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Abstract

While human action recognition is a very well studied topic, semi-supervised and

unsupervised tasks such as human action retrieval and human action clustering

have received relatively little attention. These topics are important to study, as

they require far less or no annotated training data, making it more feasible to

apply these methods to real-world data, where neatly annotated data are far too

rare and costly to obtain. In this thesis, several projects have been undertaken,

focused on performing semi-supervised and unsupervised tasks on human actions,

with potential for application to more complex systems.

The first topic for study is human action retrieval. Various methods for action

representation, ranking and relevance feedback are implemented, and compared

to one another. The result is a highly accurate human action retrieval system,

outperforming the state-of-the-art.

This initial investigation is extended with the exploration of human action

localisation. Two approaches to this problem are considered. First, a novel,

efficient algorithm is introduced for performing temporally unconstrained retrieval

and localisation of multimedia human action videos. This algorithm runs several

orders of magnitude better than the best contemporary work on several action

datasets, while maintaining practical accuracy. Then, a novel algorithm for

performing unsupervised temporal localisation of discrete human motions is

designed, based on the first two principal components of optical flow. A full

human action recognition system is designed around this algorithm to provide

an experimental validation of this concept. Experiments show state-of-the-art

performance on two popular human action datasets.
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An entirely new class of clustering problems is introduced for the clustering of

human actions while incorporating scene context. To solve this new problem, a

novel clustering algorithm – Dual-assignment K-means Clustering – is proposed.

Unlike previous work, which integrates scene context in a supervised fashion, the

proposed algorithm is entirely unsupervised, estimating two clustering solutions

and the mutual information between them simultaneously. In experiments, the

proposed algorithm out-perform state-of-the-art clustering algorithms by using

scene context to improve accuracy.

The dual-assignment clustering work is extended to consider the clustering of

actions with object context, rather than scene context. As there may be multiple

objects per single action, an algorithm is introduced to handle this complexity,

based on a combination of existing probabilistic graphical models. This algorithm

is termed Multiple Object Single Action Clustering, and is compared favourably

to Dual-assignment k-means and other existing clustering algorithms on a cooking

dataset.

The final work presents a novel method for representing human actions that

can enhance performance on unsupervised and semi-supervised tasks. It is applied

to clustering, retrieval and recognition tasks, tying together with works presented

in previous chapters. The proposed representation considerably outperforms

existing action representations on clustering and retrieval tasks.

It is concluded that these introduced methods provide a sufficient groundwork

for more advanced practical systems based on such semi-supervised/unsupervised

techniques – such as human activity retrieval.
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Chapter 1

Introduction

Year on year, machine learning and computer vision research grows more sophisti-

cated. Each new technology allows us to improve our approach to many different

real-world problems. As available computing resources grow more abundant and

cheaper, it becomes increasingly feasible to implement complex algorithms to

analyse the content of images and videos, to facilitate tasks such as surveillance,

automated driving, information storage/retrieval, or assisted living, for example.

One of the most popular topics in computer vision in the past decade has

been that of human action analysis – more specifically, human action recognition.

It is easy to understand this focus, as the human body is often involved in

computer vision tasks, and is also present in a great deal of existing visual media.

Recognising and understanding a human’s action is fundamental to many higher

level tasks, such as behaviour prediction, plan recognition, or activity recognition,

each of which has many practical applications. Human actions also receive

much attention because they are considered particularly difficult to model, even

compared to other computer vision tasks (for various reasons that are stated in

§1.1). Some of the most highly cited Computer Vision papers of the past decade,

therefore, are focused on human action recognition.[2, 3]

However, because human action recognition already receives considerable

attention, this thesis aims to cover several less common topics on human action

analysis. Within the individual chapters, various tasks are performed, including
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retrieval, localisation, temporal segmentation, clustering, and representation. The

unifying theme of these topics is the use of unsupervised/semi-supervised machine

learning, which also serves to distinguish this work from many previous efforts

in action analysis, the majority of which only consider fully-supervised learning.

(However, there is still a significant body of existing work that does consider

unsupervised/semi-supervised learning, and these works are cited throughout this

thesis.) unsupervised/semi-supervised learning can be applied in many situations

that supervised learning cannot, and can be used as a basis for higher-level

tasks, such as activity recognition, making it highly practical. A more complete

justification of this thesis’ focus is given in §1.1.

This thesis contains roughly two categories of work, with one category focusing

on semi-supervised retrieval and localisation of human actions with relevance

feedback – the other category is focused on fully unsupervised learning, performing

action clustering and segmentation. In the semi-supervised learning tasks there is

typically limited labeled data available, but a much larger quantity of unlabeled

data that can assist in the learning task. In unsupervised learning, the data

is entirely unlabeled. While the topics included in this thesis are disparate, as

listed above, the novel techniques introduced in this thesis are unified, in that

they find an underlying structure inherent to human action, according to some

representation method, relying minimally on training data to learn a task model.

This is a necessary and under-explored direction for human action research, as

is argued below.

1.1 Motivation

In this section, the motivation for this thesis is provided. There are three aspects

to justify: first, the focus on human actions is addressed; then, the decision to

concentrate on unsupervised/semi-supervised learning is explained; finally, some

potential applications of the work are described.

2



1.1.1 Human Action Analysis

It is proposed that when performing analysis of existing real world video media,

the most important aspect of the video is often a human’s actions. There are two

reasons that this is the case. First of all, the majority of existing video media

tends to focus on humans as subjects. These video media include, for instance,

TV, film, surveillance footage, and online videos. Indeed, video media that does

not include any humans, such as nature documentaries, have a comparatively

low frequency. The second reason is that practical video analysis tasks are

often related to humans in some way – CCTV surveillance is mostly concerned

with preventing/recording human crime; assisted living is used to help a human

perform daily tasks; YouTube searches will often relate to human activities, such

as in sports, dramas or comedies.

There is another reason that human actions are often studied: because of the

challenge that they pose for computer vision/machine learning. For instance,

there is enormous variety in the visual appearance of the human body, depending

on the clothes worn, the size/gender of the actor, and the ambient lighting

conditions. The human body has many degrees of freedom, and the same action

semantically could be performed in a variety of ways visually, or appear very

differently from multiple viewpoints. Indeed, even the question of how to define

the semantics of an action can be hard and application-dependent. All of these

problems make human actions an interesting and practical problem to approach.

1.1.2 Unsupervised/Semi-Supervised Learning

Machine learning tasks can be categorised according to whether labeled data is

provided for training a model, and how much labeled data is provided. When

fully-labeled data are provided for training, the task is supervised learning. If

some of the training data are unlabeled, the task is semi-supervised learning. If

no labels for the data are provided at all, and only the underlying structure of

the data can be used for learning, this is unsupervised learning.

This thesis is only concerned with semi-supervised and unsupervised learning

of human actions. Supervised learning (typically used to perform tasks such as
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video classification, localisation, or detection) is a well-explored topic, perhaps

because it is easier than semi-supervised/unsupervised learning, and can give

practical results that are easy to assess. Additionally, many researchers work

on low-level feature extraction, and supervised learning provides a convenient

way to show their features’ representational power. However, all supervised

learning methods share a weakness – they make the assumption that there will

be sufficient training data available to fully model the underlying data structure.

In the real world, the assumption that we have enough data for fully supervised

learning is problematic. Even the largest existing datasets for video analysis,

such as HMDB51, contain only a few thousand annotated clips, and several

tens of action classes, representing a infinitesimal proportion of existing video

media – this is nowhere near the sufficient size to perform effective training

on real-world video databases, such as YouTube, or on surveillance archives.

Instead, research datasets typically limit the number of action classes, and the

intraclass variability, so that reasonably performing algorithms can be trained

on relatively few samples. This is because annotating each video as training

data requires manual human effort, which is prohibitively expensive for large

amounts of data. Some supervised learning research focuses on reducing the

amount of training data required for good performance – for instance, using

dimensionality reduction, mid-level features or hierarchical modeling patterns.

Even these methods, however, perform better as more training data is introduced.

Another issue with supervised human action learning is that the training

labels are often too simplistic to be useful. That is to say, action datasets are

often annotated with simple action classes as they are understood by humans,

such as “kicking a ball”, or “cycling”, which are highly semantic representations

of the action. For certain high-level tasks, such as activity/behaviour recognition,

these simplistic semantic abstractions are not particularly useful. This is because

they don’t capture the attributes of the action, such as its speed, the intention

of the actor, or the different stages of the action, which can be very informative

in activity recognition. It is possible to annotate a dataset with such attributes,

but then the cost of annotation becomes even more expensive.
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In this thesis, semi-supervised and unsupervised methods for human action

analysis are considered. Rather than relying on labeled training data to find the

underlying decision boundaries between classes, unsupervised learning attempts

to model and utilise the underlying structure of unlabeled data to perform a

task, such as clustering or dimensionality reduction.

Semi-supervised learning combines relatively little labeled training data with

significantly larger quantities of unlabeled data to perform tasks like classification

or ranking – the intention here is that the combined labeled/unlabeled data

can provide information about the domain’s underlying structure, while the

labeled data can be used to perform more accurate classification/regression on

this underlying structure.

Several works are considered in this thesis, which are detailed further in

§1.2 below. These works share a common theme, in that they are all semi-

supervised or unsupervised tasks, applied to human actions, and therefore utilise

the underlying data structure of the actions in order to achieve high performance.

For semi-supervised methods, action retrieval with relevance feedback is studied.

Then, spatio-temporal localisation is applied in the context of action retrieval.

For unsupervised methods, a method for unsupervised temporal segmentation of

human actions is proposed, and then a method for using scene context to enhance

action clustering is given. A multigraph representation for human actions is also

devised, which can enhance the accuracy of both action clustering and action

retrieval.

1.1.3 Practical Human Activity Systems

Now we consider the practical applications of unsupervised/semi-supervised

methods for human action analysis.

Unsupervised/semi-supervised techniques could be used for the automatic

annotation of the vast quantities of video data found in multimedia databases,

such as YouTube, and in surveillance systems. In current multimedia databases,

annotations of a video’s content are manually provided by the uploading user,

which may therefore be incomplete or inaccurate. The recorded videos from
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surveillance systems are almost never annotated. By using effective ranking

and clustering methods, along with minimal user interaction (through an active

learning system, for instance), it will be possible to automatically annotate the

data in such video databases. These annotations can then be used for such

applications as search.

One particular form of search that could be performed on top of a well-

annotated database of human actions is that of human activity retrieval. In this

type of search, a user would provide a query video containing a complex, perhaps

non-linear sequence of human actions that they want to search for, perhaps in

a surveillance system. For instance, a user looking for instances of shoplifting

in a supermarket could provide a video that has the following actions: lots of

glancing around; taking an item from the shelf; walking out without paying.

The system would then provide a set of localised video results that most closely

match the semantics of the provided query. The action retrieval, clustering and

temporal segmentation work presented in this thesis could potentially be used

as groundwork for the development of such a system.

In addition to these applications, each of the chapters below discuss the

potential applications of the individual works as they are introduced.

1.2 Thesis Outline

The rest of this thesis is structured as follows.

Chapter 2 contains a full literature review of all of the previous works relevant

to human actions analysis, and unsupervised/semi-supervised machine learning.

Low-level action representation is first briefly considered, as it is necessary for

all higher-level work. Then, some popular mid-level representations are also

described. Various other topics that are relevant to this thesis are considered:

information retrieval (with a focus on action retrieval); action localisation;

temporal segmentation of human activities; clustering of human actions. Finally,

all of the human action datasets used in this thesis are described.

Chapter 3 researches existing techniques for their applicability to human
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action retrieval. Several composite action retrieval systems are considered for

ranking. Also evaluated are various methods for relevance feedback.

Chapter 4 extends the work of Chapter 3 to develop new algorithms for human

action localisation, in two different approaches. The first approach performs

spatio-temporal localisation within the context of human action retrieval. A novel

algorithm is implemented, and experiments on several human action datasets are

shown. In the second approach a new fully unsupervised algorithm is developed

for performing temporal localisation of human actions based on analysis of

humans’ motions. This method’s efficacy is demonstrated by applying it to a

recognition framework – however, as it is unsupervised, it could also be applied

for clustering, or for higher level tasks such as activity recognition.

In Chapter 5, a novel class of unsupervised algorithms is proposed to find the

link between actions and scene context when performing human action clustering.

Spectral Dual-Assignment K-means Clustering (SDAKM) is proposed as a

specific implementation of this algorithm class, and it is proven effective on four

action datasets.

Chapter 6 extends the work of Chapter 5 to consider how more complex

contexts can be used to assist in the clustering of human actions. In particular,

SDAKM is unsuitable when there may be multiple context instances, and so a

novel algorithm called Multiple Object Single Action Clustering (MOSAC) is

proposed to improve on SDAKM in this particular instance, and is tested on a

cooking dataset.

Chapter 7 details a novel local-feature-based representation method for human

actions using multiple graphs, that can be applied to enhance the accuracy of

action clustering, retrieval and recognition. This technique, termed FGSM,

is proven through extensive experiments for a variety of tasks on a variety of

datasets.

Finally, conclusions are drawn and future work is considered in Chapter 8.
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Chapter 2

Background and Related

Works

This chapter provides a background to the general topic of human action analysis

and certain related machine learning topics – concepts and specific related works

are both covered. The topics discussed are as follows:

• Action representation – how to perform feature extraction and action rep-

resentation, which are fundamental problems to all human action analysis

tasks.

• Action localisation, detection and segmentation – how to find a human

action spatio-temporally within a larger video.

• Action retrieval – finding actions within a database based on an exemplar.

• Action clustering – finding unsupervised groupings of the actions.

These topics are relatively broad, and apply to all of the work detailed within

this thesis. However, some subsequent chapters also require specific knowledge

from other fields of study, such as data mining – in those chapters, a further

background section is provided, to give the proper context to the research.
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2.1 Action representation

Feature extraction is typically the first and lowest level task of action represen-

tation, performed on a pixel level representation of an action video. The goal of

this step is to obtain salient features in a video; these features should contain

all the information required for the identification of the action, and minimal

irrelevant information. After extraction, the features are either aggregated into

a representation model (e.g., Bag of Features) or used directly for the learning

task (such as in Naive Bayes Nearest Neighbour).

Action representation methods can be categorised according to the feature

extraction method used: local feature-based methods, or global feature-based

methods. The work in this thesis uses a variety of different action representations,

both global and local, so a full review is given under these categories

2.1.1 Global Feature-based Methods

Global feature-based methods are concerned with the overall appearance of a hu-

man action in the video, and usually rely on some pre-processing or segmentation

to remove irrelevant background information and isolate the human silhouette,

such as background subtraction. Historically, techniques in this category have

proven to be the most accurate on very clean datasets, such as the Weizmann [4].

However, their reliance on primitive pre-processing steps to isolate the action

makes them poor at dealing with noisy conditions that appear in more realis-

tic datasets; for instance, occlusion of the human subject, viewpoint variance,

clothing changes, and ego motion all significantly degrade classification accuracy.

One of the earlier papers on human action recognition, Davis and Bobick [5]

represented the motion of a person as two types of binary image – the motion-

energy image and the motion-history image – and then used Hu moments to

represent this image as a vector, with the Mahalanobis distance to distinguish

the vectors, and the nearest neighbour algorithm for classification, as in ordinary

image recognition. Such a technique, however, loses most temporal information,

which is of considerable importance when distinguishing between certain actions
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– for instance, running and walking. There have also been approaches to extract

3D, spatio-temporal human volumes from a video. For instance, Niebles et al. [6]

implement such a system using a person detector, pose estimation, and temporal

belief propagation of the changing shape.

In order to capture temporal sequence information, but retain partial invari-

ance to temporal distortion of the action, Yamato et al. applied Hidden Markov

Models (HMMs) [7] to a time-sequence of images. Silhouettes are extracted

from each frame by background subtraction, are reduced dimensionally using

moment invariants, and matched to a particular HMM state. A HMM is trained

for each action, and Bayes rule is used in combination with these HMMs to

classify unlabelled actions. This initial paper resulted in a considerable amount

of human action recognition research into HMMs as an action classifier [8, 9, 10].

The original HMM models the duration of each state with an geometrically

decaying probability, due to its looping structure, but for most action states

this is not a realistic representation of the true state duration distribution, as it

tends to favour only short actions. The Switching Hidden semi-Markov Model

(S-HSMM), developed by Duong et al. [11], models duration probability by

removing loops from the model and then explicitly including duration as an

output from each state. Also due to its switching nature, an S-HSMM models

more complex relationships between states than a simple first-order markov

chain, which is of particular use in recognising more complex actions.

Other global feature methods rely on tracking of the body. Ikeda et al.

[12] localise both the hands and face, and use the distance between them at

each frame to classify actions. There is also considerable research in body pose

estimation, from both multiple and single cameras, such as in Andriluka et al.

[13]. Gu et al. [14] have shown promising results for action recognition using

such an approach, classifying the actions based on extracted body joint angles

from multiple cameras.

More recently, Zhen et al. [15] have achieved state-of-the-art results on several

realistic action datasets, including the HMDB51 [16]. applied a global method

called Laplacian pyramid coding to several realistic datasets. This holistic
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method implicitly extracts features by first creating a spatio-temporal Laplacian

pyramid of the video, which permits analysis of the video at multiple scales, and

then applying a bank of 3D Gabor filters to find salient spatio-temporal edges.

2.1.2 Local features

While global features have given impressive results for clean data, it has been

noted that they are not at all robust to noise introduced by issues such as

occlusion. In addition, research has shown, such as in Johansson [17], that it is

unnecessary to extract a complete body pose at every frame before performing

recognition; humans in particular are capable of distinguishing actions given

surprisingly little information, such as the movement of point light sources

attached to key points on the human body. This has motivated research into

local features for action recognition, which are small video patches extracted

from a local neighbourhood within the overall video. Initial work, such as that by

Laptev [18], showed that, by extracting many video patches from areas of interest

in an action video, and using a statistical method to model the distribution of

these patches within a dimensionally-reduced feature space, it was possible to

distinguish between actions in a robust manner. As local features do not rely on

techniques such as body segmentation or background subtraction, they are a lot

more robust to noise and variables such as rotation and viewpoint, making them

more suitable for tasks in realistic settings.

Local Feature Detection

When using local features for recognition, the first task is to detect areas of

interest within the video that are relevant to the action. If each frame of the video

is conceptually stacked together to view the video as a 3-dimensional volume (a

spatio-temporal volume), feature detection finds a series of (x, y, t) coordinates,

the local neigbourhoods of which are considered particularly informative in

recognising the action. Laptev [18] refers to these points as Spatio-temporal

Interest Points (STIPs) which this report will adopt for convenience.

There are many methods for performing local feature detection for human
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action recognition. The earliest of these, such as the Harris detector [19], MSER

[20] and SIFT [21] originated in image recognition, and work only on individual

frames, discarding temporal information. These detectors were later extended to

the spatio-temporal domain, such as the 3D Harris-Laplace detector [18] and

the 3D SIFT detector [22]. Each of these functions looks for a specific structural

feature in the image or video; for instance, the Harris detector finds corners, and

the SIFT detector finds minima/maxima after applying a Difference of Gaussian

(DoG) function.

Identifying features in a spatio-temporal volume using the same techniques

as for an image is unlikely to give optimal results, as the temporal information is

of a different nature to spatial information. Dollar’s feature detector [23] takes

this into account. It applies a 2D Gaussian smoothing kernel on the spatial

dimensions, and combines this with two 1D Gabor filters in quadrature on the

temporal dimension. Resultingly, this detector finds highly discriminative STIPs

at points of complex motion. Because of its general strength, it has been very

popular in further human action research since its introduction in 2005.

There have been other attempts at creating improved action motion detectors

in the subsequent years, such as Ning’s method [24]; Recently MoSIFT [25] has

been shown to considerably outperform Dollar’s method, its primary drawback

being that it is computationally expensive – though this is mitigated to a degree

as it is highly parallelisable. Shabani et al. [26] introduce their own detector

after determining that Dollar’s method has two fundamental weaknesses – that

it loses important high gradient information during spatial Gaussian filtering,

and that it does not account for ego-motion (such as camera-shaking). They fail,

however, to make a quantitative evaluation between their proposed detector and

Dollar’s method.

The feature detection step may be skipped, in which case every possible local

neighbourhood of the video is treated as a feature; this technique is known as

densely sampled local features.
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Local Feature Description

After feature detection, it is necessary to extract a video patch around each

STIP to provide a description of each feature. It is possible to use the raw pixel

values of each video patch for description; however, we usually want to group

together local patches which have similar motion patterns and raw pixel values

are not effective for this task. Instead, a feature descriptor is usually applied to

each video patch which discriminates more accurately between similar features.

Dollar’s gradient descriptor was introduced in the same paper as his popular

detector [23]. It takes the brightness gradients from the x, y and t dimensions

and concatenates them to form a descriptor.

While the gradient descriptor performs better than pixel values, there are yet

superior methods. Laptev et al. [3] used the combined Histogram of Oriented

Gradients and Histogram of Oriented Optical Flow (HOG-HOF) descriptors,

which were, once again, originally developed for image recognition. The first

of these, HOG, divides the spatio-temporal patch into regions, and calculates

the orientation of the gradient at every pixel. The orientation space is divided

into bins, and according to these bins, a histogram of the orientations of the

gradients is made for each region, and then concatenated for the final descriptor.

HOF is similar, except that optical flow is used instead of the gradient. This

combination of a static descriptor (HOG) with a dynamic descriptor (HOF) has

been shown to be more effective than either descriptor alone.

The SIFT descriptor [21], as with its detector, has been extended to 3D by

Scovanner et al. [22]. Histogram of Oriented Gradients, which is similar to the

SIFT descriptor, has also recently been extended to 3D by Kläser et al. [27], who

used a series of implementation innovations that made its calculations efficient

enough to be practical. HOG3D has proven itself to be a particularly effective

descriptor, achieving state-of-the-art results compared to all other existing local

descriptors.

Once a feature descriptor has been calculated, it is often of an extremely high

dimensionality. If this is the case, we can improve the efficiency and accuracy of

the subsequent representation and classification by performing dimensionality
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reduction. The most popular dimensionality reduction technique is Principal

Components Analysis (PCA) [23]. PCA, however, has limited performance in

certain circumstances because of its assumption of a linear relationship between

the input dimensions. Therefore there have been a considerable number of recent

papers showing the use of alternative techniques in human action recognition,

such as the linear method LPP [28], and non-linear LLE [29]. In Zhang et

al. [30] the experimental results of many different dimensionality reduction

techniques show that PCA is a comparatively weak algorithm, and also highlight

the performance of supervised dimensionality reduction techniques such as FLDA,

RLDA and particularly their own technique, SSCP.

Local Feature Representation

It is necessary to transform the features of each video into a representation that

can be used in conjunction with a classification algorithm to recognise the action.

Unlike with many global methods, the feature extraction does not result in a

uniformly sized vector that can be directly used with classification techniques

like SVMs or kNN.

One of the simplest types of action representations is the Bag-of-Words model

(BoW) [23], which discards all structural information between the local features

and makes a purely frequentative analysis. The first step of this representation

is to quantize the feature descriptors into bins by their similarity to each other.

To achieve this, the descriptors are clustered, ordinarily with k-means clustering,

into k pre-specified groups, or codewords. For each action sequence, the number

of videos falling into each bin is calculated and the bins are concatenated into

a histogram of codeword frequencies. These histograms then map each action

sequence into a k-dimensional space, and in combination with a distance metric

this information can be used to train a classifier such as an SVM or kNN.

Optionally, if the number of features in each action varies greatly, the histograms

can be normalised. Popular distance metrics for action histograms include the

χ2 goodness-of-fit test, the Euclidean distance, and the histogram intersection.

Despite its ubiquity in both image recognition and human action recognition
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research, BoW has been criticised as a weak model for several reasons. Boiman

et al. [31] claim that the quantization step loses a great deal of discriminative

information. They instead advocate the use of the Naive-Bayes Nearest Neighbour

(NBNN) algorithm. This algorithm skips the representation step and classifies

an image or action based purely on local features by minimizing the distance:

n∑
i=1

||di −NNC(di)||2 (2.1)

with respect to C, where di is the ith feature of the action and NNC(d) is

the distance (by some metric) from the nearest feature in class C to feature

d. The set of features in class C, DC , is simply the set of all features in the

training data for that class. As NBNN effectually requires no training step, nor

the calculation of a representation such as a histogram, it has a low initial cost.

Additionally, Boiman et al. showed it to be far more accurate than the BoW

method. However, these gains are made at the expense of a very computationally

expensive classification process, which requires O(FT ) time, where F is the

number of features in the image/action and T is the number of features in the

training set. By comparison, to perform classification with kNN in combination

with BoW requires only O(H) time, where H is the number of images/actions

in the training set.

One of the more interesting improvements to the original BoW model is

the Fisher Vector, proposed in multiple works for image representation, such

as Perronnin et al. [32]. Instead of representing the visual vocabulary of

image descriptors as a set of hard clusters generated by k-means, a Gaussian

Mixture Model [33] is instead trained, more fully capturing the distribution of

the descriptors. Let K be the number of components in the GMM, and D be

the number of dimension in the descriptor. A 2KD Fisher Vector is created over

an image by aggregating a mean-derived term and a variance-derived term for

each component/dimension combination over all of the image descriptors. This

approach results in a significant improvement over the BoW approach in most

cases, and also significantly reduces dimensionality. Its most significant drawback

is perhaps that it takes considerably longer to compute than the original BoW
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representation, though it is still more efficient than NBNN.

Another approach to reduce the impact of BoW quantization is by Grauman

and Darrell [34], who introduced the original pyramid match algorithm. They

iteratively divide the feature space into smaller and smaller bins, and at each

level, count the features in each bin. This generates hierarchical histograms

to represent each image, and then use these histograms in combination with

a distance metric such as the Euclidean or χ2 distances. They updated this

method in [35] to improve its time and storage efficiencies. Lazebnik et al. [36]

and Choi et al. [1] extend this technique by applying the pyramid match to the

spatial, and spatio-temporal dimensions, rather than the feature space.

Another technique for capturing structural information is the shape-context,

which has several different forms. The original shape context by Belongie et al.

[37] was created for images. While ordinarily local features are described from

the appearance of the local area around each feature, a shape context describes

a local feature by its spatial relationship to other detected local features. A

set of bins is centred around a local feature in a log-polar pattern. The value

of each bin is determined by the number of other local features in the image

that fall within that bin; these bins are then concatenated into a histogram

that describes the central local feature. Using the χ2 goodness-of-fit test it is

possible to then find corresponding STIPs on two different images, and using

these matched points as a reference, an affine transformation is performed on

one of the images that maps it on to the other image. After this transformation,

the mean squared error (MSE) of the distance between the matched points in

the two images is used as a distance metric.

The shape context has been applied several times in human action recognition.

Kortgen et al.’s [38] used the original algorithm but extended the log-polar

pattern to 3D. Grundmann and Meier [39] improved this by evenly distributing

the bins, as in Kortgen et al’s implementation the bins nearer the poles of

the shape context were smaller than those at the equator. Shao and Du [40]

similarly used shape contexts, but discarded appearance information and used

the shape-context histograms as semi-local feature descriptors in the ordinary
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BoW paradigm, clustering the histograms into k groups and creating a single

histogram representing each action sequence.

2.1.3 Other methods

There are certain techniques which do not fall cleanly into the local/global feature

paradigm. For instance, densely-sampled features – local features extracted from

every location on an image or video – are effectively describing the whole

image/video, so while they are individually local features, together they could be

considered a global feature method. One example of this comes from the work

of Bregonzio et al. [41] who suggest that global-like features can be extracted

from a dense cloud of local features, providing a descriptor that successfully

combines the discriminative power of global features with the robustness of local

features. This global-from-local approach also appears in in Shechtmann and

Irani [42], where they extract the overall motion from many individual local

patches, and combine the results to build up a global motion field representation

for each action. Recently, one of the most successful representations for human

action recognition is that of the dense trajectory descriptor by Wang et al. [43].

This method finds the trajectory of densely sampled points in a video, and

describes them using HOG, HOF and MBH descriptors. Dense trajectories are

particularly effective as they describe the relative motion of the objects within

a scene. However, they are much more computationally expensive than sparse

features.

Also related to densely-sampled features are mid-level representations, which

are named mid-level because they fall in between the lowest level local features,

and whole-video representations such as Bag-of-Words. The most popular

examples include the deformable parts model [44] and the related poselets [45].

These representations describe the appearance of local parts of an object or

person, and then model the approximate relationship between these parts. These

methods are relatively slow (although faster than dense local features) and highly

accurate, in part because they balance the low local variance and high global

variance of the appearance of deformable objects. A good example of mid-level
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features applied to actions appears in Raptis et al. [46].

Work has also been done to more closely approximate how the biological

brain processes vision, such as in Jhuang et al. [47] and Escobar et al. [48].

Ostensibly, these methods could be classified both as a global and a local method.

The representation model retains structural information, much like a spatio-

temporal shape context [40], in order to enhance accuracy to levels close to the

best global methods. Also inspired by humans’ and animals’ visual systems,

Convolutional Neural Networks(CNNS) [49] are similar in nature to the biological

methods described above. They model an alternating sequence of convolutions

and subsampling steps performed on an image as layers of a neural network, and

use back propagation to train the weights of the convolution and subsampling

kernels. Later works by Ji et al. [50] and Baccouche et al. [51] have independently

extended CNNs to the video domain, with reasonable success on the KTH and

Weizmann datasets. Recently, Karpathy et al. [52] have seen remarkable success

in applying a CNN to a new very large scale video dataset called Sports-1M. In

CNN based approaches, as all the model parameters are trained automatically

(except for the network topology) the algorithm is not “handcrafted” for a dataset

to get the best results; this makes the algorithm more flexible, and should achieve

reasonable performance on any new dataset with minimal changes.

2.2 Multi-view and contextual recognition

While the majority of research is focused on visual, single viewpoint recognition

of actions, there have been several worthwhile explorations of using additional

information to augment recognition accuracies.

The first broad category here is that of multi-camera recognition, where a

single action is viewed from multiple perspectives. Many of these techniques take

a global approach and construct a visual hull from the background-subtracted

silhouettes of each camera. Weinland et al. [53] suggest the use of Motion

History Volumes on these 3D volumes; MHVs are the 3D analogue of Motion

History Images introduced in [5]. Yan et al. [54] construct a full 4D spatio-
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temporal visual hull and extract geometric features for comparison. Peng et al.

[55] decompose the visual hull as voxels and on these they perform multilinear

analysis, and Turaga et al. [56] learn the manifolds on which the hulls lie

for better representation. Despite achieving considerable accuracy with these

techniques, they are especially prone to noise. Cilla et al. [57] avoid construction

of the visual hull, and instead use a correlation model to integrate the cameras’

observations for a probabilistic classifier. Naiel et al. [58] calculate the MEI/MHI

and extract 2DPCA features for each camera, and combine the classification

results by majority voting. Srivastava et al. [59] adopt a local feature-based

approach to get a BoW histogram for each camera, and combine these histograms

for the final action representation.

Contextual information relating to an action can also be used to improve

accuracy, and this contextual information can be gathered from a variety of

sources. Marsza lek et al. [60] exploit the correlation between the type of movie

scene and the probability of a certain action being performed to create a joint-

SVM classifier, improving both action and scene recognition accuracy. Jiang et

al. [61] take this one step further and perform both scene and object recognition,

combining this information in a probabilistic framework for enhanced recognition.

Han et al. [62] use object recognition, object-part recognition and body-part

recognition to provide contextual data for action recognition. Everingham et al.

[63] use the subtitles and script associated with TV programs to automatically

learn the appearance of TV characters’ faces and track them. Schroff et al. [64]

use image-associated metadata to automatically “harvest” an image database

from the web; this idea could be extended to human action videos by using

metadata on websites such as YouTube.

Ikizler-Cinbis and Sclaroff [65] combine object, scene and action information in

a multiple instances learning framework, to improve the classification performance

of YouTube videos. Prest et al. [66] use a weakly supervised framework to

learn the interaction between human actions and the objects in the scene, in

particular learning the spatial relationship between actions and objects. Liu

et al. [67] create an action recognition system where contextual information
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(as well as action execution details) are integrated as attributes of the action –

these attributes are modeled as latent variables. Li et al. [68] attempt to find

correlations between events in various traffic datasets, which can be used for

enhanced abnormal behaviour detection, using a cascaded topic model (Latent

Dirichlet Allocation) to find co-occurrence relations between events in data. It

is important to note, however, that all of these techniques rely upon training

data to learn the relationship between actions and context – later in this thesis,

Chapters 5 and 6 present novel methods to consider unsupervised context for

actions.

We can also improve action recognition in certain circumstances by using

intersensory data, such as audio, in addition to the visual data. Intersensory

data has proven particularly useful in speech recognition, as demonstrated by

the coupled audio-visual HMM by Nefian et al. [69] In a human action setting,

Töreyin et al. used audio in addition to visual data to help distinguish between

falling down and controlled sitting. Wu et al. [70] use audio for context in the

Hollywood dataset and show that audio is more informative than scene context

in their dataset. Abdullah and Noah [71] fuse high-level audio features with a

HMM-based action recognition approach to recognise violent actions in movies.

2.3 Action Localisation

While action recognition is generally aimed at temporally pre-segmented actions,

there have more recently been attempts to perform action localisation. Localisa-

tion in the context of actions refers to determining the bounding region of where

an action occurs – spatially, temporally or both. This could have many direct

applications, such as for searching through long video sequences such as films.

It is also particularly useful in the context of activity recognition, where often

the component atomic actions must first be recognised and localised before the

activity as a whole can be recognised.

There have been several different approaches to action localisation to date –

initially these approaches have mostly been based on global techniques. If it is
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possible to perform background subtraction, or extract a spatio-temporal volume,

then the task of localisation can be trivial. However, there have been some more

sophisticated global approaches that can temporally segment actions of interest

from irrelevant noise. Sullivan and Carlsson [72] perform 3D body joint tracking

using keyframe matching on global features. In Kläser et al. [73], spatial body

tracking and a temporal sliding window are used to perform action localisation

in the noisy Hollywood Localization dataset.

There have recently been more attempts to use local features in localisation.

In Thi et al. [74] local features are used to perform localisation in several

datasets, by attaching a relevancy weight to each local feature (which measures

how relevant that local feature is to the classified action) and then creating a

spatio-temporal bounding box around all the local features which pass a relevancy

threshold. Ryoo and Aggarwal [75] demonstrate the effectiveness of local feature

voting in their activity recognition system – where each feature casts a “vote”

for the spatio-temporal boundaries of the action. Oikonomopoulos et al. [76]

also use feature voting in combination with mean shift mode.

One of the better tools for performing human action localisation is person

detection and tracking. With the recent improvement of person detectors, such

as poselets, first published by Bourdev and Malik [45], and person trackers,

such as the recent GMCP-tracker by Zamir et al. [77], it is now possible to get

relatively stable human tracks from many action datasets. Even for more realistic

datasets for which person tracking might not work, such as UCF YouTube [78],

bounding box annotations have been published. Because of this, it is now

also possible to apply global representation methods even to videos that have

significant ego motion, scale and translation variations, and where background

subtraction/silhouette extraction is not possible. Recent action recognition

works that rely on bounding boxes of persons include Zhen et al. [79] who use

embedded motion and structure features within the bounding box and Ji et al.

[80], which describes 3D convolutional neural networks for feature extraction

from the person tracks.

Another approach to action localisation is the temporal segmentation of
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human actions. Many existing works, such as Kläser et al. [73], take a fully

supervised approach to this problem, training a model to localise specific actions

within a longer video. However, these techniques require training and prior

knowledge of the actions to be localised. Additionally, the complexity of this

type of localisation scales linearly with the number of action classes to be found.

The goal of unsupervised temporal segmentation, on the other hand, is to split a

video or track into temporally discrete blocks, based on some inherent property

of the video (e.g. start/end of linear motion), rather than relying on training

data. Unsupervised temporal segmentation could potentially be applied in many

scenarios, including video representation for multimedia retrieval, keyframe anal-

ysis, unsupervised action categorisation, and efficient action detection. Research

on unsupervised temporal segmentation of human actions has been sparse. One

work that performs unsupervised temporal segmentation, Xiang and Gong [81],

does so using blob trajectories in surveillance, which is a method that will

not work for highly complex human actions. However, there are some notable

recent works [82, 83, 84] that have started researching unsupervised temporal

segmentation for action clustering.

2.4 Action Retrieval

Human action retrieval is a subtly different task to recognition, with no training

set available (or rather, only a single training sample available) and results judged

on retrieval ranking rather than classification; it is a subfield of Content-based

Video Retrieval (CBVR), which is in turn an extension of Content-based Image

Retrieval (CBIR) to the video domain. While CBVR – which has its roots in

CBIR – has been studied for almost the same length of time [85, 86], video

retrieval has to date seen relatively little attention. Clearly defined, the task of

human action retrieval is to search through a database of human actions and

return a set of human actions in ranked order by their relevance to the query.

The query can be textual in nature; however, most ordinarily the query is itself

a video example of the action that is to be retrieved. The main problem here
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then, is to establish an efficient and effective measure of the distance between

the query and each database video. Finding such a measure can be of particular

difficulty for human actions, as two semantically identical actions can have very

different appearances, and a single query action is often insufficient to capture

this intraclass variance, causing incomplete/poor results.

Jin and Shao [87] have performed human action retrieval, representing actions

using local features and performing relevance feedback to improve results. How-

ever, the most effective retrieval method to date was applied to image retrieval:

manifold ranking, presented in He et al. [88], which is a graph-based algorithm.

Manifold ranking incorporates the underlying structure of the dataset to rank the

database items according to their similarity to the query. It can also elegantly

incorporate positive and negative feedback to improve its rankings further. There

are also two tasks closely related to content-based retrieval, which is explored

later in this thesis. Firstly Localised Content-based Retrieval, as presented in

Rahmani et al. [89] and Zhang et al. [90], attempts not only to rank database

images in response to a query, but localise the object of interest within the image.

The second task related to retrieval is that of action recognition using only a

single training sample, or one-shot learning – this is similar to retrieval, as the

retrieval query can be considered equivalent to a single training sample. The

primary difference is that while action retrieval seeks to rank the database items

in terms of their relevance to a query, action recognition from a single sample

attempts to classify the database items into categories. Seo and Milanfar [91]

present surprisingly promising results on the Weizmann and KTH dataset using

a classifier trained only from a single sample.

2.4.1 Relevance Feedback

Relevance feedback is a technique used within retrieval systems to improve results

by altering the query. Once a user has retrieved results from the system, he/she

can then choose to mark some of these results as relevant or irrelevant to the

query. The system then integrates this additional information with the original

query, in order to create a better result ranking. This two steps – feedback and
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result refinement – can be performed iteratively until there is no improvement

in results or the user is satisfied. Relevance feedback was first applied to textual

information in Salton [92] and has been of considerable interest in content-based

image retrieval for some time – two notable examples of this are in Tong and

Chang [93] and Hong et al. [94]. These systems rely on training binary SVMs

to incorporate relevance feedback, which, while effective for relatively simple

tasks, are highly dependent on the quality of the feedback, and assume that

relevant/irrelevant samples can be accurately described by linearly separable

vectors. Tao et al. [95] introduced a partial solution to these issues in the form of

ABRS-SVMs, which are more robust against disproportionately sized positive and

negative feedback sets, as a response to most existing retrieval systems that will,

on the first few iterations, return more irrelevant than relevant results. Based on

this, Zhang et al. [96] combine asymmetric bagging with soft query expansion.

Bian and Tao [97] introduced biased discriminant euclidean embedding, which

attempts to model a non-linear structure in low-level image features. Tian et al.

[98] In order to more accurately model the widely distributed negative samples,

Tao et al. [99] first cluster the negative samples into groups and then train a series

of marginal convex machine subclassifiers between each of these groups and the

positive samples, combining the sub-classifiers into a single relevance classifier.

However, all of these methods have been applied only to low-level global features

such as texture and colour in images, so it is unclear how they would perform in

a task such as human action retrieval, that typically relies on local features. All

of the above examples are based on image retrieval, but there have been a few

explorations of relevance feedback on video and human actions. Yan et al. [100]

applied pseudo-relevance feedback to the TREC2002 video track database, but

only used simple, static features like global colour and texture descriptors. Jin

and Shao [87] examined applying a single round of relevance feedback to human

action retrieval with a simple aggregate measure for combining the relevance

feedback. Active learning is an alternative to relevance feedback, which once

again relies on user interaction to improve results. Instead of choosing feedback

samples from an improving result set, however, the system provides the user with
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a set of highly informative samples for which the user should provide (ir)relevant

labels. It is expected that this method could more swiftly improve results than

relevance feedback. Some examples of these techniques are found in Zhang and

Chen [101] and Tong and Chang [102].

2.5 Action Clustering

Other works have focused on fully unsupervised clustering of human actions.

To solve this problem, research is typically focused on improvements in three

areas: either the action representation (for better cluster separation), the metric

for comparing actions, or the clustering technique (for finding non-linear cor-

respondences in the data). Yang et al. [103] demonstrate that a global action

descriptor and a temporal matching algorithm provide superior results to local

feature based methods for clustering. Niebles et al. [104] use probabilistic Latent

Semantic Analysis (pLSA) and Latent Dirichlet Allocation (LDA) – techniques

originating from natural language processing – to cluster the actions based

on the intermediate topics associated with them. Wang et al. [105] show the

effectiveness of spectral clustering, using a linear programming technique to find

the distance between pairs of action images. Topic models have also been of use

in performing mining of behaviour in videos, such as in Hospedales et al. [106],

which introduced a novel clustering method, the Markov Clustering Topic Model

(MCTM), to perform unsupervised scene interpretation. Chaudhuri et al. [128]

2.6 Datasets

Due to the great breadth of the human action recognition field, there is no one

canonical dataset for researchers to use to compare their methods. Indeed, as

research has progressed, the growth in number of datasets has accelerated, as

old datasets are found lacking in addressing new methods and research goals. In

this section an overview of the many datasets in the field are given. Table 2.1

summarises the datasets.

The Weizmann dataset, created by Gorelick et al. [4], is a simple dataset

25



Dataset Num. Act. Num Class Diff. Loc.
Weizmann 93 9 Easy No

KTH 2391 11 Easy No

UCF Sports 150 8 Easy No

MSR2 Localisation 203 2 Easy Yes

UT-Interaction 164 6 Medium Yes

YouTube 1168 11 Medium No

Hollywood-2 3669 12 Hard No

MPII Cooking Activities 5609 65 Hard Yes

Table 2.1: Various human action datasets used in this thesis. Num Act. shows
the total number of action instances in the dataset; Num Class. shows the number
of action categories; Diff. indicates the approximated subjective difficulty of the
dataset according to this researcher; Loc. indicates whether the dataset has the
ground truth for localisation.

consisting of 10 actions performed by 9 actors, with a total of 93 sequences. All

of the actions are shot from an orthogonal perspective, with a static background,

and there is little variation in clothing or body types. The Weizmann dataset has

seen 100% classification accuracy for whole sequences even in its original paper,

using background subtraction and global feature-based methods for classification.

However, due to its extremely clean nature, the best performing algorithms on

the Weizmann tend to perform poorly on more realistic datasets.

The KTH dataset [2], shown in Figure 2.1, has 6 actions performed by 25

subjects in different conditions, for a total of 2391 sequences. Alternatively, the

KTH dataset can be viewed as a series of 599 longer sequences, concatenating

several of the smaller sequences for each example. The actions are shot from an

orthogonal perspective, and in 4 different conditions: inside; outside; outside with

scale variations; and outside with different clothes;. The KTH dataset has proved

much more challenging to global feature-based methods, especially because of

the non-static background due to ego motion, precluding clean background

subtraction. The video quality is poor, and the lighting conditions are quite

variable. 3 of the actions – walking, running and jogging – also have very similar

motion patterns and are difficult to distinguish between. For this reason, no

technique so far has been able to achieve 100% accuracy on the dataset. The best

techniques, based on local features, achieve accuracy between 91 and 96%, but
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due to the diminishing returns of the incremental improvements to techniques

thus far, progression to 100% may require a fundamentally different approach.

While the KTH dataset is a step closer to realistic datasets, it is still shot

from a single perspective and includes only very simple, cyclical actions. Many

of the more recent datasets have a more practical focus. The UCF datasets

are all composed of human action videos drawn from existing YouTube videos,

and are aimed at researchers who wish to design algorithms for online videos.

The actions in the UCF Sports dataset [107] are short, atomic actions, such as

Shoot Basketball or Ride Bicycle, and they are generally shot from the same

perspective, but do not necessarily have static backgrounds. Examples are shown

in Figure 2.4. The UCF YouTube [78] and UCF YouTube 50 [108] datasets

contain similar actions that are not restricted to sports, such as walking, and can

be shot from a variety of perspectives. In the UCF YouTube 50 dataset, some of

the actions given are very general (such as Tai Chi) and might be considered as

higher level activities. Due to the low quality of Internet video, and the great

intraclass variety in these realistic datasets, the UCF datasets are still considered

to be open problems. Examples of the YouTube dataset are given in Figure 2.3.

The MSR2 Localisation Dataset [109] consists of a 3 action subset of the

KTH dataset – specifically the waving, punching and clapping actions. What

distinguishes this dataset from the KTH is primarily that the actions are spatio-

temporally unsegmented from the rest of the scene, so that the MSR2 dataset can

be used for action localisation/detection experiments. Additionally, the MSR2

dataset has multiple actors per scene, a variety of locations, and considerable

background noise, so that it poses a more significant feature extraction challenge

than the KTH. Examples of this dataset are in Figure 2.2.

Attempting to capture more realistic data for human action recognition,

Laptev et al. [3] and Marsza lek et al. [60] have created the Hollywood dataset,

and subsequently extended it with the Hollywood 2 dataset. The Hollywood 2

dataset, examples shown in Figure 2.6 consists of 12 action classes, in 10 types

of “scene” (used for context-assisted classification), extracted from 69 different

movies. It totals 3669 sequences and 20.1 hours of video. These action classes are
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mostly simple and atomic, such as Kiss and Sit Down, but also contains a more

activity-based Fight Person class. The actions are performed in a variety of ways,

from many perspectives, in black and white and colour, with varying lighting

and occlusion (in some cases, extreme occlusion), and with many different actors.

These highly realistic datasets can be expected to present a challenge in the

field for many years to come due to this huge variety, and especially as some

of the actions can only be recognised through contextual inference. The best

performing approach on the Hollywood 2 dataset in the literature is Wang and

Schmid [110].

The UT Interaction dataset [111] features videos captured from a surveillance

perspective of 6 classes of 2-person interactions. These interactions are captured

against an unmoving background at high resolution, but are performed from a

variety of viewpoints and by a variety of actors. It is chiefly of interest because

it looks at interactions rather than simple isolated 1-person actions. Examples

of the UT Interaction dataset are found in Figure 2.5.

The MPII Cooking Activities dataset, introduced in Rohrbach et al. [112],

is designed for the analysis of fine-grained human actions that might occur in

a kitchen. The actions, such as stirring and chopping have very subtle visual

differences, so techniques used for whole-body action classification aren’t typically

as effective on this dataset as they are on others. There are 65 distinct action

classes, which contribute to the difficulty of analysis, and 5609 actions. These

are taken from 44 videos that each contain the completion of a single recipe.

However, all actions are captured from the same viewpoint in the same kitchen,

with the same lighting, meaning that simple techniques such as background

subtraction can be used in the first stage of processing. Example scenes are

shown in Figure 2.7.

2.7 Discussion

This thesis covers several disparate topics within the unsupervised/semi-supervised

learning of human actions – clustering, retrieval and localisation. However, these
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Figure 2.1: Examples of actions from the KTH dataset.

Figure 2.2: Examples of actions from the MSR2 dataset.

tasks share many commonalities, justifying their inclusion in a single body of

work. Three examples of these commonalities are provided here. Firstly, these

tasks are all unsupervised/semi-supervised – as seen later in Chapter 7, an action

representation that performs well on one unsupervised/semi-supervised task is

likely to perform well on other unsupervised/semi-supervised tasks. Secondly,

findings from experiments in one of the topics are used to inform design decisions

in the other topics. For instance, in the experiments of Chapter 3, this author

notes the effect of scene context on retrieval results – this finding is later used

to motivate the topic of clustering with context in Chapter 5. Finally, many of

the tasks presented here can be used in conjunction with one another to build a

higher-level system – for instance, action clustering could be used in conjunction

with action retrieval to perform activity retrieval. This idea is discussed further

in Chapter 8.
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Figure 2.3: Examples of actions from the UCF YouTube dataset.

Figure 2.4: Examples of actions from the UCF Sports dataset.
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Figure 2.5: Examples of actions from the UT-Interaction dataset.

Figure 2.6: Examples of actions from the HOHA2 dataset. Clockwise from the
top left: sit up, kissing, answer phone, handshake.
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Figure 2.7: Examples of shots from the MPII dataset.
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Chapter 3

Human Action Retrieval

3.1 Introduction

The recent explosion of multimedia information on the World Wide Web has

simultaneously resulted in many potential applications and many challenges.

Foremost among these challenges is managing the enormous amount of data.

When search engines such as Google or Yahoo were introduced, the vast majority

of data available on the Web was in textual form; however, with consumer-grade

Internet speeds growing at an unprecedented rate, and with the advent of such

sites as YouTube and Google Video, users are making increasing use of the

Internet to look up and consume images, music and videos.

Because of the rapidity of this shift in content, methods of accessing this

data have been slow to keep up. The majority of Web users still rely on textual

keyword or phrase searches to perform all of their searches, whether they are

looking for modes of information as disparate as, for instance, a newspaper article

or a music video. There are several disadvantages to using a keyword search

to find multimedia information. Firstly, this method requires that the correct

textual data is associated with the multimedia object in question. To give an

example, most current image search engines find images embedded on webpages

in close proximity to the given search keywords, and YouTube video searches

look primarily at the title and description of each video, as well as the keyword
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“tags” that can be attached to them. Unfortunately, this textual data is often

inaccurate, and always incomplete; words cannot be used to fully describe a

multimedia object.

The second problem with textual searches is that often a user will not know

the name of what he/she is looking for, but only some knowledge of its contents,

such as the visual appearance of an actor, or what an object looks like. The

solution then to both of these issues is to perform a search directly on the contents

of the objects, a practice referred to as Content-based Information Retrieval

(CBIR). This technique has been well-explored in the audio and image domains,

resulting in commercially available systems. For instance, Shazam is a popular

service that allows users to find a music track by playing or humming a short

clip of the track into a microphone; Google has recently extended their keyword

image search so that users can provide an image to begin a content-based search.

The most challenging area, however, remains largely unsolved – video search

engines still rely primarily on textual keywords to retrieve results. There are

several reasons that video content-based searches prove more challenging than

either audio or image content-based searches: searches must be performed not

only on appearance but also on motion; videos are multi-modal, meaning that

they include both visual and audio information; because the amount of data

involved in a video is an order of magnitude higher than in images or audio, it is

correspondingly more difficult to extract the pertinent information; additionally,

because of this huge amount of data, algorithms must be extremely efficient to

be practical on large video databases.

This chapter focuses on one sub-domain of CVPR – that of Human Action

Retrieval. Human actions are of common interest to researchers both because of

the difficulty in recognising them, and because of their ubiquity in most available

video media. There are a great variety of possible human body appearances

and poses, as well as a multitude of ways an action can be performed. Even the

semantics of what constitutes an particular action might not be well defined. Any

practical CBVR system would, however, be expected by its users to overcome

these problems.
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One previously popular class of techniques for improving search results on

difficult subjects is known as relevance feedback. Here, a search engine will return

an initial small set of results for a query, and the user will provide the search

engine with information about which results are relevant to the query, and which

are not. The search engine can then incorporate this additional information into

an enhanced query, perform an improved search and retrieve better results. This

process can be iterated as often as required, until the user is satisfied with the

results.

This chapter explores the application of a form of relevance feedback to the

retrieval of human actions. This technique has previously been applied in the

image domain, and this chapter shows that it can be extended to the video

domain, even for very noisy datasets, such as those found on Youtube, or in

Hollywood movies. In particular, the algorithms are tested on the Hollywood

dataset [3] of complex and realistic human actions. It is shown that the use of

Relevance Feedback (RF) can be used to greatly augment the accuracy of such

a system after only a few iterations.

3.2 Action Representation

In this section several approaches are examined to represent and compare human

actions, divided into two categories: local feature extraction methods, and

techniques for aggregating these features into a model for comparison.

3.2.1 Local Feature Extraction

Local Feature extraction refers to the dual-process of first detecting salient points

in an image or video, and then describing the area around them. For detection

of features Dollar’s method is used [23], as it is the best detector as shown

in [113]. For description, two methods are compared: Dollar’s Gradient [23]

and the state-of-the-art HOG3D [27]. In addition to motion features, static

SIFT [21] features are extracted from keyframes in the video. Finally the use of

combinations of the above extraction methods is explored.
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3.2.2 Comparison Model

When performing action retrieval, a metric is necessary to compare how close

the query action is to each database sample. Several methods of measuring this

similarity are investigated.

Bag-of-Words

Under the Bag-of-Words model, dimensionality reduction is first performed on

the extracted features. Then, the features are clustered into codewords using k-

means clustering. According to the codewords of an action’s component features,

a frequency histogram is generated for each action.

To measure the similarity between histograms several metrics have been

considered. Because the histograms generated in the BoW model tend to sparsity,

the χ2 distance and Bhattacharyya distance are unsuitable, as they tend to

become unrepresentative on sparsely sampled distributions. The Earth Mover’s

Distance, popular for comparing colour histograms of images, is also not suitable,

as in its standard form it assumes that the histogram bins are in order – but in

BoW histograms, bin adjacency has no meaning. It is also possible to apply the

EMD without considering bin adjacency, but then it simply reduces to the L1

norm. The L1 norm, L2 norm and Kullback-Leibler divergence empirically gives

poor results for comparing BoW histograms for action recognition. Ultimately,

the histogram intersection is considered the least flawed metric in comparing

BoW histograms, and as such is commonly found in the literature [23, 43]:

s(Hq, Ht) =

k∑
i=1

min(Hi
q, H

i
t) (3.1)

Codeword assignment to the features can either be hard or soft. For hard

codeword assignment, each feature is assigned to a single codeword corresponding

to the nearest cluster centroid. In soft assignment, each feature is assigned

proportionately to each codeword in the codebook, according to the following

formula:
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Bf,C =
e
df,C

σ2∑
e
df,C

σ2

(3.2)

where Bf,C is a normalised vector (summing to 1) of the proportional be-

longing of feature f to each of the clusters C, df,C is a vector of the Euclidean

distance between the feature and every cluster centroid, and σ is a constant which

determines the “hardness” of the soft assign. Generating a codeword frequency

histogram for a video is then performed by aggregating the soft assignment

vectors for each feature in the video.

Vocabulary-Guided Pyramid Match

The original pyramid match algorithm, introduced by Grauman and Darrell

[34], attempts to improve on the bag-of-words model by using multi-resolution

histograms to describe an image. Initially, the feature space is divided into 2d

equally sized bins, where d is the dimensionality of the feature space. Then, the

feature space is iteratively divided into smaller bins to give increasing levels of

resolution, until each bin contains at most 1 feature. There are 2i
d

bins on the

ith level. The resulting set of histograms can be used to represent an action; to

measure the similarity of two images, the histogram intersection at each level is

calculated, weighted by the inverse of the size of the bins at that level, and the

resulting values are summed. This similarity measure takes the following form:

sim(X,Y ) =

L∑
i=0

1

2i
(
∑

min(Xi, Yi)−

∑
min(Xi−1, Yi−1))

(3.3)

where Xi is the ith level of the multi-resolution histogram X, L is the total

number of levels in the histogram, and
∑
min(a, b) is the histogram intersection.

Unfortunately, this pyramid match algorithm is intractable for high dimen-

sionality feature spaces, as it has O(2d) time and storage complexity. Grauman

and Darrell addressed this issue with their vocabulary-guided pyramid match
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(VGPM) [35], which serves as an efficient approximation of the original pyramid

match. Rather than divide the feature space into uniformly sized bins along

every dimension, the features are clustered using a k-means clustering algorithm,

resulting in unevenly sized and shaped bins. The features within each of these

bins is then clustered again using k-means, and this process is repeated hier-

archically, with smaller and smaller bins, until each bin contains at most one

feature. The benefit here is that the bins follow the structure of the feature space,

resulting in several orders of magnitude less redundancy in the repesentation

than in the original pyramid match. The similarity measure here is similar in

concept to that shown in Equation 3.3; however, the weight term is adjusted for

the size of each bin. Each bin has the following similarity measure:

simb(X,Y ) =
1

d(b)
min(Xb, Yb)−

ch(b)∑
b′

min(Xb′ , Yb′) (3.4)

The size term of bin b, d(b), is calculated during the hierarchical k-means

process as the maximum distance between any two features within b. ch(b) is

the set of all children of bin b. The total similarity is calculated by summing

over the similarity of every bin.

Spatio-temporal Pyramid Match

The original pyramid match was also modified separately by Lazebnik et al. [36]

to be applied spatially to an image. Initially, the features are clustered into

codewords as within the Bag-of-Words model. Then, the original pyramid match

is applied iteratively to divide the image spatially into multi-resolution bins along

both dimensions, and a codeword frequency histogram is generated for each bin

at every level. The advantage of this approach is that the spatial correlation

between the features is partially retained, which can lead to improved results;

the disadvantage, however, is that this representation is not invariant to most

geometric transformations on the video, such as translation, scaling and rotation.

It also has greater computational complexity than its sister VGPM algorithm.

Its similarity measure is identical in form to the original pyramid match.
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Choi et al. [1] extended the Spatial Pyramid Match (SPM) to the video do-

main with the Spatio-Temporal Pyramid Match (STPM). The STPM algorithm

is near identical in form to SPM, but is additionally applied to the temporal

dimension. Consequently, the same benefits and drawbacks apply to STPM as

SPM; this may adversely affect STPM’s performance on realistic human action

datasets.

3.3 Video Retrieval

In a content-based video retrieval system the goal is, supplied with a query video

as an input, to find set of videos within a database that are most relevant to the

query. The system presented in this chapter achieves this as follows. Firstly, all

of the database videos are pre-processed in an offline step to extract all of the

local features, generate a visual codebook, and represent the local features using

a model such as Bag-of-Words or a Spatio-Temporal pyramid. This step is done

once, offline, which improves the speed of queries by several orders of magnitude.

When a query video is supplied by a user, this video is first processed as for the

database videos, and then compared to the video database, to get a ranked list

of database videos by similarity, of which the top X are returned to the user.

Then, in the relevance feedback step, the user marks some of these results as

positive (relevant) and others as negative (irrelevant). The system incorporates

the feedback to generate an improved set of results. The result generation and

feedback steps are performed iteratively until the user is satisfied or no further

improvement of the results is possible. Figure 3.1 illustrates the system.

3.3.1 Relevance Feedback

As described in §2.4.1 in the literature review, to improve accuracy, the user can

provide feedback on the results returned after retrieval, marking them either as

relevant or irrelevant to their query. The retrieval system will perform an initial

query and return the top X most relevant results to the user. The user can then

mark as many or as few of these as “relevant” and ”irrelevant” as desired, and
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then run the query again to generate improved results. There are several methods

for incorporating this relevance feedback into the retrieval system. Relevance

feedback can be considered to be a basic type of active learning.1

Support Vector Machine

Perhaps the simplest relevance feedback technique is the Support Vector Machine

(SVM). Let us define a set of positive feedback P = {pos1, ..., posn} and a set

of negative feedback N = {neg1, ..., negn}, where negi and posi are data points

of d dimensionality. An SVM is trained by finding the optimally separating

hyperplane in d-dimensional space between the two sets P and N . Typically the

SVM can then be used to classify further data points into P or N by identifying

on which side of the hyperplane that point lies.

In a retrieval system, the two classes are “relevant to the query” and “ir-

relevant”, but it is not sufficient to find the class of the data points. It is also

necessary to rank the points on the relative confidence of their relevance. Rather

than performing classification, therefore, the SVM can be used for regression to

get a real-valued relevance score. This is done by measuring the perpendicular

distance of each datapoint from the hyperplane.

ABRS-SVM

SVMs are not ideal for relevance feedback, however, as they tend to be unstable

when few training examples are available, or when there is a significant disparity

between the number of examples in each class. In relevance feedback it is often

expected that the majority of feedback will belong to the “irrelevant” class, rather

than the “relevant” class. To overcome these limitations in image retrieval, Tao

et al. [95] outline the Asymmetric Bagging and Random Subspace for SVM

(ABRS-SVM), which learns a series of weak classifiers to distinguish between P

and N

As the name suggests, the ABRS-SVM is made of two components. The

1NOTE: A further work has been published to extend the findings of this chapter to more
sophisticated forms of active learning, but has not been included as many of the experimental
contributions come from other the other co-authors. Please see Jones et al. [115].

41



first component, called Asymmetric Bagging SVM (AB-SVM), is a model that

compensates for unequal numbers of examples in each class. AB-SVMs work as

follows. First, random sampling with replacement is performed s times on N ,

to generate s new negative sets: N ′1..N
′
s, where each N ′i has the same number

of samples as P . Then, s linear SVM estimators {c1, ..., cs} are trained, using

{P,N ′i} as training data for the ith estimator. Effectively, each weak estimator

si is trained using the same number of positive and negative data points, so the

hyperplanes of each are not distorted by the greater size of N compared to P .

The second component of the ABRS-SVM is the Random Subspace SVM

(RS-SVM) method, which aims to reduce overfitting to a small number of

training samples. The first step of the RS-SVM model is random sampling with

replacement, applied to both P and N , but to the feature space rather than the

example space. A small subset of the features in P and N is extracted. This

random sampling is performed f times, generating f new positive sets P ′1..P
′
f

and negative sets N ′1..N
′
f , each with small subsets of the full feature set. f linear

SVM estimators {c1, ..., cs} are then trained, using {P ′i , N ′i} as training data for

the ith estimator ci. As the features in N ′i and P ′i are a small subset of those in

N and P , the overfitting problem is mitigated.

The full ABRS-SVM combines these two components. First, the Asymmetric

Bagging technique is applied to N to generate s negative sets N ′1, ..., N
′
s. Then,

the Random Subspace method is applied to P and N ′, to give feedback sets

P ′1, ..., P
′
f and N ′′1,1, N

′′
1,f , ..., N

′′
s,f . A number (s.f) of weak estimators, defined as

{c1,1, ..., cs,f}, are trained using {P ′i , N ′′j , i} as training data for the jth iteration

of Asymmetric Bagging and ith iteration of Random Subspace sampling. The

results from all estimators s are then aggregated using the Bayes Sum Rule

(BSR) [95] to get a final relevance score, by which the results are ordered. BSR

biases classifiers according to their relative informational value, and is defined as

follows:

C∗(x) = argmaxk

[
(1−R)P (yk) +

R∑
i=1

P (yk|ci)
]

(3.5)

where ci(1 ≤ i ≤ s.f) is the ith classifier, P (yk) is the prior probability of
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the ith class, R is the number of classifiers, and P (yk|zi) is defined as:

P (yk|zi) = 1/{1 + exp(−|fi(x)|)} (3.6)

fi is the output from the ith classifier.

Naive Algorithm (Maximum of Similarities)

A naive algorithm is presented to serve as a comparison to the more sophisticated

relevance feedback techniques. Here, the negative feedback is discarded. Then,

a database video, the similarity between that video and each of the feedback

videos is measured using one of the representation metrics, such as the χ2 test

between histograms. The final similarity that a video is given is the maximum

of these similarities. As for the other techniques, the similarities for all database

videos are sorted and the top X of these are given to the user as results. In

mathematical form:

sim(h, pos) = min{sim(h, p)|p ∈ pos} (3.7)

where sim(h, p) is the similarity between database video h and positive

feedback example p, and pos is the set of all positive feedback.

3.4 Experiments

In this section experiments are detailed using the above techniques, applied to

two datasets.

3.4.1 Setup

The UCF YouTube Action dataset [78], the UCF Sports dataset [107] and the

Hollywood Human Actions 2 dataset (HOHA2) [60] are used for the experiments,

as they contain unconstrained, real footage, therefore providing a good test-bed

for real-world use.
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Tests are performed on these datasets with leave-one-out cross validation.

9 iterations of relevance feedback are applied for each search. At maximum, 5

positive and 5 negative feedback samples are taken from the top 20 results on

each iteration. To calculate the accuracy of an individual query, let N be the

count of all database videos that have the same action category as the query.

Then, the first ceil(N5 ) results are taken, and the percentage of them that belong

to the query’s action category is calculated.

When performing BoW clustering, first PCA is performed, retaining 95%

total variance, and then k-means clustering with k = 1500. For the VG pyramids,

k = 10 is used at each level, and for the ST pyramids, k = 200 for the codebook

clustering. Both pyramid methods have a total depth of 4, due to time and

memory constraints; for each VG pyramid a total of (10 + 100 + 1000 + 10000) =

11110 bins were used, and for the ST pyramid, (1 + 8 + 64 + 512) ∗ 200 = 117000

bins. For soft-assign clustering (see Equation 3.2) σ = 1.2. All of the above were

empirically determined through experimentation.

3.4.2 Results

Figure 3.2 shows the effect of soft assignment. For both the Dollar+Gradient and

SIFT methods, there is almost no effect on introducing soft-assignment; this is in

line with earlier findings. However, with HOG3D, soft assignment significantly

negatively affects the results, worsening dramatically with increasing values for

σ. This is a surprising result. It is perhaps because the relationship between

HOG3D features is too complex to describe as the Euclidean distance between

PCA-reduced vectors; while this is purely speculative, further investigations may

consider the use of non-linear dimensionality reduction techniques such as LLE

[114] in combination with HOG3D.

To further the examination of soft-assignment, several iterations of Maximums

of Similarity relevance feedback are applied in combination with varying values

of σ. As can be seen from Figure 3.3, the results are worse for soft-assignment

across all types of descriptor – the descriptor most negatively affected by soft

assignment is, as expected, HOG3D.
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Figure 3.2: How varying levels of soft-assignment affect first-query action retrieval
for 3 different methods of feature extraction on each dataset. See §3.2.2 for an
explanation of σ.
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Figure 3.3: Soft and hard assignment after relevance feedback, for 3 methods of
feature extraction on each dataset.
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Figure 3.4: Various combinations of feature hybrids for each dataset.
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Figure 3.4 demonstrates the effect of hybridising extracted features – that is

extracting features using each method, and concatenating the codeword frequency

histogram for each feature type together for use in the Bag-of-Words model.

As can be seen, the hybrid features have a better response on the first round

of relevance feedback, and converge to a higher accuracy. By combining all 3

descriptors, the best accuracy is achieved after 2 rounds of relevance feedback

– however, the very small difference gained from the extra computational cost

may not, in the vast majority of applications, be a worthwhile tradeoff.

Next, the effect of different representation methods is examined in combination

with naive relevance feedback, shown in Figure 3.5. HOG3D is used for all further

experiments. As can be seen, the ST pyramid match performs impressively on

both datasets; this is attributed in part to the nature of the datasets. Because in

many of the action categories, the actions were shot with uniform perspectives

and scales, this would particularly benefit the ST pyramid method. It performed

with a less significant margin of improvement over the BoW for the UCF YouTube

dataset, as this dataset has more variability in the aforementioned aspects.

In none of the datasets did either of the pyramid representation methods

significantly outperform the Bag of Words model – indeed, in the UCF YouTube

dataset, the VG Pyramid performed significantly worse than either of the alterna-

tives. Because pyramid methods typically outperform the Bag of Words model in

fully trained classification, this implies that pyramid methods require much more

than one labeled data point in order to be effective. It might be that additional

training data is necessary due to the higher level of quantisation present in the

VG/ST pyramid approaches in comparison to the BoW model. Also, the great

differences between the representation methods in the three datasets show that

the VG pyramid match’s performance is highly context-specific. Due to this, the

use of the VG pyramid match would not generally be recommended.

Finally, investigate the different methods of relevance feedback are inves-

tigated in Figure 3.6. Due to time constraints, it was not possible to fully

investigate using ABRS-SVMs in conjunction with the pyramid methods – the

combined complexity of ABRS-SVMs and pyramid matches would result in
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Figure 3.5: Methods of representation, using [1] for the ST pyramid
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Figure 3.6: Methods of relevance feedback, where MoS stands for Maximum of
Similarities as described in 3.3.1
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impractically long calculations. It was however possible to apply these methods

with an SVM, as shown.

Surprisingly, the SVMs resulted in a poor, oscillating performance after

relevance feedback; clearly the level of feedback (a maximum of 5 positive and

negative samples) were not sufficient to model a stable hyperplane, even using the

histogram intersection kernel. The ABRS-SVM results in worse performance than

the SVMs – indeed, after several rounds of relevance feedback, the results tended

to favour simpler systems. Through further experimentation, the oscillating

performance in successive rounds of relevance feedback is attributed to limited

discriminative power of the BoW representation.

3.5 Discussion

A variety of different approaches to content-based human action retrieval has been

presented, including relevance feedback techniques such as SVMs, ABRS-SVMs

and the simple Maximum of Similarities; Representation methods were also

looked at, including the vocabulary guided pyramid match, the spatio-temporal

pyramid match, and the original bag of words. Soft assignment was explored;

finally, some of the more popular feature extraction methods were combined for

greater accuracy.

In general, experiments showed that simpler methods tend to perform better.

The naive RF algorithm – the Maximum of Similarities – proved surprisingly

effective. This is at least partly attributable to the low number of feedback

samples considered; however, in practical relevance feedback, it is unlikely that

the user would be inclined to provide the vast amount of feedback that would

benefit an SVM-based approach, especially for video content. Additionally, while

the pyramid matches had a marginal advantage over bag of words, it is unclear

whether this advantage would be retained in more complex datasets, as they

trade invariance for discriminative ability. It is clear that yet further research

needs to be performed on human action retrieval in order to significantly surpass

the results obtainable by a naive bag of words approach.
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Further work on this topic would includes exploring other options for the

enhancement of retrieval, such as active learning (such as in Jones et al. [115])

or the incorporation of textual metadata into the algorithms to improve results.
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Chapter 4

Human Action Localisation

and Temporal Segmentation

4.1 Introduction

With the increased availability of digital video recording technology, more videos

are being created than ever before, with these videos coming from diverse domains

such as surveillance, amateur film-making, and home recording. These videos

contribute to the growth of video media databases, such as those available

online to consumers (e.g., YouTube), or CCTV footage collections. From this

exponential growth rises a new problem: how can these vast collections of media

be accessed in the most effective way, so that users can find what they are looking

for?

Currently, video databases such as YouTube employ a text-based search,

where videos are returned based on a set of keywords provided by a user. Such

a system, however, is flawed; text-searches can search the textual metadata

associated with a video (e.g. title, description, keyword tags), but not search the

videos directly. The textual metadata is rarely an accurate representation of the

video’s content, for several reasons: firstly, the textual information is provided by

the video’s uploader, whose assessment of the video may be flawed/incomplete;
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secondly, the amount of information in a video cannot be represented in a few

keywords without necessarily losing much potentially salient information. Most

importantly, text-based searches typically do not localise the action within a

longer video sequence. Such localisation is particularly useful, as in a real-world

database a video might be quite long, but only a very short section of it relevant

to the user’s query.

In order to tackle this problem, this thesis chapter looks at and qualitatively

compares two alternative approaches to the problem of action localisation within

longer sequences to improve data search and access.

The first approach, an exemplar-based human action localisation system, is

an extension of Content Based Image Retrieval (CBIR) to the video domain.

Given an example video – a query – of what the user is searching for, CBVR

directly searches the database’s contents, meaning it can potentially return far

more accurate results than existing text query systems, as it avoids the above

problems associated with poor quality metadata. While CBVR has been well

researched through a focus on keyframes and 2D features, only a few previous

works have looked at this problem using temporal information, such as Yu et

al. [116]. Human actions are the focus of this work, meaning that the vast

quantity of prior human action recognition research can be used to inform this

work. Human action recognition, a distinct task from retrieval, focuses on using

trained models of human actions for classification. Because supervised recognition

algorithms require prior knowledge of all the classes that are to classified, they

are unsuitable for direct use in retrieval tasks, but many of the unsupervised

action representation techniques developed for recognition are also applicable

in retrieval. The second approach is an efficient method for the unsupervised

temporal localisation of all human actions from a single human track – this is

also known as temporal segmentation, but it is referred to here as localisation to

highlight its relevance to the chapter. The algorithm presented is designed in

such a way to maximise its efficiency, in order to make it applicable to extensive

databases of video footage, such as those found in surveillance databases. The

system works roughly as follows: first, an effective human tracker is applied to
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the human subject, removing any background noise, as well as compensating

for translational and scale variations. Secondly, this method for unsupervised

segmentation is applied to the human tracks, resulting in a series of sections of

self-consistent linear motion.

The rest of this chapter describes these two approaches to human action

localisation in more detail.

4.2 Examplar-based Human Action Localisation

The first system presented in this chapter is a Content-based Video Retrieval

system. It distinguishes itself from the majority of previous works by not only

retrieving relevant human action videos, but also localising the exact relevant

part of these videos spatially and temporally. Among other improvements to

the state-of-the-art, this work distinguishes itself in two facets: 1. An extremely

efficient algorithm is designed for spatio-temporally localising human actions

within a dataset using only a single query of the sought-after action – this

algorithm is considerably computationally simpler than comparable works for

action retrieval with localisation. It could also be extended into a hierarchical

model for better-than-linear performance. 2. Relevance feedback is used in the

context of localisation, and its efficacy is demonstrated in this application – also

considered is how imperfectly localised relevance feedback can be used.

The goal of the first system is defined as follows: given a query video

containing a pre-localised human action, the system searches a video database

for all instances of this human action. It spatio-temporally localises and ranks

these actions according to relevance, before returning them to the user. At this

point, the user may mark results for relevance feedback and run the query again

iteratively, until he/she is satisfied with the results.

Human actions are focused on for two reasons. Firstly, videos of humans

constitute the majority of existing video media, and are therefore highly likely to

be the target of a user’s query. Secondly, the majority of existing video datasets

for recognition and retrieval research are also focused on human actions.
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Figure 4.1 gives an overview of the system. The database of videos is pre-

processed in batch - local features are extracted and clustered into codewords.

When a user provides a query video, several steps are performed in sequence.

First, the same feature extraction is applied to this video. Using these features,

the system performs temporal localisation to find a large number of candidate

results in the database. The candidates are refined by performing a further round

of localisation – this time spatially – and then rank the candidates according

to a bag-of-words model. The top X results are returned to the user. At this

point, the user can choose to provide relevance feedback if necessary, to improve

results. Several of the ranked videos are marked as relevant/irrelevant to the

query, and this relevance feedback is used in a further search, to improve both

the localisation and ranking steps.

Below, the operation of the system is given in detail. Efficiency is treated as

the utmost priority, while maintaining practical accuracy; therefore the design is

justified in these terms.

4.2.1 Video Representation

As described above, the video database must be pre-processed with feature

extraction before a search can be performed. The system achieves this using

an existing feature detector and descriptor (such as Dollar’s [23], SIFT [21] and

HOG3D [27]). The features are extracted at a roughly consistent rate with

respect to time. Having extracted features in such a manner across the whole

dataset, a combination of PCA (capturing 95% variance) and k-means clustering

are applied to the descriptors, retrieving k visual codewords. The choice of k

is important, as generally higher k will give better accuracy, but will also slow

down retrieval, and too high k will lead to sparsity issues in the localisation

algorithm.

Then, each video can be efficiently represented by the set of its features.

Each feature can be represented as a tuple, t = (x, y, t, c), where x, y and t

represent the spatio-temporal location of the feature within its video, and c is its

codeword. The process of feature extraction can often be quite costly – however,
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in a retrieval model this impact is minimised, as feature extraction is performed

just once on the database – for subsequent searches, feature extraction is only

performed on the query video.

4.2.2 Localisation

Temporal and spatial localisations are separated into linear time algorithms

to decrease the search time of the algorithms. Simultaneous spatio-temporal

localisation using branch and bound, such as in [116], has very high computational

complexity, especially for lengthy video sequences. This work proposes that such

localisation is unnecessarily complex – using local features, temporal localisation

can be performed accurately, independent of spatial localisation. It can be

observed that, in many multimedia video sequences (as opposed to surveillance

footage) a simple human action will occupy a small proportion of the temporal

domain, but a relatively large proportion of the spatial domain. Therefore, to

perform an efficient search, temporal localisation is first performed to identify

a relatively small number of candidate regions with respect to the size of the

dataset, before performing a more complex spatial localisation operation on only

these candidate regions.

Temporal Localisation

An additional step of pre-processing is performed on the database in order to

facilitate fast temporal localisation. The temporal space is divided into slices of f

frames, and for each time-slice, a normalised bag-of-words histogram is generated,

Ht ∈ HT . The appropriate choice of f is made empirically, and this choice is

important – it should be small enough to account for short actions (approximately

half the length of the shortest action in the database), but large enough so that

the histograms are not overly sparse. The choice of k (the codebook vocabulary

size) and f also presents a trade-off between the time efficiency and accuracy of

temporal localisation during a search. In these experiments, f is set to 8, which

is approximately half the length of the shortest action in the test datasets.

During a search, features are extracted from the query video and the query is
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represented by a single normalised bag-of-words histogram, Hq. It is important

at this point to note that Hq and Ht are not directly equivalent; Hq represents

the complete action, whereas each Ht will at most represent a temporal fraction

of the overall action. By using the correct comparison metric, however, it is

still possible to compare Ht and Hq to generate a useful value. For this the

histogram intersection can be used:

s(Hq, Ht) =

k∑
i=1

min(Hi
q, H

i
t) (4.1)

For retrieval tasks, however, a modification of the histogram intersection

might be more appropriate:

s(Hq, Ht) =

k∑
i=1

min(Hi
q, H

i
t)

Hi
n

(4.2)

where Hn is the normalised histogram of the features across the entire database.

Using Hn in this way, rarer features in the dataset – those with a presumably

higher information value – have a greater weight. A major assumption of this

model is that a high value for s(Hq, Ht) is predictive that time-slice t contains

part of action q. This is subtly different from the standard procedure, where two

full-action histograms are compared. It was experimentally determined that the

comparison is indeed suitable for this purpose.

Having calculated s(Hq, Ht) for all t ∈ T , the system then looks for temporally

adjacent regions with high values for s, which indicate potential candidate regions

within each database video. A threshold value is determined individually for

each scene1 in the database, above which a time-slice is considered to be a match

for the query. This threshold is set as a standard deviation above 0, and from

this a set of candidate regions is generated.

In order to reduce the noisiness of these regions, two additional operations

are performed. Firstly, adjacent regions are joined: if time-slice t is a match,

and t+ 2 is a match, then t+ 1 will also be considered a match. Then singleton

regions are removed: if t and t + 2 do not match the query, then t + 1 is not

1A scene refers here to a single contiguous camera shot.
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considered a match either. Similar in concept to region dilation and erosion in

2D image segmentation, these operations significantly reduce the effect of noise

(such as partial occlusions) but are relatively cheap to perform. When all these

operations have been performed, the final set of candidates, termed C, is passed

through to the spatial localisation step.

The complexity of the temporal search over a single video is O(k nf ) where n is

the number of frames in the video, k is the number of codewords, and f is the size

of the time-slice. It is postulated that the efficiency of the presented technique

may be improved to a logarithmic time function by performing a coarse-to-fine

hierarchical search on large-to-small time-slices, but such considerations are

beyond the scope of this work.

Spatial Localisation (SL)

Once temporal localisation has identified a set of candidates, SL is linearly

applied to to the temporal candidates – at this point the candidate set has

already been pruned to a comparatively small subset of the total database,

so spatial localisation need not be as computationally complex as temporal

localisation. If maximum efficiency is desired, however, spatial localisation can

be performed after ranking, only on the top X results – this results in a SL

step which is constant w.r.t. the size of the database. For reasons of storage

complexity, only minimal pre-processing of the database is performed to prepare

for SL. The feature tuples retrieved in the feature extraction pre-processing step

are stored in temporal order, so that once the temporal bounds of each candidate

are known, the features belonging to each candidate can be swiftly retrieved.

In these experiments two methods of spatial localisation are investigated, to

evaluate their accuracy and performance trade-offs. The effects of performing

spatial localisation before, and after, the ranking step are evaluated. The former

is expected to result in greater accuracy, as ranking can be more precise; however,

if spatial localisation is performed after ranking, spatial localisation only needs

to be performed on the top X results that are to be returned to the user. This

may result in a considerable efficiency improvement.
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X − Y Separated SL The first approach linearly separates localisation along

both spatial dimensions X and Y to minimise computational complexity, and to

mitigate local feature sparsity in two dimensions – in the absence of simultaneous

identical actions, it is hypothesised that this technique will achieve reasonable

accuracy. The temporally localised block is split into equal slices along each

dimension in turn, and a histogram Hs is generated for each slice, similar to the

procedure used in temporal localisation. Then, Equation 4.2 is used to generate

a set of scores r over that dimension.

At this point, the method diverges from temporal localisation, as in spatial

localisation only a single region is required, whereas in temporal localisation

multiple instances of the action are found. To find the optimal sub-region, a

threshold d = l ·max(r) is first subtracted from each of the scores in r, with l

set to 0.25. Then, a maximal sub-array search is performed on r, using Kadane’s

algorithm [117] to perform this in O(|r|).
Having determined the extent of the action along each dimension separately,

this information is simply combined to determine the final bounding box.

Branch-and-Bound Simultaneous SL For potentially greater accuracy, but

at the cost of higher computational complexity, it is possible to perform locali-

sation along both spatial dimensions simultaneously. Here, the spatial extent

of the candidate is divided into a number of equally sized 2D windows. Using

the features, ad hoc histograms for each of these windows are generated for each

temporal candidate. Using Equation 4.2, the system establishes for each 2D

window whether it matches the query action; the result of this entire operation

is a single low-dimensional relevance image, r.

Using ri, a 2D branch-and-bound operation is performed, based on the 2D

object localisation algorithm described in Lampert et al. [118], to find the

optimal sub-window containing the action. Branch-and-bound, similar to the

sliding window approach, is guaranteed to converge to the optimal sub-window,

but its average running time is O(xy) rather than O((xy)2). Similar to X − Y
separated localisation, it is necessary to choose a decision threshold d to subtract
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Figure 4.2: An overview of how the Branch and Bound algorithm is applied for
spatial localisation.
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from r – branch-and-bound assumes the relevance decision threshold of each

window is at 0, but r consists only of positive values. r − d is passed into

the branch-and-bound algorithm, and the upper bound function is set to the

following:

f̂(Y ) ≡ f+(y∪) + f−(y∩) (4.3)

where: y∪ and y∩ are the maximally and minimally sized rectangles within

candidate set Y respectively; f+(y) and f−(y) are the sum of all positive points

and sum of all negative points in rectangle y respectively. This is the same upper

bound described in the Linear Classifiers section of Lampert et al. [118] – as

this work details, it is possible to use positive and negative integral images to

calculate Eq. 4.3 in constant time.

A diagram of the branch-and-bound spatial localisation method is shown in

Figure 4.2.

4.2.3 Ranking

Having performed localisation, there is a set of candidates ci and their bounding

boxes Bci . A single feature histogram Hci is generated for each ci, collating

the features that fall within Bci ; Hc for all ci ∈ C can then be matched against

Hq using Equation 4.2. The set of scores generated by this operation provide

a simple basis for ranking the localised candidates; those with higher scores

are ranked first. The top X ranked candidates are returned to the user as

results. The generation of Hci can be made computationally simpler using

integral histograms, as seen in Ning et al.[119], though this speed-up is relatively

insignificant compared to the extra storage required.

In previous systems, ranking and localisation occur simultaneously – such as

in top X branch-and-bound localisation. The system presented in this chapter

distinguishes itself. Because of the inclusion of this discriminative ranking step,

the localisation is highly permissive – or, in other words, insensitive to false

positives. The localisation generates a large number of candidates, not all
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of which will be matches for the query, with the expectation that most false

candidates will be pruned at the ranking stage. Furthermore, good ranking

should generally favour better-localised candidates, meaning that to an extent

ranking can compensate for a weaker localisation step. This has allowed us

to keep the localisation step computationally very simple, while still returning

strong results to the user.

4.2.4 Relevance Feedback

While the process described above delivers useful results, they can be further

enhanced through relevance feedback. If a user’s initial search has completed,

but that user is still unsatisfied with the results of the query, he/she can provide

feedback about the relevance of each result to his/her search. Using a model to

integrate this additional information with the original query, a more discrimina-

tive second search can be performed – this model is usually an online learning

technique such as an SVM or AdaBoost.

As the goal of the system is efficiency, various relevance feedback methods

are evaluated through their relative time-cost effectiveness, and settled on two

effective techniques. For determining the relevance of time-slices during temporal

localisation, an SVM is applied with a histogram intersection kernel (which

satisfies Mercer’s condition). To update the ranking of candidates, simple query

expansion is applied from positive feedback only.

Also considered is applying SVM relevance feedback to the spatial localisation

step of the algorithm; however, due to complexity-constraints and minimal

performance improvements in the preliminary experiments, this is not reported

on in the results section below.

Finally, as the system performs localisation, it is necessary to make a novel

consideration related to relevance feedback. In prior retrieval systems with RF,

it is straightforward for a user to mark the results for feedback, as each returned

document will have a binary relevance value – in other words, it is either relevant

or not. However, with localisation many of the returned results will be partially

relevant, because many of the ostensibly relevant results will be imperfectly
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localised. To deal with this, it is assumed first that a user will only view a

result as relevant if its bounding box overlaps sufficiently with the desired action.

Once a user has decided that a result is relevant, he/she can then return it as

feedback in one of two ways: 1. Adjusted: the result is modified by the user to

overlap perfectly with the action, and is then returned to the system as feedback.

2. Unchanged: the result is returned as feedback with no modification to the

bounding box.

If a user returns adjusted feedback, results on the next iteration should be

more accurate than if he/she provides unchanged feedback. However, correcting

the bounding box for adjusted feedback places a considerable onus on the user,

relative to simply marking results as relevant or not. In the experiments below,

both methods of returning feedback are considered to evaluate which is more

practical.

4.2.5 Experiments

Setup

The MSR2 [109] and UT-interaction [111] datasets are used to show the re-

sults. These datasets are specifically designed for spatio-temporal localisation

experiments, which make them well-suited for our purposes.

Each dataset was first pre-processed as follows. The datasets were scaled

uniformly to 240 pixels in height (maintaining aspect ratio) and 15 frames per

second, so the feature extraction procedure was identical for both. Features

were extracted from each dataset at an average rate of 180 features per second,

detecting features with multi-scale Dollar [23] and describing them with HOG3D

[27]. The resulting features were clustered into 1000 codewords after PCA was

performed to capture 95% of the features’ variance. Time-slice histograms were

generated over the whole dataset in batch before the main retrieval experiments;

as these pre-processing steps can be performed before a retrieval search is

performed, they are not included in the performance statistics. Each time slice

was 10 frames in length, and the 2D spatial grid was divided into 10 by 10 pixel

blocks. These parameters were chosen based on observations of the minimum
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length and size of the actions within the dataset.

Leave-one-out cross validation retrieval experiments were performed on each

dataset in order to provide the most reliable results. Each action ai ∈ D was

treated as the query in turn, where D is the entire dataset. The search for

action ai was performed on a subset of D, D − vi, where vi is the discrete video

sequence from which ai was extracted. D − vi is used rather than D − ai, as

results may be skewed in favour of other actions in the same video sequence.

The results over each individual query were averaged to get the final results.

Relevance feedback, rather than being given by a real user, was simulated

for experimental consistency and convenience. It was assessed whether a result

would be deemed as relevant by the virtual user using the following metric:

L(E,G) =
volume(E ∩G)

volume(E ∪G)
(4.4)

where E is the spatio-temporal bounding box of the estimated action, and

G is the bounding box of the closest relevant action (taken from the ground

truth). A result was deemed to be relevant when L(E,G) > thres. thres was

chosen to allow for an average overlap of 0.5 per localised dimension – 0.5 for

temporal-only localisation, and 0.53 for spatio-temporal localisation – following

the example set by previous works such as [116].

Typically, the performance of a retrieval algorithm can be assessed through

precision/recall and top X results – however, the formulation of these metrics

assume that each result has a binary relevance to the query. In the model

presented here, an imperfectly localised result may have partial relevance to the

query, as measured by its overlap with a relevant action. Equation 4.4was used

to calculate relevance in the results.

During relevance feedback, a maximum of 5 positive and 5 negative feedback

samples were given at each iteration. 5 iterations of relevance feedback were

simulated, after which no further significant improvement was observed in any

of the experiments.
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Results

Below the results are shown and their implications are discussed.

It is clear that there is a significant difference between performance on the

UT and MSR2 datasets. The significantly poorer performance on the UT dataset

is ascribed primarily to: a greater number of action classes, increasing the

chance of false positives and fewer examples per action class, resulting in a lower

percentage of true positives. It is worth noting that relevance feedback makes a

considerable impact on the performance here too, suggesting that there may be

greater intraclass variability in the UT dataset compared to the MSR2 dataset.

The contribution of various methods of relevance feedback can be seen in

Figures 4.3a and 4.3b. On the MSR2 dataset, by the fifth iteration, it matters

little to the results whether a user returns adjusted or unchanged feedback

– however on the UT dataset, adjusted feedback is considerably better than

unchanged feedback. This would confirm the natural intuition that more difficult

search queries require higher quality feedback samples. The results when feedback

is applied to only: 1) the temporal localisation step, and 2) the ranking step,

of the algorithm are also shown in these two figures. Feedback improves the

accuracy of the localisation step more, but both steps work synergistically to

achieve the highest performance.

Figure 4.4 shows the performance of the modified histogram intersection

(see Equation 4.2) against the ordinary histogram intersection implemented in

the kernel SVM, on the MSR2 dataset. After relevance feedback, the modified

intersection performs consistently better by around 1%.

Figures 4.5a and 4.5b give precision/recall curves for various levels of relevance

feedback. Precision is determined as the ratio of true positives to the total number

of retrieved samples. Recall is determined as the ratio of true positives to the

total number of possible true positives in the whole dataset. For both datasets

and all iterations, at low recall, precision is relatively high, but at higher levels

of recall – beyond 10% – performance rapidly tails off. This indicates the

difficulty of learning a human action from a single example. However, relevance

feedback considerably improves the situation, and the tables furthermore show
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that only one or two iterations of relevance feedback are required to reach optimal

performance. Improvements after this are negligible.

Figures 4.6a and 4.6b show the effect on accuracy of using branch-and-bound

localisation, X − Y separated localisation, and temporal-only localisation – for

the spatial localisation methods, this is also broken down by whether spatial

localisation was performed before or after ranking. Several results are clear from

this. Firstly, spatial localisation appears to be a relatively trivial task – there

is no significant difference in accuracy between the temporal-only and spatial

localisation methods. Secondly, branch-and-bound performs considerably better

than X − Y separated localisation, as expected. Finally, performing spatial

localisation after ranking has a small but significant impact on accuracy. Note

that for the MSR2 dataset the top 20 results are considered, whereas for the UT

dataset only the top 10 results are studied – retrieval results can be distorted

by size of the dataset and the number of action classes, so this was partially

compensated for.

In Tables 4.1 and 4.2 are shown the running times of an individual query,

both before and after relevance feedback, for various methods of localisation.

These are an order of magnitude better than the next best attempt to perform a

search on the MSR2 dataset [116], which takes 26.7 seconds for a single query.

This highlights the advantages of separating ranking, temporal localisation and

spatial localisation into discrete steps. The branch-and-bound spatial localisation

method was compared to X − Y separated localisation, showing that the former,

as expected, is much slower than the latter. This impact on runtime can be

mitigated, however, by performing spatial localisation only after the ranking

step, on the top X results – in Tables 4.1 and 4.2 run-times are shown both

for spatial localisation performed before and after ranking, denoted in the ”Loc.

Order” column.

68



(a) MSR2

0 1 2 3 4 5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

RF Iterat ions

Full/ Unchanged RF

Loc/ Unchanged RF

Rank/ Unchanged RF

Full/ Adjusted RF

Loc/ Adjusted RF

Rank/ Adjusted RF

A
cc
u
ra
cy
o
f
T
o
p
2
0
R
es
u
lt
s

(b) UT

0 1 2 3 4 5
0.2

0.25

0.3

0.35

0.4

0.45

RF Iterat ions

Full/ Unchanged RF

Loc/ Unchanged RF

Rank/ Unchanged RF

Full/ Adjusted RF

Loc/ Adjusted RF

Rank/ Adjusted RF

A
cc
u
ra
cy
o
f
T
o
p
1
0
R
es
u
lt
s

Figure 4.3: Comparison of the contribution of various relevance feedback methods.
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Figure 4.4: MSR2: The modified histogram intersection against the original.

Loc. Met. Loc Order Time (s) (1st it) Time (s) (RF)

Temp. Only N/A 0.1774 1.283
Linear Before 0.502 1.392
Linear After 0.223 1.363
B & B Before 0.725 1.446
B & B After 0.247 1.304

Table 4.1: MSR2 query time costs

Loc. Met. Loc. Order Time (s) (1st it) Time (s) (RF)

Temp. Only N/A 0.099 0.635
Linear Before 0.281 0.810
Linear After 0.195 0.750
B & B Before 0.906 1.303
B & B After 0.204 0.693

Table 4.2: UT query time costs
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Figure 4.5: Precision/Recall after different levels of relevance feedback.
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Figure 4.6: Effect on the accuracy of various spatial localisation methods, as
well as temporal localisation alone.
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4.3 Unsupervised temporal segmentation of hu-

man actions

In the second approach to human action localisation, an unsupervised temporal

segmentation method is developed that, due to its efficiency, could have varied

applications in action recognition, action localisation and action clustering – it

is proposed that this method is particularly applicable to surveillance videos.

First, an effective human tracker is applied to the human subject, removing any

background noise, as well as compensating for translational and scale variations.

Secondly, this method for unsupervised segmentation is applied to the human

tracks, resulting in a series of sections of self-consistent linear motion.

The primary application of unsupervised temporal localisation of human

actions is perhaps temporal clustering of human actions, such as in Turaga

et al.[83], or as a preliminary step in a human activity retrieval system, such

as that proposed in chapter 1. However, to prove the effectiveness of the

segmentation method presented in this chapter more effectively, it is integrated

into an action recognition system. It is proposed that short temporal segments

can be formulated into more effective features for action recognition than the

full action, either by using them as independent features in a model such as

Bag-of-Words or Naive Bayes Nearest Neighbour (NBNN), or by treating them as

states in a time-sequence model such as Hidden Markov Models. This hypothesis

is proven through experimentation.

The second system presented in this chapter consists of several parts. Firstly,

a poselet-based tracking method is applied to spatio-temporally localise human

tracks within the video. Each human track is then split into sub-tracks at

points of discontinuity in linear motion, and each sub-track is represented using

a descriptor based on a modified Motion History Image. Finally each action is

classified using these descriptors with Naive Bayes Nearest Neighbour. Each

of these processes is described in detail below. A system diagram is shown in

Figure 4.7.
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4.3.1 Person Tracking

One of the biggest prerequisites for accurate temporal segmentation of human

actions is to accurately spatially isolate the human from its surroundings. New

and effective person detection methods, and tracking works such as [77] and [120],

mean that it is increasingly possible to get a tight, predictable bounding box

around a person in almost every frame, spatially isolating it from the rest of the

scene, and allowing almost pixel-perfect alignment of the person between frames.

Such tracking can mitigate background noise, translation and scale variations,

as well as camera motion – this facilitates temporal segmentation based purely

on the motion of the human.

For this work, a simple tracking method is implemented based on poselet

detection. Poselets are a relatively recent innovation that have so far been applied

largely to person detection in images, and have proven quite reliable in a variety

of conditions. Here, they are applied in the context of person tracking.

The localisation method is simple. The grayscale video is first pre-processed

with a 2D Gaussian filter to reduce noise at every frame. Then, a horizontal and

vertical Prewitt filter is applied on every frame, summing the filtered images

together to get an edge intensity image. It was found experimentally that this

pre-processing improves the reliability of poselet detection, particularly in low-

contrast videos. Poselet detection is then applied at every frame, using the code

provided online [45].

After poselet detection, several post-processing steps are performed to es-

tablish a smooth human track. All detected poselets are thresholded by their

score to remove inaccurate detections – the threshold τ is static and set empiri-

cally. As multiple actors may be present in a scene, different bounding boxes

in separate frames are associated into proto-tracks using the KLT point-tracks

method described in Everingham et al. [121]. Certain proto-tracks may have

missed detections in some frames. This is managed using interpolation. If there

is a detection gap of f frames or fewer between 2 detections, the x, y, width,

and height values of the bounding boxes are linearly interpolated separately to

estimate the person’s position in the missed frames. If there is a gap longer than
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f frames, it is assumed that the person is out-of-shot or otherwise occluded, and

do not interpolate. Any very short tracks of 5 frames or fewer are discarded, as

short tracks are more likely to be noisy or contain no useful motion information.

Finally, the width and height of the track are increased by 20% in every frame,

to ensure that the whole person is captured – this is to compensate for the

poselet detector potentially missing an out-stretched arm or the feet of the actor.

While this method is simple, it is found to be effective for the datasets in the

below experiments. For more realistic datasets, a different solution might be

considered.

4.3.2 Motion Segmentation

It is now necessary to break the human track up into temporal segments, each

roughly corresponding to a single linear motion performed by the actor. In an

action recognition setting, it is proposed that short temporal segments will be

more rate and view invariant than complete actions, and therefore, combined

with an appropriate classifier (such as AdaBoost or NBNN) they may give higher

accuracy. It is also proposed that linear motion segmentation will be particularly

effective in classifying repetitive or cyclical actions – the action will be split into

temporal segments at the same points in the cycle, ensuring temporal alignment

between each segment.

The first step to find discontinuities in linear motion is to find the most

significant motion gradient of the human track. Given a human track h of static

height and width, a series of difference images d is extracted: di = hi+1 − hi.
The optical flow is extracted from d in the x and y directions between every pair

of adjacent frames, to get optfx and optfy. To calculate optfx and optfy the

Lucas-Kanade algorithm [122] is applied, as it provided the best efficiency and

accuracy trade-off in preliminary tests. The pixels of each frame of the track

are concatenated into a time-series of 1D vectors, and Principal Component

Analysis (PCA) is performed on these vectors, discarding all but the first 2

principal components, resulting in P = {p1,ip2,i; i = 1, ..., t}, where t is the

number of frames in the optical flow. It is proposed that P corresponds to the
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most significant motions in the video.

The next step is to look for linear discontinuities in time-series P . The R2

statistic is a measure of how well a regression model matches the observed data,

so it is possible to get a measure of linearity at every point Pm in P by calculating

the R2 statistic of a simple linear regression model on a temporal window of P ,

centred on Pm. In this model, Pi, i = m− w, ...,m+ w are the data points of

the regressors p1 and p2, and y = m − w, ...,m + w is the dependent variable,

where w is a parameter defining the size of the temporal window. Let:

X =



1 p1,m−w p2,m−w

1 p1,m−w+1 p2,m−w+1

...
...

...

1 p1,m+w p2,m+w


, y =



m− w
m− w + 1

...

m+ w


(4.5)

Then orthogonal decomposition is applied to X in the normal fashion to get

the regression co-efficients β and the predicted values fi:

QR = X, β = R−1(QTy),



f1

f2
...

fn


= Xβ (4.6)

From the observed values yi and predicted values fi the R2 statistic is

calculated at each time m to give a measure of how well the linear model matches

the data at every data point. A higher value for R2 corresponds to greater local

linearity:

R2 = 1−
∑
i(yi − fi)2∑
i(yi − y)2

(4.7)

where y is the mean of the observed data. Then a degree-of-linearity time

series can be obtained: L = Lm,w;m = 1, ..., t where Lm,w is the R2 statistic for

a linear regression around every time point m, with window size w. However, L is

not sufficient for accurate temporal segmentation, as in practice the R2 statistic
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is highly dependent on w. If w is too small, then L will be noisy – a single

outlier could have a strong local effect. If w is too large, however, rapid changes

in linear motion will be averaged out and fast actions will not be segmented

correctly. One potential solution is to calculate L for every point m for the range

of values of w, which is termed W , and get an average for M over all W :

L′ =

{
w∈W∑

sLm,w; m = 1, ..., t, s ∝ w
}

(4.8)

Weights proportional to w are used, rather than a simple mean. This is to

offset the following: as w grows larger, the average value of M tends to decrease.

If a simple mean is used, therefore, larger values of w will be under-represented

in L′. In the experiments W = [2, 20]. When the temporal window overlaps the

start or the end of the track, a symmetric, mirror-reflected border is applied to

get the missing values.

L′ can be used directly to perform motion segmentation. The local minima

in L′ correspond to the break points in linear motion. Local maxima in L′,

alternatively, correspond roughly to the central frames of the linear motions. The

effectiveness of this method can be seen in Figure 4.8, which shows the graph of

L′ as applied to two simple cyclical actions from the KTH dataset, handwaving

and boxing. The boxing example consists of many fast, short, linear actions,

with abrupt changes, whereas the handwaving example has slower, longer actions.

These patterns are reflected clearly in the sinusoidal patterns of the L′ graphs.

Segmentation can be performed in two ways to get overlapping temporal

segments: 1) segment between the local minima of L′. In this manner, each

segment contains a single linear motion. 2) Segment between the local maxima

of L′, so each segment contains a transition from one linear motion to another.

These two groups of segments are termed Sl and St respectively. Sl and St are

combined in the experiments, as both together perform better than either does

alone – together, they capture more of the structure of the action.
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4.3.3 Representation/Recognition

The primary application of unsupervised temporal segmentation is perhaps tem-

poral clustering of human actions, such as in Turaga et al.[83], or as a preliminary

step in a human activity retrieval system, such as that proposed in chapter 1.

However, to prove the effectiveness of the segmentation method presented in this

chapter more effectively, it is integrated into an action recognition system. It is

proposed that short temporal segments can be formulated into more effective

features for action recognition than the full action, either by using them as

independent features in a model such as Bag-of-Words or Naive Bayes Nearest

Neighbour (NBNN), or by treating them as states in a time-sequence model such

as Hidden Markov Models.

This section details the representation chosen for the spatio-temporally lo-

calised motion segments in order to perform classification. A variation of the

Motion History Image (MHI) is used for this purpose. The MHI is particularly

compatible with this method for two reasons. First, the accurate spatial local-

isation given by the poselet person tracker removes all scale and translation

variations from a person’s motion that could potentially distort an MHI. Second,

temporal segmentation mitigates spatially overlapping motions. In a full action –

particularly cyclical or repetitive actions – motions may spatially overlap, but

MHIs can only record the most recent motion in a pixel. If the MHI captures the

full action, therefore, it will lose potentially salient information. However, as each

temporal segment in this model only has a short linear motion, motion overlap

within a segment is minimised, making the MHI a good choice for representation.

The variation of the MHI presented in this work is simple. Given a temporal

segment v, each frame is scaled to 100x100, so every MHI will be the same size.

First, a difference video is calculated: v′i = |vi+1 − vi|. All of the pixels of v′ are

thresholded to get a binary video v′′ – 1 is set for pixels above the threshold, 0 is

set for pixels below the threshold. The threshold is set dynamically for each v′ to

one standard deviation above the mean pixel value. From this binary video, the

MHI is calculated as per [23]. Each MHI is reduced by PCA to an N -dimensional

vector, and these vectors are then used as features for classification.
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At this stage, there are several possible models to use for classification,

including Bag of Words for efficiency, or Hidden Markov Models to capture the

temporal structure between the MHI features. In the experiments, classification

is performed using NBNN due to its superior performance compared to the

traditional Bag of Words [123], and its relative simplicity. Further work could

investigate the use of temporal representation models in conjunction with L′

segmentation.

4.3.4 Experiments

In this section the setup and results of the experiments are detailed. The goal of

the experiments is to validate that the novel temporal segmentation algorithm

presented here can split an action in semantically meaningful temporal segments.

This is shown by demonstrating that the temporal segments generated by this

work can be used to perform accurate recognition – however, more complex

datasets such as the HMDB [16] or UCF YouTube [78] are not considered – these

contain unusual body poses unlikely to be detected by the human tracker, and

may be too noisy for the temporal segmentation to work well. It is proposed

that this temporal segmentation method will find the most practical use in the

unsupervised analysis of humans in surveillance videos. With this in mind,

the system is applied to the KTH [2] and MSR2 [109] datasets, which, like in

surveillance videos, include a static viewpoint and upright body poses.

Setup

For each experiment, each video in the datasets is first converted to grayscale,

then person tracking is performed as described above. The poselet code is taken

from [23], and is run using the default parameters. Temporal segmentation is

performed using a variety of methods for comparison as described in §4.3.4. Each

temporal segment is represented using the enhanced MHI and classification is

performed using NBNN. The experimental machine has two Intel Xeon E5630s,

24GB of memory, and runs 64-bit Ubuntu. All code is written in MATLAB for

simplicity.
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Results

Figure 4.9: KTH dataset: action class confusion matrix

Method Accuracy (%)

L′ Seg. 95.5
No Seg. 89.7
Uni Seg. (x = 10) 92.2

Dollar et al. [23] 81.2
Zhen et al. [79] 93.3
Liu and Shah. [124] 94.2

Table 4.3: KTH dataset: comparison of various methods

The results for various methods of temporal segmentation for the KTH dataset

are shown in Table 4.3. Considered methods for temporal segmentation are: L′

based segmentation, uniform segmentation (each track is divided into sections

of x frames, where x is chosen to optimise results) and no segmentation. It is

clear from this that L′ based segmentation gives a better result than any other

considered temporal segmentation methods. The complete classification method

presented here is also compared with several other recent works, showing that

this method rivals the state-of-the-art. Figure 4.8 shows a confusion matrix of

the actions - it can be seen here that the most confused actions are jogging and
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running, and to a lesser extent, walking. This is expected, as these actions appear

very similar and in certain cases are difficult even for humans to distinguish.

Figure 4.10: MSR2 dataset: action class confusion matrix

Method Accuracy (%)

L′ Seg. 94.6
No Seg. 75.4
Uni Seg. (x = 3) 92.1
Uni Seg. (x = 6) 89.7
Uni Seg. (x = 9) 87.2
Uni Seg. (x = 12) 86.2

Table 4.4: MSR2 dataset: comparison of various methods

In Table 4.4 results are shown for the MSR2 dataset, forL′ based segmentation,

uniform segmentation (for varying x) and no segmentation. It can be seen that

the results here are similar. While it is a more challenging dataset, the temporal

segmentation algorithm presented in this work gives a clear advantage over no

temporal segmentation or uniform temporal segmentation. The confusion matrix

is shown in Figure 4.10.
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4.4 Discussion

In this chapter two approaches to human action localisation have been examined.

The first approach is an exemplar-based system for finding queries in a tempo-

rally unsegmented video database, and the second is a method for temporally

segmenting a video database in an unsupervised fashion.

We first address the finding of the first model. Despite the moderate success

of the first model, itis only an initial example of how content-based searches can

be tackled from an efficiency perspective. It is proposed that general principles

of the system, such as batch pre-processing, spatio-temporal feature binning and

dimensionally-sequential localisation can be combined with a wide variety of

existing human action recognition/localisation techniques, and that concentrated

efforts in investigating these techniques may yield further improved performance.

Additionally, while the algorithm is fast enough for use on databases of even

thousands of hours in length, it would not work well with online databases of

millions or billions of hours – future research should concentrate on how to

represent visual features so that videos of length t can be searched in better

than linear time. One potential method for this includes extending this work

into a temporally hierarchical model, using decreasing values of f to perform

a coarse-to-fine search through the dataset, and performing indexing on the

histograms at the coarser levels, potentially giving a logarithmic or constant

time complexity.

In experimentation on the second model, the L′ metric has been shown

to be effective in splitting an action up at consistent points, and the motion

segments have been used in combination with an MHI+NBNN classifier to achieve

superior action recognition performance. In the future, the efficient and accurate

temporal segmentation offered by L′ can be applied in combination with an action

localisation system, rather than used to augment an action recognition system.

Splitting human tracks into linear motions may also reduce the complexity of

localisation methods, as detections can be made at the motion-level rather than

the frame-level. One significant area for improvement in future work would be to

improve the L′ metric’s applicability to noisier multimedia datasets. Although
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it is envisaged that this system, in its current form, can already be applied to

real world surveillance videos, the reliance on accurate person tracking makes

the system less suitable for multimedia videos such as those found on YouTube.

However, as person trackers/spatial segmentation methods grow more robust, it

may be possible to extend or modify the method to work on noisier data.

Efficient localisation systems, such as the two systems presented in this chap-

ter, are becoming increasingly relevant in today’s world, as sophisticated searches

are increasingly necessary to navigate the huge amounts of data. Through

theoretical discussion and experimental results, basic practical applicability of

both systems has been demonstrated, to the task of real-world video search and

temporal segmentation of real-world human action videos. In designing both

algorithms, an efficiency-first approach has been taken, resulting in faster and

more effective systems than the previous state-of-the-art.
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Chapter 5

Clustering Human Actions

with Scene Context

5.1 Introduction

Much recent research in the field of computer vision has focused on the represen-

tation and recognition of human actions from varied sources, such as YouTube

videos and Hollywood films. In these realistic videos, the actions usually have a

considerable amount of context – in particular, the place it is performed in, or

the object it is performed with. This context information can be integrated into

an action recognition system to help disambiguate between similar classes, and

thereby improve classification results, as demonstrated in Marszalek et al. [60].

If an action’s scene context is recognised as a basketball court, for instance, this

informs us that the action to be classified is more likely to be “playing basketball”

- Figure 5.1 illustrates this concept.

While context for supervised action recognition has been explored, however,

no previous research has considered using context for unsupervised human action

clustering. This is important to consider, as accurate unsupervised and semi-

supervised clustering of human actions is crucial to many practical tasks, such

as automatic annotation of video databases or fast content-based video retrieval.
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Action clustering can also assist in determining the semantic similarity of two

videos’ contents, which can be used, for example, to enhance the recommendation

systems of video databases. However, it is not straightforward to apply existing

action context research to action clustering. In existing work, labeled training

data is typically available for both the actions and the context, which permits

direct inference of the relationship between the action categories and their

contexts – it is straightforward to construct a contextual recognition model based

on this relationship. For the goal of action clustering with context, on the other

hand, no training labels are provided, and so the action/context relationship

cannot be learned directly. It is instead necessary to simultaneously estimate

the action clustering, the context clustering, and the action/context relationship

together.

In this chapter, to perform unsupervised action clustering with context, a

new problem is proposed, as well as two potential approaches to this problem,

The problem is defined as dual assignment clustering, where two clusters of a

dataset as learned according to two views of the dataset, using the relationship

between the views to improve both clusterings. The first solution to this problem

is the heuristic Dual Assignment k-Means clustering algorithm (DAkM). In this

chapter, DAkM is first described as a heuristic method that extends the original

k-means algorithm. Then, the theoretical applicability of DAkM is demonstrated

on synthetic data, and it is combined with a spectral representation (SDAkM)

to show state-of-the-art results on several realistic human action datasets (using

actions and scenes as the two views).

The rest of this chapter is structured as follows. §5.2 defines dual assignment

clustering, and §5.3 details the Dual Assignment k-Means (DAkM) clustering

algorithm as well as its spectral extension. Experiments on synthetic data and

three realistic human action datasets are given in §5.4 for DAkM and SDAkM.

The chapter concludes with a discussion of the experimental findings in §5.5.
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5.2 Dual Assignment Clustering

In this section, the problem of dual assignment clustering is defined, its relation to

previous clusterings works is considered, one possible multi-objective optimisation

approach is described, and then the Dual Assignment k-Means algorithm (DAkM)

is provided as an approximation to this optimisation.

5.2.1 Definition

The specific dual assignment clustering problem is defined as follows. We wish

to cluster a set of videos into discrete groups of similar videos. We assume that

there are two separate, valid clusterings of the videos: the first is based on a

video’s scene; the second clustering is according to the action of the video. We

also assume that these two video clusterings are not independent – if the scene

is known, this provides information as to the probability of the action occurring

in that video. Finally, we assume that there are two views of each video – one

view (derived from motion features) is generated by the action of the video, and

the other view (derived from static features) is generated by the scene of the

video. The aim is to produce both an action clustering and a scene clustering,

estimating the relationship between actions and scenes to enhance the accuracy

of both solutions.

In realistic scenarios, the relationship between actions and scenes is many-

to-many. That is, a single scene can be associated with multiple actions (e.g.,

both cycling and walking a dog can occur in a park), and a single action can

be associated with multiple scenes (e.g., basketball can be played either indoors

or outdoors). Additionally, in realistic datasets certain action/scene pairs are

more likely than others, and certain combinations are impossible (e.g., playing

basketball in a swimming pool). The intent is to capture the full complexity

of this many-to-many relationship, distinct from the one-to-one assumption

implicitly made in multi-view clustering, where one action corresponds to exactly

one scene.

It is possible to model this relationship using a correlation matrix, R. R
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captures correlation information using the joint and marginal probability distri-

butions:

R ≡ p(A,S)

p(A)p(S)
(5.1)

If the labels of the actions and scenes are known, the joint distribution p(A,S)

can be approximated using the relative contingency table F , where each entry

Fa,s indicates the percentage of videos in the dataset containing both action a

and scene s. p(A) and p(S) are calculated as the relative marginal frequencies

of the actions and scenes in the whole dataset, represented by Ma and Ms

respectively. R is thus calculated as:

R = F � (Ma ⊗Ms) (5.2)

where � indicates a Hadamard division operation. Thus, Ra,s = 1 indicates that

a and s have no correlation. Similarly Ra,s > 1 shows a positive correlation, and

Ra,s < 1, a negative correlation.

5.2.2 Relation to Previous Works

To appreciate the novelty of dual-assignment clustering, it is necessary to put

it in the appropriate context with respect to existing clustering techniques. In

addition to the human action clustering works outlined in §2.5, recent advances

in general-purpose data clustering should also be considered. In particular, multi-

view clustering [126, 127, 128, 129] and alternative clustering [130, 131] bear

some similarity to dual-assignment clustering. A comparison of these concepts

with dual assignment clustering is shown in Figure 5.2.

Multi-view clustering uses multiple views of the same dataset, rather than

just one view, to improve clustering performance. It assumes that there is a

single, true clustering of the dataset, and that the mutual information between

the views can be used to find this clustering. For instance, Canonical Correlation

Analysis, used in Chaudhuri et al. [128], falls under this category. It attempts

to find the canonical variates – essentially latent variables – which maximally

90



G V

(a)

G

V

V

1

2

(b)

G

V
G

1

2

(c)

G V

G V

R

1

2

1

2

(d)

Figure 5.2: A visualisation of various clustering approaches, showing the de-
pendence relationship between latent categorisations of the dataset, G, and the
observable views on that dataset, V. (a) Ordinary Clustering. (b) Multiview
Clustering for two views. (c) Alternative Clustering for two solutions. (d) Dual
Assignment Clustering.
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explain the shared information between two views.

Alternative clustering assumes that there are multiple valid clustering solu-

tions for a single dataset. It then finds these multiple clustering solutions based

on a single view of the dataset, maximising the optimality of each individual

clustering, but also maximising the dissimilarity/orthogonality between all the

clusterings.

In the dual assignment clustering algorithm it is assumed that there are

two valid clusterings of the dataset (similar to alternative clustering) but there

are also two views on the data (similar to multi-view clustering). Each valid

clustering is associated with one view. The algorithm estimates the mutual

information between the two clusterings and uses it to improve the results of

both clusterings simultaneously. Interestingly, the dual assignment clustering

algorithm as described in §5 can be applied as a solution for two view clustering

by setting kx = ky, and enforcing R to be a generalised permutation matrix.

However, it is important to note multi-view clustering is not generally equivalent

to dual-assignment clustering, as it assumes that every view is generated from

the same latent cluster identity (see Figure 5.2.

5.2.3 Optimisation Problem

To provide further insight into the clustering problem, let us define it as an

optimisation problem. First, given a set of observations (x1,x2, ...,xn), the basic

k-means hard clustering algorithm optimises the following:

arg min
C

n∑
i=1

k∑
j=1

Ci,j ||xi − µj ||2 (5.3)

In hard k-means clustering, C is a binary cluster-membership matrix, where

each element Ci,j indicates whether observation xi belongs to the jth cluster,

and each observation belongs to only one cluster. µj is the jth cluster centroid.

In the dual assignment problem, the goal is to cluster two related sets of

observations (or views), (x1,x2, ...,xn) and (y1,y2, ...,yn), into kx and ky sets

Cx and Cy respectively, where corresponding pairs xi and yi co-occur, and
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there is an unknown (but non-zero) correlation between them. Here is proposed

an modification to the original k-means problem, making a multi-objective

optimisation problem over Cx and Cy. The first objective function is:

arg min
Cx,Cy

n∑
i=1

kx∑
j=1

ky∑
l=1

Cx
i,j ||xi − µx

j ||2Cy
i,l||yi − µ

y
l ||2 (5.4)

This objective is essentially identical to that of the original k-means problem,

extended for two sets of observations. It is intended to reduce the sum of

distances-to-cluster-centroids for both x and y. As this objective takes the

product of the two distances rather than the sum, it is not necessary to account

for any scale variation between x and y. The second objective is:

arg min
Cx,Cy

−
kx∑
j=1

ky∑
l=1

Rj,l log(Rj,l) (5.5)

R is calculated via Equation 5.2 using Cx and Cy. Equation 5.5 roughly

corresponds to maximising the mutual information between Cx and Cy. This

objective is included, as the goal is to find a sparse relationship between the

clusters of x and those of y. When Equation 5.5 is maximal, R is a uniform

matrix, and no information is shared between the two clusterings – in this case,

it is better to apply two individual clusterings for improved time efficiency. As

H(R) decreases, R approaches a one-to-one correspondence (or when kx 6= ky, a

many-to-one correspondence) between the clusters in x and y, and a great deal of

information is shared between the two clusterings. If H(R) is too low, however,

R might be distorted by noise, or may be too sparse to accurately represent the

relationship between x and y, so it is balanced with the first objective. The

regularisation method to balance these two objectives is detailed below.

5.3 Dual Assignment k-Means Algorithm (DAkM)

Simple Expectation-Maximization clustering initially seems an ideal solution to

directly optimise the dual-assignment clustering problem above. This is similar

to the method used for alternative clustering by minimising mutual information
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in [130]. This approach is intractable, however, due to the calculation of the

second objective which introduces dependence between every row of Cx and Cy.

Instead, an iterative update scheme is devised that approximately optimises both

objectives in Equations 5.4 and 5.5. The full method is shown in Algorithm 1.

Algorithm 1: Dual Assignment k-Means (DAkM)

Data: Two sets of observations, (x1,x2, ...,xn) and (y1,y2, ...,yn), where
xi and yi co-occur

kx, ky, the number of clusters in each dataset
λ, a parameter controlling the final sparsity of R
Result: Membership vectors Cx and Cy

begin
(Cx, µx)← Kmeans (x, kx)
(Cy, µy)← Kmeans (y, ky)
repeat

R← UpdateRelationships(Cx,Cy,λ)
(Cx,Cy) ← UpdateMemberships(x,y,µx,µy,R)

µx ← UpdateCentroids(x,Cx,kx)
µy ← UpdateCentroids(y,Cy,ky)

until Cx and Cy don’t change

Function UpdateRelationships(Cx,Cy,λ)
R← zeroes(kx,ky), Mx ← zeroes(kx) My ← zeroes(ky)
for i← 1 to n do

RCx
i ,C

y
i
← RCx

i ,C
y
i

+ 1
n

Mx
Cx
i
←Mx

Cx
i

+ 1
n

My
Cy
i
←My

Cy
i

+ 1
n

R← R� (Mx ⊗My) (Eqn 5.2)

R← log(1+λR)∑
R

log(1+λR) (Eqn 5.6)

return R
Function UpdateMemberships(x,y,µx,µy,R)

for i← 1 to n do
for j ← 1 to kx do

for l← 1 to ky do

dists(j,l) ← ||xi−µx
j ||+||yi−µ

y
l ||

Rj,l

(Cx
i ,C

y
i )← arg min

j,l
dists

return (Cx,Cy)
Function UpdateCentroids(d,C,k)

for i← 1 to k do
µi ← mean({d|(d, c) ∈ {(d,C)} ∧ c = i})

return µ

First, the cluster memberships of both datasets are initialised separately

using the original k-means algorithm. Then, R, Cx, Cy, µx and µy are updated
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iteratively in a procedure also inspired by the original k-means.

The first iterative step is to estimate R. R is calculated according to Equation

5.2, and then it is normalised so all elements sum to one. Then R′ is obtained

according to Equation 5.6:

R′ =
log(1 + λR)∑

R

log(1 + λR)
(5.6)

where λ is a user-defined parameter controlling the uniformity of R′. The reasons

for using R′ parameterised with λ, rather than R directly, are outlined later in

this section.

The second iterative step updates the membership variables Cx and Cy. For

each pair of samples (xi,yi), the distance to every pair of clusters j ∈ [1..kx], l ∈
[1..ky] is calculated, and divided by R′j,l. Then the values of j and l that minimise

the following are found:

arg min
j,l

||xi − µx
j ||+ ||yi − µy

l ||
R′j,l

(5.7)

As R′ is the divisor, more points tend to be assigned to frequent cluster-pairs,

and fewer points will be assigned to rarer cluster-pairs. Over many iterations,

this effect implicitly minimises the second objective – the entropy of R – shown

in Equation 5.5.

The final step is to update the cluster means of both datasets independently.

This is identical to that in ordinary k-means. The algorithm terminates when

Cx and Cy stop changing.

The parameter λ acts as a regularisation parameter – it serves to balance

the two objectives of the optimisation problem. For higher values of λ, R′ will

tend to have a higher entropy, a more uniform distribution, and a higher weight

is placed on minimising the total distance to cluster centroids; for lower values

of λ, R′ tends to lower entropy, or high sparsity, and places more weight on

utilising the mutual information between the datasets. In practical applications,

higher values of λ are necessary for noisy datasets or when there is a complex

relationship between x and y – if λ is too low, poor performance (below the
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initial baseline) will occur. However, lower values of λ result in a better clustering

solution when the dataset is clean and R is relatively sparse. The effects of λ

are considered further in the experimental section below.

There are two drawbacks to DAkM that may be improved in future work.

Firstly, the computational complexity of DAkM is O(kxkyn) for each iteration,

where n is the number of items in the dataset. As such, DAkM is most practical

for low values of kx and ky. A hierarchical extension of DAkM could be considered

as a more suitable alternative for larger cluster numbers. Secondly, as DAkM

only approximates the objective functions given above, it does not provably find

a local optimum with respect to each of them. In an later work it will perhaps

be possible to demonstrate the convergence of a modified DAkM to a single,

regularised objective function. Despite this, in the experiments below DAkM

reliably terminates with a good result in fewer than 100 iterations in all cases,

and shows consistently superior accuracy in comparisons.

5.3.1 Spectral Representation

The method presented above extends the original k-means algorithm. However,

k-means does not always result in the best clustering results on natural data –

especially when pairs of clusters are not linearly separable. This is evident in

human action clustering, where Yang et al. [103] use spectral clustering and

Niebles et al. [104] use natural language techniques LDA and pLSA, rather than

opting for k-means. To gain the advantages of spectral clustering here, DAkM can

be adapted to combine dual assignment clustering with a spectral representation.

First, let us observe that step 5 of the spectral clustering algorithm in Ng et al.

[132] is ordinary k-means clustering. It is therefore straightforward to perform

steps 1 through 4 of the algorithm in [132] separately on two views of the dataset,

and replace step 5 with DAkM to exploit the mutual information between the

two spectral representations. This modified algorithm is referred to as Spectral

DAkM (SDAkM), and it is applied to the human action clustering experiments

in §5.4.2.
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5.4 Experiments

In this section several clustering experiments are detailed. To compare exper-

imental results to the ground truth, the clustering accuracy metric provided

in [103] can be used. If each cluster c contains datapoints x1, .., xn, and each

datapoint is associated with a ground truth label l1, .., ln, the label lc of cluster

c is determined to be:

arg max
lc

n∑
i=1

 1 if lc = li

0 otherwise
(5.8)

Then, to get the final accuracy, it is possible to calculate the percentage of

datapoints across the whole dataset that have the same label as their assigned

cluster.

5.4.1 Synthetic Data Clustering

Several idealised synthetic datasets are used to demonstrate the applicability of

DAkM for its intended purpose.

To generate the artificial dataset, the total number of clusters for x and y

are set to (kx = 12, ky = 8). For relationships between x and y, a ground truth

relationship matrix Rground is randomly generated, where an entry of 1 indicates

that two clusters can co-occur, whereas an entry of 0 indicates the opposite.

There is at least one positive entry per row and column. Each cluster in x and

y is represented by a 2-dimensional Gaussian distribution, where the mean is

chosen randomly between a range of values, the covariance is a diagonal matrix,

and the entries of the covariance vary between a range of values. Then, 10000

samples are generated – for each sample, two clusters from x and y are chosen

simultaneously in accordance with Rground, then two vectors are generated from

the clusters’ Gaussian distributions.

These synthetic data can show how various dataset properties affect the

performance of DAkM – in particular, the focus is on the effect of: 1) the

number of relationships in Rground, and 2) how well the clusters are separated.
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Task Diff.
k-means DAkM ∆
x y x y x y

H x, H y 56.7 60.0 59.3 62.4 2.7 2.4
H x, E y 56.5 92.8 63.3 95.9 6.7 3.2
E x, E y 83.0 92.8 90.9 97.5 7.9 4.7

Table 5.1: Performance of DAkM when view difficulty is varied.

Results are compared with ordinary k-means clustering. For all of the synthetic

experiments λ = 1.

The first experiment is to look at the effects of varying the number of

relationships between x and y, which is achieved by controlling the number of

non-zero entries in Rground. The difference in clustering performance is shown

between ordinary k-means clustering and DAkM on a synthetic dataset over a

range of values for |Rground| in Figure 5.3. As expected, as |Rground| increases,

the performance improvement decreases, as there is less mutual information to

exploit between x and y.

Next is considered how DAkM is affected by the difficulty of the individual

clustering tasks. 4 views are generated, based on how difficult they are to cluster

accurately: a hard (H) x and hard y, an easy (E) x and easy y. In Table

5.1 the results of clustering various combinations of these views are shown..

The accuracies displayed are for k-means and DAkM. The difference between

k-means and DAkM is also shown. As can be seen, DAkM results in significant

improvements over ordinary k-means in all cases. This shows the robustness of

DAkM: one might expect, for instance, that the noise from a more difficult task

would degrade the performance of an easier task, but this is demonstrably not

the case.

5.4.2 Human Action Clustering

Three real-world datasets are used for experimentation: UCF YouTube [78],

UCF Sports [107], and Hollywood-2 [60], as they contain a variety of real-world

actions with various scene contexts. The scene ground truths are not provided for

these datasets – therefore, in the below experiments, only the action clustering
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accuracy is reported on. However, some qualitative results are shown for the UCF

YouTube dataset scene clustering. The details of these datasets are provided in

§2.6.

Dense trajectories, as presented in Wang et al. [133], are used to extract a

motion representation of the actions. For this, the publicly available code is used

with the default settings. Then, the features are processed for a bag-of-words type

representation. PCA is performed on the features, and then k-means clustering

on each of the descriptors separately (HOG, HOF, MBH, Tr), where 95% of the

variance is captured from PCA and k = 2000 for the clustering. This results

in a 8000-dimensional (4× 2000) frequency histogram of motion features. For

scene representations, SIFT features are appropriate[21], extracted from each

video at intervals of 10 frames. Once again, PCA and k-means are performed,

with k = 2000, resulting in a 2000-dimensional frequency histogram of static

features. The histograms of both the motion and static features are normalised,

as different videos can be of differing lengths, and therefore have greatly differing

numbers of features.

The first step to get a spectral representation is to find the pairwise distance

between all histograms in a set using the histogram intersection:

S(a, b) =

n∑
i=1

min(ai, bi) (5.9)

Equation 5.9 is applied to get a similarity graph for both actions and scenes.

Steps 2-4 of Ng et al. [132] are applied on the actions and scenes separately

to get two independent spectral representations, then DAkM is performed on

the resulting vectors. ka (the number of action clusters) is set to the number of

action categories in the dataset. As the ground truths are not provided for scenes

of the datasets, there is no prior knowledge of ks, but preliminary experiments

show that a relatively high number of scenes works best – ks = 40 for all datasets.

As all algorithms are stochastic, all experiments are run 10 times and the results

averaged.

The results for motion clustering over all three datasets are summarised in

Table 5.2. The following clustering methods are compared: Spectral Single-View
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Dataset
Clustering Accuracy (%)

SSV SCV CMV SD1k SDO

YouTube 39.2 40.7 38.1 41.8 43.9

UCF Sports 68.0 67.2 64.2 72.9 76.0

Hollywood-2 35.6 32.4 31.5 36.5 36.5

Table 5.2: Clustering performance of various methods on realistic datasets.

(SSV), applying Ng et al. [132] to motion features only; Spectral Concatenated

Views (SCV), applying Ng et al. [132] to a concatenated motion and static his-

togram; Co-Trained Spectral Multi-View (CMV), a recent multi-view clustering

method presented in Kumar and Daume III [129], treating motion and static

features as two views of the action; SDAkM with λ = 1000 (SD1k); SDAkM with

λ set to the optimal value for each dataset individually (SDO). For SDO, the

following values are considered for λ: 1, 5, 10, 50, 100, 500, 1000, 5000, 10000

and 50000.

As can be seen from the table, SDAkM with optimal λ (SDO) gives the highest

accuracy on all three datasets – this is most likely because it most effectively

utilises the complex relationship between actions and scenes. CMV performs far

worse than the baseline clustering method (SSV) on all datasets, demonstrating

that the multi-view assumption is not applicable to the relationship between

motion and static features. Concatenating motion and static vectors (SCV) also

negatively impacts accuracy for two of the three dataset.

SDAkM gives the greatest performance increase over the baseline on the

UCF Sports dataset, which can be attributed to two properties of the dataset: a

highly sparse relationship Rground, and easy-to-cluster scenes. Alternatively, the

weakest performance is seen on the Hollywood-2 dataset, observing only a 0.9%

increase in accuracy, even with the optimal λ. This is unsurprising: Marszalek

et al. [60] used context to enhance recognition accuracy on the Hollywood-2

dataset, using training data to directly infer the relationship between actions

and scenes, but only observed a 1.1% improvement over baseline performance.

The effect of varying parameter λ on the performance of SDAkM is shown in

Figure 5.4 for each of the datasets. Peak performance is observed at a different
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Figure 5.4: Performance of SDAkM with various λ.
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λ for each dataset – this is expected, as the sparsity of the unknown Rground is

likely to differ between datasets. In future work it would therefore be beneficial

to estimate the optimal value of λ automatically using the mutual information

between the two views of the dataset. However, there is still a significant

improvement over SSV for all datasets when λ ≥ 1000.

To understand the effect of λ further, clustering is performed on the YouTube

dataset when λ = 1. It is proposed that under this condition, R′ tends to

become more sparse than the true relationship between actions and scenes, which

will distort the clustering results. Figure 5.5 illustrates this situation, showing

the iteration-by-iteration performance of clustering the YouTube dataset with

λ = 1. Iteration by iteration, R′ grows more sparse. Initially, this results

in more accurate clustering – 3.6% better than the initial solution after the

third iteration – but when the algorithm terminates, it has fallen to 1.7% below

the initial accuracy, suggesting that R′ no longer reflects the true relationship

between scenes and actions.

Although none of the datasets have ground truths for the scenes, Figure 5.6

provides a few examples of discovered scene categories on the UCF YouTube

dataset. Several key scene categories clearly arise: shots including the sky;

playing courts; fields; swimming pools; trampolines. These are each more or less

commonly associated with certain actions in the dataset, as one might expect.

For instance, the sky scenes typically show golf, tennis or soccer juggling, but

the playing court scenes more usually show volleyball, tennis, or basketball.

Furthermore, the swimming pool and trampoline scenes have a nearly one-to-one

correspondence with diving and jumping respectively. It is clear in these cases

how extra information from the scene category may aid in clustering the actions.

5.5 Discussion

In this chapter a new algorithm has been introduced – Dual Assignment k-Means

clustering (DAkM) – for generating two clustering solutions according to two

co-occurring views of a dataset. Unlike previous methods, it is suitable for use
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when there are two co-occurring views of a dataset, and a separate clustering

solution associated with each view – similar previous clustering methods have

either only been suitable to generate multiple clustering solutions from a single

view (alternative clustering) or to generate a single clustering from multiple

views (multi-view clustering). This chapter has demonstrated that DAkM can

significantly improve clustering results on synthetic data and realistic human

action/scene datasets. This performance improvement is apparent even when

the clusters in both views are poorly separated, demonstrating the robustness of

DAkM/SDAkM.

Further work on DAkM might focus on determining λ automatically, which

can perhaps be calculated mathematically as a function of the mutual information

between the two views of the dataset. Also, while the algorithm presented here

is restricted, for complexity reasons, to considering dual-assignments only, in

future multiple-assignment clustering could also be considered.
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Chapter 6

Dual-Assignment

Clustering of Single Actions

with Multiple Objects

6.1 Introduction

As the previous chapter has shown, DAkM and the closely related SDAkM are

fast, heuristic algorithms. However, they have some specific drawbacks which

make them inapplicable to certain scenarios. Firstly, as previously mentioned,

they have no theoretical guarantee of convergence to a local minimum with

respect to the proposed objective functions (even though they tend towards a

local minimum.) Secondly, they are only applicable to situations where each

item in the dataset has exactly two views, and that each of these views has a

single topic source – this does not account for situations where each view might

have multiple topic sources (such as in Latent Dirichlet Allocation), or where

there might be more than two views.

The rest of this chapter is structured as follows: §6.2 introduces the concept

of graphical models for dual assignment clustering, and specifically details the

MOSAC model, then experiments comparing MOSAC and SDAkM on a cooking
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Variable Definition

L The number of mixture components
V The number of datapoints/observations
ζ The mixture weights of each component
(A1, ..., AV ) The component of each datapoint
(Ξ1, ...,ΞV ) The datapoints/observations
(µ1, ..., µL) The mean of each component
(σ2

1 , ..., σ
2
L) The variance of each component

Table 6.1: Variable definitions for GMM

dataset are shown in §6.6.

6.2 Graphical models for Dual-Assignment Clus-

tering

(N.B.: In this section non-standard notation is used to denote the random

variables of Gaussian Mixture Models and Latent Dirichlet Allocation – these

can be seen in Figures 6.1 and 6.3. This is to avoid confusion due to overlapping

symbols when the final combined model, MOSAC, is introduced, as in Figure

6.4).

For scenarios where (S)DAkM is inadequate, a better alternative might

be a graphical model. By capturing the conditional dependencies between

the variables, graphical models can capture complex structures of data. This

graphical models can be arbitrarily complex, but probabilistic inference of the

unobserved variables in the model can be done using various methods, including

MCMC simulations for particularly complex models. Graphical models are easily

visualised as directed graphs, hence their name – a node represents a variable or a

parameter, and an arrow connecting two nodes shows a parent/child conditional

dependence between them.

To illustrate how a graphical model can be used for dual-assignment clustering,

it is first useful to describe how a univariate Gaussian Mixture Model (GMM)

is constructed. In Figure 6.1, a visualisation of a GMM is shown, using plate

notation. The meaning of the various variables in this figure are shown in Table
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6.1. To generate a dataset using this GMM, the following steps are followed:

1. For each sample v, 1 ≤ v ≤ V in the dataset:

(a) Choose mixture component Av with Av ∼ Categorical(ζ).

(b) Generate sample point Ξv ∼ N (µAv , σ
2
Av

)

The unobserved variables of a GMM can be approximately inferred using a

variety of methods. Most commonly, Expectation-Maximization (EM) is used to

infer GMMs, as it is accurate and efficient. MCMC simulation can also be used,

such as the Metropolis-Hastings sampler, or a collapsed Gibbs sampler [134] –

for the purposes this work, however, EM is sufficient.

The basic GMM is now extended to show how it can be applied for dual-

assignment clustering. In Figure 6.2 a more complex graphical model is shown.

This can be interpreted as two connected GMMs – the mixing component sets y

and z are the two clustering solutions, and they are connected by a conditional

dependence, p(y|z). The generation of a point in this model is similar to that

of two individual single GMMs, but the Dirichlet prior for y is chosen from the

value of z. Using this Dual-Assignment GMM (DAGMM), the full generation of

a dataset has the following steps:

1. For each sample v, 1 ≤ v ≤ V in the dataset:

(a) Choose mixture component Av with Av ∼ Categorical(ζ1).

(b) Generate sample point Ξ1v ∼ N (µ1Av , σ
2
1Av

)

(c) Choose mixture component Sv with Sv ∼ Categorical(ζ2Av ).

(d) Generate sample point Ξ2v ∼ N (µ2Sv , σ
2
2Sv

)

In some cases, a DAGMM might give slightly better accuracy, just as an

ordinary GMM can provide better clustering accuracy than the k-means algo-

rithm in certain cases. Additionally, there exists more theoretical grounding

for the algorithmic convergence of this graphical model than there does for the

convergence of DAkM. However, these marginal benefits may not be worth it,

as they come at the cost of significantly increased complexity for inference, both

110



L

V
Ξ

Α

S σ
μ

ζ

L
σ

μ

Ξ

1

2

1

1

2
2

1

ζ
2

F
ig

u
re

6.
2:

A
D

u
al

-A
ss

ig
n

m
en

t
G

M
M

v
is

u
a
li

se
d

w
it

h
p

la
te

n
o
ta

ti
o
n

.
E

v
id

en
ce

n
o
d

es
a
re

sh
a
d

ed
.

111



Variable Definition

K Number of topics
V Number of documents (or videos, scenes)
(N1, ..., NV ) Number of words in each document
α Topic distribution prior
(θ1, ..., θV ) Dirichlet topic distribution for each document
(Z11, ..., ZV N ) Topic for each word in each document
(W11, ...,WV N ) The specific words observed for each document
β Word distribution prior
(ϕ1, ..., ϕK) Dirichlet word distribution for each topic

Table 6.2: Variable definitions for Latent Dirichlet Allocation

in time and space, whether by EM or MCMC simulation. Additionally, the

asymmetric conditional relationship p(y|z) between the two component sets may

adversely affect results, depending on the inference method used.

6.3 Graphical models for the Dual-Assignment

Clustering of Multiple Objects

While a DAGMM has limited utility, there are certain scenarios where a more

complex graphical model may usefully extend dual-assignment clustering. Con-

sider a kitchen scenario, where a person prepares several dishes, interacting with

a variety of utensils, ingredients and containers. Each single action might be

associated with several objects – for instance, when a person performs the action

“frying”, they might be interacting with a frying pan, an egg and a wooden spoon

simultaneously. This is problematic for the DAkM or DAGMM models, which

both assume the two views are generated from a single source topic, rather than

multiple topics.

To solve this kitchen scenario, it is necessary to first introduce the Latent

Dirichlet Allocation (LDA)[125] model. As shown in [135], it is possible to use

LDA to account for the multiple objects contributing to a single Bag-of-Words

scene vector. An LDA is shown in Figure 6.3, and the variables are given in

Table 6.2.

To generate a set of “documents” (or videos, or scenes) using LDA, the
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Variable Definition

L The number of actions
V The number of videos
ζ The mixture weights of each action
(A1, ..., AV ) The action associated with each datapoint
(Ξ1, ...,ΞV ) The action datapoints/observations
(µ1, ..., µL) The mean of each action datapoint
(σ2

1 , ..., σ
2
L) The variance of each action datapoint

K Number of scene topics
(N1, ..., NV ) Number of scene words in each document
α Scene topic distribution prior
(θ1, ..., θV ) Dirichlet scene topic distribution for each document
(Z11, ..., ZV N ) Scene topic for each scene word in each document
(W11, ...,WV N ) The specific scene words observed for each document
β Scene word distribution prior
(ϕ1, ..., ϕK) Dirichlet scene word distribution for each scene topic

Table 6.3: Variable definitions for MOSAC

following steps are followed:

1. For each topic k:

(a) Choose word distribution ϕk ∼ Dir(β)

2. For each document v in the dataset:

(a) Choose topic distribution for document v: θv ∼ Dir(α)

(b) For each word i in document v:

i. Choose a topic Zvi from θv: Zvi ∼ Categorical(θv)

ii. Choose a word Wvi from ϕZvi : Wvi ∼ Categorical(ϕZvi

In this setting, each “document” (scene vector) can be generated from multiple

“topics” (objects). The distribution of the topics within a document is captured

as a Dirichlet distribution. This topic model has proven popular in textual

analysis, but also in scene categorization, as shown in [135] and [136].

Now the necessary background has been introduced, it is possible to demon-

strate how a GMM and LDA can be combined to perform Dual-Assignment

clustering on both single actions and multiple objects. This graphical model,

termed Multiple Object Single Action Clustering (MOSAC), is shown in Figure
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6.4. Its variables are defined in Table 6.3. As can be seen from the lower half

of the figure, action categories A are the membership components, and of a

GMM-like structure (with mixing components, means and variances defined by

ζ, µ and σ2 respectively). Random variable θ captures the distribution of the

scene objects as a Dirichlet distribution, conditioned on αA. Z, X and φ are the

same as in LDA. The generative process of MOSAC is as follows:

1. For each scene topic k:

(a) Choose scene word distribution ϕk ∼ Dir(β)

2. For each document v, 1 ≤ v ≤ V in the dataset:

(a) Choose mixture component Av with Av ∼ Categorical(ζ).

(b) Generate sample point Ξv ∼ N (µAv , σ
2
Av

)

(c) Choose topic distribution for document v: θv ∼ Dir(αAv )

(d) For each word i, 1 ≤ i ≤ Nv in document v:

i. Choose a topic Zvi from θv: Zvi ∼ Categorical(θv)

ii. Choose a word Wvi from ϕZvi : Wvi ∼ Categorical(ϕZvi

To perform dual-assignment clustering with MOSAC, it is necessary to

maximise p(Av|xv,Θ, θv) for the actions, and p(θv|xv, Av,Θ) for the scenes

where Θ is the set of all parameters in the model. Inference of these values can

be done using a nested Expectation-Maximisation algorithm which combines

EM for GMMs and a modified Variational EM for LDA collections.

6.4 Nested Expectation-Maximisation

The algorithm is composed of two main components – namely, a GMM EM

component, and a nested LDA Variational EM component. These components

are partly derived from previous work, such as in Redner et al. [33] and Blei et al.

[125] respectively, but also require some modification to be combined properly

in the MOSAC framework. Intuitively, the LDA EM algorithm is nested within

the GMM EM algorithm – the rest of this section clarifies this idea. The idea
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of nesting EM algorithms within one another is not entirely new (see [137]),

but is relatively under-explored. The full algorithm for performing inference on

MOSAC is found in Algorithm 2.

6.4.1 Nested LDA Variational EM

First, the LDA Variational EM component is described. The original algorithm

consists of two steps:

• Expectation: calculate variational components, in this work termed γv and

ρv, for each video v using an iterative algorithm.

• Maximisation: Update model parameters α and β such that the log likeli-

hood of the model is maximised:

arg max
α,β

|x|∑
v=1

logp(xv|α, β) (6.1)

In MOSAC, the structure of the LDA component is similar to an ordinary LDA

model, and roughly the same algorithm can be implemented. The components θ,

α, Z, W , phi and β in MOSAC (See Figure 6.4) all roughly correspond to their

analogous components in LDA.

The primary distinction is that in LDA α is a T -dimensional vector: T is

the number of topics – however, in MOSAC α is a T × ka matrix. A different

column of α is chosen for each video v according to the action of the video, Av.

This requires only a straightforward modification to the Expectation step, which

is calculated on a per-video basis. The Maximisation update step is also trivially

updated. To calculate the update of α, the Newton-Raphson method is applied

using the steps outlined in Appendix A.4.2 of [125] – the log likelihood with

respect to αc is similar, but not identical:
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L[αc] =

M∑
d=1

Adc(logΓ(

k∑
j=1

αjc) −
k∑
i=1

logΓ(αic)

+

k∑
i=1

((αic − 1)(Ψ(γdi)−Ψ(

k∑
j=1

γdj))))

(6.2)

where Adc is a binary matrix indicating whether document d belongs to action c

– all rows sum to 1. The derivative and second partial derivative extend from

this modification trivially, and so the Newton-Raphson method as described in

Appendix A.2 of [125] can be applied. The update step for β remains unchanged

from the original LDA.

6.4.2 Nested GMM EM

Given the following:

• V datapoints (x1, ..., xV ),

• Binary indicator variables (A1, ..., Aka) determining which of ka actions

each datapoint xv belongs to,

• Membership weight matrix wvi = p(Avi = 1|xv,Θ) indicating the likelihood

of datapoint xv belonging to action Ai,

• Mixture component vector ζ of length ka, where entry ζi indicates the

likelihood of a random datapoint x belonging to action Ai,

• Means µi and variances σ2
i for each action Ai,

the basic GMM Expectation-Maximisation algorithm is as follows:

• Expectation: compute wvi for 1 ≤ v ≤ V and 1 ≤ i ≤ ka, according to:

wvi =
N (xv;µi, σ

2
i ) · ζi∑ka

m=1N (xv;µm, σ2
m) · ζm

(6.3)

where N (x;µ, σ2) is the pdf of a Gaussian distribution at point x.

• Maximisation: update ζ, µ and σ2, with 1 ≤ i ≤ ka according to:
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ζi =

∑V
v=1 wvi
V

(6.4)

µi =
1

ζi

V∑
v=1

wvi · xv (6.5)

σ2
i =

1

ζi

V∑
v=1

wvi · (xv − µi)(xv − µi)T (6.6)

To use a GMM for hard clustering, the above EM algorithm is performed

until convergence, and then each datapoint xi is assigned to a cluster according

to the maximum weight in the ith row of w.

In MOSAC, ζ,A,σ2,µ and Ξ roughly approximate an ordinary GMM model.

The only difference is that, in the expectation step, the update of Avi includes a

new term incorporating λv and αi from LDA above:

wvi =
N (xv;µi, σ

2
i ) · d(θv;αi) · ζi∑ka

m=1N (xv;µm, σ2
m) · d(θv;αm) · ζm

(6.7)

Where d(θ;α) denotes the Dirichlet distribution pdf at point θ with concen-

tration parameters α.

6.4.3 Full MOSAC Inference

Now that the main two components of the MOSAC inference algorithm are

defined, they can be combined into a complete algorithm. This is illustrated in

Algorithm 2.

The first initialisation step of the algorithm is to perform k-means on the

action representations of the videos – the clusters obtained from this process

can give a good initial estimate of µ and σ2. The second initialisation step is

to calculate the parameters of ordinary GMM on the actions to further refine

the estimate of µ and σ2, and to get an initial estimate for ζ. Performing these

steps greatly reduces the time to convergence.

After initialisation, the nested EM loop begins. First, variational EM is first

performed on the scene features as per §6.4.1 – in the first iteration, each column
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Algorithm 2: MOSAC Nested EM Inference

Data:
X - a motion feature histogram representation of a video dataset.
Y - a static feature histogram representation of a video dataset.
ka,ks - the number of action categories and scene topics respectively.
α0,β0,ζ0 - initial parameter values.
Result: A - A matrix of binary indicator variables indicating which videos

belong to which actions.
1 Perform k-means clustering on X to get initial membership weights w
2 Set initial µ and σ2 according to Eqns 6.5 and 6.6
3 Perform ordinary GMM EM according to [125] to get initial w,µ, σ2 and ζ
4 while Not Converged do
5 GMM Maximisation:
6 LDA Expectation:
7 Calculate γv and ρv for each document (see Figure 6 of [125])
8 LDA Maximisation:
9 Update β according to Eqn 9 of [125]

10 Update αc for each action Ac independently, using
Newton-Raphson method, with Eqn 6.2 and first/second order
derivatives

11 GMM Expectation:
12 Recalculate w according to Eqn 6.7

13 Set Avi to 1 if wvi is the maximum value of row v of w, 0 otherwise

of α is set uniformly to 1. This converges to obtain the values for λ and α for

each video and each action respectively. Then, the maximization step of §6.4.2

is run to update µ, σ2 and ζ. Finally, the expectation step of §6.4.2 is run to

update A. This procedure is iterated until convergence – this is defined as the

point at which the aggregate change in A between iterations falls below a set

threshold.

Intuitively, MOSAC could be considered similar to running ordinary GMM

on the action representation, and ordinary LDA on the scene representation.

However, these two models share information probabilistically through the

modified α and w update steps.

Perhaps the most obvious drawback to the algorithm is that it is potentially

very time-expensive, as the inner EM algorithm needs to fully converge for every

outer loop of the whole inference algorithm – and LDA EM optimisation in

particular can take a long time to converge. To mitigate this, it is possible to limit

the inner loop to a low, set number of iterations. Indeed, it has been determined
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experimentally that the algorithm still runs with acceptable performance even

when the inner LDA EM is limited to a single iteration.

6.5 Representing a Multiple-Object Dataset

While the MOSAC algorithm is potentially well-suited to multiple-object single-

action datasets, it is still necessary to represent the dataset appropriately for

it to work well, and the representation depends highly on the specific dataset

being analysed. Here, the MPII Cooking Activities dataset [112] is proposed as

a testbed for MOSAC - see Figure 2.7 for example scenes. This dataset records

several actors performing several cooking activities, from a fixed perspective,

high definition camera. The background is static, making it straightforward to

isolate the actor and any object from the rest of the scene using background

subtraction. The ground truth associated with the dataset specifies the temporal

extent of each action, which is used to break up the dataset into the individual

actions before representation.

To represent the actions for MOSAC, a straightforward Bag-of-Words model

is generated from dense trajectory features, and then a spectral representation is

calculated from the resulting action vectors. This is identical to the method used

in SDAkM above. The spectral representation given is Euclidean and therefore

the GMM-like structure in MOSAC can be used to model the distribution of the

action vectors.

Representing the objects well in MPII is more of a challenge. The first

step is to perform standard background subtraction to eliminate all extraneous

information – as the camera is fixed, the background is calculated simply as

the modal pixel values over the whole of each video. The background image

is subtracted from a frame. Each pixel of the resultant difference frame is

thresholded to determine if it belongs to the background. The resulting binary

image shows which pixels belong to the foreground. Simple erosion/dilation

operations are then applied to clean up the binary image, and finally the binary

image is used to mask the original frame. This isolates the actor and the objects
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that are involved in the cooking process.

Having extracted foreground pixels, a simple approach to extract the object

descriptors would be to calculate SIFT features on several images from the action,

keeping only SIFT features on the foreground pixels. However, this is not ideal,

as many of the objects detected in the scene might be irrelevant to the action

being performed. Instead, body pose detection is applied to the frames using

the method in [112], giving the position of the person’s hands in each frame.

Skin tone classification of the pixels is performed using the method described

in [138] in a radius around the hands to determine which pixels belong to the

hands. Finally, to extract the features of the objects being used in the action,

dense SIFT features are extracted centred on all foreground pixels in a radius

around the hand, excluding pixels that belong to the hand itself. A Bag-of-Words

model can then be created from these SIFT features in the usual manner, using

PCA and k-means clustering, giving a complete representation of the scene of

an action.

Note that while in the simple SDAkM algorithm problem of §5.4.2, all the

SIFT features are generated from a single scene, MOSAC makes the assumption

that each SIFT feature could belong to a different object, or topic. Because of

this, the scene SIFT feature space cannot be transformed into a linear one via

spectral embedding, as in §5.3.1. However, this is not necessary, as the Latent

Dirichlet Allocation branch of the MOSAC model can already capture non-linear

dependencies in the scene variables without an explicit spectral transformation

of the scene space.

6.6 Cooking Activity Experiments

In this section MOSAC’s effectiveness on the MPII cooking activities dataset is

examined experimentally.
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6.6.1 Dataset

In order to perform experiments on MOSAC, a subset of the original MPII

Cooking Activities dataset [112] is used. Some of the action classes in the

original dataset are deemed unsuitable for MOSAC experiments according to

the following two criteria:

• An action class must be defined only by its motion – not by its scene context.

Certain actions in the dataset (e.g. open/close fridge, open/close drawer,

put on cutting-board) cannot be identified from the action data alone, but

also require knowledge of the scene context. If these action classes were

included, it would artificially inflate the improvement in accuracy that

MOSAC shows over ordinary clustering methods.

• Each included action class must have more than thirty examples in the

dataset – certain actions, such as puree, mix, and stamp, have too few

examples for good clustering.

The resulting subset of the dataset has the 17 following classes: screw on,

screw off peel, stir, pour, wash objects, strew, spice, grate, shake, throw in

garbage, cut apart, cut dice, cut off ends, cut out inside, cut slices, cut stripes. It

is proposed that this subset provides a fair evaluation of the MOSAC algorithm

for the reasons outlined above.

6.6.2 Setup

The setup for the extraction of motion features is identical to that in §5.4.2

above, and static SIFT features are extracted according to §6.5. A Bag-of-Words

representation is generated for both action and static features (using the process

described in §5.4.2) and Ng et al.’s [132] spectral embedding is calculated on

the action representation only. The static representation is left in Bag-of-Words

form so that it is compatible with topic models such as LDA and MOSAC.

Most of the experimental work, including the processing of the dataset,

is performed in MATLAB. MOSAC inference, however, is not suitable for
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Method Accuracy (%)

k-means 36.56
DAkM 39.76
MOSAC 40.82

Table 6.4: Action clustering results on the MPII dataset using various techniques

implementation in MATLAB due to its heavily iterative nature, so is written in

C++ instead.

6.6.3 Results

Table 6.4 shows the performance of clustering on the action representations,

using various methods. As can be seen from the performance of k-means, if the

scene context of the actions is ignored, performance is relatively poor, due to

the fine-grained nature of the actions in the dataset.

Figure 6.5 shows the effect of varying the number of scene topics on the

accuracy of the action clustering. There is a peak at 11 topics, and increasing the

number of topics beyond this has little effect on accuracy – it is therefore preferable

to set the number of topics relatively low, because the extra computational cost

of finding more topics yields no better results.

As with the DAkM/SDAkM experiments above, the MPII cooking activities

dataset was unfortunately not annotated with scene data to allow the quantitative

analysis of scene clustering accuracy, so these results were not included.

6.7 Discussion

This chapter introduced the concept of MOSAC - Multiple-Object Single-Action

Clustering. MOSAC is designed to perform dual-assignment clustering even

when one of the views has multiple topics, and can be better captured with a

topic model. Its performance over topic models that don’t take into account

contextual information (such as LDA) has been proven experimentally.

Despite the positive findings, this chapter has only presented an initial

exploration of applying complex probabilistic graphical models to the problem
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of dual-assignment clustering. There are many questions that remain to be

answered. Firstly, it may be possible to use different inference methods, such

as Gibbs sampling, rather than the proposed Nested EM algorithm, to get

better clustering results. Additionally, MOSAC could be modified to perform

dual-assignment clustering where even both of the views have multiple topics –

this could be achieved by extending the model to have two LDA-like branches.

With the recent popularity of Big Data, both MOSAC and DAkM (from the

previous chapter) should be investigated for their applicability to larger datasets,

especially through the improvement of their computational complexities with

respect to the number of scene and action categories.
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Chapter 7

Multi-Spectral

Representation for Human

Actions

7.1 Introduction

Graph-based algorithms are a powerful way of exploiting the underlying structure

of a dataset to improve the performance of unsupervised and semi-supervised

tasks. To illustrate this, consider three of the most successful graph-based

methods: spectral clustering [132], which can be used to find unusually structured

clusters; manifold ranking, which has been applied to information retrieval tasks

with great success [88]; and Laplacian Eigenmaps (LE) [139], which are applied

to dimensionality reduction. In general, by using graph-based methods, it is

possible to uncover the latent structure of a high-dimensional dataset, thereby

improving the accuracy of unsupervised and semi-supervised learning tasks.

The first step of these graph-based methods is to generate an affinity matrix,

W , which represents the affinity between every pair of points in dataset X. For

bag-of-features (BoF) histograms (which are the focus of this chapter), it is

possible to use a heat kernel applied to the χ2 distance between every pair of
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points xi, xj ∈ X:

Wij = exp

(
−χ

2(xi, xj)

σ2

)
(7.1)

Alternatively, the histogram intersection could be used. After W is generated,

various further operations are performed on W to get the final result. In certain

methods, such as LE [139], W is made sparse using kNN or ε neighbourhoods,

but in others it is fully connected.

Nonetheless, all graph-based methods for representation share the same flaw:

when W is generated from X, there is significant information loss from the

original feature space – only a single affinity value is generated for every pair of

points. The information loss is particularly severe for small datasets (each row

of W is therefore low-dimensional) or when the dataset’s original feature space

has a high dimensionality.

On high-dimensional data such as histograms, a single graph, generated

using a single affinity metric, is not often sufficient to capture the full structure

present in the original feature space. When representing realistic images or

videos, there may be multiple statistically independent components within the

histogram – then, a single graph would not be able to distinguish between these

components. Instead, it is suggested that multiple graphs should be constructed,

each corresponding to a different component of the original images or videos.

This chapter presents a novel method that generates multiple graphs from

independent subsets of the feature space. First, multiple graphs are found by

partitioning the feature space into several mutually independent subspaces, then

generating a different affinity matrix from each subspace. Then, a spectral

embedding method is performed on each subspace. Finally, the embeddings are

scaled and concatenated together, resulting in a single representation for each

datapoint. This representation is referred to as the Feature Grouped Spectral

Multigraph (FGSM). It is expected that FGSM will result in minimal information

loss from the original feature space compared to ordinary spectral embedding

methods. Through experimentation on several human action datasets, it is

demonstrated that FGSM gives superior results compared to the state-of-the-art
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algorithms for clustering, retrieval and recognition tasks.

The rest of this chapter is structured as follows. §7.2 describes the theory

and implementation details of the Feature Grouped Spectral Multigraph. §7.3

details various experiments on clustering, retrieval, and recognition, and §7.4

concludes with a discussion of the chapter’s findings.

7.2 Multigraph Representation

When applying FGSM to a dataset, the original feature space of the dataset

should have two properties: 1) the feature space must be high dimensional,

and 2) the feature set must be divisible into several disjoint subsets with high

independence between all the subsets and high dependence within the subsets. It

is proposed that these properties apply to the histogram representation of videos

due to the locality of the features – each histogram bin is primarily associated

with a different component of the original video. This concept is illustrated in

Figure 7.1.

In ordinary graph-based learning methods, much of the information from the

original feature space will be lost in the creation of the affinity graph. FGSM,

however, overcomes this issue by finding multiple independent views (subspaces)

of the original representation and generating a separate affinity graph for each

view.

The full algorithm for FGSM is shown in Algorithm 3.

7.2.1 Feature Grouping

The first step is to extract several mutually independent subspaces from the

original feature space. This can be achieved by spectrally clustering features

on an affinity graph of Hilbert-Schmidt Independence Criterion (HSIC) values,

calculated between every pair of features.

HSIC captures all non-linear dependencies between two random variables x

and y, as described in Gretton et al. [140], so long as the associated reproducing

kernel Hilbert spaces are universal. It is more suitable for this work’s purposes
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Algorithm 3: FGSM – Multigraph Representation

Data:
X - a histogram representation of a dataset
m - the number of feature subspaces to find
k - the number of eigenvectors per feature subspace
Result: Y - a multigraph representation of the dataset

1 Calculate HSIC affinity matrix between pairs of columns of X, where

Wjk = tr((LTj Lk)(LTk Lj)) (Eqn 7.3)

2 Spectrally cluster W according to Ng et al. [132] to find m feature clusters:
C1..Cm

3 Define functions P1..Pm to project X into feature subspaces according to
C1..Cm

4 for i← 1 to m do
5 Calculate T ← Pi(X)
6 Calculate Wjk ←

∑
(min(Tj , Tk))

7 Calculate S ← D−1/2LD−1/2, where L← D −W and D is a diagonal
matrix where Dll is set as the sum of values of the lth row of W

8 Find first k eigenvectors e1..ek of S, concatenate them columnwise:
Ei ← [e1..ek]

9 Normalise rows of Ei to sum to 1
10 Find λi as the mean distance between rows in Mi: λi ← σ(dists(Ei))

11 Concatenate scaled E1..Em columnwise to get Y :

Y ← [(λ−11 E1)..(λ−1m Em)]

than other independence measures, such as the correlation co-efficient, which

only capture linear dependencies. To demonstrate that it is a true independence

measure, Gretton et al. show it equals zero if and only if x and y are independent.

It can be empirically estimated from a finite number of (xi, yi) tuples by the

following:

ρh(x, y) =
1

(1− n)2
tr(HKxHKy) (7.2)

where Hij = δij − n−1, Kx and Ky are the outer products of vectors x and y

respectively, and n is the number of samples. Calculating Kx and Ky, however,

takes O(n2) time and space, which is highly expensive for larger datasets, so

incomplete Cholesky decomposition is used to find Lx and Ly, such that Kx

and Ky can be approximated as K ′x = LxL
T
x and K ′y = LyL

T
y . The approximate

HSIC can then be calculated using the following:
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ρh(x, y) = tr((LTxLy)(LTy Lx)) (7.3)

This completes in O(nf2) time, where f is the chosen number of columns in L.

On very large datasets, HSIC estimation can be made more efficient by sparsely

sampling the original population. Such sampling can be done with acceptable

loss of accuracy, as the estimated HSIC approaches the true HSIC at speed 1√
n

.

To perform feature grouping, ρh is calculated on every pair of features i

and j in the original feature space of dataset x, resulting in affinity graph

Wij = ρh(xi,xj). Spectral clustering is performed on W according to Ng et al.

[132] to find m disjoint feature subspaces, s1, .., sm ⊂ x. A large range of values

for m give good results, as shown in experiments below, so this choice is not

crucial. Nonetheless, m ≥ 20 typically achieves the best results.

7.2.2 Multigraph Spectral Embedding

Having obtainedm disjoint subspaces, it is possible to findm separate embeddings

of the dataset according to each subspace. For each subspace sm, an affinity

graph Wm is constructed using:

Wm,ij =
∑
dm

(min(Pm(xi), Pm(xj))) (7.4)

where Pm(x) is a function that maps x to the mth, dm-dimensional subspace.

Rather than using a kNN-neighbourhood or a ε-neighbourhood graph, as typically

used in Laplacian Eigenmaps, W is constructed as a fully connected graph as in

Ng et al.[132]. The choice to use a fully connected graph is made empirically –

in preliminary experiments, a fully connected graph gave better results than a

kNN neighbourhood graph for any k.

Spectral embedding is then performed on Wm as per steps 2-4 of Ng et al.

to find a spectral embedding. These steps are:

1. Find L = D−1/2WD−1/2, where D is a diagonal matrix where Dii is set

as the sum of values of the ith row of W.
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2. Find the k highest eigenvectors of L, e1, .., ek, and construct a matrix E

columnwise as [e1..ek].

3. Normalise E so each row sums to 1.

It is notable that this process also differs from Laplacian Eigenmaps, because

of step 3, instead follows Ng et al.[132]. The unit normalisation is important to

reduce the scale variation between the m separate embeddings. The optimal

choice of k is likely to vary between spectral embeddings – however, for simplicity

a single k is chosen that is uniform across all embeddings. Future work might

show improved performance heuristically choosing an individual k per embedding.

The final step to generate the FGSM is to aggregate the m embeddings. This

can be simply and naively achieved by concatenating all E1, .., Em columnwise:

X = [E1..Em]. Then, row i of X is an m× k length vector describing sample

xi. While this scheme works well, however, further performance increases can

be achieved by scaling each embedding appropriately before aggregation. The

Euclidean distance is calculated between every pair of rows in Ei and it is used

to find λi thus:

distsi,jk = ||ei,j − ei,k||2 (7.5)

λi = σ(distsi) (7.6)

where σ(x) is the standard deviation of the values in x. Then, to get the final

representation, scale each E1, .., Em with λ1, ..., λm and concatenate columnwise:

X = [(λ−11 E1)..(λ−1m Em)]. As a result, each embedding is scaled to have a total

distance variation of 1.

Out-of-sample extension is not considered in this chapter, which could be

necessary when performing time critical tasks such as recognition or retrieval.

However, the Nyström approximation could be easily applied to each embedding

separately, as in [141], to achieve out-of-sample extension.
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7.3 Experiments

In this section FGSM is applied to various machine learning problems to demon-

strate its applicability to real-world machine learning tasks. specifically consider

several realistic human action datasets, although in future work FGSM could

also be applied to image datasets.

7.3.1 Setup

The datasets used are the UCF YouTube, UCF Sports, HOHA2 and Olympic

Sports datasets. These are described in §2.6.

To extract a motion representation of the actions, the publicly available

code for dense trajectory feature extraction is used as presented in Wang et al.

[133], with the default settings of the software. This results in a series of local

features, each feature represented with 4 descriptors (HOG, HOF, MBH, Tr).

PCA, then k-means, are performed on each of the 4 descriptors in turn. For

k-means, k = 4000. A separate histogram is generated for each descriptor, and

then the histograms are aggregated together. The result is a 16000-bin histogram

per video. When performing FGSM, features are grouped in 30 subspaces (i.e.,

m = 30) and extracted 40 eigenvectors for each manifold (k = 40).

The method for clustering features given in this chapter is compared to the

diffusion map method presented in Liu et al. [142], which is used for finding

semantic words in bag-of-words models. To create a method for comparison,

steps 1-3 of Algorithm 3 are replaced with the representation and clustering

algorithm given in section 4 of [142]. The parameters for diffusion maps are

optimised empirically. In the experimental results below, this hybrid algorithm

is referred to as DM (for Diffusion Maps), and it is compared to FGSM both for

clustering and retrieval below.

7.3.2 Clustering

First action clustering is considered. Given an action dataset with k action

classes, the goal is to find k disjoint subsets of the action dataset so that each
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Dataset
Clustering Accuracy (%)

SC1 SC2 DM FGSM

YouTube 22.3 39.2 39.9 42.6

UCF Sports 32.6 68.0 27.6 70.8

Hollywood-2 18.2 33.6 34.5 38.6

Ol. Sports 23.1 39.7 40.3 42.8

Table 7.1: Clustering performance of various methods on each dataset.

subset contains only one action class. The FGSM representation can improve

clustering on human actions by finding a strongly representative low-dimensional

embedding of the original histograms.

To measure a clustering algorithm’s performance in this chapter, the same

performance metric is used as in [103]. If each cluster c contains datapoints

x1, .., xn, and each datapoint is associated with a ground truth label l1, .., ln, the

label lc of cluster c is determined to be:

arg max
lc

n∑
i=1

 1 if lc = li

0 otherwise
(7.7)

The accuracy is then percentage of data points across the whole dataset that

have the same label as their assigned cluster.

The results of various clustering methods are in Table 7.1. SC1 and SC2 are

the methods presented in Shi and Malik [143] and Ng et al. [132], respectively. For

each of these, the affinity matrix W is generated using the histogram intersection

in Equation 7.4. For FGSM, the FGSM representation is applied to the dataset,

followed by ordinary k-means clustering using the Euclidean distance. Each

clustering algorithm is run for 100 trials and the mean accuracy over all results

is shown.

As can be seen from the table, FGSM achieves superior results to any of the

compared spectral clustering methods on all four datasets. As stated above, this

is likely because a single graph is unable to capture all of the information in the

original feature space, and because DM’s feature clustering is not as accurate as

ours. The UCF Sports dataset results are improved the least by FGSM (2.8%

over ordinary spectral clustering) whereas in the Hollywood-2 dataset a 5%
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accuracy boost is observed. The scale of the improvement appears to be related

to the size of the dataset – the larger the dataset, the larger the improvement

that FGSM gives. This intuitively makes sense, as spectral embedding methods

tend to be more accurate for larger populations. Performing the initial feature

grouping may also be more accurate on larger datasets.

7.3.3 Content-based Retrieval with Relevance Feedback

Next, content-based video retrieval (CBVR) is considered. This is recently a

popular research field, although the bulk of retrieval work is on images rather

than videos. Typically CBVR is aimed at improving the accuracy of multimedia

search engines.

The formal aim of CBVR is as follows: given a query video, rank the videos

in a video database according to their relevance to the query, and return the

most relevant videos. Once a query has been submitted and the results returned,

a user can give relevance feedback to the system, by marking each result item as

“positive” or “negative”, indicating which results are related to the query or not.

The CBVR system can incorporate this relevance feedback to perform a further

query, and return improved results.

As discussed in the literature review, recent works [144, 145] have shown

how manifold ranking can be made efficient enough for practical use on retrieval

tasks. However, the rankings are generated from a single graph, so FGSM is

likely to outperform manifold ranking.

Performance is compared between histogram intersection ranking (HI), χ2

distance ranking (CD), manifold ranking (MR), Liu et al’s method [142] (DM)

and FGSM ranking (FGSM) in Table 7.2, showing retrieval performance before

and after a single round of relevance feedback. To test, each video in the dataset

is set as the query in turn, performing retrieval on the remaining videos. The

percentage of relevant videos in the top 20 results is determined, and this is

averaged over all the queries.

To simulate relevance feedback, several of the top 20 results are marked as

positive or negative according to the ground truth of the dataset, and the query is
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Dataset RF
Accuracy of Top 20 Results (%)
HI CD MR DM FGSM

YouTube
B 53.2 52.4 56.4 56.6 63.5

A 74.4 74.4 75.2 75.9 82.8

UCF Sp.
B 38.5 38.3 39.5 17.9 41.5

A 48.0 48.6 49.0 28.5 51.7

HW-2
B 25.4 25.2 28.1 26.2 30.4

A 41.0 41.1 42.7 33.9 46.0

Ol. Sp.
B 35.2 34.7 37.7 39.4 41.5

A 51.9 51.4 51.4 54.4 59.6

Table 7.2: Retrieval performance of various methods on each dataset, before (B)
and after (A) relevance feedback (RF).

rerun. For HI, CD, and FGSM relevance feedback is incorporated using a kernel

SVM. For HI, the histogram intersection kernel is used; for CD, the χ2 distance;

for FGSM, the RBF kernel. To incorporate positive/negative relevance feedback

in manifold ranking, scheme 1 is used as presented in [88], setting γ = 0.25.

As shown in the table, FGSM performs well for retrieval, especially after

relevance feedback. A multigraph representation confers an advantage over

the traditional manifold ranking (MR) method and DM, and gives the best

performance for all four datasets. The histogram intersection and χ2 distance

both result in poor performance, as they do not leverage the underlying structure

of the data. Figure 7.2 also shows the precision-recall curves for each dataset,

making clear the advantage of FGSM.

Finally, in Figure 7.3 is shown the effects of varying parameter m on retrieval

performance, compared against baseline manifold ranking performance. As can

be seen from the figure, performance is vastly increased even when m = 2, and

continues to rise until about m = 30 for all datasets. Performance is weakest

compared to manifold ranking on the UCF Sports dataset, perhaps due to the

small number of videos in that dataset.

7.3.4 Recognition

The final experiment is to perform fully-supervised action recognition using

FGSM. Here, FGSM is not expected to outperform the state-of-the-art. Spectral
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Dataset
Recognition Accuracy (%)

Orig STP LE FGSM

YouTube 84.1 85.4 74.6 89.0

UCF Sports 88.0 89.1 67.6 87.7

Hollywood-2 58.2 59.9 45.8 58.2

Ol. Sports 74.1 77.2 57.5 74.6

Table 7.3: Recognition performance of various methods on each dataset.

embedding methods such as FGSM perform well on unsupervised and semi-

supervised tasks because they make use of latent structural information in the

unlabeled portion of the dataset. When performing fully supervised action

recognition, however, all of the training data are labeled – it is not necessary to

find the latent structure of fully labeled data. Instead, a discriminative classifier

such as a kernel SVM can use all of the data to accurately model the separating

hyperplane between classes even on the original feature space. If a spectral

embedding method is used in conjunction with a fully-supervised SVM, much

information will be lost from the original feature space, which will make an

optimal hyperplane between classes harder to find.

So instead of outperforming the state-of-the-art, it is only intended to show

that FGSM does not result in significant loss of recognition accuracy compared to

the original representation, thus demonstrating that FGSM retains all important

components from the original feature space.

In Table 7.3, FGSM is compared against the state-of-the-art human action

recognition work in Wang et al. [43]. Orig is the dense trajectory histogram

method presented in [43], using a multi-channel χ2 kernel SVM for classification;

STP is the spatio-temporal pyramid representation in [43] using a multi-channel

χ2 kernel SVM for classification; LE applies Laplacian Eigenmaps to the his-

togram and uses an RBF kernel SVM for classification; FGSM is the multigraph

representation presented in this chapter. To evaluate classification with FGSM,

a kernel SVM is applied to the FGSM representation of a dataset - determined

empirically that an RBF kernel works better than a linear or quadratic kernel.

For each dataset, the same experimental setup is used as that provided in Wang
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et al. [43]

As can be seen, on recognition tasks FGSM consistently outperforms Lapla-

cian Eigenmaps, and performs similarly to the original histogram representation

Orig. This illustrates that FGSM preserves the underlying structure of the

dataset far better than a single spectral embedding. For one of the datasets

– YouTube – FGSM even surpasses the state-of-the-art results in Wang et al.,

which is a surprising result, requiring further investigation. STP achieves the best

results on the other three datasets, as it takes into account the spatio-temporal

structure of the videos – in future, it may be possible to achieve even better

results by combining STP with FGSM.

7.4 Discussion

In this chapter a new method is introduced for representing multimedia data

– particularly human actions – for improved accuracy in clustering, retrieval

and recognition tasks. Based on previous works on spectral embedding, several

spectral embeddings were generated on separate subspaces of the original feature

space. It was postulated that this would maximise the retained information

from the original feature space. Through comprehensive experiments on four

datasets, it has been demonstrated that the new representation – FGSM – can

surpass the state-of-the-art for clustering and retrieval/relevance feedback tasks

on all datasets, and can also surpass the state-of-the-art recognition accuracy on

certain datasets.

Further work might consider how this representation performs on a greater

variety of multimedia datasets, such as object image datasets, and larger-scale

datasets such as HMDB51 - especially as spectral embedding becomes more

accurate on larger populations. It would also be worthwhile to implement out-

of-sample extension using the Nyström approximation, to improve the method’s

performance on retrieval tasks. Finally, works such as Xiang and Gong [146]

have presented improvements to the basic spectral embedding method, which

may also be combined with FGSM to enhance its performance.
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(a) UCF YouTube
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Figure 7.2: Precision/recall curves for video retrieval on various datasets.
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(a) UCF YouTube
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Figure 7.3: The effect of varying parameter m on retrieval performance in the
top 20 results, versus manifold ranking baseline.
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Chapter 8

Conclusions

This chapter summarises the findings of this thesis, tying together the various

topics of work, and provides some direction for future work.

8.1 Discussion

The goal of this thesis, as provided in chapter 1, has been to devise methods for

performing unsupervised and semi-supervised analysis of human actions, with a

particular focus on providing groundwork for later work on practical systems

such as human activity retrieval. In this section, several conclusions are drawn

and related back to the original purpose of the thesis.

8.1.1 Action Retrieval

Firstly, it has been shown possible to perform human action retrieval with good

accuracy, even on complex datasets such as the Hollywood 2 [3]. Further, the first

approach introduced in chapter 4 can perform retrieval with localisation in at

most linear time with respect to the length of the dataset while still maintaining

a practical level of accuracy – far superior to previous works such as [116], which

take at least quadratic time. The various experiments detailed in chapter 3

cover representation, ranking and feedback methods for action retrieval. It was

shown that a relatively simple representation tends to work best for retrieval.
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It is suggested that this is because more complex schemes like spatio-temporal

pyramids require more training data to work effectively, but in a retrieval system

only the query and feedback can be used to train the ranker.

8.1.2 Action Localisation and Temporal Segmentation

The first approach from chapter 4, while simple, performed efficiently and accu-

rately on the datasets – by separating the temporal dimension from the spatial

dimensions, great efficiency improvements were observed without significantly

affecting the accuracy of the algorithm. The second approach performed fully

unsupervised temporal localisation (segmentation) of the human actions. This

is an important problem to solve, as purely supervised temporal localisation

of actions is infeasible to apply to large datasets, due to the cost of acquiring

the necessary training data. By temporally segmenting human actions into

semantic chunks, it will become possible to perform higher level analysis of video

content, such as performing activity retrieval or activity recognition. The work

in this thesis has made a solid step in this direction, detailing an algorithm that

segments human motion based on points of linear discontinuity, and proving

that it is possible to create a practical recognition system based on unsupervised

temporal segmentation.

8.1.3 Contextual Clustering

Dual-assignment clustering, an entirely novel clustering problem, has been intro-

duced in chapter 5. Two algorithms to solve to this problem, DAkM and MOSAC,

have been described, in chapters 5 and 6 respectively, and have been used to

cluster actions with scene/object contexts. This is a considerable innovation –

the context of human actions have been shown for some time to have a significant

impact on the correct classification of actions, but no one has considered applying

this in an unsupervised context. The simultaneous estimation problem posed

is difficult to overcome, but experiments have shown both for the DAkM and

MOSAC approach that dual-assignment clustering can consistently beat existing

clustering methods on action-with-context problems – even similar algorithms
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such as multi-view clustering algorithms perform more poorly than DAkM.

8.1.4 Multigraph Representations

The novel multigraph representation provided in chapter 7 has been shown

superior to existing methods for action representation when performing unsuper-

vised or semi-supervised learning tasks. Ordinary spectral embedding methods

are highly lossy, because they are dependent on a single similarity measure

between every pair of datapoints – this can lose some of the subtle similarities

or differences which might be important in, for instance, retrieval with relevance

feedback. Intuitively, this representation preserves more important information

than a single graph representation, as is evidenced by the strong results in

chapter 7. The consequences of this finding may extend beyond human action

representation, and may also be useful in image or document retrieval.

8.2 Future Work

There are many ways that the work presented herein could be extended and

improved.

Perhaps the most promising future work is the combination of all of these

chapters into a unified human activity retrieval system, as proposed in chapter 1.

The work in chapters 3, 4 and 7 provide groundwork for the retrieval of atomic

actions of such a system. Chapter 4 additionally provides a way to extract these

atomic actions from a longer, temporally unsegmented dataset. Chapters 5 and

6 allows atomic actions to be represented as clusters. What remains is to devise

a way to describe actions at a semantic level, extract this semantic description

from a query video, and use it to assist in a full activity search rather than an

action search. Various activity recognition techniques, such as that in [75] could

be used as inspiration for this work. The main drawback of this direction is

that in order to test such a system, a new, large dataset will need to be created,

as no existing dataset is sufficient for an experimental evaluation of an activity

retrieval system.
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Each of the individual chapters can also be extended in various ways:

• Works extending Chapters 3 and 7 could consider how well the Fisher Vector

representation [32] performs on human action retrieval. This promising

technique has been used with great success on various other similar tasks

such as image classification and should extend well into human action

retrieval.

• Works extending Chapter 4 could focus on how to properly represent and

index human actions for a logarithmic or even constant time human action

search in unsegmented human action datasets. While the work presented

here is already a significant improvement in computational complexity,

practical systems for real-world use must be insensitive to the size of the

database involved – to reason why, consider that YouTube currently has

many millions of hours worth of video to search, and this database grows at

over 100 hours per minute. It would be infeasible to search such a database

in anything slower than logarithmic time, with low coefficients. This is

important for surveillance systems too. Additionally, both approaches in

this chapter should consider more complex datasets, and how to extend the

methods to perform unsupervised hierarchical localisation, such as that in

[83]. This could provide a more semantic level localisation and segmentation,

which would be useful for a full activity retrieval or recognition system.

• Works extending Chapter 5 and 6 could take various directions. SDAKM

and MOSAC could be experimented with in a variety of different do-

mains – human actions are only one of many potential applications. Dual-

assignment clustering could be extended to tri-assignment or n-assignment

clustering. Other clustering algorithms, such as agglomerative clustering,

could potentially be extended to the dual-assignment paradigm.
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Glossary

ABRS-SVM Asymmetric Bagging Random Subsampling Support Vector Ma-

chine. A relevance feedback technique used in order to overcome several

deficiencies associated with using an ordinary Support Vector Machine

for relevance feedback.

Active Learning A technique used in retrieval systems, similar to Relevance

Feedback. Unlike in relevance feedback, the items that the user should

provide feedback on are chosen by an algorithm in order to maximise their

expected information value..

Bag of Words In this thesis, an action representation model based on local

features. The local features are extracted then clustering is performed on

the features to group the features into codewords. A single histogram of

codewords is used to represent each action in a dataset.

BoW See Bag of Words.

Branch-and-Bound In this thesis, refers to a method for localisation that can

be used in conjunction with local features to localise in O(xy) time, rather

than O(x2y2) time for a sliding window approach.

CBIR See Content-based Information Retrieval.

Classification A fully supervised machine learning task where each item in a

dataset is assigned to one of k classes..

Clustering, Action Clustering applied to human actions.
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Codebook A full mapping of local features to codewords.

Codeword A single quantised descriptor in the Bag of Words model. If the Bag

of Words model involves some sort of feature clustering, such as k-means,

then each cluster is equivalent to a codeword.

Content-based Information Retrieval A search technique, whereby a mul-

timedia database is searched by comparing the content of the multimedia

items to the contents of a query item. This is in contrast to keyword-based

information retrieval, which searches a multimedia database based on the

textual metadata attached to the multimedia items.

Context In this thesis, context refers to information in an image/video that

is indirectly related to the subject of interest, and that can potentially

provide clues as to the identity of the subject.

DAKM See Dual-Assignment K-means Clustering.

Dimensionality Reduction A machine learning task, where a set of high-

dimensional vectors describing a dataset are reduced to a set of lower-

dimensional vectors, by exploiting redundancies in the data.

Dual-Assignment K-means Clustering A novel technique introduced in

this thesis in order to perform Action Clustering using Context to

improve accuracy..

Expectation-Maximisation An optimisation technique used to perform in-

ference in certain probabilistic models, such as LDA and GMMs.

Feature Description The second part of feature extraction, after a feature

has been detected, where the feature patch is vectorised using a technique

such as HOG or HOF.

Feature Detection The first part of feature extraction, whereby salient or

discriminative features are localised within an image/video.
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Feature Extraction The technique of finding and describing local features

in an image or video in order to represent the image/video for machine

learning tasks.

Feature Grouped Spectral Multigraph A new technique for Action Rep-

resentation introduced in this thesis that exploits the Spectral properties

of an action dataset in order to give good results on unsupervised and

semi-supervised tasks.

FGSM See Feature Grouped Spectral Multigraph.

Gaussian Mixture Model A probabilistic graphical model that represents the

data as being generated from a set of independent Gaussian distributions.

Global Feature As opposed to a local feature which is only concerned with

a small patch of the image/video, a global feature is a description of

an image/video which takes into account the appearance of the overall

image/video.

GMM See Gaussian Mixture Model.

Ground Truth Information, for instance class labels or localised (x, y) coor-

dinates, associated with each instance in a training dataset, containing

information required for performing fully supervised classification.

Hidden Markov Model A graphical model used to model time series data –

used in particular for speech and action recognition. Exploits the Markov

assumption that a state at t+ 1 is conditionally independent of the state

at t− 1, given state t .

Histogram of Oriented Flow A technique commonly used for feature de-

scription, where the optical flow in the local feature is binned into several

orientations and represented as a histogram.

Histogram of Oriented Gradients A technique commonly used for feature

description, where the gradients in the local feature are binned into several

orientations and represented as a histogram.
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HMM See Hidden Markov Model.

HOF See Histogram of Oriented Flow.

HOG See Histogram of Oriented Gradients.

k Nearest Neighbours A basic classification technique for multiple classes

that is computationally expensive for large training sets.

Kadane’s Algorithm The canonical best solution to the Maximal Subarray

problem. The goal is to find the contiguous subarray within a larger

array of numbers that sums to the maximum possible total. Related to

branch-and-bound.

Keyframe A frame of significance extracted from a video. Extraction of

keyframes is used as opposed to extracting every frame in order to re-

duce information processing requirements. .

K-means Clustering A simple unsupervised clustering technique that

finds K clusters in a given dataset..

kNN See k Nearest Neighbours.

Label See Ground Truth.

Latent Dirichlet Allocation An unsupervised graphical model originating

from natural language processing. Given a set of text documents, LDA can

discover the topics contained within each document, and the words associ-

ated with each topic. LDA has also been extended to scene understanding.

LDA See Latent Dirichlet Allocation.

Local Feature A discriminative part of a image/video extracted from a small

2D or 3D patch in an image or video respectively, used to build up a

representation of the image/video.

Localisation, Action The task of determining the position of an action in

space and/or time.

149



Manifold Ranking A technique for content-based information retrieval, that

relies on spectral analysis of the database to provide good results.

MOSAC See Multiple Object Single Action Clustering.

Motion History Image A primitive global feature method for describing a

human action, based on extracting a human silhouette from the video.

Multiple Object Single Action Clustering An extension of the Dual-Assignment

K-means technique to account for Context with multiple topics..

Naive Bayes Nearest Neighbour A computationally complex method for

classification using a set of local features.

NBNN See Naive Bayes Nearest Neighbour.

Occlusion The obstruction from view of a person/object of interest in a im-

age/video. Can be partial (only part of the person/object is blocked from

view) or full.

PCA See Principal Components Analysis.

Pose Estimation In this thesis, refers to the estimation of a person’s pose

from an image/video, specified in terms of the joints of their body.

Poselets A method for human detection from images, even in the case of

significant partial occlusion or in unusual poses.

Principal Components Analysis In this thesis, a type of dimensionality

reduction. Each of the output dimensions is generated as a linear combi-

nation of the original dimensions..

Probabilistic Graphical Model A type of statistical model that captures the

probabilistic conditional dependencies between random variables in a graph

format.

Recognition, Action Classification applied to human actions. See Classifi-

cation.
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Relevance Feedback A technique used in retrieval systems, in which a user

can offer feedback on how relevant the retrieval system’s initial results

were, and this feedback is used to iteratively improve the accuracy of the

retrieval system.

Representation, Action In this thesis, refers to a vectorised representation

of a human action that is conductive to machine learning, as opposed to

its initial 3D pixel representation.

Retrieval, Action Information Retrieval applied to human actions. See Content-

based Information Retrieval.

SDAKM See Spectral Dual-Assignment K-means Clustering.

Segmentation Determination of the boundaries (either spatial boundaries or

temporal boundaries) that separate a person, object, action, etc, from its

surroundings. In this thesis, temporal segmentation is considered.

Semi-supervised Learning A type of machine learning where the training

data includes a mixture of labeled and unlabeled samples. For instance,

see Retrieval, Action..

Spatio-temporal Referring to both space and time. In this thesis, space

typically refers to a 2D frame of a video, and time refers to a 3rd temporal

dimension of the video..

Spectral In this thesis, spectral refers to the use of the spectrum of the similarity

matrix of a dataset. Most commonly used to refer to Spectral Clustering.

Spectral Dual-Assignment K-means Clustering A spectral extension of

Dual-Assignment K-means Clustering to apply it to noisy/irregularly

clustered data.

Supervised Learning A type of machine learning that makes use of training

data where all the training data is given Ground Truth Labels.
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Support Vector Machine A classification technique (for two classes) that

works by specifying a hyperplane in the feature space that maximally

separates the two classes .

SVM See Support Vector Machine.

Unsupervised Learning A type of machine learning performed on unlabeled

data, that somehow attempts to exploit the underlying structure for some

task. Examples include Clustering, Action and Dimensionality Re-

duction.
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