee, 2007, Haw and Lee, 2009] as with indexes.
There are two basic types of labelling schemes; region encoding, also referred
to as range based, and prefix based techniques [Wang et al., 2008, Haw and
Lee, 2007]. Prefix labelling schemes are said to be the most diverse labelling
scheme class [Haw and Lee, 2009]. This class include the Dewey ID, ORDPATH
and Simple Prefix. These labelling schemes use prefix containment to facilitate
query evaluation. With prefix labelling schemes relationships are retained by
making the parent’s label to be part of the child’s label. Part of the child’s label
will always be the parent’s label [Harder et al, 2007]. The region encoding
schemes on the other hand use intervals or range to define labels [Harder et
al, 2007] as demonstrated in the discussion about the BIRD labelling scheme
later in this chapter. These methods are effective where there are few updates.
A lot of updates would use up the reserved labels quickly leading to the
undesirable relabelling. The mentioned labelling schemes are explored in the

next sections demonstrating how they facilitate query processing.

The Dewey ID [Tatarinov et al., 2002] is a prefix labelling scheme that

is based on the Dewey system used in libraries [Harder et al.,, 2007, Haw and

25

QUERY PROCESSING AND OPTIMIZATION

Lee, 2009]. In Dewey ID node x is a parent of node y only and only if it is a
prefix of node y that means y’s label has one delimiter more than x. For
example if the label for y is 2.3.4.1; x’s label will be 2.3.4 if x is y’s parent. On
that account, a label for a specific node allows easy and quick identification of
the node’s parent or ancestor because these are contained in the child node’s
label. The parent’s label comes before the last delimiter whereas the

ancestors’ label comes before the last but one delimiter.

Query evaluation with this labelling scheme is therefore done by
checking for prefix containment [Gou and Chirkova, 2005]. Dewey ID
successfully represents all structural relationships. This accelerates efficient
query processing but it uses a lot of space because it represents a full path for
each node from the root [Gou and Chirkova, 2005, Haw and Lee, 2009]. It fails
to eliminate the redundancy in the original XML tree. To maintain order,
relabelling is required when a node is inserted between two existing nodes.
The relabelling process is costly and that makes this labelling scheme not ideal
where there are frequent updates. Dewey ID, uses a lot of space and does not
support updates but it is used for query processing optimization because it

effectively stores all structural relationships among nodes.

ORDPATH [O’Neil et al.,, 2004] is another prefix labelling scheme where a label
for a child node is generated by augmenting the parent’s label with a
component for the child. It uses a similar technique to that of Dewey ID [Haw
and Lee, 2009] but ORDPATH reserves even and negative numbers for further
insertions to avoid the relabeling required in Dewey ID. This method was
proposed to improve the Dewey ID by making it “insert friendly” [O’Neil et al.,
2004, Harder et al, 2007]. The reserved labels are used during updates
(insertions). As with Dewey ID, ORDPATH preserves structural relationships
that are needed for query processing but it is limited by the long labels that it

generates because they require a lot of space.

Simple Prefix [Cohen et al.,, 2002] scheme also belongs to the prefix
class. With this labelling scheme a node inherits its parent’s label (prefix) and
a node’s self-label is concatenated to it to form a label for that node. The root
label is left empty and the first child’s label is assigned 0, the second and third

child’s labels are 01 and 011 respectively. Simple prefix is similar to the

26

QUERY PROCESSING AND OPTIMIZATION

Dewey ID scheme; they are both prefix labelling schemes, however, it uses
binary representation instead of integers and delimiters. This labelling
scheme requires a lot of space for storage [Haw and Lee, 2009] like other

prefix labelling schemes.

Besides using binary representation, simple prefix differs from other
prefix labelling scheme because the self-label comes before the parent’s label
whereas for Dewey ID and ORDPATH the parent label comes before. Evidently,
structural relationships among nodes are retained when labelling an XML tree
with this scheme. Query evaluation therefore follows a similar procedure to

that discussed with other prefix labelling schemes.

In the prime number labelling scheme [Wu et al., 2004] each node is assigned
a prime number and the label for each node is the product of the given prime
number and the parent’s node label. A relationship exists between two nodes
if the child’s label in question is divisible by the parent’s label therefore prime
number labelling scheme. This property makes it a prefix labelling scheme.
Unlike other labelling schemes in this class, the prime number labelling
scheme is update friendly. Each time a node is inserted it is assigned a new
prime number which will then multiplied by the parent’s node label, there is
no need for recalculations or relabeling. However, like other prefix labelling
schemes; it requires a lot more space for storage. Each label is a product of all
self-labels from the root node, therefore, it takes too much space especially for
deep trees. The prime number labelling scheme is effective when dealing with
small trees because large trees result in unreasonably large labels.
Containment is used for query processing with this labelling scheme because a

label contains its parent’s label.

In BIRD (Balanced Index based numbering scheme for Reconstruction
and Decision) [Weigel et al., 2005] some labels are left unused for insertion by
using a range which determines the number of children a node can have
(weight) before relabelling is required. For that reason, this labelling scheme
is classified as a range encoding scheme. The labelling starts with scanning the
database to see how many children a node has [Haw and Lee, 2009]. This
information is then used to decide the range. The range must be a number

greater than the number of child nodes currently present.

27

QUERY PROCESSING AND OPTIMIZATION

This labelling scheme is ideal for minimal updates particularly

insertions. If there are too many updates, reserved places within the range are

filled up resulting in the overflow problem [0'Connor and Roantree 2010]. In

case of an overflow, the whole tree needs to be relabelled to calculate the new

range to create space for further insertions. Given, the tree relations in this

labelling scheme, query evaluation involves simple arithmetic operations.

3.3.2 Summary

There are four factors that determine a good labelling scheme. It should be

compact, deterministic, dynamic and flexible [Wang et al.,, 2008, Wu et al.,,

2004].

Compact: The labelling scheme needs to be compact to use less space
when loaded in memory. A compact labelling scheme also means quick
query evaluation because the tree representation to be traversed is
small but this is only possible if all necessary relationships are
retained otherwise it is considered lacking.

Flexible: The flexibility of a labelling scheme makes it portable. A
labelling scheme that supports both XPATH and XQUERY is said to be
flexible and can be easily adapted into a wide range of XML database

systems

Deterministic: A deterministic labelling scheme allows easy
identification of relationships. It is vital for evaluating queries. This is
achieved well in the prefix based labelling schemes like Dewey ID,
ORDPATH and Simple Prefix. BIRD and the prime number labelling
scheme also retain structural relationships among nodes but
identifying them requires complex arithmetic operations.

Dynamic: A dynamic labelling scheme allows updates without the
need to regenerate labels as described in prime number labelling
scheme. ORDPATH and BIRD cannot completely avoid relabelling
therefore are not dynamic. These labelling schemes reserve nodes to
cater for updates but once the overflow is encountered, relabelling is

required.

28

QUERY PROCESSING AND OPTIMIZATION

The labelling schemes discussed above satisfy one or two of these factors
but none of them satisfies all. They are all not compact enough, with the
Dewey ID and Prime Number labelling scheme being the worst. The greatest
challenges of labelling schemes are insertions and deletions sometimes
referred to as updates. Updates affects order which affects relationships and
this often results in the need to regenerate all labels. Regenerating labels is a
very expensive process especially for large XML documents. An ideal labelling
scheme should avoid relabelling as much as possible. Some labelling schemes
like BIRD and ORDPATH attempted to meet this requirement but still fail
when all the reserved labels are filled. Labelling schemes are however still
better than indexing schemes especially in retaining structural relationships.
Ideas from this form of optimization are adopted in SIQXC to prune the XML

tree and retain relationships as discussed in Chapter 8.

3.3.3 Hybrid Methods

Some techniques combine labelling and indexing. These methods are
referred to as hybrid methods in this work. Hybrid methods include INLAB
[Lee and Haw, 2007] and TwigX-Guide [Haw and Lee, 2008]. In the INLAB
method, an algorithm called createINLAB is used to label XML nodes and
create an index. This algorithm has two components; the XML Encoder which
is responsible for labelling and the XML Indexer which creates an index. The
label used in the labelling part consists of <self-level: parent> representation.
The index is essentially a hash table that stores a node and its associative
parent self-attribute. This table facilitates easy relationship identification
between a pair of nodes. TwigX-Guide on the other hand uses region encoding
and a DataGuide index. It combines the ability of the DataGuide index to
evaluate P-C relationships efficiently with the ability of region encoding to

evaluate A-D relationships.

This is achieved through two algorithms; CutMatchMergePath and
CutMatchMergeTwig which are used for simple path and twig queries
respectively. When a query is received it is evaluated by the evaluateQuery
method to determine the type of query it is and the appropriate method is

invoked. This idea is adopted in SIQXC query processing as discussed in

29

QUERY PROCESSING AND OPTIMIZATION

Chapter 9. If a query is a mixture of A-D and P-C relationships, a structural join
is used to get the final result from intermediate results Recall that it
mentioned in Section 3.2.1 that joins are necessary for processing branching

queries.

3.3.4 Twig Query Processing

It essential to understand twig query processing and the optimization
schemes that have been develop specifically for them. Evaluating these
queries involves finding all occurrences of the specified tree patterns in the
XML tree which is the core operation in XML query processing [Yun and
Chung, 2008; Gou and Chirkova, 2005; Lu et al,, 2004; Jiang et al., 2004; Chen
etal.,, 2005; Chen et al,, 2006; Xu et al,, 2009; Jiang et al,, 2009, Lu et al., 2011].

Researchers developed different approaches like the Multi Predicate
Join Algorithm also known as MPMGJN [Zhang et al., 2001], StackTree
[Khalifa et al., 2002], TwigStack [Bruno et al., 2002], TwigStackList [Lu et al.,
2004], Fast Twig Join algorithm also known as TJFAST [Lu et al., 2005],
Twig2Stack [Chen et al,, 2006], TwigList [Qin et al.,, 2007], TwigBuffer [Wang
et al, 2009], OTwig [Liu et al., 2010] and the Extended XML Tree Pattern
Matching [Lu et al., 2011] to optimize branch query processing. These twig
processing methods can be classified as either decompose-match-merge

methods or holistic methods depending on the way the process queries.

3.3.4.1 Decompose-Match-Merge methods

A decompose-match-merge method processes queries by first
decomposing them into binary structures, matching them and then merging
the intermediate results to get the final result. This approach is used in this
work to process queries that have conjunction and disjunction operators as
discussed in Chapter 9. Storing intermediate results has a high memory cost.
Zhang et al. presented the first method for twig pattern matching under this
class, MPMGJN [Zhang et al.,, 2001, Chen et al, 2005]. It is similar to the
classical merge-join algorithm wused in relational databases (RDBMS).

However, this method is much faster than the classical merge-join algorithm.

30

QUERY PROCESSING AND OPTIMIZATION

Its weakness is that it fails to evaluate Parent-Child (P-C) relationships and it

also visits too many unnecessary nodes during query evaluation.

StackTree [Khalifa et al., 2002] was proposed to cater for the weakness
of MPMGJN. It matches binary structural relationships including the P-C
relationship which MPMGJN is unable to evaluate. However, this method
suffers from having a large volume of intermediate results which take up a lot
of space in memory unnecessarily. It is unnecessary because in most cases, the
intermediate results are not part of the final result. Holistic methods were

developed to contain this problem.

3.3.4.2 Holistic Methods

Holistic methods avoid generating a large number of intermediate
results by processing queries holistically. Bruno et al [Bruno et al., 2002]
proposed TwigStack which processes the tree pattern holistically. This
method is optimal for Ancestor-Descendent (A-D) edges because it evaluates
root to leaf paths against the XML tree. However it is not optimal for P-C
relationships because it produces a lot of redundant intermediate results like
decompose-match-merge methods in this case. A method can only be
considered optimal if all the intermediate results it produces are necessary for

the final result [Lu et al., 2005].

Another holistic method called TwigStackList was presented by Lu et
al [Lu et al.,, 2004] designed to meet deficiencies in TwigStack. TwigStackList is
optimal for P-C relationships or non-branching edges. It achieves this by
employing a look-ahead technique where some elements are cached in
memory as they are being read from the input. Other holistic methods are the
TJFAST [Lu et al.,, 2005] and TwigList [Qin et al., 2007]. The former exploits
the Dewey ID encoding system by using only leaf nodes to evaluate a query
because the leaf nodes labelled using the Dewey ID as discussed in Section
3.3.2.1 carry information about every node in the lineage of the given node.
TJFAST therefore reduces the I/0 cost. The latter was presented as an

improvement on the TwigStackList. Unlike TwigStackList, TwigList uses lists

31

QUERY PROCESSING AND OPTIMIZATION

instead of stacks because they are a simpler data structure to work with

making TwigList more efficient than TwigStackList.

3.3.4 Summary

Twig pattern matching can either be done holistically or by
decomposition. The challenge in twig query processing is to find a method that
can evaluate all relationships among nodes effectively without yielding
unwanted intermediate results. Holistic methods successfully eliminate
intermediate results when evaluating some relationships (A-D). Intermediate
results are not only costly on memory but also on processing therefore should

be avoided as much as possible

3.3.5 Views

Query optimization can also be achieved through the use of views
[Vidal and Casanova, 2003; Zhou, 2010; Lo et al., 2010; Gao et al,, 2010; Liu et
al, 2010; Phillips et al.,, 2010]. A view, in traditional relational databases is
defined as a stored query whereas in XML databases it is a virtual XML
document [Roantree et al., 2007]. It can be an XML database fragments, node
references, data values and or full paths [Roantree et al, 2007]. They are
derived from or modelled by results from queries already asked or just

selected queries [Mandhani and Sucui, 2005; Gire and Idabal, 2008].

When using views, queries are evaluated against a view instead of the
original XML tree and since a view is just a subset of this tree, processing time
is significantly shortened. Query processing involves checking for
containment, rewriting the query or restructuring it and checking for
equivalence. In a case where a query cannot be evaluated against a view
because equivalence does not exist, it is evaluated against the original XML

tree.

32

QUERY PROCESSING AND OPTIMIZATION

3.4 Chapter Summary

The way data is stored affects the way it is retrieved. It also affects
query processing time. Disintegrated data results in high use of joins which
involves intermediate results that not only use a lot of space but increase
query response time. Joins are not necessary when data is stored as a Large
Binary Object (LOB) and when XML is stored in a native XML database. The
native storage assumes an XML tree that allows easy and fast manipulation of
XML. The XML tree can sometimes be too big using a lot of memory thereby
increasing query response time. For this reason, optimization techniques have
been put in place to provide a smaller, summarised representation of the

original tree that allows queries to be evaluated efficiently.

Most optimization techniques like compression (see Chapter 5),
reduce the size of the XML tree; however, optimization techniques are focused
on easy and quick access of nodes rather than storage cost. This means that
with optimization techniques sometimes storage cost can be compromised for
a better query response time. Some optimization techniques have been
incorporated in compression methods for their ability to prune the XML tree
especially the labelling schemes and indexes. This work adopts ideas from
query optimization schemes for both pruning and processing queries as

shown in Chapter 8.

33

CHAPTER 4

CHAPTER 4

RESOURCE CONSTRAINED DEVICES

4.1 Introduction

The increased processing capabilities of smartphones have led to
users depending on them to carry out more tasks than ever before [Hu et al.,
2010; Kim, Agrawal and Ungureanu, 2012]. They have pervaded our daily
lives [Verbelen et al, 2013]. Smartphones are now used for creating
documents, accessing emails, playing multimedia and retrieving information
from servers via wireless connections [Whang et al., 2009 Portokalidis et al.,
2010] like 3G, 4G and Wi-Fi. They are classified as pervasive and ubiquitous
devices [Chareen et al.,, 2008] because they can be carried everywhere giving
users access to their data at any given time where wireless connections are
available. Ubiquitous as they are, these devices are resource-restrained; they
have limited memory, provide finite power from a lithium battery and
relatively slow processor [Oliver, 2009; Fei, Zhong and Jha, 2008; Hu et al.,
2010].

This led to a few XML databases developed especially for resource
restrained devices. As mentioned in Chapter 5 XML has a repetitive structure
therefore verbose [Augeri et al., 2007]. This verbosity nature of XML results in
very large files [Cheney, 2006, Arion et al., 2007; Maneth et al., 2008; Zhou et
al, 2010; Ng et al., 2006; Arion et al.,, 2004] that require a lot of space to be
stored. It is a problem even for the resource rich devices and more so for
resource constrained devices. Storing and querying XML in these devices is a
challenge. This led to a lot of research that investigates alternative ways of

making XML accessible on limited devices.

34

RESOURCE CONSTRAINED DEVICES

This chapter studies different approaches that are currently in place
to minimize the storage and processing cost. Some solutions that are
discussed in this chapter are not for XML but are worth mentioning because
they were developed to address the problems that XML also faces. It studies
these approaches highlighting their limitations showing the need to design a

better solution.

4.2 Databases for Limited Devices

Many databases have been developed specifically for resource
constrained devices. However, these databases have been developed for
relational databases not XML databases. Examples of these databases include;
IBM DB2 Everyplace [Karlsson et al., 2001], Oracle 10g Lite [Oracle, 2006],
Oracle Berkeley DB [Seltzer and Oracle, 2007] and Microsoft SQL Server
Compact Edition [Dhingra and Swanson, 2007]. In addition to these, there are
also research prototypes; TinyDB [Madden et al., 2005], PicoDBMS [Bobineau
et al, 2001], Odysseus/Mobile [Whang, 2005; Whang 2007], mobile
database for JAVA phones [Lu and Cheng, 2004], XMLDB for embedded
systems [Hoque et al, 2007] and MonetDB/XQUERY [Boncz et al., 2006].

Most of these databases are commercial.

The mentioned databases were not developed for smartphones only
but for other limited devices like smartcards, sensors and PDAs. The TinyDB
was developed at the University of California Berkeley for sensors [Madden et
al, 2007] whereas the PicoDBMS is for smartcards [Bobineau et al., 2000].
Only a few of the listed databases were developed for XML. MonetDB/XQUERY
for example, is a relational database extended to handle XML data (XML
enabled relational database) by supporting XQUERY [Whang et al.,, 2009]. At
the time of writing the author is only aware of two databases that were
specifically developed for XML in resource constrained devices; XMLDB and
mobile database for JAVA phones. These two databases are briefly discussed

below.

35

RESOURCE CONSTRAINED DEVICES

4.2.1 Database for JAVA Phones

Lu and Cheng [Lu and Cheng, 2004] used JAVA 2 Micro Edition (J2ME)
and Extensible Stylesheet Language Transformation (XSLT) to design a mobile
XML database for mobile phones. Their database management system known
as DBEngine controls every process run in this database. It has two basic
components; tiny-XSLT and KDOM. These are subsets of the standard
recommendation of XSLT and DOM respectively. They are both modified to

provide only the necessary functions for resource constrained devices.

Tiny-XSLT is used to define rules for manipulating data on the
database and KDOM is a parse for J2ME. Database functions supported by the
DBEngine include query (data extraction), update, insertion and deletion. Only
a specific portion of the database is loaded into memory as and when needed
during query execution. However, only a small portion of the database can be
loaded so processing range queries poses a challenge because they requires a
large portion of the database to be available depending on the range specified
in the query. This database does not support the widely used XPATH and
XQUERY therefore is limited to XSLT users.

4.2.2 XMLDB for Embedded Systems

Another database developed specifically for XML is the lightweight
XMLDB [Hoque et al, 2007]. This database was developed for embedded
systems by using J2ME and defining processing rules with an XPATH parser.
Like the database for JAVA, it supports functions like insertion, deletion,
updating and retrieval. During query processing, data is loaded via the
Internet. In this process a mobile phone sends a request to the network. Once
the request is accepted the query is processed sending the result set back to
the phone. The code that has been used to develop this database is minimal so
it can easily be run on a limited device. This database has been tested on a
Nokia N73 during development [Hoque et al., 2007] but it is not limited to this

platform.

36

RESOURCE CONSTRAINED DEVICES

XMLDB’s dependency on the wireless connections limits it to be only
useful in areas where the Internet is available. The availability of Internet is
not dependable in some places and situations as discussed in Section 4.3 later

in this chapter

4.2.3 Platform Dependence

Platform dependence is an important subject that needs to be
addressed in development especially for applications for smartphones since
there are several possibilities. Smartphone platforms include Android,
BlackBerry, iPhone (i0S), Symbian, Windows Mobile [Oliver, 2009] and are
likely to increase in the future. Application developments for these devices
therefore need to support heterogeneous environments [Grgnli, Hansen and
Ghinea, 2010]. Android and iOS are the most widely used platforms [Goadrich
and Rogers, 2011] with Android being the emerging leading platform [Hu et
al,, 2010].

The i0S only supports Objective-C and its SDK is limited, therefore it
provides insufficient functionality for developers. Both Blackberry and
Android support JAVA but the use of the Android platform is more than that of
the Blackberry platform. The Symbian platform which runs in Nokia phones
like the one mentioned in section 4.2.2 supports a wide range of languages
among which are C++, JAVA, Python and Perl. However, the use of Nokia
phones has been declining recently. The Windows Mobile application
development is mainly based on .NET. Android was used in this work because,

besides being one of the emerging leading platforms, it supports JAVA.

4.2.4 Summary

Evidently there has not been much research done on XML databases
for limited devices yet. However, there are many challenges in this area
especially those posed by the verbose nature of XML. The XML databases
discussed above manipulate XML by partially loading a small footprint into a
resource constrained device. XMLDB relies heavily on the Internet to achieve

this. Using wireless brings about some challenges as discussed in Section 4.3

37

RESOURCE CONSTRAINED DEVICES

below. The existing solutions have limitations therefore there is need to
develop an alternative that would attempt to alleviate them by reducing the

wireless connection dependecy.

4.3 The use of Wireless connection

As mention earlier in this Chapter some databases like XMLDB depend
heavily on wireless connections to load a small portion of the database as and
when needed during query processing. This is because databases developed
for resource constrained devices should have a small footprint [Lu et al., 2004,
Whang et al.,, 2009] to accommodate their memory limitations. The database
footprint can be as small as 350 kilobytes [Ortiz, 2000]. With this solution,
most of the data resides in the server and the smartphone acts as a client. The
necessary modules are loaded through the use of a wireless connection.
However, wireless connections are not ubiquitous [Satyanarayanan, 1996,
Riva and Kangasharju, 2008, Lindholm, 2009]. For that reason a lot of

disconnections can be experienced while carrying out database transactions.

Disconnections may be as a result of lack of coverage, radio
interference and hand-off between cellular base stations. Hand-offs cause
delays during query evaluation because a phone has to acquire a new IP
address each time it switches hosts. The delays waste time and this may
render a good system inefficient because of the prolonged query response
time. A database that uses wireless connections should have some
contingency measures in place to deal with issues that come with
disconnections. It should be able to rollback unfinished updates or pause and
resume when the connection is regained. If the battery runs out the database
should be able to self-maintain. Using wireless connections therefore requires

a lot from a resource constrained device.

4.3.1 Limited Power Supply

Using the wireless interface is costly on the lithium battery especially
during data transmission [Chareen et al., 2008, Lindholm, 2009; Portokalidis
et al., 2010; Fei, Zhong and Jha, 2008]. This lithium battery provides finite

38

RESOURCE CONSTRAINED DEVICES

power supply for Smartphones. Energy consumption should be minimized as
much as possible when using these devices. There have been proposals like
Power Saving Mode (PMS) introduced to manage energy consumption. PSM is
an IEEE 802.11 standard which was introduced in 1997 [Lindholm, 2009]. It
saves energy by using three states; awake, sleep and off. The phone is awake
when it is actively being used and it is in the sleep mode if it is on standby. The
off state means the phone is switched off. It should be noted that this approach
only saves power when the phone is sleeping; it cannot save power while the
phone is awake which does not solve the wireless connection energy

consumption problem.

Other ways of saving energy are the Bounded Slowdown Protocol
[Krashinsky and Balakrishnan, 2005] and Smart Power Saving Mode [Qiao and
Shin, 2005]. Bounded Slowdown Protocol saves energy by lowering the
frequency of nodes listening to the Access Point whereas Smart Power Saving
Mode estimates the ultimate sleep time of a smartphone. Lindholm [Lindholm,
2009] states that the energy consumption problem is not likely to disappear
even with all these proposals in place. This claim is supported by Cuervo et al.
who states that the battery technology is one of the greatest obstacles for
smartphones and their growth, and that the technology trends indicate that

this problem is here to stay [Cuervo et al., 2010].

In an attempt to provide a solution this problem, developers
minimized the functionality of systems that run on smartphones to exclude
complex computations that may require a lot of power [Hoque et al., 2007].
One way of doing this is by minimizing the transfer of data between the server
and the client since wireless transmissions consume a lot of energy.
Minimizing these transfers would mean either having a lot of data on the client
side (smartphone in this case) or running a few transactions. Limiting the
number of transactions defeats the purpose of using wireless connections as a

solution to the XML verbosity problem.

39

RESOURCE CONSTRAINED DEVICES

4.3.2 Data integrity and Security

The disconnections and power consumption problems discussed
above may result in some inconsistencies in the data held in the phone and the
server; therefore, such systems require other functions to synchronize data to
maintain data integrity. Synchronization can be achieved by having a simple
log with timestamps but it is often complex when dealing with interrupted
transactions. Nonetheless, researchers proposed synchronization algorithms
to address this problem. One such algorithm is Choi et al.’s that is based on
Message Digest (SAMD) [Choi et al 2009]. These solutions require more space
especially in cases where a log has to be kept. Synchronization is an extra
function that would otherwise not be needed if the whole database or most of
it somehow resided in the phone. This shows that there in need for a solution

that does not use wireless connections to lower integrity issues.

Another problem that comes with using wireless connections is
security. If the Internet is not being used, a password is enough security but
using wireless connection increases the number of potential attacks. There is a
growing incentive to attack phone because they are now being used for
commercial transactions such as online shopping and even banking
[Portokalidis et al., 2010]. Therefore, extra resources have to be spent to

ensure security when dealing with critical or sensitive data.

4.3.3 Summary

Connecting a resource-restrained device to a resource-rich backend
device wirelessly provides a reasonable solution to the memory limitation
problem but comes at a cost from a different perspective. There are many
complications that come with the use of wireless connections as a solution.

These complications are described below.

= Disconnections: as discussed earlier in this chapter there are many
disconnections that may be experienced when using wireless
connections on smartphones. This may be as a result of lack of

coverage, radio interference and hand-off between cellular base

40

RESOURCE CONSTRAINED DEVICES

stations. Disconnections mostly occur because of lack of coverage.
Coverage is may not be available while travelling between some places
especially in developing countries. In cases of natural disasters such as
the ‘tsunami’ and terrorist attacks; the wireless infrastructure might
get affected disrupting the availability of wireless communication
[Satyanarayanan et al., 2013]. Wireless is completely unavailable in
most aeroplanes therefore users cannot access their data remotely

while travelling if it is not stored in the phone.

High power consumption: Wireless connections consume a lot of
energy especially during disconnections and hand-offs because the
phone continually searches for the nearest base station to connect to.
This process uses excessive amount of power adversely affecting the
battery life. A lot of energy is also consumed during data
transmissions between the smartphone and the server.

Exacerbated data integrity problems: wireless connections allow
the same data to be accessed by different clients concurrently.
Accessing data concurrently may result in conflicts because of the
inconsistencies in the data that is held in different clients thus
compromising data integrity. This can happen when data is updated
in one or more clients. Synchronization measures have been put in
place to reduce the problem however even synchronization comes at
a cost.

Security: a system that uses wireless connection is prone to more
security attacks than a standalone system. This is a major concern
considering that cyber-attacks in the past few years show that it is not
just a hypothetical possibility [Satyanarayanan et al., 2013]. Complex
security algorithms or some form of cryptography must be
incorporated into these systems to protect data. Increasing the
number of algorithms consumes space which is one of the limited
resources on smartphones. Running the system algorithm also
consumes energy which is finite. This makes wireless connection a

less feasible solution.

41

RESOURCE CONSTRAINED DEVICES

4.4 Chapter Summary

Despite the increasing hardware capabilities, smartphones are
resource-restrained and cannot compete with their desktop and server
counterparts [Verbelen et al, 2013]. Wireless connections allow data
transmission between them and a resource rich server. This allows the
smartphone to only store necessary information at a given time reducing the

memory cost that would otherwise come with the verbose XML.

Although wireless connections have become helpful in reducing the
memory limitations of a smartphone, it comes as a trade-off for power,
security and data integrity. They are not always available so high dependency
on them can be tragic for critical systems. Physical proximity is a precious
attribute [Satyanarayanan et al.,, 2013] in such cases. It makes a system less

vulnerable.

A better solution therefore should be focused more on increasing the
physical proximity of data than promoting remote access. This can be
achieved by making the XML tree small enough to some extent to fit in the
limited memory of a smartphone. The need to reduce the size of an XML tree
has led to the much research on XML compression. This is explored further in

the next chapter.

42

Chapter 5

Chapter 5

XML COMPRESSION METHODS

5.1 Introduction

As mentioned Chapter 2 XML is a self-describing language. It holds
semantics which denote the descriptions of the data held between the opening
and closing tags of an element. The self-describing nature of XML is repetitive
resulting in large documents with a high ratio of redundancy [Cheney, 2006,
Arion et al.,, 2007; Maneth et al., 2008; Zhou et al., 2010; Ng et al., 2006; Arion
et al, 2004;]. XML is therefore notoriously verbose [Augeri et al, 2007;
Gulhane and Ali, 2013]. The verbose nature of XML substantially increases the
cost of exchanging, storing and processing XML documents. This poses an

even greater challenge on limited devices like smartphones.

Generally, XML documents are larger than other files of a different
specification holding the same content but the XML data continues to
proliferate on the web today thus the need for compression. Compression
significantly reduces the disk space required to store the data, saves
bandwidth during data exchange and in many cases improves the XML
processing performance. As a result many XML specific compressors have
been developed [Tolani and Haritsa, 2002; Min et al., 2003; Liefke and Suciu,
2000; Cheney, 2001; Min et al.,, 2003; Cheng and Ng, 2004; Lin et al., 2005;
Leighton et al.,, 2005; Ng et al., 2006; League and Eng, 2007; Skibinski and
Swacha, 2007]. The W3C also formed the Efficient XML Interchange Working
Group (EXIWG) that specified an XML binary format to address the storage
problem [W3(C, n.d].

Compression can either be lossy or lossless. The lossy compressors
achieve a better compression by losing some information during the
compression process [Salomon, 2004; Pena, 2013]. Decoding the compressed

files created through such compression does not yield the exact replica of the

43

XML COMPRESSION METHODS

original source file. The lossless compression on the other hand preserves all
the information during compression. This is mandatory when dealing with
text [Pena, 2013]. This work discusses lossless compression because XML is

essentially text.

XML is represented as text therefore it is sometimes compressed using
general text compressors like gzip [Deutsch, 1996]. However, these traditional
compressors are not efficient in compressing XML because they do not take its
structure into consideration during compression. The structure of XML has a
lot of redundancies. Considering the repetitive structure of XML during
compression can improve the compression ratio if the compressor exploits it
to remove repetitive structures. Unlike general text compressors, some
compressors consider the structure of XML. This has led to the first

classification of XML compressors; XML blind and XML conscious compressors.

XML blind compressors compress XML like a text document whereas
XML conscious compressors take the structure of XML into account, harnessing
it for better compression. As a result XML conscious compressors usually
compress data better than the XML blind compressors. The next section
briefly discusses the XML blind compressors showing their classification and

highlights the main things that differentiate the sub classes.

5.2 XML Blind Compressors

XML blind compressors are general text compressors that compress
XML without considering its structure. This is a logical thing to do because
XML is represented as text. Consequently, XML blind compressors do not
exploit the repetitiveness of XML to reduce the redundancy therefore the
compression ratio is compromised. These compressors can either be
statistical [Knuth, 1985; Brisaboa et al.,, 2003; Ryabko and Rissanen, 2003;
Witten, Neal and Cleary, 1987] or dictionary based [Williams, 1991; Ziv and
Lempel, 1977; Ziv and Lempel, 1978]. Figure 5.1 shows this classification.

The statistical compressors compress data by assigning code words to
each source symbol. The length of the code word is dependent on the

probability of the source symbol within the document. Shorter code words are

44

XML COMPRESSION METHODS

assigned to source symbols that appear more frequently than others thereby
achieving compression. These compressors include the Huffman [Knuth,
1985], dense and arithmetic codes [Witten, Neal and Cleary, 1987; Brisaboa et
al,, 2003].

The dictionary-based methods on the other hand compress data by
forming a dictionary of substrings to which fixed length pointers are linked.
Long sequences in this family of compressors are represented by a shorter
pointer. Grammar based compressors and Lempel Ziv compressors belong to
this family [Ziv and Lempel, 1977; Ziv and Lempel, 1978; Williams, 1991;
Adiego, Navarro and others, 2007]. Gzip is a hybrid of the statistical and
dictionary compressors since it is a combination of Huffman coding which is
statistical and LZ77 which belongs to the Lempel Ziv family; a dictionary
based compressor (see Chapter 8 for more on gzip). As a result gzip is widely
used for both compressing text and XML. Some XML conscious compressors
also use gzip as the back end compressor including this work. It is widely used
because it is open source, it has a good compression rate (40-50%) and it does
not require the knowledge of the structure of thedocument it compresses

[Nair, 2002].

| XML COMPRESSION]

" XML BLIND ‘ ‘XML CONSCIOUS‘

oy mgey

Figure 5.1: XML blind Compressors

45

XML COMPRESSION METHODS

5.3 XML Conscious Compressors

XML conscious compressors are the compressors that take the
structure of XML into account during compression thereby achieving a better
compression than XML blind compressors. These compressors can be
categorised as either queryable or non-queryable. This classification is based
on their query support. The non-queryable compressors do not support query
evaluation, the whole document must be decompressed for any query to be
evaluated. The queryable compressors on the other hand support query
evaluation with partial decompression. Sometimes queries can be evaluated

on the compressed data with no decompression.

Supporting efficient query evaluation comes at the expense of the
compression ratio. A trade-off always exists between the compression ratio
and support for query evaluation. Compressors that do not support query
evaluation usually have a better compression ratio than those that do. These
methods are discussed in Section 5.3.2 and 5.3.3 with examples of existing
compressors for each category. Another classification of XML conscious
compressors is based on their dependency on the XML schema. This
classification is briefly discussed in Section 5.3.1 before the non queryable and
queryable compressors because it overlaps. Some queryable and non
queryable compressors are schema dependent thereby fall in the same class in

this classification.

5.3.1 Schema Dependency Classification

XML compressors can use the schema of an XML document to achieve
a slightly better compression time and ratio but some compressors do not
depend on the schema. According to the schema dependency classification,
compressors can either be schema dependent or schema independent.
Theoretically, schema dependent compressors are better than the schema
independent ones in that they achieve a better compression ratio and

sometimes even a better compression time.

46

XML COMPRESSION METHODS

The schema dependent compressors are not widely used because
schemas are sparingly employed on XML documents so there is no guarantee
that the schema will be available hence the popularity of schema independent
compressors. XML blind compressors are schema independent by default
since they compress XML like general text. The XML conscious family has both
schema dependent and schema independent compressors. As mentioned
above this classification overlaps among the XML conscious compressors, that
is some queryable methods are schema dependent whereas some are schema
independent and the same applies to the non queryable. The following

sections discuss queryable and non queryable compressors

|.} XML COMPRESSION |

\ XMLBLND | y XML CONSCIOUS |

|

ISTATISTICAL ’ ‘ DICTIONARY ’

Figure 5.2: XML conscious compressors

5.3.2 Non-Queryable Compressors

Non-queryable compressors exploit the XML structure to achieve a
better compression ratio than their queryable counterparts and as their name
suggests they do not support query evaluation. With these methods, the whole
document must be decompressed for a query to be evaluated. Most XML
conscious non-queryable methods compress XML by separating the structure
from the data. This is followed by putting data into different containers
sometimes according to data types. The containers are then compressed using
a general text compressor that is suitable for the data type in each container.
This results in the highest compression ratios as suggested by the discussion

below where each non queryable is presented.

47

XML COMPRESSION METHODS

XMill [Liefke and Suciu, 2000] was the first XML conscious non
queryable compressor to be implemented. Consequently, this compressor set
the basic ideas for compressing XML that were later adopted by other
compressors. XMill compresses XML by separating the structure from data.
The start tags are then assigned integers and the end tags are replaced by ‘/’.
These are then put in a container that is compressed using gzip. The data is
also grouped according to the relative path on the XML tree and data type.
This process groups data that is semantically related to create homogenous
containers. The homogenous containers are compressed using a semantic

compressor achieving a high compression ratio.

Other compressors that are used with XMill besides gzip are PPM and
BZIP2. XMill achieves a compression ratio that is almost twice that of gzip;
however, this significant difference is not shown when working with smaller
files that are about or less than 20KB [Nair, n.d.)]. This compressor is schema
independent. XMill does not support queries. The whole document has to be
decompressed for any query to be evaluated. It is therefore more useful in
archiving data and data transmission; it requires lesser disk space and reduces

the network bandwidth respectively.

Li presented another compressor that is similar to XMill; XComp [Li,
2003]. This compressor adopts the idea of separating structure and data from
XMill. However, it adds another dimension in grouping data values. Instead of
using the relative path and data type alone, XComp adds the level or depth as
another option to be considered in this grouping. XComp therefore uses
relative path, level and data type to group data values. As in XMill, the
structure is compressed in a container and the grouped data values are also
compressed in different containers. Each container has its own alphabet
frequency where Huffman encoding is applied. During compression the size of
each container is restricted so as not to exceed the size of the memory
window. This is said to increase the efficiency of memory usage [Li, 2003].
Another distinguishing feature of this compressor is that it has a container for
processing instructions and comments [Pena, 2013]. XComp is a schema
independent compressor. In their work Hruska et al. claimed that XComp only

showed a slight improvement from XMill [Hruska et al., 2010].

48

XML COMPRESSION METHODS

XMLPPM [Cheney, 2001] is a streaming non queryable compressor
that uses Multiplexed Hierarchical PPM models [Cheney, 2001]. The
compressor uses the SAX encoding scheme together with PPM [Cleary and
Witten, 1984, Teahan and Cleary, 1996, Cleary and Teahan, 1997] which is a
general text encoder. In parsing the XML document using SAX, the SAX events
created are encoded using a bytecode representation called ESAX (Encoded
SAX). The bytecodes are then compressed using one of the multiplexed PPM

models according to their syntactic context.

XMLPPM is an adaptation of PPM where different structural parts
(elements, attributes, characters) of an XML document are encoded using a
unique model. The dependencies between elements and the data they enclose
are retained by injecting the element symbol into the corresponding model.
XMLPPM is claimed to generally have a better compression ratio than XMill
but poor compression time since the PPM compression family is generally

slower [Pena, 2013].

A variant compressor to XMLPPM called SCMPPM which combines
Structure Context Modelling (SCM) [Adiego, Navarro and de la Fuente, 2003]
with PPM instead ESAX was presented by Adiego et al. [Adiego, de la Puente
and Navarro, 2004]. This compressor uses a separate model to compress text
data under each distinct XML tag. As a result SCMPPM uses a bigger set of PPM
models than XMLPPM. These authors also presented another SCM variant
which uses the Huffman compression instead of the PPM models. With this
variant a dictionary is created for each different tag. In some cases dictionaries
have to be merged if they are equivalent because many dictionaries can be a
challenge for storage space which then defeats the purpose of the compressor.

The storage space flaw also applies to the SCMPPM.

AXECHOP is a grammar based compressor proposed by Leighton et al.
[Leighton et al., 2005]. It is a schema independent non queryable compressor
that separates structure from data like XMill. Unlike XMill, AXECHOP
processes the structure using a byte tokenization scheme. This preserves the
structure of the original document. An MPM algorithm [Kieffer et al., 2000] is
then used to produce a context free grammar. This process is followed by

encoding the grammar with an adaptive arithmetic encoder [Witten, Neal and

49

XML COMPRESSION METHODS

Cleary, 1987] before being written to a compressed file [Sark, 2009]. As with
other compressors, the data part of the document is separated into containers
according to the enclosing tag or attribute. Burrows Wheeler Transform
(BWT) [Burrows and Wheeler, 1994] is applied to each container and the

results are appended to the compressed file.

XBzip uses XBW transform [Ferragina et al., 2005] which is inspired by
the BWT used in AXECHOP; however, this compressor uses PPM as the back
end compressor [Ferragina et al, 2006]. Exalt [Toman et al; 2004] like
AXECHOP, is a grammar based XML compressor. Both compressors exploit
the idea that XML can be defined by a context free grammar. Exalt uses a
syntactical oriented approach to compress the XML documents. In this
approach grammar based codes encoding technique is used to generate
grammar incrementally which is then encoded using the adaptive arithmetic

coding.

Another dictionary based compressor that adopts the XMill idea of
separating structure from content data is XML Word Replacing Transform
(XWRT) [Skibinski and Swacha, 2007]. As with XMill the data content is
separated into containers but in this method the data is grouped according to
element names instead of the whole paths from the root. A dictionary is
created through a preliminary pass over the document and words that appear
frequently are replaced by a reference to the dictionary. The dictionary is
encoded using a byte-oriented prefix code. The encoded results are
compressed using a suitable general text compressor: PPM, LZMA [Pavlov, n.d]

and gzip.

XAUST [Hariharan and Shankar, 2005] is an online compressor that is
schema dependent. This compressor converts the knowledge gathered from
the DTD into a set of Deterministic Finite Automata (DFA) for each element. It
uses the structure of an XML document from the DTD to accurately predict the
expected symbols. Transitions of each automaton are labelled by element

names.

50

XML COMPRESSION METHODS

The states may result in a single or multiple output transition wherein,
no symbol encoding is required and each output transition is encoded using
arithmetic encoder. Character data and attributes associated with each
element are put in a container which is then compressed using the Arithmetic

order-4 compressor [Cheney, 2006]

RNGzip [League and Eng, 2007] is another schema dependent
compressor but it uses the RELAX NG schema instead of a DTD. With this
compressor the receiver and the sender agree on a specific schema which then
acts like an encryption and decryption key. The compressor builds a
deterministic tree automaton from the schema. When given an XML document
the compressor only needs to produce symbols since it would have already
gathered some information from the schema. In producing these symbols
upon encountering a choice point the transition taken is transmitted and
when textual transition is encountered the textual data is transmitted. The
streams generated from this process are compressed using a suitable
compressor from gzip, BZIP LZMA and PPM which are all XML unconscious
compressors. Other compressors that use schemas are the DTDPPM [Cheney,
2005] which also employs PPM like XMLPPM and Millau [Girardot and
Sundaresan, 2000]. Millau is not purely schema dependent though; it only uses
a schema if the schema is available otherwise compression can still be done

without the schema.

5.3.2 Summary

It is necessary to discuss non-queryable compressors to understand
how XML compression begun but these compressors are archival therefore
not a solution for cases where compressed XML needs to be queried. They are
only useful for storing large data in small spaces and very effective in data
transmission over the internet. Non queryable compressors reduce the XML
file size considerably thereby reducing the amount of disk space required.
Small file sizes save bandwidth resulting in fast data transmission. However
these compressors are not that useful for limited devices like smartphones
where users do more than just storing and or transmitting data. Limited

devices are widely used for data processing. Many users use their

51

XML COMPRESSION METHODS

smartphones to manipulate data and this includes querying the data. As stated
earlier non-queryable XML compressors do not support query evaluation. This
posed a problem that resulted in the development of XML compressors that
allow query evaluation over compressed data sometimes with partial

decompression; the queryable compressors.

5.2.3 Queryable Compressors

Queryable XML compressors acquired their name from their ability to
support query evaluation over compressed data sometimes with partial
decompression. These compressors have two main goals; to achieve a
reasonable compression ratio compared to non queryable compressors and to
allow efficient query evaluation. The trade-off between compression ratio and
query support is observed with these compressors. Compressors that have a
high compression ratio normally support a narrow range of queries and most
cases these methods require partial decompression more than those that have

a lower compression ratio.

Queryable compressors include XGRIND [Tolani and Haritsa, 2000],
XPRESS [Min, Park and Chung, 2003], TREECHOP [Leighton, Miildner and
Diamond, 2005], XQueC [Arion et al., 2007], XQzip [Cheng and Ng, 2004],
SJXC [Wei and Wei, 2012], XPACK [Rocco, Caverlee and Liu, 2005], XCQ [Ng et
al, 2006], XSeq [Lin et al.,, 2005], XCPaqs [Wang et al,, 2004], ISX [Wong, Lam
and Shui, 2007], QXT [Skibinski and Swacha, 2007], LZCS [Adiego et.al., 2007],
XBzipINDEX[Ferragina et al., 2006], SXSI [Arroyuelo et al, 2010] and
XSAQCT [Miildner et al. 2009]. These compressors can be further classified as
homomorphic and non-homomorphic. This classification is based on whether

the compressor retains the tree structure of XML during compression or not.

The non homomorphic compressors compress data by separating the
structure of XML from the content and as a result the compressed XML
structure is not the same as the original structure. On the other hand,
homomorphic compressors retain the tree structure such that the compressed
structure can be parsed and queried like the original structure. With these
compressors the structure is not separated from the content. This process

results in low compression ratios but it preserves the opportunity to query the

52

XML COMPRESSION METHODS

compressed XML without decompression. Therefore homomorphic

compressors are not as popular as their non homomorphic counterparts.

5.2.3.1 Homomorphic Compressors

Homomorphic compressors include XGRIND, XPRESS and QXT. The
first queryable homomorphic XML compressor, XGRIND, was presented about
a decade ago [Tolani and Haritsa, 2002]. It is a schema dependent
compression method that employs dictionary encoding and semi adaptive
Huffman encoding. XGRIND compresses XML by creating a dictionary that
stores all elements and attribute names shown in the document’s DTD. The
dictionary is used for encoding elements and attributes with dictionary

encoder.

This compressor parses the input document twice. In the first parse
the compressor collects statistics about the PCDATA in the input document to
create coding models for the Huffman coders. The second parse is for
tokenising all tag and attribute names using indexes to the corresponding
entries in the dictionary. Numerical attribute values are binary encoded. All
encoded tags, attributes and data are packed together with the dictionary as
the output. The homomorphic nature of XGRIND allows query evaluation over
compressed data but this is only possible for simple queries like exact match

and prefix queries [Tolani and Haritsa, 2002].

Partial decompression is required to evaluate partial match and range
queries. This compressor does not support other operation like aggregations,
joins, nested queries and non-equality selections. In addition to the limited
query support, XGRIND creates a time overhead during compression by
scanning the XML file twice. Its compression time is said to be longer than that
of XMill [Nair, n.d]. Zhang et al. supported these claims by stating that XGRIND
compression time is twice XMill's [Zhang et al., 2008]. The compression ratio
is also worse than that of XMill. Evidently query support compromises

compression ratio.

53

XML COMPRESSION METHODS

Min et al. presented XPRESS as an improvement on XGRIND [Min et al.,
2003]. XPRESS has a better compression ratio and supports more queries
[Arion et al.,, 2010] on the compressed data than XGRIND and this reduces
partial decompression overheads [Nair, n.d]. However, evaluating textual
range queries in XPRESS requires partial decompression just like in XGRIND.
XPRESS has a better query response time [Nair, n.d]. Like XGRIND, this
compressor is also homomorphic and it scans the XML file twice for
compression. XPRESS does not use Huffman encoding instead it adopts the
reverse arithmetic encoding. In XPRESS data is compressed by mapping the
entire XML hierarchy over the real interval (0.0, 1.0). As with XGRIND, XPRESS
does not support complex operations such as structural joins [Wei and Wei,

2012].

Another homomorphic compressor is QXT [Sibinski and Swacha,
2007]. This compressor is an extension of XWRT. It is extended to allow query
processing. Unlike the XBWT which compresses XML according to element
names, this compressor uses paths to separate data into containers. Like other
homomorphic compressors it scans the XML file twice. The first scan is to
gather statistics or frequencies of each item. The second scan is the actual
transformation stage where data is tokenized and put into containers

according to their paths from the root.

The containers are memory buffered until the reach a specific
threshold after which they are compressed using a back end compressor. The
containers are compressed into 32KB blocks to allow easy partial
decompression. QXT processes queries by reading the dictionary from the
compressed file first. This is followed by determining the containers that may
contain the data that matches the input query. These containers are
decompressed and the transformed data from the containers is searched using
a transformed pattern. Only the result set is decoded to the original XML

format.

54

XML COMPRESSION METHODS

5.2.3.1 Summary Homomorphic Compressors

From the above discussions, it is clear that homomorphic compressors
scan the input document twice. They all scan XML first to collect statistics
about the frequency of items to build a dictionary. The second scan is where
the actual compression takes place by tokenizing the data for XGrind and QXT.
From the above discussion, QXT is the only homomorphic compressor that
encodes paths instead of considering individual elements. These compressors
allow efficient query processing for the supported queries; however, they do

not support all operations.

5.2.3.2 Non Homomorphic Compressors

Non homomorphism is adopted by many queryable compressors
because it provides more flexibility. All other queryable compressors
mentioned in this chapter besides XGRIND, XPRESS and QXT are non
homomorphic. These methods do not retain the structure of the original

document but they allow query processing mostly with partial decompression.

5.2.3.2.1 Path Compressors

XCPags [Wang et al, 2004] is an example of a compressor that
separates structure from content in compressing XML. Like XGRIND, XPRESS
and QXT, XCPaqgs scans the XML file twice. In its initial scan statistics about
tags, path and path types are collected. The structure is compressed
separately from the content. To compress the structure tags are compressed
first using a Huffman encoder based on the statistics collected during the scan.

This is followed by compressing paths in the same manner.

In compressing the content, path types that are gathered in the initial
scan are considered resulting in data encoded according to the type inferred
by the path type. The enumerated data is therefore compressed using a
dictionary encoder whereas the string type is compressed using a suffix
compressor. Long text on the other hand is compressed using the Burrows

Wheeler Transform. The connection between structure and content is

55

XML COMPRESSION METHODS

maintained by the path order in the original document. This relational
connection is the one that is used in the final stage to form a 2-ary structure.
XCPags supports XQuery queries however an input query has to be translated

into a corresponding XCPaqgs code.

XSAQCT [Mildner et al, 2009] merges similar paths to localize
repetition to encode data. Like XCPags, this compressor uses paths in its
compression process. However, in this compressor the structural similarity of
paths is significant, not the path type. Each node is annoted with a set of
integers depicting the nodes along that path. All this is done within a single
SAX traversal over the XML document. Thereafter, the annotations are written
to containers that are compressed using some back end compressor. XSAQCT
adopts gzip as a back end compressor. It also uses Bzip2 and PAQ8 [Miildner
et al,, 2009]. Containers with the required data are decompressed during

query evaluation. XSAQCT supports simple exact match queries.

5.2.3.2.2 Sub Tree Compressors

Other non homomorphic compressors consider sub trees instead of
paths. XQzip [Cheng and Ng, 2004] is one of the compressors that use sub
trees during compression. It employs a Structured Index Tree (SIT) and a
buffer pool to compress XML. SIT merges sub trees that have equivalent paths
to remove redundancy and improve query performance. Merging the sub trees
results in a sequence of block partitions that are then compressed using gzip.
This compressor has a compression ratio close to that of XMill [Cheng and Ng,
2004]. During query processing, only the required blocks are decompressed.
Using the query input, the query processor determines the minimum number

of block necessary to evaluate it.

56

XML COMPRESSION METHODS

Bigger block sizes achieve a better compression ratio but suffer a
decompression overhead and that greatly affects query performance. Smaller
blocks result in redundancies between blocks compromising the compression
ratio. With that, the critical part of this compressor is determining the block
size. To further alleviate the decompression overhead problem, an algorithm
called Least Recently Used (LRU) is applied to maintain a buffer pool of the

decompressed blocks thus avoiding repeated decompression.

XQzip supports extended XPATH queries including the union and
grouping operators [Arion et al., 2010]. It supports a wider scope of queries
than XGRIND and XPRESS [Hruska et al., 2010], however, it does not support
joins and order based predicates [Zhang et al., 2008, Ng et al., 2006]. Query
evaluation with this compressor is very fast compared to other methods but
the efficiency is significantly reduced when dealing with queries with

descendant Ancestor-Descendant edges.

LZCS is a non homomorphic queryable compressor that uses the
Lempel-Ziv approach. Lempel-Ziv approach exploits repeated information
(redundant sub trees). A repeating sub tree is replaced by a backward
reference to its first occurrence. LZCS can be said to merge sub trees like
XQzip because replacing a sub tree with a backward reference of its first
occurrence is in a way merging similar sub trees. This process results in a
compressed document that is easy to display, access at random and navigate
[Adiego et al., 2004]. The compressed document can further be compressed by
a semi static word based Huffman method [Moffat, 1989] or PPM schemes
[Cleary and Witten, 1984]. The latter does not keep the navigation properties
of LZCS [Pena, 2013]. LZCS does not perform well on generated semi
structured data but is better on highly structured documents [Adiego et al.,

2007].

Sub trees are also used in XMLZIP. However, unlike XQzip and LZCS it
does not merge them but rather divides them into different containers as they
are. Compressing XML with this compressor entails dividing a DOM tree at
depth d specified by the user into multiple components [Cheney, 2001; Pena,
2013]. It has been established that increasing d decreases the compression

ratio because the redundancies in separated trees cannot be exploited to

57

XML COMPRESSION METHODS

improve compression [Cheney, 2001]. The component that contains all nodes
at a given depth d is referred to as the root component. This component is
modified by adding references to the sub trees it contains. The multiple
components generated by the above process are then compressed using gzip.
[t is said to have a poor compression ratio compared to the generic gzip [Ng et
al, 2006; Cheney, 2001]. Its only advantage over gzip is that it allows limited
random access to partially decompressed XML documents because, with gzip,

full decompression is required.

5.2.3.2.3 Auxiliary Structures Compressors

Some compressors like XBzipINDEX, ISX and SXSI use auxiliary
structures like indexes to improve the efficiency of their query evaluation
process. Some of these compressors adopt this so well that no decompression
is required to evaluate queries. However, there are challenges that come with
having auxiliary structures in that the compression ratio is affected because
there is more information to store so this has to be carefully considered. These

methods are discussed below.

XBzipINDEX [Ferragina et al., 2006] is a compression tool that adopts
the XBW transform [Ferragina et al., 2005] to compress XML just like the
XBzip that is discussed earlier in this chapter; however, XBzipINDEX is
searchable because of the index it incorporates. XWB portrays a succinct tree
using two arrays. One array stores tree labels arranged in appropriate order
while the other is a binary encoding array of the structure of the tree. The
additional data structures are required to support selection and rank
operations over the two XBW arrays. To achieve this, the arrays are handled
as strings to employ a string index tool; the FM-index [Ferragina and Manzini,
2005]. This index supports searching the tree. XBzipINDEX is said to have a
compression ratio that is 35% better than that of XGRIND, XPRESS and XQzip
[Ferragina et al., 2006]. This makes it one of the compressors that have
successfully adopted the idea of employing auxiliary structures without
compromising the compression ratio. It is also said to be the first compressor

to employ an index in compression [Ferragina et al., 2006].

58

XML COMPRESSION METHODS

Another auxiliary structure compressor, XQuec [Arion et al., 2007],
compresses data by encoding it with a simple binary encoding. It splits the
XML document into three data structures; structure tree, containers and the
structure summary or DataGuide. The structure tree is a set of ID sequences
that identify each root-node path in the tree. All the distinct paths in the
document are stored in the structure summary. Data and tag values are also
split according to their root to leaf path and stored in containers. Clearly this
compressor relies heavily on path information in compressing data. XQuec,
like XSAQCT, uses path information but unlike XSAQCT it uses the information
to split data into containers not to merge similar paths. XQuec preserves
relationships by storing distinct paths and IDs in the DataGuide and structure
tree respectively. Containers in XQuec are compressed using ALM

[Antoshenkov, 1997] or the classical Huffman algorithm.

To choose a suitable back end compressor a cost model is devised by
exploiting the query workload information. ALM is used to support range
queries and inequality predicates because it preserves order. The Huffman
algorithm on the other hand is used in cases where prefix wildcards need to
be supported but not inequality. As seen from the above discussion, the focus
of this compressor is more to support a wide spectrum of queries efficiently

rather than achieve a better compression ratio.

XQuec generates a lot of pointers that enable it to support the
evaluation of a wide range of XQuery queries in its compressed state [Wei and
Wei, 2012]. It also has a better query performance than XPRESS and XGRIND
[Zhang et al., 2008]. However, it comes at the expense of the compression
ratio. As aforementioned, XQuec has many auxiliary structures like the
structure tree and DataGuide which enables it to support many queries but
these structures may sustain a storage overhead compromising the

compression ratio which defeats the purpose of it being a compressor.

Wong et al. presented a compact storage engine for XML, ISX [Wong et
al, 2007] that also utilizes auxiliary structures. This storage engine is
classified as a compressor because of the way XML documents are stored in it.
ISX has three layers; the topology layer, internal layer and the leaf node layer.

Each layer stores specific components of the XML document. The topology

59

XML COMPRESSION METHODS

layer employs balanced parenthesis encoding proposed by Katajainen and
Makinen [Katajainen and Makinen, 1990] to store the tree structure of the
XML document. The internal layer stores elements, tags and signatures to the
text data. The actual data is compressed by a common compressor like gzip
and gets stored in the leaf node layer. The topology layer references this data
for easy access. Auxiliary data structures are used over the topology layer to
allow direct node navigation thus supporting query evaluation over the
compressed data. Other operations that ISX supports are update functions like
insertions and deletions. This makes it competitive in query support but it still

suffers from a low compression ratio.

SXSI is another compression tool that uses an index [Wong et al,
2007]. This compressor uses an FM-index [Arroyuelo et al, 2010]. XML
documents are treated as a set of ordered strings and a labelled tree defined
by a hierarchy of tags. This approach separates the structure of the XML tree
from the text content. Each node in the structure is assigned a global identifier
and each text content is assigned a text identifier. Text data is concatenated
and represented using the FM-index. SXSI uses this index to gather
information that allows it to only visit relevant nodes during query evaluation,
thereby reducing processing times. SXSI supports a wider range of XPATH
queries than XBzipINDEX [Arroyuelo et al., 2010].

5.2.3.2.4 Online Compressors

Other non hormomorphic queryable compressors are online
compressors. These compressors are especially applicable to easy data
transfer over the network because they lower the bandwidth required to
transfer data. Two online compressors are discussed in this work; TREECHOP
and XSeq. Although these compressors are both online compressors they use

different strategies to compress data as discussed below.

TREECHOP [Leighton et al., 2005] is non homomorphic queryable
online compressor that compresses data by assigning a codeword for a path to
each non leaf node. Compression in both XSAQCT and TREECHOP is based on
paths; XSAQCT merges paths instead of encoding them individually like

60

XML COMPRESSION METHODS

TREECHOP. With TREECHOP one codeword is assigned to each absolute path
such that nodes with the same absolute path have the same codeword. A
codeword for each node is prefixed by its parent’s codeword. New tree nodes
are written to the compression stream in depth first order as the SAX tokens
are returned. This depth first order enables the decompressor to regenerate
the original document [Sakr, 2009]. It avoids building an in memory
representation of the entire XML tree to preserve resources. TREECHOP
supports exact match and range queries [Leighton et al., 2005]. Unlike other
methods it evaluates these queries over the compression stream instead of
decompressing relevant containers because it does not split data into
containers. Partial decompression is required for validation when processing

range queries [Pena, 2013].

XSeq [Lin et al, 2006] adopts a grammar based text string
compression algorithm, Sequitur [Craig et al., 1997] instead of the codewords
used in TREECHOP. This online compressor uses Sequitur to generate a
context free grammar that uniquely represents the input string. In this
compressor tokens are separated into a set of containers each of which is
compressed by Sequitur. XSeq also adopts the use of auxiliary structures like
XBzipINDEX, ISX and SXSI but it uses them in a slightly different way. It
requires these auxiliary data structures or indexes to be loaded in memory
before processing the rule contents [Sark, 2009]. It primarily has two indexes;
the structural index and the header index. The indexes allow data values to be
quickly located and provide pointers to the entrance of each container
respectively. They enhance the compressor such that no decompression is

required during query evaluation.

5.2.3.2.5 Other Compressors

This section discuses a few other compressors that do not fall in the
above classifications. They include XCQ which is the only queryable
compressor that uses a schema, SJXC which is a more advanced compressor
that supports more queries than all other compressors and XPACK that

employs a heavy use of containers in its compression process.

61

XML COMPRESSION METHODS

Most non hormomorphic queryable compressors employ containers
during compression but this idea is overly used in XPACK [Rocco, Caverlee and
Liu, 2005]. XPACK adopts a container oriented document structure that is
created and modified by a set of unary operators [Rocco et al., 2005]. These
operators include PagePack(), PathPack(), NamePack(), URLPack(),
AttributePack(), ContentPack(). The operators are responsible for document
container, path structure, node tag name, document URL, attribute and
content encoding respectively. The main aim of XPACK is redundancy
elimination so its operators support flexible redundancy reduction. The
PagePack operator is different from other operators since it is the only one
that operates on the original XML document whereas other operators operate
on containerized documents. This operator generates a compact
representation of the document structure augmented by a set of content
containers. These containers are then replaced, transformed or augmented by
the relevant operators. XPACK has a good compression ratio and strong query
support for compressed XML documents [Rocco, Caverlee and Liu, 2005]. It is
claimed to reduce the storage requirement of XML by up to 20% over XGRIND
and XPRESS [Rocco, Caverlee and Liu, 2005].

In recent years compressors that are more advanced have been
presented. These compressors use complex strategies to compress data and
also support a wider range of queries. SJXC [Wei and Wei, 2012] is one of the
latest compressors. It uses a region encoding method called begin-end to
encode nodes in an XML document. The document is parsed using SAX and
tags and attributes are separated from the data. Data is then separated into
different containers according to their paths. These containers are encoded
using incremental coding or dictionary encoding depending on the type of
data they contain. Numerical data is encoded using incremental encoding

while textual data is encoded using the latter.

Given an input query in SJXC, a query parser changes the query into a
codeword expression. This expression is then matched against data in the
containers. If there is a match the desired data is decompressed. SJXC adopts
the TwigStack algorithm [Zhou, Xie and Meng, 2007] to evaluate twig queries

thus caters for complex operations like structural joins.

62

XML COMPRESSION METHODS

As with non queryable compressors some queryable compressors are
schema dependent therefore require the availability of a schema during the
compression process. Ng et al. presented a schema dependent queryable
compressor, XCQ [Ng et al, 2006]. As with other schema dependent
compressors, XCQ exploits information provided by the DTD to achieve a
better compression ratio. It adopts a technique called DTD and SAX Event
Stream Parsing. In this technique, documents are partitioned according to
their path and stored in blocks that are indexed using a block statistics
signature scheme [Sakr, 2009]. The blocks and the structure streams are

compressed using gzip.

In the same way as XQzip, XQC compression ratio and query
performance are inversely affected [Sakr, 2009] because of the decompression
overhead during query evaluation. With this compressor queries are
evaluated with partial decompression. Only the necessary blocks are
decompressed. XCQ only supports a subset of XPATH queries including
selection and aggregation [Zhang et al., 2008, Sakr, 2009]

5.2.3.2 Summary Non Homomorphic Queryable

The main focus for Non homomorphic queryable compressors is to
find the best possible way to achieve a better compression ratio and maintain
some support for query evaluation over the compressed data sometimes with
partial decompression. Most of them employ the use of containers where data
is separated into containers using different strategies. Data can be separated
using absolute paths, node names or sub trees. Sometimes similar paths and
sub trees are merged to eliminate redundancy. In some cases to further reduce
the size, some form of encoding is used. This ranges from simple integers to
special compression encoding like binary encoding. Containers are then
compressed using a back end compressor which is normally an XML blind

compressor mostly gzip.

In a case where a compressor supports query evaluation with partial
decompression, relevant containers are decompressed during query

evaluation. As discussed above, some compressors use auxiliary structures to

63

XML COMPRESSION METHODS

avoid the need to decompress data during query processing. From the above
discussion it is clear that some methods choose to compromise compression
ratio to allow a wider query support. Though the compression ratio is
compromised using these compressors is still better than processing the

original XML document because the size is still somewhat reduced.

5.2.3 Summary Queryable compressors

All the discussed queryable methods allow query evaluation on the
compressed data but sometimes partial decompression is required. These
methods mostly compromise compression ratio for query support. Some
queryable compressors retain the structure of XML during compression
therefore are referred to as hormomophic compressors while others do not.
Compressors that are non hormomophic usually result in a better

compression ratio.

Note that all these compressors were developed in light of reducing
space consumption in a resource rich environment but not specifically for
resource constrained devices. Therefore they do not meet the needs of a

resource constrained device especially in terms of query processing.

5.4 Chapter Summary

The verbose nature of XML resulted in a lot of research into XML
compression. It has been established that XML can be compressed with
general text compressors because it is a text file. However, using general text
compressors result in low compression ratios. These compressors are
referred to as XML blind compressors because they are unaware of the
structure of XML. For this reason they cannot exploit the repetitive structure

of XML to achieve better compression.

This led to XML conscious compressors that exploit the repetitive
structure of XML thereby achieving considerably high compression ratios. The
XML conscious compressors are further classified into queryable and non

queryabe compressors based on their ability to support queries. Non

64

XML COMPRESSION METHODS

queryable methods have higher compression ratios than queryable methods.
It has been observed that there is a tradeoff between compression ratio and
query support. Compressors with a high compression ratio either support a
few queries or none at all. For the queryable methods, some compress XML by
retaining its structure to allow support more queries. These methods are
classified as homomorphic compressors. The non homormophic methods have
a better compression ratio than their hormomophic counterparts. Research in
queryable compressors has advanced but there has not been a method that

has been developed specifically for resource restrained devices.

65

CHAPTER 6

CHAPTER 6

MOTIVATION AND PROBLEM FORMULATION

6.1 Introduction

This chapter discusses the motivation of this research by outlining the
importance of XML highlighting its verbosity problem. It also encapsulates
XML compression. In addition, the subject of smartphones is presented since
the main aim of this research is to investigate how labelling schemes can be
used alongside existing compression methods to achieve a competitive
compression ratio that to some extent allows users to store and manipulate
the otherwise verbose XML in resource-restricted devices. Section 6.2 gives an
overview of XML while Section 6.3 discusses smartphones. The use of wireless
connections as a solution to some of the problems that come along with using
smartphones is discussed in Section 6.3.1 and Section 6.4 considers XML
compression background showing some the limitations of the existing
compressors. The chapter concludes by briefly presenting labelling schemes

leading to the problem definition and hypothesis of this research.

6.2 XML overview

The explosive growth of the use of XML over the last decade has led to
a lot of research on how to best store and manipulate it. XML has been
described as a de facto standard for storage and exchange of data over the
web [Sakr, 2009; Ng et al,, 2006; Lu and Cheng, 2004; Nicola and Van der
Linden, 2005; Weiner, Mathis and Harder, 2008; Su-Cheng et al., 2009; Haw
and Lee, 2007; Zhou et al.,, 2009; Wang et al., 2009; Mlynkova and Necasky,
2009; Grimsmo and Bjgrklund, 2010; O’Connor and Roantree, 2010; Zhang
and Ozsu, 2010; Byun and Park, 2010, Xin, He and Cao, 2010].

66

MOTIVATION AND PROBLEM
FORMULATION

Though it is verbose, XML cannot be phased out because of its
capability to represent data in a simple way that can be understood by both
humans and machines [Kirk et al., 2005]. XML is platform independent [Nicola
and Linden, 2005] providing portability [Gulhaneand Ali, 2012; Morgan, 2007]
which is a desirable feature with the diverse users available. Among other
advantages XML has a fairly simple syntax and extensible vocabulary with
user defined tags. These tags carry semantics about data that other languages
cannot reflect thus it said to be a self-describing language. The self-describing
nature of XML results in large documents [Arion et al., 2007; Maneth et al.,
2008; Zhou et al., 2010; Ng et al., 2006; Arion et al., 2004] that may otherwise

prove to be inaccessible for resource-restrained devices such as smartphones.

6.3 Smartphones

Equally there has been an explosive growth of smartphone use which has been
driven by consumer demand [Satyanarayanan et al., 2013]. These devices
have pervaded our lives [Boulos et al,, 2011 Verbelen et al., 2013] in that users
use them for almost everything that used to be achieved by using a desktop
from checking emails to banking [Whang et al., 2009 Portokalidis et al., 2010].
Although users perform almost every task with smartphones there are still
challenges that come about with this because these devices are resource-
restrained. Over the years their capabilities have been increased but they still
cannot compete with their resource-rich counterparts [Verbelen et al., 2013].
The challenges that come with using a smartphone include limited memory,
finite energy and a slow processor [Boulos et al., 2011]. The storage problem
has wireless connection being used as a solutions but it has some limitations

as discussed in the next section.

67

MOTIVATION AND PROBLEM
FORMULATION

6.3.1 Wireless connections as a solution

In trying to solve the limited memory problem to leverage the ubiquity
of these devices, researchers proposed methods that rely on wireless
connections (WI-FI) to keep most of the information on the server side and
only keep the necessary information on the smartphone at a given time.
Though it may have ubiquitous coverage, WI-FI has higher energy cost
[Mohan, Padmanabhan and Ramjee, 2008] making it inadequate for many
applications [Rahmati and Zhong, 2007]. The battery technology is one of the
greatest obstacles for smartphones and their growth and the technology
trends indicate that the problem is here to stay [Cuervo et al., 2010] therefore

high energy processes must be avoided as much as possible.

Besides, their adverse effects on the battery life of a smartphone,
wireless connections also comes with other challenges like security and the
possibility of compromised data integrity. Apart from these problems wireless
connections are not always available [Riva and Kangasharju, 2008,
Satyanarayanan, 1996, Lindholm and Kangasharju, 2008]. When they are not,
the user cannot have access to the data that resides in the server. Wireless
connections may not available in some developing countries, in most
aeroplanes and other hostile environments [Satyanarayanan et al, 2013]

therefore cannot be viewed as a sustainable storage solution.

Although wireless connections can be used as a solution they come at a
high cost. A more cost effective solution would be the one that increases
physical proximity by making the XML document to some extent be small
enough to fit in a smartphone yet accessible for query evaluation. This can be
achieved by compression. Many compression methods have been proposed to
reduce the size of the XML tree but none of them were developed in light of

the smartphone use and the challenges that come with it.

This research is aimed at reducing the dependency on wireless
connections by developing a compression method that has a competitive
compression ratio and allows query evaluation of a wide range of XPATH

operators without taxing the limited memory of a smartphone.

68

MOTIVATION AND PROBLEM
FORMULATION

6.4 XML compression

The verbose nature of XML resulted in much work devoted to XML
compression. Compression of XML has been achieved through XML blind
compressors that compress XML like a text file, non-queryable and queryable
XML compressors. XML blind compressors are unaware of the structure of
XML so they result in poor compression ratios because they do not exploit the
redundancy in the XML data structure. Non-queryable XML compressors, as
shown in the Chapter 5, achieve better compression ratios than both the XML
blind and queryable compressors but the resulting compressed file is
inaccessible. These methods can only be a solution for storage space where
file access is not required. The whole file needs to be decompressed to be
manipulated so the non-queryable XML compression methods are not a

feasible solution for smartphone limitations.

Queryable XML compression methods on the other hand allow parts of
the XML file to be accessed at a time through partial decompression. Some of
them allow data access over the compressed file. However, none of these
methods were developed for smartphones. As discussed in the previous
chapter these compression methods allow data access by compromising the
compression ratio. Currently the best compression ratio of a queryable XML
compressor is that of XSAQCT with a compression ratio of 0.8 [Al-Hamadani,

2011] but it supports the exact match queries only.

The way the data is stored influences the way it is retrieved.
According to Pena more novel approach has been to combine compression
and indexing such that an index is built on top of the compressed file resulting
in a self-indexed compressor [Pena, 2013]. These compressors promise fast
query execution because they employ indexes but this comes with high space

requirement and that defeats the purpose of a compressor.

Compression changes the structure of the XML file and sometimes it
requires many lines of code to extract data from such files. As already shown
in Chapter 4 among other problems smartphones also have energy and
processor limitations therefore executing complex lines of code may prove to

be inefficient. It is necessary that a queryable compressor be developed

69

MOTIVATION AND PROBLEM
FORMULATION

specially for smartphones. The query processor has to be developed such that
it can run on a smartphone considering the resource challenges to enable
query processing efficiency. None of the existing compressors were developed
such that their query processor can run on a smartphone. Evidently, there is
still need to develop a compressor specially tailored for smartphones that can
allow users to access their XML data at any given time at a minimal cost in

terms of storage, power and time.

6.5 Labelling schemes

As discussed in Chapter 3 on query optimization, labelling schemes
can reduce the size of an XML tree substantially yet preserving relationships
among nodes in the XML tree [Weigel et al., 2005, O'Connor and Roantree
2010]. These relationships are core to XML query processing. Although
labelling schemes reduce the size of an XML tree their primary purpose is to
allow easy and fast access of data than reducing memory consumption. This
research investigates how ideas from labelling can be combined with
compression techniques to achieve a competitive compression ratio and allow

easy and fast access to data.

6.6 Hypothesis

In light of the above discussion this research aims to test the following

hypothesis:

“Combining ideas from XML labelling schemes and compression
techniques can prune an XML tree enough to achieve a competitive
compression ratio without the use of a schema that will to some extent
allow users to store and query the otherwise verbose XML files in their

resource-restrained smartphones efficiently.”

70

MOTIVATION AND PROBLEM
FORMULATION

The above hypothesis is tested through a practical implementation
that is evaluated against real data that is usually used for XML benchmarking.
The evaluation covers the compression ratio, compression time and query

evaluation efficiency in terms of accuracy and speed (Query response time).

6.6.1 Objectives

Following the practical implementation this research addresses the

following research questions:

1. Can labelling be combined with compression to achieve a competitive
compression ratio?

2. Is it possible to achieve a competitive compression ratio without
exploiting the XML schema?

3. What type of XPATH queries can be evaluated over the resulting

compressed file on a smartphone?

This research hopes to have three contributions; the compressor,
decompressor and query processor. Only the query processor runs on a
smartphone, compressor and decompressor run on a resource- rich

environment. These are briefly discussed below:

Compressor: A schema independent XML compressor that combines
labelling with compression achieving a competitive
compression ratio that allows comparatively large XML

files to be stored and manipulated in a smartphone.

Query processor: A novel approach to XML query processing in
smartphones that supports a wide range of XPATH
operators. It evaluates queries over compressed data
by retrieving relevant containers to get the desired

data as specified by the query.

71

MOTIVATION AND PROBLEM
FORMULATION

Decompressor: The decompressor accepts the compressed files
created by the compressor to produce the original XML

document.

6.7 Chapter Summary

The use of smartphones is on the rise. Some schools of thought suggest
that they will take over in the near future [Hu et al.,, 2010; Boulos et al., 2011;
Kim et al.,, 2012]. However, these devices are resource-restrained and it will
take years to overcome some of the challenges that come with their use
especially the battery limitation. Smartphones are meant to be light and
compact therefore some things like fans that are needed to dissipate heat
cannot be incorporated into them. Not incorporating a fan means the
processor speed has to be kept minimal otherwise the devices will heat up and

be damaged.

Applications that are meant to run on a smartphone should be
lightweight in terms of size and complexity of process to be executed. XML
defies both properties in that it is verbose. Although it is verbose, XML has
other desirable properties that have seen the increase in its use in the past
decade therefore there is need to develop a novel approach by which XML can

be easily stored and processed on a smartphone.

This is to some extent achieved by SIQXC which has a light weight
query processor that allows efficient XML query processing on a smartphone.
Obviously the capabilities of smartphones will increase with time but even
then SIQXC will continue to be valid. As smartphones become powerful SIQXC
can still be applied to compress XML such that more data can be carried and
processed. The verbosity problem of XML will never change thereby making

this compressor valid.

72

CHAPTER 7

CHAPTER 7

SCHEMA INDEPENDENT QUERYABLE XML COMPRESSOR

7.1 Introduction

This chapter presents a Schema Independent Queryable XML
Compressor SIQXC. This compressor was developed to alleviate problems that
are associated with the verbose nature of XML so that it can be stored and
manipulated in resource limited devices. As aforementioned, though XML is
verbose its usage has increased and continues to [Pena, 2013, Al-Hamadani,
2011]. The use of limited devices like smartphones also has increased [Boulos
et al,, 2011, Satyanarayanan et al., 2013, Verbelen et al,, 2013]. These devices
are being used for different activities from personal to corporate and or
business. Their resource limitations however make it almost impossible to
handle XML without the aid of the Internet through the use of wireless
connections. SIQXC therefore proposes a novel approach to compress XML
such that large XML file would to some extent be stored and manipulated in
these devices without the need for the Internet. Not only will this address the
memory consumption problem but also other problems that come along with

using the Internet like high energy consumption.

7.2 System overview

SIQXC consists of three main components; the compressor,
decompressor and query processor. As already discussed in the previous
chapter the main aim of this research is to investigate to what extent XML can
be compressed such that users can have access to their data using a resource
restrained device like a smartphone without the need to connect to the
Internet. The compressor makes data small to some extent to fit in
smartphone while the query processor gives accessibility to the compressed

data again without the need for the Internet.

73

SCHEMA INDEPENDENT QUERYABLE XML
COMPRESSOR

XML

Document

/ Compressor

Decompressor

Compressed
XML

Query

Processor

Figure 7.1: System overview design for SIQXC

SIQXC is designed such that these two components run in different
environments. The compression stage runs in a resource rich environment
while the query processor is developed for and runs in a resource limited
device. This system also has a decompressor that decodes a SIQXC
compressed XML file to the original XML document. Decompression can be
necessary in cases where a user transfers a file to a different location and also
for updates since data keeps evolving. However, the decompressor in this
work was designed only for completeness since all other compressors have a
decompressor. It is not useful in this work because the query processor does

not support updates and there are other means of transferring files.

74

SCHEMA INDEPENDENT QUERYABLE XML
COMPRESSOR

SIQXC accepts an XML document and compresses to produce a file of a
smaller size. The compressed file can either be an input to the query processor
or the decompressor. The decompressor decodes the compressed file back to
the original XML. The file can be loaded into the query processor and accessed
at any time by the user without the need for the wireless connections. Figure

7.1 above shows the system overview of SIQXC.

XML

]
Document J

_K

Compressor Module

Decompressor Module

XML

Resource Rich Environment

A 4

Query Processor Module

Query Analyser
QueEry Search _
ngine

Figure 7.2: Complete SIQXC design

Limited resources XPath |
(smartphone) query J
—

As stated above SIQXC has three main components; the compressor,
query processor and a decompressor. The detailed design of this system is

shown in Figure 7.2 above.

75

SCHEMA INDEPENDENT QUERYABLE XML
COMPRESSOR

7.2.1 The Compressor

This compressor is schema independent to increase usability since the
use of a schema bring about a lot of restrictions [Meng et al., 2003; Bex, Neven
and Vansummeren, 2000] that reduce the flexibility of XML and lowers the
number of users by excluding novice users. The schema could not be
accessible to these users even if it was available [Al-Hamadani et al., 2013].
Not using a schema also saves space [Al-Hamadani et al., 2013] which is the
main reason behind compression. It compresses XML by assigning the same
code to siblings on an XML tree except for the siblings in level 2. Each node is
labelled using a novel simple 2-tuple integer encoding system (see the next

chapter).

The compressor also uses a node clustering technique to reduce
redundancy and compresses the XML file further. The Node clustering
technique was employed in Node Clustering Indexing Method (NCIM) to
compress repetitive sub structures [Liao, Hsu and Chen, 2010]. NCIM
combines indexing with compression and like any compressor that has
auxiliary structures, needs more storage space even though it has a high
compression ratio. In this node clustering process, nodes within the same
level with the same node name are clustered together into a container with
their data. This grouping reduces the size of the XML file significantly. The
different containers are then compressed using DEFLATE [Deutsch, 1996,
Weimin et al., 2008] based compressor gzip [Deutsch, 1996]. These techniques

are discussed more fully in the next chapter.

7.2.2 The Query Processor

The query processor accepts XPATH queries. These queries are
analysed by the query analyser to determine their type. Then queries are
applied to the compressed XML producing a result set. The result set can be
empty in cases where there is no match. Different methods are invoked to
evaluate different types of queries. This query processor supports a wide
range of XPATH operators. A detailed discussion of the query processor

follows in Chapter 9.

76

SCHEMA INDEPENDENT QUERYABLE XML
COMPRESSOR

7.2.3 The Decompressor

The decompressor decodes the compressed XML to the original XML
document by unzipping, ungrouping and reassembling the different nodes to
their respective levels and sub trees. This finishes by recreating the original

XML file.

7.3 Chapter Summary

This chapter introduces SIQXC by giving an overview of its
components and showing a detailed design diagram of the system. SIQXC has
three main components; the compressor, decompressor and query processor.
The compressor compresses XML by encoding, grouping and gzipping it. This
is discussed in Chapter 8. This system supports a wide range of XPATH
operators through the query processor. The original XML file can be obtained
from the compressed file by decoding it with decompressor. The next chapter
discusses the compressor and decompressor with examples to illustrate the

procedures involved in each component.

77

CHAPTER 8

CHAPTER 8

THE COMPRESSOR AND DECOMPRESSOR

8.1 Introduction

This chapter presents the two components of SIQXC that run on a resource
rich environment as shown in Figure 7.2 in the previous chapter; the
compressor and decompressor. These are discussed with examples in this
chapter. For illustrations, the XML file snippet in Figure 8.1 is used to show
how the SIQXC compressor encodes and groups elements to compress the
XML file and preserve the structural relationships among nodes. Section 8.2
discusses the compressor and section 8.3 describes SIQXC’s decompression

process.

8.2 The Compressor

As mentioned in Chapter 5, there is always an inverse relationship
between the compression ratio and query support in XML compressors. The
challenge therefore is to develop a method that strikes a balance between the
two. SIQXC is designed to achieve the highest compression possible while
preserving relationships among XML nodes because these relationships are
vital for efficient query processing. The way data is stored significantly affects
the way it is retrieved [Zhang and Ozsu, 2010, Wong, Lam and Shui, 2007].
SIQXC follows the design in Figure 8.2 shown below to compress XML
preserving structural relationships between nodes which will later facilitate

efficient query processing in a resource limited environment.

The structural relationships among XML nodes are Parent-Child (P-C),
Ancestor-Descendent (A-D) and Sibling relationships [Haw and Lee, 2008,
Haw and Lee, 2009]. These relationships are in some contexts referred to as

axes or edges [Zhang and Ozsu, 2010].

78

THE COMPRESSOR AND DECOMPRESSOR

Identifying structural relationships among nodes is a core process in
query processing [Yun and Chung, 2008, Gou and Chirkova, 2005, Lu et al.,
2004, Jiang et al., 2004, Chen et al., 2005, Chen et al., 2006, Zhu et al., 2008, Xu
et al,, 2009, Jiang et al., 2009, Lu et al., 2011] therefore they need to be
preserved. The following discussion demonstrates how this compression

method preserves these relationships.

<?xml version="1.0" encoding="UTF-8"7>

<Personnel>

<Employee type="permanent">
<Name>Seagull Stephen</Name>
<Id> <code> 33445 </code> <key>ot</key></Id>
<Age>34</Age>
<Hobby>swimming</Hobby>

</Employee>

<Employee type="contract"
<Name>Robin Hood</Name>
<Id>36750</Id>
<Age>25</Age>

</Employee>

<Employee type="permanent">
<Name>Boinelo Adam</Name>
<Id>36778</1d>
<Age>15</Age>

</Employee>

<Employee type="permanent">
<Name>David Kgosi</Name>
<Id>36761</Id>
<Age>28</Age>

</Employee>

<Employee type="contract"”
<Name>Mavis Cook</Name>
<1d>32204</1d4>
<Age>25</Age>

</Employee>

<Employee type="permanent">
<Name>John Rama</Name>
<Id>36673</1Id>
<Age>15</Age>

</Employee>

</Personnel>

Figure 8.1: XML document snippet

79

THE COMPRESSOR AND DECOMPRESSOR

XML
Document

Compressor Module

Compressed
XML

Figure 8.2: The compressor design

8.2.1 Compression Process overview

SIQXC uses four processes to compress an XML document; parsing,
labelling, clustering and gzipping. Two of these processes, labelling and
clustering, are run concurrently. Labelling and clustering keeps track of
structural relationships among nodes thereby enabling efficient query
processing on compressed data. Prior to labelling and node clustering the
XML document is parsed using Document Object Model (DOM) to create a tree

representation.

8.2.2 XML Parsing

SIQXC uses DOM to parse the XML file. It was indicated in Chapter 2
that DOM uses a lot of memory but this is not a problem in this case because
the compression part of SIQXC is run in a resource rich environment. Also
SIQXC deals with trees that are relatively small given that the size has to be
one that can be compressed to fit in a resource limited devices so memory use
during compression is not a concern. Unlike SAX, DOM preserves relationships
[Lam et al., 2006] so its tree representation makes labelling much easier that

having to handle SAX events.

80

THE COMPRESSOR AND DECOMPRESSOR

SAX is best for streaming application whereas DOM is suitable for
databases [Lam et al., 2006]. The XML snippet in Figure 8.1 is parsed using

DOM resulting in a tree representation of element nodes shown in Figure 8.3.

Personnel

/poyee>

Employee

Employee Employee
Name / ‘ \
Name d Asge Age Age Name |d Age
Name Id

Id
Name Id Age Hobby Name Age

I\

code key

Figure 8.3: XML tree representation

8.2.3 Encoding

After parsing XML the compressor encodes the XML tree obtained.
Labelling has been used in XML to create structural summaries [Weigel et al.,
2005] that optimize query processing by pruning the XML tree but
maintaining structural relationships. It is said that they are better than
indexing schemes since in most cases they require less storage space [Li and
Ling, 2005, Khaing and Thein, 2006]. This work adopts a novel simple 2-tuple
integer encoding system (level, Sid) to label the XML tree. The first part of the
label indicates the level of the node on the XML tree and the second part
indicates the identity of a sub tree (Sid) it belongs to. In SIQXC only element
nodes are labelled. This labelling is achieved by dividing the XML tree into sub
trees on the second level. Each sub tree is given a unique code (Sid) by which

all its children and descendants are identified.

81

THE COMPRESSOR AND DECOMPRESSOR

Essentially each child of the root node (nodes in level 2) is allotted this
code. These labels ensure easy determination of structural relationships
among nodes during query processing. The following discussion shows

examples of how these relationships are retained.

To illustrate this encoding process, consider a node label 2.1. From
this label we derive that the label belong in level 2 of the XML tree and that

this node belongs to sub tree 1 (see the example below).

Level on the XML

Sub tree id (Sid)

All children of this node will inherit 1 because they belong to the same
sub tree as their parent but the level will increase by one to 3 resulting in
node label 3.1 thereby preserving the P-C relationship. Since all children for
node 2.1 have the same code which is 3.1 the sibling relationship is also
maintained. Notice that a node in the same level but a different sub tree will
have a code such as 3.2 indicating that though it is in the same level it is not a
sibling of the 3.1 nodes because it belongs to a different sub tree. As the
labelling continues deep into the sub tree the level increases but the Sid stays
the same. All children of the 3.1 node are assigned label 4.1. A node with label
4.1 is a descendent of a node with label 2.1 hence the A-D relationship
preserved. Preserving these structural relationships enables SIQXC to support

a wide range of queries efficiently.

Figure 8.4 demonstrates a SIQXC encoded tree representation of the

XML tree in Figure 8.3.

82

THE COMPRESSOR AND DECOMPRESSOR

///\\

\ /\2“ ./\\

31 3.1

N

4.1 4.1

34

3.3 33

Figure 8.4: Encoded XML tree representation

This level based encoding system is simple yet effective. It does not
require a lot of storage space like the prefix labelling schemes [Tatarinov et al.,
2002, O'Neil et al., 2004, Cohen et al.,, 2002] neither does it involve complex
computations in creating labels like the prime number labelling schemes [Wu
et al,, 2004]. However, sibling order is lost during the labelling process. Sibling
order is not of great importance in this work because it is rare for users to
require this in their queries, instead they use tag names which are preserved.
Updates are not supported as discussed in Chapter 9 so it is assumed that the
compressed file would not need to be decompressed. The encoding used is

therefore sufficient for this work.

8.2.4 Clustering

Since siblings share the same label, their tag names are used to
differentiate them during the clustering process. During the labelling process
the attributes and text nodes are linked with their respective element nodes
by the Sid. This process clusters elements by their tag name and level. Each
container is named after the tag name and level of the elements it contains.

The container stores the attributes and text nodes along with their Sid. This

83

THE COMPRESSOR AND DECOMPRESSOR

clustering removes the redundancy in the XML structure thereby significantly
reducing the file size. A similar approach was used in NCIM [Liao et al., 2010]

but their labelling is different in that creates a 3-tuple label.

The resulting containers are each named after the level and element
name as shown in bold in Figure 8.5. In reference to the XML snippet in Figure
8.1, all data (text and attributes) associated with the Name elements is stored
in an encoded container called 3.Name because this node is in level 3. Each
text node associated with an element is stored alongside the Sid of the sub
tree it belongs to. Consider Figure 8.5 for a full representation of all containers

created by the SIQXC compression process of the XML document in Figure 8.1.

2.Employee 3.Name 3.1d 3.Age 3.Hobby
1 @permanent 1 Seagul Stephen 1 134 1 Swimming
2 @contract 2 Robin Hood 236750 225 4 key
3 @permanent 3 Boinelo Adam 336778 315 1ot
4 @permanent 4 David Kgosi 436761 428
4.code
5 @contract 5 Mavis Cook 532204 525
133445
6 @permanent 6 John Rama 636673 615

Figure 8.5: XML Data grouped into containers

8.2.5 Back end compression

After clustering nodes, text and attributes into containers the
containers are passed to a gzip [Deutsch, 1996] compressor. This compressor
is based on the DEFLATE algorithm which combines the Lempel Ziv 77 (LZ77)
and Huffman coding [Deutsch, 1996, Feldspar, 1997, Salomon, 2007]. LZ77 is a
lossless dictionary based algorithm in which strings of characters are mapped
to a single code. Huffamn coding on the other hand uses variable length code
tables to encode the source data. DEFLATE uses LZ77 to find repetitive
characters and builds coding tables using Huffman coding. Gzip concludes the

compression process of SIQXC resulting in a compression ratio that would

84

THE COMPRESSOR AND DECOMPRESSOR

allow a large XML file to some extent be stored and manipulate in a resource
restricted device like a smartphone. This would give the user local access to as
much of their data as possible through the SIQXC query processor dicusssed in

Chapter 9.

8.3 The Decompressor

Decompressor Module

XML

Figure 8.6: The decompressor design

The SIQXC decompressor decompresses data by considering the level
that associated with each container. As discussed during compression, nodes
are clustered according to their name and level, so each container contains
text and attributes from elements with the same name and level but different

sub trees.

To receate the XML file, each node label is replaced by the tag name
which forms the opening and closing tags of that element. The data associated
with each element is then put between the opening and closing tags unless it is
an attribute. Attributes are identified with the @ symbol. In case an attribute
is encountered, it is added to the opening tag of the element. This process is
done in ascending order of Sids in each level to form the XML tree’s fanout.
From Figure 8.5, the first container to be decompressed is the 2.Employee
container since it has the lowest level number. Each label is then replaced by

the node name Employee derived from the container’s name. Attributes and

85

THE COMPRESSOR AND DECOMPRESSOR

their values are then assembled with their respective Employee nodes. The
process is repeated for all containers and we finish with the original XML file.
As mentioned sibling order is lost during compression so the resulting XML
file will likely have siblings in a different order from the original XML tree.

Sibling order is beyond the scope of this research as discussed above.

8.4 Chapter Summary

Chapter 8 presented the compressor and decompressor discussing the
processes involved in each component with illustrations. SIQXC uses a novel
simple 2-tuple integer encoding system to labelling XML after parsing it with
DOM. The labelled nodes are clustered according to their tag name into
containers to remove repetitive structures. Individual containers are further
compressed using a DEFLATE algorithm based compressor gzip, which
combines LZ77 and Huffman coding. The next chapter discusses the query

processor.

86

CHAPTER 9

CHAPTER 9

THE QUERY PROCESSOR

9.1 Introduction

Techniques for extracting data from XML documents is an important
issue of XML research [Liu and Ling, 2002]. As discussed in Chapter 2 the way
data is stored influences the way it is extracted. This also determines the
efficiency of retrieving the data. This chapter introduces a SIQXC query
processor that extracts data from SIQXC compressed data. SIQXC supports a
wide range of XPATH operators and this is demonstrated in Section 9.3 and its
subsections. The chapter gives a general overview of XML query processing

leading to a detailed discussion of SIQXC query processing.

9.2 XML Query Processing Overview

Query processing in XML depends heavily on the relationships [Robie,
2007] among nodes therefore users are supposed to be sufficiently aware of
the document structure to be able to extract the information they need. The
user’s unfamiliarity with the document structure may lead to
misunderstandings during query processing. Such slight misunderstanding
may lead to unsatisfiable queries that render empty answers [Brodianskiy and
Cohen, 2007]. This is a requirement for the SIQXC query processor too.
Structural relationships are necessary to fetch the relevant data according to
the input query. This query processor supports a wide range of XPATH
operators. In XML query processing, a query should define the information
that the user is looking for, the scope through which it is to be found and the
context in which it should be presented [Schlieder, 2002]. An XPATH query
does this by defining a way to navigate an XML tree to return a specific set of

nodes reachable through the path in the expression [Flesca et al., 2003].

87

THE QUERY PROCESSOR

Personnel/Employee [Age>20]/Name

\

Location path Output expression

The expression comprises of two parts; a location path (scope) and
output expression (information + context) [Peny et al.,, 2003]. The location
path is a sequence of steps to the desired node whereas the output expression
specifies the portion of the matching element that forms the result. A location
path is normally made up of axis that represent node relationships and

sometimes it include a predicate as demonstrated in the example above.

9.2.1 General XML Query Classification

This section gives an overview of the general XML query classification.
The query type determines how a query is evaluated and this also applies in
SIQXC query processing as discussed later in this chapter. As discussed in
Chapter 2, there are two main types of queries; keyword and structural
queries. Structural queries can be further classified as path or twig queries.
Path queries involve a simple path from the root that guides the tree
navigation to the required data. Twig queries on the other hand can have
relative paths and predicates. These are sometimes referred to as branching
queries because they do not just follow a simple path. Evaluating such queries
sometimes involves the decompose-match-merge approach mentioned in
Section 3.3.4.1. This approach usually involves intermediate results that are
then merged to generate the final result set. This is common where
conjunctions and disjunctions are involved. This classification encompasses all
other classifications like AlHamadani’s criteria, conjunctive and range queries
[AlHamadani, 2011] and Schmidt et al’s classification that is based on the
operators or the concept to be tested in the XMark benchmark [Schmidt et al.,

2002].

88

THE QUERY PROCESSOR

The following sections discuss SIQXC query processing including the
query classification that is used. The classification also describes how each
query type is evaluated with examples. The illustrations assume the

compressed data shown in Figure 8.5 in the previous chapter

9.3 SIQXC Query Processing Overview

The SIQXC query processor is made up of a query analyser and a query
search engine. This query processor accepts an XPATH query and passes it to
the query analyser where it is analysed to determine the type. The query type
dictates the method to be invoked for the evaluation. This approach was used
in TwigX-Guide discussed in Section 3.3.3. Each method defines how a query is
decomposed and evaluated. Some queries adopt the decompose-match-
merge approach [Zhang et al,, 2001, Chen et al., 2005, Su-Cheng and Chien-
Sing, 2009, Bruno, Koudas and Srivastava, 2002] used in twig query
processing (see section 3.3.4.1) and others just use the decompose-match
approach. The method invoked also exerts influence in identifying the
compressed containers that are necessary to evaluate the query. The query is

then evaluated by the query search engine rendering a result set.

An XPATH query is accepted as a string in SIQXC. This string is
decomposed into sub strings according to the invoked method. The query is
decomposed into sub strings that when evaluated would give the same result
set as the original XPATH query if it were evaluated on the original XML

document. Figure 9.1 below shows the structure of the SIQXC query processor.

Query Processor Module

Query Analyzer
Query Search
Engine

Figure 9.1: The query processor design

89

THE QUERY PROCESSOR

As mentioned above the query analyser analyses the query to
determine the type to invoke the relevant method for query evaluation and
query search engine has different methods that efficiently evaluate each type
of query. The next section discusses these query types and how they are

evaluated.

9.4 SIQXC Query Classification Overview

The query classification in this work overlaps with other
classifications that are mentioned in Section 9.2.1 above but it slightly differs
from them because it is specifically tailored according to the query search
engine methods in SIQXC. With SIQXC there are two main query types:
predicate (branching) and non-predicate (simple path + keyword).

9.4.1 Non Predicate Queries

Non-predicate queries can either be a keyword or a simple path
query. A keyword query involves a single string which is run against the
database to bring up all matching strings regardless of their position in the
XML tree therefore does not depend on structural relationships among nodes.
An example of a keyword query in relation to the XML document shown in
Figure 8.1 can be ‘Name’. This query returns the values of every ‘Name’
element in the XML document. Unlike a keyword query, a simple path query is
a structural query that depends on relationships among nodes for query
evaluation. It specifies the exact path to follow to the required data. This query
is composed of steps separated by a single forward slash ‘/’ from the root
node to the desired node. An example of this query would be
‘Employee/Name’ which returns the values of all ‘Name’ elements that have

Employee as a parent.

90

THE QUERY PROCESSOR

9.4.2 Predicate Queries

Predicate queries are any queries with a criteria or a regular
expression enclosed in square brackets ‘[]’ that has to be applied on the
specified node or nodes to retrieve a specific subset of data. The criteria can
be a disjunction, conjunction range or comparison. SIQXC classifies predicate
in two ways. One classification is based on the output expression whereas

the other is based on the operators in the predicate.

Sometimes a predicate is applied on a node A to return results from
node B. Node B in this case being the output expression. This function leads to
SIQXC’s first classification of predicate queries; same node predicate and
divergent node predicate query. Every criteria, conjunctive and range can
have same node or divergent node predicates which is why this work follows
a different query classification from AlHamadani’s [AlHamadani, 2011]. In this
work’s classification the same node predicate applies the predicate on node A
and returns values of node A that satisfy the predicate whereas the divergent
node predicate applies the predicate on node A but returns values of node B

that correspond to values of node A that satisfy the predicate.

As aforementioned the other classification is based on the number of
operators in the predicate; single operator and multiple operator queries.
A single operator query like the name suggests has one operator whereas a
multiple operator query has more than one operator. A multiple operator
query usually has a two part predicate connected by a conjunction (AND) or

disjunction (OR).

9.5 Detailed Discussion Query Types and Their Evaluation
Once the query type is identified by the analyser the relevant method
is invoked to evaluate the query. The query type determines how the query is
split for efficient processing. The steps followed to evaluate each query type
are discussed below with an example to demonstrate how the query processor

processes each type of query.

91

THE QUERY PROCESSOR

9.5.1 Keyword query

As stated above the keyword query is a query that does not depend on node
relationships. Given that containers are named after the element name,
evaluating this query involves checking for string containment. If the
container’s name contains the input string its contents are returned as a result
set regardless of its level or position on the XML tree. The string after the level
should be equal to the input string ignoring the case. The result set will

include all the text data and or attributes. Consider the following example

Q1
Age

Executing Q1 returns a list of values in the container 3.Age: (34, 25, 15,

28, 25, 15).

9.5.2 Simple path query
Q2
Personnel/Employee/Age

With Simple path queries the query processor retrieves part of the
XML document according to a general specification which in this case is the
path in the input query. However, the query analyser first analyses the path to
identify the most important node that is output expression. This is a node that
carries the data that the user actually wants. The name of the node usually
comes after the last slash ‘/’ in the input query. Identifying this node enables
the query processor to only open the relevant containers to retrieve the
required data. To process Q2 which is a simple path query, the query analyser
identifies Age as the important node and the query processor returns the

same result set as that of Q1.

92

THE QUERY PROCESSOR

9.5.3 Same node predicate query

The same node predicate query retrieves data according to a specific
criterion which can sometimes be a regular expression. In SIQXC processing
same node predicate queries begins with identifying which container to
retrieve as with the simple path query. The query is decomposed to get the
criteria or filter and the output expression. The string enclosed in the square
brackets ‘[]’ that form the predicate is extracted to identify the operator and
its position (x). The name of the container on which the predicate is to be
applied is found by taking a substring of the given predicate from length 0 to

length x-1.

Using the example in Q3, ‘Age>20’ is the predicate. The position of the
operator, X, is 4 (x=4). Taking the substring of the predicate at position (0, x-
1) which is (0, 3) gives ‘Age’ as the name of the container to apply the
predicate to. Having identified the container the predicate is applied to return
the relevant data. The predicate is therefore applied to container ‘3.Age’.
Unlike in Q1 and Q2 the query processor only returns the values that meet
criterion. Notice that for Q1 and Q2 the query processor returns all values in
the container. For Q3 only (34, 25, 28, 25) are returned because they are

greater than 20 which is the filter specified in the predicate.

Q3

Personnel/Employee [Age>20]/Age

9.5.4 Divergent predicate query

Processing the divergent predicate query uses the same technique that
is followed in the same node predicate query evaluation except in this case the
query processor does not return the list retrieved from applying the predicate
on the specified node as the final result but rather treats that list as the

intermediate results.

93

THE QUERY PROCESSOR

Q4

Personnel/Employee [Age>20]/Name

The query processor uses the Sids associated with each entry in the
intermediate results to retrieve relevant data from the node in the output
expression. As with processing simple path queries this node is the node that
comes after the last ‘/’. The SIQXC query processors returns the data from
anyone of the nodes that has an Sid that matches one in the intermediate
results. The retrieved data is returned to the user as a final result. To process
Q4 shown above, the query evaluation follows the same process that was used

to evaluate Q3.

Following this process container ‘3.Age’ is retrieved. Applying the
predicate on it yields a result set (1, 2, 4, 5) as intermediate results. Note that
these are Sids or identifiers not values. These are the Sids that corresponds
with ‘Age’ values (34, 25, 28, 25) respectively. In the next step all values in
container ‘3.Name’ with the above Sids are extracted. The values that make up
the final result set therefore are: (Seagul Stephen, Robin Hood, David Kgosi,
Mavis Cook) as shown in Figure 9.2A and 9.2B:

3.Age 3.Name
@34 1 Seagul Stephen
@25 2 Robin Hood
315 3 Boinelo Adam
@8 4 David Kgosi
@25 5 Mavis Cook
615 6 John Rama
Figure 9.2A: Container 3.Age Figure 9.2B: Container 3.Name

94

THE QUERY PROCESSOR

9.5.5 Single operator query

A single operator query is a predicate query that only has one
operator. Q3 and Q4 above are examples of a single operator query. To
evaluate this query the predicate is applied on the specified container to get

the final or intermediate results as described above

9.5.6 Multiple operator query

A multiple operator query is a query that has more than one parts
separated by an operator or operators. This type of queries is the one that use
the decompose-match-merge approach used in twig query processing
described in Chapter 3. As with other predicate queries the string enclosed
within the ‘[]’ is extracted. In this case the string is decomposed according to
the operators yielding two or more parts that are then evaluated separately.
The intermediate results are then merged to give a final result depending on
the operators used. These queries normally contain a disjunction or

conjunction of two or more specific criteria. The conjunction returns an

intersection (N) of the results whereas the disjunction returns a union.

With a conjunctive query the query processor evaluates the part of the
predicate that comes before the conjunction to get intermediate results. The
second part of the predicate is only evaluated on nodes that have a matching
Sid as the one in intermediate results instead of the whole container. If the
first evaluation returns an empty set, the second part is not evaluated instead

an empty set is returned as the final result because as mentioned above a

conjunction returns an intersection (N).

As for the disjunction all parts of the predicate are evaluated returning
the union (U) of all intermediate results. These results are merged to give a

final result.

95

THE QUERY PROCESSOR

To process the conjunctive query, Q5, shown below the query
processor removes the square brackets around the query and splits the
predicate into two predicate A and B. This is done to identify the containers
that are necessary to evaluate the query. As with other queries above the
predicate is treated as a string. The position of the AND operator is identified.
Predicate A is therefore from 0 to the beginning of the AND operator and
predicate B is from the end of the AND operator to the end of the string.
Having split the predicate the necessary containers are identified following
the process described in processing a same node predicate query in section

9.5.3.

Q5
Personnel/Employee [Age>20 AND @type="permanent’]/Name

Following that process for Q5, the necessary containers are ‘3.Age’ for
predicate A and ‘2.Employee’ for predicate B. The query seeks for a child node
‘Name’ of an ‘Employee’ with attribute ‘permanent’ and ‘Age’ greater than 20
so container 3.Name is also necessary. Applying the predicate on container
‘3.Age’ yields (34, 25, 28, 25). If their corresponding Sids (1, 2, 4, 5) exist in
‘2.Employee’ the B predicate is applied on the attribute resulting with Sids (1,
4). Names corresponding to these Sids in the ‘3.Name’ container are then

retrieved resulting with (Seagul Stephen, Mavis Cook).

3. Age 2.Employee 3.Name

1 @ 1 @permanent 1 Seagul Stephen
2 @ 2 @contract 2 Robin Hood
315 3 @permanent 3 Boinelo Adam
4 @ 4 @permanent 4 David Kgosi

5 @ 5 @contract 5 Mavis Cook
615 6 @permanent 6 John Rama

Figure 9.3: Container 3.Age, 2.Employee and 3.Name with
selected results

96

THE QUERY PROCESSOR

Q6

Personnel/Employee [Age>20 OR @type="permanent’]/Name

Q6 is very similar to Q5 except that it uses a union instead of an
intersection due to the presence of the OR operator rather than the AND
operator. Processing Q6 therefore follows the same process as Q5 except
predicate B is applied on the 2.Employee even if corresponding Sids from the
results of applying predicate A do not exist in container 2.Employee because
the final result is a union. The final result for this query yields (Seagul Stephen,
Robin Hood, David Kgosi, Mavis Cook, John Rama) which is the union of the
sets of results retrieved from applying the predicates on the respective

containers.

9.5 Summary

SIQXC query processor evaluates queries by identifying their type and
invoking the type specific method. The type of queries determines how the
query is split from which the name of the relevant container is derived. In the
case of a predicate query, a predicate is applied on the named container
otherwise all its contents are returned as a result. Sometimes evaluating a
query may results in intermediate results. These intermediate results are then
used to retrieve the final results by getting values that have Sids that match
the ones in the intermediate results. This query processor handles wide range
of XPATH operators efficiently as shown from the above discussion making it a

novel approach to handle compressed XML in a resource limited environment.

9.6 Chapter Summary

The way data is stored influences the way it extracted. This chapter
covered the way SIQXC extracts data from a SIQXC compressed XML. It has
outlined each step that is taken to evaluate the supported XPATH operators.
The SIQXC query classification has been explained to demonstrate how this

query processor processes each type of queries. Though SIQXC supports a

97

THE QUERY PROCESSOR

wide range of queries it does not support position, closure and aggregation
given that the query processor is run on a resource limited device. These types
of queries pose significant challenges to query processing especially closure
[Penny et al., 2003]. They therefore require complex lines of code to process
hence they are not supported in SIQXC because they would require a lot of
space to evaluate. Supporting these types of queries would be an extravagance
since they are expensive and rarely used. This work is intended to be a proof
of concept and supports a reasonably wide range of queries that a user would
otherwise not be able to execute in their smartphones in the absence of the

Internet.

98

CHAPTER 10

CHAPTER 10

EXPERIMENTAL DESIGN

10.1 Introduction

Chapters 7, 8 and 9 presented SIQXC and its components providing
basic notions about procedures that are performed within each component to
support the hypothesis and achieve goals outlined in Chapter 6. This Chapter
presents several experiments that were designed to test the different units of
SIQXC. Each component was tested for its functionality and performance. This
experimental framework is used to empirically test SIQXC. The experimental
design explains the objective of each experiment outlining the properties that
are tested for in each component. Table 10.1 shows a summary of the

components and the properties that this experimental framework tests.

The environment in which tests were run in is also specified. Recall
that, the components of SIQXC run in two different environments. The
compressor and decompressor run in a resource rich environment that is
specified below whereas the query processor runs in a resource constrained
environment. Testing for functionality ensure that each component achieves
its goal. For the compressor the compression ratio and compression time are
measured whereas for the query processor the query response time is
measured and the type of queries it supports are established. The
decompressor was not evaluated in this work since as discussed it was only
included in the design for completeness but it is not necessary because SIQXC
does not support updates. Several XML benchmarks and datasets are

explained in this chapter as well.

99

EXPERIMENTAL DESIGN

10.2 A Description of the Evaluated Factors

This section describes the factors that are tested to evaluate each

SIQXC component.
SIQXC Component Tested Factors
Compressor - Compression Time

- Compression Ratio

Query Processor

Query Response Time

- Functionality

Table 10.1:

Compression Time:

Compression Ratio:

Tested factors on the SIQXC components

Compression Time (CT) is the time taken to compress
an XML file. This is measured in seconds. The
relationship between compression time and the file

size is also observed.

Compression Ratio (CR) measures the difference
between the original XML document and the

compressed file using the equation below:

CR=1 -(size of compressed

size of originalfile

Functionality: The functionality test for the query processors determines the

types of queries that are supported.

100

EXPERIMENTAL DESIGN

Query Response Time: Query Response Time (QRT) measures the time taken
in seconds for the query processor to evaluate different
types of queries. As with compression time the
relationship between query response time and the file

size is also measure.

10.3 The Experiments

The next three sections discuss the experiments that were carried out

and the factors that were being investigated in each of them.

10.3.1 The Compressor Experiment

The main objective of this experiment is to establish the average
compression ratio (CR) and the average compression time (CT) of SIQXC. As
previously stated in Chapter 8 an XML file is labelled with a 2-tuple integer
encoding system used by this compressor and nodes are grouped into
containers. Recall that in Chapter 6 it was stated that the aim of this
compressor is to investigate the extent to which this process can compress a
file such that it can be stored and processed in a resource limited device. File
sizes are recorded before and after compression to calculate the compression

ratio.

The pruning performed in the compression process is expected to
significantly reduce the file size resulting in a competitive compression ratio.
This is followed by applying gzip to the individual containers and recording
their overall size. Different sets of XML data are used to observe the behaviour
that the compressor exhibits with different files. The datasets used in the
experiment are different in terms of the tag to data ratio, the depth and

breadth of trees.

The compressor can be expected to behave differently with each data
set. Given its pruning nature it should show a better compression ratio with
trees that have a high tag ratio over data. This is because more tags mean a lot

of redundancy which is removed by encoding and clustering elements. A tree

101

EXPERIMENTAL DESIGN

with repeated sub trees across the breadth will also result in high
compression ratio due to grouping. Compression ratio before applying gzip is
also recorded to measure the effectiveness of the the encoding and clustering

process.

10.3.2 The Query Processor Experiment

The query processor experiment measures performance and
functionality covering different types of queries and how their complexities
affected response time and accuracy. Functionality tests the ability of the
query processor to effectively process each type of query giving accurate
results. Several queries are run on the query processor to determine the types
of queries it supports. Having established the type of queries the SIXQC query
processor supports, the queries are run again to find out the query response

time.

The query response times are expected to be different. Complex
queries like the multiple operator queries (disjunction and conjunction) are
anticipated to take longer than other queries. Same node predicate queries are
expected to be processed faster than divergent node predicate queries.
Keyword queries on the other hand can only have a better response time in a
case where there is only one container that has the keyword. If there are many
containers with the keyword then processing is prolonged because all data in
these containers should be displayed. The behaviour of the query processor in
relation to each query was observed by running the different queries on the

same compressed XML file.

The query processor was developed in two phases. In the initial phase
it was developed to run on a resource rich environment and then modified to
run on a resource constrained environment. At the time of writing all query
type were tested on a resource rich environment but only two types were run

on the resource restrained environment.

102

EXPERIMENTAL DESIGN

10.4 Implementation of the SIQXC Prototype Overview and

Test Environments

10.4.1 The Prototype Implementation
The compressor and the query processor were both implemented

using the JAVA programming language (JDK1.7.0).
10.4.1.1 The compressor

As discussed in chapter 8 section 8.2.2 SIQXC parses an XML using
DOM. In this implementation of the compressor, the Document Object Model
(DOM) which is a component API of the JAVA API for XML processing is used
to parse the XML document resulting in a tree that is then labelled using a
recursive function followNode() which accesses the tree in depth first pre
order traversal. During the labelling process the data and attributes values are
fetched using getPCDATA() and getNodeValue() methods respectively and
stored in a text file alongside the corresponding Sid for the node in question.
The text files created in this process are passed on to a class that is based on
the JAVA ZIP package that provides classes for reading and writing the
standard GZIP file formats

10.4.1.2 The Query Processor

The SIQXC query processor is implemented in two stages; the generic
and platform specific implementations. In the first stage a generic JAVA
implementation that can be adapted to specific platforms is implemented,
followed by a platform specific implementation, in this case Android. The two
implementations are discussed in section 10.4.1.2.1 and section 10.4.1.2.2

respectively.
10.4.1.2.1 Generic Implementation

In this implementation the query processor prompts a user to enter a
query via the command prompt. The query analyser checks for square
brackets to determine whether the query is a predicate or non-predicate

query. If a query is predicate further tests are done to check if it is multiple or

103

EXPERIMENTAL DESIGN

single operator query. Having identified the query the right method is
invoked. With each method in this implementation the query processor
identifies and decompressed the containers that necessary to evaluate a given
query if there be any. Decompressing a container creates an unzipped file but
it leaves the zipped container intact. The decompressed files are deleted after

evaluating each query.
10.4.1.2.2 Android Implementation

For testing purposes the generic implementation was adapted to
Android. Android was chosen because it is one of the two most widely used
mobile platforms together with i0S [Goadrich and Rogers, 2011] and it
supports JAVA 6. This implementation was done in Eclipse IDE with the
Android SDK plugin. Although it supports a big subset of JAVA, Android does
not run on the JAVA virtual machine but instead has its own called Dalvik
[Yang, Chu and Tsaur, 2010; Goadrich and Rogers, 2011; Sharma, 2011; Kim,
Agrawal and Ungureanu, 2012]. With Android projects are compiled and run
in the Dalvik virtual machine (VM) with each application in the device running
inside its VM [Goadrich and Rogers, 2011]. For these reasons some of this
implementation is slightly different from the generic implementation.
Decompressing necessary containers in this implementation is implied
because Android does it automatically on the fly at runtime. All other JAVA 7
methods that are not supported by JAVA 6 like switching on a string are
changed. The Android SDK provides a WYSIWYG editor that made it easy to
create a simple GUI shown in Appendix II. The user enters a query then clicks

execute and the results are printed back on the screen as seen in Appendix II.

10.4.2 Test Environments

As mentioned in Chapter 7, SIQXC runs in two different environments.
The compressor and decompressor run on a resource rich environment while
the query processor runs on a resource constrained environment. This
section outlines the platforms that these sets of experiments were performed

on.

104

EXPERIMENTAL DESIGN

10.4.2.1 Resource Rich Platform

This platform is a PC with 3.00 GHz Intel® Core™ 2 Duo CPU E8400
and a RAM memory of 4.00GB. The capacity of the Hard disk of the testing
environment is a 148GB. This PC runs a 64 -bit Windows 7 operating system.

Profiling was done using the NetBeans IDE 7.2.1.

10.4.2.2 Resource Constrained Platform

The second platform is an Android emulator on Eclipse ADT. A virtual
device with specifications of a smartphone was created to run the query
processor as an application. The virtual device runs Android 4.4.2 with RAM
512 MiB and an internal storage of 200 MiB. Its CPU is the ARM armebia -v7a.
This processor is automatically selected when selecting Android 4.4.2 as the

target platform to be supported by the virtual device created.

10. 5 Document Corpus and XML Benchmarks
There is a large corpus of XML documents that contain real data
available from multiple sources to use for XML testing and benchmarking. The

properties of these datasets and benchmarks are presented in this section.

10.5.1 XML Datasets

Real world datasets that are available differ in structure and size. Some
documents are more structural (data centric) while others are more textual
(document centric). These properties affect the performance of XML tools.
Each dataset is discussed below with its properties. A few of these datasets

were used in this experimental framework to evaluate SIQXC.

= XMark: The XMark dataset is essentially XML documents modelling an
auction website [Schmidt, 2001]. These documents are created
through a tool called xmlgen. This XML data generator was developed
inside the XMark Project. It accepts a parameter (-f) to produce

different sizes of XML documents.

105

EXPERIMENTAL DESIGN

= DBLP: This is a database of bibliographic information obtained from
major Computer Science journals and conference proceedings. The
acronym stands for Digital Bibliography Library Project [Ley et al,,
2005].

= TreeBank: An XML file of parsed English sentences from a Wall Street
Journal [Marcus, Marcinkiewicz and Santorini, 1993]. It is considered a
complex database for its deep recursive structure. The database is

partially encrypted to protect copyright for text nodes.

= SwissProt: SwissProt is a curated collection of protein sequence that
describes the DNA sequences [Boeckmann et al, 2003]. The
description includes the function of a protein, its structure, post-

translational modifications and variants.

= NASA: This is an astronomical database that contains genuine
astronomical data made available to the public as an XML file. The data
is converted from a legacy flat file. NASA is used evaluate many XML

application that process XML queries [Cover, 2000].

= Shakespeare: A collection of marked-up Shakespeare’s play as an
XML file [Bosak, 1999].

= Mondial: Mondial is an XML file containing basic statistical
information on countries of the world. This geographic information is
an integration of collections from several sources including the CIA
World Factbook, the TERRA database and the international Atlas
[Suciu and Miklau, n.d.].

10.5.2 XML Benchmarks Review
This is a review of the most popular and widely used XML
benchmarks. Benchmarks provide means to evaluate the performance of XML

databases by specifying meaningful and relevant task that should be carried

106

EXPERIMENTAL DESIGN

out to assess these tools. They offer support for comparative analysis.

XMark: As described on the datasets, XMark models an auction
website. This benchmark is a result of the XMark benchmarking project led by
a team at CWI [Schmidt et al., 2002; Barbosa, Manolescu and Yu, 2009]. XMark
is widely used to evaluate XML applications [Arion et al., 2004; Lu et al., 2005;
Barbosa, Manolescu and Yu, 2009]. Its workload includes twenty queries
[Barbosa, Manolescu and Yu, 2009] that cover the essentials of XML query
processing [Li, n.d]. These queries were evaluated on Monet XML database, an

internal research prototype, to give a first baseline [Li, n.d].

XMark queries include simple node selection, navigational queries,
document queries where order information is relevant and the computation of
other operations like aggregation, sorting, reconstruction and joins [Barbosa,
Manolescu and Yu, 2009; Li, n.d]. This benchmark includes a data generator
that is free to download from the XMark project website [Schmidt, 2001]. As
mentioned above the data generator accepts a parameter that sets the file size
of the XML file generated. This gives different users the flexibility of creating
XML files of the size they desire. This property is very useful for testing the
scalability of an XML tool.

XPathMark: This is an established benchmark that is usually used to
evaluate tools that support XPATH queries [Pena, 2013]. It is an XPATH 1.0
benchmark for the XMark document base [Franceschet, 2005]. It was
developed at the University of Udine in Italy. This benchmark covers major
aspects of the XPATH query language including node tests, references,
functions, Boolean operators and different axes. Like XMark, this benchmark
also comes with a XML generator that produces XML documents according to
a scaling factor specified by the user. It is freely available on the XPathMark

website [Franceschet, 2005]

The Michigan Benchmark: The Michigan benchmark was developed
at University of Michigan [Runapongsa et al, 2006]. It is an XML Micro-
benchmark that consists of a single synthetic document that does not
resemble a typical document from any real world application domain. It is
mainly designed to cover extensive XML query operations such as: selection of

nodes based on predicates over their parents, computing aggregates,

107

EXPERIMENTAL DESIGN

updating, joins, matching attributes by value and evaluation over positional
predicates [Barbosa, Manolescu and Yu, 2009] through thirty one queries. The
file has a depth of sixteen levels and a changeable breadth. This benchmark
was applied by the authors to three database systems two of which were
native XML databases and one commercial ORDBMS [Barbosa, Manolescu and

Yu, 2009].

XMach-1: The XMach-1 benchmark was developed at the University of
Leipzig in Germany [Bohme and Rahm, 2001]. This is a multi-user benchmark
designed to test a database management system which includes a query
processor and other components unlike most benchmarks that are designed
to only evaluate the query processor. In terms of performance, it measures
throughput instead of query response time. XMach-1 is made of four main
components; application server, XML database, loaders and browser clients.
Its workload includes eight queries and three update operations. The file size
falls between 2KB and 100 KB. These files are generated from most frequent

English words [Barbosa, Manolescu and Yu, 2009].

XBench: XBench was developed at the University of Waterloo [Yao,
Ozsu and Khandelwal, 2004]. The benchmark can be categorised on two
factors; data centric versus text centric or multi document versus single
document. Those factors can be combined through the toXgen tool to generate
four different types of databases; data centric/single document, text centric/
single document, data centric/ multiple document and text centric/ multiple
document. Document size ranges from a few Kkilobytes to several gigabytes.
The workload of this benchmark includes text based search operations and

bulk loading [Barbosa, Manolescu and Yu, 2009].

TPoX: This is a commercial benchmark developed jointly by IBM and
Intel [Nicola, Kogan and Schiefer, 2007]. Like XMach-1, TPoX aims at
evaluating the whole system not just the query processor. It evaluates aspects
such as concurrent access to data, updates, XQuery and SQL/XML. This
benchmark is based on the industry-standard schema FIXML
[Fixtradingcommunity.org, n.d]. The schema is used to control the size of an

XML file by defining its depth and breadth.

X007: X007 [Li et al., 2001; Bressan et al.,, 2003] is a benchmark

108

EXPERIMENTAL DESIGN

based on 007 [Carey, DeWitt and Naughton, 1993]. The 007 benchmark
dataset and queries are converted to be used in an XML based benchmark. The
workload includes twenty three queries that cover search operations. X007
maintains the same depth for different sizes of documents. Unlike XMark, it
provides pre-set sized documents making it almost impossible to use in

testing scalability.

10.6 Comparison with Other Compressors

Although much research has been devoted to XML compression,
almost all tools in the literature do not currently have publicly available
source code [Sakr, 2009; Pena, 2013]. This creates a problem for comparative
analysis. The only results that can be used for analysis are the published
results. In this work the published results on compression ratios are used for
comparative analysis since they are not dependent on the environment they
were run on. Performance on the other hand, largely depends on the
environment so any comparisons made using the published results would not
be precise unless the environment that they were run on is replicated.

However, the performance results of the SIQXC compressor are discussed.

10.7 Comparison with Other Query Processors

At the time of writing the author was not aware of any published work
on a query processor that has been designed to run on a resource constrained
environment therefore there is no tool that can be compared to the SIQXC
query processor both on performance and functionality but as with the
compressor’s performance result, the query processor’s results are also

discussed in this work.

109

EXPERIMENTAL DESIGN

10.8 Chapter Summary

This chapter describes the experimental framework that is used to test
different components of SIQXC to establish their performance and
functionality. For the compressor the compression ratio and compression time
are measured and the compression ratio is compared with the compression
ratio of other existing queryable and non queryable XML compressors. The
functionality and performance for the query processor evaluates whether it

can generate accurate results.

SIQXC runs on two different environments that are specified above.
The environment a system is run on influences its performance therefore the
performance of SIQXC components cannot be compare with published results
from the existing compressors and their corresponding query processors

because their code is not publicly available.

The XML benchmarks and datasets are also discussed in this chapter
to present the options that are available for evaluating XML applications
including SIQXC. The next chapter presents results obtained from running

experiments designed in this chapter.

110

CHAPTER 11

CHAPTER 11

RESULTS AND EVALUATION

11.1 Introduction

The previous chapter described an experimental framework used to
evaluate SIQXC. Each component was tested for functionality and
performance. For the compressor, the compression ratio and compression
time were measured while the query processor was tested for functionality
and query response time. The functionality tests established the type of query
processor it supported while the response time measured the time taken to
return results for each query. The query processor is said to support a query
only and only if it returns accurate results. This chapter presents and
discusses the results obtained from the experiments. It also compares SIQXC
with other queryable compressors using published results. Published results
were used because the existing compressors do not have their source codes
publicly available as stated in Chapter 10. For those that do, their codes could
not run on the environment used for testing SIQXC due to compatibility issues.
Using published results of compression ratio for comparative analysis gives
accurate results nonetheless because compression ratios does not depend on
the environment that tests were run on but rather the algorithm used for

compression.

11.2 The Compressor

In evaluating the compressor twelve files were used. Of this twelve,
eight were generated from the XMark benchmark project using different
scaling factors. The other four were the NASA and Mondial datasets described
in the previous chapter, the uwm dataset which is the list of University of
Washington courses and the customer XML file which is part of TPC-H

benchmark; the Transaction Processing Performance Council [Tpc.org, 2001].

111

RESULTS AND EVALUATION

TPC-H, was not discussed in the previous chapter because it is not an
XML benchmark however, the dataset was converted XML by Zack Ives [Suciu
and Miklau, n.d.; Senthilkumar and Arputharaj, 2011] All the four datasets
were obtained from University of Washington XML Data Repository [Suciu
and Miklau, n.d.]. Table 11.1 below shows all the datasets and their sizes in

MB.

Dataset Size (MB)
XMark 1 0.054
XMark 2 0.091
XMark 3 0.879
XMark 4 1.001
XMark 5 2.275
XMark 6 4616
XMark 7 9.151
XMark 8 17.982
mondial 1.702
nasa 23.889
uwm 2.228
customer 0.491

Table 11.1: Datasets and their sizes

11.2.1 Compression Ratio
The compression ratio of this compressor was measured for all these
datasets giving results shown in Figure 11.1 below. The detailed results are

shown in Appendix I.

112

RESULTS AND EVALUATION

1
~09 -
€ os /\
S 0.7 A/
E= 7
S 06
g 05
2 0.4
?-;0.3) .)
£ 0.2 =+ Compression ratio
S o1
O T T T T T T T T T T T 1
- N M F N O NNy g o
oM oM oM M M oM M :.5 B4 3 (5]
[S S S " e = E
[0} ¢+ [+ [0} (0] [+ [} 0] = = o
== === e 2 g b
SRS IS NS SRS S~ @
(&]
Datasets

Figure 11.1: Compression Ratio s of different datasets

In the results shown in Figure 11.1 the SIQXC compressor has the
lowest compression ratio of 0.61 for the XMark 1 XML file and the highest
compression ratio of 0.91 of the uwm dataset. The average compression ratio
from these datasets is 0.69. It is significantly lowered by the XMark file
because it is very small. As with other compression algorithms SIQXC does not
perform very well with small files. Excluding this result gives SIQXC an
average compression ratio of 0.70. The result can be excluded because
compression is normally not necessary when dealing with file as small as that.
This file was used to observe how SIQXC performs with very small files. For
XMark files the compression ratio remained constant from XMark 2 through to
XMark 8. This shows that SIQXC’s compression ratio is not affected by the file
size but rather the structure of an XML file. The uwm file is larger than the
XMark 1 file through to XMark 4 yet the compression ratio achieved with this
file is far greater than those achieved with these XMark files. The file size and

compression ratio relationship is shown in Figure 11.3.

113

RESULTS AND EVALUATION

As mentioned in Chapter 8, the simple 2-tuple integer encoding and
clustering of elements achieves some compression. Figure 11.2 below shows
the compression achieved by this process against that achieved after further
applying gzip. The blue bars show compression without gzip whereas the red
bars indicates compression with gzip which is the same results depicted on
Figure 11.1. As expected better compression ratios are achieved after using
gzip. The simple 2-tuple interger encoding and clustering alone achieves
reasonable compression ratio with the highest at 0.58 which is higher than the
average compression ratio of the widely known queryable compressors;

XPRESS [Min, Park and Chung, 2003] and XGRIND [Tolani and Haritsa, 2002].

1
= 09
S o038
=
= 0.7
z 0.6
§ 05
2 04 B Compression ratio
?_; 0.3 without gzip
g 0.2 ® Compression ratio with
S 01 gzip
0
— N M F N0 0E T g
A4 MMM oM oM Mo g 3 O
[= = o= = g
T © © © © © © «© £ = o)
E =2 =222 2 2 8 2
K K X KK KX E 4
[S]
Datasets

Figure 11.2: Compression Ratio with and without gzip

Compression with gzip makes a significant difference with some files
but not all. As shown in Figure 11.2 above it does not make that much
difference especially with smaller files. It only makes 7% difference with
XMark 1 file but 47% with the customer file. The performance of the gzip does
not just depend on size in this compressor but also on the number of
containers created during the clustering process. If data is clustered into fewer
containers the overall compression ratio is significantly improved. This means

the structure of the XML also affects compression ratio achieved by applying

gzip.

114

RESULTS AND EVALUATION

0.79
customer 0.491
uwm [Ra2d 2.228

nasa [————————————————— >3 559
mondial “4' 1.702
XMark 8 [—— 17.982
XMark 7 [e— 0151
XMark 6 [RS8 4.616
xMark 5 |88 2.275
xMark 4 [R5 901
XMark 3 "68.879

XMark2 066

XMark 1 0.054

0 5 10 15 20 25 30

B Compression Ratio B File Size

Figure 11.3: Compression Ratio against file size

11.2.1.1 Comparative analysis

SIQXC’s compression ratio is compared with compression ratios of
other queryable compressors (QC). This is done in two ways; using the
average compression ratio and the compression ratios different compressors
over the same datasets. The data about other datasets was obtained from one
source for consistency [AlHamadani, 2011]. The compressors were tested
over the same datasets; Shakespear, Swisspprot, Treebank, Lineltem, UW
course data, NASA and DBLP [AlHamadani, 2011]. The specific compression
ratio are shown in Appendix III. The NASA and uwm files used to test SIQXC

have been used to compare SIQXC to some of the existing compressors.

The results obtained from applying SIQXC compression on these files
are used to compare this compressor with others. Figure 11.4 shows the
performance of SIQXC against the widely used compressors. From the results
we observe that SIQXC's compression ratio is higher than most of the
compression ratios except that for XSAQCT’s which is higher by 0.1. XSAQCT
achieves a better compression but support only exact match queries (See

Appendix 111, for a detailed query support report for the compressors). As

115

RESULTS AND EVALUATION

mentioned in Chapter 5, a trade off exists between query supports and the
compression ratio. Methods that support a wider spectrum of queries usually
have a lower compression ratio compared to those that do not and this is

demonstrated by these results.

XPRESS
£ XGRIND
[22]
E; 7 u SIQXC
X0z
E Qzip @ XSAQCT
S i
HXQueC
< XQueC Qu_e
g, M XQzip
%)
g, XSAQCT # XGRIND
H XPRESS
SIQXC
0 0.2 0.4 0.6 0.8 1
Average Compression Ratio

Figure 11.4: Average compression ratios against QC

Figure 11.5 compares SIQXC with non queryable compressors (NQC).
Accordingly these compressors should have a better compression ratio than

SIQXC but it surpasses them all.

In Figure 11.6 SIQXC’'s compression ratio of specific datasets is
compared to those of other compressors. XSAQCT still has a better
compression ratio in compressing the uwm; a highly structured XML file.
However, the difference is not that big. XSAQCT achieves a 95% compression
whereas SIQXC obtains 91%. SIQXC performs fairly well in comparison with
other compressor on the NASA dataset in that it achieves the same
compression ratio with XQzip. Its compression ratio is however higher than
the other compressors’; XGRIND, XPRESS and XQueC. SIQXC outperforms the

rest of the compressors when compressing the highly structured uwm dataset.

116

RESULTS AND EVALUATION

0.8

0.7 A

0.6 -
0.5
0.4
0.3

H SIQXC
H RNGzip
M xmlppm
H XMill
H XWRT
M gzip

0 - T T T T T

0.2
0.1
SIQXC RNGzip xmlppm XMill XWRT gzip
Compressors

Avaerage Compression Ratio

Figure 11.5: Average compression ratio against NQC

1
09
g os v
207 - | SIQXC
L=
S 06 - ¥ XSAQCT
§05 - # XQueC
7 4
3 0.4 M XQzip
£.0.3 -
E 0 | ® XGRIND
© o1 4 o XPRESS

0 T T

nasa uwm
Datasets

Figure 11.6: Compression ratio in relation to specific datasets

117

RESULTS AND EVALUATION

The compression ratio results presented above suggest that SIQXC
outperforms other widely used compressor except XSAQCT. It however gains
an advantage over XSAQCT but supporting more queries other than just the
exact match queries (See Section 11.2.3 for queries supported by SIQXC). It
can also observed that it performs better with highly structured documents.
SIQXC achieves a poor compression ratio when compressing small files. This
behaviour is observed on many compressors even gzip. However, the
compression ratio of this compressor is not dependent on the file size. SIQXC
achieves a competitive compression ratio and also allows query evaluation on

compressed data as shown by the results in Section 11.2.3.

11.2.2 Compression Time

The files used for evaluating the compression ratio of SIQXC were also
used to measure compression time. The time is measured in seconds. Recall
that in Chapter 10 it was mentioned that the compression time can be
expected to increase with the file size. This is clearly shown in Figure 11.7. The
results shown do not include the time taken to parse the XML file. This time is
excluded because different parsers take different lengths of time to parse an
XML file and SIQXC is not restricted to the Document Object Model (DOM)
parser only. DOM was only used in this experimental framework for proof of
concept. Simple API for XML, SAX, can also be used and this would change the
compression time significantly. However, results that include parsing time are

also presented in Figure 11.8.

118

RESULTS AND EVALUATION

3000 f
2500

=—&— Compression Time

H N HF MY g EWLO N O <
L. .-“4.—‘4""3.&.—“4.—“4.—“4(/3
n = £ = & O = = = <
T 8 0 8 © £ 5 © © © & =
EE‘J;EEE = = = =
><><8><>< << X X

Datasets in ascending file size order

Figure 11.7: Compression time against file size

The results in Figure 11.8 show that parsing significantly increases
compression time. In Figure 11.7, the compression time increases with the file
size and this behaviour is observed again in Figure 11.8 where parsing time is
included. Though a parser affects compression time it does not change the

relationship between compression time and the file size.

== Compression Time
with DOM

== Compression Time

XMark 1
XMark 2
ustomer
XMark 3
XMark 4
Mondial

uwm
XMark 5
XMark 6
XMark 8

C

Datasets in ascending file size order

Figure 11.8: Compression time with and without DOM

119

RESULTS AND EVALUATION

11.3 The Query Processor

A description of the SIQXC query processor was provided in Chapter 9
outlining the kind of queries it is intended to support and the query
processing approach used. According to that discussion SIQXC processes
queries based on their type which can be; keyword, simple path, same node
predicate, divergent node predicate, and the multiple operator queries. Some
of the queries used in testing this query processor are shown in Appendix I
The query analyser analyses the query to determine the type so that the right
method can be invoked. The query processor has an analyser and query
search engine. In evaluating the query processor each component is tested.
The query analyser is tested to see if it can analyse queries correctly. This is
because the accuracy of the final result set that the query search engine
returns are dependent on the query analyser. Wrong analysis can lead to

inaccurate results.

In testing the analyser several queries were run to see which method
was invoked. The results indicate that the analyser is precise. This was
achieved through observing the execution logs to see which methods were
invoked for each run. To establish the average query response time different
queries were run on the same file. From these results simple path and
keyword queries are much faster to evaluate than the predicate queries. For
the predicate queries, same node queries are faster to evaluate than divergent
node queries. The multiple operator queries take the longest time than all
other queries. Note that at the time of writing this experiment was run on a
resource rich environment so the results were not included in this work. Only
the keyword and simple path queries were run on a resource constrained

environment.

The query response time can be expected to increase with increasing
file sizes. This is shown in Figure 11.9 after running the same query on

different compressed documents sized document.

120

RESULTS AND EVALUATION

100
90 P |

80 ~
70 ?

60 /

50 //

40 / «=i#= Response Time
30

20 /

10 /

Time (s)

xmarkl xmark2 xmark3 xmark4
XMark files in ascending size

Figure 11.9: Query Response time on different sized XMarKk files

The results show that the query response time increases with the size
of the document. The other observation made during this evaluation was that
the query response time is also dependent on the sizes of the containers that
are necessary for its evaluation. Generally the response time is dependent on
the file size but sometimes the time might be slightly high though the file size

is small because the container necessary for query evaluation is relatively big.

From the evaluation, the query analyser is accurate in analysing all
types of queries as per the execution logs. The query response time is different
for different types of queries. It has been established that excluding the
external factors, the query response time is dependent on three factors; file
size, container size, query type. Small sized document and containers result in
fast response time. Queries that require many containers for evaluation take
longer to evaluate than those that need fewer containers. The number of
containers required to evaluate a query is dictates the query time. In terms of
performance, this work provides preliminary results that form a base for
further extensive test. Due to time constraints the performance of the query
processor was not extensively tested to provide conclusive results but some

relationships that exist thereof have been established.

121

RESULTS AND EVALUATION

11.4 Chapter summary

This chapter presented the results obtained from implementing the
experimental design in Chapter 10. A set of twelve datasets were used to
evaluate the functionality of the compressor and query processor. With the
compressor two aspects were measured; the compression ratio and
compression time. The compression ratio of SIQXC was compared to other
existing queryable compressors by using published results. From the
comparative analysis SIQXC achieved a competitive average compression ratio
that is highier than that of XGRIND, XPRESS, XQueC, XQzip and all the non
queryable methods it was compared to. Its compression ratio on specific
datasets was also compared against the compression ratio of other
compressors on the same data. On the NASA dataset SIQXC had the same
compression ratio as XQzip but outperformed it in compressing the uwm

dataset. SIQXC was better than XGRIND, XPRESS and XQueC for both datasets.

The compression time results indicate that compression time
increases with the file size. SIQXC supports different types of queries as
described in Chapter 9. These queries were run on the files created from the
XMark benchmark and the customer file from the Transaction Processing

Performance Council (TPC) benchmark.

The results discussed in this Chapter suggests that the process of using
the simple 2-tuple integer encoding, clustering and gzip which is derived from
combining ideas from labelling schemes and existing compression methods
can possibly allow users to locally access a relatively large XML file on their
resource restricted smartphones. The next chapter concludes this thesis and

suggest some ideas for future work.

122

CHAPTER 12

CHAPTER 12

CONCLUSION AND FUTURE WORK

12.1 Introduction

This work attempted to develop a schema independent queryable
compressor that would to some extent allow users to store and manipulate a
relatively large XML file in their resource restricted devices. The research
motivation was discussed in Chapter 5 stating the goals and hypothesis. The
designs of the compressor and query processor were discussed in Chapter 8
and 9 respectively. Chapter 10 present an experimental framework that
described the strategies and tests that were used to evaluate these two
components. In that chapter the datasets and benchmarks that are usually
used to evaluate XML applications were also reviewed. The results were
presented and analysed in Chapter 11. Having analysed and evaluated the
results from the experimental framework, this chapter provides the findings
highlighting whether the hypothesis has been proven or not. Suggestions on
future improvements are also made in this chapter from the limitations

discovered during the testing and evaluation of SIQXC.

12.2 Main contributions of this research

The research provided a partial solution to the XML storage space
problem on smartphones by exploiting ideas from labelling schemes and
compression to design a queryable compressor that has a competitive
compression ratio. It has contributed to literature by providing an improved
solution to the XML storage problem on resource constrained devices by
proposing a novel simple 2 tuple integer encoding system that when
combined with clustering significantly removes the redundancy XML. It also
provided means of extracting the compressed XML data through a query

processor that runs on these devices. The research provided empirical proof

123

CONCLUSION AND FUTURE WORK

of the Schema Independent Queryable XML Compressor by capturing the
compression time, compression ratio, query response time and the accuracy of

the result set of each query type.

12.3 Relating Research Results to the Hypothesis

With regard to the hypothesis the results of this research suggest that
it is possible to combine ideas from labelling schemes and existing
compression methods to compress data enough to some extent to give users
access to their data locally. Ideas from labelling schemes were used to come
up with a novel simple 2 tuple integer encoding system that was used to prune
trees. Combining this with clustering and using gzip as a backend compressor
achieves a competitive compression ratio thereby allowing users to access the
otherwise verbose XML on their smartphones. The hypothesis was tested
using eleven datasets to establish compression time and ratio and different

query types to evaluate the functionality of the query processor.

12.4 Future work

SIQXC provides storage and access of XML on resource constrained
devices through a compressor with a competitive ratio and a query processor
that run on these devices. This has been established through an empirical

proof however there are improvements that can be made as suggested below.

More query functions can be added to SIQXC like the support for
updates. Due to the way data is stored in its compressed state, the use of a log
of updates could be used. The log would capture all updates that a user makes
and these would then be used to update the actual XML document. Other
functions that may be incorporated include positional queries and aggregation
however careful considerations must be made because supporting too many
functions usually compromises the compression ratio. The query strategy

used in SIQXC can also be improved to include more XPATH restrictions.

124

CONCLUSION AND FUTURE WORK

This thesis provides a design for the decompressor but it was not
tested since it is not relevant for this work because this work does not support
updates. The decompressor can be implemented for scenarios where a user
transfers file between two resource rich environments through a resource

constrained device.

Sibling order is lost during compression in SIQXC to improve
compression ratio and also because it is usually not that useful in the real
world situations. For example, a user hardly asks for a third child of a specific
node, they normally use the tag name than sibling order. Sibling order is
necessary during transmission and in cases where the XML data is managed
on different devices so if a decompressor were to be developed sibling order
must be maintained. This can be accomplished through using a 3 tuple integer
encoding system that holds the level, sub tree identity and sibling order.
Having a label like 3.2.5 would mean that the node is level three (3), it belongs
to sub tree two (2) and it is the fifth child (5). The other way would be to use a
dictionary that only stores sibling order information. This dictionary would
not need to be loaded into the resource constrained device because it is only

necessary during decompression.

The current implementation is for the android platform only. Android
was chosen because it is the most widely used mobile platform. SIQXC can be
extended to run on other platforms like i0S, Windows mobile, Symbian and

Blackberry and other future platforms.

125

CHAPTER 13

CHAPTER 13

REFERENCES

Adiego,]., de la Puente, P. and Navarro, G. (2004). Merging prediction by

partial matching with structural contexts model. p.522.

Adiego,]., Navarro, G. and de la Fuente, P. (2003). SCM: Structural contexts
model for improving compression in semistructured text databases.

pp.153--167.

Adiego,]., Navarro, G. and others, (2007). Lempel-Ziv compression of highly
structured documents. Journal of the American Society for Information

Science and Technology, 58(4), pp.461--478.

Ahn, C,, Li, Q., ElImasri, R., Prabhakar, S., Manandhar, N. and Kim, D. (2005). A
Survey of Three Types of XML Indexing Techniques. ACM Transactions on
Computational Logic, 37(4), p.12.

Al-Hamadani, B., Lu, Z. and Alwan, R. (2013). Schema Independent XML
Compressor. Information Retrieval Methods for Multidisciplinary

Applications, p.95.

AlHamadani, B. (2011). Retrieving Information from Compressed XML

Documents According to Vague Queries. PhD. University of Huddersfield.

Al-Khalifa, S., Jagadish, H., Koudas, N., Patel, |., Srivastava, D. and Wu, Y. (2002).
Structural joins: A primitive for efficient XML query pattern matching.

pp.141--152.

Arion, A., Bonifati, A., Manolescu, I. and Pugliese, A. (2007). XQueC: A query-
conscious compressed XML database. ACM Transactions on Internet

Technology (TOIT), 7(2), p.10.

126

REFERENCES

Arion, A., Bonifati, A., Costa, G., d’Aguanno, S., Manolescu, I. and Pugliese, A.
(2004). Efficient query evaluation over compressed XML data. Springer,
pp.200--218.

Arroyuelo, D., C'anovas, R, Navarro, G. and Sadakane, K. (2010). Succinct Trees

in Practice. pp.84--97.

Bohme, T. and Rahm, E. (2001). XMach-1: A benchmark for XML data
management. pp.264--273.

Barbosa, D., Manolescuy, I. and Yu, J. (2009). XML Benchmarks. Encyclopedia of
Database Systems, pp.3576--3579.

Bex, G., Neven, F. and Vansummeren, S. (2007). Inferring XML schema

definitions from XML data. pp.998--1009.

Bex, G., Neven, F. and Van den Bussche,]. (2004). DTDs versus XML schema: a
practical study. pp.79--84.

Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M., Estreicher, A., Gasteiger,
E., Martin, M., Michoud, K., 0'Donovan, C., Phan, I. and others, (2003). The
SWISS-PROT protein knowledgebase and its supplement TrEMBL in
2003. Nucleic acids research, 31(1), pp.365--370.

Boncz, P., Grust, T., Van Keulen, M., Manegold, S., Rittinger,]. and Teubner, J.
(2006). MonetDB/XQuery: a fast XQuery processor powered by a
relational engine. pp.479--490.

Bosak, J. (1999). Shakespeare 2.00. [Online] Research.cs.wisc.edu. Available at:
http://research.cs.wisc.edu/niagara/data/shakes/shaksper.htm
[Accessed 29 May 2014].

Boulos, M., Wheeler, S., Tavares, C. and Jones, R. (2011). How smartphones are
changing the face of mobile and participatory healthcare: an overview,

with example from eCAALYX. Biomedical engineering online, 10(1), p.24.

127

REFERENCES

Brenes Barahona, S. (2011). Structural summaries for efficient XML query

processing. Indiana University.

Bressan, S., Lee, M., Li, Y., Lacroix, Z. and Nambiar, U. (2003). The X007
benchmark. Springer, pp.146--147.

Brisaboa, N., Farina, A., Navarro, G. and Esteller, M. (2003). (S, C)-dense
coding: An optimized compression code for natural language text

databases. pp.122--136.

Brodianskiy, T. and Cohen, S. (2007). Self-correcting queries for xml. pp.11--
20.

Bruno, N., Koudas, N. and Srivastava, D. (2002). Holistic twig joins: optimal

XML pattern matching. pp.310--321.

Byun, C. and Park, S. (2010). A Schema Based Approach to Valid XML Access
Control. J. Inf. Sci. Eng., 26(5), pp.1719--1739.

Carey, M., DeWitt, D. and Naughton, J. (1993). The 007 Benchmark. In: ACM.
pp-12--21.

Chang, Y., Luo, C. and Huang, C. (2009). Efficient evaluation of XML twig
queries with keyword constraints. Journal of the Chinese Institute of

Engineers, 32(4), pp.469--480.

Chareen, S., Xie, H. and Cole, P. (2008). Energy Efficiency in Mobile Phones: A
Survey. School of Information Technology, Murdoch University.

Chen, Q., Lim, A. and Ong, K. (2003). D (k)-index: An adaptive structural
summary for graph-structured data. pp.134--144.

Chen, S,, Li, H., Tatemura, J., Hsiung, W., Agrawal, D. and Candan, K. (2006).
Twig 2 Stack: bottom-up processing of generalized-tree-pattern queries

over XML documents. pp.283--294.

Chen, T., Ly, J. and Ling, T. (2005). On boosting holism in XML twig pattern

matching using structural indexing techniques. pp.455--466.

128

REFERENCES

Chen, Y., Davidson, S. and Zheng, Y. (2006). An efficient XPath query processor
for XML streams. pp.79--79.

Cheney, J. (2001). Compressing XML with multiplexed hierarchical PPM
models. pp.163--172.

Cheney, J. (2005). An Empirical Evaluation of Simple DTD-Conscious
Compression Techniques. pp.43--48.

Cheney,]. (2006). Tradeo_s in XML Database Compression. Data Compression

Conference.

Cheng,]. and Ng, W. (2004). XQzip: Querying compressed XML using structural
indexing. Springer, pp.219--236.

Chung, C., Min, J. and Shim, K. (2002). APEX: An adaptive path index for XML
data. pp.121--132.

Cleary, J. and Teahan, W. (1997). Unbounded length contexts for PPM. The
Computer Journal, 40(2 and 3), pp.67--75.

Cleary, J. and Witten, I. (1984). Data compression using adaptive coding and
partial string matching. Communications, IEEE Transactions on, 32(4),

pp.396--402.

Cohen, E., Kaplan, H. and Milo, T. (2002). Labeling dynamic xml trees. pp.271--
281.

Cover, R. (2000). Cover Pages: NASA Goddard Astronomical Data Center (ADC)
‘Scientific Dataset’ XML. [Online] Xml.coverpages.org. Available at:

http://xml.coverpages.org/nasa-adc.html [Accessed 4 Jun. 2014].

Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A, Saroiu, S., Chandra, R. and
Bahl, P. (2010). MAUI: making smartphones last longer with code offload.
pp-49--62.

Deutsch, L. (1996). DEFLATE compressed data format specification version
1.3.

Deutsch, L. (1996). GZIP file format specification version 4.3.

129

REFERENCES

Deutsch, L. (1996). GZIP file format specification version 4.3.
Dhingra, P. and Swanson, T. (2007). Microsofttextregistered sql server 2005.

Etheridge, D. (2013). Developing Android4, ¢ applications for
ARMtextregistered Cortex™-A8 cores. Texas Instruments: Autor.

Recuperado Mayo, 3.

Fei, Y., Zhong, L. and Jha, N. (2008). An energy-aware framework for dynamic
software management in mobile computing systems. ACM Transactions

on Embedded Computing Systems (TECS), 7(3), p.27.

Feldspar, A. (1997). An Explanation of the "Deflate’ Algorithm. [Online] Zlib.net.
Available at: http://zlib.net/feldspar.html [Accessed 17 Jun. 2014].

Ferragina, P., Luccio, F., Manzini, G. and Muthukrishnan, S. (2006).
Compressing and searching XML data via two zips. pp.751--760.

Ferragina, P., Luccio, F., Manzini, G. and Muthukrishnan, S. (2005). Structuring

labeled trees for optimal succinctness, and beyond. pp.184--193.

Fixtradingcommunity.org, (n.d.). Home Page - FIX Trading Community. [Online]
Available at: http: //www.fixtradingcommunity.org [Accessed 12 Jun.

2014].

Franceschet, M. (2005). XPathMark: an XPath benchmark for the XMark
generated data. Springer, pp.129--143.

Franceschet, M. (2005). XPathMark. [Online] Sole.dimi.uniud.it. Available at:
http://sole.dimi.uniud.it/~massimo.franceschet/xpathmark/index.html

[Accessed 19 Jun. 2014].

Gao,], Lu,]J., Wang, T. and Yang, D. (2010). Efficient evaluation of query
rewriting plan over materialized XML view. Journal of Systems and

Software, 83(6), pp.1029--1038.

Girardot, M. and Sundaresan, N. (2000). < i> Millau</i>: an encoding format
for efficient representation and exchange of XML over the Web.

Computer Networks, 33(1), pp.747--765.

130

REFERENCES

Gire, F. and Idabal, H. (2008). Updates and views dependencies in semi-
structured databases. pp.159--168.

Goadrich, M. and Rogers, M. (2011). Smart smartphone development: i0S
versus android. pp.607--612.

Goldman, R. and Widom, J. (1997). Dataguides: Enabling query formulation

and optimization in semistructured databases. Stanford.

Gou, G. and Chirkova, R. (2007). Efficiently querying large XML data
repositories: A survey. Knowledge and Data Engineering, IEEE

Transactions on, 19(10), pp.1381--1403.

Gronli, T., Hansen, J. and Ghinea, G. (2010). Android vs Windows Mobile vs
Java ME: a comparative study of mobile development environments.

p.45.

Grimsmo, N. and Bjorklund, T. (2010). Towards unifying advances in twig join

algorithms. pp.57--66.

Gulhane, V. and Ali, M. (2013). Survey over Adaptive Compression Techniques.
International Journal of Engineering Science and Innovative Technology

(JESIT), 2(1), pp.152-156.

Harder, T., Haustein, M., Mathis, C. and Wagner, M. (2007). Node labeling
schemes for dynamic XML documents reconsidered. Data & Knowledge

Engineering, 60(1), pp.126--149.

Hariharan, S. and Shankar, P. (2005). Compressing XML documents with finite

state automata.

Haw, S. and Lee, C. (2007). Structural Query Optimization in Native XML
Databases: A Hybrid Approach. Journal of Applied Sciences, 7(20),
pp.2934--2946.

Haw, S. and Lee, C. (2008). TwigINLAB: A decomposition-matching-merging
approach to improving XML query processing. American Journal of

Applied Sciences, 5(9), p.1199.

131

REFERENCES

Haw, S. and Lee, C. (2009). Extending path summary and region encoding for
efficient structural query processing in native XML databases. Journal of

Systems and Software, 82(6), pp.1025--1035.

Haw, S. and Lee, C. (2008). Evolution of structural path indexing techniques in

XML databases: A survey and open discussion. pp.2054--2059.

Haw, S. and Rao, G. (2007). Path Query Processing in Large-Scale XML
Databases. Journal of Applied Sciences, 7(19), pp.2736--2743.

Haw, S. and Lee, C. (2007). INLAB: Improving XML Path Query Optimization.
Journal of Applied Computer Science, 15(1), pp.47--61.

Haw, S. and Lee, C. (2008). TwigX-Guide: twig query pattern matching for XML
trees. American Journal of Applied Sciences, 5(9), p.1212.

He, H., Wang, H., Yang, J. and Yu, P. (2005). Compact reachability labeling for
graph-structured data. pp.594--601.

Hoque, N., Araki, S., Umeno, H. and Aoyama, T. (2007). Designing an XMLDB
for an Embedded System. pp.1265--1269.

Hruvska, P., Martinovic,]., Dvorsk'y, J. and Sn'avsel, V. (2010). XML
Compression Improvements Based on the Clustering of Elements. CISIM,

Poland.

Hu, W.,, Chen, T., Shi, Q. and Lou, X. (2010). Smartphone software development
course design based on android. pp.2180--2184.

Jedidi, A., Arfaoui, O. and Sassi-Hidri, M. (2012). Indexing compressed XML
documents. Springer, pp.319--328.

Jiang, H., Lu, H. and Wang, W. (2004). Efficient processing of XML twig queries
with OR-predicates. pp.59--70.

Jiang, J., Chen, K,, Li, X., Chen, G. and Shou, L. (2009). Efficient processing of
ordered XML twig pattern matching based on extended Dewey. Journal of

Zhejiang University SCIENCE A, 10(12), pp.1769--1783.

132

REFERENCES

Karlsson, J., Lal, A, Leung, C. and Pham, T. (2001). IBM DB2 everyplace: A
small footprint relational database system. pp.0230--0230.

Kaushik, R., Bohannon, P., Naughton, J. and Korth, H. (2002). Covering indexes
for branching path queries. pp.133--144.

Khaing, A. and Thein, N. (2006). A persistent labeling scheme for dynamic
ordered XML trees. pp.498--501.

Khoussainov, B. and Khoussainova, N. (2014). Deterministic Finite Automata.

Kieffer, J., Yang, E., Nelson, G. and Cosman, P. (2000). Universal lossless
compression via multilevel pattern matching. Information Theory, IEEE

Transactions on, 46(4), pp.1227--1245.

Kim, H., Agrawal, N. and Ungureanu, C. (2012). Revisiting storage for
smartphones. ACM Transactions on Storage (TOS), 8(4), p.14.

Knuth, D. (1985). Dynamic huffman coding. Journal of algorithms, 6(2),
pp.163--180.

Krashinsky, R. and Balakrishnan, H. (2005). Minimizing energy for wireless
web access with bounded slowdown. Wireless Networks, 11(1-2), pp.135-
-148.

League, C. and Eng, K. (2007). Schema-based compression of XML data with
relax NG. Journal of Computers, 2(10), pp.9--17.

Leighton, G., Diamond,]. and Muldner, T. (2005). AXECHOP: a grammar-based
compressor for XML. p.467.

Leighton, G., MA%ldner, T. and Diamond, J. (2005). TREECHOP: A Tree-based
Query-able Compressor for XML.

Ley, M., Herbstritt, M., Ackermann, M., Wagner, M., Hoffmann, O., Schwarz, R.
and Keutz, S. (2005). Index of /xml. [Online] DBLP. Available at:
http://dblp.uni-trier.de/xml/ [Accessed 15 Jun. 2014].

Li, C. and Ling, T. (2005). An improved prefix labeling scheme: A binary string
approach for dynamic ordered XML. pp.125--137.

133

REFERENCES

Li, J. and Wang, J. (2008). TwigBuffer: avoiding useless intermediate solutions

completely in twig joins. pp.554--561.
Li, W. (2003). Xcomp: An XML compression tool.

Li, Y., Bressan, S., Dobbie, G., Lacroix, Z., Lee, M., Nambiar, U. and Wadhwa, B.
(2001). X007: applying 007 benchmark to XML query processing tool.
pp.167--174.

Li, Y. (n.d.). XML BENCHMARKS PUT TO THE TEST.

Lian, W., Mamoulis, N., Cheung, D. and Yiu, S. (2005). Indexing useful structural
patterns for XML query processing. Knowledge and Data Engineering,

IEEE Transactions on, 17(7), pp.997--1009.

Liao, I., Hsu, W. and Chen, Y. (2010). An efficient indexing and compressing
scheme for XML query processing. Springer, pp.70--84.

Liefke, H. and Suciu, D. (2000). XMill: an efficient compressor for XML data.
29(2), pp-153--164.

Lin, Y., Zhang, Y., Li, Q. and Yang, J. (2005). Supporting efficient query
processing on compressed XML files. pp.660--665.

Liu, J. and Roantree, M. (2010). OTwig: An Optimised Twig Pattern Matching
Approach for XML Databases. Springer, pp.564--575.

Liu, J., Roantree, M. and Bellahsene, Z. (2010). A schema guide for accelerating

the view adaptation process. Springer, pp.160--173.
Liu, M. and Ling, T. (2002). Towards declarative XML querying. pp.127--136.

Lo, A, "Ozyer, T., Tahboob, R., Kianmehr, K., Jida,]. and Alhajj, R. (2010). XML
materialized views and schema evolution in VIREX. Information Sciences,

180(24), pp.4940--4957.

Ly, E. and Cheng, Y. (2004). Design and implementation of a mobile database
for Java phones. Computer Standards & Interfaces, 26(5), pp.401--410.

134

REFERENCES

Lu,], Chen, T. and Ling, T. (2004). Efficient processing of XML twig patterns
with parent child edges: a look-ahead approach. pp.533--542.

Lu,], Chen, T. and Ling, T. (2005). TJFast: effective processing of XML twig
pattern matching. pp.1118--1119.

Luy,], Ling, T., Chan, C. and Chen, T. (2005). From region encoding to extended
dewey: On efficient processing of XML twig pattern matching. pp.193--
204.

Ly,], Ling, T., Bao, Z. and Wang, C. (2011). Extended xml tree pattern
matching: theories and algorithms. Knowledge and Data Engineering,

IEEE Transactions on, 23(3), pp.402--416.

Miildner, T., Fry, C., Miziolek,]. and Durno, S. (2009). Xsaqct: Xml queryable
compressor. pp.11--14.

Madden, S., Franklin, M., Hellerstein,]. and Hong, W. (2005). TinyDB: an
acquisitional query processing system for sensor networks. ACM

Transactions on database systems (TODS), 30(1), pp.122--173.

Madria, S., Chen, Y., Passi, K. and Bhowmick, S. (2007). Efficient processing of
XPath queries using indexes. Information Systems, 32(1), pp.131--159.

Manandhar, N. (2007). Structure Based XML Indexing. Computer Science &

Engineering.

Mandhani, B. and Suciu, D. (2005). Query caching and view selection for XML
databases. pp.469--480.

Marcus, M., Marcinkiewicz, M. and Santorini, B. (1993). Building a large
annotated corpus of English: The Penn Treebank. Computational

linguistics, 19(2), pp.313--330.

Meng, X., Wang, Y., Luo, D, Lu, S., An, J., Chen, Y., Ou, J. and Jiang, Y. (2003).
OrientX: A Schema-based Native XML Database System.

Milo, T. and Suciu, D. (1999). Index Structures for Path Expressions. In:

Springer-Verlag. pp.277--295.

135

REFERENCES

Min, J., Park, M. and Chung, C. (2003). XPRESS: A queriable compression for
XML data. pp.122--133.

Mlynkov3, I. and Necasky, M. (2009). Towards inference of more realistic

XSDs. pp.639--646.

Mohan, P., Padmanabhan, V. and Ramjee, R. (2008). Nericell: rich monitoring

of road and traffic conditions using mobile smartphones. pp.323--336.

Moro, M., Vagena, Z. and Tsotras, V. (2005). Tree-pattern queries on a
lightweight XML processor. pp.205--216.

Nair, S. (n.d.). [Online] Available at:
https://people.ok.ubc.ca/rlawrenc/research/Students/SN_04_XMLComp
ress.pdf [Accessed 17 Dec. 2013].

Ng, W., Lam, W., Wood, P. and Levene, M. (2006). XCQ: A queriable XML
compression system. Knowledge and Information Systems, 10(4), pp.421-
-452.

Nicola, M., Kogan, 1. and Schiefer, B. (2007). An XML transaction processing
benchmark. pp.937--948.

Nicola, M. and Van der Linden, B. (2005). Native XML support in DB2 universal
database. pp.1164--1174.

0'Connor, M. and Roantree, M. (2010). Desirable properties for XML update

mechanisms. p.23.

Oliver, E. (2009). A survey of platforms for mobile networks research. ACM
SIGMOBILE Mobile Computing and Communications Review, 12(4), pp.56--
63.

O'Neil, P,, O'Neil, E,, Pal, S., Cseri, L., Schaller, G. and Westbury, N. (2004).
ORDPATHSs: insert-friendly XML node labels. pp.903--908.

Oracle, (2006). Oracle Database Lite Client 10g. [Online] Oracle.com. Available
at: http://www.oracle.com/technetwork/database/database-lite/lite-

client-090611.html [Accessed 6 Apr. 2014].

136

REFERENCES

Ortiz, S. (2000). Embedded databases come out of hiding. Computer, 33(3),
pp-16--19.

Pavlov, I. (n.d.). 7-Zip. [Online] 7-zip.org. Available at: http://www.7-zip.org/
[Accessed 6 Mar. 2014].

Pena, A. (2013). Compressed self-indexed xml representation with efficient

xpath evaluation. PhD. Universidade da Corufia.

Phillips, D., Zhang, N,, Ilyas, I. and Ozsu, M. (2006). InterJoin: Exploiting

indexes and materialized views in XPath evaluation. pp.13--22.

Portokalidis, G., Homburg, P., Anagnostakis, K. and Bos, H. (2010). Paranoid
Android: versatile protection for smartphones. pp.347--356.

Pucheral, P., Bouganim, L., Valduriez, P. and Bobineau, C. (2001). PicoDBMS:
Scaling down database techniques for the smartcard. The VLDB Journal,

10(2-3), pp.120--132.

Purwitasari, D., Purwananto, Y. and Prasetyo, A. (n.d.). Compression on XML

data with reverse arithmetic encoding: A case study.

Qiao, D. and Shin, K. (2005). Smart power-saving mode for IEEE 802.11
wireless LANs. pp.1573-15833.

Qin, L., Yu, J. and Ding, B. (2007). TwigList: make twig pattern matching fast.
Springer, pp.850--862.

Rahmati, A. and Zhong, L. (2007). Context-for-wireless: context-sensitive

energy-efficient wireless data transfer. pp.165--178.

Rizzolo, F. (2001). ToXin: an indexing scheme for XML data. PhD. University of

Toronto

Robie, J. (2007). XML processing and data integration with XQuery. Internet
Computing, IEEE, 11(4), pp.62--67.

Rocco, D., Caverlee, J. and Liu, L. (2005). XPACK: A High-Performance WEB
Document Encoding. In: INSTICC Press. pp.32-39.

137

REFERENCES

Runapongsa, K., Patel,], Jagadish, H., Chen, Y. and Al-Khalifa, S. (2006). The
Michigan benchmark: towards XML query performance diagnostics.

Information Systems, 31(2), pp.73--97.

Ryabko, B. and Rissanen, J. (2003). Fast adaptive arithmetic code for large
alphabet sources with asymmetrical distributions. Communications

Letters, IEEE, 7(1), pp.33--35.

Sakr, S. (2009). XML compression techniques: A survey and comparison.

Journal of Computer and System Sciences, 75(5), pp.303--322.
Salomon, D. (2004). Data Compression: The Complete Reference. ed. p.899.

Satyanarayanan, M., Lewis, G., Morris, E., Simanta, S., Boleng, J. and Ha, K.
(2013). The role of cloudlets in hostile environments. IEEE Pervasive

Computing, 12(4), pp-0040--49.

Schlieder, T. (2002). Schema-driven evaluation of approximate tree-pattern

queries. Springer, pp.514--532.

Schmidt, A., Waas, F., Kersten, M., Carey, M., Manolescu, I. and Busse, R. (2002).
XMark: A benchmark for XML data management. pp.974--985.

Schmidt, A. (2001). XMark - An XML BenchmarkProject. [Online] Xml-
benchmark.org. Available at: http://www.xml-benchmark.org/

[Accessed 28 May 2014].

Scioscia, F. and Tinellj, E. (2011). A Framework for Query Processing over

Compressed Knowledge Bases. 2, pp.86--91.

Segoulfin, L. (2003). Typing and querying XML documents: some complexity
bounds. pp.167--178.

Seltzer, M. and Oracle, (2007). Guide to Oracle Berkeley DB for SQL Developers.
[Online] Oracle.com. Available at:
http://www.oracle.com/technetwork/articles/seltzer-berkeleydb-sql-

086752.html [Accessed 19 Feb. 2014].

138

REFERENCES

Senthilkumar, R. and Arputharaj, K. (2011). Efficiently Querying the Indexed
Compressed XML Data (1QX). Journal of Database Management System
(IJIDMS).

Sharma, K. (2011). Android in opposition to iPhone. International Journal on

Computer Science and Engineering, 3(5), pp.1965--1969.

Shirani, S. (n.d.). Data Compression: The Complete Reference by D. Salomon,
Springer, 2007, ISBN-13: 978-1-84628-602-5, 1,092 pages, hardbound.

Reviewed.

Skibinski, P. and Swacha, J. (2007). Combining efficient XML compression with
query processing. pp.330--342.

Su-Cheng, H., Chien-Sing, L. and others, (2009). Efficient Preprocesses for Fast
Storage and Query Retrieval in Native XML Database. IETE Technical
Review, 26(1), p.28.

Su-Cheng, H., Chien-Sing, L. and others, (2009). Node labeling schemes in XML
query optimization: a survey and trends. [ETE Technical Review, 26(2),

p-88.

Suciuy, D. (1992). Treebank: XML data repository. Rapport technique, University

of Pennsylvania Treebank Project, Novmber.

Suciu, D. and Miklau, G. (n.d.). UW XML Repository. [Online] Cs.washington.edu.
Available at: http://www.cs.washington.edu/research/xmldatasets/

[Accessed 1 Jun. 2014].

Tatarinov, I, Viglas, S., Beyer, K., Shanmugasundaram, J., Shekita, E. and Zhang,
C. (2002). Storing and querying ordered XML using a relational database
system. pp.204--215.

Teahan, W. and Cleary,]. (1996). The entropy of English using PPM-based
models. pp.53--62.

Tidwell, D. (2002). [Online] Available at:
http://www.ibm.com/developerworks/xml/tutorials/xmlintro/section2

.html [Accessed 4 Jul. 2011].

139

REFERENCES

Tolani, P. and Haritsa, J. (2002). XGRIND: A query-friendly XML compressor.
pp.225--234.

Toman, V. and others, (2004). Syntactical compression of XML data.

Tpc.org, (2001). TPC-H - Homepage. [Online] Available at:
http://www.tpc.org/tpch/ [Accessed 1 Jun. 2014].

Verbelen, T., Simoens, P., De Turck, F. and Dhoedt, B. (2013). Leveraging
cloudlets for immersive collaborative applications. IEEE Pervasive

Computing, 12(4), pp.30--38.

Vidal, V. and Casanova, M. (2003). Efficient maintenance of xml views using

view correspondence assertions. Springer, pp.281--291.

W3c, (2010). XML Essentials - W3C. [Online] W3.org. Available at:
http://www.w3.org/standards/xml/core [Accessed 19 May 2011].

W3C, (n.d.). Efficient XML Interchange Working Group Public Page. [Online]
W3.org. Available at: http://www.w3.org/XML/EXI/ [Accessed 7 Mar.
2014].

Wang, H.,, Li,]., Luo, J. and He, Z. (2004). XCpags: Compression of XML
document with XPath query support. 1, pp.354--358.

Wang, H., Li,]., Liu, X. and Luo, J. (2009). Query Optimization for Complex Path
Queries on XML Data. pp.389--404.

Wang, H., Park, S., Fan, W. and Yu, P. (2003). ViST: a dynamic index method for
querying XML data by tree structures. pp.110--121.

Wei, D. and Wei, X. (2012). Structural join oriented xml data compression.

pp-29--33.

Weigel, F., Schulz, K. and Meuss, H. (2005). The bird numbering scheme for
xml and tree databases--deciding and reconstructing tree relations using

efficient arithmetic operations. Springer, pp.49--67.

Weimin, W., Huijiang, G., Yi, H., Jingbao, F. and Huan, W. (2008). Improvable
deflate algorithm. pp.1572--1574.

140

REFERENCES

Weiner, A., Mathis, C. and H"arder, T. (2008). Towards cost-based query

optimization in native xml database management systems. Citeseer.

Whang, K. (2007). A New DBMS Architecture for DB-IR Integration. In:
Springer-Verlag. pp.4--5.

Whang, K., Lee, M,, Lee,]., Kim, M. and Han, W. (2005). Odysseus: A High-
Performance ORDBMS Tightly-Coupled with IR Features. In: IEEE
Computer Society. pp.1104--1005.

Williams, R. (1991). An extremely fast Ziv-Lempel data compression

algorithm. pp.362--371.

Witten, ., Neal, R. and Cleary, J. (1987). Arithmetic coding for data
compression. Communications of the ACM, 30(6), pp.520--540.

Wong, R., Lam, F. and Shui, W. (2007). Querying and maintaining a compact
XML storage. pp.1073--1082.

Wu, X, Lee, M. and Hsu, W. (2004). A prime number labeling scheme for
dynamic ordered XML trees. pp.66--78.

Xin, Y., He, Z. and Cao, J. (2010). Effective pruning for XML structural match
queries. Data & Knowledge Engineering, 69(6), pp.640--659.

Xu, X,, Feng, Y. and Wang, F. (2009). Efficient processing of XML twig queries
with all predicates. pp.457--462.

Yang, C., Chuy, Y. and Tsaur, S. (2010). Implementation of a medical information

service on Android mobile devices. pp.72--77.

Yao, B., Ozsu, M. and Khandelwal, N. (2004). XBench benchmark and
performance testing of XML DBMSs. pp.621--632.

Yu, T., Ling, T. and Lu, J. (2006). TwigStackListneg: a holistic twig join
algorithm for twig query with not-predicates on XML data. pp.249--263.

Yun, J. and Chung, C. (2008). Dynamic interval-based labeling scheme for
efficient XML query and update processing. Journal of Systems and
Software, 81(1), pp.56--70.

141

REFERENCES

Zhang, C., Naughton,]., DeWitt, D., Luo, Q. and Lohman, G. (2001). On
supporting containment queries in relational database management

systems. pp.425--436.

Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R., Mao, Z. and Yang, L. (2010).
Accurate online power estimation and automatic battery behavior based

power model generation for smartphones. pp.105--114.

Zhang, N. and Ozsu, M. (2010). XML native storage and query processing.
Advanced Applications and Structures in XML Processing: Label Streams,

Semantics Utilization and Data Query Technologies. IGI Global, 699.

Zhang, N., "Ozsu, M,, Ilyas, I. and Aboulnaga, A. (2006). Fix: Feature-based
indexing technique for XML documents. pp.259--270.

Zhou, ., Xie, M. and Meng, X. (2007). TwigStack+: Holistic twig join pruning
using extended solution extension. Wuhan University Journal of Natural

Sciences, 12(5), pp.855--860.

Zhou, J.,, Meng, X. and Ling, T. (2009). Efficient processing of partially specified
twig pattern queries. Science in China Series F: Information Sciences,

52(10), pp.1830--1847.

Zhou, R. (2010). Answering XPath Queries Using XPath Views. Message from
General Chair, p.37.

Ziv,]. and Lempel, A. (1977). A universal algorithm for sequential data
compression. IEEE Transactions on information theory, 23(3), pp.337--

343.

Ziv,]. and Lempel, A. (1978). Compression of individual sequences via
variable-rate coding. Information Theory, IEEE Transactions on, 24(5),

pp-530--536.

142

APPENDIX 1

APPENDIX 1

FULL RESULTS FOR THE COMPRESSOR

The Compressor Experiments

Compression Ratio

File Name
XMark 1
XMark 2
XMark 3
XMark 4
XMark 5
XMark 6
XMark 7
XMark 8
mondial
nasa
uwm
customer

File Size
0.054
0.091
0.879
1.001
2.275
4.616
9.151
17.982
1.702
23.889
2.228
0.491

Compression Time

File Name
XMark 1
XMark 2
customer
XMark 3
XMark 4
mondial
uwm
XMark 5
XMark 6
XMark 7
XMark 8
nasa

Compression Ratio (CR)

File Size 1st RUN 2nd

0.054
0.091
0.491
0.879
1.001
1.702
2.228
2.275
4.616
9.151
17.982
23.889

Size without gzip size with gzip

CR without gzip CR with gzip CR %

0.025 0.021 0.54 0.61 61
0.038 0.031 0.58 0.66 66
0.388 0301 0.56 0.66 66
0.447 0.344 055 0.66 66
1.014 0.779 055 0.66 66
2.077 1.558 0.55 0.66 66
4124 3.113 055 0.66 66
8.123 6.124 055 0.66 66
111 0.436 035 0.74 74
12.499 8.827 0.48 0.63 63
1.063 0.193 0.52 091 91
0.335 0.105 032 0.79 79
AVERAGE 0.508333333 0.6916667
COMPRESSION TIME (S)
RUN 3rdRUN 4th RUN 5th Run
35.982 16.937 13.031 9.005 9.531
12.416 12.354 11.559 11.845 10.286
43.827 43.329 40.357 39.658 38.546
94.603 96.766 87.784 84.31 84.743
107.607 97.154 99.383 95.23 98.032
122.353 122.991 152.65 110.147 117.461
177.887 177.999 182.846 164.27 165.234
262.163 231.002 223.377 228.15 227.408
521.094 452.845 439.736 431.68 516.534
10224 1037.452 962.898 876.692 922.974
2187.454 2092161 2231309 2017.446 1955.614
3179.273 3395959 2927.766 3017.108 2932.344

143

CHAPTER 15

CHAPTER 15

APPENDIX II

THE QUERY PROCESSOR

Queries

This shows a subset ofspecific queries that were used in testing the query
processor. Q1 to Q13 were run on a customer.xml file and Q14 to Q20 were
executed on the XMark.xml file

Query | Query Query Type Description
Name
Q1 C_NAME Keyword Exact match keyword
query
Q2 /Table/T/C_NAME Simple Path Exact math simple
path query
Q3 /Table/T Same Node Same node predicate
[C_CUSTKEY<10]/ Predicate with a single
C_CUSTKEY operator
Q4 /Table/T Divergent Node | Divergent node
[C_CUSTKEY<10]/C_NAM | Predicate predicate with a
E single comparative
operator
Q5 /Table/T[C_ACCTBAL>10 | Divergent Node | Divergent node
0001/ Predicate predicate with a
single operator
C_ADDRESS testing a different
comparative
operator
Q6 /Table/T[C_ACCTBAL=23 | Divergent Node | Divergent node
79.91]/ Predicate predicate with a
single operator
C_COMMENT testing a different
comparative
operator

144

APPENDIX II

Q7 /Table/T[C_MKTSEGMEN | Same Node Same node predicate
Tl= Predicate with a single
AUTOMOBILE]/C_MKTSE operator testing a
GMENT different comparative

operator

Q8 /Table/T Multiple Conjunctive multiple
[C_CUSTKEY>10 AND operator operator divergent
C_ACCTBAL<1000 query
1/C_NAME

Q9 /Table/T [C_NATIONKEY | Multiple Disjunctive multiple
=3 OR C_ACCTBAL>1500 | operator operator divergent
1/C_NAME query

Q10 /Table/T[C_MKTSEGMEN | Multiple Disjunctive multiple
T =HOUSEHOLD OR operator operator divergent
C_NATIONKEY =7]/ query with more
C_PHONE operators

Q11 /Table Divergent Node | Divergent node
[C_CUSTKEY<10]/C_NAM | Predicate predicate with wrong
E path

Q12 T[C_MKTSEGMENT = Divergent Node | Disjunctive multiple
HOUSEHOLD OR Predicate operator divergent
C_NATIONKEY =7]/ query with more
C_PHONE operators not

starting from the root

Q13 Sales Keyword Exact match keyword

false query

Q14 /site/regions/Africa/ite Simple Path Exact match simple
m/location path

Q15 /site/regions/Africa/ite Divergent Node | Divergent node
m[@id="1"]/payment Predicate predicate on an

attribute

Q16 /site/regions/Africa/ Simple Path Exact match simple
C_CUSTKEY path false query

Q17 /site/regions/Africa/ite Divergent Node | Divergent node
m[location!= Liberia] / Predicate predicate on an

@id

attribute with a
single comparative
operator

145

APPENDIX II

Q18 /site/regions/Africa/ite Simple Path Exact match simple
m/mailboxmail//from path

Q19 text Keyword Exact match keyword

query

Q20 /site/regions/Africa/ite Divergent Node | Divergent node
m/mailbox/mail[to=Youji | Predicate predicate on a more
an Siochi nested query.
mailto:Siochi@uwaterloo.
ca]/date

The virtual device used

(@ 5554Phone.2 [E=——

rF@# SR TR &= ()
NN

ALT

146

APPENDIX II

SIQXC installed as an application
& 5554Phone_2 [E=REEx

[P @ P S P PR R P P
r—rw—*r—rpﬂﬁﬂ[—;ﬁr#
| |swle | e ol

The First SIQXC Screen
@ 5554Phone 2 [ESE—~=)

Execute

1 2|3]a [s:]6 |7 |8 |9 |o |
o fu e JaJr Js Ju s Jo o]
s Jo Js Jo) [xc]o |3

| [smle | i o4

147

APPENDIX II

Results from running a keyword query on customer.xml

@ 5554Phone 2 o =

-
®! RESULT SET

Customer#000000001
Customer#000000002
Customer#000000003
Customer#000000004

Customer#000000005

Customer#000000006 FITE TR TS T TR T TR Ty
Customer#000000007 I s =
Customer#000000008 Ao lelle du lade di

ALT = . ALT

Results of a disjunction query with (]|) operator

@ 5554:Phone 2 n|nlE)

-
& RESULT SET

Customer#000001497
Customer#000001498
Customer#000001499

Customer#000001500

711.56

s PR P PR PR PR PR PR
o o oo {n s v fo [s Jo |p
a s Jo [e-Jo [u [y Ju|u |8
— 2[2 e v [o [n . o

- = 8 S P

148

CHAPTER 16

CHAPTER 16

APPENDIX III

COMPARISON OF THE COMPRESSORS

Query support
COMPRESSOR QUERY TYPE

Non Predicate Predicate

Keyword | Simple Divergent | Same Multiple

Path node Operator

SIQXC
XSAQCT . .
XQueC
XQzlp
XGRIND
XPRESS

Average compression ratio

Compressor Average Compression
Ratio

SIQXC 0.7

XSAQCT 0.8

XQueC 0.68

XQzip 0.66

XGRIND 0.57

XPRESS 0.57

149

