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Abstract

The interaction of convection with rotation and magnetiddBeplays an important role in
determining the dynamics of many geophysical and astrapddyshenomena. In particular, this
interaction is thought to be associated with the generatfdarge-scale mean flows as observed,
for example, in the atmospheres of the giant planets andeinintierior of the Sun. This study
examines the interaction of convection with rotation andynedic fields in a simplified, two-
dimensional, plane layer model. We consider the case wheriuid rotates about an axis that is
oblique to gravity, and is in the presence of a horizontal me#ig field. Also considered, is the
case where a horizontal temperature gradient maintainerm#t wind. The fluid is taken to be
either incompressible, using the Boussinesq approximatiocompressible, using the anelastic
approximation. An examination of the linear behaviour identaken to investigate the conditions
required for the onset of convection, in a number of diffénegimes. The existence of an
unexpected symmetry is proved in the anelastic case. A pspadtral numerical code, developed
in order to solve the nonlinear equations, is then describbbée@ code is employed to investigate
the dynamics in the nonlinear regime and determine the Uyidgrphysical interactions for
mean flow maintenance. It is shown that whether convectid® tacdecrease or increase the
thermal wind shear, depends on the Prandtl number and the ahglt of the rotation vector.
Furthermore, the asymmetries introduced when a backgretratification is present, manifest
themselves in the time-dependent nature of the mean flowsrdriVe also show that an imposed
horizontal magnetic field not only inhibits mean flow genieratbut also affects the vertical
structure of the flows. To finish, a discussion of the appliggof the work to astrophysical

phenomena is given.
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Chapter 1

Introduction

1.1 Motivation

For centuries, scientists have been observing the Sunsa8dlir System. With the advent of new
observational techniques an ever clearer picture of thedsse is being built, though many of the
phenomena observed can not be well explained. It is our Haaey studying such phenomena
through mathematical modelling, and relating the resolishiservations, our understanding will

be improved.

In particular, large-scale mean flows have long been obddrvenany systems of geophysical
and astrophysical importance, such as planets, starxigmland accretion disks. Despite this,
mean flow generation is not a well understood process; maihbe interaction of mean flows
with other physical processes such as magnetic field gemeradell-known examples of mean
flows include the differential rotation in the Sun, the lagpale zonal jets on Jupiter and the jet
streams in the Earth’s atmosphere. The next section exarttiese examples in more detail and

describes the physical mechanisms that might cause them.

1.2 Examples of mean flows

To begin, we define loosely what is meant by a mean flow. Fluig flan be split into a mean
part and a fluctuating part, where the mean flow is the parteofitd velocity that remains after
an averaging process (e.g., Reynolds decomposition). Weefine this more rigorously in due

course. Often, the mean flow is much larger than the smalk-gogbulence that occurs along
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with it. We now describe some of these large-scale flows, Hysipal situations in which they

occur and their implications.

1.2.1 The Sun

The Sun is a mass of plasma that lies at the centre of the Sger8. It has a radius of
approximately6.955 x 10®m and a mass of approximately989 x 103°kg (Williams (2004)).
The physical processes occurring in the Sun have a larget affe space weather (National
Research Council (1997)) and so it is important to undedsthem. This activity can have
terrestrial implications, for example, the Sun ejectsdaggantities of matter and radiation in so-
called coronal mass ejections and these can cause damagellites and disrupt communication
networks (National Research Council (2008)). Observatigiithe Sun, over many years, have
enabled us to gain a deeper understanding of the structuhte &un. A detailed review of the
Sun and its properties is found in Priest (1984) or Stix (2004 outline some key features in

the following sections.

Structure of the Sun

The Sun can be thought of as consisting of a number of distagions, defined by the material

in the region and the physical processes that occur theecfigre 1.1. At the centre of the

Figure 1.1: Interior structure of the Sun. The core exterd20t25% of the radius and is
surrounded by the radiation zone which extends to apprdeimn@0% of the radius. The outer

30% is occupied by the convection zone. Image source: htty#/ping/news/.
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Sun is the solar core which extends2@-25% of the radius. In the core, temperatures are hot
enough for nuclear fusion to take place, so that hydrogerbeaconverted into helium, and in
doing so, create vast amounts of energy. This energy isedaatutwards by radiation into the
next region, known as the radiative zone, where the energtinees to be radiated outwards,
until approximately70% of the distance of the solar radius is reached. In the regicomed by
the outer30% by radius, the Sun is convectively unstable and this regidherefore known as
the convective zone. The region between the radiative ameective zones is a shallow region of
radial shear, known as the tachocline (Spiegel & Zahn (1J9#2¥ill be described in more detail
later. In the convective zone, energy is transported by dimgeaxction towards the surface. At the
photosphere, i.e., the visible surface of the Sun, hott¢ernahthat has been convected outwards
from the interior is cooled and therefore its density insez this causes the material to sink
towards the base of the convection zone and the processskegim. These convective motions
are characterised at the surface as solar granules andjsupgdes. Above the photosphere is the
solar atmosphere, but we are interested in the physicakpses that occur in the solar interior,
more specifically in the convection zone and so we shall needkeeper into the solar atmosphere

here.

It has been known for some time that, by tracking visible aceffeatures, the Sun is rotating
faster at the equator than it is at the poles - it is diffeadlgtirotating (see e.g., Ward (1966)).
However, little was known about the internal rotation pefif the Sun until relatively recently,
when a technique known as helioseismology was developdibddissmology measures Doppler
shifts at the solar surface that result from wave osciltetiim the interior and the data obtained can
be inverted to infer information about the large-scalecitme and rotation of the solar interior.
Details of the technique are given in Christensen-Dalsfj2002). Using this technique, the
rotation profile given in figure 1.2 has been deduced. Fronpthéle we see that the radiative
zone is in solid body rotation but the convection zone istigafaster at the equator than it is at
the poles, with lines of constant rotation rate being radials confirming the differential rotation
previously observed. The period of rotation at the polepaximately33 days whereas at the
equator it is only25 days (Schowet al. (1998)). The smooth transition between the radiation and
convection zones occurs at the tachocline and as a resuldhecline is a layer of strong shear
(Hugheset al. (2007)). It is the convective turbulence in the convectivaezthat appears to drive
motions that result in differential rotation, these motigrersist on averaging and are an example
of a mean flow. This thesis aims to provide simple models fam@ring such a convectively

driven mean flow.
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300 M 386

Figure 1.2: Rotation profile of the Sun. The radiation zone solid body rotation, whereas the
convection zone is differentially rotating. In betweenghdwo regions is a thin layer known as

the tachocline. Image from Schetial. (1998).

Magnetic nature of the Sun

The Sun consists of electrically conducting fluid which atoit to have a magnetic field. The
process by which this field is generated is known as dynamoraend is an active research
topic in its own right (see Ossendrijver (2003) or Tobias &i%¥g2007) for a review) but it is
believed that differential rotation assists the dynamaess. The Sun’s active magnetic field
affects the physical processes occurring in the Sun aneftret ideally, the effect of a field
should be considered in any solar model. For example, tferéliftial rotation of the Sun causes
magnetic field lines to twist and, over time, cause magnetid foops to erupt from the Sun’s
surface, this leads to the emergence of so-called sunsgitt wan be observed as dark spots on
the Sun'’s surface (e.g., Tobias (2002)). Observations md®ots over many years have led to the
recognition of a sunspot cycle - the periodic change in nurabd location of sunspots over time.
An illustration of this cycle is given in figure 1.3. For obu®reasons, this diagram is known as
a butterfly diagram (Maunder (1904)) and from it we can oles¢imat the sunspot cycle has an
eleven year period. During this cycle, sunspots increasenmber and move towards the equator
before decreasing in number, then the cycle starts againh fi@e the cycle starts again, the
magnetic field switches polarity and as a result the completgnetic cycle actually occurs over
a 22 year period, as shown by figure 1.4. For a comprehensii@vef sunspots, see Thomas &

Weiss (2008).

Clearly, to understand the Sun, it is necessary to undef$tauw convection interacts with rotation

and magnetic fields. This is a primary aim of our study.
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Figure 1.3: Solar butterfly diagram. The location of sunspata function of time and latitude. In
each eleven year cycle, sunspots increase in number, meaed®the equator and then decrease

in number. Image from Hathaway (2010).
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Figure 1.4: Magnetic butterfly diagram. The polarity of thegnetic field associated with
sunspots switches after each 11 year cycle, resulting inngplete cycle period of 22 years.

Image source: David Hathaway, NASA.
1.2.2 Jupiter

With a radius of approximately x 10’m and a mass of approximatelyd x 1027kg (Williams
(2007)), Jupiter is the largest planet in the Solar Systetris believed to consist of a dense
metallic core surrounded by an outer layer atmosphere ofdggsh and helium (Stevenson &
Salpeter (1976), Guillagt al. (2004)). The atmosphere is thought to be adofit 10”m in extent
and it is in the atmosphere that mean flows are observed. tioiwik that Jupiter has a magnetic
field, which like the Sun is believed to be driven by dynamaoactThough the mechanism is not
fully understood, it is thought the magnetic field is genedan the metallic core, see e.g., Jones
(2011). The mean flows on Jupiter result in the very distibatjded structure we observe, see
figure 1.5(a). This banded structure is made up of an arrayogfpde and retrograde zonal flows

and whilst they have been observed for centuries it is nbt fulderstood what causes them.
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Figure 1.5: (a) Image of Jupiter showing the distinct arrbyamal jets present in its atmosphere.
Image source: http://astronomy.nju.edu.cn. (b) Dataingao the zonal flows obtained from
the Voyager and Cassini missions, the two sets of data ayesirailar. Image from Porcet al.

(2003).

Data relating to the zonal flows was obtained on two separ&sions by the Voyager (Limaye
(1986)) and Cassini spacecraft (Poetoal. (2003)), see figure 1.5(b). Despite these missions
being 20 years apart, the data for the zonal flows was foune t@rhost identical, highlighting

the steady nature of the jets.

There have been different models proposed to describe thdebastructure and the origin of
the jets. One model, introduced by Busse (1976), suggeatghf zonal flows are driven by
convection in the deep interior. A second model, proposezahal flows are confined to a stably
stratified region at the surface (Williams (1979), Dowlingr&ersoll (1989)) in which case, the
flows are driven by small-scale turbulence, perhaps caugdituinderstorms. Both models have
shortcomings when trying to reproduce the exact bandedtataiof the Jovian atmosphere. The
deep convection models are often able to reproduce thegmegrquatorial jet and its flanking
jets, e.g., Christensen (2001, 2002), Heimgtedl. (2005), but do not reproduce the high latitude
jets. On the other hand, the shallow layer models are ableotdupe high-level jets but not the
equatorial flows, e.g., Cho & Polvani (1996). Although mareantly, Scott & Polvani (2007) and
Warneford & Dellar (2014) have had some success by incotipgrlewtonian cooling into their
shallow layer models. Vasavada & Showman (2005) provideslkiew of observations, theory,
experiments and simulations of Jupiter’'s atmosphere, ¢hagluded that Jupiter's dynamics are

probably a result of both deep and shallow processes.
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1.2.3 Other examples

We have discussed the mean flows of the Sun and Jupiter in setaiellit there are many other

examples of large-scale mean flows in nature. We describe sbthem briefly here.

Earth’s atmosphere

The circulation in the Earth’s atmosphere is another exangpla large-scale flow present in
nature. An extensive description of the circulation in thea@sphere can be found in Vallis
(2006). We describe the key aspects briefly here. There arerain types of circulation: the
meridional circulation, i.e., along lines of constant ldnde, and the zonal flows, i.e., along
lines of constant latitude. The circulation is driven by th&ation of the Earth and solar heating;
they act to transport energy from the equator to the poleohyextion. There are three distinct
circulation cells acting meridionally in each hemisphexge shown in figure 1.6. The cell closest
to the equator is known as the Hadley cell (Hadley (1735))ianabrks as follows: the warmer
air at the equator rises and moves polewards and then sitis gubtropics. Some of the air that
sinks to the surface at the subtropic latitudes returnsecetiuator to complete the Hadley cell.
The rest of the sinking air moves towards the poles whereguaghly 60° latitude, it meets cold
air moving down from the poles. The low surface pressurgatatitude causes the air to rise;
some of this air returns t80° latitude to complete the Ferrel cell. The third circulaticell is
known as the Polar cell, and it is completed when some of theiraulated towards the equator

from the poles, meets the Ferrel cell and is returned to thespo

The zonal flows, known as jet streams, arise because theoairtfre equatorial region is warm
compared to the air in the Ferrel cell, and so there is a sttemgerature gradient between the
two air masses. The resulting jets, known as subtropical jeaw from west to east in both
hemispheres - the wind does not flow from hot to cold directlyib deflected by the Coriolis
effect (i.e., to the right in the northern hemisphere anchmleft in the southern hemisphere).
Similarly, the meeting of the warm air from mid-latitudesdahe cold air from the poles causes
another jet to form above the air masses, in much the same sviheasubtropical jets. Again

these jets occur in each hemisphere and they are known asltrgqis.

In this thesis, we focus on mean flows driven in astrophydiodies such as the Sun, we mention
the Earth’s atmosphere as another example of the ubiquitatuse of mean flows only and will

not consider it any further.
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Subtropical jet

Polar Jet

North Pole Equator

Figure 1.6: Circulation of air in the Earth’s atmosphere. efehexist three distinct cells of
meridional circulation in each hemisphere: (i) the Hadlell,dii) the Ferrel cell and (iii) the
Polar cell. In addition, large-scale zonal flows exist in titnen of the polar and subtropical jets.

Image source: www.srh.noaa.gov.

Other planets

In addition to data about Jupiter, the Cassini mission pl@yidetails about Saturn (see Porco
et al. (2005)). Along with images from the Hubble telescope (Pétleyos et al. (2005)),
this data has been able to enlighten us about the zonal flaerpain Saturn. Like Jupiter,
Saturn’s atmosphere consists of a prograde equatorialtfetwultiple smaller-scale jets at higher
latitudes. However, Saturn’s equatorial jet is broaden thapiter’s, and the bands are less striking
in colour, hence Saturn is a less well-known example of gtemmal flow. Porcet al. (2005) also
showed that at higher latitudes on Saturn, there are ordg thrograde jets in each hemisphere, in
contrast to many more on Jupiter. Moreover, there is vettg lietrograde surface flow on Saturn,

again in contrast to Jupiter.

As well as the gas giant planets, Jupiter and Saturn, theidgce glanets, Uranus and Neptune,
are also known to have strong zonal flows. Imaging data fraarHhbble and Keck telescopes

has provided information about the zonal flow on these ptafsete Hammaedt al. (2001, 2005)).

In contrast to Jupiter and Saturn, the equatorial jets omuwrand Neptune are retrograde and
the higher latitudes do not contain multiple jets. Instehdre is a high-latitude prograde jet in

each hemisphere. The zonal flow profiles of Jupiter, Saturanls and Neptune as found in

Sukorianskyet al. (2002) are shown in figure 1.7.

As explained before, shallow layer systems have been usaddel atmospheres of giant planets
and they often result in retrograde equatorial jets, in exgent with the observations for Uranus
and Neptune. Therefore, these models have been favouraavéstigating the zonal flows on

the ice giant planets (e.g., Cho & Polvani (1996)). As anraitive, Aurnouet al. (2007) used
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Figure 1.7: Observed zonal flow profiles of Jupiter, Satumanius and Neptune. Figure adapted
from figure 2 of Sukoriansket al. (2002).

three-dimensional convection models to examine the flowdramus and Neptune.

Other stars

Whilst we have described the Sun in some detail, it is not tilg star that exhibits differential
rotation. For example, the rapidly rotating star system, B&adus, is also believed to be
differentially rotating (Donati & Collier Cameron (1997))he interior rotation rate profile of
the Sun is well known from helioseismology (see section1}.But for some time, the Sun was
the only star for which we had measurements of its internaltiom rate. Although, by tracking
surface features, the surface rotation rate of other stardsl e deduced, (see e.g., Dorgttal.
(1999) and Collier Cameroet al. (2002)). More recently, asteroseismology missions haes be
carried out to probe the internal rotation profiles of others e.g., the Kepler mission (see
Gilliland et al. (2010)). Such missions, as well as the previous surface ureagnts, showed

that other stars are also differentially rotating.

Whilst the aim of this study is to examine the interaction ohwection, rotation, magnetic
fields and the driving of mean flows in a simplified model, thekvoas been conducted with

applications to stellar physics in mind.

1.3 Mechanisms for mean flow generation

In the previous section, we described some examples of meas fibserved in a geophysical
and astrophysical context. The mechanisms of their ggoardepends upon the exact physical

setting in which they are found. We have seen that the infieraof convection with rotation
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and magnetic fields results in the observed solar diffeabnditation. Whereas, the mechanism
for zonal flow in Jupiter's atmosphere is still not fully umg®od. As we have seen, it is thought
that the flow may be a result of convective processes in the idéerior, or a result of processes
occurring in a stably stratified weather layer, or possiblyombination of the two. This thesis
examines convection as a mechanism for mean flow generatibtharefore we will focus on

convection hereafter.

1.4 Convection

As has been discussed in the preceding sections, convastamimportant mechanism in the
driving of mean flows. Broadly, convection is a process thatgports heat energy in a fluid by
fluid motions. The general idea behind thermal convectidhas a parcel of warm fluid is less
dense than a cooler parcel, and so, if a fluid parcel is warihed] become less dense than its
surroundings and rise because of buoyancy effects. On lige band, the cooler fluid will sink

to replace the initial fluid, resulting in motions within tiaid. This convective motion transports

heat energy in the fluid and leads to fluid mixing.

1.4.1 Rayleigh-Enard convection

The most simple mathematical description of convectioméapsulated in the Rayleigh-Bénard
system, named after Henri Bénard and Lord Rayleigh. BEoanducted experiments on a layer
heated from below (Bénard (1900, 1901)) and Rayleigh (18afied out a mathematical linear
stability analysis of the same system. The Rayleigh-B&sgstem consists of a fluid layer where
the lower boundary is maintained at a higher temperatune tti@ upper boundary. Initially, the
fluid is taken to be at rest. As described above, the hottes, dense fluid will want to rise due
to buoyancy and the system is unstable. The natural tendsrtbyg fluid to redistribute itself to
form a stable configuration is opposed by the fluid viscodityerefore, the temperature gradient
must be large enough to overcome this opposition beforertstability will onset. Rayleigh
showed that whether a fluid layer heated from below is stableob can be determined from
a dimensionless parameter that relates the size of the tatpe gradient to the size of the
viscous effects. This parameter is known as the Rayleighbeurand will play an important

role throughout this thesis; it will be defined in section.2.3

In subsequent years, the simple Rayleigh-Bénard modebuiisipon and generalised in Jeffreys

(1926, 1928). Chandrasekhar (1961) provides a comprefeeresiiew of the mathematical linear
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theory for a number of different situations. Details of ath@rk relating to the linear theory of

convection is given in Chapters 3 and 4.

1.4.2 Experiments

A useful tool for studying convection is through experingenOften, experiments can explore
parameter regimes that cannot be studied theoreticallyuanerically. There has been an
abundance of experimental studies of convection, beginwiith the experiments of Bénard in
1900. Schmidt & Milverton (1935) confirmed experimentaliye tpredicted onset of convection,
as derived by Rayleigh. In subsequent years, the expersmerie repeated by many, including
Malkus (1954), who was able to achieve greater precisiorssBo(1969) added rotation to the
systems of previous studies. As experimental techniques Wwgroved and new ones developed,
experiments involving convection in deeper layers werdopered, e.g., Castaingt al. (1989),
they not only had a deeper layer but were able to reach highglelgh numbers. Liu & Ecke
(1997) studied rotating experiments in a deeper layer thatihé earlier experiments such as
those undertaken by Rossby (1969). More recently, expetatists have tried to develop scaling
laws relating to heat transport, for example, Kigtgal. (2009, 2012) try to establish laws for the
dependence of the efficiency of heat transfer (as measurtdgyusselt number) on the thermal

driving (as measured by the Rayleigh number) in rotatingl&gly-Bénard convection.

1.4.3 Nonlinear studies

Linear theory, as introduced by Rayleigh and described ln@rasekhar (1961), is only capable
of determining whether a system is convectively stable ¢ranad if not, at what rate we would
expect to see growth. It is not able to tell us anything abbetdynamics of the fluid after the
initial period of growth. To determine this behaviour, itrequired that the nonlinear effects
are accounted for in the mathematical description of therection. Early studies of nonlinear
convection were carried out by Malkus & Veronis (1958), taeglysed the nonlinear stability of
the system to finite amplitude perturbations and estaldisiteether or not a system would reach

a thermal equilibrium. Veronis (1959) extended this idemtorporate rotation.

There is only so much progress that can be made analyticaiynwtudying the nonlinear regime,
but with the advent of computers, techniques were develtpsdive the equations numerically.
Veronis (1966) was one of the first to do this when he studieddisnensional Rayleigh-Bénard

convection using a numerical algorithm to solve the equatioHe later added rotation to the
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system and solved it using a similar algorithm, see Veroh®68). Because of the lack of
computing power at the time, these simulations were onlylooted at very moderate Rayleigh
numbers. Moore & Weiss (1973) studied two-dimensional Bigi-Bénard convection using
a different numerical approach to Veronis (1966) and fouml twere able to study a much
larger range of parameters. With the development of fasterg efficient computers and better
numerical algorithms, Rayleigh-Bénard convection wag &b be studied in a lot more depth
numerically. For example, Vincent & Yuen (1999, 2000) welnéeao reach Rayleigh numbers
of up to several orders of magnitude higher than in previdudias in their two-dimensional

simulations, this led to the discovery of behaviour not seefore, or predicted by any theory.

Computing resources now allow for the study of fully nonéineonvection in three dimensions.

As mean flow generation is a nonlinear process, the abilitgalwe the nonlinear equations
numerically has led to a large number of studies of convealitven mean flows. Mean flows
generated by convection have been studied using a varidatiffefent models. Earlier models
tended to treat the fluid as incompressible and use the Bmssgiapproximation (described in
section 2.3) as this is computationally the simplest thingd. Hathaway & Somerville (1983)
performed three-dimensional simulations of Boussinesty@ction in a so-called tilted f-plane
geometry, which can be used as a local approximation to ameatfia spherical body. The tilted
f-plane is a plane layer in which the rotation vector can b&ab to gravity (see section 1.5 for
more details). The plane layer geometry is considered thelest to handle computationally.
Hathaway & Somerville (1986, 1987), extended the work ofnidatay & Somerville (1983) to
investigate the interaction between convection, rotaiwhshear flows by imposing a background
shear flow. Other work relating to Boussinesq convection tiltea f-plane was done by Julien &
Knobloch (1998) who used asymptotic theory to establisistamts on the transport properties
of the flows. They compared the results of their asymptotidyasis to the results of the numerical
simulations of Hathaway & Somerville (1983) and found gogteament. Saito & Ishioka (2011)
revisited the problem of the interaction of convection witation in an imposed shear flow. They
were able to examine a larger region of parameter space thtraway & Somerville (1987) and

identified a feedback mechanism resulting in an acceleragsh flow.

The plane layer model, as just described, is a local modéinéren the axis of rotation is allowed
to vary from the direction of gravity, it can be used to représa local region at different latitudes
of a spherical body, but this is a crude approximation. Ireortd capture some of effects of
the curvature of a spherical body, Busse (1970) introducedrmulus model. This geometry

has been used in attempts to model the zonal flow on Jupitegxtimple, Jonest al. (2003)
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used a rotating annulus model in a two-dimensional studyiacarporated the possibility of
boundary friction which allowed for the more realistic nipl¢ jet solutions to be found more
easily. Rotvig & Jones (2006) examined this annulus modekeneatensively and identified a
bursting mechanism that occurs in the convection in somescaghree-dimensional Boussinesq
simulations were carried out in a spherical shell geomegrZhristensen (2001, 2002) who was

using the zonal winds on large gas planets as his motivation.

As pointed out by many of these Boussinesq studies, they rdyeto be treated as a starting
point for the investigation of mean flows in astrophysicaliaions, since in reality there exist
large density gradients across the fluid in question and thes&inesq approximation neglects
these. This has led to the consideration of models with a cessible fluid, but because of the
particularly demanding nature of the computations invdle solving the fully compressible
eqguations, the anelastic approximation is often used (setor 2.4 for a description of the
anelastic approximation). Jones & Kuzanyan (2009) usedatfedastic approximation with a
spherical shell geometry to perform three-dimensionaluttions of the zonal flow of giant

planets. They also comment on the differences between thedBwesq and compressible cases.

In the late 20th century, an anelastic code was developedideron parallel architecture to
greatly help with large three-dimensional simulationse €hde is based upon spherical harmonic
decomposition and is therefore given the name AnelastieSgi Harmonic (ASH) code, see
Cluneet al. (1999). The code has since been used to perform a large nwhisénulations
of astrophysical flows. For example, Elliait al. (2000) and Brun & Toomre (2002) used the
code to simulate differential rotation and meridional giation in the Sun. The early simulations
using the ASH code did not include the effects of a magnetld,figut later, such effects have
been included in simulations of the anelastic magnetoldydramic (MHD) equations. These
have been used to study stellar convection and dynamosxdonpe, Browning (2008) studied
fully convective stars, Brumt al. (2005a) studied dynamos in A-type stars and Bratral.
(2007), Brownet al. (2011) examined dynamos in rapidly rotating suns and youhar $ype

stars respectively.

Even though fully compressible simulations are extremagnjgutationally demanding, there
have been some three-dimensional simulations of fully gesgible convection. These include
Brummell et al. (1996), Brummellet al. (1998) and Chan (2001) who are concerned with
differential rotation in fully convective, plane layer mald. In this thesis we will only investigate

Boussinesq and anelastic models.
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Figure 1.8: Hathaway model. A schematic of the model used ath&ayet al. (1980). It
consists of a plane layer taken at a latitgden a spherical body. As a result the rotation vector is
oblique to gravity and is given b§2 = (0, 2 cos ¢, 2sin ¢). z is directed upwardsy is directed

northwards and: (into the page) is directed eastwards.

1.5 Hathaway model

The tilted f-plane geometry, as briefly discussed in the iptevsection, is a plane layer where
the rotation vector is oblique to gravity. Hathawetyal. (1979, 1980) utilised a tilted plane layer
model for studying the onset of convection when both a va@rémd a horizontal temperature
gradient are imposed. We describe their system as it is stk astarting point of our study and
the tilted f-plane will be the geometry we use for the modeissidered throughout this thesis.
The model of Hathawagt al. (1980) consists of a local plane layer of fluid rotating abamutxis
that is oblique to gravity, used to represent differentdates on a spherical body (see figure 1.8).
Gravity is in the vertical direction and the rotation veci®rat an anglep from the horizontal.

z is measured upwardg, is measured northwards andis measured eastwards. The rotation
vector is then given bf? = Q(0, cos ¢, sin ¢). A temperature gradient is imposed in both the
vertical (z) and horizontal §) directions. Hathawagt al. (1980) enforce a fixed temperature, no
slip boundary condition on the top and bottom boundariess fitodel will form the basis of our
study, however we will adapt and extend the model to examiffiereht physical situations. A

mathematical description of the model we use is derivedemxt chapter.
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1.6 Thesis outline

Having described the motivation for studying convectioiveh mean flows and given an
overview of existing models for such a study, our objectivda extend the work of others to
investigate the effects of a horizontal temperature gradimagnetic field and compressibility on

mean flows driven by convection. To this end, this thesisgaised in the following way.

In Chapter 2, we introduce our model, which is an extensiothefmodel of Hathawagt al.
(1980), as described in section 1.5. We then present a terivaf the governing equations for

our system, and cast them into different forms for use irr lelbapters.

Chapters 3 and 4 lay important foundations for a nonlinaatysby considering the linear theory.

Chapter 3 extends the work of Hathawetyal. (1980) to more physically relevant regimes and
to incorporate a horizontal magnetic field. Chapter 4 inicas$ an oblique rotation vector into a
plane layer model of stratified convection, where previowuslets have only considered vertical

rotation.

Further groundwork for a nonlinear study is carried out ina@ter 5, where a detailed
description of the numerical methods used to solve the futlylinear equations is given. The
construction of an efficient, pseudospectral Fourier-@bbebv code is first described for the
purely hydrodynamic system. The chapter then finishes blamipg how extensions to include

the effects of a magnetic field and stratification are impleiee.

With the foundations in place, Chapters 6-8 are devoted tmlinear study of convection, with a
focus on establishing the behaviour of mean flows in a humbdéifierent systems. Chapter
6 investigates the effect of a horizontal temperature gradiChapter 7 examines the effect
of imposing a background density stratification on the flaiger and Chapter 8 considers the

inhibition of mean flow generation by a magnetic field.

To conclude the thesis, Chapter 9 summarises the main sesiliicusses applications and

limitations of the work presented, before indicating hoe tork might be extended.
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Chapter 2

Derivation of governing equations

The models used to study many of the phenomena described apt&€hl make different
assumptions depending on their motivation, and therethiee gquations used to describe them
take different forms, but the majority have their originstliee fluid and magnetohydrodynamic
(MHD) equations. There are a number of textbooks that giveraprehensive introduction to
these equations, e.g., Chandrasekhar (1961), Batch@g®)2Davidson (2001). In this chapter,
we introduce the model we use to study convection, and dém&equations governing such a
model. We also manipulate the equations into a number adréifit forms that we will utilise in
later chapters. Furthermore, we discuss some of the appatixins that go into the models and

their physical relevance.

2.1 Fluid and MHD equations

To begin our study, we require the equations governing thgnetahydrodynamic flow of an
electrically conducting, viscous fluid with varying degsénd temperature and the associated
magnetic field. We shall denote hy(x,t) the fluid density, byu(x,t) = (u,v,w) the fluid
velocity, byT'(x, t) the fluid temperature and B3 (x, t) = (B;, B2, B3) the magnetic field at a

positionx and timet.

2.1.1 Continuity equation

The first equation we shall be concerned with is the congmeguation, this is a statement of
conservation of mass and is given by

ap

L1V (pw) =0, (2.1.9)
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2.1.2 Momentum equation

The second equation is the momentum equation (also called\#vier-Stokes equation or

equation of motion) and is given in an inertial frame by

0
p<8—?+(u-V)u> =—-VP+F+V.(ur), (2.1.2)
wherer is the viscous stress tensor given by
aui 8uj 2
= — 2V - udyj, 2.1.3
Tij (%cj + 8£CZ 3V v J ( )

P is the isotropic pressure andis the dynamic viscosity. We have assumed that the fluid is
Newtonian and so the stress is proportional to the rate aifstf the fluid.F is the external force

acting on the fluid.

There are two external forces that are of importance in ti@sis:

1. The buoyancy force due to gravity, given iy = p(0,0, —g), whereg is the acceleration

due to gravity.

2. The Lorentz force due to the magnetic field, givenjby B, wherej = (j1,jo2,j3) =

i(v x B) is the (non-relativistic) current and, is the permeability of free space.

In addition, as we are interested in rotating fluids, we haveonsider the Coriolis effect which
results in a modification to the governing equations. Thedlierforce is a pseudo-force that
results from the acceleration of a non-inertial referemaent; it is given by2p€2 x u, where{2

is the angular velocity vector.

With these external forces and the Coriolis effect considethe momentum equation (2.1.2) in

a rotating frame becomes

0 1
p <8_1; + (u-V)u) = —Vp—pgé, —2p2 x u+ M—(V xB)xB+V-(ur), (2.1.4)
0

wherep = P — %|Q x z|? is a modified pressure to account for the centrifugal acatiter which

can be written-1V (|2 x z|?).

2.1.3 Temperature equation

The third governing equation results from conservationnefrgy and leads to a relevant equation

for heat conduction (see e.g., Hurlbettal. (1996))

p%(ch) +p(u-V)(e,T) = kV?*T —pV-u+ &+ T, (2.1.5)
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where ® represents viscous heating and is givendhy = %(g;‘; + 3Z~j)2 — 2,(V - u)? and

YT = Mio(v x B)? represents ohmic heating, withbeing the magnetic diffusivityz, represents

the specific heat at constant volume anid the thermal conductivity.

2.1.4 Induction equation

Our final equation is an evolution equation for the magnettdfiit can be obtained in the
following way: Ohm'’s law, for a moving conductor, gives usithhe electric fieldE, is related
to the magnetic field by

J

E=>=—-uxB
g

1

whereo is the conductivity of the fluid. Note, we have made the MHDragpnation which
assumes the above form for Ohm'’s law and that all speeds arechativistic. Equation (2.1.6),

when combined with Faraday’s law, which is given by

0B

E=—- 2.1.7
v x 5 (21.7)
gives
B
aa_t =V x (ux B) + V2B, (2.1.8)
where we have set = uTlo to be constant and used the vector idenfit (V x B) = —V?B,

which relies on the fact the magnetic field is solenoidal- B = 0). Equation (2.1.8) is known

as the induction equation.

2.1.5 Equation of state

An equation of state is required to complete the descrigfaie fluid system. In general it is a
thermodynamic equation relating state variables of thd fllg., an equation relating the density

of a fluid to its pressure and temperature, i.e.,

p=pT). (2.1.9)

The equation of state we use depends on the approximatiorssevmaking, we will give the

appropriate equations of state for each model as they acalinted.
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2.2 Model setup

In this thesis, we will use a local plane layer model, simitathe one used by Hathaway al.
(1980), which was described in section 1.5. However, we taaag extend the model to suit a
number of different physical situations. Our model cossigta plane layer of fluid rotating about
an axis that is oblique to gravity, see figure 2.1. The layarlminterpreted as a local model for
a layer taken at a latitud¢ on a spherical body (cf. figure 1.8), so that the rotationareistgiven
by

Q = Q(0, cos ¢, sin ¢). (2.2.10)

Thex-direction is measure eastwards, thdirection is measured northwards and thdirection

is measured upwards. Gravity points vertically downward® drive convection, a vertical
temperature gradient is imposed, where the lower boundanaintained at a higher temperature
than the upper boundary. In addition, we impose a horizdaataperature gradient representative
of latitudinal temperature gradients that exist in, forrepée, stars (Hathawagt al. (1980)).
Our model described so far, is exactly as the one used in Wathet al. (1980) and described
in section 1.5. However, additional to the Hathaway model, will also impose a horizontal
magnetic fieldBg in the initial configuration (see figure 2.1), since horizbrftelds are more
relevant to stars than vertical fields, see e.g., Galloway &s%/(1981). In further contrast to

Hathawayet al. (1980), we impose stress free conditions on the top andrditmindaries.

Q z
'
g
" ¢
colder cold
Bo
hot hotter

Figure 2.1: Configuration: Our model consists of a rotatifene layer rotating with velocity
Q = (0,Qcos ¢, 2sin¢). z is directed eastwards, is directed northwards andis directed
upwards. A horizontal magnetic field is imposed and a tentperagradient in both the and z

directions is imposed.

The equations governing the behaviour of our model wereribest in section 2.1. These
equations give a full description for a compressible fluidairrotating frame, but they are

computationally demanding to solve. To simplify things,wi# consider two approximations: (i)
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the Boussinesq approximation and (ii) the anelastic appraton. We begin with the Boussinesq

approximation in the next section, before describing tredaatic approximation in section 2.4.

2.3 Boussinesq approximation

As was first recognised by Boussinesq (1903), there aretisiisawhere the full governing
equations, described in section 2.1, can be simplified. dg&pi& Veronis (1960) and
Chandrasekhar (1961) give details of the so-called Boasgimpproximation, but the two key
assumptions are that (i) density is linearly related to terafure so that fluctuations in the density
result from thermal (and not pressure) effects and (ii) thatdepth of the motions is less than
the scale heights of the system. These approximations dteswited to a liquid. As a result
of the Boussinesq approximation, we can neglect densitiugliEtions in all terms except the
buoyancy term and so sound waves are filtered from the sySthmfluctuations are required to
remain in the buoyancy term as the acceleration due to gravidrge compared to characteristic

accelerations. We denote the constant densitygby

Applying the Boussinesq approximation to equations (2.4nt (2.1.4) gives

V-u=0, (2.3.11)

1 1
du +(u-V)u=-——Vp-— ﬁgéz 20 xu+ —(VxB)xB+vV?u, (2.3.12)
ot Po Po PoKO

where we have assumedto be constant and defined = pﬁo to be the kinematic viscosity.
We have also used the fact tHat- (ur) = uV -7 = p(V2u+ 1V(V-u) = pV?2u for an

incompressible fluid.
In the temperature equation (2.1.5), we ignore the term#tieg from viscous and ohmic heating,
and takec, andk to be constant to give

%—f + (u- V)T = kV?T, (2.3.13)

wherex = poi% is the thermal diffusivity. The induction equation (2.1r8jnains as

88_]:’ =V x (ux B) +1V?B, (2.3.14)

with the solenoidal constraint

V-B=0 (2.3.15)

still holding true.
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An appropriate equation of state for the Boussinesq systdes density to temperature and is

given by (see e.g., Chandrasekhar (1961))
p=po(l—&(T —Tp)), (2.3.16)

wherea is the coefficient of thermal expansion ahglis the temperature at whigh= pq.

2.3.1 Boundary conditions

At the top ¢ = d) and bottom £ = 0) boundaries, we enforce no normal flow. This requires
u-n=w=0 onz=0,d. (2.3.17)

For stress free boundaries, we enforce that the tangetigssmust vanish on the boundaries.

Equation (2.1.3) suggests that this requires

ou Ow
T13 = % + % =0, (2318)
ov  Ow
A T 2.3.1
To3 6z+8y 0 (2.3.19)

onz=0andz =d.

Sincew = 0 on the boundaries for alt andy, we have2 = 2% — ( on the boundaries and so

Y =
equations (2.3.18) and (2.3.19) reduce to

ou Ov
5. =3, =0 onz= 0,d. (2.3.20)

These conditions allow us to find an additional conditionuorfFirst, calculate

0 0%u 0%v 9w
_ . f— pr— 2. -21
azv U7 5102 * Oy0z * 022 0 (2.3.21)
then, using (2.3.20), we obtain
Pu _ o onz=0,d (2.3.22)
522 = z=0,d. 3.

A condition on the vorticity can be obtained if we consideniertical component given by =

Qv g—;j, differentiatingy with respect to: gives

op 0%v 0%u

0z  0xdz Oydz

=0 onz=0,d, (2.3.23)

using (2.3.20).
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Since the convection is driven by a temperature differeA¢g, across the layer we have

T(y) =To(y) + AT onz =0 (2.3.24)
T(y) = To(y) onz =d. (2.3.25)
Note, in this setup] is allowed to vary withy on the boundaries.

The magnetic boundary conditions are obtained by assurharg is no normal magnetic field at

the boundary, i.e.,

B-an=B3=0 onz=0,d, (2.3.26)
and by taking

9B = 0B, =0 onz=0,d. (2.3.27)

0z 0z

These conditions allow us to find an additional condition#yn First, we calculate

0 0?°B,  0°By 9°Bs
- Vv-B= = 2.3.2
8zv 0x0z * Oyoz + 022 0 (2.3.28)
then, using (2.3.27), we obtain
0°Bs
.2 =0 onz= 0, d. (2329)
0z

Roberts & Jones (2000) call these magnetic boundary conditillustrative, but they are also

known as perfectly conducting boundary conditions.

2.3.2 Basic state

We now seek a basic state to the system. A basic state is alylissimple solution to the
governing equations of the system. Perturbations can teeultied to this state to investigate the

stability of the system.

Throughout this thesis, we assume a time-independent,eadt basic state and whenever a

magnetic field is present, we assume a horizontal basicfidayiven by
Bps = By(cos o, sina, 0), (2.3.30)

whereq is the angle describing the orientation of the field.

We assume the basic state temperature varigstmaccount for latitudinal temperature gradients
(see section 2.2), then we must have a balance between tbsumregradient, buoyancy and

Coriolis terms in the momentum equation, (2.3.12), whicd&to a thermal wind.
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We wish for the flow induced by the horizontal temperaturelignat to be in the east-west, of
direction. We therefore choose a simple, steady basic #tateof the formups = (U(z),0,0),

then, from equation (2.3.13), we haV&Tz5 = 0. Therefore, we can assume

orT or
TBS = TQ + =—z+ =, (2331)
0z oy

where %—f gives our vertical temperature gradient a%@ gives our horizontal temperature
gradient. With these assumptions, thecomponent of the curl of the momentum equation

(equation (2.3.12)) in the basic state, i.e., the thermabtveiquation, becomes
d T
2—UQsin¢+&a—g =0. (2.3.32)
dz oy

Hence, the thermal wind shear is given by

~ 0T

au 5y 9
= 2.3.
dz 20 sin ¢’ (2.333)
which, upon integrating, leads to a basic state zonal flowrgby
~ T
Y d
U(z) = 50sing (z 5 ) (2.3.34)

where we have chosen the constant of integration such tadtaiv is antisymmetric about the

; _d
mid-plane,z = 3.

We can then use the basic state velocity and temperature daHen basic state density and

pressure. Equation (2.3.16) with equation (2.3.31) gives

_ (0T oT
PBS = Po <1 —a (%Z + — >> . (2.3.35)

The z-component of the momentum equation (2.3.12) in the baate & given by

dpps
dz

= —ppsg + 2poU(2)Q cos ¢. (2.3.36)

Substituting forppg from equation (2.3.35), fob/ from equation (2.3.34) and integrating leads

to the following expression fQips

az 8T> _aT {cosqbz
— pPog

= —_— 1——— —_— p—
PBS = Po p092< 5 5, 5y |5mo2

(z—d)—zy|, (2.3.37)
wherepy is a constant of integration.

Note, wheng—g is zero, i.e., there is no horizontal temperature gradiedtteence no thermal
wind, we reduce to the standard case studied in Chandras€id®il) and we have hydrostatic
balance (balance between the pressure gradient and bydyaisn, wheng = 7, our system is

closely related to the Eady problem, see Drazin & Reid (1981)
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2.3.3 Perturbation equations

Having defined our basic state, we can introduce pertummstio this basic state. Primed
guantities will denote the perturbations, except for thegerature fluctuation which we denote

by 6. So, we let each of the variables be a sum of the basic stata pedurbation, i.e.,

u=ugs+u, p=pps+p, p=ps+r, (2.3.38)
T=Tgs+0, B=Bps+B. (2.3.39)

We note that the perturbations may contain both a mean @mig#ty averaged) part and a
fluctuation to that mean. This terminology will be importéater when we consider mean flows

(Chapters 6, 7 and 8).

At this stage, we have made no assumption about the size gqfdatierbations relative to the
basic state. On substituting these expansions into thetiegag2.3.11)-(2.3.16) we obtain the
following set of perturbation equations. Note we have chedehe basic state terms and some

terms are zero because of their lack of time or spatial desrered

au/ !/ a !/ / a !/ / a / 1 / pl ~
E—F(U—i—u )%u +v B_yu +w a(UBS +u') = —%Vp — %gez
1
—20 xu + —[(V x B) x (Bgg + B')] + vV?u/, (2.3.40)
HopPo
V.u =0, (2.3.41)
00 N0 0 0
— —0+v'—(Tps + 6 '—(Tps +0) = kV?0 2.3.42
8t+(U+u)8x +U8y( BS + )+w8z( Bs +0) =KV, ( )
p = —podd, (2.3.43)
8B/ !/ !/ !/ 2/
o =V x[(Ups +u') x B'+ (0 x Bps)] + nV’B (2.3.44)
V.-B =0. (2.3.45)

We can eliminatey’ by using equation (2.3.43) in equation (2.3.40). These ta@pusconstitute

the fully nonlinear equations describing rotating magoetwection in a horizontal field.

The impenetrable, stress free boundary conditions for éhecity, given by equations (2.3.17),

(2.3.20) and (2.3.22) translate to the following boundamditions on the perturbations

o o o’
/ pr— _— - — = _— = pr— d' 2.3.46
w B, 9 0, 5.2 0, onz=0, ( )

The condition on the vertical component of the vorticity,3(23), becomes

o _

0, onz=0,d, (2.3.47)
0z
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wherey’ = %—ZC’ - %—Z/. Throughout this thesis, the boundaries will be held at aifteenperature
and so any perturbation to the temperature basic state nangshvon the boundaries. The

boundary conditions on the temperature perturbation amretbre
=0 onz=0,d. (2.3.48)

Finally, the perfectly conducting magnetic boundary ctinds given by (2.3.26), (2.3.27) and
(2.3.29), translate to the following conditions on the pdyations

0B, 0B} 0’ B
B/ — 0 1 — 2 — 0 3 —
3 T 0z 0z T 022

0, onz=0,d. (2.3.49)

2.3.4 Nondimensionalisation

It is useful to put the equations into a dimensionless form.dd this we need to choose some
typical values over which to scale the variables. For thgtlescale, we choosg the depth of the
layer, meaning that the layer extends frem- 0 to z = 1 in dimensionless terms. For the time
scale we choose the thermal diffusion tin¥§, this is the time scale over which a temperature
perturbation is diffused, over a length scdleThe pressure will scale with;~ and temperature

with \%—Z\d. We takeB, to be the size of the magnetic field. We therefore let

d’ . orT . -~ .
x=dz, t=—i, p=L2C5 w=Z2a, 6=|%|d, B =BB. (2350
K d 0z

ol
d
With this, equations (2.3.40)-(2.3.45) become
% U+ a)% + @%a + w%(UBS + 1) = —Pr¥p+ RaPrée,
— Ta2PrQl x i+ QCPr[(V x B) x (Bgg + B)] + Prv2i, (2.3.51)

V-a=0, (2.3.52)
90 _00 0 9 o eon
5 U+a)o- + vﬁ_g(TBS +0) + 0o (Tps +0) = V70, (2.3.53)
9B - o -
E =V x[(Ups+1u) x B+ (axBpgg)]+(V°B, (2.3.54)
V-B=0. (2.3.55)

These are the dimensionless perturbation equations fosdwesq convection. They will be a

starting point for a number of investigations in the comihguters.

We have introduced the following dimensionless numbers

d oT 40244 B242
Ra — gaﬂlaz . Pr— g Ta==7- Q= Mogom, ¢ == (2.3.56)

=3
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Rais the Rayleigh number and is a measure of the strength obthesctive driving of the system.
It is the ratio of the buoyancy force to diffusive force3r is the fluid Prandtl number and is the
ratio of the kinematic viscosity to thermal diffusivity -ig a property of the fluid. FoPr > 1,
momentum will diffuse faster than heat and for < 1, momentum will diffuse slower than heat.
Ta is the Taylor number and is the ratio of the Coriolis to viscforces. Increasin@a increases
the effect of rotation on the systen@) is the Chandrasekhar number and is a measure of the
strength of the magnetic field through the ratio of the Lardatce to viscous forces. Increasing
Q increases the effect of the magnetic field on the systéis.the ratio of magnetic diffusivity
to thermal diffusivity and is again a property of the fluid.r€o> 1, magnetic field will diffuse
faster than heat and fgr< 1, magnetic field will diffuse slower than heat. We also noteehibat
the commonly used magnetic Prandtl number, can be formed fronPr and( in the following
way

=== (2.3.57)

2.3.5 Nondimensionalisation of the basic state

The basic state we defined in section 2.3.2 was dimensiormal. tNat we have introduced some
dimensionless parameters to the governing equations5{3-8.3.55), it makes sense to express

our basic state in terms of these parameters. The basidataperature (2.3.31) becomes

Tps =To+ To2 + Ty (2.3.58)
oT oT

whereT, = ‘5,% andT, = ‘5,% This results inl, = 1 for stable stratifications anfl, = —1
Oz Oz

for unstable stratifications. Throughout this thesis wes@#r convectively unstable basic state
stratifications and so we take = —1. T;, will be kept as a variable used to characterise the size

of the thermal wind.

The only nonzero component of the basic state flow isatttomponent given by (2.3.34), in

dimensionless terms this becomes

- RaT, 1
U=-—"%v (5 - —) : (2.3.59)
Ta? sin ¢ 2

The magnetic field basic state (2.3.30) simply reduces to
Bpg = (cos a, sin o, 0). (2.3.60)

As the pressure and density basic states no longer appder governing equations we shall not

express them in dimensionless terms.
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2.4 Anelastic approximation

The Boussinesq equations, derived in the section 2.3, doailoww for the effects of
compressibility and stratification of the fluid, but in manlyypical situations it is important to
include such effects. For example, the interiors of stagscaaracterised by many density scale
heights and it is thought that this density stratificatioayglan important role in governing the
dynamics. However, using the fully compressible equatiem®mputationally intensive and so,
as an alternative, the anelastic approximation can be osgpture the effects of compressibility.

This, like in the Boussinesq system, is an approximationsanits validity must be kept in mind.

The anelastic approximation filters the sound waves fromsifstem (as did the Boussinesq
approximation). It is the sound waves that make the fully pmasible equations so
computationally expensive to deal with. But, unlike the Bsinesq approximation, we no longer

need to assume that the typical layer depth is small compeitbdhe pressure scale height.

The anelastic equations were first derived by Batchelor 3195 the context of the Earth’s
atmosphere. Ogura & Phillips (1962) later performed a mormél scale analysis and Gough
(1969) extended the approximation to allow for time-degenidoasic states, though we shall
focus solely on the time-independent case in this thesig affelastic approximation has since
been used to study a number of problems in geophysical armphgsical fluids. For example,
convection in A-type stars (Toomet al. (1976)), the geodynamo (Glatzmaier & Roberts (1996)),
solar convection (Miescht al. (2000)), solar differential rotation (Brun & Toomre (20p2he
solar dynamo (Bruet al.(2005b), Browninget al. (2006)) and rapidly rotating stars (Browenhal.
(2008)). Some of these examples involve the presence of aetiadield, but in this thesis we
shall restrict ourselves to only applying the anelasticraximation to the purely hydrodynamic

equations, i.eB = 0.

2.4.1 Governing equations

We begin with the fully compressible equations of sectidhghd derive the anelastic equations
by making suitable assumptions, as discussed above. Weprseedure similar to that used by
Lantz & Fan (1999). A detailed description of the derivatisralso given in Roxburgh (2007)

and Berkoff (2011) for non-rotating magnetoconvection.

As detailed in section 2.1, the governing equations foyfodmpressible, rotating, hydrodynamic

convection are:



Chapter 2. Derivation of governing equations 29

the momentum equation

p [%—? + (u- V)u} = —Vp—pgé, — 202 x u+V - (ur), (2.4.61)
where
aui 8uj 2
= ~ 2V ugy 2.4.62
Tij oz, + s 3V ud;; (2.4.62)

is the viscous stress tensor and we take a tilted rotatiolovetthe form
Q = Q(0, cos ¢, sin ¢), (2.4.63)

as shown in figure 2.1. The continuity equation is given by

% +V - (pu) =0, (2.4.64)

and instead of a temperature formulation (such as equafidn5]) we will use an entropy
formulation of the energy equation given by

Os

kr 72
9 +(u-V)s| =V.|—=TVs| + ro (2.4.65)

pT [
Cp
where we take the turbulent thermal conductivity = c,px = constant. Heres is the entropy,

it is related to other thermodynamic variables by the follmpexpression

s=c,ln <%> : (2.4.66)
0

where~y = E—” is the ratio of the specific heat capacity at constant presturthe specific

heat capacity at constant volume. In equation (2.4.65), awe lassumed the turbulent thermal
conductivity to be much larger than the molecular thermaldetivity, and so (2.4.65) contains
an entropy diffusion term but not a thermal diffusion terme Wéte that both terms are retained

in some models, see e.g., Braginsky & Roberts (1995).

Compared with the equation of state used in the Boussinasatiegs, (2.3.16), we consider a

more general equation of state, it is also known as the ideslayv and is given by
p=RpT, (2.4.67)

whereR = ¢, — ¢, is the gas constant.

2.4.2 Preliminary scalings

To derive the equations of the anelastic approximation, xpeess all variables as the sum of a

reference state variable and a perturbation to that referstate, i.e.,

fla,y,z,t) = f(2) + f*(z,y, 2, 1), (2.4.68)
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where an overbar denotes a reference state quantity and & staturbation quantity. Note, as
in the Boussinesq case (section 2.3.3), the perturbatiantijy may contain both a horizontally

averaged, mean part and a fluctuation to that mean.

We use a reference atmosphere that depends on the vertizdiratez only. The atmosphere is

in hydrostatic equilibrium and so we have

d_p = —pg. (2.4.69)
dz

The reference variables are also related by

p=RpT, (2.4.70)

5=c,ln (%) . (2.4.71)
p

In addition, we assume a reference atmosphere that is vesg tb being adiabatic and therefore

we introduce a small parametey,that measures the departure from adiabaticity of theenter

state, i.e.,
InT InT T 5
e= L (oL OWmTh N LAl g} L (ds) (2.4.72)
H, \0lnp 0lnp |y T, z),. ¢ cp \dz /,
wherel is a typical length scale of the systefd, = g% =— dﬁ‘jﬁ is the pressure scale height, the

subscriptyq indicates the value for an adiabatic atmosphere and a $pbscienotes a reference
value taken at = 0. ¢ will also be a measure of the relative magnitude of the pestizns and
we assume

|

T*

p p T
so that the fluctuations are small compared to the referetate. sNote also that the relative
pressure, density and temperature fluctuations are of time sader, this is different to the

assumption made in the Boussinesq approximation.

To begin the derivation of the anelastic equations, we usknginary scalings, denoted by the

subscript;. Let

p = ps(p+ €p”), T =TT + €T™), p=ps(p+ep), (2.4.74)

u=usu", t = tst", g = gs, (2.4.75)
1

V= EV*, Cp = Cps, = s, (2.4.76)

Q= 0.0 —— V=, (2.4.77)

K = Kg. (2.4.78)
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Note that these scalings may dependeoVe wish to develop scalings that are independent of
e. The reference state is nearly adiabatic and so we must hatéhe reference and fluctuating
entropy enter at the same order and heneeconst+ s,c, (5 + s*), but the constant term does
not appear in any equations and so we will neglect it from now 8ince any departure from
the reference state is small we can assume hydrostaticdeal&s in Gough (1969), we take the
pressure scale height = H, to be our characteristic length scale. The characteristiacity v

is obtained from equating the kinetic energy of a bubble efayal the work done by the buoyancy
force over the characteristic length. This gives (ignotting effects of pressure fluctuations and

viscous stresses)

S

u? = gls% ~ gH,e. (2.4.79)

It follows that the characteristic time is
l H\?
2
ty=— = (—) . (2.4.80)
Us €g
So that the required terms enter at leading order we reguire p,. andT, = T,. Gravity is
assumed constant across the layer and since at leadingveed®iust have hydrostatic balance,
it follows thatgs, = g¢,.. The pressure scaling should be consistent \idth= g% and therefore
ps = grH,p,. The gas constarR does not fluctuate and 89 ; = ¢, ;.
To see how the other terms scale, we substitute our prelignisealings into the governing

equations, then, from equation (2.4.61), after dividingtigh byp, g, we have

*

* u * * * X [ — * - X\ A
e(ptep’) |+ (- VHu'| = =V (p+ep’) = (p+ep7)&,
1 1
2QS(H7"97"6)§ _ (ngr€)§
— 2 (p+ep )V xuF + -V (uT).
. (p+ep”) oy, H2 (1sT™)
(2.4.81)

At O(1) we must satisfy hydrostatic balance and all other terms enist aiO(¢). The left hand
side clearly satisfies this ordering. For the third term anright-hand side to b@(e)we require
Qs = e%Qr. Similarly, the last term on the right hand side requirgs= e%yr. Then, since
u = pv, it follows thaty, = e%ur. Introducing the preliminary scalings into the energy eiqua

(2.4.65) gives

1
€gr\2 - - [0+ s
Prlrsscpr (%) (p+ep™) (T + €T™) %

T

+ (u* - V*)(s+s")

_ Hoe %
V(T + €TV (5 + %)) 4+ pyes 2T

T

. kT,sTr SsCp,r
- 2
cprHE

(2.4.82)



Chapter 2. Derivation of governing equations 32

For all the terms to balance él(eg) we needss; = e andkr s = e%km. This latter scaling
means that, sinckr = pc,x, we must haves, = e%mr. We have now developed scalings which

are independent af The next section uses these to derive the full anelastiatims.

2.4.3 Anelastic scalings

With knowledge of the scalings from the previous section axetthe following anelastic scalings

which are independent ef

p = prg-H, (P + €p*), T =T,(T + ¢T™), p=pr(p+ep"), (2.4.83)
.
u = (g,Hye)?u*, = <£> ’ t* 9= 9 (2.4.84)
€gr
V= HLTV*, Cp = Cpr, W= e%,ur, (2.4.85)
Q=020 kr = e2kr, V= ey, (2.4.86)
K= E%Iir, s =€cp,(5+s%). (2.4.87)

Now, substituting these scalings into equation (2.4.618gi

— * au* * * * rngr * [ — * — *\ A
eprgr(p+ep’) | 5o+ (0 VU = —pTV (P +ep") — pror(p+ €ep™)éy
1
1 —= * * * 697«2 * *
—2p,Qe(grHy )2 (p+ €p") Q" x u* + =5 V™ (u,77).
H?
(2.4.88)
Then, by dividing byp,.g,., we obtain
— * 8u* * * * * [ — * — *\ A
c(ptep”) | + (- VHu'| = =V (p+ep’) = (p+ep”)&,
1 1
297‘ TH?“ 2 — * * * 7“2 * *
gr prgrH7
(2.4.89)
At leading orderO(e), this yields
1
8 * 2£27"H’7"E — * * 1 * *
p 81151* + (u* - VHu*| = —V*p* — p*e, — P x 0t + ——5 V" ()
97 prgri H7
(2.4.90)

Introducing the anelastic scalings (2.4.83)-(2.4.87)h® traditional nondimensional numbers

(defined in 2.3.4) gives the following:

H* (ds H3 H3
Ra=-97r <ds> = 9 _ 9% (2.4.91)

5 )
cpkv \ dz KV Ky Uy
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_ 40%2H? _ 402}

Ta (2.4.92)

and

pr=2=" (2.4.93)
K

Equation (2.4.90) can then be written as

1 1
* TaPr\?2 Pr\z

(2.4.94)

where we have used, = p,pv,., takenv to be constant and is given byg;; = pr; =

p (gfgj + g—x — %V . uél-j). As we did for the momentum equation, we can use the anelastic
scalings (2.4.83)-(2.4.87) with the continuity equatidveg by equation (2.4.64). This gives

1 1
€9r 2 a(ﬁ + Gp*) + pr(ngr€)2
Pri\H, ot H,

V*((p+ep")u”) =0, (2.4.95)

1
which at leading order, after dividing by. (19{—) ? yields
V* - (pu*) = 0. (2.4.96)

Note that this is the same form as the incompressibility ¢@mmin Boussinesq convection (cf.

equation (2.3.11)) but now it isu that is divergence free and not just

Next, on substitution of the anelastic scalings (2.4.23}-87), the energy equation (2.4.65)

becomes

Njw

prTGC,re

(2—) Y (4 ep")(T + eT) 7@(55*5*) + (U V) (5 + 5%)

3 2
kTrTGC r€2 - _ 3gr T
=2 V*[(T T\WV* * — . 2.4.97
CRCT T ) e T @497)
1
Dividing by 272097 gives
2
5 * T * 8 ‘§+ 5* * *\ (= *
eg(ﬁ+ep)(T+eT) %%—(u V) (5+sY)
— 3 L L V(T + )V (54 5] + me%%g . (2.4.98)
T PrTGC,r.gTQ PrTGC,rHTQ
which, atO(e%), gives
k : ’
_ * _ *
pT | S + (0 VG +87) | = s VIV 5+ 57)] + — 8 T
Hp Prcp,rgﬁ prTGC,rHTQ

(2.4.99)
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Alternatively, after introducing combinations of the nimeénsional numbers defined in equations

(2.4.91) - (2.4.93), this can be written as

S

*

- [0s 1 — grH,. ( Pr INS
—T * . * = * — * T X (= * -
P< e T VIE+s )] (RaPr) VIV s+ + Trcpr (Ra) p 2

(2.4.100)
The equation of state (2.4.67) becomes
9rorHe (P + €p™) = Rp, T, (p + €p™) (T + €T%) (2.4.101)
but, from the zero order equation we have- RE-pT and so
grHyprep™ = RT,pe(peT™ + ep*T + 2 p™T™)
RT, -
=p" = = (pT* + p*T + ep*T™) (2.4.102)
grH,
which at leading order, usingz: = ﬁ%, gives
P _- ,r (2.4.103)
p T p

Finally, we consider the thermodynamic relation= ¢, In (p%). Substituting in the anelastic

scalings (2.4.83)-(2.4.87) gives
ecpr(5+57) = ¢y In[prgr Hy(p + ep™)] — veu Infpr(p + €p™)]. (2.4.104)
Then, from the zero order equation we have
€cprs = ¢y Inprgr Hyp — ey In prp, (2.4.105)
and so we can write
€cprs” =cyln (1 + e%*> —¢pln <1 + ep—ﬁ*> . (2.4.106)

But, from (2.4.73),”7; and % are small, allowing us to expand the logarithmic terms adofay

series, leaving, at order

st = ¢y _* cpp—_*
p
IR (2.4.107)
P P

Thus, we have formulated the nonlinear anelastic equatimnsrotating hydrodynamic

convection, they are summarised below

1 1
Ou R TaPr\z _ Pr\?2
[E +(u-V) ] = —Vp — pé, — < T > P X u+ (%) V-g, (2.4.108)
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V- (pu) =0, (2.4.109)

T §+(u-V)(§+s)} :( ! >;V[TV(§+5)]+ 9o, (ﬂfig—z (2.4.110)

ot RaPr Trcpr \Ra) p2’
T
P_- .2 (2.4.111)
p T p
s= 1P _ P (2.4.112)
Yp P

Note, for clarity, we have removed the *'s from the perturbbatguantities.

2.4.4 Lantz formulation

We can reduce the number of thermodynamic variables in thatems by employing a technique
first used by Lantz (1992), and independently by Braginskydbh&ts (1995), (see also Lantz &
Fan (1999)). We first divide the momentum equation (2.4.198) to give

1 1
TaPr\? Pr\? 1
[a—u+(u-V)u]:—@—3éz—< ¢ T>QQXu—|—<—T>2—V-§. (2.4.113)
ot PP a) p

Now, in particular, consider the first two terms on the rightid side which can be written as

1 d (1
S v <Z—Z> + 58, — {— - (tﬂ Pe, (2.4.114)
p Y “dz\p)|p
Then, if we assume a polytropic atmosphere, we have ﬁmTH, wherem is the polytropic
index. In addition, the reference atmosphere is in hydtioséguilibrium and so we can rewrite
the second term in the square brackets in (2.4.114) to give

1
v (P +3éz_[——L] Pe,. (2.4.115)
p Y m+l1]p

For an atmosphere close to adiabatic~ 1.5 and so for a perfect, monotonic gas (where-
g) the term in the square brackets is small. With this simglifan, the momentum equation

(2.4.108) becomes

1 1
ou P TaPr\2 Pr\21
o . vl e, - Q “T) v, (2411
{&t + (u V)u] Vﬁ+se ( R > ><u+<Ra> ﬁV S ( 6)

and so now we are in a position to eliminate the pressure liygakcurl and reduce the number

of thermodynamic variables.
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2.4.5 Reference state

The reference state we consider will be independent of timaddition, the reference variables

are related by

p=RpT, (2.4.117)
5=c,ln (@) (2.4.118)
p'Y
and they must satisfy the zero order governing equations they must satisfy
kr e
V. |—TVs| =0, (2.4.119)
Cp
Vp = —pgé,. (2.4.120)

The equations have a trivial, static solution that takeddhm of a polytrope, i.ep = Ap(”%)

wherem is the polytropic index andl is a constant. The hydrostatic condition then gives
1 dp
(1 + —> Apm 2 = _pg. (2.4.121)
m dz

Separating variables and integrating gives

_ —gz "
= —2 2.4.122
P (A(m 1) C) ( )
and hence
—gz m+1
p=A ———— . 2.4.12
P (A(m 1) C) (2.4.123)

From these we can establigh which is given by

- D A —gz
P _Al_ 9z , 2.4.124
Rp R (A(m+1) +C> ( )

This is the dimensional reference state.

In addition, it will be useful to have the reference state ime&hsionless form. From equation

(2.4.124), the thermal gradient is

dTl —g
_— =7 2.4.125
dz  R(m+1) ( )
which in dimensionless form gives
T, dT —g
—_—— = 2.4.126
H,dz R(m+1) ( )
or,
T - H,
@ ___ 79 Hr_ 0. (2.4.127)
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Definingd is such a way, allows us to write the reference state in difoaless form as

T = (1+6z), (2.4.128)
p=(1+062)", (2.4.129)
it A——— m 24.1

P= e = e (2.4.130)
1-— 1

=2t _—m In(1 + 6z) 4 const= —3 In(1 4 #z) + const (2.4.131)
Ye

Wherew = —5 = O(¢). Equation (2.4.131) follows from the relation (2.4.118) in

conjunction with the definition of in (2.4.72).

2.4.6 Alternative nondimensionalisation

Equations (2.4.109), (2.4.110) and (2.4.116) are dimefess governing equations for anelastic
convection. However, the typical scales over which theyehaen derived differ from those used
in the nondimensionalisation of the Boussinesq equatinrsection 2.3.4. We wish to be able
to reduce the anelastic equations to the Boussinesq egsaasily. We therefore rescale our
dimensionless anelastic equations so that they are diordass with respect to the layer depth,
d, and the thermal diffusion time scal%ﬁi. To do this, we let

1
H, - (g \2- | K2 1
V==V, t=—|(Z) 1t = 0 =T ___5 2.4.132

d o <Hr> U7 (g-H,)? N A ( )

where a tilde denotes the dimensionless quantities wiffetgo the new nondimensionalisation.
2

With these new scalings, the momentum equation (2.4.116Y, dividing byg’:ﬁ, becomes
% o) = vl 0, G G LG hh), (24139
ot TR prtir T -

which can be written as
on oo = (D . 1o e Pre
e +(@-V)a| =-V|=|+RaPrsé, —Ta2PrQd xua+ —V -, (2.4.134)

p p
where
4Q2 4 3
Ta = ’"zd R pn (2.4.135)
vy KrVp R

The continuity equation (2.4.109) keeps the same form andrbes

V- (pi) = 0. (2.4.136)
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The energy equation (2.4.110) becomes

1
ke H2 - [05 -~ B kr H2 . . 3 H22 72
T [5 +(@-V)(s+ s)] = T [TV (s + 8)] + — R
d2,gr2 Hp pGC,rgrz d? prTGC,rd ngr2
(2.4.137)

NI

which, after dividing by (gf—) gives

05 e kr, =~ —=, My Ko 72
. =2 Vv.[T - 2.4.1
pT {&j +(@-V)(5+ 3)} Firprcp,rv [TV(5+3)]+ o Trey @ 3 ( 38)
Now, § = — 2= andkTT = Kyprcp,» Which gives
05 . = . SR _ 6 &2
oT . 5 =V.|[TV(s - —. 2.4.1
p [Bt (a-V)(s+ s)] V- [TV(5+3)] Ra 2 ( 39)

With this new nondimensionalisation, the reference sgiten by (2.4.128)-(2.4.131), becomes

_ RaPr

T=1 o= (1 moop=—— (14 02)"F, 2.4.14
1— . 1—

s= T T (14 62) + const with - —g = 0(e). (2.4.141)
e Y

We note here that is increasing upwards consistent with our Boussinesq flismathis is in

contrast to many anelastic studies whetacreases downwards, see e.g., Roxburgh (2007).

Now that we have defined our reference state we can substifute our equations (2.4.134),

(2.4.136) and (2.4.139) to give the equations for the peations as

g—ltl +(u-Viu=-V <p> + RaPrsé, — Ta? Pr(Q x u) + Prv?u
Prm@ | oOu w
gu 14 2m)0 &l 2.4.142
1+92[8 T3 v —i—3(—|—m)1+92e] ( )
mbo
u=— 2.4.14
V- 11620 ( 3)
0s w 1_o 0 0s
o TV E T  TY  T arei o,
3 2 2
0 ou; Ou;  Ou; 2
- 2 7 7 ] _ - . 2
Ra(1+ 0z) ZZ:; <8xi> +; <8x]— * 8@) 3(V W
(2.4.144)

where we have removed the tildes form the perturbation basa These equations are similar to
those given in Mizerski & Tobias (2011). The key differen@réhhowever is the introduction of

a tilted rotation vectorQ2 = (0, cos ¢, sin ¢).



Chapter 2. Derivation of governing equations 39

2.4.7 Boundary conditions

For the anelastic system, the boundary conditions we ussligrgly different to the ones used
in the Boussinesq system. Instead of conditions on the teahype at the boundaries, we impose
conditions on the entropy. We will assume the entropy to bedfign the top and bottom
boundaries, so that any perturbation to the basic statemntnust vanish on the boundaries,

i.e.,

s=0 onz=0,1. (2.4.145)

As in the Boussinesq case, we assume impenetrable, steedsdundaries, and so we have

0 0
w=0, 2L-2Y_0 onz=0,1. (2.4.146)
0z 0z
But, sinceV - u # 0 in the anelastic system, the conditions (2.4.146) tragdlata different
condition onw than the one in the Boussinesq case, see equation (2.3.46)erive the new

condition, we conside{(%v -u, from equation (2.4.143) we have

0 0%u v Pw m  Ow mb?
-V u= = - 2 2.4.147
8zv U= 9 T 020y i 140z 0z - (1+ Hz)2w ( )

Then, using (2.4.146), this gives

d*w ml  Ow
__ gw —0.1. 2.4.148
022 146z 0z onz ’ ( )

The condition on the vertical component of the vorticity eens as in the Boussinesq case, i.e.,

¢ =0 onz=0,1. (2.4.149)
0z

2.4.8 Basic state

The basic state can be slightly different to the refererate sBut here we consider a static, steady

basic state in which
ups =0, pps=pps =sps=1Tps =0. (2.4.150)
Therefore, in this case, the reference state and basicastaggjuivalent. However, if for example,

we were to consider the addition of a magnetic field, then dference state would remain as

non-magnetic and the magnetic field would be introducedutiindhe basic state.
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2.5 Summary

In this chapter, we introduced the model we will use througtibis thesis (see section 2.1). The
model is based upon the one used by Hathagtagl. (1980), as described in section 1.5, i.e., we
consider a plane layer of fluid rotating about an axis thatiijae to gravity. The basic state
involves the imposition of both a horizontal and a vertieahperature gradient so that the basic
state velocity contains a zonal thermal wind with vertideéa. However, extra to the Hathaway
model, we impose a horizontal basic state magnetic field amdeglace the no-slip boundary

conditions of Hathawagt al. (1980), with stress free boundary conditions.

We presented the fully compressible fluid and MHD equatioascdbing our system, in a
rotating frame, but, as these equations are computatjodalinanding to solve, we discussed

two approximations which we invoke in subsequent chapters.

1. The Boussinesq approximationwas introduced in section 2.3 and allows density
variations to be neglected in all terms except the buoyasiey.t We derived perturbation
equations under this approximation and recast them int@ionless form. In Chapter
3, we consider the linearisation of these equations and aptehs 6 and 8 we solve the

nonlinear Boussinesq equations.

2. The anelastic approximation was introduced in section 2.4 and allows for density
stratification in the fluid layer, whilst still filtering ouhé fast sound waves present in the
fully compressible system. We derived the perturbatioraiqas under this approximation,
and considered the simplest basic state, so that there liermaal wind or magnetic field to
consider. In doing so, we have extended the system of Miz&r$kbias (2011) to include
a tilted rotation vector. We perform a linear study of thegaations in Chapter 4 and a

nonlinear study in Chapter 7.
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Chapter 3

Linear Boussinesq Convection

3.1 Introduction

In Chapter 2, we derived the equations that describe theigeolof perturbations to a basic state
of the hydrodynamic variables. The perturbations were bitrary size but in this chapter we
assume them to be small enough that we can treat all prodpertarbations to be negligible.
By neglecting such products, we linearise the system oftemea Once we have the linear
eguations we are able to perform a normal mode decompositidranalyse the stability of the
system. This is a well documented procedure and details ednund in Chandrasekhar (1961),

Drazin & Reid (1981), amongst others.

There have been many studies of the linear stability of ative in a Boussinesq system. Early
studies in a spherical geometry were performed by Robe8@88)land Busse (1970), but these
works were later shown to have shortcomings. Jetes (2000) improved on this early work and
their results also agreed with the numerical simulatiomsexhout by Zhang (1992). Dornst al.
(2004) considered the onset of convection in rotating sphleshells. The spherical geometry
adds an extra level of complexity to computations and sor@emetries have been studied for
their relative computational ease. A setup that has beentaldapture some of the features seen
in a full spherical model is that of the annulus model (Bud$¥0)). However, often considered
the simplest of geometries to examine, is that of a plane lagelescribed in section 1.5 of the

introduction.

The linear stability of a plane layer of fluid that is rotatiigout an axis parallel to gravity has been
widely investigated, Chandrasekhar (1961) gives the mmsipcehensive review of the stability
of this setup, but we also highlight some other studies. yEla(1972) used linear stability
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analysis to study hydromagnetic convection in a rapidhatiog fluid layer for four different
orientations of rotation vector and magnetic field (see &kayeb (1975)), although they do
not examine the case where the rotation vector is obliqueaaeaity and the imposed magnetic
field is horizontal. In addition, Roberts & Jones (2000) ¢desed a plane layer rotating about a
vertical axis in the presence of a horizontal magnetic fieldrge Prandtl number. Arter (1983)
investigated non-rotating convection in an imposed hotizlomagnetic field, whilst this was

primarily a nonlinear study, he did derive results from éinéheory.

In the hydrodynamic regime, Teed al. (2010) considered the effect of a thermal wind on plane
layer convection but rotating about an axis parallel to igyavAs well as thermal instabilities
they allowed for the possibility of baroclinic instabiéis in a stably stratified fluid. They found,
for a strong enough thermal wind, the system could be uresin if the the layer was stably

stratified.

A plane layer with vertical rotation is appropriate for mbitg regions close to the poles
on a spherical body, but if the layer is allowed to rotate ataagle oblique to gravity (the

vertical direction) then it can be used to represent diffefatitudes on a spherical body. The
linear stability of this setup was considered by Hathaebal. (1979, 1980), who also imposed
horizontal temperature gradients in the basic state toym®a@ thermal wind. This model was

discussed in more detail in section 1.5.

We begin by deriving the linear equations for the Hathawayehobut, in addition, we will
allow for the presence of a horizontal magnetic field. In otherds, we linearise the nonlinear

equations derived in Chapter 2.

3.2 Linear theory

3.2.1 Linearisation of the governing equations

On neglecting terms which are quadratic in the perturbatidhe nondimensional equations

(2.3.51)-(2.3.55) become

8_u+U6_u +wduBS

= —Per—i—RaPrHéZ—Ta%PrQ xu+QC¢Pr[(VxB)xBpg]+Prv2u,
ot Ox dz

(3.2.1)
V-u=0, (3.2.2)
9 90 Tyo —w = V0, (3.2.3)

ot ox
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88—]? =V x [(uBs X B) + (u X Bgs)] + CVQB, (3.2.4)

V-B=0. (3.2.5)
For clarity, we have removed the tildes from the perturlmatioantities. Recall from equations
(2.3.46)-(2.3.49), the boundary conditions we impose wdwwing these equations are

&%w dp 0B

w = 0, az = 0, 0= 0, Bg == 0, E =0 (326)

w =0,

onz =0,1.

3.2.2 Normal mode decomposition

To solve the system of equations (3.2.1)-(3.2.5) subjetheéoboundary conditions (3.2.6), we

consider wave-like disturbances of the form

O(x,y,z,t) =Re{O(2)f(x,y,t)}, (3.2.7)

wheref(z,y,t) = ek*tilvtot @ is the amplitudek andl are the real wavenumbers in thend
y directions respectively, andis the complex growth rate. Note we can write the growth rate a
o = or + io; Whereo i represents the growth rate of the disturbanceand the frequency of
oscillations of the mode. Furthermore, in some cases, lit@itonvenient to write the frequency
aso; = w and in what follows, both representations of the frequenityb& used. Now, since
V -u = 0, we can write

u=V x (Zz)+V>< (VXWZ),

whereZ(z) = 4 f(x,y,t) andW = X2 r(2 4 ) and therefore

a2

%DW 4 Z—ZQZ, Z—ZQDW _ ik
a a a

(u,0.0) = Re { | Zw| e}, @28)

a?
whereD = £ anda? = k% + (% is the total horizontal wavenumber. In this expansidnz) is
the amplitude function for the vertical velocity avf~) the amplitude function for the vertical
vorticity, i.e.,

ov  Ou

0= 55~ g = Re{Z()et ], (3.2.9)

wheregp is thez-component of the vorticityy x u. Similarly, sinceV - B = 0 we can write
B=Vx (7'2)+V>< (Vxﬁi)

whereT = T f(z,y,t) andP = 2% f(x,y,¢) and therefore

a2

ik

1 2 ke
(Bl, BQ, B3) = Re{ |:—2D7D + 1_27,’ Z—QDP - 2_27_’ ’P:| f(:c,y,t)} . (3210)
a a a a
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By writing u andB in such a way means th&t-u = 0 andV - B = 0 are automatically satisfied.

To eliminate the pressure perturbation we take the curl obggn (3.2.1), i.e., we form the

vorticity equation. The vertical component of this equati® given by

8@ Jdp  Ow 1, ou Ov ow 9
- ——DU =—-PrT — 4+ — | - — P
n Ua 3y U= rTa2 {smqﬁ(ax—i—ay) cosqﬁay}—i— rV=p
0 ) 0 0By 0B
+ QCPT |:<COS Oé% 4+ sin aa—y> <% — 8—y>:| . (3211)

Then, by assuming solutions of the form (3.2.7)-(3.2.1,0btain

0Z +ikUZ — ilW DU =PrTa? (sin $DW + il cos W) + Pr(D? — a®)Z
+ QCPr (cos aik + sin ail) T, (3.2.12)
where we have usef = — <% + g-;) fromV - u = 0, and%52 — 281 — T from equation

dy
(3.2.10).

Now, if we take thez-component of the curl of the vorticity equation, i.e., thel of the curl of

equation (3.2.1), then we obtain

0 9 0 9 %0  0%0 1
6t( Vew )+U%(—V w) = — RaPr (8 5+ a5 052 + PrTa2 cosqﬁ——i—sm(b
0 0
2/ 72 -~ : -~ R v
+ Prv*(—=V-w) + Q¢Pr {(cosaam +smo¢ay> (-V Bg):| ,
(3.2.13)
where we have used the vector relationx (V x u) = —V?u (sinceV - u = 0). Assuming

normal mode solutions in equation (3.2.13) gives

—0(D? — a®)W — Uik(D?* — a®*)W = —a*RaPrO + PrTa? (cos pilZ + sinpDZ)

— Pr(D?* — a*)?W — Q(Pr(ikcosa + ilsina)(D? — a*)P.  (3.2.14)
Normal mode decomposition of the heat equation (3.2.3)sgive
[0 +ikU] a*® + T, ((lDW —ikZ) + T.a*W = a® (D* — a*) ©. (3.2.15)

Regarding the evolution of the magnetic field, theomponent of the induction equation (3.2.4)
is given by
0B3 0

5 = (=UB3 4+ wcos ) — (%(—w sina) + (V*Bs, (3.2.16)

which, on substitution of the separable solutions (3.2m8) @.2.10) gives

0P = —ikUP + ikW cos a + ilW sina + ¢(D? — a*)P, (3.2.17)



Chapter 3. Linear Boussinesq Convection 45

and thez-component of the curl of the induction equation (3.2.4ggiv

0 (0By 0B . d%w Pu 2o %0 H*w
En (%_8—3/> :sma<—m—w—a—y2> +COSQ<W+8—y2+m>
(Gl ().
(3.2.18)
which in separable form can be written as
oT =sinailZ + cos aikZ + ((D? — a®>)T —ilDUP — ikUT (3.2.19)
usingV-u=V-B =0.
So, in summary, our governing equations for linearised Bimgsg convection are
[0 +ikU(2)](D? — a®)W + PrTaz (il cos ¢Z + sin pDZ) = —a?PrRa®
+ Pr(D?* — a®)*W + Q¢ Pr(ilsin o 4 ik cos o) (D? — a?)P, (3.2.20)
[0 +ikU(2)]Z — ilDUW — PrTaz (il cos gW + sin pDW) =
Pr(D? —a®)Z + Q¢Pr(ilsina + ik cosa)T, (3.2.21)
[0 +ikU(2)]a*© + T,(ilDW —ikZ) — a®W = a*(D* — a*)®, (3.2.22)
[0 +ikU(2)]P — (il sina + ik cos )W = ¢(D? — a*)P, (3.2.23)
[0 +ikU(2)]T — (il sina + ik cos a)Z + ilDUP = ¢(D* — a®)T. (3.2.24)

3.2.3 Boundary conditions

The boundary conditions given by (3.2.6) need transforniiig a form compatible with the
above notation. The conditions on the vertical velocity poment and the temperature conditions
become respectively,
w=0=W=0 onz=0,1, (3.2.25)
f=0=0=0 onz=0,1. (3.2.26)

For stress free boundaries we also have

9w

—— =0=D*W=0 onz=0,1, (3.2.27)
072

o

a—f:O:DZ:O onz=0,1. (3.2.28)

The magnetic boundary conditions transform as

B3=0=P=0 onz=0,1, (3.2.29)
0By

5. =0=DT=0 onz=0,1 (3.2.30)
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Equations (3.2.20)-(3.2.24) form a 12th order linear systé ODEs. Together with boundary
conditions (3.2.25)-(3.2.30) they form a complex eigemgabroblem. For a small number of
parameter regimes, this system can be solved analytidatlyexample, whefl'a = 0, B = 0,

we reduce to the simplest case considered in Chandrasdld@dlr)( and the values of the Rayleigh

number and wavenumber at the onset of convection can berdeéat exactly as

2774 T

Ta Qerit = %

However, in general, we are required to solve the equati®2s20)-(3.2.24) numerically.

Racrit — (3231)

3.3 Numerical method

To solve our eigenvalue problem numerically we use a routin®ATLAB known as bvp4c,
developed by Shampinet al. (2000). Almost any boundary value problem (BVP) can be
formulated for solution with bvp4c. The first step is to writee equations to be solved as a
system of first order ODEs. To do this we introduce new vagisbbne for each variable in the
original problem plus one for each of its derivatives up te dess than the highest derivative

appearing.

In order to use this method to solve equations (3.2.20)Z8)2subject to the boundary conditions
given by (3.2.25)-(3.2.30), we first split the equation®ititeir real and imaginary parts. To do

this we write each of the variables as a sum of its real andimaag parts, i.e., write

W =Wg+iW;, Z=Zr+iZ;, © =0y +i6y, (3.3.32)

P=Pr+iP1, T=Tr+iTt, o =or+ioi, (3.3.33)

and substitute into each of the five equations (3.2.20)48)2 Taking the real and imaginary
parts of these equations gives us ten equations, which wenthite as a system of 24 first order
differential equations. Since this is a linear eigenvalugbfem, the amplitude is arbitrary, and
so, in order to fix this amplitude, we require extra boundampditions, one for each of the

eigenvalues. Typically, we take eithBx©Op = DOy =10or DWr = DW= 1.

We have developed two main variations of our linear code tisat bvp4c. The first of these
imposesocr = 0 and solves folRa., = Ra andw,. = oy, for a givenk and!l. In other words,
it finds the modes which are marginally stable (they are reignowing ¢ > 0) nor decaying
(cr < 0)) and the frequency at which they occur. By minimisiRg. over all wavenumbers, we

obtain the critical Rayleigh numbeRaci;. The wavenumbers at which this critical value occurs
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are the critical wavenumbers, denoteg: andl, the total critical wavenumber is then given by
Qerit = ﬁ/kgm + zgm. The corresponding critical frequency of this mode is dedati;. We refer

to the critical Rayleigh number, critical wavenumber antical frequency collectively as the
critical values. Note, a larger critical wavenumber cquegls to a smaller length scale and vice
versa. Similarly, a larger critical frequency correspotwa solution with a shorter time period

and vice versa.

or = 0 determines the Rayleigh number required for the onset tdldilgy. The instability can
occur either as a direct bifurcation, wherg = w. = 0 or as a Hopf bifurcation, wheregr = 0
butw. # 0. The first of these situations is referred to as stationasyahility and the second
as oscillatory instability (or overstability). For regulRayleigh-Bénard convection, it has been
shown that overstability is preferredifr < 0.6766 and if T'a > Ta*, whereT'a* is a function of

wavenumber andr. The exact values and proof of this can be found in Chandrasgk 961).

The second variation of our code solves gy andoy, for a givenRa, k and!. This allows us to
determine the growth rate of a mode, for a particular set afrpaters. Maximising the calculated
or over the wavenumbers determines the fastest growing modethe wavenumber at which
this mode occurs, and therefore establishing the wavedesfghe mode we would expect to see

in an experiment.

3.3.1 Eigenfunctions

After solving our 24 first order ODEs, MLAB bvp4c allows us to retrieve any of our 24
variables. In particular, we are able to find the real and imay parts ofit’, Z, ©, DW, P, T
and DP, evaluated at a series of points4n We are then able to reconstrutu, andB using

equations (3.2.7), (3.2.8) and (3.2.10). Equation (3.gi8)s the velocity field perturbations as

. .

u= Re { (Z—QDW + Z—2Z> e“f““y“t} , (3.3.34)
a a
il ik .

v = Re { (Z—QDW - 2—22> ezk”d“"t} : (3.3.35)
a a

w = Re {Weik““y”t} . (3.3.36)

The temperature perturbation from (3.2.7) is given by

6 = Re {@eikariler”t} (3.3.37)
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and the magnetic field perturbation components from (3)Zafd®similarly given by

. _

By = Re { (Z—zDP + Z—2T> ezk“”y”t} , (3.3.38)
a a
i ik o

By = Re { (%DP - Z—2T> ezk“”y”t} : (3.3.39)
a a

Bs = Re[Pethetilytat] (3.3.40)

3.4 Numerical results

In this section we present the linear results; they can Egoated into three parts. We begin by
considering the purely hydrodynamic case (see sectioniz5)we seB = 0 (and soP =T =

0) and neglect the equations given by (3.2.23) and (3.2.24)a fesult, we reduce to the system
of equations solved by Hathaway al. (1980) (hereafter HTG), however, we shall enforce stress
free boundary conditions whereas HTG imposed no slip baynoanditions. We will consider
two cases within this hydrodynamic regime: initially, thaskc state temperature will be taken
to vary only inz and therefore there will be no thermal wind, i.€,, = U = 0. A horizontal
temperature gradient will be included in the second parhefhydrodynamic section though,
and the the effects of a thermal wind considered. The findlgfahe chapter (see section 3.6)
will take B # 0 and so the effects of a horizontal magnetic field on rotatimgvection can be

examined, but no thermal wind effects will be present.

3.5 Hydrodynamic results B = 0)

As mentioned above, wheB = 0, our system of equations reduces to the same system of
equations as those used by HTG, and therefore we use theltsras a test for our numerical
code. However, HTG have rigid boundaries and so for the mapof the test we have to change
from stress free to no slip boundary conditions. This ingshnvokingDW = Z = 0 on the
boundaries instead db?W = DZ = 0. Our first test involves a case whefg = 0. We
calculate the critical Rayleigh number and critical wavaber as a function of'a for north-
south (NS) and east-west (EW) convection rolls in a layehwit= 7 (see figure 3.1). NS
rolls are defined as convection rolls whose axes are align#éteiy-direction (NS direction) and
similarly EW convection rolls are those whose axes are atign thez-direction (EW direction).
Wheng = 7, NS and EW rolls are equivalent because of the symmetry dbeutaxis, however,

wheng¢ # 7, there is a distinction to be made between NS and EW rollsurgig.1 is identical
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to figure 2 of HTG and provides good support for the validityoof numerical code. We also

successfully verified the code against a number of othesscasguding ones wherg, # 0.

Figure 3.1: Critical Rayleigh numbetRaci) and critical wavenumbera;it) against Taylor
number {"a) for NS (solid line) and EW (dashed line) convection rolisai layer with¢ = 7.
This figure exactly replicates figure 2 of HTG and providesdysopport for the accuracy of our

numerical code.

3.5.1 Prandtl number effects

In many astrophysical situations, such as stellar intgritie fluid Prandtl number is much smaller
than unity and so the smaltr regime is one we wish to investigate further. The majorityofk

by HTG fixesPr = 1, with a small amount of time given t8r = 0.1. In this section, we examine
the effects of smalPr in more detail. As mentioned in section 3.3, for snfaH, convection can
set in as oscillatory modes and so we must consider the fldgsiih both direct and overstable

convection.

T,=0

Initially, we consider the effects of smalPr on the onset of convection in a system with a
tilted rotation vector, but no thermal wind{ = 0). We study the dependence @i of the
critical Rayleigh number, wavenumber and frequency givembcit, acrit andwgrit respectively.
Figures 3.2 and 3.3 show separately the critical values asdibon ofT'a, for the cases of NS

and EW convection rolls respectively, for a layer¢at= 7. The Rayleigh number at onset is
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independent ofPr for direct modes, however, the Rayleigh humber requirectHeronset of
oscillatory convection depends dir. For NS rolls, Ragit decreases with decreasidy for
fixed T'a, as dokeir andwerit, as shown in figure 3.2. As discussed in Chandrasekhar (1861)
tilted rotation vector has the effect of reducing the ratatiate by a factor ofin ¢ on convection
in thex-z plane. This results in the NS rolls having the same qualédiehaviour as for vertical

rotation but with reduced critical values.

In contrast, the tilted rotation vector has a larger impacthe convection in thg-z plane (EW
rolls) as seen in figure 3.3. For smallBr, the growth ofRacri with T'a does not immediately
settle to a power law and the critical wavenumber decreaghsngreasingla, before increasing
again. Also, in this case, it is not always true tliat.; decreases with decreasiiity for fixed
Ta. For example, al'a = 5 x 10°, Racit = 8413.2 when Pr = 0.0125 but Ragit = 8521.7
when Pr = 0.00625. As was reported by HTG, for fixe@a and Pr a lower Ra is required
to destabilise NS rolls than EW rolls, we see this in our case ite., for stress free boundary
conditions at smalPr. Note also, for convection to onset as oscillatory modesrdiation rate

has to be high enough, and that this transition rotationisdtaver for EW rolls than it is for NS

rolls.
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Figure 3.2: Critical values for NS rolls.
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(a) Critical Raiglh number, Racit, (b) critical

wavenumberkei;, and (c) critical frequencyycrit, of NS rolls against Taylor numbef,a, for

different Pr in a layer at¢ =

™
1

The black line represents direct modes and all other lines

represent oscillatory modes. In blaBk = 1, blue Pr = 0.1, greenPr = 0.05, red Pr = 0.025,

purple Pr = 0.0125 and orange’r = 0.00625.
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Figure 3.3: Critical values for EW rolls. (a) Critical Raigh number, Racit, (b) critical
wavenumbergit, and (c) critical frequencyweit, of EW rolls against Taylor numbet;a, for
different Pr in a layer at¢ = 7. The black line represents direct modes and all other lines
represent oscillatory modes. In blagk = 1, blue Pr = 0.1, greenPr = 0.05, red Pr = 0.025,
purple Pr = 0.0125 and orangePr = 0.00625.

T, # 0

This section considers the case whgn 0 and so a horizontal temperature gradient is present
in the basic state, resulting in a thermal wind, as discussedction 2.3.2. HTG found that for
Prandtl number® (1), if the shear is strong enough, NS rolls are stabilised byhtteemal wind,
whilst EW rolls can extract energy from the shear and growis Tdads to EW rolls becoming
preferred over NS rolls. We found this to be true even wRenvas decreased to small values,

therefore, this section will be restricted to examining EdNsronly.

It is informative to examine the effect of the tilted rotatioector and thermal wind on the
orientation of the eigenfunctions. Figure 3.4 shows pldta(y, z) (top row), §(y, z) (middle
row) and¢(y, z) (bottom row) atRa = Racyit, | = lerit andw = werit at @ snapshot in time. In (a),
there is no tilting of the convection cells and a reflectiagyahmetry is present. This symmetry
can be seen to exist from equations (3.2.20)-(3.2.22), &nh= 0 and¢ = 7, all the terms

in these equations have the same parity, e.g., wiieand © are even and? is odd. In (b),
the rotation vector is tilted from the vertical to= 7 and the convection cells align themselves

with the axis of rotation. Furthermore, the reflectional syatry present in (a) no longer exists.
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Figure 3.4: Eigenfunctionsw(y, z), 6(y,z) and ((y,z) at Racit, lerit and werit for
Pr=0.05Ta = 10° and ()T, = 0,¢ = £, (0) T, =0, ¢ = Z, () T, = —0.5, ¢ = Z,
AT, =05 6="1,()T,=05¢=2,(f)T,=05¢="
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This is because, in this case, ttheos 2 andil cos ¢V terms in equations (3.2.20) and (3.2.21)
respectively are non-zero, and therefore break the symmitifigure 3.4 (a)-(f), the solutions
are oscillatory, i.ew # 0. However, we comment that, if we consider steady solutians- (0),
then it is possible to find a rotational symmetry that is na@spnt wheny # 0). Tilting of

the convection cells can be achieved for vertical rotatfam iorizontal temperature gradient is
applied, see (c), (e). Fdr, > 0, the tilt is towards the equator, f@, < 0 the tilt is towards the
pole. Note, in (c) and (e), a symmetry is not in fact presahbalgh this is not necessarily obvious
from the plots, this is because of the sizelgf we comment that the asymmetry does become
clearer the largelT, | is. When both a horizontal temperature gradient and a titieation vector
are present, the poleward tilt is either exaggerated (When 0) or reduced (wheff}, > 0). This

can be seen in subfigures (d) and (f) respectively.

3.5.2 Effect ofT} on the onset of convection

To see how the addition of a thermal wind affects the onsebo¥ection of EW rolls, we plot the
critical Rayleigh number, wavenumber and frequency as etitum of 7, for Ta fixed at10° (see

figure 3.5). We show the case f& = 1 (black) andPr = 0.1 (blue).

We see that, foiPr = 1, the maximumRacit is achieved for very small, positivé, and for
negativeT),, the presence of a thermal wind lowers the critical Rayleigmber, meaning that
convection will onset for a smaller thermal forcing. Fronotp(b), for Pr = 1, a negativel,
results in a smaller preferred wavenumber than for posifjyavith a smooth transition between
the two. In other words, the rolls we would observe are of gelasize for negativé, than they
are for positiveT},. As for T;,, = 0, the solutions forPr = 1 are direct modes and hence the

critical frequency is zero for these solutions; we do noplaig this line on the plot ofgit.

In figure 3.5, we also show the critical values #8r = 0.1, a more realistic regime, as discussed
previously. In this case, the maximum critical Rayleigh temoccurs forT; slightly negative,
but for any significant horizontal temperature gradiéiiei; is less than foff;, = 0. As expected,
the Pr = 0.1 modes onset at a lower value & than thePr = 1 modes, meaning that
convection is more easily excited in the lowBr case. The critical wavenumbéyi, is also
smaller forPr = 0.1 than itis forPr = 1. Also in contrast to thé®r = 1 case/; is similar for
similar values ofT}|; instead, the difference between the solution for posifiyand the solution
for negativeT), appears in the frequency of the marginal mode, rather thameinvavenumber.
For Pr = 0.1, the preferred modes are oscillatory, their associatditarirequency is shown

in (c). In this case, a$), increases the critical frequency also increases. We alscerthat the
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increase is more rapid in the negatiVg regime than it is in the positivé, regime and that the

solutions with positivel’, oscillate over a shorter period than the solutions with tregd’, do.
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Figure 3.5: (a) Critical Rayleigh numbeRit), (b) critical wavenumberlgi;) and (c) critical
frequency gcrit), as a function off}, for Pr = 1 (black) andPr = 0.1 (blue) withT'a fixed at

10°. The Pr = 1 solutions are steady and ti&- = 0.1 solutions are oscillatory.

3.6 Effects of a horizontal magnetic field

Having studied the hydrodynamic problem in the previougieecwe now include a horizontal
magnetic field to investigate its effect. We §gt= 0 so that there is no horizontal temperature
gradient and hence no thermal wind. To gain some insight thi® problem, it is worth
considering a simple case that can be studied analytidadffigre using the knowledge gained

to assist with a more general numerical study.

3.6.1 Analytical results

We can make some progress analytically if we consider the ohsertical rotation ¢ = 7),

magnetic field in thes-direction @ = 5 ) and setc = 0, so that we become two-dimensional in
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they-z plane. In this limit, and taking;, = U = 0, the equations (3.2.20)-(3.2.24) become

o(D? — X)W + PrTa:DZ = —12PrRa® + Pr(D? — 1%)2W + QCPril(D* — 12)P,

(3.6.41)
0Z — PrTa:DW = Pr(D? — 12)Z + QCPrilT, (3.6.42)
00 —W = (D* - 1?0, (3.6.43)
oP —ilW = ¢(D?* - I*)P, (3.6.44)
oT —ilZ = —((D* - 1))T. (3.6.45)

For the boundary conditions given by (3.2.25)-(3.2.30¢ ¢éigenmode solutions of the system
given by (3.6.41)-(3.6.45) take a simple form, in particulee can let

W =Wysin(nrz), Z = Zycos(nmz), © = Ogsin(nrz),

P = Pysin(nnz), T = Tycos(nmnz), (3.6.46)

forn =1,2,.... Substituting these into equations (3.6.41)-(3.6.4%wa us to write

[O’A + P’I“AQ] Wy = I?RaPrOg + QCPril APy — mTPTTa%ZO, (3.6.47)
[0 + PrA] Zy = ntPrTa Wy + QCPrilT;, (3.6.48)
[0+ A] 0y = Wy, (3.6.49)
o + CA] Py = ilW, (3.6.50)
o+ CA] To = il Zo, (3.6.51)

where we have defined = n?72 + 12, in order to simplify the notation. We can combine these
five equations into a single equation for the growth katélo do this we first eliminatd from
equation (3.6.48) using equation (3.6.51) and then we BéitriOy, Py and Z; (in that order)

from equation (3.6.47) to give a quintic equation #orThe equation can be written as

a105 + a204 + a303 + a402 4+ aso +ag =0, (3652)
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where

a) =A,
as =2PrA? + 2CA% + A2,
ag =2Pr(A% 4+ PrA3 + CA® + (PrA+ CA)(PrA? + (A% + A?)
+ 2QCPri?A — 1?PrRa + Pr*n?m®Ta,
ay =CPrA* + (CA+ PrA)(CPrA3 + PrA3 + CA%)
+ (Pr¢ A% + QCPri?)(PrA? + CA* + A%) — CAI’PrRa + QCPri? A*
— (PrA+ CA)(I?PrRa — QCPri*A) + Pr2n*m*TaCA + Prn*m*Ta(CA + A),
as =(PrA -+ CA)CPrA* + (Pr¢A? + QCPri?)(CPrA3 + PrA3 4 ¢A%)
— (PrA+CA)(CAI?PrRa — QCPri2A?) — (Pr¢ A% + QCPri*) (I PrRa — QCPri*A)
+ Prin?mTa(CA + A)CA + PrPn*mn*Ta A%,
ag =(Pr¢A% + QCPri*)¢PrA* — (PrCA% + QCPri?)(CAI? PrRa — QCPri*A?)

+ Prin?mTal? A3 (3.6.53)

This dispersion relation allows us to find the eigenvaluesadrticular, the Rayleigh nhumber at
which the marginal states; = 0) occurs, along with the frequency of oscillation in the case

whenw # 0 (overstable convection).

Steady solutions

Convection sets in as steady rolls when = w = 0, i.e.,c = 0. From (3.6.52), we see this

occurs whemg = 0, that is, when

(Pr¢A% + QCPri®)(PrA* — (PrCA% + QCPri?)(CAI? PrRa — QCPri2A?)

+ Pr2n’n®Tac?A3 = 0. (3.6.54)
Dividing by Pr2¢? and rearranging, leads to the following condition on thelBigi number
Ral?(A3 + QAI?) = A3(A% 4+ QAI?) + QI?A(A3 + QI2A) + n*n°TaA3, (3.6.55)

which gives us that, whes = 0, Ra is given by the following expression
A3 n?m?TaA3
= Ay — -
Ro= 2 + QA% i T Qapy
(’I’L27T2 + l2)3

= L Que + ) +

n?m?Ta(n?n? 4 12)?
12((n2n2 + 12)2 + QI2)’

(3.6.56)
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see Roberts & Jones (2000).

We are interested in the first mode that goes unstable, hgfastest growing mode that occurs
for the smallestRa. Clearly, from equation (3.6.56), this occurs when= 1. Note that, in the
absence of rotatiori/{c = 0) and withn = 1, equation (3.6.56) reduces to the expression found
in Chandrasekhar (1961) and Arter (1983)

(7T2 + l2)3

t Q(r* +1?) (3.6.57)

Ra =

and in the absence of a magnetic fielgl € 0), equation (3.6.56) reduces to the expression found

in Chandrasekhar (1961)

Tar? w2 +12)3
Ra = B + ( B ) . (3.6.58)

Oscillatory solutions

For marginal overstable modes= iw and so (3.6.52) gives us that
5 4 .3 2 . _
a1iw® + asw” — agiw® — agw” + aziw + ag = 0, (3.6.59)
which, by taking the real and imaginary parts gives us twaéquos:

asw* — agw? + ag = 0, (3.6.60)

a1w’ — azw® + asw = 0. (3.6.61)

To find the roots of these equations, a code in Maple was usedlve forw and Ra at the
onset of convection whep = 7. These solutions can then be used as an initial estimatédor t
¢ = 7 solutions in our bvp4c code. By using tie= 7 solutions as an initial estimate, it is
hoped that the code will converge faster to the- 7 solutions. As an example, in table 3.1, we
include the values of?a andw at onset for different wavenumbers in a case where 7. In
the complex plane, equations (3.6.60) and (3.6.61) hawensdiu, w) pairs of solutions, but we
are only interested in the cases wh&®andw are both real. One of the seven pairs of solutions
is always real and corresponds to the direct mode at onsetyi= 0, this solution is denoted
with a subscript zero in the table. The other six solutionssigi of three pairs of solutions given
by (Ra;,+w;) for i = 1,2,3. These oscillatory solutions, may or may not, be real, déjpen
upon the parameters of the system. Table 3.1 shows a selexftiesults to highlight each of
these different scenarios. For exampléd, at0.1, only five of the seven solutions are real, but for
[ =1,2,3, all seven solutions are real and for very latgenly the direct mode exists. To obtain

the critical Rayleigh number, we would need to minimise ¢hessults ovel, but we are not
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Direct Overstable
l Rag wo | Rag w1 | Rag w2 | Rag w3
0.1 | 4.89 x 107 0 | 2.01 x 10° +28.60 | 5.45 x 107 +0.50 | — -
1 1.22 x 105 0 | 2.79 x 10* +29.88 | 5.39 x 10° +11.02 | 3.35 x 10% +2.57
2 1.41 x 10° 0 | 1.56 x 10* +33.39 | 1.28 x 10° +22.23 | 8.81 x 10° +9.72
3 1.90 x 10° 0| 219 x 10* +37.68 | 4.39 x 104 +34.30 | 8.47 x 103 +18.90
4 | 2.60x10° 0 | 1.07 x 10* +28.85 | — -| - -
5 | 3.51x10° 0 | 1.42 x 10* +39.00 | — - - -
100 | 2.00 x 10® 01— - - - - -

Table 3.1: A table of solutions to the equations (3.6.60) ¢&h€.61) forPr = 0.1, ¢ = 0.1,
@ = 10000 and¢ = 7. These are an example of the solutions used as an initiah&gtiin the

numerical code that solves for the solution wires: 7.

interested in calculating the critical values for the= 7 case, our aim is to establish a sensible

initial estimate to use in the code, to find the- T solutions.

3.6.2 Numerical solutions

We wish to consider the effect of a tilted rotation vector lom thagnetoconvection. As mentioned
before, this can not be done analytically becapisé 5 introduces extra terms into the equations
(3.6.41)-(3.6.45), which mean that the expansions give(8i6.46) can not be assumed. We
therefore use our numerical code to derive results wheha 5. As explained in the previous
section, using the solutions found wher= 7 as an initial estimate for the solution when= 7,

helps the bvp4c algorithm to converge faster toghe 7 solution.

Testing the code

Before we proceed with investigating the = 7 case, we test our numerical code where
possible. If we set the Chandrasekhar num@etto zero we should recover the behaviour of the
purely hydrodynamic case. This was the first check for thematig code and we successfully

reproduced a number of purely hydrodynamic results.

Secondly, settind@’a = 0 allows us to test the code against known results for magoetection
in a horizontal field, e.g., Arter (1983). From Arter, we haveheoretical expression for the

Rayleigh number as a function of the wavenumber @ndee equation (3.6.57). Plottinga
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againstk (see figure 3.6) for this expression and @« from our code, we see that the two
exactly coincide. The blue symbols represent the numereasllts generated by the code and
the the red symbols the theoretical expression as given t®r.Afhe upper lines are the results
for the steady solution and the lower lines for the oscilhatolution. We choose to display the

Rayleigh number as a function of wavenumber witen= 1, ¢ = 0.1 and@ = 1000.

106

3 I I I I
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Figure 3.6: Rayleigh nhumber against wavenumber for a laydr @ = 1000, Pr = 1 and
¢ = 0.1. The blue symbols represent the numerical results gemnkbgtehe code and the red
symbols the theoretical expression as given by Arter (L988g two coincide. The upper lines

are the results for the steady solution and the lower linegarthe oscillatory solution.

We now investigate the effect of a tilted rotation vectorhie presence of a horizontal magnetic

field on the onset of convection.

3.6.3 Two-dimensional solutions

In Chapter 8, we consider nonlinear convection in the preseh a horizontal magnetic field in
a layer that is rotating about an axis that is oblique to gyaviVe consider only axisymmetric
two-dimensional solutions in thg-z plane, i.e., we se;% = 0. Therefore, we first study the
linear problem in this same two-dimensional plane. Thisives settingt = 0 and hence we

focus on EW rolls only.

We study a number of different parameter regimesPi)= 1, { < 1, (i) Pr < 1, ( = 1.1,

(i) Pr < 1, ¢ < 1 and we briefly comment on (ivPr = 1, ¢ = 1.1. We note that in
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magnetoconvection, oscillatory modes only existfor. 1 and@ > Q* (see Arter (1983)); and
in rotating hydrodynamic convection, oscillatory modes$yaexist for Pr < 1 andTa > Ta*
(see Chandrasekhar (1961)). In all cases throughout thiseve fixTa = 10°, ¢ = 7 and

a = 5. This means the field is in thedirection and so it will have an effect on the EW rolls. For
EW rolls, it is known that a field in the-direction will have no effect (see e.g., Proctor & Weiss

(1982)).

Case (i):Pr=1,(=0.1

We begin by investigating the dependence @nof the critical Rayleigh number, critical
wavenumber and critical frequency given Byicrit, lorit @and werit respectively. We find that, as
expected, the Rayleigh number at onset is independeRt @nd( for direct modes and, as was
the case in section 3.5.1, the oscillatory mode dependromere it also depends a@h Plots of
the critical values againg) are shown in figure 3.7 faPr = 1, = 0.1. The blue lines represent
the direct mode and the red lines represent the oscillatagemNote that the oscillatory mode
does not exist untit) is large enough, but once it does it is the preferred mode. Weefer

to this oscillatory mode as the magnetic mode as it resulesnwh< 1. In both the steady and
oscillatory cases, ona@ has reached a sufficiently large value, there is a power l&ating Racyit
andq@.

For both modes, the minimuRacri; occurs for a non-minimad) for which the solution exists,
i.e., Ragrit is not monotonically increasing witfy). For both modes, the critical wavenumber
decreases with increasirdigmeaning that the marginal convection rolls have a largagtteacale

at higher@. In addition, up until the large$p considered, the oscillatory solutions have a smaller
preferred length scale than the direct solutions. By déimjtthe critical frequency of the direct

mode is zero but the oscillatory solution has a critical fierapy that increases with increasifig

Case (ii): Pr=0.1,(=1.1

If we now takePr < 1 but{ > 1, in particular, if we takePr = 0.1 and{ = 1.1, we get the
results shown in figure 3.8. This time the oscillatory saltis shown in green to distinguish it
from the (magnetic) oscillatory solution in the previouse&aWe call this new oscillatory mode
the rotating oscillatory mode as it results when is small. Now the oscillatory solution is only
preferred up untit) ~ 200 and then the direct mode becomes preferred. Again, the wavesr

decreases with increasirdg but it is the oscillatory solutions that have the largesgtarscale (in
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Figure 3.7: Critical values for case (i). Critical Rayleighmber (a), wavenumber (b) and
frequency (c) as a function @ for Pr = 1 and¢ = 0.1 with Ta = 10°. The direct mode
is shown in blue and the oscillatory mode in red. In this cadg the magnetic oscillatory mode

exists.

contrast to case (i)). The critical frequency increaseh @ibut at larger), the growth slows and

the increase is only slight.

Case (iii): Pr=10.1,(=0.1

Taking the case when botAr and{ are small, specifically’r = ¢ = 0.1, we expect there to
exist two overstable modes, the magnetic and the rotaticijaisry modes. Indeed, this is what
we find (see figure 3.9). At smal), the rotating mode (green) is preferred, themd)at- 1500,

the magnetic mode (red) becomes preferred. Whilst thetdinede exists for all) shown, it is
never the preferred one. For large enodgithe magnetic overstable mode has a larger preferred
wavenumber than the preferred wavenumber of the direct medghey have a smaller preferred

length scale. The frequency increases Wjtfior both overstable branches.

Case (iv):Pr=1,(=1.1

As might be expected, no overstable modes could be found WP and( are greater than
or equal to one. In this case, the direct mode is the onlyisolaind it has the same critical values

as the direct mode in cases (i)-(iii), and so we do not dispileyresults again here.
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Figure 3.8: Critical values for case (ii). Critical Rayleighumber (a), wavenumber (b) and
frequency (c) as a function @ for Pr = 0.1 and¢ = 1.1 with Ta = 10°. The direct mode is

shown in blue and the oscillatory mode in green. In this cadg the rotating oscillatory mode

exists.
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Figure 3.9: Critical values for case (iii). Critical Raydéi number (a), wavenumber (b) and
frequency (c) as a function @ for Pr = 0.1 and¢ = 0.1 with T'a = 10°. The direct mode
is shown in blue, the (magnetic) oscillatory mode in red dral (totating) oscillatory mode in

green.
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Figure 3.10: Eigenvalue diagram for= 10, Q = 500, Ta = 10°, Pr = 1 and¢ = 0.1. The

arrows indicate the direction of increasing Rayleigh numbe

3.6.4 Eigenvalue diagrams

To analyse more closely the behaviour of the eigenvaligsand o;, and therefore the
bifurcations, we plot them against each other for incrapgin (at fixed wavenumber). Figure
3.10 tracks the eigenvalues as we increligein the case whe®r = 1, { = 0.1, Q = 500 and

[ = 10. The direction of increasin@a is indicated by the arrows shown. In this case, the quintic
dispersion relation has only three solutions with real Of these solutions one is always real
and negative (and therefore stable). Below a particularevaf Rayleigh number, the other two
eigenvalues form a complex conjugate pair with negativepa# (stable). AsRa is increased,
we reach a value for which this eigenvalue pair become punedginary, i.e.ocr = 0 and the
system undergoes a Hopf bifurcation (as described in $e8tR). Increasingza further leads to
this pair having positive real parts (unstable) but theiaginary parts decrease until we have a
repeated eigenvalue. F&u greater than this, both eigenvalues are real, and whilstethlepart

of one continues to increase in magnitude, the other dezsea®d passes through the origin in a

direct bifurcation.

We have just described the case for a partictland @Q but, for the region of parameter space
where one pair of oscillatory solutions exists, we wouldests the same qualitative behaviour of
the eigenvalues for ariyand(@). The difference would occur in the values of the Rayleigh bem

and frequency at which the bifurcations occur.

The eigenvalue diagram corresponding to case (ii), is shinviig 3.11 for two key examples. In
(8 @ = 930, 1 = 0.7 and we see that aBa is increased, we have that a complex conjugate

pair of eigenvalues with negative real part move towardsitmaginary axis §z = 0) and
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pass over it, thereby undergoing a Hopf bifurcation. Caritig further along this path, the
imaginary parts of the pair decrease in magnitude until teagh zero and we have two positive,
real eigenvalues. On reaching this point, one eigenvaloeases in magnitude and the other
decreases. Meanwhile, another eigenvalue moves fromahkesegion §r < 0) to the unstable
region gr > 0), via a direct bifurcation. Eventually, for some valueRd, this eigenvalue and
the one from the previously complex conjugate pair with dasing real part meet, and become
once again a complex conjugate pair. WHemis increased further, this complex conjugate pair
moves back over the linegr = 0 in another Hopf bifurcation and the eigenvalues becomdestab
again. So there are two overstable branches appearingsimdsicription but we only see the

preferred one in the plots of the critical values in figure 3.8

In (b) @ = 1000 and! = 0.7. Now the eigenvalues for the different bifurcations do m¢iact.
As Ra is increased the real, negative eigenvalue increasesdewaro and continues passing
through the origin in a direct bifurcation and then contgue grow. Separately from this,
a complex conjugate pair with negative real part moves tdsvéine linecr = 0 and asRa
continues to increase, they undergo a Hopf bifurcation twobee unstable. At even higher
Ra, their real parts start to decrease as they move back towlaedsnaginary axis, eventually

undergoing another Hopf bifurcation.
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Figure 3.11: Eigenvalue diagram for a layer wiflh = 10°, Pr = 0.1 and¢ = 1.1. In a)
Q = 930 andl = 0.7; in b) Q = 1000 and! = 0.7. The arrows indicate the direction of

increasing Rayleigh number.

In case (iii), it is possible for the dispersion relation tavh seven roots with real; (depending
on!). To study the bifurcations involved in this case more aahgfwe plot the eigenvalues for

a series of different in figure 3.12. We fixQ) = 900 and consider different wavenumbers. In
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(a),l = 0.9 and the only oscillatory solutions present are those fromrdtation modes. It is no
surprise therefore, that the eigenvalue diagram takesatine $orm as figure 3.11 (a) and as such
the description of the evolution of the eigenvalues withréasing Rayleigh number is the same
as described in the accompanying paragraph to figure 3.1(b),lh= 1.7, now the eigenvalues
have progressed as in figure 3.11 (b) but in addition, twaadxtanches have appeared, although
these have yet to reach the lingg = 0. In (c), I has been increased to= 2, the two extra
branches have now crossed the ling = 0 and undergone a bifurcation. This bifurcation is of
the same form as in figure 3.10, the magnetic dominated cdserefbre the eigenvalues in this
part of the eigenvalue diagram behave in a similar way todghatse (i). Byl = 3.5 (subfigure
(d)), we can see the three bifurcations corresponding tahitee overstable solutions and their
eigenvalue branches are well established. The diagramasiaination of the solutions from the
rotational modes (case (ii)) and the magnetic mode (casdfi)s is to be expected since we have
small Pr and(, and as a result all oscillatory solutions should be possibi (e),l = 4.6, this

is roughly the wavenumber at which the branches correspgrigi the rotation modes cease to
exist and we see that the branches have moved back over ¢heglia= 0. After this point there
are no oscillatory solutions coming from the rotationalimta This is seen in (f), where= 6,
and we only have the one oscillatory branch. The form of tjeraialues are now as in case (i),
where the magnetic field dominated and indeed we see thevaigerdiagrams are qualitatively

the same.

3.6.5 Three-dimensional solutions

Our motivation for examining two-dimensional (EW) solut#oin detail was as preparation for
the nonlinear work that will follow in Chapter 8. It is stilhowever, worth considering three-
dimensional perturbations, i.e., allowirkgand! to both be non-zero. In the previous section,
the smallPr and( regimes led to the largest variety of behaviour, and so weshdo consider
Pr = ¢ = 0.1 in this section. This also allows for both magnetic and intpoverstable modes

as we saw in the investigation of two-dimensional solutions

Figure 3.13 shows the critical values as a functiorQof Now we have both and k¢t and
the critical total horizontal wavenumber is given &gy, = kZ; + 12;. Again, the rotating mode
is shown in green, the magnetic mode in red and the direct motéue. We recall that the
magnetic and rotating modes are oscillatory and so have-a&mnfrequency, whereas the direct
mode is steady and so its critical frequency is zero. Therimtiteable difference between the

two-dimensional and three-dimensional solutions is tbathe rotating modelii = 0, and so
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Figure 3.12: Eigenvalue diagram for a layer with = 10°, Pr = 0.1, ¢ = 0.1. and@ = 900.
Ina)k =0.9,inb)k =1.7,inc)k =2,ind)k = 3.5,ine)k = 4.6, and in f)l = 6. The arrows

indicate the direction of increasing Rayleigh number.
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NS rolls are actually the preferred ones. Then, sinee 7 (the field is in they-direction) the field

has no effect on the critical values, i.e., they are indepahdf@. The magnetic mode behaves
differently, for the smallesf) for which it exists, it hagi = 0 and so EW rolls are preferred
on this branch, but a® is increasedkit increases and three-dimensional solutions become the
preferred ones (for this branch). The direct solution apptmatake on two different states. Firstly,
for smallQ, lcrit = 0 and so NS rolls are preferred and therefore, as describée motating mode
case,Ragrit is independent of). Then, atQ) ~ 400, there is a transition to a three-dimensional
solution and a decrease Rugit- In this second regime, the critical Rayleigh number change
only slightly, whilstkci increases antd,i; decreases. Overall, the rotating oscillatory mode is the

preferred mode, it has the loweRti.; of all the branches, for alp.
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Figure 3.13: Critical Rayleigh numberRcit, top left), critical wavenumberkgi, bottom left,
lerit, bottom right) and critical frequencyu{it, top right) as a function of) for Pr = 0.1 and
¢ = 0.1 with T'a = 10° for three-dimensional perturbations. The direct mode @shin blue,

the (magnetic) oscillatory mode in red and the (rotatingjlzgéory mode in green.

3.7 Summary

We began the chapter with a derivation of the linear equatfon rotating magnetoconvection

with a tilted rotation vector and horizontal magnetic fiedgdtion 3.2). In some cases, we were
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able to solve the linear equations analytically, but to edlvem in the most general cases, we
required a numerical code. This code was described in se8ti® and was based around a
boundary value problem solver in MLAB known as bvp4c. The code was used to study the
linear stability in a number of regimes that were not anehlty tractable. In section 3.5, we
examined the small Prandtl number regime as this is the egito which many astrophysical
flows fit. In the case of no thermal wind, the eigenfunctiongemited when EW rolls were
considered and this tilting was exaggerated by a negativiedmal temperature gradient. We

also noted that the thermal wind, in general, acts to ddigaliW rolls and stabilise NS rolls.

The second part of the chapter was concerned with the casetiwaenagnetic field strength was
non-zero (section 3.6). Here, we used analytical resula study of two-dimensional modes
in vertically rotating magnetoconvection to help locatéusons when¢ = 7. We found that

different solutions existed, dependent on whetRerand{ were greater or less than unity. We
studied in more detail the behaviour of the eigenvalues ah edi these cases to identify when

each of the solutions exists.

To finish the chapter, we considered three-dimensionaugeations and found, in some cases,

oblique rolls are actually the preferred ones.

The linear work in this chapter was undertaken to aid with@inear study of convection under
the Boussinesq approximation. A nonlinear study for thelyunydrodynamic case is carried out

in Chapter 6, and for the MHD case in Chapter 8.
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Chapter 4

Linear Anelastic Convection

4.1 Introduction

As explained in section 2.4, for systems where there arega lammber of scale heights involved
but that remain close to being adiabatic, the anelastic temsaare an improvement on the
Boussinesq equations. The anelastic equations allow fosityestratification across the layer
whilst still filtering out fast sound waves. This makes sindya compressible layer more
computationally accessible. In much the same way as theddwmsx| case, the linear theory
of the anelastic system is worth studying to firstly tell usaithe stability of the fluid layer and

secondly it can act as a useful test for the anelastic narisieidy that follows in Chapter 7.

The onset of compressible convection using the anelasficogpnation has been studied in

a number of papers. Jones al. (1990) considered a Cartesian geometry and took rotation,
magnetic field and gravity to be mutually perpendicular. Tihear theory of convection in a
spherical shell geometry, using the anelastic approxonatvas presented by Drest al. (1995)

and Joneset al. (2009) built upon this, by developing an asymptotic theary the onset of

compressible convection in rapidly rotating sphericallshe

More recently, Mizerski & Tobias (2011) investigated thdeef of compressibility and
stratification on convection, using the anelastic appraxiom, in a rotating plane layer model.
As discussed in section 2.4 we use this model as the basisifama@stigation but we adapt it to

allow for a tilted rotation vector.
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4.2 Linear equations

In Chapter 2, we derived the nonlinear equations for ragationvection under the anelastic

approximation. For ease of reference, we restate the eqgsdtiere. From equations (2.4.142)-
(2.4.144) we have

g—ltl—i—(u Viu= V(p)—i—Ra,PrseZ—Ta2P7°(Q><u)—i—PrV2
Prm@ [Ou 2 1 w
gu Lz Z(1+2m)0 &l 421
1+92[8z+3vw+3( N m)1+eze] (4.2.1)
mo
V-ou=-— 1+92w, (4.2.2)
0s w 1_o 0 s
o T VS ST TSV S T ey 0s
3 2 2
0 ou; Ou;  Ou; 2
- 2 7 7 ] _ = . 2
Ra(1+ 6z) |: ; <8xi> +;j <8x]— * 8@) 3(V u)
(4.2.3)

In this chapter, we are interested in the linear theory, andesperturb equations (4.2.1)-(4.2.3)
about the simple basic state given by (2.4.150) then, aseiBtiussinesq case, we neglect all

terms quadratic in the perturbations to give the linearasiil equations

/
%—jz—V( >+RaPrsez—Ta2Pr(qu)—i—PrV2 !

p
Prmé [ou’  2_ , 1 w'
Srmuaou = S 42mo—Y s, 4.2.4
1+92{82+3vw+3( Fam)0 g e (4.2.4)
/ mb
u == 4.2.
V-u 1+9Zw, (4.2.5)
os' w' 1 9 6 0s’
9s' 0 95 4.2.6
ot 1+6z * (1 —|—92)mv ot (14 0z)m*t 9z ( )

Now, if we take thez-component of the curl of equation (4.2.4), we obtain

(35 Ta? Pr [smqﬁ (811) mo > + cos qﬁa—w} + Prv2¢ + Per% 4.2.7)
dy

146z 1460202
where we have definedl = —” — &t to be thez-component of vorticity and we have removed
the primes from the perturbatlons. By taking theomponent of the double curl of (4.2.4), we

obtain

0 [_9 0 mo ¢ mo Ow 0C¢
~ 5 [V 5 (1 +9Zw>] Ta2Pr[51nqu + T sqb —i—cosqbay]
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(4.2.8)
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The energy equation (4.2.6) gives

0s w 1 9 0 s
— - = — 4.2.
o 1x0: (xoam” T ATen oy (4.2.9)
and the divergence of the velocity field from equation (4.&%iven by
Voue__m0 (4.2.10)

In the standard way, we seek solutions proportionaffg )+t j.e. we look for solutions of

the form
w = Re {W(z)ei<k“ly)+0t} , (4.2.11)
¢ = Re { Z(Z)ei(mzy)wt} 7 (4.2.12)
s =Re {S(z)ei(kayHUt} , (4.2.13)

wherek and! are the wavenumbers in theandy directions respectively and = oy + iw is the

complex growth rate. With this, equations (4.2.7)-(4.h8fome

0
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w 1 0
S — = D? - a®>)S+ ——DS 4.2.16
i v e (e AR R Cp (4.2.16)

respectively, where? = k? 4+ [? andD = d%. We solve this linear eigenvalue problem using the
bvp4c solver of MTLAB, with the method described in section 3.3. The boundaryitiond we
enforce are stress free and isentropic, as described insecd.7. For the notation used in this
section, the conditions (2.4.145)-(2.4.149) become

mODW
(1+6z2)

S=0, W=0, DZ=0 and D?W + =0 onz=0,1. (4.2.17)

Since we are close to adiabaticity, we use= 1.495 in all calculations. Berkofkt al. (2010)

demonstrated that the anelastic approximation gives a gpptbximation to fully compressible
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calculations even when the reference state is super-didiabading a2% error even wher ~

10. But as mentioned above, we prefer to remain close to thdaitiiastate and set ~ 1.5.

Note, we can check our code in the Boussinesq limit by setting 0. 6 is a measure of the
degree of compressibility. Therefore, we will vafyto investigate the effect of a number of

different stratifications. Since= (1 + 6z)™, we define
ppot=p(z=0)=1 and pop=p(z=1)=(1+6)". (4.2.18)
Then, if we letr = %’ we have

r=(1+6)"=mln(l1+0)=Inr

(

We choose to focus on stratifications where= 0.5,0.1 and 0.01 which correspond t@ =
—0.37101, —0.78566 and—0.95406 respectively. We have calculated value® ab five decimal
places and these are the values we work with throughout, \r@wer clarity, hereafter we only

give 4 to two decimal places when referring to it in the text.

4.3 Numerical results

4.3.1 Effect ofT’a on the onset of convection

In this section, we present results obtained by solvingitteal system (4.2.14)-(4.2.16). To begin
with, we setor = 0 and solve for the values dta, a andw at onset, i.e., the critical Rayleigh
number Ragrit), critical wavenumberdcit) and critical frequencyucit). We are interested in
how these vary witl#, ¢ and Pr. Figure 4.1 showRacit (top), keric (Middle) andweit (bottom)
for NS rolls ( = 0) whenPr = 0.1 and¢ = 7, for a number of different stratifications. As
Pr < 1, all the solutions displayed are oscillatory. The blacledirtorrespond t6 = 0, red to

# = —0.37, green tod = —0.79 and blue tod = —0.95. We note that, fod # 0 andl = 0,
there is a distinction to be made between solutions with &ipe<ritical frequency and those
with a negative critical frequency. We consider this synmnbteaking in more depth in section
4.4. We denote by+’ those solutions that have a positive critical frequencgt by 'o’ those that
have a negative critical frequency. For some parametegsmatginal solutions with a negative

frequency exist, these solutions are marked with.a’
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Figure 4.1: Racit (top), kerie (centre) andugie (bottom) againsfa for NS rolls whenPr = 0.1 and
¢ = 7. Inblackf = 0, inredd = —0.37, in greend = —0.79 and in blued = —0.95. Solutions
with positive preferred frequency are denoted with a '+lusons with negative preferred frequency are

denoted with a '0’ and the cases where only marginal soletwith a negative frequency exist are denoted

bya’'.
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Before we analyse the plots in figure 4.1 further, we commteattthe solutions with positive and
negative frequency are, in fact, left and right travellingwers, respectively. In figure 4.2, we show
an eigenfunction at six different times over one period foeaample of a left travelling wave (a)
and a right travelling wave (b). The time period is given&%, so that the left travelling wave
has a longer time period associated with it. A feature ofdilang waves is that their amplitude
remains fixed in time but they propagate in space, this camlglbe seen from the plots. The lack
of symmetry of the solutions about= 0.5 arises because of the layer stratification, i.e., because
# is non-zero. We will comment further on this asymmetry argl fitrm of the eigenfunctions

more generally in section 4.3.2.

We now return to considering the plots of the critical valgasen in figure 4.1. We note that
although theg = 0 solutions are marked as having a negative critical frequeRa.; is in fact
the same for both solutions with a positive frequency andtimis with a negative frequency. It
can also be seen that, unfil: is large enough, the solutions with a negative frequencyttare
preferred ones for all the values@$hown, and then the solutions with positive frequency becom
the preferred ones. The value B at which this transition occurs appears to decreagé|as
increased. Fof = 0, oscillatory solutions do not exist f@fa < Ta* (see, e.g., Chandrasekhar
(1961)), but agd| is increased the negative branch exists foflal] however, the positive branch
does not (we will see an explanation of this shortly). At madie?"a (T'a =~ 2000), it appears that
the stronger the stratification is, the more stable the syskeit asla is increased the weakest
stratification (no stratification) becomes the most stallso, there is a small kink in th&ait
curve around the point the positive branch comes into exgstdor thed # 0 solutions (at
approximatelyl'a = 1to 2 x 103). If we consider the plot ok, then we see there is a kink in
the critical wavenumber at tHEqa just before the kink in the critical Rayleigh number. Frora th
critical wavenumber plot, we see that there is a discortiinuhen the solution changes from the
negative frequency regime to the positive one, and thatritiead wavenumber is typically larger
when the critical frequency is positive, meaning that tigeefunctions of the negative solutions
have a smaller length scale. The difference between théheegles of the solutions with positive
and negative frequency gets larger with increastig At moderateT a, that isTa =~ 2000, kit

is largest for|f| largest and decreases wiffi. But, asT'a is increased, the preferred length
scale changes and, in the regionZaf where the solutions with positive frequency are preferred
(T'a =~ 10%—107), the stronger the stratification, the smaltgs;. From the plot of (werit) | against
Ta (figure 4.1 (c)) we see that, in general, the solutions wighdinongest stratifications have the
largest|werit|. This is true in both the regime whetg,i; is positive and the one whete; is

negative. The only region where this is not always true isiagothe7'a where the transition
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from negative to positive solution occurs, because themgsof the solutions havegi > 0 and

some haveugit < 0, depending oi.

As noted before, the solutions with positive frequency doaxist for smallT'a, but the solutions
with negative frequency do. To investigate this further,ph® o againsto; for differentTa, as
Rais increased. The results are shown in figure 4.3. I @)0 and7'a = 10%. Here we see that
the eigenvalues do not pass through the déige= 0 for o7 % 0 and hence there are no oscillatory
solutions at thi§ a. But, if we increasd’a to 103 (see subfigure (b)), then the eigenvalues do pass
throughor = 0 for some non-zero frequency. Therefore, both the positiebreegative branches
exist at thisT'a. Note for (a) and (b)d = 0 and so the eigenvalue spectrum is symmetric, and
hence at a particulaFa, marginal oscillatory modes either exist with both positand negative
frequency, or they do not exist at all. If we now consider wihappens whed = —0.95, we

get the eigenvalue spectrum as given in (¢) whete= 2000 and in (d) wherél'a = 5000. In

(c), the eigenvalues with a positive frequency always haye< 0 and so this explains why the
marginal oscillatory modes with positive frequency do nasefor smallT'a. For large enough
Ta, the eigenvalues do eventually havg > 0 (see subfigure (d)) and so the positive frequency
branch does become unstable and we have marginal osgillatmdes with both the positive and

negative frequencies existing at tfis.

Figure 4.4 shows the critical values for EW rolks £ 0). This time, surprisingly, there is no
distinction to be made between solutions with positive aeghtive frequency (this is investigated
further in section 4.4) and so the top plot is a plotfaf.i; againstl'a, the middle plot is a plot
of lrit againstl’a and the bottom plot is the corresponding plot.gfi; againstl'a for the positive
branch only (the only difference between positive and riegddranches here is the sign of the
frequency). We see that for smdlla, & = 0 is the most unstable, but this changesiasis
increased. For smalla, the smallest critical wavenumbers occur for the smalleatications,
but asTa is increased, the smallest stratifications have the lamyéstal wavenumbers. The
critical frequency works in the opposite way to this, i.er Bmall T'a the smallest critical
frequencies occur for the largest stratifications, bul'ass increased, the largest stratifications
have the largest critical frequencies. Comparing the ntadeiof Raci; in the EW and NS cases

shows that NS rolls are preferred for éll

We notice that, unlike in the NS case, oscillatory solutidosiot exist for small’a. By plotting
the real and imaginary parts of the growth rate against ettwr,dfor differentT’a, we can see
why. For example, in figure 4.5 (a), we plot the growth rate®ads increased foPr = 0.1,

0 = —0.79,1 = 3, k = 0andTa = 50. The arrows indicate the direction of increasifRg.



Chapter 4. Linear Anelastic Convection 77

0.8
| 2 -
0.4 \\ I 1 =
S 0 — = — e ) [
—0.4 // ' -1 L
| I _2 ................. I/’
-0.8 | I
-1 —0.5 0 0.5 i 0 | |
OR :
: (b)
ol =!I | \
Vi I
~ O | _/{_/I _______
) |
29 . : 4

(© (d)

Figure 4.3:0p plotted againstr; for (@) k = 2, Ta = 10> andf = 0, (b) k = 1, Ta = 10°
andd = 0, (c) k = 2, T = 2000 andf = —0.95 and (d)k = 2, T = 5000 andd = —0.95.

Oscillatory bifurcations occur whenz = 0 for o7 # 0.

We see that for smalRa, the eigenvalues exist in complex conjugate pairs but witlegative
real part so that the system is stable. ThenRass increased, the complex conjugate pairs move
towards the real axiss( = 0) where one of the pair moves to smalleg and remains stable
whilst the other moves towardsy > 0. For large enougtiia, this eigenvalue passes through
(ocr,or) = (0,0) in a direct bifurcation. The origin is the only point at whitite lineogz = 0

is crossed and so, in this case, there are no Hopf bifurcaiod hence no unstable oscillatory
modes exist (see section 3.3 for a description of direct ampf Hifurcations). This explains why,
in figure 4.4, critical values do not exist for sm@l:. In figure 4.5 (b)T'a is increased ta0° but
other parameters remain the same. Now thedipe= 0 is crossed for; # 0 and so oscillatory
modes do exist at thig'a, as expected from figure 4.4. In addition, we remark on thensgtric
nature of these eigenvalue diagrams; in particular, thensgjues arise in complex conjugate
pairs, so that modes with positive frequency are not prefeover those with negative frequency,

or vice versa. A further investigation of this symmetry isrid out in section 4.4.
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Oscillatory bifurcations occur whenz = 0 for o7 # 0.

4.3.2 Eigenfunctions

It is informative to consider the differences to the eigewtions caused by stratification, in both
the NS and EW cases. Figure 4.6 shows contour plois(of z), s(y, z) and((y, z) at critical
values forPr = 0.1, Ta = 10", andin (@) = 0,¢ = 5,1 =0,in (0),6 =0, ¢ = Z,1 = 0,
in(),0 =0,¢0=7%,k=0,in(d),0 = —-0.95¢= 5,0 =0,in(e),0 = -0.95, ¢ = 7,1 =0,
andin (f),6 = —0.95, ¢ = 7, k = 0. We have included the cases when there is no stratification
or no tilt to the rotation vector in order to make comparisofss we have seen in Chapter 3, the
tilt of the rotation vector only affects the orientation dftconvection rolls in thg — z plane
(EW rolls) and so the cells with the most tilt are in subfigui@sand (f). Comparing (a) and (d),
where the only difference is that (d) has a density stratifioaacross the layer, we see that (d)
has an asymmetry across the layer whereas (a) has a symrmetryza= 0.5. The stratification
also appears to introduce a slight westward tilt.irComparing (b) and (e), where the rotation is
now at an angle to the direction of gravity we see a similaakireg of symmetry and westward
tilt of s. Comparing (c) and (f), allows us to see the difference whsimaification is added and
EW rolls are considered. There is not a large change(in z), but a much bigger difference
can be seen in(y, z) where the equatorial tilt caused by the stratification hashined with the

poleward tilt due to the rotation vector to give less poledudted cells than in thé = 0 case.

To see the effect of on the vertical structure of the eigenfunctions, we pidt(z)| against
z for NS rolls with¢ = %, Pr = 0.1, 8 = 0 (blue),# = —0.37 (red),6 = —0.79 (green) and
6 = —0.95 (black) for (a)Ta = 10% and (b)T'a = 10”. The results are shown in figure 4.7. |8$

is increased, the asymmetry of the vertical structure as®s, this effect is perhaps most obvious
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at the smaller of the tw@'a. Mizerski & Tobias (2011) showed that, at hig@la, stratification did

not have a great effect on the form of the eigenfunctions.
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Figure 4.7: Amplitude functionl¥(z)| as a function ot: for NS rolls, ¢ = %, Pr = 0.1 and
6 = 0 (blue),d = —0.37 (red),§ = —0.79 (green) and) = —0.95 (black) for (a)Ta = 10% and
(b) Ta =107,

4.3.3 Three-dimensional solutions

We have seen that, when considering two-dimensional ftions only, NS rolls are preferred
over EW rolls, for allTa and # considered. However, it might be that oblique rolls are the
preferred ones, i.e., the convection rolls at onset have Wwavenumbek and! non-zero. We
considered three-dimensional perturbations and fourtd iththe majority of cases, the NS rolls
were still found to be the preferred ones. However, for a braglon of parameter space, oblique
rolls were preferred. For example, whén= —0.37 andTa = 1200, the critical Rayleigh
number is achieved at non-zekoand!, as shown in figure 4.8 (a). In this cad@ycir = 1427,

kerit = 1.5900, lerit = 1.8250 andwgrit = —1.6105. The three-dimensional mode is only slightly
preferred over the NS mode though, wh@&e.i; = 1459.

An example of a three-dimensional simulation, where a timoetisional, NS mode is preferred
is shown in figure 4.8 (b), we see that the critical wavenuntiesron thel = 0 axis. Since in
many of the cases we studied, the preferred modes also tedhrtin of NS rolls, especially for
largeT a, we will focus mainly on the case wheér= 0. In addition, the earlier analysis (cf. figure
4.3) showed there is an interesting symmetry breaking ir\tBecase that is not present in the

EW case (see section 4.3.1) and we would like to examine thiisdr.
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Figure 4.8: Contours of Rayleigh number agaihsind! for () Ta = 1200, § = —0.37 and (b)
Ta = 10000, # = —0.79. In (a) the preferred mode (white cross) is oblique &hd;i; = 1427,
kcrit = 1.8250, it = 1.5900 andwgit = —1.6105, whereas in (b), the preferred mode (white
cross) is oriented NS anBlacit = 1915, kgrit = 2.6200, lerit = 0 andwerit = —6.1293.

4.3.4 NS rolls - effect ofp and Pr

As we have just explained, in this section we choose to foaud® rolls. Specifically, we study
the effect ofp and smallPr on the values ofRa, k andw at onset, for different rotation rates and

stratifications.

Effect of ¢

In order to make a direct comparison between solutions fdferdnt ¢, we plot their
corresponding values @Racrit, kcrit andwerit ON the same axes. We plot the cases when 7,

¢ = 7 and¢ = % for the Boussinesq casé & 0) and a strongly stratified casé & —0.95).
The results are shown in figure 4.9. The top plot idat,i; againstl'a, the middle plot is ofit
againstl'a and the bottom plot is @bt againstl'a. Thed = 0 solutions are shown in black, blue
and green for the = 7, ¢ = 7 and¢ = % cases respectively and the= —0.95 solutions are
shown in red, orange and turquoise for the- 5, ¢ = 7 and¢ = & cases respectively. Again, '0’
represents solutions where the preferred frequency idimegat-’ where the preferred frequency

is positive and-” when only the solution with negative frequency exists.

Note that, thep = 7 solution does not have a broken symmetry (even when0), neither does
thed = 0 case (for alkp), and so the positive and negative branches have the saticalaralues

in these cases. Therefore, both a tilted rotation vectoweastdhtification are required to break the
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symmetry between the solutions with positive and negatiiieal frequency. Also in the) = 7
case, a high enough value Bt has to be reached in order for oscillatory solutions to exXsr

& = 0, there is a clear hierarchy of preferred solutiogs= ¥ is the most unstable, followed
by ¢ = 7 and thenp = 7 (this is in agreement with the Boussinesq analysis of Hadlyaval.
(1980)). If we decreaseto —0.95, then the behaviour is changed slightly. Firstly, we notd,th
in this case, from figure 4.9 (a), thke= & solution has a second kink in it; in addition to the kink
that occurs when the positive solution exists, there is k &nound the value df'a at which the
positive solution becomes preferred, and this coinciddéb aisharp rise itkqi. This behaviour
means that, in contrast to the= 0 case, the) = 5 solutions can be more stable than the- 7
solutions, depending dfic whenf = —0.95. At small Ta, thef = 0 solutions are less stable
(have a lowerRagit) than thed = —0.95 solutions, but a§’«a is increased, we reach a transition
Ta at which thed = —0.95 solutions become more stable thandhe 0 solutions. This transition
Ta happens at a largéfa for smallerg, which since in this casé,= 0, and we are considering
NS rolls, we would expect, because the component of theiwataector affecting the:-z plane

is given byT'a sin ¢ (Chandrasekhar (1961)).

For6 = 0, ket is largest forgp = 7, then¢ = 7 and theng = £, for all Ta. At small
Ta, there is little difference between the three cases butlifference increases witha. Again,
adding a stratification makes a noticeable difference; atlshia where both positive and negative
frequency marginal solutions exist, but where the negatnes are preferred, thie= 7 solutions
have the smallestc, followed by ¢ = 7 and theny = . As Ta is increased, the solutions
change their preferred length scale until, at large endlighwhen the solutions witkveit > 0
are preferred, the = 7 solutions have the largest;, followed by ¢ = 7 and thenp = %.
Forf = 0, ¢ = 7 has the largegtucit|, followed by¢ = 7 and thenp = . OnceT'a is large
enough, so that all solutions exist, this ordering is alae foré = —0.95. Notice the difference

when only negative solutions exist: thete= 7 has a smallefwerit| thang = 5.

Effect of Pr

To see the effect of decreasiity for a fixedd we plot Racrit, kcrit andwerit againstl'a for 6 = 0
andf = —0.95 for a number of differentPr. The results are shown in figure 4.10. The- 0
solutions are shown in black, blue, green and purpleHer= 1, Pr = 0.1, Pr = 0.01 and

Pr = 0.001 respectively and thé = —0.95 solutions are shown in red, orange, turquoise and
grey forPr =1, Pr = 0.1, Pr = 0.01 and Pr = 0.001 respectively. As in previous figures, the

symbol type represents whether solutions with a positiveegiative frequency are preferred.
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Figure 4.9: Ragit (top) kerit (centre) anducir (bottom) againsi’a for NS rolls whenPr = 0.1. Black
(red), blue (orange) and green (turquoise) symbols denetel, ¢ = 7 andg =  respectively fod = 0

(6 = —0.95). The symbol shape has the same interpretation as in figlre 4.
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A key difference between the stratified and unstratified sasbenPr = 1, is that ford = 0
the preferred solution is a steady mode, &y = 0, but ford £ 0, the preferred solution is
an oscillatory mode, hence tlfle= 0 case is not seen in figure 4.10 (c). For both value8 of
considered here, and for fixdth, Ragit, korit andwerit decrease withPr. For all of thePr < 1
cases considered, tife= 0 solution has a smalleRacit than thed = —0.95 solution, until a
large enougla is reached, at which point the stratified solution becomedsess stable. THEa

at which this change occurs increases with decreaBingAnother difference that occurs &%

is decreased is that a second kink in fRe.i curve ford = —0.95 becomes more prominent.
In the Pr = 0.01 and Pr = 0.001 curves there is a large kink as the solutions with positive
frequency become preferred, these kinks are not visibladgndargerPr curves. As in the case
when ¢ was changed, these kinks coincide with a sharp rige,jn We also note that, in order
to obtain power law growth oRacit with T'a, a higherT'a is required for smallePr. OnceTa

is large enough so that power law growth is observed, théfithsolutions then have a smaller
ket and hence a larger length scale. When the solutions haveativeegritical frequencylwerit|

is larger for the stratified cases. If the stratified solwibave a positive critical frequency, then,
for Pr = 0.1, the stratified solutions have the largegi|. For Pr = 0.01 and Pr = 0.001, if
the stratified solutions have a positive critical frequeniogn thed = 0 solutions have the larger

lwerit] until T'a is large enough and then the stratified cases have the larggr

4.3.5 Effect ofd on the onset of convection

We can also consider what happens to the critical values asryé, for fixed T'a.

Figure 4.11 shows the critical values agaift§tfor NS rolls with Pr = 0.1 and¢ = Z. The

N

red lines represent solutions wiffu = 10%, the blue lines represent solutions wifla = 10°,

the black lines represent solutions witlu = 10 and the purple lines represent solutions with
Ta = 107. Unlike previously, we now represent solutions with a pesicritical frequency with a
solid line and solutions with a negative critical frequemdth a dashed line (we plot the absolute
values of the critical frequencies). For sniBll, the negative branch is preferred but this changes
to the positive branch dBa is increased, as expected from the previous work in secti&nlhe
positive solution always has the smaller critical wavenaménd critical frequency compared
with the negative branch. THea = 10* solution becomes more stable with increasifigout for
higherTa the minimum~Raci; occurs atd| > 0, with the minimum increasing witi'a. There is

also a much larger variation i with increasingd| for the positive case.

Figure 4.12 shows the equivalent to figure 4.11 but for EWsroAs noted before, fok = 0,
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Figure 4.10: Ragit (top) kerit (centre) andugir (bottom) againsfa for NS rolls wheng =

(red), blue (orange), green (turquoise) and purple (grgy)mls denotePr = 1, Pr = 0.1, Pr = 0.01,

Pr = 0.001 respectively fop = 0 (¢ = —0.95). The symbol shape has the same interpretation as in figure

4.1.
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Figure 4.11: Ragit (left) kerir (centre) andugit (right) againsté| for NS rolls whenPr = 0.1,
¢ = 7. Solid lines represent solutions witliy > 0 and dashed lines represent solutions with

werit < 0. InredTa = 10, in blueTa = 10°, in blackTa = 10° and in purplel'a = 107

there is not a distinction to be made between the solutiotis pasitive and negative frequency
as they have the same critical values, hence we only plotdb#iye frequency solutions. The

behaviour is very similar to that in the NS case, Bt is higher in the EW case, so that NS

rolls are preferred.
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Figure 4.12: Raci (left) leri (centre) andugit (right) againstd| for EW rolls whenPr = 0.1,
¢ = Z. InredTa = 10%, in blueTa = 10, in blackTa = 10° and in purplel'a = 107

Figure 4.13 allows us to compare three cases with threeeifféilt angles, (iyp = 7, (i) ¢ =
and (iii) ¢ = §. We have plotted the critical values agair@tfor NS rolls with Pr = 0.1 for

two differentTa. TheTa = 10* solutions are shown in black, blue and green for ¢he: I,
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¢ = 7 and¢ = 7 cases respectively, and te: = 107 solutions are shown in red, orange
and turquoise for the = 7, ¢ = 7 and¢ = ¢ cases respectively. For boffu shown, and
forall 0, ¢ = 7 is the most stable followed by = 7 and thenp = %. For¢ = 7, as we have
seen previously, the solutions with positive and negatiegufency correspond to the same critical
Rayleigh number and same critical wavenumber, butfet 7, there is a distinction to be made
between solutions with positive frequency and those withatiee frequency. The difference
between the positive and negative critical values incieasth 0| and also with decreasing A
key difference between the tviba considered is that, fdFa = 10, the solutions with negative
critical frequency are preferred over solutions with pesitfrequency but foff'a = 107, the
solutions with positive critical frequency are the preéerones. Since fdfa = 104, the negative
solutions are the preferred ones, we see from the plbgpthat for small|é| the preferredci is
largest for¢ = 7, followed by = 7 and thenp = % but, as|f|is increased, the preferrég

is largest forg = % followed by ¢ = 7 and thenp = 5. ForTa = 107, the positive solutions
are the preferred ones, and= 7 has the largest preferrédy;; for all |6|. Notice also, that until
the very largestd|, for Ta = 107, kit decreases with increasing so that the length scale of the
solutions at onset increases wié. For bothT a, the largest critical frequencies occur o= 5

and decrease with, for all |6|.
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Figure 4.13:Racit (left), kerit (centre) andugir (right) againstf| for NS rolls whenPr = 0.1.
Black (red), blue (orange) and green (turquoise) symbaiespond tap = 5, ¢ = 7 and¢ = ¢
respectively forl'a = 10* (T'a = 107). Solid lines correspond to solutions with > 0 and

dashed lines to solutions withyit < 0.

In figure 4.14, we show how the critical values are changedt wivhen Pr is decreased. We

consider the case whePr = 0.01, it is shown in black and red fdfa = 107 andTa = 10°
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respectively, and the case wh&n = 0.001, it is shown in blue, orange and grey fbr = 107,
Ta = 10° andTa = 10'!' respectively. The solutions with positive frequency arspliyed
with a solid line whilst the solutions with a negative frequg are displayed with a dashed line.
For both Pr, at the smallefT'a, the solution with negative critical frequency is preferrier
most|6|, although at the largest stratifications the solutions with positive critical frequency
are preferred. Then, dBa is increased, the solution with the positive frequency bee the
preferred one for allf|. It is clear from the plots that the black and orange linesoalnsoincide.
In other words, the critical values fdPr = 0.01, Ta = 107 and the critical values foPr =
0.001, T'a = 10° are almost identical. For these parameters, we note thairﬁuiuctPrTa% is
the same in both cases, and so, this perhaps provides amatiptafor this agreement between
the two solutions (sincé’rTa% is the form in which the Coriolis term appears in the govegnin
equations, and for smalPr, largeT'a, we expect this term to dominate, see equations (4.2.14)-
(4.2.16)). This product is also the same for the solutiorte Wir = 0.01, T'a = 10° solution and

the Pr = 0.001, Ta = 10" and indeed the red and grey lines are also nearly identical.

102t - = — = —

Ragyit
Werit

10!

103 2 10°
0 02040608 1 0 02040608 1 0 02040608 1
6] 6] 6]
Figure 4.14:Ragyit (left), ke (centre) andugrie (right) againsté| for NS rolls whenp = 7. Black
(blue), red (orange) and (grey) symbols correspon@do= 107, Ta = 10° andTa = 10
respectively forPr = 0.01 (Pr = 0.001). Solid lines correspond to solutions with; > 0 and

dashed lines to solutions withyit < 0.

4.4 Symmetry considerations

As touched upon in section 4.3, whén# 0 and! = 0 (NS rolls), there is a distinction to

be made between solutions with a positive critical freqyeaitd those with a negative critical
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frequency. However, wheth £ 0 andk = 0 (EW rolls) there is still a symmetry and the positive
and negative branches have the samg:|. This is a surprising result. Naively, we might expect
that breaking the up-down symmetry of the system, via thedhiction of a vertical density
stratification, would cause a break in symmetry of the eigkm spectrum, and hence result in
different frequencies for the positive and negative brasclnstead, wheh = 0, the eigenvalues
remain in complex conjugate pairs. To see this we plot thieargimaginary parts of the growth
ratec against each other, for a range®# but holding all other parameters fixed. For example,
figure 4.15 shows the cases whenl(a 0, k = 3, (b)k = 0,1 = 3 and (c)k = 3,1 = 3. We
see that in (a) and (c), the introduction of a vertical ditation across the layer has, as expected,
broken the symmetry of the eigenvalue spectrum - they nodiloagpear in complex conjugate
pairs. However, counter-intuitively, when = 0 (subfigure (b)), the symmetry is not broken
and the eigenvalues remain in complex conjugate pairs, enatogous way to the Boussinesq
case § = 0). Evonuk (2008) and Glatzmaiet al. (2009) describe a mechanism that is perhaps
responsible for this difference between NS and EW rolls. dioe of their argument is that the
vorticity equation (curl of equation (4.2.4)) contains amigroportional ta2(V - u), which is in
general, non-zero for anelastic convection. However, irsgatem, the:-component of this term

is zero and so it does not have an effect on EW rolls, wherbag;-tomponent of this term is

non-zero and so it does have an effect on NS rolls.

10 RN 20 —10fT
Y 101 | N b
O . _ _ v iy
~ ~ P\ ~ f—F=%—————=-==
S \ Y ' b \
—~10 ‘/Y ol of 1 -
_920 P e
I —20T =107
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@

(b)

(©

Figure 4.15: Real and imaginary parts of growth rate plo#igdinst each other for differefia
whilst Ta = 10°, Pr = 0.1, ¢ = T 0=-09.In(@!=0,k=3,in(b)k =0,/ =3andin (c)
k = 3,1 = 3. Whenk = 0 the symmetry is not broken.
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4.4.1 Eigenfunctions

To investigate the symmetry of the EW solutions further, a@klat the eigenfunction$iV (z)|,
|Z(z)] and|S(z)| as a function of vertical depth. Figure 4.16 displays themfignctions as a
function of layer depth fok = 0,1 = 2, Ta = 10°, Pr = 0.1, ¢ = Z, Ra = 2 x 10° and (a)

0 =0, (b)d = —0.95. The solid lines are the eigenfunctions corresponding katisas with

w > 0 and the dotted lines are the eigenfunctions correspondirspltitions withw < 0. The
eigenvalues, as explained before, are a complex conjugatéop bothé; in (&) o = 8.0489 +
11.3672i and in (b)o = 4.8626 + 17.1070i. Itis clear from the plots that, in the Boussinesq case,
(a), the eigenfunctions are symmetric abeut 0.5, whereas when a stratification is added, (b),
the corresponding eigenfunctions possess no obvious symrdespite the fact the eigenvalues

are a complex conjugate pair.

0 = —0.95406

Figure 4.16: Eigenfunctions. The solutiofi§’(z)|, |Z(z)| and|S(z)| as a function ofz for
k=0,1=2Ta=10°, Pr=0.1,¢ =2, Ra=2x10°and (@) = 0, (b) § = —0.95. The

solid line corresponds to the solutions with> 0 and the dotted lines to solutions with< 0.
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4.4.2 Proof of symmetry whenk = 0

The following is a proof of the symmetry of the spectrum ofezigalues that exists whén= 0.
The proof not only holds for the stress free boundary comatiticonsidered above but is a more
general result and holds for all natural boundary condgtiofihe proof is similar in nature to
that of Proctoret al. (2011) who prove a similar result. However, they consideysiesn with
symmetric equations but break the symmetry through asynormiundary conditions. This is
in contrast to this work, where we have asymmetric equatiorisegin with, and typically our

boundary conditions are symmetric.

To begin the proof, we make a change of variables. Let

Z=(01+027%2, (4.4.20)
W=(1+62)7=W, (4.4.21)
S =(1+02)28, (4.4.22)

then multiply (4.2.14) and (4.2.15) lzijz)%, (4.2.16) by(1 + Hz)””“f%RaPm2 and substitute
in (4.4.20) - (4.4.22), to give

= 1 : < mo = -
oZ =Ta2Pr [smqb <DW + mW) + cos gble] +
- Prmf*(% —1)

2 2 >
Pr(D? —a?)Z D Z, (4.4.23)

- m92(1 + %)

—O'[(D2 —a2)W mﬁ/] :RCLPT'CI/Q(l—'—QZ)mT_IS

0 - .
" 7]+ Ta?Prcos ¢ ikW +ilZ

m
2(1+4062) 146z

. - - Prm#%*(2 +1 -
_ PrDY 4+ 2Pra DV — Pratvi 4 DTG ) o
(1+60z)2

+ Ta? Prsin¢[DZ

_ Pré®m(m +2)

(+028 DWW, (4.4.24)

where

Prm94(3 + 5Tm - mTQ - T—6) Prma292(1 + %)
_ 4.4.25
F (1 +02)" T are (4.4.25)

and

o m—1 _~ - P 202 ~
oRaPra*(1+02)"8 = RaPra*(1 + 02)"T W + RaPra®(D* — a®)§ + % '

(4.4.26)
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Whenk = 0, ¢ = [ and we can write this system as

cAX = BX (4.4.27)
Z 1 0 0
v ~ _ 2 2 m92(m+1)
whereX = (W |,A= |0 —(D _1)+W 0 and
S 0 0 RaPra?(1+ 6z)™
i 2 g2y Prme*(Z-1) 1 . mé .
Pr(D* —1%) a7 Ta2 Prlsin¢(D + —2(1+Gz)) + cos ¢il] 0

-mO2 (m
7P7’(D27l2)2+ Prm6 (2+1)D2

B = | Ta2 Prisin ¢(D — 5725 + cos il 5 2(1-+62)% RaPri2(1 + 02)"5
a2 Prsin ¢( 2(1+92)) cos ¢il] . Prflﬁ(:”ij) DiF aPri*( z)
i 0 RaPra®(1 + Gz)mTi1 RaPri?[(D? — I?) + S L.
Next, we define the inner product
0 0
where
7 Zy
X, =Wy, Xo=|Ws!, (4.4.29)
Sy Sy
andX; satisfies the same boundary condition&as Then, sinceA is real and symmetric,
<X1, (O’AX2 - BX2)> = / Xi (O’AX2 - BXz) dz
0
1
= / XT(0*AX; — BIX;)*dz = ((6*AX; — BIX;), Xa).
0
(4.4.30)

Note, equation (4.4.30) only holds if the boundary condii@nX; andf(f (1 = 1,2) are the
same. SA' is the formal adjoint ofB, i.e., (u,Bv) = (Bfu, v) for vectorsu andv and it is

given byB' =
B PrmGQ(Zlfl)

Pr(D?* - 1?) - —SaTe9T —Ta%Pr[sin o(D + 2(%%2)) + cos ¢il] 0

Prm62 (241

—Pr(D* - 1?)% + WDQ 9 m—1
Pré®m(m42) RaPra”(1+40z) 2

e Pt

—Ta%Pr[sin ¢(D — 2(%%2)) + cos ¢il]

m—1

0 RaPri*(1+02)"2 RaPri?[(D* — %) + —2

4(1+62)2 ]_

4(14-62)2
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SinceB' is the formal adjoint oB, its spectrum is the complex conjugate of the spectrum of B.

Now, if we let
-7
Yi=|W, |, (4.4.31)
Sy
then the adjoint equation
o*AX,; =BX; can be written as (4.4.32)
0*AY; =BY; whenk = 0. (4.4.33)

So, if (0, X1) is an eigenvalue, eigenfunction pair for the system theis é0°, Y1).

Hence, we have shown that, as long as the boundary condidioXsandX* are the same, then
whenk = 0, the eigenvalue spectrum is symmetric. This is in agreemghtthe numerical

results we found in section 4.3.

If & = 0, then the imaginary tilted anelastic term, highlightedahddn equation (4.4.24), must be
added to the central entry of the matrid@saind BT, and this results in a breakdown of the proof,
as the last step (from equation (4.4.32) to equation (¥ & not be carried out. Therefore,
whenk #£ 0, the eigenvalue spectrum is not symmetric, again in agreemi¢h the numerical

results obtained in 4.3.

4.5 Summary

This chapter analysed the effect of stratification and cesgbility on the linear behaviour
of rotating convection, where the rotation vector is obdigo gravity, using the anelastic
approximation. This was a novel investigation as previousliss of rotating plane layer
convection under the anelastic approximation have coreidine case of vertical rotation only,

e.g., Mizerski & Tobias (2011).

In section 4.2, we derived the linear equations under th&astie approximation and noted that
the addition of stratification to this system acts to addaetdérms to the equations studied under
the Boussinesq approximation. As a result, the anelassiesycan only be solved numerically.
Using an extension of the MLAB code detailed in section 3.3, we studied the effect of the
stratification on the onset of convection in a number of difit regimes. A key discovery was
that, in the presence of stratification, there is a diffeeebetween solutions with positive and

negative frequencies when NS rolls are considered but nenvEW rolls are considered. In
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section 4.4, we examined the symmetry that occurs in the E3¥ fiarther and proved that the

symmetry exists for all parameters when any natural boynctamditions are imposed.

As a consequence of the unexpected symmetry-breaking iN$hease, we chose to focus on
the two-dimensional case of NS rolls. We found that at siall the solutions with negative
frequency are preferred, i.e., the solutions are righetteng waves, but af'a large enough (the
value of which depends on other parameters) the solutiotispekitive frequency are preferred,
i.e., the solutions are left travelling waves. We also ndtet, the effect off| on the critical
values is less dramatic for largéz. In this chapter, we only gave a small consideration to three

dimensional modes, further analysis of these would imptbigwork.

We remark here also that, as we are interested in the dridingean flows, it might be intriguing

to consider the Reynolds stresses as calculated usinggeefenctions outputted from a linear
calculation. We will revisit this idea in Chapter 7, where wil consider nonlinear anelastic
convection. In that chapter, we will define Reynolds stress®l make comparisons between the

fully nonlinear Reynolds stresses and those calculated the linear eigenfunctions.
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Chapter 5

Nonlinear Numerical Method

In Chapters 3 and 4, we considered the linear system ofmgtatinvection under the Boussinesq
and anelastic approximations respectively. In order testigate the behaviour of the system
beyond the initial onset of convection, we are required ttvesdhe nonlinear equations
numerically. This chapter details the numerical methodlusesolve the nonlinear governing
equations derived in Chapter 2. Details are given for thehotkeused to solve the equations
of the Boussinesq hydrodynamic system, with a discussiohomnto extend to the Boussinesq

MHD and anelastic cases towards the end of the chapter, liose&.6 and 5.7 respectively.

5.1 Introduction to pseudospectral methods

The method we utilise is of the Fourier-Chebyshev pseudisgieclass. Such methods, and
the techniques involved in the methods, are discussed iethgoh of literature. For example,
see Canutet al. (1993), Trefethen (2000), Boyd (2001), Peyret (2002), Gantial. (2006) and

Glatzmaier (2013). These sources are the ones that werelszhehen developing the numerical

code described in this chapter.

Spectral methods can be very useful as they are often abihieva accurate results, at relatively
low computational cost. The development of efficient Fastrieo Transform (FFT) algorithms
on which spectral methods are built are key to this efficieldy will employ an algorithm known

as FFTW, developed by Frigo & Johnson (2005), to computeranstorms.

A spectral method consists of expressing the variables &b toi solve for, as a combination of
time-independent, spatially varying basis functions. Tiee-dependent coefficients defining

such an expression are unknown and we can write the equétosslve for these spectral
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coefficients instead. A transform, built around the FFT, dedito translate between physical
variables evaluated at grid points and spectral coeffigsidBkpressing variables in their spectral
form makes for relative ease of computation of derivatitéswever, the formation of nonlinear
terms is computationally expensive in spectral space, asoblations are required. Instead,
multiplications to form the nonlinear terms are carried ioyphysical space before the resulting
product is transformed back to spectral space to contintie thé time marching. It is for this
reason that the method is termed pseudospectral, as opfmfdty spectral, where nonlinear

terms are calculated in spectral space.

5.2 Governing equations

In Chapter 2, we gave a derivation of the nonlinear equatimaisdescribe convection in a rotating
plane layer. In this section we recast the equations intara fuitable for solving numerically,
though we first restate the original equations, for ease fefeace. From equations (2.3.51)-

(2.3.53), withB = 0, they are

a—u+(U+u)a—u+v3u+w£(u +u) =
ot or oy | 9z P9 -

— PrVp + RaPr#é, — Ta> PrQ x u+ Prv?u, (5.2.1)

V.ou=0, (5.2.2)

Y. 9 9 ) ,

and from section 2.3.3, the boundary conditions we impos@siffollows:

w =0, @:@:0, =0, onz=0,1. (5.2.49)
0z 0z

For all the nonlinear work in this thesis, we restrict oursslto the two-dimensional system with
the rotation vector in the-z plane, so that we assume all variations with respegtyvanish, i.e.,
a% = 0. Under this assumption, the incompressibility conditibr2(2) become% + %—Z’ =0,
this suggests the introduction of a streamfunctidp, =), defined by

o _ o _

A = _ 2.
5, — U 3y w, (5.2.5)

s0 thatv2¢ = 2% — 9% andu = (u, 52, 52). The vorticityw is defined by

w=Vxu=(w,u,,—uy), (5.2.6)
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wherew = w, — v, is thexz-component of the vorticity. Note our use of a subscript toade
differentiation with respect to that variable. We will inthange this notation with the previously

usedd notation throughout this chapter. With this definitiorugfwe have
V3 = —w. (5.2.7)

Now, consider the:-component of the curl of (5.2.1)

0
88—(;} +(u-V)w— PrTa%(uy Cos ¢ + u, sin ¢) = RaPrg— + Prv3w, (5.2.8)
Y

where we have used

(Vx(u-V)u)-éx:(Vx(V(§u ) —u X w))-éx

=—(Vx(uxw))- &
=(—u(V - w)+wV-u)—(w-V)u+ (u-Vw) - & (5.2.9)

=(u-V)w,

where the first term on the right-hand side of equation (%.2a®ishes by definition ofv =
V xu, the second term on the right-hand side vanishes because iotbmpressibility condition,
(5.2.2), and the third term on the right-hand side vanishregave are restricting ourselves to the

case when(% = 0. In deriving equation (5.2.8), we have also used

(VX (@ xu)) éx=—uycos¢ —u,sin¢ (5.2.10)
and
(V x 02) - 85 = g—z. (5.2.11)

For convenience, we write equation (5.2.8) as

%—c: — Prv2w = PrTaz (cos puy + sin pu,) + RaPrg—z + J(¢,w), (5.2.12)

where the Jacobiasi(y, w) is given by

oY ow Oy Ow

J(1h,w) = (Fy@ - &aﬁ) : (5.2.13)

Similarly, we can write equation (5.2.3) as

%—VQHZ—(u-V)H%—w—va
_ % _ 50
= J(¢,0) — 9y Ty, (5.2.14)

whereJ (¢, 0) = (a_wa_w -~ a_wa_w) :
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Finally, thex-component of (5.2.1) gives an equation for

% + Z—Z +w % + wg— + PrTa? (cos pw — sin ¢pv) = PrV?u, (5.2.15)

which, on substitution for andw in terms ofy (from equation (5.2.5)), after rearranging, gives

(2? Prv?u = PrTa? (cos gb—w + sin ¢ 1/}) + J(Y,u) — wcfi—U, (5.2.16)
z
where we recall from equation (2.3.58), = — 2 andJ (¢, u) is defined in an analogous

Ta2 sin ¢

way to equation (5.2.13). Note that the pressure term islasewe assum§E =0.

So, in summary, the system of equations for nonlinear hydrachic convection we wish to solve

are
Ow 9 06
5 — PrvV2w = PrTa? (cos puy + sin pu) + RaPra— + J (¢, w), (5.2.17)
06 oY o
o — V0= J(0.6) - 5, Ty (5.2.18)
ou 9 oY oY oY dU
N — Prv2%u = PrTa2 (cosqﬁ —|— slnqb ) + J(Y,u) — 9y 4z’ (5.2.19)
v%/; = —w. (5.2.20)

5.2.1 Boundary conditions

We need to express our boundary conditions, given by (5.th4y form compatible with our
vorticity-streamfunction formulation. The first conditipw = 0 on z = 0,1, gives us that

2—15 = 0onz = 0,1 (using (5.2.5)) and s@ is constant along the boundaries, we can choose

Jw v

5y — 920 ON the

this constant to be zero. If we now consider a condition ferwbrticity, w =
boundaries, then, from (5.2.4), we hawe= 0 and % = 0 on the boundaries and s0 = 0
onz = 0,1. The condition orf remains the same. Therefore, the boundary conditions in the

vorticity-streamfunction formulation are given by

=0, @:@:0, w=0, =0 onz=0,1. (5.2.21)
0z 0z

5.3 Method of solution

5.3.1 Coordinate transformation

To solve our nonlinear governing equations, we use a Fe(fiebyshev pseudospectral method,

as described in section 5.1. This method requires the emsath be defined oyl € [0, 27], 2’ €
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[—1,1]. Currently, as written in dimensionless form, the equatiare defined oy € [0, L],
z € [0,1], whereL is the width of our computational domain in thedirection. Therefore,
we make linear transformations to map the equations ont@aohgputational domain. These
transformations are given by

,  2m

=2y, =2:-1
y=7y =2

With this, equations (5.2.17)-(5.2.20) become

ow 5 02 0?

T Pr (a By + 482’2> w=F (5.3.22)
00 5, 07 0? B

ou 5 07 0?
o Pr (a 57t 48Z,2> u=H (5.3.24)

0? 0?
<a2 e + W) Y= —w (5.3.25)

wherea = 2 and
1 . 00 ,
F = PrTa?(acos pu, + 2sin pu,) + aRaPr? + J' (Y, w), (5.3.26)
Yy
o o
G = J/(¢,W) — aa—y/ — 2£Ty, (5327)
oY TyRa

H = PrTas (acos ¢y + 2singtpy) + J' (¢, u) — a (5.3.28)

Y Tas sin¢,

and we have introduced (1), §) = 255 55 — 2055 5.

5.3.2 Fourier Expansion

To solve these equations numerically we use a method thanassperiodicity in the-direction

and approximates variables as truncated Fourier serigsfinat is,

Ny—1
Wy, 2 1) =Y o2 )™ (5.3.29)
m=0
Ny—l
u(y, 2, t) = > (2 )™ (5.3.30)
m=0
Ny—1
0y .2 1) = > (2 )™ (5.3.31)
m=0
Ny—1
Wy 2 ) =Y (2 )™ (5.3.32)
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where N, is the number of modes we choose in #xdirection. Note that, whilst, u, 6 and
are real @y, Gm, Om andu?m may be complex. The numerical grid on which we discretise and

solve our equations is uniformly spacedyjinthe nodes are given by
v, = 27k/N,, k=0,1,...,N, — 1. (5.3.33)

On substitution of these Fourier expansions equations2®)-35.3.25) become

O Pr(ad.. — mPa)om = P, (5.3.34)
Dot (401~ )i = G (5.3.35)
8;;:1 — Pr(48,, — m?a®)tim, = Hyp, (5.3.36)
(40, — m2a®) by = —Com, (5.3.37)

where the exponential terms have cancelled. Note that,diovenience, we have removed the
summation overn = 0,1,..., N, — 1 and also the primes from our computational variables.
E,., G, andH,, are the Fourier coefficients of the functioR%y, z,t), G(y, z,t) andH (y, z,t)

respectively.

The boundary conditions given by equations (5.2.21) become

eSS

= Yy (£1,8) = 0. (5.3.38)

Notice in equations (5.3.34)-(5.3.37%);derivatives are simply calculated in Fourier space by

multiplying by im for each derivative. We can see this from

B ! )
w ~ im
a_y(y’z?t) = nlzzowm(zat)a_y(e y)
Ny—1
= Z iméom (2, t) (™)
m=0
= imw (5.3.39)

i.e., the Fourier coefficients c@% are imw,,, wherew,, are the Fourier coefficients af. It

2
follows thatZ¥ = —m2w.
Oy

5.3.3 Chebyshev expansion

Next, we choose to evaluate thedependence by a Chebyshev series. The Chebyshev

polynomials,T,,(z), are defined on € [—1, 1] and can be obtained from the following recurrence
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relation (see, e.g., Boyd (2001)):
To(z) =1, Ti(2) =2, Thii1(z)=22T,(2) —Th—1(2) forn=1,2,... (5.3.40)

We choose to expand in Chebyshev polynomials because, unlike Fourier series, Chebyshev
series avoid the parity mixing in the rotation term of eqomagi (5.2.17) and (5.2.19). In addition,
the uneven grid spacing inis such that there are more points near the boundaries, vaidsh

with boundary layer resolution.

Assuming a Chebyshev expansion for thdependence of our spectral coefficients, leads to the

following:

N.+2

Om(z,t) = OO T-1(2), (5.3.41)
I=1

~ NZ+2 A~

Om(2,t) = Ot (t)T1-1(2), (5.3.42)
=1
N.+2

Um(z,t) = Ut (6)T7-1(2), (5.3.43)
=1

~ NZ+2 ~

foreachm =0,1,... N, — 1.

We sample the expansions (5.3.41)-(5.3.44VaChebyshev points given by

(2j = Dm

i = 1(1)N,. 5.3.45
on. 0 (1) ( )

Zj = COS

In addition to theséV, interior points, we have our boundary poiats- +1, giving IV, + 2 points

in total. This is why our expansions (5.3.41)-(5.3.44) monfl = 1tol = N, + 2.

z-derivatives

Before we proceed with substituting the Chebyshev expassi®.3.41)-(5.3.44) into the
governing equations, we describe how we calculatierivatives. For example, if we need to

know
Nz+2

8 82
then instead of computing the second derlvatlve of Chebyglatynomials we could employ

a recurrence relation for calculating the coefficients & terivative expanded in Chebyshev

polynomials, i.e.,
N.+2

S BT (2). (5.3.46)

=1

O fm(z,t)
022 -
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Such a recurrence relation is described in Boyd (2001) apceP€002) and we outline it now.
If we want theg'" derivative off,,, then we write
N.+2

PIn=l) N~ j 0014 2)

024
1=1
and determine the coefficienf,éf), in descending order, using

o f\ =gl 20 =D I= N4 2N+, ,2 (5.3.47)

m

with initial conditionsféfl) =0ifl>N,+2—-g¢gand

2 ifl=0 1 ifl<N,+2
= e = (5.3.48)
1 ifl>0 0 ifl >N, +2.

This method will be useful when calculating derivatives 4n though we treat 2nd-order

derivatives inz in a different way, as we shall describe now.

There is an alternative way in which we can express the seayddr z-derivatives in
equations (5.3.34)-(5.3.37). Peyret (2002) details arotbcurrence relation which connects
the coefficients of the second derivative directly to thosthe zeroth derivative. Following the
derivation given in Peyret, we take the recurrence relagiven by (5.3.47) and write it foy = 1

andq = 2. This gives

e F_yy = ersa [y + 20 = D) (5.3.49)
=y oy = ervaf gy + 20— DFS). (5.3.50)

By writing equation (5.3.50) witth+ 1 and! — 1 in place ofl, we can eliminate the first derivative
terms from equation (5.3.49), to leave an equation in terffitBeocoefficients of the zeroth and

second derivatives only. To this end, puttingl in place ofl in equation (5.3.50) and rearranging

gives
£(2) £(2)
A(1) B Cl—lfml - €l+3fm(l+2)
fm(z+1) = 57 . (5.3.51)
Similarly, equation (5.3.50) with— 1 in place ofl gives
F2) £(2)
() 3lnieg — @S (5.3.52)

(=1 2(1 - 2)

Then, substituting equations (5.3.51) and (5.3.52) int8.4®) gives

£(2) 2) £(2) (2)
ca-s3foi o — €is1fm ci—1fpy — €3ty .
Cl—2 ( 2 l ) = €141 ( l B2 ) 4 2(1— 1)f7§31) (5.3.53)

2(1 — 2) 2
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forl = 3,4,..., N, + 2. Since (5.3.53) is only valid fof > 3, we havec; | = ¢;_5 = 1 and

err1€113 = e 3 (from (5.3.48)), for all. Using these facts, and expanding (5.3.53), leads to

£(2) s s £(2)
Cl—Sfm(z—Q) €z+1f§l) €z+1f7§fl) €l+3fm(l+2)

£(0)
2(0—-1 = - - .3.54
(=D 2(1 —2) 2(1 —2) 2l 2l (6:3.54)
Dividing by 2(I — 2) gives an expression fq”?fr?l)
F(2) > F(2)
f(o) — CliBfm(l*Q) _ el+1f7(712l) (4l B 4) el+3fm(l+2) (5355)
m 4011 —-2)  SI(I—1)(1—2) 401 —-1) 7
which can be written
9= p fﬁf()u) +Quf + Ry féfgl by fOrI=3,4,.. N.42 (5.3.56)
where,
p=— 98 g -__  p_ O3 (5.3.57)

ETEEDE (-2 ‘YT ag-1y
We will use the method just described to express the coefficief the second derivatives in our

equations in terms of coefficients of zeroth derivatives.

5.3.4 Application to the problem

Now that we have developed the method we will use, we apphydtt system of equations. First,

substitute the Chebyshev expansions (5.3.41)-(5.3.4d emuations (5.3.34)-(5.3.37) to give

a“;;”l — Pr40®) — m2a®@m) = F = E%, (5.3.58)
% — (46%) —m2a20,)) = G = EY, (5.3.59)
83:“ — Pr(40®) — m2a2i) = Hy = EY, (5.3.60)
1)) — mPaP iy =~ = EY, (5.3.61)

where, as described previousz[;ﬁl) etc., are the coefficients of the second derivative,gfwhen
expressed as a Chebyshev series (cf. equation (5.3.46)ati&ug (5.3.58)-(5.3.61) are to be
solved forl =1,2,..., N, +2andm =0,1,..., N, — 1.

In order to eliminate the second order derivative coeffisidrom the equation fap (5.3.58), we

form the combinatimﬂE:;(l_Q) +QuEy, + RIEY with P, Q;, R; asin (5.3.57). This gives,

(1+2)

a A ~ ~

a [lem(l72) + Qlwml + lem(l+2)] —

pr4(pe® 2@ L p @ 2020 o pe _
r4( 1@y 1—2) + Q. + zwm(Hz)) m=a” (Pl q—2) + Qimi + Rip42))

PlFm(l—Q) + Qb + RlFm(l—i-Q)' (5.3.62)
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Now, equation (5.3.56) glveBld;( -2t Qlwml + Rl“’@zuz) = Wi, Which we use to eliminate
any second derivative coefficients to obtain

0 . . .

g [Piioma—2) + Quémi + Ripm(42)] —

Pr [46m — m*a*(Pn(—2) + Qulomi + Rim12))] = PiF—2) + Qi + RiFyy42)-

(5.3.63)

In an analogous way, we form the appropriate combination®naove the second derivative

coefficients from the equations féra ands), (5.3.59)-(5.3.61). This gives fo,,;,

0
{ 0m—2) + Qi + Rib, (z+2)] -

ot
[49mz — m?a* (P, 1—2) + Qi + Rlém(lJrQ))] = PiG-2) + QG + RiG 112,
(5.3.64)
for iy,

0 . N .
5 [Pl + Quis + i1 ~

0
Pr [4tt — m*a® (Pl —2) + Quitm + Riimy2))] = PH -2 + Qumi + RiH,p49),
(5.3.65)

and fore,,,;,

— 4 — M2a® (Phmg—2) + Quibmt + Ritbim(s2)) | = Pilom(—2) + Quéomi + Rilom(i12).
(5.3.66)

Boundary conditions

Expanding in Chebyshev polynomials means our boundaryitionsl (5.3.38) become

N.+2 N.+2
m(ELE) = Y Q)1 (1) = Y (F1) T dnu(t) =0, (5.3.67)
l 1=
Notd 1
O =D (ED) " pu(t) =0, (5.3.68)
1=
i NzJi2 ) N,+2
5 ;(i)”ﬁml(t)z ; 2(£1) (1 — 1) (t) = 0, (5.3.69)
N.+2
G = > (D) M (t) = 0. (5.3.70)

=1

where we have usef, (£1) = (1) for all n, and %= (£1) = (&1)'n? for all n (Boyd (2001)).
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5.3.5 A note on calculating spectral coefficients

As discussed, we compute derivatives in spectral spacdiftteihas been said on the transform
that takes the variables to spectral space. The transfaemauBiscrete Fourier Transform (DFT)
in they direction and a Discrete Cosine Transform (DCT) in thdirection (see Peyret (2002)).

To perform this transform, we take the variable in questionexample,

N, Ny—1

Wiy, zt) =Y > Gm(t)Ti_1(2)e™ (5.3.71)

=1 m=0
and sample this variable on our discrete grid given by (8)3a8d (5.3.45) to give

Nz+2Ny ! 2mwimk
Wye,zpt) = D Y omtTia(z)e M (5.3.72)
=1 m=0
or N
Nz Y -1 :
(2§ — 1)1 — D) 2zimk
w(Yks 25 t) lZ; Z:mel cos( J 2;([2 ) )e Ny | (5.3.73)
m

where we have used the relati@p_; (cos o) = cos[(l — 1)a]. The spectral coefficients,,; can
then obtained by taking an DFT inand a DCT inz. This last representation highlights why we
use a cosine transform; Canudbal. (1993), Brachett al. (1983), Boyd (2001) detail how an
efficient DCT can be computed using FFTs. This is the appresgcimplement in our numerical
code but we use efficient DFT and DCT routines available in\WHibrary (see Frigo & Johnson

(2012)).

5.3.6 Nonlinear terms

Our governing equations, (5.3.22)-(5.3.25), and methododfition require us to compute the
spectral coefficients of functiorfs, G, H, which contain the nonlinear terms. The general method
for calculating these is outlined here: we first transformthriables to spectral space, where we
perform differentiation iny or z as required. We then use an inverse transform to move the
spectral coefficients back to real space and it is in realespdere we perform the multiplication

of terms to form the nonlinear products. Once we have theimesn products, we once again
transform to spectral space and then solve the appropai&ion. This has to be done at every

time step, it is therefore the most computationally demaggbart of our routine.

5.3.7 Dealiasing

On a finite grid when the spacing between grid pointdis the shortest wavelength resolved

is A = 2Az and therefore the maximum wavenumbekisx = =-. Thus, high frequencies
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become too small to be resolved and instead they are ali@sedstaller frequency. High
frequencies are generated by nonlinear terms and aliasinges energy transfer from high
frequencies to low frequencies which can lead to instgbilitthe numerical scheme. Orszag
(1971) showed that removing the upper third of wavenumbekged the problem of aliasing
when the nonlinearities are quadratic. This is the approgctake to avoid the aliasing instability,
it is easily implemented by setting the coefficients coroesiing to the highest one third of

frequencies to zero in Fourier space, before transfornamqhysical space.

5.3.8 Time stepping

To advance the solution in time we use a semi-implicit, preedicorrector time stepping scheme.
This involves using the Crank-Nicolson (CN) scheme on tftehlend side and the second-order

Adams-Bashforth (AB2) scheme for the right hand side, wénefer to this combination as the

CN-AB2 scheme. These schemes are detailed in e.g., Boyd)280r an ODE% = F(u,t),
the Crank-Nicolson scheme is given by
n+l _ ,n Fn+1 Fn
Y - + (5.3.74)

At 2 ’

whereAt is the size of the time step and = u(nAt). This is an implicit scheme as it requires
the value ofu™*! to be used in the calculation é+!, whereas the Adam-Bashforth scheme is

explicit and is given by

—yn  3Fm — ol
= . . (5.3.75)

It is computationally expensive to treat nonlinear termpliaitly and so this explicit scheme is
suited to the right hand sides of our equations (as they ootita nonlinear terms). Our equations
take the form

ov

- =F 5.3.76
5 + f=F, ( )

whereV represents eithep, 6 or u, f contains the diffusive terms and all nonlinear terms are
contained inF'. So, implementing a scheme that uses CN for the left-harelasid AB2 for the

right-hand side, we have

Vn+1 —_yn N fn+1 _|_fn - 3F™ _Fn—l

3.77
At 2 2 (6.3.77)

Note, for the first time step, we do not knaiv at an earlier time step and so to initialise the
scheme we tak&™~! = '™ whenn = 1; this amounts to doing a forward Euler step for the first

time step, and AB2 thereafter. The predictor-correctorcgss works by forming a 'predicted’
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value for the squtionV;?”“, by solving

V;?nJrl _yn N f]’gl+1 +fn B 3F" _Fn—l
At 2 B 2 ‘

(5.3.78)

The predicted value is then used to caIcuIE;b”, i.e., the right-hand side of (5.3.76) evaluated

at the predicted values. An average of this and the oridiffails then taken, in a trapezoidal rule,

Frgpett
2

to give F ! = . F*tlis then used as the right-hand side for the corrector step

V'Cn—i—l —_yn N fcn—f—l + fn

N 5 = Frtl (5.3.79)

whereV**1 is the corrected solution at the+ 1st level.

The predicted and corrected values are compared and if

|V;)n+1 _ ‘/'Cn+1|

< ethen we takg/" ! = yntt (5.3.80)
VI ‘

wheree is a specified tolerance. If the condition is not satisfiee dtiginal values are restored and
the time step is decreased (typically halved), and the psostarts again. Whei" ! = yt!
then we can proceed to the next time step. If solutions at@mwit specified value then the time

step is increased (typically by a factor ¢B) for the next iteration.

5.3.9 Application of the time stepping method

Applying the CN-AB2 method described in section 5.3.8 to eguations (5.3.63)-(5.3.65) gives
the following system of equations. Note, we give detailstf@r equation for and just state the

others as they arise in an analogous way. The CN-AB2 schentiesf@quation fow, (5.3.63), is

given by
~n41 ~n+l ~n+1
le;‘l(ld) + Qo + lez(lﬁ)
. . . PrAt, | )
— (Pl i—g) + Quivpy + Ridoy,g49)) — T(‘lw%l + 4wy

PrAtm2a?

2

At

== [331@2(172) +3QuEy + 3RIF, o) — (P Lo+ QuE ™t + Rzpﬂflig))] :

[Pz@mle_m + QU+ R ) + P o)+ Qi + Ril +2)]

(5.3.81)
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which, on collecting terms at the + 1st level on the left-hand side and terms at iitle level on

the right-hand side, gives

PrA 2.2 PrA 2.2
Pl (14 %) Qi+ %) —2Pr A"+
PrAtm2a? n PrAtm2a? .
Rl + ———) iy = 21— f)wm(lfQ)—i_
PrAtm?a? PrAtm?a?
(@1 = ————) +2PrAtlon, + Bi(1 = —— )9
3At At .
+— [Pl w2 T Qb + RIF, (l+2)] - (PlF ooy T QU+ RE (z+2))
(5.3.82)
which has to be solved fon = 0,1,...,N, —1andl = 3,4,..., N, + 2.
The equations fof is similar
. Atm?2a? Atm?2a? P Atm?2a? ..
POl (1 + — ) +lR0+ ) — 2A¢)07 ! + Ry(1+ 5 Yot o) =
Atm?a? Atm?a? - Atm?a®
P(1— T)Qm(l,Q) + [Qi(1 - ) + 2At)67, + Ri(1 — T) m(l+2)+
3At . At n
(5.3.83)
as is the equation fak
PrAtm?a® PrAtm?a®
Pl (1+ %) Qi+ %) — 2Pr A"+
PrAtm?a® . PrAtm?a®
Ry(1+ f)“mfziz) =Rl - f) m(—2)t

PrAtm?2a? R PrAtm2a®
f) + 2PrAt]a,,; + Ry(1 — f)um(lJrQ)—i_

At
Py + Qi + Rl 00| — 5 (RHLGL,) + QU + R,

[@Qu(1 -
3A
(z+2)>
(5.3.84)
We obtaing,,,; at then + 1st step by solvingy™ ! = —v2)" 1. From equation (5.3.66), at the

n + 1st step, we have

- a1
lem(l 2)+Qlwml + Riw sz)

— 4" 4 ma (m?%l o+ QUL+ R ) (5.3.85)

It is clear from equations (5.3.82)-(5.3.85) that we have twcoupled systems, one for the odd

coefficients and one for the even coefficients.

In order to find the corresponding boundary conditions we thk current two conditions (from
equations (5.3.67))
N.+2

> @milt)=0atz =1, (5.3.86)
=1
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No+2

Z (_1)1_1djml(t) =0atz=-1 (5.3.87)
=1

and add them together to obtain an equation involving the aakdficients only. Similarly,
subtracting one from the other provides an equation for trem eoefficients. We now have

two systems complete with boundary conditions which we egmnasent in matrix form, i.e.,

R . At . .
C L@ nmioas = C Roaamoaa + = Codd (3F i 0aa — Fiy 0aa) (5.3.88)

. . At R .
CL:)Uenwnge%)en = CR;Jvenwrr:z,even + ?Ceven(?’Fﬁl,even - Fﬁl,elven) (5389)

where w1~ represents the odd entries ofy, w’t} represents the even

m,odd m,even

entries of w and we have used a similar notation faF. We also have that

CL%,, CR%,,, CLY,. CR

even’

Coaq andCy,.,, are all of the form

w
even’

a a a a
0
0 i O (5.3.90)
0 B @ R 0
0
0 .. 0
where
1 for CLY,,
a=4 —1 for CLY,

even

0 for CRLOUdd, CR;Jven;Coddycevern

with those matrices denoteg,, formed whenl = 3.5,..., N, + 1, and those denoted.,,
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formed wherl = 4,6, ..., N, + 2. The diagonal’;, Q; andR, are given by

(14 Lratm’a®yp - for 012, ,CLY

EVEN

P = (1 _ PrAt2m2a2 )Pl for CR((;}dd’CRw (5391)

EvVeEN

]Dl for Codd ’ Ceven

(
(1 4 Lratm’a®yo, _oprAt  for CLY,,CLY

even

Q=14 (1-Ldtm’eyo, 4 9prAt  for CRY,,,CR (5.3.92)

even

Ql for CYodd’ Ceven

(14 Lratma® g, for CL¥,,,CL

EVEN

R, = (1 _ PrAt2m2a2 )Rl for CRZJdd’CRw (5393)

even

Rl for Codd ) Ceven .

The corresponding matrix equations for the equation# férand<), (5.3.83)-(5.3.85), are given

by:
0 on+1 0 on At An An—1
CLYG = CR0,, + —-C (3G, — G, (5.3.94)
A A A
CL“a™ = CR“4™, + 7’50(31&131 —HY, (5.3.95)
CLYYt = contt, (5.3.96)

for both the odd and the even coefficients.

For the equation fof, (5.3.94), all matrices are the same as those in (5.3.88}5889) except

with any Pr factors set to one.

For thed equation, (5.3.95), the only change from the matrices iB.88) and (5.3.89) is the top

row due to the boundary condition, it is now given by

20-1)?% 1=1,3,....,N.+1  forCLY,
a =
20-1)2 1=2,4,...,N,+2  forCLY

even:
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The equation for), (5.3.96), takes a slightly different form, in this case veeé

1 for CLfdd
a= (5.3.97)
-1 for CLY e,
B =m2a*p, for CLY,,,CLY,,, (5.3.98)
Q1= (—4+m?a®Q, forCcL?,,CLY,., (5.3.99)
Ry =m?%?R, forCL.,CLY... (5.3.100)

We state again that, these matrix equations must be solved @l wavenumbersn =
0,1,...,N, — 1. The right-hand side of equations (5.3.88), (5.3.94)-@&Bare known vectors
of size N, + 2. Notice all of matrices on the left-hand side of the equatiare quasi-tridiagonal,
that is, they consist of nonzero entries down the main diaband the sub and super diagonals
and one nonzero row, the top row. The remaining entries ofrthrices are filled with zeros,
this is a fact that we should exploit for more efficient mairixersion. Naive inversions of the
matrices take typically)(N3) operations for each inversion. Peyret (2002) details aorialtgn,
developed by Thual (1986), which leads to an operation cthaitisO(N,). This algorithm is
an extension of LU decomposition, we describe it in the negtien as it is the algorithm we use

in our code.

5.3.10 Thual algorithm

We will detail how to solve the matrix system of equationiring the quasi-diagonal matrices,
given by (5.3.88) and (5.3.89). The algorithm used was dpesl by Thual (1986) and is well
documented in Peyret (2002). To demonstrate the algoritlenwill consider the equation for

wWodd, but the algorithm can be applied in an analogous way to ther@quations. We have
w  ~n+l W AN At [m rm—1

m,odd

As explained before, the right-hand side is known and ansotena vector, which for simplicity

we will denote byF,4;, and so we have
C L@ vaa = Fodd (5.3.102)
or, using (5.3.88) and (5.3.90),

Pin_g + Qi + Rids = F, 1=3,5,... N, — 1, (5.3.103)
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where, for brevity, we have removed the 'odd’ label, théabel and the: + 1 label. In addition,
we have

P&_o + Qi = F;, whenl = N, + 1. (5.3.104)

To make the tridiagonal nature of this problem clear, weothiice notation consistent with that

used in Peyret (2002):

N, +2

(pr, a1, f1) = (Pa—1, Quo1, Roy—1, Foy_1)  forli=2,3,..., 5 (5.3.105)
N, +2
w =Gy forl=1.2,..., ; . (5.3.106)
This gives, on substitution into (5.3.103) and (5.3.104),
N,
pwi—1 + qu; + rpwper = fi forl =2,3,..., 7, (5.3.107)
N, +2
pwi_1 + qu; = fi forl = T+ (53108)
and
No+2
2
> aqu =g (5.3.109)
=1

For thew,qq boundary condition, equation (5.3.86) gives, = 1 for all n, andg = 0, but for
the purposes of demonstrating this algorithm we will ledvam ase and g until the end. The

solution uses the recurrence formula
N,
wipr=Xw +Y, forl=1,2,..., 5 (5.3.110)

Next, we eliminatev; ; from (5.3.107) using (5.3.110) to give

prwi—1 +wi(q +nXp) = fi =Yy (5.3.111)
and hence
- 1Y _
wy = £’+21Xll - qufjw)l(z' (5.3.112)
Now consider (5.3.110), written with— 1 in place ofl:
w; = Xj_qwj—1+Y_1. (5.3.113)
Comparing (5.3.111) and (5.3.113) gives
X, = —m, | = N7 N7 1,2, (5.3.114)
YH:M, z:&,&—L...,z. (5.3.115)
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These are computed in reverse order, starting ﬂrom%. Hence we requiré&X n. andYw, to
2 2

start the iteration procedure. We obtain these startingegahs follows: equation (5.3.108) gives

PN42WN, + QN 42WN,+2 = sz+2 (5.3.116)
2 2 2 2 2
fNZ+2 — PN+2WN,
= WN,42 = 2 2 2
2 qN-+2
2
and (5.3.110), with = &=, gives
WN,+2 = XN, WN. + YN, . (5.3.117)
2 2 2 2
Comparing (5.3.116) and (5.3.117) yields
PN2+2 fNZ+2
Xy, = —— 2 Yy, = — 2. (5.3.118)
2 qN-+2 2 qN-+2
2 2

We now know.;, V; for I = 1,2,..., %= and so (5.3.110) can be used to fing for I =
2,3,..., Y52 providedw, is known. We calculates; from (5.3.109). (5.3.113) allows us to

write wo, . .. ,wnz+2 iN terms ofw; by
2

N, +2

w=aqui+06 [=12,..., 5

(5.3.119)
When! = 1, we getw; = ajwy + 51, i.e.,a17 =1, 81 = 0.

Next, we formulate a recurrence relation fer, 5;. This is done by considering (5.3.113) and

(5.3.119) written forl — 1, i.e.,

wp—1 = a 1wy + Bi-1-
This can be used to eliminatg_; from (5.3.113) to give
w; = Xi_1(q_qwi + Bi-1) + Y1

Comparing this with (5.3.119) yields
N, +2

] = lelOélfl [l = 2, 3, ey B s (5.3.120)
N, +2
=X 1681+Y1 1=23,..., 5 (5.3.121)
Now, (5.3.109) and (5.3.119) combine to give
Ny+2
2
> o +8) =g
I=1
No+2
_ 2

=y =2 %:jf; b (5.3.122)
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So, to summarise the algorithm:

CalculateX;,V; (I = 1,2,..., &=) from (5.3.114) and (5.3.115)

Calculatery, 8 (I = 1,2, ..., ¥=2) from (5.3.120) and (5.3.121)

Calculatew; from (5.3.122)

Calculatew; (I = 2,3, ..., ¥2t2) from (5.3.110)

This algorithm was detailed using the equation dgy,; as an example, but it is suitable for all
our quasi-tridiagonal systems in section 5.3.9, and is cethod of choice to solve our matrix

equations.

5.4 Testing the code

Before applying our code to the particular problems we wgskdlve, we tested it against the
published results of Veronis (1968) and Moore & Weiss (1978Bhe former of these studies
considered nonlinear convection rotating abut a vertigad, aherefore, in order to test against
their work, we set) = 7 and try to reproduce some of the results. The latter studgeros non-
rotating convection and so could be used to check our codweifirit T'7a — 0. In both cases,
for a range ofRa and Pr, the Nusselt number was calculated (see section 5.5 for aitisf)
and for the same input parameters, we were able to calctlateame Nusselt number. For the
highestRa tested we differed slightly from the published results bathvelieve this is due to the

higher resolution we were able to achieve with our more modede.

To test the terms resulting from the tilted rotation veota,calculated the growth rate of solutions
with ¢ # 5 and compared it with the expected growth rate as calculagedub linear code
described in Chapter 3. As the rotation terms (wheappears) are linear, this is enough to check
the accuracy of the terms that result from the tilted rotatiector. We successfully verified a

number of cases.

5.5 Useful diagnostics

A number of quantities will be used to analyse the data weilftem our numerical code. This

section defines some of them and, if necessary, how to ctddilem.
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5.5.1 Mean flows

We are interested in the mean flows driven by our system. Meralefine mean flows to be the
horizontally averaged i.e., averagedyincomponents of horizontal velocity,andv (denoted by

an overbar):

1 L
u(z,t) = Z/o u(y, z,t) dy, (5.5.123)

1 (L
v(z,t) = Z/o v(y, z,t) dy. (5.5.124)

A convenient way to compute the mean flows is in spectral spadgs is done by taking the

Fourier transform of, or v and thenu, v is given by then = 0 mode.

The mean flows are largely time-dependent and so we will oft@tk with long-time averages of

them, any time averages will be denoted by angle brackets,

5.5.2 Nusselt number

As a measure of the effectiveness of heat transfer by thecoralection we use the Nusselt

number, a nondimensional number defined as the following rat

convective heat fluxt- conductive heat flux
Nu = s . (5.5.125)
conductive heat flux

Note, whenNwu = 1, there is no convection and heat transfer occurs purelytftr@onduction.
Also, the biggerNu, the more effective convection is at transporting heat. \Wéhwo write the
Nusselt number in terms of our nondimensional temperatartigbationd, which we solve for

in our numerical code. To do this, consider the nondimerdibaat equation given by

or

5 = =V —(u-V)T =V - (VT —ul), (5.5.126)

where the second equality is true becaWseu = 0.

Next, integrate over the fluid layer to give

1 Lor

1 (L g
— / — dy dz = / / V- (VT —uT)dydz = — — —wTdy, (5.5.127)
LJy Jo L 0o 0z

where we have used the divergence theorem, and taken thalrtorbe in thez-direction. Recall,

from (2.3.39) withTgg = 1 — z, we havel’ = 1 — z + 6, and hence

L
// dydz—l/ —1+@—w(1—z+9)d
0 32

:—l—i-%—w(l—z—kﬁ). (5.5.128)
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The total flux remains constant throughout the layer and scamechoose to evaluate it anywhere
in the layer, for example at the bottom boundaty={ 0). The right-hand side of (5.5.128) gives
the convective heat flux plus the conductive heat flux in tigerdlavhich evaluated at the bottom
boundary ¢ = 0) gives—1 + 59\2 0, sincew = 0 on the boundary. The nondimensional flux

due to conduction only is-1 (derivative of basic state temperature) and hence,

=1-Z . (5.5.129)

5.5.3 Kinetic energies

As a measure of the strength of the mean flows produced in gteraywe calculate the kinetic
energy ofz andw in two different ways, each one with a different interprietat They are defined

as follows:

1. KEg =3 [} (€(2,1)? dz

2. (KEg) = (4 [ €

where¢ is the variable, or v and again-) denotes a time-average.

The first definition is a measure of the mearg ppositive and negative contributions will cancel,
giving a guide to the systematic nature of the flow. The seawithition gives a measure of the
variability of £; since& can be positive or negative, squaring first ensures there dsincellation
of £&. By comparing the sizes d{’E@ and (KE5>, we can assess how systematic the flgvis.

If a mean flow has a similak' £z, and (K Eg), then it will be considered systematic. If, however,
(K Eg) is much larger thanKE@, thené will be considered to be highly fluctuating and not very
systematic. In Chapters 6-8, we use the term systematiodrgly, and its meaning should be

taken to be as just described.

It is also informative to consider the total kinetic enerdyrm perturbations, this is given by

1 L
KEperi(t) = i/o /0 (u(y,z,t)2 + v(y,z,t)2 + w(y,z,t)z) dy dz. (5.5.130)

5.6 Extending the method to solve the MHD equations

We have detailed the numerical method we use in our nonlicagde for the purely hydrodynamic

equations. To extend the method to solve for the MHD equatisnstraightforward. The
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momentum equation (5.2.1) is augmented by the Lorentz fisee section 2.1), this is just an
extra term in the equations and provides no problem for theamical method. In addition, we
have to solve the induction equation (2.3.54) subjed¥toB = 0. This can also be solved in a

similar way to the equation solved in the purely hydrodyraoase, as we outline below.

Analogous to the way in which we introduced the streamfamctor the perturbation velocity
field (cf. equations (5.2.5)), we introduce a flux functidfy, z) for the perturbation magnetic

field so that

0A 0A
B=(B .6.131
(50 -5%). (56131

which allows us to define the current= V x B = (j, o aaByl> wherej = —V24 is thez-

component of the current.

With this, thexz-component of the vorticity equation (5.2.17) when a hartabmagnetic field is

present, becomes

%(;) Prv2w = PrTas (cos puy+sin ¢uz)—|—RaPr? +J(Y,w)—QCPr(J(A,j)— g—] sin av),
Y
(5.6.132)
the temperature equation (5.2.18) remains the same, i.e.,
00 29 o o
—T,— 6.1
o~ VO=J.0) - oy (5.6.133)

Thez-component of the momentum equation (5.2.19) is augmentéaedlorentz force to give

ou
ot

oY oY

 PrV2y = P’I“TCLQ (COS gb— + slnqb ) + J(T;Z)a u)—

o dU

£ + QCPr (aa—zl sina — J(A, é1)> . (5.6.134)

1) is obtained fromw by solving the same equation as in the hydrodynamic casg, i.e
V2 = —w. (5.6.135)

The evolution of the magnetic field is given by equation &43.i.e.,

88_]? =V x [(Ups +u) x B+ (u x Bgg)] + (V’B, (5.6.136)

with B as in equation (5.6.131). By taking thecomponent of this equation, we obtain an

equation forB;

0By
ot

ou HA dU
’B; = —sina — —— — J(4, B .6.137
Cv 1= 8y S & ay dz J( )+J(1/}7 1)7 (56 3)
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and by taking thex-component of the uncurled induction equation (5.6.136¢, abtain an

equation forA

%—’3 — (VA =T, A) + % sin av. (5.6.138)
Equation (5.6.132) can be written in the form
‘Z—j — Prv2w = Fgg (5.6.139)

where

Frag = PrTas (cos pu,, + sin pu,) + RaPr? + J(¢Y,w) — QCPr(J(A,j) — g—] sin «v),
Y Yy

and can therefore be solved in the same way as describedtiomsgS.

Likewise, equation (5.6.134) can be written in the form

% — Prv2u = Hpgg (5.6.140)
where
Hipag = PrTaz (cos qﬁg—f + sin gbg—f) +J(,u) — g—f% + QCPr (88—[;1 sina — J(A, B~1)>
and is also solved by the same method.
Rewriting (5.6.137) and (5.6.138) as
0B, ou | 0A dU <
o (V?B; = Lynag WhereLy,,, = 6_ysma — 8_yE — J(Au) + J(¢, By),
(5.6.141)
A
%—t — (V%A = Koy WhereK,,, = J(1, A) + g—f sin a, (5.6.142)

we see that these equations are also of the appropriate forimplementing the numerical

method of section 5.3.

Therefore, we have shown that the numerical method derimesection 5.3 for the purely

hydrodynamic system can easily be extended to solve thdieqs@f the MHD system.

5.6.1 Boundary conditions

In addition to the boundary conditions from the hydrodynasystem, we impose the following
magnetic boundary conditions:

B
A=0, % =0, onz=0,1, (5.6.143)
z

derived from requiringBs = 0 and% = 0 on the boundaries (see section 2.3.1).
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5.6.2 Testing the MHD code

To check the accuracy of our MHD code, we first tested it agains hydrodynamic nonlinear
code (introduced in sections 5.2 and 5.3). We&get 0 and successfully reproduced a number of
results. To test the linear magnetic terms, we checked tivethrate against the expected growth
rate as calculated from our linear code and found good agmeerrinally, we tested the full code

against some of the nonlinear results in Arter (1983) antbepced them successfully.

5.6.3 Useful diagnostics

In addition to the useful diagnostics from section 5.5, wéngethe full magnetic energy as

follows

1 1 L
ME = QCPT’E/ / [(B1(y, z,t) + cos a)2 + (A.(y, z,t) + sin a)2 + Ay (y, z,t)Q] dy dz
o Jo

(5.6.144)
and also the magnetic energy in the magnetic perturbati®ns a
1 ! L 2 2 2
MEpert: Q(PTE [Bl(yazat) +Az(y> Z>t) +Ay(y> Z>t) ]dde (56145)
0o Jo

5.7 Extending the method to solve the anelastic equations

The nonlinear anelastic equations for our system as givef2l#/142)-(2.4.144) contain-
dependent reference state quantities. As a consequendgspftie method for solving the
nonlinear anelastic equations is more involved than thenatetlescribed in sections 5.3-5.6,

for the nonlinear Boussinesq equations. We outline the agetised in the anelastic case here.

First, consider

V-(pu)=0 (5.7.146)
and so
ov 0
— + —(pw) = .7.147
Pay + 55 Pw) =0, (5.7.147)

where we are again assuming all variations with respect: teanish. Now, letpu =

(ﬁu, g—f, —3—15) , Wherey is our streamfunction and then (5.7.147) is automaticaltisBed. This
gives

1 1
v = ja—w and w = —ja—w. (57148)
p 0z p Oy
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The vorticity is then given bw = V x u = (w, u;, —uy), where

__19% 0 (199
p Oy? 82 p Oz
= __V2¢ - — <1> oy (5.7.149)
p) 0z
With this, thez-component of the vorticity equation (obtained by taking turl of (2.4.142))
becomes
ow 9 1 1 .
v Prviw ==J(¢,w) — w(vy + w;) + RaPrsy, + Ta2 Pr(cos ¢u, + sin pu.)
p
Prdp Ow
5 dz ( (vyy + wyz) — 9 2(vyy + "‘UZZ))

Prd’p Pr (dp 2
‘(?@7(%) et )

1
=—J(¢¥,w) — w(vy + w;) + RaPrs, + Ta%Pr(cos Puy + sin pu, )
p

Prdp (1 2 d (1dp
+ = <§wz - g(”yy + Uzz)) Pr "7 <_d_> (v +wy).  (5.7.150)

Thex-component of the momentum equation (2.4.142) becomes

1
ou 1 Prdpou Ta2Pr oy . o
— Prvy = - R == == 7.151
5 Vou = ﬁJ(zp,u)—F 5 dzaz+ > (cos¢ay+sm¢az> (5.7.151)
and the entropy equation (2.4.144) is written as
0s 2 1 ds 1 dT 9s
I ;V =) — et e
0 ou\? ou\? 9 4, o\
RQT <<6_y> + <£> + (U)y + Uz) + g (U)Z — U)Z’Uy + Uy) = G,
(5.7.152)

where all quantities with an overbar are taken to be the eafar state quantities given by

(2.4.140) and (2.4.141) in Chapter 2.

Equations (5.7.150) and (5.7.151) are of the same form as Bloissinesq counterparts, i.e.,
they are of the forn'% — Prv2¢ = RHS. Therefore, we can use the method described in section
5.3, to solve these equations. The only difference is there,hwe will discretise space in the

z-direction by using Gauss-Lobatto (GL) points, i.e.,

) — 1) .
2 = cos (%V _)1 ) forj=1,2,...,N,. (5.7.153)
The reason for changing to GL points is that it makes solvhey éntropy equation (5.7.152)
easier, as we shall see next. Equation (5.7.152) h}amaltiplying the second term on the left-

hand side and since this factor is a functiorzpfve have to treat this equation in a different way
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to the equation fo# in the hydrodynamic case, (5.2.18). Inspired by DeRosalR0fe solve
equation (5.7.152) in 'semi-spectral’ space, that is, spem y but physical inz. To do this,

consider equation (5.7.152) written as

05 - ~
——Ls=G 5.7.154
where a ~’ denotes an FFT, e.g5 = FFT(s) and wherel, = %(CDD + m?). CDD is the

scaled Chebyshev differentiation matrix used to calcutksvatives in real space. Trefethen
(2000) gives a simple form for constructing such a matrixigssL points - it is for this reason

we switch to GL points from the original collocation pointe note though, that CDD is a dense
matrix and so, unlike the differentiation matrices resigitirom the recurrence relation of spectral

coefficients, inverting the matrix is a more computationaitensive task.

Once transformed into 'semi-spectral’ space, we can apgmysame Crank-Nicolson implicit
scheme to the left hand side and the explicit Adams-Baghtorthe right hand side as we did

before (see section 5.3.8), to give

grtt—gn (Ll —Lsn\  3G" — G}
_ — 5.7.155
- (B - (67159
or
At - At - At - -
(1 - 7L> gl = (1 + 7L) S+ (3G - G, (5.7.156)
which can be written ad3"*! = B where
A=1- %Z (5.7.157)
and
At - At~
B= (1 + 7L) S+ S <3G” . G’H) . (5.7.158)

This matrix equation is then solved using a LAPACK routine &) decomposition (see e.g.,

Andersonet al. (1999)).

In a similar way, equation (5.7.149) is also solved in 'seméctral’ space owing to th%

multiplying the V2. Equation (5.7.149) can be written as

"t = At (5.7.159)
where
1 o d (1
A} = —=(CDD+m?) — — (=) CD. (5.7.160)
p dz \p

This matrix equation is solved using Schur decompositi@talse, as Peyret (2002) explains,
Schur decomposition leads to better conditioned matrioegduations of the form (5.7.149).
Again, the Schur decomposition is performed using a roufioen the LAPACK library

(Andersonet al. (1999)).
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5.7.1 Testing the anelastic code

As was done for the Boussinesq codes, we tested the lineattgrates of the nonlinear anelastic
code against those predicted by the linear code developatidonvork in Chapter 4 and found
good agreement. We also performed some simulations to ¢hatkhe anelastic code recovered
the results of the Boussinesq code in the appropriate lihit=( 0) and again found good
agreement. The only terms which are not tested by the twoksheentioned so far, are the
terms that appear in the equations only whe# 0 and are nonlinear. On inspection of equations
(2.4.142)-(2.4.144), we see that the only terms that fadl this category are the viscous heating
terms in equation (2.4.144). One way to test these termsiisfgose a shear flow. For example,
we force the momentum equation, (2.4.142), andilet U(z)ex ands = S(z). In this case,

equations (2.4.142) and (2.4.144) reduce to

R U ) (5.7.161)

" pd2z  pTdzdz  RaT

2 7 2
148 1 dTdS 0 <dU> (5.7.162)

B dz

respectively, wherd’(z) is our imposed forcing term. We have also takém = 0 as the terms

Prmcos(nz)

due to the rotation have already been tested. If we chdose — 507

(5.7.161) becomes

then equation

d?U N m#  dU _ mcos(mz)
A2z~ (14+6z)dz (14 62)m’

(5.7.163)

sin(7z)
(1+6z)™

which can be solved for the general solut%ﬁ = +C. Imposing% =0onz=0,1
givesC' = 0. With this expression fo%, we can solve equation (5.7.162) f8in MATLAB and
check it against obtained wherf’ is imposed in the nonlinear code. We successfully verified a

number of cases.

5.7.2 Useful diagnostics

Mean flows are calculated in exactly the same way as desdritsedttion 5.5. But, in the anelastic
equationsy is a function ofz, and so it must be explicitly included in the definition of #ieetic

energies. For all cases studied in this thesis, we use tlosvfol definitions:

Epert = 2L/ / u(y, z,t)? + 1. (y, 2, 1) +¢y(y,z,t)2] dy dz, (5.7.164)

KE@g = /0 pl€(z, 1)) dz, (5.7.165)
1t

<KE5>=<§/O pé(z,t)* dz,) (5.7.166)
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where{ is the variable: orv. K E 5 and(K E¢) have the same interpretation as in the Boussinesq

case, i.e., as described in section 5.5.3.

5.8 Summary

Following the guidance of Peyret (2002), amongst othershaxe constructed and tested an
efficient, nonlinear, pseudospectral numerical code teesthle equations derived in Chapter 2.
In section 5.2, we reformulated the governing equationshabthey involved a streamfunction
and the vorticity. Using the purely hydrodynamic system asaxample, we then detailed the
numerical algorithm used to solve the equations. The me#sstimes periodicity in the-
direction and expands the variables as Fourier series’isndihection, whilst in thez-direction,
the variables are expanded as Chebyshev series’. Dedsgaiie computed efficiently in spectral
space and nonlinear products are formed by multiplying tteyethe relevant quantities in
physical space. Sampling the equations on a discrete dadsathem to be written as matrix
eqguations. Furthermore, the matrices are of quasi-traiagstructure, meaning that they can be

inverted efficiently using an algorithm courtesy of ThuZ§f).

Whilst, the majority of this chapter dealt with the purelydngdynamic system, section 5.6 gave
details on how to extend the code to solve the equations dfithie system. This was a relatively
straightforward task as the extra terms and equationstirggfitom the presence of a magnetic
field can be solved using the same method. However, applyisgniethod to the nonlinear
anelastic equations provided more complications, ariberause of the dependence of the basic
state orz. Section 5.7 detailed a solution to these complicationsobsirsy some of the equations

in 'semi-spectral’ space.

All three numerical codes were tested against other worklinear codes and each other; good
agreement was found in all cases. Successful construatidrvexification of our codes allows
us to proceed with confidence and examine the systems in tiimear regime, in particular, we
can now investigate mean flow generation in our differentesys. The following three chapters

present the numerical results obtained for the Boussinedqm@elastic systems using these codes.
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Chapter 6

Nonlinear Hydrodynamic Convection

6.1 Introduction

This chapter considers the nonlinear evolution of the Wemgoverned by equations (5.2.17)-
(5.2.20). We emphasise that these equations are two-diomahsn the sense that they only
depend ony and z, however, all three components of the flow are included. &mean flows
result from nonlinear interactions, by retaining the noadir terms in the governing equations we
can investigate the mean flows driven by the system. As discus Chapter 1, section 1.4.3,
there have been a number of studies of mean flow generatianirection. This chapter aims to
add to these studies by focussing on the effect of a tilteatiost vector, the Prandtl number and a
thermal wind on the mean flows driven. In this chapter, we iclemssolutions to the Boussinesq,
hydrodynamic system, and later we extend the work to exathm@nelastic and MHD systems
(see Chapters 7 and 8 respectively). Owing to the complexitiie governing equations we are

required to solve them numerically; to do this, we employalgorithm described in Chapter 5.

6.2 Numerical results

Before considering the mean flows driven by the system, weskiyate some more general
properties of the convection. In this chapter, we consider distinct cases, (iY, = 0, i.e.,
there is no thermal wind and (iiJ;, # 0, i.e., there is a thermal wind, and in both cases we
investigate the effect of different parameters on the systet, unless otherwise stated, we fix the

rotation rate by settin@d'a = 10° and the size of the computational box by setting- 5.
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6.2.1 No thermal wind

We begin by setting’, = 0 and hence there are no thermal wind effects to consider.vésiigate
the effect of a tilted rotation vector, i.e., the case whagerbtation vector is oblique to gravity,
we fix Pr = 1 and increase?a for three differentp: (i) ¢ = 7 (vertical rotation), (i)¢ = 7 (a

layer at45°), (i) ¢ = & (a layer aB0°).

We find that asRa is increased, the solutions progress through a series fefrfit types of
solution. This progression is best depicted by a regimerdiagas shown in figure 6.1, where
each symbol represents a different type of solution. Thesgehres represent steady solutions,
blue circles represent oscillatory or periodic solutiogieen triangles represent quasi-periodic

solutions (QP), and light blue stars represent chaotidisolst
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Figure 6.1: Regime diagram for solutions at fixedand Ra for Pr = 1, ¢ = 5, 7 and §.

Red squares represent steady solutions, blue circlesseyirperiodic solutions, green triangles
represent quasi-periodic solutions and light blue stgreesent chaotic solutions. The results are

plotted against (ajka, and (b)#-.

Plot (a) shows the type of solution that is found for diffargalues of Ra, and plot (b) shows
the same but plotted againﬁ‘ic where Ra, is the value at which convection onsets in a box of
length L = 5. For reference, here?a, = 2.13 x 10* for ¢ = %, Ra. = 3.23 x 10* for¢ =
andRa. = 4.61 x 10* for ¢ = §- From the diagrams we see that, for all valuesgpaftudied,

the solution is steady when it first goes unstable, theR@ss increased, it undergoes a Hopf
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bifurcation and becomes periodic. Further increasd?ofleads to another (secondary Hopf)
bifurcation giving a QP solution before the solution becernbaotic at even largdRa. Notice
wheng = %, the solution returns to a steady state, at large enduglThis is examined in more
detail in section 6.2.4. The regime diagram also highlightt, as the rotation vector is tilted
from the vertical, a higheRa is required for growth, i.e., decreasigghas a stabilising effect on
the system. Also, the larger the tilt from the vertical, theafier the range oRa over which the
bifurcations occur, that is, the solution becomes chadtlovaer Ra. For the untilted case, the

solution remains steady unfita > 10°.

6.2.2 Transition to chaos

To analyse the different types of solution that occur foltadirotation vector more closely, we
choose to focus on the case where- 7. Figure 6.2 shows plots of the time series of the Nusselt

number,Nu, and the kinetic energy in the perturbatiofSEper, for different Ra.

In (a), Ra = 40000 (1.24Ra.) and the solution has settled into a steady state; inRb)=
50000 (1.55Ra.) and the solution is oscillating with a distinct single pekiin (c) Ra = 63000
(1.95Ra.) and the solution is still oscillating but now there is mdnarn one associated period -
we call this solution quasi-periodic. In (@a = 75000 (2.33Ra.) and the solution has become
chaotic. In other words, the system has undergone a numbwfuo€ations en route to chaos.
This transition to chaos can be viewed in an alternative wajlobking at phase space and so-
called Poincaré sections (see Guckenheimer & Holmes }888etails). Figure 6.3 shows plots
of the solutions in phase spacé bz, K E5, Nu) for the sameRa as in figure 6.2, wher& E; is
the kinetic energy im and K E; is the kinetic energy im, as described in section 5.5. Alongside
each phase space plot is a cut of the phase space, througbtartoralue ofK £;. For the steady
solution atRa = 40000, the Poincaré section is a fixed point. In (b) we see thelatmil solution
cuts the plane in two places, indicating that the solutiesuradergone a Hopf bifurcation. A#a

is increased to approximatea = 63000, the solution undergoes a second bifurcation to a torus
which is characterised in the Poincaré section by the tweet loops. Subfigure (d) displays
the phase space for the case whgnis increased td5000, a chaotic solution, which results in
a Poincaré section with no obvious pattern. This route tmshs known as the Ruelle-Takens-

Newhouse route to chaos, after the seminal work of Newhetiak (1978).
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Figure 6.2: Time series of Nusselt numbeéf) and kinetic energy K Epery) for the case when
Pr =1,¢ = 7 and in (a),Ra = 40000, in (b), Ra = 50000, in (c), Ra = 63000, and in (d),
Ra = 75000.

6.2.3 Nonlinear solutions

It is informative to visualise the flow in each of the soluti@gimes seen in section 6.2.2. To do
this, we plot contours of(y, z) at a snapshot in time (see figure 6.4). In (a), we have theystead
solution and the streamfunction appears as regular caomnectlls. Clearly evident is the tilted
nature of the rolls, choosing to align with the rotation wecas in the linear theory (see Hathaway
et al. (1980)). In (b), we consider the QP case, now the streanimd less regular in shape
and cells have merged to form larger structures, but this sitill apparent. ByRa = 75000, (),

we have reached the chaotic regime and this is reflected ifotheof the solution. WherRa is
increased further t®a = 2 x 10°, the solutions become highly chaotic, see figure 6.4 (d).ifga

we notice that larger scale structures are forming.

Figure 6.5 shows contours of the total temperatiite; 1 — z + 6, corresponding to each of the
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Figure 6.3: Phase space and alongside it a Poincaré séatieach of the cases in figure 6.2. In

(a), Ra = 40000 and the section is taken &t E£; = 0.1307, in (b), Ra = 50000 and the section

is taken atK £ = 6, in (c), Ra = 63000 and the section is taken & F; = 100 and in (d),

Ra = 75000 and the section is taken &t E; = 200.



Chapter 6. Nonlinear Hydrodynamic Convection 132

1 4

o

-8
0
0 5
Yy Yy
@ (b)
1 1 20
0.8 0 0.8 .
0.6 _10 0.6
N N
0.4 0.4 —20
0.2 —20 0.2 —40
0 0
0 1 2 3 4 5 0 1 2 3 4 5
Yy Yy

© (d)

Figure 6.4: Contours of the streamfunctiofy, z) in a settled state, for the case with = 1 and

¢ = 7. In (@), Ra = 40000, in (b), Ra = 63000, in (c), Ra = 75000 and in (d),Ra = 2 x 10°.

cases in figure 6.4. In (a), the fluid is largely hot at the bot{oed) and cooler at the top (blue)
with little mixing between the boundaries. A& is increased, the hotter and cooler fluid start to
mix to make the interior of the fluid layer more isothermal itk thermal plumes are evident,

as seen in figure 6.5 (b) through (d).

By consideringT’, the horizontally averaged temperature (see figure 6.6)saeethat asia is
increased, the fluid motions are acting to make the intefitmefluid closer to being isothermal.
In all cases, despite mixing, we still have a boundary layeragh boundary due to the fixed

temperature conditions.

6.2.4 Large-scale solutions

As commented on in section 6.2.1, when= £, the solution enters a second steady regime at

large Ra. If we examine the dependency &fu on Ra for one of these example®¢ = 1,
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Figure 6.5: Contours of the temperatréy, ~) after the final time step for the case with = 1
and¢ = 7. In (a), Ra = 40000, in (b), Ra = 63000, in (c), Ra = 75000 and in (d), Ra =
2 x 10°.

¢=7% Ta= 10°), see figure 6.7, then there are some significant points ta ftst, for small
Ra, Nu increases withRa before settling to a scaling law with less rapid increasecoSely,
betweenRa = 6 x 10° andRa = 7 x 10° there is a jump inV, this jump coincides with the
change in regime from chaotic back to steady. It appearscagjththe system has found a more

efficient mode of heat transfer (high&fu) in a steady regime.

Comparing contour plots ap from the two different steady regimes highlights a key défece

- the scale of the solution (see figure 6.8). The length scatled second steady regime is much
larger, in fact, it is approximately the size of the domaig, only one positive and one negative
convection cell fit into the box. It is also noticeable tha tlit of the rotation vector is evident at
lower Ra, where the convection rolls align themselves with the rotatvector, whereas, for the

large-scale solutions this alignment has disappeared.
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Figure 6.6: Time-averaged, mean temperature profilé®r the cases shown in figure 6.5. The
solid line represent&a = 40000, the dashed line represena = 63000, the dot-dashed line
representska = 75000 and the dotted line represem® = 2 x 10°. IncreasingRa acts to make

the interior of the fluid layer more isothermal.
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Figure 6.7: Nusselt numbenu) against Rayleigh number@) for Pr = 1, ¢ = ¢, Ta = 10°.
As Ra is increased the solution changes regimes. In particulaRaa= 6 x 10° the solution
is chaotic but atRa = 7 x 10° the solution is steady. This change in regime coincides @ith

increase inVu.

The temperature]’ = 1 — z + 6, corresponding to one of these large-scale solutions &rsho
in figure 6.9 (a), alongside the profile of the horizontal ager of the temperature in (b). We see
that the system has reached an almost isothermal stateg theshiighly efficient convecting state
it has been able to achieve. One can see that the bulk of thedlisothermal but there exist two
thin boundary layers. Chini & Cox (2009) and Hepworth (20fbtind similar, steady, large-scale

solutions in non-rotating, two-dimensional RayleighrB&l convection aPr = 1.
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Figure 6.8: Contours af(y, z) for steady solutions taken from two different steady reginma

a) Ra = 40000 and in (b)Ra = 8 x 10°. The largerRa solution exhibits a much larger length

scale and the cells are not aligned with the rotation vea®they are in (a).

1 1

0.8 0.8 0.8
0.6

06 06

04w

0.4 0.4
0.2 0.2

0.2

0
0O 1 2 3 4 5 0
y 0 0.5 1

(a) (b)

Figure 6.9: (a) Temperature as a functionyaindz. (b) Horizontally averaged temperature as a
function of 2. In both casesRa = 8 x 10°, Pr = 1, ¢ = §, Ta = 10°. The bulk of the fluid is

isothermal except for the two thin boundary layers.

6.2.5 Decreasing’r

We now decrease the Prandtl number, frBm= 1to Pr = 0.1. In doing so, the critical Rayleigh
number of the system is also decreased, i.e., instabilit/iseat a lower Rayleigh number. As
with Pr = 1, we find the solutions progress through a series of statescagareaseRa, as
indicated by the regime diagram in figure 6.10. As before sipghres represent steady solutions,
blue circles represent periodic solutions, green trisgdpresent quasi-periodic solutions (QP),

and light blue stars represent chaotic solutions. Here we &igo characterised a different type of
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Figure 6.10: Regime diagram for solutions at fixe@nd Ra for Pr = 0.1, ¢ = 3, 7 and §.
Red squares represent steady solutions, blue circlesseyirperiodic solutions, green triangles
represent quasi-periodic solutions, black dots relaratirillations and light blue stars represent

chaotic solutions. The results are plotted againsfi¥a)and (b)}%.

solution which we describe as relaxation oscillationss¢hsolutions are indicated on the regime
diagram by black dots. Relaxation oscillations are chaiyfie solutions but where bursts of
energy occur intermittently. A time series of the Nusselnber and kinetic energy of one of
these solutions is shown in figure 6.11 (a). In this relaxatecillation state, as the convection
gets more vigorous (highéyw) a larger mean flow is driven, this is seen in figure 6.11 (bxeHe
we have plotted the mean flovis (blue) andv (red), we see that the peaks in the energy of
the mean flows correspond to dipsMw (cf. figure 6.11(a)). So, as the convection gets more
vigorous (highetVw) it leads to larger mean flows which act to inhibit the convetand this is
matched by a decrease NMu. The process repeats, each cycle resulting in the "burenergy
we see. Such bursting solutions have been seen in studiesedéation in other systems, for
example, Brummell & Hart (1993), Rotvig & Jones (2006) an@édet al. (2012) in annulus
models, and Grote & Busse (2001) in a spherical shell gegmetr

By plotting the phase spacdsF;, K E3, Nu), and Poincaré sections for a relaxation oscillation
solution (see figure 6.12) we see that the relaxation osoifiaolution does not lead to a distinct

pattern in phase space, it is just a chaotic solution but @thier properties as described above.

Returning to figure 6.10 we see that,/as is increased, the solutions move from being steady to
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Figure 6.11: (a) Time series of Nusselt numbah and kinetic energy K Eper) for the case
whenPr = 0.1, ¢ = 7 andRa = 70000. (b) shows plots of the kinetic energy in(blue) andv

(red) against time for the same case.
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Figure 6.12: Phase space and alongside it a Poincaré rséatithe relaxation oscillation case

shown in figure 6.11. The cut through phase space is tak&ngt = 300.

periodic to QP to chaotic to relaxation oscillations, buaddlition, for largefza, when¢ = 7, the
solution goes chaotic again, and wher= £, the solution goes steady again. As in fhe = 1
case, the largéia steady solutions that occur when= % appear as large-scale structures and
analysis ofNu shows that the convection is more effective at transpottieat for these steady
solutions. Also as in thé’r = 1 case, the large-scale solutions occur when the solutiong mo
from being chaotic to being steady, we do not present theysisdor Pr = 0.1 here, as it is the

same as in thé’r = 1 case.
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Comparison of Pr = 1 with Pr = 0.1

The progression through a series of different types of &wilis common to bothPr = 1 and

Pr = 0.1. However, whenPr = 0.1, we observed an extra type of solution in which relaxation
oscillations are observed, these were not found when= 1. WhenPr = 0.1, the bifurcations
and transitions occur at lowdta than whenPr = 1, this is to be expected given that the critical
Ra is lower for the smalletPr. As the rotation vector is tilted from the vertical, the icdl

Ra is increased in both cases. Unlike in the = 1 case, whenPr = 0.1 and¢ = 7 the
solution becomes periodic at relatively lddu. When¢ = %, both thePr = 1 and Pr = 0.1
cases experience a regime where the solution returns t@adysstate and large-scale flows are
produced. These are met with an increased efficiency of teeafer by convection, indicated by
the largeNwu that occurs with such solutions. TH& = 1 streamfunction close to onset is of a
smaller length scale than thiér = 0.1 streamfunction close to onset. However, in both cases, as
Ra increases, the scale of the solution also increases. Asixheahe convection acts to make
the layer more isothermal in the interior and near the boueslawo boundary layers form. This

is seen in both thé’r = 1 and Pr = 0.1 cases.

Robustness of large-scale solutions

We have seen that, when= Z andT'a = 10°, the solution returns to a steady state (after being
very time-dependent) and this has been found to occur Whes: 1 and whenPr = 0.1, albeit

at different Ra. In addition to the parameters already discussed, we haestigated whether
similar large-scale solutions exist for other parametesshown in table 6.1. Whilst it is difficult
to draw definite conclusions from this data, it does appeat; the smallerPr and ¢ are, the
more likely large-scale solutions are to exist, and periistigherTa. For example, large-scale
solutions are found foPr = 1, Ta = 10°, Ra = 7 x 10° and¢ = § (run 2), but if we increase

¢ (run 12) then we are no longer able to find any large-scaletisnki Furthermore, iff’a is
increased tal0%, then the only large-scale steady solutions that have beamdfoccur when
Pr =0.1. For Pr = 1, the largest rotation rate at which large-scale solutia®&teen found is

Ta =1.5x 10°.
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Run| Pr | Ta Ra 1) Steady? Y/N
1 ]01|10° 1.5 x 10° =3 x 10° | Z

2 |1 |10° 7x10°-2x105 | Z Y
3 ]01|10° 3x10°=5x10° | & Y
4 01| 1.2x10° | 3x10° z Y
5 ]01|2x10° |3x10° z N
6 |1 |15x10°|15x10° z Y
7 |1 |2x10° | 15x10° z N
8 |1 |15x10°|9x10° z Y
9 |1 [2x10° |9x10° z N
10 |1 |10 1 x 106 x Y
1 |1 | 10° 1 x 10° I N
12 |1 |10° 7% 10° Z—Z | N
13 |1 |[5x10° |9x10° 5 N
14 |1 |10t 107 z Y

Table 6.1: A table to show in which runs large-scale steadlytisns occur. Also shown, are runs
with parameters close to those runs which have large-soéléans but which are not found to

reach the highVu, steady states in which the large-scale structures arevause
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6.3 Mean flows

Having investigated some more general properties of cdioveave now focus on the mean flows
driven, as this is a primary aim of our study. As we saw in Chaftf convection is capable of
driving mean flows. The strength and direction of these flangoverned by the parameters of
the system. In particular, we are interested in the effefctsnall P and the tilted rotation vector
on the driving of these flows. The mean flows in th@ndy directions are denoted and v
respectively, and they are defined in section 5.5.1. One validracterise the size of mean flows
produced is from their energy. The kinetic energy in the nfamcan be described in two ways,
as explained in section 5.5.3. The different measures @tikirnergy can be used as a measure
of the “mean” of the flow or as a measure of the “variability”.e\Wsonsider the ratio of kinetic
energy in the mean flow to the total kinetic energy in the pbgtions, this will give us a measure
of whether the change in energy of the mean flow is a directtrebthe change in energy in the
perturbation. For example, do@sdecrease only becausedoes or is there some other process

affecting the mean?

6.3.1 Effect of¢p on mean flows

This section considers the effect ¢fon the mean flows driven by the system. Figure 6.13 (a)
shows plots of the ratio of the variability measure to toiakkic energy againska (top row) and
1«% (bottom row) for Pr = 1. The left column shows plots relating toand the right column
relates tov. Figure 6.13 (b) contains the equivalent plots for the meaasuare. From (a) and
(b), for Ra sufficiently above its critical value and fdta < 6 x 10°, we see that both measures
of the kinetic energy irv are largest whew = %, followed by ¢ = 7 and thenp = 3. At

Ra ~ 6 x 10°, ¢ = & the energy inv drops significantly, this corresponds to the valueiaf

at which the solution changes regime from chaotic back tadstécf. section 6.2.4) and after
this point,¢ = 7 gives the largest mean flows. This hierarchy suggests ttenw the chaotic
regime, the more the rotation vector is tilted from the waitithe bigger the flow driven in the
plane of the rotation vectdw), but when not in the chaotic regime, only small mean flows are

generated.

In general,u is smaller thans, this can be seen from figure 6.13; the kinetic energyuinis
an order of magnitude less than the kinetic energyvin We might expecti < v, asu is the
mean flow in a direction perpendicular to the plane in whiadh tiied rotation vector lies and

so it is free to fluctuate in all directions. Despite being mesmaller in magnitude, the mean
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measure of: still gives a larger mean flow for a tilted rotation vector quared to thep = 7
case. Comparing the size of the mean and the variability nneadors, we see that they are
similar, suggesting does not have too many fluctuations about zero and is a faidiematic
flow. However, comparing the size of the mean and variabifiasures fofri we find that the
mean measure is an order of magnitude smaller than the ilyiabeasure, indicating that

is highly varying in time. Forp = 7, the rotation vector is vertical, and there is no preferred
direction for the mean flow. Therefore, we expect the mearsuarean this case to be zero, as
flows in all directions should cancel on time-averaging.slifiin fact observed in figure 6.13 (b).
However, in the variability measure all contributions ageared first and thus, faf = 7, there

is a nonzero energy in the mean flow.

The kinetic energies are calculated by considering avertad®n over a long period of time, but
it is interesting to analyse the time-dependent natureeofittws. Figure 6.14 fixeRa = 2 x 105,
Pr =1 and displays: andv as a function o andt for ¢ = 3, ¢ = 7 and¢ = . Plotted
alongside the time-dependent plots are plots of the tineea@edz-structure of the mean flow.
Clearly, (v) is largest forp = % and thenp = 7, as we expect from the previous energy analysis.
We also see the more systematic nature fifr ¢ = 7 and¢ = %, itis mostly all of one sign in
the lower half of the layer, and mostly all of the other signhia top half of the layer, whereas,

is more variable, leading to a smaller mean. This is all cstast with the energy plots in figure
6.13. Forg = 7, we see that there is a significant mean flow driven, up to 66 ubit the flow
is in all directions and so averages to a small mean. If weagseover a long enough time period
then we would expect this mean to go to zero, as we saw in figiB(6). The vertical structure
of (u) and(v) is very similar forp = 7 and¢ = §. We see that, thé = § mean flows are of
the same form as thg = 7 flows but slightly larger in magnitude. When= 7 the form is very

different - but that is to be expected as we do not really exihere to be a mean flow at all when

6.3.2 Effect of Pr on mean flows

To investigate the effect dPr on the mean flows driven, we fix = 7. Plots of the ratios of the
different measures of kinetic energy in the flow to the tota¢kic energy are shown in figure 6.15.
From the plots of the mean measure of kinetic energy With= 0.1 and Ra = 1.5 x 10° (see
figure 6.15 (b), red lines), we notice a jump in the energysTuninp coincides with a change from
a chaotic regime, where bursting is evident, to a chaoticmegvhere no bursting is observed, the

flows are more systematic in the latter case and therefaexpiains the jump. When comparing
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Figure 6.13: Ratios of the kinetic energy inandv to the kinetic energy in the perturbations

calculated using, in (a), the variability measuf&'{¢)), and in (b), the mean measurE’E@),

for Pr =1, ¢ = 5 (blue, crosses)y = 7 (red, dots) ang = & (green, squares). In each case,

the top row shows plots of the ratios agaiist and the bottom row again%.
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the kinetic energies at differeiitr, the conclusions depend on whether we compare them at fixed
Ra or fixed }%. This difference is more important here, than when changirigr example,
since reducingr from one to 0.1 reduceBa. by approximately a factor of 10. For large enough
Ra, the energy as given by the variability measure (figure 6a)pi§ approximately the same for
both Pr. However, the mean measure is larger for = 0.1 and so the smallePr gives the
more systematic mean flows. For fixé%, the variability energy i is much larger forPr = 1

than for Pr = 0.1, which results inPr = 1 also having the larger mean measure even though
Pr = 0.1 is more systematic. In contrast, for large en%@g, the variability measure af is
similar for both Pr and so the mean measureiois largest forPr = 0.1 because thér = 0.1

flow is more systematic. As was seen in figure 6.13, by comgatie magnitude of the mean

and variability measures, it is again clear thas much more systematic than

In figure 6.16, we show some examples of mean flows as functibasandt, and their time-
averaged counterparts, for fixdth or }%. In (@) and (b),Ra and¢ are fixed butPr is varied.
From the time-dependent plots, tie = 1 flows appear to fluctuate more in time, this agrees
with the energy plots in figure 6.15. ThHer = 0.1 flows are more systematic, i.e., they have a

larger mean size even though their maxima and minima ardesntfa@n thePr = 1 case.

In figure 6.16 (c) and (d),%lc ~ 20 and¢ = % whilst Pr is varied. Now(v) is much bigger
when Pr = 1, than whenPr = 0.1, owing to the increased supercriticality. is also larger in
magnitude wherPr = 1, butw is highly varying in this case and so averages to a smallenmea

whenPr = 1, than whenPr = 0.1.

6.3.3 Reynolds stresses

Reynolds stresses are known to drive mean flows (see e.chamay & Somerville (1983),
Brummell et al. (1998)). To analyse their role in mean flow generation, wesitiar the mean
eguations. We obtain these equations by horizontally gimgathe momentum equation. The

y-average of the-component of the momentum equation (5.2.1) gives

ot 0% 10
i Pr@ = PrTa? sin ¢pv — 550 (6.3.1)
where we have used the fact that we have periodic boundaditems iny, w = —g—*; and

v = %. In a similar way, we take thg-average of thg-component of the momentum equation

(5.2.1) to give (as in Hathaway & Somerville (1986))

— 27
% — Pr% — _PrTa% sin ou — %W (6.3.2)
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Figure 6.16: Contour plots of the mean flows, ¢), v(z, t) and their corresponding time-average
(), (v) as afunction of. In (a),¢ = %, Ra = 2x10° andPr = 1, in (b),¢ = §, Ra = 2 x 10°
andPr = 0.1, in (c), ¢ = %, Ra ~ 20Ra., Ra = 7 x 10° and Pr = 1, and in (d),¢ = %,
Ra ~ 20Ra., Ra = 1.5 x 10° and Pr = 0.1.

By integrating over a long enough time period to assume agtstate, the time derivative can be

neglected, and this, after rearranging, gives

_ Pr  9%(v) 1 o,
Prii) — _ g 6.3.3
riw) Ta% sin ¢ 0z* Ta% sin ¢ 0z W), ( )
2 —
Prigy———lr 0@ L 0 (6.3.4)

Taz sin 10} 0z? Tas sin ¢ 0z
The quantitiesuw, 7w are the Reynolds stresses, they measure the correlatioredretthe
horizontal and vertical velocity components. With a tilrediation vector we might expect these
correlations to be nonzero. We note, from equations (6ah8)(6.3.4), that it is the-derivative
of (vw) that drives(u) and thez-derivative of (uw) that drives(v). Note also the dependence
of the equations orPr - we shall comment on this further shortly. In what followsy both
equations, we refer to the term on the left-hand side as tramriew term, the first term on the
right-hand side as the viscous term and the second term aiigtitehand side as the Reynolds

stress (RS) term.
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We saw before, in section 6.3.1, that whee= 7, (z) and(v) are small. By considering the RS
terms of equations (6.3.3) and (6.3.4) we see why. In figuté €a) and (b)¢ = 5, and in (c)
and (d),¢ = 7, for Ra = 2 x 10° and Pr = 1. In (a) and (c), the RS term driving is plotted,

ie., a(g“’) and in (b) and (d), the RS term drivingis plotted, i.e., (a %) The magnitude, as

given by the colour bar, is only slightly higher in the= 7 cases, yet, itis clear that in tile= 7
cases the correlations are much stronger, with a positind baident in the upper half-plane and
a negative band in the lower half-plane, resulting in théesyatic mean flows observed in figure
6.14. In contrast, in the = 7 cases the correlations are highly fluctuating in time suahttiey

average to a small value and hence there are no systematgcfliowertical rotation.
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Figure 6.17: Contour plots of the Reynolds stresses termmg'ny%(m) in () and (c) and
%(W) in (b) and (d). In all cases?r = 1 andRa = 2 x 10° but in (a) and (b)¢ = 5, andin
(c)and (d)¢ = }

Next, we analyse the size of the terms that contribute toitiesos the mean flows, given in (6.3.3)

and (6.3.4), for differenPr. To do this, we plot each of the terms in equations (6.3.3)(&r&14)
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as a function ot. From figure 6.18, we see that the dominant balance is bettheemean flow
term (blue) and the Reynolds stress term (red) with a lesdfigignt contribution from the viscous
term (green). We note that, fé*r = 1, the mean flow terms and the mean flows themselves are
identical, and so a solid blue line is not visible in figure&ds it lies beneath the black line.
We see that, the viscous term contributes: tmore than it does to, this is because the viscous
term affectingu depends om which tends to be larger than whilst the viscous term affecting

depends on.

Comparing thePr = 1 and Pr = 0.1 cases, we observe that the = 0.1 flows are bigger, even
though the correlations are smaller f8r = 0.1 than they are foPr = 1. However, the factor of
Pr in equations (6.3.3) and (6.3.4) means that for smaHllera larger mean flow can be driven
even for smaller Reynolds stresses. Similarly, Ehefactor in the viscous terms means thatas

is decreased, the magnitude and vertical structure of trenrfiews are increasingly dominated

by the Reynolds stresses.
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Figure 6.18: Top: each of the terms in equation (6.3.3) dgi. Bottom: each of the terms in
equation (6.3.4) driving. In both cases the terms are plotted as a functionfof Ra = 2 x 10°,
Ta = 10° and¢ = Z. The solid lines represeiftr = 1 and the dashed lines represéht = 0.1.

In blue are the mean flow terms, in red are the Reynolds seesstand in green are the viscous

terms. Also plotted are the mean flows (black) without fhefactor.

Figure 6.19 shows plots of each of the terms in equations3padd (6.3.4) but novy% is held

constant. As in figure 6.18;is dominated by the Reynolds stress term with a small caritdb
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from the viscous term. Againy is also dominated by the Reynolds stress term, but the \éscou
term for Pr = 1 is also significant. As explained before, this is due toeing much larger than

u. In this case, the Reynolds stress terms are much largdpifoe 1 than for Pr = 0.1 and

as a result the mean flows driven are larger, especialven when thé’r factors in equations

(6.3.3) and (6.3.4) are taken into account.
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Figure 6.19: Top: each of the terms in equation (6.3.3) dgvi. Bottom: each of the terms in
equation (6.3.4) driving. In both cases the terms are plotted as a functionfof Ra = 27Ra,,

Ta = 10° and¢ = Z. The solid lines represeiitr = 1 and the dashed lines represéht = 0.1.

In blue are the mean flow terms, in red are the Reynolds seesstand in green are the viscous

terms. Also plotted are the mean flows (black) without Ehefactor.

6.4 Addition of a thermal wind

We now study our system with an imposed horizontal tempezeguadient, i.e..l;,, # 0. As
discussed previously (see section 2.3.2), this resultstireamal wind that has vertical shear.
As mentioned in Chapter 1, specifically, section 1.4.3,dhesve been a number of studies
involving the interaction of mean flow and shear. For exanpgse Hathaway & Somerville (1986,
1987) and Saito & Ishioka (2011), however, these studieogmphe vertical shear rather than
having the shear result from a latitudinal temperature igrad Rashidet al. (2008), considered

hydrodynamic instabilities in a system with a latitudinaiviperature gradient, but they assume
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a stable stratification and have baroclinic modes. As far esitg aware, there have been no
published results of a nonlinear study of mean flows in adtifteane layer with thermal wind

shear.

Throughout this section, we fiX, = —0.5, since, from Chapter 3, figure 3.4, the cells with a
negativeT; have exaggerated poleward tilt and we might expect this lfpdreve mean flows. A

negativeT), is representative of bodies with hotter equators and cquaikes.

We begin by considering the effect 8}, # 0 on the nonlinear solutions. As we did f@}, = 0
(section 6.2.1), we slowly increaden from its value at onset. Initially, we lg®r = 1 and vary

¢, the results are shown in figure 6.20. In (a), we plot agaitisaind in (b), we plot againg%.

As Ra is increased the solutions undergo a number of transitiodseach type of solution is
represented by a different symbol. Red squares represatyssolutions, blue circles represent
periodic solutions, green triangles represent quasbgerisolutions and light blue stars represent

chaotic solutions.
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Figure 6.20: Regime diagram for solutions at fixednd Ra for T), = —0.5, Pr =1, ¢ = 5 and
¢ = 7. Red squares represent steady solutions, blue circlesseqtr periodic solutions, green
triangles represent quasi-periodic solutions and lightdtars represent chaotic solutions.The

results are plotted against (B, and (b)}%.

From Chapter 3, section 3.5.2, the critical Rayleigh nuntlerbe slightly altered when a thermal

wind is introduced - folPr = 1 andT, = —0.5, it is reduced. In this cas&a, = 2.05 x 10* for
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¢ = 5 andRa. = 2.57 x 104 for ¢ = T The regime diagram in figure 6.20 shows the solutions
pass through the same sequence of bifurcations as WhenO (see figure 6.1). However, with
T, = —0.5, the transition to chaos happens sooner (at a lower val%pf]%) for bothg = §

andg = 7.

6.4.1 Nonlinear solutions

To see the effect of the horizontal temperature gradienheridrm of the nonlinear solutions, we
plot contours ofy(y, z) (see figure 6.21). In (a)ka = 40000 and we display a snapshot of a
steady solution. The solution is similar in appearance & When7,, = 0; the convection cells
are aligned with the tilt. In (b)Ra = 55000 and the solution is oscillatory; in this case the cells
are confined to the bulk of the layer, with little flow close e tboundaries. In (cRa = 60000
and the neat convection cell pattern in (b) has been distoy Ra = 2 x 10°, the solution
lies well within the chaotic regime, this is reflected in thermchaotic streamfunction we see in
subfigure (d). Note a®a has increased the length scale of the solutions has alseaset, as

was the case whefi, = 0 (see figure 6.4).

Figure 6.22 shows the typical evolution of the temperatdir@ chaotic solution. In (a), contours
of the basic state temperatutEzs = 1 — z + T}y, are shown as a function gfandz. Clearly
evident is the temperature gradient in both the horizontal \eertical directions. In the basic
state, the hottest fluid is &, z) = (0,0) and the coolest fluid is g/, z) = (L, 1). Allowing
the system to evolve, and correcting the basic state by therpationd(y, z), to give the total
temperaturd’(y, z) = 1 — z + Ty + 0(y, z), gives the contours shown in (b), for one particular
case. Whilst it is difficult to interpret exactly what has ooed physically, we can see that there
has been a move to isothermalise the layer at fixe@o, whilst the gradient in thg-direction

still exists, the gradient in the-direction has been diminished.

A note on large-scale solutions

In section 6.2.4, we remarked on large-scale solutionswiea¢ found wher?}, = 0 (see table
6.1), where in some cases, the solutions somewhat unexglpeateturned to a steady state at
large Ra. We have not found any such solutions whgn= —0.5. Using theT;, = 0 large-scale
solution as an initial condition, and slowly increasifig|, we were only able to find large-scale
steady solutions at very smdll,|, i.e., |T,,| < 0.05. For larger|T,|, the solutions remained

chaotic.
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Figure 6.21: Contours of the streamfunctiofy, z) in a settled state for the case with- = 1,
¢ = 7 andT, = —0.5. In (@), Ra = 40000, in (b), Ra = 55000, in (c), Ra = 60000 and in (d),
Ra =2 x 10°.
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Figure 6.22: (a) Contours of the basic state temperaiffe,= 1 — z + T, y. (b) Contours of the
total temperaturd’(y, z) = 1 — z + Ty + 6(y, 2) after the system has been allowed to evolve in

time, for the case witlPr = 1, ¢ = §, T, = —0.5, andRa = 2 x 10°.

6.4.2 Interaction between convection and thermal wind shea

The thermal wind shear that balances the horizontal terhperagyradient has an associated

velocity which we use as our basic state velocity. The only-nero component of this velocity
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is in thex-direction and, from equation (2.3.59), is given by
TyRa (2 - %)

T (6.4.5)
Ta? sin ¢

Ups =

In our convecting system, as time evolves, two things capdap

1. The convection can put energy into the shear and increase i

2. The convection can extract energy from the shear and @it

To assess which of these occurs, we defipg,; = Ups + u to be the total velocity in the-
direction. We are then interested in the kinetic energy etttal mean flow, i.e K Ey, , , =

i fol(UBS + u)? dz. As before, we consider two measures of this, depending onwetake the

time-average. The mean measure is given by

1
KE(uu) = [ (Tas ¥ )P ds (6.4.6)
0
and the variability measure is given by
1
(K Eayyy) = 5(/ (Ups + u)? dz). (6.4.7)
0

With these new quantities, (6.4.6) and (6.4.7), and the areadrom section 5.5, we investigate

the effect of a nonzer®;, on the mean flows driven.

Figure 6.23 (a) shows plots of the ratio of the variabilityaseare to the total kinetic energy, for
different¢, againstRa (top row) andl% (bottom row) forPr = 1 andT,, = —0.5 and (b) shows
plots of the ratio of the mean measure to the total kinetieggnagainst the same quantities. The
left-hand columns of (a) and (b), show plotswand the right-hand columns, show plotswof
The solid lines represeft, = —0.5 and the dotted lines are thg = 0 results from before, for
comparison. We see that tdg = —0.5 flows are generally more energetic than The= 0 flows
(they have a higher variability measure of kinetic enerdg)a similar way, we observe that the
¢ = 7 cases are more energetic than ¢ghe- 5 cases. However, the largeris, the larger the
mean measure (at large enouBh) and so the largep is, the more systematic the flow. Note
that, as forT}, = 0, v is more systematic thamwhen a thermal wind is present. Notice also that,
unlike in theT, = 0 case, whem = 7, a non-zero mean flow is driven. This is because of the

basic state shear flow in thedirection.

Figure 6.23 (c) plots the mean and variability measurek 6%, . . as given by equations (6.4.6)

total

and (6.4.7) againsRa (top row) and}% (bottom row). The dashed lines represent the energy

in Upg, i.e., the energy inu at¢ = 0, and so we can assess whether the shear is increased or
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®)

Figure 6.23: Ratio of the KE in the mean flows to KE in the perturbations gkited using (a) the
variability measure and (b) the mean measure. The solid bme for7,, = —0.5 and the dotted lines
are forT, = 0. In (c), the ratio of the KE ini.,,; to total KE is presented with dashed lines corresponding

to the KE inUps. In all casesPr = 1, and the blue lines corresponddo= 7 and the red lines tg = 7.
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decreased over time. In this case, for botlthe mean measure gives an increase in the shear -
this means there is less energy available to putirdod hence could explain why, for= %, v

is smaller forT}, = —0.5 than wheril, = 0.

Now let us consider the energy in the mean flows when 7 and the Prandtl number is varied,
the results are shown in figure 6.24. In (a), is the varighilieasure of the energy in the flows and
in (b), is the mean measure of the energy in the flows. Againseecthat thd’, = —0.5 flows
are generally more energetic than tfig= 0 flows (larger variability measure). To compare the
different Prandtl numbers it is important to consider thitedénce between fixeika and fixed
RR—C‘LIC, because of the difference Ru,. betweenPr = 1 andPr = 0.1. For fixedRa, the Pr = 0.1
flows are more energetic than féh = 1, and are more systematic. This resultgihaving the
largest mean wheRr = 0.1, which might be to be expected sinf&,. decreases witt¥r, and
so for fixed Ra, the system is more supercritical {6 = 0.1. For smaIIRR—;C, the behaviour is
as for fixedRa, but for IargeRR—;C, the energy, as given by the variability measure, is sinfdar
Pr =1andPr = 0.1. However, forPr = 0.1 the flow iny is much more systematic, leading to

a larger mean measure @f

Figure 6.24 (c), left-hand plots, give that the shear iseased forPr = 1 and decreased for
Pr = 0.1. Therefore, forPr = 1, there is less energy available foand we see that, faPr = 1,
the mean measure offor 7, = —0.5 is smaller than foff;, = 0, but for Pr = 0.1, there is more
energy available to put into, and this is consistent with the fact thats larger forT;, = —0.5,

than itis forT, = 0.

We can see examples of some of the characteristics desatiime® by looking at the mean flows
as a function of time and. Figure 6.25 shows and® as function of time and and alongside
the contour plots are the time-averaged mean flowsifor= 2 x 10°, Pr = 1, T, = —0.5 and
(@ ¢ = 5 and (b)¢ = 7. We see that the system with a tilted rotation vector drivéerger
mean flow. This is what we expect from the plots of the meantkiremergy in figure 6.23 (b), at
Ra = 2 x 10°. Comparing with the equivalent plots when there is no théwmad (figure 6.14
(@ and (b)), we see a difference betweendhe 7 cases. Wheff, = 0, the mean flow is small,
but whenT), = —0.5, there is a significant mean flow with a preferred directiorhéVy = 7,
the mean flows are similar in that their structureziappears to be qualitatively the same. But
we do see that the mean flows are larger in the thermal wind ddig is in agreement with the

energy plots in figure 6.23 (b), &a = 2 x 10°.

In figure 6.26 we varyPr whilst keeping¢ = 7, Ra = 2 x 10° andT, = —0.5. In this case,

(u) is largest wherPr = 1, whereag) is largest wherPr = 0.1. This concurs with the energy
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Figure 6.24: Ratio of the KE in the mean flows to KE in the perturbations gkted using (a) the

variability measure and (b) the mean measure. The solid Bme for7,, = —0.5 and the dotted lines
are forT, = 0. In (c), the ratio of the KE ini.,,; to total KE is presented with dashed lines corresponding

to the KE inUps. In all casesp = 7, and the blue lines correspond £ = 1 and the red lines to

Pr=0.1.
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Figure 6.25: Contour plots of the mean flowg, ¢), v(z, t) and their corresponding time-average
(w), (v) as a function of. In (a) and (b),Pr = 1, T, = —0.5 andRa = 2 x 10° but ¢ is varied.
In(@)¢ = 5 andin (b)p = 7.
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Figure 6.26: Contour plots of the mean flow, ¢), v(z, t) and their corresponding time-average

(w), (v) as a function ot. In both case® = 7, T),

—0.5andRa = 2 x 10° butin (a)Pr = 1

and in (b)Pr = 0.1.

plots of figure 6.24. In both (a) and (b), forthe maximum magnitude is similar to the amplitude
of the mean flow suggestingis systematic. On comparison with tig = 0 case (fig 6.16 (a)

and (b)), we see that the thermal wind case gives more eiefipsts, especially foi.

To assess whether the steepness of the gradient of sheareéased or decreased for a range of
parameters we use the mean measure of energy,if). This is because we want a measure
of the gradient of velocity and so the sign of the velocityigngicant. In the examples so far,
whether or not the shear is increased or decreased has éepemfr and¢. We now examine
this parameter dependence. Using the mean measure onletegnihe whether the shear is
increased or decreased for a number of different paramegémes. The results are shown in

figure 6.27. We hold two o, Pr, Ra andTa constant and vary the other two, marking points
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Figure 6.27: Regime diagram to show for which parametersttlear is increased, and for which
the shear is reduced and energy extracted from the sheardd®&ihdicate a decrease in shear

and black crosses indicate an increase. In all ciges —0.5.

in parameter space whefeE;

KE;

< K FEyps (shear reduced) with a red dot and points where

total

> K Ey s (shear increased) with a black cross. Although this is natraptete study

total
of all possible parameters, we can still see some trendsartitplar, asPr, T'a or ¢ is decreased,
or Ra is increased, the convection tends to extract energy franshiear. This can perhaps be
explained if we consider the form of the shear. From equdtioh5), we have
dUps TyRa

— (6.4.8)
dz Tas sin ¢

and so increasingza, or decreasing’a or ¢, increases the basic state shear. If the basic state
shear is strong, then we would expect the convection to amtdace the shear by extracting
energy from it, rather than increasing it further, this imgreement with what we observe in our

simulations.

6.4.3 Reynolds Stresses

Taking horizontal averages of theandy components of the momentum equation, (5.2.1), gives
the mean flow equations. Evend, # 0, we find the mean flow equations are exactly as in

equations (6.3.1) and (6.3.2). That is, the mean flows do xptcétly depend on7;. Changes
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to the mean flows withl;, must occur due to the implicit dependence of the Reynoléssis on

T,.

As before, we can consider contour plots of the Reynoldsstieas a function of time and
Figure 6.28 hagia = 2 x 10°, Pr = 1, T, = —0.5and in (a) and (b)p = 5, and in (c) and (d),

¢ = Z. In (a) and (c) are the RS terms responsible for driviing.e., ( ) , and in (b) and (d)

are the RS terms responsible for driving.e., ( 9 If we compare with flgure 6.17, which has
no thermal wind for the same parameter values, we see thRieyolds stresses produced in the
thermal wind case are larger in magnitude. We also noticettieaRS terms in the = 7 case
are more systematic, leading to the significant mean flow wedsaven in the earlier example

(see figure 6.25), this was not the case wiign= 0.
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Figure 6.28: Contour plots of the Reynolds stresses temmg'ny%(m) in () and (c) and
%(W) in (b) and (d). In all cases’r = 1, Ra = 2 x 10° andT, = —0.5 but in (a) and (b),
¢ = 5 andin (c) and (d)p = §

We perform a similar analysis to the one in section 6.3.3,lbitipg each of the terms in equation



Chapter 6. Nonlinear Hydrodynamic Convection 160

(6.3.3) and (6.3.4) as a function af Figure 6.29 haga = 2x10°, Ta = 10°, ¢ = %, T, = —0.5
and Pr = 1 (solid) andPr = 0.1 (dashed). Again, it is noticeable that the Reynolds steegse
the Pr = 1 case are significantly bigger than in tRe = 0.1 case, yet in the Pr = 0.1 case is
larger than in the®r = 1 case and: is comparable for the tw@®r. Comparing the thermal wind
plots (figure 6.29) with the plots whefE, = 0 (figure 6.18) we observe thatis much larger
when the thermal wind is present, this comes from the larggnBlds stress driving that occurs

whenT), # 0.
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Figure 6.29: Top: each of the terms in equation (6.3.3) dgvi. Bottom: each of the terms in
equation (6.3.4) driving. In both cases the terms are plotted as a functionfof Ra = 2 x 10°,
T, = =05, Ta = 10° and¢ = Z. The solid lines represerftr = 1 and the dashed lines
representPr = 0.1. In blue are the mean flow terms, in red are the Reynolds deess and in

green are the viscous terms. Also plotted are the mean fldaskjbwithout thePr factor.

Figure 6.30 shows the same terms as figure 6.29 butﬁg\/\is held constant, rather thaka.
The dominant balance is still between the Reynolds stressdad the mean flow term, bathas

a significant contribution form the viscous term. As befduoe, fixed }%, the Reynolds stress
terms are much larger whepr = 1, and even when considering tli®& factor in the equations,
the mean flows are still larger fdPr = 1. Comparing with figure 6.19 (the equivalent plots for
T, = 0) we see that the terms are of a similar sizedfawhen Pr = 1, but for Pr = 0.1, v is

larger when a thermal wind is present as a result of increRggdolds stresses.
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Figure 6.30: Top: each of the terms in equation (6.3.3) dgvi. Bottom: each of the terms in
equation (6.3.4) driving. In both cases the terms are plotted as a functionfof Ra = 27Ra,,
T, = =05, Ta = 10° and¢ = 1- The solid lines represen?r = 1 and the dashed lines
represent’r = 0.1. In blue are the mean flow terms, in red are the Reynolds deess and in

green are the viscous terms. Also plotted are the mean fldackjbwvithout thePr factor.
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6.5 Summary

The first part of the chapter considered nonlinear Bousgiesivection with a tilted rotation
vector and a purely vertical temperature gradient (no taémwind). We ran a number of
simulations for a range d®a, varyinge and Pr (with T'a = 10° in most cases). It was found that
the solutions progressed through a series of differentregiasika was increased. The general
pattern was to go from steady to oscillatory to quasi-pécital chaotic, but wherPr = 0.1 we
found a slightly different regime which we referred to asraxation oscillation regime. In some
cases, afla was increased, the solutions moved through the chaotimeeghd steady solutions
were again found. These were large-scale solutions whiale feeind to be very efficient at
transporting heat by convection. Although no strict relaship was found, it was noted that
these solutions were more likely to persist at higher for smallerPr and¢. These large-scale
solutions are perhaps a manifestation of the fact we I%var 0, and if we were to consider the
full three-dimensional system, we may no longer find suchelacale, steady solutions. This is

beyond the scope of this thesis but is discussed further aptéh 9.

We are interested in the mean flows that can be driven by ctiaieio our plane layer system.
By tilting the rotation vector from the vertical we found ntivial correlations which led to
significant, systematic mean flows. With= 7 (vertical rotation vector), all directions are equal
and there is no preferred flow direction. The vertical stitetof the mean flows was observed
to be very similar between the tilted cases considered byt different between the tilted and
untilted cases. Deriving the mean flow equations highlighie Reynolds stress terms which are
responsible for driving the mean flows. It was shown thatifor 7, these terms are small on
averaging, but for a tilted case, they form a systematicepatbn averaging. SmalldPr does
result in smaller RS terms but thr factor in the mean flow equations mean that, in fact, larger

mean flows can result at small&r-.

The second part of the chapter considered the addition ofantd wind (via a horizontal
temperature gradient) to the above system. It was foundhigtaused the transition to chaos
to occur over a smaller range &fa. Large-scale solutions were only found at very srifglifor
larger|T,|, the solutions remained chaotic. It was thought a thermatiwiould aid the driving
of mean flows and in general, adding a thermal wind did driveenemergetic flows. We also
demonstrated that even when the rotation vector is verticdl, # 0, a nontrivial mean flow
is driven. Derivation of the mean flow equations in the casemwh, # 0, gave no explicit

dependence off;, and so changes to the mean flows with must occur due to the implicit
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dependence of the Reynolds stresse$prGenerally, flows in the plane of the rotation vectoy (
are more systematic than those that are apb(it we save a discussion of the physical relevance

of this for the concluding chapter (Chapter 9).

We studied the interaction of convection and thermal winelastand showed it is possible for
convection to put energy into, or extract energy from, tlegrttal wind shear. In particular, figure
6.24 showed that wheRr = 1, the shear is increased by the convection but whenr= 0.1, the
shear is decreased. More generally, we found that whethmgection put energy into, or extracted
energy from, the shear flow depended on the paraméterskRa, T'a and ¢. We identified a
general trend that decreasiity, ¢ or T'a tended to cause the convection to extract energy from

the shear.

This study has been restricted to the two-dimensional casesponding to the EW rolls of
Chapter 3, i-e-a% = 0. As predicted by the linear theory, NS rolls are stabilispdruaddition
of a strong enough thermal wind shear and we performed a nuofilb®nlinear simulations to

confirm this, but the results were not shown in this chapter.
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Chapter 7

Nonlinear Anelastic Convection

7.1 Introduction

Until now, the nonlinear work we have presented has assuhmedoussinesq approximation
(see section 2.3), but as discussed previously, it is maigstie to allow for density changes
across the layer depth. To do this, we consider the systemr tihd anelastic approximation, as
derived in Chapter 2, section 2.4. The linear analysis af dnielastic system was carried out in
Chapter 4. This chapter builds on that work to examine thdimear effects of stratification on
the convection in our system. We first analyse the changerdiifisation makes to the dynamics,
before assessing the impact on the mean flows driven. Therioahiechnique used to solve the
nonlinear anelastic equations, (2.4.142)-(2.4.144)inidlar to that used in the previous chapter,
but there are some differences because ottllependence of the reference state. The details of

the code used to solve the nonlinear anelastic equatiores givagn in section 5.7.

7.2 Numerical results

To investigate the effect of stratification on our systemvay 0, as, from section 4.2) can be
thought of as a measure of compressibility. Throughout ¢hepter we fix the rotation rate at
Ta = 10°, the angle of the rotation vector at= Z and the size of the computational box at
L = 5. We begin by examining the types of solution that occur foeréasing|d|, whilst keeping
Ra fixed. The results are shown in figure 7.1, where we have iteticdne type of solution that
occurs for a range df| and Ra values. We include the Boussinesq results (equivalentttmge

# = 0), in order to see directly, the difference between theifizetand non-stratified cases. For
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# = 0, apart from the solution aRa = 50000, all the solutions shown are chaotic (denoted by
a cross), but increasing| introduces another type of solution, the relaxation ostiilh (denoted
by a dot). This type of solution was described in detail irtisads.2.5 for Boussinesq convection.
From the regime diagram, we see that ofteis large enough, for al # 0 that we studied, the
relaxation oscillation solution is the type of the solutive see. AtRa = 50000 (the lowestRa
shown in figure 7.1), there also exist steady and quasi-giergolutions, but we shall focus on

the cases where the solutions are chaotic in this chapter.

1 T T T T T T T T T

K X X X . . . . . . .
09r ]
0.8k x x x 1
0.7¢ ]

K X X X X . . . . . .
0.6 ]
< 05} X :
041 x x x X . . . . . !
0.3 ]

X
0.2 ]
0.1r 8
0B x x X X X X X X X X E
1 2 3 4 ) 6 7 8 9 10
Ra (x10%)

Figure 7.1: A regime diagram to show the types of solution dlcaur in our system, for different
values off and Ra. Steady solutions are denoted by a square, quasi-periotiiians by a
triangle, chaotic solutions by a cross and relaxation lagicih solutions by a dot. In all cases

Pr=1.

To see the difference between the chaotic and relaxatidttabien regimes, we show an example
of the time series of the kinetic energy in the perturbationeach case, see figure 7.2. In (a),
the solution is chaotic and this is characterised by the r@mpaandom path of{ Epert in time.
This is in contrast to (b), where the solution is in the retitaoscillation regime, and we observe
bursts of energy intermittently with chaotic behaviourgenat in between the bursts. We described

the relaxation oscillation, or intermittent, regime inalein section 6.2 where we were using the



Chapter 7. Nonlinear Anelastic Convection 167

Boussinesq approximation, but in that case we requited- 0.1 to find any relaxation oscillation

solutions.
8000 6
6000 S
g x 4
Lg 4000 =
e 2
2000 S
<
0 0
0 04 08 1.2 0 02 04 06 08 1
t t
@) (b)
Figure 7.2: Time series o Epert for Pr = 1, 8 = —0.79 for a chaotic solution in (a) at

Ra = 2 x 10° and a relaxation oscillation solution in (b) Bt = 5 x 10°.

To analyse a large number of simulations more easily, we wishe able to consider time-
averages, but this needs to be done with caution. From fig@réa}, we can see that averaging
over a long enough time period will give reasonably steadyissics, independent of the time
period we choose to average over, but from figure 7.2 (b), thistcs will depend on how
many bursts are included in the time period over which theameis taken. In other words, the
variance about a mean of the relaxation oscillation satutidl be higher than that of a chaotic
solution. This is demonstrated by considering the probghistribution of the kinetic energy in
each case (see figure 7.3). In (a), there is a well defined gethie alistribution and much less
power in the tails of the distribution. However, in (b), theés a much larger spread of the data.
This information tells us that time-averaged data may ndghbéest measure for the intermittent
solutions as there is a large variation of the flow in time,ulibe mean. To establish the effect
of stratification on the system, we therefore focus on the@tihaolutions, as these are easier to

characterise relatively accurately using time-averages.

To examine the effect of vertical stratification on the fluidlocity and entropy, we take a
Boussinesq simulation and incred8e In doing so, we increase the contrast in density, pressure
and temperature between the top and bottom of the layer. d3er ef reference, we recall from
section 4.2 that a contrast of 0.5 correspond$ te& —0.37, of 0.2 tod = —0.66, of 0.1 to

f# = —0.79 and of 0.01 t& = —0.95. In figure 7.4, we show plots of the velocity for differeht

we plot (v, w) as vectors iy, z). Itis clear that as the stratification is increased, the asgtry
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Figure 7.3: Relative distribution ok Eper for the same parameters as used in figure 7.2. In (a)
the mean is1432.7951 and the standard deviatid6.7354. In (b), the mean i81556.0515 and
the standard deviation &§43.3476

across the layer becomes stronger. #ef —0.37, this effect is small, but by = —0.95, it has
become very pronounced in that for each convection cellditeetion of flow at the top persists

until much lower in the layerA ~ 0.2 for § = —0.95 contrasted withx ~ 0.5 for 6 ~ 0).

In this anelastic model, it is the departure from adiab@gtitiat drives convection, i.e., we only
get convection when there is a gradient of entropy across$atfer. In this sense the entropy
gradient can be thought of as analogous to the temperatadéegt in Boussinesq convection.

Figure 7.5 shows the total entropy, i.e.,
_ 1
Stot =5+ 85 = —Eln(l—l—ﬁz)—i—s,

as a function of space at a snapshot in time for a number @rdiitd. Again, the effect of the
stratification becomes clear & is increased; at smalp|, mixing has taken place, in a similar
way to wherd = 0 and thin boundary layers have formed as a result of the fixed@nboundary
conditions. Agd|is increased, less mixing is able to take place and thereinestrang entropy
gradients across the layer. Hence, increasing the strefditie stratification makes it harder for

the convection to redistribute the entropy.

Taking an average ofio; (overy and time) leads to the profiles shown in figure 7.6. The dashed
lines show the basic state profiles, and the solid lines sheweguivalent (i.e., for the sané@
profiles after the simulations have been carried out; ealducoepresents a differeit We see
that, for all 4, the convection acts to make the layer closer to being igpiatr but, how close

it gets depends ofi. In other words, whend|is small, e.g.f = —0.37, most of the layer is
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Figure 7.4: Velocity plots indicating the direction of flow the layer for different). In (a)
# = —0.37,in (b)§ = —0.66, in (¢)# = —0.79 and in (d)d = —0.95. In all casesPr = 1 and

Ra = 5 x 10°. The asymmetry of the layer increases with
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Figure 7.5: Contours of the total entrogy s, corresponding to the velocity plots in figure 7.4.
In(a)d = —0.37,in (b)§ = —0.66, in (c)§ = —0.79 and in (d)d = —0.95. In all casesPr =1

andRa = 5 x 10°. The amount of mixing that occurs in the layer decreaseg| axreases.
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isentropic because the layer is well mixed, though thersa! regions close to the boundaries
where the entropy distribution changes. But|@ss increased, the size of the isentropic region
decreases and the upper region remains stratified; thist @ffreases withd|. It should be noted
that we expect the entropy distribution to become more umifas the degree of supercriticality is
increased, and so to compare the diffentve should perform the same analysissgf at fixed
Ra/Ra,., as opposed to fixe®a. However, here, the critical Rayleigh number is only slight
changed a8 is changed and so all cases are suchth& < Ra/Ra. < 15.4, and therefore we

take this analysis to be valid without having to repeat feedi®a/Ra..

(Btot)

Figure 7.6: Vertical structure of the mean entropy;, for the parameters used in figure 7.5. In
red,f = —0.37, in blue,f = —0.66, in black,# = —0.79 and in purplef = —0.95. The dashed
lines correspond to the basic state entropy and the sokd lins;,; after the simulations have

been carried out.

Next, we consider the effect of increasif®) on the kinetic energy of the system. From the
definition of K Epert in section 5.7.2, we see that it depends explicitlypofroré = 0, p = 1 for

all z, but as|é| is increasedp < 1 for all z, and is only equal to one on the bottom boundary.
In other words, the total mass in the layer is decreased| &sincreased, and this, by definition,
will result in a decreased kinetic energy. Batalso has an impact oa, and so it is not clear
what will happen to the kinetic energy # is varied. To see what happens, we plot two cases in
figure 7.7: one of the cases is from the chaotic regife & 2 x 10, crosses) and the other is
from the relaxation oscillation regime?¢ = 5 x 10°, dots). For the relaxation oscillation case,
as|f|is increased, the energy in the perturbations exhibits erease untild| ~ 0.6, and then
the energy decreases in a more rapid fashion compared tatthefrincrease in the energy that

occurred at smallf|. As discussed previously, we would expect a decrease inréye with
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increasing|d| due to the decrease j» but for |#|< 0.6 the energy is increasing and so this must
be due to an increase in the fluid velocity. This increasek@ylito be, in part, a result of the

decrease imka. in this region off space, so that, d8|is increased, there is a small increase in
supercriticality which we would expect to lead to largeroadies, but this increase is small and

so may not be the only contributing effect.

The time-averaged kinetic energy of the chaotic solutioRs & 2 x 10°) possess a similar
behaviour, except that there is not the increase in kineegy for small|f| that is seen for the
relaxation oscillation solutionRa = 5 x 10°), the more rapid decrease of kinetic energy with

increasing#| as seen in the relaxation oscillation case, does occur behjigl though.

10°

K Epert
—_
o
T~
X
X
x

103
0 02 04 06 08 1

6]
Figure 7.7: Kinetic energy in the perturbations as a fumctibd for Pr = 1 andRa = 2 x 10°
(crosses), from the chaotic regime aRd = 5 x 10° (dots), from the relaxation oscillation

regime.

7.2.1 Mean flows

As was the case in the previous chapter, we are interestedalysing the mean flows driven
by the system. In this case, we are particularly interestetthe effect of stratification on the
mean flows. Figure 7.8 shows plots of the energy endv as a function of, for Pr = 1 and
Ra = 5x10°. The red symbols represent the kinetic energy as calculsied the mean measure
and the blue symbols represent the kinetic energy as ctddulsing the variability measure (see
equations (5.7.165) and (5.7.166) respectively for dédimit of these quantities). Also plotted is
the ratio of the energy in the mean flow to the energy in theupeations (as given in figure 7.7).

This should give us a guide as to whether the behaviour ofrikegg in the mean flows reflects
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the behaviour of the energy in the perturbations, or if thereome other process affecting the
mean flows. As before, we use both the mean and variabilitysorea of the energies to quantify
the behaviour, where the mean measure is given by the redesr@sd the variability measure
by the blue dots. First, if we considar we see that ai| is increased, the variability measure
increases slightly, before decreasing. The ratio followsralar pattern suggesting that for small
10|, the energy inu increases slightly more than it does in the perturbatiorseddarger|d| the
energy inu is decreased more than it is in the perturbations. The measune of the energy in

u gives a different perspective: for the small@f(less than approximately.5), there is a clearer
increase in the energy im, the ratio also exhibits this steeper increase and so the emargy

in u increases more over this range|@f than than the energy in the perturbations does. After
|0| ~ 0.5, the mean measure of the energyiidecreases, but the ratio remains roughly constant,
which suggests the decrease in energy of the mean is dueitdlitrence of increasingf| on the
whole system, rather than any particular influence of thgelastratifications on the correlations
driving . Note also, asf| is increased, the mean and variability measureg bécome much
closer, suggesting that the stratification acts to driveensyistematic mean flows. By contrast,
v is systematic for allf|. Examining the variability measure ofshows that it remains roughly
constant untill¢| ~ 0.65, at which point it then decreases with increasjiy The behaviour
when|f| < 0.65 of v is thought to be as a consequence of the effect of increagjnon the
whole system because the ratio to kinetic energy in the gmtions remains roughly constant
throughout this region. But, whe#i| > 0.65, there is a decrease in both the variability measure
of the mean energy and the ratio, implying that it is the méen iis decreased more than the
perturbations. Fop, the mean measure follows much the same path as the vadyiabiiasure

and therefore the same comments can be made about it.

As described in section 7.2, there is a difference in the-timgendent behaviour of the kinetic
energy in the chaotic and relaxation oscillation cases. réffbee, it is interesting to consider
whether this difference is also present in the mean flowsdrby the convection. To investigate
this, we ploto as a function otz andt¢ for # = —0.79 in each of the two regimes, the results
are shown in figure 7.9. In (a), the solution is from the clamgime and in (b), the solution is
from the relaxation oscillation regime. In (a), for the ctiagolution, the distribution of strong
positive flow in the top half of the plane is fairly even, whasén (b), for the relaxation oscillation
solution, there are short regions of strong mean flow caersiswith the bursting profile we
observed in figure 7.2 (b). There is a clear asymmetry actwsdayer depth which was not
present in the Boussinesq examples we examined (see fompéxafigure 6.14); we shall now

investigate this asymmetry further. For this purpose, wefagus on the chaotic regime, as for
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Figure 7.8: Energy in the mean flowisandv as calculated by the mean measure (red crosses)
and the variability measure (blue dots) for the case coomdipg to figure 7.7, i.e’r = 1 and

Ra =5 x 10°.
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reasons mentioned before, we are able to work with timeages more confidently.
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Figure 7.9: Contour plots af in two different regimes. In (a) the solution is chaotic andh)
the solution is from the relaxation oscillation regime. btlbcasesPr = 1, § = —0.79 with

Ra =2 x 10°in (@) andRa = 5 x 10° in (b).

Before considering such time-averages, we consider theediependent mean flows(z, t) and
v(z,t), for three different stratifications. Contour plots of théews are shown in figure 7.10. In
(a),0 = —0.24, and the density at the bottom of the layer is just 1.5 timesi#imsity at the top of
the layer; in (b)§ = —0.66, and the density at the bottom of the layer is five times theitieat
the top of the layer, and in (c§, = —0.79, the density at the bottom of the layer is ten times the
density at the top of the layer. As alluded to before, the mositeable difference is the extent of
the asymmetry in the layer. For example, the positive flow of the upper half-plane only just
penetrates down into the lower half-plane for sm@ll but the stronger stratification becomes,
the further it penetrates into the layer.is more time-dependent and harder to interpret than
but the asymmetry is still evident. From figure 7.10, ano#fct of increasing the stratification
appears to be that the maximum magnitude of the flow decremgésincreases, but the flows

become more systematic.

To quantify these properties, we consider the mean andieariaf the flows in time, and see how
they vary with#, and also the depth at which they are calculated, i.e., hewvary withz. In
figure 7.11, we plot the time-averaged meandandv along with error bars corresponding to
the standard deviatiorr} from that mean. In (a), the stratification is small, with= —0.24, and

in (b), the stratification is much stronger, with— 0.79. In (a), foru, we see thatr is smallest
near to mid-layer and grows as we move out towards the boigsddout in (b),o(u) is smallest

at a deeper layer. This behaviour is also seen(if), where for smalld|, o is fairly even across
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Figure 7.10: Contour plots of the mean flowsndw. In (a)# = —0.24, in (b) # = —0.66 and in
(c)§ = —0.79. In all casesPr = 1 andRa = 2 x 10°.
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the layer but with its smallest value at approximately naigelr, but ford = —0.79 the smallestr
is found at much smaller. Note also, the mean af and® is close to zero at = 0.5 in (a), but
there is a significant flow at = 0.5 in (b). These measures characterise the behaviour we saw
in the time-dependent plots in figure 7.10. As a percentads afeang (u) is larger tharnr(v),

indicative of the more intermittent behaviour@fve also observed in figure 7.10 .
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Figure 7.11: Mean (black curve) and standard deviatioro(dsars) ofu andv for Pr = 1,
Ra = 2 x 10°, (a)# = —0.24 and (b)§ = —0.79. As || is increased the more systematic flow

occurs at lowee.

Comparing figure 7.11 (a) and (b), it appears that the stdndiewiation at a fixed is reduced
as|6|is increased, this is particularly evident at the lower fay@mallerz). To examine this
statement more closely, we plot the standard deviatiahandv as a function ot, for different

f. The results are shown in figure 7.12, where the black lineespond to the smallest density
contrast across the layeff &= —0.24), then purple § = —0.37), then orangef = —0.66),

then turquoiseq = —0.79) and finally blue § = —0.95). The more systematic flows have the
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smallest standard deviations as they fluctuate less abeitntiean. From the plots we see that
generally, the stronger the stratification, the more syatienthe flow, particularly in the lower
part of the plane. It is also evident that fefv), the minimum of the standard deviation occurs
at a deeper level in the layer &8s increased. For(u), the trend is not so clear, however, the
flows corresponding to largef| have a minimum at a lower than the flows corresponding to
smaller|d|. Therefore, there are fewer fluctuations at lower levelwitreasingé|, and it is

this that results in the larger time-averaged mean at thid.le
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Figure 7.12: Standard deviation of (8)and (b)7 as a function of layer depth for different
stratifications. In blacld = —0.24, in purpled = —0.37, in orangef = —0.66, in turquoise

0 = —0.79 and in blued = —0.95.

Figure 7.13 gives the time-averaged profilesuqtop) andv (bottom) for differentd. It is not
clear from the plots if there is an obvious relationship lE=ni andd. However, it can be seen
thatw is zero at increasingly deeper levels:ias|d| is increased. Fa#, in the upper half-plane, if
we ignore the? = —0.95 solution, then the strongest stratifications give rise ¢éddéngest. This
behaviour is not reflected in the lower half-plane. The maximmagnitude of thd = —0.95
solution in the upper and lower half-planes is smaller th@nrhaxima of the solutions for the
other stratifications. We also see that,|@ds increased, the maximum value @in the lower
half-plane tends to occur at deeper levels. Asifpthe time-averaged plots of show that the
value of z at which positive flow becomes negative flow, i.e., the layswtd at which the mean
flow is zero, becomes smaller as the stratification is ineashis is in agreement with the time-

dependent plots in figure 7.10.
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Figure 7.13: Time-averaged mean flofus (top) and(v) (bottom) as a function of. In this case
Pr =1, Ra =2 x 10° and in blackd = —0.24, in purpled = —0.37, in orangefl = —0.66, in
turquoised = —0.79 and in blued = —0.95.

7.2.2 Mean flow equations

Taking a horizontal average of theandy components of the momentum equation (2.4.142) gives
us equations governing the mean flows. This is analogoustiosé.3.3, however, here we must
remember the new definition @f involving p and thatp is now a function ot (see section 5.7).

On taking such horizontal averages, we obtain the folloveiqgations

prpi——1r 9 (p@> ! O(pom) (7.2.1)
Ta? sin ¢ 0z \" 0z Ta? sin ¢ 0z
_ Pr 0 (_0u 1 J(puw)
Prov = ————— <p—> + ) (7.2.2)
Tas sin ¢ 0z \' 0z Tas sin ¢ 0z

where we have averaged in time and assumed a steady statg §9<ﬂj = %@ = 0. Notice
the presence af in the equations, and also that whenr= 1, i.e.,# = 0, equations (7.2.1) and
(7.2.2) reduce to the mean flow equations in the Boussinesg ea given by equations (6.3.3)
and (6.3.4). In contrast to (6.3.3) and (6.3.4), the mean foms on the left-hand sides are now
multiplied by . The viscous term (first term on the right-hand sides) alse ba multiplying the
%, % before the second derivative is taken. Similarly, the R&satress terms (second term
on right-hand sides), havegamultiplying the correlation®w, uww, before the vertical derivative

is taken.

As we have just mentioned, there is a factopah the mean flow terms of equations (7.2.1) and
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(7.2.2). This means that, in theory, for two differénif the driving terms on the right-hand side
are of the same size, then the case with the laigéstill yield the largestz andw, i.e., if Prpu

is the same for two differen (fixed Pr) thena will be larger for the smallep (equivalent to
larger|0]). To see this, we plot each of the terms of equations (7.2d)(a.2.2) in figure 7.14;
for (a) # = 0 and (b)# = —0.79. In addition, we plotz andv (without the Prp factors) in red,
but for& = 0, the mean flow term is also the overall mean flow siftte= 1, therefore no red
line is visible in this case. However, fér=£ 0, there is a difference between the mean flow term
and the mean flow itself. In both (a) and (b), the strong donteeaof the RS terms (orange) is
clear. It is also evident that the viscous term (green) isenimportant in determining than it

is 7, as it was in the Boussinesq case. It is clear that the RS tarenkigger in théd = 0 case
and this results in the mean flow terms being bigge#fer 0. However, because fér= —0.79,

p < 1 across the layef; andv are actually bigger fof = —0.79. This effect is most prominent

at the top of the layer, where the fluid mass is at its lowest.

Figure 7.14 highlights that the dominant balance is betwthenRS and mean flow terms.
Therefore, if we examine how the RS terms are affected, lityshould help us to understand how
the mean flows are affected By We begin by considering the time-dependent RS terms. &igur
7.15 shows contours of the RS terms as a functionarid time for three different stratifications.
In (a), the layer has a mild stratification afd= —0.24, in (b), the stratification is increased to
f# = —0.66 and in (c), the stratification is strong such that —0.79. The left-hand column of
plots is of the RS term that drivas and the right-hand column of plots is of the RS term that
drivesu. We see that the term driving is more systematic than the term drivimg this is to

be expected sinceis more systematic tham. Also evident, is the asymmetry introduced when
6 # 0, and this asymmetry gets stronger|@ss increased. For example, the positive band in
the upper half-plane o;%(;m) increases in depth d8|is increased. The behaviour of these
RS terms is similar to that af andv (shown in figure 7.10), emphasising the strong correlation
between the RS terms and the mean flows. They, of course, atibanidentical as the dominant
balance in the mean flow equations is between the RS term amddhn flow term, i.e., between
the RS term andPr pu, and not justi, and so thePrp factor needs to be taken into account. There

is also slight modification by the viscous term, especiailyhie boundary layers.

Taking time averages of the RS terms gives the profiles showiigtire 7.16. The top plot shows
the RS term that drives and the bottom plot shows the RS term that drivefor differentd, for
Pr =1andRa = 2 x 10°, i.e., for the same cases as in figure 7.13. For the RS terrimgltiy

at the top of the layer, the size of the term decreases witkasing|d| - this could be a result of
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Figure 7.14: Terms of the mean flow equations (7.2.1) (top)aaerd (7.2.2) (bottom axes) as a
function of z for Pr = 1, Ra = 2 x 10° and in (a),0 = 0, whilst in (b),# = —0.79. The blue
lines represent the mean flow terms, the orange the RS temmgjréen the viscous terms and
red the mean flowg and©. In case (a), the mean flow terms are equivalent to the meas flow

themselves.
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Figure 7.15: Left-hand column: Contour plots of the RS t%%mpw) that driveu. Right-hand
column: Contour plots of the RS ter§zr (puw) that drivev. In (a),0 = —0.24, in (b),6 = —0.66
and in (c),f = —0.79 and in all casesPr = 1 andRa = 2 x 10°. They correspond to the mean

flows depicted in figure 7.10.
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the decrease ip with increasedd|. We remark that the difference between the diffetéhtases
is most prominent at the top of the layer. At the bottom of tyel,6 = 0 gives the largest RS
term andd = —0.95 the smallest with the othércases in between but with no obvious pattern as

there is at the top of the layer. These RS terms dii@s given in the top plot of figure 7.13.

The bottom plot of figure 7.16 shows the RS term that driveAgain, in the top portion of the
layer, it is clear thafl = 0 gives the largest RS term and thatas increased, the size of the term
decreases. In the bottom half of the layes —0.95 clearly gives the smallest term but there is
no obvious trend a®| is increased, which is in contrast to the behaviour ofitlsbown in figure
7.13. However, this is to be expected, since the RS termsifivgo (as given by equation 7.2.2)
and sov is obtained by dividing through b¥rp. Therefore, since for largeé|, p is smaller at
the top of the layer; will be larger there (assuming everything else is fixed).fdite$ = —0.95
corresponding to the smallegtat = = 1, v is smaller for§ = —0.95 than for the other cases,
this is because the RS term is significantly smaller. Clogskadottom of the layef; varies only
slightly between all thé cases, and therefore the mean flows reflect the same ordeeaisthe

RS terms at the bottom of the layer.
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Figure 7.16: Time-averaged RS terms that diivgop) andv (bottom) as a function of. In this
casePr = 1, Ra = 2 x 10° and in blackd = —0.24, in purpled = —0.37, in orangef) = —0.66,

in turquoisefd = —0.79 and in blue# = —0.95. These plots correspond to the mean flows in
figure 7.13.

As we did foraz ando, we can analyse the mean and standard deviation of the tines s the

RS terms, to see if they behave in a similar way to the timeseayi the mean flows. The results
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for cases withPr = 1 andRa = 2 x 10° are shown in figure 7.17 for a weak stratification, (a)
# = —0.24, and a stronger stratification, (B)= —0.79. In (a), the stratification is small and
we see that the distribution of RS terms has approximatadysdme standard deviation across
the layer. This was also the case for the standard deviafitimedistribution ofz andv in the
small stratification case, see figure 7.11 (a). In the castraiger stratification, see figure 7.17
(b), whered = —0.79, the standard deviation of the RS terms is larger at the iottiothe layer
than it is at the top. This is different to the standard démmabf the mean flows for the same
parameters (cf. figure 7.11 (b)) where the standard dewiatias larger at the top of the layer
than it was at the bottom. This difference can be explainedehyembering that the RS terms
balance with the mean flow terms and not just the mean flow améftire the factor of in the

mean flow term has to be considered. More specifically, (fpe@eGroot & Schervish (2002))

o(pu) = |plo(a), (7.2.3)

at eachz, for all 8. Therefore, since increases as decreases, if(u) decreases with by a
smaller amount thap increases, then(pu) will increase as: is decreased. This provides an
explanation of how the standard deviation of the RS termsrmanease as is decreased, whilst

the standard deviation of the mean flows decreaseszwith

7.2.3 Linear approximation

Mean flow generation is a honlinear process. As we have gegelies upon quantities such as the
Reynolds stresses, which are the product of perturbat@gs,ouw. Such products are ignored
in a linear calculation. However, it is interesting to calesi the differences between the RS
terms as calculated from the solutions of the linear pedtiwh equations (cf. chapter 4) and as
calculated from the fully nonlinear equations (as done @vjaus sections of this chapter). Such
a calculation will give us an indication as to whether theawibur of the system can be captured
without the need for a full nonlinear calculation. The résdibr two cases are shown in figure
7.18, for differentRa andé. For case (a), the linear calculation provides a rough esérfor the
RS terms whefdl = —0.37 but, ag#| is increased, the agreement between the linear and nonlinea
calculations becomes poorer. In other words, increasiagttatification causes the nonlinearities
to become more important so that the linear calculation tmesoa worse approximation. In case
(b), Ra is increased by a factor of five. Comparing the linear andineal calculations now
shows a poor agreement, even for the smadlerThis is due to the increased supercriticality and

therefore the increased nonlinearity.
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Figure 7.17: Mean (black curve) and standard deviatiorofdrars) of the RS terms that drive

(left) andw (right) for Pr = 1, Ra = 2 x 10° and (a)§ = —0.24, (b)§ = —0.79.
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Figure 7.18: The RS terms calculated from the nonlinear ¢edkd lines) and the RS terms
calculated from linear eigenfunctions (dashed lines)For = 1 and (a)Ra = 2 x 10°, (b)
Ra = 105. The agreement is generally poor. The linear calculatiaviges a rough estimate at

6 = —0.37 and Ra = 2 x 10° but the approximation gets worse|ésand Ra are increased.



Chapter 7. Nonlinear Anelastic Convection 187

We note that in particular, the interaction of the mean flowhwine fluctuations is neglected in
the linear calculation. A quasi-linear calculation coull gerformed to capture this interaction
between the mean and fluctuation quantities whilst stillesgg the terms quadratic in the
fluctuation quantities, to see if this is capable of capwirine large-scale dynamics. Also, a
slightly simpler calculation would be to take the mean floatalated by the nonlinear code and
impose them in a linear calculation. Both these calculatiare beyond the scope of this thesis

but are discussed further in Chapter 9.

7.3 Summary

In this chapter we extended the investigation of conveetiiven mean flows in Chapter 6, to
allow for the possibility of the layer being continuouslyadified. As mentioned before, this a
more realistic situation for many physical applicationsanich we are interested (see Chapter
1). We found that increasinga and|f| eventually led to a subtle change in regime, from chaotic
convection to a regime where bursting is evident. By examgirolutions from both of these
regimes, we found an asymmetry in the layer that developsiéhé 0, the asymmetry becoming

more prominent afl| is increased.

Studying the dependence of the energy in the mean flow$,ded to the conclusion that
most of the change is likely a result of the effect changihgas on the whole system, and
not a specific effect changing has on the correlations responsible for the mean flows. The
asymmetries introduced in the anelastic simulations aigeaV in the vertical structure of the
mean flows. Analysis of the time-dependent mean flows shoatstlie flow in the upper half-
plane penetrates further into the lower half-planedas increased. A statistical analysis of the
mean flow distribution gave that the standard deviation iallest at a lower level in the layer
as|f|is increased. Also, it was shown that, in general, the stahdaviation is decreased, as
the strength of the stratification is increased, making forersystematic mean flows whéhis

larger.

To consider what was driving the mean flows, we derived thennflesy equations, which are
a modified form of the ones discussed in Chapter 6; now the rfleanequations contain a
factor to allow for the density stratification. We showedttthee Reynolds stress term is indeed
the term responsible for the mean flow driving, but that thetyally drive Prpu and Prpo and
the mean flows result as a consequence. This means thattaptbithe layer, because the mass

is reduced there and the vertical velocity is increased d@eioto transport heat, the mean flow is
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amplified. The time-dependent RS terms exhibit the same mgjries as observed in the mean
flow case, but the standard deviation for the RS terms isrdiffefrom the the mean flows, this is

again because of thefactor in the mean flow term.

We finished with an investigation of whether the RS terms desutted using the linear
eigenfunctions could approximate the actual RS terms. $tfaand this agreement was moderate
at small|¢| and Ra, but only got worse a®| or Ra was increased, an indication that the nonlinear
processes become more important in these cases. An imgrastestigation would be to see if
this nonlinear behaviour could be captured in a quasi-ticakulation, this is discussed further

in section 9.2.
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Chapter 8

Nonlinear rotating convection in the

presence of a horizontal magnetic field

8.1 Introduction

In this chapter, we extend the work of Chapter 6 by intrody@nhorizontal magnetic field to

the system. We derived the full nonlinear equations for ¢kisip in Chapter 2, in Chapter 3 we
presented the linear theory and in Chapter 5, specificatliiage5.6, we described the numerical
method used to solve the nonlinear governing equations.orBefie present results from the
nonlinear simulations, we restate the governing equatimalsthe boundary conditions, for ease

of reference. From equations (5.6.132)-(5.6.138), thetojs are given by

%—j — Prv%w =PrTa2 (cos du, + sin ¢u,) + RaPrg—z + I (3, w)
— QCPr (J(A, 5) — g—‘; sin a> , (8.1.1)
% — V20 =J(¢,0) — g—‘;, (8.1.2)

% — Prv2u =PrTa? (cos ¢‘Z—1§ + sin ¢g—f> + J (1, u)

+QCPr <aa—? sina — J(A, Bl)> , (8.1.3)
V) = —w, (8.1.4)
% V2B, :g—Z sina — J(A,u) + J (b, By), (8.1.5)
% — (VA =J(,A) + ‘Z—Z’ sin (8.1.6)
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where we have take, = U = 0, as we will ignore thermal wind effects in this chapter. The

boundary conditions for this system are given by

ou 631

Whilst these equations allow for the possibility of the metgm field being oriented in any
horizontal direction, we taker = 7 throughout this chapter, so that the imposed field is purely
in the y-direction. We also fixI'a = 10°, ¢ = 7 and the length of the computational box by
setting, = 5, unless otherwise stated. We initially consider = 1 and{ = 1.1, but the effect

of changingPr and( will be considered in later sections.

8.2 Numerical results

First, we briefly consider the effect of a horizontal magnégld on the evolution of the variables
of the MHD system. We then examine the effect of the field onntean flows driven (see
section 8.2.1). To see the effect of the magnetic field onytkiem, we start with a hydrodynamic
simulation (equivalent t6) = 0) and increas€) at fixed Ra, thus increasing the strength of the
magnetic field. We calculate the kinetic and magnetic ersrgs a function of), the results for
the case wherér = 1, ¢ = 1.1 andRa = 5 x 10° are shown in figure 8.1. As expected, as
the strength of the field is increased, the magnetic energlyeo$ystem is also increased, whilst
the kinetic energy is decreased. Since the basic state ifislihl they-direction, any attempt by
a flow in thex-direction to draw out field lines is opposed by the field. Tieisults in the flow

in the z-direction being reduced and hence contributes to the dserim the kinetic energy we

observe.

The different symbols used in figure 8.1 denote differenesypf solution; crosses denote chaotic
solutions and dots denote steady solutions. In this casestiallQ) solutions are chaotic, but
as() is increased, the solutions eventually become steady.e $lrceffect of increasing@ is to
increase the critical Rayleigh number (see section 3.®8jJixed Ra, the larger) solutions are

less supercritical and so the move to steady solutions noigleixpected.

To visualise the flow and the magnetic field@ds increased, we have plotted contours of the
streamfunctiony(y, z) and the flux functionA(y, z), at a snapshot in time, for three different

values of() (see figure 8.2). In (a)py = 100, and therefore the solution only differs slightly from

the solution in the purely hydrodynamic case and is chaatifh), Q = 1500, and the solution

is still chaotic but, from figure 8.1, this solution occurstjioefore the solutions go steady. In
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Figure 8.1: Kinetic energy (left) and magnetic energy (@igh the perturbations plotted against
Q for Pr =1, ¢ = 1.1, Ra = 5 x 10°. Solutions from the chaotic regime are marked with a

cross and solutions from the steady regime with a dot.

(c), @ = 10000 and these solutions are now steady. We see th&} &sincreased, the field
organises, and reduces the magnitude of, the flow, so thatriteally becomes steady. In doing
so, the length scale of the solution increases from beiny st three pairs of negative and
positive cells fit in the box af) = 100 to just one pair fitting in the box b§) = 10000. A linear
calculation of the wavenumber of the fastest growing modée cases in figure 8.2 gives= 6

for case (a)] = 5 for case (b) and = 3 for case (c), and so the nonlinear terms have acted to

increase the length scale of the solutions we observe.

8.2.1 Mean flows

In order to investigate the effect of the magnetic field on riean flows driven, we consider
the kinetic energy in the mean flows as a function(bf Figure 8.3 shows the results for the
same parameters as in figure 8.1. The mean measure of th& lénetgy is shown in red and
the variability measure is shown in blue (calculated ushegformulae in section 5.5.3), and as in
figure 8.1, the different symbols represent a different wfmolution. We note that, at smajl, as
expected, the behaviour is close to that of the purely hydrachic system discussed in Chapter
6. In both the chaotic and the steady regimes, we see thattiability measure ofi andv is
decreased & is increased, but in the chaotic regime, the mean wmfcreases and the mean of
v decreases. Therefore, increasipdpas increased the level to whighs systematic but reduced
the overall energy in the flow is more systematic thamthroughout the chaotic regime, this can
be seen from the fact that the mean and the variability measane much closer in value for

than they are fofi. Now, if we consider the ratio of the energy in the mean to thetic energy in
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Figure 8.2: Contours af(y, z) (left-hand column) and\(y, z) (right-hand column) at a snapshot
in time for Pr = 1, ¢ = 1.1, Ra = 5 x 10° and in (@)Q = 100, in (b) Q@ = 1500 and in (c)
@ = 10000. (a) and (b) correspond to chaotic solutions and (c) is algtsalution.
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the perturbations (see bottom row of figure 8.3) we see thaha chaotic regime, the ratio of the
variability measure ofi to K Eper is fairly constant and so the mean flow decreases at the same
rate as the perturbations. The ratio of the mean measuid®f Eperr, however, is increasing

in the chaotic regime because of the increas& i ;, with @ in the chaotic regime. For both
measures, the ratio of the energyrito the energy in the perturbations exhibits a decreasg as

is increased, which suggests tlids decreased more than the perturbations are decreased by th
field. In the steady regime, boti £; and K E; decrease sharply at first and then more slowly,

this results in a ratio that decreases for smalldyefore increasing with largep.
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Figure 8.3: Kinetic energies in the mean flow r = 1, ¢ = 1.1, Ra = 5 x 10° and a range
of Q. The top row gives the mean measure of the energy (left) andw (right) in red and the
variability measure of the energy in blue. Chaotic solugiane marked with a cross and steady
solutions with a dot. The bottom row gives the ratio of thergnén the mean flow to the kinetic

energy in the perturbations.

As well as analysing the energy contained in the mean flowss, worth studying the time-
dependent mean flows because this can give important infanmabout the nature of the flows
that may not be captured in the time-averaged quantitieseXample, figure 8.4 showsandv
as a function of: andt for a case when the field strength is (a) smé&ll£ 100), and (b) larger

(Q = 1500). Both examples are taken from the chaotic regime of the pleswsed in figure 8.2.
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For smallQ, case (a), the mean flows are very similar to some of the casesaw in Chapter 6
(e.g., fig 6.14), which is of no surprise as wh@n= 0, we reduce to the hydrodynamic system
studied in Chapter 6. In particular, we see thas more systematic thaim and is predominantly
positive in the upper half-plane and predominantly negaitivthe lower half-plane. In case (b),
the magnetic field strength has been increased and we sdhdhm@tture ofi andv has changed.
Firstly, let us considet, whilst there is still a band of positive flow in the upper Raline and a
band of negative flow in the lower half-plane, the bands doemtgnd all the way to the top and
bottom boundaries, as they did whénh= 100 (a). As@ has increased, boundary layers have
formed where the flow has been significantly reduced. Thewelnathat causes this change to
occur will be discussed in section 8.2.4. Secondly, we ats®ive a change in the naturewf
boundary layers are also formed in this case, a layer ofipedlbw at the top boundary and a
layer of negative flow at the bottom boundary. But, in corittags, the flow is largest in these
layers. Further away from the boundaries, a negative baeddent in the top half of the plane
and a positive band in the lower half of the plane. These barelsiore coherent than any seen in
u when@ = 100, this highlights the fact that increasirdgjorganises the flow into having a more
systematic nature. It should also be noted that the oveladinitude of the flows is decreased as

Q is increased, contributing to the decrease in the varighilieasure with increasing.

To examine the vertical structure afandv as a function ofz, and its dependence ap, we
plot the time-averaged mean flows in figure 8.5. We expecetpésts to be more informative
when considering than when considering, as, from the time-dependent plots, we know that

is highly fluctuating about zero, however, we still examimghbcases. All parameters are held
constant and we explore a range(@from zero to10000, each value of) is shown in a different
colour. First, note how the size @fchanges a€) is increased; from the bottom plot in figure
8.5 we see that, a small addition of fiel@ & 100, red) increases the size of(compared with

@ = 0, blue) but then further increases ghdecrease the magnitude of the maximum value of
u. A slight change in the vertical structure @fis also evident. A%) is increased from zero to
1000, the layer depths at which the maxima occur move towards ttidayer depth, as we saw in
figure 8.4. From)) = 2000 to 10000, the solutions are steady and perhaps should be considered
separately, though th@ = 2000 and@) = 5000 cases do have a similar structure, again with their
maxima closer to the mid-layer depth than in the [Qweases. Fop, the@ = 10000 case stands
out, as the direction of flow has reversed and the structwléfesent. This will be examined in

more detail in section 8.2.4.

As expected, the change in structureuos trickier to interpret as is more time-dependent. It
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Figure 8.4: Time-dependent (left) and (right) for Pr = 1, ( = 1.1, Ra = 5 x 10° and (a)
@ = 100, (b) @ = 1500.
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Figure 8.5:% (top) ands (bottom) forPr = 1, ¢ = 1.1, Ra = 5 x 10°. EachQ is represented
by a different colour; blue represer@s= 0, red represent§ = 100, green represent3 = 500,
pink represents) = 1000, light blue represent§) = 2000, black represent§) = 5000 and
orange represent3 = 10000. Q = 0 to Q = 1000 are chaotic solutions, wheregs= 2000 to
@ = 10000 are steady solutions. Notice thats bigger thani.

is clear though, from the top plot of figure 8.5, that@sgs increased, the strength of the flow
in the boundary layers is increased in the chaotic regimes iSHikely to be the reason for the
increase ik F' ;) with @ that was seen in figure 8.3. In the bulk of the fluid, there apfzebe a
number of changes in the direction of the flom@ss increased, for example betwe@n= 2000
(light blue) and® = 5000 (black) the flow changes direction. §bnot only decreases the kinetic
energy in the mean flows, it can also change the directionefriban flow. What causes the
change in vertical structure of the flows we observe in figueevill be examined in section
8.2.4. Finally, by comparing the sizes@anduv, in figure 8.5, we see thatis larger thar in all

cases.

8.2.2 Mean fields

In addition to the mean flows, we investigate the behaviouhefmean fieldsj3; and B,, as

Q is increased. Figure 8.6 shows contoursifand B, as a function ofz and time, for the
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same parameters as used in figure 8.4. Note, we have plotadtdi magnetic field, i.e., the
basic state magnetic field plus the perturbation magnetit. fi¥e recall that the basic state field
imposed throughout this chapter is purely in thdirection. In (a),Q = 100, and so the imposed
magnetic field strength is small. From the ploti®f(z, ) in this case, we see that the magnetic
field has been expelled to the boundaries, leaving the bulkeoayer with almost zero magnetic
field. ForB;(z,t), there was no imposed field in this direction and so the fieltién:-direction
has resulted from the evolution of the system. It is true is tase also that the magnetic field is
strongest close to the boundaries. In (b), the initial fitlergyth is increased so th@t= 1500. In
this case, the magnetic field in the basic state is expelldtetboundaries, as it was f@r = 100,

but to a lesser extent and so there remains a field in the bitieddyer. 3, reflects this behaviour
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Figure 8.6: Time-depende; (left) and B, (right) for Pr = 1, ¢ = 1.1, Ra = 5 x 10° and (a)
Q = 100, (b) Q = 1500.

To examine the expulsion to the boundaries of the magnetit foe other values ofQ, we
consider the time-averaged profiles of the components ofrignetic field. In figure 8.7, we
plot (B;) (top axes) andB;) (bottom axes) foPr = 1, ¢ = 1.1, Ra = 5 x 10° and@Q = 100
(red), @ = 500 (green),Q = 1000 (pink), @ = 2000 (light blue), @ = 5000 (black) and
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Figure 8.7:B; (top) andB; (bottom) forPr = 1, ¢ = 1.1, Ra = 5 x 10°. EachQ is represented
by a different colour; red represer@s = 100, green represent9 = 500, pink represents) =
1000, light blue represent§ = 2000, black represent§ = 5000 and orange represent =
10000. In blue is the basic state magnetic fieBzs = (0,1,0). @ = 100 to Q = 1000 are

chaotic solutions, where&g = 2000 to Q = 10000 are steady solutions.

(Q = 10000 (orange). We also show the corresponding component of thie state field in
the z andy directions (blue). From the plots df3,), it is clear that the smalle), the more
magnetic field is expelled to the boundaries. As we saw fomrtithe dependent plots in figure
8.6, for @ = 100, the bulk of the layer has almost zero magnetic field inkdirection. As
Q is increased, it becomes harder for the magnetic field to beecthto the boundaries; as we
see from figure 8.7, the largé) solutions have significant field across the whole lay@s;)
increases in size at = 0.5 with ) in the chaotic regime, but decreases in size at 0.5 with
increasing? in the steady regime. We also see that the boundary layetbiarest for smalk.
The consequences of magnetic field being expelled to thedaoi@s arise from the fact that, if
there is little, or no, magnetic field in the bulk of the laygwill be unable to affect the mean

flow there. We will analyse the competition between the flond the fields in section 8.2.4.
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8.2.3 IncreasingRa

Before investigating what is responsible for the behavafihe mean flows and mean fields, we
increaseRa to Ra = 5 x 10%, to see if we observe similar behaviour at lardgr. The kinetic
energies in the mean flows f&a = 5 x 10° are shown in figure 8.8. There are now extra solution
regimes appearing; in addition to the chaotic and steadynesgfrom the previous case, we have
a relaxation oscillation regime which is slightly diffeteio the chaotic regime (as described in
section 6.2 and 7.2) and solutions in this regime are dermtedplus sign, we also have periodic
solutions arising, these are shown by the square symbals) Fo750, the solutions are shown as
steady on the plot, but at thi3a, the degree of supercriticality is high and so the numedode
has to take small time steps in order to converge, thereioneay be that we need to integrate
for longer for the solutions to become chaotic. We have aetid might be best to ignore these
smallQ solutions. As with theRa = 5 x 10° case, the solutions go steady after a chaotic regime,

and here, ifQ) is increased even further, the solutions become periodic.

In the chaotic and relaxation oscillation regimes, both sness of the energy im andv decrease
as( increases. But, if we consider the ratio of the energy to the energy i Eperr We see

a difference between the chaotic and relaxation oscitatiyimes. In the relaxation oscillation
regime, the ratio is roughly constant before decreasing) &sincreased, therefore the mean is
reduced by the field more than the perturbations are. In asiytin the chaotic regime, the ratio
increases with) and sou is decreased less than the perturbations are by the fields,Rbe
ratio in the relaxation oscillation regime is roughly cargtand so the decrease in the energy in
¥ is probably as a direct result of the decrease in the energy limthe chaotic regime, the ratio
decreases a3 is increased, indicating that the energy in the mean is dsecemore by the field

than the energy in the perturbations is.

In both the steady and periodic regimes (la€gk the energy in bothi andv is decreased a@
is increased but the ratio of the energyuito the energy in the perturbations is roughly constant.
This is in contrast t@ where, in this regime, the energy in the mean and the raticedese as)

is increased.

8.2.4 Mean flow equations

In an analogous way to the purely hydrodynamic system (sg@®re.3.3), we derive the mean

flow equations by taking a horizontal average of thandy components of the momentum
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Figure 8.8: Kinetic energies in the mean flow 8r = 1, ¢ = 1.1, Ra = 5 x 10° and a range
of . The top row gives the mean measure of the energy (left) andw (right) in red and the
variability measure of the energy in blue. Chaotic solwiane marked with a cross, relaxation
oscillation solutions with a plus sign, periodic solutiomgh a square and steady solutions with
a dot. The bottom row gives the ratio of the energy in the maam tib the kinetic energy in the

perturbations.
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equations to give

P 0%v 1 ovw P 0BsB
Pri — 1 r —’(2} _ : VW 4 IT'CQ 2 37 (828)
Ta2 sin ¢ 0z Ta2 sin ¢ 0z Ta2 sin ¢ 0z
P 24 1 uw P BB
Pr — r  0°u ouw r(Q 0B 3, (8.2.9)

_Ta% sinqﬁﬁ " Ta? sin ¢ 0z Ta? sin ¢ 0z
where we haven taken time averages and assumed a stdjistsiesldy state so thagg(m =
%@ = 0. These equations are of a similar form as the hydrodynaminnflew equations,
(6.3.1) and (6.3.2), with the derivatives of the Reynoldssstesiwv andvw helping to drive the
flows, but, in addition, there is an extra term in each equapcoportional ta). The termsB; Bs
and B, B3 are known as the Maxwell stresses and are a contributingrfadten considering
what drives, or inhibits, the mean flows. Note, it is the clatiens of the flow and the field in
the z-direction with the flow and field in the-direction that dictate the flow in thg-direction.
Similarly, it is the correlations of the flow and the field iretrdirection with the flow and field in
the z-direction that dictate the flow in the-direction. We will refer to the term on the left-hand
sides of the equations as the mean flow term, the first termeoright-hand sides as the viscous

term, the second term on the right-hand sides as the Reysilts (RS) term and the last term

on the right-hand sides as the Maxwell stress (MS) term.

In the previous section, we saw that increasipdnad an effect on the size and structure of the
mean flows. To understand what is dictating this change, ategalch of the terms of the mean
flow equations, (8.2.8) and (8.2.9), as a functionzofThe plots are shown in figure 8.9 for (a)
@ = 100, (b) @ = 1500 and (c)Q = 10000. In blue are the mean flow terms; in orange are the

RS terms; in black are the MS terms and in green are the viteous.

First, let us consider the case when the field strength isls@at 100. In the bottom plot of
(a), we can see is clearly driven by the RS term, with the MS and viscous temmaging only a
small contribution. We see that the extrema of the RS termslase to the boundaries resulting
in a mean flow with maximum value close to the boundaries. ISty from the top plot of ()i

is driven by the Reynolds stress term. However, in this dasestis a larger contribution from the
viscous term, resulting from the fact thats greater tham, and as a resuti is a less systematic
flow thanv. The MS term, wher)) = 100, is small compared to the other terms. For small
the MS term is expected to be small for two reasons: firsteyMt$ term is proportional t@ and

secondly, we saw in figures 8.6 and 8.7 that@e 100, B, is small in the bulk, suggesting that

the correlationsB, B3 are likely to be small in the bulk too. Since the MS term is $nvad are

left with a similar balance as seen in the hydrodynamic qase, e.qg., figure 6.18).
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Increasing@ to Q = 1500 gives the balance shown in case (b)is clearly still driven by the
RS term but the MS term is larger now. In particular, the M®nté most significant close to
the top and bottom boundaries, and since it is acting in theosie direction to the RS term
there, it reduces size of the mean flow driving and $®relatively small in these boundary layer
regions compared to in the bulk of the layer. At thi€), the magnetic field is strongest near
the boundaries (cf. figure 8.7) and because the magnitudeisfarge enough, the MS term is
significant at the boundaries, resulting in the behaviouobaerve. Some field exists in the bulk
and so the MS terms have started to have an effect there tatheFRmore, the increase in the
effect of the MS term, along with the fact that the maximumtef RS term has moved towards
the middle of the layer (compared with smal@), mean that the maximum of has also also
moved towards the mid-layer depth. This explains what wasing the behaviour observed in

the time-dependent plots of figure 8.4.

Foru, the increase id) has resulted in an increase in the MS term affecting it, asal @adecrease
in the RS term driving it. These RS and MS terms now, along withviscous term, roughly
balance in the bulk of the layer to result in a relatively dmaghere. At the boundaries, there are
relatively large viscous boundary layers and since clogbdadoundaries the RS and MS terms
are small, it follows thati has boundary layers where the flow is largest, in agreemehtthe

plots in figure 8.4 and 8.5.

Increasing@ further, to@ = 10000 (see figure 8.9 (c)), leads to the MS terms becoming the
dominant terms. Magnetic field is no longer expelled to thengary, this fact combined with
the large@ means that the MS terms are dominant across the whole layer.RE term still
contributes to the form af but it is the MS term that dominates the structure. It is fag teason,

v is in the opposite direction fap = 10000 than it is for the othet) shown in figure 8.5. For,

the MS term is now larger than the viscous term, with the R&® teging the smallest of the three

terms and so it is the MS term that dominates

Hence, we have shown that the field can act to change theidivexftthe flow through changing
which terms in equations (8.2.8) and (8.2.9) are dominantthé cases examined, increasing
(@ does not appear to change the direction of the mean flow bygatuthe direction of the

Reynolds stresses.

We have seen that the relative size of the RS and MS termauiats the size and structure of

the mean flows driven. It is interesting to see how the sizdnega terms changes with. We



Chapter 8. Nonlinear rotating convection in the presencelairizontal magnetic field 203

Q = 100
1 —
0.8}
0.6}
0.4
0.2} -
U0 =20 -10 o0 10 20 30
1
0.8
0.6}
0.4
0.2}

Y950 =100 =50 0 50 100 150

N

N

1
0.8
0.6}

® 0.4}
0.2

0 : — .
Y40 ~90 0 20 40
1

0.8}

0.6}

0.4}

0.2f

0 L —

%60 —40 —-20 0 20 40 60

N

(b)

Q = 10000

(©)

Figure 8.9: Terms of the mean flow equations, (8.2.8) (topkkvdrive u, and (8.2.9) (bottom)
which drivew, plotted for different andPr = 1, ( = 1.1 andRa = 5 x 10°. In orange are the

RS terms, in black are the MS terms, in green are the viscoustend in blue are the mean flow

terms.
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define typical sizes of these terms as follows:

|[RSx| = </01<(%W)2>al2>é . |RSy| = </01<(%W)2>dz> 2 ’ (6.2.10)
rsel = arec [/ 45 5B dzf syl =arec ([ ZmB) df
(8.2.11)

In figure 8.10 we plot the sizes of the RS, MS and viscous teram gquations (8.2.8) (left) and
(8.2.9) (right). We also include the ratio of the typicalesiaf the RS and MS terms B Epert
and M Eyert respectively, so that we can assess whether the behavidhe ofiean correlations
reflects that of the perturbations, or if there is anothecgss occurring that is affecting the mean.
The red symbols represent the RS terms, the black the MS tarththe green the viscous terms.
Note, the plots in the left-hand column of each subfigure lagetypical sizes of the terms that

dictatewu, and the plots in the right-hand column are the typical sife¢ke terms that dictate.

Inthe Ra = 5 x 10° case, (plot (a)), from the right-hand side plots, we seettr@aRS term in
equation (8.2.9), which drives decreases with increasirg, whilst the MS term increases, this
supports the fact that &3 is increased the size ofis decreased (cf. figure 8.3). Note also that
the viscous term is roughly constant throughout the chaegone and decreases significantly in
the steady regime. We see that the RS term dominatesil ) ~ 5000 and then the MS and
RS terms are of roughly equal importance@lis increased further, t¢ = 10000, then the MS
term becomes the dominant term. This is reflected in the betnawf the different terms, as seen
in figure 8.9. The left-hand side plots of figure 8.10 (a) shioat,tforu, the viscous term plays a
larger role, in agreement with before. Also, up until thgéstQ (@ = 10000), the RS term and
the viscous term dominate and it is their combination th&tmeines the size of. As with the
terms drivingw, for ) = 10000, the MS term has become the dominant term and this determines
u. Forthe RS term, the ratios of the correlations to the kingtiergy in the perturbations slightly
increase, and so the decreases in the correlations arédasthe decrease in the perturbations.
For the MS term, the ratios of the correlations to the magrestergy in the perturbations slightly

decrease, and so the increase in the correlations is las#tktze perturbations.

Examining the equivalent plots for increas®d = 5 x 10%, see figure 8.10 (b), we find, for
the terms drivingo (right-hand side), in the relaxation oscillation/chaategimes the RS term
decreases a9 increases. In comparison to the RS term, the MS term and Htews term are
relatively unchanged. Up untd) is approximately25000, the RS term is the largest, but after
this value of(Q, the MS term becomes increasingly dominant. For the termmdru (left-hand

side), in the relaxation oscillation and chaotic regimbke,RS term is decreasing with increasing
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@, whilst the MS term is slightly increasing - this explaing thecrease & F; as( is increased.
As in the smallerRa case, the viscous term is more important for determinirigan it is foro.
Considering the ratio of the mean correlations to the peation energies (figure 8.10 (b), bottom
row) gives us that the magnetic field correlations are irgingawith @) less that the magnetic field
perturbations are. In the chaotic regime, the ratio of the ef the RS terms t& Epertis changed
slightly by @; the ratio of the RS term driving to K Epert is decreasing (in the chaotic regime)
and the ratio of the RS term drivingto K Epert i increasing withQ). This behaviour is reflected

in the behaviour of the kinetic energy in the mean flows.

8.2.5 Linear approximation

In an analogous way to section 7.2.3, we compare the diffeebetween the RS and MS terms
as calculated using the eigenfunctions obtained from treali code (cf. section 3.3) with the
actual RS and MS terms calculated from the fully nonlineatec@s in this chapter). Figure 8.11
shows the RS and MS terms as calculated from the nonlinear (sodid lines) and as calculated
from the linear code (dashed lines). The amplitude of thealireigenfunctions is normalised so

that its maximum value coincides with the maximum value eftonlinear (correct) terms.

As mentioned previously, the critical Rayleigh number iréased a§) is increased, and so for
fixed Ra, the largerQ solutions lie in a less supercritical regime, we would tfane expect the
linear behaviour to match that of the nonlinear calculatitore closely. Indeed, fa@ = 10000

(c), the linear calculation provides a reasonable appration to the nonlinear one. There is
however, some evidence of nonlinear effects even at@hifor example, the narrowing of the
jet profile that can be seen in the nonlinear calculation iscaptured in the linear case. For
smaller@, the agreement between the linear and nonlinear cases sewespecially in the MS
term. The MS term affecting, i.e., %WB& is well approximated in the bulk of the fluid but
the agreement breaks down close to the boundary layers.appisars to be because the linear
calculation is not capturing the expulsion of magnetic ftblat occurs in the nonlinear system for

small@ (cf. figures 8.6, 8.7).

The largest discrepancy between the nonlinear and lindanlations occurs for the MS term
affecting v, i.e., %TB?,. In fact, the difference is so large that the linear cal¢oratioes not
capture the actual behaviour in any way (at sm}ll this MS term therefore, must result from a
nonlinear process. The poor performance of the linear lon in approximating the nonlinear

RS and MS terms at smal), could be rectified by considering the interaction of the miaw
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Figure 8.10: Typical sizes of the terms in the mean flow equati(as given by (8.2.10) and
(8.2.11)). In red are the RS terms, in black the MS terms angréen the viscous terms for
Pr=1,(=11and (a),Ra =5 x 10° and (b),Ra = 5 x 10°. The different symbols represent

the same solution regimes as they did in figures 8.3 and 8.8.
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and field with the fluctuations. Further possibilities foamining this will be discussed in Chapter

9.

8.2.6 Effect of¢

In this section, we examine the effect of decreagingVe do this by considering = 0.1, unless
otherwise stated, and we draw comparisons with(teke 1.1 regime investigated in the previous

sections.

The kinetic energy in the mean flows for a smaltase are shown, as a function@f in figure
8.12. On comparison with the energies in the 1.1 case (figure 8.3), we see that the behaviour
of the two cases is similar. The main difference, howevethat the solutions remain chaotic
for all @ in the small¢ case. From figure 8.12, it is especially clear that there\acedifferent
regimes; for) < 2000, the decrease in the kinetic energyvaé roughly matched by the decrease
in the total kinetic energy and so the ratio of the two is rdyglonstant, but fo) = 2000, the
ratio is decreasing and so the energyiis being decreased by the field more than the energy in
the perturbations is. The flow in thedirection @) is affected in a different way; for smaf),

the mean measure is increased, whilst the variability nredaswlecreased slightly, i.e., the field
is not only reducing the magnitude of the flow slightly, busibrganising it into a more coherent
state. The variability measure &f £ is decreasing but only slightly more than the energy in the

perturbations and so the ratio is approximately constant.

By analysing the time-dependent mean flows, we found thatdhe of a similar form to those
found when{ = 1.1, especially for small). We show the cases whéh= 10000 and@ = 50000
for ¢ = 0.1 in figure 8.13. The similarity at smal) is to be expected asappears withQ) in the
equations and so  is small, then the MS term will play a less important role. tRarmore, as
Q is increased, we found that a larg@rhad to be reached in the= 0.1 case before the same
flow structure was apparent as in the= 1.1 case. For example, the boundary layers: iand

© (seen in figure 8.4 (b) but not 8.4 (a)) are not seen ptik 10000 for the = 0.1 case (see
figure 8.13 (a)), this can again be explained by the fact¢lzgpears withQ) in the equations and

so itis their product that is a measure of the applied field.

As was highlighted in figure 8.12, for smd]| the chaotic regime persists for much higligr
We find that, within the chaotic regime, there is a change énfthm of the mean flows. After
@ ~ 20000, we see this change in the structure of the flows, we show ampeaof this for

@ = 50000, see figure 8.13 (b). We notice a large change in the structuttee flows for this
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value of @, compared with the flows fof) = 10000 (8.13 (a)). Fory, the positive and negative
banded structure in the bulk of the fluid, that was preseninatlser ¢, no longer exists, instead
a wide band of mostly positive flow is observed. The flow is E®®-dependent, i.e., there are
fewer fluctuations in the flow, and also, the flow at the bouiedais much stronger than in the
smaller() case. Furthermore, the overall size of the flow is reducetigrldrger) case.u has

changed from being a highly fluctuating flow to one consistifidess time-dependent jets. The
flow at the boundaries is still the strongest, but in this caséh boundaries have negative flow,
whereas in (a) the top boundary has positive flow close to é@nde, increasing) has not only

decreased the magnitude of the mean flows but it has changeeitiical structure of the flows.
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Figure 8.13:a (left) andw (right) for Pr = 1, ¢ = 0.1, Ra = 5 x 10° and (a)@Q = 10000, (b)
Q = 50000.

If we consider the size and structure of the terms drivingntieain flows seen in figure 8.13, i.e.,
if we consider the terms of the mean flow equations (8.2.8)&r&i9), then for flows such as the
ones given in figure 8.13 (a), we find a similar balance of tewmas figure 8.9 (b) and so we do
not show the plots again here, however, we recap the maitspdior case (a), the RS term is free
to drive in the bulk of the layer, but the field expelled to the bounekresults in a MS term that

opposes the RS term there and causes relatively little flabweaboundaries. In contrast, for
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the terms cancel in the bulk of the layer and the flow is smaltehbut larger viscous boundary

values result in a larger meainclose to the boundaries.

For the largeQ) case of figure 8.13 (b), i.e() = 50000, the terms of the mean flow equations
must be different, in order to result in the different meamvf#ave observe. The results for this
case are shown in figure 8.14. (top plot) is clearly dominated by the MS term; the MS term
has two strong, negative boundary layers and a positive atigk interior, closely resembling
the mean flow termPra. v is determined from the terms shown on the bottom set of axes. T
boundary layers present in the viscous and MS terms at theftthie layer combine to give the
strong negative flow we observe there, whilst close to theoboboundary, the viscous and MS
terms approximately cancel to give a much smaller flow. Initierior, the structure of is not

clearly dominated by any one term and results from a balahak three terms.
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Figure 8.14: Terms of the mean flow equations, (8.2.8) (tdukkvdrivea, and (8.2.9) (bottom)
which drivew, for Pr = 1, ¢ = 0.1, Q = 50000 andRa = 5 x 10°. In orange are the RS terms,

in black are the MS terms, in green are the viscous terms abldignare the mean flow terms.

By considering the relative size of the RS and MS terms, asel@fby (8.2.10) and (8.2.11)
respectively, we can examine the valugpt which the terms first balance. Figure 8.15 displays
a plot of the ratio of the MS terms to the RS terms agadipsfor different{. From the plots,
we see that the RS terms are balanced by the MS terms at @rfrsmaller{. This may be
explained from the mean flow equations (8.2.8) and (8.29})ha MS term has &#r(Q factor
multiplying the z-derivative of the Maxwell stresses, therefore, assumirgMaxwell stresses

are themselves not changed too much b larger@ will be needed for the MS term to have the
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same effect at small€r.
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Figure 8.15: Ratio of the typical sizes of MS to RS terms thisted(a) z and (b)v, as a function
of Q, for Pr = 1andRa = 5 x 10°. In black,( = 1.1, inred,{ = 0.5 and in green{ = 0.1.

To see if changing has any effect on the systematic nature of the mean flows, ng&d=r the
standard deviationg, in w andv at fixedz. The results are shown in figure 8.16. In (a), we
plot o against(, and in (b), we plot against{(). We have considered two differeqitin black

¢ =1.1andin greerf = 0.1. Itis clear from the plots in (a) that, &gis increased, the standard
deviation inz andw is decreased for botth As described before, this is because the increase in
field strength causes the flow to become more aligned and the&toene more systematic, which
leads to a reduced standard deviation. As explained befamaller requires a largef) for the
MS term to achieve the same effect as for the largen fact, if we plot the standard deviation
against{(Q instead, see figure 8.16 (b), then the standard deviatiotnéotwo( are much closer

in size. In particular, for smallef@, the( = 0.1 solutions have the smaller standard deviation
and are therefore more systematic (at fixg€g), but as¢Q is increased the standard deviations

for the two( considered become closer and are almost equal in magnitude.

8.2.7 Effect of Pr

In this section, we decreader to 0.1 which, as mentioned on numerous occasions, IS more
physically relevant. For this work, we fik = 0.5; with Pr = 0.1, this results in a magnetic
Prandtl number ofPm = 0.2, this is in contrast taP?m = 0.91 and Pm = 10 for the cases

studied in sections 8.2.1 and 8.2.6 respectively.

In contrast to previous examples (e.g., figure 8.1), wRen= 0.1, ¢ = 0.5 andRa = 5x 10°, the

kinetic energy does not monotonically decrease with irginggl), at fixedRa, see figure 8.17 (a).



Chapter 8. Nonlinear rotating convection in the presenaehafrizontal magnetic field 213

30 40
50 A30
= : = 90
[ 10 : . [
10
0 0
102 103 10% 10° 102 103 10* 10°
Q (a) Q
30 40
20 ASO
& : & 9
[ N S
10 10
0 - 0 -
10 102 103 10* 10° 10 102 103 10* 10°
¢Q (b) Q@

Figure 8.16: Standard deviation, in () (left) and(v) (right) as a function of (aJ) and (b)(Q,
for Pr =1, Ra = 5 x 10° and¢ = 1.1 (black) and¢ = 0.1 (green).

Instead, there is a decrease in the kinetic energy with asamg( in the chaotic regime, but an
increase in the kinetic energy with in the quasi-periodic regime. The reasons for this behaviou
are not obvious and require further investigation. Howgifeve consider the dependence of the
magnetic energy ofy, we obtain the plot shown in figure 8.17 (b), the behavioulhia tase is
gualitatively the same as seen in previous examples (egggrefB.1), i.e., the magnetic energy is

monotonically increasing witt) for all ( shown.

To see what behaviour is contributing to the rise in kinetiergy at high), we plot the kinetic
energies of the mean flowisandv, as calculated by the mean and variability measures; tiutses
are shown in figure 8.18. Also shown are the ratios of the @iy the mean flows to the energy
in the perturbations. As in figure 8.17, crosses represeattithsolutions and triangles represent
quasi-periodic solutions. In the chaotic regime,(@ss increased, the variability measure of
both z andv decreases, demonstrating that the field acts to reduce theitonde of the flow in
both directions, just as it did for largdPr. The mean energy is also reduced with increaed
for @, but there is a slight increase in the mean energy.o€omparing these plots with those
for Pr = 1 (see figure 8.3) we see thatis more systematic foPr = 0.1, as the mean and

variability measures are closer in magnitude, big less so. The ratio of the variability measure
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Figure 8.17: Energies in the kinetic energy and magnetieggrfer Pr = 0.1, ( = 0.5, Ra =
5 x 10° and a range of). Chaotic solutions are marked with a cross and quasi-pergmutions

with a triangle.

to the kinetic energy in the perturbations in the chaotiémeg is roughly constant in both cases,
indicating that the decrease in the mean velocity is matblgetidecrease in perturbation velocity.
The decrease i Ewm) with increasedy) is not as severe as the decreas&ifpet Since the ratio
of the two increases slightly wit§. The increase in the ratiéﬁ—é“éit is due to the fact thaki F s,
increases buk Epert decreases a3 is increased. Whe@ is large enough, the solutions become
guasi-periodic. In this regime, the kinetic energy in botbasures ofi andv increases withf,

as does the kinetic energy in the perturbations. Howevemitbwth with in the kinetic energy
in the mean flows is more than in the perturbations, as seemtfie fact that the ratios are also

increasing in this regime.

To investigate whether this type of behaviour is evidentoliier R close toRa = 5 x 10°, we
examine the change in the averal§@per, M Eper, 0% and Nu with Ra € [10°,5 x 10], for
two different@. Considering first the kinetic energy in the perturbatiogps éunction ofRa, for
Q = 25000 and@ = 50000 (figure 8.19 (a)), we observe that f&u < 3.5 x 10°, the smallelQ
solutions are the most energetic, this is in line with whatmvght expect as, the smalléris, the
smaller Ra. is, and hence the smallé} solution is more supercritical (at fixeila). However,
this argument breaks down, in this case, at laf§er where the) = 50000 solutions are the
more energetic. We also notice that, the growth is uniforntte largerQ solutions whereas for
the @ = 25000 solutions, the growth appears to occur in two stages. Froongi§.19 (b), the
magnetic energy of th@ = 25000 solutions also grows in two different stages, in contrash&
@ = 50000 solutions, where the growth is more uniform. The magnetergyof the) = 25000

solution is smaller than th& = 50000 solution for all Ra, this agrees with what we would
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Figure 8.18: Energies in the mean flow fBrr = 0.1, ¢ = 0.5, Ra = 5 x 10° and a range of
. The mean measure of the energy is given in red and the M#tsiaheasure in blue. Chaotic
solutions are marked with a cross and quasi-periodic swoigtivith a triangle. The bottom row

presents the ratios of the energies in the mean flows to thgyemethe perturbations.
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expect as, from the definition (see equation (5.6.14%)F) et iS proportional ta). We also see
that, from figure 8.19 (c), the thermal energy as measuregf big reduced at larg&a for the
smaller@. The slowing in the rate of increase, or the decrease of thEs forQ = 25000 at
larger Ra means that dissipation in the system must be larger theges Bot to violate the law of

conservation of energy.

As we have done previously (e.g., Chapter 6), we can condiideNusselt numberNu, as a
measure of the effectiveness of the convection at trarisgolteat. We plotV« againstRa
in figure 8.19 (d), and we notice that, even at larger, Nu is larger forQQ = 25000 and so
the system with relatively small kinetic energy has foundeffitient way to transport heat via
convection. This can be compared with the lafge solutions found in section 6.2.4, though
there, there was an obvious change in the length scale ofotbhéam that is not present here.
Also in contrast to the larg&/« solutions in section 6.2.4, here, the change to solutioaisaie
more efficient at transporting heat by convection, occuithiwithe chaotic regime whereas in

section 6.2.4, the change coincided with a change of regiome €haotic to steady.
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Figure 8.19:K Epert (a), M Epert (b), 62 (c) andNw (d) as a function ofza for Pr = 0.1, = 0.5
and@ = 25000 (crosses) = 50000 (dots).
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From figures 8.17 and 8.18, it is clear that there are tworntdistiegimes. Fo) < 20000,
the solutions are chaotic and the energy in the mean flow aeesewith increasing, but for

@ = 20000, the solutions are quasi-periodic and the energy in the rfleanincreases with
Q. Here, we consider the change in the form of the mean flows as\owe between the two
regimes. In figure 8.20 (a), time-dependanfeft-hand side) and (right-hand side) are shown
for Q = 20000. We see thati consists of four alternating bands: a positive and negadie
in the bulk and two smaller jets at the boundaries, one pesithd one negatives is made up
of two distinct bands in the interior and smaller boundamgefgets, where the flow is reduced.
These flows are of the form of the chaotic solutions we saw urdi@.4 (b) and in figure 8.13
(a). The slight difference being thatis more systematic in the smalr, ( case and is less
systematic. A large€) is needed to achieve such a flow pattern in this case than dedee the
larger Pr cases. As when considering the effect @h section 8.2.6, this can be explained by the
PrcQ factor in the MS term of the mean flow equations. In figure 8t90the time-dependent
(left-hand side) and (right-hand side) are shown for a solution from the quasiepkc regime.
The less time-dependent nature of these flows is evident anskee that, instead of two jets of

opposite direction occurring in the interior, one largealscnegative band is present.
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Figure 8.20: Time-dependent(left) andv (right) for Pr = 0.1, ¢ = 0.5, Ra = 5 x 10° and (a)
Q@ = 20000, (b) Q = 35000.
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In a similar way to before, we analyse the terms of the mean éiguations (8.2.8) and (8.2.9)
to see what is responsible for driving the flows we observdijimre 8.20. Analysis of the terms
that drive the flows in figure 8.20 (a) gives a similar balamthe terms shown in figure 8.14 (b)
and therefore we do not repeat this analysis here. But wegsméhe terms that drive the flows
in figure 8.20 (b), as these are different to the ones disduissether cases. Each term of the
mean flow equations is shown in a different colour in figurel8tRe terms driving: are in the

top plot and the terms driving in the bottom plot. The structure afis dominated by the MS
term, but the other terms contribute to give the structurebserve. Recall that the RS and MS
terms actually dictaté’ru and Prv and so even though the driving terms are small, a significant
flow is produced sincé’r < 1. By considering the terms that drive we see that the vertical

structure ofv is not dominated by one particular term.

Figure 8.21: Terms of the mean flow equations, (8.2.8) (tdpigkvdrivew, and (8.2.9) (bottom)
which drive, for Pr = 0.1, ¢ = 0.5, Q = 35000 andRa = 5 x 10°. In orange are the RS terms,
in black are the MS terms, in green are the viscous termsim éfe the mean flow terms and in

red are the mean flows themselves.

As we have seen throughout, it is the Reynolds stresses tivat tie mean flows, and as the
magnetic field is increased, the Maxwell stresses become mgportant and modify the flows.
By comparing the typical size of the RS and MS terms, as defiye@®.2.10) and (8.2.11), we
can see at which value @} the two balance. In figure 8.22 we show the ratio of MS to RS $erm
as a function of) for two Pr and¢ = 0.5, Ra = 5 x 10°. As was the case for smd]| the small

Pr system requires a larg€J for the MS term to balance the RS term.
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Figure 8.22: Ratio of the typical sizes of MS to RS terms thiased(a) z and (b)v, as a function
of Q, for ¢ = 0.5 andRa = 5 x 10°. In black, Pr = 1 and in red,Pr = 0.1.

8.3 Summary

The aim of this chapter was to examine the effect of a horalanagnetic field on convection in

a plane layer model with a tilted rotation vector. We founaktlin general, as the strength of the
magnetic field was increased, the kinetic energy of the sydiecreased and the magnetic energy
increased. Although, for smaltr and¢, we found a region of parameter space where the kinetic
energy increased wity. We also found that, fo¢ = 1.1, whilst the small() solutions were
chaotic, there was a move towards steady solutiong) ass increased. With this change, came
the move to larger-scale solutions, with the preferred wavaber decreasing. On comparison
with the wavenumber expected from linear theory, it was tbtirat nonlinear effects cause the

scale of the solutions to increase.

We investigated the effect of the magnetic field on the meawsfidriven. ForPr =1, ( = 1.1,

the field reduced the magnitude of the flows but increasedyitemmatic nature of them, i.e., they
became less time-dependent. The smalichaotic flow in the plane, that ig, was found to
consist of a band of positive flow in the upper half-plane abdrmd of negative flow in the lower
half-plane. This persisted whé&nwas increased, however, in these cases the flow did not extend

all the way to the boundaries and boundary layers of relgtslew flow were formed.

By studying the mean fields in the system, we demonstrateédahamall), magnetic field was
expelled to the boundaries, but @was increased this expulsion became more difficult. This
meant that there was little magnetic field left in the bulkha# tayer to inhibit the mean flows in

these cases.
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As was the case in Chapters 6 and 7, we derived the mean floviatgjan order to see what
dictated the size and structure of the mean flows. The meanefmations were similar to the
mean flow equations in the hydrodynamic system, the onlemiffce being, the addition of an
extra term due to the magnetic field. This Maxwell stress tbemame increasingly important
for determining the mean flows &3 was increased, for two reasons. Firstly, the MS term was
proportional to) and so had a larger influence for larger secondly, less field was expelled to
the boundaries in these cases and so the correlations kelietth be higher. We showed that at
small @, the RS term dominates and is able to drive a significant flbvnaderate?), there is a
balance in the interior of the layer and so the flow is domithdtg boundary layers and for large

Q, the MS term dominated and produced a small, yet systemattic fl

We considered what happens when more realistic paramefienas were reached, i.e., smaller
Pr and smallerPm. We saw that, the effect of decreasiggvas to allow chaotic solutions to

exist for a larger range of). We also found that in some cases the behaviour of the small
solutions matched that of the= 1.1 solutions but only whei) was increased, this was due to
the presence dfQ in the MS term. Unlike in thé = 1.1 case, the MS term was able to dominate
the RS term whilst the solutions were still in the chaoticimegy When this was the case, we
found that the mean flows were less time-dependent and taattérior flow was mostly of one

sign, rather than forming an alternating jet structure as st smallery.

DecreasingPr, whilst keepingPm small, gave similar results. In particular, a larggerwas
needed to achieve the same behaviour as for laRgebecause of thé’r((Q factor in the MS
term. In the case we examined, the solutions became quasdigeat large and these were
accompanied by an increase in the kinetic energy of the rysied a change in the vertical
structure of the flow. As was the case in the hydrodynamicesystve demonstrated that, for

small Pr, even if the driving terms are relatively small, a significarean flow is still produced.

Finally, a linear calculation of the RS and MS terms led todbeclusions that ag is increased,
the nonlinear RS and MS terms can be well approximated byiribar eigenfunctions, however,
some behaviour is still not captured. For example, the exmulof flux to the boundaries is
not captured by the linear calculation. The increase iseagest of the linear and nonlinear
calculations withy) is to be expected since the solutions are less superciiti¢his case and so
the nonlinearities are not expected to be so large. We disextensions to this work in Chapter
9.
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Chapter 9

Conclusions

9.1 Summary of results and discussion

In this thesis, we have investigated the interaction of eotisn with rotation and magnetic fields.
In particular, we have focussed on the mean flows driven iraaeplayer model of a convecting
body. In Chapter 1, we introduced some of the many exampleghefe mean flows occur in
nature, e.g., the differential rotation in the solar cotieeczone, and the mechanisms for driving
them. As we discuss our work in the following paragraphs, eta relate the work we have

done back to the initial problems that initially motivatdetir interest.

As a mathematical framework for our study, we presented ¢hgpsand governing equations of
our model for studying convection in a plane layer in ChagteFhe model was based upon that
used by Hathawagt al. (1980) and was intended as a local approximation to a regiomnd

a latitude on a spherical body, so that the rotation vectos wlaique to gravity. The major
shortcoming of such a local model is its inability to deserthe global behaviour of the body, a
full spherical model would be more appropriate for such dyttiowever, important information
about the underlying physical processes involved in nogatonvection can still be extracted from
a local model such as the one used in this thesis. The bourdaditions we elected to impose
were impenetrable and stress free, chosen as they ares&sdire to mean flow generation than
rigid boundaries and they are more realistic to stellariots. This distinguished our work from
that of Hathawayet al. (1980) who assumed rigid boundaries. In reality, the boriegaf the
convection zone are much more complex. For example, the botendary of the convection
zone is coupled to the solar atmosphere and close to thisdaoynconvective motions, when

considered with other physical processes there, lead tgrineulation that is observed at the
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surface. The imposed impenetrable boundary conditionsraimdel also prevent any flux across
the boundary which again is a simplification. At the base ef ¢bnvection zone, where the
convection zone meets the tachocline, there is overstgpofimonvection towards the radiative
zone, this is not possible with such idealised boundary itiond but can be modelled in more
global models with more complex boundary conditions. Fodgtof a single region, like the one
in this thesis, impenetrable and stress free boundary dar@awestrictive and allow us to make

progress easily.

For simplicity, our study began by using the Boussinesq@ppration which assumes a small
layer depth {) compared to the pressure scale height of the sysi&nafd so pressure variations
may be neglected. This approximation is not a particuladpdyone for the Sun and other
astrophysical objects since there are many pressure sgiglet$in the layer height (for example,
H is less thanl% of the solar radius in the convection zone (Fan (2004))) angressure
fluctuations should not be neglected. This led us to intredhe anelastic approximation whereby
the constraint% < lisrelaxed, but the typical speeds are still consideredlgoaipared to the
sound speed so that sound waves are filtered out. This is ameée@pproximation for the Sun
except for near surface layers where velocities associaithdgranulation can exceed the sound

speed (Miesch (2005)).

Using the mathematical description from Chapter 2, we dmmned convection in the linear regime
under the Boussinesq approximation (see Chapter 3). Weieadrthree cases: (i) where there
was no magnetic field or thermal wind present, (ii) whereghgas a thermal wind but no field
and (iii) where there was a horizontal magnetic field but resrthal wind. The linear problem is
an important one to examine before solving the nonlineaslpro as, whilst it is unable to capture
physical effects that result from nonlinear interactiotig linear model is able to tell us about
some physical aspects of the system such as the conditionsett of convection. In (i), we built
upon the work of Hathawagt al. (1980) by considering’r < 1. Our motivation for considering
the smallPr case came from the fact that, in an astrophysical confextis often tiny, e.g., at
the bottom of the convection zone it is believed tiat ~ 10-¢ — 10~7 (Ossendrijver (2003)).
Computational constraints prevent us from reaching suchal silumber but, in the linear work,
we consideredPr as small a$ x 1072. The main findings of the linear work were that the
tilted rotation vector had more of an effect on convectiothiey-z plane (EW rolls) than it did
on convection in ther-z plane (NS rolls) but that, even at smatk, the NS rolls remained the
preferred ones. Also, in agreement with Hathawsal. (1980), in (ii), we found that the addition

of a thermal wind could switch the preference from NS to EVIsrals even a smdll, stabilised
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NS rolls and destabilised EW rolls. In (iii), we added a honital magnetic field to (i) and found
different solutions existed, depending on whetlerand ( were greater or less than unity. A
larger range of oscillatory solutions were found whén < 1 and¢ < 1. As already discussed,
in the Sun,Pr < 1, but so is¢, with a value of¢ ~ 10~* (Ossendrijver (2003)) suggesting
that the oscillatory modes are relevant in the Sun. To finielapier 3, we considered three-
dimensional perturbations to a basic state and found in szases oblique rolls were actually

preferred at onset, but in other cases, the two-dimensiondes were preferred.

In Chapter 4, we added stratification to the plane layer systeChapter 3 for which the anelastic
approximation was more suitable than the Boussinesq appation. This amounted to adding
the effects of a tilted rotation vector to the linear anétagtoblem as described in Mizerski &
Tobias (2011). The main result was that stratification, wheitted rotation vector was present,
broke the up-down symmetry when three-dimensional modetsyadimensional modes in the
z-z plane (NS), were considered. However, the up-down symnvedis/not broken when two-
dimensional modes in thg-z plane (EW) were considered. This had the result of the atitic
modes occurring with a preferred positive or negative aaltifrequency, so that the preferred
modes were left or right travelling waves when the symmetag Wwroken but, when it was not
broken, the preferred modes were standing waves. We prénvedot be true regardless of the
boundary conditions considered. We found that in the NS, agkether solutions with positive

or negative frequency were preferred, depende@ @n

In order to investigate the nonlinear effects of convegtinmparticular the driving of mean flows,

we developed a two-dimensional pseudospectral nonlingaerical code to solve the governing
equations. The details of the numerical methods used ween gin Chapter 5. We assumed
periodicity in the horizontal direction which is inaccwgan reality, but provides an efficient way
of solving the local model and therefore allows us to gaingimsinto otherwise inaccessible
problems. In the vertical direction, we used a Chebysheamsipn allowing extra points close
to the boundaries and therefore better boundary layerutesol By setting up the problem as
we did, we were able to solve the matrix systems in a relgtiefficient way, thanks to a well-

developed algorithm of Thual (1986). However, we were giitricted by limited resolution and
therefore a restricted parameter regime. Parallelisiegctide would help with this, allowing us
to reach more realistic parameters although truly accyratameters such a@&- ~ 10~ are still

a way from being achieved by even the most sophisticated Isiode

The first five chapters set the groundwork for the study of nflam generation by convection.

In Chapters 6-8, we carried out this study. In Chapter 6, wagsed on nonlinear hydrodynamic
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convection under the Boussinesq approximation. aswas increased, and thus the degree of
nonlinearity in the system increased, the solutions undetva number of bifurcations en route
to chaos. However, for a sufficiently tilted rotation vecamd small enougl®r, further increases

in Ra led to the solutions becoming steady again in what turnedambe large-scale solutions
that were efficient at transporting heat by convection. Wlhis is an interesting result in the
two-dimensional system, we believe that these large-ssallgtions were a result of the two-
dimensional nature of the problem we had set up and in a fatetdimensional simulation such

large-scale, steady solutions are unlikely to exist.

By tilting the rotation vector, we found non-trivial corations which led to systematic mean
flows, with a vertical rotation vector such correlations ameall on averaging. By taking
horizontal spatial and time averages, we derived the mean dipuations which isolated the
Reynolds stress (RS) term responsible for the driving ofmileavs. A smallerPr was found to
result in smaller RS terms but the presence Bfdactor in the mean flow equations ensures that
larger mean flows could result for smallBr. As described before, numerical limitations result in
orders of magnitude difference between the size of the Franthber used computationally and
those occurring in reality. Despite this, knowledge abbatfindamental interactions involved in

mean flow generation has been gained from this study andntessin this thesis.

In the second part of Chapter 6, we considered the additiantbérmal wind, via a horizontal
temperature gradient, as an approximation to latitudiaaiperature gradients that occur, for
example, in stars. This studying of mean flow generation whestear flow results from a
horizontal temperature gradient in a self-consistent raaima novel approach which does not
appear in the literature. In this case, we found that, thdétiaddof a thermal wind resulted in
more energetic flows and even wher= 7, the RS terms still generated systematic mean flows.
The thermal wind parameter was shown not to appear explicitthe mean flow equations but
act through an implicit modification of the correlations. ef¢onvection either extracted energy
from, or put energy into, the thermal wind shear; for smakter ¢ and7Ta it tended to extract

energy from the thermal wind shear.

For almost all the cases we studied, when mean flows werendtive flow in they- or meridional

direction @) was larger than the flow in the- or zonal direction ¢). However, for example,
in the Sun, meridional circulations are much smaller thanzbnal, differential rotation. One
reason for this discrepancy comes from the fact we are usilogad plane layer model with
periodic horizontal boundary conditions and thereforey filo the y- direction at one end of the

computational box is matched by flow at the other end, regyita superficially large flows. In



Chapter 9. Conclusions 225

fact, meridional circulation in the solar convection zosaiglobal circulation and so we cannot
expect to capture such behaviour in a local model. Morestaljeometries would be needed to

rectify this.

We extended the Boussinesq model of mean flow generatiocltaim the effects of stratification
and, as in the linear case, employed the anelastic approgimal he results of this work were
presented in Chapter 7. We demonstrated that the stratifidat to an asymmetry in the vertical
structure of the mean flow across the layer; flow from the upp#tplane penetrated further into
the lower half-plane as the strength of the stratificatios imareased. It was also found that the

flows were more systematic at lower levels in the layer ant imitreased stratification.

In Chapter 8, we finished our study with an investigation & tipposing of mean flows by a
horizontal magnetic field. We showed that, in general, aregse in magnetic field strength was
met with a decrease in the strength of the mean flows. Howthe=fjeld did act to organise the
flow and increase the level to which it was systematic. Intémidithe magnetic field could act to
change the structure of the mean flows, including their dvac We also showed that, at small
2, magnetic field was expelled to the boundary, leaving rathtismall amounts of field in the
bulk. This meant systems with sma&)l were still able to drive strong, unopposed flows in the
bulk of the layer. Analysis of the terms driving the flows Highted a balance between the RS
and Maxwell stress (MS) terms that was responsible for theeand structure of the mean flows.
As the magnetic field strength was increased, magnetic falttao longer be expelled to the
boundaries and so the RS terms were opposed by the MS terdisence the flows resulted from
a balance between the two terms. When the MS terms dominatédyery small mean flows
were generated, although they were shown to be very systenitatvas the balance of the RS,
MS and viscous terms that dictated the direction of the flovpdrticular, if, ag) was increased,
the direction of the mean flow changed, then this was a rekthliedyalance of the terms changing

and not that e.g., the RS terms had changed direction.

To investigate if the nonlinear behaviour of the RS and M$ngeicould be captured by a
simpler, linear calculation, we compared the RS and MS teamsalculated from the linear
eigenfunctions with the actual RS and MS terms as calculaydtie nonlinear code. In general,
the agreement was found to be poor and so the linear studyraggsct interactions that are
crucial in determining the full dynamics of the system. Otise, there is no reason why the
linear calculation should be a good approximation. Howetrerre are extensions to this idea,
i.e., to see if any of the large-scale dynamics of the syst@mbe captured without performing

the full nonlinear calculation. We describe some of thegerestons in the next section.
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We conclude this section by highlighting what we considdréddhe most interesting, new results:

1. Inthe linear anelastic study of Chapter 4, we showed nigaibr the existence of a hidden
symmetry. Upon breaking the up-down symmetry via a vertiemsity stratification, and
through tilting the rotation vector from the vertical, wheonsidering convection rolls in
the plane of the tilted rotation vector (EW rolls), the lingmowth rates still occurred as
complex conjugate pairs. That is, there was no preferendeftar right travelling waves
as there was when NS rolls were considered in the asymmettip.sWe proved this result

to be true for any natural boundary conditions.

2. In Chapter 6, when considering the interaction of corwactvith a thermal wind shear,
resulting from a horizontal temperature gradient, we fothat, whether the convection
extracted energy from, or put energy into, the shear, deggengon the parameters of the
system. In particular, for smalPr and¢, the convection tended to extract energy from the

thermal wind.

3. The investigation of mean flow generation in a stratifigettan Chapter 7, showed that a
stratification leads to an asymmetry in the layer. Flows enltwer part of the plane were
more systematic than those in the upper part of the planghémmore, in contrast to the
Boussinesq case, the flow speed was non-zero at the middapéh, instead, it was zero

deeper in the layer.

4. In Chapter 8, an imposed horizontal magnetic field was sl only to inhibit mean flow
generation, but also to change the vertical structure ofltve as the field strength was
increased. More specifically, in some cases, the directidcheomean flow was actually

reversed.

9.2 Further work

As with most studies, there are many natural extensionsetavtirk in this thesis that have yet to
be carried out. We have mentioned some of these as we disausseork in the previous section,

however, there are many more. In this section we describertég we envisage undertaking next.

As described at the end of the last section, we showed thatarlicalculation of the RS terms
generally provided a poor agreement with a nonlinear cafimr of them. We would like to find

a way of capturing the key dynamics without having to solefthil nonlinear equations, as they
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are computationally demanding to solve. One reason fortdecuracy in the linear calculation is
that it neglects the interaction between the mean flow anfiubriations and also the mean field
and the fluctuations (amongst others). Therefore, to sbesiirtteraction is responsible for any of
the behaviour we see in the full nonlinear system, we couftbse the mean flows generated from
a nonlinear calculation on the linear equations and cartyadinear analysis, in a similar way to
the one performed when a thermal wind produced a basic statddk in section 3.5). Building
on this idea, another interesting extension would be taoperthe quasi-linear calculation which
involves splitting the perturbations into a mean and fluitiggpart and then neglecting the terms
in the equations that are quadratic in the fluctuations. iBrasechnique employed by Srinivasan
& Young (2012), for example. This would allow us to determimeether the interaction between
the means and the fluctuations dictate the large-scalerésabfithe system dynamics or whether
it is essential to include the interactions between the dhtodns themselves in a full nonlinear

calculation.

In Chapter 8, we considered mean flow generation in rotatiagmatoconvection. An extension
to this work, which we did not have time to carry out, would bebnsider what happens when
a horizontal temperature gradient is also present, so tharanal wind is also present. Also,
it would be interesting to examine the differences that odouother field orientations, whilst

keeping the field in the horizontal plane. Both of these esiters are already accounted for in
the way we set up the problem and in the equations we derivied.farmer of these extensions

involves repeating the simulations fo, # 0 and the latter involves changing the parameter

The work undertaken in this thesis has been predominantty-dimensional. A natural
development then, would be to extend the work to include @ thpatial dimension. An easy
way to do this would be to assume periodicity in the secondkzbotal direction, i.e., introduce
anz-direction to be treated as thedirection was in this study. This would add a few subtleties
to the numerical procedure, but in principle, the same nigakealgorithm could be used on the
three-dimensional problem. In reality though, the codeldoeed parallelising, so as to be able

to solve the equations in a realistic amount of time.

Finally, as we mentioned in Chapter 1, mean flows are thoughétimportant in the generation
of large-scale magnetic fields in the Sun, but their role isfolly understood. Pontet al.

(2001), considered the kinematic dynamo problem by drigifigw through shearing the bottom
boundary of a plane layer. Further work we would like to perss to extend the work of Ponty
et al. (2001) by considering the kinematic dynamo problem withrttean flows that emerge self-

consistently from the turbulence in our model. Furthermexéending to three dimensions would
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allow us to consider the nonlinear dynamo problem. Recenmk \{fobias & Cattaneo (2013))
showing that systematic oscillating magnetic fields candreecated, relies on an imposed shear
flow. Again, the model discussed in this thesis, does notiredjois imposition as a shear flow is

driven self-consistently by the convection and so couldigethe basis for a dynamo study.

It is clear that the complex nature of physical problems lwving the interaction of convection,
rotation and magnetic fields is difficult to comprehend fullyis hoped that by considering a
simplified model of the large-scale dynamics, the work i thiesis provides some insight into
the underlying physical processes occurring in such prosleand that similar future work will
help to explain phenomena such as the large-scale mean flevabserve across the Universe

today.
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