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Abstract 

Metabolic fingerprinting is a biochemical method that takes an untargeted 

approach to measure a large number of metabolites and gain a ‘snapshot’ of an 

organism’s metabolome at a specific time. This thesis explores how metabolic 

fingerprinting can be used to study plant-insect interactions using Pieris rapae and 

its larval host plant species as model systems, and investigates how biotic and 

abiotic factors shape plant and insect metabolomes. I found that different 

Brassicales host plant species, as well as P. rapae larvae feeding on these plant 

species, had different metabolic fingerprints. A group of very abundant metabolites 

in the host plant Cleome spinosa were present in larvae feeding from this plant 

species, documenting a new occurrence of metabolite transfer between plants and 

insect herbivores. There was some evidence that the metabolic fingerprints of 

plants predicted the performance of insects, implying that the presence or absence 

of specific metabolites in host plants may determine the success of herbivores. 

Changes in metabolites measured in three host plant species following herbivory by 

P. rapae showed that herbivory changed the metabolic fingerprints of plants but 

there was little overlap in metabolites that were induced. I conclude that plants 

respond in a species-specific manner to herbivory, which implies that the evolution 

of plant defences has varied among the three species resulting in no similarities in 

induced metabolites. The metabolic fingerprints of the host plant Brassica oleracea 

as well as P. rapae larvae were changed by elevated temperature and to a lesser 

extent by elevated carbon dioxide (CO2). The larvae developed more quickly under 

elevated temperature but larval performance was not affected by elevated CO2 

despite the diet of B. oleracea leaves grown under elevated CO2 containing less 

nitrogen. These findings provide a unique metabolite perspective of insects and 

plants and were facilitated by the wide breadth of metabolites studied using 

metabolic fingerprinting.  
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Chapter 1 General Introduction 

 

1.1 Plant-insect relationships 

The kingdom Plantae and the class Insecta encompass a large number of organisms 

with an estimated 390,800 species of plants and around 1 million species of insects 

described (Chapman 2009). Consequently the number of plant-insect interactions is 

considerable (Schoonhoven et al. 2005). Such interactions include insects which are 

essential for the pollination of plants (De Luca & Vallejo-Marin 2013), plants which 

provide shelter and protection from insect predators (Diniz et al. 2012), and the half 

of all insect species that are estimated to use plants as a food source (Wu & 

Baldwin 2010). Improving our knowledge of these latter plant-herbivore 

interactions is important for several reasons. First, if an insect’s host plant is a crop 

plant and the insect is a pest it may be a threat to our food security (Gregory et al. 

2009). Secondly, conserving species usually requires an understanding of an insect’s 

relationship with its host plants (Moir et al. 2012). Thirdly, plants and insects 

interact with a range of environmental factors that are altered by climate change 

(Robinson et al. 2012). If we are to predict and mitigate the effects of climate 

change it will be important to have information on how plant physiology is affected 

(Fuhrer 2003) and how pest performance and populations of insects may change 

(Bale et al. 2002; Newman 2004). 

Some insects have evolved to develop on a restricted range of host plants. The 

alternative insect strategy is to be polyphagous and have the ability to develop on a 

variety of plant species (Schoonhoven et al. 2005). If multiple plant species can be 

consumed, advantages of a polyphagous strategy may include increased resource 

availability (Bernays & Minkenberg 1997) or increased fitness by consuming 

different host plants that are optimal for different life stages of the larvae 

(Rodrigues & Freitas 2013). The range of plant species that are included as hosts of 

an insect is thought to be determined by co-evolution of plants and insects and by 

plant-insect arms races involving chemical plant defences (Ehrlich & Raven 1964; 
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Janz 2011). An arms race between plants and herbivorous insects involves the plant 

evolving new defences as the insect evolves immunity to existing defences 

(Mithofer & Boland 2012). These co-evolution and arms race theories explain the 

observations that taxonomically related butterfly species tend to feed on 

taxonomically related host plants and that different species of host plants 

consumed by a butterfly species often share common chemicals (Ehrlich & Raven 

1964; Janz 2011). An alternative theory proposed to explain the chemical 

commonality among host plants is that as plants evolved, insects have tracked 

certain plant chemicals which the insect has either utilised as signals for locating 

the correct host plant or has been sequestering for its own defence (Bernays 2001). 

It is possible that both mechanisms contribute to determining the final suite of host 

plants consumed by a species of insect.  

The performance of polyphagous insects can vary between different host plants 

(see Gripenberg et al. 2010 for examples). A number of plant characteristics have 

been proposed to determine the performance of an insect on a plant, including 

water and nitrogen content, and chemical defences in leaves (Slansky & Feeny 

1977; Scriber & Feeny 1979). Some studies have correlated the performance of 

insect herbivores on different host plant species with the characteristics of the 

plants. Whiteflies (Bemisia tabaci) were found to perform better on plant species 

containing more nitrogen and lower defence compounds (Jiao et al. 2012), whereas 

nutrition of four host plant species was independent of the performance of larvae 

from two species of Pierid butterflies (Hwang et al. 2008). The defences of oak trees 

(Quercus sp.) in the form of condensed tannin content were found to negatively 

correlate with the performance of a tussock moth (Orgyia vetusta) as did the 

mechanical defence of leaf toughness (Pearse 2011). Another mechanical defence, 

the presence of trichomes, as well as the presence of chemical defences in host 

plants were found to reduce the performance of sawfly (Athalia rosae) (Travers-

Martin & Müller 2008). However, in addition to characteristics of the host plants 

the performance of whitefly (Bemisia tabaci) has been found to be affected by the 

insect population’s previous experience of host plants (Shah & Liu 2013). These 

examples demonstrate that there is unlikely to be a single factor which is 
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responsible for the majority of variation observed in the performance of insects on 

different species of host plant and that these factors may be species specific.  

 

1.2 Induced plant responses to herbivory 

Plants are not defenceless against insect herbivores. They possess defences that 

can be either constitutive, where the compound is maintained at a constant 

abundance in the plant, or induced upon herbivore attack (Bezemer & van Dam 

2005). In order to mount a defence against an insect herbivore, a plant must first 

detect that it is under attack and one indication can be the physical wound a 

herbivore inflicts on a plant (Heil 2009). The resulting disintegration of plant cells 

releases molecules such as systemin which has been shown to ultimately result in 

the transcription of defence related genes (Pearce et al. 1991). Defence genes can 

also be activated by ATP which escapes the cell upon plant cell destruction and 

which is known to have a signalling function when it is extracellular (Roux & 

Steinebrunner 2007).  

Inflicting physical damage to a plant using, for example a blade, may release 

indicative molecules but does not replicate a herbivore attack exactly (Mattiacci et 

al. 1994; Korth & Dixon 1997). This is because mechanical damage does not involve 

herbivore derived signals which have been termed Herbivore Associated Molecular 

Patterns (HAMPs) (Mithöfer & Boland 2008). HAMPs contribute to the perception 

of an attack and can be derived from the oral secretions or regurgitants from 

insects. HAMPs include FACs (fatty acid-amino acid conjulates) which are 

transferred to the plant while the insect is chewing (Mithöfer & Boland 2008). 

Applications of artificially produced FACs have been shown to increase the 

circulating levels of phytohormones and prompt changes in plant transcripts 

(Halitschke 2001). Another chemical indicator that has been found in insect 

regurgitant is β-glucosidases. This has been shown to initiate the release of volatile 

chemicals from the plant (Mattiacci et al. 1995). Such volatile chemicals are 

employed as indirect plant defences by attracting to the plant predators or 
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parasitoids of the attacking insect herbivore (Kessler & Heil 2011). It has also been 

shown that indirect plant volatile defences can be triggered by the oviposition of 

herbivore eggs on plants (Hilker & Meiners 2006). For example, following 

oviposition of eggs from a bug (Nezara viridula) on leaves of broad bean (Vicia faba) 

the plant releases volatiles that attract the egg parasitoid wasp Trissolcus basalis 

(Collaza et al. 2004). In addition to attracting egg parasitizing enemies it is possible 

that ovipositional signals could prime the direct defences of a plant before the 

larvae hatch so that herbivore performance is reduced (Hilker & Meiners 2011).  

Phytohormones are the link between the perception of a herbivore attack and the 

resulting expression of plant genes that generate a defensive response (Leόn et al. 

2001). The cascades of phytohormone signals triggered after an attack are not 

simple linear pathways but series of multiple, concurrent reactions that can have 

inhibitory effects on each other or work synergistically (Kunkel & Brooks 2002, Rojo 

et al. 2003). Among the known phytohormones, jasmonic acid (JA), ethylene and 

salicyclic acid are primarily associated with defence responses (Rojo et al. 2003). 

Attack by chewing and biting insects will mainly activate the JA biosynthesis 

pathway (termed the octadecanoid pathway) while piercing-sucking insects (such as 

aphids) induce a reaction more akin to pathogen attack which mainly features 

salicyclic acid (Walling 2000). The octadecanoid pathway employs enzymes to 

catalyse the modifications of a string of precursors to produce JA and associated 

compounds (collectively named jasmonates) (Furstenberg-Hagg et al. 2013; Schaller 

et al. 2005). The genes that code for such enzymes are themselves JA inducible. This 

suggests a positive feedback mechanism in JA synthesis (Wasternack 2007). The 

presence of JA allows transcription factors to produce RNA from JA-responsive 

genes (Furstenberg-Hagg et al. 2013). Application of JA to plants or insect attack on 

plants has successfully increased the transcription of defence related genes or 

increased levels of defensive compounds (Reymond et al. 2004; van Dam et al. 

2004; van Dam & Oomen 2008). These findings confirm the role of JA in the defence 

of the plant against chewing insects. 
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Defensive responses to herbivore attack can be found at or near the attacked area, 

however, these local responses can be accompanied by systemic responses in other 

parts of the plant (Gatehouse 2002). JA is one of the signals produced in response 

to herbivore attack that is thought to travel in the phloem of plants to unwounded 

leaves where it can stimulate the transcription of defensive genes and ultimately 

produce a defensive response (Furstenberg-Hagg et al. 2013). For instance, JA 

increases were recorded in the leaf of a plant (Mentha aquatic) attacked by a beetle 

(Chrysolina herbacea) but there were also increases in the undamaged, younger 

leaves (Occhipinti et al. 2011). As well as signalling between leaves, the systemic 

communication between aboveground and belowground plant tissues has been 

revealed. In two Brassica plant species JA applied to the roots to simulate attack by 

a belowground herbivore, resulted in increases in defensive compounds in the 

aboveground plant shoot (van Dam et al. 2004). Systemic responses have not only 

been demonstrated using the application of signalling hormones and quantification 

of defensive compounds. Effects on the performance of insects raised on the leaves 

of plants that have been attacked either belowground or aboveground have been 

recorded for a number of plant and insect species (Johnson et al. 2012).  

Plants can exhibit physical defences such as thick leaves which can have 

detrimental effects on insects such as causing mandibular wear (Raupp 1985). Some 

of these physical defences can be induced by herbivore attack. Elevated lignin 

content which reduces plant palatability (Wardle et al. 2002) has been recorded in 

Alternanthera species following herbivory by a grasshopper (Atractomorpha 

sinensis) (Fan et al. 2013). A mechanism by which lignification is induced by 

herbivory has been suggested in tobacco plants (Nicotiana attenuata). In these 

plants the biosynthesis of lignin could be promoted by the biosynthesis of 

phenolamides which are induced by tobacco hornworm (Manduca sexta) herbivory 

(Gaquerel et al. 2013). As well as the leaves, lignification has also been found to 

protect the plant roots from underground herbivores (Johnson et al. 2010). 

Trichomes (hairs) can also deter insect herbivores (Agren and Schemske 1993) and 

in some instances can be induced. For example, new leaves on willows (Salix 
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cinerea) were found to have a greater trichome density if the plant had recently 

experienced a beetle (Phratora vulgatissima) attack (Bjorkman et al. 2008).  

Another type of defence that plants can employ against herbivores are defensive 

proteins which include protease inhibitors (Bowles 1990). Protease inhibitors 

restrict the insect from obtaining nutrients from the ingested host plant. The 

proteases of the insect gut are used by the insect to digest plant proteins. However, 

the plant protease inhibitors interrupt this enzymatic process which can result in 

slower growth, development and reproduction of the insect herbivore (Lawrence & 

Koundal 2002). Other defensive proteins include enzymes such as arginase and 

threomine deaminase. These break down the plant-derived amino acids in the 

insect gut reducing the number of essential amino acid nutrients the insect obtains 

from its food (Chen et al. 2005; Gonzales-Vigil et al. 2011). 

 

1.3  Defensive metabolites 

In addition to the indirect, volatile plant metabolites previously mentioned which 

are employed as defences by attracting predators or parasitoids of the attacking 

insect herbivore (Kessler & Heil 2011), there are a wide variety of metabolites that 

have a role as a direct defence against herbivores by making the food unpalatable, 

unattractive or toxic (Furstenberg-Hagg et al. 2013). There are a large number of 

different classes of defensive metabolites some of the most commonly studied 

classes are alkaloids which include compounds familiar to us such as caffeine, 

nicotine and morphine; cyanogenic glucosides such as tyrosine and phenyalanine; 

phenolics which include flavonoids and tannins; terpenoids which include some 

volatile compounds and a class of compounds called glucosinolates (Mithöfer & 

Boland 2012). The glucosinolates are characteristic of the plant family Brassicaceae 

(Kos et al. 2012) and are well studied (Kroymann 2011). They are therefore a good 

example with which to explain the mechanisms that result in a plant producing 

defensive metabolites following herbivory. There have been around 120 different 

glucosinolates described (Fahey et al. 2001) all of which share a common core 
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structure plus a part referred to as the R-group that is characteristic of the specific 

glucosinolate (Hailker & Gershenzon 2006). The biosynthesis of glucosinolates can 

be considered in three stages. First of all specific amino acids are elongated by 

adding methylene to their side chains. Then these amino acids are reconfigured into 

the common core structure of a glucosinolate. Finally the side chains of this core 

structure can be modified to produce further glucosinolates (Halkier & Gershenzon 

2006; Grubb & Abel 2006). Many of the enzymes that catalyse the steps in the 

biosynthesis of glucosinolates as well as the genes encoding those enzymes have 

been characterised in the model plant Arabidopsis (Grubb & Abel 2006). Such genes 

can be activated by the presence of jasmonates as described above.  

Glucosinolates are stored in plant cells but in a separate compartment to 

myrosinase enzymes that hydrolyse them. This means that only when a chewing 

insect eats a plant do the two chemicals combine to produce toxic compounds 

(Bones & Rossiter 1996). There are five classes of compounds that can be produced 

when glucosinolates are hydrolysed: isothiocyanates, nitriles, epithionitriles, 

oxazolidine-2-thione and thiocyanates. Isothiocyanates are the most common 

hydrolysis products from glucosinolates (Halkier & Gershenzon 2006) and have 

been associated with the reductions in growth rates of generalist insect species (Li 

et al. 2000; Müller et al. 2010). However, some insect species which have 

specialised on glucosinolate-containing plants are known to use a gut protein to 

divert the hydrolysis of glucosinolates into harmless nitriles (Wittstock et al. 2004). 

Furthermore, glucosinolates are used to the advantage of some insect species to 

aid recognition and to locate host plants for oviposition or to stimulate larval 

feeding (Hopkins et al. 2009).  

The chemical diversity and vast number of secondary metabolites in plants is 

frequently commented upon (Gershenzon et al. 2012) although no one knows 

exactly how many metabolites there are, or which metabolites are present in which 

species. One estimate of the number of metabolites within the plant kingdom is in 

excess of 200,000 (Dixon & Strack 2003) though this may be an underestimation of 

the true number (Pichersky & Lewinsohn 2011). Of this total number, 
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approximately 50,000 secondary metabolites are known and recorded in databases 

(De Luca & St Pierre 2000; Mithofer & Boland 2012). It has only been relatively 

recently that metabolomic technology has advanced to a point where most 

metabolites can be recorded easily (Allwood et al. 2008). Thus, the large number of 

metabolites present in plants combined with newly emerging technology to 

measure multiple metabolites means there are still many unknowns surrounding 

plant metabolites, such as how they have evolved (Kliebenstein 2008), why 

metabolites are so diverse (Moore et al. 2014), and what their functions are (Theis 

& Lerdau 2003).  

 

1.4  The metabolome 

The metabolome is the collective term for the full suite of metabolites within an 

organism (Oliver et al. 1998; Fiehn 2001; Hall 2006). These metabolites, which are 

generally thought of as chemicals that are less than 1500 Daltons in size (Hall 2006), 

encompass primary and secondary metabolites. Primary metabolites refer to 

organic and amino acids, sugars and sugar alcohols, fatty acids and sterols (Kral'ova 

et al. 2012) while secondary metabolites may refer to phytohormones (Wasternack 

2007) and defensive metabolties such as those groups of chemicals discussed 

above, along with their chemical precursors, intermediates and derivatives (Kaplan 

et al. 2004). The metabolome can be thought of as the end result of gene 

expression (Sumner et al. 2003; Fig. 1.1). However, between the “instructions” in 

the genome and the resulting metabolome there are many influences that shape 

the metabolome, which is constantly changing (Kooke & Keurentjes 2012). The 

plant metabolome has been shown to change over time, for example diurnal 

changes in the abundance of sugars and amino acids in Arabidopsis (Espinoza et al. 

2010) and differences between metabolic fingerprints of juniper berries (Juniperus 

communis) harvested in different seasons (Falasca et al. 2014) have been found. 

There are also spatial variations in metabolomes, for example, glucosinolate 

composition and quantities vary between the seeds, flowers, fruits, roots and 
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young and old leaves of Arabidopsis (Brown et al. 2003). Individual metabolites are 

influenced by abiotic and biotic factors therefore it follows that the metabolome as 

a whole is also influenced by such factors (Kral'ova et al. 2012) for example nutrient 

availability (Lubbe et al. 2011), water availability (Lavoir et al. 2009), ozone (Cho et 

al. 2008), CO2 (Levine et al. 2008) and temperature (Gray & Heath 2005). The 

reported effects of these abiotic factors mean that any large changes in the 

environment such as climate change will have consequences for plant 

metabolomes. In addition to abiotic factors, there are biotic factors such as 

pathogens (Vikram et al. 2006), mycorrhizal fungi (Kogel et al. 2010) and herbivores 

both below and above ground (Kutyniok & Müller 2012) that alter the metabolome.  

 

Fig. 1.1 The multiple levels of an organism. The metabolome is shaped by the expression of 

the genome. 

Compared to plants, the metabolomes of insects have not been as extensively 

studied especially using techniques that measure multiple metabolites 

simultaneously. One area of research that has recently expanded our knowledge of 

the insect metabolome is the investigation of diapause (Colinet et al. 2012b; Zhang 

et al. 2012b) and cold tolerance (Colinet et al. 2012a; Kostal et al. 2012; Teets et al. 

2012) in insects. Studies have also examined the metabolome of insects in response 

to heat shock (Malmendal et al. 2006; Verberk et al. 2013) in addition to other 

stresses such as desiccation and salinity (Michaud et al. 2008; Laparie et al. 2012; 

Malmendal et al. 2013). These studies have shown that insect metabolomes 

undergo major changes when entering diapause or in response to stress, for 

example, within the insect tissue high concentrations of proline are thought to 

enable Drosophila to survive cold temperatures (Kostal et al. 2012). There are a few 

global metabolite studies that have examined insect metabolomes in the context of 

genome transcriptome proteome metabolome 
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plant-insect interactions. One study tested the effects of jasmonic acid on the 

metabolites in P. rapae fed on B. oleracea plants. System-wide changes in the insect 

metabolome were not detected although increases in a group of plant-derived 

metabolites were found within the insects fed plants that had jasmonic acid applied 

to their shoots (Jansen et al. 2009). Another plant-insect study profiled multiple 

metabolites to find the mechanism underlying the accumulation of lactate in leaf 

beetle (Gastrophysa atrocyanea) and butterfly (Papilio machaon) larvae feeding on 

dock weeds (Rumex obtusifolius) and fennel (Foenicolum vulgare) respectively 

(Miyagi et al. 2013). As more research is published on insect metabolomes, there 

has been more contemplation on the methods used. For example, one paper 

emphasises the value of measuring metabolites from different insect body parts 

following demonstration of large spatial variation in the metabolome of Drosophila 

(Chintapalli et al. 2013). In addition to these studies which measure multiple insect 

metabolites, information on the insect metabolome is also provided by the large 

number of targeted studies which have focused on specific metabolites. These 

studies have included investigating sequestration of metabolites from host plants 

(Opitz & Müller 2009), detoxification of plant defences (Ferguson et al. 1985; 

Snyder et al. 1994; Stauber et al. 2012) and investigating insect hormones (Ohta et 

al. 1977; Robinson et al. 1987; Cangialosi et al. 2012). Although such targeted 

studies are important in uncovering functions of metabolites, they ignore the rest 

of the insect metabolome. A wider look at the metabolome of an insect using 

metabolic fingerprinting could reveal the effects of unexplored factors such as 

pathogens, parasites or host plants on insect metabolites and point towards 

unconsidered metabolites of interest. 

 

1.5  Metabolomic methods and metabolic fingerprinting 

The term ‘metabolite profiling’ was first coined in research published in the early 

1970s (Sumner et al. 2003) although it was not until 1998 that the term 

‘metabolome’ was introduced and used in the same way as the terms genome, 
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proteome and transcriptome (Oliver et al. 1998; Fiehn 2001). The number of 

metabolomic-related publications has been much lower compared to other ‘omic’ 

(genomic, proteomic and transcriptomic) research, although at the start of the 21st 

century metabolomic-related publications began to increase (Sumner et al. 2003; 

Schripsema 2010).  In 2004, interest had risen sufficiently for the Metabolomics 

Society to be established which has the aim of advancing the use and 

understanding of metabolomics in the life sciences (www.metabolomicssociety.org) 

and the following year the first issue of a journal dedicated to metabolomics, 

‘Metabolomics’, was published. 

Metabolomic studies aim to analyse all the metabolites within a system’s 

metabolome (Fiehn 2001). Approaches to analysing these metabolites include 

targeted metabolic profiling, which measures a small number of specific 

metabolites (Dettmer et al. 2007), and untargeted metabolic fingerprinting which 

measures a large number of metabolites and allows samples to be classified 

according to the metabolic patterns obtained (Fiehn 2001). Compared to metabolic 

profiling, which is usually hypothesis driven, metabolic fingerprints can be used as 

an initial exploratory analysis that may highlight metabolites of further interest 

(Zhou et al. 2012) and for this reason has been described as a hypothesis generator 

(Hall 2006).   

A range of technologies has been used to carry out metabolomic analyses, including 

mass spectrometry (MS) based techniques, Nuclear Magnetic Resonance (NMR) 

and Fourier Transform-Infrared (FT-IR) spectroscopy (see Allwood et al. 2008 and 

Nakabayashi & Saito 2013 for reviews). However, no single method will measure all 

metabolites present within a metabolome due to the diversity of chemical 

structures and properties of metabolites (Sumner et al. 2003; Hall 2006). The 

technologies capable of measuring the widest range of metabolites are NMR, GC-

MS (Gas Chromatography-Mass Spectrometry) and LC-MS (Liquid Chromatography-

Mass Spectrometry) (Sardans et al. 2011). NMR provides more structural 

information and so leads to better identification of metabolites, although this 

approach has lower sensitivity in terms of the number of metabolites it can 



24 
 

measure compared to MS-based approaches (De Vos et al. 2007; Schripsema 2010). 

GC-MS is generally cheaper compared to LC-MS but is limited to measuring volatile 

metabolites. GC-MS can also measure non-volatile metabolites that can be 

derivatised, to make them less polar although this makes sample preparation more 

complex (De Vos et al. 2007; Bedair & Sumner 2008).  Thus, LC-MS can measure a 

wider range of metabolites compared to GC-MS, although metabolite identification 

using databases can be more difficult (Bedair & Sumner 2008), as explained below. 

In this thesis, the specific LC-MS method used was HPLC-MS (High Performance 

Liquid Chromatography coupled to Mass Spectrometry) with ESI (Electrospray 

Ionisation) as the ionisation method, which is the most common ionisation 

technique used with LC-MS (Bedair & Sumner 2008). This is a ‘soft’ ionization 

technique which keeps more of the molecular ions present within samples intact, 

with fewer ions breaking up into fragments (Zhou et al. 2012). ESI applies a high 

electrical charge to the sample as it is sprayed out of a needle which provides the 

energy to ionise (charge) the molecules before they enter the mass spectrometer. 

ESI can be used to create either positive or negative ions (Allwood & Goodacre 

2010). In these studies, I used a Q-ToF (Quadrupole - Time of Flight) mass 

spectrometer. The quadrupole filters out a proportion of the ions in the sample so 

that only a narrow mass range of ions is passed into the mass spectrometer at any 

one time (Allwood et al. 2008). In the ToF mass spectrometer, the mass of the ion 

determines how long it takes to pass through the flight tube and reach the detector 

(Guilhaus et al. 1997), and therefore the mass of each feature can be calculated. 

A disadvantage of untargeted metabolomic studies is that the majority of features 

(peaks or potential metabolites) cannot be definitively identified from databases of 

metabolite masses (Fiehn et al. 2000; Kind & Fiehn 2006). A number of 

metabolomic databases have been complied (see Tohge & Fernie 2009 for lists of 

databases; Aliferis & Chrysayi-Tokousbalides 2011) where molecular weights of 

metabolites are recorded along with other information such as chemical structures 

or properties, nomenclature information, MS/MS spectra or associated biochemical 

pathways (Dettmer et al. 2007). The difficulty in trying to identify a feature 
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obtained by LC-MS using these databases is that the retention time is unhelpful 

because this can be very variable, often varying between runs on the same machine 

(Zhou et al. 2012). By contrast, with GC-MS databases, a more definite 

identification of a feature is possible because a retention index derived from the 

retention time, in addition to the molecular mass, can be used to match 

metabolites measured on different GC-MS machines (Schauer et al. 2005). 

From the mass of an unknown feature, a list of possible compounds can be 

obtained from databases. However, these preliminary matches are far from 

sufficient to provide an identity to the feature (Kind & Fiehn 2006), although they 

do give a starting point for choosing standards to analyse. Fragmentation of the 

unknown metabolite using tandem MS (MS/MS) can provide masses and 

abundances of the fragments which can then be compared to spectral data in 

databases (such as MassBank or METLIN) or to fragments from a standard (Bedair & 

Sumner 2008). Fig. 1.2 shows the fragmentation of a standard of oleanolic acid and 

fragmentation of an unknown metabolite from samples collected in Chapter 3. 

Despite the two compounds having the same molecular mass the fragmentation 

pattern does not match and thus rules out the possibility that the unknown 

compound is oleanolic acid. The Chemical Analysis Working Group of the 

Metabolomics Standard Initiative (MSI) recommend that to validate the 

identification of a feature there should be at least two independent pieces of 

information which should be orthogonal to each other and relate to a standard of 

the chemical which is analysed under the same experimental conditions as the 

unknown metabolite (Sumner et al. 2007). If these criteria are not met the 

metabolites can only be described as tentatively annotated chemicals or as 

unknown compounds if they are not identified in any way (Sumner et al. 2007). To 

identify just one metabolite with certainty can be time consuming and costly even if 

a standard is available and realistically can only be done for a limited number of 

unknown metabolites (Schauer et al. 2005; Zhou et al. 2012).  
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Fig. 1.2 The tandem MS fragmentation of an oleanolic acid standard (top) and an 

unidentified metabolite in samples of Pieris rapae larvae (middle) and of Cleome spinosa 

(spider flower) that larvae had fed from (bottom). The fragmentation patterns (peaks on 

the graphs) are different between the standard and the samples therefore confirming that 

the unknown metabolite in the larvae and plant is not oleanolic acid. The blue diamond 

denotes the original metabolite molecules that have not been fragmented. For the full 

experiment see Chapter 3. 

As metabolomic techniques have improved there have been new opportunities to 

gain insights into organisms and ecosystems (Sardans et al. 2011). The use of 

metabolomics in ecology (termed ‘ecometabolomics’) (Penuelas & Sardans 2009) 

has answered questions in many ecological situations, for instance investigating the 

effect of an abiotic stress such as salinity on the metabolomic reactions of plants 

(Sanchez et al. 2008), and defining how a fungal pathogen suppresses plant defence 

systems during infection (Parker et al. 2009). Other examples include, revealing the 

metabolites that enable a fish embryo (Austrofundulus limnaeus) to survive in 

oxygen deprived water (Podrabsky et al. 2007), and examining if metabolites 

explain why marsupials prefer one eucalyptus over another as a food resource 
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(Tucker et al. 2010). This thesis employs metabolomics to discover more about 

plant-insect relationships. 

 

1.6 Thesis rationale and outline 

The main aim of this thesis is to investigate relationships between an insect 

herbivore and its larval host plants using an untargeted metabolic fingerprinting 

method. This metabolomic method has not previously been used extensively in 

ecology despite its potential to gain new insights, therefore I attempt to 

demonstrate how metabolic fingerprints can be useful in furthering ecological 

knowledge. 

Chapter 2 describes Pieris rapae, its host plants studied and rearing protocols. 

There is a detailed account of the metabolic fingerprinting method and data 

analysis used, including the reasoning behind the specific methods chosen. 

In Chapter 3 I quantify the metabolic fingerprints of P. rapae larvae fed on different 

species of host plants. The main hypotheses tested were: 

• The metabolome of the larvae is not dependent on the species of host plant 

eaten. 

• The similarities between plant metabolic fingerprints reflect the taxonomy of the 

plant species.  

• The metabolic fingerprints of host plants are related to insect performance on 

those host plants. 

• The variation in insect performance among host plants is explained by the 

nitrogen content of plants.  
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The results opened up a further question and allowed the testing of one further 

hypothesis: 

• The group of abundant metabolites found in one group of larvae originated from 

the host plant. 

In Chapter 4 I examine the metabolites induced by P. rapae herbivory in three host 

plants using metabolic fingerprinting to investigate the evolution of plant 

metabolites in related host plants. The main hypotheses addressed are: 

• The metabolic fingerprints of host plants are changed by herbivory. 

• There are induced metabolites that are common to all three species of host plant 

following herbivory. 

In Chapter 5 I evaluate the consequences of climate change by examining metabolic 

fingerprinting of P. rapae larvae feeding on B. oleracea growing under ambient and 

elevated temperature and CO2 concentrations. This allowed me to address the 

following hypotheses: 

• The effects of elevated temperature and CO2 can be detected in the metabolic 

fingerprints of both the plants and their insect herbivores.  

• Elevated temperature increases and elevated CO2 decreases the performance of 

insects. 

• Plants reared under elevated CO2 have lower concentrations of nitrogen. 

In Chapter 6 I give a critical evaluation of the metabolic fingerprinting method used 

and discuss how this method can contribute to the study of plants and insects. I 

consider my findings from all three experimental chapters to make conclusions 

regarding P. rapae and its host plants and outline areas of further work.  
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Chapter 2 Materials and methods 

 

2.1 Abstract 

All experiments in the current thesis used Pieris rapae (Lepidoptera: Pieridae) and 

at least one of its host plants as study systems. Descriptions of P. rapae and host 

plant species and the methods used to rear and grow them are provided. In 

addition, the metabolic fingerprint methods used in all three of the experiments 

and statistical analyses are described.  

 

2.2 Study systems 

2.2.1 Pieris rapae background 

Pieris rapae can be found in Europe, North West Africa, Asia, Japan and has been 

introduced to North America and Australia (Asher et al. 2001). It is commonly 

known in Britain as the small white butterfly or as one of the cabbage white 

butterflies and in America as the imported cabbage worm. Butterflies in Britain are 

the European subspecies P. rapae rapae (Fukano et al. 2012) and are a common 

and widespread butterfly.  

In Britain P. rapae usually has two generations except in warm summers when it 

can have three. The second generation is more numerous, boosted in numbers by 

immigrants from the continent. The pupae of this second generation overwinter 

and emerge the following year. Eggs are laid singly on host plants usually on the 

underside of leaves (Asher et al. 2001). As with many insects the development time 

of the larvae from hatching to pupation is dependent on temperature and the 

experiments described in this thesis found that at a constant 21 oC they will take an 

average of 16 days to pupate. Females usually have a darker second spot on the 

dorsal side of the forewing.  The black markings on the adults of the second 
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generation have a more intense colour compared to the adults of the first 

generation of the year (Tolman & Lewington 2008).  

 

 

  

Fig. 2.1 a) male b) female c) larva and d) pupa of P. rapae. Photos used with permission 

from ukbutterflies.co.uk copyright Vince Massimo. 

Adult butterflies feed on the nectar of several plant species and are especially 

attracted by white flowers. Larvae are considered polyphagous being able to 

develop on several plant species many of which can be found in the family 

Brassicaceae (Stevens 2001 onwards; Beilstein et al. 2008; Eeles 2012). A well 

studied group of defensive compounds called glucosinolates characterise this group 

of plants (Kos et al. 2012). Glucosinolates have been found to have a negative effect 

on a number of lepidopteran herbivores (Li et al. 2000; Arany et al. 2008; Müller et 

al. 2010). However, the Pieris group of butterflies use glucosinolates as oviposition 

cues and as phagostimulants (Huang & Renwick 1994; Renwick & Lopez 1999).  

b) a) 

d) c) 
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2.2.2 Suitability of P. rapae as a study species  

P. rapae was chosen for these experiments for several reasons. First it is a well 

studied insect. Second, its host plants are related to, and include Arabidopsis 

thaliana. A. thaliana is a model plant species and therefore was more likely to have 

a greater number of metabolites characterised and saved in metabolite databases. 

It was thought this would increase the chance of identifying metabolites found in 

related host plants. Third, P. rapae is considered a pest species (Ahuja et al. 2010) 

and therefore studying its relationship with plants could bring advances in pest 

management. And finally, P. rapae can be reared in the laboratory. The 

disadvantage of P. rapae is that it is a specialist species. Specialists are adapted to 

avoid some of the plant defences so that there is less impact on the performance of 

the insect. For example, P. rapae can avoid the hydrolysis of glucosinolates into 

toxic isothiocyanates (Wittstock et al. 2004). This means that relating the changes 

in the plant metabolomes to the performance of P. rapae is not as meaningful 

compared to a plant-generalist model where the generalist performance may be 

more reflective of the changes in plant metabolite defences. 

2.2.3 Host plants background 

The plants used in these studies are shown in Table 2.1 along with their scientific 

and common names. They are all in the order Brassicales and four are in the family 

Brassicaceae. Descriptions of each follow. 
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Scientific name Common name(s) Photograph 

Arabidopsis thaliana thale cress 

 

Barbarea vulgaris  wild rocket/winter cress 

 

Brassica oleracea  cabbage 

 

Cleome spinosa  spider flower 

 

Lunaria annua  honesty/money plant 

 

Reseda lutea  wild mignonette 

 

Tropaeolum majus  nasturtium 

 
 

Table 2.1 Host plants of P. rapae used in this thesis. Scientific name, common name(s) and 

photographs of the young plants as used in the experiment in Chapter 3.  
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A. thaliana is a small plant which is a model organism used in many laboratories 

due to its fast growth, copious seed production and small genome. It is native to 

Britain and widely distributed (Preston et al. 2002). In the wild A. thaliana is not 

usually a host plant of P. rapae because the time of year the plant is in leaf and the 

time of year the larvae is active, do not overlap (Harvey et al. 2007). Seeds used in 

this experiment were obtained from the Penfield lab, University of Exeter. 

The species B. oleracea encompasses the wild cabbage found in Britain (var. 

oleracea) as well as many crop plants including cultivated cabbage (var. capitata), 

broccoli and cauliflower (var. botrytis), kale (var. viridis) and brussels sprouts (var. 

gemmifera)  (Stace 2010). B. oleracea var. capitata (cultivar ‘stonehead’) (Groves 

Nurseries, Dorset, UK) which is a white summer cabbage grown for food, was used 

in all the experiments described here.   

B. vulgaris is a native plant found growing in the wild across Britain (Stace 2010) 

and is also cultivated for use in salads. The variety used here is variegate 

(Thompson and Morgan, Suffolk, UK). 

C. spinosa is widely distributed in the world but is not native to Britain 

(http://www.cabi.org). It is grown in Britain as an ornamental garden plant. It is 

listed as a host plant for the Asian subspecies of small white butterfly P. rapae 

crucivora but not for the European P. rapae rapae (Robinson et al. 2001). Seeds 

used here were obtained from Chiltern Seeds, Oxfordshire, UK. 

L. annua has been grown in British gardens for centuries and can be found growing 

wild in Britain (Preston et al. 2002). Seeds used here were from Chiltern Seeds, 

Oxfordshire, UK. 

R. lutea is native to Britain and grows in the wild (Preston et al. 2002). Seeds were 

from Emorsgate Seeds, Norfolk, UK. 

T. majus is a common garden plant with many cultivars (Stace 2010). It is well 

known as a host for P. rapae. Seeds were from Chiltern Seeds, Oxfordshire, UK.  
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In Chapter 3 host plants were primarily chosen to achieve a spread of plants across 

the phylogeny. In addition to this, plant characteristics such as the ability to grow 

easily and quickly in the laboratory and having large leaves that could sustain larvae 

eating them, contributed to the decision of which host plants were used. 

 

 

  

a) 
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Fig. 2.2 The taxonomic relationships between the seven species of host plants used in 

Chapter 3. The three species in red were used in Chapter 4 and B. oleracea was used in 

Chapter 5. Plant species used encompass four families within the order Brassicales shown 

in the large font in a) with species in italics. The other four species are in the family 

Brassicaceae shown in b) where tribes are in a larger font size. Cladogram constructed 

using information from Beilstein et al. (2008) and Stevens (2001 onwards). 

 

2.3 Rearing of P. rapae and plants 

2.3.1 P. rapae rearing 

Female Pieris rapae were caught in gardens or allotments in York, UK (53.95oN, 

1.08oW) each year during the last week of July and the first week of August when 

the adults of the second generation of butterflies are active. Butterflies were kept 

in a greenhouse in individual 31 x 42 cm keep nets and provided with a honey 

b)

) 

 (b) 
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solution on cotton wool and a potted B. oleracea plant on which to oviposit (Fig. 

2.3).  

 

Fig. 2.3 Adult P. rapae in keep nets in the greenhouse. 

After the young larvae of P. rapae had been transferred to plants using a paintbrush 

and developed on an experimental host plant (see individual Chapters) the pupae 

were left where they had pupated for at least 24 hours to harden before being cut 

off and weighed. Pupae were then put in an individual plastic pot with the lid on 

loosely and with a small piece of damp paper towel before being placed in a cabinet 

(Sanyo MLR-350) set to a relevant temperature. Pupae were checked for 

emergence every twelve hours (Chapter 3) or twenty-four hours (Chapter 5). These 

pupation and emergence times were noted for each individual. After emergence 

from the pupae, butterflies were killed by placing in a freezer then sexed, placed in 

an envelope and dried in a 60 oC oven for three days before being weighed to 

obtain an adult dry weight.   
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2.3.2 Plant rearing 

Seeds of A. thaliana and C. spinosa were put in a fridge for three weeks before 

sowing. Seeds were sown in trays 35 x 21 cm using Levington F2+S seed and 

modular compost and germinated in a greenhouse in summer (about 10 to 30 oC) 

for at least two weeks. Plants were then potted into 10 cm diameter pots and 

grown in temperature controlled cabinets (details of the different experimental 

designs are described in the individual Chapters).   

 

2.4 Metabolic fingerprinting methods 

The metabolomic approach used in this thesis is outlined in the flow diagram in                 

Fig. 2.4. The identification of metabolites using standards is included in the diagram, 

although in this thesis I attempted to identify only one metabolite in Chapter 3 

using standards. Unless otherwise stated, the metabolomic methods used in all the 

experiments were as described below. 
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Fig. 2.4 Flowchart summarising the main steps taken in this thesis in the metabolomic 

analysis of organisms using LC-MS. The details of each step are given below. 

Harvest Material 

• flash freeze 

• freeze dry 

• homogenise 

Extraction 

• methanol added 

• centrifuge 

• filtration 

Metabolomic 
Analysis 

• HPLC-ESI-MS 

Data Preprocessing 

• peak deconvolution 

• feature alignment 

• missing value 
imputation 

• filtering 

Data Analysis 

• multivariate 

• unsupervised PCA 

• supervised PLS-DA 

• univariate 

• t-tests 

• ANOVA 

Identification of 
Important 

Metabolites 

• mass search in 
databases 

• compare MS/MS 
fragmentation 
patterns with 
standard 
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2.4.1 Harvesting material and extraction of metabolites 

Leaf and insect material was immediately flash frozen after harvesting and was 

stored at -80 oC before being freeze dried for 16 hours. Material was ground for two 

minutes at 20 rpm and then 10 mg samples were kept cool while 400 μl of 80% 

methanol containing an internal standard of umbelliferone, was added to each 

sample. The extraction protocol consisted of samples placed in blocks that had 

been pre-cooled in a -80 oC freezer and shaken in a ball mill at 20 rpm for 30 s and 

then stood on ice for 10 min, and this process repeated three times.  Samples were 

then centrifuged at 16 rpm at 4 oC for 10 min and the supernatant removed. This 

process was repeated so that each sample was extracted twice with the only 

difference being that the methanol in the second extraction did not contain the 

standard umbelliferone. The two supernatants from the two extractions were 

combined and filtered through a 0.4 μm (PVDF) syringe filter.  

Using the same extraction techniques for insects and plants meant that 

metabolomic features (potential metabolites) were easier to align and compare. 

However, by not using an insect specific extraction technique, the proportion of the 

metabolome detected may be lower for insects than plants although this was not 

examined. Therefore where the total number of detected metabolites is lower for 

insects than plants (as was found in Chapter 3 and 5), this should not necessarily be 

interpreted as insects containing fewer metabolites compared to plants. An 

optimised extraction process for lepidoptera larvae that detects the maximum 

number of metabolites has not yet been developed.  

2.4.2 HPLC-MS metabolic analysis 

Metabolite profiling was performed using a QToF 6520 mass spectrometer coupled 

to a 1200 series Rapid Resolution LC system. 5 µl of sample extract was loaded onto 

a Zorbax StableBond C18 1.8 µm, 2.1 x 100 mm reverse phase analytical column 

(LC-MS and column, Agilent Technologies, Palo Alto, USA). Metabolomic features 

were detected in positive and negative ionisation mode in Chapter 5, but only in 

positive ionisation mode in Chapters 3 and 4. This was because experiments in 
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these Chapters examined multiple plant species so the number of features detected 

was greatly increased and made datasets difficult to align due to their size. Mobile 

phase A comprised 5% acetonitrile with 0.1% formic acid in water, and mobile 

phase B was 95% acetonitrile with 0.1% formic acid in water. The following gradient 

was used: 0 min – 0% B; 1 min – 0% B; 5 min – 20% B; 20 min – 100% B; 30 min – 

100% B; 31 min – 0% B; 7 min post time. The flow rate was 0.25 ml min-1 and the 

column temperature was held at 35 oC for the duration. The source conditions for 

electrospray ionisation were as follows: gas temperature was 325 oC with a drying 

gas flow rate of 9 l min-1 and a nebuliser pressure of 35 psig. The capillary voltage 

was 3.5 kV. Skimmer and fragmentor voltages were 115 V and 70 V respectively. 

Data in Chapter 3 were also run using tandem MS (MS/MS) to gain the 

fragmentation pattern of the metabolites. 

2.4.3 Data pre-processing 

The Molecular Feature Extractor (MFE) in the MassHunter software (Agilent 

Technologies, Palo Alto, USA) was used to deconvolute the many peaks in the 

chromatogram to identify individual features. The MFE algorithm picks out the peak 

of a potential metabolite which will be [M+H]+ in positive ionisation mode and [M-

H]- in negative ionisation mode. The algorithm will then ‘recognise’ any isotopes 

and adducts of this potential metabolite, examples of adducts being, [M+Na]+ or 

[M+K]+ in positive ionisation mode, and in negative ionisation mode [M+Br]- or 

[M+Cl]-. The ion counts calculated from all these peaks are then added together to 

give the ion count (abundance) for each feature. Any feature that had abundance 

lower than 100 ions was excluded from the dataset because measurements below 

this concentration are unreliable. MFE calculates the neutral mass i.e. [M] accurate 

to 10 ppm, which for the majority of features that have molecular mass in the 100s 

of Daltons will be accurate to two decimal places. A retention time for each feature 

(in each sample) is obtained. In addition, the ‘ion’ number is given, which is the 

number of adducts and isotopes of each metabolomic feature detected by the MFE. 
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Features eluting within the first minute are contained within the ‘dead’ volume, and 

thus excluded. Features obtained after 27.9 minutes are within the re-equilibration 

period and thus also excluded.  

Due to machine drift, the same metabolite is unlikely to have exactly the same mass 

and retention time in two samples, and therefore alignment of data is necessary. 

This machine drift is not uniform or regular and therefore cannot be corrected using 

calibration curves or formulae. Thus each feature needs to be matched across 

samples using information on retention times and molecular masses. An alignment 

program (see below) was used to decide the acceptable error range for retention 

times and molecular mass for a particular dataset.  

The alignment of features across samples was performed using a Kernel based 

Feature Alignment (KFA) programme developed in-house (Perera 2011). The 

programme took a feature in one sample and searched for matching features in all 

other samples in turn according to retention times and molecular masses. The 

internal standard was used to check the accuracy of the alignment. This process 

resulted in a matrix with the abundance (ion count) of each feature for each sample 

it was detected in. For each metabolomic feature detected, a mass and retention 

time was provided along with their associated errors calculated from the mass and 

retention times of all the samples in which the feature was detected.   

Not all the features detected in the analysis represent a metabolite and removal of 

this ‘noise’ without removing features that truly represent metabolites is necessary 

for sound statistical analysis. Metabolomic data can be described as ‘patchy’ in that 

features are rarely detected in all the replicates in a sample. Thus, a threshold value 

was used to determine how many replicates a feature must be detected in for the 

feature not to be considered noise. In this study, metabolites had to be in ≥50% of 

replicates to be scored present. Thus, if a treatment had ten replicates then a 

feature would need to be detected in at least five or more replicates to be included 

in the final dataset. However, for data in Chapter 5 this threshold was increased 

because the data was of poor quality due to a technical error on the machine, 
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resulting in samples containing more ‘noise’ than usual, and so the threshold was 

raised to 60%.  

In the raw data not every feature will be detected in every sample, as mentioned 

above. Metabolites may not be detected in a sample because; 1) it is genuinely not 

present in the sample, 2) it is present but below detectable abundance, or 3) it is 

present but not detected due to a technical error. Therefore, Missing Value 

Imputation (MVI) was performed on the data sets to make subsequent statistical 

analysis easier and more reliable. This is an essential manipulation of the data 

because some statistical programmes will exclude any variables with missing values, 

which in the case of metabolomic data will be a high proportion of features and 

therefore analyses are carried out on fewer features reducing statistical power 

(Hrydziuszko & Viant 2012). In addition, failure to apply MVI may result in some 

features incorrectly appearing more important than other features when models 

are fitted to the data. The MVI method used here was part of the alignment 

programme and used an algorithm to calculate and insert an appropriate value 

(Perera 2011). 

2.4.4 Multivariate statistical analysis 

Prior to multivariate statistical analysis all data were log transformed and centred. 

Metabolic fingerprints were summarised with Principal Component Analysis (PCA), 

using either the prcomp function in R (R Core Team 2013) or Simca-P software 

(Umetrics UK Ltd, Windsor, UK). Plots of the Principal Component (PC) scores were 

used to compare samples within treatments and between treatments. 

Failure to detect differences among metabolic fingerprints in a PCA may occur if 

other high loading variables or the large number of variables mask any differences. 

For this reason, further analyses of metabolic fingerprints were carried out in 

Chapter 3 by fitting data to a Partial Least Squares Discriminant Analysis (PLS-DA) 

model. Also in Chapter 3, to identify features that were driving the separation of 

the larvae fed C. spinosa, an Orthogonal Projections to Latent Structures 

Discriminant Analysis (OPLS-DA) was performed. These two analyses were both 
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carried out in Simca-P software (Umetrics UK Ltd, Windsor, UK) and are described in 

detail in Chapter 3. 

2.4.5 Correction for false discovery rate after univariate statistical analyses  

In order to assess differences in the abundance of each metabolite between 

treatments, various univariate tests were carried out which are described in 

individual Chapters. When one univariate test is carried out for each of the 

thousands of metabolites in a dataset simultaneously, this large number of tests 

will have a large number of false positives which means a correction for the False 

Discovery Rate (FDR) is required (Benjamini & Hochberg 1995; Storey 2002). 

Therefore the FDR was accounted for by converting all p values to q values using an 

R function (obtained from 

http://www.public.iastate.edu/~dnett/microarray/multtest.txt) based on Benjamini 

and Hochberg’s (1995) approach for correcting the FDR. This approach will find the 

same proportion of false positives as a Bonferroni correction when all tests are 

significant but otherwise is not as conservative as a Bonferroni approach (Benjamini 

& Hochberg 1995).     
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Chapter 3 Metabolic fingerprints reveal how an insect 
herbivore is affected by its larval host plants.  

 

3.1 Abstract 

Polyphagous insects can consume a wide range of different host plant species, but 

how these host plants vary in their metabolite compositions and whether this 

variation affects the biochemistry of the insect herbivores is unknown. We 

studied the interactions between the polyphagous insect herbivore Pieris rapae 

(Lepidoptera: Pieridae) and five species of its larval host plants (family 

Brassicaceae and Cleomaceae) by examining untargeted metabolic fingerprints of 

the plants and their larval herbivores. Metabolic fingerprints of the five host plant 

species were highly distinctive, and larvae could also be distinguished based on 

the species of host plant they fed on. The fingerprints of larvae feeding on Cleome 

spinosa plants were most distinctive due to a large group of abundant 

metabolites also found in high abundance in C. spinosa, but not in the other host 

plants examined. We conclude that host plants influence the biochemistry of their 

larval herbivores, and that some metabolites are conserved from one trophic 

level to the next.   
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3.2 Introduction 

Plants are used as a food source by nearly half of all insect species (Wu & Baldwin 

2010), and there is a large body of research examining factors that affect these 

herbivore-plant interactions (Schoonhoven et al. 2005). When insect herbivores 

consume host plants they take in nutritious primary plant metabolites as well as 

defensive secondary metabolites which can be toxic. The number of metabolites an 

insect consumes is generally unknown although a single species of plant is 

estimated to contain several thousand metabolites (Davies et al. 2010). Due to this 

large number of metabolites and the difficulties in measuring all these small 

compounds within an organism (Allwood et al. 2008) our knowledge is incomplete 

as to which metabolites occur within which plants, the concentrations of them or, 

critically, their effects on the herbivores consuming the plants. Thus, wider 

examination of the composition and abundance of metabolites in plants and their 

insect herbivores could provide further information on how plant metabolites 

affect herbivore performance, leading to better understanding of insect-plant 

interactions.  

We investigated the effects of host plant metabolite composition on the 

polyphagous butterfly Pieris rapae (Lepidoptera; small white butterfly). Many larval 

host plants used by P. rapae belong to the plant family Brassicaceae (Asher et al. 

2001; Stevens 2001 onwards; Beilstein et al. 2008). This family contains 

glucosinolates which are toxic to some herbivore species (Li et al. 2000; Rohr et al. 

2009) but are used by other herbivores as ovipositional cues and phagostimulants 

(Huang & Renwick 1994; Renwick & Lopez 1999). Glucosinolates are well studied 

(Rask et al. 2000; Kroymann 2011) however the focus on one group of metabolites 

may have led to less familiar groups of compounds being ignored despite evidence 

that other important compounds in the Brassicaceae family exist (Schroeder et al. 

2006). Therefore widening the range of metabolites examined in these host plants 

may bring new, important compounds to our attention and metabolic 

fingerprinting, which can measure the abundances of hundreds of metabolites 

simultaneously (Fiehn 2001), has the potential to do this. 
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Plant factors which have been shown to determine the success of insects on 

different host plants include nitrogen and water content (Matsuki & Maclean 1994; 

Honek et al. 2002; Coley et al. 2006), and the abundance of specific metabolite 

groups (Slansky & Feeny 1977; Matsuki & Maclean 1994; Poelman et al. 2008). A 

metabolic fingerprint of a host plant aims to quantify a large number of primary 

metabolites as well as defensive secondary metabolites (Fiehn 2001) and so 

fingerprinting should provide a good representation of the metabolites within a 

herbivore’s diet. However, no previous studies have used metabolic fingerprints to 

examine variation in insect performance on different host plants.  

Assessment of the herbivore in an insect-plant relationship usually considers factors 

such as growth rate, mortality and fecundity, whereas quantifying the metabolome 

of an insect (the metabolome being all the metabolites within an organism) (Fiehn 

2001) is less common (but see Jansen et al. 2009). As with plant metabolomes 

(Bidart-Bouzat & Imeh-Nathaniel 2008), insect metabolomes are affected by abiotic 

factors such as temperature (Malmendal et al. 2006; Michaud et al. 2008; Colinet et 

al. 2012a; Verberk et al. 2013).  However, little is known about the effect of diet on 

insect metabolomes, specifically whether insect metabolomes are affected by the 

species of host plant the insect feeds on. Evidence that the insect metabolome may 

be changed by the insect’s diet comes from studies which have focused on single 

plant metabolites or specific metabolite groups (Opitz and Müller 2009), but studies 

that investigate a broader spectrum of metabolites from the insect metabolome are 

lacking.  

In this paper, we use untargeted metabolomics to address two questions. First, we 

examine whether or not the metabolic fingerprints of P. rapae vary across different 

larval host plants, by rearing larvae on five species of Brassicales host plants. 

Second, we test the hypothesis that there is a relationship between the metabolic 

fingerprints of host plants and larval performance (growth rate).  
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3.3 Methods 

3.3.1 Plant and insect rearing  

We studied P. rapae on five of its host plants. Four plant species were from the 

family Brassicaceae, namely Arabidopsis thaliana (thale cress), Barbarea vulgaris 

(yellow rocket), Brassica oleracea (cabbage) and Lunaria annua (honesty) and one 

from the related family Cleomaceae, Cleome spinosa (spider flower). The metabolic 

fingerprints of two additional plant species from two further families (Tropaeolum 

majus, nasturtium, family Tropaoelaceae; Reseda lutea, wild mignonette, family 

Resedaceae) were studied but insect data are lacking due to insufficient R. lutea 

plant material for insect rearing and rejection of T. majus by many early instar 

larvae transferred from oviposition plants. Therefore there were no corresponding 

insect metabolic fingerprints for these two host plants, and these were excluded 

from most analyses. The host plants were chosen to span a wide phylogenetic 

range of host plants that P. rapae larvae have been reported to feed on, and so 

allowed us to examine a range of plants likely to have contrasting chemical 

compositions.  Data for T. majus and R. lutea were included in the phylogenetic 

analyses to increase their statistical power.  

Plant seeds were sown in trays using Levington F2+S seed and modular compost 

(added N:P:K 150:200:200 mg/litre) over a two week period in an unheated 

glasshouse in July and August which varied in temperature between 10-30 °C. 

Plants were grown under natural daylight and watered daily. Four to six week old 

plant material was flash frozen for metabolomic analysis. Leaves were taken from 

13 individuals per plant species to make 13 biological replicates per host plant. Due 

to the variation in size of the plants, and in order to obtained sufficient plant 

material for analysis, samples comprised the single youngest leaf of B. oleracea, L. 

annua and T. majus, the three youngest leaves of B. vulgaris, C. spinosa and R. 

lutea, and the whole rosette of A. thaliana. These samples also reflected the parts 

of the plants that the larvae were observed typically to consume.  
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P. rapae larvae were the F1 offspring of 16 adult female butterflies caught in York, 

UK (53o95’N, 1o08’W) in August. Female butterflies were kept individually in a 

glasshouse, provided with honey solution and potted B. oleracea plants for 

oviposition. Five days after hatching, second instar larvae were transferred using a 

paint brush and randomly assigned to different host plants. Larvae were placed in 

plastic boxes (175 x 116 x 52 mm; 10 larvae per box; 20 boxes per plant species) 

with fine netting taped over the front to reduce condensation. Cut plant leaves 

were placed in vials of water inside boxes, except for A. thaliana plants (which 

quickly wilted using this method) which were left in soil in small pots. Plant material 

was replaced daily as required and thus larvae were provided with excess fresh 

leaves during the experiment. Larvae in boxes were kept in temperature-controlled 

cabinets (Sanyo, MLR 350) at 21 °C under a photoperiod of 16L:8D. When the 

majority of larvae in a box had developed to fifth-instar, four larvae from each box 

were pooled and flash frozen for metabolomic analysis after the head, gut and 

heamolymph were removed to avoid analysing undigested plant material. A total of 

13 pooled larval samples was analysed for each of the five host plant species.  

3.3.2 Insect performance and leaf measurements  

Boxes containing the remaining larvae were checked every twelve hours for pupae. 

Larval development time was computed as the time (in days) between placing 

second-instar larvae on plants and pupation. The day after pupation, pupae were 

weighed and placed in a small pot with a piece of damp paper towel until adult 

emergence. Within twenty-four hours of emergence, adults were killed by freezing 

then dried at 60 °C in an oven for two days before being weighed.  Larval growth 

rate was calculated by dividing larval development time (days) by adult dry mass 

(mg). Leaf carbon and nitrogen content were determined using 1.5 mg of a sample 

on an analyser (Elemental Combustion System CHNS-O, Costech Instruments). 

Equivalent leaves to those sampled for metabolomic analysis were flash frozen, 

dried in an oven at 60 °C overnight then homogenised in a ball mill. There were five 

replicates per plant species with each replicate from a different plant. 
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3.3.3 Metabolic fingerprint analyses  

Leaf and insect material was stored at -80 °C and then freeze dried for 16 hours. 

Material was ground for two minutes at 20 rpm in a ball mill. 10 mg samples were 

extracted twice with 400 μl of 80% methanol on ice, using umbelliferone as an 

internal standard. Samples were sonicated, vortexed and the supernatant removed. 

The two supernatants were combined and filtered through a 0.4 μm (PVDF) syringe 

filter.  

Metabolite profiling of leaf and insect material was performed using a QToF 6520 

mass spectrometer coupled to a 1200 series Rapid Resolution LC system. 5 µl of 

sample extract was loaded onto a Zorbax StableBond C18 1.8 µm, 2.1 x 100 mm 

reverse phase analytical column (LC/MS and column, Agilent Technologies, Palo 

Alto, USA). Features were detected in positive ionisation mode. Mobile phase A 

comprised 5% acetonitrile with 0.1% formic acid in water, and mobile phase B was 

95% acetonitrile with 0.1% formic acid in water. The following gradient was used: 0 

min – 0% B; 1 min – 0% B; 5 min – 20% B; 20 min – 100% B; 30 min – 100% B; 31 

min – 0% B; 7 min post time. The flow rate was 0.25 ml min-1 and the column 

temperature was held at 35 °C for the duration. The source conditions for 

electrospray ionisation were as follows: gas temperature was 325 °C with a drying 

gas flow rate of 9 l min-1 and a nebuliser pressure of 35 psig. The capillary voltage 

was 3.5 kV. Skimmer and fragmentor voltages were 115 V and 70 V respectively. All 

samples were run in MS/MS.   

3.3.4 Metabolic fingerprint data pre-processing  

The Molecular Feature Extractor (MFE) in MassHunter software (Agilent 

Technologies, Palo Alto, USA) identified features (potential metabolites) from peaks 

produced by the LC/MS. Features eluting within the first minute are contained 

within the ‘dead’ volume, and features post 27 minutes are within the re-

equilibration period. Therefore features eluting before one minute and after 27 

minutes were excluded. The alignment of features across samples, filtering out 

noise, and missing value imputation were performed using an in-house alignment 
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algorithm, ‘Kernel Feature Alignment’ (Perera 2011). Plant and insect data were 

aligned separately due to the large number of samples examined. Features that 

were not detected in at least seven out of the thirteen replicates were excluded 

from the dataset, reducing the number of features detected in plants from 50,958 

to 12,023 and in insects from 25,479 to 2,209. Principal Component Analyses (PCA) 

were performed on the datasets before and after the removal of these features to 

ensure their exclusion did not qualitatively alter the conclusions of the analyses, 

and we only present the more conservative analyses based on their removal. Prior 

to data analysis, missing value imputation (MVI) was applied in those cases where 

metabolites were detected in more than seven but fewer than 13 replicates 

(Hrydziuszko & Viant 2012). Data were log transformed and centred before 

multivariate statistical analyses. 

3.3.5 Statistical analyses  

To assess differences among host plants in terms of insect growth rates, one-way 

ANOVAs followed by post hoc Tukey tests were performed in R after assumptions 

of parametric testing were met (R Core Team 2013). To measure similarities among 

plant metabolic fingerprints, a hierarchical cluster analysis was carried out based on 

Euclidean distances between individual plant metabolic fingerprints. Relationships 

among clusters were visualised with a dendrogram using the mean Euclidean 

distance for each of the five main plant species examined and compared with insect 

growth rates on different host plants. To test if the metabolic fingerprints of plant 

species reflected the phylogenetic relatedness of those species, the metabolic 

fingerprints of all seven species of host plant were used to calculate Euclidean 

distances, and phylogenetic distances among plant species (in million years ago) 

were taken from a cladogram (Beilstein et al. 2010). Relationships between these 

two data sets were analysed using a Mantel test (Mantel 1967; Hardy & Pavoine 

2012).  

Multivariate analyses were carried out in Simca-P software (Umetrics UK Ltd, 

Windsor, UK).  Principal Component Analysis (PCA) was used to summarise the 
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metabolomic data in order to compare patterns of metabolites among plants and 

among insects. Plant and insect data from each of the five plant species studied 

were analysed in two separate PCAs. Outliers falling outside Hotelling’s T2 (a 

generalization of Student’s t-distribution applied in multivariate situations) 

(Prokhorov 2011) were identified and excluded to prevent their having a 

disproportionate influence on the analysis (one B. vulgaris plant sample and one B. 

oleracea insect sample were excluded). To visualise the data, plant and insect 

replicates were plotted according to their Principal Component (PC) scores.  

 A Partial Least Squares Discriminant Analysis (PLS-DA) was fitted to the insect 

metabolomic data (in Simca-P software). A PLS-DA is a supervised model which uses 

the identity of samples (i.e. identity of larval host plant species) to maximize 

discrimination among groups. To avoid over-fitting the data, the PLS-DA model was 

cross-validated by excluding a seventh of the data in turn and testing the predictive 

ability of a model fitted to the remaining data. If a PLS-DA model has low predictive 

ability, the model cannot be validated implying that there are no differences among 

the groups being examined. Simca-P software presents the predictive ability of the 

model as a Q2 value, ranging between 0 and 1, with values closer to 1 indicating 

better predictive ability.  

3.3.6 Isolating important metabolites  

To identify metabolites responsible for distinguishing larval samples feeding on C. 

spinosa, an Orthogonal Projections to Latent Structures Discriminant Analysis 

(OPLS-DA) was performed on the insect metabolic fingerprint data. This supervised 

analysis explains the maximum amount of variation between two chosen groups of 

samples in this case, insects on C. spinosa and insects on all other host plants. The 

OPLS-DA model was performed on a balanced dataset (13 C. spinosa fed larval 

replicates versus 13 replicates from a mixture of the other insect groups) so that 

the larger dataset would not skew the analysis. This group of 13 larval replicates 

from the other four larval groups was chosen by performing a PCA on the data and 
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selecting replicates which reflected the full range of PC 1 scores whilst ensuring 

each of the four host plant groups were represented.   

Statistical differences in metabolite abundances in insects were analysed using 

ANOVAs carried out in R (R Core Team 2013) with host plant species as a factor, 

once parametric assumptions were met. The p values from each analysis were 

converted to q values to correct for false discovery rates (Benjamini & Hochberg 

1995). In order to compare how abundant a metabolite was in an insect fed C. 

spinosa, fold differences in abundance were calculated using the average 

abundances of C. spinosa fed larvae and the larval group with the next highest 

average abundance. Fold differences in abundance were also calculated for 

equivalent metabolites found in C. spinosa plant samples.  

 

3.4 Results 

In order to understand the effect of host plants on the metabolome of insects 

reared on them HPLC-MS was used to analyse the metabolic fingerprints of host 

plants, and of the P. rapae larvae fed on those plants. Untargeted metabolic 

fingerprints were obtained from plants and insects reared under controlled 

conditions (see methods) and analysed for similarity and differences using 

supervised PCA and unsupervised PLS-DA. In total, plant fingerprints were obtained 

for seven species and fingerprints for insects reared on these plants were obtained 

for a subset of five of these plants. For the other two plants there was insufficient 

insect material (see methods).  

3.4.1 Host plants and insects fed on them have distinct metabolic fingerprints 

The metabolic fingerprints of the five species of host plants were distinguished by 

the first two Principal Component (PC) scores in a PCA analysis (Fig. 3.1). More 

closely related plant species were more likely to have similar metabolic fingerprints 

(based on analysis of the seven plant species; Mantel test Z-statistic= 419366, 
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p<0.05) and similarities between fingerprints reflected known phylogenetic 

relationships (Fig. 3.2). An estimate was made of the relative importance of 

glucosinolates compared to other metabolites in discriminating the plant species by 

metabolic fingerprint. We obtained the molecular weights for glucosinolate 

compounds (Fahey et al. 2001) from databases and 19 metabolites in our plant 

samples were tentatively identified as possible glucosinolates. To visualise the 

influence of these glucosinolate metabolites compared to all other measured 

metabolites the related loadings were highlighted in loading plots of the PCA 

performed on the plant metabolic fingerprints, but none of the 19 metabolites had 

high loadings (Fig. 3.3). Thus, we conclude that variation in glucosinolates were 

unlikely to be important in distinguishing among host plant species based on their 

metabolic fingerprints.  

 

Fig. 3.1 Scores from a PCA model fitted to the metabolic fingerprints of five host plant 

species demonstrate that those plant species can be distinguished by their metabolic 

fingerprints. A total of 51.5% of the variation in the plant metabolic fingerprints was 

explained by five axes of a PCA fitted to the data. The variation explained by the first two 

PC scores is shown in brackets on the axes. 
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Fig. 3.2 There is a correlation (Mantel test Z-statistic= 419366, p<0.05) between the 

phylogenetic relatedness of plants (x-axis) and similarity of their metabolic fingerprints, as 

measured in Euclidean distances (y-axis). The outlier at the bottom left is the distances 

between Brassica oleracea and Barbarea vulgaris. 
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Fig. 3.3 Loading plots of a PCA analysing the metabolic fingerprints of plants. The 19 

metabolites that matched the molecular weights of 29 glucosinolates (due to glucosinolate 

isomers) have their loadings highlighted in black. For some metabolites the name is shown 

of the glucosinolate with the same molecular mass as the metabolite. The loadings of other 

metabolites are shown in grey. The position of the five host plants according to PCA scores 

is indicated by the names of the plant species. Compared to other metabolites, the 

metabolites putatively identified as glucosinolates do not have a huge influence on 

discriminating the different host plant species. 

Next we analysed the metabolite content of the insect fat bodies. Compared to the 

distinctiveness of metabolic fingerprints from different plant species (Fig. 3.1), PCA 

revealed less differentiation in metabolic fingerprints amongst larvae raised on 

different host plants (Fig. 3.4). This demonstrates that differences among the insect 

metabolomes are smaller than among the plant metabolomes. In the PCA analysis, 

only those larvae that fed on C. spinosa could be distinguished from other larvae 

(Fig. 3.4), and when these larvae were excluded from the analysis, we still found no 

differentiation among larvae fed on the other four host plants. A supervised PLS-DA 

confirmed that larvae fed C. spinosa could be distinguished from other larvae (first 

latent variable of the PLS-DA; Fig. 3.5), but unlike the unsupervised PCA, the next 

three latent variables of the PLS-DA were able to discriminate among larvae reared 

on the other host plants (Fig. 3.6). Thus, host plants influence the metabolic 
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fingerprint of P. rapae larvae and these changes are especially large in larvae 

feeding on C. spinosa. 

 

Fig. 3.4 Scores from PCs 1 and 2 from a PCA model fitted to larval metabolic fingerprints. 

Larvae fed on C. spinosa are distinguished from other larvae feeding on other host plants. 

The PCA was fitted to four axes which together explained 25.9% of the total variation in the 

dataset. The variation explained by the first two PCs is shown in brackets on the axes. 
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Fig. 3.5 Latent variable 1 versus latent variable 2 scores from a PLS-DA model fitted to the 

metabolic fingerprints of the larvae. Latent variable 1 shows that the metabolic fingerprints 

of the larvae fed C. spinosa were different from the other larvae. The % of the modelled Y 

variation is shown in brackets on the axes labels. 6 latent variables explained 97.2% of the Y 

variation in the model. The Q2 value was 0.836. 
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Fig. 3.6 Latent variables 2, 3 and 4 scores from a PLS-DA model fitted to the metabolic 

fingerprints of the larvae emphasize the differences among larvae feeding on different host 

plants. The % of the modelled Y variation is shown in brackets on the axes labels. 6 latent 

variables explained 97.2% of the Y variation in the model. The Q2 value was 0.836. 

3.4.2 Identification of abundant metabolites in larvae feeding on C. spinosa 

In order to understand why the metabolic fingerprints of C. spinosa fed larvae were 

different, those metabolites that distinguished these larvae from other larvae were 

isolated by performing an OPLS-DA model (Fig. 3.7). The OPLS-DA produced an ‘S-

plot’ which was used to visualise the relative importance of different metabolites 

and to extract metabolites that were highly abundant in those insects feeding on C. 

spinosa. We focused on metabolites that were at least four times more abundant in 

C. spinosa fed larvae than in other larvae, to ensure that any selected metabolites 

represented a major difference in abundance compared to other larvae. Using this 

criterion 44 metabolites were found to be highly abundant in C. spinosa fed larvae 

(Table 3.1). Comparisons between the molecular masses and fragmentation 

patterns of these metabolites with reference information in metabolomic 

databases as well as the fragmentation of the samples alongside a standard, all 

failed to determine the identities of these metabolites.  

In order to establish whether the metabolites that were abundant in larvae feeding 

on C. spinosa could have originated from the host plant, the plant metabolic 
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fingerprints were examined for metabolites with the same masses and retention 

times. Of the 44 metabolites most influential in distinguishing the metabolic 

fingerprints of the larvae fed C. spinosa from other larvae, all but two matched 

metabolites in the plant fingerprint data, with equivalent mass and retention time. 

Furthermore, the abundances of these metabolites were many times higher in C. 

spinosa plants compared with other plant species (Table 3.1). We conclude that 

metabolites detected in larvae feeding on C. spinosa plants which distinguished 

them from other larvae, are likely to have originated from the C. spinosa host plant.  
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a) 

 

b) 

 

Fig. 3.7 a) A plot of the OPLS-DA analysis carried out on larvae fed C. spinosa (x) and larvae 

fed other plant species (•). b) An S-plot produced by plotting loadings from the OPLS-DA 

analysis on the samples of larvae fed C. spinosa and larvae fed other host plants. Individual 

metabolites are denoted by solid triangles. Metabolites at the top right of the plot are very 

different in abundance in larvae fed C. spinosa compared to other larvae.  
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Mass (Da) RT (min) q value Insect FD Plant FD 

57.26 20.33 0.00005 176 67 

409.35 23.73 0.00003 72 34 

355.3 21.70 0.00005 75 6 

145.1 3.26 0.00005 68 3.2 

383.34 23.47 0.00004 57 38 

395.34 23.13 0.00005 55 33 

456.35 22.36 0.00006 99 114 

369.32 22.86 0.00025 58 21 

331.25 19.59 0.00006 56 65 

381.32 22.08 0.00004 32 43 

970.72 22.39 0.00003 30 21 

333.26 20.70 0.00002 26 53 

416.31 20.35 0.00006 20 3.2 

341.29 21.04 0.00172 36 19 

407.34 22.49 0.00014 32 68 

393.32 21.95 0.00029 23 21 

319.25 18.35 0.00005 20 34 

343.25 18.09 0.00005 18 39 

367.3 21.48 0.00003 16 28 

533.41 22.40 0.00004 15 no match 

99.1 3.26 0.00004 13 8.7 

496.35 22.40 0.00021 23 13 

438.35 22.40 0.00004 23 9.4 

388.11 17.45 0.00004 10 66 

314.07 14.86 0.00005 10 28 

358.1 17.09 0.00005 8.2 41 

432.3 16.50 0.00003 7.3 no match 

411.37 25.77 0.00001 6.9 12 

355.25 19.27 0.00423 16 53 

327.27 19.84 0.00095 11 2.8 

303.22 17.82 0.00000 7.2 38 

881.71 22.47 0.00006 6.7 22 

344.08 14.21 0.00002 4.5 4.2 

313.26 19.08 0.00006 6.7 1.7 

359.28 21.39 0.00000 7.3 37 

397.35 24.51 0.00004 5 6.2 

397.35 24.94 0.00003 5.2 6.2 

173.13 2.11 0.00077 4.6 27 

390.29 19.59 0.00003 4.9 1.6 

358.1 16.75 0.00004 5.1 41 

289.2 15.62 0.00003 5.2 19 
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405.32 21.47 0.00000 4.4 7.6 

291.21 16.44 0.00006 4.6 15.2 

286.08 14.10 0.00001 4.4 6.5 

 

Table 3.1 List of 44 metabolites in larvae feeding on C. spinosa which showed high 

abundances in insect and plant fingerprints. All these metabolites were extracted from an 

OPLS-DA ‘S plot’, have a significant q value and are at least 4 times more abundant than in 

other larvae. Mass and RT are the observed molecular weight and retention time from 

larval data as recorded from the LC-MS. Fold Difference (FD) is calculated from the average 

abundance of the C. spinosa fed larval replicates compared to the group with the next 

highest average abundance. Plant FD is calculated in the same way. No match under plant 

FD indicates that no match was found between plant metabolites and the mass and 

retention time of the insect metabolite.  The q values are p values from one-way ANOVAs 

corrected for false discovery rate.  

3.4.3 Insect growth rates reflect similarities in metabolic fingerprints of plants 

In order to determine if the variation in insect performance could be explained by 

plant metabolic fingerprints or by the macro nutrient content, we measured the 

growth rate of larvae on each of the plants and the nitrogen and carbon content of 

each plant. Larvae reared on B. oleracea, B. vulgaris and C. spinosa (mean = 1.899 

mg day) had growth rates which were 1.4 times faster than those reared on A. 

thaliana and L. annua plants (mean = 1.405 mg day; ANOVA of growth rates by 

plant species, F4,81 = 33.67, p<0.001; Fig. 3.8a). Leaf nitrogen content did not vary 

among plant species (ANOVA F4,20 = 1.23, p=0.331), but carbon to nitrogen ratio 

(C:N) was significantly higher in C. spinosa (C:N = 6.9, C = 40.9%, N = 6.0%) than in A. 

thaliana (C:N = 5.4, C = 37.1% N = 6.9%) with C:N measurements from the other 

plants having intermediate values (ANOVA F4,20 = 3.41, p=0.028; post hoc Tukey 

test). A hierarchical cluster analysis summarised the similarities among the 

metabolic fingerprints of the plant species and this pattern of similarity matched 

variation in the high or low growth rates of insects on those same plant species (Fig. 

3.8). This apparent association between variation in plant metabolic fingerprints 
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and insect performance implies that a suite of metabolites in host plants influence 

the performance of insect herbivores on host plants.  

a)                                   b) 

 

Fig. 3.8 a) Growth rates of P. rapae larvae on different host plants. Larvae fed B. vulgaris, C. 

spinosa and B. oleracea had significantly higher growth rates than larvae fed L. annua or A. 

thaliana. Bars with the same letters were not significantly different at the 5% level 

following ANOVA and post hoc Tukey tests. Numbers on bars indicate the number of 

replicates. b) Visualisation of the similarities among metabolic fingerprints of host plants 

according to hierarchical cluster analysis. The split into two groups corresponds to 

differences in insect growth rates on these plant species. 

 

3.5 Discussion 

The advantage of untargeted metabolomics is that a wide range of metabolites are 

examined providing a better overview of changes to metabolomes. By applying this 

approach to the insect herbivores as well as their host plants we could evaluate the 

effect of the plant species on the insect metabolome. Our discovery of the transfer 

of a group of metabolites from the host plant C. spinosa to P. rapae larvae was 
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because we used an untargeted approach with both plant and insect fingerprints 

rather than focusing primarily on a single group of known metabolites.  

One of our aims was to investigate the extent to which the metabolome of an 

insect herbivore is determined by the host plant it feeds upon. We conclude that 

the larval host plant influences metabolite composition in the fat-body of P. rapae 

because larval metabolic fingerprints differed according to the host plant they fed 

on. Larvae feeding on C. spinosa were particularly distinctive and larvae feeding on 

other host plants could only be distinguished using a supervised multivariate 

analysis indicating that these host plants had much smaller effects on insect 

metabolomes compared to C. spinosa plants. Other studies support the idea that 

larval diet affects the metabolites found within the insect. For example, the 

concentration of cardenolide compounds in dogbane tiger moths (Cycnia tenera) 

are dependent on the species of Asclepias plant larvae feed on (Cohen & Brower 

1983), and  P. rapae were found to contain pinoresinol at the end of the larval 

glandular hairs only if they fed on  B. oleracea (Schroeder et al. 2006). Our study is 

the first to examine the wider insect metabolome to demonstrate the effects of 

host plant diet on the insect herbivore.  

Nitrogen content of plants can limit larval growth (Slansky & Feeny 1977) but we 

found little variation in nitrogen or C:N ratios among host plants, and no effect on 

insect growth rates. We found some evidence that variation in larval growth rates 

was associated with differences in metabolic fingerprints, but with only five plant 

species studied this association pattern could have arisen by chance. Further 

investigation of whether variation in metabolites among host plants determines 

insect performance deserves further study and might reveal better understanding 

of why insect performance varies among host plants.  

Several metabolites that occurred in high abundance were responsible for observed 

differences between the metabolic fingerprints of larvae fed excised C. spinosa 

leaves and larvae fed other plant species. Metabolites with similar molecular mass 

and retention times were also found in high abundance in the leaves of C. spinosa 
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plants from the glasshouse (Table 1). Despite the differences in the growing 

conditions of the glasshouse plants sampled for the plant metabolomes and those 

fed to the insects, we conclude that these abundant metabolites originated from 

the C. spinosa plants. This certainty stems from the presence and exceptionally high 

abundance of the chemicals in the C. spinosa plants compared to the virtual 

absence of them in the other host plant species.  

The finding that some metabolites can transfer from C. spinosa plants into larvae of 

P. rapae with unchanged chemical structures has not been shown before. Other 

studies have shown many examples of sequestration of metabolites by insects from 

their host plants (Opitz & Müller 2009) including the cardenolide metabolites from 

milkweed host plants (Asclepiadaceae) sequestered for defence by monarch 

butterflies (Danaus plexippus) (Brower et al. 1967). Therefore, active sequestration 

of C. spinosa metabolites by P. rapae larvae is one possibility. Alternatively, these 

metabolites may have no function in the insects but be passively absorbed and 

bioaccumulate because larvae are unable to digest, break down or excrete the 

compounds. C. spinosa differs from the other host plant species under test in that it 

originates from Asia occurring only in this country as a garden ornament plant or 

garden escapee (http://www.cabi.org). This could indicate that P. rapae has not 

evolved alongside C. spinosa for any significant period of time and therefore lacks 

the ability to process all of the metabolites within C. spinosa. If further study 

confirmed this inability of the insects, it would provide an explanation as to why 

insect species are not able to fully exploit alien plant species as hosts.  

We found no effect of the abundant metabolites present in C. spinosa host plants 

on P. rapae growth rates, and larval growth rates did not differ between C. spinosa, 

B. oleracea and B. vulgaris plants (Fig. 3.8a). This contrasts with other studies that 

have shown that concentrated extracts of Cleome arabica were toxic to larvae of 

Spodoptera littoralis and Cleome deoserifolia caused mortality in the first instar 

larvae of Phthorimaea operculella (Soliman 2012; Ladhari et al. 2013). As we used 

second instar larvae it is possible C. spinosa is toxic to the first instar of P. rapae. In 

addition, a superior method of measuring insect performance which could involve 
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regularly assessing growth of the larvae throughout development would give a 

more informative insight into how the species of host plant affects the growth of 

the insect. Such an approach could reveal that the effect of host plant is reliant on 

the stage of larval development.  

The host plants of polyphagous insect herbivores have not previously been 

examined in relation to their metabolic fingerprints. We showed that host plants of 

P. rapae have very different metabolomes (Fig. 3.1), and that more closely related 

plants have more similar metabolic fingerprints (Fig. 3.2). Since the metabolome is 

essentially the end product of the genome (Sumner et al. 2003) and more closely 

related species are more similar genetically, this pattern is expected but has not 

been shown before using multiple plant species.  

Much research has focussed on differences between Brassicaceae host plants in 

terms of glucosinolates (Rodman & Chew 1980; Hasapis et al. 1981; Koritsas et al. 

1991), but we estimate that other metabolites are more important in distinguishing 

host plant species (Fig. 3.3), and deserve further study when considering insect-

Brassicaceae interactions. In summary, we have provided new perspectives on 

interactions between plants and insects; discovered metabolites transferring 

between trophic levels and found evidence that the plant metabolome may be 

associated with insect performance. This study raises the possibility that further 

understanding of plant-insect interactions may be possible by comparing the 

metabolomes of organisms at different trophic levels.  
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Chapter 4 Metabolic fingerprints reveal idiosyncratic 
responses in three host plant species to herbivory by Pieris 
rapae larvae. 

 

4.1 Abstract 

Studying the biochemical responses of different plant species to herbivory may 

help improve our understanding of the diversity of metabolites found in the host 

plants of insects. Untargeted metabolic fingerprints were used to compare 

metabolite reactions in three host plant species (Cleome spinosa, Brassica 

oleracea and Lunaria annua; order Brassicales) to larval herbivore attack (Pieris 

rapae; Lepidoptera).  Principal Component Analyses of metabolic fingerprints 

were able to distinguish among the three plant species, as well as between 

infested plants that had been eaten and uneaten control plants. A large number 

of metabolites (1186, 13% of all measured metabolites) were common to the 

three plant species. The abundances of metabolites in control and infested plants 

were compared in order to isolate metabolites induced by herbivory. Although B. 

oleracea and C. spinosa had many species-specific metabolites that were induced 

by herbivory (after correction for false discovery rate; B. oleracea = 87 

metabolites, C. spinosa = 68), only three metabolites were induced in both plant 

species. By contrast, L. annua only had one metabolite induced by herbivory, and 

this was not found to be induced in the other two plant species. Thus metabolites 

induced by herbivory were idiosyncratic in the three host plant species. 
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4.2 Introduction 

Plants contain thousands of metabolites, some of which are secondary metabolites 

that have a defence function against herbivores. Metabolite defences against 

herbivores can be either ‘constitutive’, which means high levels of the metabolite 

are maintained in the plant, or ‘induced’ which means the metabolite is changed in 

abundance by herbivore attack (Bezemer & van Dam 2005). For example, 

chlorogenic acid which acts as a feeding deterrent to Lochmaea capreae (leaf 

beetle) feeding on Salix sp. (willow), is thought to be maintained at consistent levels 

in host plants (Ikonen et al. 2001). By contrast in Nicotiana sylvestris (tobacco 

plants), herbivory by Manduca sexta (moth) larvae has been shown to increase 

levels of the defensive metabolite nicotine (McCloud & Baldwin 1997). Using 

induced metabolites as a defence is thought to allow the plant to incur the cost 

associated with producing defensive metabolites only when attacked (Heil & 

Baldwin 2002). 

Some of the plants that Pierid butterflies feed on are related (Braby & Trueman 

2006). For example, many of the host plants of the polyphagous P. rapae (small 

white butterfly; Lepidoptera) are within the family Brassicaceae (Asher et al. 2001; 

Stevens 2001 onwards; Beilstein et al. 2008). Groups of structurally similar 

secondary metabolites tend to be common to plant species which are 

phylogenetically related (Wink 2003). For example, the plant family Brassicaceae is 

characterised by glucosinolates (Fahey et al. 2001) and plants in the family 

Solanaceae are characteristically rich in tropane alkaloids (Shimomura et al. 1991). 

Metabolites in both the glucosinolates and tropane alkaloid groups are known to 

have defensive functions against herbivores (Ziegler & Facchini 2008; Ahuja et al. 

2010). Common metabolites among related plants would suggest that the related 

host plants of a polyphageous insect would employ some of the same specific 

metabolites for defence. As with similarities in genomes, species that are more 

closely related may share a greater number of defensive metabolites. On the other 

hand, the evolutionary arms race believed to happen between plants and their 

herbivore attackers means there is a continual cycle of negative effects of defence 
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chemicals being overcome by the insect and the plant evolving new defence 

chemicals (Mithofer & Boland 2012). This arms race means it is possible that any 

successful defence chemical originating in a common ancestor would be overcome 

by the insect during evolutionary time and lost, leaving few common chemical 

defences among related modern day plant species. 

The vast diversity of metabolites in plants (Kroymann 2011) can be taken as 

evidence of the continual evolution of new metabolites. Mechanisms used to 

achieve new metabolites may involve gene duplication and point mutations of 

genes which lead to novel enzymes able to make new metabolites from precursor 

metabolites in the biosynthesis pathways of existing metabolites (Kliebenstein et al. 

2001; Kampranis et al. 2007; Kliebenstein 2008). These processes enable the 

maintenance of a large diversity of metabolites (Moore et al. 2014) which suggests 

plants may be using a ‘screening’ strategy whereby maintaining a large pool of 

metabolites increases the probability that some will prove to have a defensive 

function (Jones & Firn 1991). In this way plants would be able to adapt to 

evolutionary selection pressures which include insect herbivores (Rask et al. 2000). 

There is little evidence to gain an idea of the extent to which plant metabolite 

defences have been shaped by a shared evolutionary history and the extent to 

which each plant species has evolved its own set of unique metabolites. This 

question may not have been addressed before because of the difficulty in 

measuring a lot of metabolites in a plant at once. Now metabolic fingerprinting, 

which is an untargeted, high-throughput method, can measure a large number of 

metabolites to gain a ‘snapshot’ of an organism’s metabolome (Fiehn 2001; Overy 

et al. 2005). Metabolic fingerprints have already been used to assess the effects of 

herbivory on plants. For example, the metabolic fingerprints of Plantago lanceolata 

differed in response to different stresses (including herbivory) yet no difference was 

observed using a parallel targeted analysis (Sutter & Müller 2011). An untargeted 

method revealed new metabolites induced by Spodoptera littoralis (moths) in Zea 

mays (Marti et al. 2013), and analysis of metabolic fingerprints of Arabidopdsis 

thaliana revealed differences in the metabolome of leaves attacked by Brevicoryne 
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brassicae (aphids) compared to the metabolome of roots attacked by Heterodera 

schachtii (nematodes) (Kutyniok & Müller 2012). However, none of these studies 

have looked at multiple plant species and therefore the number of induced 

metabolites common or unique among species has never been compared. Such 

interspecific measurements could uncover the evolution of metabolites in plants 

and if there are particular defensive compounds that are very successful against 

herbivory and have therefore been retained in multiple plant species throughout 

evolutionary time. 

Although untargeted studies in this area are lacking, targeted analyses have 

compared metabolites among host plants and in the Brassicaceae plants have 

focused on the group of metabolites called glucosinolates which are the most 

studied and defining secondary metabolites of the family Brassicaceae (Rask et al. 

2000; Kroymann 2011).  Some studies have compared multiple host plants after 

insect attack to show induced differences in the abundances and presence of 

glucosinolates between plant species (Koritsas et al. 1991; van Dam & Raaijmakers 

2006). From these studies we know some metabolites (namely glucosinolates) vary 

qualitatively and quantitatively among host species. However, it is unknown if these 

differences in glucosinolates could be extrapolated to the rest of the metabolome. 

In this study, I investigate three larval host plant species (B. oleracea and L. annua 

in the family Brassicaceae and the more distantly related C. spinosa in family 

Cleomaceae) that are all eaten by P. rapae in order to examine whether herbivore 

induced metabolites are common to these host plants. By studying metabolites that 

are induced by insect feeding, I focus on those metabolites that are likely to have a 

defensive role. A search for induced compounds likely to be glucosinolates was also 

made in order to enable comparisons with previous work on induced metabolites in 

Brassicaceae. Quantifying the shared and unique induced metabolites among the 

three species provides information on the evolution of metabolites in plants, and 

common metabolites which are induced by multiple host plants may suggest 

metabolites that have a vital function in the P. rapae-plant interaction. 
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4.3 Methods 

4.3.1 Insect and plant rearing 

The three species of host plant that were investigated were Brassica oleracea 

(cabbage), Cleome spinosa (spider flower) and Lunaria annua (honesty). These 

plants are taxonomically relatively far apart and provide two study species B. 

oleracea and L. annua that are in the same family (Brassicaceae) and one species C. 

spinosa in another family (Cleomaceae) which is more distantly related thereby 

enabling a comparison between plant relatedness and the number of shared 

metabolites.  

Plants were grown from seeds sourced from Groves Nurseries, Dorset, UK (B. 

oleracea ‘stonehead F1’) and Chiltern Seeds, Oxfordshire, UK (C. spinosa ‘Cherry 

Queen’ and L. annua). Seedlings were grown in a greenhouse in trays for two weeks 

and were then potted into 10 cm pots and grown in temperature controlled 

cabinets (Sanyo MLR 350) at constant temperature (21 oC); photoperiod of 16L:8D 

and approximate light 60 μmol m2 s-1. Pots were randomised among different 

growth cabinets until the plants had been growing for seven weeks, at which point 

each plant was assigned as either a control (n = 10) or infested (n = 10) plant and 

kept in different cabinets to prevent plant volatile organic compounds affecting 

other plants.  

Pieris rapae larvae were the offspring of four adult butterflies caught in York, UK in 

July. Female butterflies were kept in a greenhouse in 31 cm x 42 cm keep nets, fed a 

honey solution soaked on cotton wool and given potted B. oleracea seedlings to 

oviposit on. Larvae laid over a period of two days were allowed to feed from the 

three host species until they reached fourth and fifth instar (14 days after hatching) 

when they were transferred with a paintbrush to experimental plants. There was 

one larva per plant and ten infested plants per plant species. Larvae were placed on 

a middle aged leaf in all replicates. Larvae were confined to leaves using organza 
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bags and hair crocodile clips to prevent the plant stem being crushed. Empty bags 

and clips were also placed on the equivalent leaves of control plants. Larvae were 

left on B. oleracea and L. annua plants for 67 hours but were taken off C. spinosa 

plants after 44 hours due to its smaller leaves and to ensure some of the leaf was 

left for sampling. The remains of the eaten leaves in the infested treatment and the 

equivalent leaves in the control plants were cut at the stem and put in eppendorf 

tubes immediately after removal of larvae, flash frozen and stored at -80⁰C.   

4.3.2 Metabolomic analysis 

Leaves were flash frozen immediately after harvesting, homogenised while being 

kept cool and extracted using methanol containing an internal standard. After 

filtering, the metabolites in the samples were measured using a QToF Mass 

Spectrometer coupled to a High Performance Liquid Chromatography system 

(HPLC-MS). Full details of sample extraction and metabolomic analysis are 

described in Chapter 2. 

4.3.3 Data pre-processing 

Features were aligned between all samples using a Kernel based Feature Alignment 

programme (KFA) (Perera 2011). Features which were considered noise were then 

filtered out if they were not recorded in at least five out of ten replicates in any 

group and missing value imputation (MVI) performed on the dataset. After 

alignment of the data there were abundances for 36,432 features. After filtering 

out noise in the data, this was reduced to 11,649 features that were considered 

metabolites. PCAs (Principal Component Analysis) were performed on both 

datasets to ensure that exclusion of these features had no effect on the results. Full 

details of pre-processing of data are described in Chapter 2. 

4.3.4 Statistical analysis  

To determine if the three different plant species could be distinguished by their 

metabolic fingerprint, the data were analysed using a PCA. To investigate 

differences between infested and control plants, each plant species was analysed 
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separately by PCA, followed by t-tests of Principal Component (PC) scores. The lists 

of metabolites recorded in each species of host plant were cross-referenced and 

Venn diagrams used to summarise numbers of metabolites that plant species had in 

common. This was done for control plants and repeated for infested plants. 

To determine metabolites induced by herbivory in the three plant species, it was 

first established whether or not a metabolite differed in abundance between the 

infested and control plants. Data were tested for normality (Anderson Darling test) 

and equality of variance (Levene’s test) with data transformation if necessary 

(natural log, inverse or square root transformation) followed by t-tests, otherwise 

non-parametric Mann-Whitney U tests were used. These p values were corrected 

for False Discovery Rates (FDR) by conversion to q values (Benjamini & Hochberg 

1995). For each metabolite, the difference in abundance was quantified using mean 

abundance in infested plants divided by the mean abundance in control plants 

which indicated if the metabolite had increased or decreased. This process 

produced lists of significantly increased and decreased metabolites according to 

q<0.05, for each plant species. These were then cross-referenced to find common 

metabolites induced by P. rapae herbivory. The numbers of common and unique 

metabolites were summarised in Venn diagrams. 

4.3.5 Tentative glucosinolate identification 

Molecular weights for glucosinolate compounds (Fahey et al. 2001) were obtained 

from databases for 99 out of 120 glucosinolates and a search made for metabolites 

with these same molecular weights as glucosinolates accurate to two decimal 

places. Identification using only molecular weight is considered a tentative 

identification (Sumner et al. 2007). Due to the low abundances of these metabolites 

the raw values of the metabolites were used before MVI (Missing Value Imputation, 

see Chapter 2) was performed. This slightly different approach was taken in this 

analysis because some of the metabolites detected had abundances below the MVI 

values which misrepresented the presence and abundance of these metabolites in 

the samples. To test for significant differences in these glucosinolate-matching 



74 
 

metabolites between control and infested plants a t-test was used or a Mann-

Whitney U test when assumptions of normality could not be met.  

 

4.4 Results 

Thousands of metabolites were measured by HPLC-MS from foliar samples (n = 60) 

of three species of host plant both infested (eaten by P. rapae) and control (not 

eaten) to obtain metabolic fingerprints. This allowed me to compare the effect of 

herbivory among the three species using PCA and to find the number of induced 

metabolites that were common among the species using univariate statistics. Some 

metabolites were putatively identified as glucosinolates and abundances 

statistically tested to evaluate if any were induced by herbivory.   

4.4.1 Metabolic fingerprints are changed by herbivory in all three plants  

Regardless of whether or not a plant had been eaten, the three plant species had 

different metabolic fingerprints when analysed in a PCA (Fig. 4.1a), meaning effects 

of P. rapae herbivory on the metabolic fingerprints were smaller than the 

differences among metabolic fingerprints of the plant species. Subsequent PCAs 

performed separately on the three plant species showed that control plant samples 

and infested plant samples were distinguished in PC score plots (Fig. 4.1b, c and d), 

and there were statistically significant differences in the scores of either the first or 

second PC (t-tests B. oleracea PC 2 scores t18 = 5.52, p<0.001; C. spinosa PC 1 scores 

t18 = -4.62, P<0.001; L. annua PC 2 scores t18 = 3.66, p<0.01). This demonstrated that 

in all three species of plant the metabolic fingerprint had been changed by P. rapae 

herbivory. 
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a)                                              b)   

  

c)                       d) 

 

Fig. 4.1 PC (Principal Components) 1 and 2 from PCA models fitted to metabolic fingerprints 

of a) all three host plants, and separately for b) B. oleracea c) C. spinosa and d) L. annua. 

The variation explained by each PC is shown in brackets on axes labels. In a) different 

species cluster together but the control and infested plants within a species are 

indistinguishable. A total of 51.8% of the variation in this PCA was explained by four 

principal components. In panels b), c) and d) the infested and control plants are 

distinguishable indicating differences in metabolic fingerprints.  
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4.4.2 Common metabolites exist between the three plant species but not 
common induced metabolites  

When the metabolites detected in the three plant species were cross-referenced 

there were a large number of metabolites (1186; 13% of measured metabolites) 

which were found in the control plants of all three species (Fig. 4.2a). There was a 

similar number of metabolites (1198; 12% of measured metabolites) that were 

common to infested plants from all three plant species (Fig. 4.2b). However, the 

majority of metabolites (74% of measured metabolites in control and 75% in 

infested) were unique to only one plant species (Fig. 4.2a and b).  

a)            b) 

 

 

Fig. 4.2 Venn diagrams summarising the number of shared and unique metabolites. a) 

Metabolites measured in control plants and b) metabolites measured in plants infested 

with P. rapae. In control plants 74% of all metabolites measured were unique to one plant, 

13% shared by two species and 13% shared by three species. In infested plants the 

equivalent percentages were 75% unique, 12% shared by two and 12% shared by three 

plants. 

Of those metabolites that were considered to have significantly changed in 

abundance following herbivory, there were no metabolites that were common to 

all three host plant species (Fig. 4.3a and b). This result is partly due to the low 

number of metabolites (one) found to be changed by herbivory in L. annua (after 
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correction for FDR). However, even before FDR correction there were only two 

metabolites in common among the three plant species (Fig. 4.3c and d; 0.07 % of all 

the metabolites found to change according to p<0.05). Thus I conclude that 

metabolite responses to herbivory are idiosyncratic in these plant species. 
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a)                                   b) 

  

c)                                   d) 

Fig. 4.3 The number of metabolites that a) increased and b) decreased in infested plants 

according to q<0.05 (p values corrected for FDR). L. annua only had one metabolite 

decrease after P. rapae herbivory under these criteria. The numbers of metabolites found 

to have changed in more than one plant species are indicated by the circle overlaps. Also 

shown are the number of c) increased and d) decreased metabolites which significantly 

changed according to p<0.05 (before FDR). This confirms that the results are not primarily 

due to FDR.  

4.4.3 Two glucosinolate-like metabolites are induced in B. oleracea   

A total of 13 metabolites detected in this study had the same molecular weight as 

12 glucosinolates (multiple metabolites matched some glucosinolates and some 
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metabolites matched glucosinolate isomers). The average abundances as measured 

on the HPLC-MS and the number of plant replicates in which the metabolites were 

detected in are shown in Fig. 4.4, along with the tentative glucosinolate 

identification. The Metabolomics Standards Initiative recommends that metabolites 

are described as being only ‘tentatively identified’ (Sumner et al. 2007) when the 

identification is based only upon the molecular mass of the metabolites, as in this 

analysis. Only two glucosinolate-matching metabolites, both in B. oleracea, were 

found to have significantly increased in abundance between control and infested 

plants (11-(Methylsulfinyl)undecyl and the isotopes progoitrin and epiprogoitrin; p 

values in bold in Fig. 4.4). Some of these metabolites were recorded in only one 

plant species and not the other two (for example metabolites with the same 

molecular mass as 3-Methoxycarbonylpropyl, 2-Hydroxypentyl, glucobrassicin, 

glucoibarin and 10-(Methylsulfonyl)decyl (Fig. 4.4). However the tentative 

identifications means conclusions regarding effects of herbivory on glucosinolate 

abundances or the variation of glucosinolates among host plants are unreliable.   
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Fig. 4.4 Average abundances of 13 metabolites with the same molecular weights as 

glucosinolates. White bars are control plants, grey bars are infested plants. B. oleracea, C. 

spinosa and L. annua are indicated by B.o., C.s. and L.a. respectively. Means and SDs are 
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plotted. The shared molecular weight (MW) of the glucosinolate and metabolite and 

retention time (RT) of the metabolite is shown above the graphs. In instances where the 

abundance between control and infested plants is significantly different or approaching 

significance p values from a t-test or a Mann-Whitney U test are given in bold. Numbers on 

the bars are the number of samples out of ten replicates that the metabolite was detected 

in. 

 

4.5 Discussion  

The metabolic fingerprints of all three plant species were altered by insect 

herbivory (Fig. 4.1b-d). Cross-reference of the metabolites across plants revealed a 

number of metabolites which were common to all three plants (Fig. 4.2). Despite 

this, when metabolites which showed differences in abundance between infested 

and control plants were cross-referenced, there were no measured metabolites 

that were common in all three host plants (Fig. 4.3). These results will be discussed 

in terms of the response of the plants to herbivory by P. rapae and plant species-

specific responses to herbivory. 

4.5.1 Responses induced by P. rapae in plants 

Previous studies have shown for a wide range of plant species that herbivory elicits 

a change in the concentration of specific metabolites (for examples see reviews by 

Textor & Gershenzon 2009; Pavarini et al. 2012; Zhang et al. 2012a). Far fewer 

studies have shown changes in the overall metabolic fingerprints of plants induced 

by herbivory (Widarto et al. 2006; Sutter & Müller 2011; Kutyniok & Müller 2012; 

Plischke et al. 2012; Marti et al. 2013). Herbivore induced changes in metabolic 

fingerprints have not been shown before for B. oleracea, C. spinosa and L. annua. 

Previous herbivory research on B. oleracea had gone as far as showing that P. rapae 

induces genome wide changes in B. oleracea by inducing the transcription of a 

number of genes (Broekgaarden et al. 2007) and with this current study we can 

now confirm that those transcriptional changes are translated into changes in the 

metabolite composition. 
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Herbivory by P. rapae causes increases in glucosinolate metabolites in Arabidopsis 

thaliana, B. nigra, Lepidium virginicum, Raphanus raphanistrum, R. sativus and B. 

oleracea plants (Agrawal et al. 2002; Traw 2002; Agrawal & Kurashige 2003; Shelton 

2005; Mewis et al. 2006) therefore an attempt was made to find evidence of 

glucosinolates being induced by P. rapae in the three plant species used in the 

current study. Evidence that two glucosinolate metabolites increased in infested B. 

oleracea was found. This concurred with a study where glucosinolates had been 

found to increase after P. rapae herbivory in B. oleracea (Agrawal & Kurashige 

2003). However, identification of the glucosinolates was tentative due to only the 

molecular mass being used (Sumner et al. 2007). Therefore, measurement of 

glucosinolates using a more conclusive method would be more informative as to 

the affect of P. rapae herbivory on glucosinolate abundance in B. oleracea. 

Similarly, more definitive glucosinolate identification and measurement could 

explore glucosinolates in the other host plants. To date few studies have measured 

glucosinolates in the leaves or seeds of C. spinosa and L. annua (Daxenbichler et al. 

1991; Griffiths et al. 2001; Vaughn et al. 2006) and none have been in relation to 

herbivory.  

4.5.2 Plants respond idiosyncratically to herbivory 

The large number of metabolites (over 1100) present in all three species regardless 

of herbivory (Fig. 4.2) demonstrates that there are chemicals in plants that are 

common across multiple species. One would expect a degree of metabolite 

similarity considering metabolites are the end expression of the genome (Sumner et 

al. 2003) and all three plants are genetically related being in the order Brassicales. 

However, the extent of the similarities (13% of all metabolites measured in all three 

control plants) has not been shown before using an untargeted method such as 

metabolic fingerprinting. The difficulty in identification of metabolites from 

untargeted analyses means these common metabolites are chemically unknown. 

Primary metabolites will account for some of these shared 1000 metabolites since 

primary metabolites are common to nearly all plant species (Pichersky & Lewinsohn 

2011) due to them being fundamental for key functions essential to life. However, 
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there is no easy way of estimating the proportions of primary metabolites and 

secondary metabolites represented by these shared metabolites.  

The focus on induced metabolites in this study was because an induced metabolite 

is likely to have a defensive function. However, some plant defences are 

constitutive (Kempel et al. 2011), therefore it is possible that some of the 

metabolites common to the three plants are constitutive defences which could play 

an equally large role in the defence of the plant. Unfortunately, confirming which 

metabolites are constitutive, and the ratio of constitutive to induced metabolites, 

would be difficult requiring each metabolite to be chemically identified or isolated 

and tested for negative effects against insects. For these reasons it is difficult to 

determine the importance of induced versus constitutive metabolites in plant-

insect interactions, although other experimental methods have been used to 

achieve this (Gutbrodt et al. 2012).   

In comparison to the shared metabolites found in the three plants (Fig. 4.2), the 

number of shared metabolites induced by herbivory was very low (Fig. 4.3). One 

explanation for the lack of common induced metabolites could be that the reaction 

to herbivory in plants is species-specific. A previous study showed that in B. 

oleracea (cabbage) and Tropaeolum majus (nasturtium) the release of volatile 

organic compounds (gases that attract parasitoids) in reaction to herbivory by P. 

rapae is plant species-specific (Geervliet et al. 1997). And species-specific 

transcriptions of genes have been found in Nicotiana attenuata (tobacco) and 

Solanum nigrum (nightshade) following attack by Manduca sexta (moth) (Schmidt 

et al. 2005). The same may be true for foliar secondary metabolites. Species 

specificity at this level is a possibility assuming that  plants are continually 

producing new metabolites (Jones & Firn 1991), through mechanisms such as gene 

mutations and duplication (Kliebenstein et al. 2001; Kampranis et al. 2007; 

Kliebenstein 2008), which enable them to compete successfully in arms races with 

their insect herbivores (Mithofer & Boland 2012). Therefore three plant species 

competing in separate arms races and evolving many defensive metabolites over 

time may no longer contain a large proportion of shared metabolites. This is 
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conceivable considering that C. spinosa is in the family Cleomaceae which split from 

the family Brassicaceae around 65 million years ago, and B. oleracea and L. annua 

although both in the family Brassicaceae are in different tribes which split around 

50 million years ago (Beilstein et al. 2010). It is possible that there are more induced 

metabolites found shared between plants that are more closely related than 

species studied here, at the family level for example, in the same genus, or within a 

species. This suggestion is supported by a transcription study on two cultivars of B. 

oleracea which found induced transcription of the same genes in both plants in 

reaction to herbivory by P. rapae (Broekgaarden et al. 2007).  

4.5.3     The suitability of a specialist herbivore 

The reactions of the three plants are specific to herbivory by P. rapae. This species 

is a good model to use because it feeds from a wide range of hosts therefore 

enabling the comparisons among taxonomically far apart plants. P. rapae is 

considered a specialist with known abilities to avoid the defences of hosts for 

example by neutralising glucosinolates (Wittstock et al. 2004). Compared to 

generalist species which are thought to suppress the induced responses of plants, 

as found in mustard (Sinapis alba) and tobacco plant (Nicotiana attenuata) attacked 

by the generalist armyworms Spodoptera frugiperda and S. exigua respectively 

(Travers-Martins & Müller 2007; Diezel et al. 2007), specialists are not thought to 

suppress plant responses (Ali & Agrawal 2012). Therefore, a specialist is more 

suitable than a generalist for an experiment where defence responses are 

purposely invoked so that they can be studied among plant species. It is unclear 

whether specialists and generalists induced different reactions in plants. Some 

studies have found differences in glucosinolate abundance, gene transcript levels 

(Mewis et al. 2006; Voelckel & Baldwin 2004) or trichome increases (Traw & 

Dawson 2002) whereas other studies comparing specialists and generalists have 

observed no differences in the transcript or glucosinolate responses in plants 

(Bidart-Bouzat & Kliebenstein 2011; Reymond et al. 2004). A better predictor of the 

plant defence response than the level of specialisation of an insect appears to be 

the feeding mode of the insect herbivore (Ali & Agrawal 2012; Bidart-Bouzat & 
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Kliebenstein 2011). It is unknown whether a phloem-feeding herbivore such as an 

aphid would induce different metabolite reactions among the plant species as the 

leaf chewer P. rapae has in the current experiment. 

4.5.4 Conclusion 

It is apparent from these results that host plants of P. rapae share some of the 

same metabolites but also have a large number of unique metabolites and that 

their metabolomes do not respond to herbivory in the same way. This is the first 

study to compare a large number of metabolites among species and now that the 

technology to measure large portions of the metabolome is available other 

research could extend investigations of the commonality of metabolites. This could 

create further revelations concerning the evolution of metabolite diversity and how 

that diversity is related to the pressures of insect herbivore attack. 
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Chapter 5 The metabolic fingerprints of an insect herbivore 
and its host plant are altered under elevated CO2 and 
temperature.  

 

5.1 Abstract 

Plant-insect interactions may be affected by future climate changes and studies 

incorporating more than one climate variable are important in predicting these 

effects. Pieris rapae (small white butterfly) and its host plant Brassica oleracea 

(cabbage) raised under elevated temperature and CO2 were examined by 

measuring insect performance, plant nitrogen content and the untargeted 

metabolic fingerprints of plants and insects. Higher temperatures decreased the 

development time of larvae and altered larval and plant metabolic fingerprints. In 

contrast, the performance of insects was not affected by elevated CO2 although 

elevated CO2 changed the metabolic fingerprints of insects and plants, and 

decreased the nitrogen content of host plants. Metabolic fingerprints of plants 

and insects could also be distinguished under the combined effects of elevated 

temperature and CO2 and plants responded more to these treatments than did 

insects. In both insects and plants, elevated temperature had more effect than 

elevated CO2 on metabolic fingerprints, and there were combined effects of 

temperature and CO2 on some metabolites that were not apparent when either 

temperature or CO2 were altered separately. These metabolomic data provide 

unique insights into the effects of changing climates on plants and insects. 
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5.2 Introduction 

Atmospheric CO2 has increased by 40% compared to pre-industrial levels with 

current concentrations at 397 ppm. Global climates have warmed by 0.85 oC since 

1880 (IPCC 2013; Tans & Keeling 2014). Many species are responding to these 

changes (Hickling et al. 2006) and improving our understanding of how future 

environments may affect species and the interactions among species, may help to 

improve predicted impacts of climate change on ecological systems (Hunter 2001). 

Predicting how climate change will affect the interactions between plants and 

insects is especially important given the respective roles plants play as crops and 

insects as pests of these crops (Gregory et al. 2009).  

Many studies have evaluated the effects of single climate factors on insects and 

plants, however researchers are realising that multi-factorial experiments are 

necessary to determine how abiotic factors may interact (Ziska et al. 2011). For 

example, a study on chrysomelid beetles (Phratora vitellinae) feeding on willow 

(Salix myrsinifolia) under elevated temperature and CO2 found that insect growth 

rates increased under elevated temperature, decreased under elevated CO2 but 

when the factors were combined the elevated temperature compensated for the 

reduced growth under elevated CO2 resulting in no overall difference in growth 

rates (Veteli et al. 2002). Therefore studies of multi-factorial experiments are 

important for understanding the consequences of future climate changes. 

Plant responses to CO2 and temperature have been well studied. Numerous effects 

on plants grown under elevated CO2 have been reported including changes in the 

rate of photosynthesis, increases in starch and sugar content and increases in 

biomass and yield (Long et al. 2004; Li et al. 2007). Other biochemical effects of CO2  

on plants that are important to their insect herbivores include changes in the 

abundance of defensive proteinases (Zavala et al. 2009; Zavala et al. 2008) and 

secondary defence metabolites (Klaiber et al. 2013).  This is brought about by the 

repressive effect CO2 has on the expression of genes encoding for signalling 

hormones such as jasmonates (Casteel et al. 2008; Zavala et al. 2008). In addition, 
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insects are potentially affected by the decrease in N (nitrogen) which can be 

observed in leaves grown under elevated CO2 (Bezemer & Jones 1998). N is thought 

to decrease in plants growing under elevated CO2 because the assimilation of soil 

nitrate into organic nitrogen in the plant is inhibited by higher concentrations of 

CO2 (Bloom et al. 2010). Furthermore, the N that is present in plant tissues is 

diluted by the accumulation of non-structural carbohydrates in plants grown under 

elevated CO2 (Taub & Wang 2008) creating a high C:N (carbon to nitrogen) ratio in 

these plants. Although elevated temperature is recorded as combining with CO2 to 

affect the abundances of secondary metabolites, temperature is not thought to 

interact with the effects of elevated CO2 on N in plants (Robinson et al. 2012). 

These effects of CO2 on the concentration of N in host plants will affect their insect 

herbivores (Coviella & Trumble 1999) because nitrogen is a limiting factor for insect 

growth (Slansky & Feeny 1977). In a meta-analysis of insect-host plant studies 

under elevated CO2, 51% of studies where a decrease in plant N was recorded 

found a significant decrease in the performance of insects (Ryan et al. 2010). 

However, there were also 38% of insects in the same meta-analysis that showed no 

change in performance and 57% of studies recorded insects eating increased 

amounts of host plant tissues to compensate for the reduction in N (Ryan et al. 

2010). One species in which this compensatory feeding has been observed is Pieris 

brassicae fed on Brassica oleracea grown under elevated CO2 where the larvae 

consumed up to 58% more leaf tissue compared to plants grown under ambient 

CO2 (Klaiber et al. 2013). There may be processes within larvae associated with 

compensatory feeding that enable the insect to maintain the same level of 

performance as under ambient CO2. This could mean that even if insect 

performance is not apparently affected by a rise in CO2, an effect could manifest 

biochemically through changes in the insect metabolome. 

A ‘snapshot’ of an organism’s metabolome can be taken using metabolic 

fingerprinting (Overy et al. 2005) which is the untargeted measurement of a large 

number of metabolites (Fiehn 2001). Metabolic fingerprinting has been used to 

investigate the direct effects of temperature on insects. Michaud et al. (2008) found 
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metabolic fingerprints changed in an Antarctic midge exposed to heat shock and 

freezing, and Malmendal et al. (2006) found changes in the metabolic fingerprint of 

Drosophila melanogaster associated with increases in the abundances of amino 

acids in response to heat shock. Therefore, it is likely that changes in temperature 

will affect the metabolomes of insects in addition to the performance of insects. 

These effects of temperature on insect performance are well recorded with a 

typical response to elevated temperatures being accelerated growth and 

development (Bale et al. 2002). In addition to the effects of temperature, the 

metabolome could also potentially change under elevated CO2 as outlined above. 

However, metabolic fingerprints of insects exposed to elevated CO2 and elevated 

temperature have not previously been examined, and there is no information on 

how the presence and abundance of insect metabolites change under these altered 

conditions. 

In contrast to insects, the metabolomes of plants have received more attention, 

with metabolomic methods used in a number of studies to examine how the 

quantity and quality of metabolites change in plants exposed to higher levels of CO2 

(Levine et al. 2008). Investigation of metabolomic changes in plants in relation to 

temperature have concentrated on cold and heat shock effects or cold acclimation 

(Gray & Heath 2005; Shulaev et al. 2008; Kral'ova et al. 2012) rather than 

temperature changes related to climate change. Metabolic fingerprinting of plants 

has also been used to evaluate the reactions of plants to biotic stresses such as 

herbivory and fungal pathogens (Sutter & Müller 2011; Kutyniok & Müller 2012) 

and abiotic stresses such as high salinity (Johnson et al. 2003; Lugan et al. 2010). 

However, changes to the metabolomes of plants grown under elevated 

temperature and CO2 have not been examined using metabolic fingerprinting. The 

advantage of using an untargeted metabolomic approach to study the effects of 

abiotic factors is that the reaction of a larger number of metabolites can be 

summarised, providing a better representation of the overall reaction of a plant 

metabolome to climate change compared with targeted studies. For example, the 

magnitude of the effect of elevated CO2 on a plant metabolome can be quantified 

and compared to that of elevated temperature to determine which climate change 



90 
 

factor has a greater effect on the biochemistry of the plant. Currently there is little 

information on this.  

Here I examined metabolic fingerprints of Pieris rapae (small white butterfly) 

feeding on Brassica oleracea (cabbage) reared under elevated temperature and CO2 

to investigate how an altered climate would affect the metabolomes of these plants 

and insects. A large change in these climate factors was used (approximate 

doubling of CO2 and 5 oC increase in temperature) to assess if organisms would 

respond to increases. The performance of P. rapae and the N content of B. oleracea 

plants were also measured to determine if insect performance is affected by the 

changes in climate factors and to establish if the larvae under elevated CO2 were 

likely to be eating host plants containing low N. The metabolic fingerprints are 

analysed to gain information on which climate change factor will have the biggest 

effect on organisms’ metabolomes in the future. 

 

5.3 Methods 

5.3.1 Plant and insect rearing 

B. oleracea seeds (variety capitata, cultivar stonehead; grovesnurseries.co.uk) were 

sown in compost (John Innes No.2) in trays and germinated in a greenhouse for two 

weeks. Seedlings were transferred to individual 10 cm diameter pots and randomly 

assigned to one of four treatments. Plants were reared in growth cabinets (Jumo 

LPF200, Snijders Scientific; 1 cabinet per treatment, 39 plants per treatment) under 

the following conditions: (1) ambient CO2 (373 ppm) and temperature (18 oC); (2) 

ambient CO2 (373 ppm) and elevated temperature (23 oC); (3) elevated CO2 (700 

ppm) and ambient temperature (18 oC); (4) elevated CO2 (700 ppm) and elevated 

temperature (23 oC). In all cabinets humidity was 70%, light levels were kept at 300 

μmols/m2/s and the light/dark cycle was 16L:8D. To minimise cabinet effects, 

cabinet temperature treatments were switched and plants moved between 

cabinets every two weeks until larvae were added when plants were eight weeks 
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old. Plants were watered every day and fertilized twice during the growing period 

with 30 ml per pot of plant food (Phostrogen N 14.0%, P 4.4%, K 22.4%) made up to 

packet instructions. A group of ten caterpillars required the young leaves of three 

plants to develop into pupae therefore within a treatment plants were spilt up into 

13 groups of three plants to provide sufficient food for larvae, and caterpillars were 

transferred to a new plant within the group of three plants before all the young 

leaves had been eaten. Thus all larvae were provided with excess young leaves 

during their development. Before larvae were added to the plants, a five mm leaf 

disc was taken from between the mid vein and the leaf edge of the two youngest 

fully-formed leaves. These plant samples provided information on the chemical 

diversity of plants resulting from changes in CO2 and temperature but without any 

confounding herbivory effects. The leaf discs from the three plants comprising the 

group of plants that insects would feed from were pooled for biochemical analysis. 

The leaf samples were flash frozen in liquid nitrogen and stored at -80 oC for 

metabolomic analysis. Leaf discs for carbon and nitrogen analysis were taken from 

the other side of the leaf vein of the same leaves, flash frozen and stored. 

Insect rearing is described in detail in Chapter 2 and is described here briefly with 

specifics to this chapter. Fifteen wild-caught, female butterflies collected from 

around York, UK (53o95’N, 1o08’W) laid eggs on B. oleracea plants and 2nd instar 

larvae were transferred with a paint brush to eight week old experimental plants. 

Between 10 -12 caterpillars laid by the same female were placed on a plant, a white 

net bag was placed over the plant and secured with an elastic band around the pot 

rim (Fig. 5.1a). Females contributed eggs to all four treatments to generate a split-

brood design. Once insects had developed to 4th instar, plants were checked every 

day for pupae. When the first 5th instar larvae on a plant pupated or was preparing 

to pupate (Fig. 5.1b), five caterpillars from that plant were flash frozen for 

metabolomic analysis after the gut and haemolymph were removed. Growth rate 

was calculated for each individual larva by dividing the adult dry weight on 

emergence by the number of days between placing the 2nd instar larva on the plant 

and pupation (development time).    
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a)          b) 

 

Fig. 5.1 a) B. oleracea plants growing in cabinets. The plants at the back covered with net 

bags have larvae on them. b) A P. rapae larva preparing to pupate. 

5.3.2 Statistical analyses of insect performance data 

All statistical analyses were performed in R (R Core Team 2013). A split-brood 

design was implemented with the intention that the effect of butterfly family on 

insect performance would be tested, however, family effects were included in 

analyses but only as a random effect. This was because a large number of pupae 

diapaused under ambient temperature treatments and these diapaused insects had 

significantly different performance parameters compared to non-diapaused insects 

and had to be excluded from all analyses, leaving some family-treatment 

combinations with no replicates. To test the effects of CO2 and temperature on 

insect performance, insect growth rates (mg day) and adult dry weights (mg) were 

each fitted to a linear mixed effects model (function ‘lmer’ in R) and development 

times (days) were fitted to a generalized linear mixed model (function ‘glmer’ in R) 

while controlling for non-normality by fitting a poisson error distribution. CO2 and 

temperature with an interaction effect were included as fixed effects and butterfly 

family was a random effect. The model with the lowest AICc value was deemed the 

model of best fit. 
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5.3.3 Carbon and nitrogen analysis 

To obtain sufficient material for carbon and nitrogen analysis leaf discs from six 

different plants were pooled and four of these samples per treatment were 

analysed. Samples were dried in a 60 oC oven for eight hours, weighed to obtain a 

dry weight then homogenised in a ball mill. 80 mg of each sample were analysed on 

a vario MACRO element analyser (elementar Analysen systeme GmbH) along with 

glutamic acid blanks to correct for drift. Two-way ANOVAs examined the effects of 

CO2 and temperature and their interaction on N and C:N ratio of plants. N data 

were arcsine square root transformed and C:N ratio data were ln transformed to 

meet normality assumptions of ANOVA.  

5.3.4 Metabolomic analysis 

To obtain metabolic fingerprints six out of the 13 plant groups from each of the four 

treatments were sampled for both B. oleracea and P. rapae (in total 24 plant 

samples and 24 larval samples). For plant samples six leaf discs were pooled from 

each group of three plants that a group of insects had fed from and five larvae from 

this group of larvae were pooled to form a sample. Thus I analysed the metabolic 

fingerprints of larvae as well as the metabolic fingerprints of the plants the larvae 

had fed on.         

Sample extraction and metabolomic analysis are described in full detail in Chapter 2 

and briefly here. Leaves and larvae were flash frozen immediately after harvesting, 

freeze dried, homogenised while being kept cool and extracted using methanol 

containing an internal standard. After filtering, the metabolites in samples were 

measured using a QToF Mass Spectrometer coupled to a High Performance Liquid 

Chromatography system (HPLC-MS) in both positive and negative ionisation mode.  

5.3.5 Metabolomic data pre-processing 

Features were aligned across all samples, filtered and Missing Value Imputation 

(MVI) performed on the data using a Kernel based Feature Alignment programme 

(KFA) (Perera 2011). Samples analysed on the LC-MS machine were shown to have a 
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larger amount of noise in the data than usual for unknown technical reasons and 

therefore the filtering criterion was higher than the usual 50% and a feature was 

included in the filtered data only if it was found to occur in at least four out of six of 

the replicates in at least one of the four treatment groups. Before filtering the 

datasets contained measurements of 17,814 features and 8,331 features in positive 

and negative ionisation mode respectively. A total of 68.5% and 47.4% of features 

were considered noise and excluded during filtering leaving 5,606 and 2,503 

metabolites in the positive and negative ionisation mode datasets, respectively. 

PCAs were performed on both positive and negative ionisation mode datasets to 

ensure that exclusion of features had no qualitative effect on the results.  

5.3.6 Statistical analyses of metabolomic data 

When using HPLC-MS, the varying chemical structures of the metabolites mean 

some are more easily ionised in positive or negative ionisation mode, therefore 

positive and negative ionisation modes will measure a different suite of 

metabolites. There is likely to be overlap between the two modes as some 

molecules are ionised by both methods. Therefore data collected in positive and 

negative ionisation modes were analysed separately. The ‘prcomp’ function in R 

was used to perform PCAs (Principal Component Analyses) on B. oleracea and P. 

rapae data to compare the magnitude of any differences between metabolic 

fingerprints of insects and plants. Separate PCAs on B. oleracea and P. rapae were 

then performed to examine if the different CO2 and temperature treatments had 

affected the plant and larval metabolic fingerprints.  

To quantify the number of metabolites that significantly changed in abundance in 

response to CO2, temperature, and the interaction of the two factors, two-way 

ANOVAs were carried out on every metabolite. For a small number of metabolites 

(ten in plants and six in insects), assumptions of normality could not be met even 

after transformation of the data and so non-parametric Scheirer-Ray-Hare tests 

were carried out instead. Three p values (CO2, temperature and their interaction) 

for each metabolite were obtained and converted to q values to correct for FDR. Chi 
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squared tests were used to examine if a similar number of metabolites were 

changed by CO2 as by temperature. 

 

5.4 Results 

5.4.1 Insect performance is affected by temperature but not CO2 and there is 
less foliar nitrogen in plants under elevated CO2.  

Insect performance was the net effect of direct and plant-mediated indirect effects 

on larvae. Models fitted to the growth rate and development times of larvae 

indicated that temperature improved and CO2 reduced these insect performance 

parameters. However, there was no effect of CO2 or temperature or their 

interaction on adult dry weights (indicated by the best fit null model) therefore the 

decrease caused by temperature and the increase caused by CO2 in growth rate 

(composed of adult dry weight divided by development time) was primarily due to 

effects on development time.  At higher temperatures Pieris rapae had shorter 

development times by about 12 days (23 oC mean = 13.82 ±2.40 days and 18 oC 

mean = 26.03 ±4.34 days; Fig. 5.2a) and faster growth rates by 0.64 mg per day (23 

oC mean = 1.41 ±0.30 mg day and 18 oC mean = 0.77 ±0.17; Fig. 5.2c). Whereas the 

increase in development rate between ambient and elevated CO2 was only two 

days longer (development time: ambient CO2 mean = 15.12 ±5.36 and elevated CO2 

mean = 17.42 ±5.77) and 0.24 mg per day less in growth rate (ambient CO2 mean = 

1.40 ±0.40 and elevated CO2 mean = 1.16 ±0.31). Furthermore, there was a 

temperature gradient in the ambient CO2 cabinets because air was not mixed as 

effectively as in the elevated CO2 cabinets where CO2 enriched air was pumped in. 

Thus the majority of insects developed in the warmer areas of the ambient CO2 

cabinets (Fig. 5.2d), and I conclude that these apparent small effects of CO2 on 

insect development are probably artefacts. The slight temperature gradient was 

unlikely to have affected the metabolic fingerprints of the insects because those 

samples were from the middle of the cabinets where temperatures were the same 

as those in the elevated CO2 treatments. Similarly, all plant samples were taken 
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after plants had been moved regularly around the cabinets although this 

randomisation stopped when larvae were added to plants to prevent confusion 

while recording data from plants. 
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a)                                   b) 

   

c)                                   d) 

  

Fig. 5.2 The performance of P. rapae under elevated temperature and CO2 a) development 

time b) adult dry weight c) growth rate. Means and SDs are plotted.  Replicate numbers are 

shown on bars. d) The development time of insects at 23 oC in elevated CO2 cabinets (red 

squares) and ambient CO2 cabinets (black circles and black line). Development time in 

ambient CO2 cabinets, but not elevated CO2, was related to pot position in the cabinet 

because of a slight temperature gradient in those cabinets. 

Foliar nitrogen was measured to determine if the level of nitrogen in the plants 

would explain any differences in insect performance. Plants grown under elevated 

CO2 had 32.8% less N than those under ambient CO2 (two-way ANOVA, F1,12 = 52.30, 
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p<0.001; ambient, mean = 1.40% ±0.18; elevated, mean = 0.94 ±0.10), but there 

was no significant effect of temperature (although it approached significance; two-

way ANOVA, F1,12 = 4.18, P = 0.063) and no interaction effects (two-way ANOVA, 

F1,12 = 2.0, p = 0.182; Fig. 5.3a). The C:N ratios were higher under elevated CO2 

treatments (two-way ANOVA, CO2, F1,12=46.34, p<0.001; ambient, mean = 29.85 

±4.10; elevated, mean = 43.71 ±4.90), but there was no significant effect of 

temperature or any interaction effects (two-way ANOVA, temperature, F1,12 = 2.92, 

p = 0.113; interaction, F1,12 = 1.51, p = 0.243; Fig. 5.3b). Thus plants grown under 

elevated CO2 contained less N but insect performance was not lower on these 

plants with less N. 

a)                                   b) 

   

Fig. 5.3 a) Nitrogen (N) content and b) carbon:nitrogen ratio (C:N) of leaves from plants 

grown under four experimental treatments. Mean and standard deviations are plotted. N = 

4 samples per treatment. 

5.4.2 More metabolites are detected in plants than in insects 

There were more metabolites detected only in plants (positive 2471 and negative 

1161) than only in insects (positive 1954 and negative 853) (Fig. 5.4), and only a few 

metabolites (positive 1181 and negative 489) were detected in both insects and 

plants (grey in Fig. 5.4). This was evident for both positive and negative ionisation 

mode datasets. 
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Fig. 5.4 The proportions of metabolites that were detected in plants only, insects only and 

both plants and insects for datasets collected in positive and negative ionisation modes. 

The numbers of metabolites are in brackets. 

5.4.3 Plant fingerprints are more distinctive among treatments than insect 
fingerprints 

PCA scores were similar between positive and negative ionisation mode datasets. 

The metabolic fingerprints of plants and insects were distinguished by PCAs fitted 

to metabolic fingerprints of B. oleracea and P. rapae samples (Fig. 5.5). PCA plots 

showed that PC 1 separated insects from plants. PC 1 explained a large proportion 

of the variation in both data sets (positive ionisation mode, PC 1 47.9%; negative, 

PC 1 47.4%) compared to the proportion explained by the next 4 PCs (positive PC 2-

5 18.1%, negative PC 2-5 18.0%) reflecting the larger difference between plant and 

insect metabolic fingerprints than between treatments within either of the 

organisms. PC 2 distinguishes the fingerprints of plants grown under different 
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treatments, but did not distinguish among insect data. This indicated that the 

metabolic differences among plants in different treatments were much larger than 

metabolic differences among the insects.  

a) b) 

 

Fig. 5.5 Score plots from PCAs performed on a) positive and b) negative ionisation mode 

plant and insect metabolic fingerprints. Variation explained by each PC is shown in brackets 

on the axes. The insect samples (hollow symbols) and plant samples (filled symbols) are 

distinguished by PC 1 scores which account for a large proportion of the variation in the 

data. PC 2 distinguishes between plants grown under different treatments although the 

small size of the variation explained by PC 2 (0.05%) compared to PC 1 (47.9%) shows that 

the differences among plants are much smaller than the differences between plants and 

insects.  

5.4.4 Metabolic fingerprints of B. oleracea and P. rapae are changed by CO2 and 
temperature treatments 

A scatterplot of scores from PC 1 and 2 from PCAs performed on plant metabolic 

fingerprints collected in positive and negative ionisation mode showed similar 

patterns in terms of effects of CO2 and temperature on plant metabolic fingerprints 

(Fig. 5.6). There was little effect of elevated CO2 on insect development rates (see 

above) yet metabolic fingerprints of insects were distinct among treatments (Fig. 

5.7). There was a greater amount of variation within treatments observed in insect 
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samples (Fig. 5.7; replicates within a group are spread out) compared to plant data 

(Fig. 5.6; replicates are tightly clustered). 

 

a)      b) 

  

Fig. 5.6 Score plots from PCAs performed on a) positive and b) negative ionisation mode 

plant metabolic fingerprints. Plants under different temperature and CO2 treatments have 

distinct metabolic fingerprints. Temperature treatments are denoted by colour (18 oC in 

blue and 23 oC in red) with CO2 as shapes (elevated CO2 square symbols and ambient CO2 

circles). Variation explained by each PC is shown in brackets on the axes.  
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a) b) 

 

Fig. 5.7 Score plots from PCAs performed on a) positive and b) negative datasets of insect 

metabolic fingerprints. Variation explained by each PC is shown in brackets on the axes. 

Temperature treatments are denoted by colour (18 oC in blue and 23 oC in red) with CO2 as 

shapes (elevated CO2 square symbols and ambient CO2 circles). Insects under different 

temperatures and CO2 have distinct metabolic fingerprints.  

5.4.5 The metabolome is affected more by temperature than CO2 

There were more metabolites significantly changed in abundance (according to FDR 

corrected q<0.05) by temperature than by CO2 in both plant datasets (positive 

dataset, temperature = 402 metabolites and CO2 = 244 metabolites; χ2= 38.64, 

p<0.001; negative dataset, temperature = 108 metabolites and CO2 = 37 

metabolites; χ2= 34.77, p<0.001; sum of the numbers in the temperature or CO2 

circles in Fig. 5.8a and b). This suggests the plant metabolome was more affected by 

the rise in temperature than the rise in CO2. Similarly, for insects there were more 

metabolites changed by temperature than CO2 in the positive dataset (temperature 

= 75 metabolites and CO2 = 40 metabolites; χ2= 10.65, p<0.01; temperature and CO2 

circles in Fig. 5.8c) although this was not evident in the negative dataset 

(temperature = 18 metabolites and CO2 = 24 metabolites; χ2=0.86, p=0.50; Fig. 

5.8d).  
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There were some patterns that were the same for both positive and negative 

datasets of the plants and insects. For example, some metabolites changed in 

abundance in the elevated temperature treatments as well as the elevated CO2 

treatments (numbers in bold in the overlap between temperature and CO2 Fig. 5.8). 

There were also metabolites that did not respond to either temperature or CO2 but 

were changed in abundance by an interaction between temperature and CO2 

(numbers italicised in the CO2 x Temp Interaction circles in Fig. 5.8).  
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a)                                                            b) 

 

c)                                                             d) 

 

Fig. 5.8 Venn diagrams summarising the number of measured metabolites found to have a 

statistically significant change in abundance (according to q<0.05) in B. oleracea plants (a) 

positive (b) negative ionisation modes and in P. rapae larvae (c) positive and (d) negative 
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ionisation modes. Circle areas are proportional within a diagram to the number of 

metabolites. The numbers of metabolites that are changed by both the temperature and 

CO2 treatments are in bold. The number of metabolites that were only changed by the 

interaction but not by either temperature or CO2 alone is in italics.  

 

5.5 Discussion 

The metabolic fingerprints of insects and plants were different (Fig. 5.5). This is 

expected because the metabolome is the end result of the genome (Sumner et al. 

2003) and these two organisms have very different genomes. The differences 

among the metabolic fingerprints of plants under different experimental 

treatments were larger compared to the differences among insects under the 

treatments (Fig. 5.5) and variation within a treatment was smaller for plants (Fig. 

5.6) than for insects (Fig. 5.7). These patterns suggest that the plant metabolome is 

more affected than the insect metabolome by changes in CO2 and temperature, 

with more plant metabolites changed in abundance and those changes of a greater 

magnitude. Previous studies comparing the reaction of plant and insect 

metabolomes to abiotic factors do not exist making the cause for this pattern 

difficult to interpret. One explanation could be that plants contain more 

metabolites than insects as suggested by the greater number of metabolites that 

were measured in plants than in insects using the same methods (Fig. 5.4). This is 

conceivable considering plants are thought to contain thousands of metabolites 

(Davies et al. 2010). However, caution needs to be taken with this interpretation 

because it is possible that more metabolites were measured in plants than insects 

because the methanol extraction method used has been optimised for plants (see 

Chapter 2) and therefore plants only appeared more affected by temperature and 

CO2 compared to insects. Nonetheless, using the same extraction technique for the 

two taxa is beneficial because it allows these direct comparisons between plants 

and insects under the same experimental treatments.  
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5.5.1 Metabolic fingerprints of B. oleracea and P. rapae are changed by CO2 and 
temperature treatments 

The effect of rising temperatures decreasing the development time of insects is well 

known (Bale et al. 2002) and has been recorded in P. rapae (Gilbert 1984; 

Kingsolver 2000). However, the effect of rising temperature on the metabolome of 

an insect has not been measured and here I found that the metabolic fingerprint of 

P. rapae was changed by rearing temperature. Direct effects and plant-mediated 

effects were not separated in this experiment however it is likely that at least some 

of the changes in P. rapae, if not all, are due to the direct effect of temperature. 

Previous metabolomic analyses of other species of insect have found metabolites 

change in response to temperature albeit in response to heat shocks and cold 

tolerance (Malmendal et al. 2006; Michaud et al. 2008; Colinet et al. 2012a; 

Malmendal et al. 2013; Verberk et al. 2013). Nonetheless, changes in metabolites 

such as amino acids (Malmendal et al. 2006) increases in α-ketoglutarate, 

putrescine and decreases in glycerol, glucose and serine (Michaud et al. 2008) and 

sugars such as lactate and succinate associated with energy metabolism (Verberk et 

al. 2013) have been recorded in association with heat shocks or higher temperature 

therefore these could be the starting points for establishing which metabolites are 

responsible for the changes in P. rapae metabolomes between different 

temperatures in the current study. Future work could focus on this. 

The reactions of plants to abiotic factors have been researched for decades 

although there is still a lot we do not know about the changes in plant molecular 

processes (Rodziewicz et al. 2014). A rise of 5 oC in the current study was shown to 

alter the metabolic fingerprint of B. oleracea. Studies on the effect of temperature 

on the metabolome, although often targeting certain groups of metabolites and 

focussed on heat shock rather than sustained elevated temperature, show 

increases in primary metabolites such as sugars and amino acids in Arabidopsis 

(Kaplan et al. 2004; Rizhsky et al. 2004). Through meta-analysis, general responses 

of carbon based secondary metabolites in plants to rises in temperature have been 

shown to be decreases in phenolics and increases in terpenoids (Zvereva & Kozlov 

2006; Robinson et al. 2012) with general patterns for responses to temperature of 
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other secondary metabolites not clear (Bidart-Bouzat & Imeh-Nathaniel 2008). Such 

changes are likely to be driven by signalling hormones that change in abundance as 

environmental temperature increases (Wahid et al. 2007). Considering these 

phytohormones are also metabolites they could themselves account for the 

differences in plant metabolomes observed for plants grown under the different 

environments. In consideration of this previous research, it is likely the changes in 

the metabolic fingerprints of the B. oleracea grown under elevated temperature in 

the current study are due to alterations in both primary and secondary metabolites.  

5.5.2 Elevated CO2 affected the insect metabolome though not the performance 
of insects 

Despite the lower level of N in the host plants under the elevated CO2 treatments, 

insect performance was not affected by CO2 suggesting that insects may have been 

employing compensatory feeding as observed in other insect species (Bezemer & 

Jones 1998; Ryan et al. 2010). Although compensatory feeding in P. rapae has not 

been studied under elevated CO2, there are reports of P. rapae carrying out 

compensatory feeding when fed either plants manipulated to contain different 

amounts of N (Loader & Damman 1991; Hwang et al. 2008) or artificial diets 

differing in N status (Morehouse & Rutowski 2010). This compensatory feeding may 

be the reason for the change in the metabolites in insects under elevated CO2 even 

when there is no effect on insect performance, and it is possible that in 

compensating for the lack of N in the host plant, changes were made in the insect 

metabolome. For example, metabolome changes may be the result of changes in 

the biochemical pathways involved in the process of extracting nutrients from the 

food. Similarly, the metabolite changes in the insect could be caused by the 

changes in the plant defences. Elevated CO2 can change the quantities of defensive 

metabolites as well as non-metabolite compounds such as defensive proteins, due 

to the effect of CO2 on the controlling phytohormone signals (Zavala et al. 2009; 

Zavala et al. 2008; Klaiber et al. 2013). These changes in plant defences could in 

turn change the insect metabolome. Alternatively, since the design of the 

experiment did not allow for the separation of direct and plant-mediated effects, 
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the differences in metabolic fingerprints of insects could also be due to the direct 

effect of elevated CO2.  

This is the first time an insect metabolome has been studied under elevated CO2 at 

this concentration. A previous study which quantified the metabolic fingerprint of 

Drosophila melanogaster when anaesthetised by CO2 found that after twenty-four 

hours any initial differences in the metabolic fingerprint were no longer evident 

(Colinet & Renault 2012). This return to a normal metabolic fingerprint is support 

for there being no long-term effect of CO2 on the insect metabolome, although 

comparisons are difficult because in Colinet & Renault (2012) one dose of highly 

concentrated CO2 was applied to the insect as opposed to the constant elevated 

CO2 in this study. Knowledge of the insect metabolome under elevated CO2 is 

currently insufficient to understand what drives changes in metabolites, although 

further research could separate the direct and indirect effects of CO2 on insects and 

could investigate if there is an underlying mechanism whereby compensatory 

feeding necessitates a change in the metabolome. 

5.5.3 A multi factor approach allows unique conclusions on the effects of 
temperature and CO2 on metabolites. 

Some studies have profiled multiple metabolites in plants exposed to higher 

temperatures (a heat shock treatment) (Kaplan et al. 2004; Rizhsky et al. 2004) or 

to elevated CO2 (Li et al. 2006; Li et al. 2008; Kaplan et al. 2012) but this study is the 

first to examine metabolic fingerprints under both elevated temperature and CO2 

simultaneously. This multi-factor approach has been championed by a number of 

previous studies (Williams et al. 2000; Villalpando et al. 2009; Murray et al. 2013b; 

Scherber et al. 2013) and has allowed a comparison of the size of the temperature 

effect compared to the CO2 effect on the plant metabolome: 116% and 229% more 

metabolites changed under elevated temperature than under elevated CO2 in 

positive and negative modes respectively. Since the chemical identify and function 

of each of these metabolites is unknown it is difficult to ascertain why the plant 

metabolome is changed more by elevated temperature than elevated CO2. It is also 

unknown if the number of metabolites changed by a factor is related to the size of 



109 
 

change in the factor, for example if a rise of 5 oC would change more metabolites 

than a 2 oC rise. Furthermore, there were a number of metabolites in both the 

plants and insects that changed due to an interaction effect between CO2 and 

temperature but did not respond to either factor separately and therefore would 

not have been apparent in a single factor study. Experimental designs should strive 

to incorporate multiple factors if we are to learn more about the consequences of 

climate change for organisms.  

5.5.4 Conclusion 

The current study is the first to use metabolic fingerprinting to demonstrate the 

effects of elevated temperature, elevated CO2 and both simultaneously on the 

metabolomes of a plant and its insect herbivore. In order to expand on the findings 

from this study, metabolic profiling could be employed to identify the specific 

metabolites that are affected by climate change factors. Realising the identity and 

function of metabolites affected by elevated temperature and CO2 is essential in 

understanding the consequences of a changing climate. 
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Chapter 6 General Discussion 

 

6.1 Summary of thesis findings 

The main aim of my thesis was to use metabolic fingerprinting to improve 

understanding of plant-insect interactions. To achieve this I measured the effects of 

biotic and abiotic factors on the metabolic fingerprints of the herbivore Pieris rapae 

and several species of its larval host plants.  

In Chapter 3 I examined interactions between the polyphagous insect Pieris rapae 

and its Brassicales host plants by characterising the biochemistry of the insects as 

well as the plants. Larvae of P. rapae were fed on seven different species of host 

plants in order to examine how larval diet affects the metabolic fingerprint of P. 

rapae larvae. Host plants that were more distantly related were selected for study 

to encompass a wide taxonomic range of larval host plants used by P. rapae. The 

metabolic fingerprints of P. rapae larvae varied according to the host plant species 

the larvae had eaten. Larvae fed Cleome spinosa were the most distinct from other 

larvae because of a group of abundant metabolites that were likely to have 

originated in the host plant. Similarities between the metabolic fingerprints of the 

host plants reflected the taxonomic relationships between the host plants. Contrary 

to prediction, the nitrogen content of the different host plant species did not 

explain the performance of the insects on those hosts, although there was some 

evidence that plants with more similar metabolic fingerprints were associated with 

more similar levels of herbivore performance. Thus I conclude that the species of 

host plant an insect uses affects the biochemistry of the insect and that the 

metabolites within those host plants may influence larval performance. 

In Chapter 4 I examined the metabolites induced by P. rapae herbivory on three 

host plant species to compare plant reactions to herbivory and to examine evidence 

for common defensive metabolites among plant hosts. The metabolic fingerprints 

of control (i.e. uneaten) plants and plants attacked by P. rapae were compared to 
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assess if herbivory by P. rapae had an effect on the metabolite fingerprints of 

plants. The abundances of metabolites from control and attacked plants were 

compared to isolate metabolites that had been induced by herbivory. It was 

predicted that these induced metabolites would include some that were common 

to the three plant species and would therefore indicate important plant defence 

compounds. As hypothesised, herbivory by P. rapae altered the metabolic 

fingerprints of host plants. Contrary to prediction, metabolites that were induced 

by herbivory differed among the three plant species demonstrating the extent to 

which reactions to herbivory were plant species–specific. One possibility is that 

these host plants have had different assemblages of insect herbivores associated 

with them that apply different selection pressures resulting in the divergent 

evolution of plant defence responses.  

In Chapter 5 I evaluated how plant-insect interactions might alter in future 

environments by rearing P. rapae and one of its host plants Brassica oleracea under 

elevated temperature and CO2. The performance of larvae was predicted to 

increase under elevated temperature and decrease under elevated CO2. The N 

(nitrogen) content of plants under elevated CO2 is known to decrease (Bezemer & 

Jones 1998) and N is a limiting factor of insect growth (Slansky & Feeny 1977), 

therefore the N content of plants was measured to assess if changes in N arising 

from different CO2 rearing conditions might explain any observed changes in insect 

performance. The metabolic fingerprints of organisms under conditions where 

temperature or CO2 or both factors were elevated were predicted to be different 

from metabolic fingerprints under ambient treatments. Insects developed faster 

under elevated temperature. As predicted the leaves of plants that insects fed upon 

under elevated CO2 contained less N, however, insects did not show any difference 

in performance under elevated CO2. As hypothesised the metabolic fingerprints of 

plants and insects were changed by elevated temperature and CO2 and more 

metabolites were found to change under elevated temperature compared with 

elevated CO2. The multi-factorial design of the experiment highlighted that some 

metabolites were changed by a combination of elevated temperature and elevated 

CO2 but were not affected by either factor alone. I conclude that under future 



112 
 

climates P. rapae larvae may develop faster due to increased temperatures, 

whereas the lower N in its host plants as a consequence of elevated CO2 may have 

little impact on insect performance, although insects may eat more to compensate 

for lower N in plants. The specific chemical identities of metabolites that changed in 

plants grown under elevated temperature and CO2 are not known although they 

are likely to include both primary and secondary metabolites, and may help to 

maintain the functioning of plants in the face of a changed environment. Similarly, 

the metabolic changes in insects may be the consequence of biochemical systems 

that enable increased growth of insects under elevated temperatures and maintain 

larval performance by compensatory feeding when faced with less nutritious food 

under elevated CO2. Further investigation of these metabolic fingerprints could 

reveal the underlying mechanisms that allow organisms to adapt to changes in the 

environment.  

Overall this thesis found that different plant species have distinct metabolic 

fingerprints which are altered by P. rapae herbivory and by abiotic changes in the 

environment such as elevated temperature and CO2. I found that the metabolic 

fingerprints of insects are influenced by the species of host plant they feed on and 

by environmental conditions (temperature and CO2 concentration) during 

development. I also found that some host plant metabolites transfer chemically 

intact into insect tissues. These findings demonstrate that new information can be 

revealed by extending the use of metabolic fingerprinting to include interacting 

species, and enabling host plant metabolomes to be compared with those of their 

insect herbivores. An assessment of metabolic fingerprinting as a method, the 

contributions of this thesis to the study of plant-insect interactions and future work 

are discussed below. 

6.2 Critical evaluation of the metabolic fingerprinting method 

Metabolomics is a new method compared to the other ‘omics’ approaches such as 

proteomics or genomics (Wishart 2007), therefore standard practices, procedures 

and methods are still developing and improvements are regularly suggested (Perera 
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2011; Hrydziuszko & Viant 2012). Metabolic fingerprinting has the unique capability 

of measuring thousands of metabolites simultaneously which makes it a useful tool 

for investigating metabolomes, although the method does have some drawbacks 

which I discuss below.   

6.2.1 Metabolome coverage of a fingerprint 

Metabolic fingerprinting measures thousands of metabolites, but no single 

metabolomic method is capable of measuring all the metabolites within a 

metabolome (Hall 2006). The sample of metabolites measured from the 

metabolome is biased towards certain types of chemical compounds by the 

extraction and LC-MS methods used (Sanchez et al. 2008). For example, a methanol 

extraction will extract non-polar metabolites but is likely to leave polar metabolites 

behind and GC-MS (Gas Chromatography-Mass Spectrometry) will measure more 

volatile, low molecular weight compounds compared with a LC-MS method 

(Allwood et al. 2008; Macel et al. 2010). It is difficult to assess what proportion of 

the entire metabolome is measured because the total number of metabolites 

within a plant species is unknown, although estimates are in the region of several 

thousand metabolites per species (Davies et al. 2010). This raises the possibility that 

additional metabolites of interest may exist in the study systems considered in this 

thesis that were beyond the scope of the methods used in this fingerprinting study. 

If it is supposed that the majority of the metabolome was not measured in this 

study, this implies that in addition to those metabolites found in larvae fed C. 

spinosa there could be other plant metabolites that are transferred chemically 

intact into insects (Chapter 3) but were not included in the range of metabolites 

extracted by the techniques used in this study. Similarly, the full range of 

metabolites that are induced by P. rapae herbivory is unlikely to have been 

measured in the three host plant species attacked (Chapter 4). Therefore it is 

possible that some induced metabolites might have been missed in my study, and 

that these metabolites might have shown a common response to herbivory in the 

three study species of plant, implying more consistent responses to herbivory than I 

detected. Nonetheless, I conclude there was little evidence of a common response 
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to herbivory by different plant species based on the large number of metabolites 

measured in this study.   

Having acknowledged that I cannot assess what proportion of the metabolome the 

metabolic fingerprint represents, the following reasons suggest that the proportion 

is sufficiently large to address the questions posed in this thesis. For instance, I 

wished to examine the metabolites of insects feeding on different host plant 

species (Chapter 3), and the coverage of the metabolome by fingerprinting was 

sufficiently large to detect metabolites in P. rapae larvae feeding on C. spinosa that 

were previously unknown. Such metabolites would probably not be revealed in a 

targeted analysis that measures a much smaller number of metabolites. In Chapter 

4, the study of metabolites induced by herbivory in the three host plant species was 

able to include a wide range of metabolites because the metabolic fingerprints 

encompassed > 3000 metabolites per plant species. This represents a far greater 

proportion of the plant metabolome than could be measured by a targeted 

analysis, which usually focusses on fewer than 50 metabolites. Therefore I conclude 

that failure to find metabolites that are induced in common among the study 

species is likely to be a robust finding. For these reasons, I conclude that metabolic 

fingerprinting is a good method for revealing plant compounds that move between 

trophic levels and for comparing effects of herbivory among plant species.   

6.2.2 Pre-processing and statistical analyses of metabolic fingerprint data 

Metabolomic data can be described as ‘noisy’ with many features that do not 

represent real metabolites, and also real metabolites that are not recorded in every 

replicate due to technological failings (Hrydziuszko & Viant 2012). In this thesis, 

these problems were circumvented by filtering out the ‘noise’ so that any 

remaining features are more likely to represent metabolites. In instances where a 

metabolite was not recorded in all replicate samples, these zero values in the data 

were managed by applying MVI (Missing Value Imputation) to enable more robust 

statistical analyses (Hrydziuszko & Viant 2012). In addition, the relatively large 

number of biological replicates had been maximised to enable better filtering of the 
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data and to increase the robustness of the metabolite measurements. The 

techniques used in this thesis are expected to be surpassed in the near future 

because better technology to measure metabolites and to pre-process the data are 

currently being developed (Wishart 2007; Scheubert et al. 2013) which will likely 

result in metabolic datasets becoming more accurate and more reliable to use in 

future.  

Data sets from metabolic fingerprinting contain thousands of data points and 

require various statistical and descriptive analyses to summarise this information. 

Appropriate statistics include specialist methods such as PLS-DA (Partial Least 

Squares-Discriminant Analysis) or a combination of different methods to interpret 

the data. With noisy data, a univariate test requires a large difference in metabolite 

abundances or a large number of replicates in order to detect a change, whereas 

Principal Components Analysis (PCA) examines changes in the full data sets, 

including small changes in individual metabolites that may be too small to be 

significantly different in a univariate test. This means that using both univariate and 

multivariate approaches together can give a clearer picture of an organism’s 

metabolome, and how the metabolites in an organism change in response to biotic 

and abiotic factors. This is illustrated in Chapter 4 where a PCA suggested the 

metabolic fingerprint of Lunaria annua was altered by herbivory whereas multiple 

separate univariate analyses found that the abundance of only a single metabolite 

was significantly altered by herbivory (after correction for FDR).  This demonstrates 

how careful consideration should be given to the statistical and descriptive analyses 

employed to fully explore the questions being asked. 

6.2.3 Barriers to identification of metabolites 

A disadvantage of metabolic fingerprinting and of metabolomic studies in general is 

the difficulty in obtaining chemical identities of unknown metabolites. Despite the 

number of metabolic databases which aim to gather together identifying 

parameters of metabolites (Tohge & Fernie 2009), the information in these 

databases was not sufficient to obtain even tentative identities for the majority of 
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the metabolites measured in this thesis. Identification using only the molecular 

weight of the metabolite (as used for identifying glucosinolate compounds in 

Chapters 3 and 4) is possible but is always a tentative identification, making 

conclusions drawn less reliable. Comparisons between the MS/MS spectrums of 

abundant C. spinosa metabolites (Chapter 3) with MS/MS spectrums in databases 

apparently matched one of the unknown metabolites to oleanolic acid. However, a 

standard of oleanolic acid failed to confirm this identification which highlights the 

uncertainty of identifications based on molecular weights and database MS-MS 

spectrums alone. As more metabolites are characterised and more contributions to 

metabolomic databases are made, the task of identifying metabolites of interest 

that are highlighted by metabolic fingerprinting should become easier (Scalbert et 

al. 2009; Bowen & Northen 2010), further advancing the benefits of fingerprinting 

methods.  

 

6.3 Contributions to the knowledge of plant-insect interactions  

6.3.1 Can metabolic fingerprinting further our knowledge of plants and insects? 

Metabolic fingerprinting evaluates the metabolites of an organism in a way that 

targeted analyses cannot because of the large number of metabolites measured 

which provides a more holistic view of the metabolome. In this thesis, metabolic 

fingerprinting has enabled questions to be answered about which biotic and abiotic 

factors influence the quality and quantity of metabolites that constitute the 

metabolome. By comparing P. rapae larvae feeding on different species of host 

plants (Chapter 3), metabolic fingerprinting revealed that diet affected the insect 

metabolome. Similarly the metabolome of insects was altered by environmental 

rearing conditions (Chapter 5). There is a lack of metabolomic data on insects, with 

previous studies defining the insect in terms of growth, fecundity and/or mortality. 

However, the findings from this thesis examining which factors influence the 

metabolomes of insects can now be built on in future to investigate the underlying 
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biochemical mechanisms that result in observed differences in insect performance 

reported in the literature. 

In plants, the fingerprinting method used in this thesis also revealed new findings. 

Temperature was found to have more of an effect on plants than CO2 (Chapter 5). 

The methods used here where all the metabolites changed by a specific 

environmental factor were summed to determine which climate factor had the 

larger effect on plants in terms of the number of metabolites affected, could be 

applied in other multi-factorial fingerprinting studies. This method which quantified 

the magnitude of metabolic change following abiotic stress could be used to assess 

which elements of climate change (for example temperature, greenhouse gases 

and/or drought) might have stronger effects on plants. This approach assumes that 

if a greater number of metabolites are observed being changed by a factor, this 

implies that a greater number of biochemical pathways are changed in a plant as it 

responds to altered abiotic conditions.  Since these pathways control many plant 

functions such as photosynthesis, growth or defence, the overall change in the 

plant as a consequence of environmental change would be measured. By 

comparison, a targeted study measuring fewer metabolites would be less likely to 

evaluate the overall state of the plant but instead focus on metabolites associated 

with one particular aspect of the plant’s response such as photosynthesis. Thus 

analysing the metabolic fingerprints of plants can give a more holistic view of plant 

responses. 

6.3.2 The suitability of a plant as an host plant  

It is not clear what the defining qualities of a plant species are that result in it being 

incorporated into the diet of a polyphagous insect (Janz 2011). Neither is it known 

the specific properties of individual plants within a species that affect the 

performance of insect herbivores (Scriber & Feeny 1979). In this thesis I have 

contributed to addressing these questions by measuring the performance of insects 

on different species of host plant (Chapters 3), and on the same species of plant in 

different environmental treatments (Chapter 5). Nitrogen (N) is thought to be an 
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important limiting factor for insect growth (Slansky & Feeny 1977), however, the N 

content of plants measured in this study (Chapter 3 and 5) did not explain the 

performance of P. rapae larvae on the host plants studied. It is likely this is because, 

even if N is limiting, P. rapae larvae may compensate for the lack of N by eating 

more leaf material (Loader & Damman 1991; Hwang et al. 2008).  

The N content of plants did not apparently explain insect growth rates in this study, 

which suggests that there were other factors determining the success of insects on 

host plants. Therefore I investigated whether metabolic fingerprints of the host 

plants could explain any differences in insect performance on these host plants. I 

found that five host plant species (Chapter 3) divided into two groups according to 

how similar their metabolic fingerprints were, and plants divided into the same two 

groups according to whether plants were categorised as good or poor hosts of P. 

rapae larvae. This provides some evidence that metabolic fingerprints could explain 

the performance of P. rapae larvae on different host plant species. Thus plant 

metabolic fingerprints may yet reveal new information for understanding the 

performance of polyphagous insects on different host plants and help understand 

mechanisms underlying evolution of host plant choice by insects.  

 

6.4 Future Work 

6.4.1 Determining the function of abundant metabolites detected in C. spinosa 

Approximately 44 metabolites were found in P. rapae larvae which were thought to 

have originated in the host plant C. spinosa (Chapter 3). There are no previous 

records of compounds transferring intact between P. rapae larvae and C. spinosa, 

probably because it is rarely used as a study system. Such chemically intact 

metabolites in larvae are interesting because they suggest that either larvae are 

unable to digest the compounds yet absorb them into their tissues, or that larvae 

actively sequester them. Screening for such metabolites through the examination of 

the insect metabolic fingerprint, as done here, could prove a productive research 
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strategy for the following reasons. Extracts of other Cleome sp. are known to be 

toxic to Lepidoptera larvae (Soliman 2012; Ladhari et al. 2013). In trials, I observed 

high mortality of first instar larvae of P. rapae on C. spinosa, although the larvae 

used in the experiments described in the thesis were second instar or older and 

showed no adverse performance effects. Therefore there is a possibility that C. 

spinosa metabolites identified in this study are toxic to young larvae and have the 

potential to be developed into new pesticides. The first steps in developing such 

compounds as new pesticides would involve feeding larvae artificial diets spiked 

with these metabolites to verify any detrimental effects of the compounds. Another 

consideration is the large number (44) of abundant C. spinosa metabolites that 

were found in larvae. This allows an opportunity to examine if any toxic effects of 

these metabolites (if validated) are dependent upon a complex mixture of all these 

metabolites or whether each of these metabolites on their own is equally harmful.  

6.4.2 Studying insects and plants under future climates 

Previously, insect responses to climate factors have been evaluated using 

measurements of their performance, whereas in this study I showed that insects 

also change chemically as a consequence of both elevated temperature and CO2 

(Chapter 5). The insect metabolome has already been explored in relation to abiotic 

stressors to reveal how insects enter diapause or deal with heat shock or salinity 

increases (Michaud et al. 2008; Zhang et al. 2012b; Hidalgo et al. 2013). In a similar 

manner, the metabolome could be used to investigate potential biochemical 

mechanisms underpinning climate change impacts on insect performance. For 

example, changes in the metabolome could hold the key to understanding the 

mechanisms determining increased insect growth rates under elevated 

temperature, or the ability of insects to process more food when employing 

compensatory feeding on host plants low in N under elevated CO2. Such 

experiments would involve measuring metabolites from insects raised under 

elevated temperature and fed diets low in N. This would determine the metabolites 

that are increased or decreased under these different treatments. Through the use 

of metabolomic databases that can suggest the pathways some metabolites are 
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associated with, the mechanisms that help the insect adapt to the change in the 

environment could be uncovered.  

The temperature and CO2 study in this thesis did not attempt to separate the direct 

and plant-mediated indirect effects of climate factors on insects. In reality, the 

direct and indirect effects will occur simultaneously therefore measuring the net 

effect on insects is a realistic depiction of the likely future impacts. However, an 

experiment that assigned effects as either direct or indirect would be beneficial 

because direct effects may apply to all individuals of an insect species whereas 

indirect effects may be specific to insects feeding on particular species of host 

plants. A previous study assessing the direct versus indirect effects of temperature 

and CO2 fed larvae on excised leaves from plants grown under different treatments 

did not find any direct effects of CO2 on the performance on insects (Murray et al. 

2013a). A similar experiment could establish if CO2 directly affects the insect 

metabolome, or whether all changes in the insect metabolome under elevated CO2 

are attributable to the changes caused by elevated CO2 in the host plant.  

6.4.3 Isolating metabolites that determine insect performance 

The grouping of plants that had similar metabolic fingerprints as well as similar 

rates of insect growth (Chapter 3) suggested that plants on which insects developed 

better may have had certain metabolites present (or absent) that determined insect 

performance. Whether these common metabolites are beneficial chemicals 

promoting growth and stimulating feeding or harmful metabolites inhibiting growth 

is unknown. Establishing if such chemicals exist and finding out the chemical 

identities of such metabolites would help to answer questions surrounding the 

suitability of one plant species over another as a host plant. Such an experiment 

could first establish if the apparent relationship between metabolic fingerprints of 

plants and insect performance proved robust when a wider range of species are 

included in the analysis. The plant metabolic fingerprints could be used to 

distinguish the metabolites that plants with more similar insect performance have 

in common. To do this, different plant species could be grouped according to the 
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level of insect performance so that an OPLS-DA method (as used in Chapter 3) could 

be employed to identify metabolites that discriminate these groups of plants. The 

identification of such indicated metabolites or ‘biomarkers’ would be time 

consuming, but if successful would enable standards of the compounds to be added 

to artificial diets and tested for their beneficial or harmful effects on the 

performance of insects.   

6.4.4 Use of metabolomics with other ‘omics’ techniques 

Metabolomics has been used in other areas of research in conjunction with 

transcriptomics and proteomics to piece together the underlying biochemical 

systems in plants and insects (Cho et al. 2008; Colinet et al. 2012b; Rodziewicz et al. 

2014). In this way, metabolites can be associated with a known biochemical 

pathway by determining if a metabolite is increased or decreased in abundance at 

the same time as up or down regulated genes or proteins that have known 

functions. Combining metabolomics with another ‘omics’ technique could identify if 

those metabolites that react to temperature or CO2 (Chapter 5) are associated with 

genes known to react to stress or changes in plant processes such as 

photosynthesis or growth. In plants that have been attacked by a herbivore 

(Chapter 4) measuring gene transcripts or changes in protein abundance could 

point towards specific signalling pathways or pathways that synthesize known 

defensive metabolites. Through this approach, functions could potentially be 

assigned to some of the plant metabolites that do not currently have a known role, 

providing new knowledge of how crop plants defend themselves against herbivores 

and adapt to biotic factors. 

 

6.5 Overall conclusions 

The breadth of metabolites that metabolic fingerprinting can measure means it can 

address ecological questions that a targeted approach cannot. In this thesis I have 

demonstrated how metabolic fingerprinting can provide new information on the 
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metabolomes of plants and insects, such as how diet and climate factors influence 

metabolites. I have revealed plant metabolites that were previously unknown to 

move structurally intact into P. rapae, and I have shown that the metabolite 

reaction of plants to herbivory is species-specific. These findings demonstrate the 

specific ways in which metabolic fingerprinting can be used to increase our 

knowledge of plant-insect interactions and contribute to establishing metabolic 

fingerprinting as an essential tool for ecologists. 
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