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Chapter 01: Introduction 

1.0 Background 

1.1  History 

Motor neuron disease (MND) or Lou Gehrig’s disease as it is known in the USA, is a 

devastating and relentlessly progressive group of neurodegenerative conditions, 

which are incurable and usually result in death about 2-5 years after the onset of 

symptoms (Shaw and Eggett, 2000, Strong and Rosenfeld, 2003, Chio et al., 2008). 

MND is the commonest degenerative condition of the motor neurons and one of 

the three most common neurodegenerative conditions (Talbot, 2002, Shaw, 2005).  

J.M Charcot and Joffroy in 1869 coined the term Amyotrophic Lateral Sclerosis 

(ALS) (Charcot JM, 1869). About 20 years prior to Charcot another French doctor 

named Aran described seven families with ‘Progressive muscular atrophy’ of 

which one family had had an extensive family history. Charcot ignored the 

extensive family history and incorrectly claimed that ALS was never inherited 

(Charcot JM, 1869). Although this statement was widely believed until recently, 

with the spate of descriptions of familial forms of ALS and mutations in various 

genes associated with ALS, it is well established that there is an inherited form of 

ALS (Shaw et al., 2007) (Shaw, 2005).  

 

1.2 Epidemiology 

Although the terms MND and ALS are used interchangeably, in the UK the broad 

group of MND is further classified into amyotrophic lateral sclerosis (ALS), 

progressive muscular atrophy (PMA), progressive bulbar palsy and primary lateral 

sclerosis (PLS).  Approximately 90-95% of ALS cases are sporadic in nature 

(Sporadic ALS- sALS), whereas 0.8 to 13.5% of ALS cases have a family history of 

ALS, familial ALS (fALS). Incidence rates for MND are similar throughout the world 

at 0.86-2.5 per 100,000 per year (Brooks, 1996, Traynor et al., 1999, Beghi et al., 

2006, Bonvicini et al., 2008), except in certain high incidence foci such as the 

Western Pacific island of Guam, two villages in the Kii peninsula of Japan and the 

Irian Jaya of Western New Guinea, where an interesting interaction of 

environmental, dietary and genetic causes result in a 50-100 fold increased 
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incidence of MND (Reed and Brody, 1975, Roman, 1996, Kuzuhara, 2007). The 

prevalence rate of MND at any given date is estimated to be around 6-8 per 

100,000. Men are significantly more likely to have a younger age of onset of 

symptoms compare to women, especially when the symptom onset is before 45 

years of age. On average the male to female ratio in ALS cases is 1.4:1. The 

incidence of ALS increases with age. Only about 5% of ALS cases have an age of 

onset below the age of 30 and 10% below 40 years, the mean age of onset is about 

50-60 years (Nelson, 1995, Brooks, 1996, Ascherio, 2005, Logroscino et al., 2008). 

Apart from MND in the Guam population there is no clear convincing evidence to 

support an exogenous environmental risk factor as causative in sALS. Because of 

the reports of an increased  incidence of ALS in professional sportsmen and sports 

women, it is hypothesised that excessive physical activity is a risk factor for ALS, 

although the evidence for this is inconclusive and requires properly constructed 

large-scale epidemiological studies (Longstreth et al., 1991, Ascherio, 2005). In 

fALS and some sALS cases the association of genetic defects in several pathogenic 

genes has been described. Therefore, to date the, most widely accepted hypothesis 

of the aetio pathogenesis of ALS is a genetic-environmental interaction (Majoor-

Krakauer et al., 2003, Beleza-Meireles and Al-Chalabi, 2009, Harwood et al., 2009).  

 

1.3 Diagnosis 

The diagnosis of MND is based largely on clinical and to some extent on 

neurophysiological evidence of both upper and lower motor neuron signs. In the 

US, MND and ALS are used interchangeably but in the El Escorial criteria, first 

described in 1994, ALS, Primary Lateral Sclerosis (PLS), Progressive Muscular 

Atrophy (PMA) and Progressive Bulbar Palsy (PBP) are grouped as “suspected 

ALS”. The El Escorial criteria have created uniformity in the diagnosis of MND, 

especially for the recruitment of cases for research, to monitor disease progression 

and to assess the therapeutic benefit of pharmacological interventions. MND is 

categorised into possible, probable and definite MND according to the El Escorial 

criteria. Although these criteria have flaws they are helpful in highlighting the level 

of certainty of the diagnosis (Brooks, 1994, Brooks et al., 2000). 
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1.4 Clinical features 

1.4.1 Subtypes  

1.4.1.1 Amyotrophic lateral sclerosis (ALS) 

ALS is clinically defined by the presence of both upper and lower motor neuron 

signs and symptoms, which cannot be explained by any other cause. Lower motor 

neuron signs (LMN) are muscle weakness and wasting, fasciculation of muscles, 

and diminished or absent reflexes. The upper motor neuron (UMN) signs are 

characterised by increased tone, spasticity, brisk reflexes, positive jaw jerk, 

Hoffman sign, extensor plantar reflexes (Babinski sign) and emotional lability 

(Rowland, 1993).   

1.4.1.2 Progressive muscular atrophy (PMA) 

As the name denotes, patients with PMA demonstrate signs of lower motor neuron 

degeneration such as progressive weakness and wasting of the muscles and visible 

muscle fasciculations. There is a lack of upper motor neuron signs. However in 

postmortem studies of patients with a clinical diagnosis of PMA, evidence of 

corticospinal tract involvement has been documented in a proportion of cases 

(Ince et al., 2003). Pure PMA is seen in childhood cases of MND, which are usually 

inherited (Krivickas, 2003, Wijesekera and Leigh, 2009). 

1.4.1.3 Progressive bulbar palsy (PBP) 

PBP is characterised by the presence of dysarthria and dysphagia secondary to 

spasticity and  weakness of the pharyngeal and tongue muscles. Fasciculation of 

the tongue is normally seen and patients will usually have a brisk jaw jerk. Many 

patients will have UMN signs in the limbs but symptoms and signs may be confined 

to the bulbar regions at presentation (Hillel and Miller, 1989, Pouget et al., 1995, 

Krivickas, 2003).  

1.4.1.4 Primary lateral sclerosis (PLS) 

PLS, unlike ALS, is slowly progressive and predominantly a disorder of UMN signs 

and symptoms. Often patients gait is affected due to spasticity and weakness of the 

lower limbs (wading type gait). PLS cases are hyper reflexic and have increased 

tone in the limb muscles.  International bodies interested in ALS have concluded 

that before the diagnosis of PLS could be made one needs to demonstrate a period 

of at least 4 years without any major LMN signs clinically or by electromyography 
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(Pouget et al., 1995, Zeitlhofer, 1996, Ince et al., 1998, Tan et al., 2003, van der 

Graaff et al., 2009).  

1.4.2 Atypical MND 

The MND phenotype is heterogeneous as explained above. Monomelic variation of 

MND (Hirayama Syndrome)(Rowland, 1998) is a rare but interesting sub type of 

ALS which affects usually one upper limb. Characteristically, the progression of 

weakness and wasting, in this variant, arrests after a period of several months. It 

tends to affect young males. There are a few other atypical MND phenotypes: 

1.4.2.1  ALS with Parkinsonism 

There are multiple case reports describing features of Parkinsonism associated 

with ALS. The Southern Marian island of Guam is not the only place with reports of 

MND with Parkinsonism. Features of Parkinsonism include, tremor, rigidity, 

bradykinesia and postural instability. Histopathological studies have shown that 

the characteristic feature of Parkinson’s disease, ubiquitinated inclusions in the 

substantia nigra, can be found in patients with ALS (1966, Brody and Chen, 1968, 

Ahlskog et al., 1998, Hasegawa et al., 2007). 

1.4.2.2 ALS with cognitive impairment and/ or dementia 

There are several case series, which demonstrate ALS cases with overt dementia. It 

has been estimated that approximately 50% of ALS cases develop a form of 

cognitive impairment during the course of illness. Several studies have shown that 

as many as 40% of ALS cases had features of fronto-temporal lobe dysfunction 

(FTLD) on detailed neuropsychological testing, and neuroimaging studies 

suggested fronto-temporal lobe abnormalities in about 57% of ALS cases. In some 

studies as many as 36% of cases with FTLD, either have clinical or 

neurophysiological evidence of ALS (Evdokimidis et al., 2002, Lomen-Hoerth et al., 

2002, Murphy et al., 2007a, Murphy et al., 2007b). Fronto temporal dementia 

(FTLD) accounts for about 20% of dementias with an age of onset under 65 years 

(Ratnavalli et al., 2002). CHMP2B, TARDBP and C9ORF72 mutations have been 

associated ALS and ALS with FTLD (Dejesus-Hernandez et al., 2011, Murray et al., 

2011) (Parkinson et al., 2006, Talbot and Ansorge, 2006). Association of ALS and 

FTLD with hexanucleotide expansion mutation in C9ORF72  gene and the 

description of large pedgrees which have family members with ALS, FTLD or both 
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(Savica et al., 2012) has narrowed the gap between the two ends of the spectrum 

these conditions belonged to (Andersen, 2012).  

 

1.5 Genetic causes of Amyotrophic Lateral Sclerosis 
 
The clinical heterogeneity observed in ALS is partly underpinned by the observed 

genetic heterogeneity. Although Charcot in 1869 described ALS, it was Francois-

Amilar Aran described a familial form of motor neuron disease in 1850. In 1880 Sir 

William Osler described the Farr family of Vermont with a ALS like disease with 

autosomal dominant pattern of inheritance. However, it was more than a century 

later that mutations in superoxide dismutase (SOD1) were identified in several 

families with autosomal dominantly inherited ALS, including the Farr family. Since 

then the genetic screening of familial ALS cases has led to the identification of 

several genetic loci (Table 1.1) associated with ALS. A direct link has been 

established so far for more than 23 loci and mutations in the responsible genes 

have been described (Table 1.1) (Ferraiuolo et al., 2011). The recent discovery of 

intronic hexanucleotide expansions of the C9ORF72 gene is associated with about 

~50% of fALS and about 10% of the sALS (Dejesus-Hernandez et al., 2011, Renton 

et al., 2011). The Recent advances in the investigation of genetic causes for fALS 

has contributed immensely to the understanding of the pathogenesis and the 

disease processes enhancing the susceptibility of motor neurons to degeneration. 

The different genes encoding different proteins are implicated in a variety of  

biological pathways, which could lead to a common pathway delivering a final 

blow to the motor neurons. Therefore targeting these pathways would form the 

first platform in discovery of therapeutic agents. 
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1.6 Disease mechanisms implicated in ALS 
 

Altered RNA metabolism, excitotoxicity, oxidative stress, mitochondrial 

dysfunction, axonal transport defects, neuro muscular junction defects, glial cell 

induced neuronal toxicity, protein aggregation, endoplasmic reticulum (ER) stress, 

prion like aggregation and cell to cell spread of the ‘prion’ like aggregations 

subsequently leading to precipitation of essential cellular proteins have all been 

demonstrated to be involved in the pathogenesis of ALS (Fig 1.1) (reviewed by 

(Ferraiuolo et al., 2011).  
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Figure 1.1 the pathophysiological mechanisms underlying specific degeneration of motor neurons in ALS 
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Figure 1.1 The pathophysiopalogical 
mechanisms underlying specific degeneration 
of motor neurons in amyotrophic lateral 
sclerosis (ALS). Mutant superoxide dismutase 1 
(SOD1) directly affects motor neurons through 
diverse pathways, such as mitochondrial defects 
(reduced ATP production and increased free 
calcium release), dysfunction in the endoplasmic 
reticulum (ER) and the proteasome, and 
alterations in axonal transport, all of which lead to 
the activation of apoptotic cascades. However, 
SOD1-mediated toxicity in motor neurons is 
insufficient to mediate disease progression; non-
neuronal neighbours, such as astrocytes and 
microglia, contribute to motor neuron damage in 
what is known as the non-cell-autonomous 
process. Astrocytes and microglia that express 
mutant SOD1 (mSOD1) secrete several 
potentially toxic factors into the cellular 
environment, which amplify the initial damage and 
drive the progression of the disease. In addition, 
the astroglial reuptake of synaptic glutamate (Glu) 
is reduced through the inactivation of excitatory 
amino acid transporter 2 (EAAT2), which leads to 
the excitotoxic death of motor neurons. The exact 
pathological mechanism by which mutant TAR 
DNA-binding protein (TARDBP, which encodes 
TDP43) and FUS are involved in amyotrophic 
lateral sclerosis is still unknown, but evidence 
points to RNA processing are involved in the 
selective death of motor neurons. Prion like 
aggregation and cell-cell spread of proteins is a 
novel and a viable concept. NO, nitric oxide; 
TNFα, tumour necrosis factor-α. Adapted from 
(Dion et al., 2009)  
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1.6.1  Altered RNA processing   

1.6.1.1 Introduction 

ALS is a clinically heterogeneous group of conditions, which as described earlier in 

the review, cause degeneration of motor neurons resulting in progressive motor 

weakness and eventual death (Shaw, 2001).  It has been shown that motor neurons 

are not alone in sharing this fate, as whilst they are most susceptible to the disease 

process other cell groups in the central nervous system can also be affected 

(Blackburn et al., 2009, Henkel et al., 2009). In keeping with the above, 

pathological studies have described that the degenerative process not only 

involves the motor cortex, brain stem and the spinal cord, but also involves the 

frontal and temporal lobes to varying extents (Strong, 2008). This clinical 

heterogeneity is partly explained by the genetic heterogeneity observed especially 

in fALS cases (Table 1.1).  

Studies in ALS associated genes and the encoding proteins, have brought 

insight into a multiplicity of biological processes which are implicated in ALS. The 

excitotoxicity, oxidative stress, mitochondrial dysfunction, axonal transport 

defects, neuro muscular junction defects, glial cell induced neuronal toxicity, 

protein aggregation, endoplasmic reticulum (ER) stress and inflammation have all 

been demonstrated to be involved in the pathogenesis of ALS etc (Fig 1.1) (Dion et 

al., 2009). Following the discovery of the association of genetic abnormalities in 

proteins like TDP-43 and senataxin (SETX), a firm link has been made between ALS 

and impaired RNA processing, as TDP-43 and SETX are molecules which are 

implicated in RNA metabolism (Ou et al., 1995, Buratti and Baralle, 2001, 

Kwiatkowski et al., 2009, Zhao et al., 2009). Further strengthening this association 

are the mutation screening studies which have shown that the mutations in 

another RNA processing molecule called, FUS/TLS1(Fused in Sarcoma/ 

Translocated in Lipo Sarcoma 1) are associated with ALS (Kwiatkowski et al., 

2009).
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Table 1.1 Genetic loci and genes associated with amyotrophic lateral sclerosis 

      

 Locus Gene Gene name Chromosome  
1 ALS 1 SOD1 Cu/Zn superoxide dismutase 1, soluble (amyotrophic 

lateral sclerosis 1 (adult)) 
21q22.11  

2 ALS 2 ALS2 amyotrophic lateral sclerosis 2 (juvenile) homolog 
(human). Alsin 

2q33.2  

3 ALS 3 ALS3 Unknown 18q21  
4 ALS 4 SETX Senataxin 9q34.13  
5 ALS 5 SPG11 spastic paraplegia 11 (autosomal recessive) 15q14  
6 ALS 6 FUS fusion (involved in t(12;16) in malignant liposarcoma) 16p11.2  
7 ALS 7 ALS7 Unknown 20p13  
8 ALS 8 VAPB Vesicle-associated membrane protein-associated protein 

B 
20q13.33  

9 ALS 9 ANG Angiogenin 14q11.1  
10 ALS 10 TARDBP TAR DNA binding protein 1p36.22  
11 ALS 11 FIG4 FIG4 homolog, SAC1 lipid phosphatase domain 

containing (S. cerevisiae) 
6q21  

12 ALS 12 OPTN optineurin 10p13  
13 ALS 13 ATXN2 ataxin 2 12q23-q24.1  
14 ALS 14 VCP valosin-containing protein 9p13  
15 ALS 15 UBQLN2 ubiquilin 2 Xp11.21  
16 ALS 16 SIGMAR1 sigma non-opioid intracellular receptor 1 9p13  
17 ALS 17 CHMP2B chromatin modifying protein 2B 3p12.1  
18 ALS 18 PFN1 profilin 1 17p13.3  
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 Locus Gene Gene name Chromosome  

19 ALS 19 ERBB4 v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 
4 

2q33.3-q34  

20 ALS 20 HNRNPA1 heterogeneous nuclear ribonucleoprotein A1 12q13.1  
21 ALS 21 MATR3 matrin 3 5q31.3  
22 ALS-FTD 1 ALS-FTD1 Unknown 9q21-q22  
23 ALS-FTD 2 C9orf72 chromosome 9 open reading frame 72 9p21.2  
24 ALS UNC13A unc-13 homolog A (C. elegans) 19p13.12  
25 ALS DAO D-amino-acid oxidase 12q24  
26 ALS DCTN1 Dynactin 2p13  
27 ALS NEFH neurofilament, heavy polypeptide 200kDa, heavy chain 22q12.1-q13.1  
28 ALS PRPH peripherin 12q12  
29 ALS SQSTM1 sequestosome 1 5q35  
30 ALS TAF15 TAF15 RNA polymerase II, TATA box binding protein 

(TBP)-associated factor, 68kDa 
17q11.1-q11.2  

31 ALS SPAST Spastin 2p24  
32 ALS ELP3 elongation protein 3 homolog (S. cerevisiae) 8p21.1  
33 ALS LMNB1 lamin B1 5q23.2  
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1.6.1.2 Outline of RNA metabolism under physiological conditions 

Genes are transcribed into pre-mRNAs in the nucleus, which are then spliced in the 

spliceosome to form mRNAs. The nascent mRNAs are then bundled into 

functionally related entities along with other macromolecular structures called 

ribonucleoprotein (RNP) complexes to give rise to RNA granules. RNA granules 

contain ribosomal subunits, translational factors, scaffold proteins, helicases, RNPs, 

and RNA binding proteins (RBP) (Bolognani and Perrone-Bizzozero, 2008, Lin and 

Holt, 2008). RNA granules play an important role in regulating spatio-temporally 

co-expressed transcripts at translationally targeted sites (Bolognani and Perrone-

Bizzozero, 2008). In neurons, three types of RNA granules are seen, which are 

stress granules (harbour translational factors, stalled mRNAs, RNPs until the 

period of stress is over); processing bodies called P bodies (where RNA decay 

occurs) and transport granules (which maintain mRNAs in silence until reaching 

translational target sites). Stress granules and P bodies are in dynamic equilibrium 

and share several molecules in common. Degradation of RNA occurs following 

deadenylation and/or decapping (3’-5’ exonucleolytic activity), which occur in 

exosomes and P bodies (Hirokawa, 2006). mRNAs can also be degraded by micro 

RNAs (miRNA). These highly conserved, non coding RNAs, derived from 

endogenous genes are considered vital for the modulation of RNA processing, and 

for neuronal development and the development of dendritic spines, and are also 

implicated in neurodegeneration (Nelson et al., 2008).  

Gene expression is finely regulated by a variety of mechanisms to give rise 

to the right complement of RNA and proteins in the correct position in the cell at 

the right time. In neurons, regulation of RNA processing can lead to asymmetrical 

protein translation (Lin and Holt, 2008). This process is recognised as an 

important pathway by which neuronal development, neuronal plasticity, 

neuroregeneration, and, when impaired neurodegeneration occur (Strong, 2009).  

There are many stages at which RNA processing could be impaired including gene 

transcription; RNA granule formation; stabilisation; transportation; translational 

control and degradation. In recent years several studies have examined the 

association of impaired RNA processing as a pathogenetic mechanism in ALS. 
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1.6.1.3 The evidence for impaired RNA processing in motor neuron 

degeneration related genes 

Structurally diverse, neuronally expressed proteins mediate many different 

functions in neurons (Fig 1.1). Alternative pre-mRNA splicing is an important step 

in the generation of these structurally diverse proteins. In ALS and related motor 

neuron degenerative conditions, an alteration in mRNA splicing has been 

described as a key process responsible for the disease process. Specific gene 

changes associated with abnormal RNA processing in ALS are discussed below. 

1.6.1.4 Peripherin 

Peripherin is an intermediate neurofilament protein mainly expressed in neurons. 

Although rare, mutations of PRPH gene, which encodes peripherin, have been 

linked with ALS (Gros-Louis et al., 2004). Peripherin has also been found to 

associate with intraneuronal protein aggregates. A transgenic mouse model that 

over-expresses peripherin has also been shown to develop ALS (Robertson et al., 

2003). The underlying genetic abnormality in ALS associated with defects in 

peripherin is alternative splicing. In the aberrant form of peripherin, a splice 

isoform retaining both exons 3 and 4 is expressed. However exon 3 contains a 

premature stop codon resulting in premature truncation of the peripherin protein. 

In the mutant SOD1 mouse model a toxic splice variant of peripherin is expressed, 

in which intron 4 is retained which gives rise to a toxic peripherin protein 32 

amino acids larger than the predominant isoform (Xiao et al., 2008). In keeping 

with the toxic aggregation of aberrant peripherin due to impaired splicing, TDP-43, 

a protein implicated in transcription modulation has been shown to co-localise 

with peripherin inclusions in ALS (Sanelli et al., 2007). 

1.6.1.5 SMN 

Mutation in the survival of motor neuron (SMN) gene is implicated in spinal 

muscular atrophy (SMA), which is a progressive lower motor neuron degenerative 

condition. Both the SMN1 and SMN2 proteins are important in fulfilling the 

functioning in motor neurons. SMN contributes to the formation of spliceosome by 

assembling uridine rich small nuclear proteins, which are important constituents 

of the spliceosome, and SMN works in tandem with other SMN associated proteins, 

in doing so (Farrar et al., 2009). SMN associated with components of the RNP 

granules, such as hnRNP R and Q, takes part in RNP granule transport to the 
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dendritic processes and axonal growth cones (Zhang et al., 2006). In keeping with 

this, SMN antisense morpholino oligonucleotide knockdown of SMN in the 

zebrafish, leads to impaired motor axon architecture indicating defective motor 

axonal path finding (McWhorter et al., 2003). 

1.6.1.6 Angiogenin (encoded by ANG) 

Mutations in the ANG gene are associated with ALS type 9. Angiogenin is classified 

as a promoter of ribosomal RNA transcription (Wu et al., 2007). Angiogenin is also 

a tRNA specific ribonuclease, which, when stress activated, cleaves tRNA and 

inhibits translation. Angiogenin is functionally related to VEGF (vascular 

endothelial growth factor) in that it binds to an angiogenin binding element (CTCT 

repeats) and enhances ribosomal RNA transcription, which is important in the 

regulation of expression of VEGF (Gao and Xu, 2008). The relevance of this 

association is further enhanced by the findings that VEGF and angiogenin enhance 

the survival of G93A SOD1 mouse and that ANG deficient SOD1 G93A transgenic 

mice have a lower survival rate (Subramanian et al., 2008). 

1.6.1.7 Senataxin (SETX) 

A mutation in the SETX gene has been described to associate with ALS (Chen et al., 

2004, Zhao et al., 2009) Classically SETX mutations are associated with cerebellar 

and motor neuron degeneration. The RNA helicase activity and RNA processing are 

thought to be the important functions of senataxin (Chen et al., 2004). RNA 

helicases are important in multiple nuclear activities such as unwinding of double 

stranded DNA, modification of RNA-RNA interactions, modification of chromatin 

structure and association with the spliceosome. A role for SETX as an RNA helicase 

is supported by its similarity to Immunoglobulin Mu binding Protein 2 (IGHMBP2), 

which is a DNA/RNA helicase. IGHMBP2 mutations are also associated with a 

severe form of SMA associated with respiratory distress called SMARD1 

(Grohmann et al., 2001). 

1.6.1.8 TDP-43 and MATR3 (Matrin 3) 

TAR DNA binding protein-43 is associated with modulating the transcription of 

several genes, for example HIV1 DNA, SP10, Apo II, HDAC and cdk6 (Ou et al., 1995, 

Abhyankar et al., 2007, Ayala et al., 2008a, Fiesel et al., 2009). These associations 

will be described in detail later in this chapter. There is an emerging body of 

information that dysfunctional TDP-43 results in impairment in RNA transcription, 
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translation, and protein-protein interactions, resulting in motor neuron 

degeneration. The importance of TDP-43 as an RNA processing protein associated 

with ALS is further confirmed by multiple mutations in TARDBP gene found in ALS 

cases (Table 1.2). Both TDP-43 and FUS are associated with the stress granule 

marker TIAR in cells subjected to exogenic stress (Andersson et al., 2008, 

Colombrita et al., 2009)(Anderson and Kedersha, 2008).  

 MATR3 is a protein that interacts with TDP-43 and is also known to have 

RNA and DNA binding properties. Mutations in MATR3 gene associated with ALS 

cases have been recently described using exome sequencing (Johnson et al., 2014).   

1.6.1.9 FUS/TLS 1 

The recent discovery of the association of mutations in another RNA binding 

protein, Fused in Sarcoma/ Translocated in Liposarcoma 1 (FUS/TLS1) with ALS, 

further strengthens the claim that dysfunctional RNA processing is an important 

pathogenetic mechanism in ALS related neurodegeneration (Kwiatkowski et al., 

2009). FUS/TLS1 is structurally similar to TDP-43 in that it contains an RNA 

recognising motif (RRM) and Glycine rich domain (GRD), which are considered 

important for interaction with DNA/RNA molecules (Corrado et al., 2009a, Lagier-

Tourenne and Cleveland, 2009). Both TDP-43 and FUS/TLS1 are postulated to 

associate with the microprocessor complex and the Drosha complex, which are 

important in miRNA processing. miRNAs are important in regulating and in the 

degradation of mRNA (Nelson et al., 2008, Volkening et al., 2009). 

In summary, impaired RNA processing appears to provide a common 

pathway for several disease mechanisms and biologically divergent processes 

associated with several abnormal neuronally expressed proteins to finally coalesce, 

so alteration in transcription, alternative splicing, translation, granule formation, 

RNA transport, SG assembly and miRNA related gene expression could be targeted 

in search for a therapeutic breakthrough. 
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Table 1.2 Mutations described in TARDBP gene encoding TDP-43 

 Mutation fALS sALS Onset Cognitive 

impairment 

Origin References 

1 D169G  1 Limb No France (Kabashi et al., 2008) 

2 N267S  1 Limb Dementia Italy (Corrado et al., 2009c) 

3 G287S  2 Bulbar No France, Italy (Kabashi et al., 2008, Corrado et al., 2009b) 

4 S292A 1  Bulbar, Limb No Chinese (Xiong et al.) 

5 G290A 1  Bulbar, Limb No Europe (Van Deerlin et al., 2008) 

6 G294A  1 Limb No Australia (Sreedharan et al., 2008) 

7 G294V 1 1 Limb No. ?Yes Italy (Corrado et al., 2009b, Del Bo et al., 2009) 

8 G295C   Bulbar No Netherland (van Blitterswijk et al., 2014) 

9 G295S 1 3 Bulbar, Limb  FTD features 

3/4 

Italy, France (Benajiba et al., 2009, Corrado et al., 2009b, Del Bo et al., 2009) 

10 G295R  2 Limb No Italy, North America (Corrado et al., 2009b, Ticozzi et al., 2009) 

11 G298S 1  Bulbar, Limb No China (Van Deerlin et al., 2008) 

12 Q303H  1 Spinal N Italy (Da Costa et al., 2014) 

13 M311V 1  Limb No Belgium (Lemmens et al., 2009) 

14 A315E 1  Spinal Parkinsonism Japan (Fujita et al., 2011) 

15 A315T 3  Limb No Europe, North America (Gitcho et al., 2008, Kabashi et al., 2008, Ticozzi et al., 2009) 

16 A321G  1 Spinal No UK (Baumer et al., 2010) 

17 A321V  2 Limb No UK (Kirby et al., 2009) 
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 Mutation fALS sALS Onset Cognitive 

impairment 

Origin References 

18 Q331K  1 Limb No England (Sreedharan et al., 2008) 

19 S332N 1  Limb No Italy (Corrado et al., 2009b) 

20 G335D  1 Limb No Italy (Corrado et al., 2009b) 

21 M337V 3  Limb No England, Italy (Rutherford et al., 2008, Sreedharan et al., 2008, Corrado et al., 2009b) 

22 Q343R 1  Limb No Japan (Yokoseki et al., 2008) 

23 N345K 2  Limb No North America (Rutherford et al., 2008, Ticozzi et al., 2009) 

24 G348C 4 4 Limb No Europe, North America (Kabashi et al., 2008, Kuhnlein et al., 2008, Daoud et al., 2009, Del Bo et 

al., 2009, Ticozzi et al., 2009) 

25 G348V 2  Limb No England (Kirby et al., 2009) 

26 N352S 3  Limb No Germany, US (Kuhnlein et al., 2008) 

27 N352T 1  Spinal No North America (Ticozzi et al., 2009) 

28 G357R 1  Bulbar No Denmark (Chiang et al., 2012, Iida et al., 2012) 

29 G357S  2 Spinal No Japan (Iida et al., 2012) 

30 R361S  1 Limb No France (Kabashi et al., 2008) 

31 R361T 1  Spinal FTD Norway (Chiang et al., 2012, Iida et al., 2012) 

32 P363A  1 Limb No France (Daoud et al., 2009) 

33 G368S  1 Bulbar No Italy (De Marco et al., 2011) 

34 Y374X  1 Limb No France (Daoud et al., 2009) 

35 G376D 2  Spinal No Australia, Italy (Solski et al., 2012) 

36 N378D 1  Bulbar, spinal No North America (Ticozzi et al., 2009) 
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 Mutation fALS sALS Onset Cognitive 

impairment 

Origin References 

37 N378S  1 Spinal No China (Huang et al., 2012b) 

38 S379C  1 Limb No Italy (Corrado et al., 2009b) 

39 S379P 2  Limb No Italy, North America (Corrado et al., 2009b, Ticozzi et al., 2009) 

40 A382T 5 6 Bulbar, Limb No Italy, France (Kabashi et al., 2008, Corrado et al., 2009b, Del Bo et al., 2009) 

41 A382P  1 Limb No France (Daoud et al., 2009) 

42 I383V 5  Limb, Semantic 

dementia 

No, FTLD North America (Rutherford et al., 2008, Ticozzi et al., 2009, Gelpi et al., 2014) 

43 G384R 1  Spinal No North America (Ticozzi et al., 2009) 

44 W385G 1  Spinal No France (Millecamps et al., 2010) 

45 p.T387del 

insN388P

389 

1  Spinal No Italy (Solski et al., 2012) 

46 N390D 2 1 Limb No North America (Kabashi et al., 2008, Ticozzi et al., 2009) 

47 N390S  1 Limb No France (Kabashi et al., 2008) 

48 S393L   1 Limb No Italy (Corrado et al., 2009b) 
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1.7 Pathology of ALS 

1.7.1 Neuronal inclusions 

The neurodegenerative process in MND and its subtypes involves degeneration of 

cortical, spinal and brain stem motor neurons as well as the motor axons. The 

presence of neuronal cytoplasmic inclusions is a pathological hallmark of 

neurodegenerative conditions. In ALS, three distinct types of inclusions are 

described. Ubiquitinated inclusions are seen in the perikaryon and the proximal 

axon of the spinal motor neurons and the cortical motor neurons of both fALS and 

sALS cases. The first type of inclusion described is Bunina body, which is a small 

eosinophilic inclusion found in cell body of the neurons. They are present in both 

fALS and sALS cases, they are positive for cystatin C immunoreactivity and are of 

lysosomal origin.  They are present in the CNS up to 85% of ALS cases. The second 

group of inclusions, hyaline conglomerates, are found in the perikaryon and the 

proximal dendrites of spinal motor neurons. These inclusions are reactive for both 

medium and heavy chains, phosphorylated and unphosphorylated neurofilaments 

(SMI31 and SMI32 antibody staining) and are not specific to ALS. They are 

characteristically found in patients with specific SOD1 mutations (e.g. I113T, A4V).  

The most abundant inclusions are the loosely packed filament like ‘skeins’ and 

densely packed compact inclusions. These are the two different morphological 

patterns of staining with an ubiquitin antibody. Immunoreactivity of the inclusions 

to ubiquitin is in keeping with the pattern of selective vulnerability and it is 

characteristic in ALS. Until recently the major protein constituent of these 

inclusions identified by ubiquitin immunostaining was unknown. These 

ubiquitinated cytoplasmic inclusions are commonly seen in sALS cases but also 

seen in fALS cases with SOD1 mutations (Mackenzie et al., 2007, Tan et al., 2007). 

In MND cases with SOD1 mutations the inclusions have been shown to contain of 

alpha internexin, peripherin, neurofilament proteins, 14-3-3 proteins and SOD1 

(Kawamoto et al., 2005, Volkening et al., 2009). 
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1.7.2 TDP-43: The major component of the neuronal inclusions 

In 2006 mass spectroscopy and immunohistochemistry studies have identified 

TAR DNA binding protein 43 (TDP-43) as the major constituent of the 

ubiquitinated but tau and alpha synuclein negative inclusions in FTLD with 

Ubiquitinated inclusions (FTLD-U), the commonest form of FTLD, and in ALS with 

and without FTLD-U (Neumann et al., 2006) (Fig 1.2). These findings suggest that 

ALS and FTLD-U are conditions at different ends of a common clinico-pathological 

spectrum of neurodegenerative conditions, which are now collectively described 

as ‘TDP-43 proteinopathies’ (Liscic et al., 2008).  

 

 

Figure 1.2 Immunostaining of the spinal cord in ALS. Skeins like lesions in the lumbar spinal cord are 

stained with anti ubiquitin 

 

1.7.3 The concept of TDP-43 proteinopathy 

The neuronal aggregation of proteins occurs in many neurodegenerative 

conditions as a result of protein mis-folding and the dysfunction of the ubiquitin 

proteasome system (UPS), which in some situations leads to amyloid formation. 

Figure 1.2. Immuno staining of the spinal cord in ALS. Skeins like lesions in the lumbar spinal cord are 
stained with anti ubiquitin and anti TDP-43. (A) and with both polyclonal (B) and monoclonal antibodies (C) to 
TDP-43. A compact rounded inclusion in a neuronal cytoplasm and dystrophic neurite-like structure in an apical 
dendrite are stained with a polyclonal antibody to TDP-43 in the anterior horn of the lumbar spinal cord (D).  Two 
neuronal intra nuclear inclusions positive for TDp-43 are shown in the sacral spinal cord (E). TDP-43 positive glial 
inclusions curved (F) or bullet shaped is observed in the lumbar spinal cord. Similar glial inclusions positive for 
tau are also seen in the lumbar spinal cord (H). The sections are counter stained with haematoxilin. Courtesy of 
Arai et al (2006) (Permission to reuse obtained from Elseiver). 
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However TDP-43 associated neurodegeneration with neuronal and glial inclusions, 

the inclusions lack the features of amyloid deposition (Neumann et al., 2007a). The 

key pathological features of TDP43 proteinopathies are TDP43 positive but alpha 

synuclein, tau, beta amyloid and neuronal intermediate filament protein negative, 

neuro-cytoplasmic inclusions (NCI), neuronal intra nuclear inclusions (NII) and 

dystrophic neurites (DN). Particularly in MND/ALS cases, glial cytoplasmic 

inclusions (GCI) have also been reported (Arai et al., 2006, Neumann et al., 2006, 

Neumann et al., 2007a, Neumann et al., 2007b, Nishihira et al., 2008). Some 

pathological studies have also described relative nuclear clearing and 

accumulation in the cytoplasm of TDP43 immunoreactivity from the surviving 

motor neurons with the above inclusions (Arai et al., 2006, Neumann et al., 2006, 

Cairns et al., 2007). Some reports have also mentioned the occurrence of nuclear 

inclusions (Arai et al., 2006, Neumann et al., 2006). The ubiquitinated TDP-43 in 

the inclusions also has a unique biochemical signature being: phosphorylated, C-

terminally fragmented and relatively insoluble (Neumann et al., 2006, Hasegawa et 

al., 2008a, Hasegawa et al., 2008b). Since the first description of the association of 

TDP-43 with ALS and FTLD-U, numerous neuropathological studies have shown a 

link between TDP-43 and a variety of other neurodegenerative conditions such as 

the Guam ALS Parkinsonism Dementia group of conditions, FTLD, Alzheimer’s 

dementia, hippocampal sclerosis, Parkinson’s disease with Lewy bodies, Lewy 

body disease, Huntington’s disease,  inclusion body myopathy with Paget’s disease 

of bone and fronto temporal dementia (IBMPFD) (Schwab et al., 2008) (Amador-

Ortiz et al., 2007, Hasegawa et al., 2007, Nakashima-Yasuda et al., 2007, Maekawa 

et al., 2009),  stressing the importance of protein aggregation and dysfunctional 

UPS as important mechanisms of neurodegeneration. Interestingly, the 

ubiquitinated neuronal inclusions in fALS cases due to SOD1 mutations were not 

thought to contain TDP-43 pathology suggesting that the underlying molecular 

pathomechanism in SOD1 related fALS is different from that of TDP-43 

proteinopathies (Mackenzie et al., 2007, Tan et al., 2007). However several reports 

have described TDP-43 pathology in mutant SOD-1 cases ((Shan et al., 2009, 

Okamoto et al., 2011) and more recently in a G93A SOD-1 mutant mouse model 

(Marino et al., 2014).  

  Multiple reports of several TARDBP mutations associated with fALS and 

sALS cases have been well described (Kabashi et al., 2008, Kuhnlein et al., 2008, 
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Rutherford et al., 2008, Sreedharan et al., 2008, Van Deerlin et al., 2008, Yokoseki 

et al., 2008, Benajiba et al., 2009, Daoud et al., 2009, Del Bo et al., 2009, Kabashi et 

al., 2009, Kamada et al., 2009, Pamphlett et al., 2009, Pesiridis et al., 2009, Williams 

et al., 2009), which strongly reinforces the causal association of TDP-43 in ALS and 

refutes the possibility that TDP-43 is an innocent bystander (Rollinson et al., 2007, 

Gijselinck et al., 2009, Schumacher et al., 2009). 

 

1.8 Trans active response (TAR) DNA binding protein (TARDBP) and its 

role in MND/ALS 

1.8.1 Introduction   

Major discoveries have been made in the last few years on the pathology, 

pathogenesis, biochemistry and genetics of ALS and FTLD. The experimental  

models of ALS have been largely dedicated to the study of the relatively rare fALS 

due to SOD1 mutations. However there is no consensus, yet, as to how 

dysfunctional SOD1 results in selective motor neuronal loss except that SOD1 

induced motor neuron damage is responsible for disease onset and glial cells 

containing mutant SOD1 accelerate disease progression (Yamanaka et al., 2008). 

Therefore it is encouraging that the possibility has finally emerged, through 

identification of the TDP-43 association with ALS and FTLD-U, that a disease model 

relevant to sALS is now possible. TDP-43 was first cloned from a genomic 

screening attempt to identify factors that bind to the trans acting response domain 

(TAR) DNA of the human immune deficiency virus 1 (HIV-1) and repress 

transcription (Ou et al., 1995). The protein encoded by TARDBP, TDP-43 is 

considered the major pathological protein implicated in sALS, fALS due to non 

SOD1 mutations and FTLD-U, which group of conditions, are now collectively 

considered as the ‘TDP-proteinopathies’ (Liscic et al., 2008). This pathological 

breakthrough, although a major leap in the understanding of ALS and FTLD-U, 

does not explain whether the presence of TDP-43 in the NCIs is a by-product, the 

primary event in motor neuron injury or indeed an event in a common pathway of 

the disease pathogenesis. Despite the multiple publications since the discovery of 

the role of TDP-43 in neurodegeneration, the function of TDP-43 still remains 

unclear.  The following is a review of the literature to date describing the role of 

TDP-43 in ALS /MND. 



 49 

 

1.8.2  TARDBP gene and basic structural features of TDP-43 protein 

The TARDBP gene is located in the short arm of chromosome 1 at the position 

36.22 (1p36.22) and contains 6 transcribed exons, with a cDNA  length of 2748 

nucleotides including the 5’ and 3’ UTR (Untranslated Regions). Exons 2-6 encode 

a 414 amino acid protein, TDP-43. There are 12 different transcripts reported, of 

which five are known to produce protein products 

(www.ensembl.org/Homo_sapiens/Transcript/Sequence_cDNA). TDP-43 is an 

evolutionary highly conserved protein not only amongst ortholgues of several 

different species, but also amongst its human paralogues i.e. hnRNP-A1 

(heterogeneous nuclear Ribonuclear protein-A1). TDP-43 is a ubiquitously 

expressed protein, indicating that it is an essential gene required for the normal 

function of multiple different cell types (Neumann et al., 2006). TDP-43 belongs to 

a family of heterogeneous nuclear ribo nucleoproteins (hnRNP), which are well 

known for RNA binding and interaction with DNA via a nucleotide recognition 

motif called RNA recognition motif. Members of the hnRNP family of proteins are 

important in the generation, processing and modification of RNA and have 

functionally important roles in transcription, translation, stabilisation and 

transport of RNAs (Singh, 2001). This diversity of hnRNP functions is underpinned 

by the presence of modular domains through which they exert specific protein-

protein interactions (Krecic and Swanson, 1999) (Fig 1.3). TDP-43 has a high 

degree of homology with the hnRNP proteins in the region of TDP-43 between 

amino acids 144-135 (Ou et al., 1995) a region called RNP binding domain, which 

is important for RNA binding. Similar to hnRNP core protein A1, this region of 

TDP-43 is included in the RNA binding motif 1(RRM1 -aa 106-176).  RRM2 (aa 

191-262) although not essential for (UG)m/(TG)m  dinucleotide repeat recognition 

which is important for RNA binding, is important for the correct formation of 

transcription factor complexes and CFTR exon 09 skipping (Buratti and Baralle, 

2001, Bose et al., 2008). Studies have confirmed the presence of a nuclear 

localisation signal (aa 82-91) towards the N-terminus, which is important for 

nuclear shuttling, and a nuclear export signal within RRM2 (Ayala et al., 2008b, 

Winton et al., 2008b). The TDP-43 C-terminus itself is important in RNA processing 

and the modulation of splicing (Wang et al., 2004). 

 

http://www.ensembl.org/Homo_sapiens/Transcript/Sequence_cDNA


 50 

 

 

 

Figure 1.3 Schematic diagram of the ultrastructure of the TDP-43 protein. 

Figure 1.3 Schematic diagram of the ultrastructure of TDP-43 protein. At the N-
terminus is the nuclear localisation signal (NLS), RNA recongnising motif 1 (RRM1) and 
RRM2. At the C-terminal end is a functionally vital Glycine rich region (GRR). GRR is also 
known as the glycine rich domain (GRD) in the text. 
 

 

The C-terminus contains an area where ~ 40% of the amino acids are glycine 

residues, called the glycine rich domain (GRD) (Ou et al., 1995) (D'Ambrogio et al., 

2009). TDP-43 GRD shares a 21% homology with the GRD of its human paralogue 

hnRNP A1, between the amino acids 274-314. The glycine residues in this region 

of TDP-43 are evolutionarily conserved and are regularly interspersed by 

aromatic amino acids as in hnRNP A1. We know from the study of other hnRNPs 

that the GRD is important for protein-protein interactions (Biamonti et al., 1994, 

Cobianchi et al., 1994, Pesiridis et al., 2009). This glycine rich region of TDP-43 is 

important for the RNA processing function of TDP-43 and, similar to hnRNPs, is 

required in the interaction with hnRNP A/B (Buratti et al., 2005) and has the 

amino acid sequence, Arg-Gly-Gly (RGG- box), which has been shown to bind to 

RNA in relation to other RNA binding proteins (RBP) (Kiledjian and Dreyfuss, 

1992).  

 TDP-43 proteinopathy is characterised by aggregation of C-terminally 

fragmented (CTF), ubiquitinated and phosphorylated TDP-43 in NCI. There are 39 

possible serine, threonine, tyrosine residues throughout TDP-43, which could 

potentially be phosphorylated, and more than 53% of these residues are 

positioned between amino acids 233-410 in the C-terminus (Hasegawa et al., 
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2008a). Amino acid sequence analysis of TDP-43 reveals three potential caspase 

3-recognition motifs, which could result in proteolytic cleavage. These are amino 

acids, DEND (aa 10-13), DETD (aa 86-89) and DVMD (aa 216-219) and caspase 

cleavage at the latter two sites results in 35 kDa and 25 kDa CTF TDP-43 proteins 

respectively (Zhang et al., 2009). Analysis of the TDP-43 structure helps us to 

understand the possible functions of TDP-43 and predicts the behaviour of wild 

type and mutated forms of the TDP-43 protein. 

 

1.8.3 Mutations of TARDBP gene encoding TDP-43  

Since the association of TDP-43 with the NCI of ALS and FTLD-U was discovered, 

many independent research groups around the world have carried out genetic 

screening studies in both sporadic and familial ALS cases and have described a 

number of mutations in the TARDBP gene confirming the pathological association 

of TDP-43 with the ALS/MND disease state. So far there have been 83 different 

genetic variations of the TARDBP gene reported. These consist of 47 missense 

mutations; one non-sense mutation and two benign missense mutations in the 

coding region and the seven mutations in the 5’ UTR; five mutations in the 3’ UTR 

and 21 intronic variations. To date, variations in the non-coding region of TARDBP 

are thought to be benign.  The 48 different pathological TARDBP mutations are 

described in 86 apparently unrelated families (Table 1.2).  A review of all 

mutations done in 2009 suggested that out of 71 index cases at the time  31 in 

2846 sALS (1%) cases and 40 out of 1167 (3.4%) fALS cases screened had 

missense mutations whilst 8117 control cases were negative for the above 

mutations (Pesiridis et al., 2009) (Table 1.2). TARDBP mutations in fALS cases 

showed an autosomal dominant pattern of inheritance. Some of the mutations 

were described in ALS cases with pathological evidence of TDP-43 proteinopathy. 

Skein like NCI and relative depletion of TDP-43 from the nuclei of the surviving 

motor neurons were noted in the immunohistochemistry studies of postmortem 

material from ALS cases with G298S and Q343R mutations (Tan et al., 2007, Van 

Deerlin et al., 2008). Analysis of the clinical features of all the 48 reported 

mutations we noted that 37 out of reported 48 TARBP  mutations were associated 

with pure spinal/limb onset ALS whilst 4 mutations were associated with pure 

bulbar onset symptoms. One ALS case with a G294V missense mutation had 

cognitive impairment whilst another report suggested an association of the G295S 



 52 

mutation in two families with a history of cognitive impairment consistent with 

FTLD. TARDBP mutations, R361T from a Norwegian family (Chiang et al., 2012) 

and I383V of a North American family have been described to associate with FTLD 

whilst I383V associated with FTLD-U without ALS (Gelpi et al., 2014). Taken 

together these findings of mutations in ALS and FTLD with ALS suggest a 

commonality of TDP-43 proteinopathy in neurodegenerative disorders. Although 

mutation screening and copy number analysis of the TARDBP gene in both 

sporadic and familial FTLD cases have not discovered any mutations (Rollinson et 

al., 2007, Gallone et al., 2009, Gijselinck et al., 2009), the two cases with FTLD plus 

ALS/MND described above (Benajiba et al., 2009) and the R361T and I383V 

mutations associated with FTLD indicate that TARDBP mutations are not restricted 

to ALS (Gelpi et al., 2014) .  

 

1.8.3.1 Mutation hot-spots and functional relevance of TARDBP mutations 

Exon 6 of TDP-43 encodes for ~60% of the TDP-43 protein and approximately 

70% of the TDP-43 mRNA. Exon 6 is also important for TDP-43 as it encodes an 

evolutionary highly conserved region of the TDP-43 C-terminus including the GRD.  

Except for one described mutation (D169G), all other pathogenic mutations so far 

described in the TARDBP gene occur in exon 6 (Kabashi et al., 2008).  The most 

frequent TARDBP gene mutation is A382T (eleven reported cases) whilst G348C is 

the second most common (eight cases). Although the A382T position is not 

evolutionary conserved, G348C is. The alanine at position 382 could be a 

mutational ‘hot spot’ as another mutation has been reported at the same position 

(A382P, 1144 G>C) (Kabashi et al., 2008, Corrado et al., 2009b). Seven out of the 

total of nine reported glycine residues mutated in TDP-43 are within the 

evolutionary conserved elements of the GRD (Guerreiro et al., 2008, Kabashi et al., 

2008, Rutherford et al., 2008, Yokoseki et al., 2008, Corrado et al., 2009b, Del Bo et 

al., 2009, Gijselinck et al., 2009, Ticozzi et al., 2009).  

  Hyperphosphorylation of C-terminally fragmented TDP-43 is an important 

finding in TDP-43 pathological aggregates.  Therefore it is of interest to see if the 

missense mutations disrupted any potential phosphorylation sites or created new 

sites, which could result in abnormal hyperphosphorylation. Three mutations 

potentially abolish casein kinase 1 targeted phosphorylation sites S379 and S393 

due to missense mutations: S379C, S379P and  S393L (Corrado et al., 2009b, 
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Kametani et al., 2009). Interestingly nine other amino acids in the evolutionary 

conserved region of GRD are reported to be replaced by serine and threonine 

residues, which  can be phosphorylated, which in turn could enhance aggregation 

(Kabashi et al., 2008, Kuhnlein et al., 2008, Corrado et al., 2009b). Missense 

mutations creating new sites for ubiquitination such as Q331K and N345K and two 

other missense mutations increasing the creation of disulphide bond formation 

(G348C and S379C) are predicted to increase the likelihood of aggregation 

formation. 

1.8.3.2  Do TARDBP mutations cause loss of function or gain of function? 

Whether TDP-43 related ALS is due to toxic gain of function or a loss of 

physiological function, needs to be investigated in both in vitro and in vivo models 

of both normal and dysfunctional TDP-43 cellular activity. Sreedharan and 

colleagues demonstrated that injection of Q331K or M337V TDP-43 mutants into 

the chick embryo resulted in developmental defects and enhanced apoptosis 

(Sreedharan et al., 2008) whilst the Q331K mutation has been shown to have a 

greater propensity to form aggregates (Johnson et al., 2009) suggesting a possible 

toxic gain of function. However, studies in a Drosophila model of ALS, where the 

impaired locomotive phenotype of drosophila generated by the drosophila TDP-43 

orthologue TBPH gene suppression either by chromosomal deletion or the RNA 

interference method, was rescued by injection of human TDP-43 (Feiguin et al., 

2009), suggesting a loss of function role for TDP-43. Supporting this theory are the 

findings from the TDP-43 transgenic mouse model, over-expressing the TDP-43 

A315T mutation, where loss of nuclear TDP-43 is seen in the surviving motor 

neurons of the mice at late stages of disease indicated by limb weakness and 

difficulty in obtaining food and water (Turner et al., 2008). The loss of TDP-43 

from the nucleus could potentially affect the normal RNA processing function of 

TDP-43. Aggregation of disease related proteins of neurodegenerative diseases are 

known to have a toxic gain of function. The analysis of the brain and cerebellar 

tissues obtained from TDP-43 A315T PrP (prion protein promoter) transgenic 

mice did not show TDP-43 positive cytoplasmic aggregation formation (Turner et 

al., 2008) as seen in the human cases, which further supports the loss of function 

mechanism of mutant TDP-43. It is still possible however, that the transgenic 

protein could precipitate the endogenous mouse TDP-43 or produce a soluble 
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TDP-43 fragment that drives the disease process, which might on the other hand, 

indicate a toxic gain of function. 

 

1.8.4  Properties and functional roles of TDP-43 

TDP-43 has structural homology with another RNA binding protein, hnRNP A1 as 

described earlier. The analysis of TDP-43 structure and the studies of hnRNP 

group of proteins, which are powerful splicing modulators and vital in diverse 

cellular functions (Biamonti et al., 1994, Cobianchi et al., 1994, Krecic and Swanson, 

1999), inform us that TDP-43 also could possess several different functions 

important for the maintenance of the internal milieu of neurons and extra 

neuronal cells. The function of TDP-43 depends on its structural domains, 

localisation, and post-translational modifications and on interactions with other 

proteins. Knowledge of the function/s of TDP-43 is accumulating at a fast pace, and 

so far several different functions have been described in in vitro and in vivo models, 

including roles in: transcription repression/modulation (Ou et al., 1995, 

Abhyankar et al., 2007, Ayala et al., 2008a, Casafont et al., 2009); pre mRNA 

splicing modulation (Buratti and Baralle, 2001, Buratti et al., 2001, Mercado et al., 

2005, Ayala et al., 2006, Ayala et al., 2008a, Bose et al., 2008); mRNA stability 

(Strong et al., 2007, Moisse et al., 2009a, Volkening et al., 2009); translational 

repression (Fiesel et al., 2009); biogenesis of micro RNA (miRNA) (Gregory et al., 

2004); formation of RNA granules, trafficking, sequestering and degradation of 

RNA and possible functions in stress granule formation (Elvira et al., 2006, 

Colombrita et al., 2009, Moisse et al., 2009a, Moisse et al., 2009b, Volkening et al., 

2009); cell cycle regulation (Ayala et al., 2008a) and several other processes 

depending on several protein-protein interactions of TDP-43 (Zhang et al., 2007, 

Gitcho et al., 2009, Kim et al., 2009). Overwhelming evidence point to a RNA 

modulating function for TDP-43 (Fig 1.4).  

 

1.8.4.1 Transcriptional repression and translational modulation function of 

TDP-43 

TDP-43 possesses two RNA recognising domains and a glycine rich domain, as do 

hnRNPs, which are known to bind to RNA and induce transcriptional repression. 

The discovery of the importance of TDP-43 in relation to human disease arose 
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from the study by Ou et al in 1999, investigating distinct regulatory functions of 

the Trans-Active Response (TAR) domain of the HIV-1 DNA. TDP-43 was identified 

as a 43 kDa, binding factor to the TAR DNA of HIV-1 virus using labeled TAR DNA 

in a UV cross-linking assay, in the presence of HeLa cell extract, hence the name 

TDP-43 (Ou et al., 1995). Both in-vitro and in in-vivo experiments indicated that 

TDP-43 mediated repression of HIV-1 pro virus expression resulted from either, 

dimerised TDP-43 or two TDP-43 molecules simultaneously binding to the 

polypyrimidine sequences of the HIV-1 promoter region in a cis acting fashion, 

whereby it interferes with the binding of TATA binding factors and transcription 

factors. The RNP motif 1 placed within RRM1 domain and the N-terminal amino 

acid sequence, but not the GRD, are important to execute the above function (Ou et 

al., 1995).  

The execution of a spatio-temporally ordered programme of gene expression by 

tissue or the cell specific alteration in gene expression via promoter regions or 

silencing of gene expression via insulator regions is very important for the normal 

regulation of the tightly controlled internal milieu of neurons. Perturbation of this 

fine balance especially in neurons, could result in neuronal dysfunction and 

degeneration. Studies done on the round spermatid specific protein 10 (SP-10) 

gene by Acharya et al (2006) demonstrated  that TDP-43 serves an insulator 

function whereby it represses the transcription of the SP-10 gene in somatic cells, 

in a tissue specific manner. TDP-43 binds, in a trans acting manner, to a canonical 

binding site, GTGTGT repeat sequence (GTm) opposite the SP-10 promoter 

sequence, of the single stranded DNA using the N-terminus but not the C-terminus 

(Acharya et al., 2006). Confirming the above findings, Abhyankar et al (2007),  in a 

reporter and effector construct assay, showed that TDP-43 could prevent the 

enhancer –promoter interaction  SP-10 gene, whereby TDP-43 acts as an insulator 

protein repressing transcription of the SP-10 gene (Abhyankar et al., 2007). In 

contrast to the studies on HIV-1 transcription repression, the GRD of TDP-43 was 

found to be more important than the RRM1 domain for SP-10 gene repression, 

indicating that interplay between the two domains is required for effective 

transcriptional repression (Abhyankar et al., 2007).  
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Figure 1.4 RNA modulating function of TDP-43: Possible mechanisms impaired when TDP-43/ FUS1 are dysfunctional
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Figure 1.4 RNA modulating function of TDP-43: Possible mechanisms impaired when TDP-43/FUS1 are dysfunctional TDP-43. Transcription occurs in the 
nucleous and the pre-mRNA undergoes modifications by the splieosome into mature mRNA. Mature mRNA is assembled into to RNA granules along with several 
other molecules, i.e. RNPs, RBPs etc, to be targeted for spatio temporally determined localised translation. Therefore these RNA granules are actively transported 
out of the nucleous into the cytoplasm.  These RNA granules then will be transported to predetermine sites of translation in different parts of the neuron. The fate of 
these RNA granules could vary i.e. in response to exogenic stress, RNA granules could form SG, which will consist of stalled translation complexes.  When in 
association with P-bodies, RNA is degraded.  P-body related RNA decay involves the participation of specific mRNA and miRNAs. The diagram also depicts the 
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1.8.4.2 Pre mRNA splicing modulation function of TDP-43 

Following transcription, pre mRNA undergoes splicing and post-transcriptional 

modification to become mature mRNA ready for the translational process to occur. 

The RRMs and the GRD of TDP-43 not only help it bind to DNA but also aid RNA 

binding using (UG)n repeats. The ability to bind to RNA gives TDP-43 scope to 

modulate pre mRNA splicing and mature mRNA regulation. The cystic fibrosis 

trans membrane conductance regulator (CFTR) gene exon 9 exclusion results in a 

dysfunctional protein. TDP-43 binds in a trans acting manner to the 3’ splice site of 

CFTR pre mRNA in a  (TG)m/(UG)n repeat sequence dependent fashion to enhance 

the exclusion of exon 09 whilst inhibition of the endogenous TDP-43 increased the 

exon 9 inclusion (Buratti et al., 2001). This could either be due to simple binding 

competition or TDP-43 interaction with proteins of the splicing complex, 

preventing the recognition of exon 9. A competitive RNA binding assay suggested 

that a minimum of 6 UG repeats are necessary for the efficient binding of TDP-43 

to RNA. Deletion constructs of TDP-43 when assessed in a UV- cross linking assay 

to assess the essential RNA binding domains for the exon splicing revealed that the 

RRM1 domain, spanning residues 106-175, is crucial for this interaction. The 

RRM2, although not essential for RNA binding, helps form correct complexes 

needed for inhibition of splicing (Buratti and Baralle, 2001). In contrast, co-

expression of TDP-43 deletion constructs with the CFTR exon 9 minigene by Bose 

et al (2008) showed that full length TDp-43 is required for exon 9 exclusion and 

the RRM motifs alone are insufficient (Bose et al., 2008). Taken together TDP-43 

inhibition of splicing resulting in exon exclusion requires the interplay between 

RRM1 and RRM2 where RRM2 is necessary but not sufficient. Therefore, TDP-43 is 

similar to other RBP, for example, hnRNP A1, in utilising a double RRM motif-

strategy to recognise and bind to RNA.  

 Confirming the exon exclusion function of TDP-43, Mercado et al reported that 

endogenous TDP-43 has a powerful negative effect on the splicing of the exon 3 of 

the APOA2 gene. siRNA knock down of endogenous TDP-43 resulted in an increase 

in APOA2 mRNA with Exon 3, despite the disruption of exon splicing enhancer 

sequence (ESE) regions, which are evolutionary, developed to balance the splicing 

activity of APOA2. This splicing modulatory function by TDP-43 is exerted via the 

typical TDP-43 binding substrate of a (UGn) repeat sequence in the second 

intronic region of APOA2. TDP-43 could be interacting with hnRNP H1 which is 
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another splicing inhibitor of APOA2  whereby they prevent the recruitment of the 

U2AF65 exon splicing enhancer (Mercado et al., 2005). Altogether, TDP-43 when 

recruited to a (GU)n repeat sequence has a negative effect on splicing. TDP-43 not 

only influences exon exclusion but also enhances exon inclusion. A co expression 

study showed that TDP-43 enhances exon 7 inclusion in SMN2 but did not change 

the exon-splicing pattern of SMN1, and required the RRM1 more than RRM2 (Bose 

et al., 2008). The TDP-43 mediated exon inclusion function does not require 

sequence specificity of the substrate pre mRNA . hnRNP proteins are implicated 

trans factors in both alternative and constitutive splicing of survival of motor 

neuron genes (SMN1 and SMN2) exon 7. This splicing makes SMN2 unable to 

compensate for any mutation in SMN1, resulting in a loss of functional SMN 

protein leading to spinal muscular atrophy (SMA) (Monani et al., 1999). An 

immunoprecipitation study using anti TDP-43 and anti Htra2-b1 antibody as the 

probe, demonstrated that TDP-43 exerted the exon inclusion effect via an 

interaction with Htra2-b1 in the presence of  RNA. However RNAi knock down of 

endogenous TDP-43 did not affect the splicing pattern of SMN2,  but altered CFTR 

exon 9 recognition indicating the TDP-43 effect is not an artifact. Therefore it is 

possible that TDP-43 binds to large multimeric splicing factors including hnRNP 

and Htra2 and inhibits the exon skipping effect of hnRNPs or forms new splicing 

complexes via protein-protein interactions to enhance inclusion of exon 7 (Bose et 

al., 2008).  

 Consistent with the role of TDP-43 in regulating pre mRNA is the  microarray 

analysis of altered levels of transcripts, in cells depleted of TDP-43 by RNAi, which 

showed a 10-fold increase in the levels of CDK6 transcript. CDK6 is essential in cell 

cycle regulation and in cell differentiation as Cdk6 enhances phosphorylation of 

pRb which is important for the regulation of factors controlling the cell cycle. 

Sequence analysis of the CDK6 pre mRNA suggests a typical TDP-43 binding 

sequence, (GU)n repeats (n=25).  Alteration of TDP-43 in chicken cells, which do 

not have Cdk6 (GU)n repeats, does not alter the Cdk6 levels suggesting that human 

CDK6 expression requires the binding of  TDP-43 to the (GU)n repeats of the pre 

mRNA (Ayala et al., 2008a). 

 Confirming the findings in the in vitro and in vivo models that TDP-43 has a 

significant role in transcription regulation and pre mRNA modulation, is the 

evidence from Casafont et al (2009), wherein, in a primary cortical neuronal 
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culture system under physiological conditions, TDP-43 is co-localised within the  

nuclear compartments where pre mRNA splicing occurs (Buratti and Baralle, 2008, 

Casafont et al., 2009). For example, snRNP splicing factors in euchromatin areas 

and nuclear speckles where perichromatin fibrils are distributed. A recent study 

in HEK293T cells identified TDP-43 completely buried in Cajal bodies and also 

localised to Gemini of Cajal bodies (gems), which act as splicing factor storage 

sites or have a transcriptional regulation function (Fiesel et al., 2009) TDP-43 was 

found to be excluded from the nucleolus, peri chromatin granules and gene 

silencing centromeric and telomeric heterochromatin domains, which are free of 

transcriptional activity (Casafont et al., 2009). 

 TDP-43 role as a regulator of alternative splicing is demonstrated in a 

crosslinking and immunoprecipitation RNA clip assay coupled with RNA 

sequencing of brain tissues derived from mice treated with AMO to knockdown 

brain TDP-43. This study showed more than 39000 TDP-43 binding sites in the 

mouse transcriptome and lowering of TDP-43 resulted in reduced levels of more 

than 600 mRNAs and alteration of splicing pattern in more than 900 further 

mRNAs. Although acute lowering of TDP-43 is not reminiscent of the human 

disease model, it is appreciable the magnitude of RNA dysregulation associated 

with loss of TDP-43 from the nucleus where it plays its main roles of RNA 

modulation (Polymenidou et al., 2011).  Furthermore, analysis of mice over-

expressing WT and Q331K mutant TDP-43 demonstrated that ALS like phenotype 

develops independent of nuclear loss of over-expressed protein and cytoplasmic 

or nuclear accumulation, although loss of endogenous mouse Tdp-43 was 

associated with neurodegeneration. In addition these data further supports the 

notion that disturbance of the homeostasis of cellular levels of TDP-43 could cause 

wide spread alteration in splicing (Arnold et al., 2013). 

1.8.4.3  mRNA stability and translational repression by TDP-43 

TDP-43 also has structural similarities to two yeast proteins, a nuclear poly 

adenylated RBP involved in pre mRNA 3’ UTR cleavage and polyadenylation, called 

HRP1 and a nucleolar protein, NSR1, implicated in 18S rRNA formation ((Lee et al., 

1991, Wilson et al., 1994)), indicating a role in mature mRNA processing. Co-

immunoprecipitation studies in both HEK293T cells over-expressing human 

neurofilament light chain (hNFL) and spinal cord lysates from ALS patients 

showed that hNFL mRNA 3’UTR interacts with endogenous TDP-43 and prevents 
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hNFL mRNA degradation when RNA synthesis is blocked by actinomycin treatment. 

(Strong et al., 2007, Glisovic et al., 2008). TDP-43 as previously well described uses 

UG elements in unique stem loop structures of  the 3’ UTR of the hNFL mRNA 

(Volkening et al., 2009). To understand the physiological functions of TDP-43, 

identification of TDP-43 responsive genes could be valuable. In a differential 

microarray analysis, Fiesel et al (2009) identified the histone deacetylase 6 

(HDAC6) as a consistently suppressed gene in HEK293T cells depleted of TDP-43 

by RNA interference (Fiesel et al., 2009). A biotin labeled HDAC6 mRNA pull-down 

assay coupled with a UV cross-linking immunoprecipitation study, identified that 

TDP-43 specifically interacts with HDAC6 mRNA. The RRM1 motif of TDP-43 is 

essential for this interaction. Depletion of the Drosophila TDP-43 orthologue TBPH 

also resulted in reduced HDAC6 expression levels (Fiesel et al., 2009).  

 In keeping with the biochemical data of the translational repression function 

of TDP-43 via mRNA repression is the finding of co-localisation of TDP-43 with a 

processing body (P-Body)  marker GW182 in cultured neurons (Wang et al., 2008). 

TDP-43 behaviour in the neuronal dendrites has been paralleled with two other 

RNA granule markers, Staufen -1 and FMRP (Fragile X mental retardation protein), 

which also have a translational repression function and co-localise with P-Bodies.  

mRNA degradation, storage and miRNA mediated translational repression are 

some of the known functions of the P-body (Fillman and Lykke-Andersen, 2005). 

Taken together, TDP-43 and HDAC6 interaction both in vitro and in vivo models 

and TDP-43 co-localisation with P-body, provide evidence that TDP-43 has an 

important role in mRNA repression. 

 

1.8.5 The role of TDP-43 in the formation of RNA granules, stress granules 

(SG), RNA sequestration, transport and decay.   

Many RNA related processing mechanisms involve transcription and translation 

related functions. However RNA infrastructure involves a much wider group of 

functions, especially in eukaryotic cells. The RNA processes occurring within the 

nucleus are RNA mediated transcriptional regulation, transcription, the RNA 

processing cascade  (mRNA, tRNA and rRNA processing) and RNP biogenesis and 

assembly. Within the cytoplasm, mRNA storage (RNA stress granules), translation 

(Ribosomes), RNA mediated translational regulation (P-bodies, miRNAs) and RNA 

degradation (P-bodies and exosomes) processes take place (Collins and Penny, 
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2009). TDP-43 has been described to play a role in some of these processes within 

the RNA-infrastructure network.  

1.8.5.1  Recruitment of TDP-43 to the stress granules 

Stress granules are cytoplasmic entities, which are formed following sublethal 

environmental stresses due to immediate block of the translational machinery 

with sequestration of actively translating mRNAs derived from disassembled 

polysomes, specific RNA binding proteins and stalled ribosomal subunits. Stress 

granules are in dynamic equilibrium with processing bodies (P-bodies) where 

constitutive ribonucleoprotein complexes, mRNA storage and decay and miRNA 

biogenesis occur, and polysomes where translation is initiated. Therefore SGs 

represent a protective mechanism to by-pass the stressful insult and to re-initiate 

translation after the stressful event has been overcome (Anderson and Kedersha, 

2009).  Several environmental stressors have been reported to induce the 

formation of stress granules, for example, oxidative stress (arsenite), proteasome 

inhibition, osmotic stress and heat shock (Anderson and Kedersha, 2008).  Studies 

done on transient transfection of TDP-43 in NSC-43 cells showed co-localisation of 

TDP-43 with stress granule markers,  TIA-1 (T cell induced antigen 1) and HuR, 

when subjected to oxidative stress induced by arsenite treatment, ubiquitin 

proteasome system (UPS) inhibition by MG132 and by heat shock stress 

(Colombrita et al., 2009). The RRM1 domain of TDP-43, which is vital for its RNA 

associated functions, and the amino acid residues from 216 to 315 of the C-

terminus are required for TDP-43 recruitment to the SG (Colombrita et al., 2009). 

Analysis of spinal cord samples of sALS cases reported TDP-43 positive inclusions 

but these were negative for the SG marker TIAR and HuR which is consistent with 

the fact that SG formation can be transient and in the cases studied SG could have 

formed earlier in the disease. Moreover, SG formation reported in the in vitro 

experiments are following acute stress, therefore SG formation in ALS motor 

neurons, which may have been subjected to chronic stress, may not be detectable 

in contrast to the in vitro studies. In disagreement with above findings is the work 

by Volkening et al (2009), who reported that the SG marker, TIA, and TDP-43 co-

localised in neuronal cytoplasmic inclusions in sALS spinal cord material 

(Volkening et al., 2009). 

 TDP-43 also co-localised with staufen 1 and FMRP (Fragile X metal 

retardation protein) in a repetitive stimulation of a neural network model with 
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KCl (Wang et al., 2008). In an in vivo model of TDP-43 cytoplasmic localisation, 

Misse et al (2009) observed an enhancement of SG formation and TDP-43 

recruitment to the SG, in a time dependent manner, in a neuronal injury paradigm 

of sciatic nerve axotomy, suggesting that TDP-43 localisation to SG is a response to 

neuronal injury (Moisse et al., 2009b).   

 TDP-43 has been shown to colocalise with staufen-1 and FMRP (Wang et al., 

2008) which are well characterised RBPs, which in addition to taking part in SG 

formation, are also involved in mRNA transport and regulation of localised 

initiation of translation in neuronal dendrites (Hirokawa, 2006). Thus, TDP-43, 

although a nuclear protein, shuttles out to the cytoplasm to recruit itself to the 

mRNA triaging bodies, SG, where regulatory mechanisms of translational arrest 

take place, and regulates mRNA transport, in keeping with the other RBPs which 

shuttle efficiently in and out of the nucleus to participate in essential cytoplasmic 

functions.  

 

1.8.6  Recruitment of TDP-43 to the processing body (P-body) 

Processing bodies as explained above,  are cytoplasmic aggregates, which unlike 

SG, occur in both physiological and stressful conditions. They mainly consist of 5’ 

to 3’ mRNA decay machinery, including decapping protein 1 (DCP1), and assemble 

on translationally stalled mRNA from disassembled polysomes. Some of the 

functions of P-bodies are mRNA decay, mRNA storage and miRNA biogenesis and 

miRNA mediated repression of translation (Kedersha and Anderson, 2007, 

Anderson and Kedersha, 2008). Neither, with oxidative stress in the NSC-34 cell 

model (Colombrita et al., 2009) nor in neuronal injury via mouse sciatic nerve 

axotomy, did TDP-43 localise to P-bodies.  However, in a neuronal activity 

response analysing model, TDP-43 expression was increased following repetitive 

stimulation with KCl and co-localised with both staufen -1, an mRNA transport 

granule and SG marker, and with a P-body marker GW-182 (Glycine (G)-

Tryptophan (W) protein 182). This suggests that TDP-43, in addition to mRNA 

triaging, sequestering and regulating the stability of mRNAs, is required for 

localised translation, which also probably could regulate the biogenesis of miRNA, 

and miRNA mediated translational repression. 
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1.8.7  Cell cycle regulation and association of TDP-43 with apoptosis and 

neuronal survival  

Retinoblastoma protein (pRb) is a tumour suppressor protein essential for the 

regulation of cell cycle progression, cell differentiation and genomic integrity 

maintenance. Transition of the cell cycle from the G1 phase to the S phase depends 

on activation of certain gene transcription factors, which promote cell proliferation. 

Activation of these transcription factors occurs via inactivation of the pRb protein 

through its gradual phosphorylation. Phosphorylation of pRb is mediated by 

several Cdks. siRNA mediated knock down of TDP-43 in U2OS cells resulted in 

increased levels of Cdk6 which enhanced phosphorylation of pRb. As a result the 

cell cycle was disrupted by a decrease in cells in G0 phase and an increase in S, G2 

and M phase cells. TDP-43 represses gene transcription (Ayala et al., 2008a), and 

SP-10 is important in terminal cell differentiation of round spermatid cells 

(Acharya et al., 2006). Taken together in the context of the central nervous system, 

TDP-43 could play a role in the development of the neural systems and terminal 

differentiation of the nervous system, but further studies are required to ascertain 

the relevance of cell cycle regulation in neurodegeneration. 

 Ayala et al (2008) also reported that loss of TDP-43 is associated with an 

increase in cell death. About 30% of TDP-43 depleted U2OS cells were TUNEL stain 

positive and about 15% of the cells contained YH2AX foci indicative of double 

stranded DNA breaks. These cells were also positive for PARP1  (Poly ADP ribose 

polymerase-1) cleavage in keeping with enhanced programmed cell death (Ayala 

et al., 2008a). Activation of pRb is reported to enhance apoptosis. Thus loss of TDP-

43 could result in increased programmed cell death and apoptosis, and premature 

activation of programmed cell death in neuronal cells could result in premature 

neurodegeneration.  

 The Smad related TGF Beta signaling pathway is important in regulating levels 

of transcription factors, co-activators and co-repressors in a cell specific and ligand 

dose dependent manner. When TGF beta-receptors are activated, internalised TGF 

beta phosphorylated Smad 2 and 3 (pSmad2/3). pSmad2/3 translocates from the 

cytoplasm to the nucleus to control gene expression. TGF beta mRNA is up 

regulated following neuronal insult. Therefore the TGF-Beta –Smad signaling 

pathway is essential for maintaining neuronal survival (Flanders et al., 1998). 

Immunohistochemistry of lumbar spinal cord sections from sALS cases showed 
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disrupted translocation of pSmad2/3 to the nucleus. However in sALS spinal cord 

material pSmad 2/3 was found to co-localise with TDP-43 in the nucleus 

(Nakamura et al., 2008). Contrary to what these authors mention, this indicates 

that TDP-43 has a role in neuronal survival either as a positive role by 

sequestering pSmad 2/3 in the nucleus or as a negative effect, that pSmad2/3 

attempts to counteract. The exact role of TDP-43 and pSmad2/3 interaction awaits 

further investigation. 

 

1.8.8  TDP-43 as a neuronal plasticity and neuronal activity response factor 

Neuronal plasticity is a process by which new learning and behavior occur by 

strengthening existing neural connections or by losing or gaining new, neuronal 

connections (Dubnau et al., 2003, Jin et al., 2004). In order to modulate neuronal 

plasticity, modulation of synaptic plasticity is vital. RNA binding proteins (RBP) 

FMRP, implicated in mental retardation and poor memory associated with fragile X 

syndrome (Jin et al., 2004),  and staufen 1 considered important in long term 

memory of fruit flies (126), are vital for the regulation of synaptic plasticity of 

neurons. Similar to TDP-43, the above RBP also have RRM and a RGG box, shuttle 

in and out of the nucleus using NLS (nuclear localising signal) and NES (nuclear 

export signal) and co-localise with SG. Consistent with the above information are 

the results from the model of repetitive hippocampal neuronal stimulation with 

KCl, wherein TDP-43 co-localises with FMRP and staufen 1 in dendritic granules 

and behaved synergistically with FMRP and staufen 1 (Wang et al., 2008). Thus it 

appears that TDP-43, along with other RBPs plays the role of a neuronal activity 

response factor, which regulates transportation of mRNA, reassembly of the 

translational apparatus and modulation of localised translation in the dendrites, 

which are considered essential aspects of neuronal plasticity (Jin et al., 2004).  

 

1.8.9  Scaffold for nuclear bodies and maintenance of nuclear membrane 

stability  

The eukaryotic nucleus contains a number of substructures with several 

associated functions. These sub-structures relate to nuclear compartments with 

different biological functions related to transcription, splicing, transcription factor 

storage etc. The Cajal body or coil body contains snRNPs and contains the 
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signature protein coilin. The GEM body is another nuclear sub-structure containing 

several snRNPs, also including Cajal bodies, and SMN is a unique marker of the 

GEM bodies. SC35 nuclear speckles or inter-chromatin granules are classic sites of 

regulation and assembly of splicing. Wang et al (2009) described a nuclear body-

containing mouse TDP-43 (mTDP) called TDP Bodies (TB) . Immuno-staining of 

HEK 293T cells transfected with mTDP showed co-localisation of TB with GEM 

bodies when SMN was used as the marker for GEM bodies. This co-localisation is 

mediated by an interaction between mTDP and SMN. TBs are also shown to 

associate with several other nuclear bodies, for example SC35, POD (Promyeloctic 

leukaemia body), but not with nucleoli and HDAC5 bodies (Wang et al., 2002). 

Taken together, TDP-43 containing bodies, TB, act as a nuclear scaffold for the 

other nuclear bodies which network through TB, trafficking various nuclear factors 

required for transcription (initiation, elongation, splicing, 3’ cleavage) and splicing 

(assembly of spliceosomal factors), along with storage and recycling of snRNPs. 

 TDP-43 depletion in U2OS cells was associated with increased cell death 

nuclear membrane blebbing and aberrant nuclear morphology due to disruption of 

the distribution of the nuclear envelope protein emerin. The nuclear membrane 

defects, due to TDP-43 depletion, are mediated by changes in pRb levels (Ayala et 

al., 2008a).  

 

1.8.10  TDP-43 protein-protein interactions: Clues to more functional roles 

(PGRN, VCP, pSmad 2/3, UBQLN) 

TDP-43 like its other paralogues, interacts with other proteins and with each 

other, using its GRD. A GST pull down assay using GST-TDP-43 and subsequent 

mass spectroscopy identified several hnRNP proteins as potential 

interacting/binding partners.  Amongst many functions of these hnRNPs, splicing 

regulation is prominent in hnRNPA1, hnRNPA2/B1 and hnRNP C1/C2 (Buratti et 

al., 2005), whilst hnRNP A3 is a recognised cytoplasmic RNA trafficking molecule 

(Ma et al., 2002). Confirming the above finding was the EMSA super-shift assay 

testing the binding efficiency of progressive deletion constructs of TDP-43 to 

hnRNP A2. This showed that TDP-43 C-terminal amino acids 321-366 were vital 

for this interaction. This was also confirmed in an in vivo assay with the Drosophila 

TDP-43 homologue TBPH (D'Ambrogio et al., 2009).  
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 In a yeast two-hybrid screen using a human fetal brain cDNA library, Kim et al 

(2008) identified Ubiquilin (UBQLN) as a TDP-43 binding partner. Ubiquilin has an 

amino terminal ubiquitin like domain and a C-terminal Ubiquitin association 

domain (UBAD) (Kim et al., 2009). Ubiquilin is a protein of interest in the 

neurodegeneration in that it binds to Presenilin 1 and Presenilin 2 proteins, which 

are implicated in inherited form of Alzheimer’s dementia due to presenilin 

mutations (Mah et al., 2000). Confirming the yeast-two-hybrid screening results, a 

GST pull down assay using GST TDP-43 showed interaction of UQBLN with TDP-43 

using its UBAD. UBQLN over-expression resulted in sequestration of over-

expressed and to a minor extent, the endogenous TDP-43 to cytoplasmic 

aggregates. Furthermore, treatment with Concanamycin A, an autophagosomal 

cargo proteolysis inhibitor, causes TDP-43 and UBQLN to co-localise in 

autophagosomes (Kim et al., 2009). Autophagy is a protective response, and TDP-

43 interaction with UBQLN could be a cytoprotective response, and needs further 

investigation. Two further Yeast-two-hybrid screening studies on protein-protein 

interactions have identified,  PM/Scl100 and XRN2 (indicated in mRNA decay), 

ZHX1 (implicated in transcriptional repression), NSFL1C and ARF6 (involved in 

membrane trafficking) and SETDB1 (important in chromatin remodeling 

regulation) as potential binding partners for TDP-43 (Buratti and Baralle, 2009). In 

an immunoprecipitation assay using protein extracts from the spinal cord 

specimens of a mutant SOD1 (A4T) case, TDP-43 pulled down SOD1 (A4T), WT 

SOD1 and 14-3-3 protein. However, the TDP-43 interaction with 14-3-3 appears to 

be dependent on RNA, as removal of RNA abolished the  immunoprecipitation of 

the 14-3-3 with TDP-43 and there was no co-localisationof TDP-43 with 14-3-3 in 

immunohistochemistry studies of the same case. Nevertheless, TDP-43 interaction 

with SOD1 was confirmed by confocal imaging where both co-localised, to the 

cytoplasmic aggregates. Both TDP-43 and SOD1 have RNA binding capacity and 

interact with hNFL mRNA (Volkening et al., 2009). Thus,  TDP-43 and SOD1 

perhaps form a part of a large RNA binding protein complex. Using 

immunoprecipitation with a TDP-43 antibody and subsequent mass spectroscopy 

Volkening et al (2009) revealed several binding partners for TDP-43. A nuclear 

importation factor, Karyopherin; an RNA granule transportation factor in neurons, 

kinesin, and a molecular chaperone, chaperonin were amongst the hits (Volkening 

et al., 2009). This finding is consistent with the findings of Moisse et al (2009) who 
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showed in a mouse axotomy model that the presence of TDP-43 in the cytoplasm, 

is implicated in the neuronal injury response, where it assumes a role in active 

transportation of relevant mRNA’s targeted for cytosolic localised assembly of the 

translational machinery (Moisse et al., 2009b). 

 In conclusion, TDP-43 has multiple cellular functions both in the nucleus and 

in the cytoplasm. These multiple functions of TDP-43 are exerted through its own 

structural characteristics and via other interacting proteins and molecules. The 

description of the association of mutations in another gene coding for a RNA/DNA 

interacting protein called fused in sarcoma / translocated in sarcoma (FUS/TLS) 

gene with ALS provides TDP-43 a partner in crime (Kwiatkowski et al., 2009, 

Vance et al., 2009). The findings that mutations in TDP-43 and FUS/TLS1 have 

established reasonably, that dysfunctional RNA processing is an important 

pathophysiological process in ALS and other neurodegenerative conditions, with 

potential therapeutic implications. 

 

1.9 Localisation of TDP-43: Is cytoplasmic localisation a pathogenic or 

a protective response? 

The discovery of the association of TDP-43 with neurodegenerative conditions 

like ALS and FTLD was made when TDP-43, which is largely a nuclear protein, was 

identified as the major component of the disease related inclusions in the 

cytoplasm of neurons and glia (Neumann et al., 2006). Since then it is considered 

that the cytoplasmic translocation of TDP-43 in motor neurons is a pathological 

characteristic of sALS and non-SOD1 fALS. The translocation of TDP-43 to the 

cytoplasm is also associated with relative clearing of TDP-43 from the nucleus 

(Neumann et al., 2006, Mackenzie et al., 2007). Several investigations have 

identified key features of TDP-43 localised to the NCI, for example, insoluble 

aggregation, ubiquitination, phosphorylation and C-terminal fragmentation of 

TDP-43. It still remains an enigma whether the cytoplasmic translocation of TDP-

43 is solely reflecting a pathogenic process or a neuro-protective response to 

cellular injury. 

1.9.1  Structural determinants of TDP-43 localisation 

Under physiological conditions, in vitro, in vivo, and in postmortem investigations 

of material from neurologically normal cases, TDP-43 has been shown to largely 
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localise to the nucleus. Winton et al, 2008, estimated that in rat hippocampal 

neurons, about 15% of the total TDP-43 is detected in the cytoplasm (Winton et al., 

2008a). Some investigators consider this cytoplasmic fraction of TDP-43, to have a 

functional role, whilst others argue for a pathological role.  Ayala et al (2008) in an 

inter species heterokaryon assay described that WT TDP-43 shuttles in and out of 

the nucleus, rapidly and continuously (Ayala et al., 2008b). This finding is 

consistent with the function of the TDP-43 paralogues, hnRNP proteins, which are 

well described to travel between the two compartments (Krecic and Swanson, 

1999). Structural analysis of the TDP-43 N-terminus revealed a bipartite nuclear 

localisation signal (NLS), which consists of a lysine-arginine-lysine sequence 

separated by 10 amino acids from the next Lysine-V-lysine-arginine sequence 

between amino acids 82-98. A deletion mutation construct over-expression study 

showed that the NLS is essential for targeting TDP-43 protein to the nucleus, and 

the deletion of the NLS resulted in cytoplasmic aggregation of not only the over-

expressed, but also the endogenous TDP-43 (Winton et al., 2008a), in a manner, 

that recapitulates the nuclear clearing and cytoplasmic sequestration of TDP-43 

seen in ALS and FTLD-U cases. These findings were confirmed by results from a 

study of mouse hippocampal neurons which also showed that cytoplasmic 

aggregation of TDP-43 was associated with sequestration of nuclear TDP-43, 

which contained ubiquitinated, insoluble and C-terminally fragmented TDP-43 

(Winton et al., 2008a) as well as abnormal phosphorylation (Nonaka et al., 2009a). 

In keeping with above, the A90V mutation of TDP-43, located within the NLS but in 

between bipartite loci, was identified in association with fALS, and in vitro 

expression of A90V TDP-43 resulted in cytoplasmic aggregation of TDP-43 along 

with nuclear clearing, suggesting that perturbation of the NLS sequence could 

potentially be pathogenic (Winton et al., 2008b). Sequestration of endogenous 

TDP-43 by the over-expressed TDP-43 is predicted to be as a result of protein-

protein interaction such as oligomerisation, which can affect the targeting of both 

(Ayala et al., 2005). 

 In keeping with the above finding are the observations made in a TDP-43 

expression study in temperature sensitive BN2 cells containing a regulator of 

chromosome condensation 1 (RCC1) gene mutation. These BN2 cells, when 

subjected to a non permissive 39.5C temperature, showed TDP-43 accumulation 

in the cytoplasm, along with the endogenous nuclear TDP-43 in a Ran GTP 
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dependent manner. BN2 cells with the RCC1 gene mutation are non-permissive at 

39.5 C as the nuclear Ran GTP translocates to the cytoplasm, as a result the 

transportation of proteins to the nucleus is blocked (Winton et al., 2008a). The NLS 

is recognised by importin alpha/beta (also known as karyopherin), which is 

implicated in nuclear transportation of proteins (Otis et al 2006). Importin beta 

interacts with Ran-GTP. Interestingly, a recent immunoprecipitation assay 

identified karyopherin (importin) as a potential TDP-43 binding protein 

(Volkening et al., 2009). Confirming the above interactions are the observations by 

Sato et al (2009), wherein knock down of importin in SHSY-5Y cells by siRNA, 

excluded TDP-43 from the nucleus (Sato et al., 2009).  

 Winton et al, using bioinformatics, predicted that a leucine rich nuclear export 

signal (NES) is located within 239-250 amino acids, and in a mutagenesis study 

confirmed that disruption of the NES leads to accumulation of TDP-43 in distinct 

punctate inclusions within the nucleus, which were insoluble (Winton et al., 

2008a). The observations in an interspecies heterokaryon model showed that 

TDP-43 shuttles in and out of the nucleus in a NLS/ NES dependent manner which 

was neither dependent on the transcriptional status of the cells nor the RRM1 

domain (Ayala et al., 2008b). Deletional mutations of the C-terminus produced 

variable cytoplasmic translocation, but were noted to result in distinct nuclear 

inclusions, which were devoid of DAPI stain suggesting they were dense bodies. In 

contrast to the aforementioned observation are results from the yeast model 

where the C-terminal truncation of TDP-43 resulted in nuclear localisation but not 

cytoplasmic aggregation (Johnson et al., 2008). RRM1 deletion also resulted in the 

formation of nuclear inclusions and a redistribution of TDP-43 within the nuclear 

compartments (to the soluble nucleoplasm and the structure bound nuclear matrix 

and chromatin enriched in transcribed genes component) (Ayala et al., 2008b). 

Thus, TDP-43 is well structured to shuttle within the nucleus and in between the 

nucleus and the cytoplasmic compartments, and perturbation of this finely 

balanced transportation results in dramatic clearing of TDP-43 from the nucleus 

and aggregation in the cytoplasm and/ or nuclear inclusion formation, which 

recapitulates the abnormal compartmental localisation of TDP-43 seen in the ALS 

disease state.  

 The C-terminus is important in the alternative splicing function of TDP-43 and 

progressive deletion construct over-expression assays have shown that C-terminus 
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deletion results in cytoplasmic translocation of TDP-43 (Ayala et al., 2008b, 

Nonaka et al., 2009c). Ayala et al 2008 showed that progressive deletion of the C-

terminus results in a progressive shift towards a cytoplasmic localisation of TDP-

43 (Ayala et al., 2008b). In keeping with the above studies are the findings from the 

yeast TDP-43 proteinopathy model, where both the RRM motif and the C-terminus 

were shown to be important in TDP-43 localisation to the cytoplasm (Johnson et al., 

2008). 

 

1.9.2 Could the cytoplasmic localisation of TDP-43 be a cyto-protective 

response? 

As described above, under physiological conditions 15% of TDP-43 is present in 

cytoplasm and perhaps also contributes to the component of TDP-43 which 

shuttles in and out the nucleus. In a tightly controlled cellular environment, it is 

impossible to believe that shuttling of TDP-43 to the cytoplasm did not have a 

beneficial role to the cell. A mouse sciatic nerve axotomy model presented by 

Moisse et al 2008, showed an enhanced expression of cytoplasmic TDP-43 

immuno-reactivity following axotomy in the ipsilateral ventral horn motor 

neurons, along with lack of nuclear TDP-43 expression in some motor neurons 

(Moisse et al., 2009b). This is in keeping with observations made in the analysis of 

motor neurons in ALS spinal cords, where an up-regulation of TDP-43 was noted 

(Strong et al., 2007). Furthermore, TDP-43 was found to co-localise with the RNA 

transport granule marker staufen 1, but not with a P body marker (Moisse et al., 

2009b), suggesting that TDP-43 is translocated to the cytoplasm following axonal 

injury and perhaps takes a role in transporting essential mRNAs required for 

axonal repair, indicating a physiological/biological response to neuronal injury. 

This response could be impaired in the presence of ALS related aberrant cellular 

resources such as deficient NFL mRNA (Moisse et al., 2009a). 

 In an axonal ligation model of the mouse hypoglossal nerve, Sato et al 2009, 

showed that the TDP-43 is transiently excluded from the nucleus and co-localised 

with cytoplasmic inclusions positive for staufen 1 and  TIA 1, which are markers 

for RNA transport granules and stress granules, respectively, whilst the total TDP-

43 mRNA level, assessed by laser capture micro-dissection of the hypoglossal 

motor neurons, was retained at a normal or increased level (Sato et al., 2009).  The 

association of TDP-43 with RNA transport granules and stress granules of  
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hypoglossal nerve motor neurons whose axons are ligated further confirms that 

TDP-43 shuttles out the nucleus in response to axonal injury. TDP-43 was also 

isolated from mouse brain stem microsomal fractions of endoplasmic reticulum 

(ER) or autophagosome, suggesting the possibility that it is transported in vesicles 

(Sato et al., 2009).  Furthermore, exclusion of  nuclear TDP-43 was not lethal to the 

neurons and return of normal nuclear TDP-43 staining correlated with the return 

of ChAT (Choline acetyl transferase) staining, suggesting that redistribution of 

TDP-43 was dependent on the innervation status of the neurons (Sato et al., 2009). 

Translocation of TDP-43 to the cytoplasm is also seen upon ligation of the vagus 

nerve, suggesting that re-distribution of TDP-43 is not limited to motor neurons. 

However if the translocation of TDP-43 to the cytoplasm occurred over a long 

period of time, as perhaps it might occur in MND, due to continued bombardment 

of the neurons with cellular stressors, chronic sequestration of TDP-43 might 

cause neuronal toxicity. In support of this claim is the increased cell apoptosis 

consequent to the loss of TDP-43, following siRNA knock down of TDP-43 (Ayala et 

al., 2008a). 

 Although the axonal injury paradigm tested in the above studies 

demonstrated cytoplasmic translocation of TDP-43 following neuronal injury, 

immunohistochemistry analysis of brain tissues obtained from cases of anoxic and 

ischaemic brain injury and cerebral neoplastic lesions has not shown TDP-43 

positive inclusions in the cytoplasm, raising the question of the specificity of TDP-

43 inclusions in neuronal injury (Lee et al., 2008). The accumulation of the TDP-43 

cytoplasmic inclusions represents a common pathway for a subset of 

heterogeneous group of neurodegenerative diseases as SOD1 ALS cases do not 

show TDP-43 pathology (Mackenzie et al., 2007). 

 TDP-43 co-localises with markers of stress granules such as staufen 1 and 

HUR (Colombrita et al., 2009). The formation of SG is a protective mechanism to 

by-pass the stressful cellular insult and to re-initiate translation after the stressful 

event has been overcome. Although TDP-43 is not essential for the assembly of the 

SG, it is reasonable to believe that association of TDP-43 with SG by translocating 

to cytoplasm represents a cyto-protective response. 
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1.9.3 Could the cytoplasmic localisation of TDP-43 represent a pathogenic 

process? 

Since the trail blazing discovery of the association of TDP-43 with ALS and FTLDU 

by Neumann et al (2006) in a proteomic study, TDP-43 positive cytoplasmic 

inclusions have been described in several neurodegenerative conditions in 

addition to ALS and FTLDU, the so called TDP-43 proteinopathies. The hallmarks 

of  TDP-43 proteinopathy are C-terminally fragmented, phosphorylated, 

ubiquitinated, insoluble cytoplasmic inclusions. It still remains an enigma as to 

whether these inclusions are the cause or the effect of ALS and if they are 

protective or harmful to the neurons. It is now well established from mutation 

screening analysis that mutant/aberrant TDP-43 causes ALS and that pathological 

studies on postmortem material from such cases have shown mis-localisation of 

TDP-43 to the cytoplasm, indicating that the mis-localisation could be harmful.  

This phenomenon is reminiscent of tau and alpha synuclein, the disease proteins, 

which form neuronal aggregations, and are implicated in neurodegenerative 

conditions which are collectively known as either tauopathies (Alzheimers 

dementia) or alpha synucleinopathies (Parkinson’s and Lewy body dementia) 

(Goedert, 2001).  

 

1.9.4  Phosphorylation of TDP-43 

Although the pathological significance of phosphorylation is unclear, 

phosphorylation is important in regulating transcription and pre mRNA splicing. 

The other members of the hnRNP family are known to be phosphorylated in vivo 

which is an important post-translational modification, in protein-protein  and 

protein-RNA interactions. In agreement with the above, phosphorylation of hnRNP 

K results in inhibition of mRNA translation and cytoplasmic accumulation 

(Habelhah et al., 2001) and stress induced MAP kinase 3/6-P38 mediated 

hyperphosphorylation of hnRNP A1 and cytoplasmic aggregation (van der Houven 

van Oordt et al., 2000). Structural analysis of TDP-43 suggests several potential 

phosphorylation sites and phosphorylation of TDP-43 may be responsible for 

aggregation. The phosphorylation of TDP-43 came into light in the pioneering 

study on TDP-43, when Neumann et al (2006) described a 45kDa band in addition 

to 43kDa band, and upon dephosphorylation the 45kDa band collapsed to 43kDa, 

indicating that TDP-43 undergoes phosphorylation. Furthermore, monoclonal anti 
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phosphorylated-TDP-43 antibodies detected C-terminal fragments of TDP-43, 

24kDa and 26kDa bands in the urea fraction of the immunoblots of postmortem 

material from FTLDU cases and ALS cases .  

 However, interestingly, these monoclonal antibodies, specific to 

phosphorylated TDP-43, did not detect any immunoreactivity in control brains, 

suggesting that the monoclonal antibodies only detected specific post translational 

modifications or conformation/s unique to TDP-43 proteinopathy. In keeping with 

the above results, several pathology studies involving extensive analysis of normal 

cultured cells, rat, mouse and human brains, have failed to detect phosphorylated 

S409/410 TDP-43 (Inukai et al., 2008, Neumann et al., 2009). Hasegawa et al 2008, 

also did not detect immunoreactivity in normal brains with several different 

polyclonal antibodies specific to phosphorylated serine residue 91 and 92 (pS91 

and pS92) residues of TDP-43 (Hasegawa et al., 2008a). Hasegawa et al 2008, 

described using several polyclonal antibodies, that five serine residues at the C-

terminus of the TDP-43 were specifically phosphorylated and that Casein Kinase 1 

or 2 is responsible for the phosphorylation (Hasegawa et al., 2008a).  

 The monoclonal antibodies engineered to detect aberrant phosphorylation of 

serine residues S409/410, detected NCI in familial and sporadic forms of FTLD-U 

due to mutations in progranulin, VCP and linkage to chromosome 9p and ALS cases. 

Taken together, these findings indicate that phosphorylation of TDP-43 is a disease 

specific phenomenon and hence likely to be pathogenic. In vitro studies have also 

shown that phosphorylation results in the formation of oligomers and filamentous 

structures. These abnormal filamentous structures can be neurotoxic and are 

reminiscent of taupathies and alpha-synucleinopathies (Goedert, 2001, Hasegawa 

et al., 2008a).  

 

1.9.5  Ubiquitination of TDP-43 

The formation of ubiquitin, a 76 amino acid protein, positive NCI in diseased 

brains is a pathological characteristic of many neurodegenerative conditions such 

as FTLDU, Parkinson’s and Alzheimer’s diseases. Whilst the residues of TDP-43 

responsible for ubiquitination are yet to be demonstrated, residues corresponding 

to lysines are plausible candidates. The ubiquitin proteasomal pathway (UPP) and 

the autophagy-lysosomal pathway (ALP) are the two main protein degradation 

pathways. TDP-43 has been shown to interact with the proteasome targeting 
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factor, ubiquilin-1 (UBQLN) in a yeast two hybrid assay. Under physiological 

conditions UBQLN binds to ubiquitylated TDP-43 resulting in sequestration to 

autophagosomes, which could be a protective mechanism (Kim et al., 2009). 

However, aberrant TDP-43 (D169G TDP-43 mutant) could not bind to UBQLN, 

resulting in impaired sequestration, leading to aberrant cytoplasmic accumulation 

and in turn resulting in neuronal injury (Kim et al., 2009). Further strengthening 

the ubiquitination of TDP-43 as a pathogenic phenomenon are the TDP-43, 25kDa 

C-terminal fragment over-expression studies which showed increased aggregation 

formation in HEK293T cells upon treatment with the UPP inhibitor, MG132 and 

with ALP inhibitors. Both the ALP and UPP systems appear to be important in the 

clearance of aberrant TDP-43 and the accumulation of C-terminal fragments 

suggests derangement in the UPP and/ or the ALP pathway (Wang et al., 2009). 

 

1.9.6 Cleavage 

Neumann et al alluded to the fact that TDP-43 in the NCI of FTLDU and ALS cases 

are C-terminally fragmented in addition to the phosphorylation and ubiquitination 

changes described above. Since then Zhang et al 2007, reiterated that caspase-3 

proteolytically cleaved TDP-43 to generate 25kDa and 35kDa fragments and 

described in detail the potential cleavage sites: DETD (aa 86-89) and DVMD 

(aa216-219). Zhang et al also described that, a candidate gene for FTLDU, 

progranulin, when down regulated, favours the above cleavage (Zhang et al., 2007). 

Furthermore, Igaz et al 2009, demonstrated the presence of 22kDa and 24kDa C-

terminal TDP-43 fragments in the urea fraction of FTLDU brain extracts and 

recapitulated the pathological features of TDP-43 proteinopathy, by over-

expressing the C-terminal fragments spanning amino acids 208-414 and slightly 

longer in a N2a cell culture system. They also demonstrated that the presence of 

CTFs is enough to initiate phosphorylation, ubiquitination and cytoplasmic 

aggregation (Igaz et al., 2009). These findings were in agreement with that of 

Nonaka et al 2009, who described several cleavage sites (at aa 208, 219 and 247) 

by protein sequencing (Nonaka et al., 2009c). Nishimoto et al described caspase 3 

dependent (not detected in caspase-3 null mouse embryonic fibroblasts system) 

and independent CTF (detected in caspase-3 null mouse embryonic fibroblasts 

system and therefore thought to be translational isoforms produced by alternate 

translational start sites) that were of the same molecular weight: 25kDa and 
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35kDa. The 25 and 35kDa CTF were phosphorylated as in TDP-43 proteinopathy, 

but in a site-directed mutagenesis study where the phosphorylation sites were 

mutated the formation of the CTF was not altered and the pattern of localisation 

was not changed suggesting that phosphorylation is not essential for CTF 

generation and localisation to the cytoplasm (Nishimoto et al., 2009). Several 

studies have shown that 25 and 35kDa CTFs impair the nuclear functions of TDP-

43 as indicated by the impaired splicing function of  the CFTR exon splicing assay 

(Nishimoto et al., 2009, Nonaka et al., 2009c, Zhang et al., 2009). However, the CTF 

constructs used in most of the molecular biology studies of TDP-43 do not have the 

NLS, without which TDP-43 has been shown to have a defective localisation to the 

nucleus. To make matters more interesting, there is evidence to support that 

pathological aggregation of potentially toxic proteins i.e. polyglutamine and beta 

amyloid, might be neuroprotective and may not be involved in disease 

pathogenesis (Arrasate et al., 2004, Orr, 2004). 

 

1.9.7 SUMOylation of TDP-43 

Small ubiquitin like modifier (SUMO) proteins are a family of small proteins which 

are bound or removed from other proteins as a post translational modification, 

which is implicated in various cellular functions such as transcription, cell cycle 

regulation, nuclear cytoplasmic trafficking, apoptosis, stress response etc. The 

process of post translational modification where covalent bonding of SUMO 

proteins occurs is called SUMOylation (Vertegaal et al., 2004, Hay, 2005). In a 

complex quantitative proteomics approach involving SILAC (multiplex stable 

isoptope labeling with amino acids in culture) strategy, Seyfried et al 2010 

identified significant co-localisation of SUMO 2/3 and ubiquitin within detergent 

insoluble aggregations of TDP-43 splice isoform called TDP-S6 (~28 kDa) in a cell 

culture system (Seyfried et al.). Confocal studies carried out on the same system 

showed co-localisation of TDP-S6 with SUMO 2/3 in nuclear inclusions. In keeping 

with above findings, TDP-43 has been shown to localise with nuclear bodies, PML 

bodies, which have been shown in independent studies, to co-localise with 

SUMO2/3 (Wang et al., 2002, Vertegaal et al., 2004). TDP-43 sequence analysis has 

suggested a canonical SUMO conjugation site spanning amino acids 135-138 

amongst potential SUMO targeted lysines (Geiss-Friedlander and Melchior, 2007, 

Golebiowski et al., 2009). Confirming the TDP-43 SUMOylation theory, Golebiowski 
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et al 2009 identified a seven fold rise in TDP-43 and SUMO-2 conjugation in 

response to heat shock (Golebiowski et al., 2009).  

 If the proteins are ubiquitinated, phosphorylated and SUMOylated and 

translocated to the cytoplasm, leaving the nucleus devoid of TDP-43 for its 

transcription and translational functions, and targeted for proteasome mediated 

degradation, it can be hypothesised that TDP-43 translocation to the cytoplasm 

over a period of time is harmful to the neuron. The association of ARP1 (actin -

related protein 1) and enrichment of SUMO 2/3 in the TDP-43 inclusions further 

strengthens the hypothesis that disruption of the TDP-43 equilibrium could result 

in an imbalance in the protein sorting pathways/ systems. ARP1 is a subunit of the 

macromolecular complex, dynactin, which interacts with microtubules and dynein. 

ARP1 is also implicated in protein transportation and vesicular trafficking (Schroer 

et al., 1996). Seyfried et al 2010 described the association of over-expressed TDP-

S6 (Transcription isoform, 28kDa) with up regulation of poly-ubiquitinated 

linkages, which could facilitate the formation of inclusions and guide them for 

autophagy (Seyfried et al.). Another subunit of the dynactin complex, p150Glued,  

when mutated, causes ALS in mice and has also been associated with ALS in 

humans (Munch et al., 2004). The aggregation of TDP-43, following 

phosphorylation and SUMOylation, is likely to be the primary role of C-terminal 

fragments of TDP-43 which can also sequester the endogenous full length TDP-43 

to the cytoplasmic inclusions, thus impairing the nuclear functions of TDP-43 

resulting in neuronal dysfunction and degeneration. 

 

1.9.8 Prion like behaviour of TDP-43 

The concept of prion-like behaviour was applied to neurodegenerative conditions 

based on two observations. Firstly the Braak’s proposal of propagation theory of 

Lewy related alpha synucleinopathy from the medulla oblongata rostral to the neo-

cortex, which has some similarities to that of bovine spongiform encephalopathy 

(Braak et al., 2003). Secondly the notion of prion like spread similar to the 

infectious prions came about with observations relating to the molecular 

characteristics of seeded aggregation and spreading of neurodegenerative proteins, 

in particular the misfolded conformations of Abeta plaque aggregation shown in 

primate experiments when brain extracts obtained from human Alzheimer’s 

disease patients were injected into primates (Baker et al., 1994). These findings 
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were also then confirmed in a mouse model where showed that presence of pre-

formed Abeta aggregates hastens the Abeta aggregation (Kane et al., 2000). TDP-

43 is considered to have prion like domain, where there is a Q/N rich region in the 

C-terminus. Proteins with Q/N rich domains, including TDP-43 have been shown 

to bind to polyglutamine inclusions. In deletion construct expression assays, 

residues 320-367 of TDP-43 have been demonstrated to be important for 

polyglutamine aggregate binding. Therefore it is possible that polyglutamine 

aggregates can propagate or seed aggregation of Q/N rich proteins like TDP-43. 

Interestingly polyglutamine aggregate interaction of TDP-43 results in 

sequestration of  endogenous TDP-43 into the aggregations resulting in loss of 

nuclear TDP-43 (Fuentealba et al., 2010). This loss of nuclear TDP-43 is an 

important pathogenic step in the dysfunctional TDP-43 related neurodegeneration. 

In several mouse models, the loss of nuclear TDP-43 has been shown to precede 

neurodegenerative changes (Wegorzewska et al., 2009). 

 

1.10 Animal models of TDP-43  
 

Novel insights into the aetiopathogenesis and progression of ALS have been 

derived from rodent and various other animal models harboring fALS associated 

mutations, especially mutant SOD1 (mSOD1) (Gurney, 1997). Several key features 

of ALS have been replicated using these animal models, such as progressive loss of 

motor neurons, leading to weakness and premature death, neurofilament 

aggregation, ubiquitinated cytoplasmic inclusion formation etc (Julien and Kriz, 

2006). For a considerable period of time, SOD1 mutant mouse models have 

dominated the quest for answers to explain the cause/s of ALS. ALS disease models 

also serve as a useful tool for testing potential therapeutic agents and options 

although there is no cure or a treatment found for ALS so far.  

 Since the discovery of the association of TDP-43 with ALS, several models of 

TDP-43 proteinopathy have been published (Table 1.3). The TDP-43 transgenic 

mice expressing human A315T TDP-43 mutation using the mouse prion protein.
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Table 1.3 Animal models of TDP-43 (Adapted from (Vinsant et al., 2013))  
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promoter, become symptomatic around 90 days and showed an average age of 

survival of 153 days. Mice developed difficulties with gait and feeding as the 

disease progressed. This TDP-43 transgenic mouse model also demonstrated 

selective vulnerability of motor neurons, motor neuronal loss and axonal 

degeneration, ubiquitinated inclusions, C-terminal fragmentation and rarely, 

showed relative nuclear clearing when compared with non transgenic littermates 

(Wegorzewska et al., 2009). However this model failed to show the cytoplasmic 

mis-localisation of TDP-43 seen in the motor neurons of ALS cases. The other 

drawback of the model reported is the low number of backcrosses, and the fact 

that the data published are only from F1 and F2 generations. The variation in 

survival ranges between 100-240 days and it is possible that a drop in copy 

number could explain this variability.  In the meantime it is also difficult to 

interpret the results due to the absence of data from a WT TDP-43 transgenic 

mouse as a control for comparison. Several reports have recently described severe 

gastrointestinal dysfunction and myenteric plexus degeneration as a cause of 

death in the PrP-hTDP-43 (A315T) transgenic mice. Some argue usefulness in this 

mouse model due to the lack of ALS like phenotype and features of TDP-43 

proteinopathy in these mice (Hatzipetros et al., 2014, Herdewyn et al., 2014). 

 Wu et al (2010), generated a tdp-43 null mouse using the BAC targeting 

system to knock out exon 2 and 3 of TDP-43. As a consequence TDP-43 loses its 

translational initiation codon (ATG in exon 02) leading to ablation of TDP-43 

production. The homozygous tdp-43 null mice only survived until the morula stage. 

Prior to this state homozygous tdp-43 null mice were phenotypically 

indistinguishable from the WT mice. This phenomenon is most likely due to 

maternal transmission of TDP-43 mRNA to homozygous tdp-43 null mice. Once the 

maternal mRNA is depleted, these mice die. A significant defect in the migration of 

inner cell mass has been noted. On the other hand in heterozygous tdp-43 null mice 

TDP-43 mRNA levels or the protein levels were unchanged when compared with 

WT control, indicating a possible feed back loop to maintain TDP-43 levels in the 

cell. Moreover, heterozygous tdp-43 null mice were more or less similar in 

behaviour, locomotor function and survival compared to WT mice (Wu et al.). 

Although it is difficult to interpret the findings of this study as supportive of loss of 
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function in ALS, certainly it confirms that TDP-43 is an essential protein in mouse 

embryonic development.  

 In keeping with the above findings is the knockout model of Drosophila 

melanogaster TDP-43 orthologue, TBPH by ‘P element mobilisation’. The  

homozygous TBPH null flies died at the second instar larval stage. Interestingly 

TBPH heterozygous knockout flies showed in vitro evidence of impaired nuclear 

function due to reduced TBPH, as indicated by impaired HDAC6 mRNA levels. 

HDAC is implicated in autophagic degradation of accumulated protein and decides 

the fate of poly ubiquitinated proteins, supporting the hypothesis that TDP-43 is an 

RNA processing molecule (Fiesel et al., 2009). Somewhat in contrast to the above 

study is the TBPH deletion technique used to abolish TBPH resulting in TBPH null 

flies by Feiguin et al (2009). These flies were viable after embryogenesis and the 

majority underwent metamorphosis. Some had difficulty in eclosing and the ones 

that eclosed had gross locomotor deficiencies for example weak crawling, climbing 

and flying etc. Ultra-structure analysis in transgenic and TBPH suppressed with 

RNAi, flies showed abnormal presynaptiC-terminals of the neuromuscular 

junctions indicated by reduced axonal branching. Interestingly, behavioural, 

locomotive and ultra structural defects were rescued using a GAL4/UAS system to 

deliver human TDP-43 to TBPH-/- flies (Feiguin et al., 2009). Taken together the 

above models replicate the multiple functions of TDP-43 in a cell and confirm its 

importance in development and locomotion. 

 Zebrafish, through evolutionary duplication of its genome, has two TARDBP 

orthologues, one on chromosome 06 called tardbp and the other on chromosome 

23 called tardbpl.  Both of these orthologues have significant homology to the 

human TARDBP, in that chromosome 06 encoded tardbp has 72% homology and 

encodes all the structurally important components of TDP-43 whilst chromosome 

23 encoded, tardbpl, which is only 54% homologous, does not contain the 

complete C-terminus (Figure 1.5). In an in situ hybridisation study of zebrafish, 

Shankaran et al (2008) showed ubiquitous expression of maternally expressed 

tardbp in the sphere stage and even by day three post fertilisation, tardbp 

expression was restricted but still seen uniformly in the head region (Shankaran 

et al., 2008). Kabashi et al (2010) replicated ALS like features in a zebrafish model 

by over-expressing human TDP-43 mutant constructs  (A315T, G348C and A382T) 

in zebrafish embryos.  The mutant construct injected zebrafish showed a motor 



 83 

phenotype of abnormal coiling and escape response to touch stimulus compared 

to those injected with WT TDP-43. These fish also had shorter and disorganised 

branching of motor axons, identified by SV2 (marker of synaptic vesicles) and 

acetylated tubulin (marker of growing axons) antibodies. A similar motor 

phenotype was also observed by knocking down of the TDP-43 orthologue, tardbp 

(chromosome 06 encoded), using anti-sense morpholino oligo nucleotides (AMO) 

specific to tardbp which was confirmed by immunoblotting. However no motor 

neuronal or axonal loss was observed. The AMO related phenotype was rescued 

by injection of WT human TARDBP constructs but not by the mutant TARDBP 

(Kabashi, 2010). The problems in interpreting the above results are that AMO 

injection can result in non-specific cell death/ apoptosis. Therefore the effects of 

AMO need to be confirmed by another AMO targeting the same gene and or by co- 

injecting p53 AMO, which inhibits non-specific apoptosis especially in 

degeneration of the hindbrain (Roeben et al 2006). The above zebrafish model of 

TDP-43 proteinopathy supports both the toxic gain of function (by the mutant 

construction injections) as well as loss of function as plausible mechanisms of 

TDP-43 related neurodegeneration in ALS.  
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Figure 1.5 Clustal W alignment of the amino acid sequence of the zebrafish orthologues of human TDP-
43. 

 

 
 
 

 

1.11  Zebrafish as a model of human diseases 
 

Danio rerio, zebrafish, has been used for experimentation purposes since the 

1930s. It was first developed as a model organism by Dr George Streisinger of the 

University of Oregon in 1970. Since then this model has been developed into a 

developmental biology platform on which many vertebrate developmental 

disorders have been studied.  Increasingly, over recent years several 

neurodegenerative conditions have been investigated using the zebrafish model. 

The zebrafish nervous system arrangement has many similarities to that of the 

human. The representative anatomy includes fore-brain, mid-brain and hind-

brains, diencephalon, telencephalon and cerebellum. The peripheral nervous 

Figure 1.5 Clustal W alignment of the amino acid sequence of the zebrafish orthologues 
of human TDP-43. There is significant identity towards the N-terminus. The Tardbp and 

Tardbpl are 72% and 54% idenitical to human TDP-43 protein respectively.  
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system includes motor and sensory components and an enteric and autonomic 

nervous system. Zebrafish also has specialised sensory organs such as the eye, 

olfactory system and shows functions of higher behaviours and neural integration 

such as memory, conditioned responses and social behaviours, although these are 

much simplified compared to those of humans. The main differences are that the 

zebrafish telencephalon only has a rudimentary cortex and the lateral line is one of 

the major fish sensory organs. The development of the zebrafish neuro-muscular 

system is well characterised and is stereotyped in that the establishment of 30 

body muscle segments (fast twitch muscle medially and the slow twitch laterally), 

development of 3 primary motor neurons for each spinal cord hemi-segment 

which innervate non-overlapping muscle segments, fasciculation by secondary 

neuronal axonal projection to form 3 nerves on each side. The alteration of these 

nerves, axons and neuro-muscular junctions can be studied microscopically by 

using antibody staining (ZnP1) and/or using genetically engineered models, which 

express green fluorescent protein (GFP- islet 1 GFP fish, HB9) (Beattie et al., 2007). 

Zebrafish as a disease model has become attractive due to various advantages 

associated with it compared to other vertebrate models like mouse or rat. These 

advantages include the rapid development, accessibility, external embryonic 

development, high fecundity and optical transparency. The  relatively small size 

makes it easier to store and maintain a large number of fish, requiring lesser 

resources. The applicability of invertebrate style genetic manipulations to generate 

answers for vertebrate specific disease related questions make it an ideal system 

to use for large scale genetic and therapeutic screening development and testing of 

new therapies (Grunwald and Eisen, 2002).  One also needs to be aware of several 

major limitations in zebrafish as a model of neurodegenerative conditions such as 

its regenerative capacity, relative evolutionary distance to humans and differences 

in the organization of the nervous system are a few. 

 

1.11.1 Targeting Induced Local Lesions in the Genome (TILLING) 

 In order to study the developmental biology of a human disorder in the 

zebrafish, ideally due to a genetic dysfunction, several approaches can be made. 

The reverse genetics approach is a method  of studying the resultant phenotype 

following a genetic manipulation. Zebrafish mutants of human orthologues can be 

generated by a reverse genetics method called TILLING (targeting induced local 
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lesions in genomes) (McCallum et al., 2000) (Also see Fig 6.1). In mouse models, 

gene targeting by homologous recombination is a method used for the reverse 

genetics approach. The advantages of TILLING are the large size of the library 

screened, the ability to collect an allelic series of random mutations and better 

genotype-phenotype correlation with a large allelic series. In addition missense 

and gain of function mutations can be generated by the TILLING process 

(McCallum et al., 2000).  

1.11.2 Transgenic zebrafish models 

The optical transparency and the external development of the zebrafish embryos 

present researchers with the opportunity to microinject either mRNA or anti-sense 

morpholino oligonucleotides which results in transient alteration in gene 

expression. Retroviral mutagenesis, compartmentalisation and caging techniques 

allow tissue specific and temporally specified expression of a gene. The simple 

injection of constructs into fertilised oocytes can result in 50-80% efficient 

transgenesis using transposon-mediated transgenesis (Udvadia and Linney, 2003). 

It is also possible to use tissue specific promoters to over-express dominantly 

inherited genes related to human diseases to generate transgenic zebrafish lines.  

Thus, the zebrafish serves as an efficacious and practical disease model to study 

and understand the pathogenesis, improve diagnosis and discover therapeutic 

agents through drug and chemical screening related to  neurodegenerative 

conditions and many other human disorders. 

 ALS aetiopathogenesis is a complex process involving, protein aggregation, 

axonal transport defects, mitochondrial dysfunction, impaired RNA processing etc 

(Figure 1.1), which is further complicated by heterogeneity in the associated 

genetic abnormalities indicating that a therapeutic option would most likely to 

materialise from a combination of therapeutic strategies acting in synergy. 

Therefore it is useful to identify new genes associated with ALS, understand the 

pathophysiology of the new genes/proteins by cellular and animal models in order 

to generate efficient biomarkers and therapies for ALS. 

 

1.11.3 Zebrafish models of neurodegenerative conditions 

Recently Ramesh et al, 2010, reported a stable transgenic model of mutant SOD1 

zebrafish expressing G93R and G85R mutations. The fish survived until adulthood 
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but showed progressive muscle weakness, consequent swimming defects and early 

death. Neuromuscular junction defects were noted as early as 11dpf. These mutant 

fish also incorporate a heat shock promoter 70  driving DsRed (hsp70-DsRED) 

construct engineered into the human SOD1 gene, thus enabling the identification 

of the transgenic embryos by the heat shock method. However even prior to heat 

shocking, embryos with mutant SOD1 have been shown to activate the DsReD 

transcription signal in the neurons, indicating mutant SOD1 driven neuronal 

toxicity. This model is invaluable for high throughput drug screening to identify 

novel therapies to treat SOD1 related ALS (Ramesh et al., 2010).   

 Transient expression of human SOD1 mRNA in zebrafish embryos by 

Lindberg et al. 2005 showed dose dependent motor axon defects in the embryos.  

They also studied the protective role of VEGF (vascular endothelial growth factor) 

in the pathogenesis of ALS. Knockdown of VEGF in the embryos over-expressing 

human SOD1 showed severe axonal defects, whereas simultaneous over-

expression of VEGF in SOD1 over-expressing zebrafish partially rescued the axonal 

phenotype indicating that VEGF confers neuroprotection in the presence of SOD1 

mediated toxicity.  

 Als2 related mutations are associated with young onset ALS. Transient 

knockdown of Als2 using AMO in the zebrafish demonstrated features of motor 

nerve defects and swimming abnormalities. Furthermore the zebrafish Als2 was 

also shown to be important for global embryonic development in contrast to the 

mouse als2 knockout model which was clinically unaffected due to another als2 

species (Gros-Louis et al., 2008). Other neurodegenerative conditions studied 

using zebrafish as a model are spinal muscular atrophy related to mutations in 

SMN (McWhorter et al., 2003, Beattie et al., 2007), Parkinson’s disease related to 

mutations in PINK1 (Flinn et al., 2009), Parkin (Fett et al., 2010), DJ1 (Baulac et al., 

2009) and LRRK2 (Sheng et al., 2010), Huntington’s disease related to Htt 

((Henshall et al., 2009) Alzheimer’s dementia related to Tau (Bai et al., 2007), 

((Paquet et al., 2009) and, hereditary spastic paraparesis associated with spast 

mutations  (Wood et al., 2006).  

  

1.12 Fibroblasts as a model of neurodegenerative disease 
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Modeling of neurodegenerative conditions in a cellular system derived from 

human tissues poses an intrinsic problem in that it is impossible to obtain cells or 

tissues from the disease affected CNS tissues from patients during life. Therefore 

the search for alternative tissues to develop cellular models has been underway for 

many years. The two favourite patient-tissues used to model neurodegenerative 

conditions are skin fibroblasts and lymphoblastoid cell lines. It is advantageous 

that many of the genes and proteins associated with neurodegenerative diseases 

are ubiquitously expressed in peripheral as well as CNS tissues. Both these tissues 

are easily obtainable from patients and control cases. The advantage of using 

patient derived tissues, particularly in studying a subset of inherited 

neurodegenerative conditions associated with mutations in a specific gene, is that 

the mutant protein levels are similar to the innate protein levels in the disease 

affected tissues in human cases with the relevant mutations. This is a distinct 

advantage compared to knockdown cellular models or over-expression models 

wherein the targeted protein is altered in a non-physiological manner which could 

result in off target effects. A proof of principle study by Mortiboys et al 2008, 

demonstrated that use of skin fibroblasts from a subset Parkinson’s disease 

patients with a mutation in the PARK2 gene, could help to understand the 

underlying pathological mechanisms which may cause neurodegeneration in the 

presence of mutant parkin (Mortiboys et al., 2008). Since the above study a recent 

study has also shown that fibroblasts are a useful model to study the underlying 

mechanisms, which might be implicated in neurodegenerative process in 

Parkinson’s disease, associated mutations associated with mutations in both PINK1 

and PARK2 genes. Using the fibroblasts from patients with mutations in PINK1 and 

parkin, they demonstrated that the ubiquitin-proteasome system (UPS) is 

important in the maintenance of Mitofusin, which is important for mitochondrial 

function, morphology and recycling (Rakovic et al., 2011). Fibroblast models are 

important not only to study mechanisms involved in the neurodegenerative 

process, but can be used to identify readouts which subsequently can used for high 

throughput chemical screening to identify therapeutic targets (Mortiboys et al., 

2008). Mitochondrial dysfunction is a well established pathophysiological disease 

mechanism in ALS (reviewed in (Shi et al., 2009)). Rodriguez et al, 2012 described 

mitochondrial morphological changes similar to those changes seen in central 

nervous system, in skin fibroblasts obtained from sALS cases (Rodriguez et al., 
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2012). Increased susceptibility of  motor neurons to oxidative stress is another 

pathophysiological mechanism indicated in the pathogenesis of ALS in both 

sporadic ALS and SOD1 related ALS (Barber et al., 2006). Supporting oxidative 

stress as a pathophysiological mechanism, skin fibroblasts obtained from sALS and 

SOD1 ALS cases have been shown to be at greater risk of oxidative damage from 

exogenous oxidative stressors such as H2O2 (Aguirre et al 1998). Furthermore 

impaired calcium handling in fibroblasts from ALS cases has also been 

demonstrated (Witt et al., 1994). Taken together, patient derived fibroblast cell 

culture systems can be regarded as a robust platform for investigating disease 

related mechanisms in ALS and other neurodegenerative disorders  In addition to 

the significant precedence which exists in using cultured fibroblasts in the study of 

neurological and neurodegenerative disorders fibroblasts have an advantage over 

lymphoblasts in that transformation of lymphocytes to lymphoblasts to allow 

serial culture could alter cellular properties especially pathways involving calcium 

metabolism (Gibson and Peterson, 1987).  

 

1.13 Hypothesis and aims of the PhD: 
 

Since the discovery of TDP-43 as one of the major components of the neuro-

cytoplasmic inclusions of the surviving motor neurons and glial cells in 2006 

((Neumann et al., 2006, Sreedharan et al., 2008) it still remains an enigma how  

dysfunctional TDP-43 dismantles the fine internal milieu of motor neurons over 

time. Over-expression of mutant and wild type TDP-43 has resulted in variable 

results as discussed earlier in the chapter 1. A variety of animal models have failed 

to unequivocally demonstrate the features of TDP-43 proteinopathy and 

associated clinical syndrome. We believe this is secondary to the tight control of 

TDP-43 levels at the cellular level. Therefore knocking down or over-expression of 

TDP-43 could be harmful to the cells and the animals. One might argue that results 

from models of such methodological approaches could be not interpretable. It has 

been described that mutant TDP-43 exerts its effect via toxic gain of function 

and/or by enhancing the effects of TDP-43 proteinopathy. Therefore we 

hypothesised that over expression of disease associated TDP-43 mutations 

(wtTDP-43) would results in distinct changes in cells compared to the wild type 

TDP-43 (wtTDP-43). 
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 TDP-43 has been shown to take part in several RNA associated functions and 

interact with thousands of RNA targets. Therefore it is important to study the role 

of wtTDP-43 and disease associated mutations at a physiological level to avoid 

perturbation of a myriad of RNA-protein-TDP-43 interactions. Patient derived 

fibroblasts have been used as a platform to study various aspects of 

neurodegenerative conditions whilst providing a physiological level of disease 

related protein i.e. TDP-43. Patient derived fibroblasts have been utilised 

previously to study neurodegenerative disorders such as Parkinson’s disease 

(Mortiboys et al., 2008) and ALS ((Mead et al., 2013).  Fibroblasts obtained from 

ALS cases with mutations in TARDBP provide a valuable resource, which directly 

represents the genetic make of a patient and has physiological levels of the mutant 

TDP-43protein. TDP-43 is ubiquitously expressed. Therefore we hypothesised that 

patient derived fibroblasts would demonstrate some features of TDP-43 

proteinopathy. Furthermore  one of the RNA processing functions that TDP-43 

implicated in is modulation of stress granule (SG) dynamics. Several studies have 

used changes in SG dynamics as a surrogate marker of RNA related function of 

TDP-43 (McDonald et al., 2011).  However these studies have assessed the SG 

dynamics in cell models over-expressing TDP-43. Therefore we also hypothesised 

that physiological levels of mutant TDP-43 would have a distinct effect on RNA 

processing  in fibroblasts compared to the controls.  

It is yet unclear if dysfunctional TDP-43 is associated with neurodegeneration in a 

loss of function, toxic gain of function processes or indeed both. Loss of function 

models of TDP-43 in mice showed embryonic lethality. However zebrafish has 

several advantages wherein external development, optical translucency and 

accessibility to genetic manipulation, make zebrafish model an ideal model to 

study loss of function effects of TDP-43. A previous study did exploit these 

advantages of the zebrafish model in demonstrating a motor phenotype by 

transiently knocking down the zebrafish homologue, tardbp (Kabashi et al., 2010a). 

Furthermore it was not clear if the phenotype observed by this group was 

secondary to the off target effects of anti-sense morpholino oligonucleotides 

(AMO) used. Furthermore the conclusion that second zebrafish orthologue tardbpl 

has no functional use was drawn by inadequate interrogation. Therefore we 

hypothesised that zebrafish tardbp and tardbpl are both vital for the zebrafish 
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survival and a stable mutant would negate disadvantages of a transient 

knockdown model. In the light of this evidence and above hypothesis the following 

aims were formulated – 

 

 To describe the effects of mutant and wild type TDP-43 overexpression in 

HEK293T cells and study mislocalisation of TDP-43. 

 

 To establish the immunohistochemical differences between mutant TDP-43 

associated ALS patients derived fibroblasts and those obtained from control 

cases.  

 

 To study stress granule dynamics in fibroblasts associated with wild type 

and mutant TDP-43. 

 

 To assess the phenotype of antisense morpholino oligo nucleotide (AMO) 

knockdown of zebrafish  tardbp and tardbl, when the off target effects have 

been minimized.  

 

 To establish the importance of zebrafish tardbp and tardbpl using a stable 

tardbp mutant zebrafish. 
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Chapter 02: Materials and Methods 

2.1 Transient expression of TDP-43 in HEK cells  

2.1.0 Cells used  

 HEK cells- a kind gift from Dr Roy Milner. HEK cell passage at the time of 

use was 12.. 

2.1.1 Working solutions 

All solutions were prepared in deionised water unless otherwise stated. 

2.1.1.1 Bacterial Culture / Plasmid Propagation 
 Luria-Bertani (LB) broth, Miller (Merck®). 

 LB-Agar media, Miller (Merck®) 

 Carbenicillin stock: 50 mg/ml in 50% ethanol solution. Filtered and stored 

at -20˚C (for the selection of myc-tagged plasmid growth) 

 Kanamycin stock: 50 mg/ml in water. Filtered and stored at 4˚C. (for the 

selection of GFP-tagged plasmid growth) 

 QiAGEN® mini prep kit- for DNA extraction from the bacterial cultures 

(QIAGEN.com) 

 NucleoSpin® DNA extraction kit (Clontech labs) was used to extract DNA 

for transfecting rat cortical neurons. 

2.1.1.2 Solutions used - Cell Culture and transfection 
 Culture medium: DMEM (BioWhitaker®) with 2 mM L-Glutamine and 

Glucose, supplemented with 10% Fetal Calf Serum and Penicillin-

Streptomycin cocktail. 

 Penicillin-Streptomycin cocktail: Contains 10,000 units/ml of penicillin 

(penicillin G sodium base) and 10,000 μg/ml of streptomycin (streptomycin 

sulphate) in 0.85% saline. 

 PBS (pH 7.2): 135 mM NaCl, 3.2 mM Na2HPO4, 0.5 mM KH2PO4, 1.3 mM KCl. 

 EDTA-Trypsin solution: 0.5 mM EDTA (pH 8.0) with 0.05% trypsin (Sigma-

Aldrich®). 

 Exgen 500 cell transfection medium (cosmobio.co.jp) 

 

2.1.1.3 Immunocytochemistry 
 Permeabilising solution: 0.01% Triton X-100 (w/v) in PBS. 
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 Quenching solution: 1 M glycine. 

 Blocking solution: PBST containing 1% Goat Serum (w/v). 

 Hoechst stain: Hoechst made up in PBS in the ratio 1:1000 (v/v). 

2.1.1.4 Immunoblotting 

2.1.1.4.1 Cell Harvesting 
1X Laemmli Sample Buffer (LSB): 62.5 mM Tris-HCl (pH 6.8), 2% (w/v) SDS, 10% 

Glycerol, Beta mercaptoethanol (2-ME) 5% (v/v), Bromophenol blue 0.001% 

(w/v) (Laemmli 1970). 

 

2.1.1.4.2 Western Blotting (SDS-Polyacrylamide Gel Electrophoresis) 
 30% Acrylamine-bis acrylamide (37:5:1) solution (Protogel™) 

 10% (w/v) Sodium Dodecyl Sulphate (SDS) 

 4X Resolving gel buffer (pH 8.8): 1.5 M Tris base and 0.4 % (w/v) SDS 

 4X Stacking gel buffer (pH 6.8): 0.5 M Tris base and 0.4 % (w/v) SDS 

 10% (w/v) Ammonium Persulphate (APS) 

 Resolving gel (~15ml; for 2 gels): 4.5 ml water with 6 ml of 30 % 

Acrylamine-bis acrylamide solution, 3.8 ml of upper Tris (pH 6.8), 150 μl of 

10% SDS and 10% APS and 16 μl of TEMED. 

 Stacking gel (~10ml; for 2 gels): 4.9 ml water with 1.3 ml of 30 % 

Acrylamine-bis acrylamide solution, 2 ml of upper Tris (pH 5.0), 80 μl each 

of 10% SDS and 10% APS and 16 μl of TEMED 

 1X Electrophoresis running buffer: 25 mM Tris, 250 mM glycine and 0.1% 

(w/v) SDS. 

 1X Electro-blotting transfer buffer: 25 mM Tris, 250 mM glycine and 10% 

(w/v) methanol. 

 Washing solution (PBS-Tween-20 (PBST)): PBS with 0.2 % (w/v) Tween-20 

(Polyoxyethylene-Sorbitan Monolaurate). 

 Blocking solution: PBST containing 5% w/v dried skimmed milk (Casein 

block). 
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2.1.2 Transient expression of myc- tagged wild type TDP-43 (wTDP-43) and 

the disease associated mutations of TARDBP 

2.1.2.1 Isolation of plasmid DNA 
Myc-tagged TDP-43 constructs of wtTDP-43 and the three mutant constructs were 

a kind gift from Dr Sundarajan (Sandy). 4ml bacterial cultures were made from the 

bacterial glycerol stocks of the above constructs, which were grown in LB broth 

containing 8µl of Carbenicillin solution (50µg/ml) overnight at 370 C on a shaker at 

400 rpm. Plasmids were isolated using the QiAGEN mini prep kit using the product 

protocol. Plasmid DNA thus extracted was analysed using the Nanodrop1000 

spectrophotmeter machine to obtain a quantitative and a qualitative assessment. 

 

2.1.2.2 Transient transfection 
HEK cells were cultured in T75 flasks in Dulbecco’s modified Eagles medium 

(DMEM) at 370C. When the cells reach 90% confluency they were harvested by 

incubating the cells with 1X Tripsin for 4-5min at 370C . Trypsin was neutralised 

using the culture medium removed from the cell flask. Cells were counted using a 

haemocytometer and centrifuged at 400 rpm for 4 min to obtain the cell pellet, 

which was later re-suspended in a pre-calculated amount of fresh DMEM. The cells 

then were seeded as appropriately onto 13X13mm coverslips (Menzel Glaser) and 

cultured for 24 hours in (~40,000 cells per well in a 12 well plate for cell culture). 

When the cells reached a degree of confluency (usually around 24hrs of culture) 

they were transfected with 1µg TARDBP DNA (WT, M337V, Q331K or A315T ) 

using ExGen 500 transfection medium as per product protocol.  

2.1.2.3  Optimising the transfection efficiency 
To optimise the transfection efficiency several modifications were made to the 

above protocol.  

2.1.2.3.1 Four hour wash step 
Four hours following transfection, cell culture media was removed under sterile 

conditions and cells were gently washed twice with pre-warmed media and left to 

incubate at 370C in the third wash for the remaining 20 hours.  

2.1.2.3.2 Titration of the DNA concentration 
The transfection protocol suggested the use of 1µg of DNA along with the 

ExGen500 medium. Serial dilutions of wtTDP-43 DNA were transfected to assess 

the transfection efficiency. Dilutions used were 1, 0.5, 0.25, 0.125 and 0.0625µg. 
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Every transfection was followed by a wash step as described in section 3.1.2.2.1. 

After 24hrs post transfection, the proportion of transfected to total cells (total 

nuclei as indicated by Hoescht stain) was calculated to identify the best condition 

for transfection. 

 

2.1.2.4 Analysis of cytoplasmic and nuclear staining pattern resulting from 
transient expression of WT and mutant TDP-43 

2.1.2.4.1 Immunostaining with Anti-myc antibody 
24 hours after transfection when the cells were about 80% confluent, cells were 

either subjected to exogenous stress as outlined below or fixed for staining. In the 

case of the latter, DMEM medium was removed, coverslips were gently washed 

with PBS and fixed using 3.7% paraformaldehyde (Sigma) for 30 minutes. 

Coverslips plated with transfected HEK cells  thus fixed were then washed for 5 

minutes X 3 with 1XPBS and either stored at 4˚C overnight in PBS/0.001% Azide 

(Sigma) or subjected to immunostaining with anti-myc antibody at a dilution of 

1:2000 and to develop fluorescence Alexafluor 488 anti- mouse secondary 

antibody was used at a dilution of 1:1000 (Abcam).  

 

2.1.2.4.2 Cellular Immunostaining protocol 

Media was removed from the coverslips and the cells were washed twice with PBS.  

3.7% formaldehyde (Sigma UK) in 1XPBS was added for 20 minutes to fix the cells. 

Formaldehyde was removed and the cells washed three times with PBS. When the 

cells were left overnight or longer 0.001% Azide in 1XPBS was added. If not the 

remaining formaldehyde was quenched with 100µl of 1M Glycine (Sterile filtered) 

(Sigma UK) per cover slip for 10 minutes followed by three 1XPBS washes. Cells 

were permeabilised with 0.1% TX100 (Triton X 100, Sigma UK) in 1XPBS for 10 

minutes at room temperature followed by three 1XPBS washes. Thereafter the 

cells were blocked for background non-specific antibody binding by blocking with 

5% normal goat serum (NGS) in PBST (1XPBS and 0.1% Tween20 (BioRad.com)).  

Primary and secondary antibodies were diluted separately in PBST and added on 

to coverslips accordingly.  Coverslips were incubated in primary antibody for an 

hour prior to three x 5 minute washes with PBST following which  the secondary 

antibody was added for a further hour and followed by three PBST wash steps as 

for the primary antibody. All antibody incubations were done at room 
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temperature. After the third wash 2-3 drops of 1:1000 Hoescht was added for 30-

40 seconds. Coverslips were subjected to a further three washes with PBST. Then 

coverslips were mounted onto  glass slides in 60µl of 50% sterile filtered glycerol 

(Sigma UK) and sealed using transparent nail varnish (Boots UK). Slides were 

stored at 4˚C prior to imaging. All working solutions of antibodies and NGS were 

stored at 4˚C. 

 

2.1.2.4.3 Imunostaining for endogenous TDP-43 
HEK cells were cultured and fixed as described above without transfection. 

Polyclonal rabbit anti TDP-43 antibody (Proteintech group) at 1:500 dilution was 

used as the primary and goat anti-rabbit Alexa Fluor 488 antibody (Abcam) was 

used as the fluorescent secondary along with Hoescht at 1:1000 dilution to stain 

the nuclei. 

 

2.1.2.4.4 Immunostaining for stress granules 
We used anti HUR, TIA and TIAR antibodies (Abcam.com) to stain for stress 

granules. For HEK cells TIAR was the best. Other antibodies (HUR (Abcam.com) 

were also used to assess for TDP-43 co-localisation with stress granules. 

 

2.1.3 HEK cell response to exogenous stress: Formation of stress granules as 

an indicator of the stress response 

 
As described in 2.1.2.4.1 section when cells reached 80% confluency they were 

subjected to exogenous stress as described by previous groups (See Table 2.1) 
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Table 2.1 Agents used to obtain a stress response from the HEK cells 

Agent Mechanism 
of stress 

Concentration Duration 
(minutes) 

Source 

Arsenite  Allosteric 
regulator  

0.5mM 30, 
variable 

Sigma UK 

H2O2 Oxidative 0.6mM 60  Sigma UK 

Menadione  Reactive 
oxygen 
species 

10mM in 
1:1000 
dilution 

120 -480 
Kind gift 
from Dr 
Mortiboys 

FCCP  
Uncouples 
complex V 10µM 90  Kind gift 

from Dr 
Mortiboys 

Sorbitol Osmotic  0.4M 30-120  Sigma UK 

Heat Shock Heat stress 42˚C 30  
 

Thapsigargin ER stress 4µM 90 Sigma UK 
 
 

2.1.4 Microscopy and image analysis 

2.1.4.1 TDP-43 localisation upon transient over-expression of TARDBP 

An upright light microscope with viewing channels for fluorescence was used with 

a X63 magnification oil immersion lens. More than 100 consecutive cells were 

counted for each slide. When analysing subcellular TDP-43 localisation the 

following categories of staining were observed. 

 Nuclear only (N) (Figure 2.1 panel A and B) 

 Nuclear and cytoplasmic (N+Cy) (Figure 2.1 panel C and D) 

 The cells were also assessed for the following features: 

 Nuclear inclusions (Figure 2.1 panel E and F) 

 Cytoplasmic inclusion (Figure 2.1 panel D arrow) 
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Figure 2.6 Characterisation of cellular distribution pattern of myc tagged TDP-43 

Figure 2.1 Characterisation of cellular distribution pattern of myc-tagged TDP-43. A-B) TDP-43 
staining (green) predominantly nuclear (following optimised transfection with a 4hr wash and reduced DNA 
concentration.  C-D)  Cytoplasmic mis-localisation of TDP-43 and cytoplasmic puncta formation (arrow) E-
F) Nuclear inclusions in keeping with sNBs.  

 

2.1.4.2 Assessment of stress granule response and localisation of endogenous 

TDP-43 in HEK cells to exogenous stress 

The proportion of cells demonstrating stress granule formation was analyzed. 

Compared to unstressed cells (Fig 2.2 A-B), cells stressed with arsenite (Fig 2.2 C-

D) formed distinct cytoplasmic entities called stress granules marked by anti TIAR 

antibody. Although McDonald et al., 2009 used ≥2 as a threshold we increased the 

threshold to 3 stress granules per cell in order to increase the specificity 

((McDonald et al., 2011).  A cell was considered to have formed stress granules if it 

formed ≥3 punctate lesions (Figure 2.2 panel C arrow) positive for a stress granule 

marker (anti TIAR, HUR or TIA antibodies). If the number of punctate lesions for a 

A	 B	

E	 F	

C	 D
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cell was ≤2, then it was considered negative for stress granule formation (Figure 

2.2  panel C and D empty arrow). TDP-43 antibody as described in section 2.1.2.4.3 

was used to stain for endogenous TDP-43 whilst anti TIAR antibody was used to 

detect stress granules. Images were merged using ImageJ software to assess for co-

localisation of SG markers with TDP-43.   

 

 

Figure 2.7 Induction of stress granules by exposure to 0.5mM arsenite 

Figure 2.2 Induction of stress granules by exposure to 0.5mM arsenite. A-B) Unstressed HEK293T  
cells, TIAR staining is both nuclear and smooth cytoplasmic in nature. C-D) upon exposure to arsenite, 
cells form distinct cytoplasmic puncta in keeping with previous descriptions of SG formation. Arrows  point 
towards the punctate cytoplasmic lesions. The empty arrow points towards a cell with less than 3 SG. In 
this panel the TIAR antibody was used to detect SGs. Scale bar 100µm.   

 

 
 

2.2 TDP-43 expression and stress response analysis in human 
fibroblasts from controls and cases with disease associated mutations 
in TARDBP gene 
 

TIAR	 DAPI	A	 B	

TIAR	 DAPI	C	 D	
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2.2.0 Ethical aspects 

Fibroblasts were cultured from skin biopsies obtained from healthy controls and 

ALS cases carrying mutations in the TARDBP gene.  Skin biopsies were obtained 

following receipt of written informed consent according to local ethics committee 

guidelines and regulations.  Studies involving retrieval of human fibroblasts have 

(STH14653 REC: 07/Q2305/9) NRES Committee Yorkshire & The Humber 

approval.   

 

2.2.1 Human fibroblast cell culture medium and chemicals 

Fibroblast cell cultures were grown in Ham’s F-10 medium (Gibco) supplemented 

with 10% fetal calf serum (Biosera), 1% penicillin-streptomycin antibiotic 

solution, 0.25% holo-transferrin (Sigma) and 2.5ng epidermal growth factor 

(Sigma). Unless stated otherwise all chemicals were obtained from Sigma Aldrich 

(UK). Phosphate buffered saline (PBS) was Ca2+, Mg2+, free PBS from Sigma Aldrich 

(U.K) (Mortiboys et al., 2008). 

 

2.2.2 Establishing primary human fibroblast cell cultures 

Fibroblast cell cultures were established at the Metabolic Biochemistry and Tissue 

Culture unit of the Sheffield Children’s NHS Foundation Trust. Skin biopsies were 

collected from the forearm of the subject under sterile conditions and placed in 5 

ml of DMEM media (Gibco). The biopsy was dissected under sterile conditions and 

explants were trapped under a coverslip placed on the flat base of a Nunc tube 

(Thermo scientific) using a sterilised glass tube. The samples were incubated with 

3mls of fibroblast culture medium (see section 2.2.1) in an incubator maintained at 

37˚C with 20% O2 and 5% CO2. When the fibroblasts grew out from the explanted 

tissue and covered either side of the coverslip, the cells were trypsinised (see 

section 2.2.3) and transferred to T25 flasks for further expansion. 

 

2.2.3 Maintenance of primary human fibroblast cell cultures 

Monolayers of primary fibroblast cell cultures were routinely maintained in T75 

flasks with 20 ml of fibroblast cell culture medium (see Section 2.2.1) at 37˚C in 

incubators supplemented with 20% O2 and 5% CO2 unless stated otherwise. 

Cultures when confluent at 70-80% were serially passaged by washing with Ca2+ 
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and Mg2+ free PBS (Gibco) and treatment with Trypsin (0.5μg/L)-EDTA(0.2μg/L) 

(Lonza) for 2 min at 37˚C to detach cells from the flask surface. Trypsin was 

inactivated with serum containing media and the cell suspension was centrifuged 

at 400 rpm for 4 minutes. The cell pellet was re-suspended in media and plated in 

fresh T75 flasks at a dilution of 1:3. Fibroblast cell lines were maintained and used 

for experiments up to passage 10 to ensure that they were in the proliferative 

phase of their growth curve and to prevent reaching the stage of senescence  

(Hayflick and Moorhead, 1961). 

 

2.2.4 Cryo-preservation of primary human fibroblast cell cultures 

Cultures at a confluency of 70-80% were cryo-preserved using a freezing solution 

of fetal calf serum (FCS) (final concentration 90%) and dimethyl sulfoxide (DMSO) 

(final concentration 10%, Sigma). The cell pellet and cryo-preservation suspension 

was aliquoted into cryovials and placed at -80˚C in a Nalgene freezing container 

(Thermo scientific) containing isopropanol, which lowers the temperature by 10˚C 

per minute. After overnight incubation, the cells were transferred to liquid 

nitrogen for long-term storage. 

 

2.2.5 Plating, immunostaining and mounting of fibroblasts 

When cells were 80% confluent, they were trypsinised and centrifuged as per the 

protocol outlined in 2.2.3. Cells were plated in a 24 well plate (Griener Bio-One), 

onto 13X13mm coverslips (Menzel Glaser)  pre-coated with 20µg/ml Poly-L-

Lysine (Sigma)  (post Poly-L-lysine coated coverslips were washed with 1XPBS X 3 

washes), and cultured for 24 hours in fully supplemented F10 medium. After 24 

hours, when the cells were 80% confluent, cells were either subjected to 

exogenous stress as outlined below or fixed for staining. In the case of the latter, 

F10 medium was removed, coverslips were gently washed with PBS and fixed 

using 3.7% paraformaldehyde (Sigma) for 30 minutes. Coverslips plated with 

fibroblasts thus fixed were then washed for 5 minutes X 3 times with 1XPBS and 

either stored at 4˚C over night in PBS/0.001% Azide (Sigma) or subjected to 

immunostaining.  

 



 102 

2.2.5.1 Immunostaining of human fibroblasts: TDP-43 
 
Fibroblasts were stained as described in section 2.1.2.4.2. Coverslips were 

incubated with polyclonal rabbit anti-human N-terminal TDP-43 antibody 

(Proteintech group) at 1:500 dilution (with 0.1% PBST) for 1 hour followed by 3X5 

minute PBST washes. Anti-rabbit 488 Alexa Fluor antibody (green) (Abcam) was 

added at 1:1000 dilution (with 1%PBST) and incubated at room temperature for 1 

hour whilst protected from light. The rest of the staining protocol was completed 

as described before. The coverslips were then sealed using non-toxic grease 

composed of equal parts lanolin, Vaseline and paraffin wax, forming an airtight 

chamber or with nail varnish. 

 

2.2.5.2 Immunostaining of human fibroblasts: p62 

TDP-43 is considered to form a major component of the ubiquitinated cytoplasmic 

inclusions. P62 is used as a surrogate marker of ubiquitinated proteins. Therefore 

we used p62 as a marker of ubiquitinated aggregates. Mouse anti-p62 antibody 

(Sigma UK) was kindly provided from Prof P. Ince’s lab at SITraN. A dilution of 

1:1000 was used as the primary and anti-mouse  Alexa Fluor  488 (Sigma, UK) was 

used as the secondary antibody. The rest of the protocol for antibody staining is as 

2.1.2.4.2. 

2.2.5.3 Immunostaining of human fibroblasts: phospho-TDP-43 

Mouse anti p409/410 TDP-43 antibodies were a kind gift from Dr Robin Highley of 

SITraN (www.ptglab.com). A dilution of 1:2000 was used as the primary and anti-

mouse Alexa Fluor  488 (Sigma, UK) was used as the secondary antibody. The rest 

of the protocol for antibody staining is as described in  section 2.1.2.4.2. 

2.2.5.4 Immunostaining for stress granules 

We used mouse anti-HUR and TIAR (ABCAM, Cambridge UK) and mouse anti 

eGF1∞ (Scbt.com) as markers for stress granules. TIAR and HUR were later 

preferred as studies of stress granules showed co-localisation of TDP-43, with 

stress granules identified by using anti HUR antibody. 
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2.2.5.5 Immunostaining for GEM bodies 

Mouse anti SMN antibody (ABCAM, Cambridge UK) (A generous gift from Dr K 

Ning) was used to immunostain GEM bodies and counter stained with DAPI to 

detect nuclei. Cells were viewed using an oil immersion lens with X63 

magnification. Cells in four random sections were counted per coverslip ( 

approximately 100 nuclei), in at least three replicates for each control and mutant 

cell line.   

2.2.6  Assessment of fibroblast response to exogenous stressors 

Fibroblasts were plated as described in section 2.2.5 and when the cells reached 

about 80% confluency the fibroblasts were subjected to an external stressor for a 

variable period of time (Table 2.1). Sodium arsenite was diluted with F10 medium 

down to a concentration of 0.5mM and incubated with cells for a period of 30 

minutes as described previously (Anderson and Kedersha, 2002). Sorbitol was 

used as an osmotic agent to cause cellular stress at a concentration of 0.5M for 

durations of 30, 60 and 120 minutes to assess for optimal stress (indicated by 

maximum number of stress granule appearance) (Kedersha et al., 2005). Cells 

were heat shocked using a temperature of 42˚C for 30min with the cell-culture 

plate in place to prevent evaporation. Thapsigargin was diluted in 0.5% ethanol 

and further diluted with F10 media to minimise the alcohol in the cell culture 

medium and to obtain a final concentration of 4µM and then the cells were 

stressed for 45 minutes (Bosco et al., 2010a). Unstressed controls were incubated 

with the same media without the stressors. Fibroblasts from three different age 

and gender matched normal healthy controls and three different cases carrying 

mutations in the TARDBP gene (M337V, A321V, G287S) were used in the 

experiments (Table 2.2). The stress response was defined as the ability of the cells 

to form stress granules. If a cell were to form more than three stress granules it 

was considered as a positive response as previously described in section 2.1.4.2. 
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Table 2.2 ALS patient and control fibroblast details 

Age at 
Biopsy 
(Years) 

 

Fibroblast 
I.D 

Control/

Mutation 

Gender Onset of 
Symptom

s 
 

Disease 
Duration 
(Months) 

Controls 
43 FIBCON02 Control Female - - 

50 FIBCON04 Control Male   

38 FIBCON09 Control Male   

54 FIBCON11 Control Male - - 

77  FIBCON19 Control Female - - 

Patients 

56  TARDBP 

G287S 

FIBPAT55 

sALS   

Male 51 76.5 

62  
 

TARDBP 
M337V 

 

FIBPAT51 

fALS 

Male 58  94 

40  
 

TARDBP 
A321V 
+ C9ORF72 
hexanucleotid
e repeat 
 

FIBPAT48 

fALS  
 

Female 37 58 

54 FIBPAT18 sALS Male 53 47 

67 FIBPAT21 sALS Female 66 16 

39 FIBPAT26 sALS Male 38 32.5 

 
 
 

 
Figure 2.8 Stress granule formation in fibroblasts stressed with sodium arsenite compared with 
unstressed fibroblasts 

Un	stressed	 Arsenite	0.5mM	

TIAR	 TIAR	
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Figure 2.3. Stress granule formation in fibroblasts stressed with sodium arsenite compared with 
unstressed fibroblasts. All of the stressed cells have formed stress granules, which are immunostained 
using antibodies to TIAR. White arrows point towards the stress granules. Cells are from the same case. 

 
 

2.2.7  Assessment of stress recovery response in the fibroblasts 

Both control and patient fibroblasts were subjected to stress with sodium arsenite 

at 0.5mM over a time course of 0 minutes (unstressed), 15, 30 and 45 minutes to 

assess the difference in response to exogenous stress between control and mutant 

fibroblasts. Furthermore we also assessed the recovery response over 150 minutes 

after having stressed for 45 minutes as above. The media was removed and the 

cells were washed with fresh media (three washes) and allowed to recover over 

15, 30, 45, 90, 120 and 150 minutes post stress. Cells were then fixed and 

immunostained as described above for TDP-43 and stress granules.  

 

2.2.8 Confirmation of punctate lesions formed in response to exogenous 

stress as stress granules 

The punctate lesions, which form in the cells upon exposure to exogenous 

stressors, particularly agents such as Arsenite and Sorbitol, are considered stress 

granules. However to confirm this phenomenon an inhibitor of  translation 

elongation, such as cycloheximide, that traps mRNA within polysomes and 

prevents the formation of stress granules was used to demonstrate that the 

punctate lesions are indeed stress granules (Mollet et al., 2008). Both control and 

patient (G287S) fibroblasts were cultured in media with and without 10µg of 

cycloheximide for an hour prior to stressing with 0.5mM Arsenite for 30 minutes. 

The cells were fixed and stained as described before. 

2.2.9 Image Analysis 

Images were saved in a 16-bit Gray scale format and transferred as a TIFF file onto 

a computer processing ImageJ software before being opened as a stack of images. 

More than one hundred cells analyzed per cover slip. Slides were anonymised 

during the labeling process and analysed in a blinded fashion. 
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2.2.7.1 Assessment of cytoplasmic mis-localisation of the TDP-43 in mutant 

fibroblasts 

Fibroblasts stained for TDP-43 (N-terminal antibody, Proteintech group) and 

Hoescht for nuclei were analyzed using an upright light microscope (Nikon Eclipse 

80i microscope).  Exposure was set at 230ms to obtain sub-saturated images of the 

nucleus of the mutant fibroblasts stained with the anti-TDP-43 antibody. Exposure, 

gain, and offset were stored to the computer to unify the settings across all image 

acquisition processes including normal controls (n=3, three replicates for each 

control) and mutant fibroblasts (n=3, three replicates for each mutant). A colour 

palette (red) was used to identify the saturated nuclei (most control fibroblasts 

Figure 2.4 A&B). The presence of nuclei was confirmed by Hoechst staining. Thus 

nuclear staining was objectively categorised into three groups: Normal (Saturated 

nuclear stain Figure 2.4 panel A), Sub-saturated (Reduced nuclear stain Figure 2.4 

panels C&E, solid arrows), Empty (Nuclear stain less than that of the cytoplasm 

Figure 2.4 panels C & E, empty arrows).  The number of cells with  

 



 107 

 

 

Figure 2.9 Categorisation of TDP-43 localisation in fibroblasts derived from control and mutant  TDP-
43 ALS cases 

Figure 2.4 Categorisation of TDP-43 localisation in fibroblasts derived from control and mutant 
cases. This figure depicts different levels of TDP-43 expression within the nucleus.  (A) Fibroblasts from 
control cases saturated with TDP-43 in the nucleus (indicated by the solid white arrow) (B) DAPI stain 
confirming the position of the nuclei. (C &D) Empty arrow marks a nucleus empty for TDP-43 staining in a 
mutant TDP-43 (M337V) fibroblast.  The solid arrow shows a nucleus with reduced expression of TDP-43 
as does the arrow in panel E.  
 

empty, sub-saturated and saturated nuclear staining was counted in 10 different 

consecutive fields starting from the top left hand side of a coverslip. Coverslips 

were analysed blinded as mentioned above. 
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2.3 Zebrafish: Transient knockdown of tardbp and tardbpl and stable 
tardbp mutant characterisation 
 

2.3.1 Chemicals 

Antisense morpholino oligonucleotide (AMO) were designed and obtained from 

www.genetools.com, USA. RT PCR primers specific for tardbp, tardbpl and tardbpl-

FL were designed and obtained from Sigma-Aldrich (Poole, Dorset ,UK). The znp-1 

mouse monoclonal antibody was used to label motor axons, and mouse anti islet-1 

to identify neuronal cell bodies were obtained  from DSHB, University of Iowa, 

USA). Rest of the chemicals used were obtained from Sigma-Aldrich (Poole , 

Dorset, UK) unless stated otherwise.  

2.3.2 Zebrafish husbandry 

Adult zebrafish and embryos were raised at 28.5oC. Wild-type (WT) animals were 

from the AB strain. Embryo collections, AMO (antisense morpholino 

oligonucleotide) microinjection and maintenance of the mutant and WT zebrafish 

lines were conducted according to standard protocols and in accordance with 

United Kingdom Animals (Scientific Procedures) Act 1986. The tardbpY220X, 

mutant (tardbpfh301 ) line was generated using the TILLING process undertaken in 

the Fred Hutchinson Cancer Research Centre, Seattle, USA, under Animal Care 

protocol 1342, which is reviewed and approved annually by the FHCRC 

Institutional Animal Care and Use Committee and is in accord with the 

recommendations of the American Veterinary Association. 

2.3.3 Identification of zebrafish orthologues of TDP-43 

The full-length human TARDBP cDNA sequence  (ENSG00000120948) was BLAST 

searched against the zebrafish genome using both the ensembl and Genescan 

genome browsers. Two putative transcripts tardbp (ENSG0000040031) and 

tardbpl (ENSG00000004452) were identified. The predicted amino acid sequences 

were aligned against the human amino acid sequence using Clustal W2 software 

(www.clustalW.org). Genescan predicted the possibility of a longer version of 

tardbpl (tardbpl-FL). Therefore to ascertain in silico predictions, overlapping 

primers specific for tardpl and tardbpl-FL were designed to amplify the coding 

sequences of the reverse transcribed zebrafish RNA and obtained from Sigma UK.   

http://www.genetools.com/
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2.3.4 Generation of a tardbp nonsense allele (tardbpfh301 ) 

The tardbpfh301 mutant was generated in the AB background and identified in a 

TILLING screen. The mutant was recovered by in vitro fertilisation of AB eggs using 

a cryo-preserved sperm sample from a single heterozygous F1 male. Heterozygous 

F1 adults were outcrossed into the AB background and heterozygous F2 adult fish 

identified by fin clipping and genotyping. The F2 heterozygous (tardbpfh301/+) 

animals were bred with AB fish for three further generations to obtain F5 mutant 

heterozygotes. All experiments were carried out on F6 progeny homozygous for the 

c.660 C>A (tardbpfh301/fh301) and their wild type (tardbp+/+) siblings. TILLING screen 

was carried out in Fred Hutchinson’s laboratory in Seattle, Washington, USA as part 

of collaboration. 

2.3.5 Generation of homozygous tardbp mutant zebrafish (tardbpfh301/fh301) 

and identification of genotype 

F6 heterozygous adult mutant zebrafish, which were 3 months old, were set up in a 

heterozygous-heterozygous in cross to generate the homozygous fry. These fry 

were brought up in the same tank. At 3 months of age the fish were anaesthetised 

using tricane and the caudal fin was clipped as previously described (Kawakami et 

al., 2000).  Clipped piece of fin was placed in a 96 well plate with 50µl of DNA easy 

reagent from DNAeasy kit (Qiagen) and stored at 4°C. Following fin clipping the 

fish were housed individually. DNA was extracted using DNAeasy kit (Qiagen). A 

pair of primers was designed (tardbp_genFWD 

5’CAAGGTATAGATGAACCAATGAGGA_3’ and tardbp_genREV 5 

GTCATCTGCAAAGGTGACAAAAG 3’) for PCR amplification of the extracted DNA.  

10µl of the PCR reaction was digested over night with CViQI at 25°C according to 

New England BioLabs standard protocol for CViQI enzyme and analyzed by 

electrophoresis. In initial experiments, DNA extracted during the  genotyping was 

also sequenced to verify the mutation.  PCR reaction was as follows- 

95°C for 5minutes 

95°C   for   45 seconds 
50-65°C  for 45 seconds    30 cycles 
72°C  for   45 seconds 
72°C  for 10min 

4°C  Hold 
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2.3.6 Measurement of weight and length of adult zebrafish 

At the same time of fin clipping the anaesthetised fish were weighed using a digital 

scale to three decimal points of a gram. The fish were also placed on a measuring 

tape and the standard length was measured from the tip of the lower jaw to the end 

of the hippural plate as shown in figure 2.3.1 in millimeters. Once the genotype data 

was available the weight and length of the three genotype categories were pooled. 

 

Figure 2.10 Schematic diagram of important surface anatomy and measurements 

 

2.3.7 Antisense morpholino oligonucleotide (AMO) mediated gene knock 

down  

2.3.7.1 tardbp knockdown 

An AMO was designed to block the translation initiation site (ATG) of tardbp (AMO-

tardbpATG  sequence : 5’ TACATCTCGGCCATCTTTCCTCAGT 3’). The standard control 

AMO (AMO-Control- designed against human ß globin) (www.genetools.com) was 

also used to distinguish the specificity of the effects seen from the knockdown of 

tardbp. Furthermore an AMO against zebrafish p53 (AMOp53 ) was also used along 

Figure 2.5 Schematic diagram of important surface anatomy and measurements. Anaesthetised zebrafish 
were placed on a tape measure and standard length was measured from tip of the lower jaw to the hippural 
plate to the closest milimitre (mm) to obtain the standard length (SL). Full length was not measured as the 

zebrafish were first subjected to fin clipping for genotyping.  

http://www.genetools.com/
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with the AMO-tardbpATG (Genetools, LLC, Philomath, OR, US). The AMO was dissolved 

in nuclease-free sterile water to obtain a stock solution of  4nmol/µl. The optimal 

dose was established by injecting a range of AMO-tardbpATG doses (1.8, 2.5, 5, 7.2 

and 16ng) along with 8ng of p53 AMO). To monitor the accuracy of injections, 

phenol red  (Sigma, Poole, UK) was added at a final concentration of 1% prior to 

injecting the zebrafish embryos.  

 Once the light cycle starts at 8am fish embryos were collected every 15 

minutes till about 11:30am. The embryos were injected with each category of AMO 

using an air pressure injector (Narashige IM-300 gas line injector). Glass capillary 

needles were prepared using a Model P-97 Flaming/Brown micropipette pulling 

machine (Sutter Instruments Co., USA)- programme 90 to obtain ultra fine needles. 

1nl of AMO mixture (gene specific AMO+p53 AMO) was injected into the yolk sac of 

1-2 cell stage embryos. The injection volume was calibrated using a Graticule. The 

injected embryos were re suspended in E3 

(http://cshprotocols.cshlp.org/content/2011/10/pdb.rec66449.full) medium with 

methylene blue and incubated at 28 oC. A range of concentrations of AMO was 

injected to identify the optimal concentration. At the optimal concentration there 

was minimal death of embryos at 36hpf but the amount of AMO was sufficient to 

produce a macroscopic phenotype.  

    At 24hpf post optimal AMO injection,  0.003% 1-phenyl 2-thiourea (PTU) 

was added to the embryos to suppress the pigmentation, if the embryos were used 

for microscopic evaluation. Embryos were counted and checked for abnormalities 

and documented at 4, 8, 24, 32-36, 48 and 72hpf for any obvious morphological 

changes. Survival of the embryos injected with AMO-tardbpATG, AMO controls and 

uninjected controls was monitored for 72hpf.The number of dead, curly tailed and 

‘monster’ looking embryos were counted at each time point for all injection 

categories. Control AMO and uninjected embryos from the same batch of embryos 

were used as controls. At least four independent experiments were carried out per 

injection category and each experimental repeat included at least 100 embryos per 

category.  Embryos were then processed as required for immunohistochemistry 

and immunoblotting.  

   One nanolitre  of the optimal AMO dilution was injected into the yolk sac of 

the embryos at the 1-2 cell stage. Survival of the embryos injected with AMO-

tardbpATG, AMO controls and uninjected controls was monitored for 72hpf. At least 

http://cshprotocols.cshlp.org/content/2011/10/pdb.rec66449.full
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four independent experiments were carried out per injection category and each 

experimental repeat included at least 100 embryos per category. Embryos were 

observed at 4, 8, 24, 32-36, 48 and 72hpf for any obvious macroscopic phenotype 

changes.  Embryos injected with 16ng  of AMO-tardbpATG did not survive whilst 

7.2ng of AMO-tardbpATG resulted in a severe curly tail phenotype with death as early 

as 24hpf. Therefore 2.5ng of AMO-tardbpATG was selected as the optimal dose for 

injection. The curly tail phenotype and any changes in the hindbrain clarity were 

recorded and observed until 48hpf.  The optimal dose of AMO-tardbpATG was 

injected in triplicate into at least 100 embryos per experiment. Embryos were then 

processed as required for immunohistochemistry and immunoblotting. 

2.3.7.2 Antisense morpholino oligonucleotide (AMO) mediated knock down 

of tardbpl 

A translation-blocking AMO was designed to knockdown tardbpl (AMO-tardbplATG) 

(5’ CCACACGAATATAGCACTCCGTCAT 3’). The standard control AMO (AMO-

Control) (www.genetools.com) was also used to distinguish the specificity of the 

effects seen from the knockdown of tardbpl. Furthermore an AMO against zebrafish 

p53 (AMOp53 ) was also used along with the AMO-tardbplATG(Genetools, LLC, 

Philomath, OR, US). The AMO was dissolved in nuclease-free sterile water to obtain 

a stock solution of  4nmol/µl. The optimal dose was established by injecting a range 

of AMO-tardbplATG concentrations along with 8ng of p53 AMO (5’ 

GCGCCATTGCTTTGCAAGAATTG 3’). To monitor the accuracy of injections, phenol 

red  (Sigma, Poole, UK) was added at a final concentration of 1% prior to injecting 

the zebrafish embryos. The same tardbpl ATG site AMO was also injected into the 

tardbpfh301/ fh301 stable mutant. We chose two concentrations, high dose (16ng) and 

low dose (5ng) to knockdown tardbpl-FL transcript. 

2.3.7.3 Splice site targeted antisense morpholino oligonucleotide (AMO) 

mediated knock down of tardbp 

Two splice site targeting AMOs were designed against the tardbp transcript. The 

first splice AMO was called tardbpSpI AMO (TDPS1)  which targets exon 3 splice 

acceptor site (exon 3-intron 3-4 junction)  (5’ TATATCAGTATATTTTACCTGCACC 

3’). The second splice AMO, tardbpSpII AMO (TDPS2) targets exon two which 

harbours the ATG site ( 5’ TAATTGTACCACATACCTTTTGGGT 3’). As described 

above varying concentrations of both TDPS1 and TDPS2 AMOs were injected into 

http://www.genetools.com/
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WT embryos to establish a concentration which provided an obvious macroscopic 

phenotype .   

 

2.3.8 Biochemistry and Immunoblotting 

2.3.8.1 Protein extraction  

Six month old HOM (tardbpfh301/fh301) and WT (tardbp+/+) adult zebrafish (four 

zebrafish per group) were sacrificed using 2% Tricaine (Sigma, UK) to obtain 

brain, spinal cord, eyes, muscle, heart, gills and liver for protein and RNA 

extraction. Protein extraction from embryos was carried out at 36hpf or 48hpf. At 

least 100 embryos were collected for each category studied and deeply 

anaesthetised as for adult zebrafish with Tricaine. The embryos were initially 

processed without deyolking. Later a deyolking step was added due to the relative 

insufficiency of the target protein (Tardbp/Tardbpl) in relation to the abundant 

yolk proteins such as vitellogelin. Embryos were washed in PBS and placed in a 

1.5ml tube tube. 10µl of the deyolking buffer (Stock solution was: 10ml of Ringer’s 

solution + 30 μl of 100 mM  PMSF + 1 ml of 10 mM EDTA) was added per embryo, 

to the embryos and shaken at level 3 of a shaker/vortex machine (Gennie) for 5 

minutes at 4 °C or on ice. The tubes were then centrifuged at 4 °C at 300Xg for 40 

seconds. The supernatant was carefully removed and lysis buffer (RIPA (25mM 

Tris•HCl pH 7.6, 150mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) 

buffer with 1% SDS and protease cocktail inhibitor and phophatase inhibitor 

(phosphostop- Roche) (1µl per embryo) was added to the pellet and the samples 

were immediately snap frozen in liquid nitrogen and stored at  -80°C. The samples 

were thawed on ice and sonicated using a probe sonicator at 50% amplitude for 5 

pulses  until the sample was clear. The sample was then boiled at 98°C for 5 

minutes with vigorous vortexing every 1-2 minutes before centrifuging at 14000 

rpm for 15 minutes. The supernatant was retrieved and stored at -80 °C or used 

for analysis.  

2.3.8.2 Protein estimation using BCA assay 

A BCA assay was performed to estimate the amount of protein in the sample. The 

BCA assay was preferred to the Bradford assay as the SDS in the lysis buffer does 

not interfere with the BCA assay (Gates, 1991). A serial dilution of 2mg/ml BSA in 

RIPA buffer was prepared and 25µl of each standard concentration was aliquoted 
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in flat bottom 96 well plates in triplicates. Unknown protein samples were diluted 

by 15 fold and were aliquoted in volumes of 25µl in triplicates. The working 

reagent was prepared by adding 240µl BCA reagent A to 12mls of reagent B. The 

total volume to be used was calculated for the number of standard and sample 

wells. 200µl of the working reagent was added to each well and the plate was 

mixed gently on a shaker for 30 seconds. The plate was placed in 37°C for 

approximately thirty minutes. Following the incubation the plate was allowed to 

equilibrate with the normal room temperature. The plate readings were taken 

using a plate reader (Fluostat Omega v1.01, Bmg Labtech) at 562nm wavelength. 

The standard curve was tabulated by using a quadratic curve-fitting algorithm 

(Mars Data Analysis software 2.10.R2, Build 13, Bmg Labtech). Final 

concentrations of proteins extracted were calculated using the above algorithm. 

2.3.8.3 Preparation of SDS page gel, resolving of proteins, transferring to 

PVDF membrane and detection of proteins of interest 

Twenty milliliters of 12% resolving gel was first made (8ml of 30% 

Polyacrylamide, 5ml of 1.5M Tris (pH 8.0), 200µl of 10% SDS, 6.6ml of dH2O was 

mixed first and just before pouring, 200µl of 10% Ammonium persulphate and 8µl 

of TEMED was added to catalyze the reaction. Water saturated Butanol was used to 

layer on the top of the resolving gel and once the resolving gel was set 8ml of 

stacking gel was prepared (1.3ml of Polyacrylamide, 2ml of 1M Tris (pH 6.8), 80µl 

of 10% SDS and 4.5ml of dH2O was mixed before adding 80µl of 10% Ammonium 

persulphate and 8µl of TEMED just before pouring. An appropriate comb was 

placed to create the wells. The gels were then placed in a tank and equilibrated in 

the running buffer. Samples were mixed in amounts equivalent to 40µg of total 

protein and mixed with 4X Laemili sample buffer before loading on to the gel with 

gel loading tips. 5µl of the All blue protein ladder (Biorad) was loaded for 

identification of proteins by size. 

   The gel was initially run at 60V to help stacking and resolved at 90V. 

Thereafter the proteins were transferred to a PVDF membrane at 250mA over 1 

hour. Prior to this step the membrane was equilibrated in 100% methanol for 5 

minutes and 5 minutes in the transfer buffer.  The protein transferred membrane 

was then blocked in 5% milk in 0.25% PBS/Tween20 for one hour before probing 

with polyclonal rabbit anti human TDP-43 proteintech antibodies (Catalogue 

number 12942-1-AP) or (cat number 10782-2-AP) to detect Tardbp or Tardbpl. 
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The mouse monoclonal  tubulin antibody (1:10,000) (Sigma UK) was used for a 

loading control. The membrane was incubated in 1:1000 hTDP-43 antibody over 

night at 4 ºC and washed with PBS + 0.25% Tween 20 three 5 minute washes. 

Membranes were then incubated in the  tubulin antibody (1:10,000)  in PBS + 

0.25% Tween 20  and 0.001% Sodium azide (to inactivate the HRP) for 1 hour on a 

rolling machine. The washed membranes were incubated in rabbit anti mouse HRP 

(1:10,000) antibody for 1 hour. The membrane was incubated in goat anti rabbit 

HRP antibody (1:2000) as the secondary antibody. The membranes were washed 

with 3, 5 minutes PBS/Tween20 washes. The membranes were developed using 

the EZ-ECL chemiluminescence HRP kit according to product protocol. 

(Geneflow.co.uk). Membranes were exposed to hyperfilm (Kodak) and developed 

using the Kodak photo developer solution and fixed using a fixer solution (Kodak) 

in a dark room or viewed directly using the GBox-HR Gel Doc system with a 4 

megapixel, 16 bit, peltier cooled CCD camera and Genesnap software (Syngene, 

US).  Densitometry was carried out using the G box hardware and software, 

Genetools software (Syngene, US) (www.integratedscientificsolutions.com).   

 

2.3.9 Immunohistochemistry on whole mount embryos 

Immunohistochemistry was carried out on whole-mount 36hpf embryos as 

previously described (Beattie et al., 2000). The znp-1 mouse monoclonal antibody 

(1:400) was used to label motor axons, and mouse anti islet-1 to identify neuronal 

cell bodies (both from DSHB, University of Iowa, USA).  

Motor axonal projection defects were assessed by counting the number of 

axons that were either prematurely truncated or abnormally branched at or just 

below the horizontal myoseptum. A total of 10 axons immediately caudal to the 

yolk bulge in both hemi- segments of each zebrafish, were counted to standardize 

the counting across all groups. Each hemi- segment was scored out of 10 for the 

number of axons with premature truncating or branching or both defects. At least 

30 embryos per category for each of 4 experimental repeats were counted. The 

number of motor neurons and Rohon Beard neurons stained with anti islet-1 were 

counted across eight myo-segments from immediately caudal to the yolk bulge to 

the end of the yolk extension. Images were obtained using a Zeiss light microscope 

with bright field settings. Images were analyzed using Image J (rsbweb.nih.gov/ij/) 

software. 

http://www.integratedscientificsolutions.com/
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2.3.9.1 Obtaining and preparing of WT zebrafish embryos for immuno 

staining 

Embryos from different AMO injected categories were incubated at 28 oC for 36 

hours in E3 medium in petri dishes. At 24hours post fertilisation (hpf) 300ul of 

0.3% stock PTU solution (1-Phenyl 2-Thiourea, Sigma Aldrich, Sweden) warmed at 

28 oC was added to each Petri dish to suppress the development of pigmentation. 

Prior to fixation dead embryos were removed and the live embryos were 

dechorinated manually and anaesthetised with Tricaine as explained above. A total 

of 50 embryos were transferred to a 1.5ml micro-centrifuge tube and as much E3 

medium as possible was aspirated before adding 4% paraformaldehyde (PFA from 

Sigma Aldrich, Sweden AB, 2g of PFA powder weighed and mixed under a fume 

hood in 50ml of phosphate buffered saline (PBS, 1 tablet dissolved in 200ml of 

distilled water) and warmed in a water bath at 65 oC until PFA dissolved, PFA was 

cooled to room temperature before adding to fish) and fixed overnight at 4oC. On 

the following day fixed embryos were washed with 1XPBS solution in two 5 

minute washes. Embryos were then transferred to 25%, 50%, 75% and 100% 

methanol in PBS solution to dehydrate and stored at -20 oC. 

2.3.9.2 Immunostaining of fixed dehydrated embryos 

Embryos which were stored at -20 oC were rehydrated in  Methanol/PBS solutions 

:75%, 50% and 25% for 15 minutes in each dilution, prior to suspending them in 

PBS alone. The embryos (30-50 per 1.5ml tube) were permeabilised using ice cold 

acetone (Acetone crack for 7minutes on ice and then 0.25% Tryspsin (Invitrogen) 

in PBT (1% Triton X-100 (from Sigma Aldrich, Sweden AB) in PBS) for 8 minutes 

on ice. Trypsin was inactivated using an equal volume of 1% normal goat serum 

(NGS) in PBT (Sigma, Aldrich, Sweden AB). Embryos were then washed with 3, 5 

minute washes in PBT. Embryos were then blocked in blocking buffer (10% NGS 

v/v, 1% Bovine serum albumin w/v (BSA, Sigma Aldrich, Sweden AB), 1% 

Dimethyl sulphoxide (DMSO) in PBT (PBDT)) for 1-3 hours whilst being shaken on 

a horizontal shaker at minimal shaking level to prevent dismembering the 

embryos. Afterwards primary antibodies were added. Polyclonal rabbit anti 

human TDP-43 (Protein Tech ltd) antibody was used at 1:100, mouse anti islet 1 

monoclonal antibody (ZIRC) at 1:400 in antibody dilution buffer. Embryos in the 
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antibody dilution buffer with primary antibodies were shaken on a horizontal 

plate shaker at 4oC overnight. The embryos were washed in 5 PBT washes over 3-5 

hours at room temperature. Anti rabbit Alexa 488 anti rabbit fluorescent 

secondary antibody at 1:1000 dilution and anti mouse Alexa 568 red fluorescent 

antibody at 1:1000 dilution were prepared and embryos were incubated in the 

secondary antibodies over night at 4 oC on a horizontal shaker at slowest speed. 

The embryos were washed on the following day as described above in 5 PBT 

washes over 3-5 hours. Hoechst solution used in 1:1000 dilution of 1ug/ml stock 

solution was added to the embryos for 5 minutes and washed with PBT  in 3, 5 

minute washes. Topro 3 was used later as the Hoechst penetration into the deeper 

zebrafish tissues was weak and Topro 3 was added to the embryos along with the 

secondary antibodies. Tubes with the embryos were covered in tin foil during and 

after the secondary antibody steps to prevent loss of fluorescence following 

exposure to light. 

2.3.9.3    Znp-1 staining to identify the axonal architecture with DAB stain 

development of AMO injected zebrafish 

Embryos were fixed and permeabilised as mentioned in section 2.3.9.2. Mouse 

monoclonal znp-1 antibody was used at 1:500 dilution in the antibody dilution 

buffer (5% NGS, 1%DMSO, 1%Albumin in PBS), as a marker for axonal 

architecture. After 4-5 30 minute washes over 3-5 hours anti mouse 

immunoglobulins from thermo scientific AB conjugate kit were used as the 

secondary at 1:400 dilution over night. On the following day after 4-5 30 minute 

washes with PBT (1% TritonX-100 in PBS) over 3-5 hours embryos were treated 

with A and B conjugate mix made as per kit protocol for 1 hour. The AB conjugate 

mixture was incubated for 30min at room temperature prior to adding to the 

embryos. The embryos were then washed in two 30minute PBDT washes and two 

30minute PBT washes over 2 hours. A DAB (Sigma, UK) tablet was dissolved in 

15ml of Tris HCL pH 7.5 (made with double distilled water) and covered with tin 

foil prior to use, to avoid light inactivation. DAB solution was added to the embryos 

whilst checking for the brown DAB stain development under a dissecting 

microscope. When sufficient colour had developed, excess stain was washed with 

PBS in 3-4 washes over 5-10minutes. Embryos were then transferred to a series of 

glycerol concentrations  prior to storing at -20oC in 80% Glycerol/PBS. 
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2.3.9.4 The assessment of axonal architecture  

  Ten pairs of axons were identified in the trunk portion of the embryo as illustrated 

in figure 2.6A. The axons were counted on both hemi sides of the fish for 

abnormalities in length (truncations) and branching (figure 2.6B). The same set of 

axons was counted on every embryo. 30-50 embryos were randomly selected and 

counted for the above abnormalities in all injection categories and also for the un 

injected controls. The abnormalities were scored out of 10 per hemi side. 0 out of 

10 being a completely normal to 10 out of 10 abnormalities being the worst. 

Abnormal branching, truncation and the total axonal abnormalities were calculated 

separately similar to the technique used by McWhorter et al 2003 (McWhorter et 

al., 2003). 

 

 

 

Figure 2.11 Counting of axonal defect in zebrafish embryos 

 

2.3.9.5 Mounting of immunostained zebrafish embryos 

Immuno stained embryos were transferred into a series of glycerol/PBS solutions 

from 25%, 50% to 75%, 20 minutes in each concentration to allow the embryos to 

equilibrate (at which point they sink to the bottom of the tube). Once the embryos 

have equilibrated in 75% Glycerol/PBS solution they were stored at -20ºC prior to 

mounting. Embryos were deyolked manually under the dissecting microscope and 

mounted on glass slides with wells made from electric insulation tape to hold the 

embryos (head and tail mounted separately) with a drop of glycerol or Vectashield 

mounting medium (for immunofluroescence staining). 

A	

A
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Figure 2.6 Counting of axonal defect in zebrafish embryos. A) (Inset) Laterally mounted 36 hours post 
fertilisised (hpf) zebrafish embryo stained with znp1 and developed with DAB. Rectangular mark indicated the 
position of the 10 pairs of axons counted for defects. Panel A shows a normal axons of a 36hpf embryo. B) 
Different types of axonal defects observed. Arrow A indicates premature truncation, Arrow B indicates aberrant 
branching.  
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2.3.9.6  Confocal microscopy 

Confocal microscopy was used to obtain high clarity magnified images and to 

ascertain the localisation and the distribution of the endogenous TDP-43 

orthologues. Vecatshield mounting medium was used to prevent bleaching due to 

intense laser light. To prevent ‘bleed through’ the sequential scanning method was 

used. Section thickness was set at 1µm to reduce background and to maintain 

sensitivity. Argon laser was selected to obtain the nuclear staining of Hoechst and 

far-red sensor for the Topro 3. Embryos were dissected into two, to obtain head 

and the trunk parts, which were mounted separately (head mounted dorsally-

ventrally and the trunk mounted laterally). The same exposure settings were used 

for all samples. We used Leica TCS SP5 Confocal Microscope and images were 

captured using x63 objective. 

 

2.3.10 RNA extraction and generation of first strand c.DNA synthesis  

For RNA extraction samples were collected as described in section 2.7. Tissues 

from adult zebrafish or embryos were obtained as described earlier and total RNA 

was extracted using the Trizol reagent (Invitrogen, UK).  

2.3.10.1 RT-PCR to illustrate abnormal splicing 

Thirty six hours post fertilisation WT and TDPS1 (tardbp splice morpholino 1- 

tardbpSpI AMO) injected embryos were collected. About 50 embryos were put into a 

1.5ml tube and washed with DEPC H2O. 500µl of Trizol was added to the embryos 

and aspirated with progressively smaller gauge needles to homogenize and stored 

at -80oC. If stored at -80°C, samples were incubated at room temperature for 5 

minutes prior to processing. The samples subjected to Trizole treatment were 

incubated at room temperature for 15 minutes to allow for complete dissociation 

of the nucleoprotein complexes. Then 125µl of CHCl3  was added and inverted 8-10 

times over 15 seconds by hand. Tubes were incubated at room temperature for 3 

minutes before centrifuging at 13,000 rpm for 15 minutes at 4oC. The tubes were 

carefully removed.  About 200µl of the upper aqueous phase was of the 

supernatant removed to a fresh 1.5ml tube without disturbing the precipitate and 

150µl of isopropanol was added and incubated at room temperature for 10 

minutes. The tubes were centrifuged at 13,000 rpm for 15 minutes at 4oC.  If a 

pellet was not seen 1µl of pellet paint and 5µl of Sodium acetate was added to the 
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solution and centrifuged again at 13,000 rpm for 15minutes. Finally 300µl of 75% 

ethanol in DEPC H2O was added to re-suspend the pellet. The tubes were 

centrifuged at 7000 rpm for 5 minutes at 4oC. The supernatant was discarded and 

the pellet was air dried (not completely but sufficiently so that no excess fluid was 

on the inside of the tubes. The pellet was re-suspended in 15-20µl of nuclease and 

RNAse free DEPC H2O. The RNA yield was quantified using the Nano-drop machine 

using nucleic acid (RNA) estimation programme choosing the 260nm wavelength. 

2.3.10.2 RT-PCR to illustrate abnormal splicing: c.DNA generation 

1µg of RNA from 2.3.10.1 section was used for the synthesis of first strand c.DNA 

synthesis and subjected to DNAse treatment. One microlitre of 10X DNAse buffer 

was added to 1µl of DNAse enzyme and adding nuclease and RNAse free DEPC H2O 

made a total reaction volume of 10µl. Samples were incubated at room 

temperature for 15 minutes. 1µl of 25mM EDTA was added to each tube before 

incubating at 65oC for 10 minutes. To the tube from the DNAse step 1µl of pdN6 

and 1µl of dNTPs were added and incubated for further 5 minutes at 65oC. The 

samples were chilled and pulse centrifuged to collect. To each tube 4µl of 5X buffer 

and 2µl of 0.1M DTT and 1µl of nuclease and RNAse free DEPC H2O were added. 

The samples were then transferred to a PCR machine and a programme was set up 

at 25oC for 10 minutes followed by 42oC for 2 minutes at which point the 

programme was paused to add the superscript II enzyme and the programme was 

then un-paused to run for further 50 minutes at 42oC followed by 15 minutes at 

72oC. Thereafter the samples were held at 15oC until collection and stored at -20oC.  

2.3.10.3 Amplification of c.DNA to detect effects of impaired splicing 

c.DNA made from samples (0.8, 1.6, 2.4, 4.8, 9.6 and 16ng) of TDPS1 (tardbpSpI 

AMO) and Un-injected (Dechorinated) and Uninjected (Non Dechorinated) were 

subjected to three PCR reactions with the three sets of primers (Table 2.4) and 

figure 2.7. Master mixes for 10 reactions made with 40µl Reddy mix, 4µl of forward 

primer, 4µl of reverse primer and 132µl of DEPC H2O were made. 1µl of sample 

c.DNA was added to 9µl of master mix onto a 96 well non skirted plastic plate. Actin 

primers were used as a positive control whilst 10µl of each master mix was used as 

a negative control without adding any c.DNA. Samples were then run on a PCR 

machine and amplified using a touch-down PCR programme. 
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Figure 2.12 Placement of splice AMO (yellow bar) and the positioning of the primers (green bars) 

Figure 2.7  Placement of splice AMO (yellow bar) and the positioning of the primers (green bars). 
Primer set 01 (F1+R1), set 02(F2+R2) and set 03 (F1+R3) were used to amplify the tardbp c.DNA to 
detect any aberrant splicing. If the exon three were to be spliced out all three primer sets should pick up 
the shortened c.DNA fragment as well as un spliced variants. It is also possible that the exon 04 (exons 
are blue boxes with white numbers indicating the number of the exon) could also be spliced out. Therefore 
a  third set of primers was designed, which would take the above possibility into consideration. It is also 
possible that the intron in which the splice site is on could be included in the c.DNA resulting in a higher 
product size than the expected 

 

 

Table 2.3 Primers used for the analysis of the novel splice alteration of 
TDPS1 and TDPS2 AMO injections (based on Fig 5.12) 

 Primer sequence 

Set 1F 5’ GCT TTT GAG GGT CGT TCT TG 3’ 
 

Set 3F 5’ GCT CGA CTG AGG AAA GAT GG 3’ 
 

Set 1R 5’ CGC TCC ATC  ATC TGC CTA GT 3’ 
 

Set 2F 5’ GAG AAT GAG GAG CCA ATG GA 3’ 
 

Set 2R 5’ ATC AAT CAT GTG CCG CTG T 3’ 
 

Set 3R 5’ ACA CTG ACG CCC TTG ATG AT 3’ 

 

2.3.10.4 Real time quantitative PCR (RT-qPCR) to assess the expression of 

the zebrafish TDP-43 orthologues – tardbp, tardbpl and tardbpl-FL in the WT 

and tardbp fh301/fh301 mutant 

Gene specific primers were designed for tardbpl (forward 5’ 

CGTCACCTTCGCAGACGATCAGGTT 3’ and reverse 

5’GCCTAAGCACAATAATATTCATCACCTCTTTTCCAATT 3’, tardbpl-FL (forward 5’ 
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CGTCACCTTCGCAGACGATCAGGTT 3’ and reverse 5’GCCCACGATCCATC 

ATTTGCCTACTATT 3’). A set of primers, which amplifies a common sequence 

within both tardbpl and tardbpl-FL, was used as an internal control for RT-qPCR 

(forward 5’ TCTGGTGTACGTGGTTAATTATCCAAAAGATAACA3’ and the reverse 5’ 

AGA GGT GAT CAT GGT GCA GGT GAA AAG). Two housekeeping genes, which have 

been well characterised for use in zebrafish  (EF1alpha, forward [5’ 

CTGGAGGCCAGCTCAAACAT 3’ ], reverse [5’ 

ATCAAGAAGAGTAGTACCGCTAGCATTAC 3’] and RP113 alpha, forward [5’ 

TCTGGAGGACTGTAAGAGGTATGC 3’] , reverse [5’ 

AGACGCACAATCTTGAGAGCAG3’]) were used for standardising the RT-qPCR 

results as previously described (Tang et al., 2007). Primers were optimised and 

efficiency assessed by analysing the standard curves. Real time PCR was performed 

using an ABI Prism 7900 HT sequence detection system (Applied Biosystems) 

using an Evergreen fluorescent label . RT-qPCR products were subsequently run on 

an agarose gel to assess the size of the amplified products. 

 

2.3.11 Neuro muscular junction (NMJ) staining  

11dpf and 14dpf larvae were anaesthetised with 1% Tricaine and were fixed in 4% 

paraformaldehyde (PFA) over night at 4°C. At least 25 embryos were fixed per 

group. Embryos were then washed in two distilled water washes for 5 minutes in 

each wash prior to a final wash in phosphate buffered saline (PBS) for 5 minutes. 

Embryos were then subjected to acetone crack for 10 minutes on ice followed by 

three further washes using distilled water over 15 minutes. Thereafter embryos 

were trypsinised with 0.25% Trypsin on ice for 4 minutes. Trypsin effect was 

aborted using 1% normal goat serum in PBS for 5 minutes. Embryos were washed 

in PBS for a further 15 minutes. Larvae were incubated in PBDT buffer for blocking 

(1% BSA, 1% DMSO, 0.5% TritonX 100, 1X PBS) plus 5% normal goat serum for 2 

hours and incubated with Alexa 488 conjugated to alpha bungaratoxin (1:100, 

Molecular probes, Invitrogen, Eugene, USA) for 30 minutes. This molecular probe 

was then washed three times with PBDT  3X 15 minute washes. Following washes 

larvae were incubated with mouse monoclonal antibody against SV2 presynaptic 

marker ( 1:50, Developmental Studies Hybridoma Bank, Iowa, IA, USA) overnight at 

4°C. All incubations with antibodies or markers have been done on a rotatory 

shaker. Secondary antibody, goat anti mouse antibody conjugated with Alexa-594 
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antibody was used at 1:1000 dilution. Larvae were finally eventually washed in 4X 

PBST  washes before clearing through a Glycerol series. Glycerol cleared embryos 

were then mounted for confocal microscopy (Leica confocal microscope and Zeiss 

confocal microscope). NMJ staining was analysed using image J. 

2.3.12 Assessment of the swimming of the larvae 

Swimming behavior of the larvae at 5dpf was assessed by probing each embryo 

externally.  30 embryos were tested per group. Their escape response was 

analyzed; the best response out of three probing attempts was recorded. The 

escape response was categorised into four categories: normal swimming (3), 

reduced speed (2), corkscrew movement or minimal movement (1) and no 

movement (0).  

 

2.3.13 Statistical analysis 

When three or more groups were compared, one-way ANOVA, with Bonferroni’s 

post-test comparison method was used. When only two groups were compared a 

unpaired t-test was used. Results of three independent experiments were used in 

every analysis.  
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Chapter 03:  

Transient overexpression of TDP-43 in HEK293T cells 

 

3.0 Introduction 
 

TDP-43 is regarded as a highly conserved RNA binding protein, which has multiple 

functions in the nucleus as well as in the cytoplasm. Examination of pathological 

samples from patients with ALS has shown that TDP-43 forms a major component 

of the neuro-cytoplasmic ubiquitinated inclusions in motor neurons (Neumann et 

al., 2006, Neumann et al., 2007a, Borroni et al., 2010). C-terminal fragmentation 

and relative nuclear clearing have been suggested as additional features of the 

TDP-43 proteinopathy. In several other neurodegenerative conditions studies 

investigating the major proteins associated with neurocytoplasmic inclusions, 

have broadened the understanding of the pathophysiological mechanisms of the 

disease and have lead to significant interest and focus of therapeutic targeting in 

some conditions, e.g. APP in Alzheimers dementia and alpha synuclein in 

Parkinson’s disease (Haass and Selkoe, 2007). Therefore the discovery of TDP-43 

as the major component of the neurocytoplasmic inclusions in non-SOD1 related 

ALS is potentially a paradigm changing discovery. Mutations in the TARDBP gene, 

which encodes TDP-43, have been linked to both ALS (Kabashi et al., 2008, 

Sreedharan et al., 2008, Benajiba et al., 2009, Corrado et al., 2009b, Del Bo et al., 

2009, Barmada and Finkbeiner, 2010), as well as FTLD (Borroni et al., 2009, 

Barmada et al., 2010). Therefore we set out to investigate if expression of disease 

associated mutations in TARDBP would recapitulate the observed pathological 

phenomena of relative nuclear clearing  and cytoplasmic mis-localisation (Arai et 

al., 2006, Neumann et al., 2006) compared to expression of wild type TDP-43 

(wtTDP-43). Furthermore it is unclear how mutations in the TARDBP gene 

contribute to the process of neurodegeneration at the molecular level. It has been 

hypothesised that mutant TDP-43 perhaps contributes to the disease process by a 

toxic gain of function by enhancing the features of TDP-43 proteinopathy as 

described above i.e nuclear clearing and aggregation in the cytoplasm (Yamashita 

et al., 2014). Therefore we set out to over-express wtTDP-43 and mutant protein 
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to investigate whether we could recapitulate any features of TDP-43 

proteinopathy. 

 

3.1 Transient expression of wtTDP-43 and a disease causing mutation 

A315T (mutTDP-43) is toxic to HEK293T cells 

 

As described in the methods section, N-terminally myc-tagged full length TDP-43 

WT, Q331K, A315T and M337V constructs were transiently expressed in HEK293T 

cells using Exgen. Analysis of subcellular localisation of TDP-43 revealed that, 

although TDP-43 was mainly nuclear in distribution, ~40% of the cells transfected 

with wtTDP-43 (Fig 3.1, panel A and B) and 25-30% of mutant TDP-43 transfected 

cells showed TDP-43 translocation to the cytoplasm (Figure 3.1 D). Previous 

studies in primary cortical neurons from rats reported only about 10-15% of the 

transfected cells were noted to have an early cytoplasmic mis-localisation 

(Barmada et al., 2010). Therefore we speculated at this stage that the transfection 

reagent could cause additional cellular stress to result in a greater cytoplasmic 

translocation of TDP-43. Therefore a wash step was introduced after 4 hours 

following transfection to negate any additional stress caused by the Exgen 

transfection medium. This additional wash step lowered the cytoplasmic mis-

localisation of wtTDP-43 (by ~15%) (Fig 3.1 A and C) but did not alter mis-

localisation of mutant TDP-43 (Fig 3.1 D-F). In addition, the wash step also 

lowered the transfection efficiency (Figure 3.2 panel E, second bar). However 

during TDP-43 DNA dose titration we discovered that the DNA dose used for 

transfection is inversely proportional to the transfection efficiency (Fig 3.2 E). 

0.125µg of wtTDP-43  DNA provided the best transfection efficiency of ~80% 

(p<0.05) (Fig 3.2 D-E). A similar dose titration experiment using A315T mutant 

DNA constructs showed a modest improvement of transfection efficiency with 

0.25µg of mutTDP-43 DNA but the transfection efficiency failed to improve further 

with 0.125µg of DNA (Fig 3.2, F). These findings suggest that higher doses of TDP-

43 both WT and mutant TDP-43 DNA are toxic to the HEK293T cells.  TDP-43 

expression is finely balanced in the cells. Therefore over-expression of 1µg of TDP-

43 DNA appears to lower the transfection efficiency. 
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Figure 3.13 HEK293T cells transfected with wtTDP-43 and mTDP-43 (A315T) with and without a 4h 
wash step 
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Figure 3.1 HEK293T cells transfected with wtTDP-43 and mTDP-43 (A315T) with and without a 4h 
wash step. All pictures of cells are on wtTDP-43 expressing cells. A) wtTDP-43 expressing cells 
pre- and post- 4h wash step. ~60% of the transfected cells showed a prominent nuclear expression of 
TDP-43 (grey bars) whereas ~40% of the cells also showed a significant cytoplasmic localislisation 
(black bars) (B) in addition to nuclear staining. C) Following the wash step nuclear localislisation of 
wtTDP-43 improved to ~70% of the transfected cells. D) mutTDP-43 expressing cells showed ~30% 
cytoplasmic expression which did not alter much after the wash step (E-F). Immunocytochemistry anti 
myc (TDP-43) green, DAPI- Blue. Scale bar 100µm 
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We postulated that cells expressing a higher dose of TDP-43 DNA perhaps 

underwent apoptosis in keeping with studies, which now show that expression of 

full length wtTDP-43 and mutant TDP-43 DNA are toxic to the cells (Wegorzewska 

et al., 2009, Tsai et al., 2010, Wils et al., 2010, Xu et al., 2010, Zhou et al., 2010, 

Arnold et al., 2013).  

Over-expression of human A315T mutant using thy-1 promoter in mice led 

to a motor neuron disease like phenotype and ubiquitinated inclusions in the 

cortical motor neurons without TDP-43 positive inclusions (Wegorzewska et al., 

2009). It is not clear whether or not the authors used a phosphorylation 

dependent TDP-43 antibody. Nevertheless these findings suggested that over-

expression of A315T mutTDP-43 is toxic to the neurons and the formation of TDP-

43 positive cytoplasmic aggregates is not necessary to cause neuronal toxicity. 

Therefore it is possible that the lower transfection efficiency noted with A315T 

mutant transfections indicates A315T mutation related toxicity when compared to 

wtTDP-43 (Fig 3.2 F).  We also observed that the percentage of the cells expressing 

cytoplasmic wtTDP-43 was directly proportional to the dose of transfected wtTDP-

43 (Fig 3.3). wtTDP-43 DNA at 0.125µg resulted in significantly lower cytoplasmic 

mis-localisation (<10% of the cells transfected) when compared to 1µg of wtTDP-

43 transfected cells(>40%) (paired t-test with Mann Whitney U test, p<0.05,) as 

did 0.25µg of DNA with <15% of the cells mis-localising to the cytoplasm (unpaired 

t test p<0.05). 

These data suggest that wtTDP-43 is toxic to the HEK293T cells when 

expressed at higher concentrations. In support of our findings is the study of over-

expression of wtTDP-43 and A315T mutTDP-43 in rat cortical neurons, which 

suggested that the presence of cytoplasmic TDP-43 is significantly associated with 

neuronal toxicity and death in both WT and A315T mutant TDP-43 (Barmada et al., 

2010, Wu et al., 2013). Although we have not assessed the expression levels either 

by immunoblotting for TDP-43 levels in the DNA titration study or quantitating the 

fluorescence level in the immunocytochemistry samples, we noted that the 

cytoplasmic mis-localisation is associated with a higher dose of DNA used for 

transfection. We have not conducted a similar DNA dose response analysis of 

cytoplasmic mis-localisation of mutTDP-43 in HEK293T cells. 
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Figure 3.14 Titration of DNA dose in unstressed HEK293T cells transfected with wtTDP-43 and mTDP-
43  
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Figure 3.2 Titration of DNA dose in unstressed HEK293T cells transfected with wtTDP-43 
and mTDP-43 followed by a 4h wash step. A) 1µg of wtTDP-43 DNA expressing cells. 
Transfection efficiency was ≤20%. B) Transfection efficiency improved to ~35% by reducing the 
DNA dose by 50% (0.5µg). C) A significant improvement in transfection efficiency when the 
DNA dose was reduced to 0.25µg (1/4th of the dose) (p<0.001). D) 0.125µg of DNA provided 
the best transfection efficiency at ~80% of the cells (p<0.05). E) Graphical representation of the 
transfection efficiency data for wtTDP-43. NO WASH category had 1µg of DNA transfected. F) 
Graphical representation of the effects of DNA titration for A315T mutant TDP-43, NO WASH 
category had 1µg of DNA transfected. Transfection efficiency improves with 0.25 and 0.125µg 
vs 1µg (p<0.012) but at best, the transfection efficiency of muttdp-43 remained below 40%. 
One way ANOVA with Bonferroni’s post test comparison method used. **p<0.001, *p<0.05). 
Immunocytochemistry: anti myc (TDP-43) green, DAPI- Blue. Oil immersion lens magnification: 
x63. Scale bar 100µm). 
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Figure 3.15 Mis-localisation of wtTDP-43 DNA is directly proportional to the transfected dose of DNA 

 However, over-expression models of wtTDP-43 and mutTDP-43 in yeast, 

neuronal cell lines such as NSC34 and primary motor neurons have shown that 

disease associated mutations such as Q331K and M337V (yeast cells) (Johnson et 

al., 2009) and A315T, G348C and A382T (Primary motor neurons, NSC34) 

(Barmada et al., 2010, Kabashi et al., 2010b, Wu et al., 2013) and N390D 

(NSC34)(Wu et al., 2013) are toxic to the aforementioned cells. Therefore we 

attempted to over-express A315T, M337V and Q331K disease associated 

mutations of TARDBP gene in the HEK293T cells to assess the cytoplasmic mis-

localisation and possible TDP-43 positive inclusion formation. 

 

  

Figure 3.3 Mis-localisation of wtTDP-43 DNA is directly proportional to the transfected dose of 
DNA. A progressively lower proportion of cells showed cytoplasmic mis-localisation of TDP-43 when the 
dose of transfected DNA was reduced. DNA concentrations of 0.25µg and 0.125µg were associated 
with a significantly lower proportion of cells expressing cytoplasmic TDP-43 (p<0.05* and p<0.0001 ***) 
compared to 1µg of DNA. Unpaired Student t –test was used to analyse the data). Average and the 
standard error of the mean (SEM) used. 
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3.3 Over-expression of myc-tagged TDP-43 resulted in lower levels of 

the endogenous TDP-43 protein levels 

 

The wtTDP-43 and the mutTDP-43 constructs were myc-tagged. Therefore during 

our experiments we used mouse anti myc antibodies to detect TDP-43 over-

expression resulting from transfection of the constructs.  As seen in Fig 3.4A 

wtTDP-43, A315T and Q331K construct expression is similar when controlled for 

loading (M337V –due to a technical failure was omitted from this immunoblot). We 

later acquired a rabbit anti TDP-43 antibody (targeting an epitope on the N-

terminus of TDP-43,  Proteintech group, UK). When the protein extracts used in the 

above immunoblot were probed with the anti TDP-43 antibody we noticed that the 

myc tagged TDP-43 (Fig 3.4 B) ran 3-4kDa higher than the endogenous TDP-43 

(Fig 3.4 B). Furthermore it appears that when controlled for loading (alpha 

tubulin) (Fig 3.4 C), suppression of expression is detected from finding less 

endogenous TDP-43 protein. This finding from a preliminary study is in keeping 

with increasing evidence of autoregulation of TDP-43 and similar RNA binding 

proteins (Buratti & Baralle 2011). We demonstrated in a loss of function  tardbp 

zebrafish model that knock down of tardbp resulted in an over-expression of the 

orthologue tardbpl-FL, which coded for an almost identical protein called Tardbpl-

FL (Buratti and Baralle, 2011a, Hewamadduma et al., 2013). A mutant TDP-43 

transgenic mouse expressing human wtTDP-43 under the Thy-1 promoter showed 

that endogenous mouse TDP-43 was down regulated in response to the over-

expression of human wtTDP-43 (Xu et al., 2010) suggesting that there are cellular 

mechanisms to maintain tight control of TDP-43 levels. 
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Figure 3.16 Over-expression of myc tagged TDP-43 is associated with lower levels of endogenous TDP-
43 protein 
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Figure 3.4 Over-expression of myc tagged TDP-43 is associated with lower levels of 
endogenous TDP-43 protein. A) Protein extracts from untransfected and three transfected 
HEK293T cells were probed with mouse anti myc antibody. The untransfected cell extracts 
show no mycTDP-43. B) Protein extracts probed with rabbit anti human TDP-43 antibody 
(1:500). Lane 1: biotynlated ladder. Lane 2: un-transfected cells depicting the endogenous level 
of TDP-43. Lane 3&4: myc wtTDP-43 and A315T. Endogenous TDP-43 level is suppressed 
compared to endogenous TDP-43 in lane 2 in both wt and mutTDP-43. Lane 5: over loading of 
Q331K sample. Therefore correction with densitometric analysis is necessary prior to 
interpretation. Secondary antibody- horse anti rabbit HRP. C) Alpha tubulin used at 1:10,000 
dilution. Exposure is one minute for both anti human TDP-43 and alpha tubulin western blots. 
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3.4  Expression of lower levels of wtTDP-43 and mutTDP-43 does not 
cause significant cytoplasmic mis-localisation 
 
As described in section 3.2 we observed that transfection of 1µg of TARDBP DNA 

into HEK293T cells using Exgen and its standard protocol resulted in an increase 

in cytoplasmic mis-localisation and reduced transfection efficiency. These findings, 

along with previous studies on over-expression of TDP-43 in cellular and animal 

models, suggest that tight control of TDP-43 expression is required and mis-

localisation of TDP-43 to the cytoplasm could be a surrogate marker of TDP-43 

induced toxicity (Gendron et al., 2010). We hypothesised that over-expression of 

mutTDP-43 would be more toxic than wtTDP-43 and as such we would observe a 

significantly higher cytoplasmic TDP-43 mis-localisation. Therefore we counted 

the HEK293T cells expressing purely nuclear myc tagged TDP-43 (Fig 3.5 panels A 

and B), cells with cytoplasmic and nuclear TDP-43 (Fig 3.5 panels C and D) and 

cells with punctate lesions (≥1) in the cytoplasm (Fig 3.5 panel D, arrows).  

Interestingly we noted that the TDP-43 expression was nuclear in more than 80-

85% of the transfected cells in both wtTDP-43 and mutTDP-43 expressing cells 

(Fig 3.6 A). We also noted that occasionally TDP-43 was redistributed to the 

cytoplasm. There was no significant difference in cytoplasmic distribution of TDP-

43 between the wtTDP-43 and the mutTDP-43 categories and amongst the three 

mutTDP-43 constructs, although there appeared a weak correlation between the 

Q331K and M337V mutants to have greater propensity to aggregate in the 

cytoplasm (Fig 3.6 B). Although in postmortem samples of brain and spinal cord 

from ALS cases with TDP-43 proteinopathy, aggregation of cytoplasmic TDP-43 

inclusions was noted (Arai et al., 2006, Neumann et al., 2006), mouse models over-

expressing wtTDP-43 and A315T mutTDP-43 using a Thy-1 promoter did not 

show aggregation of TDP-43 positive cytoplasmic inclusions when probed with an 

anti TDP-43 polyclonal antibody (Wegorzewska et al., 2009, Xu et al., 2010) 

suggesting that cytoplasmic inclusions are not a prerequisite for the pathogenesis 

of dysfunctional TDP-43 related neurodegeneration. Others argue that a 

phosphorylation dependent TDP-43 antibody to detect TDP-43 positive 

cytoplasmic lesions before ruling out the possibility of TDP-43 inclusion bodies. It 

is possible that a different antibody detecting a C-terminal epitope of TDP-43 could 

have detected TDP-43 inclusions containing C-terminal fragments of TDP-43 (Igaz 

et al., 2008, Yang et al., 2010). 
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3.5 Over-expression of full length wild type and mutant TDP-43 
constructs mainly localise to the nucleus. 
 

We over-expressed the wtTDP-43 and the three mutTDP-43 constructs at 

the lowest DNA concentration, which provided the maximum transfection 

efficiency, 0.125ug per transfection. Analysis of localisation of TDP-43  by the anti-

myc antibody revealed mainly nuclear distribution of TDP-43 with wtTDP-43 as 

well as all three, A315T, Q331K and M337V mutant constructs and the average 

proportions of cells with nuclear only TDP-43 staining were 92, 92, 91 and 86 % 

respectively (Fig 3.6A) in keeping with wtTDP-43 and A315T mutTDP-43 

expression studies in the NSC34 cells (Wu et al., 2013). Occasionally we observed 

that TDP-43 did mis-localise to the cytoplasm. However the proportion of the cells 

seen with cytoplasmic TDP-43 was less than 10% for wtTDP-43 and mutTDP-43 

except for M337V (14% of cells, p>0.05, not significant, paired t-test) (Fig 3.6 B).  

We did not observe neurocytoplasmic TDP-43 inclusion formation with the anti-

myc antibody. This is in keeping with a mouse model of wtTDP-43 over-expression, 

which showed no significant TDP-43 positive cytoplasmic inclusion body 

formation, when tested using a phosphorylation independent antibody to detect 

TDP-43.  In addition,  two mouse models expressing the disease associated TDP-43 

mutation A315T, also did not show colocalisation of phosphorylation independent 

TDP-43 with ubiquitinated inclusions (Wegorzewska et al., 2009, Stallings et al., 

2010) suggesting that cytoplasmic inclusion formation is not essential for the 

pathogenesis of TDP-43 related motor neuronal dysfunction. However upon using 

a phosphorylation dependent anti-TDP-43 antibody, TDP-43 positive cytoplasmic 

inclusions were detected (Xu et al., 2010). We also occasionally noted TDP-43 

localising to inclusions in the nucleus as depicted in Fig 3.5 E-F panels. Statistical 

analysis did not show a significant difference between wtTDP-43 and mutTDP-43 

constructs, although there was trend indicating that Q331K and M337V mutTDP-

43 were more likely to form nuclear inclusion (Fig 3.6 A)(Q331K and M337V: 

X=2.5±4.3, n=7 and 2.06±3.35, n=6 vs wtTDP-43: X =0.64±1.1, n=8, p=0.32). 

Nuclear inclusion formation has been reported with familial forms of ALS with 

FTLD but not in sporadic ALS (Seilhean et al., 2004)(sALS) suggesting that wtTDP-

43 might not mis-localise to nuclear inclusions whilst mutTDP-43 potentially could 

(Mackenzie and Feldman, 2004). 
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Figure 3.17 Patterns of myc tagged TDP-43 cellular distribution 

 

 

 

 

 
 

A	 B	

E	 F	

C	 D

Figure 3.5 Patterns of myc tagged wild type and mutant TDP-43 cellular 
distribution.  A-B) Nuclear only distribution of TDP-43 in unstressed HEK293T cells. 
C-D) Nuclear and cytoplasmic distribution of TDP-43 and TDP-43 positive cytoplasmic 
inclusion formation. White arrowheads point towards the TDP-43 positive inclusions. E-
F) Nuclear only staining of TDP-43 which form punctate appearances in the nuclei 
Q331K and M337V vs wtTDP-43: X=2.5±4.3, n=7 and 2.06±3.35, n=6 vs X =0.64±1.1, 
n=8, p=0.32. Blue stain is DAPI for nuclear staining, Green- anti myc antibody detecting 

TDP-43. Sale bar 50µm. 
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Figure 3.18 Patterns of myc tagged TDP-43 cellular distribution 

 

 

3.6 Use of exogenous stress to induce mis-localisation of TDP-43 
 
In patients with ALS and FTLD associated with TDP-43 proteinopathy a recognised 

feature in the pathological samples is the TDP-43 positive ubiquitinated neuro-

cytoplasmic inclusion formation (Neumann et al., 2006).  However under basal 

conditions we did not observe any significant mis-localisation of wtTDP-43 or 

mutTDP-43 to cytoplasmic inclusions. The exact nature of the mechanisms 

involved in the pathogenesis of ALS is complex. It is widely accepted that an 

interplay between genetic and environmental factors could play a key role in 

manifestation of the motor neuronal death in ALS. Amongst many environmental 

stressors oxidative stress has been shown by many studies as a key modulator of  

neuronal fate and there is an extensive body of evidence for oxidative damage to 
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Figure 3.6 Patterns of myc tagged TDP-43 cellular distribution.  
A) Full length WT, A315T, Q331K and M337V mutant constructs were over-expressed in 
HEK293T cells. Expression patterns of the respective constructs were qualitatively analyzed. 85-
90% of the WT and mutant constructs localised to the nuclei. About 7% of the WT TDP-43 over-
expressing cells demonstrated cytoplasmic localisation and inclusion formation. The mutant TDP-
43 protein formed cytoplasmic inclusions variably but not frequently. Rarely some cells showed 
nuclear inclusion formation. This was observed mainly in Q331K and M337expressing cell. B) 
Cytolplasmic inclusion formation and mis-localisation when analyzed showed a trend in the 
mutant TDP-43, particularly M337V to form cytoplasmic inclusions. But statistically there was no 
significant difference. Standard deviation and the average proportion of cells demonstrated in the 

graphs. One way ANOVA with Bonferoni multiple column comparison, p>0.05) 
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proteins in postmortem tissues from ALS patients (Barber and Shaw, 2010). In 

addition to oxidative stress, mitochondrial dysfunction has been implicated in the 

pathogenesis of ALS due to observations such as morphologically abnormal 

mitochondria in motor neurons of ALS patients, decreased electron transport 

chain activity and mitochondrial membrane potentials and calcium homeostasis 

and reduction in mitochondrial antioxidant defense mechanisms (Beal, 2000). 

Endoplasmic reticulum associated stress and related unfolded protein response 

have been found to play a role in selective motor neuronal death or dysfunction in 

ALS. An enhanced ER stress response has been reported in ALS animal models 

(Kieran et al., 2007).  Therefore we hypothesised that a double hit phenomenon of 

an underlying genetic predisposition to motor neuron dysfunction  i.e. mutant 

TDP-43, when exposed to an environmental or an exogenous stress could 

precipitate features of TDP-43 dysfunction such as cytoplasmic mislocalisation, 

and inclusion formation more prominently in mutTDP-43 compared to wtTDP-43 

overexpressing cells. 
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3.6.1 Treatment with hydrogen peroxide (H2O2) mis-localises full length 

wtTDP-43 and mutTDP-43 to the cytoplasm and into cytoplasmic inclusions. 

 

H2O2 has been used in previous models of ALS to induce oxidative stress to 

demonstrate SOD1 associated ALS motorneuron vulnerability to oxidative stress. 

Previous studies have used 0.6mM H2O2 for 6h to induce oxidative stress in NSC34 

cells (Cookson et al., 1998) and we used similar conditions in HEK293T cells. 

Although the distribution of wtTDP-43 and mutTDP-43 was largely nuclear (Fig 

3.6 A) following treatment with H2O2 a proportion of the transiently expressed 

TDP-43, regardless of whether mutant or wld type, translocated to the cytoplasm 

and formed cytoplasmic inclusions. This observation is important as redistribution 

of TDP-43 from the nucleus to the cytoplasm and formation of cytoplasmic 

aggregates are prominent characteristics of TDP-43 associated diseases 

(Mackenzie and Rademakers, 2007). 

Although it has been suggested that the mutations targeting the C-terminal 

fragment of TDP-43 increases its propensity to aggregate, misfold or /and 

mislocalise and thereby underpin toxicity (Johnson et al., 2009, Nonaka et al., 

2009c), we did not see a difference between mutant and the wtTDP-43 in the 

propensity to mis-localise TDP-43 to the cytoplasm upon H2O2 treatment. 100% of 

the wtTDP-43 and A315T mutant transfected cells, showed TDP-43 mis-

localisation to the cytoplasm, whilst Q331K and M337V cells showed 98% and 

86% respectively. Cytoplasmic inclusion formation was observed in more than 

20% of wtTDP-43 and A315T mutants whilst more than 25% of the M337V 

transfected cells showed TDP-43 positive aggregation formation. It is possible that 

under oxidative stress heat shock proteins as well as the ubiquitin-proteasome 

system (UPS) are activated to clear TDP-43 from the nucleus, as a result of which 

TDP-43 is translocated to the cytoplasm for clearing by the UPS. To be certain we 

need to double lable for myc tagged TDP-43 and ubiquitin. On the other hand it is 

also likely that an aggregation prone protein like TDP-43 when over-expressed 

induces cellular stress and this balance is tipped by a second hit from  H2O2 

induced stress resulting in conformational changes in TDP-43 i.e. due to 

phosphorylation, which in return impairs nuclear export or shuttling into the 

nucleus. As a result TDP-43 accumulates in the cytoplasm.  
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Figure 3.19 Cellular localisation of TDP-43 following treatment with 0.6mM H2O2 for 6h 
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Figure 3.7 Cellular localisation of TDP-43 following treatment with 0.6mM H2O2 for 6h. A) More 
than 90% of the cells stressed with H2O2 show nuclear and cytoplasmic localisation of myc tagged 
TDP-43. wtTDP-43, A315T and Q331K followed almost identical pattern, whilst M337V responded 
with a similar trend but more than 10% of the cells showed a nuclear only staining. B-D) 
Cytoplasmic TDP-43 positive inclusions were seen in all mutTDP-43 and wtTDP-43 cells following 
treatment with H2O2. E) More than 20% of the cells demonstrated this phenomenon.. Blue stain is 
DAPI for nuclear staining, Green- anti myc antibody detecting myc  tagged TDP-43. Scale bar 

50µm. Compare with myc-TDP-43 in unstressed cells (Fig 3.5 A-B)  
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There appears to be no significant difference between wtTDP-43 and mutTDP-43 

in their response to H2O2 mediated oxidative stress. This may also be explained by 

the fact H2O2 treatment is more an acute stress, and the response to this acute 

stress overwhelms the stress of over-expression of full length TDP-43 constructs 

regardless of presence of abscence of a mutation (Gendron et al., 2013). 

 

3.6.2 Treatment with 0.5mM sodium arsenite causes aggregation of myc 

tagged TDP-43 in the nucleus. 

 
Treatment with sodium arsenite causes oxidative stress directly by a reaction 

similar to Fenton’s reaction (Pang et al., 2009). Arsenite treatment also results in 

depletion of glutathione, induction of heat shock proteins (hsp), stimulation of 

NFkB (nuclear factor kappa B) and induction of glucose transporters resulting in 

nutrient deprivation, and each of these mechanisms can result in inhibition of 

protein translation and as a result promote the formation of stress granules 

(SG)(Anderson and Kedersha, 2002). Stress granules are dynamic cytoplasmic 

aggregates formed temporarily as a result of external cellular stress, by 

dismantling the translational machinery to allow only the translation of the most 

vital proteins for the cells to survive the  stress (Anderson and Kedersha, 2008). 

Sodium arsenite is widely used in the study of stress granule formation and related 

RNA biology (Anderson and Kedersha, 2009). TDP-43 has been shown to co-

localise with SG (Colombrita et al., 2009).  Major protein components of SGs have 

been recognised in TDP-43 positive inclusions from postmortem brain and spinal 

cord samples of ALS cases (Liu-Yesucevitz et al., 2010). Therefore we hypothesised 

that cells transfected with wtTDP-43 and mutTDP-43 would form stress granules 

upon treatment with sodium arsenite. More than 95% of the cells demonstrated a 

nuclear only TDP-43 distribution (Fig 3.8 A-C). We did not observe any 

cytoplasmic anti myc positive puncta formation (Fig 3.8 C). Although we did not 

use an antibody to assess SG formation, we now know that HEK293T cells do form 

SG when treated with sodium arsenite under similar  
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Figure 3.20 TDP-43 positive inclusion body formation in response to treatment with 0.5mM arsenite 
for 30min 
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Figure 3.8 myc-TDP-43 positive nuclear inclusion body formation in response to treatment with 
0.5mM arsenite for 30 minutes. A) TDP-43 localisation was mainly nuclear in distribution in more than 
90% of the cells stressed with sodium arsenite. B-D) Nuclear distribution was not uniform as TDP-43 
formed granular and punctate nuclear staining when stressed with arsenite. E) Enlarged section 
marked in panel D depicting the formation of numerous nuclear inclusion formation positive for TDP-43 
when tested for myc tagged TDP-43 (arrows). Blue stain is DAPI for nuclear staining, Green- anti myc 
antibody detecting myc  tagged TDP-43. Scale bar 100µm. Compare with myc-TDP-43 in unstressed 
cells (Fig 3.5 A-B) 
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conditions (Fig 3.13). These findings suggest that wild type or mutant myc tagged 

full length TDP-43 did not translocate to cytoplasmic inclusions upon treatment 

with arsenite. However we noted that the transfected HEK293T cells, wt and 

mutTDP-43, showed multiple nuclear inclusion formation (Fig 3.8 E, arrows).  

Although there was no statistically significant difference amongst the groups (due 

to large standard deviations) wtTDP-43 appeared to form more nuclear inclusions 

than the mutants (Fig 3.8 A). This association of TDP-43 positive nuclear inclusion 

formation, in response to arsenite stress has not been published in the public 

domain (Pubmed). Ubiquitin positive nuclear inclusions have been described in 

postmortem pathological samples obtained from familial FTLD and ALS cases but 

not in sporadic FTLD or ALS cases (Mackenzie and Feldman, 2004). Further 

studies are needed to understand the exact mechanism responsible for the 

formation of these nuclear inclusions.   

 

3.6.3 Other oxidative stress inducers: Menadione and FCCP 
(Trifluorcarbonylcyanide Phenylhydrazone) did not alter TDP-43 
localisation in wtTDP-43 or mutTDP-43 transfected HEK293T cells 
 
Menadione induces cellular stress by inducing Ca2+ dependent apoptosis via 

opening of the mitochondrial permeability transition pore (Criddle et al., 2006). 

FCCP induces oxidative stress by disrupting mitochondrial function by uncoupling 

the respiratory chain complex IV from V (Caputo and Bolanos, 2008). Both 

menadione and FCCP have  has used to induce stress by disrupting  mitochondrial 

function in cellular models of neurodegenerative diseases such as Parkinson’s 

disease (Gandhi et al., 2009). As we observed different patterns of TDP-43 

localisation with arsenite and H2O2 two agents which are known to cause oxidative 

stress, we hypothesised that by using two agents which induce oxidative stress via 

disrupting mitochondrial function we could reproduce either pattern of TDP-43 

distribution. Upon menadione treatment (Fig 3.9 A-D) and FCCP treatment (Fig 

3.10 A-D) TDP-43 distribution was mainly nuclear (more than 85% of the cells). 

Although less than 15% of the cells in both wtTDP-43 and mutTDP-43 mis-

localised to the cytoplasm  these proportions were neither significant amongst 

wtTDP-43 and mutTDP-43 categories nor between stressed (menadione and 

FCCP) and unstressed (Fig 3. 6 A) experiments. We also did not see nuclear 

inclusion formation. Although TDP-43 has been linked to mitochondria in a mouse 
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model of TDP-43 (Xu et al., 2010) we did not see a difference in myc tagged TDP-

43 localisation between the wtTDP-43 and mutTDP-43 cells in response to 

mitochondrial stressors. However this observation by no means excludes an 

association of TDP-43 and mitochondrial dysfunction as we have not used any 

mitochondrial assays to assess effects of TDP-43 on mitochondrial function with 

and without mitochondrial stressors.  

 

 

 

Figure 3.21 TDP-43 localisation after treatment with menadione for 2h 
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Figure 3.9 mycTDP-43 localisation after treatment with menadione for 2h A) TDP-43 
localisation was mainly nuclear in distribution in more than 90% of the cells stressed with 
menadione. B-D) Nuclear distribution was uniform and no difference was noted between 
wtTDP-43 and mutTDP-43 transfected cells Blue stain is DAPI for nuclear staining, Green- 
anti myc antibody detecting myc  tagged TDP-43. Scale bar 100µm. Compare with myc-
TDP-43 in unstressed cells (Fig 3.5 A-B) 
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Figure 3.22 TDP-43 localisation after treatment with FCCP for 120minutes 
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Figure 3.10 mycTDP-43 localisation after treatment with FCCP for 120 minutes. A) 
TDP-43 localisation was mainly nuclear in distribution in more than 90% of the cells 
stressed with FCCP. B-D) Nuclear distribution was uniform and no difference was noted 
between wtTDP-43 and mutTDP-43 transfected cells Blue stain is DAPI for nuclear 
staining, Green- anti myc antibody detecting myc  tagged TDP-43. Scale bar 100µm. 
Compare with myc-TDP-43 in unstressed cells (Fig 3.5 A-B) 
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3.6.4 Treatment with 0.4M sorbitol causes aggregation of myc tagged TDP-

43 in the nucleus 

 
Sorbitol induces cellular stress by osmotic stress pathways. Sugar sorbitol is an 

intermediate of an ATP independent metabolic route that generates fructose from 

glucose (Forbes et al., 2008). Since elevated levels of sorbitol have been shown to 

induce cellular stress in previous studies (Dewey et al., 2011), we performed an 

experiment to detect whether the osmotic stress would have detected effects on 

the wtTDP-43 and mutTDP-43 localisation. Upon treatment of TDP-43 transfected 

HEK293T cells, we noted a prominent nuclear localisation of the myc tagged TDP-

43 proteins (Fig 3.11 A-D). In addition we also noted granular nuclear staining 

with nuclear inclusion formation upon stressing the cells for 2h. We noticed very 

occasional cytoplasmic inclusion formation only in wtTDP-43 (Fig 3.11) but there 

was no increase in gross cytoplasmic mis-localisation of TDP-43. There was no 

difference in the cytoplasmic distribution of myc tagged TDP-43 between wtTDP-

43 and mutTDP-43.  

 However nuclear inclusion formation was observed in up to 40% of . 

wtTDP-43, A315T and Q331K cells (Fig 3.11A) but only up to 8% of the M337V 

transfected cells. We could not see a statistical difference when compared to 

wtTDP-43 with paired t test (p>0.05) due to the variability within the groups. The 

differences between M337V and the other TDP-43 mutants could be secondary to 

the nature of the mutation affecting the TDP-43 protein folding and thereby 

exposure of the residues to different kinases activated by the induced stress 

process (Meyerowitz et al., 2011, Shodai et al., 2013).  

3.6.5 Heat shock resulted in localisation of TDP-43 to nuclear stress bodies 

(nSBs) 

Heat shock leads to immediate and complete blockage of DNA replication and 

transcription, pre-mRNA splicing, nucleo-cytoplasmic transport and translation 

(Mahl et al., 1989, Morimoto and Santoro, 1998). Induction of heat shock at 42 0C 

for 30 minutes resulted in complete nuclear only distribution of TDP-43 in both 

wtTDP-43 and mutTDP-43 transfected HEK293T cells (In all transfected cells). No 

cytoplasmic distribution of TDP-43 was noted (Fig 3.12 A-C). The most interesting 

observation was that both wtTDP-43 and mutTDP-43 formed punctate lesions in 

the nuclei. 
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Figure 3.23 TDP-43 localisation after treatment with 0.4M sorbitol for 60 minutes 
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Figure 3.11 mycTDP-43 localisation after treatment with 0.4M sorbitol for 60 minutes. A) 
TDP-43 localisation was mainly nuclear in distribution in more than 90% of the cells stressed with 
sorbitol 0.4M. B-D) Nuclear distribution was granular and myc tagged TDP-43 positive inclusion 
formation was noted in the nuclei. Cytoplasmic inclusion formation was also observed as indicated 
by the arrow. Only 8% of the M337V transfected cells showed  nuclear inclusion formation but no 
statistical difference was noted between wtTDP-43 and M337V transfected cells. (Paired t test p> 
0.05). Blue stain is DAPI for nuclear staining, Green- anti myc antibody detecting myc  tagged 

TDP-43. Scale bar 50µm. Compare with myc-TDP-43 in unstressed cells (Fig 3.5 A-B) 
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There was minimal nuclear matrix staining noted between the punctate staining 

(Fig 3.12 E). Heat shock has previously been shown to recruit several hnRNPs to 

nuclear complexes called nuclear stress bodies (nSBs) (Mahl et al., 1989). Heat 

shock factor 1 (HSF1) has been shown to form nuclear granules after heat shock. 

hnRNP-A1 which is similar in structure to TDP-43, has been shown to form 

complexes with a protein called HAP (hnRNP A1 interacting protein) or Saf-B 

(scaffold attachment factor B) (Renz and Fackelmayer, 1996). HAP/Saf-B and HSF1 

are recruited to nSBs upon heat shock (Weighardt et al., 1999). Therefore our 

findings are consistent with the scenario where, in response to heat shock TDP-43 

interacts with the HSF1 protein, which is an important regulator of the 

transcriptional process associated with heat shock, and directs TDP-43 to nSBs 

regardless of whether the TDP-43 is WT or mutant. The distinct nature of these 

punctate lesions we observed after heat shock  will require co-labeling with 

markers for known nuclear proteins recognised in demonstrating a similar 

anatomical distribution or localisation such as HSF1.  

 
 
 

 
Figure 3.24 TDP-43 localisation after heat shock at 42 'C for 30 minutes 
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Figure 3.12  mycTDP-43 localisation after heat shock at 42 0C for 30 minutes.  
A-C) TDP-43 localisation was mainly nuclear in distribution. Minimal nuclear matrix staining was noted. D) 
Enlarged section boxed in panel C. Distinct  nuclear punctate staining pattern similar to that seen with 
nuclear stress bodies. No difference was noted between wtTDP-43 and M337V transfected cells. Blue stain 
is DAPI for nuclear staining, Green- anti myc antibody detecting myc  tagged TDP-43. Scale bar 100µm. 
Compare with myc-TDP-43 in unstressed cells (Fig 3.5 A-B) 
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3.7 Endogenous wtTDP-43 co-localises to stress granules in 
response to treatment with sorbitol and heat shock. 
 

3.7.1 Introduction 

It has been reported that RNA binding proteins like hnRNPA1 and hnRNP Q 

localise to the cytoplasm and cytoplasmic inclusions called stress granules in 

response to activation of certain stress signaling pathways when certain cell lines 

are exposed to specific stressors (Anderson and Kedersha, 2009).  

When a sub-lethal exogenous stress is induced, regulation of gene 

expression especially by RNA binding proteins (RBP) is translocated to 

cytoplasmic foci and halted at the post transcriptional level. Translational 

machinery is immediately halted and disassembled with sequestration of the 

actively translating mRNAs and the RBP to distinct cytoplasmic entities which are 

called stress granules (SG) (Anderson and Kedersha, 2008). The majority of the 

mRNAs silenced in SG are 48S ribosomal complexes, whilst essential transcripts 

like heat shock proteins are selectively translated to support cellular pathways to 

manage the extrinsic stress. Therefore it is considered that the phenomenon of SG 

formation represents a protective mechanism to enable the cell to cope with the 

imposed stress (Anderson and Kedersha, 2002). Major components of the SG 

include the T cell induced antigen -1 (TIA-1), TIA-1 related protein (TIAR) and Hu 

R antigen (HuR), survival of motor neuron (SMN) protein, Ras-GAP SH3 domain 

binding protein (G3BP), staufen, fragile X mental retardation protein (FMRP), the 

48S pre-initiation complex, early translation initiation factors and micro RNA 

associated  argonaute proteins (Anderson and Kedersha, 2008). 

TDP-43 belongs to a superfamily of of RNA binding proteins called hnRNPs 

(D'Ambrogio et al., 2009). Transfected full length TDP-43 and endogenous TDP-43 

have been shown to co-localise with TIA-1 labeled SG in a neuroblastoma cell line 

(Liu-Yesucevitz et al., 2010). However, we did not see TDP-43 mis-localising to the 

cytoplasmic inclusions when we examined transiently transfected HEK293T cells. 

We probed for epitope tagged exogenous TDP-43 using an anti myc antibody. The 

expression levels of TDP-43 protein are tightly regulated therefore we believe that 

over- expression of TDP-43 can be detrimental to its normal function and increase 

stress levels in cells. Therefore we examined the response of endogenous TDP-43 

to external stressors. We assessed the localisation of endogenous TDP-43 by 

performing immunocytochemistry using a polyclonal rabbit anti human TDP-43 
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antibody raised against an N-terminal epitope of the human TDP-43 protein 

(Proteintech group UK). We hypothesised that endogenous TDP-43 will co-localise 

with one or more of the recognised major components of stress granules.  

 

3.7.2 Endogenous TDP-43 does not co-localise with SG in response to 

treatment with sodium arsenite 0.5mM for 30min. 

We observed, as expected, stress granule formation in HEK293T cells in response 

to treatment with sodium arsenite at 0.5mM for 30 minutes (Fig 3.13 panel F and 

H) using an antibody to label TIAR. However, we did not notice endogenous TDP-

43 localising to cytoplasmic or nuclear inclusions (Fig 3.13 panel E) upon arsenite 

treatment. The co-labeling for endogenous TDP-43 and TIAR confirms that TDP-43 

in HEK293T cells does not co-localise with the stress granule marker TIAR in 

response to arsenite treatment. We also did not see  nuclear inclusion body 

formation, which we observed following arsenite treatment of wtTDP-43 and 

mutTDP-43 transfected HEK293T cells (Section 3.6.2).  It is possible that the 

amount of cytoplasmic endogenous TDP-43 is too small (Fig 3.13 panel A and E) so 

that any translocation to the inclusions is undetectable by the immunofluorescence 

method used.  Our findings are not in keeping with experiments done on 

neuroblastoma cells (Liu-Yesucevitz et al., 2010) and human lymphoblasts 

(McDonald et al., 2011) where endogenous TDP-43 was shown to co-localise with 

SGs. This difference could be partly explained by the inherent differences in cell 

lines and also by the duration of arsenite treatment (1 hour by (Liu-Yesucevitz et 

al., 2010)).  
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Figure 3.25 Endogenous TDP-43 does not localise to SG in response to arsenite in HEK293T cells 

 

 
 

3.7.3 Induction of cellular stress with menadione, FCCP or H2O2 did not 

induce TDP-43 cytoplasmic or nuclear inclusions, nor the production of TIAR 

positive stress granules. 

 
Although menadione, FCCP or H2O2 are not classical stress granule inducers, we 

attempted to recapitulate the responses of transiently transfected HEK293T cells 

to assess if the endogenous TDP-43 localisation response would be different when 

compared to the transfected TDP-43. Treatment of HEK293T cells with menadione 

for 4 hours or FCCP for 120 minutes did not alter the distribution of endogenous 

TDP-43 from the nucleus. No stress granule formation was noted with either stress 

(Fig 3.14 A-H). Treatment with H2O2 produced significant cytoplasmic 
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Figure 3.13 Endogenous TDP-43 does not localise to cytoplasmic or nuclear inclusions and 
does not co-localise with stress granules following treatment of HEK293T cells with 0.5mM 
arsenite for 30 minutes.  
A) Endogenous TDP-43 is largely in the nucleus under basal conditions B) Endogenous TIAR is 
nuclear as well as cytoplasmic in distribution. C) DAPI stain of the nuclei D) TDP-43 and TIAR co-
localise in the nucleus but not in the cytoplasm. E) Treatment with arsenite does not alter 
endogenous TDP-43 distribution nor does it promote the formation of TDP-43 cytoplasmic or nuclear 
inclusions. F) Arsenite treatment induces stress granule formation as labeled by TIAR. G) DAPI- 
normal appearing nuclei. H) Double labeling of the arsenite treated HEK293T cells does not show 
co-localisation of endogenous TDP-43 with the cytoplasmic inclusions (Arrows). Scale bar 50µm. 
Endogenous TDP-43 detected by rabbit anti human TDP-43 antibody targeting a N-terminal epitope 
of TDP-43. 
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translocation of endogenous TDP-43 (Fig 3.14 panel I, empty arrow). However 

cytoplasmic TDP-43 positive inclusion formation was not observed. There was also 

no stress granule formation noted with TIAR (Fig. 3.14 J). TDP-43 co-localisation 

with ubiquitin or phospho-TDP-43 positive inclusion formation cannot be ruled 

out, as we have not tested for the expression of these proteins in our experiments.  

 

3.7.4 Treatment of HEK293T cells with 0.4M sorbitol for 2 hours induces 

stress granules and endogenous TDP-43 co-localises with the stress granule 

protein TIAR 

Sorbitol is used as an osmotic stress inducer. Treatment of the HEK293T cells with 

0.4M sorbitol for 30 minutes resulted in increased TDP-43 mis-localisation to the 

cytoplasm (Fig 3.15 A). However nuclear inclusion formation was not observed. No 

HEK293T cells showed SG formation (Fig 3.15 B), upon treatment with sorbitol for 

30 minutes.  SG formation was observed when stressed for 2 hours. Endogenous 

TDP-43 was observed to translocate to cytoplasm and form cytoplasmic inclusions 

(Fig 3.15 E and I). These TDP-43 positive cytoplasmic inclusions co-localised with 

the stress granule marker TIAR suggesting that endogenous TDP-43 translocates 

to the stress granules in response to the treatment with sorbitol (Fig 3.15 H and J: 

arrows). However, not all cells with TIAR positive SGs incorporated endogenous 

TDP-43 (Fig 3.15 I, Empty arrows and panel J- black star). 

 What mechanisms dictate whether cells form TDP-43 positive SGs, remains 

to be investigated. Dewey et al reported similar findings in an HEK293T cell model, 

confirming that endogenous TDP-43 co-localises with TIAR positive SG in response 

to sorbitol but not with 0.5mM arsenite for 30 minutes (Dewey et al., 2011). 

Endogenous TDP-43 is also directed to SG in primary cultured glia in response to 

sorbitol. TDP-43 knockdown resulted in poor recovery of the cells stressed with 

sorbitol suggesting that TDP-43 helps recovery from osmotic and oxidative stress 

caused by sorbitol (Dewey et al., 2011). 
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Figure 3.26 Endogenous TDP-43 in HEK293T cells following treatment with menadione, FCCP and 
H2O2 
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Figure 3.14 Endogenous TDP-43 in HEK293T cells following treatment with menadione, FCCP 
and H2O2.  
A) 10µg/µl Menadione treated HEK293T cells (we increased the treatment duration to 4h to 
increase the chance of inducing SGs). Endogenous TDP-43 is largely nuclear and no cytoplasmic 
inclusions and no stress granule formation B-D). E-H)  10µM FCCP treatment for 2h did not produce 
nuclear or cytoplasmic inclusions or stress granules. I-L) Exposure to 0.6mM H2O2. for 6h resulted in 
misclocalisation of endogenous TDP-43 to cytoplasm (Empty arrow). Again no stress granule formation 
or cytoplasmic inclusion formation was seen (Arrow). Scale bar 50µm. Endogenous TDP-43 detected 
by rabbit anti human TDP-43 antibody targeting a N-terminal epitope of TDP-43 (Proteintech group.UK 
1:500), (TIAR 1:500). 
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Figure 27 Endogenous TDP-43 in HEK293T co-localises with TIAR positive stress granules in response 
to 0.4M sorbitol for 2h 
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Figure 3.15 Endogenous TDP-43 in HEK293T co-localises with TIAR positive stress granules in 
response to 0.4M sorbitol for 2h. 
A-D) Treatment with sorbitol 0.4M for 30 minutes, (A) resulted in cytoplasmic mis-localisation of 
endogenous TDP-43. (B) A few cells formed TIAR positive SGs. (D) No co-localisation of TDP-43 and 
TIAR seen. E-H) 0.4M Sorbitol for 2h. (E) Endogenous TDP-43 formed cytoplasmic inclusions in 
response to prolonged exposure to sorbitol. (F) Distinct TIAR positive SGs formed. (H) Co-localisation of 
endogenous TDP-43 and TIAR stress granule marker suggesting sorbitol drives endogenous TDP-43 to 
SGs. I) Enlarged picture of panel (E) demonstrating that TDP-43 positive inclusions (arrows) are present 
in most cells but not all. Empty arrows mark cells lacking TDP-43 positive inclusions. J) Enlarged picture 
of panel (H) indicating co-localisation of endogenous TDP-43 with TIAR positive SGs (arrows). Black 
stars mark cells with TIAR positive SGs with no endogenous TDP-43 co-localisation.  Scale bar 50µm. 
Endogenous TDP-43 detected by rabbit anti human TDP-43 antibody targeting a n-terminal epitope of 

TDP-43 (Proteintech group.UK 1:500), (TIAR 1:500). 
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3.8 Discussion 
 
A key step in understanding the mechanisms of dysfunctional TDP-43 as an 

important player in ALS related neurodegeneration is to understand, if ALS 

associated mutations cause cellular toxicity and if so how the autosomal dominant 

point mutations alter the normal function of TDP-43. Since the discovery of the 

link between ALS and TDP-43 in 2006 by Neumann et al (2006) evidence has 

shaped a hypothesis that mis-localisation of nuclear TDP-43 to the 

cytoplasm/cytoplasmic inclusions contributes to disease process (Nonaka et al., 

2009b). In order to confirm toxicity we need to assess the toxicity of TDP-43 

overexpression by a direct method such as propdidium iodide staining for dead 

cells at the 4h wash step. However the exact nature of this process remains an 

enigma. When we over-expressed the full-length wtTDP-43 and mutTDP-43 we 

observed that even wtTDP-43 is toxic to the cells when over-expressed. Although 

we have not demonstrated toxicity directly by an assay two observations support 

this claim: (i) we noted that cytoplasmic TDP-43 staining was directly proportional 

to the transfected TDP-43 DNA concentration. In keeping with these findings 

Barmada et al 2010 reported that presence of cytoplasmic TDP-43 after 

transfection is associated with increased risk of cell death (Barmada et al., 2010), 

(ii) Secondly transfection efficiency was inversely proportional to the 

concentration of transfected TDP-43 DNA which suggests that high expressing 

cells did not survive which indicates perturbation of physiological levels of TDP-43 

is toxic to the cells (Xu et al., 2010).  This is an important observation as the vast 

majority of ALS cases are sporadic in nature and most of the sporadic ALS cases 

that manifest TDP-43 pathology do not have a mutation in the TARDBP gene. 

Several mouse models over-expressing wtTDP-43 have developed a motor neuron 

disease like phenotype along with some features of TDP-43 proteinopathy 

(Stallings et al., 2010, Wils et al., 2010). However, our observation that a drop in 

the proportion of transfected cells expressing full length wtTDP-43 or mutTDP-43 

is consistent with the scenario that alteration of the level of full length TDP-43 is 

associated with cellular toxicity and cytoplasmic mis-localisation. TDP-43 

expression at 24h post-transfection did not show  significant cytoplasmic inclusion 

formation. In support of this observation a previous study on transient expression 

of TDP-43 in rat cortical neurons has suggested that inclusion body formation was 

not required for the mutTDP-43, A315T to cause toxicity and suggested that 
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diffuse expression of a soluble form of TDP-43 underpins the neurotoxic effects 

(Barmada et al., 2010). Several studies on transgenic animal models of TDP-43 

expressing A315T mutation (Flag tagged mutant (Wegorzewska et al., 2009) and 

untagged (Stallings et al., 2010)) and M337V mutation (Stallings et al., 2010) did 

not show TDP-43 co-localising with ubiquitinated inclusions when tested with 

phosphorylation independent anti- TDP-43 antibodies raised against different 

epitopes of the TDP-43 protein. Igaz et al could only demonstrate TDP-43 positive 

neurocytoplasmic inclusions in less than 0.1% of the motor neurons in a 

transgenic mouse model over-expressing NLS-deleted human TDP-43 constructs 

even when a phosphorylation dependent antibody was used, confirming that TDP-

43 positive aggregation formation is not essential for neurodegeneration (Igaz et 

al., 2011). However transgenic drosophila flies carrying the A315T mutation 

showed neurocytoplasmic aggregation of TDP-43 (Gregory et al., 2012). 

 It is still unknown if and how cytoplasmic TDP-43 mis-localisation causes 

cytotoxicity. A possible mechanism has been suggested following a study where in 

a lentiviral delivered over-expression model of TDP-43 in mice showed that TDP-

43 modulates processing of APP via enhanced BACE activity. TDP-43 may alter 

BACE levels via increasing the cytosolic membrane stability and thereby increasing 

APP cleavage. Increasing the cytoplasmic presence of TDP-43, which is largely a 

nuclear protein, could result in an additional cytoplasmic function of modulating 

processing of APP via regulating BACE, which then leads to production of Aß, 

which is associated with FTLDU (Herman et al., 2012). Arnold et al (2013) 

described widespread effects on TDP-43 sensitive splicing in both wtTDP-43 and 

mutTDP-43 over-expressing transgenic mouse models suggesting that 

maintenance of homeostatic levels of TDP-43 is vital for normal splicing functions 

in the central nervous system (Arnold et al., 2013). Co-expression of a subunit of 

the 20S proteasome complex together with TDP-43 in a drosophila model showed 

that over-expression of TDP-43 is handled by the proteasome. When impaired by a 

further insult there is enhanced toxicity in a HSP70 chaperone protein dependent 

manner, where HSP70 over-expression rescued the toxicity (Estes et al., 2011). 

 Loss of nuclear TDP-43 is one of the pathological signatures of TDP-43 

proteinopathy (Neumann et al., 2007a). However we did not see any cells over-

expressing TDP-43, with relative nuclear clearing. In keeping with our studies, 

several mouse models over-expressing wtTDP-43 and mutTDP-43 (A315T) also 
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did not show significant nuclear clearing of TDP-43 nor did they show TDP-43 

positive cytoplasmic inclusions even though these mice developed a motor neuron 

disease equivalent phenotype (Wegorzewska et al., 2009, Xu et al., 2010). 

However, we noted that TDP43 over-expression resulted in suppression or down-

regulation of the endogenous TDP-43 (Fig 3.4 B). In keeping with this observation 

is a study of an inducible transgenic mouse model of human TDP-43 lacking the 

nuclear localisation signal, which resulted in neurotoxicity independent of 

neurocytoplasmic aggregation formation and was associated with a significant loss 

of endogenous TDP-43 from the nucleus and in this model the loss of endogenous 

TDP-43 was the only correlate to neurodegeneration (Igaz et al., 2011).  In 

addition transfected TDP-43 down regulating the endogenous TDP-43 is consistent 

with a known feature of TDP-43 wherein TDP-43 auto-regulates itself and its 

homologues (Budini and Buratti, 2011, Hewamadduma et al., 2013) 

 We noted reduced transfection efficiency following over-expression of 

wtTDP-43 and mutTDP-43. However, we did not analyze cell death directly 

following transfection with wtTDP-43 and mutTDP-43, although it has been shown 

that wtTDP-43 and mutTDP-43 are likely to be more toxic to motor neuronal cells 

such as NSC34 than non-motor neuronal cells like HEK293T or Neuro2a cells (Wu 

et al., 2013). Co-staining with an antibody to ubiquitin or phosphorylation 

dependent TDP-43 antibody is also important to evaluate TDP-43 positive 

inclusion formation. It is also possible that we did not see a difference in 

cytoplasmic mis-localisation or response to exogenous stress between the wtTDP-

43 and mutTDP-43 expressing cells due to unequal expression levels of TDP-43. 

Therefore measuring the expression levels either  by immunoblotting or analysis 

of immunofluorescence level is important as  studies have shown that the 

expression level of an aggregation prone protein is an important predictor of 

inclusion body formation (Arrasate et al., 2004).  

 The transient over-expression model of wtTDP-43 and three disease 

associated mutant forms of TDP-43 (A315T, G287S and Q331K) did not show 

significant differences amongst the groups in response to external cellular stress, 

although the three mutant lines reacted slightly differently to each stress. We 

observed that in response to H2O2 induced oxidative stress TDP-43 translocated to 

the cytoplasm in nearly all cells and formed cytoplasmic inclusions. It is unclear if 

the TDP-43, trapped in these inclusions, is ubiquitinated or directed to UPS 
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mediated decay. Treatment with sodium arsenite, sorbitol and heat shock have 

directed TDP-43 into cytoplasmic entities called SGs in previous studies 

(Colombrita et al., 2009, Biamonti and Vourc'h, 2010, Liu-Yesucevitz et al., 2010, 

Dewey et al., 2011, McDonald et al., 2011, Aulas et al., 2012, Parker et al., 2012). 

However, we did not notice any cytoplasmic mis-localisation of TDP-43 upon 

arsenite, sorbitol and heat shock treatment of HEK293T cells, in keeping with the 

concept that TDP-43 aggregates and translocates to different RNA binding 

proteins, RNA complexes and subcellular locations/compartments depending on 

the type and nature (transfected or not) of the cell and the nature of the stress. 

Therefore it was not a surprise when we noted intranuclear aggregation of TDP-43 

into distinct puncta in response to arsenite, sorbitol and heat shock. These 

intranuclear aggregates, particularly those seen with heat shock, are in keeping 

with nuclear stress bodies as described in section 3.6.5 (Fig 3.12). Nuclear stress 

bodies (nSBs) are unique sub-nuclear entities which are formed rapidly and 

transiently in response to a variety of stressors, particularly heat shock, by 

initiating direct interaction between heat shock protein 1 (HSF1) and active 

transcription sites for non- coding satellite III sequences (Biamonti and Vourc'h, 

2010). nSBs are rarely seen in unstressed cells and the number increases with 

stress. nSBs are known to play a role in global reprogramming of gene expression 

through mechanisms such as chromatin remodeling, trapping of transcription and 

splicing factors etc in stressed cells (Eymery et al., 2009). In keeping with our 

findings Udan-Jones et al published a report on reversible nuclear aggregation of 

TDP-43 to nSBs in response to heat shock and demonstrated that this reaction is 

regulated by an interaction between HSP40/HSP70 co-chaperone system and the 

C-terminal prion-like domain of TDP-43 (Udan-Johns et al., 2013). The prion-like 

domain is considered to be the amino acids 286 to 331 (Guo et al., 2011) which 

encompasses the two TDP-43 mutations we studied, suggesting that inter 

mutation variations although not significant (our data) could be explained by 

variations in the ultrastructure and misfolding of the resultant mutTDP-43 protein.  

HSF1 has been shown to form nuclear aggregates in response to heat shock 

treatment and also with several other different cellular stressors such as exposure 

to heavy metals, oxidative stress, anti-inflammatory drugs, amino acid analogues, 

arachnoid acid etc (Christians et al., 2002). Therefore, we hypothesise that the 

translocation of full length TDP-43 to nuclear aggregates in response to arsenite 
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and sorbitol treatment is consistent with the formation of nSBs. However 

treatment of cells with a metabolite such as leptomycin B which specifically 

inhibits nuclear export signal dependent transportation of nuclear proteins has 

shown to rearrange nuclear TDP-43 distribution to nuclear inclusions similar to 

what we observed following treatment of cells over-expressing TDP-43 with 

sorbitol and arsenite (Winton et al., 2008a). Furthermore disruption of the nuclear 

export signal by mutagenising the same did not produce punctate nuclear lesions 

but produced fine nuclear granular staining of TDP-43 (Winton et al., 2008a).  

 TDP-43 is described to have prion-like properties mainly at the C-terminal 

Q/N rich domain. Proteins with prion-like domains are well known to aggregate 

(Udan and Baloh, 2011). Moreover, expression of full-length wtTDP-43 has been 

associated with toxicity. Therefore, to study the effects of TDP-43 on cellular 

response to stress in an over-expression model is error prone as TDP-43 is an 

aggregation prone protein, which is toxic when its equilibrium is altered. 

Therefore, we extended the above stress studies to untransfected HEK293T cells 

and studied the response of endogenous TDP-43 to cellular stress, in particular, 

the co-localisation of endogenous TDP-43 with stress granules. The rationale for 

this is based on the recent studies which show stress granule marker proteins 

were found as additional components of TDP-43 or FUS positive cytoplasmic 

inclusions in pathological samples of ALS and FTLD patients (Volkening et al., 

2009, Liu-Yesucevitz et al., 2010, Bentmann et al., 2012). Furthermore, several 

proteins implicated in other neurodegenerative conditions have been shown to 

either recruit to SGs or modulate the stress granule response to cellular stress e.g. 

tau, ataxin-2, SMN, angiogenin (Wolozin, 2012) suggesting that SG dynamics are 

implicated in ALS and FTLD, but also play an important role in other 

neurodegenerative diseases.   We did not observe TDP-43 co-localisation with the 

SG marker TIAR in response to exposure to arsenite, in keeping with a similar 

study on HEK293T cells (Dewey et al., 2011) although several previous studies 

(Colombrita et al., 2009, McDonald et al., 2011) demonstrated that endogenous 

TDP-43 co-localised with SGs in response to treatment with arsenite. This could be 

due to differences in the specific cell type used and other technical reasons.  It is 

well known that the composition of SGs can wary depending on the cell type and 

the conditions of the stress (Anderson and Kedersha, 2008). In addition, we also 

noted that endogenous TDP-43 did not form nuclear aggregates, which appeared 
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as nSBs when transfected HEK293T cells were exposed to arsenite treatment.  

These data suggest that in a state of over-expressed mutant or wild type TDP-43, 

the cell shares some features similar to diseases where misfolded prion-like 

proteins accumulate (Udan and Baloh, 2011). As TDP-43 also has a prion-like C-

terminal domain, it is possible that it senses the altered protein homeostatic state 

in the cell and promotes self-aggregation. Therefore in the non over-expressed 

state endogenous TDP-43 functions differently by not engaging in the process of 

nSB formation. In other cell models, following arsenite treatment, TDP-43 takes a 

role in cytoplasmic SG formation. McDonald et  al demonstrated that SG formation 

is impaired when TDP-43 is knocked down. However, in a different cell line, 

Colombrita showed that TDP-43 is neither essential for nor influences SG 

formation and is not vital for surviving acute stress (Colombrita et al., 2009, 

McDonald et al., 2011). Although the contrasting observations can be due to 

differences in the models used, overall the findings to date suggest that acute 

knock-down or over-expression of TDP-43 is perhaps not the best method to study 

the physiology and pathophysiology of a protein which has multiple nuclear and 

cytoplasmic functions, but need to be investigated at an endogenous level which is 

physiologically similar to the processes occurring during the disease state in 

human patients.  

Treatment with sorbitol was associated with endogenous TDP-43 co-

localising with the stress granule marker TIAR in keeping with a previous study on 

a similar HEK293T cell model (Dewey et al., 2011). Endogenous TDP-43 

translocated to SGs in approximately 75% of the cells upon exposure to sorbitol 

but none with stress induced by arsenite (Fig 3.16). Interestingly, we also 

observed a difference in the pattern and the size of the SGs formed when HEK293T 

cells are exposed to arsenite and sorbitol. Arsenite exposed cells formed more 

defined larger SGs  (Fig 3.13) whilst exposure to sorbitol resulted in numerous 

smaller granular SGs (Fig 3.15). These findings need to be verified by quantitating 

the SG size, but these observations are consistent the notion with that specific cell 

types  handle different stressors in different ways (Anderson and Kedersha, 2009). 

 Cytoplasmic inclusions positive for TDP-43 are commonly pointed out in 

human pathological samples as are nuclear inclusions in familial ALS and FTLD 

cases,  whilst VCP related FTLD cases are commonly found to have nuclear 

inclusions (Neumann et al., 2006, Neumann et al., 2007b, Parker et al., 2012). The 
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concept of pre-inclusions has been suggested to precede cytoplasmic inclusion 

formation and these pre-inclusions have morphological similarity to SGs (Dewey et 

al., 2012, Parker et al., 2012). Therefore it is also possible that the nSBs observed 

in response to heat shock, arsenite and sorbitol in the over-expressed TDP-43 

HEK293T cells could represent pre-nuclear inclusion formation which is reversible 

initially before becoming more permanent over a period of time. Furthermore, 

elevated levels of TDP-43 have been described in pathological samples of 

ALS/FTLD cases (Mishra et al., 2007, Strong et al., 2007). These observations 

therefore are consistent with the theory that dysfunctional TDP-43 could elevate 

its levels in the brain and prion-like nature of TDP-43 enhances its aggregation. We 

have noted from the cell stress studies that TDP-43 in different cells responds to 

stress in a ‘cell type’ dependent or specific manner, suggesting that aggregation of 

TDP-43 under stressful disease conditions may pose a greater toxicity to motor 

neurons than the non motor neurons, resulting in an increase motor neuron 

vulnerability to dysfunctional TDP-43.  

 

 

 

Figure 28 Endogenous TDP-43 localisation to SG 
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Figure 3.16 Endogenous TDP-43 
localisation to stress granules.  
TIAR positive SGs formed in response to 
both 0.5mM arsenite and 0.4M sorbitol in 
more than 80% of the cells. However 
endogenous TDP-43 only localised to SGs 
upon treatment with sorbitol but not with 
arsenite (75%).  
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Chapter 04:  

Patient derived cells, fibroblasts, can be used as a 
platform to study TDP-43 related functions 
 

4.0 Introduction 

 
Our previous observations when wild type TDP-43 (wtTDP-43) and mutant TDP-

43 (mutTDP-43) over expression in HEK293T cells suggested the possibility of 

toxicity. However we did not observe a significant difference in TDP-43 

distribution between the two groups. This result is consistent with several other 

cellular and animal models where over-expression of both mutant and wild type 

TDP-43 full-length protein has been shown to be toxic, although mutant TDP-43 in 

some animal models caused greater toxicity (Janssens et al., 2013). Furthermore 

aggregation prone proteins such as hnRNPs and the C-terminal end of TDP-43 can 

give rise to misleading results when over-expressed and may not accurately 

represent the pathophysiological process underlying the neurodegeneration of 

ALS. TDP-43 levels are maintained stringently and the fact that perturbation of this 

delicate balance is harmful to the cells is now well established. Traditionally over-

expression models of disease associated mutations are used to accelerate the 

phenotype associated with mutations or variations in proteins, to study the effects 

of such mutations on cells or animal models. However with regards to a tightly 

controlled protein, TDP-43, non-physiological elevation of TDP-43 expression 

appears to be harmful and this perhaps overshadows the effects of the expressed 

mutation. Therefore an ideal model to study the effects of dysfunctional TDP-43, 

we propose, is a model wherein wtTDP-43 and mutTDP-43 levels are unaltered 

and maintained at physiological levels. Such a model could only be established 

from patient derived cells or tissues. However, to establish a model with the 

disease associated tissues, particularly in motor neuron disease is nearly 

impossible. In a live motor neuron disease patient, to obtain a spinal cord or brain 

sample is unethical and would be potentially harmful to the patient. Obtaining such 

tissues immediately after death has the disadvantage of artifacts caused by post- 

mortem delay. Furthermore, to assess dynamic cellular functions such as RNA 
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metabolism or cell signaling is nearly impossible to achieve using postmortem 

tissues.  

Skin and neuronal tissues have similar embryological origin, the ectoderm. Skin 

fibroblasts can be cultured from skin biopsies obtained from both ALS cases and 

age and gender matched controls. Fibroblasts have an advantage over 

lymphoblasts in that transformation of lymphocytes to lymphoblasts to allow 

serial culture could alter cellular properties especially pathways involving calcium 

metabolism (Gibson and Peterson, 1987). A considerable precedent exists in using 

cultured fibroblasts in the study of neurological and neurodegenerative disorders. 

Fibroblasts from patients with Alzheimer’s dementia associated with mutations in 

presenilin-1 mutations have been used to study stress signaling pathways involved 

in disease related mutations and control cases (Mendonsa et al., 2009), to 

understand disease related pathophysiology and aging (Huang et al., 1994). 

Fibroblasts from cases with Parkinson’s disease related to mutant Parkin have 

been used to elegantly demonstrate impaired mitochondrial morphology and 

function (Grunewald et al., 2010) and studies on PINK1 mutant fibroblasts from 

Parkinson’s disease cases have shown impaired ubiquitination of relevant proteins 

(Rakovic et al., 2011). Advantages outweigh the potential disadvantages in the use 

of fibroblasts.  Some of the disadvantages are that neuronal proteins of interest 

associated with neurodegeneration might not be expressed in the fibroblasts; 

variations in culture methods could potentially make comparison of studies 

amongst different labs difficult to interpret. This fact is illustrated in studies in AD 

related fibroblasts where robust differences in calcium metabolism between non-

AD and AD fibroblasts could not be replicated (Peterson et al., 1988, Borden et al., 

1992).  

However, fibroblasts from ALS cases have not been directly used as 

frequently as in Alzheimer’s dementia or Parkinson’s disease. The development of 

induced pluripotent stem cells (iPSCs) using ALS patient derived fibroblasts, 

although a promising technology (Dimos et al., 2008), has been shown to have 

significant variations in the expression levels of the disease associated target 

proteins amongst clones of iPSCs derived from a single cell line, which limits its 

utility as a robust model (Egawa et al., 2012).  In this chapter we demonstrate that 

fibroblasts derived from ALS cases can be used to demonstrate some features of 

TDP-43 proteinopathy and show some promise as a model to interrogate 
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mechanisms of dysfunctional TDP-43 for example, dysregulation of RNA 

metabolism associated with mutations in the TARDBP gene, by using stress granule 

dynamics as a surrogate marker of RNA metabolism.   

 

4.1 Fibroblasts from cases with mutant TDP-43 demonstrate loss of 
nuclear TDP-43 compared to control cases. 
 
One of the prominent features of TDP-43 proteinopathy is mis-localisation of TDP-

43 to the cytoplasm and/or relative loss of nuclear TDP-43. To ascertain this 

feature of TDP-43 we stained three different control fibroblasts lines age matched 

to three mutant lines carrying single copies of the mutant TARDBP gene (M337V, 

A321V and G287S) expressing physiological levels of TDP-43. As explained in the 

material and methods section, we assessed the relative immunofluorescence to 

score the TDP-43 localisation. We noted that in all three control fibroblasts cell 

lines endogenous wild type TDP-43 (wtTDP-43) was localised to the nucleus (Fig 

4.1 panels A-C, representative pictures of all control three cells lines) in more than 

85% of the cells (Fig 4.2 A), whilst only a very subtle amount of TDP-43 staining 

was observed in the cytoplasm. In contrast, the mutant fibroblasts carrying the 

M337V TDP-43 mutation resulted in significant cytoplasmic TDP-43 mis-

localisation compared to the controls cells associated with relative nuclear clearing 

of TDP-43 (Fig 4.1, panels D-F, empty arrow) in more than 50% of the cells 

(p<0.0001)(Fig 4.2 B). More than 30% of M337V mutant fibroblasts showed 

almost complete loss of nuclear TDP-43 compared to the control cells 

(p<0.0001)(Fig 4.2 B). Furthermore about 10% of the G287S mutant fibroblasts 

also showed complete loss of nuclear TDP-43 (Fig 4.1, panels G-I, Empty arrow) 

whilst more than 65% of cells showed relative loss of  (sub-saturated in mutant 

TDP-43 cases compared to controls) nuclear TDP-43 compared to controls (Fig 

4.2B, p<0.0001).  A321V mutant fibroblasts did not show as many nuclei fully 

depleted of  TDP-43 compared to M337V cells (<10%), but had the highest number 

of cells (>70%) (Figure 4.2B) with a reduction in nuclear TDP-43 (Fig 4.1, panels J-

L). A321V fibroblasts also showed less cytoplasmic TDP-43 compared to the other 

two mutant fibroblasts (Fig 4.1 J). 
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Figure 4.29 Endogenous TDP-43 localisation in control and disease associated mutant TDP-43 
fibroblasts: M337V, A321V and G287S 
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Figure 4.1 Endogenous TDP-43 localisation in control and disease associated mutant TDP-43 
fibroblasts: M337V, A321V, G287S. A-C) Representative pictures of control fibroblasts 
demonstrating predominantly nuclear distribution of TDP-43, under basal conditions. Solid arrow 
pointing towards a nucleus packed with TDP-43. The same cell has slight cytoplasmic staining for 
TDP-43. D-F) M337V mutant fibroblasts show dramatic reduction of nuclear TDP-43. Empty arrow 
pointing at a nucleus where TDP-43 is completely mis-localised to the cytoplasm. Arrow points to a 
nucleus sub-saturated in TDP-43 and increased cytoplasmic TDP-43 G-I) G287S mutant also 
shows empty nuclei (empty arrow) and increased cytoplasmic TDP-43 J-L) A321V mutant did not 
show many empty nuclei, but the nuclear TDP-43 was reduced compared to the control fibroblasts. 
Green- TDP-43 antibody: Polyclonal rabbit anti human TDP-43, epitope in the C-terminus (1:500). 
DAPI- used as a nuclear stain (1:1000). Scale bar 20µm. 
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Figure 4.30 Patterns of endogenous TDP-43 localisation in control and disease associated mutant TDP-
43 fibroblasts: M337V, A321V, G287S 
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Figure 4.2 Patterns of endogenous TDP-43 localisation in control and disease associated mutant 
TDP-43 fibroblasts: M337V, A321V, G287S. A) Fibroblasts from three different healthy age-gender 
matched control cases showed that more than 80% of the cells had predominantly nuclear TDP-43 
staining. Less than 15% of the cells showed reduced nuclear staining when assessed using failure to 
saturate model. Very occasionally cells with no nuclear TDP-43 staining were observed. B) In contrast to 
fibroblasts from control cases, fibroblasts from MND patients with TARDBP mutations  showed a marked 
reduction in nuclear TDP-43 staining. More than 30% of M337V mutant fibroblasts showed no nuclear 
TDP-43. A321V and G287S mutant fibroblasts also showed a significantly higher number of nuclei with 
reduced TDP-43 compared to the controls. One way ANOVA with multiple column comparison with 
Bonferoni post test correction was used, ***p<0.0001 
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Our finding that in the control cells the majority of the TDP-43 is localised to the 

nucleus and a small proportion of TDP-43 is in the cytoplasm is consistent with 

previous reports on postmortem analysis of brain and spinal cords wherein TDP-

43 in non ALS/FTLD controls was largely nuclear (Neumann et al., 2006)ref. 

Postmortem studies on ALS and FTLD cases describe nuclear loss and associated 

cytoplasmic mis-localisation of TDP-43 as one of the hallmarks of TDP-43 

proteinopathy. Varying degrees of loss of TDP-43 from the nuclei have been 

described in ALS and FTLDU pathological samples (Neumann et al., 2007a). It was 

interesting that we observed a similar phenomenon of loss of or lack of nuclear 

TDP-43 in the TDP-43 mutant fibroblasts compared to the controls (Fig 4.2 B).  

 

4.2 Abundant accumulation of cytoplasmic phosphorylated TDP-43 
(pTDP-43) in fibroblasts from mutant TDP-43 cases but not in control 
cases. 
 
Abnormal protein accumulation is a well recognised characteristic of 

neurodegenerative diseases. Post-translational modifications such as 

phosphorylation increases the aggregation propensity of proteins (Kumar et al., 

2011). Aggregated TDP-43 observed in neurodegenerative diseases is often 

ubiquitinated and phosphorylated (Neumann, 2009). Phosphorylation sites of 

TDP-43 are now well characterised (Inukai et al., 2008, Neumann et al., 2009). 

Cytoplasmic accumulation of phosphorylated TDP-43 is also considered an 

important facet of TDP-43 proteinopathy (Neumann et al., 2009). We have already 

observed relative nuclear loss of TDP-43 and increased cytoplasmic accumulation, 

which is one of the main features of TDP-43 proteinopathy, in the mutant 

fibroblasts. Over-expression of C-terminally fragmented TDP-43 increases 

cytoplasmic accumulation and phosphorylation at serine residues  409/410 

(Brady et al., 2011). Phosphorylation has been shown to play an important part in 

the regulation and accumulation of TDP-43 and is considered to drive the toxicity 

associated with mutant TDP-43 (Liachko et al., 2010). Furthermore postmortem 

studies have also shown that TDP-43 proteinopathy extends to the extra-motor 

neuronal cells such as glia and cerebellar tissues (Brettschneider et al., 2012). 

Therefore we hypothesised that TDP-43 mis-localised to cytoplasm is 

phosphorylated in TDP-43 mutant fibroblasts compared to the controls.  We used a 

monoclonal mouse anti-human phosphorylated TDP-43 antibody to residues 
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S409/S410, which was a kind gift from Dr Robin Highley and Professor Paul Ince. A 

similar antibody has been used in the study of phosphorylated TDP-43 in FTLD 

and ALS cases (Neumann et al., 2009).  We counted and quantified the cells, which 

harboured distinct lesions such as rounded, elongated lesions, increased diffuse or 

granular cytoplasmic phosphorylated TDP-43 staining above the background 

compared to control cells. Imaging of all cells captured was assessed using a 

confocal microscope using standard setting for image capture. 

The three age matched control fibroblast cell lines did not show any 

cytoplasmic phosphorylated TDP-43 (Figure 4.3). However, we observed a distinct 

pattern of phosphorylated TDP-43 distributed in fine nuclear punctate lesions, 

which appeared similar to appearances described for nuclear speckles, which are 

classically defined as positive for SC35 staining (Vos et al., 2009).  This pattern we 

now refer to as ‘speckle pattern’. This speckle pattern of pTDP-43 staining was 

observed in the nuclei of control fibroblasts (Figure 4.3 A circled nucleus, solid 

arrow, enlarged in panels G-I, arrow). It is unclear whether this ‘speckle pattern’ 

conforms to an anatomical entity such as nuclear stress bodies that we observed 

when over-expressing TDP-43 in HEK293T cells. However, the above pattern of 

phosphorylated TDP-43 was observed under basal conditions, which makes the 

speckles less likely to be nSBs, as nSBs are almost exclusively formed under 

conditions of external stress (Biamonti and Vourc'h, 2010). We have not co-stained 

with markers of nuclear speckle proteins or para-speckle proteins to ascertain the 

nature of the above pattern of distribution of phosphorylated TDP-43 in the 

control cells. 

In contrast to the control cells, significant accumulation of cytoplasmic 

phosphorylated TDP-43 was noted in the mutant fibroblasts. This was especially 

prominent in the M337V fibroblasts (Figure 4.4, panels A-C). We noted both diffuse 

granular pattern of cytoplasmic staining and at times cytoplasmic inclusions, 

which takes an elongated shape (Fig 4.4 panel A arrow), or circular shaped (Fig 4.4 

panel A arrowhead), and granulated cytoplasmic patterns (Fig 4.4 panel G arrow),  

of distribution of phosphorylated TDP-43 in M337V fibroblasts. We also noted 

some phosphorylated TDP-43 in the nuclei of the M337V case  but this was not 

prominent (Figure 4.4, panel A and C). Similarly in  
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Figure 4.31 Minimal phosphorylated TDP-43 (pTDP-43) staining in control fibroblasts. 

  

 
G287S fibroblasts we noted large phosphorylated TDP-43 cytoplasmic inclusions 

(Figure 4.4, panel D-F) and diffuse granular staining. However compared to the 

M337V (60% of the cells) and A321V (40%) mutant lines, the G287S mutant 

fibroblast line showed less cytoplasmic phosphorylated TDP-43 staining (20% of 

the cells). All three mutant fibroblast lines M337V, G287S and A321V, showed 

significantly higher proportion of cells with cytoplasmic pTDP-43 staining 

compared to all control fibroblast lines (Figure 4.4 J, p>0.01). All three mutant 

fibroblast lines also showed fine-punctate pattern of phosphorylated TDP-43 

staining distribution in the nuclei, which was pronounced in mutant TDP-43  
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Figure 4.3 Minimal phosphorylated TDP-43 (pTDP-43) staining in control fibroblasts. A-C) Control 
1- Representative pictures of control fibroblasts demonstrating no cytoplasmic accumulation of 
phosphorylated TDP-43 under basal conditions. A nuclear localisation of pTDP-43 noted in a punctate 
pattern (Solid arrow). D-F) Control 6- Fibroblasts also show no cytoplasmic pTDP-43. Circled area is 
magnified in G-I) Representative nucleus demonstrating that nuclear localisation of pTDP-43 in the 
controls is distributed in a punctate pattern in the sub- nuclear compartment. Arrow pointing towards a 
nucleus with pTDP-43 puncta. Mouse monoclonal anti phosphorylated TDP-43 antibody (1:1500). DAPI- 
nuclear stain (1:1000). Scale bar 40µm. 
 



 168 

 
Figure 4.32 Significant pTDP-43 staining in three different mTDP-43 fibroblasts 
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Figure 4.4 Significantly increased distribution of cytoplasmic phosphorylated TDP-43 (pTDP-43) in three 
different TDP-43 mutant fibroblasts. A-C) M337V- Representative pictures of fibroblasts demonstrating significant 
cytoplasmic accumulation of phosphorylated TDP-43 under basal conditions, in both inclusions and in a diffuse 
pattern. Nuclear pTDP-43 is observed in a fine punctate pattern. D-F) G287S- Fibroblasts also show large cytoplasmic 
inclusion formation (arrow) and some cytoplasmic diffuse staining at a less frequent pattern compared to M337V G-I) 
A321V- Demonstrated cytoplasmic pTDP-43 staining. More frequently nuclear pTDP-43 staining was punctate in 
pattern. J) ONE WAY ANOVA, Multiple column comparison with Bonferoni post test correction showed proportion of 
cells with pTDP-43 cytoplasmic staining was significantly higher in all mutTDP-43 fibroblasts lines (M337V, p<0.001; 
A321V and G287S, p<0.01) compared to all control cases. Scale bar 40µm. 
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fibroblasts compared to the control fibroblasts but we have not formally analysed 

the differences in nuclear pTDP-43 staining pattern. In future an immunoblot 

could be performed to compare the levels of pTDP-43 between controls and 

mutant fibroblast cell lines in nuclear and cytoplasmic fractions. 

 

4.3 p62 positive inclusions and cytoplasmic accumulations are 
common in mutant TDP-43 and rare in control cases. 
 
We counted and analysed the fibroblasts, which showed at least two or more p62 

positive cytoplasmic or nuclear punctate lesions, in control and mutant fibroblasts. 

None of the three control fibroblasts (age and gender matched to mutant 

fibroblasts) showed significant p62 staining. Only about 5-12% of the control 

fibroblasts showed p62 positive cytoplasmic inclusions (Fig 4.5, panels A-C, 

arrow). We did not observe any nuclear p62 positive inclusions in the controls. In 

contrast we observed a significant amount of cytoplasmic and nuclear p62 positive 

inclusions and diffuse cytoplasmic staining in the mutant fibroblasts (Fig 4.6). 

Furthermore there was also a noticeable difference in the intensity of p62 positive 

lesions amongst the three mutant fibroblast lines.  p62 distribution in M337V 

fibroblasts was observed in approximately 40% of the fibroblasts and compared to 

control fibroblasts the M337V cell line harboured significantly more p62 positive 

inclusions (Fig 4.6, A-C)(Fig 4.6 J, p<0.05). However G287S cells demonstrated a 

greater presence of p62 staining in almost 85% of the cells (Fig 4.6, panels D-F) 

compared to the controls (Fig 4.6, J, p<0.001). There were distinct puncta and 

cytoplasmic granular staining of p62 noted in G287S and A321V mutant fibroblasts 

(Fig 4.6 panels D-I). A321V mutant fibroblasts also showed significantly increased 

endogenous p62 positive inclusions in 70% of the cells (Fig 4.6, G-I) compared to 

controls (Fig 4.6 J)(p<0.001). Although A321V mutant fibroblasts harboured 

significantly more p62 positive lesions, compared to M337V mutant fibroblasts 

(p>0.05), there was no significant difference compared to those carrying the 

G287S mutation (p>0.05) (Fig 4.6 J). Whilst it was an interesting finding to note 

that the TDP-43 mutant fibroblasts have a greater p62 inclusion load compared to 

the controls it is also noteworthy that there were variations in p62 staining 

amongst the three dominantly inherited disease associated mutations.  
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Figure 4.33 Minimal p62 staining in control fibroblasts 
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Figure 4.5 Minimal p62 staining in control fibroblasts. A-C) control 3 -Occasional p62 positive lesion in 
the cytoplasm noted (arrow). D-F) Control 6 and G-I) Control 12- representative pictures show no 
cytoplasmic p62 staining. Scale bar 10µm. Mouse monoclonal anti human p62 antibody used at 1:2000 
dilution. DAPI used for nuclear stain. Scale bar 50µm. 
 

Figure 4.6 Significant p62 staining in all three mutant TDP-43 fibroblasts, M337V, A321V and 
G287S. A-C) M337V- Distinct punctate lesions positive for p62 in the cytoplasm noted (arrow). In 
addition there is also a diffuse staining in cytoplasm in most cells. D-F) G287S – Shows significant 
cytoplasmic inclusions, diffuse staining and nuclear p62 positive inclusions. Boxed area is enlarged and 
arrow points to an intra nuclear p62 positive lesion which is also present in A321V mutant fibroblasts (G-
I). J) ONE WAY ANOVA, Multiple column comparison with Bonferoni post test correction showed p62 
cytoplasmic inclusions are present in a significantly higher number of cells in mutTDP-43 (M337V, 
p<0.05; A321V, p<0.001 and G287S, p<0.001) compared to the controls. G287S and A321V fibroblasts 
had significantly more p62 staining compared to M337V cells (p<0.001 and p<0.05 respectively..( Mouse 
monoclonal anti human p62 antibody used at 1:2000 dilution. DAPI used for nuclear stain. Scale bar 
50µm. 
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Figure 4.34 Significant p62 staining in all three mTDP-43 fibroblasts. 
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4.4 Endogenous wild type TDP-43 in control fibroblasts does not 
localise to stress granules upon treatment with H2O2, Arsenite and 
Sorbitol. 
 
In chapter 3, we did not observe endogenous or over-expressed TDP-43 

recruitment to stress granules in HEK293T upon treatment with various cellular 

stressors except with sorbitol (0.4M). In contrast several neuronal and non 

neuronal cell models have demonstrated endogenous and over-expressed TDP-43 

recruitment to stress granules (Colombrita et al., 2009, McDonald et al., 2011, 

Meyerowitz et al., 2011). Previous studies relating to mutant TDP-43 have been 

conducted in over- expression cell models. We have highlighted in the previous 

chapter the limitation of mutant and wild type TDP-43 over-expression models 

(Chapter 3). Recruitment of endogenous mutant TDP-43 to stress granules has not 

been reported before in patient derived fibroblasts to the best of our knowledge at 

the time of our study. We used 0.5mM arsenite, 0.4M sorbitol, and 0.6mM H2O2 to 

induce stress granules as indicated in the materials and methods section (Chapter 

2, section 2.2.6). Representative figures from at least three experiments from three 

controls are depicted in figure 4.7. Both 0.5mM  arsenite and 0.4M sorbitol 

treatments induced stress granules in the control fibroblasts as observed in 

HEK293T cells (Chapter 3, section 3.7.4, Fig 3.13 and Fig 3.15) when we used TIAR 

as a marker for SG (Fig 4.7 E-H and I-L). However we did not observe a robust 

endogenous TDP-43 recruitment to SG either with arsenite or sorbitol treatment. 

In HEK293T cells we did observe a significant number of cells recruiting 

endogenous TDP-43 to SGs upon sorbitol treatment (Chapter 3.7.4, Fig 3.15). We 

assumed that the differences we observed between HEK293T cells and fibroblasts 

were secondary to differences in the properties of the cellular models studied. 

When we assessed the number of fibroblasts which generated a stress response by 

counting the fibroblasts with three or more stress granules, we noted that in the 

control fibroblasts about 20-30% of the cells staged a stress response within 30 

minutes of treatment with arsenite in comparison to ~80% of the HEK293T cells 

at 30 minutes post arsenite treatment (p=0.0014) (Fig 4.8). HEK293T cells and 

control fibroblasts did not show any SG formation at basal conditions (unstressed). 

Therefore not depicted in the graph (Fig 4.8).  These data suggest that control 

fibroblasts are more tolerant of  
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Figure 4.35. Endogenous TDP-43 does not localise to SGs induced by arsenite or sorbitol in control 
fibroblasts 
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Figure 4.7 Endogenous TDP-43 does not localise to SG in control fibroblasts  though 
these cells form SG in response to Arsenite and Sorbitol treatment. A-D) Unstressed 
control fibroblasts show nuclear TDP-43 and predominantly nuclear TIAR staining. E-H) 
Treatment with 0.5mM Arsenite for 30min- produced stress granules positive for TIAR 
staining, with no endogenous TDP-43 recruitment to the SG. Cell pointed with an arrow in 
panel F has been digitally enlarged to demonstrate stress granules (E2, F2, H2) I-L) 
Treatment with 0.4M Sorbitol- also produced TIAR positive SGs with no endogenous TDP-43 
recruitment. Cell pointed with an arrow in panel J has been digitally enlarged to demonstrate 

stress granules (I2, J2). M-P) H2O2 treatment produced no SG (Cell in panel N is digitally 

enlarged in N2-M2). 10µm scale bar. Rabbit polyclonal antibody against human TDP-43, 
1:500, mouse monoclonal antibody against TIAR, 1:1000, DAPI nuclear stain 1:1000. Scale 

bar 50µm. 
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Figure 4.36 SG response to arsenite treatment is different between HEK293T and fibroblast cell lines 

 
 

arsenite induced stress or tend to stage a delayed response compared to other 

(HEK293T) cell models. McDonald et al noted almost 100% of HeLa cells 

generating a SG response when treated with arsenite for 30 minutes. However the 

same group studying patient derived lymphoblastoid cells showed that less than 

20% of the cells formed stress granules in response to arsenite treatment for 30 

minutes (McDonald et al., 2011).  

 

4.5 M337V, A321V and G287S mutant TDP-43 fibroblasts form SG 
and direct mutTDP-43 to SG upon treatment with Sorbitol, but not 
arsenite or H2O2. 
 
A previous study on lymphoblastoid cells derived from patients carrying D169G 

and R361S TARDBP mutations showed a variable response between the two 

mutant cell lines, in that the proportion of D169G mutant lymphoblastoid cells that 

formed stress granules was similar to that of control cells, whereas a smaller 

proportion of R361S mutant lymphoblastoid cells formed SGs (McDonald et al., 

2011) suggesting that stress granule dynamics can be affected by the specific 

TARDBP mutation and SG dynamics therefore could be used to study the 

mechanisms or differences amongst different TARDBP mutations. Therefore we 

Figure 4.8 HEK293T cells form stress granules more robustly than control fibroblasts in 
response to 0.5mM arsenite treatment. At 30 minutes post treatment with arsenite, more than 80% 
of HEK293T cells produced 3 or more stress granules (n=8). In contrast only about 25% control 
fibroblasts (data from two controls pooled together) (n=7) showed 3 or more SGs within 30 minutes of 
arsenite treatment. Unstressed HEK293T and fibroblasts had no SGs at unstressed state (Not plotted 
in the graph). Unpaired t test, with Mann-Whitney test, two tailed p value  = 0.0014. 
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studied stress granule formation response to arsenite, sorbitol and H2O2 in M337V, 

A321V and G287S mutant fibroblasts. 

We did not see any stress granule formation or endogenous TDP-43 

localisation to distinct cytoplasmic lesions in any of the TDP-43 mutant fibroblasts, 

when treated with H2O2. These results are in keeping with observations from the 

HEK293T cells where we did not observe distinct cytoplasmic lesion formation 

with endogenous TDP-43 or the stress granule marker TIAR when treated with 

H2O2  (Chapter 3, section 3.7.3). However we noted that there was increase of 

cytoplasmic TDP-43 in the cells treated with H2O2. This could happen if H2O2 

interferes with nuclear export or import signaling of nuclear bound proteins and 

requires further study to clarify the significance of this observation.  

In response to arsenite all the three mutants did form stress granules (SG) 

and these SGs were distinct (M337V, Fig 4.9, E-H; A321V, Fig 4.10, E-H and G287S 

Fig 4.11, E-H). We did not observe a noticeable recruitment of TDP-43 to the TIAR 

positive SGs. We did not quantify the number of cells with TDP-43 and TIAR co-

localised SGs as they were so rare. This finding is in contrast to the findings of 

several studies which have shown the co-localisation of stress granule markers 

and endogenous TDP-43 in response to treatment with arsenite in different cell 

lines such as Lymphoblastoid cells (McDonald et al., 2011), BEM17 cells (Liu-

Yesucevitz et al., 2010) and in response to paraquat in SY5Y cells (Meyerowitz et 

al., 2011). However when the TDP-43 mutant fibroblasts were subjected to 0.4M 

sorbitol treatment endogenous TDP-43 was observed to co-localise with TIAR 

positive SGs (Fig 4.9, 4.10 and 4.11 panels I-L). Interestingly we noted that the SG 

response is not as robust with sorbitol treatment, as it is with 0.5mM arsenite 

treatment in that fewer SGs were formed when treated with sorbitol. We also 

observed that M337V mutant fibroblasts (Fig 4.9 I-L) formed comparatively more 

SGs than the A321V (Fig 4.10 I-L) and G287S fibroblasts (Fig 4.11 I-L). This 

observation suggests that different TDP-43 mutations potentially have a varied 

effect on the cellular stress handling functions. 
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Figure 4.37 M337V mutant fibroblasts show endogenous TDP-43 localise to SGs in response to 

treatment with sorbitol but not with arsenite or H2O2 

 
 

Figure 4.9 M337V mutant fibroblasts show endogenous TDP-43 localise to SGs in response 
to treatment with sorbitol but not with arsenite or H2O2 . A-D) Unstressed M337V mutant 
fibroblasts show reduced nuclear TDP-43 and predominantly nuclear TIAR staining. E-H) Treatment 
with Arsenite- produced stress granules positive for TIAR staining, with no endogenous TDP-43 
recruitment to the SG. I-L) Treatment with 0.4M Sorbitol also produced TIAR positive SGs some of 
which co-localised with endogenous TDP-43, arrow points to the cell digitally enlarged to 
demonstrate co-localisation of TDP-43 and TIAR. M-P) H2O2 treatment produced no SG but there 
was cytoplasmic mis-localisation of TDP-43. 10µm scale bar. Rabbit polyclonal antibody against 
human TDP-43, 1:500, mouse monoclonal antibody against TIAR, 1:1000, DAPI nuclear stain 
1:1000. Scale bar 50µm. 



 177 

 
Figure 4.38 A321V mutant fibroblasts recruit endogenous TDP-43 to SGs in response to treatment with 

sorbitol but not with arsenite or H2O22 

  
 

Figure 4.10 A321V mutant fibroblasts recruit endogenous TDP-43 to SG in response to 
treatment with sorbitol but not with arsenite or H2O2.  
A-D) Unstressed A321V mutant fibroblasts show reduced nuclear TDP-43 and predominantly nuclear 
TIAR staining. E-H) Treatment with Arsenite- produced stress granules positive for TIAR staining, with 
no endogenous TDP-43 recruitment to the SG. I-L) Treatment with 0.4M Sorbitol also produced TIAR 
positive SGs some of which col-localised with endogenous TDP-43, arrow points to a cell digitally 
enlarged to demonstrate co-localisation of TDP-43 and TIAR. Note the increased cytoplasmic TDP-43 
staining  M-P) H2O2 treatment produced no SG and no cytoplasmic mis-localisation of TDP-43 noted. 
10µm scale bar. Rabbit polyclonal antibody against human TDP-43, 1:500, mouse monoclonal 
antibody against TIAR, 1:1000, DAPI nuclear stain 1:1000. Scale bar 50µm. 
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Figure 4.39 G287S mutant fibroblasts recruit endogenous TDP-43 to SGs in response to treatment with 
sorbitol 
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4.6 Thapsigargin treatment recruits TDP-43 to TIAR positive stress 
granules 
 
Thapsigargin treatment has been shown to produced stress granules, which are 

positive for TIAR and HUR SG markers. Furthermore these SGs also co-localise 

with human hnRNP Q (Quaresma et al., 2009). Thapsigargin induces cellular stress 

via pathways involving the endoplasmic reticulum (ER) and Thapsigargin 

enhances caspase dependent TDP-43 cleavage in NSC34 cells (Suzuki et al., 2011). 

As TDP-43 is a member of the hnRNP family and thapsigargin is known to induce 

stress granules and modifies TDP-43, we hypothesised that TDP-43 would be 

recruited to SGs induced by Thapsigargin. We tested this hypothesis by treating 

control fibroblasts with Thapsigargin (100µM) for 90 minutes. We indeed noted 

TIAR positive SG formation in the human fibroblasts and these stress granules also 

recruited TDP-43 (Fig 4.12). Upon closer investigation we noted that TIAR positive 

SGs only recruited TDP-43 to part of the SGs (Fig 4.12E-H) suggesting that TDP-43 

might associate with some of the TIAR positive components in the SGs.  It is 

possible however, that if the cells were stressed for longer than 90 minutes, TDP-

43 would have sufficient time to be completely recruited to TIAR positive SGs. Both 

of these possibilities need to be studied in future studies as the purpose of this 

experiment was to see if Thapsigargin stress induced SGs, which recruited 

endogenous TDP-43. This observation that TDP-43 localises to SGs induced by 

thapsigargin in control fibroblasts,  extends the list of stressors that could 

stimulate formation of SGs, which also recruits TDP-43. A future study needs to be 

designed and completed on all three mutant TDP-43 cell lines to ascertain if a 

difference would be observed in rate and number of SGs formed in response to 

thapsigargin treatment.  

 

 

Figure 4.11 G287S mutant fibroblasts recruit endogenous TDP-43 to SGs in response to 
treatment with sorbitol. A-D) Unstressed G287S mutant fibroblasts. E-H) Treatment with arsenite- 
produced stress granules positive for TIAR staining, with no endogenous TDP-43 recruitment to the 
SG. I-L) Treatment with 0.4M sorbitol- also produced TIAR positive SGs some of which col-localised 
with endogenous TDP-43 (Boxed area). Note the increased cytoplasmic TDP-43 staining  M-P) H2O2 
treatment produced no SGs. Q) A significantly higher proportion of G287S fibroblasts assembled SGs 
at 30min following arsenite treatment compared to the control and other TDP-43 mutants. Rabbit 
polyclonal antibody against human TDP-43, 1:500, mouse monoclonal antibody against TIAR, 1:1000, 
DAPI nuclear stain 1:1000. Scale bar 50µm. 
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Figure 4.40 Control fibroblasts treated with thapsigargin recruit endogenous TDP-43 to SGs 

 
 

4.7 The proportional increase in the number of cells with stress 
granules in response to arsenite is different between mutant TDP-43 
and the control fibroblasts 

 
We did not observe a noticeable TDP-43 co-localisation to stress granules in 

fibroblasts, when treated with arsenite, in contrast to observations made in previous 

published reports. However, we noted a difference between the mutant TDP-43 and 

control fibroblasts, in the proportion of cells, which formed TIAR positive stress 

granules following 30 minutes of arsenite treatment.  Therefore we hypothesised that 

the proportional increase in the number of cells with stress granules following 

arsentie treatment would be different between mutant and control fibroblasts. 

Furthermore we used HUR as a marker of stress granules instead of TIAR as a 

previous report indicated that TDP-43 can modify the mRNA levels of TIAR 

(McDonald et al., 2011). The control fibroblasts mounted a maximum stress response 

at 45 minutes of arsenite stress and this time point was similar in the TDP-43 mutant 

fibroblasts as well. However, the proportion of cells with HUR positive SGs was 

significantly higher in the mutants compared to the controls in response to post 

arsenite stress: at 15, 30 and 45 minutes (Fig 4.13, Fig 4.15B-D)). The representative 

pictures of the A321V fibroblasts and control fibroblasts are depicted in Fig 4.13 for 

Figure 4.12. Control fibroblasts treated with thapsigargin recruit endogenous TDP-43 to stress 
granules A) TDP-43 localisation to cytoplasmic granules and larger inclusions B) TIAR SG marker 
representing SG C) DAPI nuclear marker D) Merging of channels confirm co-localisation of TDP-43 with 
TIAR positive SG E-H) Boxed area digitally enlarged  demonstrates that TDP-43 localises to part of the 
SG but not to the whole SG (E-H). Arrows indicate the SGs focused upon. Note the increased 
cytoplasmic TDP-43 staining. 10µm scale bar. Rabbit polyclonal antibody against human TDP-43, 
1:500, mouse monoclonal antibody against TIAR, 1:1000, DAPI nuclear stain 1:1000. Scale bar 100µm. 
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illustration purposes. The response to arsenite stress amongst the age and gender 

matched control fibroblasts was similar, therefore we pooled the data together to 

compare with the mutant fibroblasts. The G287S mutant fibroblasts assembled SGs in 

a robust fashion and showed a significantly heightened stress, as judged by the 

increase in the cells with response at all time points of stress induction (at 15min 

p<0.05, 30min and 45min p<0.01)(Fig 4.15B). A321V mutant fibroblasts also 

mounted a stress response curve in similar shape to the G287S fibroblasts and the 

proportion of fibroblasts with SGs was significantly more at 15 and 45 minutes of 

stress compared to the controls (p<0.05) (Fig 4.15C). M337V mutants followed a 

similar SG assembly profile to that of controls.  We were only able to perform two 

experiments with M337V fibroblast line and therefore statistics have not been 

performed (Fig 4.15D). Although G287S and A321V mutants formed a robust SG 

assembling response, it was interesting to note that the two mutants (G287S and 

A321V) differed with each other in the severity of the SG response in that G287S’ SG 

response was elevated at 30 minutes (~80% vs 58%) and 45 minutes (82% vs 74%) 

highlighting differences between TDP-43 mutations in the SG assembly response (Fig 

4.15 B-C). 
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Figure 4.41 mTDP-43 fibroblasts (A321V) produce SGs earlier in response to arsenite than control 
fibroblasts carrying wtTDP-43 

 
 
 

  
Figure 4.42 mTDP-43 fibroblasts (A321V) take longer to disassemble SGs following stress recovery 
compared to control fibroblasts 

 

Figure 4.13. mTDP-43 fibroblasts (A321V) produce SGs earlier in response to arsenite than 
control fibroblasts carrying endogenous wtTDP-43. UN- Un stressed cells. 15, 30, 45 minutes of 
arsenite stress, demonstrating progressive increase in SGs in the A321V mutant cells 
compared to the controls.  Control fibroblasts demonstrating the SG response to arsenite treatment. 
SGs can be readily identified at 30 min post treatment with arsenite. A321V mutant fibroblasts 
demonstrate more robust SG formation with 15 minutes of exposure to arsenite).  Proportionately 
more mutant fibroblasts formed SGs. Mouse monoclonal antibody against HUR, 1:1000, Scale bar 
50µm. 
 

Figure 4.14. mTDP-43 fibroblasts (A321V) take longer to disassemble SGs following stress 
recovery compared to control fibroblasts 15R, 30R 45R, 60R are number of minutes post stress 
release. Control fibroblasts steadily disassemble SGs upon stress recovery and no SGs observed within 
60 minutes of recovery from stress. A321V mutant fibroblasts prolonged delay in disassembling the SGs 
after exposure to arsenite stress for 45 minutes (H). Mouse monoclonal antibody against HUR, 1:1000, 
Scale bar 50µm. 
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4.8 Rate of stress granule disassembly is slower in mutant TDP-43 
compared to the control fibroblasts 
 
McDonald et al 2011 reported that following cessation of stress control and TDP-

43 knockdown HeLa cells continued to assemble SGs until about 60 minutes post 

stress release and afterwards TDP-43 knockdown cells disassembled SGs faster 

than the controls (McDonald et al., 2011). There are abundant data on the severity 

of dysregulation of TDP-43 related functions upon complete knockdown of TDP-43 

(Fiesel et al., 2011). Therefore we hypothesised that under physiological levels of 

mutant TDP-43, stress granule assembly and disassembly might be different to 

when TDP-43 is knocked down. Interestingly we noted that the control fibroblasts 

disassembled SGs almost immediately after arsenite stress was released (Fig 4.14, 

representative pictures demonstrating progressive disassembly of SGs upon stress 

release up to 60 minutes) and continued disassembly of SGs almost completely by 

150 minutes following post-stress release (Fig 4.15A). In contrast G287S mutant 

fibroblasts demonstrated a significantly delayed SG disassembling response at all 

time points compared to the controls (Fig 4.15B, p<0.001). At 150 minutes post 

stress release G287S mutant fibroblasts were observed to retain SGs (5-8%, 

p<0.05). A321V mutant fibroblasts also showed a significant delay in recovery 

compared to the controls at 15-90 minutes post-stress release (Fig 4.15C, p<0.05). 

However the A321V fibroblasts followed a similar rate of SG disassembly 

compared to the controls and this pattern differed from that of G287S mutant 

fibroblasts. By 120 minutes post stress release A321V mutant fibroblasts showed 

no difference to the control (Fig 4.15C). Although statistics could not be analysed 

for M337V mutant fibroblasts as the number of repeats was only two, M337V 

fibroblasts also showed a delay in SG recovery and the pattern observed in SG 

disassembly was different to the other two mutants in that between 30 and 90 

minutes post-stress release the SG disassembly plateaus.  

 

 
 
 
 
 
 



 184 

Table 4.1 Time delay in mTDP-43 fibroblasts to recover from stress: Stress 
granule (SG) disassembly as a readout 

 
 

Proportion of 
cells with SGs at 
45min stress 
(time point A) 

Time taken for 
50% of the cells 
at time point A 
to disassemble 
SG during 
recovery 
(minutes) 

Time delay to 
recover in mutant 
cells compared to 
the controls 
(minutes) 

Control1 60 15 - 

Control 2 62 15 - 

Control 3 58 20 - 

G287S 80 60 43 

M337V 70 90 73 

A321V 76 45 28 

  

 

We also analysed the time taken by the fibroblasts to disassemble SGs to or below 

50% of the proportion of the fibroblasts which developed SGs at 45 minutes of stress 

(time point A). We noted that compared to the controls TDP-43 mutants recorded 

delays from 28 minutes in A321V mutants to 73 minutes in the M337V mutant 

fibroblasts (Table 4.1). This data also supports that TDP-43 mutations delay the 

fibroblasts from stress recovery. Further studies are necessary to understand this 

phenomenon. The differences amongst the 3 TDP-43 mutants in the SG disassembly 

in fibroblasts upon stress release can be appreciated in Figure 4.15E. 
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Figure 4.43 mTDP-43 fibroblasts demonstrate hypersensitivity to arsenite treatment and delay in SG 
disassembly compared to the control fibroblasts 
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Mutant TDP-43 vs Control fibroblasts 
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Figure 4.15. TDP-43 mutant fibroblasts demonstrate hypersensitivity to arsenite treatment and 
delay in SG disassembly compared to the control fibroblasts. A) At 30 minutes post stress, only 
about 35-40% of the control fibroblasts showed SG formation. A maximum SG assembly was seen at 
45 minutes of treatment with Arsenite (just under 60% of control fibroblasts). 60 minutes post stress 
removal more than 90% of the control fibroblasts have disassembled SGs. Hardly any control 
fibroblasts showed SGs at 120 min post stress removal. B) G287S mutant fibroblasts demonstrated a 
significantly robust response to arsenite stress at all time points compared to controls in SGs 
assembly. SG disassembly was significantly delayed in G287S cells even at 120 minutes post stress 
release.  C) A321V fibroblasts also demonstrate a similar SG assembly and disassembly response, 
although the overall response is not as robust as G287S mutant fibroblasts. D) M337V fibroblasts 
followed a similar pattern to control fibroblasts in SG assembly but the disassembly process was 
delayed, n=2 therefore could not statistically analyse. E) Amongst the mutant fibroblasts there appears 
to be an inter-mutant variation in recovering from the stress. The A321V mutant recovered the earliest 
compared to the other two mutants. * p<0.05, ** p<0.001, *** p<0.0001. paired t test was performed 
for each time point comparing controls vs relevant mutant. At least one hundred cells counted per 
cover slip per experimental repeat (average and SD of at least three experiments were plotted except 
ofr M337V cells (n=2)). 
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4.9 Entities formed in response to sodium arsenite are stress granules 
and SG formation can be inhibited by co-treatment with cycloheximide 
 
To confirm that the HUR positive punctate lesions formed in response to arsenite 

treatment are stress granules, the fibroblasts were treated with cycloheximide. 

Cycloheximide treatment arrests translation and thereby makes the translational 

machinery and its components, which are essential for the formation of SGs, 

unavailable for the formation of SGs in response to arsenite or other stress granule 

inducers (Quaresma et al., 2009). As described above, when exposed to arsenite 

and thapsigargin, HUR positive stress granules formed in both control and G287S 

TDP-43 mutant fibroblasts (Fig 4.16 Controls: A-C and Mutants: F-H). Consistent 

with published data, pre-treatment of fibroblasts with 10µg/µl of cycloheximide  

resulted in complete abrogation of HUR positive SG formation when exposed to 

arsenite, in both controls and the mutants (Fig 4.16 E and J). These data confirm 

that the HUR positive punctate lesions are indeed SGs.  

 

 
Figure 4.44 Arsenite and thapsigargin induced HUR positive punctate lesions are abolished by 
cycloheximide treatment 

 

Figure 4.16. Arsenite and thapsigargin induced HUR positive punctate lesion are stress granules 
(SGs) as they are abolished by pre-treatment with cycloheximide, confirming these cytoplasmic 
entities are indeed SGs. A-E) Control fibroblasts. (A) Unstressed control fibroblasts. SG formation in 
response to Arsenite (B) and Thapsigargin (C) treatment. (D) Treatment with Cycloheximide 10µg/µl did 
not produce abnormality in HUR staining. E) Pre-treatment of fibroblasts with cycloheximide abrogates the 
formation of HUR positive cytoplasmic punctate lesions confirming that these punctate lesions are stress 
granules. F-J) Similar results were observed with mutant (G287S) mutant fibroblasts. Mouse monoclonal 
antibody against HUR, 1:1000, Scale bar 10 or 20µm as indicated on the figure. 
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4.10 The difference in stress granule response between the control 
group and the mutant TDP-43 fibroblasts is independent of survival of 
cells following treatment with arsenite 

 
We studied the amount of cell death following arsenite treatment and we used the 

MTT assay to assess the cell death as used by various other groups to assess the 

cell death in fibroblasts following treatment with cytotoxic material (Arechabala et 

al., 1999). We studied all 3 controls and an additional control fibroblast line as well 

as the three TDP-43 mutant fibroblast cell lines (A321V, M337V, G287S). We did 

not see a statistically different increase in mortality in any of the groups. There 

was about 20-25% increase in the cell death across all the group following arsenite 

treatment, suggesting that differences observed amongst control and TDP-43 

mutant fibroblast lines in handling aresenite induced stress could not be due to 

differences in their survival post exposure to arsenite (Fig 4.17). 

 
 

 
 
Figure 45 No difference in cell survival between mutant and control fibroblasts when treated with  
0.5mM arsenite for 45 minutes. 

 
 

Figure 4.17. No difference in cell survival between mutants and controls noted in response to arsenite 
treatment. Assessed by MTT assay. Basal level survival is indicated in blue whilst arsenite treated cell 
survival is indicated in red. We studied 4 different controls (3, 6, 11 and 12) and compared with the three 
TDP-43 mutant fibroblast lines: A321V (pt48), M337V (pt51) and G287S (pt55). There was 20-25% increase 
in cell death following treatment with arsenite across all groups, mutant or control. Y axis- percentage 
fluorescence when corrected for basal level fluorescence.  
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4.11 No obvious difference in endogenous TDP-43 localisation in 
fibroblasts from sporadic ALS cases (sALS) and healthy controls. 

 
We compared the categories of endogenous TDP-43 staining in fibroblasts from 

three control and three sporadic ALS cases (sALS). We did not see a statistically 

significant difference in the pattern of nuclear staining of endogenous TDP-43 

staining in the sporadic ALS cases when compared to the age matched controls 

(>85% of the cells were saturated with TDP-43 in the nuclei in both control and 

sALS case) (Fig 4.18 A-C). However the sALS cases showed prominent cytoplasmic 

staining for endogenous TDP-43 compared to the control fibroblasts (Fig 4.18 D 

and G). A biochemical analysis of cytoplasmic and nuclear fractions could confirm 

or refute the prominence of the cytoplasmic staining of endogenous TDP-43 in the 

sALS cases compared to the controls.  

 
Figure 4.46 Endogenous nuclear TDP-43 staining was similar between sALS and control fibroblasts. 
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Figure 4.18 Endogenous nuclear TDP-43 was similar between control and sporadic 
ALS (sALS) fibroblasts but peri-nuclear staining pattern was different in sALS case. 
Unstressed fibroblasts from age and gender matched control (A-C) and sALS case (D-F) 
showed similar nuclear TDP-43 staining pattern. G) However cytoplasmic staining for 
endogenous TDP-43 was prominent in the sALS case (arrow). (Solid arrow indicated the cell 
that has been digitally enlarged). Scale bar 40µm. Green fluorescence is endogenous TDP-
43. Scale bar 50µm. 
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4.12 More GEM bodies are found in G287S TDP-43 mutant but not in 
M337V  mutant fibroblasts 
 
TDP-43 is a nuclear protein, which participates in a variety of RNA metabolism 

related functions (Ito, 2012). GEM bodies are RNA related foci in the nucleus, 

which is abbreviated for Gemini of Cajal bodies. Cajal bodies are not only seen in 

rapidly proliferating cells or metabolically active cells such as motor neurons, and 

are functionally involved in recycling and biogenesis of splicing factors (Charroux 

et al., 2000). A recent study reported that TDP-43 overexpression resulted in 

increased distribution of SMN associated GEM bodies in the motor neuron nuclei of 

the mice over-expressing TDP-43. Furthermore knockdown of TDP-43 resulted in 

lower number of SMN associated GEM bodies in motor neurons (Shan et al., 2010). 

Significant alteration in TDP-43 levels can affect many  RNA and protein targets of 

TDP-43.  We studied the number of  SMN positive GEM bodies in fibroblasts with 

physiological levels of mutant TDP-43. We studied M337V and G287S TDP-43 for 

the frequency of GEM bodies. G287S mutant fibroblasts showed a higher number 

of SMN positive GEM bodies compared to the control and M337V mutant 

fibroblasts (Fig 4.19, J-L and M, p<0.001) highlighting again the differences 

between different TDP-43 mutations. However M337V mutant cells had 

significantly higher number of GEM bodies compares to the cells from control 3 

(p<0.01)(Fig 4.19, M). Although a previous study demonstrated that increase levels 

of TDP-43 expression is associated with an increased number of GEMs (Shan et al., 

2010), our data indicate that even at physiological levels of TDP-43, mutant TDP-

43 (G287S) is associated with elevation of SMN positive GEMs in the nuclei. 

 
 

Figure 4.19 G287S mutant fibroblasts have higher number of SMN positive GEM bodies. A-F) Control 
fibroblasts. Digitally enlarged fibroblast demonstrates GEM bodies in a control fibroblast (Empty arrow). The 
number of GEMs in a control fibroblast varied between 1-2. G-I) M337V mutant fibroblasts also have 1-2 
GEMs in the nuclei. J-L) G287S mutant fibroblasts showed multiple GEMs. Digitally enlarged nucleus 
demonstrates the multiple GEMs in a mutant fibroblast (arrow). M) G287S mutant fibroblasts harbour 
significantly more GEMs compared to M337V and control fibroblasts (p<0.001) (One way ANOVA Bonferroni 
multiple column comparison test). Four random optical fields at X63 magnification were selected for counting, 
in three experimental repeats amounting to approximately 100-120 cells. Scale bar 50µm. Green 
fluorescence is endogenous SMN. 
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Figure 4.47 G287S mutant fibroblasts have higher number of SMN positive GEM bodies. 
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4.13 Discussion 
 
Mis-localisation of TDP-43 
 
It still remains an enigma as to how autosomal dominant mutations in TDP-43 

contribute to neuronal dysfunction and ultimately results in neuronal cell death.  

Mis-localisation of TDP-43 to the cytoplasm from the nucleus is considered an 

important feature consistent with TDP-43 proteinopathy. Based on the 

microscopy, our study shows that fibroblasts from the mutant TDP-43 cases show 

varying degrees of cytoplasmic mis-localisation and associated nuclear loss of 

TDP-43 compared to the control cell lines. It is conceivable that this observation is 

secondary to the dominant mutation in the TARDBP gene, which expresses 

physiological levels of mutant TDP-43, in contrast to artificial over-expression of a 

protein above physiological levels. Studies assessing the half-life of wtTDP-43 and 

three different disease associated mutant TDP-43 (Q331K, M337V, G289S) have 

shown that mutant TDP-43 has a longer half-life (24-48 hours vs 12 hours for 

wtTDP-43) (Ling et al., 2010). These findings have also been confirmed in a 

primary fibroblast cell line harbouring a disease associated mutation, G289S, 

suggesting that mutant TDP-43 is more stable (Ling et al., 2010). It is conceivable 

that an aggregation prone protein like TDP-43, becomes more stable due to 

dominant mutations, and thereby enters a cascade of  prion like aggregation (Udan 

and Baloh, 2011). Furthermore mutant TDP-43 has also been shown to interact 

with other proteins and RNA binding proteins, such as FUS/TLS via its C-terminal 

region. Therefore it is plausible that mutant TDP-43 via its abnormal stability and 

altered nature perturbs the normal functions of proteins which are important for 

nuclear exportation, which ultimately results in loss of nuclear TDP-43 and its 

cytoplasmic mis-localisation. Furthermore prolonged stability of mutant TDP-43 

can expose itself to aberrant post-translational modifications such as 

phosphorylation (Liachko et al., 2010, Brady et al., 2011), ubiquitination (Dammer 

et al., 2012) and SUMOylation (Seyfried et al., 2010) reported in previous studies. 

It is possible that loss of TDP-43 from the nucleus could provoke impairment of 

essential RNA modulating processes of TDP-43. Over a period of time as the 

mutant TDP-43 stabilises in the cytoplasm and promotes aggregation, more TDP-

43 would be lost from the nucleus until a critical point is reached when nuclear 

and cellular functions reliant on TDP-43 would be jeopardised whilst increasing 

the vulnerability of the affected cells to environmental factors. Thus, our findings 
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are consistent with the notion that loss of function of important nuclear role of 

TDP-43 as a mechanism for neuronal dysfunction in TDP-43 mutations. 

Cytoplasmic aggregation of mutant TDP-43 could be an epiphenomenon  as a 

result of increased stability. It has been shown in transgenic mouse models that 

cytoplasmic aggregation is not essential to confer the neurotoxicity of disease-

associated mutations (Wegorzewska et al., 2009, Janssens et al., 2013). However, 

the A315T disease associated mutation does not affect major nuclear functions of 

TDP-43 such as regulation of splicing i.e. alternative splicing dependent on TDP-43 

such as Cystic fibrosis trans membrane conductance regulator (CFTR) exon 09 

splicing suppression, which argues against a loss of nuclear function for some 

mutations in TDP-43 (Guo et al., 2011). 

 
Phosphorylated TDP-43 

Phosphorylation of TDP-43 at S409/410 is a highly consistent feature of TDP-43 

proteinopathy in MND and FTLD cases (Hasegawa et al., 2008a, Inukai et al., 2008) 

and is considered pathological (Neumann et al., 2006). We observed a fine 

punctate pattern of distribution of phosphorylated TDP-43 in the nuclei of the 

control fibroblasts which  is reminiscent of the distribution of nuclear paraspeckle 

proteins such as RBM14, NONO and PSF. The nuclear paraspeckle proteins are said 

to be involved in nuclear functions such as pre-mRNA splicing, alternative splicing, 

transcriptional regulation etc (Sun et al., 2013) (O'Leary et al., 2013, Shi et al., 

2013).  These proteins have previously been shown to co-localise in the nucleus 

with full length as well as the 35kDa fragment of TDP-43 (Dammer et al., 2012).  

The co-localisation of TDP-43 with paraspeckle proteins, particularly RBM14 and 

NonO, was not complete  (Dammer et al., 2012) suggesting that nuclear speckle 

like localisation of phosphorylated TDP-43 could very well represent co-

localisation with paraspeckle proteins. Further studies co-labeling the control 

fibroblasts with phosphorylated TDP-43 and markers of paraspeckle protein could 

clarify this hypothesis. The three controls studied showed very occasional 

cytoplasmic phospho-TDP-43 aggregation (Fig 4.3 and 4.4 J) compared to the TDP-

43 mutants. Studies using antibodies against multiple phosphorylation prone 

epitopes of TDP-43 showed that phosphorylated TDP-43 is largely absent from the 

nuclei of neurons from control brains (Hasegawa et al., 2008a).  We also observed 

that the speckled phospho-TDP-43 distribution was pronounced in the nuclei of 

mutant TDP-43 fibroblasts and furthermore the mutant fibroblasts showed greater 



 194 

cytoplasmic phospho-TDP-43 staining in keeping with the previous studies done 

on ALS and FTLD postmortem cases (Neumann et al., 2009, Arai et al., 2010). It is 

possible that phosphorylation promotes oligomerisation and fibrillation of TDP-43 

and perhaps indirectly or directly contributes to alteration of the function of TDP-

43 and its interactions with RNA and protein binding partners of TDP-43 

(Hasegawa et al., 2008a). Amongst the three mutants the M337V mutant contained 

the highest amount of cytoplasmic phospho-TDP-43 (Fig 4.4). Although 

postmortem studies have demonstrated that the phosphorylated TDP-43 lesion 

load is associated with pathogenesis, mouse models over-expressing M337V 

mutant TDP-43 have not supported this phenomenon and suggested that 

phosphorylated ubiquitinated inclusion formation is not a prerequisite for disease 

pathogenesis. Furthermore, wtTDP-43 over-expressing mice also had phospho-

TDP-43, although the levels were significantly less than the mutant TDP-43 mice 

(Janssens et al., 2013). Our data suggest that at physiological levels of expression of 

mutant TDP-43 in patient derived fibroblasts, another major   feature of TDP-43 

proteinopathy- is observed i.e.  phosphorylation. A C.elegans model demonstrated 

that phosphorylation of TDP-43 is important for directing mutant TDP-43 

associated toxicity (Liachko et al., 2010). In contrast, a drosophila model of TDP-43 

C-terminal fragment expression showed that phosphorylation has a protective 

effect against cytoplasmic aggregation (Li et al., 2011).  Although the G287S TDP-

43 mutation creates an additional phosphorylation prone epitope, phosphorylated 

TDP-43 lesion load was lowest in G287S fibroblasts (Fig 4.4 D-F, J) compared to 

M337V and A321V mutations suggesting that G287S mutant fibroblasts could have 

an enhanced ‘aggregated protein removal’ cleanup mechanism e.g. the ubiquitin-

proteasome system or that this clean up mechanism is suboptimal in M337V and 

A321V mutants.  

 

P62 staining  

Pathological processes of MND and FTLD have been shown to occur in non motor 

neuronal tissues such as the hippocampus and the cerebellum (King et al., 2011). 

p62 is a ubiquitin binding protein and promotes degradation of polyubiquitinated 

proteins via the ubiquitin-proteasome system or autophagy  (Moscat et al., 2007, 

Seibenhener et al., 2007). We observed a significant cytoplasmic phospho-TDP-43 

in the mutant TDP-43 fibroblasts suggestive of possible cytoplasmic accumulation, 
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keeping in with the observations of cytoplasmic aggregations of TDP-43 in 

postmortem brain and spinal cords of ALS cases.  Therefore we hypothesised that 

fibroblasts from TDP-43 mutant ALS cases might also demonstrate a pathological 

feature observed in neurodegeneration such as ubiquitinated protein aggregation. 

Although p62 expression and ubiquitin staining are not synonymous as deposition 

of p62 could occur earlier in the neurodegenerative process compared to ubiquitin 

(Kuusisto et al., 2003). Therefore we used a mouse p62 antibody to study p62 

staining in the fibroblasts. We demonstrated that TDP-43 mutant fibroblasts carry 

a significantly higher p62 positive lesion load than the control fibroblasts and 

amongst different TDP-43 mutations the p62 lesion load changes significantly, 

suggesting that each mutation needs to be studied individually as the underlying 

mechanism/s could be affected by the properties of the individual mutations such 

as its propensity for post-translational modifications like phosphorylation; effect 

on the secondary structure organisation and functional modulations such as the 

ability of the mutant protein to interact or not with its RNA and protein binding 

partners.  Functional multi-vesicular body (MVB) formation is essential for the 

efficient autophagic degradation of TDP-43 and its clearance (Filimonenko et al., 

2007). We know that over-expression of TDP-43 and co- chaperone ubiquilin-1 

enhances TDP-43 delivery to the autophagasome system ((Kim et al., 2009). TDP-

43 is found in rimmed vacuoles of inclusion body myositis (IBM) in which 

condition a disruption in the autophagic pathway has been well described (Kusters 

et al., 2009). Therefore it is plausible that the autophagasome might be an intra-

cellular compartment in which TDP-43 is degraded. Therefore disruption to the 

autophagy pathway could result in accumulation of phosphorylated TDP-43.   It is 

possible that in the mutant TDP-43 fibroblasts a degree of autophagasomal 

pathway disruption is occurring as the proportion of cells with cytoplasmic 

phosphorylated TDP-43 is greater in the mutant TDP-43 cells compared to that of 

controls (Fig 4.4). In addition, G287S mutant fibroblasts had the highest amount of 

p62 staining, whilst M337V mutants had the least p62 staining amongst the three 

mutants (Fig 4.4J). This observation is interesting in that it appears as if the 

phospho-TDP-43 staining pattern is inversely correlated with the p62 lesion load. 

This suggests that activation of the ubiquitin proteasome system/autophagy 

pathway may help to  clear phospho-TDP-43  prior to aggregation in G287S 

fibroblasts offering a possible protective role. M337V and A321V fibroblasts may 
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harbour a relatively inefficient autophagy pathway. In support of this hypothesis is 

the study, which shows inhibition of the p62 pathway, can result in increased 

accumulation of TDP-43/phosphorylated TDP-43 (Brady et al., 2011). A second 

insult such as an exogenous stress could overwhelm the UPS/autophagy system 

which then would lead to an accumulation of the C-terminally phosphorylated 

TDP-43 in the cytoplasm which in turn initiates aggregation of TDP-43 and 

subsequent transfer of nuclear TDP-43 to the cytoplasm (Winton et al., 2008a, 

Watanabe et al., 2013). Therefore we subjected control and mutant fibroblasts to 

exogenous stress  to assess if a second insult (the first insult being the presence of 

mutant TDP-43) would result in mis-localisation of endogenous TDP-43.  

 
Exogenous stress and endogenous TDP-43 localisation 

Aggregation of neurocytoplasmic inclusions  (NCI) of disease-characterised 

proteins is a hallmark of several neurodegenerative conditions. TDP-43 is 

recognised as a significant contributor to NCI in ALS cases. Post mortem 

examination of brains and spinal cords from ALS and FTLD patients have 

demonstrated that several stress granule associated proteins are recognised as 

components of the TDP-43 (Liu-Yesucevitz et al., 2010) or FUS positive NCI 

(Bentmann et al., 2012).  These findings are not entirely surprising as in several 

other neurodegenerative conditions disease associated proteins such as tau, 

ataxin, SMN and angiogenin have been shown to co-localise with SGs or modulate 

SG dynamics (Wolozin, 2012). We observed endogenous TDP-43 localisation to 

cytoplasmic inclusions in HEK cells in response to sorbitol treatment and these 

inclusions also co-localised with the stress granule protein TIAR. However, we did 

not observe endogenous TDP-43 co-localisation with TIAR positive SGs following 

exposure to other exogenous stressors such as arsenite, H2O2 and menadione. We 

hypothesised that having physiological levels of mutant TDP-43 in the patient 

derived fibroblasts would allow us to study differences in the localisation pattern 

of endogenous mutant TDP-43 in comparison to wtTDP-43 in the control cells. 

However, we only observed cytoplasmic localisation of endogenous mutant TDP-

43 in response to sorbitol but not with arsenite. wtTDP-43 co-localises with the SG 

nucleating protein TIAR in response to an endoplasmic reticulum stressor –

thapsigargin.  Taken together, these data suggest that fibroblasts and HEK cell lines 

do not produce cytoplasmic inclusions positive for endogenous TDP-43 when 

treated with acute stressors like arsenite although TIAR positive SGs are formed 
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readily. A possible explanation is that the SG marker HUR or TIAR localisation to 

the stress granules in response to exogenous stress is a global event in the cells, 

whilst TDP-43 co-localisation only occurs in a subset of SGs. Another explanation is 

that TDP-43 recruitment to SGs is a prolonged and slow process in fibroblasts and 

HEK cells. Several different cell models have shown endogenous and over-

expressed TDP-43 recruitment to SGs in response to arsenite treatment, although 

these models have not recapitulated the key features of TDP-43 proteinopathy. 

Moreover we think that it is important to ensure whichever model is used to study 

SG dynamics that this model also accurately represents features of the TDP-43 

proteinopathy related to ALS. We have clearly demonstrated that the mutant TDP-

43 fibroblasts show broad features of TDP-43 proteinopathy including nuclear 

clearing,  phosphorylation of TDP-43, and aggregation of p62.    

It is important to highlight at this point that we did not simultaneously use 

a phosphorylation dependent TDP-43 antibody to assess for pathological TDP-43 

as both the phosphorylation dependent TDP-43 antibody and antibodies to SG 

markers TIAR and HUR were raised in mouse. An assessment of phospho-TDP-43 

lesions in stressed and non stressed control and mutant fibroblasts with or 

without SG marker staining would be a future experiment to perform. Interestingly 

we observed that a greater proportion of G287S mutant fibroblasts formed SGs at 

30 minutes of treatment with arsenite compared to A321V, M337V mutants and 

controls (Fig 4.11 Q). Therefore we hypothesised that stress granule assembly and 

disassembly dynamics could be different amongst the TDP-43 mutant fibroblasts 

and between mutants and control fibroblasts. 

 
Mutant TDP-43 alters stress granule dynamics 

To assess the dynamics of stress granule assembly and disassembly, we used HUR 

as a marker that would indicate accurately the distribution of  stress granules, as 

HUR expression is independent of HUR-TDP-43 interactions (McDonald et al., 

2011). TDP-43 has been shown to modulate RNA levels of stress granule 

nucleating proteins such as TIA1 and TIAR but not HUR (McDonald et al., 2011).  

Several studies have reported the recruitment of endogenous TDP-43 to SGs upon 

arsenite stress, which we were not able to demonstrate in a robust fashion. The 

reasons for these observed differences  could be inherent to the fibroblast cell 

model and also that most studies used TIA-1 as the stress granule marker whereas 

we used both TIAR and HUR as stress granule markers. Therefore we were unable 



 198 

to use TDP-43 localisation to SGs to differentiate between mutant TDP-43 and 

wtTDP-43 effects on SG related TDP-43 function. 

McDonald et al (2011) demonstrated that siRNA knock down of 

endogenous TDP-43 resulted in changes in the mRNA levels of stress granule 

related proteins G3BP (down-regulated), TIA-1 (up-regulated), TIAR (up-regulated 

–not significant) whilst HUR mRNA levels were unchanged (McDonald et al., 2011). 

Although TDP-43 has been shown to be non-essential for stress granule formation, 

previous studies have demonstrated that knockdown of TDP-43 resulted in a 

suboptimal stress granule response in HeLa cells when treated with arsenite 

(McDonald et al., 2011). These findings are somewhat different to our findings in 

that TDP-43 mutant fibroblasts showed an enhanced stress granule formation 

response to arsenite compared to the controls. Furthermore upon stress release 

the SGs persisted for a significantly longer period compared to the control 

situation (Fig 4.14E). This difference between the SG dynamics described by 

McDonald et al (2011) and our findings could be due to gross alteration in cellular 

RNA related TDP-43 interactions when  endogenous  TDP-43 is knocked down, 

compared to physiological levels of dysfunctional disease associated mutated TDP-

43. Although all three mutant lines (A321V, M337V and G287S) demonstrated a 

similar pattern of stress granule dynamics compared to the controls, there were 

variations amongst the three TDP-43 mutant fibroblast cell lines in their stress 

granule response to arsenite treatment.  G287S fibroblasts had the most robust SG 

assembly response and the most delayed SG disassembly dynamics. In support of 

the differences in SG dynamics we observed in the fibroblasts carrying different 

mutations in TDP-43 is the study in lymphoblastoid cell lines from disease 

associated TDP-43 mutations D169G  showed significantly greater SG response 

compared to R361S cells.  This difference was thought to be secondary to lower 

levels of G3BP SG associated protein (McDonald et al., 2011).  

 

Mechanisms important in TDP-43 ALS and SG dynamics and implications for 

ALS 

Studies have suggested a role for stress kinases such as JNK and p38 in ALS (Zhu et 

al., 2003, Veglianese et al., 2006). A chronic stress model using paraquat 

demonstrated that JNK can modulate TDP-43 localisation to SGs (Meyerowitz et al., 

2011). hnRNPA1, which belongs to the family of hnRNPs like TDP-43, is 
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phosphorylated by p38, inducing hnRNPA1 localisation to SGs (Shimada et al., 

2009). It has been reported that inhibition of ERK leads to increased TDP-43 

aggregation. Furthermore ERK also aggregates in stressed cells as well as in tissues 

obtained from ALS cases (Ayala et al., 2011a).  Whilst TDP-43 is not essential for 

SG formation, it is possible that phosphorylation of specific hnRNP in response to a 

stress can modulate its interaction with TDP-43, thus deciding the fate of TDP-43-

stress granule association.  Furthermore McDonald et al 2011 suggested that TDP-

43 modulated the levels of stress granule nucleating proteins such as TIA-1 and 

G3BP (McDonald et al., 2011).  The development of neurodegenerative conditions 

is thought to reflect prolonged cumulative damage predisposed to by a 

combination of genetic and environmental influences. Neuronal cells depend on 

precise control of the internal milieu so its very important not to have a 

maladaptive state of heightened stress levels.  Therefore if genetic factors 

predispose to prolonged accumulation of stress granules in response to exogenous 

stress, one would hypothesise that over a long period of time the neurons would 

be at risk of damage due to entrapment of vital mRNAs, hnRNPs and cellular 

components in the SGs or similar cytoplasmic aggregations for longer than 

necessary periods of time after the stress has passed.  

 We conclude that mutant TDP-43 alters RNA related cellular functions. In 

support of this statement we demonstrate a significant change in stress granule 

assembly and disassembly dynamics in response to exogenous stress in the 

presence of mutations in the C-terminal end of TDP-43. Furthermore we 

demonstrated that SMN associated GEM bodies, which are nuclear foci of RNA 

related functions, are altered compared to controls in association with certain 

TDP-43 mutations (Fig 4.19).  Taken together, these observations support the 

notion of using ALS patients’ derived fibroblasts as a platform to study mutant 

TDP-43 related TDP-43 proteinopathy. Furthermore studies on stress signaling 

cascades and phosphorylation of tau in Alzheimer’s dementia have successfully 

used skin fibroblasts from cases with presenilin-1 mutations, setting up a 

precedence for other neurodegenerative conditions to use fibroblasts to model 

disease related mechanisms (Mendonsa et al., 2009). We did observe a difference 

in endogenous TDP-43 localisation in the fibroblasts from a single sporadic ALS 

case suggesting the potential to extend the use of fibroblasts to study ALS related 

mechanisms in the larger group of sporadic ALS. Moreover a recent publication by 
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Mead et al (2013) confirms that fibroblasts from ALS  cases can be used 

successfully in drug  screening (Mead et al., 2013). The role of different kinases, 

which would modify the fate of interactions amongst hnRNPs and TDP-43 to 

modulate SG dynamics, highlights potential therapeutic targets for multiple 

compound screening to identify small molecules capable of modifying SG dynamics 

in favour of improving motor neuronal health. Finally one of the limitations in our 

study is that we only had one cell line per mutation in TDP-43 and ideally we 

would like to study at least three different patient cell lines per mutation ideally 

age and sex matched. 

 
 
 
 

 
 

  



 201 

Chapter 05: 

The effects of transient knock-down of the zebrafish 
homologues of TARDBP:  tardbp and tardbpl in zebrafish 
embryos 

 

5.1 Introduction 
 

The presence of neuro-cytoplasmic inclusions is a characteristic feature of several 

neurodegenerative conditions. The disease causing proteins in some of the 

neurodegenerative conditions were discovered many years ago, for example tau in 

Alzheimer’s dementia, and alpha-synuclein containing Lewy bodies in dementia 

with parkinsonism. However in ALS/MND although the neuro-cytoplasmic 

aggregations were a recognised feature, a common disease related protein was not 

discovered until recently. The seminal discoveries of associations of TDP-43 in ALS 

and front temporal lobe dementia with ubiquitinated inclusions (FTLD-U) and 

more recently, Fused in sarcoma 1 (FUS1) in ALS and FTLD-U have raised hope of a 

novel patho-mechanistic pathway for the investigation of ALS and FTLD-U related 

selective neuronal vulnerability and for a therapeutic breakthrough.  Although ALS 

due to mutations in SOD1  is associated with SOD1 accumulation, SOD1 

accumulation is not a shared feature amongst  non- SOD1 mutation related ALS. 

However, most  disease models of ALS in the last two decades have been based on 

the SOD1 model. Although the SOD1 model has provided vital insights into the 

pathophysiology of ALS, a significant therapeutic breakthrough has not yet 

materialised.   

 In relation to ALS associated with TARDBP mutations and sporadic ALS, it is 

still unclear if the TDP-43 positive inclusions are merely a pathological marker  or 

whether mis-localisation and aggregation contribute to the disease process. 

Confirming the disease causative nature of the dysfunctional TDP-43 is the 

numerous reports of ALS associated mutations in TARDBP.  TDP-43, similar to 

FUS1 and other hnRNPs, has multiple functions such as splicing and transcription 

regulation, RNA metabolism, RNA transport, miRNA processing and various 

protein interactions and has an established role as a protein important for RNA 

processing. However,  the processes involved in TDP-43 accumulation in neuro-
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cytoplasmic aggregations and the mechanisms by which TDP-43 exerts its 

pathological effects have not been established. To help understand the pathological 

effects of TDP-43, it is important to gain information about its normal function in 

both in vivo and in vitro models. Zebrafish represents an excellent disease model 

because of it’s optical translucency, high fecundity and external development 

coupled with its use in high throughput drug screening (Bandmann and Burton, 

2010). Precedence in using zebrafish as an in vivo platform to study mechanisms 

involved in motor system dysfunction has already been set (Kasher et al., 2009, 

Ciura et al., 2013, McGown et al., 2013). It is still unclear if the dysfunctional TDP-

43 causes motor neuron death via toxic gain of function and/or a loss of function. 

Zebrafish is an excellent disease model to study loss of function phenomena 

through transient knockdown of targeted genes using morpholino oligonucleotides 

(AMO). In this chapter the results of the transient knockdown of tardbp and 

tardbpl in WT zebrafish embryos are discussed. 

  

5.2 Identification and confirmation of zebrafish othologues of TDP-
43: Tardbp and Tardbpl using genome browsing tools 

 
A BLAST search of the human TDP-43 (ENSG00000120948) c.DNA sequence against 

the zebrafish genome (version 9) identified two putative zebrafish orthologues of 

human TARDBP. The first homologue is tardbp, on chromosome 6 

(ENSG0000040031), which encodes a 412 amino acid protein. The second orthologue 

identified is tardbp like (tardbpl) (ENSG00000004452) on chromosome 23, which is 

predicted to encode a shorter protein with 303 amino acids. Analysis of the amino 

acid sequences of the zebrafish orthologues of TDP-43 revealed that the important 

functional domains of TDP-43 such as nuclear localisation signal (NLS), RNA 

recognising motif 1 and 2 (RRM1 and RRM2) and part of the glycine rich domain 

(GRD) are represented within Tardbp and Tardbpl (Figure 5.1). 
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5.3 Zebrafish TDP-43 orthologues are highly conserved across 

species 

Alignment of the amino acid sequence of the two zebrafish orthologues of TDP-43, 

Tardbp and Tardbpl along with TDP-43 and using clustalW analysis suggests 

significant identity amongst the three proteins (Figure 5.1). Tardbp is 412 amino acids 

 

  

 
Figure 5.48 Alignment of amino acid sequence of zebrafish Tardbp and Tardbpl with human TDP-43 
using Clustal W software. 

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5.1 Alignment of amino acid sequences of zebrafish Tardbp and Tardbpl with human 
TDP-43 using Clustal W software. TDP-43 is 414 amino acids long whilst tardbp and tardbpl are 
412 and 303 amino acids in length respectively. NLS- nuclear localisation signal and RRM1/2-RNA 
recognsingising motif 1 and 2 are conserved between the two species. The GRD (Glycine rich 
domain) and the rest of the C- terminal residues are similar between Tardbp and TDP-43 but 
different in tardbpl as it is lacking the C- terminal residues of  TDP-43. Tardbp is 74% identical to 
TDP-43 whilst Tardbpl is only 54% identical. Asterisks (*) denote identical residues across the 
species, colons (:) indicate similar residues and dots (.) indicate somewhat similar residues.  
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of which 74% are identical to that of the human TDP-43. The second orthologue 

Tardbp like (Tardbpl) is a shorter protein with 303 amino acids, of which 54% are 

identical to the human TDP-43 (Figure 5.1). When comparing the important 

domains and motifs of TDP-43, the identity with TDP-43 increases. Thus the two 

homologues share 100% amino acid identity in the nuclear localisation signal and 

81% identity in the RNA recognition motif 1 (RRM1) and 94% similar to that of 

hTDP-43. The residues in the RRM2 are 85% identical (92% similar) amongst 

TDP-43, Tardbp and Tardbpl emphasising the evolutionary conservation of the N-

terminal region. However, only 25% of the residues in the C-terminal end (glycine 

rich domain) are identical (48% similar) amongst the three proteins. The Tardbpl 

protein lacks a large portion of the C-terminal glycine rich domain. We confirmed 

the predicted tardbp and tardbpl sequences by amplifying the reverse transcribed 

zebrafish c.DNA and sequencing using primers specific for tardbp and tardbpl. 

 

5.4 Zebrafish Tardbp and Tardbpl expression 

Given the homology between human and zebrafish proteins, we used the human TDP-

43 antibody raised against the first 260 amino acids of the human TDP-43 n-terminus 

(h.TDP-43 Ab1) to detect zebrafish Tardbp.  

 

5.4.1 Expression of tardbp and tardbpl mRNA at different developmental 

stages of WT zebrafish embryos  

 tardbp and tardbpl specific primers (Table 5.1) were used to amplify the gene specific 

c.DNA synthesised using pre-mRNA from RNA extracted from zebrafish embryos at 

0.5hpf to 120hpf. The RT-PCR products from gene specific amplifications were run on 

electrophoretic agarose gels separately for tardbp and tardbpl and demonstrate that 

tardbp and tardbpl are expressed from very early stages of zebrafish development (Fig 

5.2A-B). Expression of tardbp/tardbpl in the early stages of embryological 

development suggests that both mRNAs for tardbp and tardbpl are maternally 

expressed which indicates that both genes have essential functions in the early 

developmental stages in  zebrafish embryos. 
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Figure 
5.49 
Expression of tardbp and tardbpl mRNA in WT zebrafish embryos at different stages of development. 

Table 5.1 Primers used in amplification of tardbp and tardbpl RT-PCR 

Table 5.1 Primers used in amplification of tardbp and tardbpl RT-PCR 

Primer name and location 5’3’ 

tardbp-forward-5UTR     CTG GAT CCA TGG CCG AGA TGT ACA 
TTC GAG TTG 

tardbp -reverse-(exon 2) ACG AAT TCT TAC ATA CCC CAC CCC 
GAT GAC TTG 3 

tardbpl- forward--(exon 5) GCATTCGGTGTAATCATGACG 

tardbpl – reverse-3UTR ATACTCTGATATGTGGGCATACTGA 
 

Immunofluorescence of whole- mount zebrafish embryos at 36hpf was performed with a 

h.TDP-43 Ab1 which is raised against the N-terminus of TDP-43 and is predicted to 

detect both Tardbp and Tardbpl, and an anti-Islet1 antibody which stains motor neurons 

and Rohon Beard neurons.  The whole mount zebrafish immunofluorescent stains 

suggest that TDP-43 orthologues, Tardbp and Tardbpl are ubiquitously expressed in the 

zebrafish embryos (Fig 5.3A-B). TDP-43 in zebrafish also co-localises with islet1 

antibody stain indicating that Tardbp and Tardbpl are expressed in the neuronal nuclei 

(Fig 5.3D and G) and are predominantly expressed in the nucleus (Fig 5.3E-G) in keeping 

with what is observed in human tissues. 

Figure 5.2 Expression of tardbp and tardbpl mRNA in WT zebrafish embryos at different 
stages of development. A) tardbp specific primers were used to amplify cDNA from 0.5hpf to 120hpf 
embryos. tardbp is expressed throughout including the very early stages of development. B)  tardbpl 
specific primers used to amplify the reverse transcribed mRNA also show expression of tardbpl 
similar to tardbp. Both Tardbp and Tardbpl are expressed early in development suggesting maternally 
transmitted mRNA expression. The product sizes were similar to those predicted by the primer select 
programme used to design the primers. hpf (hours post fertilisation, bp (base pairs). 168 and 131 are 

respective product lengths for the primer pairs used for tardbp and tardbpl RT-PCR.  
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5.4.2 Expression of TDP-43 ortholgues in WT zebrafish embryos is ubiquitous 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
Figure 5.50 Expression of zebrafish TDP-43 orthologues using h.TDP-43 Ab1 (N-terminus) at 36hpf. 

Figure 5.3 Expression of zebrafish TDP-43 orthologues using h.TDP-43 Ab1 
(N-terminus) at 36hpf A) Whole mount 36hpf. B) Dorsal view of the rostral 
zebrafish embryos. C) Islet1 antibody staining to demonstrate neuronal 
structures. D) Islet1 and TDP-43 co-stained embryos demonstrating that TDP-43 
orthologue is expressed in neurons (white arrow). E-G) Trigeminal nucleus of the 
zebrafish confirming the nuclear expression of TDP-43 orthologues in neuronal 
and non- neuronal cells in  the zebrafish. hpf (hours post fertilisation) 
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5.4.3 Expression of Tardbp and Tardbpl at protein level detected by 

immuno-blotting 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

Figure 5.51 Immunoblotting of 72hpf zebrafish total protein extracts using h.TDP-43 Ab1. 

. 

We calculated the predicted molecular weight of Tardbp and Tardbpl by processing the 

amino acid sequence of Tardbp and Tardbpl proteins using a protein prediction 

software (expacy.com). The predicted molecular weight for Tardbp is ~43kDa and 

Tardbpl is ~33kDa. Protein extracts obtained from 72hpf WT zebrafish embryos when 

probed with h.TDP-43 Ab1 detected both Tardbp (at 43kDa) and Tardbpl (at ~33kDa) 

on immunoblotting. We also noted that there were several other non-specific bands 

detected on western blotting making the immuno-fluorescent staining using h.TDP-43 

Ab1 difficult to  interpret (Please note that this figure is part of Figure 6.9 from chapter 

6, used in this chapter to illustrate the molecular weights of TDP-43 zebrafish 

orthologues). We also know that 33kDa band is not a breakdown product of the higher 

43kDa Tardbp band, as morpholino knockdown of tardbpl obliterates the 33kDa band 

(refer Figure 5.15). 

 

Figure 5.4 Immunoblotting of 72hpf 
zebrafish total protein extracts using 
h.TDP-43 Ab1.  Western blot of protein 
extracts from 72hpf zebrafish embryos 
probed by h.TDP-43 Ab1 demonstrates 
the presence of both Tardbp and Tardbpl 
at the predicted molecular weights of 
43kDa and 33kDa respectively. Loading 
control was alpha tubulin.  
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5.4.4 Identification of antibodies h.TDP-43 Ab1 and h.TDP-43 Ab2  

The antibodies used to detect TDP-43 were obtained from Protein Tech. Initially 

h.TDP-43 Ab1 (Catalogue number 10782-2-AP) was marketed. A few months later the 

Protein Tech company produced a second antibody, which we called h.TDP-43 Ab2 

(Catalogue number 12892-1-AP). Interestingly the antigen epitopes used for the two 

antibodies were different. The first 260aa of the TDP-43 protein were used for 

generation h.TDP-43 Ab1, therefore h.TDP-43 Ab1 detects the N-terminus of the TDP-

43 protein and N-terminal fragments.  The last 154aa of the C-terminus was used to 

generate the h.TDP-43 Ab2 which therefore detects up the C-terminal end of the TDP-

43 and C-terminal fragments (Figure 5.5) 

(http://www.ptglab.com/Products/Search.aspx?key=tdp-43). Discovering the two 

antibodies h.TDP-43 Ab1 and h.TDP-43 Ab2 helped us to identify Tardbp and Tardbpl 

separately. The h.TDP-43 Ab1 detects both Tardbp and Tardbpl (Figure 5.4 and Figure 

5.5). The h.TDP-43 Ab2 detects only Tardbp and does not detect Tardbpl as the 

Tardbpl lacks the majority of the C-terminal amino acids, which are conserved to a 

greater extent between zebrafish Tardbp and human TDP-43. h.TDP-43 Ab2 detected 

the expression of Tardbp in the zebrafish at different stages of development and also 

in various tissues of the adult zebrafish at 1 year of age (See chapter 6, Figure 6.6). In 

the adult zebrafish the Tardbp orthologue was expressed mainly in the brain, spinal 

cord and the eye. When Tardbp expression was knocked down in the zebrafish, the 

corresponding Tardbp signal disappears (See chapter 6) suggesting that the ~43kDa 

band h.TDP-43 Ab2 detects is indeed  specific for Tardbp. Therefore the h.TDP-43 Ab2 

can be used as a tool to detect the loss of Tardbp. 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ptglab.com/Products/Search.aspx?key=tdp-43
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Figure 5.52 Multiple sequence alignment of Tardbp and Tardbpl with h.TDP-43 Ab1 and Ab2 binding 

sites. 

 

 

 

5.4.5 An antisense morpholino oligonucleotide (AMO) targeting the ATG site 

of tardbp reduces tardbp expression in zebrafish embryos 

 

A translation blocking AMO was used to knockdown tardbp in WT AB zebrafish. During 

dose titration experiments, microinjection of 2.5ng of the translation blocking AMO 

resulted in substantial effect on the embryo survival. Higher dose, 5ng, of tardbp ATG 

AMO with knockdown of p53 resulted in greater death and severe morphological 

abnormalities amongst the embryos (Figure 5.6). The 0.8ng dose did not alter the 

Figure 5.5 Multiple sequence alignment of Tardbp and Tardbpl with h.TDP-43 Ab1 and 2 binding 
sites.  h.TDP-43 Ab1 is raised against the 1-260aa sequences of TDP-43 (highlighted in yellow). Tardbp 
and Tardbpl share greater identity towards the n-terminus. Therefore both Tardbp and Tardbpl are detected 
by h.TDP-43 Ab1. However towards the C-terminus, Tardbpl is lacking most of the C-terminal amino acids 
present in the glycine rich domain of Tardbp. Therefore the h.TDP-43 Ab2 which is raised against the last 
154aa (260 to 414aa, (highlighted in green) of TDP-43 binds to Tardbp but not Tardbpl.   Clustal W 2.1 

multiple molecule alignment software was used. 
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survival of the embryos. Therefore for all experiments with tardbp knock down, 2.5ng 

of the translation blocking AMO was used.  2.5ng of translation blocking AMO is able to 

knockdown tardbp at 36hpf as shown in the western blot, probed with h.TDP-43 Ab2 

(Fig 5.7) and provided confidence that tardbp translation blocking AMO was specific. 

The relevant ~43kDa band was unaltered in the control AMO injected embryos and in 

the uninjected control embryos (Fig 5.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.53 Survival of embryos injected with AMO-tardbp ATG 

 

 

 

 

 

Figure 5.6 Survival of embryos injected with AMO-tardbpATG . 
AMO-tardbpATG 5ng injected embryos rapidly died over the following 36hrs and only 55% of the embryos 
were alive at 36hpf (p<0.001). Whereas more than 84% of the embryos injected with 2.5ng and 95% of the 
0.8ng of AMO-tardbpATG injected group survived at 36hpf. 0.8ng of AMO-tardbpATG , 9ng of CoMo and 
uninjected groups were similar in survival rates. One way ANOVA, Bonferroni multiple column comparison 
used. 
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Figure 5.54 tardbp knockdown with 2.5ng of AMO-tardbp ATG 

 

 

5.4.6 AMO knock down of tardbp results in a motor phenotype with reduced 

survival 

 
TDP-43 has been shown to be essential for embryogenesis in mice (Wu et al., Kraemer 

et al., 2010, Wu et al., 2010). In keeping with the above studies the embryos injected 

with 5ng of AMO-tardbpATG had reduced survival compared to that of 2.5ng injected 

embryos. As injection of 2.5ng of AMO resulted in longer survival, this dose was used 

for observation of phenotype. Knockdown of tardbp resulted in a dorsal curling of the 

tail of the embryos at 36hpf when compared to the Control AMO injected embryos (Fig 

5.8A & 5.8B). The number of embryos with curly tails was significantly raised in tardbp 

knockdown embryos compared to both control AMO injected and uninjected embryos 

(p<0.0001) (Fig 5.8C). AMO-tardbpATG mediated tardbp knockdown also resulted in 

hindbrain cloudiness (Fig 5.9B). AMO microinjection could result in non-specific 

Figure 5.7 tardbp knockdown with 2.5ng of AMO-tardbpATG . Protein extracts from 2.5ng AMO-tardbpATG , 
8ng of CoMo and uninjected embryos immunoblotted with h.TDP-43 Ab2 (which detects the C-terminal end 
of Tardbp). ~43kDa band (just under the 50kDa marker) indicated by  arrowhead was completely 
abolished by 2.5ng of AMO-tardbpATG. The Tardbp band was unaltered in the CoMo and uninjected groups. 
Therefore the AMO-tardbpATG appears to knock down tardbp in the zebrafish embryos. Protein extracts were 
obtained at 36hpf following microinjection of the AMO. 
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neuronal damage especially in the hindbrain region, which can be rescued by 

concurrent AMO knockdown of p53 (Robu et al., 2007). Co- injection with p53 AMO 

improved the hindbrain cloudiness, however the knockdown of p53 only partially 

rescued the curly tail phenotype (p<0.001) produced by tardbp knockdown compared 

to the controls (p<0.0001) (Fig 5.8C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.55 Transient tardbp knockdown with AMO-tardbp ATG causes motor phenotype. 

 

 

A 

B

 

C 

Figure 5.8 Transient tardbp knockdown with AMO-tardbpATG causes a motor phenotype. A) Injection of 
CoMo 8ng caused no obvious motor phenotype. B) tardbp ATG AMO 2.5ng injection caused a curly tail 
phenotype. tardbp ATG AMO injection without p53 causes pericardial oedema and hindbrain cloudiness, 
effects which are considered to be off target effects. C) No curly tail forms were noted in the CoMo and 
uninjected controls. A significantly higher proportion of embryos injected with t tardbp ATG AMO 2.5ng and 
2.5ng+p53 injected groups developed a curly tail phenotype (p<0.0001). Co- injection with p53 AMO (AMO-
tardbpATG+p53) partially rescued the curly up tail phenotype (AMO-tardbpATG+p53 vs AMO-tardbpATG, p<0.01. 
Statistical method-Oneway ANOVA with Kruskal-Wallis test and Dunn’s multiple comparison tests were 

used. (*** is equivalent to p<0.0001) 
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5.4.7 Axonal path finding defects are seen in tardbp knockdown embryos 

Loss of TDP-43 in the Drosophila melanogaster has been shown to disrupt the 

architecture of motor axons (Feiguin et al., 2009). In order to determine if knockdown 

of tardbp affected axonal outgrowth of spinal motor axons in zebrafish, one-cell stage 

wild type embryos were microinjected with either 2.5ng of tardbp translation blocking 

  

 
Figure 5.56 Transient tardbp knockdown with AMO-tardbp ATG causes axonal out growth defects.  
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Figure 5.9 Transient tardbp knockdown with AMO-tardbpATG causes axonal out growth defects. Ten 
axons per hemisection of each embryo counted for axonal defects to compute a score out of 10.A) Lateral 
views of the whole mount embryos (AMO-control ) stained with znp1 mouse monoclonal antibody (mAb) at 
36hpf. B) Representative znp1 mAb staining of AMO-tardbpATG+p53 injected embryos at 36hpf with truncated 
(A) and abnormally branched (B) axons. C) The average number of axons with branching  defects and 
D) Abnormal truncation defects per hemi- segment significantly increased in the AMO-tardbpATG (p<0.0001) 
and AMO-tardbpATG+p53 (p<0.001) groups compared to the AMO-control  and uninjected groups. Co-
injection with p53 could only partially rescue the axonal path finding defects (p<0.001). ns= not significant. 
One way ANOVA with Kruskal-Wallis test and Dunn’s multiple comparison post test correction were applied. 
(*** is equivalent to p<0.0001, ** is equivalent to 0.01). Scale bar 150µm. 
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AMO with and without p53 or with the standard control AMO. The overall axonal 

architecture of the differentiating spinal motor neurons was studied by znp-1 

immunostaining at 36hpf. The number of axonal defects (prematurely truncated 

and/or abnormally branched axons) were counted per hemi segment and expressed as 

a score out of 10 (figure 5.9A and 5.9B).  

tardbp knockdown significantly increased the number of axons with axonal 

growth arrests leading to premature truncation at 36hpf when compared to the 

control AMO injected embryos and the uninjected control embryos (p<0.0001) (Figure 

5.9D). Although simultaneous AMO knockdown of p53 partially rescued the premature 

axonal truncation defects (p<0.0001), this was still significantly abnormal compared to 

the controls (p<0.0001) (Fig 5.9D). The loss of tardbp also resulted in an increase in 

the number of axons with abnormal branching (p<0.0001) despite the partial rescue 

by AMO knockdown of p53 (p<0.001) (Fig 5.9C). The control AMO injected embryos 

had no increase in the axonal branching defects compared to the uninjected embryos 

(Fig 5.9C). 

 

5.4.8 Knockdown of tardbp results in loss of motor neurons 

Tardbp expression was ubiquitous (Fig 5.3). Therefore to investigate if the knockdown 

of tardbp had a specific effect on motor neuron development we studied the 

differentiation of motor neurons in the spinal cord of 36hpf embryos microinjected 

with AMO-tardbpATG. The injected embryos were immunostained with monoclonal 

antibody to Islet-1, which is a nuclear transcription factor specific to the nuclei of the 

motor neurons and Rohon Beard sensory neurons. The number of motor neurons 

counted per hemi- segment of injected embryos at 36hpf was reduced by 65% in the 

tardbp knockdown embryos (p<0.0001) (Fig 5.10 A-C). Interestingly the Rohon-Beard 

neurons were also reduced by 20% (p<0.0001) with the loss of tardbp (Fig 5.10 B-D).  
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Figure 5.57 Loss of tardbp resulted in the loss of motor neurons and Rohon Beard neurons 

 

5.4.9 tardbpl splice interfering AMO injection  

We observed a significant motor phenotype in the zebrafish embryos associated with 

AMO-tardbpATG mediated loss of tardbp in keeping with findings of Tardbp knockout in 

mouse studies (Kraemer et al., 2010) and TBPH knockdown in drosophila (Fiesel et al., 

2009). Kabashi et al's (2010) data in transient zebrafish tardbp knockdown produced 

similar effects (Kabashi et al., 2010b) to our findings although they did not use p53 

knockdown, to counteract the off target effects of AMO. We designed a splice 

interfering AMO against exon three of tardbp to assess if the phenotype obtained using 

a translation blocking AMO is reproducible with a splice interfering AMO. The number 

of nucleotides in exon 3 of tardbp is not divisible by three. Therefore interfering with 

exon 3 splicing is expected to result in either exon 3 skipping or intron 3-4 inclusion 

and is therefore predicted to result in a frame-shift of the open reading frame of tardbp 

(Fig 5.11A).  A frame-shift in tardbp is predicted to result in a premature stop codon 

and a prematurely truncated Tardbp protein. 

 

Figure 5.10 Loss of tardbp resulted in loss of motor neurons and Rohon Beard neurons. Lateral views 
of the whole mounted embryos labeled with Islet1 mAb to stain for neuronal cells in (A) AMO-control and (B) 
AMO-tardbpATG+p53. (C) Significant loss of motor neurons (solid black arrow) per hemi-segment was noted 
in the AMO-tardbpATG+p53 group compared to AMO-control group (p<0.0001). Effect of loss of tardbp was 
not specific to motor neurons as Rohon Beard neurons (empty black arrow) were also reduced (p<0.0001). 
Statistical method- unpaired t test for non-parametric data. Scale bar 200µm. 
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5.4.9.1 tardbpl splice interfering AMO-1 injection (TDPS1)( tardbpSpI AMO) 

As described before a range of concentrations (0.8-16ng) of TDPS1 AMO (tardbpSpI 

AMO) was injected into 0hpf WT zebrafish embryos. The embryos however developed 

into normal zebrafish larvae and demonstrated no curly tail phenotype. There was no 

excess death amongst the TDPS1 (tardbpSpI AMO) injected embryos compared to those 

injected with control AMO or uninjected groups. The highest dose of 16ng of TDPS1 

(tardbpSpI AMO) injected embryos were phenotypically similar to those injected with 

16ng of control AMO. To assess if the splice interfering AMO was effective in disrupting 

splicing we performed RT PCR on RNA extracted at 30hpf from the zebrafish embryos 

injected with a range of TDPS1 (tardbpSpI AMO) and primers specific for the tardbp 

mRNA sequence.  We used two different sets of primers to detect the splice variant.  

We could not detect a lower molecular weight product to suggest a splice inhibited 

(Exon 3 skipped) product on RT PCR suggesting that exon 3 was not excluded. Splice 

interfering could result in random splicing events such as inclusion of an intron i.e. 

Intron 3-4. Therefore we exposed the agarose gel longer to detect a higher molecular 

weight product at around 700bp in length (Fig 5.11C), which increased in intensity in a 

dose dependent manner.  The lower TDPS1 (tardbpSpI AMO) doses and the control AMO 

and un-injected controls did not have the ~700bp product on the RT PCR. The intron 

3-4 of tarbp is 190bp in length. The product length of the primer set 3 is 492. 

Therefore it was clear that instead of exon 3 skipping, TDPS1 (tardbpSpI AMO) caused 

intron inclusion. Nevertheless TDPS1 AMO (tardbpSpI AMO) did not produce a 

phenotype. We have previously shown that tardbp is maternally expressed as we 

detect tardbp mRNA as early as 30min post fertilisation. Splice targeting AMO would 

not interfere with mature mRNA transmitted via the oocyte, therefore it is plausible 

that TDPS1 AMO (tardbpSpI AMO) did not produce a phenotype as maternally 

expressed tardbp mRNA rescued the phenotype associated with TDPS1 AMO (tardbpSpI 

AMO) knockdown. However it was also noticeable that the efficiency of splice 

interference of TDPS1 AMO was poor (Fig 5.11B-C) as there were large amounts of 

normally spliced tardbp.  
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Figure 5.58 Generation of a cryptic splice site by AMO-TDPS1  

 Figure 5.11 Generation of a cryptic splice site by AMO injection-TDPS1 (tardbpSpI AMO) 

(A) Schematic diagram of tardbp pre- mRNA as a result of transcription. Pre-mRNA will have exons and intronic 
regions (Black line between exons). Under normal circumstances pre-mRNA will mature as a mature mRNA 
when the introns are spliced out. At this point ribosomal subunits will attach to the ribosomal initiation complex 
and work along the mRNA via the translational initiation site. Splice site targeted AMO (maroon) blocks the 
conventional splice site. This can result in a splice variant as depicted by joined arrows. B) RT-PCR products 
from amplification of cDNA synthesised from RNA extracted from U (un-injected), C (control AMO injected) and 

embryos injected with 0.8-16ng of TDPS1 AMO (tardbpSpI AMO). RT-PCR amplification done using two sets 
of primers. A shorter PCR product indicating exon skipping is not seen (492bp is expected as the normal variant 
PCR product). However, a higher molecular weight PCR product seen ~700bp indicating intron retention 
(682bp). C) Higher exposure of the agarose gel enhances visualisation of the longer PCR product as a result of 

the intron retention. This effect appears dose dependent and is not seen in control injected/uninjected groups. 
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5.4.9.2 tardbpl splice interfering AMO-2 injection - tardbpSpII AMO (TDPS2) 

We designed a second splice morpholino tardbpSpII AMO (TDPS2) which interferes with 

the splicing of exon 2 which harbours the translation initiation site of the tardbp gene. 

We were aware that maternally expressed mature tardbp mRNA might rescue the 

phenotype caused by tardbpSpII AMO (TDPS2). However our aim was to obtain a 

demonstrable splice interference (exon 2 skipping) (Figure 5.12A). A range of doses 

(0.8-16ng) of tardbpSpII AMO was injected into single cell zebrafish embryos.  Embryos 

were then raised until 5dpf to observe for a motor phenotype. However even the 

highest dose of tardbpSpII AMO 16ng injected embryos survived till 5dpf. To confirm the 

splicing interference we designed three sets of primers to amplify c.DNA generated 

from RNA extracted at 30hpf from the TDPS2 (tardbpSpII AMO)  injected embryos.  The 

exon 2 of tardbp is 256bp in length.  When exon two is spliced out it should produce a 

product length 256bp shorter (Fig 5.12B).  RT PCR  using three different sets of primer 

as indicated on Fig 5.12A demonstrated effective splicing interference with the 

tardbpSpII AMO (Fig 5.12C) although there was no obvious macroscopic difference 

between control AMO and tardbpSpII AMO injected embryos.  The control AMO injected 

and the un-injected controls did not show splicing interference noted in the tardbpSpII 

AMO injected embryos. Furthermore splicing interference noted on RT PCR was dose 

dependent (Fig 5.12C) 

 Therefore embryos injected with 16ng of tardbpSpII AMO were raised up to 

36hpf  and fixed for znp-1 staining to detect any microscopic phenotypes of axonal out 

growth defects (Fig 5.13A). Interestingly there was no significant difference in the 

axonal defects amongst tardbpSpII AMO 16ng, CoMo 16ng and uninjected groups (Fig 

5.13B) suggesting that while tardbpSpII AMO  causes significant splice interference, it 

does not cause a motor neuronal phenotype probably secondary to rescue effect by 

maternally transmitted tardbp mRNA or an alternative molecular mechanism 

compensating for the loss of tardbp. An experiment to assess if tardbpSpII AMO 

injection results in Tardbp knockdown could confirm the possibility of a 

compensatory mechanism rescuing the tardbpSpII AMO injected embryos (We have not 

performed this experiment).  
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Figure 5.59 Generation of a cryptic splice site on tardbp by AMO- TDP-SII 

  

Figure 5.12 Generation of an alternative exon skipping splice site tardbp AMO (TDPS2) (tardbpSpII AMO). 
A) Schematic diagram demonstrates the binding site of the second splice interfering AMO of tardbp, TDPS2 

(tardbpSpII AMO). Successful splice interference should lead to skipping of exon two of tardbp which harbours 

the translation initiation site, ATG. B) Three sets of primers were designed to detect the splicing interference by 

TDPS2 (tardbpSpII AMO). The table indicates the expected length of the splice altered PCR products for each 

primer set. C) RT-PCR products from amplification of cDNA synthesised from RNA extracted from UN 

(uninjected), CoMo (control AMO injected) and embryos injected with 0.8-16ng of TDPS2 (tardbpSpII AMO). RT-

PCR products clearly demonstrate effective splice interference of tardbp by TDPS2 (tardbpSpII AMO) in a dose 

dependent manner. Splice interference is captured by all three sets of primers where in product length is reduced 
by the length of the exon 2 (256bp). In red are the expected product lengths in base pairs (bp), length of the 
products when exon 2 is spliced out. CoMo injected and uninjected embryos show no evidence of abnormal 
splicing.  

C 
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Figure 5.60 TDPS2 ((tardbpSpII AMO) splice interfering AMO does not cause a motor neuron disease 

like phenotype. 

 
 
 
 
 
 
 
 
 
 
  

Figure 5.13 TDPS2 (tardbpSpII AMO) splice interfering AMO does not cause a motor neuron disease 

like phenotype A) znp-1 staining of the axonal architecture of un-injected, CoMo 16ng and tardbpSpII AMO 

16ng injected embryos at 36hpf showed no axonal defects at highest dose of AMO injection. B) 
Quantification of  axonal defects showed no statistical significance in the axonal defects. One way ANOVA, 

Kruskall Wallis test with Dunn’s multiple comparison tests were used. ns= p>0.05. Scale bar 100µm. 
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5.4.10 tardbpl knockdown does not lead to a significant phenotype at 48hrs 

To investigate if the second orthologue of TDP-43 (Tardbpl) had a direct role in spinal 

motor neuron integrity, we designed an AMO to block the translation initiation site 

(ATG) of tardbpl. Embryos injected with a range of doses ranging from 2.5-16ng, were 

observed for up to 48hpf. The embryos injected with the maximum dose of tardbpl 

AMO (16ng) were morphologically indistinguishable from those injected with control 

AMO at 48hpf (Fig 5.14A). Znp-1 staining was carried out to see if the changes seen 

with tardbp knockdown could be reproduced by tardbpl knockdown. However there 

was no associated increase in the axonal path finding defects with tardbpl knockdown 

(Fig 5.14B) despite achieving significant tardbpl knock down (p<0.0001) at protein 

level (Fig 5.15). 

Figure 5.61 AMO knockdown of tardbpl in WT zebrafish embryos 

 

 

Fig 5.14 AMO knockdown of tardbpl in WT zebrafish embryos 
(A) Uninjected, AMO-Control injected and AMO-tardbplATG with p53 (AMO-tardbplATG +p53) ranging from 2.5-16ng. 
There was no macroscopic difference in the phenotype between the CoMo and 16ng of AMO-tardbplATG  injected 
groups at 48hpf. B) Axonal architecture was studied using znp-1 staining and quantified as described before. There 
was no statistical significance between uninjected, CoMo and AMO-tardbplATG injected groups. Statistical method- 
One way ANOVA, Kruskall Wallis test with Dunn’s multiple comparison tests were used. ns= p>0.05. Scale bar 
500µm. 
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Figure 5.62 Effects of AMO- tardbplATG ATG knockdown of zebrafish tardbpl. 

 

5.4.11 tardbpl knockdown leads to up regulation of tardbp expression 
Total protein lysates were obtained from embryos injected with a range of 

concentrations of tardbpl AMO and were subjected to further probing with h.TDP-43 

Ab2. We observed that the ~43kDa band representative of  Tardbp was significantly 

enhanced in a dose dependent manner compared to the control AMO injected group 

(Fig 5.16A). Quantitative analysis showed increased tardbp expression compared to 

the CoMo injected group ((p<0.02). Taken together it appears that the tardbpl 

knockdown results in an up regulation of Tardbp expression. 

 

 

 

 

 

Uninjected   CoMo        tardbpl           tardbpl 
                        16ng           AMO 5ng     AMO16ng 

Fig 5.15 Effects of AMO-tardbplATG knockdown of zebrafish tardbpl. Uninjected, AMO-Control injected 
and AMO-tardbplATG with p53 (AMO-tardbplATG +p53), 5ng and 16ng were injected.  AMO-tardbplATG  does 
knockdown tardbpl (~33kDa) when compared to the CoMo injected group. Alpha tubulin was used as the 
loading control. This immunoblot confirms that AMO-tardbplATG  knocks down tardbpl,  but the embryos do 
not develop a phenotype possibly secondary to a molecular mechanism which rescues the loss of tardbpl 
phenotype or may be a non essential gene. 

A 
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Figure 5.63 AMO tardbplATG knockdown of zebrafish tardbpl results in an up-regulation of Tardbp 
expression 

 

 

5.5 Discussion 
 

We have set out to investigate the importance of TDP-43 orthologues in the 

zebrafish in vivo model due to its many advantages. In the body of work described 

in this chapter, we investigated the role of Tardbp and Tardbpl in zebrafish 

development. Our data demonstrate that knock-down of Tardbp results in a motor 

Fig 5.16 AMO-tardbplATG knockdown of zebrafish tardbpl results in an upregulation of Tardbp expression. A) 
h.TDP-43 Ab2 was used to probe the immunoblot prepared with 2.5ng of AMO-tardbpATG  followed by 2.5ng-16ng of 
AMO-tardbplATG and AMO-Control injected embryos. The ~43kDa band indicating Tardbp is abolished in the first 
lane from the left in AMO-tardbpATG  injected embryos. Ist lane is a positive control for Tardbp. AMO-tardbpl ATG    
injection results in a dose dependent increase in Tardbp expression. The CoMo injected group showed no change in 
Tardbp expression. Alpha tubulin was used as the loading control. This immunoblot confirms that AMO-tardbplATG  
knocks down Tardbpl but the embryos do not develop a phenotype probably secondary to a molecular mechanism 
which rescues the loss of Tardbpl phenotype. B) Densitometric analysis of the immunoblot demonstrates elevation 
of  Tardbp expression when Tarbpl is knocked down. One way ANOVA with Kruskall Wallis and Dunn’s Multiple 
comparison  test to compare all groups was used. * p<0.02, ns= not significant 

B 
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neuron like disease pattern, loss of motor neurons, axonal path finding 

abnormalities and reduced survival, in the zebrafish. As shown by the 

immunofluorescence studies, TDP-43 orthologues are ubiquitously expressed 

during zebrafish development. Thus, knock-down of Tardbp during embryonic 

development could affect other cell groups as well as motor neurons, resulting in a 

severe phenotype.  It is also unclear at this stage as to why AMO-tardbpATG  produced 

a phenotype but the splice interfering AMO (tardbpSpII AMO) injection was not 

associated with a phenotype. It is plausible that significant off target effects of AMO-

tardbpATG  is responsible for the phenotype observed although we have taken the 

necessary precautions to minimise the off-target effects of AMO by co-injection of 

p53 AMO. It is also possible that maternal expression of tardbp mRNA rescues the 

tardbp splice interfering AMO phenotype. 

  In keeping with our data are the Drosophila TDP-43 orthologue, TBPH knock 

down and the mouse TDP-43 knock down studies, which resulted in an early 

embryonic death. TDP-43, like its paralogue hnRNP-A1 has many recognised 

functions in the cell (Buratti and Baralle, 2010a). The RNA processing functions, 

including the regulation of transcription and translation of several genes such as 

CFTR, APO II, SMN, SP-10 and HDAC 6 have been well described  (Chapter 1).  

Therefore, it is also plausible that TDP-43 regulates its own function. Supporting 

this is our observation that during the knock down of Tardbpl an up-regulation of 

Tardbp was observed. Taken together, zebrafish TDP-43 orthologues: Tardbp and 

Tardbpl appear to regulate each other. The published sequence on ensembl.org for 

Tardbpl does not have a glycine rich domain and part of the C-terminus of TDP-43, 

which might explain the relatively severe phenotype when Tardbp is knocked 

down. While this work was being undertaken,  Kabashi et al 2010 reported similar 

data to our study investigating the effects of Tardbp knock down in zebrafish, 

except regarding Tardbpl, which they reported, has no function (Kabashi, 2010). In 

order to generate either a loss of function or toxic gain of function model of TDP-

43 in fish it is important to find out if the TDP-43 orthologues in zebrafish have a 

similar role in the zebrafish as it has in the human. In targeted disruption of mouse 

TDP-43, the heterozygote mutants did not develop progressive neurodegeneration 

and nor did the level of mouse TDP-43 decrease; suggesting that the TDP-43 level 

was tightly regulated (Kraemer et al., 2010, Sephton et al., 2010). Taken together, it 

is evident that Tardbpl, while perhaps less important than Tardbp, has some 
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function in the zebrafish. The loss of Tardbpl appears to be compensated to a great 

extent by up regulation of Tardbp.  

  

Kabashi et al 2010 did not investigate the role of concomitant knock down of p53 

and tardbp (Kabashi, 2010). The co- injection of tardbp AMO along with p53 

partially rescued the phenotype associated with translational blocking tardbp 

AMO, and this phenomenon of knockdown of p53 by co-injection of p53 AMO along 

with targeted gene is well described (Robu et al., 2007). p53 is a tumour 

suppressor protein, which regulates the cell cycle by protecting against damage to 

DNA. Activation of p53 results in its conformational change, accumulation of p53 in 

the cell and an increase in its activity as a transcription factor. This could either 

result in cell cycle arrest to allow repair of the damaged DNA or apoptosis of the 

targeted cell (Meek, 2009). Therefore AMO injection could either result in p53 

activation due to the stress of AMO injection or there might be a direct interaction 

between Tardbp and p53 . Tardbp could have an inhibitory regulatory effect on 

p53, which may be removed when Tardbp is knocked down. It is less likely that 

p53 is activated by the stress of AMO injection, as control AMO injection did not 

result in an abnormal phenotype to suggest p53 activation. TDP-43 is known to 

participate in the regulation of the transcription of several genes, therefore it is 

plausible to hypothesise that Tardbp may have a regulatory effect on p53 

activation. Still the relative functions of Tardbp and Tardbpl remain to be 

investigated further.  

 Some evidence from both in vitro and in vivo models has interrogated whether 

TDP-43 related ALS is due to a toxic gain of function or a loss of physiological 

function. Injection of Q331K or M337V TDP-43 mutant constructs into the chick 

embryo resulted in developmental defects and enhanced apoptosis (Sreedharan et 

al., 2008) whilst the Q331K mutation has been shown to have a greater propensity 

to form aggregates (Johnson et al., 2009) suggesting a possible role of toxic gain of 

function. However, studies in a Drosophila model of ALS, where the impaired 

locomotive phenotype of drosophila generated by the drosophila TDP-43 

orthologue TBPH gene suppression either by chromosomal deletion or the RNA 

interference method, was rescued by injection of human TDP-43 (Feiguin et al., 

2009), suggested a loss of function role for TDP-43. Supporting this theory are the 

findings from the TDP-43 transgenic mouse model over- expressing the human 
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TDP-43 A315T mutation, where loss of nuclear TDP-43 is seen in the surviving 

motor neurons of the mice at late stages of disease (Turner et al., 2008). The loss of 

TDP-43 from the nucleus could potentially affect the normal RNA processing 

function of the TDP-43. Cytoplasmic aggregation of disease related proteins of 

neurodegenerative diseases are postulated to cause a toxic gain of function. The 

analysis of the brain and cerebellar tissues obtained from TDP-43 A315T PrP 

transgenic mice did not show TDP-43 positive cytoplasmic aggregation formation 

(Turner et al., 2008) as seen in human cases, suggesting that dysfunctional TDP-43 

can exert its deleterious effects independent of the formation of cytoplasmic 

aggregates.  This further supports the notion of a loss of function mechanism for 

mutant TDP-43. It is still possible that the transgenic protein could precipitate the 

endogenous mouse TDP-43 or produce a soluble TDP-43 fragment that drives the 

disease process, which might on the other hand indicate a toxic gain of function.  

The knock- down of mouse TDP-43 resulted in embryonic lethality (Kraemer et al., 

2010, Wu et al., 2010) whilst knock down of the drosophila TDP-43 orthologue 

resulted in similar embryonic lethality suggesting that TDP-43 is an essential 

molecule in early development and that it is tightly regulated from the early stages 

of embryogenesis. Arguing against the loss of function mechanism are the 

dominantly inherited disease associated mutations in TDP-43, the A315T 

transgenic mouse model and the WT TDP-43 transgenic mouse model which 

demonstrate some of the ALS/ FTLD-U related pathology and disease progression 

(Wils et al., 2010). 
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Chapter 06: 

Stable tardbp mutant 

 

6.1 Introduction 
 

Association of mutations in the TARDBP gene with familial amyotrophic lateral 

sclerosis (ALS) has confirmed the role of TDP-43 in ALS pathogenesis. Most of the 

mutations of the TARDBP gene are located in the glycine rich C-terminal domain. It 

is unclear to date if the ‘loss of function’ of the vital nuclear functions of TDP-43 or 

its toxic accumulation in the cytoplasm or in the nucleus or both, are responsible 

for the subsequent neuronal death.  Various studies on cellular and animal models 

of TDP-43 function have shown that both over- expression of WT TDP-43 and the 

knockdown of the same is toxic to cells or the organism as much as over- 

expression of  mutant TDP-43.  Recently Kabashi et al (2010) showed that 

transient knockdown of the zebrafish orthologue of TDP-43, Tardbp, causes a 

motor phenotype and associated neuronal defects supporting a loss of function 

mechanism.  The results described in chapter 5, did confirm some of the Kabashi et  

al 2010 findings, but we could not be certain if there was an off target effect from 

the AMO, although during our study we co-injected p53 AMO to control for some of 

the known off target effects. 

  It is widely believed that a stable mutant would overcome the limitations of 

the transient knockdown of genes. There are several methods for developing a 

stable mutant. One commonly used method is targeted induced local lesions in the 

genome (TILLING) wherein adult zebrafish are mutagenised following exposure to 

ethylnitrosurea (ENU) containing water (Moens et al., 2008). These F0 adult fish 

are out-crossed to generate the F1 founder fish that potentially carry a high degree 

of mutations in their genome. These fish can be fin-clipped to form a DNA library. 

Alternatively sperm can be obtained and frozen to generate a sperm library. Either 

DNA or sperm libraries could be used to screen for mutations in genes of interest 

by TILLING which uses PCR to amplify the disease related exons of targeted genes 

for mutation screening (Figure 6.1). Once a mutation in a gene of interest is 

identified,  



 228 

 

 

Figure 6.64 Important steps in targeting induced local lesions in the genomes 
(TILLING) to generate a mutant zebrafish 

 

 

 

 

 

 

 

 

 

Figure 6.1 Important steps in targeting induced local lesions in the genomes (TILLING) to 
generate a mutant zebrafish. The adult zebrafish are exposed to 0.3nM ENU to mutagenise 
their spermatogonia. Mutagenised fish are then bred with wild type female fish to generate the 
F1 progeny.  These F1 progency then are allowed to grow til adulthood when they are 
finclipped to form a TILLING library and/or sperm frozen for in vitro fertilisation in future. The 
library is then subjected to targeted gene screening, heteroduplex screening methods  or whole 
genome sequencing (WGS) to identify relevant mutation/s. Fish harbouring mutation/s (+/m) 
are then out bred with wild type fish to reduce the effects of non phenotypic mutations (Stern 

and Zon, 2003). Adapted from (Lieschke and Currie, 2007). 
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the F1 fish are out-crossed  to obtain an F2 generation of heterozygous fish. Similar 

out-crossings over 6 generations are then undertaken and heterozygotes thus 

identified are believed to reduce the risk of the non-causative mutations caused by 

ENU .    We utilised this reverse genetics approach as it is efficient. Our 

collaborator’s Prof Cecilia Moens laboratory in Seattle has established TILLING 

process  and had identified a tardbp mutation in the F1 zebrafish. 

Our  aim was to obtain a zebrafish with a premature truncating mutation in 

the tardbp gene, therefore in the homozygous state one could expect the loss of the 

full length Tardbp protein, thus generating a stable Tardbp null zebrafish model. 

So far one ALS associated premature truncation mutation in the TARDBP gene has 

been described. Solski et al 2012 described c.1158_1159delAT; 

c.1158_1159insCACCAACC insertion-deletion in the glycine rich domain of the 

TDP-43 protein. The fibroblasts from the affected patients showed relative nuclear 

clearing under induced exogenous stress, with cytoplasmic accumulation of TDP-

43 in keeping with what is observed in the neuropathology of TDP-43 

proteinopathies.    (Solski et al., 2012). Stable knockdown of Tardbp in other model 

systems have not been viable. Complete loss of Tardbp in the Drosophila model 

resulted in lethality at the second instar stage (Fiesel et al., 2009, 2010). 

Furthermore, knockout of Tardbp in mice caused early lethality around the 

blastocyst implantation stage of embryogenesis (Sephton et al., 2010, Wu et al., 

2010), complicating the analysis of the role of Tardbp in vertebrate neuronal 

development and function. As discussed before the advantages of the zebrafish as a 

disease model allows us to overcome some of these limitations.  

 

6.2 Generation of zebrafish tardbpfh301/+ mutant 
As AMO injection can only knockdown tardbp transiently, we used ENU 

mutagenesis to generate a stable tardbp mutant. Mutation screening identified 

several point mutations as indicated by the black dots (Fig 6.2A). However, we 

were only able to obtain the c.660C>A mutant (Red dot on Fig 6.2A) from the 

frozen down sperm of the adult zebrafish exposed to ENU mutagenesis. The 

mutation results in a premature stop codon, p.Y220X which truncates the 413aa 

protein midway through its second RNA binding domain (Fig 6.2B). Protein 
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parameter prediction software (http://web.expasy.org/cgi-

bin/protparam/protparam) predicts a molecular weight of the premature 

truncated protein at ~24kDa and also predicts it to be unstable (instability index 

of 50.83 which suggests significantly unstable molecule highly likely to under go 

premature decay). This mutant tardbp allele is called fh_301 allele.  Therefore from 

here on zebrafish heterozygous and homozygous to the mutation are indicated as 

tardbpfh301/+  and tardbpfh301/fh301 respectively.  

 

 

 

 

 

 

 

 

Figure 6.65 The tardbp fh301  mutant (tardbpfh301/+) zebrafish generated by TILLING. 

 

 

 

  

A 

Figure 6.2 The tardbp fh301  mutant (tardbpfh301/+) zebrafish generated by TILLING . A) 
Identified mutations in the zebrafish tardbp gene indicated in black and purple triangles in the 
genomic sequence and the coding sequence B) The c.660 C>A mutation results in a premature 
truncation mutation at the 220 amino acid (aa) residue (Threonine) in the RRM2 domain. 

(RRM1&2 -RNA recognition motif 1 and 2. GRR- Glycine rich region) 

http://web.expasy.org/cgi-bin/protparam/protparam
http://web.expasy.org/cgi-bin/protparam/protparam
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Figure 6.66 The c.660 C>A missense in frame mutation which is named tardbp fh301  
mutant allele. 

 

When we processed the nucleotide sequence of the mutant allele using the New 

England BioLabs software tool (http://tools.neb.com/NEBcutter2) we identified that 

the single nucleotide change from cytosine to adenine, c.660 C>A (Fig 6.3A) results in a 

loss of restriction enzyme digest sites of CviQI and RsaI (Figure 6.3A and B). This 

interruption of the CviQI restriction digest enzyme site was exploited to identify the 

genotype of the mutant zebrafish as depicted in the Figure 6.4C.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 The c.660 C>A missense in frame mutation which is named tardbp fh301  mutant allele. A) 
Through mutation screening of a zebrafish ENU mutagenesis library, a c.660 C>A missense in frame 

mutation in tardbp was detected.  

http://tools.neb.com/NEBcutter2
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Figure 6.67 c.660 C>A also results 
in a loss of CViQ1 restriction digest enzyme 

site. 

 

Figure 6.4 c.660 C>A results in a loss of 
CViQ1 restriction digest enzyme site. A & B) 
NEB cutter software prediction result of the loss 
of CviQI and RsaI restriction enzyme sites. C) 
PCR products from genomic DNA amplified 
using tardbp specific primers to amplify the 
targeted DNA to detect the above mutations. 
PCR products digested  with CviQI results in  
digest products when run on an agarose gel 
with a pattern by which the genotype of the 
siblings from a tardbp heterozygous zebrafish 
incross can be easily identified. Circle indicates 
the the position of the CviQI and RsaI enzyme 
sites. HOM (tardbpfh301/fh301 ). HET (tardbpfh301/+). 

WT (tardbp+/+). 

C 

WT allele 

c.660 C>A allele 
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6.3 The tardbp null tardbpfh301/fh301 (Homozygous) mutant is adult 
viable 
 

Heterozygous tardbpfh301/+animals were indistinguishable from their wild-type 

siblings. After repeated out-crossing, (F5) tardbpfh301 /+ heterozygotes were selected 

and in-crossed to generate homozygous tardbp mutants (tardbpfh301/fh301). 

Interestingly, the expected Mendelian ratios for a heterozygous (tardbpfh301 /+) in-cross 

were observed at 3 months indicating that the homozygous (tardbpfh301/fh301 ) fish 

survived at the same rate as the tardbp+/+ and tardbpfh301 /+ siblings. The mean weights 

and standard length of each adult F5 zebrafish were recorded at the time of fin clipping 

for genotyping. tardbpfh301 /fh301 zebrafish were shorter in length (p<0.0001) (Fig 6.5A) 

and lighter in mass (p<0.0001) (Figure 5.5B) when compared to tardbp+/+ siblings. 

 

 

 

   

Figure 6.68 Siblings from the tardbpfh301 /+ heterozygote in cross have subtle phenotypic 
differences. 

  

A B

Figure 6.5  Siblings from the tardbpfh301 /+ heterozygote in-cross have subtle phenotypic differences.  
A) Fry from a tardbpfh301 /+heterozygous in cross at F5 generation were fin clipped at 6 months of age to 
identify the genotype. The weights were significantly different between tardbp+/+ and tardbpfh301 /fh301 (230mg, 
SD± 39 vs 183mg, SD± 40, p<0.0001) and tardbpfh301 /+ (215mg, SD± 46, p<0.001). There was no significant 
weight difference between tardbpfh301 /+and tardbp+/+ (p>0.05). B) Measurement of Standard Length revealed 
significant differences between tardbp+/+ (23.81mm, SD±1.76), tardbpfh301 /+ (22.83mm, SD±1.26) and 

tardbpfh301 /fh301 (21.67mm, SD± 1.84)(* p<0.01, ** p<0.001, ***p<0.0001).  
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6.4 Tardbp expression in the homozygous (tardbpfh301/fh301 ) 
zebrasfish 
 

To study the Tardbp protein expression in the homozygous (tardbpfh301/fh301 ) and their 

WT siblings, we dissected tissues from three 6 month old tardbpfh301/fh301 and three 

tardb+/+ zebrafish and obtained whole cell lysates of brain, eyes, muscle, heart, gills and 

liver for immunoblotting using the h.TDP-43 Ab2 (recognizes the C-terminus which is 

conserved between the TDP-43 and Tardbp). The tardbpfh301/fh301 zebrafish tissues 

have undetectable levels of full-length functional Tardbp when compared to tardbp+/+ 

tissue (Figure 6.6).  

 

 

 

Figure 6.69 Full-length Tardbp protein is absent from homozygous mutant zebrafish 
(tardbpfh301 /fh301) 

 

 

Protein parameter prediction software (http://web.expasy.org/cgi-

bin/protparam/protparam) predicts a molecular weight of the premature 

truncated protein at ~25kDa and also predicts the protein to be unstable 

(instability index of 50.83). In keeping with the above predictions and the h.TDP-

43 Ab1 which detects the N- terminal fragment of TDP-43 does not show an 

increase in the 25kDa fragment in the tardbpfh301/fh301  fish compared to the WT 

littermates (Fig 6.7).  The above findings confirm that the premature truncation of 

Tardbp due to the Y220X mutation results in nonsense mediated decay of  

Tardbp. Therefore the tardbpfh301/fh301  (homozygous) fish are ‘Tardbp null’.  

 

 

Figure 6.6 Full-length Tardbp protein is absent from homozygous mutant zebrafish (tardbpfh301 /fh301 ). 
An immunoblot probed with h.TDP-43 Ab2 (which binds to the C-terminus of TDP-43) demonstrates loss of 
Tardbp from all tissues in a 6 month old adult homozygous mutant zebrafish (tardbpfh301 /fh301 ). h.TDP-43 Ab2 
is specific to Tardbp and does not detect Tardbpl. 

http://web.expasy.org/cgi-bin/protparam/protparam
http://web.expasy.org/cgi-bin/protparam/protparam
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Figure 6.70 Western blot of tissues from 6 month old adult tardbpfh301 /fh301 zebrafish 

 

 

 

 

 

 

 

6.5 Up regulation of Tardbpl full length protein (Tardbpl-FL) in the 
tardbp mutant zebrafish 

TDP-43 is a tightly regulated protein, which is essential for DNA and RNA related 

nuclear functions, including the regulation of splicing (Buratti and Baralle, 2001, 

2008). TDP-43 has also been shown to autoregulate its own protein level via the C-

terminal end of the protein (reviewed by (Budini and Buratti, 2011).  It has been 

reported that loss of TDP-43 in the early embryological stages is either lethal or 

causes significant motor deficits in mice and drosophila.  Therefore it was unclear 

why our Tardbp mutant zebrafish survived until adulthood with apparently 

preserved motor function. Furthermore, as we observed, an up- regulation of 

Tardbp when Tardbpl was knocked down (Chapter 5), we hypothesised that a 

similar regulatory loop might be activated in the absence of Tardbp, by the up-

regulation of Tardbpl.  

Figure 6.7 Western blot of tissues from 6 month old adult tardbpfh301 /fh301 zebrafish. 
Compared to the tardbp+/+, tardbpfh301 /fh301  embryos have an over expressed signal at 
approximately 43 kDa molecular weight indicated by #. This relative over-expression of a 
protein similar to the molecular weight of Tardbp is present in all the tested tissues of tardbpfh301 

/fh301 adult zebrafish. There is no evidence of a 25kDa Tardbp truncated fragment in the 
tardbpfh301/fh301 mutant fish.  The antibody used is h.TDP-43 Ab1 which binds to the N-terminus 
of TDP-43.  

# 
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Figure 6.71 Compensatory over-expression of Tardbpl-FL in the Tardbpl null zebrafish 
embryos at 48hpf 

 

 

 

 

 

 

 

 

Both Tardbp and Tardbpl share greater identity in the N-terminal end and we have 

shown that the h.TDP-43 Ab1 can detect both Tardbp and Tardbpl. We probed 

homogenates of various tissues from tardbp+/+ and tardbpfh301/fh301   adult zebrafish. 

with h.TDP-43 Ab1 (Fig. 6.7). Interestingly, instead of an absent ~43kDa band we 

observed a 25 fold increase in the signal of the ~43kDa band in the tardbpfh301/fh301  fish 

when compared to the tardbp+/+  littermates. This observation was the same at 48hpf 

(whole cell extract from embryos) (Fig 6.8) (p<0.001). A band at 33kDa suggestive of 

Tardbpl was detected in both tardbp+/+  and tardbpfh301/fh301  fish,  suggesting that the 

absence of Tardbp results in either an activation of a novel transcript, which shares 

similar molecular and structural characteristics to that of tardbp or that tardbpl under 

goes alternative splicing to generate a novel full-length tardbpl protein. Supporting 

this statement is the reduction in the expression of Tardbpl (33kDa band) in the 

tardbpfh301/fh301 compared to WT control embryos. Based on the findings of ensembl 

Figure 6.8 Compensatory over-expression of Tardbpl-FL in the Tardbpl null zebrafish 
embryos at 48hpf (A)Western blot of WT and tardbpfh301/fh301 embryos at 48hpf, probed with 
h.TDP-43 Ab1, demonstrating relative over expression of Tardbpl-FL (solid black arrow) and the 
reduction in Tardbpl expression in the tardbpfh301/fh301 mutant zebrafish (asterisk). (B) 
Densitometric analysis of the westernblots demonstrating the 25 fold over-expression of the 
~43kDa band in the HOMs compared to the WT. Western blots carried out using h.TDP-43 Ab1 
against the N-terminus which recognizes both Tardbp and Tardbpl/Tardbpl-FL proteins. ** 
p<0.01 
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genome browser, zebrafish has only two TDP-43 homologues. Therefore we 

hypothesised that the enhanced ~43kDa signal in tardbpfh301/fh301  lysates is due to a 

regulatory loop involving tardbpl.  

 

6.6 Knockdown of Tardbpl using AMO tardbplATG abolishes the 

compensatory rise in ~43kDa band, tardbpl-FL, in the HOMs 

To confirm the findings described above, we designed an experiment to knockdown 

tardbpl expression in tardbpfh301/fh301  embryos obtained from an in cross of 

tardbpfh301/fh301 fish using AMO tardbplATG. Proteins extracted from the Tardbp null 

embryos microinjected with AMO tardbplATG at 48hpf and were probed with h.TDP-43 

Ab1. Interestingly near complete (with 5ng of AMO tardbplATG) and complete (with 

16ng of AMO tardbplATG) knockdown of the newly identified 43kDa protein was noted 

compared to the control AMO injected embryos (p<0.0001) (Fig 6.9). The reduction of 

the Tardbpl signal at 33kDa, following AMO tardbplATG injection (Fig 6.9¥) further 

confirms that AMO tardbplATG is specific to the tardbpl ATG site and the novel 

transcript shares a similar nucleotide structure at least at the translation initiation site 

with that of tardbpl. Therefore we named this protein as Tardbp full length (Tardbpl-

FL). 

 

6.7 tardbp and tardbpl/tardbpl-FL double knockouts have reduced 

survival and develop a severe motor phenotype 

An experiment to knockdown tardbpl/tardbpl-FL in the homozygous tardbpfh301/fh301  

embryos, obtained from homozygous in cross to overcome the possibility of maternal 

expression of tardbp was designed.  A curly tail phenotype was observed as early as 

32hpf (p<0.0001), when complete knock down of tardbpl/tardbpl-FL was achieved 

with 16ng of AMO tardbplATG in tardbpfh301/fh301  embryos (Fig 6.10H) compared to the 

WT (Fig 6.10D) . Although injection of 5ng of AMO tardbplATG into tardbpfh301/fh301  

embryos resulted in near complete knock down of tardbpl and tardbpl-FL, and the 

embryos developed a less severe curly tail (p<0.0001)(Fig 6.10G), the phenotype 

progressively worsened with time (Fig 6.11). Complete knockdown of 

tardbpl/tardbpl-FL in the tardbp null embryos resulted in significantly reduced 

survival (all double knockout embryos died by 10dpf) (p<0.0001) (Fig 6.12) compared 

to those injected with control AMO. Although low dose (5ng AMO tardbplATG) injected 
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group survived 6 days longer than the high dose AMO tardbplATG injected group (16ng), 

all embryos were sacrificed due to the inability to feed and distress by 16dpf, 

compared to the controls (Fig 6.12). The double knockouts had a significantly reduced 

escape response (p<0.0001) demonstrating a motor behavioural defect at 5 dpf caused 

by loss of both Tardbp and Tardbpl/Tardbpl-FL (Fig 6.13). 

 

Figure6.72 The tardbpfh301/fh301 null phenotype is rescued by over- expression of a Tardbpl full-

length protein (Tardbpl-FL) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9  The tardbpfh301/fh301 null phenotype is rescued by over- expression of a tardbpl full-length 
protein (tardbpl-FL). (A) Western blot of tissues from 6 month old adult tardbpfh301 /fh301 zebrafish using 
h.TDP-43 Ab1 which binds to the N-terminus of TDP-43. Compared to the tardbp+/+, tardbpfh301 /fh301  
embryos have an over expressed signal at approximately 43 kDa molecular weight indicated by $. This 
relative over-expression of a protein similar to the molecular weight of tardbp is present in all the tested 
tissues of tardbpfh301 /fh301 adult zebrafish. (B) AMO-tardbplATG  injection into tardbpfh301/fh301 fish resulted in 
near complete (5ng) and complete (16ng) knockdown of tardbpl-FL over expression, and tardbpl  (~33kDa - 
indicated by ¥) suggesting that tardbpl and tardbpl-FL share a similar translational initiation region. *** 
p<0.0001 

$ 

A 

B 
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6.73 Effects of Figure 

tardbpl knockdown 
in WT and tardbp 
null zebrafish 

embryos 

  

Figure 6.10 Effects of tardbpl knockdown in WT and tardbp null zebrafish embryos. (A-D) Uninjected, AMO-
Control injected and AMO-tardbplATG with p53 (AMO-tardbplATG +p53) groups of WT (tardbp+/+) embryos were 
morphologically normal when compared to AMO-tardbplATG with p53 injected HOM (tardbpfh301 /fh301 embryos) 
zebrafish (E-H) which develop a curly tail phenotype at 32hpf. Complete knockdown of tardbpl results in almost 
100% curly tail phenotype  (*** signifies p<0.0001), whereas tardbpl knockdown in WT embryos developed no 

significant curly tail phenotype compared to control AMO injected embryos (I) at 32hpf. Scale bar 500µm.  
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Figure 6.74 AMO knockdown of tardbpl in WT and tardbpfh301/fh301  zebrafish embryos at 
day 5 (120hpf) 

 

 

 

 

 

 

 

Figure 6.75 

tardbpl 
knockdown reduces survival in the HOM (tardbpfh301 /fh301 ). 

 

 

 

 

 

A	 B	 C	 D	

E	 F	 G	 H	

Figure 6.11 AMO knockdown of tardbpl in WT and tardbpfh301/fh301  zebrafish embryos at day 5 (120hpf) 
(A)Uninjected, (B) AMO-Control injected and (C-D) AMO-tardbplATG with p53 (AMO-tardbplATG +p53) groups of 
WT (tardbp+/+) embryos were morphologically normal at 120 hours post fertilisation. (G-H) However 
tardbpl/tardbpl-FL knockdown in the tardbpfh301/fh301  embryos (double knockouts) with AMO-tardbplATG + p53 AMO  
developed a severe curly tail phenotype at 120 hours post fertilisation (hpf). Scale bar 500µm.  

 

Figure 6.12 tardbpl knockdown reduces survival in the HOM. Double knockout of tardbp 
and tardbpl/ tardbpl-FL significantly reduces survival of tardbpfh301 /fh301 embryos to 10dpf (16ng) 
and 16dpf (5ng).  Both Kaplan Meir curves are statistically significant compared to the AMO-
Control+p53 injected  group (p<0.001). 



 241 

 

 

 

 

 

 

 

 

 

 

Figure 6.76 Escape response in Tardbp and Tardbpl/Tardbpl-FL knockouts. 

 

 

6.8 Loss of tardbp and tardbpl-FL results in significant axonal path 
finding defects 

Knockdown of  tardbp has been shown to result in axonal growth defects in zebrafish 

by others (Kabashi, 2010). It is well established that mutations in the TARDBP gene are 

associated with ALS and are therefore deleterious to motor neurons. However there 

was no significant difference in the motor defects between tardbpfh301/fh301  and 

tardbp+/+ littermates at 36hpf compared to uninjected embryos (Fig. 6.14A-C) and the 

AMO-control injected groups (Fig 6.14D-F). Therefore we analysed the axonal defects 

when both tardbp and tardbpl are knocked down. Interestingly, tardbpl-FL knock 

down in Tardbp null (tardbpfh301/fh301 ) embryos resulted in complete arrest of axonal 

outgrowth at 36hpf with AMO tardbplATG 16ng (p<0.001). A less severe axonal path 

finding defect was observed with a lower dose (5ng, p<0.01) of AMO tardbplATG  (Fig 

6.14G-N) (in excess of what was observed with tardbp AMO injections to knockdown 

tardbp in WT zebrafish (Chapter 5). Taken together these findings confirm that tardbpl 

is a functionally important gene in the absence of Tarbdp and is able to compensate for 

the loss of tardbp. The significant axonal defects observed at 32hpf in the double 

knockout embryos, evolve to presynaptic axonal defects at 14days post fertilisation as  

 

Figure 6.13 Escape response in Tardbp and Tardbpl/Tardbpl-FL knockouts at 5dpf. The double 
knockout zebrafish also had a significantly reduced escape response (p<0.001) demonstrating a motor 
behavioural defect caused by loss of both tardbp and tardbpl/tardbpl-FL. *** p<0.001, ** p<0.01 
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Figure 6.77 Motor axons are abnormal in Tardbpl-FL knocked down tardbpfh301 

/fh301embryos at  36hpf 
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depicted by neuromuscular junction staining. This is only an observation of a single 

experiment and requires further repeats to confirm the true association. From the 

available NMJ staining of several different double knockout embryos it was apparent 

that there is a loss of presynaptic marker (SV2) staining in the double knockouts 

(Figure 6.15). We did not observe a difference in NMJ staining in tardbpfh301/fh301  and 

tardbp+/+ siblings. 

  

Figure 6.78 Neuro-muscular junction (NMJ) staining at 14dpf in the tardbp/tardbpl 

knockout zebrafish shows a loss of pre-synaptic markers  

Figure 6.14 Motor axons are abnormal in Tardbpl-FL knocked down tardbpfh301 /fh301embryos at  
36hpf. Lateral views of the whole mounted tardbp+/+and tardbpfh301 /fh301embryos stained with Znp-1 to 
detect axons. (A-C) Uninjected tardbp+/+(WT) and tardbpfh301/fh301 do not show a significant difference in 
axonal defects similar to AMO-control (CoMo) injected groups (D-F). (G-I) Partial knockdown of tardbpl-FL 
with AMO-tardbplATG +p53 results in a significant rise in the axonal defects in the tardbpfh301 /fh301mutant 
zebrafish(p<0.001). (J) Normal motor axons in tardbp+/+injected with AMO-tardbplATG 16ng. (K) Complete 
knockdown of tardbpl-FL in the tardbpfh301 /fh301resulted in severe axonal outgrowth defects with complete 
arrest of axons at the horizontal myoseptum, (p<0.0001)(L). (M&N) Enlarged sections of J&K 
demonstrating severe axonal out growth defects in the double knockout (tardbp and tardbpl) embryos. 
Black arrow points at an infrequent axonal truncation defect (low dose AMO-tardbplATG) whilst white arrows 
indicate numerous axonal out growth defects (high dose AMO-tardbplATG). Scale bar 200µm. 
 

Figure 6.15 Neuro-muscular junction (NMJ) staining at 14dpf in the tardbp/tardbpl knockout zebrafish 
show a loss of pre-synaptic markers. Compared to the WT (upper three panels) the double knockout 
(bottom three panels) demonstrate marked loss of the pre-synaptic marker (SV2). The post synaptic marker 

used was alpha bungaratoxin. Pictures obtained by confocal microscopy.  
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6.9 tardbpl-FL is the newly identified alternatively spliced tardbpl 
transcript 

The basal levels of Tardbp and Tardbpl differ in the tardbp+/+ and tardbpfh301/fh301  

zebrafish. In tardbpfh301/fh301  animals the compensatory over-expression of tardbp-

FL is associated with a reduction in 33kDa Tardbpl levels, which indicated to us 

the possibility of an alternative-splicing event involving tardbpl. We speculated 

that  

this potential alternative-splicing event might give rise to tardbpl-FL (Fig 6.16). 

Theoretically tardbpl-FL should have significant identity at nucleotide level in the 

translation initiation site with tardbpl as AMO tardbplATG is able to knockdown 

tardbpl-FL and tardbpl. Therefore we re-examined the TDP-43 orthologues of 

zebrafish. Using BLAST, the tardbpl sequence (ENSDARG00000004452) was used 

for ascertaining the intron/exon boundaries. The intron/exon boundaries for 

tardbpl and cDNA sequence for Genbank predicted tardbpl  was manually 

computed to obtain an open reading frame, from which a theoretical amino acid 

sequence was generated. This analysis resulted in the discovery of a newly 

identified isoform of the Tardbpl protein with 398 amino acids, which we called 

Tardbpl-FL.  

   Further analysis of tardbpl intron exon boundaries and alignment with 

tardbpl-FL sequence was undertaken, which led us to the identification of an 

intronic sequence between exon 5 and 6 of tardbpl, which is able to code for the 

missing amino acids of Tardbpl (Fig 6.16). Furthermore within this intronic region 

we also identified a stop codon. It is therefore plausible that tardbpl-FL is a 

consequence of an alternative-splicing event, which results in an inclusion of 

intron 5-6 of tardbpl. This intron contains the necessary coding for the essential C-

terminal amino acids. We also identified a UGUGU motif near the splice donor site 

of exon 6 in tardbpl gene (Fig 6.16). Although this motif is not a canonical high 

affinity RNA binding site of TDP-43, it has the elements for interacting with TDP-

43 during splicing (Ayala et al., 2006), suggesting that Tardbp could potentially 

promote the splicing event which results in exclusion of the intron 5-6 of tardbpl 

by binding to the UGUGU site. So, in the absence of tardbp this inhibitory loop is 

abolished, and results in an alternative-splicing event where by intron 5-6 is 

included to generate tardbpl-FL.  As tardbpl-FL encodes a 398aa protein it is able 

to rescue the Tardbp null phenotype. Furthermore in the 3’UTR of the tardbpl  
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transcript we found a canonical TDP-43 high affinity binding site -(GU)6 via which 

TDP-43 has been shown to inhibit expression of target mRNAs (Ayala et al., 2011b).   

Taken together, we demonstrate that Tardbpl plays an important role in the 

regulation of the optimal level of zebrafish Tardbp function that is vital for the 

zebrafish development and neuronal health. An alteration of the optimal Tardbp 

level results in changes in the interaction of Tardbp with its RNA targets in an 

attempt to restore the status quo. In the case of the Tardbp null zebrafish, the 

predicted alternative splicing event results in alternative splicing of tardbpl giving 

rise to tardbpl-FL. 

 

 

Figure 6.79 Alternative splice event of tardbpl gives rise to tardbpl-FL, which rescues 
tardbpfh301/fh301  null phenotype 

 

 

6.10  RT-qPCR confirms that in the tardbpfh301/fh301   tardbpl-FL is over-
expressed at the expense of Tardbpl, at RNA level, indicating an auto-
regulatory alternative splicing event 

 

 We performed RT-qPCR using transcript specific primers designed across exon-

exon boundaries to quantify the relative abundance of the two splice isoforms of 

Figure 6.16 Alternative splice event of tardbpl gives rise to tardbpl-FL, which rescues 
tardbpfh301/fh301  null phenotype. Intron 5-6 of the tardbpl (ENSDART00000027255) on 
chromosome 23 contains a coding sequence, which potentially could give rise to a longer Tardbpl 
protein (Tardbpl-FL). In the intron 5-6 is a TDP-43 binding site depicted by ~UGUGU~. There is 
also a canonical high affinity TDP-43 binding site -(GU)6  in what might be the 3’UTR region of 
tardbpl-FL via which tardbp could potentially suppress the tardbpl-FL mRNA. (Bottom diagram) 
Predicted alternative splicing event, which results in inclusion of intron 5-6 creating tardbpl-FL.  
 

http://www.ensembl.org/Danio_rerio/Transcript/Summary?db=core;g=ENSDARG00000004452;r=23:29600688-29605737;t=ENSDART00000027255
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tardbpl. An internal primer set (Table 6.1) was designed to cross the exon 2-3 

boundary in the 5’ end of tardbpl, which is common to both isoforms. cDNA 

amplified using the RNA extracted from both tardbp+/+ and tardbpfh301/fh301  

embryos showed that in the tardbpfh301/fh301  embryos tardbpl-FL is over-expressed 

by as much as 2.4 fold (∆∆ CT, WT-HOM tardbpfh301/fh301  1.27), whilst tardbpl 

expression is reduced by 0.8 fold ((∆∆ CT, WT-HOM tardbpfh301/fh301  -0.21) (Fig 

6.17A-C). These data confirm the alternative splicing event involving tardbpl. 

Furthermore when the amino acid sequences of Tardbp and Tardbp-FL were 

aligned, we noticed that Tardbpl-FL has lost 8 glycine residues from the GRD (Fig 

6.18). This observation might explain the relatively benign nature of de novo 20 

fold over-expression of Tardbpl-FL protein, compared to the toxicity of over-

expression of TDP-43 seen in in vivo and in vitro studies (Ash et al., 2010, Igaz et 

al., 2011) and also may explain why tardbpl-FL cannot alter its own splicing. 

Interestingly we also observed that when amplified using the target PCR primers 

on RT-qPCR products, tardbpl-FL RNA is present even at an early stage of 

embryonic development in both tardbp+/+ and tardbpfh301/fh301 embryos (Figure 

6.19). 

 

 

 

Table 6.4 Primers used in characterisation of tardbpl and tardbpl-FL and in RT-PCR 

Table 6.1 Primers used in characterisation of tardbpl and tardbpl-FL and in RT-
qPCR 

Primer name and location 5’3’ 

1  TDPL-F-1-5UTR     AAATTACTTGTTTTGTGCACATTCG 

2  TDPL-F-2-ATG SPAN GCATTCGGTGTAATCATGACG 

3  TDPL-R-1-TAG SPAN (exon 5) CCCTACATTCCCCAACTGG 

4  TDPL-R-2-3UTR ATACTCTGATATGTGGGCATACTGA 
5  TDPL-R-EXON3 AGTTTGCAGTCGCACCATC 

6  TDPL-F-EXON3 GAGTGGAAATTCCAAAGGATTC 

Primer  6+3= primer set 1 tardbpl-FL- C-terminus (reverse 
primer in the spliced intron) 

Primer  2+4= primer set 2 tardbpl- C-terminus 

Primer 1+5 = primer set 3 Internal control for both tardbpl and 
tarbpl-fl 
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6.17 Quantification of splice variants of tardbpl by RT-qPCR primer sets and critical threshold 
calculation. 

 A) Primer set 1 was designed to specifically identify tardbpl-FL exon-exon boundaries. Primer set 3 was 
designed as an internal control to detect  exon 1-2 of tardbpl, which is identical for tardbpl-FL. Amplification 
curves show a ∆CT value of 1.74 between WT and HOMS and a ∆∆CT value of 1.27. Primer dimers are 
non-significant.  B) Primer set specifically identifies tardbpl. Forward primer of primer set 2 is common to 
both tardbpl and tardbpl-FL. However reverse primer of primer set 2 is specific for tardbpl and it sits on 
exon 5-6 boundary of tardbpl. Amplification curves show no impact from primer dimers and a ∆∆CT of -
0.21 for WT-HOM. C) The expression of tardbpl and tardbpl-FL specific primers were corrected for by 

internal control (primer set 3) and a house keeping gene elF4∝. 
Figure 6.80 Quantification of splice variants of tardbpl by RT-qPCR  primer sets and critical 
threshold 
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Figure 6.81 

ClustalW2 
alignment 
of the 

Tardbp 
and 

predicted 
Tardbpl-

FL amino 
acid 

sequences 

 
Figure 

6.82 

RT-qPCR products amplified using targeted PCR primers for tardbpl-FL  
 

 

6.11 Curly tail motor phenotype associated with tardbpATG AMO 
injection is likely to be caused by a p53 pathway independent, off 
target effect. 
 
It was puzzling to discover that tardbpfh301/fh301 fish survived till adulthood with no 

obvious motor phenotype. We have shown that full-length Tardbp null phenotype 

is rescued by the over-expression of Tardbpl-FL protein. We also have shown that 

Figure 6.19 RT-qPCR products amplified using targeted PCR primers for tardbpl-FL.  Agarose 
gel showing that tardbpl-FL RNA is expressed from an early stage of development in the 

tardbpfh301/fh301  mutants. 

Figure 6.18 ClustalW2 alignment of the Tardbp and predicted Tardbpl-FL amino acid 
sequences. Both the N and the C-termini are highly conserved. Tardbpl-FL is missing nine amino 
acids from the GRD, of which six are glycine residues (Highlighted in grey).  
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obliteration of tardbpl and thus tardbpl-FL translation initiation results in a severe 

motor phenotype and reduced survival in the tardbpfh301/fh301 but not in tardbp+/+ 

siblings (Figure 6.11 and 6.12). Therefore we undertook to investigate the reasons 

why a transient tardbp knockdown model in the zebrafish by Kabashi et al 2010  

and later by us (Chapter 5) resulted in a severe motor phenotype and was not 

rescued by a similar rescue mechanism like Tardbpl-FL up-regulation in  

tardbpfh301/fh301 (Kabashi, 2010). One hypothesis to explain this was that of ‘off 

target effects’ of tardbpATG AMO could result in a phenotype via activation of p53 as 

Kabashi et al did not co-inject anti p53 ATG  AMO. Therefore when we transiently 

knocked down tardbp using AMO we co-injected embryos with anti p53 AMO as 

per Robu et al guidelines (Robu et al., 2007). Although we observed a statistically 

significant improvement in the curly tail phenotype with co- injection of tardbpATG 

and p53 AMO, still the motor phenotype was significantly abnormal compared to 

the controls (Chapter 5).  A second hypothesis to explain the discrepancy between 

transient and stable knockdown of Tardbp was that an acute knockdown of a gene  

tardbp)may result in rapid changes in the protein levels causing a phenotype due 

to lack of time for adaptation, whereas in the tardbpfh301/fh301 mutants have 

undergone a degree of adaptation from the maternally transmitted tardbp at the 

point of generation of the F6. Another hypothesis was that the tardbpATG AMO 

could potentially knockdown both Tardbpl and Tardbpl-FL proteins. To test all 

three hypotheses we designed an experiment to co-inject tardbpATG AMO with p53 

AMO into both tardbpfh301/fh301 and tardbp+/+  embryos. 

Immunoblot from protein extracts obtained from various injection 

categories when probed with h.TDP-43 Ab2 (N-terminus) as depicted in figure 

6.20A control AMO injected tardbp+/+  (WT) controls demonstrate  Tardbl-FL ( ⧮ ) 

and Tardbpl expression appears more than that of Tardbp) (lane 1 Fig 6.20A). The 

tardbp+/+  embryos when injected with tardbpATG AMO showed an up regulation of 

the ~43kDa band despite the knockdown of Tardbp (Fig 6.20B, h.TDP-43 Ab1 

immunoblot).  This band is at the same height as the Tardbpl-FL band in 

tardbpfh301/fh301  control AMO injected group (Fig 6.20A, lane 3). Injection of 

tardbpATG AMO into tardbpfh301/fh301 embryos did not change the Tardbpl or 

Tardbpl-FL band pattern when corrected for loading (Fig 6.20A, lane 4 and Fig 

5.19C alpha tubulin loading control).   These results indicate  that tardbpATG AMO 

does not alter Tardbpl/Tardbpl-FL protein levels.  
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Phenotype analysis showed that tardbpATG AMO injection into tardbp+/+   

(Fig 6.21E) and tardbpfh301/fh301 embryos (Fig 6.21F) result in a curly tail 

phenotype, suggesting the possibility of off- target effects of tardbpATG AMO despite 

co-injection with p53. This result also nullifies the theory that acute knockdown of 

tardbp by AMO was a less adaptable condition compared to tardbpfh301/fh301 

(homozygous) siblings of a heterozygous-heterozygous in cross where maternal 

transmission of tardbp mRNA is expected to allow the HOMs (tardbpfh301/fh301) to 

gradually rescue the tardbpfh301/fh301 Tardbp null mutants from developing a motor 

phenotype.  

We also injected tardbp+/+   and tardbpfh301/fh301  embryos with a splice 

disrupting AMO against tardbp gene (tardbpSpII AMO). In chapter 5 we have shown 

that although tardbpSpII AMO disrupts splicing of tardbp,(Figure 5.14) it does not 

result in a motor phenotype. Therefore we injected tardbpSpII AMO into HOM and 

WT siblings and demonstrated that these embryos were morphologically normal 

(Fig 6.21G-H) despite injecting a higher dose at which almost completely abolishes 

the WT tardbp splice isoform (Fig 6.21I) . A phenotype was observed only in 

relation to tardbpATG AMO injection where either into WT or HOM embryos, but 

same observation was not made with  tardbpSpII AMO (Fig 6.21J). Taken together 

these results indicate that the tardbpATG AMO obtained from genetools.com 

(similar in sequence to the  tardbpATG AMO sequence published by Kabashi and 

colleagues) produces a curly tail phenotype when injected in to both WT and HOM 

zebrafish embryos, suggests p53 dependent and independent off target effects of 

the tardbpATG AMO. 
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Figure 6.83 Knockdown of tardbp using tardbpATG AMO +p53 in WT and homogygous 
mutant embryos does not knockdown the Tardbpl-FL protein 
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Figure 6.20  Knockdown of tardbp using tardbpATG AMO +p53 in WT and homogygous mutant embryos 
does not knockdown the Tardbpl-FL protein.  A) N-terminal TDP-43 Ab immunoblot. Lane 1 demonstrates the 
relative proportions of Tardbpl and Tardbp in the WT embryos. Lane 2 demonstrates that Tardbp knockdown in 
the WT embryos causes up-regulation of Tardbpl-FL ⧮. Lane 3 Control AMO injected homozygous embryos 
(HOM controls) have massively upregulated Tardbpl-FL levels. Homozygous embryos injected with tardbpATG 
AMO also show unaltered levels of tardbpl-FL. B) Complete tardbp knockdown or absence is demonstrated by 

the C-terminal TDP-43 Ab ⧯. C) Alpha tubulin loading control.  
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Figure 6.84 Injection of splice blocking morpholino II (tardbpSpII AMO) does not cause 
abnormal embryonic development in tardbp+/+  (WT) or tardbpfh301/fh301  
(Homozygous/HOM) embryos 
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Figure 6.21 Injection of splice blocking morpholino II (tardbpSpII AMO) does not cause abnormal 
embryonic development in tardbp+/+  (WT) or tardbpfh301/fh301  (Homozygous/HOM) embryos. WT and HOM 
embryos were injected with either tardbp translation blocking AMO (tardbpATG AMO) or tardbp splice blocking 
AMO (tardbpSpII AMO). WT and HOM embryos injected with control AMO (A, B), 2.5 ng of tardbpATG AMO (E,F), 
16ng of control AMO (C,D) or 16 ng of tardbpSpII AMO (G,H). The   tardbpATG AMO injected embryos showed 
severe embryonic malformations in both WT (tardbp+/+  ) and HOMs (tardbpfh301/fh301  ), while tardbpSpII AMO 
injected embryos (WT and HOMs) appeared phenotypically similar.  (I)  RT-PCR of RNA obtained from embryos 
injected with 16 ng of control AMO or varying doses (0.8, 16, 2.4, 4.8, 9.6, or 16 ng) of tardbpSpII AMO.  A dose 
dependent reduction in the wild type tardbp splice isoform (976bp) is observed and the highest dose shows an 
almost complete lack of the wildtype tardbp splice isoform.  The new splice isoform is detected as a 720 base pair 
fragment on the gel.(J)  Post AMO injection phenotype analysis shows a significant curly tail phenotype in the 
tardbp ATG AMO injected WT and HOMs, whereas tardbpSpII AMO  injected embryos produced no phenotype in 

either WT nor  HOMs embryos. 
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6.12 Discussion 
 

TDP-43 is one of the key proteins involved in the pathogenesis of FTLD-U and ALS 

(Sendtner, 2011). The importance of TDP-43 related pathology in ALS and FTLD-U 

has been reinforced by the recent discovery showing that TDP-43 pathology 

predominates in ALS and FTLD cases with an intronic hexanucleotide repeat 

expansion in C9ORF72, which accounts for up to 50% of fALS and 7-10% of sALS 

cases (Dejesus-Hernandez et al., 2011, Renton et al., 2011, Cooper-Knock et al., 

2012). Aggregate formation with C-terminus truncated and hyperphosphorylated 

TDP-43 is observed in pathological brain samples (Neumann et al., 2006) whilst full 

length TDP-43 aggregates are seen in the spinal cord (Igaz et al., 2008) of ALS and 

FTLD-U cases, suggesting a toxic gain of abnormal function of TDP-43 in disease 

(Hasegawa et al., 2011). However, a dramatic redistribution of nuclear TDP-43 to 

the cytoplasm of surviving motor neurons in pathological samples has been 

consistently observed. Analysis of postmortem brain and spinal cord samples has 

also revealed that cells with cytoplasmic inclusions positive for TDP-43 show 

depletion of nuclear TDP-43 (Neumann et al., 2006). This reduction of normal 

nuclear expression of TDP-43 may cause a loss of normal nuclear function, with 

potential adverse effects on vital nuclear functions such as transcription and post 

transcriptional regulation of gene expression, including alternative splicing (Buratti 

and Baralle, 2010b) .   Therefore a strong case exists to investigate the loss of 

nuclear function as a possible mechanism of TDP-43 related pathology.  

   Here we describe the first stable mutant TDP-43 (Tardbp) zebrafish model 

of ALS. Furthermore we show that the loss of full length Tardbp in the 

tardbpfh301/fh301 animals leads to enhanced alternative splicing of tardbpl to generate 

a novel transcript tardbpl-FL, indicating the existence of a newly identified 

regulatory loop that controls Tardbp levels in zebrafish. In addition, we 

demonstrate that knockdown of both tardbp and tardbpl-FL leads to severe defects 

in motor neuronal development, therefore establishing a vital role for Tardbp in 

zebrafish development. This provides a novel, tractable vertebrate model for the 

analysis of the morphological and biochemical consequences of Tardbp loss of 

function.  

   The loss of TDP-43 has been shown to cause embryonic lethality in mice 

(Kraemer et al., 2010) and in fruit-fly (Fiesel et al., 2010). Studies in vitro showed 

that TDP-43 knockdown in a neuronal cell line using small interfering RNA (siRNA) 
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resulted in neurite out growth defects, increased cell death (Iguchi et al., 2009) and 

increased apoptosis, together with defective cell proliferation (Ayala et al., 2008a). 

Additionally, in zebrafish, morpholino-mediated transient knockdown of tardbp was 

shown to produce a severe impairment of motor axon growth and development 

(Kabashi et al 2010).   

   Thus, it was surprising to observe normal Mendelian ratios maintained 

amongst homozygous (tardbpfh301/fh301), heterozygous (tardbpfh301/+) and WT 

(tardbp+/+) zebrafish generated from a heterozygous (tardbpfh301/+) in cross, and 

survival of homozygous mutant (tardbpfh301/fh301) animals to adulthood, in contrast 

to the phenotype observed in tardbp null mice. Our findings suggest that the 

compensatory role played by the tardbpl locus allows tardbp mutants 

(tardbpfh301/fh301) to have sufficient Tardbpl-FL levels to allow normal development.  

However, an earlier study in zebrafish using tardbp and tardbpATG AMO indicated 

that tardbp is a functional gene, whereas tardbpl is non-functional, based on the lack 

of a phenotype in the tardbpl morphants.  We also observed that knockdown of the 

tardbpl gene using a tardbpl AMO did not cause any phenotype in wild type 

zebrafish, indicating that the 33kDa Tardbpl isoform is likely to be non-functional.  

However, on closer examination of the tardbpl locus, we identified the possibility 

that the tardbpl gene might be able to encode a full length Tardbpl protein 

(Tardbpl-FL).  Interestingly, suppression of the alternatively spliced product of the 

tardbpl locus, tardbpl-FL, in the tardbpfh301/fh301 mutant zebrafish is lethal, and these 

findings support the critical role played by tardbp and tardbpl-FL expression in 

normal development.  

 It is not surprising that our results contrast somewhat with the findings of  

Kabashi et al who used a purely morpholino-based approach to explore the 

function of tardbp and tardbpl (Kabashi et al, 2010).  They observed that antisense 

morpholino-mediated knockdown of tardbp produced severe deficits in axonal 

growth and development, while they saw no obvious function for the tardbpl locus.   

Using the same morpholinos utilised in the Kabashi study, we also observed that 

AMO knockdown of tardbp using the translation blocking AMO produced severely 

defective embryos when injected in both WT and the tardbpfh301 mutants (Fig 6.21 

bottom panel E, F).   However, even when we used the highest dose of a splice 

blocking AMO, that completely eliminated the WT splice form of tardbp (Fig 6.21I), 

we saw that the embryos were apparently normal (Fig 6.21, Bottom panel G,H).  



 257 

Thus, we believe that the translation blocking AMO experiments may have some 

off- target mediated effects that could have contributed to the observed phenotype.  

Therefore, it remained unclear whether depletion of Tardbp produced embryonic 

lethality in zebrafish.       

 Using a stable tardbp null mutant zebrafish generated by the TILLING 

process we observed that complete knockdown of Tardbpl/Tardbpl-FL in 

tardbpfh301/fh301 zebrafish produced severe axonal defects and reduced survival, but 

in addition we identified a crucial role for the tardbpl locus in regulating Tardbp 

levels.  Unlike in the scenario occurring with transient knockdown, germ- line 

knockout of tardbp caused an induction of the novel isoform (tardbp-FL) that was 

able to rescue the loss of tardbp function.  While, the AMO studies suggested that 

the tardbpl locus might be non-functional, using the Y220X mutant we were able to 

assign a compensatory function for this locus, through the generation of Tardbpl-

FL.  Although morpholino (AMO) based approaches have in general been useful for 

the characterisation of gene function, here we present a scenario where generation 

of a stable mutant but not the AMO approach was useful in identifying the function 

of a duplicated gene.  This highlights one potential pitfall of using purely 

morpholino- based approaches to study gene function and indicates that a 

combined approach may add value in many circumstances.  Our data suggest that 

sole reliance on AMO gene knock-down may occasionally allow the roles of auto- 

and cross- regulatory genes to be missed and the functions of genes with similar or 

redundant functions to be obscured.  

   It is noteworthy that humans also have two TARDBP genes; one is located on 

chromosome 1p36.22 (TARDBP) while the other is a pseudogene located on 

chromosome 20p12.3 (TARDBPP1). The tardbp gene in zebrafish is located on 

chromosome 6 and the tardbpl gene is located on chromosome 23.  Zebrafish and 

humans appear to share ancestral chromosomes (Woods et al., 2005). We compared 

the synteny map of the tardbp and tardbpl loci in zebrafish with those of the human 

gene and the pseudogene, and found partial conservation of synteny in both cases.  

However, genes around the zebrafish tardbp locus were less rearranged compared 

to those at the tardbpl locus (Figure 6.22). The zebrafish chromosome 23 is 

extensively recombined and relevant genes are distributed amongst many other 

chromosomes in humans (such as 1,2,6,12,20 and X), with a component on 

chromosome 20, where the human TARDBPP1 gene is located.  Thus, it is likely that 
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‘tardbpl’ in humans underwent recombination events that could have potentially led 

to the loss of functional tardbpl and the creation of the TARDBPP1 pseudogene.   

 

 

Figure 6.85 Synteny map of zebrafish tardbp (Chromosome 6) and tarbpl (Chromosome 23) 
loci with human orthologues. 

 

 

It is of interest to question what selection pressure enabled the maintenance of 

functional tardbp and tardbp-FL genes in zebrafish.  One interesting clue suggesting 

divergent roles for Tardbp and Tardbpl-FL, is the phenotype of the tardbpfh301/fh301 

mutants.  We observed that despite the up-regulation of tardbpl-FL in the 

tardbpfh301/fh301 mutant zebrafish, the mutants were smaller in size compared to WT 

(Figure 6.5), which indicates that Tardbp and Tardbpl/Tardbpl-FL may have, both 

functionally overlapping and distinct roles in zebrafish development and in adult 

life. The small body phenotype of tardbpfh301/fh301 animals suggests that Tardbp may 

play a critical role in growth regulation, which is not fully compensated by the up-

regulation of tardbpl-FL expression in the mutants. In keeping with this are the 

Figure 6.22 Synteny map of zebrafish tardbp (Chromosome 6) and tarbpl (Chromosome 23) loci 
with human orthologues. The genes in zebrafish chromosome 6 and 23 near the tardbp and tardbpl 
loci were mapped to human chromosome locations and plotted. Genes around tardbp on zebrafish 
chromosome 6 appear to be grouped together with fewer recombinations as compared to the 
chromosome 23 tardbpl locus. Genes coloured similarly are located on the same chromosome. 
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findings from conditional postnatal knockout of Tardbp in mice which showed that 

these mice develop loss of body weight and down regulation of Tbc1d1, increased 

expression of which is associated with obesity (Chiang et al., 2010).  Thus, the 

specialised role played by tardbp as compared to tardbpl may have been important 

in maintaining the two genes during evolution.  As we do not yet have a stable 

tardbpl mutant, we do not yet know what specific role tardbpl-FL may play in 

zebrafish development. 

   Up-regulation of tardbpl-FL expression by alternative splicing of the tardbpl 

locus in the tardbpfh301/fh301 mutants is interesting.  The generation of the tardbpl-FL 

transcript occurs by the inclusion of intron 5 of tardbpl, which is able to code for the 

additional C- terminal amino acids generating an almost full-length Tardbp-like 

protein.  This intron contains a UGUGU motif near the splice donor site of exon 6.  

Additionally, another canonical high affinity TDP-43 binding site -(GU)6  is located in 

the 3’UTR region of the tardbp and tardbpl-FL transcripts.  Although the UGUGU 

motif is not a canonical high affinity RNA binding site of TDP-43, it has the elements 

required for interacting with TDP-43 during splicing (Ayala et al., 2006), suggesting 

that Tardbp could potentially regulate the tardbpl/tardbpl-FL splicing process.  This 

phenomenon is illustrated in the report describing the alternative splicing of the 

splice regulatory factor SC35. SC35 promotes alternative splicing of its terminal 

exon by binding to the intronic low affinity sequence, which has UGUG repeats. TDP-

43 inhibits this exon skipping by competing with SC35 for the low affinity binding 

sites (Dreumont et al., 2010).  Furthermore the canonical high affinity TDP-43 

binding site -(GU)6  in the 3’UTR region of tardbp and tardbpl-FL could also 

potentially play a role in suppression of the tardbpl-FL mRNA splicing. Hence, it is 

likely that in the absence of tardbp, a tardbp- induced inhibitory loop is abolished, 

which in turn results in alternative splicing of tardbpl where intron 5-6 is retained 

to generate tardbpl-FL and results in a 20 fold up regulation of Tardbpl-FL protein 

levels in the tardbpfh301/fh301 mutants.  Taken together these results predict an in vivo 

autoregulatory model involving Tardbp and tardbpl/tardbpl-FL in keeping with the 

auto-regulatory mechanism/s hypothesised for TDP-43 (Buratti and Baralle, 

2011b).  

   One interesting aspect of the up-regulation of tardbpl-FL expression is that 

it is unable to completely rescue the loss of Tardbp despite the high homology 

between Tardbp and Tardbpl-FL.  Tardbpl-FL lacks nine residues from the glycine 
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rich domain (GRD) of which six are glycine residues. This observation might 

explain three other findings. Firstly, in tardbp null zebrafish, the tardbpl-FL protein 

level is increased by 20 fold. Perhaps this massive compensatory elevation of 

Tardbp-FL may explain the absence of an overt phenotype in the 

tardbpfh301/fh301zebrafish. Secondly, given the high homology between tardbpl-FL 

and tardbp, one would expect tardbpl-FL to auto-regulate itself by inducing 

alternative splicing to promote skipping of intronic exon 5 to generate tardbpl.  

However tardbpl-FL appears to fail to regulate its own splicing efficiently, resulting 

in a massive 20-fold up-regulation of the tardbpl-FL protein. Thirdly, an 

observation from TDP-43 over-expression in vitro and in vivo models is that over-

expression of full length WT, mutant TDP-43 or C-terminal fragments of TDP-43 

are all toxic and lethal (Xu et al., 2010). The toxicity of over-expression of 

exogenous TDP-43 even at relatively low levels in transgenic rodents (Swarup et 

al., 2011b, a) is not observed in the tardbpfh301/fh301 null zebrafish with 

compensatory 20 fold increase in the Tardbpl-FL protein level. Therefore it is 

plausible that the glycine residues which are missing from the GRD of the Tardbpl-

FL (Figure 6.18 shaded in grey) are indeed important for maintaining maximum 

efficiency of the function of TDP-43, as well as mediating TDP-43 over- expression 

related toxicity.  

 Taken together, our data describe for the first time, a critical role for tardbp 

and tardbpl in zebrafish development.  We show that tardbp is critical in the 

regulation of body size as over-expression of Tardbpl-FL in the tardbpfh301/fh301 

mutants is unable to rectify this deficit.  However, increased tardbp-FL expression 

in tardbpfh301/fh301 mutants is able to partially compensate for the early 

developmental role of tardbp.  The complete knockdown of tardbp and tardbpl-FL 

results in severely abnormal neuronal development and concurrent embryonic 

lethality, demonstrating a critical role for Tardbp or Tardbpl-FL in embryonic 

neurodevelopment.  The uncovering of a newly identified regulatory loop between 

tardbp and tardbpl and the discovery of tardbpl-FL in zebrafish will allow us to use 

the double knockdown zebrafish model to study disease mechanisms and 

neuroprotective strategies and to better understand human ALS associated with 

TARDBP mutations.  
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Chapter 07:  

Overall discussion 

 

7.1 Introduction 
 
Multifunctional TDP-43 is described as one of the major components of the 

ubiquitinated neurocytoplasmic aggregations observed in the pathological samples 

of ALS/MND cases with or without FTLD. The presence of aggregated proteins is a 

well-established facet of neurodegenerative conditions.  TDP-43 positive 

ubiquitinated-protein aggregates in non-SOD1 related ALS are a consistent 

observation. Whether aggregated TDP-43 confers a toxic effect on neuronal health 

and drives the disease process, or represents an epiphenomenon or indeed a 

marker of processes protecting the surviving neurons from the harm of toxic 

misfolded proteins, is open for debate. However, it is well established that 

mutations in the TARDBP gene encoding TDP-43 are associated with ALS and 

FTLD. TDP-43 proteinopathy encompasses a range of neurodegenerative disorders 

including sporadic and familial ALS, FTLD, corticobasal degeneration, and 

progressive supranuclear palsy. TDP-43 has been implicated in multiple RNA 

processing functions such as transcription, splicing, translation, RNA-transport, 

stress granule formation, and miRNA processing. The discovery of RNA binding 

and processing proteins like TDP-43, FUS and the recent discovery of C9ORF72 

intronic hexanucleotide expansion in ALS cases has highlighted the importance of 

RNA processing in ALS pathogenesis.  The discovery of the association of 

dysfunction of TDP-43, FUS and C9ORF72 with ALS has been paradigm changing 

and the focus of many studies only on pathophysiological mechanisms and models 

related to SOD1, has now shifted to proteins with RNA-related functional 

importance such as TDP-43, FUS and C90RF72. Furthermore, over-expression of 

TDP-43 or knockdown of the TDP-43 orthologue in mice, rats, fruit fly, zebrafish 

and C.elegans results in motor neuronal dysfunction. It still remains uncertain 

whether dysfunctional TDP-43 causes motor neuron degeneration by a gain of 

toxic function, loss of function or both mechanisms.  
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7.2 Has over-expression of WT or mutant TDP-43 in animal models 
contributed to the understanding of TDP-43 function? 
 
In cases with ALS and FTLD the total TDP-43 level is 2.5 fold greater than in those 

who are normal ((Cairns et al., 2007, Gitcho et al., 2009). This fact, along with the 

tradition of over-expression of mutant genes in animal models to study mutations 

in genes associated with human diseases, have led to the generation of several 

animal models to gain insights into mechanisms of TDP-43-related ALS, since the 

discovery of the association of TDP-43 with ALS/FTLD in 2006. Transgenic mouse 

and rat models generated using different promoters to target expression patterns 

(ubiquitous or CNS only) and timings (throughout life or expression at a certain 

developmental period) have resulted in inconsistent features of TDP 

proteinopathy.  

Several in vitro and in vivo models have been set up to study the toxic gain 

of function mechanisms of TDP-43-related ALS by over-expression of mutant and 

wild type TDP-43. Interestingly not only mutant TDP-43 but also WT-TDP-43 over-

expression resulted in an ALS like phenotype in rodent models. Although clinical 

manifestations of motor neuronal dysfunction were observed, the formation of 

neurocytoplasmic inclusions or aggregations, cytoplasmic mis-localisation, C-

terminal truncation and phosphorylated TDP-43 accumulation were not observed 

in a consistent pattern in all the models generated.  Over -expression of the human 

M337V mutation under the human endogenous promoter in the rat, did however, 

produce clinical and biochemical phenotypes of ALS (Zhou et al., 2010). 

Cytoplasmic mis-localisation and alteration of DNA/RNA-related functions 

appeared to be relatively more consistent than other biochemical features, 

suggesting that loss of function of nuclear TDP-43 could be a major contributor to 

the pathogenesis ALS.  The most important contribution from the over-expression 

rodent models informs us that cytoplasmic aggregation; C-terminal truncation and 

phosphorylation are not essential for motor neuron degeneration related to 

dysfunctional TDP-43. Furthermore, mutant or wild type TDP-43 is toxic to 

neurons when over- expressed. Drosophila models over-expressing full length 

wtTDP-43 demonstrated aggregate formation, whilst none of the full length 

mutant TDP-43 resulted in aggregate formation, supporting the notion that 

aggregate formation is not essential for neurodegeneration to occur (Estes et al., 

2011).   
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 7.3 Is loss of function of nuclear TDP-43 important for 
neurodegeneration in TDP-43 related ALS? 
 
 Studying loss of TDP-43 function is reasonable in an animal model to directly 

observe affected genes and relate this information to the human disease. 

Knockdown models of TDP-43 in mice, drosophila and zebrafish have informed us 

that TDP-43 is essential for development and neuronal health. Conditional 

knockout mice did not develop an ALS like phenotype, but demonstrated 

abnormalities of body fat metabolism (Chiang et al., 2010). Targeted depletion of 

TDP-43 in the spinal cord resulted in an ALS-like phenotype and formation of 

ubiquitinated protein aggregates (Wu et al., 2012, Saxena et al., 2013). 

Overexpression rodent models of TDP-43 showed loss of endogenous TDP-43 from 

the neuronal nuclei (Wegorzewska et al., 2009, Tsai et al., 2010, Wils et al., 2010, 

Igaz et al., 2011, Swarup et al., 2011a) suggesting that once TDP-43 starts mis-

localising to the cytoplasm, it causes a whirlpool effect and drags physiological 

nuclear TDP-43 out of the nucleus. It is well established that TDP-43 is vital for 

several nuclear functions including regulation of transcription and RNA splicing.  

Therefore loss of nuclear TDP-43 could result in neuronal dysfunction. Taken 

together, it appears that maintenance of endogenous physiological levels of wild 

type TDP-43 is essential for neuronal health and disturbance of this finely 

controlled expression could result in neurotoxicity.  

It may not be possible to study accurately the effects of disease related 

mutations of a protein like TDP-43, which has tens of thousands of RNA targets in 

both exonic and intronic regions, in a model that is genetically distant from that of 

humans. In such a model, it is also nearly impossible to decipher the effects of 

over-expression of mutant or wild type TDP-43. Zebrafish models generated by 

our team using TILLING mutagenesis or by others by genome wide editing with 

zinc finger endonucleases demonstrated that tardbp knockdown is insufficient to 

generate a motor phenotype, as an auto-regulatory process rescues the loss of 

tardbp motor phenotype.  This demonstrates that complex RNA regulatory 

mechanisms are either switched on or off when the physiological level of TDP-43 is 

altered artificially.  Animal models have clearly demonstrated that TDP-43 is an 

essential protein at all stages of life.  Most knockdown models show reduced 

survival at the embryonic stage and loss of motor neurons when knocked down 
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conditionally at later stages of life.  Over-expression models have informed us that 

perturbation of the TDP-43 level, whether WT or mutant is also unfavourable for 

normal neuronal function. Despite regular publications of new TDP-43 animal 

models, there is still considerable debate about the exact pathophysiological 

features of TDP-43 proteinopathy and we still do not understand the 

pathophysiological mechanisms of disease-related mutations or the neuronal 

dysfunction occurring in the presence of the aggregation of non -mutant TDP-43. 

Taken together, it appears that the focus should be on investigating ALS and 

related mechanisms using a human model such as patient -derived cell lines and 

post-mortem CND tissue. 

 It is important to find out if the predominant feature associated with either 

sporadic ALS or TARDBP-related fALS is gain of function or loss of function as this 

will help in the identification of therapeutic targets for neuroprotection. Potential 

therapeutic measures involved in addressing loss of function mechanisms would 

be external delivery and expression of target molecules/TDP-43 into the neurons 

so that functional physiological TDP-43 levels can be maintained above a critical 

threshold. This could potentially be achieved by either inhibiting mis-localisation 

and aggregation in the cytoplasmic inclusions or enhancing the solubilisation of 

aggregated TDP-43. Should the major pathogenic mechanism be a gain of toxic 

function, theoretically, an agent to inhibit the mutant protein/disease-causing 

fragment of the molecule could be generated.  

 

7.4 Is it reasonable to use animal models to study TDP-43-related ALS? 
 

Humans and rodents are evolutionarily divergent and other non-mammalian 

species and non-vertebrates are even further divergent. Through evolution the 

genomes have undergone vast changes and the evolutionary forces, which worked 

on introns, were different from those applied to exons. Therefore the genetic 

distances between rodents and humans with regards to intronic sequences are 

vast. Polymenidou et al (2011) identified more than 39,000 RNA binding sites of 

TDP-43 in the mouse genome in a RNA cross linking, high- throughput sequencing 

and immunoprecipitation study (Wegorzewska and Baloh, 2010, Polymenidou et 

al., 2011). Interestingly most pre-mRNA targets of TDP-43 contained long introns 

with TDP-43 binding sites. Whilst it is the scope of another detailed study to 
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compare the relative conservation of these intronic TDP-43 binding sites across 

species, it is conceivable that intronic RNA sequences are significantly variable 

between two evolutionarily close species such as mouse and the rat, with even 

greater variability between rodents and humans. Therefore to study 

pathophysiological mechanisms related to ALS of an RNA binding protein like TDP-

43 with thousands of targets in intronic non-coding regions, in a non-primate 

model, would be extremely challenging. This is at least in part, reflected in the 

relative paucity of new information gathered from 32 different mammalian and 71 

non- mammalian TDP-43 animal models (transgenic, TILLING mutagenesis, zinc 

finger endonuclease, mutagenised and knockout models) published to date. These 

studies have not so far extended our knowledge beyond what we already know 

about TDP-43 and its function from cellular models and from the study of human 

cases. Furthermore, although loss of TDP-43 from the nucleus and cytoplasmic 

aggregate formation is noted in motor neurons from ALS and FTLD cases, only 4% 

of the ALS cases have mutations in the TARDBP gene. In addition, the study of TDP-

43 and its disease-causing mechanisms requires physiological levels of mutant or 

wild type TDP-43 to prevent artifactual changes in the disease model.  

 We know that knockdown of TDP-43 in mice, drosophila and zebrafish 

models is embryonic lethal (Kraemer et al., 2010, Sephton et al., 2010, 

Hewamadduma et al., 2013) and over-expression of either wild type or mutant 

TDP-43 is also toxic in cellular and animal models (Ayala et al., 2011b, Igaz et al., 

2011). Moreover, we have demonstrated in an in vivo zebrafish model that 

physiological expression of a loss of function mutation results in a loss of a 

negative feedback loop which activates expression of an alternative mRNA 

(Hewamadduma et al., 2013). Studies from other groups have also supported the 

concept that TDP-43 autoregulates its own mRNA levels to optimise the levels of 

intracellular TDP-43 (Ayala et al., 2011b). Taken together, it appears challenging to 

generate an animal model of dysfunctional TDP-43. We know that a sporadic form 

of disease afflicts about 90% of ALS and FTLD cases indicating that complex 

genetic and environmental factors operate upstream of TDP-43 during disease 

initiation and subsequent progression. As such, it is nearly impossible to model the 

sporadic form of ALS in an animal or in an in vitro cell model. Therefore, we believe 

that models based on patient derived tissues such as fibroblasts and 
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lymphoblastoid cell lines, can overcome some of the potentially huge pitfalls 

inherent in animal models.  

 

7.5 Are patient-derived fibroblasts sufficiently robust as a cell model to 
interrogate TDP-43-related ALS ? 
 
Limitations in artificially modifying the physiological levels of TDP-43, mutant or 

wild type, pose many challenges when it comes to interpretation of the results 

from such animal or cell models. Patient-derived cell lines such as fibroblasts have 

a greater advantage in that TDP-43 levels are physiological. Although fibroblasts 

unlike neurons, can undergo multiple cell divisions, our studies have demonstrated 

that fibroblasts derived from ALS cases with TDP-43 mutations exhibit features of 

TDP-43 proteinopathy such as relative nuclear clearing, hyperphophorylated 

aggregated cytoplasmic and nuclear TDP-43 and p62 positive aggregates, which 

are observed in motor neurons from pathological brain and spinal cord samples 

(Neumann, 2009). Furthermore, we have shown that RNA metabolism dynamics 

are impaired in mutant TDP-43 fibroblasts when compared to controls in studies 

investigating assembly and disassembly of  stress granules in fibroblasts in 

response to exogenous stress and in studies analysing the  expression of gene 

splicing variations (Merdzhanova et al., 2010). 

 Living motor neurons derived from induced pluripotent stem cells (iPSC) 

are considered to provide an ideal platform to model wild type and mutant TDP-

43, which is closest to the living motor neurons of an affected patient. iPSCs 

derived from patients with fALS associated with TDP-43 mutations like Q343R, 

M337V and G298S have demonstrated decreased cell survival and defective 

neurite out growth (Bilican et al., 2012, Egawa et al., 2012) indicating motor 

neuron dysfunction.  Furthermore, others have demonstrated 

hyperphosphorylated TDP-43 aggregates similar to our observations in patient-

derived fibroblasts harbouring M337V, G287S and A321V TARDBP mutations 

(Egawa et al., 2012). Interestingly a report from Burkhardt et al also described 

hyperphosphorylated TDP-43 aggregate formation in the cytoplasm of  motor 

neurons derived from iPSCs from sALS cases (Burkhardt et al., 2013) suggesting 

that motor neurons derived from iPS cells potentially could form an excellent 

platform to study TDP-43 related motor neuronal dysfunction in both sALS and 

fALS cases. However, we are aware of significant challenges the iPSC system poses, 
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such as significant variability amongst the clones obtained from a single patient, 

effects on so-called epigenetic memory which can be lost during reprogramming 

(Burkhardt et al., 2013) and high costs associated with generation of iPSCs. 

Furthermore, significantly low throughput of successfully generated iPSCs is in the 

order of 0.01-0.1%, suggesting the need for precision control of timing and 

balancing the absolute levels of expression levels of the reprogramming genes 

(Knippenberg et al., 2013). The use of transcription factors to reprogramme the 

original somatic cell can result in integration, which can lead to insertion of 

mutations in the target cell’s genome. Fibroblasts provide an excellent platform to 

study the sporadic form of ALS, which is considered to have non-mutant but 

dysfunctional TDP-43. Sporadic ALS is considered to be a manifestation of complex 

genetic, epigenetic and environmental factors. It is plausible that iPSCs derived 

from patient fibroblasts could lose vital epigenetic memory during reprogramming  

and as such it is logical to believe that iPSCs might not be ideal to model sporadic 

ALS. On the other hand, the use of novel techniques such as employing 

polyarginine anchors to channel certain proteins into the cells without causing any 

genetic alterations, called piPS cells (protein-induced pluripotent stem cells) could 

potentially provide living motor neurons harbouring the exact genetic make up 

and the epigenetic memory of the original donor tissues/fibroblasts . 

 

7.6 How do stress granules fit in with the neurodegenerative process in 
TDP-43-related ALS? 
 
Eukaryotic cells have adapted well to face environmental stress, wherein during 

stress the cells preserve energy and resources by temporarily shutting down the 

untranslated mRNA and the associated RNA binding proteins and directing them 

into dynamic cytoplasmic entities called stress granules.  This enables the cell to 

direct its resources to cell survival and recovery once the stress has passed 

(Anderson and Kedersha, 2008). Several different RNA binding proteins are 

traditionally used as SG marker proteins, such as  TIA1, TIAR, staufen, G3BP, HuR1, 

hnRNPA1 etc. Interestingly, most of these RNA binding proteins, in addition to a 

RNA recognition motif (RRM), also have a prion-like domain which enables them 

to aggregate rapidly and this feature is of vital importance in facing cellular stress 

and the formation of SGs where rapid aggregation of translational factors and pre-

mRNA molecules is required(Kim et al., 2013). Furthermore, both TDP-43 and FUS 
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have RNA recognition motifs and prion-like domains.  The TDP-43 prion-like 

domain is predicted to be in the C-terminus between amino acids 277-414, whilst 

FUS has a prion-like domain in the N-terminus between amino acids 1-239. 

Interestingly, mutations in the key SG marker protein TIA1 have been linked with 

neurodegenerative conditions like Welander distal myopathy and mutations in 

hnRNPA1 and hnRNPA2/B1 protein are associated with a complex form of ALS 

associated with inclusion body myositis, Paget’s disease, and fronto temporal 

dementia (IBMPFD/ALS) (Kim et al., 2013, Kuijpers et al., 2013). Furthermore, 

displaced hnRNPA3, an RNA binding protein with prion-like domain, was found in 

aggregates in pathological samples of cases with C9orf72 hexanucleotide 

expansion associated FTLD (Mori et al., 2013). ALS-related proteins, TDP-43 and 

FUS  have been reported to colocalise with SG binding proteins such as TIA1, TIAR 

and HUR (McDonald et al., 2011, Vance et al., 2013). Moreover, our studies 

demonstrate that fibroblasts harbouring mutant TDP-43 take an abnormally long 

time to disassemble the SGs after the stress has passed. In keeping with these 

findings, one study  showed  that SGs formed in response to ‘chronic stress’ in a 

background of dysfunctional TDP-43, do not appear to disassemble (Parker et al., 

2012). Several studies investigating pathological brain and spinal cord samples 

from ALS cases have demonstrated that some intra-neuronal TDP-43 positive 

aggregates indeed co-localise with certain SG marker proteins such as TIA1 and 

TIAR (Liu-Yesucevitz et al., 2010).  Although TDP-43 does not appear to be 

essential for SG assembly, some studies have shown that knockdown of TDP-43 

can affect the size of SGs (McDonald et al., 2011). FUS has also been shown to co-

localise with SGs and this effect is heightened by ALS- related mutations (Bosco et 

al., 2010b). Taken together, a body of evidence is now demonstrating that stress 

granules and their dynamics are likely to play an important role in ALS and FTLD 

associated neurodegeneration. 

 

7.7  How dysfunctional TDP-43 might contribute to neurodegeneration 
by modulating RNA function involved in stress granule dynamics: an 
hypothesis 
 
In computational modeling TDP-43 and many other proteins have been shown to 

possess a prion-like domain in the C-terminus (Bucheli et al., 2014). Furthermore, 

in heat shock experiments TDP-43 has been shown to aggregate in the nucleus in a 
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prion-like domain (Q/N rich domain in the C-terminus) dependent manner 

modulated by various chaperones like hsp40 and hsp70 (Wood, 2013). Prion-like 

domain and RNA binding domains are said to be common features of many RNA 

binding proteins that take part in SG formation in response to environmental 

stress (Kawaguchi-Niida et al., 2013). TDP-43 shares many of these features in its 

molecular structure. Under physiological conditions, when cells are subjected to 

stress, RNA binding proteins can rapidly herd their RNA targets and the RNA 

binding molecules they interact with, into temporary cytoplasmic entities i.e. stress 

granules (SG) making the optimal use of their ‘prion like domains’. TDP-43, like 

these RNA binding proteins, which are important in SG formation, is equipped with 

a prion- like domain and RRMs to modulate SG formation until the stress has 

passed. Under physiological conditions this prion-like state is reversible and as 

such when the stress has passed SGs can disassemble releasing the mRNA and RNA 

binding proteins so the translational process can resume (Figure 8.1 stage 1). The 

exact mechanisms responsible for SG disassembly is not known. SGs have been 

likened to liquid and gel-like states, which are reversible.  However, these states 

can subsequently evolve into multiple conformational states and at its most stable 

format can form self-templating oligomers, which subsequently could lead to non-

reversible aggregate formation (Fernandez et al., 2013, Bresch et al., 2014, Song et 

al., 2014). It is known that mutant TDP-43 is more stable than its wild-type 

counterpart and most of the mutations of TDP-43 are located in the C-terminal 

region.  Alteration of TDP-43 function or structure could be the first ‘hit’ which 

then subsequently alters its prion-like behaviour and promotes self assembly and/ 

or delayed disassembly once oligomerised into transient fluid or gel-like non 

membranous formations i.e. stress granules, following a ‘second hit’ such as 

cellular stress (Figure 8.1 Stage 2). Once initiated, dysfunctional TDP-43 may self-

assemble at a rate, which could be kept under check by the ubiquitin proteasome 

system, which clears  misfolded proteins. In the presence of mutations of TDP-43, 

uncontrolled self -assembly of TDP-43, which is sufficient to cause aggregation of 

either nuclear or cytoplasmic TDP-43 eventually results in loss of functional 

nuclear TDP-43 (loss of function model) and/or localisation to SGs with alteration 

in their properties such as delaying disassembly. The results from our studies 

(Chapter 5) and others have clearly demonstrated that cells carrying mutant TDP-
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43 exhibit an altered SG response to acute stress (Liu-Yesucevitz et al., 2010, 

McDonald et al., 2011) (Gain of function model).  

 

 

 

Figure 7.86 Triple hit hypothesis involving stress granule (SG) formation during 
neurodegeneration 

Figure 7.1 Triple hit hypothesis involving stress granule (SG) formation during neurodegeneration  
Stage 01- Physiological states during which stress granules assemble and disassemble.  
Stage 02- Dysfunctional/mutant TDP-43 as a ‘first hit’ in interfering with normal SG formation and function. 
Impaired SG formation and delayed disassembly could lead to a self-templating protein aggregation 
process and the propensity to behave in a prion-like manner. However effective ubiquitin-proteasome 
system (UPS) and/or autophagy can overcome this potential threat. Persistent chronic stress can 
predispose to and/or cause dysfunctional TDP-43-like RNA binding proteins to aggregate more robustly.  
Stage 03- Dysfunctional UPS/autophagy system can exacerbate the self-templating prion-like aggregation 
leading to toxic aggregation and neuronal death. 
 

 

In support of this phenomenon are the findings from studies on another ALS-

related protein called FUS (Fused in sarcoma -1 protein), which also harbours a 

prion-like domain.  Disease associated mutations of FUS tend to result in 

cytoplasmic mis-localisation and abnormal SG dynamics (Bosco et al., 2010a, 

Bresch et al., 2014). Perhaps a ‘third hit’ is necessary in the case of wild-type TDP-

AA
AA	

AA

AA	
AA

AA	

H
U
R	

G
3BP1	

TIA1	

AAAA	

AAA
A	

AAA
A	

TIA1	

G3B
P1	 HU

R	

AAA
A	

TIA1	

G3B
P1	

HU
R	

TD
P-
43
	

TD
P-
43
	

AA
AA	

AA

AA	
AA

AA	

H
U
R	

G
3BP1	

TIA1	

TD
P-
43
	

TD
P-

43
	

TD
P-

43
	

TD
P-

43
	

TD
P-

43
	

TD
P-

43
	

TD
P-

43
	

TD
P-

43
	

TD
P-

43
	

TD
P-

43
	

TD
P-

43
	

TD
P-

43
	

TD
P-
43
	

TD
P-
43
	

TD
P-
43
	

TD
P-
43
	

TD
P-
43
	

TD
P-
43
	TD
P-
43
	

TD
P-
43
	

TD
P-
43
	

TD
P-
43
	

TD
P-
43
	

TDP-43	
P	

Ubiqui
n	

Ubiqui
n	

Ub
iq
ui

n	
TD
P-
43
	

P	

TDP-
43	P	

TD
P-
43
	

P	

TD
P
-4
3
	
P	

TD
P-
43
	

P	

TD
P
-4
3	
P	TDP-43	 P	

Ubiqui n	

STAGE	01	
PHYSIOLOGICAL	STATE	

STAGE	02	
‘FIRST	HIT’	STATUS		
• CHRONIC	STRESS	
• DYSFUNCTIONAL	

TDP-43	
• MUTANT	TDP-43	

TD
P-
43
	

TD
P-
43
	TD
P-
43
	

TD
P-

43
	

TD
P-

43
	

TD
P-

43
	

TD
P-
43
	

TD
P-
43
	

TD
P-
43
	

STAGE	03	
‘THIRD’	HIT	STATUS	
• DYDFUNCTIONAL	

UPS	OR/AND	
• AUTOPHAGY	

Stress	granule	

Stress	granule	
Nuclea ng	
factors	

UPS/	Autophagy	
Degrada on	of	mis-
folded	proteins	

AA
AA	

AA

AA	
AA

AA	

H
U
R	

G
3BP1	

TIA1	

Delayed	
disassembly	of	
Stress	granules	

Prion	like	
aggrega on+	
nuclear	TDP-43	

mislocalisa on	

UPS/	Autophagy	at	full	
capacity	 ‘Third	hit’	

UPS	dysfunc on	

Un-cleared	mis-folded	
protein	accumula on/	
post	transla onal	

modific

a

ons		

‘SECOND	HIT’	-
STRESS	



 271 

43 related neurodegeneration, wherein a dysfunctional ubiquitin-proteasome 

system unable to cope with aggregated misfolded proteins combined with chronic 

exogenous stress which potentially can lead to persistent TDP-43 positive 

aggregate formation (Parker et al., 2012).   This eventually could result in 

precipitation of  nuclear proteins like TDP-43 and other RNA binding proteins 

important for RNA metabolism and vital cellular functions, into these aggregates. 

Once initiated this self-perpetuating prion-like aggregation then results in 

premature cellular death (Figure 8.1, stage 3).  

 An emerging concept is the cell to cell propagation of neuro-cytoplasmic 

aggregates from one brain/spinal cord region to other anatomically linked regions 

like a ‘bush fire’  from the onset to the progression of the disease process in many 

neurodegenerative conditions (Zhou et al., 2013, Bame et al., 2014). Therefore, it is 

plausible that these aggregated proteins then behave like prions and spread to 

neighbouring neurons. Furthermore, it is also possible that de novo nucleation of 

protein aggregates can occur in anatomically distant locations which then spread 

out to neurons local to the initial site. Taken together, it is plausible that 

dysfunctional TDP-43 associated alteration of SG dynamics could contribute to 

neurodegeneration in both gain of function and loss of function mechanisms.  

 

7.8.  Future work 
 

7.8.1 Patient derived cell lines 

We have demonstrated by immunocytochemistry the relative loss of nuclear TDP-

43 in the ALS related mutant TDP-43 fibroblasts compared to controls. Studies 

from the pathological tissues have shown that overall TDP-43 levels in TDP-43 

mutants’  tissues are greater than that of the controls suggesting  greater stability 

of mutant TDP-43, potentially rendering it more susceptible to post-translational 

modifications leading downstream to aggregation (Ling et al., 2010). Therefore 

further studies assessing whole cell extracts and cytoplasmic and nuclear fractions 

extracted from all three mutant TDP-43 fibroblasts and the controls need to be 

immunoblotted with both phosphorylation independent and dependent antibodies 

to confirm the observations made using immunocytochemistry. Similar studies 

should also be carried out on arsenite treated and untreated cells to assess the 

generation of C-terminal fragmentation of TDP-43, phosphorylation and 
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ubiquitination of endogenous wtTDP-43 and mutant TDP-43. We also need to 

obtain more cell lines for each mutant TDP-43 fibroblast cell line to increase the 

accuracy and the repeatability of the findings.  

 We hypothesised that over expression of TDP-43 is toxic to HEK293T cells 

and this needs to be directly measured in an objective measure such as using an 

MTT assay. 

Endogenous TDP-43, detected by a phosphorylation independent antibody, 

did not co-localise with SG nucleating proteins such as TIAR and HUR, when 

fibroblasts were treated with arsenite. Therefore it would be interesting to see if 

phosphorylation-dependent TDP-43 would co-localise in a different pattern i.e. 

into stress granules, to non phosphorylated TDP-43 upon stress.  A current 

limitation in our patient derived cell lines is that we need to increase the number 

of cell lines per TDP-43 mutation.  

We have identified nuclear TDP-43 localisation and the intensity and 

dynamics of SG assembly and disassembly as readouts that differentiate mutant 

TDP-43 from control fibroblasts. Therefore we could utilise these parameters in 

identifying agent/s that can alter the above readouts favourably to identify small 

molecules from screening drug libraries and in the identification of  therapeutic 

agents capable of ameliorating TDP-43 related neurodegeneration. Furthermore 

we also plan to study formation of SG in an in vivo model such as zebrafish. 

 

7.8.2 Mutant zebrafish tardbp fh301/ fh301  

Further characterisation of the tardbp fh301/ fh301 needs to be undertaken. Mutations 

in TARDBP are also associated with FTLD in addition to ALS (Table 1.2). 

Furthermore nearly 50% of ALS cases demonstrate features of FTLD upon 

psychometric analysis. Therefore it is conceivable that mutant fish could develop 

behavioural traits despite an apparent rescue by tardbpl-FL. We also need to 

perform immunohistochemistry and immunofluorescence of mutant zebrafish to 

assess cellular/sub-cellular distribution of tardbpl-FL. We can also use the mutant 

and wtTDP-43 constructs used for over-expression in HEK293T cells to assess if 

double knockout zebrafish can be rescued by injection of mTDP-43 or wtTDP-43 

mRNA. Furthermore confirmation of the NMJ defects of Tardbp and Tardbpl-

Tardbpl-FL double knockout embryos, by analysing NMJ staining of more embryos. 
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 Generation of a tardbp transgenic zebrafish model with the heat shock 

promoter to induce TDP-43, need to be generated, a motor phenotype if present 

could be utilised to screen for small molecule libraries. The principle for which is 

already established in our lab (Ramesh et al, ongoing work on SOD1 mutant 

zebrafish).  
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Outputs and achievements during the MRC Clinical 

Training Fellowship 

 

Prizes 
Prize for one of the best two platform presentations titled - Role of REEP1 in 
Hereditary spastic paraparesis, at The South Yorkshire and Humber deanery ACF 
conference, 2010 

Publications 
 Hewamadduma, C.A., Allen, A., Higginbottom, A., Grierson, A., Shaw, P. 

Fibroblasts from patients with ALS associated with mutations in TARDBP 
gene as model of TDP-43 proteinopathy. Human molecular genetics (2014) 
(Manuscript in preparation). 

 

 Highley JR, Kirby J, Jansweijer JA, Webb PS, Hewamadduma, C. A., Heath 

PR, Higginbottom A, Raman R, Ferraiuolo L, Cooper-Knock J, McDermott CJ, 

Wharton SB, Shaw PJ, Ince PG. Amyotrophic lateral sclerosis-causing 

TARDBP (TDP-43) mutations cause widespread  dysregulation of mRNA 

splicing in cell lines from human patients. Neuropathol Appl Neurobiol. 2014 

Apr 18. 

 

 Morrison, K. E. et al. Lithium in patients with amyotrophic lateral sclerosis 
(LiCALS): a phase 3 multicentre, randomised, double-blind, placebo-
controlled trial. Lancet neurology 12, 339-345, (2013). 

 
 Hewamadduma, C. A. et al. Tardbpl splicing rescues motor neuron and 

axonal development in a mutant tardbp zebrafish. Human molecular 
genetics 22, (2013). 

 

 Al-Chalabi, A. et al. Protocol for a double-blind randomised placebo-
controlled trial of lithium carbonate in patients with amyotrophic lateral 
sclerosis (LiCALS) [Eudract number: 2008-006891-31]. BMC neurology 11, 
111 (2011). 

 

 Hewamadduma, C. et al. New pedigrees and novel mutation expand the 
phenotype of REEP1-associated hereditary spastic paraplegia (HSP). 
Neurogenetics 10, 105-110, (2009). 

 

 

Platform presentation 
 

 Role of REEP1 in Hereditary spastic paraparesis, at The South Yorkshire and 
Humber deanery ACF conference, 2010. 
 

 Tardbpl splicing rescues motor neuron and axonal development in a mutant 
tardbp zebrafish. American Association of Neurology (AAN), 2012. 
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Poster presentation 
 

 Fibroblasts as a model to study TDP-43 related RNA modulation and its 
implications on ALS. Annual research day, University of Sheffield (2012). 

 
 Tardbpl splicing rescues motor neuron and axonal development in a mutant 

tardbp zebrafish. International zebrafish conference, Edinburgh (2011). 
 

 Altered stress response in ALS associated mutations in TARDBP. Association 
of British neurologists (2010). 
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