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Abstract 

Endothelial dysfunction is associated with the onset of atherosclerosis and cardiovascular 

disease. Whole body and endothelial cell insulin resistance results in reduced nitric oxide 

(NO) bioavailability; this is a prominent feature of endothelial dysfunction. Recent work 

published by our group has suggested that expression of insulin like growth factor-1 

receptors (IGF-1R) in the endothelium may play a role in determining both endothelial cell 

insulin sensitivity and NO bioavailability. 

 We have generated a transgenic mouse which expresses a non-functional mutation of the 

IGF-1R solely on the vascular endothelium (MIGFREO) under control of the Tie2 promoter. 

In vivo metabolic tests have shown that MIGFREO mice have enhanced whole body insulin 

sensitivity and significant reduction in plasma free fatty acid level in keeping with enhanced 

whole body insulin sensitivity. 

In contrast, MIGFREO mice have endothelial cell insulin resistance; measured by significant 

reduction in the vasodilatory response to insulin, and markedly reduced insulin stimulated 

NO production in pulmonary endothelial cells (PECs). In addition, the MIGFREO PECs are 

also resistant to IGF-1 as measured by significantly reduced IGF-1 stimulated NO 

production.  

In order to investigate a potential mechanism we assessed production of the reactive 

oxygen species H2O2, production of which has been demonstrated to enhance insulin 

signalling. Vascular tissue from the MIGFREO mice has elevated basal levels of H2O2 in 

comparison wt. counterparts; measured by response to catalase in the organ bath, and by 

direct measurement of H2O2 in aortae.  

Mutation of the IGF-1R specific to the vascular endothelium has divergent effects on whole 

body and endothelial cell specific insulin resistance. Furthermore, there is evidence of 

excess production of H2O2 in MIGFREO vascular tissues; this may provide a mechanistic link 

for observed finding of divergent whole body and endothelial cell insulin sensitivity seen in 

the MIGFREO mice.  
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1.1 Atherosclerosis: A historical perspective 

The development of atherosclerosis within blood vessels and the subsequent clinical 

sequelae of myocardial infarction, cerebrovascular disease and peripheral vascular disease 

continue to be the principal cause of death in Europe, the United States of America and 

much of Asia, [339] with the world wide figure expected to exceed 23.3 million deaths in 

2030 [1]. 

Early in the 1960s, the landmark mass epidemiological Framingham study [2]  began to 

identify risk factors for the development of premature cardiovascular disease. Once these 

studies appeared to show an association between hyperlipidaemia and cardiovascular 

disease, research began in earnest in an attempt to discover therapies that would lower 

cholesterol and hence mortality.  

As early as 1856 the pathologist Rudolph Virchow had hypothesised that blood lipid 

accumulation in artery walls lead to atherosclerosis. In 1951 Duff and McMillan [3] 

formulated the lipid hypothesis in its modern form, whereby they believed that “stability of 

the solution of the cholesterol within the blood rather than hypercholesterolemia per se is 

the general condition responsible for its deposition in the arterial intima.” Interestingly 

they observed that atherosclerotic plaques contained large numbers of macrophages 

although at that point there was inadequate evidence to suggest that “non-traumatic 

vascular inflammation” was a factor in the development of atherosclerosis. 

The development of lipid lowering therapies which followed, lead to an improvement in 

both cholesterol levels and mortality. The use of HMG-CoA reductase inhibitors (hereafter 

referred to as statins), which were first used in the late 1980s and early 1990s appeared to 

have a marked effect on mortality. A meta-analysis [4], published in 1999 which analysed 

data from several major trials looking at populations treated with statins (4S, CARE, LIPID, 

[secondary prevention] and WOSCOPS, AFCAPS/TexCAPS [primary prevention]) showed a 

31% reduction in major coronary events and 21% reduction in mortality, associated with a 

drop in serum cholesterol. More recently the heart protection study [5] showed an 18% 

proportional reduction in the coronary death rate in patients with known vascular disease 

or diabetes, irrespective of the level of cholesterol. 

Although there is an undoubted association between hypercholesterolemia and the 

development of atherosclerosis, approximately 50% of patients who have cardiovascular 
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disease do not have hypercholesterolemia [6]. Therein lies the problem with the “lipid 

hypothesis” as first postulated in the late 19th century. It is now certain that there are 

mechanisms other than the deposition of lipid within the vasculature that contribute to the 

development of atherosclerosis. And it is by understanding these mechanisms that we may 

be able to formulate additional therapies to aid those suffering with vascular disease. 
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1.2 Atherogenesis and Endothelial Physiology 

It is now recognized that atherosclerosis is a much more complex disease than simply being 

deposition of lipid into the vasculature. Atherosclerosis is best characterised as an 

inflammatory disease of the blood vessels, associated with complex cellular and sub-

cellular responses [7] . The currently accepted theory suggests that dysfunction of the 

endothelium, the monocellular lining of blood vessels, plays a critical role in the 

development of atherogenesis [8].  

1.2.1 Endothelial function in health 

The endothelium is a thin mono cellular layer of cells which covers the inner surface of 

blood vessels. Whilst a major role of the endothelium is to act as a protective barrier, it has 

other effects which are far more complex and dynamic. The endothelial cell has the ability 

to act both as a receptor and as an effector, sensing both chemical and physical stimuli. In 

response, it can act either to change the shape of the vessel which encompasses it, or it can 

release substances to counteract the effects of the stimulus, thereby maintaining 

homeostasis. The products secreted by an endothelial cell can have an effect on the cell 

itself, on cells adjacent to the original cell, or more widespread effects and hence the 

endothelium could be considered to have autocrine, paracrine and endocrine functions.  

The endothelial cell secretes, amongst others: vasoconstrictors and vasodilators, anti-

inflammatory molecules and pro-inflammatory cytokines, pro-coagulants and anti-

coagulants [9]; it is by regulating the production of these compounds that the endothelial 

cell is able to maintain vessel homeostasis.  

1.2.2 Endothelial dysfunction 

The term endothelial dysfunction refers to an imbalance of the production of mediators 

produced by the endothelial with a deleterious result on the blood vessel [10]. This is 

particularly related to imbalances between the rate of production of nitric oxide (NO) and 

the rate of breakdown, primarily by reactive oxygen species (ROS). Factors which increase 

ROS production, increase NO scavenging, or reduce NO production by endothelial nitric 

oxide synthase (eNOS) (either by reduced eNOS expression or by uncoupling eNOS activity) 

will hence all lead to endothelial dysfunction. It is now recognised that endothelial 

dysfunction plays a very early role in the development of atherosclerosis. In experimental 

animals the presence of endothelial dysfunction has been shown to be associated with the 
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development of thrombosis, vessel occlusion and a tendency to vessel spasm, and hence is 

strongly implicated in the pathogenesis of acute coronary syndrome and myocardial 

infarction [11].  

Function Anti-atherogenic Pro-atherogenic 

Vessel tone Production vasodilatory 
compounds; Nitric Oxide (NO), 
prostacyclin (PGI2), endothelial 
derived hyperpolarizing factor 
(EDHF) [9, 12, 13] 

Production of vasoconstrictors: 
endothelin 1 (ET1) [14] 

Cellular 
proliferation 

Production of NO with 
subsequent anti-proliferative 
effects  [15-19] 

MAPK mediated production of 
growth factors [20] 

Inflammation Production of NO with anti-
inflammatory effects [21] 

Pro-inflammatory cytokines (IL-6, 
TNFα) 

Thrombosis Production of compounds 
which inhibit platelet 
aggregation; NO, PGI2 [9, 12, 
13] 

Secretion of platelet activating 
factor and von Willebrand factor 
[22, 23] 

Oxidative stress  Production of reactive oxygen 
species; superoxide (O2

-); 
hydroxyl radical (HO); hydrogen 
peroxide (H2O2) [24] 

 
Table 1 : Anti and pro atherogenic functions of the vascular endothelium 

 

Endothelial dysfunction has been demonstrated to be present in patients with traditional 

cardiovascular risk factors [25, 26], and it is known that endothelial dysfunction itself  is an 

independent predictor for the development of cardiovascular disease [27]. It has therefore 

been widely accepted that further study of the function of the endothelium, and indeed 

factors which may cause its dysfunction is of vital importance. 

1.2.3 Endothelial dysfunction and the development of atherosclerosis 

The stages in the development of an atherosclerotic plaque are now well described [8]. 

Exposure to cardiovascular risk factors such as hypertension, insulin resistance and smoking 

lead to the development of endothelial dysfunction and an imbalance in the production of 
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NO and ROS, which leads to oxidative stress. Low-density lipoprotein (LDL), which is 

innocuous in a healthy vessel become oxidised under oxidative stress to form ox-LDL, which 

is highly immunogenic and attacks the vessel intima, leading to the release of phospholipids 

which cause further endothelial damage. In addition to causing intimal damage, the ox-LDL 

particles first activate macrophages, which ingest the ox-LDL and become foam cells. 

Endothelial dysfunction leads to the aggregation of platelets which release platelet derived 

growth factor (PDGF) inducing vascular smooth muscle cell (VSMC) migration and 

disruption of the internal elastic lamina. This provides further scope for the foam cells to 

invade which release ROS during invasion. The ROS further compounds the oxidative 

environment. Lipids and collagen are able to invade the disrupted matrix of the intima 

leading to formation of an atherosclerotic plaque. If covered by a thick fibrous cap, the 

plaque may remain stable and cause symptoms related to relative vessel occlusion such as 

angina pectoris. If ulceration of the endothelium occurs, platelet aggregation, thrombus 

formation and vessel occlusion swiftly ensue and may lead to the clinical sequelae of 

myocardial infarction or cerebral infarction. Error! Not a valid bookmark self-reference..
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Figure 1.2-1: Stages in the development of an atherosclerotic plaque: a) despite a relatively normal appearance exposure to risk factors such as insulin 
resistance cause endothelial dysfunction with subsequent release of pro-inflammatory cytokines and an increasing membrane permeability to lipids and 
LDL; b) the development of the fatty streak can occur as early as infancy and represents invasion of monocytes which take up LDL and become foam cells. 
Platelets begin to adhere to the dysfunctional endothelium and release growth factors which induce smooth muscle cell migration; c) the development of 
the lipid plaque – disruption of the internal elastic lamina occurs and allows further smooth muscle migration into the intima. Macrophages continue to 
infiltrate and release ROS which causes further endothelial damage. Deposition of lipid and collagen within the matrix of the intima; d) complicated plaque 
– muscle is replaced by collagen and large amount of lipids accumulate. This may be covered by a thick fibrous coating. The endothelium may ulcerate 
leading to further platelet aggregation and thrombus formation leading to vessel occlusion. 
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1.3 Nitric Oxide 

The function of the endothelium which has been most widely studied is the regulation of 

vascular tone. The endothelial cell produces a variety of vasoconstrictor agents, primarily 

ET-1 and thromboxane A2 and vasodilator substances such as NO [13], prostacyclin and the 

endothelium derived hyperpolarising factor (EDHF) [28]. 

Within the coronary and systemic circulation, NO is the major determinant of endothelial 

dependent vasodilatation [29].   

 

Figure 1.3-1: Mechanism by which NO causes vasodilatation. Following diffusion into 
smooth muscle cells, NO has dual effects to cause vasodilatation: a) via activation of K+ 
channels leading to direct hyperpolarization and smooth muscle relaxation; b) promotion 
of guanylate-cyclase (GC) mediated conversion of guanosine triphosphate (GTP) to cyclic 
guanosine monophosphate (cGMP), causing dephosphorylation and hence activation of the 
myosin light chain with subsequent smooth muscle relaxation. 

 

NO exerts its effect via guanylate-cyclase (GC) mediated increases in cyclic guanosine 

monophosphate (cGMP) which in turn regulates cytosolic calcium and also causes the de-
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phosphorylation of myosin light chain thereby causing smooth muscle relaxation and 

vasodilatation [30]. Figure 1.3-1 

Effect Physiology References 

Vasodilatation Direct vasodilatory effect 

Indirect effect by antagonising vasoconstrictive 
factors (angiotensin II and sympathetic 
vasoconstriction) 

[13] 

[31, 32] 

Anti-thrombotic Inhibition of platelet aggregation 

Inhibits thrombin induced platelet adhesion to 
vascular endothelium 

[33-35] 

[36-38] 

Anti-inflammation Reduction of leucocyte adhesion [21] 

Anti-proliferation Inhibition of vascular smooth muscle cell (VSMC) 
proliferation  

Inhibition of endothelial cell growth 

[15-17] 

[18, 19] 

Pro- Angiogenic Post ischaemic angiogenesis and collateral formation [39] 

 
Table 2: Endothelial actions of nitric oxide 

 

The overall bioavailability of nitric oxide is dependent upon the rate of production via nitric 

oxide synthase (NOS) and the rate of breakdown by combination with reactive oxygen 

species (ROS), particularly superoxide (O-). Following phosphorylation of NOS, NO itself is 

formed from L-arginine, oxygen and NAPDH requiring the presence of tetrahydrobiopterin 

(BH4) as an essential co-factor [40]. 

1.3.1 Nitric oxide synthases 

There are 3 distinct iso-enzymatic forms of nitric oxide synthase (NOS) described in 

mammals; neuronal “n” NOS (NOS I), inducible “i” NOS (NOS II) and endothelial “e” NOS 

(NOS III) [41]. They differ in the primary site in which they are found, and also by the stimuli 

which cause them to produce nitric oxide [42].   

Constitutive NOS (including NOS-I from neurological tissue and NOS III from endothelial 

tissue) respond to agonists that exert an effect by raising intracellular calcium (Ca2+). The 

effect of this is that eNOS produces NO for short periods when exposed to vasodilator 
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substances such as acetylcholine and bradykinin [41]. Inducible NOS (NOS-II) is expressed in 

endothelial cells and also in macrophages in response to stimulus from proinflammatory 

cytokines like tumour necrosis factor  (TNF). The effect of inducible NOS is to produce 

NO levels several levels of magnitude larger than the constitutive NOS and also increased 

levels are sustained for a more constant, longer period of time. Inducible NOS is 

responsible, at least in part for the profound circulatory effects seen in endo-toxic shock 

[43]. 

The NOS enzymes are formed as monomers, but require dimerisation at a heme binding 

site [44]. Dimerisation  occurs between the C terminal reductase site (also binding site for 

nicotinamide adenine dinucleotide phosphate [NADPH], flavin mononucleotide [FMN] and 

flavin adenine dinucleotide [FAD])  of one monomer to the N terminal oxygenase site 

(which carries the heme group, binds tetrahydrobiopterin [BH4], molecular oxygen and L-

arginine) of the second monomer [41]. Electron transfer from NADPH on the C terminus to 

the heme group (a process mediated by flavin) results in the reduction and activation of O2. 

Cycling through this process twice results in the production of NO. In the first cycle, L-

arginine is hydroxylated to N-hydroxy-L-arginine; in the second N-hydroxy-L-arginine is 

oxidised to L-citrulline and NO [45].  Figure 1.3-2 

1.3.2 Endothelial nitric oxide synthase 

The predominant form of NOS found within the vasculature is eNOS, and it is eNOS that is 

responsible for the majority of the NO found within the vasculature. Activation of eNOS 

follows either in response to increased levels of intracellular calcium, or alternatively, eNOS 

becomes activated following phosphorylation. Phosphorylation of threonine 495 (Thr495) 

residues occurs constitutively, whereas serine phosphorylation (Ser1177) occurs following 

direct stimulus. Phosphorylation of Ser1177 follows stimulation by: vascular endothelial 

growth factor (VGEF) and oestrogen (mediated by protein kinase B [Akt]); by bradykinin 

(modulated by calcium calmodulin); by fluid shear stress (modulated by protein kinase A); 

by insulin (modulated by both Akt and AMP activated protein kinase [AMPK]) [41].  

As is described above, eNOS generates NO from the substrate L-arginine, in a process 

which is tightly controlled. When disturbed, electron transfer fluxes through an alternative 

pathway, leading to the generation of the ROS superoxide (O2
-) instead of NO.  This is 

referred to as eNOS uncoupling.  



31 
 

 

Figure 1.3-2: Production of NO by eNOS. The reaction requires tetrahydrobiopterin (BH4) 
which binds to the oxygenase domain of eNOS. L-arginine and O2 also bind to the 
oxygenase of eNOS; NADPH and flavin mononucleotide (FMN) and flavin adenine 
dinucleotide (FAD) bind to the reductase domain of eNOS. Reproduced with permission 
from Gatenby et al [46] 

 

Contrary to what might be expected, and in spite of reduced bioavailability of NO, the level 

of eNOS expression seen in patients with risk factors for cardiovascular disease 

(hypertension [47], diabetes [48] and hyperlipidaemia [49]) appear to be increased or 

unchanged; eNOS expression levels appear to be reduced in later stages of the disease 

when atherosclerosis is evident [50, 51]. The elevated level of eNOS expression seen early 

on in the disease is likely to reflect a compensatory mechanism. Therefore it seems 

increasingly likely that eNOS function, particularly eNOS uncoupling is of particular 

importance in determining endothelial function.  

Uncoupling of eNOS activity has been demonstrated in patients with endothelial 

dysfunction and diabetes [52], hypertension [53], hyperlipidaemia [54] and smokers [55]. 

Enhanced oxidative stress, well established as a feature of many traditional risk factors for 
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the development of cardiovascular disease, has been found to be of critical importance in 

modulating eNOS uncoupling [56]. Molecular mechanisms shown to potentiate eNOS 

uncoupling include: S-glutathionylation of eNOS [57]; L-arginine depletion [58-60]; BH4 

oxidation [56]; and excess asymmetric dimethyl-L-arginine (ADMA) [61].  

Oxidative stress appears to promote S-glutathionylation (a reversible protein modification) 

of eNOS at the critical cysteine residues; which leads to eNOS uncoupling, enhanced O2
- 

production, and is associated with impaired endothelial dependent vasodilatation [57]. In 

hypertensive vessels thiol specific reducing agents, which reverse S-glutathionylation, 

restored endothelial dependent vasodilatation, suggesting rescue of eNOS function [57].  

BH4 is a powerful reducing agent which is a critical co-factor in the production of NO [44].  

In hyperlipidaemic APOE deficient mice BH4 levels are depleted, and eNOS production is 

uncoupled [56].  It is recognised that BH4 supplementation is able to partially restore NOS 

function and endothelial dependent vasodilatation in smokers [55] and in patients with 

diabetes [52], hyperlipidaemia [54] and hypertension [53] . In environments of elevated 

oxidative stress BH4 is oxidised (particularly by ONOO-) to BH3 which renders it inactive [62]; 

hence causing eNOS uncoupling. Supplementation with ascorbic acid has been shown to 

reverse this process [62].  

ADMA is an endogenous inhibitor of eNOS [63] , and is associated with endothelial 

dysfunction and cardiovascular mortality [64-66]. In addition to direct eNOS inhibition, 

ADMA appears to have an effect on eNOS uncoupling [61] and importantly, oxidative stress 

is associated with an imbalance of ADMA production and degradation [67, 68], likely to 

trigger increased ADMA levels.  

Relative L-arginine deficiency also appears to lead to uncoupling of eNOS activity. 

Intracellular reserves of L-arginine make absolute deficiency unlikely to play a role in 

endothelial dysfunction however relative deficiency, associated with higher activity of 

arginases which compete with eNOS for substrate is a possible factor. Endothelial specific 

elevation of arginase 2 induces hypertension and atherosclerosis in mice [59]; in aged mice, 

arginase 2 levels are increased and are associated with eNOS uncoupling and endothelial 

dysfunction [60].  When compared with normal corpus cavernosum, tissue from patients 

with erectile dysfunction and diabetes were shown to have significantly higher levels of 

arginase 2; inhibition of arginase 2 in these patients was associated with restoration of 
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eNOS function.  Similar increased levels of arginase 2 and reduction in NO production has 

been found in patients with pulmonary arterial hypertension [58].  

Irrespective of the mechanism, uncoupling of eNOS enhances oxidative stress by producing 

ROS [41] , particularly O2
-, which scavenges NO to form peroxynitrite (ONOO-):  this 

enhances oxidative stress and a vicious cycle, culminating in reduced NO bioavailability and 

subsequent endothelial dysfunction is set in motion. 

1.3.3 Reactive Oxygen Species and Endothelial Dysfunction 

The reactive oxygen species which are of particular importance when considering 

endothelial dysfunction and cardiovascular disease are the hydroxyl radical (OH), 

superoxide (O2
-), hydrogen peroxide (H2O2) and ONOO-. O2

- is relatively short-lived and 

readily converted to H2O2 by superoxide dismutase (SOD). Although O2
- is unable to cross 

the cell wall, H2O2 is relatively stable and diffuses across cell membranes through channels 

known as aquaporins [69]. 

Physiologically ROS are produced at low levels and act as signalling molecules however at 

higher concentrations they play important roles in the development of many diseases 

including atherosclerosis (Table 3) and cancer.  

Action of ROS Consequence Reference 

Oxidation of BH4 → BH2 eNOS uncoupling → O2
- production [70] 

NO scavenging by 
superoxide 

Formation of ONOO- → eNOS 
uncoupling 

[71] 

NFκB activation by H2O2 Enhanced transcription of pro-
atherogenic genes (particularly 
proinflammatory cytokines, adhesion 
molecules)  

[72] 

Reduction in endothelial 
barrier function 

Enhanced permeability to fluids, 
solutes, inflammatory cells 

[73] 

 
Table 3: Pro-atherogenic effects of ROS. 
 

Stated simply, NO bioavailability is related to the rate of production via eNOS and the rate 

of breakdown by ROS. The molecular mechanisms which lead to eNOS uncoupling, with the 

subsequent sequelae of reduced NO and increased ROS production are discussed above. 
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There are several specific ways by which ROS act to promote endothelial dysfunction, 

although the common end point is the reduction in bioavailability of NO coupled with 

enhanced production of adhesion molecules, proinflammatory cytokines and increased 

expression of the important vasoconstrictor molecule ET-1, thereby switching the 

environment within the blood vessel lumen towards a pro-atherogenic one. 

The bioavailability of NO is affected by ROS in several ways (Figure 1.3-3):  

1) Direct scavenging of NO + O2
- to form ONOO- 

2) Oxidation of BH4 to the inactive BH2 leads to eNOS uncoupling and production of 

O2
- instead of NO 

3) ROS leads to reduced activity of SOD, which leads to enhanced ROS within the 

vessel wall. 

Levels of oxidative stress are increased in humans with hypertension, smoking, obesity, 

insulin resistance, hyperlipidaemia and diabetes, all of which are independently associated 

with endothelial dysfunction, and lower bioavailability of NO.  Biologically important 

sources of ROS include: eNOS uncoupling (discussed in detail above); the mitochondrial 

respiratory chain; xanthine oxidase; and the NADPH oxidases.  
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Figure 1.3-3: Mechanisms of ROS induced endothelial dysfunction. Schematic 
representation of the development of ROS induced endothelial dysfunction and reduced 
NO bioavailability. ROS: reactive oxygen species; SOD: superoxide dismutase; BH4 
tetrahydrobiopterin; eNOS; endothelial nitric oxide synthase; NO: nitric oxide; ONOO-: 
peroxynitrate; H2O2: hydrogen peroxide  

 

1.3.4 NADPH oxidases  

The major biological source of ROS is the nicotinamide adenine dinucleotide phosphate 

oxidase (Nox) family of enzymes, and the primary function of this family of enzymes is the 

production of ROS. Originally thought to be solely expressed in phagocytic cells, where 

bursts of O2
- are of importance in host defence, the Nox enzymes are now known to be 

present in non-phagocytic cells. The family are homologues of the catalytic subunit 

gp91phox. Irrespective of isoform, the Nox family of enzymes are transmembrane proteins; 

the predominant function is to support the transport of electrons, culminating in the 

reduction of O2 to O2
-.  

There are 7 members of the Nox family found in mammals, although only 4 (Nox1, Nox2, 

Nox4 and Nox5) have been shown to be present in endothelial cells. 
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1.3.4.1 Nox1 

Nox1 is expressed in relatively low levels, and in common with Nox2 produces O2
- in a 

stimulus dependent manner. In culture, Nox1 has been shown to be up-regulated by 

factors including shear stress and angiotensin II [74]. There is evidence that Nox1 may be 

up-regulated in human atherosclerotic vessels [75], although extensive data is lacking.   

1.3.4.2 Nox2 

Nox2 is the typical gp91phox containing enzyme, and as such is expressed in phagocytes 

where it plays a significant role in host defence, but it is also expressed in endothelial cells. 

As with Nox1 Nox2 is not constitutively active but produces ROS in response to stimuli such 

as shear stress [76] and angiotensin II [74]. Mice with endothelial specific over expression 

of Nox2 exposed to angiotensin II demonstrate exaggerated endothelial dysfunction, 

hypertension and reduced acetylcholine dependent vasodilatation compared with wild 

type littermates [77]. This suggests a role for Nox 2 in the development of hypertension.   

In humans there is good evidence that Nox2 is associated with endothelial function. In 

subjects with the X-linked immunodeficiency chronic granulomatous disease (CGD) 

(associated with mutation of gp91phox and hence also Nox2), Violi et al [78] demonstrated 

enhanced flow mediated vasodilatation (FMD) in the forearm, associated with enhanced 

NO production in those with CGD – suggesting that Nox2 plays a role in maintaining blood 

vessel tone, and modulating NO bioavailability.  

1.3.4.3 Nox4 

Unlike Nox1 and Nox2, Nox4 is constitutively active, and predominantly produces H2O2 

rather than O2
- [79]. Although there is evidence that Nox4 may play a role in cell 

senescence [80], in adverse remodelling of the pulmonary vasculature following hypoxia 

[81], the role which Nox4 plays in atherosclerosis and hypertension is less clear. Indeed 

there is some data which suggests that Nox4 expression, probably by virtue of the fact that 

it produces H2O2 as opposed to O2
-, may be protective against the development of 

endothelial dysfunction. In mice with endothelial specific over expression of Nox4 Ray et al 

[82] demonstrated a reduction in blood pressure, and enhanced acetylcholine dependent 

vasodilatation when compared to wild type litter mates. This was associated with an 

increase in H2O2 production without a significant change in O2
- levels. Furthermore, over 

expression of Nox4 on the endothelium of mice has also been shown to promote 
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angiogenesis and improve recovery from hypoxia by increased eNOS expression and 

activation [83]. Pulmonary endothelial cells taken from mice with tamoxifen inducible 

Nox4-/- have reduced eNOS activity and NO bioavailability in comparison with wild type 

counterparts, and aortas from the same mice have increased endothelial dysfunction and 

inflammation induced by angiotensin II [84] supporting the potentially beneficial role of 

Nox4, most likely in relation to the production of H2O2. This will be discussed in greater 

detail later (see chapter 1.10) 

1.3.4.4 Nox5  

Less is known about Nox5, the most recently discovered Nox to be found in endothelial 

cells, although it does produce both O2
- and H2O2.  The biological significance has not been 

entirely elucidated, but like Nox4, there is some evidence that Nox5 can also activate eNOS, 

although this was associated with reduced, rather than enhanced NO bioavailability, 

postulated to be due to scavenging of NO by the concomitantly produced O2
-.   

 

As has been discussed, endothelial function is determined by the balance between the rate 

of production, and the rate of breakdown of NO. One of the most important inducers of 

eNOS activity, and hence NO production is insulin, and sensitivity to the effect of insulin 

both on a whole body, and endothelial level is of critical importance in determining the 

development of endothelial dysfunction, atherosclerosis and the subsequent clinical 

sequelae. The relationship between insulin, the endothelium and endothelial function will 

be considered in greater detail.  
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1.4 Insulin Resistance  

There is now unequivocal evidence that the condition of type 2 diabetes mellitus plays a 

role in the development of premature cardiovascular disease. In contrast to type 1 diabetes 

mellitus where autoimmune destruction of the  cells of the pancreas leads to an absolute 

deficiency of insulin, the hallmark of type 2 diabetes mellitus is resistance to the effects of 

insulin, particularly in skeletal muscle and adipose tissue.  

In the last few decades there has been a significant improvement in the mortality 

attributable to cardiovascular disease, however this does not extend to those with type 2 

diabetes, in whom mortality rates from cardiovascular disease remain stubbornly high [85]. 

Furthermore, in addition to the poor response to treatment once vascular disease has 

developed, the inherent risk of developing de novo vascular disease in someone with 

diabetes is significantly elevated with the risk of suffering a myocardial infarction 2 fold 

higher than the general population [86]. 

It is known that in patients with type 2 diabetes mellitus there is likely to have been many 

years of resistance to the effects of insulin preceding the development of hyperglycaemia, 

with normal glucose levels being achieved by compensatory hyperinsulinaemia [87]  Figure 

1.4-1. It is only when peripheral insulin insensitivity is accompanied by pancreatic  cell 

failure that abnormal glucose homeostasis develops.   

There is a significant overlap between insulin resistance and the clinical condition known as 

the metabolic syndrome; a constellation of metabolic abnormalities associated with 

obesity, dyslipidaemia, hypertension, high levels of oxidative stress, a tendency towards 

pro-coagulation, insulin resistance and diabetes itself [88].  
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Figure 1.4-1:  Plasma insulin and glucose levels in the pre-diabetic phase. Schematic 
representation of plasma insulin and glucose levels and associated insulin resistance during 
the transformation from insulin resistance and impaired glucose tolerance (IGT) to overt 
diabetes. Adapted from Wheatcroft et al [9]. 
   

Given the association between insulin resistance and this wide range of factors known to 

be associated with the development of premature vascular disease it is not surprising that 

individuals with insulin resistance do themselves have an increased risk of developing 

premature cardiovascular disease and stroke. Furthermore it has been demonstrated that 

insulin resistance is itself an independent risk factor for the development of premature 

cardiovascular disease [89-91], and that in turn insulin resistance is associated with 

endothelial dysfunction [92]. Given that significant numbers of patients with type 2 

diabetes have advanced vascular disease at presentation, and that clinical diabetes is 

preceded by a prolonged period of insulin resistance, further understanding of the ways in 

which insulin resistance, and signalling through the insulin axis contribute to endothelial 

dysfunction may provide potential therapeutic targets to lessen the burden of vascular 

disease in those with type 2 diabetes. 

1.4.1 Insulin and the insulin receptor 

Insulin is a protein which is synthesised by the  cells of the pancreas. The structure of 

insulin was first described by British molecular biologist Frank Sanger, who subsequently 

won the 1958 Nobel Prize for chemistry in recognition of this work. Insulin is comprised of 

2 peptide chains linked together by disulphide bonds. In the peripheral blood these 

monomers have a tendency to form dimers and in the presence of zinc, the dimers 

Insulin resistance 

Plasma glucose 

Plasma insulin 

“Normal” Diabetes IGT 
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combine to form hexamers. The  cells, via insulin mRNA, initially form the pro-peptide 

proinsulin. This is subsequently cleaved into insulin and the biologically inactive C-peptide 

by the action of endopeptidases [93, 94]. 

When the  cells are exposed to glucose, transport of glucose into the cell is mediated by a 

glucose transporter. Hence increased concentrations of extracellular glucose within the 

pancreas lead to increased intracellular glucose within the  cells. Elevated glucose levels 

within the  cells lead to membrane depolarization and subsequent calcium flux into the 

cells, promoting insulin secretion via exocytosis. In addition to promoting the secretion of 

insulin, elevated intracellular glucose levels also stimulate insulin synthesis [95]. 

 

Figure 1.4-2: Insulin and IGF-1 induced glucose uptake. Binding of the ligand to the 
receptor stimulates a series of intracellular reactions, dependent on the PI3-K Akt pathway. 
This culminates in translocation of GLUT-4 to the cell membrane where it facilitates glucose 
uptake into tissues. IRS-1: insulin receptor substrate-1; PI3-K: phosphatidylinositol 3-kinase; 
PDK-1: protein dependent kinase-1; Akt: Protein kinase B; GLUT-4: glucose transporter - 4. 
The pink circle with P represents the process of phosphorylation.  
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Insulin primarily acts upon cells by the interaction with the insulin receptor (IR), although as 

will be discussed in detail, insulin also interacts with the insulin like growth factor-1 

receptor (IGF-1R). The insulin receptor itself is comprised of 2  subunits and 2  subunits. 

The subunits are combined to form the whole receptor with disulphide bonds. The  

subunit is located on the surface of the cell, whereas the  subunit penetrates the cell 

membrane, and hence the insulin receptor has both extracellular and intracellular 

components. When insulin binds to the hydrophobic area on the  subunit it causes a 

conformational change within the receptor leading to transfer of signal to the  subunit 

[96].  

Insulin signalling through the IR could be described as a three stage process: 

1. Activation of the IR leading to phosphorylation of tyrosine kinase 

2. Subsequent tyrosine phosphorylation of various molecules 

3. Biological effects caused by a cascade of reactions 

The biological effects of insulin are legion. Insulin is responsible for glucose homeostasis; 

the regulation of fatty acid synthesis and lipolysis; involved in modulating genetic 

expression and cell growth; has effects on vascular smooth muscle tone and the function of 

the endothelium. The latter will be discussed in more detail below.  

1.4.2 Insulin and glucose homeostasis 

Insulin acts to control glucose homeostasis in several ways.  

In skeletal muscle and adipose tissue (uptake of glucose into liver and brain cells is insulin 

independent), insulin initiates uptake of glucose from the extracellular space via activation 

of glucose transporter type 4 (GLUT-4) [97]. In the basal state GLUT-4 is present within 

cytoplasmic vesicles, where they have no ability to act upon glucose. Following activation 

of the insulin receptor GLUT-4 receptors (facilitated by phosphorylation of insulin receptor 

substrate [IRS] and phosphoinositide-3 kinase [PI3-K] [98]) are released from vesicles and 

are incorporated into the cell membrane where they allow the cell to efficiently take up 

glucose. Figure 1.4-2 

In hepatocytes insulin leads to glycogen storage by the production of glycogen synthase 

which is also promoted by activation of PI3-K and phosphorylation of IRS. Conversely, in the 
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absence of insulin the liver begins to breakdown glycogen hence releasing glucose in to the 

bloodstream. 
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1.5 Insulin like growth factor 1 

Insulin like growth factor – 1 (IGF-1) is a protein which has a similar structure to that of 

insulin [99]. It is produced primarily by the liver in response to the action of growth 

hormone (GH) [100], but unlike insulin, it is also synthesised within peripheral tissues, 

having autocrine, paracrine and endocrine functions. IGF-1 has many effects, both on a 

whole organism and a cellular level. It is accepted that IGF-1 is of critical importance in 

regulating cell and tissue growth [100], and therefore there is a great deal of interest in the 

study of the manipulation of IGF-1 in the fields of longevity and cancer research. Within the 

last decade there has also been an increasing interest in the role that IGF-1 plays in 

interacting with the endothelium, and hence the effect that IGF-1 may have upon the 

development of atherosclerosis. Whilst a clear link has been established between insulin 

resistance and atherosclerosis the contribution that alterations in signalling through the 

IGF-1 axis may play in the development of premature cardiovascular disease is less clear 

and requires further discussion. 

1.5.1 IGF binding proteins 

The significant majority of IGF-1 in plasma is bound to one of six IGF binding proteins 

(IGFBP) [101]. In normal states, less than 1% of IGF-1 is found in the free form, and when in 

the free form it degrades quickly. Although the binding capacity of IGF-1 for its receptor is 

high, the affinity towards the IGFBPs is higher. Indeed the binding proteins may modulate 

IGF-1 IGF-1R interactions [102]. More recently actions of the IGFBP which are independent 

of IGF-1 have been described, and indeed the IGFBPs may have specific actions controlling 

cell differentiation, apoptosis and growth [102].  

Although there are 6 described IGFBP specific consideration will be given to IGFBP-1 which 

appears to play a significant role in IGF-1 receptor activity and cardiovascular disease.  

Both IGF-1 and IGFBP-1 levels are affected by insulin sensitivity, and low levels of both also 

appear to predict adverse cardiovascular outcome [103].  Evidence taken from the Rancho 

Bernado study cohort [104] demonstrated that low levels of both IGF-1 and IGFBP-1 

predicted the development of fatal ischaemic heart disease, independent of other risk 

factors.  

There is evidence that over-expression of IGFBP-1 is associated with down regulation of the 

insulin signalling pathway, possibly by higher levels of IGF-1 sequestration. Conversely, 
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Wheatcroft et al [105], using a mouse which over-expressed IGFBP-1 showed enhanced 

basal NO production in association with elevated eNOS phosphorylation in the aorta.  

Further evidence from Rajwani et al [106] seems to support the role for IGFBP-1 as a 

vascular protective factor particularly in an insulin resistant setting: over-expression of 

IGFBP-1 in obese mice was associated with improved insulin sensitivity and enhanced 

insulin stimulated NO production; in IR +/- mice, enhanced IGFBP-1 was associated with 

improved insulin stimulated NO release; in the ApoE model, over-expression of IGFBP-1 

was associated with reduced atherosclerosis. 

1.5.2 Insulin like growth factor-1 and glucose homeostasis 

Although insulin is the most important biological mediator of glucose homeostasis, IGF-1 is 

also able to promote glucose uptake via activation of the PI3-K / Akt pathway culminating 

in GLUT-4 translocation to the cell membrane [107] and increased glucose uptake, 

particularly from skeletal muscle [108, 109].  

As is shown in Figure 1.4-2 activation of the PI3-K pathway by IGF-1 [110] leads to 

translocation of GLUT-4 and increased glucose uptake in skeletal muscle. In humans it has 

been found that infusion of supra-normal levels of IGF-1 leads to decreased blood glucose 

[111], but the same is not true for physiological levels of IGF-1 in vivo [112].  

Several studies have shown that treatment with recombinant IGF-1 improves insulin 

sensitivity, primarily by improving hepatic and muscle insulin sensitivity [113]. In addition 

to improving peripheral insulin sensitivity, infusion of IGF-1 also leads to a reduction in 

circulating levels of GH with the result of reducing hepatic gluconeogenesis [114, 115].  

In both diabetic and non-diabetic patients, IGF-1 levels were found to be independently 

negatively associated with markers of the insulin resistance syndrome, particularly BMI, 

waist to hip ratio, systolic and diastolic blood pressure, and also independently correlated 

with varying degrees of glucose intolerance [116]. Given the apparent association between 

IGF-1 levels and the insulin resistance syndrome, and the well documented association 

between insulin resistance and the development of premature atherosclerosis it is 

pertinent to consider the association between IGF-1 and cardiovascular disease. 
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1.5.3 The link between IGF-1 and cardiovascular disease 

1.5.3.1 Clinical studies 

Although there remains some degree of controversy the breadth of evidence currently 

seems to suggest that there is a relationship between reduced IGF-1 bioavailability and 

increased risk of developing atherosclerosis. There are however, some studies which 

suggest the contrary. 

Elevated fasting serum IGF-1 levels have been noted to be correlated with an increased 

carotid intima media thickness, a potential marker for the early development of 

atherosclerosis [117, 118], and high IGF-1 levels have been shown to be positively 

associated with atherosclerosis in a relatively young population [119, 120]. Andreassen et 

al [121] showed a U shaped relationship between levels of IGF-1 and all-cause mortality in 

an older population, and a possible association of high levels of IGF-1 with the 

development of left ventricular systolic dysfunction, as measured by elevated NT-proBNP 

level, but in common with Botker et al [122] did not demonstrate a link between 

atherosclerotic disease and elevated IGF-1 levels.  

Locally, there is evidence that increased IGF-1 levels are found in VSMC at the site of 

balloon initiated vascular injury [123], suggesting a possible pathogenic role for IGF-1 in the 

development of restenosis following angioplasty. Although initial data suggested that IGF-1 

inhibition may be a useful therapeutic target to reduce restenosis, placebo controlled trials 

of IGF-1 inhibition with angiopeptin [124, 125] and octreotide [126] in humans were unable 

to replicate this. 

As has been discussed, the general consensus is that there is an association between low 

levels of IGF-1 and either the presence of cardiovascular disease or worse outcome from 

cardiovascular disease [103, 104, 127-131]. One probable explanation for the differing 

findings could relate to the varying assays used to assess serum IGF-1 levels. Generally 

speaking , many of the studies used total IGF-1 levels as a surrogate marker for IGF-1 

activity, however given that a significant proportion of IGF-1 is held in the plasma bound to 

IGF1BP, and is hence inactive this may not be an accurate reflection of IGF-1 bioavailability. 

When IGF-1 bioavailability rather than IGF-1 levels, was measured by its ability to activate 

the IGF-1R, as was done by Brugts et al [129] there was a significant association with high 
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IGF-1 bioavailability and reduction in cardiovascular disease; the same relationship was not 

found when free and total levels of IGF-1 were assessed.  

1.5.3.2 Pro-atherosclerotic effects of IGF-1 

Although there is a consensus that there is an association between low plasma IGF-1 and 

increased risk of cardiovascular disease, there is certainly some evidence that IGF-1 has 

some pro-atherogenic activity. 

IGF-1 induces VSMC migration and proliferation via activation of the mitogen activated 

protein kinase (MAPK) pathway. In coronary artery specimens taken from patients with 

cardiovascular disease had significantly higher levels of IGF-1 when compared with normal 

controls [132], furthermore higher levels of IGF-1 mRNA are found in unstable rather than 

stable coronary plaques [133] 

The role of VSMC is important, not only in the development of atherosclerosis, but is 

critical in the initiation of restenosis of coronary vessels following angioplasty: vascular 

injury enhances IGF-1 production[134]; IGF-1 in early restenotic lesions is significantly 

higher than in normal coronary artery samples [133]; IGF-1 inhibition inhibits VSMC 

proliferation following balloon injury in rats [135]; IGF-1 inhibition using a somatostatin 

analogue reduces human VSMC proliferation [123]. Unfortunately, systemic treatment with 

somatostatin analogues have not shown any significant association with reduced restenosis 

or reduction in cardiovascular endpoints [124, 126]. Taken together this data suggests that 

IGF-1 plays a vital role in initiating smooth muscle cell hyperplasia leading to restenosis. 

In addition to the effect on VSMC there is some evidence showing a link between IGF-1 and 

platelet activation [136-138] an effect which was particularly marked in diabetic rats [136] 

1.5.3.3 Pathophysiological basis of IGF-1 and atheroprotection 

As will be discussed in detail later the most important way in which IGF-1 acts as an athero-

protective factor may be by inducing NO production by endothelial cells, via a PI3-K 

dependent mechanism [139]. The vascular protective effects associated with NO 

bioavailability have been discussed in detail above. Interestingly, obesity is associated with 

vascular IGF-1 resistance [140] which may explain some of the associated increased 

cardiovascular risk. 
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In addition to the effect on NO bioavailability, IGF-1, as has already discussed, has a 

beneficial effect on insulin sensitivity; in itself improved insulin sensitivity is associated with 

reduced atherosclerosis. 

1.5.3.4 Lessons from growth hormone deficiency, Laron syndrome and 

acromegaly 

A useful way of looking at the cardiovascular effects of IGF-1 is to study people who have 

either IGF-1 deficiency or IGF-1 excess. Congenital IGF-1 deficiency is known as Laron 

syndrome and is associated with insensitivity to growth hormone and presents with 

dwarfism, marked obesity and hypoglycaemia [141] . Although patients with Laron 

syndrome are obese, there appears to be a lower than expected rate of co-existing 

diabetes [142], which is interesting given than laboratory animals with GH deficiency are 

protected from developing insulin resistance. Adults with Laron syndrome appear to be to 

protected against the development of cancer [141](which is unsurprising given the known 

mitogenic actions of IGF-1), and although there is a suspicion that cardiovascular disease 

accounts for a significant number of deaths in this cohort, the numbers are relatively small 

and data on a larger scale is lacking. 

Patients with acquired adult growth hormone deficiency have increased cardiovascular risk 

[143] associated with increased oxidative stress [144] and abnormal endothelial 

dysfunction, measured by reduction in vasodilatation associated with acetylcholine [144] 

(ACh) and reduction in FMD [145].  

The clinical condition of acromegaly caused by a growth hormone secreting tumour in the 

pituitary gland is associated with excessive IGF-1 production. The excess growth hormone 

secretion seen in acromegaly leads to gluconeogenesis and lipolysis leading to 

hyperglycaemia, elevated free fatty acids, hyperinsulinaemia and insulin resistance. Insulin 

resistance is a major feature of acromegaly, and patients frequently develop type 2 

diabetes mellitus. Cardiovascular disease is frequently seen in patients with acromegaly. 

The development of acromegalic cardiomyopathy (left ventricular hypertrophy, diastolic 

dysfunction and eventually left ventricular systolic dysfunction) relates to the growth 

promoting effects of IGF-1 and GH, and regresses following appropriate treatment [146]. 

Interestingly, the elevated levels of IGF-1 seen do not appear to confer any protection 

against the development of atherosclerotic disease, indeed this risk is significantly elevated 

in those with acromegaly. Patients with acromegaly have endothelial dysfunction, reduced 
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NO levels and higher carotid intima thickness than age and sex matched counterparts [147, 

148] and have also been demonstrated to have higher levels of oxidative stress [149]. It is 

likely that the excess atherosclerotic disease seen is accounted for by the concurrent 

insulin resistance, and any anti-atherosclerotic effects of IGF-1 are overwhelmed. 

The clinical features seen in those with IGF-1 excess and deficiency serve to illustrate the 

complicated relationship between IGF-1, insulin, endothelial function and atherosclerosis. 

1.5.3.5 IGF-1 and longevity 

Further evidence of the complicated relationship between the IGF-1 signalling axis and 

cardiovascular disease exists when one considers the seemingly paradoxical evidence 

linking reduced IGF-1 signalling with longevity. 

There is evidence which links reduced signalling through the insulin / IGF-1 axis with 

longevity, although it remains contentious. Holzenberger et al [150] demonstrated that 

mice with haploinsufficiency of the IGF-1R have a lifespan 26% longer than wild type 

counterparts. In contrast, Bokov et al [151] who also examined mice with whole body 

haploinsufficiency of the IGF-1R were unable to replicate this finding. Studies in old humans 

also demonstrate an association between longevity and genetic polymorphisms which are 

associated with reduced signalling through the insulin/IGF-1 axis [152-154]. Whether this is 

a causal relationship is not known, and no studies to date have looked at the distribution of 

IGR-1 / insulin hybrid receptors (see chapter 1.8) in old age.  

Human centenarians tend to have reduced body mass index, increased insulin sensitivity 

[153] and reduced circulating levels of IGF-1 [155, 156]. This combination of factors hints 

that reduction in calorie intake, possibly through reduced levels of oxidative stress plays a 

significant role in the modification of the insulin/ IGF-1 axis, and may be responsible for the 

alterations in this axis seen in long lived humans. Although many studies certainly 

demonstrate an association between restricted calorie intake, longevity and delayed onset 

of old age associated diseases [157], the publication of a recent study in primates contests 

this [158]. In this most recent publication, calorie restriction in young primates did delay 

onset of old age associated diseases, but was not associated with improved mortality rates. 

When calorie restriction was commenced later in life, there was an improvement in several 

aspects of metabolic function but again, no increase in longevity was seen. This suggests a 

more complex relationship between calorie in-take and longevity than was first thought.  
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Given the paradoxical observation that low IGF-1 can be associated with both longevity and 

increased cardiovascular risk, further examination of the IGF-1 and insulin signalling 

pathways is required. 
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1.6 Structure of the IGF-1 Receptor.  

The IGF-1 receptor (IGF-1R) is part of the same family of tyrosine kinase receptors as the IR, 

with which it shares significant structural homology. The IGF-1R preferentially binds IGF-1, 

although it also has affinity for IGF-2.  The IGF-1R was recognised as distinct from the IR in 

1974 [159], although probably the two receptors emerged as distinct identities at the time 

of transition from prochordates to vertebrates [160]. 

1.6.1 Genetics 

The genetic code for the IGF-1R, located on chromosome 15q26, consists of 4989 

nucleotides coding a 1367 amino acid precursor [161]. The IGF-1R and IR are remarkably 

similar, both in terms of exon distribution and size of the two genes, and indeed they share 

around 70% DNA sequence identity [162, 163]. The receptor is initially formed as a pre-pro 

receptor and prior to transportation to the Golgi apparatus undergoes cleavage, 

glycosylation and folding. In the Golgi apparatus the receptor is cleaved into  and  

subunits at a tetrabasic protease cleavage site Arg-Lys-Arg-Arg [161, 164], and then 

transported to the cell membrane. The mature receptor takes the form of a homodimer 

comprised of two  subunits and two  subunits held together by disulphide bonds [165]. 

The homodimer is both intra and extracellular: the ligand binding site is located on the 

extracellular α subunit; the β subunit contains the tyrosine kinase domain and comprises 

extracellular, trans-membrane and intracellular components.  

1.6.2 Structure of the IGF-1R 

The N-terminal of the  subunit comprises the cystine rich (CR) domain flanked by  two 

homologous domains (L1 and L2) [166]. The C terminal of the  subunit contains two 

fibronectin type III (FnIII) domains, which are common to many trans-membrane receptors 

and facilitate protein binding [167]. Contained within the second FnIII there is a large insert 

domain (ID) containing the Arg-Lys-Arg-Arg protease cleavage site [168]. 

Two further FnIII domains are located on the N terminal of the  subunit, which is both 

extracellular and trans-membrane. The tyrosine kinase (TK) domain, which spans residues 

973-1229 is located on the intracellular portion of the  subunit [162]. Phosphorylated 

tyrosine residues within the TK domain function as docking sites for critical intracellular 

signalling molecules; of particular relevance to both glucose homeostasis and endothelial 

function are the insulin receptor substrates 1-4 (IRS 1-4) and the Src-homology domain 2 
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(SH2) of the Shc adaptor protein. The C tail domain of the  subunit is 108 residues in 

length and contains phosphotyrosine binding sites. These are potentially important in 

modulating TK activity, particularly at the ATP binding site [169] although the full 

physiological role of the C tail is not yet fully understood.  

 The mature IGF-1R comprises two  subunits and two  subunits, held together by the 

presence of disulphide bonds. Inter α-chain bonds occur at two locations; a single bond in 

the Fn-III-1 and a triplet in the ID [166]. α and β subunits are held together by a single 

disulphide bond between the first FnIII repeat on the  subunit and the second FnIII repeat 

on the β subunit [170]. Figure 1.6-1 

1.6.3 Ligand binding and activation of TK domain 

In common with the IR, the interaction between IGF-1 and the IGF-1R is complex. 

Analysis of data obtained from Scatchard plots suggest that there are both low and high 

affinity binding sites on the IGF-1R and furthermore, that dissociation of bound IGF-1 to the 

IGF-1R is accelerated when the concentration of IGF-1 is increased [163, 171-173]. Taken 

together this suggests negative co-operativity between the binding sites, which, in contrast 

with the relationship between insulin and the IR is not lost at high concentrations of IGF-1 

[174]. 

In common with the IR, there are two binding sites on the IGF-1R, both located on the 

subunit. The first binding site (site 1) comprises three components: the N terminal of the L1 

domain, the C terminal of the FnIII-2 domain and a third area within the CR domain [175-

179] . This is distinct from the IR, which has only two components of the first binding sites. 

The location of the second binding site (site 2) is not yet fully elucidated, although is 

thought to contain part of the FnIII-1 domain [163].  

High affinity binding of IGF-1 to the IGF-1R is created by binding to site 1 on one monomer 

and site 2 on the second monomer. This causes crosslinking, dimerisation and moves the 

monomers into closer proximity [163, 180]. Binding to the two receptor halves is essential 

to create a high affinity binding site.  

Ligand binding to the α subunit of the IGF-1R initiates trans-auto phosphorylation in the 

tyrosine residues Tyr 1131, Tyr 1135 and Tyr1136 of the activation loop (A loop) of the TK 
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domain. In the non-phosphorylated state these tyrosine residues block the active ATP site; 

autophosphorylation of Tyr1131 and Tyr 1135 leads to the destabilisation of the auto-

inhibitory A-loop formation; autophosphorylation of Tyr1136 stabilises the catalytically 

active A-loop formation [181, 182]. This leads to a conformational change in the A-loop, 

allowing protein substrates and ATP unrestricted access to the active kinase site [182, 183].  
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Figure 1.6-1: Diagrammatic representation of IGF-1R. FnIII: fibronectin type III domains. ID: Insert domain. TK domain: tyrosine kinase catalytic domain 
(residues 973-1229). Trans and juxta-membrane region (residues 930-972). C tail (residues 1230-1337). Adapted from Adams et al (2) and Sehat et al (92). 
Reproduced with permission from Gatenby et al [46]
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1.7 Insulin, insulin like growth factor-1 and endothelial cell 

function 

The role which insulin resistance plays in the development of type 2 diabetes mellitus is 

well established [9], and it is now accepted that insulin resistance is an independent risk 

factor for the development of atherosclerosis and its subsequent clinical 

manifestations[184, 185] . Previous work from our laboratory has demonstrated the 

relationship between insulin resistance and endothelial cell dysfunction in seemingly 

healthy south Asian young men [186, 187]. Several other studies in humans have shown a 

significant correlation between reduced bioavailability of NO and insulin resistance [188-

191]. In corroboration with these findings, previous work from our group has shown a 

strong inverse relationship between endothelial dysfunction (as assessed by NO 

bioavailability) and whole body insulin sensitivity [192-194]. Critically, there is now 

emerging evidence that expression of the IR on the vasculature modulates both endothelial 

cell insulin sensitivity and endothelial function. Mice with endothelial specific mutation of 

the IR (ESMIRO) are sensitive to insulin on a whole body level, but have endothelial specific 

insulin resistance and reduced NO bioavailability[195]. 

Although the link between insulin resistance and the endothelium is relatively well 

established, the particular role of IGF-1 and the IGF-1R is less clear and requires further 

consideration.   

1.7.1 IGF-1R and IR activation and nitric oxide production 

There is little doubt that endothelial dysfunction plays a significant role in the initiation and 

development of atherosclerosis [7]. The endothelial cell acts not only as a barrier, but as 

has been discussed above, as a complex paracrine, autocrine and endocrine organ which, 

by the release of a portfolio of mediators maintains intra-vascular homeostasis [196]. One 

of the critical aspects of vessel homeostasis is the regulation of blood vessel tone; achieved 

by the release of the opposing compounds NO and endothelin-1 (ET-1). This is of particular 

significance when considering the relationship between insulin, IGF-1 and endothelial cell 

function.  

Data suggests that both IGF and insulin are able to induce NO production primarily by 

interaction with the IGF-1R and IR, respectively.  Stimulation of rat renal inter-lobar artery 

endothelial cells with IGF-1 has been shown to induce NO production; this was blocked by 
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both the NOS inhibitor L-NAME (thereby confirming that NO production was NOS 

dependent) and an IGF-1 inhibitor [197]. Both insulin and IGF-1 stimulation induce NO 

production in HUVECS; incubation with αIR3 (an IGF-1R blocking antibody) has been shown 

to completely abolish NO production in response to insulin, but reduces NO production in 

response to insulin by half: strongly suggesting that insulin is able to signal through the IGF-

1R [139]. The same group demonstrated that insulin induced NO production was 

ameliorated by the PI3-K inhibitor, wortmannin [139].  

Although both IGF-1 and insulin are able to induce NO production, there is little doubt that 

insulin is the more potent stimulator; maximal IGF-1 stimulation in human umbilical vein 

endothelial cells (HUVECs) produced 40% of the NO seen with maximal insulin stimulation 

[139]. As has been discussed, there is certainly evidence of cross-reactivity between insulin, 

IGF-1, the IR and IGF-1R it would appear that at physiological levels (100-500pM), insulin 

only stimulates the IR and not the IGF-1R. Li et al showed that in bovine aortic endothelial 

cells, a physiological dose of insulin did not lead to phosphorylation of the IGF-1Rβ subunit, 

although phosphorylation of eNOS, Akt1 and IRβ was noted [198]. At the supra-

physiological level (1-5nM) insulin stimulation was associated with phosphorylation of the 

IGF-1Rβ; this effect was blocked by an IGF-1R neutralizing antibody. 

Following ligand binding to the IGF-1R or IR a cascade of intracellular reactions occurs, 

ultimately culminating in, amongst others, the production of NO. Autophosphorylation of 

tyrosine residues on the β subunit of either receptor allows, as has been discussed above, a 

conformational change in the A-loop allowing proteins such as IRS-1 access to the active 

kinase domain. Phosphorylation of IRS-1 at specific tyrosine residues occurs [98, 199]and 

the phosphorylated IRS-1 binds PI-3K by the SH2 domain of the p85 α regulatory subunit. 

This initiates increased activity of the catalytic p110 subunit of PI3-K leading to conversion 

of plasma lipid phosphatidylinositol 3,4,-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-

trisphosphate (PIP3). Activated PIP3 has the effect of encouraging proteins containing 

plekstrin homology (PH) domains to congregate at the cell membrane, of which the most 

important with regard to IGF-1 and insulin stimulated NO production are the seronine-

threonine kinases Akt and 3-phosphoinositide dependent protein kinase-1 (PDK-1) [200].  

Accumulation of these proteins at the cell membrane leads to PDK-1 dependent 

phosphorylation of Akt-1. Figure 1.7-1 
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Once phosphorylated, Akt-1 induces phosphorylation and activation of eNOS at serine 1177 

[201], which, as has been described above stimulates the transfer of electrons from NADPH 

culminating in the conversion of L-arginine to L-citrulline and the formation of NO [196]. 

1.7.2 Insulin signalling and MAPK  

As well as initiating the PI3-K / Akt dependent pathway binding of insulin or IGF-1 also 

instigates signalling through the mitogen-activated protein kinase ( MAPK) pathway, in a 

cascade of reactions dependent on Ras interaction with the Src-homology domain 2 (SH2) 

of the Shc adaptor protein [202]. Activation of this pathway, as well as causing production 

of the vasoconstrictor peptide ET-1, induces vascular smooth muscle cell (VSMC) 

proliferation, and migration, and may therefore be of importance in sustaining 

atherosclerotic plaque stability [203, 204]. Flux of signalling down the MAPK pathway, 

rather than the PI3-K pathway is of importance in regulating the cell sensitivity to the 

effects of insulin and will be discussed in detail later. 
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Figure 1.7-1: Initiation of PI3-K / Akt pathway by ligand binding to the IGF-1R. The same applies for binding to the insulin or the IGF-1R/IR hybrid. 
Reproduced with permission from Gatenby et al [46]. IRS: insulin receptor substrate; PI3-K: phosphatidylinositol 3-kinase; PIP2: Phosphatidylinositol 3,4-
bisphhosphate; PIP3: Phosphatidylinositol 3,4,5-trisphosphate; PDK-1: protein dependent kinase – 1; Akt: Protein kinase B. The pink circle with P represents 
the process of phosphorylation.  
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1.8 Insulin like growth factor / insulin receptor hybrids 

As has been discussed, the IR and IGF-1R share significant genetic and structural homology; 

both are formed of two heterodimers comprised of α and β sub-units, joined by disulphide 

bonds to form a homodimer. It is now recognised that the heterodimers of the two 

receptors are able to combine to form a hybrid receptor (see Figure 1.8-1), consisting of an 

IR  heterodimer and an IGF-1R  heterodimer [205, 206]. Although the physiological 

role of these hybrid receptors has yet to be confirmed, it is beginning to become apparent 

that the formation of the IR/IGF-1R heterodimer has a significant role in determining insulin 

sensitivity in the cell [207, 208]. Our group has recently published work demonstrating that 

manipulation of the IR and IGF-1R stoichiometry is able to affect both hybrid receptor 

formation and cellular insulin sensitivity [209, 210].  

Although comprised of both IR and IGF-1R, hybrid receptors behave very much like an IGF-

1R homodimer; IGF-1 binds to the hybrid receptor with an affinity 20 times higher than 

insulin [211-213]. The mechanism of higher affinity IGF-1 binding to the hybrid is unclear, 

although theories suggest that the ability of the ligand to successfully bind with site 2 on 

the opposing α subunit is of critical importance. With regards to binding to the hybrid 

receptor, it appears likely that IGF-1 binds to site 1 on the IGF-1αβ heterodimer, and site 2 

of the IRαβ heterodimer, causing cross-linking and receptor activation. The same is true of 

the interaction between insulin and the IRαβ heterodimer. Two theories would explain the 

hybrid receptor’s higher affinity for IGF-1 than insulin; either binding to both sites is less 

important in determining high affinity binding for IGF-1, or IGF-1 is able to bind to site 2 of 

the IRαβ heterodimer with an efficacy equal to that of the IRαβ heterodimer [174, 211]. 

Recently, research has suggested that the L2/Fn domain of the IGF-1αβ heterodimer plays a 

critical role in determining the hybrid receptor’s affinity for insulin. Insertion of the L2/Fn 

domain from the IR into the corresponding domain on the IGF-1Rαβ heterodimer within a 

hybrid receptor renders the hybrid receptor as equally sensitive to insulin as the IR 

homodimer [211]. 

Although ligand binding is initiated by binding to site 1 on a single α subunit, trans binding 

to site 2 ensures that autophosphorylation occurs of both β subunit, culminating in 

activation of the TK domain, as is described above [214]. Signal propagation requires that 

both subunits are functional; formation of a hybrid receptor comprising a wild type active 
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IGF-1Rαβ heterodimer and a kinase inactive IRαβ heterodimer results in transdominant 

inhibition of kinase activity [215].  

Although there are 2 isoforms of the insulin receptor, it is not clear if the isoform 

incorporated into the hybrid affects ligand binding. Although preliminary studies suggested 

that hybrids comprised of an IR-A isoform have an affinity for insulin higher than those 

comprised of an IR-B isoform [216] , subsequent studies were unable to demonstrate this 

[211, 217].  

Although there is robust evidence to suggest that the hybrid receptor behaves as an IGF-1 

receptor with respect to its binding properties, there are no data proving that the hybrid 

receptor acts in the same way as the IR or the IGF-1R following autophosphorylation. 

Though it is reasonable to suspect that following autophosphorylation the hybrid interacts 

with IRS-1 and initiates the PI3-K / Akt pathway, there is no direct experimental evidence to 

support this. Of particular note, there is a lack of data directly linking the hybrid receptor 

with glucose uptake or NO production, although there is a wealth of circumstantial 

evidence to support the theory that the hybrid receptors initiate signalling through the PI3-

K / Akt pathway in the same way as the IR and the IGF-1R. 

Although the factors which control hybrid expression are not completely understood, the 

proportion of receptors expressed as hybrids within various tissue types seem to be 

associated with a relatively random mode of construction [218]. Although aspects of this 

process appear arbitrary, there is data to support the theory that the configuration of 

hybrid receptors found is associated with the molar concentrations of each receptor type. 

[219]. Furthermore, it has been shown that manipulation of the numbers of heterodimers 

in various cells has the ability to significantly alter hybrid receptor expression. Increasing 

the number of IGF-1R drives IR to be incorporated into hybrid receptors, a finding which 

has been demonstrated in fibroblasts [214] and endothelial cells [210]. The converse also 

appears to be true, and we have shown that knockout of the IGF-1R on vascular 

endothelium, and heterozygous knockout on a whole body level is associated with reduced 

hybrid receptor expression [209]. 
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Figure 1.8-1: Hybrid and holo-receptors. This is a schematic representation of the 
composition of the IGF-1R, IR and hybrid receptor. The IGF-1R and IR have significant 
structural homology; they both are formed by the combination of 2 heterodimers, 
consisting of α and β subunits joined by disulphide bonds. The IGF-1R / IR hybrid receptor, 
as is shown consists of an IGF-1R heterodimer, joined by disulphide bonds to an IR 
heterodimer.  

 

Hybrid receptors appear to be ubiquitously expressed, and in mammalian tissues a 

significant proportion of IGF-1 binding sites appear to be incorporated within hybrid 

receptors, as opposed to the IGF-1R itself. Looking at tissue homogenates, rather than 

specific cell types, Bailyes et al determined that 74% of IGF-1 binding sites in skeletal 

muscle were found in hybrid receptors, with similar proportions in kidney (70%), fat (68%), 

heart (87%), placental tissue (72%) and spleen (53%) [219]. Slightly different methodology 

was used by Federici et al, however results still suggested that in the region of a third to a 

half of IGF-1 binding sites were located within hybrid receptors, although this proportion 

varied depending on tissue type[220].  

Data from HUVECs, [221], human coronary artery endothelial cells (HCAEC) [222] and 

human cardiac microvascular endothelial cells (HMVEC-C) [223] derived by using 
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immunoblotting and immunoprecipitation has yielded similar results. All of the endothelial 

cells examined were shown to express hybrid receptors, and in each cell type IGF-1R mRNA 

was expressed at a significantly higher level than IR mRNA (8 fold higher in HCAEC [222] ; 7 

fold higher in freshly isolated HUVEC [221]; and 120 fold higher in HMVEC-C) [223]). In view 

of the fact that these cells express higher numbers of IGF-1R than IR it would seem likely 

that a significant numbers of IR are sequestered into the relatively insulin resistant hybrid 

receptors, rendering these endothelial cells relatively resistant to the effects of insulin. 

Indeed data supports this. Phosphorylation of Akt in human microvascular endothelial cells 

(HMVEC) has been shown to occur at 10-7M, and at between 10-8 and 10-7M in response to 

IGF-1 [224]. Taken together, this data strongly supports the view that IGF-1R outnumbers 

IR on endothelial cells, driving IR into hybrid receptors with the result that the vascular 

endothelium is a relatively insulin resistant tissue. 

Intriguingly, work from our group, shows that it would appear that manipulation of IR and 

IGF1-R stoichiometry may not only be able to determine hybrid formation but may also be 

a useful way of manipulating the sensitivity of a cell to insulin.     

Transgenic mice with endothelial specific over-expression of the IGF-1R (HIGFREO) have 

increased levels of hybrid receptors compared with wild type counterparts, coupled with 

endothelial insulin insensitivity (as measured by reduced insulin stimulated NO production) 

[210]. Studies performed on a model which crossed the IRKO mouse mice (whole body 

haplo-insufficiency of in the insulin receptor; which have both whole body and vascular 

insulin resistance and endothelial dysfunction) with an endothelial specific knockdown of 

the IGF-1R (ECIGFRKO) support our hypothesis that manipulation of hybrid numbers may 

have an effect on insulin sensitivity [209]. The resultant model demonstrated that reducing 

IGF-1R in IRKO mice restored insulin-mediated vasorelaxation, enhanced insulin-stimulated 

eNOS activation, and enhanced insulin-stimulated NO release in endothelial cells [46]. 

These data suggest that manipulation of IGF-1 to insulin receptor stoichiometry may be 

able to restore insulin sensitivity in insulin resistant states.  

Interestingly, there is an association between increased hybrid receptor expression and 

insulin resistance [225] obesity [226] hyperinsulinaemia [227], hyperglycaemia [228] and 

type 2 diabetes mellitus [229, 230]. It is unclear if the increased expression of hybrids 

results from the changes in insulin sensitivity seen in these disease states, or indeed if 
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hybrid receptors are in part responsible for the altered insulin sensitivity, although 

treatment of hyperglycaemia in diabetic rats completely restores hybrid receptor 

expression to a level comparable with non-diabetic rats [228].  

It appears that there may be further factors involved in the regulation of hybrid receptor 

expression. Exposure of VSMCs to the mineralocorticoid aldosterone resulted in a 2 fold 

increase in the expression of hybrid receptors and a 3 fold increase in the expression of 

IGF-1R [231]; an effect which was abrogated by the co-administration of the aldosterone 

antagonist eplerenone. Using in vivo studies, the same group showed that combined 

treatment with aldosterone and salt, as would be expected rendered mice hypertensive, 

but was also associated with blunted insulin signalling in the aorta and increased 

expression of hybrid and IGF-1R [231] . Importantly, treatment with the antihypertensive 

hydralazine (which does not directly affect the renin angiotensin system) restored normo-

tension in these mice, but did not favourably affect hybrid receptor expression [231], 

suggesting that the effects seen were related specifically to aldosterone expression, rather 

than the effect on systemic blood pressure. 

In addition to being altered in some disease states, there is evidence to suggest that hybrid 

receptor expression may, to a degree be developmentally related although studies are 

conflicting. Hybrid receptor expression appears to increase in murine mammary epithelial 

cells towards later pregnancy [232], but contrary to this hybrid receptor expression seems 

to decrease in skeletal muscle of suckling pigs with early development [233]. Clearly it is 

difficult to draw any firm conclusions about hybrid regulation with regards to development 

from these data, particularly given the disparate tissue used, but it would appear that 

hybrid receptor expression may well change in different tissues, during different 

developmental stages. There is evidence to suggest a link between reduced signal 

transduction via the IGF-1 axis and longevity [150, 152, 154] , although there is as yet no 

data looking at whether hybrids play any role in this.  

1.8.1 IGF-1R, hybrid expression and cardiovascular disease 

Although it seems likely that hybrid receptors play a role in modulating a cell’s sensitivity to 

insulin, it is currently unclear if altered expression of either hybrid or IGF-1R plays a role in 

the development of cardiovascular disease.   
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In patients with the traditional risk factors for cardiovascular disease, namely type 2 

diabetes, systemic insulin resistance and obesity there appears to be increased expression 

of hybrid receptors when compared with subjects without these risk factors [225, 226, 229, 

230]; the degree of insulin sensitivity is inversely proportional with hybrid receptor 

expression. As has been discussed it is not entirely clear whether increased hybrid receptor 

expression is responsible for, or occurs as a result of altered insulin sensitivity, however 

studies by Federici et al [227, 228] would suggest that the former is more likely to be the 

case, particularly given that treatment of hyperglycaemia resulted in normalisation of 

hybrid receptor numbers. The implication of these findings is that hybrid receptor 

expression may play a central role in the propagation of the vicious cycle of insulin 

resistance culminating in the development of type 2 diabetes mellitus where altered insulin 

sensitivity is associated with increased hybrid receptor expression, leading to a subsequent 

reduction in sensitivity to insulin coupled with compensatory hyperinsulinaemia.  

Human studies to date have not yet assessed endothelial expression of hybrid receptors 

particularly in those with diabetes, systemic insulin resistance and hyperglycaemia. 

However given the ubiquitous expression of hybrids, it is not unreasonable to suspect that 

similar changes as have been demonstrated in placental, skeletal muscle and adipose tissue 

factors [225, 226, 229, 230] may exist in the endothelium, and could provide a partial 

explanation for vascular insulin insensitivity seen in those with the metabolic syndrome. 

It is unclear if correction of hyperinsulinaemia is sufficient to reduce hybrid expression in 

tissues. In women with polycystic ovarian syndrome (PCOS), which is associated with 

insulin resistance and endothelial cell dysfunction, treatment with the oral biguanide 

metformin, generally used as an oral hypoglycaemic agent, leads to improvement in 

endothelial function [234]. Interestingly this study showed that the improvement in 

endothelial function was achieved independent of a change in insulin sensitivity. Although 

the above study did not assess insulin levels, metformin has previously been shown to 

reduce hyperinsulinaemia in patients with PCOS [235]. It is not known if metformin has an 

effect on expression and distribution of hybrids, but this may be an important question for 

further research.  
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1.9 Insulin and IGF-1 resistance and endothelial dysfunction 

1.9.1 The development of whole body insulin resistance 

The development of insulin resistance on a whole body level is complex, and not yet 

entirely fully understood. Insulin resistance develops as interplay between genetic and 

environmental factors, and unsurprisingly many of the molecular and cellular mechanisms 

which have been shown to contribute to the development of whole body insulin resistance, 

are also involved in the development of endothelial cell insulin resistance.  

In addition to the actions on the endothelial cell described above, the major targets of 

insulin are: skeletal muscle where, as is described above, insulin stimulates glucose 

transportation; adipose tissue, where the major action is the inhibition of lipolysis (the 

process by which triglycerides are broken down to form free fatty acids [FFA]) [236, 237]; 

and the liver, where insulin inhibits hepatic glucose production from the breakdown of 

glycogen [238]. There is little doubt that the most important (in population terms) risk 

factors for the development of insulin resistance are obesity, a sedentary lifestyle and 

aging, and in these circumstances it would appear that adipose tissue plays a major role in 

the initiation of insulin resistance.  

Nutrient excess and subsequent weight gain leads to the expansion of adipose tissue which 

has the effect of increasing FFA in the circulation. In addition to this, expanded adipose 

tissue is prone to developing areas of micro-hypoxia and stress of the endoplasmic 

reticulum [239, 240]. This causes inflammation. Release of inflammatory cytokines and 

recruitment of macrophages leads to release of further cytokines such as interleukin-6 (IL-

6) and tumour necrosis factor α (TNF-α), both of which are elevated in people with obesity 

related insulin resistance [241]. The inflammatory markers themselves activate the JNK, 

mTOR and nuclear factor κB (NFκB) signalling cascades leading to serine/threonine 

phosphorylation of IRS and inhibition of insulin signalling through the PI3-K / Akt cascade 

[242-244]. In addition to release of cytokines, hypoxic adipose tissue releases an imbalance 

of substances known as adipokines, some of which have the effect of enhancing insulin 

sensitivity; others which inhibit insulin signalling: the net effect of the adipokines released 

under these circumstances tends to promote insulin resistance [245]. 

The accumulation of proinflammatory cytokines, adipokines and activated macrophages 

has a paracrine effect upon adipose tissue, but also leads to the accumulation of 
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triglyceride in the liver [246] and adipose tissue accumulation in skeletal muscle [247]. This 

leads to resistance to the effects of insulin within these tissues, with the release of further 

FFA and cytokines to propagate the cycle. Increased FFA flux leads to an accumulation of 

intermediary components of lipid metabolism which active serine/ threonine kinases 

subsequently leading to inhibition of tyrosine phosphorylation of IRS and consequent down 

regulation of the PI3-K cascade [248, 249].  

Interestingly nutrient excess also appears to have direct effects on the p85 regulatory 

subunit of PI3-K. Effective insulin signalling requires the activity of both the regulatory 

subunit p85 and the catalytic subunit p110 to form a heterodimer. Changes in calorie 

availability have been demonstrated to preferentially activate p85, but not p110 [250]. This 

leads to relatively less heterodimerization, and inhibition of insulin signalling. Interestingly 

these changes take place after a positive energy balance of only 3 days.  

1.9.2 The development of endothelial cell insulin resistance 

Whilst it is clearly important to consider the pathways which lead to whole body insulin 

resistance it is necessary to consider the pathophysiological factors which have been shown 

to have a specific effect on endothelial cell insulin sensitivity. As has been alluded to, there 

is considerable cross over between factors which lead to insulin resistance on a whole body 

level, and those which may promote insulin resistance and dysfunction of the endothelial 

cell. Although we will look at the factors of hyperglycaemia, hyperinsulinaemia and 

lipotoxicity separately, themes of inflammation and oxidative stress predominate.  

1.9.2.1 Oxidative stress and inflammation 

There is significant overlap between the ways which ROS causes or contributes towards the 

development of endothelial dysfunction, and the ways which ROS might contribute 

towards endothelial insulin insensitivity (Figure 1.9-1). There is a plethora of research 

examining the effects of ROS on insulin signalling in various tissues, although the exact 

mechanism is any one tissue is yet to be elucidated. This section will therefore focus on the 

general principles by which ROS might contribute towards endothelial specific insulin 

resistance.  

ROS appears to have a negative impact towards insulin signalling, primarily by interaction 

between a series of mitogen activated protein kinases, particularly c-Jun N-terminal (JNK) 

and IκB kinase (IKK), both of which induce serine phosphorylation of IRS-1, therefore 
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interrupting PI3-K dependent insulin signalling. ROS has been demonstrated to inactivate 

the MAPK phosphatases, which would usually inactive JNK by de-phosphorylation [251] 

 

Figure 1.9-1: Oxidative stress and the development of insulin resistance. Schematic 
representation of the way which oxidative stress contributes to the development of insulin 
resistance. Enhanced oxidative stress leads to enhanced activation of serine threonine 
kinases which inhibit signalling through the PI3-K / Akt pathway. In addition enhanced 
expression of pro-inflammatory cytokines have a direct effect on the development of 
insulin resistance.IRS-1: insulin receptor substrate 1; PI3-K: phosphatidylinositol -3 kinase; 
Akt: protein kinase B; eNOS: endothelial nitric oxide synthase; NO: nitric oxide; Glut-4; 
glucose transporter 4; NFκB: nuclear factor kappa-light-chain enhancer of activated B cells; 
TNFα: tumour necrosis factor α; Il-6: interleukin 6 

 

ROS also appears to be able to activate IKK, which forms part of the NFκB kinase signalling 

pathway, by causing Src dependent protein kinase D activation [252, 253], with the 

subsequent activation of IKK. 

Following ROS induced activation of JNK or IKK, serine phosphorylation of IRS-1 occurs, 

leading to failure of insulin signalling transduction via PI3-K Akt pathway [199].  
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Although these pathways undoubtedly contribute to the development of insulin resistance, 

it is not clear, firstly how relevant ROS might be in the initiation of insulin resistance, and 

indeed the specific mechanisms by which ROS may worsen insulin resistance in the 

endothelium.  

1.9.2.2 Hyperinsulinaemia 

Hyperinsulinaemia largely occurs as part of the metabolic syndrome as a consequence of 

insulin resistance, with compensatory levels of insulin released from the pancreas to 

maintain glucose homeostasis in the face of increased tissue insulin resistance. It is 

somewhat artificial to therefore consider the effects of hyperinsulinaemia without factors 

also associated with the metabolic syndrome, particularly obesity, lipotoxicity and 

enhanced oxidative stress.  Nevertheless, there is evidence that hyperinsulinaemia itself 

contributes to the development of endothelial cell insulin resistance and endothelial 

dysfunction. 

Arcaro et al [254] demonstrated that in normal subjects infusion of insulin at both low and 

high doses (euglycaemia was maintained by the clamping technique) was associated with 

reduction in endothelial dependent forearm vasodilatation, an effect which was abrogated 

by the antioxidant vitamin C, suggesting that the effect was mediated by higher levels of 

ROS associated with insulin infusion.  

There is good evidence to support the theory that hyperinsulinaemia may be involved in 

the development of pathway specific insulin resistance. The term pathway specific insulin 

resistance refers to states where insulin stimulated PI3-K pathway activity is reduced and 

insulin stimulated MAPK pathway activity is enhanced (Figure 1.9-2). In both diabetic 

humans and obese rats, insulin was found to stimulate MAPK activity, with reduced, or in 

some cases virtually abolished insulin stimulated PI3-K activity [255, 256]. In endothelial 

cells inhibition of the PI3-K pathway using wortmannin abolished insulin stimulated eNOS 

phosphorylation, but was associated with enhanced MAPK signalling [257], suggesting that 

in situations where PI3-K signalling is reduced, MAPK signalling is not only maintained, but 

possibly enhanced.  
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Figure 1.9-2: Pathway specific insulin resistance. Adapted from Muniyappa and Quon 
[258]. The combination of glucotoxicity, lipotoxicity and inflammation lead to the 
production of compounds which inhibit signalling through the PI3-K / Akt pathway by 
inhibiting tyrosine phosphorylation of IRS-1 with the effect of reduced GLUT-4 translocation 
and reduced insulin mediated glucose disposal. This is ultimately associated with 
compensatory hyperinsulinaemia and the development of “pathway specific insulin 
resistance” where the excess insulin is unable to activate the PI3-K pathway, and 
overstimulates the MAPK pathway. Ins: insulin; IRS: insulin receptor substrate; PI3-K: 
phosphatidylinositol-3 kinase; PDK-1: protein dependent kinase -1; Akt: protein kinase B; 
eNOS: endothelial nitric oxide synthase; NO: nitric oxide; GLUT-4: glucose transporter-4; 
aPKC: activated protein kinase C; NFκB: nuclear factor kappa-light-chain-enhancer of 
activated B cells; JNK: c-Jun N-terminal kinases; PKC: protein kinase C; ROS; reactive oxygen 
species; AGE; advanced glycosylated end products; SHC: src homology-2 domain-
containing; GRB2: growth factor receptor bound protein-2; SOS: son of sevenless; RAS: Ras 
protein; Raf: Raf protein; MAPK: mitogen activated protein kinase; ET-1: enodthelin-1; pink 
circle with P: phosphorylation  
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In the liver and muscle of rats treated with hyperinsulinaemia Ueno and colleagues [259] 

observed an associated increase in serine phosphorylation of IRS1/2 (as opposed to 

tyrosine phosphorylation induced by normal insulin signalling) with subsequent impairment 

of signalling through the PI3-K pathway, and up regulation of the mTOR pathway. Taken 

together it would seem that this data support the theory that hyperinsulinaemia may 

induce pathway specific insulin resistance. 

In endothelial cells taken from spontaneously hypertensive rats, insulin stimulation of the 

MAPK pathway leads to up regulation of ET-1 expression [260], and in endothelial cells 

treated with wortmannin, there is increased expression of adhesion molecules due to 

enhanced MAPK signalling [257].  

The net effect of pathway specific insulin resistance on the endothelial cell, would 

therefore lead to enhanced insulin stimulation of the MAPK pathway, with the result of the 

formation of a pro-atherogenic environment within the vessel. 

It has been discussed in detail that endothelial cells express a higher proportion of IGF-1R 

than IR [221-223], and that insulin at supra-physiological concentrations can 

autophosphorylate the IGF-1R [139, 197, 198]. In this situation hyperinsulinaemia may lead 

to the combined effects of enhanced MAPK activation due to pathways specific insulin 

resistance, and further MAPK activation caused by IGF-1R autophosphorylation.  

1.9.2.3 Lipotoxicity 

It is well documented that patients with the insulin resistance syndrome have an abnormal 

lipid profile, with elevated triglyceride and free fatty acid (FFA) levels and an unfavourable 

low density to high density cholesterol profile.   

Although there are several cellular mechanisms behind the association between lipotoxicity 

and endothelial cell insulin resistance, the mechanisms seem to converge around increased 

production of ROS with activation of inflammatory pathways. It has been known since the 

early part of the millennium that treatment of endothelial cells with FFA is able to stimulate 

production of ROS via protein kinase C mediated activation of NADPH oxidases [261]. More 

recently, work on bovine aortic endothelial cells has demonstrated that the FFA palmitic 

acid inhibits insulin mediated tyrosine phosphorylation of IRS-1, with subsequent reduction 

of eNOS phosphorylation and NO production [262]. Over-expression of an inactive IKK 
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abolished this, showing that palmitic acid can cause endothelial insulin resistance by an IKK 

dependent mechanism [262].  

In addition to the action on IKK, palmitic acid also up regulates phosphatase and tensin 

homologue (PTEN) which is a negative regulator of insulin signalling and in contrast, linoleic 

acid inhibits insulin stimulated, Akt mediated eNOS activation [263]. 

1.9.2.4 Hyperglycaemia 

In the early stages of the development of whole body insulin resistance, maintenance of 

normoglycaemia is achieved by hyperinsulinaemia; hyperglycaemia only develops following 

pancreatic β cell failure. Hyperglycaemia itself has an effect on the development of 

endothelial cell insulin resistance [264]  and it is useful to consider the postulated 

mechanisms for this. 

As has been discussed with regards to other factors which can lead to the development of 

endothelial cell insulin resistance, hyperglycaemia leads to a pro-inflammatory state with 

increased levels of oxidative stress. In addition to causing endothelial dysfunction itself, 

excess production of ROS, and activation of pro-inflammatory pathways leads to activation 

of serine/threonine kinases with the subsequent effect of reduction in signalling through 

the anti-atherogenic PI3-K pathway, and enhances flux down the pro-atherogenic MAPK 

pathway.  

In addition to causing direct inhibition of eNOS with subsequent reduced bioavailability of 

NO [265], hyperglycaemia has been demonstrated to induce NFκB activation in endothelial 

cells. Activation of NFκB and the associated upstream signalling complex inhibitor κB kinase 

(IKK) have been shown to lead to serine phosphorylation of IRS-1 [266] and insulin 

resistance in hepatocytes [267] and skeletal muscle [268]. It would seem reasonable to 

suspect that activation of NFκB in endothelial cells would therefore also be associated with 

insulin resistance, although specific evidence of this is currently lacking.  

The primary way by which hyperglycaemia has an effect on endothelial dysfunction is by 

enhanced production of reactive oxygen species, mediated either by enhanced direct 

glucose oxidation; mitochondrial superoxide production; eNOS uncoupling; or enhanced 

production of advanced glycation end products (AGE).   
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1.10 Reactive oxygen species and enhanced insulin signalling 

There is undoubtedly a link between ROS and the development of endothelial dysfunction; 

in view of this interest turned towards the potential role which antioxidants might have to 

play in the prevention of cardiovascular disease. Interestingly, however, several large scale 

trials failed to show an improvement in the risk of developing cardiovascular disease when 

subjects with diabetes were treated with antioxidants [269, 270]; indeed the antioxidant 

vitamin E has been demonstrated to be associated with an increased risk of the 

development of left ventricular systolic dysfunction following myocardial infarction [271]. 

Attention has therefore turned to the role which reactive oxygen species may have to play 

in the modulation of the insulin signalling pathway. Of particular importance is the role of 

H2O2. 

1.10.1 The effect of hydrogen peroxide on insulin signalling 

It is now appreciated that ROS play a critical role as intracellular second messengers, and 

are of particular importance in the insulin signalling cascade, via interaction with the 

protein tyrosine phosphatases (PTPs). The PTPs are a family of proteins including the 

phosphatase and tensin homologue (PTEN) and PTP-1B. PTEN and PTP-1B, in particular 

have been shown to be negative regulators of the insulin pathway. PTEN catalyses the 

conversion of PIP3 to PIP2, therefore attenuating the insulin signalling cascade[272]. 

Transgenic mice with knockout of PTP-1B show enhanced glucose tolerance and enhanced 

insulin sensitivity, in combination with reduced adiposity and resistance to weight gain 

[273, 274]. The activity of the PTP family is dependent on reduction of the thiol side chain 

on the cystine residue; H2O2 readily oxidises this side chain leading to progressive and 

eventual irreversible inactivation of PTP. See Figure 1.10-1. 

 3T3-L1 adipocytes have been shown to generate H2O2 in response to stimulation with 

insulin, which is associated with oxidative inactivation of PTP-1B, and enhanced insulin 

signalling. Administration of catalase or the NADPH oxidase inhibitor diphenyleneiodonium 

abolished the oxidation of PTP-1B and was associated with reduced insulin stimulated 

autophosphorylation of the IR [275, 276]. In H4IIEC hepatocytes low concentrations of H2O2 

(5-10µM) were shown to enhance insulin stimulated Akt activity, and suppress PTP-1B 

activity; higher concentrations (25-50µM) reduced insulin stimulated Akt phosphorylation 

[277]; suggesting a dose-dependent effect on insulin signal propagation. 
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Figure 1.10-1: Reactive oxygen species and enhanced insulin signalling via interaction 
with PTP. Increased production of H2O2 is associated with oxidative modification of the 
cysteine thiol residue on protein tyrosine phosphatases, particularly PTP-1B. This renders 
the PTP inactive and unable to inactivate signalling via the PI3-K / Akt pathway. Although 
not shown in the diagram, H2O2 is also able to enhance insulin signalling by enhancing 
oxidation of cysteine residues on the IR itself. Ins: insulin; IRS: insulin receptor substrate; 
PI3-K: phosphatidylinositol – 3 kinase; PDK-1: protein dependent kinase – 1; Akt: protein 
kinase B; aPKC: activated protein kinase C; GLUT-4: glucose transporter 4; NO: nitric oxide; 
eNOS: endothelial nitric oxide synthase; ROS: reactive oxygen species; PTP: protein tyrosine 
phosphate; pink circle with P: phosphorylation 

 

In addition to the effect on modification of PTPs, H2O2 is, at high concentrations, recognised 

to be to be associated with an insulin-like action. Administration of H2O2 to rat adipocytes is 

associated with increased IR phosphorylation [278], an effect independent of insulin, 

strongly suggesting that the insulin-mimetic effect of H2O2 is mediated through the insulin 

signalling pathway. Indeed administration of H2O2 has been demonstrated to be associated 

with the same downstream effects on cellular metabolic action as insulin itself [279]. This 

of course as discussed above could be partly due to the increased oxidation of the thiol side 

chain of the PTP with subsequent propagation of the insulin signalling cascade, but 

although this would explain the cellular effect of H2O2 it does not explain the increased 
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phosphorylation of the IR as noted by Hayes et al [278]. Interestingly, although stimulation 

with H2O2 was associated with increased IR phosphorylation, this did not appear to be as a 

direct result of H2O2 itself. Subsequent work has demonstrated that H2O2, acts to oxidase 

cystine residues within the kinase domain of the IRβ, and this in turn allows spontaneous 

autophosphorylation within the activation loop of the IR [280]. This is termed “priming” of 

the IR.  

Interestingly, work by the same group has shown that low doses of H2O2 have the opposite 

effect in the IGF-1R: in T-47D breast cancer cells the administration of low levels of H2O2 is 

associated with inhibition of the IGF-1R receptor kinase [281]. Schmitt et al who 

demonstrated this, hypothesised that this difference might arise due to differences in the 

position of cystine residues in the tyrosine kinase domain between the IR and the IGF-1R. It 

is unknown what effect low doses of H2O2 might have on the IR/IGF-1R hybrid receptor. 

Cross talk between the two halves of the receptor is critical for receptor functioning; low 

dose H2O2 would possibly have opposite effects on the 2 halves of the receptor, although 

this is postulation. 

In addition to cellular studies, the principle that increased level of ROS may enhance insulin 

signalling has been demonstrated on a whole body level. The enzyme glutathione 

peroxidise 1 (Gpx1) eliminates physiological ROS; transgenic mice lacking Gpx1 are resistant 

to high fat diet induced insulin resistance and have enhanced insulin stimulated Akt 

phosphorylation coupled with increased glucose uptake in muscle [282]. This effect was 

abrogated by administration of the anti-oxidant N-acetyl cystine. Furthermore on a cellular 

level Gpx1 -/- fibroblasts showed enhanced insulin sensitivity, and oxidation of PTEN.  

Taken together this data suggests that insulin stimulated H2O2 production is associated 

with inactivation of PTP-1B and subsequently enhanced transduction of the insulin 

signalling cascade.   

1.10.2 Vascular effects of hydrogen peroxide 

In addition to the beneficial effect of H2O2 on modulating insulin signalling, there are 

emerging data to suggest that Nox4 derived H2O2 may play a role in modulating blood 

vessel tone. Mice with endothelial specific Nox4 over-expression have reduced systemic 

blood pressure and enhanced vasodilatation in response to acetylcholine than wt. 

counterparts. This was in association with marked increases in H2O2, but was independent 
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of eNOS [82]. The enhanced vasodilatation seen in the Nox4 over-expressing mice was, 

however blocked by treatment with high levels of potassium and KCa channel inhibitors, 

strongly suggesting that H2O2 was acting as an endothelial derived hyperpolarizing factor 

(EDHF).  

By acting as an EDHF H2O2 has been shown to be important in affecting blood vessel tone in 

an NO independent manner. Recent evidence suggests that endothelial derived H2O2 

induces vasodilatation by diffusing to the smooth muscle cells and acting directly on Ca2+ 

activated K+ channels [283] rather than inducing another substance to cause vasodilatation. 

EDHF has been shown to be a contributor to vasodilatation in many vessels, and appears to 

be of particular importance in the micro-vasculature [283-285] . In contrast to endothelial 

dependent vasodilatation, the vasodilator responses to EDHF are relatively preserved in 

patients with atherosclerosis, and therefore H2O2 may be of significance in maintaining 

vascular tone in these patients [285]. 

Further supporting the notion that Nox4 derived H2O2 may have a vascular-protective role: 

inducible Nox4 deficiency is associated with endothelial dysfunction in the aorta, reduced 

angiogenesis and attenuated ability of pulmonary endothelial cells to form tubes [84]; over-

expression of Nox4 is associated with improved angiogenesis and resistance to hypoxia 

[84].  
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1.11 The link between endothelial insulin sensitivity and glucose 

homeostasis 

Insulin delivery to the interstitium of skeletal muscle, the principle site of insulin mediated 

glucose disposal, is of critical importance in determining the rate of glucose disposal by 

skeletal muscle. There is now good evidence to suggest that insulin is able to regulate its 

own passage to the muscle interstitium via actions on the vasculature, perhaps in 3 distinct 

ways:  by an action on whole limb blood flow; by increased capillary recruitment; or by 

enhanced passage across the endothelium itself.  

The next section will discuss the evidence to support this theory, particularly with regards 

to insulin resistance, before considering the potential role of endothelial cell insulin 

sensitivity in determining glucose homeostasis. 

It has been recognised since the mid-1980s that there is a difference in the time period 

between which insulin enters the plasma, and lymphatic fluid (known to correspond closely 

with whole body glucose mediated insulin disposal), with a corresponding disparity 

between the time taken for insulin to suppress hepatic gluconeogenesis and the onset of 

insulin mediated glucose disposal. In accordance with this observation, tyrosine kinase 

activation of the IR swiftly follows increases in interstitial insulin levels, with a time lag 

between increased plasma insulin and receptor activation [286-288]. Taken together this 

suggests that insulin delivery to skeletal muscle, via the interstitium is of importance in 

determining insulin mediated glucose disposal, and hence is likely to play a role in 

influencing whole body insulin sensitivity. 

In the early 1990s, Baron and colleagues [289-291] suggested that the hemodynamic effect 

of insulin (i.e. vasodilatation initiated by insulin stimulated nitric oxide production) was 

associated with an increase in blood flow to skeletal muscle, an effect that was blunted in 

conditions associated with insulin resistance. Exogenous insulin infusion was shown to have 

the effect of increasing whole leg blood flow and associated glucose uptake, an effect that 

was abolished with the concomitant infusion of the NOS inhibitor L-NMMA.  Interestingly in 

obese and diabetic subjects, there was markedly impaired insulin stimulated increases in 

skeletal muscle blood flow, with corresponding reduction in glucose uptake.  Whether the 

effect of insulin on whole limb blood flow has a physiological role is unclear; it appears that 

although physiological levels of insulin can mediate an increase in whole limb blood flow, it 

occurs relatively slowly, which  is contrary to the rapid onset of insulin mediated glucose 
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disposal seen in healthy humans. Moreover, there is no convincing evidence that the 

impaired insulin mediated vasodilatation and associated blood flow seen in insulin resistant 

individuals contributes to derangements in whole body glucose homeostasis. 

1.11.1.1 Effect of insulin on micro-vascular perfusion 

Although the effect of insulin on increasing whole limb blood flow, with a resultant increase 

in insulin mediated glucose disposal may not be important physiologically, there is now 

evidence that insulin plays a role in increasing microvasculature perfusion to skeletal 

muscle. This has the effect of increasing the endothelial surface available for insulin 

delivery. Using contrast enhanced ultrasound Barrett and colleagues demonstrated that 

insulin stimulates rapid microvascular recruitment via eNOS dependent mechanisms [292, 

293], a process which was blocked by inhibition of NOS. Furthermore, the ability of insulin 

to enhance microperfusion to skeletal muscle is blunted in subjects with diabetes [294] and 

obesity [295].  

Interestingly, in humans, hyperinsulinaemia has been shown to cause rapid increases in 

skeletal muscle microvascular volume, although muscle insulin clearance decreased with 

increased hyperinsulinaemia, suggesting the presence of a saturable process allowing the 

transportation of insulin across the endothelium [296].  

1.11.1.2 Trans-endothelial insulin transportation 

The endothelium is not homogenous throughout the body; the structure varies across 

different tissues. The integrity of the blood brain barrier is maintained by an endothelial 

layer with very few junctions between cells, accounting for the fact that few 

macromolecules traverse the blood brain barrier. Conversely the liver has a discontinuous 

endothelial layer, which allows relatively easy passage to macromolecules such as insulin. 

Indeed it is likely that the discontinuity of the hepatic endothelium, coupled with the large 

blood flow which accounts for the rapid clearance of insulin by the liver, and the rapid 

suppression of hepatic gluconeogenesis which follows. Skeletal muscle endothelium is 

continuous, but unlike the endothelium of the blood brain barrier has multiple caveolae 

and junctional structures. 

There are several theories as to how macromolecules might traverse the endothelium: 
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1. In discontinuous or fenestrated endothelium, transit might occur between 

cellular junctions, although this would seem unlikely in skeletal muscle where 

the endothelial junctions are tight. 

2. The process could involve random inclusion of macromolecules into caveolae, 

although if the macromolecule is not abundant then this event would be 

infrequent. 

3.  Binding of a ligand to a receptor could lead to receptor-ligand internalisation, 

with diffusion of ligand through the endothelial cell and release to the 

interstitium. 

4. Localisation of receptors within caveolae to “trap” the macromolecule 

efficiently.  

As will now be discussed, it appears that for insulin, the 4th theory is the most likely, and 

that furthermore not only is the IR involved in the capture of insulin, IR activation 

stimulates transendothelial insulin transportation.  

The process of transendothelial transportation of macromolecules was suggested by 

studies which demonstrated the presence of radio-labelled albumin in caveolae within 

endothelial cells rather than in the inter-cellular space [297]. This effect was abrogated in 

mice with knockout of caveloin-1 [298] (a critical protein involved in the formation and 

integrity of caveolae).   

In the 1980s King and Johnson [299] observed that radio-labelled insulin moved across the 

endothelium in a process which was blocked by both antibodies to the IR, and higher 

concentrations of insulin itself, suggesting a saturable and receptor mediated process. 

Fluorescent tagging of insulin allowed Barrett and colleagues [300] to localise tagged 

insulin within the endothelial cells of skeletal muscle following an insulin infusion; 

intriguingly there was a distinct lack of stained insulin seen to enter the muscle interstitium 

via the junctions between endothelial cells. Immunohistological staining demonstrated that 

IR, IGF-1R and caveloin-1 were also found in the muscle cells, and that there was significant 

co-localisation between the fluorescently tagged insulin and the IR or IGF-1R. To a lesser 

degree there was also some relationship between the fluorescently tagged insulin, the IR or 

IGF-1R and caveolin-1. Co-administration of the fluorescently tagged insulin with either 

supraphysiological doses of unlabelled insulin, IGF-1 or an antibody to the IGF-1R inhibited 

transendothelial transportation of insulin. Taken together, this data seem to give credence 
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to the theory that insulin enters the muscle interstitium via trans-endothelial 

transportation, a process which involves caveolae and localisation with either the IR or the 

IGF-1R. It is perhaps unsurprising that the IGF-1R might be implicated in transendothelial 

transportation of insulin, given the structural homology between the IGF-1R and the IR, and 

the previously discussed evidence that at elevated levels of insulin, both the IR and the IGF-

1R are phosphorylated [198].   

Although there appears to be a role for the IGF-1R in modulating transendothelial insulin 

transportation at supraphysiological doses, at physiological levels  it appears that only the 

IR itself is implicated in transendothelial transportation of insulin [301]. Whether hybrid 

receptors have a role to play is unknown, but it is reasonable to speculate that 

sequestration of IR into hybrid receptors may also have a role in modulating 

transendothelial insulin transportation.  

1.11.1.3 Does insulin sensitivity regulate transendothelial insulin transportation? 

Clearly, whether the process of transendothelial transportation is an active or a passive 

process is of interest when considering insulin sensitivity. Using cultured bovine aortic 

endothelial cells, Barrett and colleagues demonstrated that an intact insulin signalling 

pathway is critical to the uptake of insulin into endothelial cells [302]. The process of 

transendothelial transportation was inhibited by the PI3-K inhibitor wortmannin; the MAPK 

inhibitor PD 98059 and the proinflammatory cytokine TNF-α. Intriguingly, inhibition of the 

protein tyrosine phosphatase PTP-1B enhanced insulin signalling.   

There appears to be good evidence to support the theory that insulin delivery to the 

muscle interstitium plays a major rate limiting step in insulin mediated glucose disposal; 

that insulin enhances microvascular recruitment; and that delivery to the muscle 

interstitium is via transendothelial transportation, a process which requires intact insulin 

signalling. It is perhaps surprising then, that a mouse with endothelial specific knockout of 

the IR (VENIRKO) was reported to have normal whole body glucose homeostasis under 

normal dietary conditions [303], albeit with marked endothelial insulin resistance.  

Contrary to this the transgenic endothelial specific IRS-2 knockdown mouse, was associated 

with impaired insulin signalling, impaired insulin induced microvascular recruitment, 

reduced interstitial insulin concentrations and a reduction in glucose uptake by skeletal 

muscle [304] . Restoration of the insulin signalling cascade in endothelial cells from these 

mice reversed this phenotype.  
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It appears that interference to the insulin signalling cascade at various points (inhibition of 

PI3-K and MAPK inhibition) plays a role in diminishing transendothelial insulin 

transportation [302]; whether interruption to this signalling cascade by reactive oxygen 

species would have the same effect is currently unknown.  
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1.12 Summary  

In spite of a significant body of research, patient with diabetes continue to have a 

significant cardiovascular morbidity and mortality burden, and have failed to benefit from 

advances in treatment for cardiovascular disease in the same way as insulin sensitive 

individuals [85]. It is now appreciated that insulin resistance precedes the development of 

overt diabetes and is itself a risk factor for developing endothelial dysfunction, the 

precursor of atherosclerosis [92]. Further study has shown that insulin signalling lays at the 

crossroads of vascular and metabolic homeostasis with insulin playing a significant role in 

modulating not only glucose homeostasis, but vascular tone via pathways dependent on 

PI3-K and Akt. Importantly, various animal models (Table 4) have demonstrated that 

adaptation of these pathways in various tissues can have an effect on tissue specific, and 

whole body insulin sensitivity.  

The IGF-1R shares significant structural and functional homology with the IR, and also plays 

a role in glucose and vascular homeostasis. Mice with muscle specific IR knockout 

(dominant negative IR) show only mild metabolic disorder and moderate insulin resistance 

[305], whereas mice with functional inactivation of the IGF-1R targeted specifically to 

skeletal muscle, develop severe insulin resistance and Type 2 diabetes at an early age [306]. 

This finding illustrates that manipulation of the IGF-1R itself may be a more profound way 

of manipulating insulin sensitivity, an effect which most likely relates to the formation of 

IGF-1R/IR hybrid receptors. The intriguing relationship between the IGF-1R / IR and the 

effect on vascular and metabolic function merits further study.
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Mouse Type Phenotype Glucose handling Endothelial function 
IR (-/-) Neonatal death from ketoacidosis 

[307] 
  

IGF-1R (-/-) Neonatal death from respiratory 
failure. 45% of normal size [308] 

  

IR (-/+) “IRKO” mouse (whole 
body) 

Hypertensive Comparable baseline blood glucose, FFA 
and triglyceride level. Insulin levels higher 
in IRKO in response to glucose load. 

Progressive endothelial dysfunction; reduced basal NO production; 
reduced insulin stimulated eNOS phosphorylation; increased 
endothelial derived superoxide production [309] 

Muscle specific insulin receptor 
knockout. “MIRKO” mouse 

Elevated fat mass, elevated serum 
triglycerides,  

Normal blood glucose, normal serum 
insulin, normal glucose tolerance test 
[305] 

Not examined 

Vascular endothelium specific 
IR knockout. 
“VENIRKO” mouse 

Fertile, undistinguishable from 
litter mates. 

Glucose homeostasis comparable with 
wild type mice.  
 

Endothelial function not specifically studied but noted reduced 
eNOS and Endothelin-1 levels. [303] 

Dominant mutant human IR 
specific to endothelium. 
“ESMIRO” mouse 

Normotensive Preserved glucose homeostasis.  Blunted aortic vasorelaxation to ACh. Blunted insulin stimulated 
eNOS phosphorylation. Increased superoxide production. [195] 

Homozygous mutant human 
IGF-1R specific to skeletal 
muscle. “MKR” mice 

Modest growth retardation Reduction in insulin and IGF-1 mediated 
glucose uptake into skeletal muscle. 
Whole body insulin resistance and 
development of type 2 diabetes.  

Not studied [306] 

Hemizygous knockout of IGF-1R 
(+/-). “IGF1RKO” 

Reduced numbers of hybrid 
receptors compared with wild type 

Impaired glucose tolerance. Increased 
insulin sensitivity.  

Increased basal NO production. [209] 

Endothelial specific hemizygous 
knockout of  IGF-1R (+/-) 
“ECIGF1RKO” mice 

Reduced numbers of hybrid 
receptors compared with wild type 

Normal glucose handling Enhanced basal NO production. [209] 

IRKO x ECIGF1RKO  Normal glucose handling Restoration of vascular sensitivity to insulin when compared with 
IRKO mice (which were resistant to vascular effects of insulin) [209] 

Over-expression of human IGF-
1R specific to vascular 
endothelium “HIGFREO” 

 Normal glucose handling Reduced basal NO production. Reduced insulin stimulated eNOS 
phosphorylation. [210] 

Endothelial IRS-2 deletion  Reduced glucose uptake by skeletal 
muscle 

Reduced insulin induced capillary recruitment [304] 

 
Table 4: Summary of animal models examining effect of manipulation of IR and IGF-1R on various tissues.
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Chapter 2: Hypothesis and Aims 
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2 Hypothesis and Aims 

As has been discussed, it has been established by our group that manipulation of the 

stoichiometry of the IGF-1R and IR on the vascular endothelium plays a role in determining 

endothelial insulin sensitivity [209, 210]. Increasing the numbers of IGF-1R on the vascular 

endothelium leads to increased IGF-1R / IR hybrid expression on the vascular endothelium 

with subsequent reduction in endothelial insulin sensitivity: reduction of IGF-1R on the 

vascular endothelium results in reduction in the expression of hybrid receptors with 

associated enhanced endothelial insulin sensitivity.  

The importance of the IGF-1R in modulating insulin sensitivity, and endothelial insulin 

sensitivity in particular, via the effect on hybrid receptors has been established, and 

presents an intriguing target for therapeutics. In view of the wide range of effects of the 

IGF-1R it would be impossible to knockout the IGF-1R as a way of offering some therapeutic 

benefit in humans, however interruption of receptor signalling by the use of exogenous 

compounds, may be possible, and it is therefore necessary to consider how the presence of 

a non-functioning IGF-1R might affect insulin sensitivity and endothelial function.  

In particular several observations from previous studies formed the basis of this work: 

1. The formation of IGF-1R/IR hybrids is of critical importance in modulating the 

sensitivity of a tissue to insulin. 

2. The IGF-1R can be rendered inactive and unable to become autophosphorylated by 

substitution of a single base mutation at the ATP binding site, lysine K1003 [310-

312]. 

3. Both halves of the IGF-1R or IGF-1R / IR hybrid need to be functional in order for 

the receptor to be able to active [215].   

I therefore generated the following hypothesis: the presence of a non-functioning IGF-1R 

expressed solely on the vascular endothelium will be associated with reduction in 

endothelial insulin sensitivity, and may have a subsequent effect on endothelial function. In 

keeping with other previously published results examining the effect of changing IGF-1R or 

IR function solely on the vascular endothelium [195, 209, 303], I also hypothesise that this 

modification of IGF-1R function on the vascular endothelium will have no effect on whole 

body insulin sensitivity. I attempted to test this hypothesis by conducting a series of 

investigations designed to answer the following subjects: 
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1. Does the incorporation of a non-functioning IGF-1 receptor on the vascular 

endothelium produce a viable mouse – that is to say, are the mice alive, healthy 

and are they fertile? 

2. Does the proposed method of incorporating a non-functioning IGF-1R onto the 

endothelium produce what is expected – i.e. is expression of the non-functioning 

IGF-1R expressed solely on the vascular endothelium? 

3. Does the presence of a non-functioning IGF-1R expressed on the vascular 

endothelium have any effects on whole body glucose homeostasis or insulin and 

IGF-1 sensitivity? In addition to this, is there any evidence that other aspects of the 

metabolic phenotype are affected in MIGFREO mice? 

4. Does the presence of a non-functioning IGF-1R expressed on the vascular 

endothelium have any effect on endothelial function or endothelial insulin 

sensitivity? 

5. Depending on the results identified – are we able to demonstrate a potential 

mechanism? In particular, given the recent evidence that hydrogen peroxide is able 

to potentiate insulin signalling, is there any evidence that hydrogen peroxide levels, 

or other reactive oxygen species are altered in MIGFREO mice?  
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Chapter 3: Materials  
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3 Materials 

General chemicals 

 NaOH       Sigma-Aldrich® 

 EDTA       Sigma-Aldrich® 

 Tris HCl       Fisher Scientific 

 Tris Base       Fisher Scientific 

 Glacial Acetic Acid      Fisher Scientific 

 Ethanol       Fisher Scientific 

 Methanol       Fisher Scientific 

 NaCl       Fisher Scientific 

 Tween ® 20       Sigma-Aldrich® 

 KCl        Fisher Scientific 

 KH2PO4       Fisher Scientific 

 NaHCO3       Fisher Scientific 

 MgSO4.7H2O      VWR® 

 Glucose       Sigma-Aldrich® 

 CaCl2       Fischer Scientific 

 Glycerol       Sigma-Aldrich® 

 Sodium dodecyl sulphate     Sigma-Aldrich® 

General Lab supplies 

 Corning® Costar® Microcentrifuge tubes   Sigma-Aldrich® 

 SafeSeal microtube      Sarstedt AG & Co 

 PIPETMAN® diamond tips     Gilson®    

 PIPETMAN® pipette      Gilson® 

 MiniSpin® centrifuge     Eppendorf 

 5702R Centrifuge      Eppendorf 

 Centrifuge MR 1822      Jouan 

 UC152 Heat-Stir      Stuart® 

 Dri-Block® Tube heater     TECHNE 

 Non-skirted 96 well PCR plate    Thermo Scientific 

 8 domed cap strips for PCR plate    Thermo Scientific 

 96 well clear microplate     Greiner bio-one 
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 Micro-amp® optical adhesive film    Applied Biosystems® 

 Corning® centrifuge tubes     Sigma-Aldrich®   

 CELLSTAR® centrifuge tubes     Greiner bio-one 

 Corning® Costar® Strippette®    Sigma-Aldrich® 

 Fisherbrand™ motorized pipet fillers   Fisher Scientific 

 SpectraMax® 190 microplate reader    Molecular Devices 

 Dynex® MRX TC microplate reader    Dynex Technologies 

 PowerPac™ 3000      Bio-Rad 

 Needles       Terumo® 

 Syringes       BD Biosciences 

 SA8 vortex mixer      Stuart® 

 SRT9 analogue tube roller     Stuart® 

Genotyping 

 PTC-200 Peltier Thermal Cycler    MJ Research 

 AmpliTaq® DNA polymerase with buffer II   Applied Biosystems® 

 dNTP       Invitrogen® 

 Agarose Molecular Grade     Bioline 

 Ethidium bromide      Sigma-Aldrich® 

 Horizontal Gel Tank      Anachem Ltd. 

 Multiimage light cabinet     Alpha Innotech  

 Chemi-imager 4400 low light imaging system  Alpha Innotech 

 GeneRuler™ 100bp DNA ladder    Applied Biosystems® 

Quantitative PCR 

 TissueLyser       Qiagen® 

 6mm stainless steel cone balls      Retsch® 

 TRIzol®       Sigma-Aldrich®   

 Chloroform       Sigma-Aldrich®  

 Isopropanol       Sigma-Aldrich®  

 RNAase free H2O      BDH Biochemical 

 NanoDrop® ND 1000 Spectrophotometer   Thermo-Scientific® 

 ND-1000 v3.1 software     Thermo-Scientific® 

 High capacity cDNA reverse transcription kit   Applied Biosystems® 
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 96 well optical reaction plate with barcode   Applied Biosystems® 

 Power Sybr® green PCR mastermix    Applied Biosystems® 

 7900 real time PCR system     Applied Biosystems® 

 SDS v2.2 software      Applied Biosystems® 

Pulmonary Endothelial Cell isolation and culture 

 Collagenase       Wothington Biomedical 

 MACSmix™ tube rotator     Miltenyi Biotech 

 Gibco® Dulbecco’s phosphate buffered saline  Invitrogen®  

 MACS® CD146 (LSEC) microbeads    Miltenyi Biotech 

 OctoMACS® manual separator     Miltenyi Biotech 

 MACS® MS cell separation columns    Miltenyi Biotech 

 Endothelial cell growth medium MV2   PromoCell 

 Fetal Bovine Serum      Biosera 

 Fibronectin coated 6 well plate    BD Biosciences 

 Bovine serum albumin     Sigma-Aldrich® 

 Gibco ®Trypsin      Invitrogen® 

 Penicillin / streptomycin / amphotericin   Invitrogen® 

Western blotting 

 Phosphatase inhibitors 2 & 3    Sigma-Aldrich® 

 Human IGF-1 Receptor Grade     Gro-Pep 

 Insulin solution, human     Sigma -Aldrich® 

 Pierce® BCA protein assay kit    Thermo Scientific 

 NuPage® Sample Reducing Agent    Invitrogen® 

 NuPage® LDS Sample Buffer     Invitrogen® 

 NuPage® 4-12% Bis-Tris Gel     Invitrogen® 

 Precision Plus Protein™ Western Standard   Bio-Rad 

 Novex Mini-Cell gel tank     Invitrogen® 

 NuPage® MES SDS Running Buffer    Invitrogen® 

 Mini Trans-Blot® Cell     Bio-Rad 

 Immobilon®-P transfer membrane    Millpore 

 Marvel Skimmed milk powder    Premier Brands Ltd. 

 Precision Plus Protein™ Streptactin HRP conjugate  Bio-Rad  



89 
 

 β Actin mouse monoclonal IgG    Santa Cruz Biotechnology 

 Purified mouse anti-eNOS     BD Biosciences 

 Purified mouse anti-eNOS (pS1177)    BD Biosciences 

 Akt monoclonal rabbit Ab     Cell Signalling Technology® 

 Akt monoclonal rabbit Ab (pS473)    Cell Signalling Technology® 

 IGF-1Rβ rabbit polyclonal IgG    Santa Cruz Biotechnology 

 Polyclonal rabbit anti mouse immunoglobulins / HRP Dako  

 Polyclonal goat anti rabbit immunoglobulins / HRP  Dako 

 Immobilon® Western Chemiluminescent HRP Substrate Millipore 

 Image Station 2000R     Kodak 

 Kodak 1D image analysis software    Kodak 

 Restore™ PLUS western blot stripping buffer  Thermo Scientific 

Fat sample processing 

 BX41 microscope       Olympus  

 Qicam Imaging Fast 1394 digital camera    QImaging®  

 Image Pro-Plus 7.0 software     MediaCybernetics®  

 Semi-enclosed Benchtop Tissue Processor Leica TP1020  Leica Biosystems 

 TES99 tissue embedding system     Medite Medizintechnik 

 Eosin Y solution aqueous HT1102128    Sigma-Aldrich® 

 Harris Haematoxylin solution modified, HHS32-1L  Sigma-Aldrich® 

Tolerance tests 

 Accu-chek® Aviva Plus test strips    Roche Diagnostics  

 Accu-chek® Aviva Plus Glucometer    Roche Diagnostics  

 Human IGF-1 Receptor Grade     Gro-Pep 

 Actrapid® insulin      Novo-Dordisk® 

Blood Sampling and assessment of plasma components 

 Microvette® CB 300 K2E Di-Kallum EDTA tubes  Sarstedt AG & Co 

 Ultra Sensitive Mouse Insulin ELISA kit   Crystal Chem 

 Mouse IGF-1 High Sensitivity ELISA    IDS  

 Mouse Adiponectin ELISA kit    Millipore 

 Mouse Leptin ELISA kit     Millipore 
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 Free Fatty Acid Quantification Kit    abcam® 

 Triglyceride Quantification Kit    abcam®  

Blood pressure measurement 

 CODA™ Tail Cuff Blood Pressure System   Kent Scientific, Torrington 

Organ bath 

 8 chamber organ bath system    Panlab 

 LabChart Pro Software     Panlab 

 Acetylcholine      Sigma-Aldrich® 

 Phenylephrine      Sigma-Aldrich® 

 Sodium Nitroprusside     Sigma-Aldrich® 

 L-NMMA       Merck Millipore 

 Human IGF-1 Receptor Grade     Gro-Pep 

 Actrapid® insulin      Novo-Dordisk® 

 Catalase from bovine liver     Sigma-Aldrich® 

L-citrulline assay 

 14C-arginine       Quotient Bioresearch 

 HEPES Sodium salt      Sigma-Aldrich® 

 L-arginine       Sigma-Aldrich® 

 Savant Speed Vac® SPD111V    Thermo Scientific 

 Dowex resin      Sigma-Aldrich® 

 Scintillation cocktail      Quotient Bioresearch 

H2O2 production 

 Amplex® Red Hydrogen Peroxide/Peroxidase Assay Kit Invitrogen™  

 N-acetyl-cysteine      Sigma-Aldrich®   
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Chapter 4: Generation of Mouse and 

Validation of Model 

  



92 
 

4 Generation of Mouse and Validation of model 
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4.1 Introduction 

Work by our group has demonstrated that the IGF-1R plays a significant role in regulating 

endothelial insulin sensitivity, and I have therefore attempted to expand this knowledge by 

assessing the impact of introducing a non-functional IGF-1R on the vascular endothelium.  

Given the complexity of the IGF-1R there are several functional sites which are susceptible 

to mutation, particularly the ATP binding site, IRS binding site, the activation loop within 

the kinase domain and the C-terminal domain. Although these are all possible sites which 

would modulate IGF-1R function it was felt necessary to ensure that we used a mutation 

which would render the IGF-1R inactive. Sperandio et al [312] demonstrated that a single 

base mutation to arginine (K1003R) at the ATP binding site lysine K1003 rendered the IGF-

1R unable to be autophosphorylated, and hence was functionally inactive. Importantly it is 

known that both halves of the IGF-1R or IGF-1R/IR hybrid need to be functional to allow for 

signal transduction via the insulin or IGF-1 signalling cascade [215]. 

Work by Fernandez et al [306] used mice with a muscle specific functional inactivation of 

the IGF-1R using the K1003R mutation. Muscle specific expression of the mutant human 

IGF-1R was associated with the formation of non-functioning hybrid receptors between the 

mutant, non-functioning human IGF-1R and the normally functioning mouse IGF-1 and IRs. 

Expression of the mutant IGF-1R in muscle was associated with a marked reduction in 

insulin and IGF-1 induced tyrosine phosphorylation of IGF-1R and IRS-1. This was also 

accompanied by striking reduction in insulin and IGF-1 stimulated glucose uptake in skeletal 

muscle, insulin resistance and the development of overt diabetes at an early age.  

The most well validated method of allowing a gene to be incorporated specifically to the 

vascular endothelium is by using the Tie2 promoter. In vivo, Tie2 is a tyrosine kinase 

receptor, specific to the vascular endothelium which plays a role in vascular remodelling. 

Korhonen et al [313] first suggested that using the Tie2 promoter would be able to restrict 

expression of a gene specifically on the vascular endothelium; this has subsequently been 

validated and the Tie2 has been shown to allow an exogenous mutant gene to be inserted 

and expressed specifically by vascular endothelial cells in mice through embryogenesis and 

into adulthood [314].  

In view of this evidence we sought to create a transgenic mouse with expression of a 

mutant non-functioning human IGF-1R with the K1003R mutation, limited to the vascular 
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endothelium under control of the Tie2 promoter, the MIGFREO mouse (mutant human IGF-

1R endothelial over-expression). 

I will discuss how the mouse was generated, and the way in which I sought to validate the 

incorporation of the transgene into the host genome, and demonstrate the endothelial 

specificity of the transgene. 
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4.2 Methods 

The generation of the transgenic blastocyst was performed within the university by Dr 

Simon Futers (see chapter 4.2.1.1), for which I am extremely grateful and the transgenic 

mouse was generated in collaboration with GenOway (Lyon, France). 

4.2.1 Generation of transgenic mouse 

The MIGRFEO mouse expresses human IGF-1R which has a mutation at the ATP binding 

site, lysine K1003 (hIGF-1R K1003, hereafter referred to K1003R). An IGF-1R with this 

particular mutation cannot be autophosphorylated resulting in inactivation of the 

subsequent cascade of IGF-1 initiated signal transduction [310-312]. It has been previously 

demonstrated that both halves of the IGF-1 receptor need to be functional in order for the 

receptor to be able to active [215].   

4.2.1.1 Site directed mutagenesis 

Site- directed mutagenesis was performed on the Tie2 IGF1R construct (pTie2IGF1R) using 

Qiagen Quickchange II. The two site-directed mutagenesis primers were 5’-

AAACCAGAGTGGCCATTAGAACAGTGAACGAGGC-3’ and 5’- 

GCCTCGTTCACTGTTCTAATGGCCACTCTGGTTT-3’.  

These primers change the second A to a G to covert lysine 1130 to arginine. 

A positive clone was isolated and checked for the presence of the IGF1R sequence by 

restriction digest. Initial check for the presence of the mutation was demonstrated by the 

loss of an Mse I restriction site. 

The mutation was confirmed by sequencing using an ABI 310 Genetic Analyzer with ABI 

BigDye Terminator v3.1 cycle sequencing kit. 

As the site-directed mutagenesis process can induce other mutations, a small region 

around the mutation site was transferred by restriction digest and ligated into the original 

pTie2IGF1R construct. The whole of the IGF1R insert was the checked by DNA sequencing 

prior to sending to GenOway. 
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4.2.1.2 Formation of transgenic blastocyst 

The transgenic mouse was produced and developed by GenOway in response to a specific 

request to generate mice expressing the type 1 human IGF-1 receptor with a mutation at 

the ATP binding site under the control of the Tie-2 promoter.  

The transgene composed of the Tie2 promoter and the K1003R cDNA was then 

incorporated into a “transgenic cassette” with the K1003R / Tie2 construct being inserted 

at the hypoxanthine phosphoribosyltransferase (HPRT) locus to form a “Quick Knock-in” 

targeting vector. This vector was then incorporated into specific E14 embryonic stem cells 

by electroporation (Figure 4.2-1). 
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Figure 4.2-1:  Schematic representation of “Quick Knock-in” strategy: Diagram is not to scale. Blue boxes represent HPRT exons; red line represents the 
reconstituted HPRT locus; red box hIGF-1R K1003 DNA; yellow boxTie2 promoter; light blue box core enhancer.   
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The HPRT gene in this context is important for 2 reasons. Firstly it has been well validated 

that insertion of a transgene at the HPRT locus allows for reliable expression of the specific 

gene in question [315]. Of particular importance to this project, it has also been 

demonstrated that when inserted at the HPRT locus, under control of the Tie2 promoter a 

transgene can be reliably expressed specifically in vascular endothelial cells [316].   

Secondly, the HPRT gene codes for an enzyme which is constitutively expressed in all cells. 

This enzyme is involved in the synthesis of purines from the degradation of nucleotide 

bases. The synthesis of purines in this way can be termed the “salvage pathway”, although 

cells are also able to manufacture purines by the de novo pathway. Cells which are 

depleted of HPRT (and hence lack the ability to synthesise purines by the salvage pathway, 

but have an intact de novo pathway) are generally able to grow in conventional laboratory 

media. In HAT media (which contains hypoxanthine, aminopterin and thymidine) the de 

novo pathway is blocked, and consequently HPRT depleted cells perish in HAT media [317]. 

This phenomena was first described by the group led by Oliver Smithies, and comprised 

part of the work for which he was jointly awarded the 2007 Nobel Prize in Medicine  

E14 embryonic stem cells have an inbuilt deletion of the HPRT gene, and they therefore die 

in HAT media. Following insertion into the E14 cells, the transgenic cassette, containing the 

GenOway “Quick Knock-in” targeting vector repaired the HPRT deletion.  

 Following electroporation, (which uses an electrical current to increase cell membrane 

permeability allowing the vector to be delivered into the cytoplasm), it was then possible to 

identify the E14 cells which had successfully taken in the vector by exposing them to HAT 

media: the cells with the vector survived in HAT media; those without the vector perished. 

This was therefore a relatively straight forward way of positively selecting and 

subsequently generating a clone of cells which had the transgenic cassette incorporated 

into the cytoplasm. 

4.2.1.3 Homologous Recombination of Transgene into Embryonic Stem Cells 

It was then necessary to assess incorporation of the transgene into the host’s genome by 

the process of homologous recombination  

Homologous recombination describes the principle by which genetic material is able to be 

switched between 2 strands of DNA. The process is utilised within cells to repair breaks 
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within DNA, but it is also homologous recombination which is responsible for the formation 

of unique chromosomes during meiosis.  

Although the process of homologous recombination has been known for more than half a 

century it was work done in the 1980s by the group led by Cappechi [318] which identified 

homologous recombination as a potential target which could be manipulated to introduce 

exogenous DNA into a host’s genome.  

In order to ensure that the K100R mutation was present in the embryonic stem cell 

following homologous recombination the presence of the abnormal gene was confirmed in 

the host embryonic cell by southern blotting. 

4.2.1.4 Breeding of Chimeras 

Following confirmation that the transgene had been incorporated into the embryonic stem 

cell, the stem cell was injected into a blastocyst. In view of the pluripotent nature of stem 

cells the blastocyst developed as a chimera arising from 2 different cell lines; the embryonic 

stem cell and the host blastocyst cell. The aim was to produce a chimera in which the germ 

line cells are derived from the transgenic embryonic stem cells.  

In order to breed a population of transgenic mice it was necessary to identify the mice 

which exhibited high degrees of chimerism, and importantly have a high probability of 

having germ line cells derived from the genetically manipulated cell line. The genetically 

manipulated cells were derived from mice which have a greyish coat colour, the recipient 

blastocysts arose from wild type C57 mice which are black in colour.  A mouse born to the 

foster mother who had a chequered coat was, therefore considered to be chimeric: the 

dual coat arising from the 2 cell lineages. Figure 4.2-2 

After achieving sexual maturation 5 highly chimeric males were generated from the ES cell 

clone and were mated with wild type C57 females. This resulted in the generation of 4 

agouti coated females which were confirmed to be heterozygous for the recombined Hprt 

allele, and genotypes were confirmed by southern blotting. 
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Figure 4.2-2: Scheme of identification and breeding of chimeric mice 

4.2.1.5 Breeding of Transgenic Mice 

The HPRT gene is located on the X chromosome. When analysing the action of the 

transgene it is therefore necessary to study either homozygous females (X* X*) or 

hemizygous males (X*Y). Both of these can only be generated following second generation 

breeding.  Figure 4.2-3 

Targeted ES cells are injected into 

blastocysts 

Blastocyst implanted into 

foster mother 

 Chimeric mice (chequered coat) 

Chimeric male mouse 

mated with wild type 

female mouse 

Gene targeted mouse Normal mouse 
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Figure 4.2-3:  Breeding strategy for developing transgenic mice. The asterisks represent 
the X chromosome carrying the transgene. XY – wild type male; XX – wild type female; X*X 
– heterozygous female; X*Y – hemizygous male; X*X* - homozygous female 
 

4.2.1.6 Terminology 

The line of mice was termed MIGFREO (mutant IGF-1 receptor, endothelial specific over-

expression). Hence -forth, the expression “MIGFREO” will be used as the terminology to 

describe male mice, hemizygous for the mutant IGF-1R; the term “wild type” will mean 

their age and sex matched litter mates used as a control population. 

  

x 

x 
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XX 

Chimeric 

male X*Y 

XY X*X 

XY X*X* X*Y X*X 

XY X*X 

Chimeric male X*Y (or alternative 

hemizygous X*Y male) 
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4.2.1.7 Animal Husbandry 

4 female heterozygous transgenic animals were transferred to our care. The line was back 

crossed 10 times with male C57 black 6 mice to produce a population of transgenic mice. 

Animals were housed in groups of up to 4 animals with same sex littermates. Animals were 

housed in appropriate designated rooms with controlled environmental conditions: regular 

lighting cycle (lights on 0700, lights off at 1900); temperature of 19oC - 23 oC and humidity 

of 45-65%. Mice were fed standard laboratory chow diet and normal drinking water. Mice 

were weaned at 3 weeks of age and ear notched, both as a method of identification but 

also to provide tissue to genotype. 

Only male animals were used in order to exclude the effect of oestrogen on endothelial 

function.  

Animals were weighed between 8-20 weeks of age. Insulin, glucose tolerance and IGF-1 

tolerance tests were performed on mice between the ages of 12-14 weeks. Blood pressure 

was taken between 12-14 weeks of age. Animals were sacrificed for all other experiments 

between the ages of 12-14 weeks.  

Experiments were performed in accordance with UK Home Office Regulations Animals 

(Scientific Procedures) Act 1986 (PPL No 40/2988).  

Sacrifice of animals unless otherwise stated, was performed in accordance with Schedule 1 

by exposure to a rising concentration of carbon dioxide and death confirmed by dislocation 

of the neck. 
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4.2.2 Genotyping of mice 

4.2.2.1 DNA extraction 

Using ear notches taken in order to identify the mice, DNA extraction was performed. 100 

l of 25mM NaOH / 0.2mM EDTA solution was added to the ear notch and the samples 

were heated at 95oC for 20 minutes. After heating 100l of 40mM Tris-HCl was added to 

the sample which was then vortexed for 20 seconds. Samples were stored at -20oC. 

4.2.2.2 PCR 

A mastermix containing 2.5l of PCR buffer, 1.5l of MgCl, 2l of dNTP, 0.4l of both 

forward and reverse primers (GAAAAAGGAACTTAACCCTCCCTGTGC and 

GAACAGCAGCAAGTACTCGGTAATGACC), 0.12l of Taq enzyme and 17.1l of distilled H2O 

was made. This was added to a PCR tube with 1l of prepared DNA. The PCR plate was 

placed into a PTC Pellier Thermal cycler (MJ Research) with cycling conditions as follows : 1. 

95C for 1 minute, 2. 95C for 15 seconds, 3. 65C for 30 seconds, 4. repeat steps 2-3 35 

times, 5. 72C for 6 minutes, 6. 4C for 10 minutes. 7. End. 

Products were either stored at -20C or were identified by electrophoresis on a 1% agarose 

gel containing 4l of ethidium bromide (Sigma). Imaging of bands was performed by 

fluorescent imaging using a 100 base pair reference ladder and commercial software 

(ChemiImager 5.5). 

4.2.3 Quantitative PCR 

4.2.3.1 RNA extraction 

Samples of RNA from tissue and pulmonary endothelial cells were extracted and analysed. 

Tissue samples which had previously been stored at -80C were transferred to 

appropriately labelled 2ml eppendorf tubes. To each tube was added a tissue lyser bead 

and 1ml of TRIzol (Invitrogen). The sample was loaded onto a tissue lyser machine and 

shaken for 3 cycles of 2 minutes at 30Hz. The liquid left in the tube was transferred into a 

1.5ml eppendorf and the solid material and tissue lyser bead were discarded. The above 

process was not performed for samples from pulmonary endothelial cells, but hereafter the 

description of the process which follows is identical to both types of sample. 
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The tube was placed in a centrifuge where it was spun at 10000g for 10 minutes at 4C. The 

supernatant was transferred to a clean 1.5ml eppendorf tube, and the substance at the 

bottom of the tube was discarded. The supernatant was left to air dry for 5 minutes at 

room temperature. 200l of chloroform was added. The tube was agitated for 15 seconds 

and then left at room temperature for 3 minutes, following which it was transferred to the 

centrifuge and spun for 15 minutes at 12000g at 4C. The clear supernatant was 

transferred to a clean 1.5ml eppendorf and the rest discarded. To this 500l of isopropanol 

was added. The tube was gently agitated and left at room temperature for 10 minutes.  

Following this the tube was spun at 12000g for 10 minutes at 4C. This caused the 

collection of a pellet at the bottom of the eppendorf tube. The liquid was discarded leaving 

the pellet. The pellet was covered with 1ml of 75% ethanol; the sample was then re-spun at 

4oC for 5 minutes at 7500g and the ethanol removed, again leaving the pellet. The pellet 

was left to air dry for 10 minutes at room temperature and then dissolved in 20l of 

RNAase free H2O on ice for 20 minutes.   

The concentration of RNA (nanograms/microlitre) in each sample was determined by 

placing a 1l drop of the solution onto a NanoDrop machine. Following this, samples 

were frozen and stored at -80C. 

4.2.3.2 Reverse transcription of RNA 

For each sample a master mix was made using components within the High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems). After defrosting slowly on ice, the 

mastermix was made (as per the manufacturers’ instructions), comprising of 2l PCR 

buffer; 2l random primers; 1l multiscribe; 0.8l dNTP; 4.2l ddH2O. This was added to a 

PCR plate along with 2g RNA (volume dependent on concentration as assessed by the 

NanoDrop machine) made up to 10l with ddH2O. The PCR plate was placed into a PTC 

Pellier Thermal cycler (MJ Research) with cycling conditions as follows: 1. 25C for 10 

minutes, 2. 37C for 2 hours, 3. 85C for 5 minutes, 4. 4C for 30 minutes. 5. End.  

Samples were stored at -20C until required.  

4.2.3.3 Quantitative Real-Time PCR 

Quantification of RNA expression using cDNA synthesised as described above was 

performed in a thermal cycler (ABI Prism 7900HT, Applied Biosystems) using SybrGreen 
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(Applied Biosystems) as the fluorescent dye used to detect PCR products. Samples were 

analysed in triplicate and an average of the 3 readings used to calculate the relative 

expression by the comparative Ct method. 

25l volume reactions were used with a typical reaction comprising: 5l of cDNA (diluted 

1:20 with TE buffer), 1.5l forward primer, 1.5l reverse primer, 12.5l of SybrGreen and 

4.5l ddH2O.  

Beta actin was used as a housekeeping gene (TTCTACAATGAGCTGCGTGTG and 

GGGGTGTTGAAGGTCTCAAA); human IGF-1R (CCAGGCCAAAACAGGA and 

TCTCTTTCTATGGAAGACGTACAGCAT) and mouse IGF-1R (ACCGTCTAAACCCAGGGAACTAT 

and CTCATACGTCGTTTTGGCGG) primers were used to identify the presence of human and 

mouse IGF-1R.  

4.2.4 Pulmonary endothelial cell isolation 

Isolation of pulmonary endothelial cells was performed by labelling endothelial cells with 

magnetic CD146 microbeads. CD146 is a transmembrane glycoprotein which is found 

primarily in mouse liver sinusoidal endothelial cells (LSEC) but the CD146 antibody is also 

known to bind endothelial cells isolated from pulmonary arteries and pulmonary capillaries 

(157). Once labelled with magnetic beads the cell suspension is loaded through a column 

and placed within a magnetic field. The labelled cells are retained within the column; 

unlabelled cells pass through the column and can be discarded. It is therefore possible to 

assume that cells that remain within the column are CD146+ve cells, and hence are 

endothelial cells. 

Briefly, lungs collected from mice were transferred in HBSS and finely minced in a solution 

of 0.01g collagenase (Wothington Biomedical Corporation) reconstituted with 10 ml HBSS. 

The mixture of minced lungs and collagenase/HBSS was gently rotated for 45 minutes at 

37C. The mixture was sieved and washed to remove solid matter and cellular matter was 

formed into a pellet by a series of spins in a centrifuge and washes in PBS/BSA. The pellet 

was re-suspended with 90 µl PBS/BSA and 10 µl CD146 microbeads (MACS  Miltenyi 

Biotech) were added. The cells and beads were incubated and gently agitated for 15 

minutes at 4C. After incubation the cellular matter was passed through columns in a 

magnetic field (MACS Column and separator). Unlabelled cells were collected in the flow 

through; CD146+ve cells remained within columns and were forced out by a plunger. 
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Collected cells were again spun to form pellets and washed several times before plating 

onto human fibronectin coated 6 well plates (BD Biosciences) with media (PromoCell 

endothelial cell growth medium MV2) supplemented with fetal calf serum and antibiotics 

(Invitrogen®) (100units penicillin / 100µg streptomycin / 25µg amphotericin per ml).  The 

medium was changed after 2 hours and every 48 hours after that. 

4.2.4.1 Splitting cells 

When cells were noted to be confluent they were washed twice with 5ml of PBS and 0.5ml 

of Gibco® trypsin (Invitrogen®) added. The plate was incubated until cells were seen to lift 

off from the bottom of the well. Medium (PromoCell endothelial cell growth medium MV2) 

was added and the cells were removed from the original well and spilt between 3 new 

wells (human fibronectin coated 6 well plates (BD Biosciences)). The medium was 

subsequently changed every 48 hours. Cells used in this project were used at either 

passage 0, 1 or 2 in an attempt to reduce the proliferation of any non-endothelial cells. 
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4.2.5 Western blotting 

4.2.5.1 Preparation of cells 

Cells were incubated in medium supplemented with 5% of fetal calf serum (FCS) for 4 

hours. Cells were washed twice with 5mls of PBS. 

Cells were incubated with a further 3 ml of media supplemented with 5% FCS for 10 

minutes at 37°C and then 100 µl of lysis buffer (Table 5)  with phosphatase inhibitors 

(Sigma-Aldrich®) (100µl of phosphatase inhibitor 2 and 3 per 10ml of lysis buffer) was 

added. Cells and lysis buffer were removed from the plate and stored at -80°C until 

required. 

Component  

Tris-HCl 25ml 500mmol/L 

Glycerol 20ml 

ddH2O 43ml 

EDTA 2ml 100mmol/l 

Sodium dodecyl sulphate 2g 

 
Table 5: Composition of lysis buffer 

4.2.5.2 Bicinchoninc Acid (BCA) assay 

Pierce® BCA Protein Assay kit (Thermo Scientific) was used to quantify protein 

concentrations in samples. According to manufacturers’ instructions 25µl of previously 

prepared BSA standard or the sample was added to a 96 well plate in duplicate. For tissue 

samples the supernatant was pre-diluted (aorta 1 in 5, lung, fat and muscle 1 in 20; liver 1 

in 100).  To each sample or standard 200 µl of the working reagent was added (50:1 BCA 

reagent A (sodium carbonate, bicinchoninic acid and sodium tartrate in 0.1M sodium 

hydroxide): BCA reagent B (4% cupric sulphate). The plate was incubated at 37°C for 30 

minutes and absorbance measured at 560nm on a MRX TC microplate reader (Dynex 

technologies) using Revelation software package (Dynex Technologies).  



108 
 

4.2.5.3 SDS-Page Gel 

20 µg of protein was made up to 20 µl with lysis buffer containing inhibitors and added to 5 

µl of NuPAGE loading dye (Invitrogen) and 2.5 5 µl of NuPAGE reducing buffer (Invitrogen). 

This was incubated at 95°C for 10 minutes and briefly spun.  

A NuPage (Invitrogen) gel was unpacked and placed in to a Novex Mini-Cell tank with X-Cell 

surelock (Invitrogen) with 25ml of 20x MES SDS NuPAGE running buffer and 475ml of 

ddH2O. Samples were loaded onto the gel, with 8µl of Precison Plus Protein ™ Western C ™ 

ladder (Bio-Rad). Gel was run at 200v, 120mA for 40-45 minutes.    

4.2.5.4 Transfer 

The gel was removed from the tank and soaked in ddH2O for 10 minutes. Appropriate sized 

pieces of Immobilon® transfer membrane (Millipore) were soaked in methanol for 15 

seconds; MilliQ H2O for 2 minutes; transfer buffer (Table 6) for 2minutes. A transfer 

cassette was loaded with; a sponge; filter paper; gel; membrane; filter paper; sponge and 

clamped shut. Cassette was placed in a tank, which was filled with transfer buffer and kept 

cool with and ice pack. An electrical current of 100V was run through the cassette for 1 

hour. After 1 hour the membrane was cut into appropriate sections using the ladder as a 

guide (typically 75kDa).  

  2 litres 

Tris 25mM 6.06g 

Glycine 192mM 28.84g 

Methanol 400ml 400ml 

ddH2O  Up to 2 litres 

 

Table 6: Composition of transfer buffer. pH 8.1-8.4 

 

4.2.5.5 Western blot 

After cutting the membrane was placed in blocking solution (Table 7) and gently agitated 

for 1 hour. After 1 hour of blocking, the membrane was incubated with primary antibody 

diluted in blocking buffer (Table 8) either for 90 minutes at room temperature, or overnight 
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at 4°C.  After incubating with the primary antibody the samples were washed 3x10 minutes 

with 1x TBS tween (Table 9) 

Following washes the membranes were incubated at room temperature in blocking buffer 

for 1 hour with: 1:1000 secondary antibody (either polyclonal rabbit anti mouse 

immunoglobulin HRP (Dako) or polyclonal goat anti rabbit immunoglobulin HRP (Dako)) and 

1:25000 Precision Protein™ StrepTactin HRP conjugate (Bio-Rad).  

Component  100ml 

Dried milk powder 5% 5g 

1x TBS tween 0.05% 100ml 

 
Table 7: Composition of blocking buffer; kept at 4°C 

 

Antibody Concentration Source kDa Company 

β Actin 1:1000 Mouse 42 Santa Cruz Biotechnology 

IGF-1R β 1:100 Rabbit 90 Santa Cruz Biotechnology 

 
Table 8: Primary antibodies used in western blotting experiments 

 

Component  2 litres 

Tris 500Mm 9.7g 

Na Cl 5M 292g 

Tween 20 0.5% 5ml 

 
Table 9: Composition of 5x TBS tween (made up to 2 litres with ddH2O); pH adjusted to 
7.4) 
 

After incubation with secondary antibody the membrane was washed a further 3 times 

with 1xTBS tween. Membranes were coated with Immobilon™ Western chemiluminescent 

HRP substrate (Millipore) (made of a 1:1 solution of HRP substrate peroxide solution and 

HRP substrate luminal reagent) and left for 5 minutes at most before exposure on a Kodak 
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image station 2000R for a length of time determined by commercially available software 

(Kodak 1D image analysis software).  

4.2.5.6 Stripping blots 

If required, after the membranes were dried, they were stripped and re-probed with 

further primary antibody. Dried membranes were briefly rehydrated in methanol and 

washed with ddH2O. The membranes were incubated at room temperature with Restore™ 

PLUS Western Blot stripping buffer (Thermo Scientific) for 5-15 minutes and then washed 

with 1xTBS tween for 3x5 minutes. Membranes were placed in blocking solution for 1 hour 

and incubated with primary and secondary antibodies as described above. 

4.2.5.7 Analysis, densitometry 

Developed films were scanned at high resolution and analysed using Kodak 1D image 

analysis software. Each band was assigned an equal size lane, and band density quantified 

and background signal subtracted. Densities of the protein of interest were normalised to β 

actin to correct for any discrepancies in loading. 

4.2.6 Statistics 

Results are expressed as mean +/- SEM. Comparative analysis within groups was performed 

using paired Student t test; between groups unpaired Student t test. P <0.05 was 

considered to be statistically significant.  
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4.3 Results 

4.3.1 Genotyping 

 

 

Figure 4.3-1: Representative gel of PCR products. From left to right: 100bp ladder; positive 
control; negative control; samples 1-9 where samples 1-3, 6, 8 are positive. 

 

Over the course of the project 418 mice were born. The distribution of sex and genotype of 

animals are shown in Figure 4.3-2 and Table 10. A 4 way chi squared test did not 

demonstrate any significant variance between observed and expected genotypes. 

Comparison between wt. and MIGFREO males using the binomial test, again did not 

demonstrate any significance variance from that expected. It is reasonable to say therefore 

that the mice displayed normal Mendelian patterns of inheritance for an X linked gene, and 

there was no evidence of excess intra-uterine loss in MIGFREO mice. 

 MIGFREO (%) 
[expected %] 

Wt. (%) [expected] Significant 
deviation from 
expected  

Male 119 (28.47) [25] 99 (23.64) [25]  

Female 85 (20.33) [25] 115 (27.51) [25] No (using 4 way chi 
squared test p value 
= 0.07) 

Total 204 (48.8)[50] 214 (51.2)[50] No 

 
Table 10:  Genotype of mice. Chart shows absolute numbers of mice shown (% of total 
mice) with numbers expected shown in square brackets. This was analysed using a chi 
squared test to assess whether numbers born differed significantly from the numbers 
expected. Chi squared test did not reveal any significant deviance from the numbers which 
were expected to be born, hence we concluded that the gene was inherited in a standard 
Mendelian way. 
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A sample gel of electrophoresis of PCR products is shown in Figure 4.3-1. A 100 base pair 

(bp) ladder is seen on the left of the picture, followed left to right by positive and negative 

controls respectively and unknown samples. The band at 545 bp identified the sample as 

being DNA from a transgenic mouse. 

 

M a le  a n d  M IG F R E O

F e m a le  a n d  M IG F R E O

M a le  a n d  w t

F e m a le  a n d  w t

 

Figure 4.3-2: Distribution of genotypes. As above, this demonstrated the distribution of sex 
and genotype of mice which were born. There was no variance from that expected. 

 

4.3.2 Quantitative PCR 

Quantitative PCR suggests that expression of mouse IGF1-R is similar between the 2 sets of 

mice, although as expected there is a difference in level of expression displayed in different 

tissues. See Figure 4.3-3.  

Quantitative PCR demonstrates that human IGF-1R mRNA is only found in PEC from the 

CD146+ve cells isolated from MIGFREO lungs. No discernible human IGF-1R mRNA was 

found in unlabelled MIGFREO PEC or in any cells from wt. mice. This strongly supports the 

premise that human (and therefore mutated, functionally inactive) human IGF-1R mRNA is 

found only on the endothelial cells from the MIGFREO mice.  See Figure 4.3-4 
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Figure 4.3-3: Quantitative PCR demonstrating presence of mouse IGF-1R mRNA in various 
tissues. There was no significant difference in expression of mouse IGF-1R between the wt. 
and MIGFREO mice in any of the tissue examined.  
 

Quantitative PCR performed on RNA extracted from various organs (Figure 4.3-6) 

demonstrates that the human IGF-1R mRNA is found exclusively in samples from MIGFREO 

mice. There were no significant differences between levels seen in lung, spleen and aorta 

within the MIGFREO mice, although the error bars are large. 
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Figure 4.3-4: Quantitative PCR demonstrating presence of mutated human IGF-1R mRNA 
in labelled PEC. Human IGF-1R is only detected in mRNA extracted from cells from the 
lungs of MIGFREO mice which were labelled with CD146 microbeads. Given that this 
antibody is relatively specific for endothelial cells this demonstrates that human IGF-1R was 
only found in endothelial cells extracted from the lungs of the MIGFREO mice.  
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Figure 4.3-5: Agarose gel of products from quantitative PCR using human IGF-1R primer 
(A) +ve control (B) –ve control (C) MIGFREO “labelled” cells (D) MIGFREO “unlabelled cells” 
(E) wt. “labelled” cells (F) wt. “unlabelled” cells 
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Figure 4.3-6: Quantitative PCR demonstrating presence of human IGF-1R mRNA in various 
tissues. Human IGF-1R was only found in mRNA extracted from MIGFREO mice. Human 
IGF-1R mRNA was found in MIGFREO aorta, lung and spleen, although there was no 
difference in relative expression of human IGF-1R mRNA in these tissues. 

 

4.3.3 Western blots 

Analysis of western blots showed a significantly elevated concentration of IGF-1R β subunit 

protein in PEC from MIGFREO mice (Figure 4.3-7, Figure 4.3-8). This suggests that native 

IGF-1R is expressed in addition to mutated human IGF-1R in MIGFREO mice.  

A B C D E F 



115 
 

a
r
b

it
r
a

r
y

 u
n

it
s

w
t

M
IG

F
R

E
O

0 .0 0

0 .0 5

0 .1 0

0 .1 5

*

 

Figure 4.3-7: Mean densitometry of IGF-1R β. This graph demonstrates a clear elevation of 
IGF-1R β protein found in the PECs of MIGFREO mice when compared with their wt. 
counterparts. The densitometry of each individual band seen following western blotting 
experiments was normalised to β actin density. The displayed columns represent 
densitometry normalised to B actin (+/- SEM) *p=0.05 

 

Figure 4.3-8: Representative blot of IGF-1R β. A-C = wild type, D-F = MIGFREO. A clear 
difference in IGF-1R β protein level is demonstrated between PECs taken from wt. and 
MIGFREO mice. This strongly supports the supposition that inclusion of the transgene into 
the MIGFREO endothelial cell is associated with increased total (i.e. both human and 
mouse) IGF-1R density. 
 

 

A B C D E F 

β actin 

IGF1-R β 

42kDa 

90kDa 



116 
 

4.4 Conclusion and Discussion 

MIGFREO mice are viable and fertile 

MIGFREO mice are viable beyond the fetal stage, are fertile and inheritance of the mutated 

IGF-1R obeys standard laws of Mendelian inheritance.  

Validation of the model 

Western blot analysis of protein from PECs shows that the IGF-1R β subunit protein is 

found in significantly higher quantities in PEC from MIGFREO mice than wt. mice. Levels of 

mouse IGF-1R mRNA are similar between MIGFREO and wt. mice. Taken together this 

strongly suggests that the insertion of human IGF-1 into the endothelium does not down-

regulate numbers of mouse IGF-1R. 

Human IGF-1R mRNA is found only on the CD146 “labelled” PECs isolated from the lungs of 

MIGFREO mice. No human IGF-1R mRNA was identified in pulmonary endothelial cells 

isolated from wt. mice, or from “non-labelled” cells from either wt. or MIGFREO mice. This 

shows that expression of the gene is limited to endothelial cells taken from the MIGFREO 

mice, but also strongly suggests that the method of selecting cells by labelling them with 

CD146 microbeads and sorting them through a magnetic field is an appropriate one for this 

project.   

CD146 is a transmembrane glycoprotein involved in cell adhesion and expression of CD146 

is found on endothelial cells of multiple subtypes; skin, liver, kidney, brain, spleen and 

lymph nodes. Importantly for this project it is also expressed on blood vessel endothelium, 

in particular from pulmonary arteries, veins and capillaries. Although expression in humans 

is also found on T cells and follicular dendritic cells, this is less prominent in murine T cells; 

only a small proportion of murine natural killer T cells express CD146, hence interaction 

with non-endothelial cells in mice is likely to be low. 

Quantitative PCR demonstrates that the human IGF-1R is found only in MIGFREO mice. See 

Figure 4.3-6 and expression appears to be restricted to endothelial cells. See Figure 4.3-4. 

The primers used are specific for the detection of the human IGF-1R in both its non-

mutated and mutated forms. The mutation which has been incorporated in to the 

MIGFREO mouse, is, as has already been discussed, a single base change (lysine K1003) and 

given the position of restriction enzymes we were unable to design a primer which spanned 
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the genetic area containing the mutation. The incorporation of the mutation into the 

genome was confirmed by GenOway with southern blotting, Fernandez et al [306] used a 

similar strategy; incorporation of the base change in MKR mice (mice with muscle specific 

inactivation of the IGF-1R using the lysine K1003 mutation) was confirmed with southern 

blotting; the presence of the human IGF-1R within tissue was accepted as sufficient to 

confirm that the mouse carried the mutation. 

Although human IGF-1R mRNA was only found in tissue taken from MIGFREO mice, there 

was no significant difference between levels of expression in aorta, lung and spleen. This is 

somewhat surprising given that the lung, when compared to the aorta is a tissue rich in 

endothelium. The CD146 antibody is however present on non-vascular endothelial tissue so 

some of the cells isolated would not have been vascular endothelial cells, but might have 

been endothelial cells of other subtypes. It is perhaps more accurate to state that in this 

case I have demonstrated that the human IGF-1R is expressed solely on endothelial cells 

from the MIGFREO mice, rather than the more specific statement that the human IGF-1R is 

found only on MIGFREO vascular endothelial cells. Repeated passage of the cells using 

magnetic separation following labelling with additional antibodies, perhaps towards VE-

Cadherin which is involved in vasculogenesis might reduce the amount of non-vascular 

endothelial cells extracted, although at this stage I am unable to produce any evidence or 

previously published data that this is a viable experimental technique. 

There is a comparatively large standard error for each result which may indicate 

experimental variability. The quality of the RNA was not reassessed after freezing, and it 

may be that repeated cycles of freeze-thaw of samples altered the quality of the RNA 

produced. As has been previously used within our laboratory 2µg of RNA was converted to 

cDNA, although it is unclear if this was the optimum sample size for analysis of this 

particular gene; further experiments with varying concentrations of RNA should be 

considered in future in order to identify optimum experimental conditions.  

Given the small quantities of sample involved, pipetting errors may have contributed, but 

the relative expression of human IGF-1R was assessed simultaneously with the 

housekeeping gene β actin and results were normalised to β actin expression. Assuming 

that expression of β actin is ubiquitous, this should have corrected for any differences in 

absolute quantity of cDNA which was added to the real time PCR plate. 
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It is possible, however that the choice of β actin as a housekeeping gene may itself have 

caused results to be skewed. Although β actin is a commonly used housekeeping gene, 

there is evidence that in mice, there may be variable expression across different tissues, 

which could perhaps account for the results seen in the MIGFREO mice [319]. In addition, it 

was assumed that β actin expression was similar between the 2 groups of mice. Although 

the western blot seen in Figure 4.3-8 seems to demonstrate that there may be a difference 

in β Actin expression between MIGFREO and wt mice, this was not borne out by 

subsequent experiments and analysis of β actin expression between wt and MIGFREO mice 

did not demonstrate any significant difference (analysis of expression of β actin from PEC 

from 10 wt and 10 MIGFREO mice; in arbitrary units [+/- SEM] wt 721470 [+/- 129498] 

MIGFREO 623456 [+/- 113040] p=0.57) . Further experiments should be performed using 

multiple housekeeping genes in order to try and eliminate or reduce potential variability.  

It is necessary to consider how the presence of hybrids might be expressed in MIGFREO 

mice. Human and mouse IGF-1R are able to form hybrids [320]; mutation of the ATP 

binding site with the single base change lysine K1003 renders the IGF-1 functionally inactive 

[311, 312, 321]; successful signal transduction via the IR, IGF-1R or hybrid requires both 

receptor subunits to be functional [215]; mutated and normal IGF-1 monomers form non-

functioning hybrid receptors [306]. Taken together this would suggest that there may be 6 

configurations of receptors found on the vascular endothelium of MIGFREO mice. These 

are shown in Table 11 . 

Insulin receptors are less numerous than IGF-1 receptors on the endothelium so insulin 

receptors, as has already been discussed, have a tendency to be incorporated into hybrid 

receptors [224]. Hybrid receptors have a higher affinity for insulin and hence the 

endothelium is a relatively insulin resistant tissue [221]. One could postulate that this might 

be more pronounced in the MIGFREO mouse given the presence of mutated and inactive 

IGF-1 and hybrid receptors.  
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Receptor Functional / non-functional Affinity for insulin and IGF-
1 (if functional) 

IR / IR Functional Insulin > IGF-1 

IGF-1R / IGF-1R Functional IGF-1 > insulin 

IR / IGF-1R Functional IGF-1 > insulin 

hIGF-1R / IGF-1R Non-functional  

hIGF-1R / hIGF-1R Non-functional  

hIGF-1R / IR Non-functional  

 

Table 11: Sub-types of IR and IGF-1R dimers postulated to be found on endothelium of 
MIGFREO mice. IGF-1R = normally functioning mouse IGF-1R, hIGF-1R = mutant human IGF-
1R 
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5 Assessing endothelial function and endothelial insulin 

sensitivity 
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5.1 Introduction 

Previous work by our group has demonstrated that manipulation of the IGF-1R on the 

vascular endothelium plays a critical role in determining endothelial insulin sensitivity: 

increasing the number of IGF-1R on the endothelium is associated with the generation of 

increased number of IGF-1R/IR hybrid receptors and reduced endothelial insulin sensitivity; 

reduction or knockdown of the IGF-1R on the vascular endothelium is associated with the 

converse [209, 210]. Assessment of endothelial insulin and IGF-1 sensitivity was therefore 

pivotal to examining the effect of endothelial specific IGF-1R mutation. 

Endothelial dysfunction (as determined by no differences in response to acetylcholine 

induced vasodilatation in the organ bath) per se was not a feature of either of these 2 mice, 

however in the ESMIRO mice (which express a non-functioning endothelial specific IR) 

there is significant endothelial dysfunction and associated accelerated atherosclerosis [195, 

322], and therefore it is important to determine whether endothelial specific manipulation 

of the IGF-1R is associated with endothelial dysfunction. 

In human subjects the function of the endothelium can be assessed in both invasive and 

non-invasive ways [323].  

Assessment of the function of particular blood vessels can be achieved in an invasive 

manner by assessing the response of the vessel to the administration of substances known 

to produce endothelial dependent vasodilatation, such as acetylcholine or bradykinin. With 

a normally functioning endothelium, these substances should cause vasodilatation (and 

more specifically endothelium dependent vasodilatation, associated with enhanced NO 

production) and a resultant increase in flow rate. This can be measured by Doppler flow 

assessment, or by directly measuring luminal diameter. Control measurements are 

generally obtained by infusing substances known to cause endothelium independent 

vasodilatation, such as nitro-glycerine or sodium nitroprusside (SNP). Vasodilatation in 

response to infusion of either of the 2 latter compounds is not impaired in endothelial 

dysfunction, as they mediate their effects by a direct action on vascular smooth muscle.  

Assessing the endothelial function in a non-invasive manner is also possible. It is known 

that shear stress caused by increased flow velocity of blood leads to an increased NO 

production and subsequent vasodilatation (flow mediated dilation [FMD]) [324]. 

Experimentally increased shear stress can be achieved by causing temporary arterial 
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occlusion, which results in hyperaemia, increased blood flow, and increased NO production 

and hence vasodilatation. Ultrasound can then be used to assess the size of the brachial 

artery, which should dilate in response to the stimulus [63]. 

The comparable method of assessing endothelial function in mice is by using an organ bath. 

The aorta is excised and mounted on wires in physiological buffer attached to electrical 

sensors, and vasodilatation and vasoconstriction is assessed in response to a number of 

stimuli. In common with the way in which endothelial function is assessed in humans, 

exposure to ACh induces endothelial dependent vasodilatation and exposure to SNP 

assesses endothelial independent vasodilatation. Given that insulin and IGF-1 induce 

vasodilatation via production of NO in an eNOS dependent reaction, it is also possible to 

assess endothelial insulin and IGF-1 sensitivity in the organ bath. 

Although assessment of the vasodilatory response to insulin is important, it was also 

necessary to consider the cellular effects of insulin and IGF-1 on endothelial cells derived 

from the MIGFREO and wt. mice, and this was performed with western blots examining the 

expression of proteins in response to stimulation with insulin and IGF-1.  

Further assessment of endothelial insulin and IGF-1 sensitivity was made by assessing NO 

production. Although direct measurement of NO is practically challenging, a useful marker 

of NO production is the measurement of L-citrulline. The production of NO is determined 

by the conversion of L-arginine to L-citrulline [45]: if L-arginine is supplied with radio-

labelled C14, this carbon atom is included in the formation of L-citrulline, and measurement 

of the radiolabelled L-citrulline can be used as a surrogate marker for the activity of eNOS 

and hence NO production. This is a well validated method of assessing NO production [325] 

and can be used to assess the effect of different stimuli on NO production. Treatment of 

cells with insulin or IGF-1 before performing this assay is therefore also a method of 

determining endothelial insulin and IGF-1 sensitivity. 
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5.2 Methods 

5.2.1 Organ bath assessment of endothelial function 

Aortas were excised carefully in order to avoid endothelial denudation and transported on 

ice in chilled Krebs-Henselheit solution (Table 12) which was bubbled for 30 minutes with 

95%O2 / 5% CO2. Under direct microscopy connective and fatty tissue was cleaned from the 

aorta and the tissue was divided into 4 rings 3-5mm in length. Rings were subsequently 

mounted by passing fine wires through the aortic lumen and suspended in a chamber in an 

organ bath (PanLabs) where it was suspended between a fixed support and a highly 

sensitive transducer, immersed in Krebs-Henselheit solution and continuously bubbled with 

95%O2 / 5% CO2 for the duration of the experiment. Over 30 minutes the rings were 

stretched to a tension of 3g which has been previously shown to be optimum in our 

laboratory [105, 309] and left to equilibrate for 2 hours. 

 Mmol/L 

NaCl 119 

KCl 4.7 

KH2PO4 1.18 

NaHCO3 25 

MgSO4.7H2O 1.19 

CaCl2 2H2O 2.5 

Glucose 11 

 
Table 12: Component of Krebs Henselheit solution 
 

5.2.1.1 Measurement of vasoconstrictor response to KCl 

Endothelial independent vasoconstriction was assessed by testing maximal response to 

100l KCl (VWR). Any rings failing to contract more than 0.2g were excluded from further 

analysis. Rings were washed thoroughly with Krebs-Henselheit solution before proceeding. 
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5.2.1.2 Measurement of calcium dependent vasodilatation using ACh 

Rings were partially constricted with 300nM of phenylephrine (Sigma) and rings not 

constricting more than 0.2g were excluded from further analysis. Calcium dependent 

endothelial mediated vasodilatation was then assessed by the subsequent relaxation in 

response to cumulative doses (1nM-10M) of acetylcholine (Sigma). Rings which relaxed 

less than 70% were considered to have suffered endothelial denudation during the excision 

and dissection process and were excluded from further analysis. The presence or absence 

of endothelial dysfunction was determined by calculating the percentage of relaxation from 

peak constriction to base ([preconstriction-result]/[preconstriction-base]*100) where 

relaxation to the baseline would be 100%. Results are expressed as percentage relaxation 

[309].  

5.2.1.3 Measurement of insulin mediated vasodilatation 

Rings were either incubated with 100mU/L insulin (Actrapid, NovoNordisk) or control for 2 

hours followed by measurement of response to cumulative doses of phenylephrine (1nM-

10M). Rings incubated with insulin were not used for any further experiments. Response 

to insulin was determined by measuring constriction from baseline, and is expressed in 

grams [309].   

5.2.1.4 Measurement of direct IGF-1 mediated vasodilatation 

Rings were pre-constricted as previously described. Receptor grade IGF-1 (GroPep) was 

reconstituted with 500l 10mol HCl and 500l BSA. Vasodilatation in response to 

cumulative does (1-100nM) of reconstituted IGF-1 was recorded. Rings examined in this 

way were not used for any further experiments. The presence or absence of vasodilatation 

in response to IGF-1 was determined by calculating the percentage of relaxation from peak 

constriction to base ([preconstriction-result]/[preconstriction-base]*100) where relaxation 

to the baseline would be 100%. Results are expressed as percentage relaxation. 

5.2.1.5 Measurement of endothelium independent vasodilatation 

Rings not pre-incubated with insulin, or exposed to IGF-1 were pre-constricted as 

previously described. Endothelium independent vasodilatation was then assessed by the 

addition of cumulative doses (1nM-10M) of sodium nitroprusside, which acts as a NO 

donor. The presence or absence of vasodilatation in response to SNP was determined by 

calculating the percentage of relaxation from peak constriction to base ([preconstriction-
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result]/[preconstriction-base]*100) where relaxation to the baseline would be 100%. 

Results are expressed as percentage relaxation. 

5.2.1.6 Assessment of basal NO production in organ bath using L-NMMA 

In order to assess basal level of NO production aortic rings were incubated with the NOS 

inhibitor L-NMMA. In the presence of L-NMMA NO production will be inhibited and there 

will be enhanced constriction in the presence of phenylephrine.  

10µl of 0.1M L-NMMA (CalBioChem)was added to each chamber and incubated for 1 hour 

followed by measurement of response to cumulative doses of phenylephrine (1nM-10M). 

Rings incubated with L-NMMA were not used for any further experiments.  

5.2.2 Pulmonary endothelial cell isolation 

Pulmonary endothelial cells were harvested and isolated in the same way as is described 

above. See chapter 4.2.4 for method. 

5.2.3 Preparation of cells 

In order to assess protein expression in PECs basally and following stimulation with insulin 

ad IGF-1 wells were first serum starved in serum free medium for 4 hours. Following serum 

starvation, medium was removed from the well and the cells were exposed to 1ml of 

serum free media per well which contained either 150nM of IGF-1 (GroPep) or 100nM of 

insulin (Sigma-Aldrich®) or had no addition. Cells were incubated for 10 minutes at 37°C 

and then 100 µl of lysis buffer (Table 5) with phosphatase inhibitors (Sigma-Aldrich®) (100µl 

of phosphatase inhibitors 2 and 3 per 10 ml of lysis buffer) was added. Cells and lysis buffer 

were removed from the plate and stored at -80°C until required. 

5.2.4 Western blotting 

Protein quantification and western blots were performed in the same was as is described 

above. See chapter 4.2.5. 

Primary antibodies used in assessment of endothelial insulin sensitivity are shown in Table 

13. 
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5.2.4.1 Analysis, densitometry 

Developed films were scanned at high resolution and analysed using Kodak 1D image 

analysis software. Each band was assigned an equal size lane, and band density quantified 

and background signal subtracted. Densities of the protein of interest were normalised to β 

actin to correct for any discrepancies in loading.  

Antibody Concentration Source kDa Company 

β Actin 1:1000 Mouse 42 Santa Cruz Biotechnology 

Akt 1:1000 Rabbit 60 Cell Signalling Technology®  

p- Akt (Ser 473) 1:1000 Rabbit 60 Cell Signalling Technology®  

eNOS 1:1000 Mouse 140 BD Biosciences 

p-eNOS (Ser 1177) 1:1000 Mouse 140 BD Biosciences 

 
Table 13: Primary antibodies used in western blotting experiments 
 

5.2.5 L-citrulline assay of eNOS activity  

NO is formed by the conversion of L-arginine to L-citrulline in a process catalysed by eNOS 

[45]. Although direct quantification of NO is possible, the fact that it dissipates rapidly 

means that there are technical limitations to the direct quantification of NO, whereas 

measurement of radio-labelled L-citrulline is well established as a way of measuring eNOS 

activity. 

Given that the technique involves radio-labelling, there are limitations on the personnel 

who are able to perform this technique. The L-citrulline assay was therefore performed in 

collaboration with Dr Hema Viswambharan, who has optimised this technique to assess 

eNOS activity in murine pulmonary endothelial cells in our laboratory.   

Pulmonary endothelial cells were harvested and isolated in the same way as is described 

above. See chapter 4.2.4 for method. 

They were grown to confluence at P0 to reduce proliferation of non-endothelial cells. 

When cells were confluent they washed twice with 3mls of PBS and incubated in medium 

supplemented with 5% FCS overnight. Media was removed and cells were washed a further 
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2 times with PBS and the cells were incubated for 30 minutes at 37°C with 0.25% HEPES-

BSA buffer (Table 14) +/- phosphatase inhibitors. 0.5µCi/ml of radio-labelled 14C-arginine 

(Quotient Bioresearch) was added to the cells for 5 minutes, followed by either insulin 

(100nM) or IGF-1 (150nM) for 30 minutes.  

 mM 

HEPES 10 

NaCl 145 

KCl 5 

MgSO4 1 

Glucose 10 

CaCl2 1.5 

BSA 0.25% 

 
Table 14: Composition of HEPES-BSA buffer 

 

Cells were washed twice with a stopping buffer comprised of ice-cold PBS containing non-

radioisotopic 5mM L-arginine (Sigma-Aldrich®) and 4mM EDTA. Cells were incubated 4 ml 

of 0.025% Trypsin/EDTA for 2 minutes and dislodged from the plate using a cell scraper. 

Cells were subsequently denatured by repeated pipetting with 95% ethanol and samples 

were collected into micro-centrifuge tubes. Samples were spun at 600rpm for 5 minutes to 

form a pellet and the supernatant evaporated in a SpeedVac (Thermo-Scientific) for 25 

minutes. Next, the samples were dissolved in 20mM HEPES-Na (pH 5.5) and spun in a 

centrifuge again to separate the soluble cellular components from waste.  

DOWEX resin was equilibrated by adding 100g of Dowex resin (Sigma-Aldrich®) to 100ml of 

1M NaOH and mixing for 30 minutes using a magnetic stirrer. The NaOH was changed for 

fresh 4 times and then the resin was washed with ddH2O water until the pH was less than 

8. The resin was suspended 1:1 with ddH2O. 

The soluble cellular layer collected following centrifuge (apart from 10µl which was used 

for protein quantification) was added to 2.7ml of equilibrated resin, vortexed and allowed 
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to settle over approximately 15-20 minutes by gravity. 1ml of the supernatant obtained 

was removed and added to 12ml of scintillation cocktail (Quotient Bioresearch). Radio-

isotopic emission from 14C-citrulline was quantified using a β counter.  

Results were normalised to total protein, quantified using the 10µl of reserved cellular 

supernatant, using the Pierce® BCA Protein Assay kit (Thermo Scientific), as described in 

section 4.2.5.2.  

Isotope controls were normalised to total protein content and control experiments 

assigned an arbitrary value of 100. Isotope counts were grouped with results of 

experiments with identical conditions and analysed using a Student’s paired 2 tailed t-test 

to compare control with either insulin or IGF-1. 

5.2.6 Statistics 

Results are expressed as mean +/- SEM. Comparative analysis within groups was performed 

using paired Student t test; between groups unpaired Student t test. P <0.05 was 

considered to be statistically significant.  
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5.3 Results 

5.3.1 ACh Relaxation 

There were no significant differences in responses to the vasodilatory effect of ACh 

between MIGFREO and wt. mice (Figure 5.3-1, Table 15).  
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Figure 5.3-1: ACh relaxation. This demonstrates the vasodilatory response to Ach as 
measured within the organ bath. n > 20 mice for each group with at least 2 rings of aorta 
for each mouse. Results are expressed as % of relaxation and the mean % of relaxation 
towards the base is displayed +/SEM. No significant differences between the 2 groups at 
any point. 
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ACh dose (nM) wt. mean % 
relaxation +/- SEM 
(n= 22) 

MIGFREO mean % 
relaxation +/- SEM 
(n=23) 

p value 

1 10.25 +/- 1.60 7.60 +/- 1.51 0.24 

3 17.27 +/- 2.21 15.34 +/- 2.01 0.53 

10 28.07 +/- 2.58 26.79 +/- 2.11 0.71 

30 45.32 +/- 3.49 45.25 +/- 3.40 0.99 

100 67.29 +/- 3.79 69.11 +/- 4.30 0.75 

300 83.79 +/- 3.30 80.91 +/- 6.60 0.68 

1000 89.17 +/- 3.01 94.41 +/- 3.49 0.26 

3000 88.96 +/- 2.57 94.41 +/- 2.99 0.17 

10000 91.90 +/- 2.26 97.61 +/- 2.66 0.10 

 
Table 15:  Relaxation in presence of acetylcholine. Tabulated results of relaxation in 
response to increasing doses of Ach within the organ bath. For each group n > 20 with at 
least 2 rings per mouse. Results are expressed as mean % of relaxation (Where relaxation 
to the baseline is 100%) +/- SEM. The results are corrected to 2 decimal places. No 
statistically significant differences noted between the 2 groups for any dose of Ach. 
 

5.3.2 Vasomotor insulin sensitivity 

As expected, following incubation with insulin, the response to phenylephrine is 

significantly blunted in wt. mice ( Figure 5.3-2, Error! Reference source not found., Figure 

5.3-3, Table 16); maximum constriction pre insulin 0.87g +/- 0.05 vs. maximum constriction 

post insulin 0.54g +/- 0.06 p = 0.0005. The responses to PE diverge significantly in wt. 

following [log] 300 of PE 
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Figure 5.3-2: PE constriction +/- insulin. This demonstrates the absolute increase in tension 
(g) seen with incremental doses of phenylephrine before and after incubation with insulin. 
In each group n > 20 with at least 2 rings of aorta per mouse. The graph represents mean 
increase in absolute tension +/-SEM. In the wt. group incubation with insulin was 
associated with a significant reduction in response to incremental doses of phenylephrine 
(p <0.001), an effect which was abolished in the MIGFREO mouse. 

 

In MIGFREO mice, the response to insulin is abolished, and the curves of constriction pre 

and post insulin dose overlap (Figure 5.3-2, Error! Reference source not found.,). This is in 

marked contrast to the divergence of curves seen beyond 300nM PE in wt. mice (Error! 

Reference source not found.). Maximum constriction pre insulin in MIGFREO mice 0.80g 

+/- 0.05 vs. maximum constriction post insulin 0.75g +/- 0.06 p = 0.64 (Figure 5.3-3, Table 

16). It should also be noted that whilst there is no difference in maximum constriction pre 

insulin between the 2 groups, there is a significant difference between the 2 groups post 

insulin (Figure 5.3-3). Taken together, this data shows that MIGFREO mice are resistant to 

the vasodilatory effect of insulin which as has been discussed earlier, occurs via an eNOS 

dependent pathway.  
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Figure 5.3-3: Maximal PE constriction +/- insulin.  This represents maximal change (n>20 
per group, bars represent mean +/- SEM) in tension seen following exposure to 
phenylephrine both before and after incubation with insulin. As is clearly demonstrated 
there is marked reduction in change in tension following incubation with insulin in the wt. 
mice (*p=0.0005) although this is abolished in the MIGFREO mice.  There is also a striking 
difference between maximal change in tension seen post insulin incubation between the 
wt. and MIGFREO mice (**p=0.02) 
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PE 
dose 
(nM) 

wt. 
control 
+/- SEM  

wt. 
insulin 
+/- SEM 

MIGFREO 
control 
+/- SEM 

MIGFREO 
insulin 
+/- SEM 

p value 
wt. con 
vs. wt. 
ins 

p value 
MIG con 
vs. MIG 
ins 

p value 
wt. con 
vs. MIG 
con 

p value 
wt. ins 
vs. MIG 
ins 

1 -0.00+/- 
0.01 

0.00 +/- 
0.01  

-0.01 +/- 
0.017 

0.00+/-
0.01   

0.62 0.38 0.62 0.96 

3 -0.01 +/-
0.01  

-0.02 +/- 
0.02 

-0.01 +/- 
0.01 

-0.01 +/-
0.01  

0.85 0.83 0.91 0.81 

10 -0.004 
+/- 0.01  

-0.01+/- 
0.02  

-0.01 +/- 
0.01 

-0.01 +/-  
0.01 

0.61 0.75 0.80 0.73 

30 0.07 +/- 
0.02  

0.04 +/- 
0.02  

0.05 +/- 
0.02 

0.05 +/- 
0.02 

0.26 0.89 0.55 0.68 

100 0.26 +/- 
0.05  

0.16+/- 
0.04 

0.26 +/- 
0.05 

0.21 +/- 
0.04 

0.13 0.50 0.96 0.38 

300 0.52 +/- 
0.06  

0.35 +/- 
0.07 

0.51 +/- 
0.05 

0.48 +/- 
0.05 

0.08 0.67 0.94 0.12 

1000 0.69 +/- 
0.05 

0.46 +/- 
0.07 

0.68 +/- 
0.05 

0.65 +/- 
0.05 

0.009 0.71 0.84 0.03 

3000 0.83 +/- 
0.05  

0.53 +/- 
0.06 

0.76 +/- 
0.05 

0.72 +/- 
0.06 

0.0008 0.68 0.29 0.04 

10000 0.87 +/- 
0.05  

0.54 +/- 
0.06 

0.80 +/- 
0.05 

0.75 +/- 
0.06 

0.0005 0.64 0.34 0.02 

 
Table 16: Assessment of PE induced constriction pre and post incubation with insulin. 
Tabulated results of increased tension seen in response to increasing doses of 
phenylephrine either pre or post incubation with insulin within the organ bath. For each 
group n > 20 with at least 2 rings per mouse. Results are expressed as mean increase in 
tension +/- SEM. The results are corrected to 2 decimal places. There is marked reduction 
of response to phenylephrine seen following incubation with insulin in the wt. mice, 
although this is abolished in the MIGFREIO mice. 

 

5.3.3 Vasomotor IGF-1 sensitivity 

Although there is a marked difference in the way which MIGFREO and wt. mice respond 

following incubation with insulin, there is no significant difference in the way which the 

aortas respond to IGF-1 (Figure 5.3-4, Table 17). As expected, in both sets of mice IGF-1 

induces vaso-relaxation, and the responses overlap, with no difference in maximal 

relaxation in the MIGFREO mouse compared to the wt. (98.94% +/- 7.81 vs. 93.86% +/- 7.12 

respectively, p=0.64). 
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IGF-1 dose (nM) wt. mean % 
relaxation +/- SEM 

MIGFREO mean % 
relaxation +/- SEM 

p value 

1 17.28 +/- 4.38 20.89 +/- 3.05 0.52 

3 25.16 +/- 5.23 26.62 +/- 4.82 0.83 

10 48.17 +/- 8.11 43.46 +/- 7.74 0.66 

30 72.43 +/- 7.36 76.24 +/- 7.81 0.73 

100 93.86 +/- 7.12 98.94 +/- 7.81 0.64 

 
Table 17: Assessment of IGF-1 induced vaso-relaxation. This demonstrates the direct 
vasodilatory response to IGF-1 seen within the organ bath. In each group n>10 with at least 
2 aortic rings for each mouse. The data is represented as mean % relaxation to base (where 
baseline represents 100%) +/- SEM. Corrected to 2 decimal places. No significant 
differences seen between the 2 groups of mice. 
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Figure 5.3-4: IGF-1 relaxation. This demonstrates the vasodilatory response to IGF-1 as 
measured within the organ bath. Each group represents n>10 mice for each group with at 
least 2 rings of aorta for each mouse. Results are expressed as % of relaxation and the 
mean % of relaxation towards the base is displayed +/SEM. No significant differences 
between the 2 groups at any point. 

 

5.3.4 Sodium Nitroprusside relaxation 

Measurement of endothelial independent vasodilatation as assessed by quantifying vaso-

relaxation in response to SNP was comparable between the groups (Figure 5.3-5, Table 18).  
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SNP dose (nM) wt. mean % 
relaxation +/- SEM 

MIGFREO mean % 
relaxation +/- SEM 

p value 

1 10.35 +/- 2.88 12.16 +/- 2.48 0.64 

3 17.14 +/- 4.72 18.48 +/- 2.26 0.80 

10 21.11 +/- 3.62 28.39 +/- 4.12 0.19 

30 27.91 +/- 4.08 35.07 +/- 3.83 0.21 

100 40.33 +/- 5.63 49.66 +/- 4.99 0.23 

300 63.56 +/- 5.62 75.75 +/- 4.41 0.10 

1000 88.56 +/- 4.17 97.39 +/- 3.17 0.10 

3000 105.12 +/- 3.74 108.62 +/- 4.82 0.57 

10000 115.82 +/- 3.44 114.62 +/- 5.88 0.86 

 

Table 18:  Assessment of endothelial independent vasodilatation with SNP. This 
demonstrates the direct vasodilatory response to SNP seen within the organ bath. In each 
group n>10 with at least 2 aortic rings for each mouse. The data is represented as mean % 
relaxation to base (where baseline represents 100%) +/- SEM. Corrected to 2 decimal 
places. No significant differences seen between the 2 groups of mice.  
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Figure 5.3-5: SNP relaxation. This demonstrates the vasodilatory response to SNP as 
measured within the organ bath. Each group represents n > 10 mice for each group with at 
least 2 rings of aorta for each mouse. Results are expressed as % of relaxation and the 
mean % of relaxation towards the base is displayed +/SEM. No significant differences 
between the 2 groups at any point. 
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5.3.5 PE + L-NMMA 

As expected, following incubation with the NOS inhibitor L-NMMA, there is enhanced 

constriction in the presence of phenylephrine in wild type mice: this is also present in 

MIGFREO mice, and is of the same magnitude (Figure 5.3-6, Table 19). This suggests a 

comparable basal level of NO in the 2 groups of mice.   
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Figure 5.3-6: PE constriction +/- LNMMA. This demonstrates the absolute increase in 
tension (g) seen with incremental doses of phenylephrine either before or after incubation 
with L-NMMA. In each group n > 10 with at least 2 rings of aorta per mouse. The graph 
represents mean increase in absolute tension +/-SEM. In both groups, incubation with the 
NOS inhibitor L-NMMA was associated with increased response to phenylephrine, however 
there was no difference seen between wt. and MIGFREO mice. 
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PE 
dose 
(nM) 

wt. 
control 
+/- 
SEM 

wt. 
LNMMA 
+/- SEM 

MIGFREO 
control 
+/- SEM 

MIGFREO 
LNMMA 
+/- SEM 

p value 
wt. con 
vs. wt. 
LNMMA 

p value 
MIG con 
vs. MIG 
LNMMA 

p value 
wt. con 
vs. MIG 
con 

p value 
wt. 
LNMMA 
vs. MIG 
LNMMA 

1 0.00 
+/- 
0.01 

-0.01 
+/- 0.01 

-0.01 +/- 
0.01 

0.01 +/- 
0.01 

0.13 0.34 0.54 0.12 

3 -0.01 
+/- 
0.01 

-0.01 
+/- 0.01 

-0.01 +/- 
0.01 

0.01 +/- 
0.01 

0.94 0.22 0.80 0.26 

10 -0.01 
+/- 
0.15 

0.04 +/- 
0.02 

-0.01 +/- 
0.01 

0.06 +/- 
0.02 

0.03 0.01 0.60 0.32 

30 0.03 
+/- 
0.02 

0.23 +/-  
0.06 

0.04  +/- 
0.02 

0.29 +/- 
0.08 

0.002 0.01 0.70 0.61 

100 0.20 
+/-  
0.04 

0.52 +/- 
0.05 

0.19 +/- 
0.07 

0.51 +/- 
0.09 

9.1E-05 0.01 0.83 0.90 

300 0.39 
+/- 
0.05 

0.70 +/- 
0.04 

0.40 +/- 
0.08 

0.69 +/- 
0.08 

0.0002 0.02 0.92 0.90 

1000 0.51 
+/- 
0.04 

0.79 +/- 
0.05 

0.50 +/-
0.09 

0.8 +/- 
0.08 

0.0004 0.03 0.95 0.94 

3000 0.55 
+/- 
0.05 

0.87 +/- 
0.05 

0.56 +/- 
0.10 

0.87 +/- 
0.08 

0.0003 0.03 0.89 0.99 

10000 0.56 
+/- 
0.05 

0.90 +/- 
0.05 

0.56 +/- 
0.10 

0.93 +/- 
0.08 

0.0002 0.02 0.98 0.79 

 
Table 19: PE induced constriction pre and post incubation with L-NMMA. Tabulated 
results of increased tension seen in response to increasing doses of phenylephrine either 
pre or post incubation with L-NMMA within the organ bath. For each group n > 10 with at 
least 2 rings per mouse. Results are expressed as mean increase in tension +/- SEM. The 
results are corrected to 2 decimal places. There are no significant differences between the 
2 groups at any point. 
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5.3.6 Western blots 

Cells from 10 transgenic and 12 wt. mice were analysed. From each mouse, protein was 

collected from 3 wells of cells, one unstimulated, one stimulated with insulin and one 

stimulated with IGF-1 as described above. Gels were loaded in the same way in each 

experiment; wt control, wt insulin, wt IGF-1, MIGFREO control, MIGFREO insulin, MIGFREO 

IGF-1.    

The results of the western blots to assess protein expression in PEC are shown, along with 

representative blots in Figure 5.3-7 and Figure 5.3-8. Although measures as discussed in the 

methods section were taken in an attempt to ensure that the process was robust, as can be 

clearly seen, there is significant variability between the different results and no difference 

was detected between wild type PEC and PEC derived from lungs of the MIGFREO mice.  

The cells from wt. mice appear to show enhanced phosphorylation of eNOS and AKT 

following stimulation with insulin and IGF-1, which would suggest that the doses of IGF-1 

and insulin used were appropriate.  There is also enhanced AKT phosphorylation in the 

MIGFREO mice following stimulation with IGF-1, although there is significant variation 

between different gels, as seen by the large SEM. Although there are some trends seen, 

there are no significant differences observed between MIGFREO mice and wt. mice for 

expression of any of the proteins, and given the large error between gels observed (in spite 

of repeated experiments) I suspect we are unable to draw any conclusions from the 

western blots. The potential reasons for this will be discussed later (see conclusion and 

discussion section 5.4). 

As has been previously discussed, there was no difference in β actin expression between 

MIGFREO and wt mice when this was analysed, although some of the blots do appear to 

show that there may be a difference in β actin expression.
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Figure 5.3-7: AKT and pAKT expression. (A) Representative blot of AKT and pAKT  A = wt. control, B = wt. insulin, C = wt. IGF-1, D = MIGFREO control, E = 
MIGFREO insulin, F = MIGFREO IGF-1; (B) Total AKT (mean +/-SEM); (C) Total pAKT (mean +/- SEM); (D) pAKT / AKT (mean +/- SEM). Data analysed includes 
10-12 samples per group 
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Figure 5.3-8: eNOS and peNOS expression. (A) Representative blot of eNOS and peNOS  A = wt. control, B = wt. insulin, C = wt. IGF-1, D = MIGFREO control, 
E = MIGFREO insulin, F = MIGFREO IGF-1; (B) Total eNOS (mean +/-SEM); (C) Total peNOS (mean +/- SEM); (D) peNOS / eNOS (mean +/- SEM). Data analysed 
includes 10-12 samples per group. 
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5.3.7 eNOS activity (L-citrulline assay) 

Measurement of eNOS activity demonstrated a significant reduction in insulin and IGF-1 

stimulated eNOS activity in the MIGFREO mice (Figure 5.3-9, Figure 5.3-10, Table 20). 

Control measurements were assigned an arbitrary value of 100, and in the wt. mice insulin 

stimulation increased eNOS activity to 137.64 +/- 8.06, this was increased to only 104.1 +/- 

4.21 in MIGFREO mice (p=0.0025). IGF-1 stimulated eNOS activity increased from 100 to 

137.03 +/- 7.90 in wt. mice, this was significantly different from the increase to 105.2 +/- 

6.76 (p=0.0179) seen in MIGFREO mice.  

 wt. mean MIGFREO mean p value 

Control 100 100  

Insulin 137.64 +/- 8.06 104.1 +/- 4.21 0.0025 

IGF-1 137.03 +/- 7.90 105.2 +/- 6.76 0.0179 

 
Table 20: eNOS activity in wt. and MIGFREO mice, control, insulin and IGF-1 stimulated. 
This represents eNOS activity in PECs at baseline and in response to insulin or IGF-1 stimuli. 
In each group n=4. Values shown represent mean +/SEM and are corrected to 2 decimal 
places. In comparison with wild type mice there is a significant blunting of insulin and IGF-1 
stimulated eNOS activity seen in the MIGFREO mice (p<0.02 for IGF-1 stimulated eNOS 
activity, p<0.01 for insulin stimulated eNOS activity).   
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Figure 5.3-9: eNOS activity, insulin and IGF-1 stimulated, normalised to control. Mean +/- 
SEM. This represents eNOS activity in wt. (blue) and MIGFREO mice (pink) in response to 
control, insulin and IGF-1. Results are expressed as percentage of baseline activity (where 
control was assigned 100%). In comparison to wt. mice eNOS activity was significantly 
blunted in MIGFREO mice in response to stimulation from both insulin (p <0.01) and IGF-1 
(p<0.02). N=4 per group 
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Figure 5.3-10: eNOS activity: (A) insulin stimulated (B) IGF-1 stimulated. Mean +/- SEM 
*p<0.02. eNOS activity in PEC in both wt. (blue) and MIGFREO (pink) mice in response to 
insulin (graph A) and IGF-1 (graph B). This again demonstrates that in PEC derived from 
MIGFREO lungs there is relative resistance to the eNOS stimulating effects of both insulin 
and IGF-1. N = 4 per group 
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5.4 Conclusion and Discussion 

Assessment of endothelial function  

There is no evidence of change in basal NO level in MIGFREO mice as measured by 

response to PE following incubation with L-NMMA (Figure 5.3-6, Table 19). Following 

incubation with the NOS inhibitor L-NMMA both wt. and MIGFREO mice had enhanced 

response to PE. This is in contrast with results seen in mice with over-expression of a 

human functional IGF-1R on the vascular endothelium, which was associated with a 

significant reduction in basal NO bioavailability [210]. 

In addition to this observation there is no evidence of basal endothelial dysfunction as 

assessed by measuring vasodilatory response to ACh following constriction with PE (Figure 

5.3-1, Table 15). 

Measurement of endothelial independent vasodilatation as measured by response to the 

NO donor SNP was similar between the 2 groups (Figure 5.3-5, Table 18). 

Although these organ bath experiments do not support significant endothelial dysfunction 

in the MIGFREO mice it is difficult state that there is normal endothelial function, 

particularly in view of the marked reduction of endothelial cell insulin sensitivity as will be 

discussed shortly. Basal NO bioavailability as assessed by response to L-NMMA appears to 

be comparable between the two groups although assessment of NO production in 

response to insulin is perhaps more pertinent to consider in these mice. Although response 

to ACh are also similar between the 2 groups further examination of whether some of the 

vasodilatory response seen in the MIGFREO mice might, in fact relate to excess production 

of hydrogen peroxide is necessary and will be considered in chapter 7. 

MIGFREO mice have endothelial cell insulin resistance 

As was hypothesised, I have demonstrated that over-expression of a non-functioning IGF-

1R on the vascular endothelium is associated with endothelial insulin resistance. This is 

confirmed by the marked reduction in the vasodilatory response to insulin (Figure 5.3-2, 

Figure 5.3-3, Table 16) and the significant reduction in eNOS activity following stimulation 

with insulin (Figure 5.3-9, Figure 5.3-10, Table 20). Perhaps surprisingly these results were 

not replicated when western blots from cell lysates were performed, and although we were 

able to demonstrate an increase in pAKT and peNOS following stimulation with insulin in 
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the wt. mice, this was also seen in the MIGFREO mice and there were no significant 

differences seen between the 2 groups of mice.  

There are several potential reasons for this apparent disparity. The PECs used to perform 

the eNOS activity assay were harvested at P0 in an attempt to ensure that a pure 

endothelial population was used; this was not possible when harvesting cell lysates for 

protein quantification, where the cells were used at P1 or P2. Although cells were 

examined to ensure an endothelial phenotype prior to stimulation with insulin or IGF-1 it is 

possible that using them at later stages of passage may have allowed proliferation of non-

endothelial cells, or change in morphology of the cells which may have affected the results 

of the western blots. To ensure consistency, I would suggest that the cell lysates in future 

are all harvested from cells at the same stage of passage, in an attempt to reduce variability 

between endothelial phenotypes.  

Since the detection of the phosphorylated forms of AKT and eNOS is critical to determining 

endothelial insulin sensitivity it may be that an alternative blocking buffer should have 

been used. The blocking buffer used contains skimmed milk powder (see Table 7) and it is 

known that the casein phosphopeptide component of milk can affect detection of 

phosphorylated forms of protein, and may have affected the level of background 

interference seen in the blots of peNOS in particular (Figure 5.3-8).  

Another possible explanation for the wide variation of results seen in the western blot may 

be the salt content of the TBS tween used as a washing buffer. The content of salt used in 

our laboratory is significantly higher than that used in other laboratories, and the high salt 

content may have been responsible for washing off some of the antibodies with lower 

affinity, particularly the antibodies for phosphorylated eNOS. 

Further consideration should perhaps have been considered to repeating gels on multiple 

occasions, although the quantity of protein extracted from the lysates may have limited the 

ability to repeat experiments. Repeating the experiment in triplicate would have helped to 

ensure that the results were more robust, more reproducible, and may have eliminated the 

wide confidence intervals seen in the results. Although the results displayed are the results 

from all gels performed, it may have been appropriate to exclude some of the results; for 

example if a wt sample did not display enhanced AKT phosphorylation in response to 

insulin (which should clearly happen) this would suggest a problem with the way in which 
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the sample was prepared, or the gel run and this results should perhaps have been 

excluded, or the experiment repeated.    

MIGFREO mice show some evidence of endothelial IGF-1 resistance 

The results from the eNOS activity assay (Figure 5.3-9, Figure 5.3-10, Table 20) show a 

significant reduction in eNOS activity stimulated by IGF-1 when comparing MIGREO with 

wt. littermates, which concurs with the original hypothesis. Certainly the presumed 

distribution of hybrid receptors on the vascular endothelium would suggest that the 

MIGFREO mice would have endothelial IGF-1 resistance. However the results from the 

organ bath and the western blots no not demonstrate any difference in IGF-1 sensitivity 

between the 2 subsets of mice ( Figure 5.3-4, Figure 5.3-7, Figure 5.3-8, Table 17).The 

disparity between the eNOS activity assay and the western blots may be explained by the 

same factors as described above, however the absence of resistance to the vasodilatory 

effect of IGF-1 seen in the organ bath is more surprising, particularly given the marked 

resistance to insulin induced vasodilatation.  

Given that the organ bath is highly likely to be prone to influence by exogenous factors, I 

hypothesise that this is a less sensitive way of assessing resistance to either insulin or IGF-1 

than by measuring eNOS activity directly. This would not only explain why IGF-1 resistance 

was not demonstrated in the organ bath when it was clearly shown by the eNOS activity 

assay. 

Although there was a difference due to the differing doses of IGF-1 used in the experiments 

(in organ bath direct IGF-1 relaxation assessed by using doses between 1-100nM in cell 

lysates the dose used was 150nM), it seems unlikely that this is the explanation. 

Phosphorylation of the IGF-1Rβ in is known to occur in human cardiac microvascular cells 

following stimulation with doses of IGF-1 10nM [223], and indeed phosphorylation of the IR 

occurs following the same level of stimulation with IGF-1, so the doses used in both the 

experiment should be sufficient to cause activation of the P13-K pathway via interaction 

with the IGF-1R, IR and hybrid receptor. I would therefore suggest that the dose of IGF-1 

used is not an adequate explanation for the differences in results seen.  
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The development of endothelial insulin and IGF-1 resistance in MIGFREO mice 

The presence of endothelial insulin and to a lesser extent IGF-1 resistance, in the MIGFREO 

mouse concurs with my original hypothesis which was generated in response to the 

available literature:  

 It is known that IGF-1 an insulin receptors form hybrid receptors, which are relatively 

resistant to activation by insulin [205, 206, 212, 213, 221-223]  

 Reduction of numbers of IGF-1R on vascular endothelium is associated with reduction 

in hybrid formation in combination with enhanced endothelial insulin sensitivity and 

the converse is true; increased numbers of IGF-1R on the vasculature leads to increased 

expression of hybrid receptors and reduction in endothelial insulin sensitivity [209, 

210]. 

 Mutation of the IGF-1R at a single base renders the IGF-1R inactive, although IGF-1R 

with this mutation are able to form hybrid receptors with mouse insulin receptors [306, 

311, 312, 321]. 

 Both halves of the IGF-1R, IR or hybrid receptor need to be active to allow for crosstalk 

between the two receptor halves, and to allow activity of the kinase domain of the 

receptors [215]. 

Using this information we hypothesised that expression of the non-functional IGF-1R on the 

vascular endothelium of the MIGFREO mice would lead to increased generation of hybrid 

receptors, a significant proportion of which would be non-functional which would 

subsequently lead to endothelial resistance to the effects of insulin and IGF-1. If we 

consider that the endothelium is already comparatively insulin resistant the MIGFREO mice 

would therefore be expected to have relatively profound endothelial insulin resistance, 

with less marked IGF-1 resistance. This may well account for the lack of resistance to IGF-1 

in the organ bath.
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Chapter 6: Metabolic Assessment 
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6 Metabolic assessment 



150 
 

6.1 Introduction 

In addition to any effect on endothelial insulin sensitivity it is crucial to understand whether 

expression of an endothelial specific non-functioning IGF-1R has an effect on whole body 

insulin sensitivity. 

Fernandez et al [306] demonstrated that expression of a human IGF-1R with the same 

K1003R mutation as the MIGFREO mouse limited to muscle was associated with a profound 

effect on glucose homeostasis; the mice developed muscle specific and systemic insulin 

resistance and developed frank diabetes at a young age. Interestingly muscle specific 

knockout of the IR [305] in the MIRKO mouse exhibited a milder phenotype with only mild 

insulin resistance, which serves to illustrate the importance of signalling through IGF-1R in 

determining cellular insulin sensitivity. Skeletal muscle is one of the major sites of insulin 

mediated glucose disposal, so it is not surprising that manipulation of the IGF-1R on muscle 

has an effect on whole body insulin sensitivity. The relationship between endothelial and 

systemic insulin sensitivity is more complex. 

As was discussed earlier, endothelial insulin sensitivity has a theoretical role to play in 

determining whole body insulin sensitivity, primarily by the action of insulin in determining 

blood flow, and insulin delivery via the interstitium to skeletal muscle (chapter 1.11). 

Kubota et al [304] demonstrated that endothelial cell insulin resistance was associated with 

impaired insulin stimulated micro-capillary recruitment, reduced insulin mediated glucose 

disposal and whole body insulin resistance. This strongly supports a role for the 

endothelium in determining whole body insulin sensitivity. 

Changes in endothelial cell insulin sensitivity have also been shown to be associated with 

changes in fat metabolism [326] and blood pressure regulation [303] and hence in addition 

to assessing endothelial insulin sensitivity and endothelial function in MIGFREO mice, I will 

also examine blood pressure, and to a lesser extent fat metabolism. 

In addition to assessing plasma insulin and IGF-1 levels I will also briefly examine plasma 

adipokine profile. Adiponectin is well known to correlate with whole body insulin sensitivity 

and recently has been demonstrated to enhance insulin sensitivity in hepatocytes via 

interaction with IRS [341]. Given that there is a strong relationship between adiponectin 

and whole body insulin sensitivity, we felt that knowing whether there was a significant 

difference in plasma adiponectin level between the 2 groups of mice would be a useful 
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experiment, particularly given the previously demonstrated difference in endothelial insulin 

sensitivity.    

There is some evidence (although the exact relationship is not yet determined), that there 

is interplay between the IGF-1 system and systemic leptin levels, particularly in humans 

with altered insulin sensitivity [340]. We therefore felt that it was reasonable to ensure 

that there was no significant difference in plasma leptin levels between the MIGFREO and 

wt mice. This was done in order to eliminate the possibility that any observed changes in 

insulin sensitivity were not coupled with significant changes in plasma leptin levels. Any 

observed differences would have prompted a closer examination of fat metabolism than 

was originally intended. 
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6.2 Methods 

6.2.1 Weight 

Animals were weighed weekly, at 0900h, in an attempt to minimise variation. 

Following a Schedule 1 procedure, organs and fad pad were swiftly excised and weighed. 

6.2.1.1 Fat cell size 

Fat samples were fixed and prepared by Miss Anna Skroma. Slides were examined and 

analysed by myself. 

Adipose tissue was fixed in 4% paraformaldehyde (Sigma-Aldrich®) in PBS with pH 

corrected to 7.0. Samples were trimmed and placed in cassettes and processed for 17 

hours in a Semi-enclosed Benchtop Tissue Processor Leica TP1020 (Leica Biosystems). The 

following day the samples were embedded into paraffin in TES99 tissue embedding system 

(Medite Medizintechnik). Once embedded into paraffin the blocks were sectioned into 5 

micron slices on the Rotary Microtome Leica RM2235 (Leica Biosystems). Sections were 

mounted onto slides and dried overnight at 50°C. The following day the samples were 

stained with Haemotoxylin (Sigma-Aldrich®) and Eosin (Sigma-Aldrich®) stain. 

Slides with samples of fat were examined at x20 magnification on a BX41 microscope 

(Olympus) and images taken using a Qicam Imaging Fast 1394 digital camera (QImaging®). 

A field of view with minimal blood vessels and limited broken cells was used and cells 

counted and fat cell size analysed using commercially available Image Pro-Plus 7.0 software 

(MediaCybernetics®).  

6.2.2 Glucose tolerance test 

Male mice (both MIGFREO and their wild-type litter mates), between the ages of 10 -14 

weeks were fasted overnight. The following morning they were weighed and placed into 

humane restraint apparatus. To assess baseline blood glucose a drop of blood was taken 

from a tail vein and analysed using the Accu-Chek (Aviva) glucose testing strips and 

glucometer. Next, the mice received an intra-peritoneal injection of 1mg glucose per gram 

of body weight. Blood glucose was measured at 30, 60, 90 and 120 minutes following the 

intraperitoneal injection using an identical method to assessing the baseline glucose. 
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6.2.3 Insulin tolerance test 

Male mice were fasted for 4 hours. Baseline glucose was measured as above. Next, the 

mice received an intra-peritoneal injection of insulin (Actrapid Novo nordisk) at a 

concentration of 0.75iu per kilogram of body weight. Blood glucose was measured at 30, 

60, 90 and 120 minutes as above. 

6.2.4 Insulin-like growth factor tolerance test 

Male mice were fasted for 4 hours. Baseline glucose was measured as above. Next, the 

mice received an intra-peritoneal injection of IGF-1 (GroPep) at a concentration of 0.75g 

of IGF-1 per gram of body weight. Blood glucose was measured at 30, 60, 90 and 120 

minutes as above.  

6.2.5 Plasma insulin concentration 

6.2.5.1 Plasma collection 

Random samples were collected by cardiac puncture following the mouse undergoing a 

Schedule 1 procedure. Blood was collected into Microvette® CB 300 K2E Di-Kallum EDTA 

tubes (Sarstedt AG & Co) and was kept on ice and immediately transferred to the 

laboratory where it was placed in a centrifuge and spun at 6000rpm for 6 minutes. The 

plasma was transferred to an eppendorf and frozen at -20oC. 

6.2.5.2 Insulin ELISA 

Assessment of plasma insulin levels was made using the Ultra-Sensitive Mouse Insulin ELISA 

Kit (Crystal Chem Inc.). In accordance with the manufacturers’ instructions insulin 

standards were prepared to give concentrations of 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 and 6.4ng/ml. 

Using the supplied “Antibody-coated microplate” (coated with guinea-pig anti-insulin 

antibody) 95l of the sample diluent provided by the manufacturer were added to each 

well of the microplate, in addition to 5l of either the sample or the insulin standard. 

Samples were assessed in duplicate. The microplate was covered and incubated at 4oC for 2 

hours.   

Following the incubation period the contents of the well were aspirated and wells were 

washed 5 times using 300l of the wash buffer contained in the kit. 100l of the supplied 

horse radish peroxidise conjugated anti-insulin antibody was added to each well, and the 

microplate covered and incubated for 30 minutes at room temperature.  
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The well contents were aspirated and washed in the manner described above. 100l of the 

provided “enzyme substrate solution” (3,3’,5,5’-tetramethylbenzidine (TBA)) was added to 

each well and the microplate incubated for 40 minutes at room temperature without 

exposure to light.    

The enzyme reaction was stopped by adding 100l of the “enzyme reaction stop solution” 

(1N sulphuric acid) to each well and the absorbance was immediately measured using a 

MRX TC microplate reader (Dynax technologies) at 450/620nm using Revelation software 

package (Dynax Technologies).  

6.2.6 Plasma insulin-like growth factor type 1 concentration 

6.2.6.1 Plasma collection 

Blood samples were collected and stored as above. 

6.2.6.2 Insulin-like growth factor-1 ELISA 

Assessment of plasma IGF-1 levels was made using the Mouse IGF-1 High Sensitivity ELISA 

(Immunodiagnostic Systems Ltd.). Calibration samples were supplied reconstituted, as were 

2 control samples. Initially10l of the sample or the supplied control was placed to an 

eppendorf to which was added 50l of the provided “releasing agent” (proprietary reagent 

for dissociating IGF-1 from binding proteins). Following a brief mix the samples or controls 

were incubated at 18-25oC for 10 minutes. Following incubation, 1ml of the provided 

“sample diluent” (phosphate buffer containing protein and 0.09% sodium azide) was added 

to each eppendorf. 50l of control, sample or calibration sample were added to a well in 

the supplied antibody coated 96 well plate. Each sample was assessed in duplicate. 100l 

of the supplied “antibody biotin” (PBS with polyclonal goat anti-mouse IGF-1 antibody) was 

added to all wells. The plate was covered with adhesive plate sealer and incubated on an 

orbital shaker at room temperature for 1 hour at 500-700rpm.  

Following incubation the well contents were aspirated and washed with 250l of wash 

solution (PBS with Tween). This was repeated 2 further times. 150l of the supplied 

“enzyme conjugate” (PBS containing avidin linked to horseradish peroxidise, protein, 

enzyme stabilisers and preservative) was added to each well and incubated at room 

temperature for 30 minutes on the orbital shaker at 500-700rpm.  
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The wash step was repeated as described above. 150l of TMB substrate (proprietary 

aqueous formulation of TBA and hydrogen peroxide) was added to each well. The plate was 

incubated without exposure to light for 30 minutes at room temperature. 

50l of stop solution (0.5M hydrochloric acid) was added to each well, and absorbance was 

immediately read using a plate reader. MRX TC microplate reader (Dynax technologies) at 

450/620nm using Revelation software package (Dynax Technologies).  

6.2.7 Plasma adiponectin measurement 

6.2.7.1 Plasma collection 

Blood samples were collected and stored as above. 

6.2.7.2 Adiponectin ELISA 

Assessment of plasma adiponectin levels was made using the Mouse Adiponectin ELISA kit 

(EMD Millipore). Standards were prepared using the supplied mouse adiponectin standard 

and sequentially diluted with 1:10 assay buffer (0.05M phosphosaline, pH 7.4 containing 

0.025M EDTA, 0.08% sodium azide, 0.05% Triton X100 and 1% BSA ) to achieve final 

dilutions of 1 in 2, 1 in 4, 1 in 8, 1 in 16, 1 in 32, 1 in 62 and 1 in 128.  

The supplied 96 well microtitre plate (coated with pre-titered capture antibodies) was 

washed with 3x300µl of a 1:10 dilution of the supplied HRP wash buffer (50nM Tris 

Buffered Saline with Tween 20). 60µl of a 1:10 dilution of assay buffer was added to 

background, standard and quality control wells. A further 20µl of 1:10 assay buffer was 

added to blank wells; 20µl of either unknown samples, quality control samples or standards 

(reconstituted mouse adiponectin standard) were added in duplicate to appropriate wells. 

20µl of detection antibody (pre tittered biotinylated goat anti-mouse adiponectin 

polyclonal antibody)  was added to all wells and the plate was covered and left at room 

temperature on an orbital shaker (400-500rpm) for 2 hours. 

Contents of the wells were aspirated and the wells were washed with 5x300µl of 1:10 wash 

buffer. 100µl of enzyme solution (pre tittered streptavidin horseradish peroxidise 

conjugate in buffer) was added to each well and the plate was sealed and left on an orbital 

plate shaker (400-500rpm) for 30 minutes. Solutions were decanted and the wells were 

washed as described above.  
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100µl of substrate solution (3,3’,5,5’-tetramethylbenzidine (TBA)) was added to each well, 

the plate was covered and placed on an orbital plate shaker for 5-20 minutes, at which 

point a blue colour had formed in wells. Once colour was deemed to have changed 

sufficiently, the enzyme reaction was stopped by adding 100l of the “stop solution” (0.3M 

HCl) to each well. The absorbance was immediately read using a Spectra Max 190 plate 

reader (Molecular Devices) at 450/590nm. A standard curve was produced using GraphPad 

Prism software and concentrations were measured using the standard curve. Quality 

control was measured by ensuring that the supplied quality control samples fell within the 

expected range.  

6.2.8 Plasma leptin measurement 

6.2.8.1 Plasma collection 

Blood samples were collected and stored as above. 

6.2.8.2 Leptin ELISA 

Assessment of plasma leptin levels was made using the Mouse Leptin ELISA Kit (EMD 

Millipore). The supplied 96 well microtitre plate (coated with pre-titered capture 

antibodies) was washed with 3x300µl of a 1:10 dilution of the supplied HRP wash buffer 

(50nM Tris Buffered Saline with Tween 20). 30µl of “Assay buffer” (0.05M phosphosaline, 

pH 7.4 containing 0.025M EDTA, 0.08% sodium azide, 0.05% Triton X100 and 1% BSA was 

added to background, standard and quality control wells; 40µl of assay buffer was added to 

sample wells. 10µl of “matrix solution” (0.08% sodium azide) was added to background, 

standard and quality control wells. 10µl of “assay buffer” was added to background wells, 

and 10µl of either leptin standards (0.2, 0.5, 1, 2, 5, 10, 20, 30ng/ml), reconstituted quality 

control standards (peptides including leptin) or unknown samples were added in duplicate 

to appropriate wells.  50µl of supplied “antiserum solution” (pre-titered anti-rodent leptin 

serum) was added to each well. The plate was sealed and incubated at room temperature 

on a microplate shaker at 400rpm for 2 hours.  

Following the incubation period the contents of the well were aspirated and wells were 

washed 3 times using 300l of the 1:10 dilution of wash buffer. 100µl of “detection 

antibody” (pre-titered biotinylated anti-mouse leptin antibody) was added to each well.  

The plate was sealed, and placed on a microplate shaker at 400rpm for 1 hour. 
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 The well contents were aspirated and washed as above. 100µl of “enzyme solution” (pre-

titered streptavidin-horseradish peroxidise conjugate in buffer) was added to each well; the 

plate was sealed, placed on the microplate shaker as above and was incubated at room 

temperature for 30minutes. 

The well contents were aspirated and washed in the manner described above. 100l of the 

provided “substrate solution” (3,3’,5,5’-tetramethylbenzidine (TBA)) was added to each 

well and the microplate incubated for approximately 5-20 minutes. Once colour was 

deemed to have changed sufficiently, the enzyme reaction was stopped by adding 100l of 

the “stop solution” (0.3M HCl) to each well. The absorbance was immediately read using a 

Spectra Max 190 plate reader (Molecular Devices) at 450/590nm. A standard curve was 

produced using GraphPad Prism software and concentrations were measured using the 

standard curve. Quality control was measured by ensuring that the supplied quality control 

samples fell within the expected range.  

6.2.9 Plasma Free Fatty Acid measurement  

6.2.9.1 Plasma collection 

Blood samples were collected and stored as above. 

6.2.9.2 Free Fatty Acid Quantification 

Assessment of free fatty acid (FFA) was made using the Free Fatty Acid Quantification Kit 

(abcam®) in accordance with the manufacturer’s instructions.  

6.2.9.3 Protocol Optimisation 

Although the kit has previously been used to assess mouse plasma FFA levels [327] in 

published studies, we have not previously used this kit in our laboratory, and therefore the 

protocol required some optimisation prior to use. Of particular interest was the amount of 

plasma sample required to fall within the specified standard range. 

Plasma samples were diluted in the supplied assay buffer to achieve either 1:1, 1:2, 1:5, 

1:10, 1:25 or 1:10 dilution and 50µl of each dilution was added to a 96 well plate in 

duplicate. Standards and blanks were added to the plate in duplicate to generate 

0,2,4,6,8,10 nmol/well of palmitic acid (from the supplied 1nmol/µl palmitic acid standard 

and the supplied assay buffer).  
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2µl of ACS reagent (Acyl-CoA) was added to each well, and the plate was incubated at 37°C 

for 30minutes.   

A mastermix containing 44µl of assay buffer, 2µl of supplied fatty acid probe, 2µl of 

supplied enzyme mix and 2µl of supplied enhancer was added to each well. The reaction 

was incubated at 37°C for 30 minutes protected from light. 

Optical density was measured at 570nm using a Spectra Max 190 plate reader (Molecular 

Devices).  Background readings were subtracted from all standard and sample readings. A 

standard curve (R2=0.999) (Figure 6.2-1) was generated using GraphPad Prism software, 

and the sample readings were used to derive FFA amount per well. Concentration of FFA in 

nmol/µl = nmol per well / sample volume. 
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Figure 6.2-1: Standard Curve generated from optimisation experiment. Curve generated 
by using supplied standards. R2=0.999 

 

6.2.9.4 Experimental protocol 

Data from optimisation experiment suggested that 5-10µl per sample would be the 

optimum sample quantity to use. Experiment was repeated using 10µl sample volume in 

triplicate. Standard curves were repeated for each individual experiment.  
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6.2.10 Plasma Triglyceride Measurement 

6.2.10.1 Plasma collection 

Blood samples were collected and stored as above. 

6.2.10.2 Triglyceride Quantification 

Plasma triglyceride was measured using the Triglyceride Quantification Kit (abcam®) and 

was performed in accordance with the manufacturer’s instructions. The supplied 

Triglyceride standard (1mM) was heated in a water bath at 80-100°C for 1 minute and 

vortexed for 30 seconds; this was repeated once, to ensure that the triglyceride standard 

retuned to solution. The supplied triglyceride probe (in anhydrous DMSO) was heated to 

37°C for 1-5 minutes to melt the DMSO. The supplied triglyceride enzyme mix was 

dissolved in 200µl of assay buffer. The supplied lipase was dissolved in 220µl of assay 

buffer. 

In order to prepare a standard curve, 40µl of 1mM triglyceride standard was dilute into 

160µl of assay buffer, generating 0.2mM triglyceride standard. Either 0, 10, 20, 30, 40 or 

50µl of 0.2mM triglyceride standard was added in duplicate to a 96 well plate, the volume 

was adjusted to 50µl with assay buffer, generating 0, 2, 4, 6, 8, 10nmol/well of triglyceride 

standard.  

The plasma to be analysed was diluted 1 in 2 and 50µl of each diluted plasma sample was 

added in duplicate to the 96 well plate.  

2µl of lipase was added to each standard and sample and the reaction was incubated for 20 

minutes at room temperature.  50µl of reaction mix (containing 46µl of assay buffer, 2µl of 

triglyceride probe and 2µl of triglyceride enzyme mix) was added to each standard and 

sample. The reaction was incubated for 60 minutes protected from light on an orbital plate 

shaker at 300rpm. 

The absorbance was immediately read using a Spectra Max 190 plate reader (Molecular 

Devices) at 570nm. A standard curve was produced using GraphPad Prism software and 

concentrations were measured using the standard curve. The background blank reading 

was subtracted from all readings. Results were corrected, taking into account the initial 1 in 

2 dilution of the plasma. 
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6.2.11 Blood pressure measurement 

Blood pressure was measured non-invasively by determining the tail blood volume with a 

volume pressure recording sensor and an occlusion tail-cuff (CODA System, Kent Scientific, 

Torrington) (Figure 6.2-2). Volume pressure recording (VPR) has been shown to provide an 

accurate assessment of blood pressure when compared with invasive radio-telemetry 

monitoring (long considered to be the gold standard method of assessing blood pressure in 

experimental rodents), with the major advantage being that it is non-invasive [310]. 

 

 

Figure 6.2-2: Diagram depicting basis by which volume pressure recording measures 
blood pressure. 1) Blood is pushed out of the tail by the VPR cuff; 2) Occlusion cuff inflates 
to prevent blood from entering it; 3) occlusion cuff deflates, when it reaches systolic blood 
pressure tail volume increases, which is detected by the cuff; 4) tail volume increases as 
occlusion cuff deflates; 5) occlusion cuff reaches diastolic blood pressure and tail volume 
reaches plateau phase. 
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The animals were acclimatised to the procedure by placing them in the restraining 

apparatus for 3, 10-20 minute periods on separate days before measurements were taken. 

When measurements were due to be taken the animals were placed in room heated to 

26oC or above for 30 minutes to warm and were placed in the restraining apparatus for a 

further 15 minutes to acclimatise. This was done in accordance with the manufacturers’ 

instructions.  Following 5 acclimatisation inflations, 15 measurements of blood pressure 

were taken. Measurements were repeated 2 further times within a week period to 

establish an average blood pressure recording per mouse. 

6.2.12 Statistics 

Results are expressed as mean +/- SEM. Comparative analysis within groups was performed 

using paired Student t test; between groups unpaired Student t test. P <0.05 was 

considered to be statistically significant.  
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6.3 Results 

6.3.1 Weight 

There were no significant differences between the total body weight (Figure 6.3-1, Table 

21) organ weight (Figure 6.3-2, Table 22) or fad pad weight (Figure 6.3-2, Table 22) 

between the MIGFREO mice and the wt. mice, although there was a non-significant trend 

towards the MIGFREO mice being heavier, this was most marked at 8 weeks and persisted 

until 18 weeks.  
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Figure 6.3-1: Body weight.  Mean +/- SEM body weight of wt. (blue) and MIGFREO (pink) 
mice at weeks 8-18. N > 30 in each group. No significant differences between the 2 groups 
of mice were detected at any stage. 
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Age (weeks) wt.  mean +/- SEM 

(n=32) 

MIGFREO mean 

(n=33) 

p value 

8 22.08 +/- 0.55 23.64 +/- 0.70 0.10 

9 22.95 +/- 0.58 24.27 +/- 0.71 0.17 

10 23.74 +/- 0.71 24.99 +/- 0.74 0.23 

11 24.69 +/- 0.73 26.54 +/- 0.93 0.13 

12 25.93 +/- 0.70 26.83 +/- 0.75 0.40 

13 26.99 +/- 0.79 27.71 +/- 0.82 0.53 

14 27.51 +/- 0.80 28.37 +/- 0.67 0.41 

15 27.93 +/- 0.84 29 +/- 0.85 0.38 

16 28.61 +/- 0.81 29.45 +/- 0.90 0.49 

17 29.13 +/- 0.81 30.23 +/- 0.84 0.35 

18 29.44 +/- 0.79 30.53 +/- 0.78 0.33 

 
Table 21: Mean total body weight. Corrected to 2 decimal places. Mean +/- SEM body 
weight between weeks 8-18. No significant differences were seen between the 2 groups of 
mice. 
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Figure 6.3-2: (A) Organ weight; (B) Fat pad size. Expressed as percentage of total body 
weight. Mean +/- SEM. No differences between wt. (blue) and MIGFREO (pink) mice for 
weight of organ or fat pad. N=6 
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Figure 6.3-3. (A) Organ weight; (B) Fat pad size. Absolute weight. Mean +/- SEM. No 
differences between wt. (blue) and MIGFREO (pink) mice for weight of organ or fat pad. 
N=6. *p=0.22 
 

Organ wt. mean 
+/- SEM 
(n=6)       
(% TBW) 

MIGFREO 
mean +/- 
SEM (n=6) 
(% TBW) 

p value wt. mean 
+/- SEM 
(n=6) 
(weight 
(g))       

MIGFREO 
mean +/- 
SEM 
(n=6) 
(weight 
(g))        

p value 

Heart 0.73 +/- 
0.06 

0.67 +/- 
0.03 

0.34 0.22 +/- 
0.02 

0.21 +/- 
0.01 

0.53 

Lung 0.71 +/- 
0.02 

0.67 +/- 
0.03 

0.36 0.21 +/- 
0.01 

0.21 +/- 
0.01 

0.82 

Liver 4.17 +/- 
0.43 

4.70 +/- 
0.31 

0.37 1.20 +/- 
0.09 

1.37 +/- 
0.06 

0.22 

Kidney 1.61 +/- 
0.10 

1.57+/- 
0.12 

0.84 0.47 +/- 
0.03 

0.48 +/- 
0.03 

0.90 

Spleen 0.31 +/- 
0.04 

0.28 +/- 
0.02 

0.47 0.09 +/- 
0.01 

0.09 +/- 
0.005 

0.55 

Epididymal 
fat pad 

1.52 +/- 
0.20 

1.36 +/- 
0.20 

0.29 0.46 +/- 
0.03 

0.41 +/- 
0.02 

0.11 

 
Table 22: Organ weight. Corrected to 2 decimal places. No differences between wt. and 
MIGFREO mice for weight of organ or fat pad. 
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6.3.2 Fat cell size 

Analysis of epididymal fat cell size and number does not demonstrate any significant 

difference between the MIGFREO and wt. mice. There is no clear difference in morphology 

between the 2 groups.  

  

Figure 6.3-4: Fat cell size from (A) wild type mouse and (B) MIGFREO mouse. Comparable 
pictures taken from direct light microscopy at x 20. Fat cells stained with standard 
haematoxylin and eosin stain. 

 

 wt. mean +/- SEM 
(n=4) 

MIGFREO mean +/- 
SEM (n=8) 

p value 

Fat cell size 
(arbitrary units) 

745126.7 +/- 
57501.85 

866908.8 +/- 
78926.85 

0.34 

Fat cell number 92 +/- 9.42 80.63 +/- 21.93 0.35 

 
Table 23: Fat cell size and number. Number of cells was determined by examining 3 
different fields of view at x 20 with minimal blood vessels per sample. Mean per sample 
was calculated and then this repeated for the remaining samples. Cell size was determined 
by examining cells at x20 magnification and using computer software to assess cell size. 
Again this was done for 3 fields of view per sample and a mean derived for each sample. 
Cell size is represented by arbitrary units as determined by software. Corrected to 2 
decimal places. No significant differences seen in either cell size of cell number between 
the wt. or MIGFREO mice. N=6 per group 

A B 
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Figure 6.3-5: (A) Fat cell size; (B) Fat cell number.  Mean +/- SEM for both cell size (mean 
cell size) and cell number (per x20 magnification per field of view). No differences seen 
between the wt. (blue) and MIGFREO (pink) mice. 

 

6.3.3 Glucose tolerance 

There were no significant differences between the MIGFREO mice and wt. mice when 

considering their response to an intra-peritoneal injection of glucose. Both mice were seen 

to respond to the injection with an initial spike in blood glucose after 30 minutes post 

injection (as would be expected), with a gradual fall towards baseline blood glucose over 

the following 90 minutes. This was true for both absolute blood glucose (Figure 6.3-6,  

Table 24), and percentage change in blood glucose (Figure 6.3-7, Table 25). Unsurprisingly 

this also equated to no significant difference seen in the area under the curve for the 

glucose tolerance test (Figure 6.3-8, Table 26). 

In addition to the similar responses seen during the glucose tolerance test, there were no 

significant differences between baseline (fasted) blood glucose between the MIGFREO and 

wt. littermates (7.11 mmol/l +/- 0.25 vs. 7.08 mmol/l +/- 2.27 respectively). (Figure 6.3-9) 
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Figure 6.3-6: Glucose tolerance test (absolute). This demonstrates the absolute blood 
glucose seen during a glucose test at time points following an intra-peritoneal injection of 
glucose. The lines represent the mean blood glucose +/- SEM for both wt. (blue) and 
MIGFREO (pink) mice. N=18 per group. No significant differences observed between the 2 
groups.   
 

Time (mins) wt. mean +/- SEM 
(n=18) 

MIGFREO mean +/- 
SEM (n=18) 

p value 

0 7.08 +/- 0.27 7.11 +/- 0.25 0.94 

30 12.45 +/- 0.43 14.05 +/- 0.86 0.11 

60 9.6 +/- 0.29 9.74 +/- 0.47 0.80 

90 8.38 +/- 0.27 8.87 +/- 0.46 0.37 

120 8.48 +/- 0.30 8.32 +/- 0.35 0.72 

 
Table 24: Blood glucose (absolute). Table of mean +/- SEM blood glucose following an 
intra-peritoneal injection of glucose in wt. and MIGFREO mice. Corrected to 2 decimal 
places. No significant differences between the 2 groups. 
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Figure 6.3-7: Glucose tolerance test (% baseline). This demonstrates the blood glucose 
expressed as a percentage of the baseline blood glucose seen during a glucose test at time 
points following an intra-peritoneal injection of glucose. The lines represent the mean 
blood glucose +/- SEM for both wt. (blue) and MIGFREO (pink) mice. N=18 per group. No 
significant differences observed between the 2 groups.   
 

Time (mins) wt. mean +/- SEM 
(n=18) 

MIGFREO mean +/- 
SEM (n=18) 

p value 

0 100 100  

30 181.22 +/- 10.47 190.97 +/- 17.66 0.64 

60 138.58 +/- 5.93 138.50 +/- 6,74 0.99 

90 120.05 +/- 4.08 126.28 +/- 7.10 0.45 

120 121.55 +/- 4.85 118.70 +/- 5.86 0.71 

 
Table 25: Blood glucose (percentage of baseline). Table of mean +/- SEM blood glucose 
expressed as a percentage of baseline blood glucose following an intra-peritoneal injection 
of glucose in wt. and MIGFREO mice. Corrected to 2 decimal places. No significant 
differences between the 2 groups. 
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Figure 6.3-8: Area under curve of glucose tolerance test. Using graph pad prism software 
area under the curve was calculated for each individual glucose tolerance test and the then 
a mean calculated for wt. (blue) and MIGFREO (pink) mice. The Mean +/- SEM is shown. 
N=18 for each group. No significant differences between the 2 groups were seen. 

 

 wt. mean +/- SEM MIGFREO mean +/- 
SEM 

p  value 

GTT area under 
curve 

16518.78 +/- 571.49 16953.11 +/- 925.13 0.69 

ITT area under 
curve 

3743 +/- 250.4 4706 +/- 300.6 0.02 

IGF-1T area 
under curve 

2933 +/- 367.7 3837 +/- 300.2  0.07 

 

Table 26: Area under curve of tolerance tests (calculated from percentage change). Using 
graph pad prism software area under the curve was calculated for each individual tolerance 
test and then a mean calculated for the wt. and MIGFREO groups. The mean +/-SEM is 
displayed and this is corrected to 2 decimal places. There was no difference in the AUC for 
the glucose tolerance test. There was a strong trend to enhanced IGF-1 sensitivity in the 
MIGFREO mice (p=0.07). The AUC of the ITT demonstrated significantly enhanced insulin 
sensitivity in the MIGFREO mice when compared to the wt. mice (p=0.02). N=15-24 per 
group 
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Figure 6.3-9: Fasted blood glucose. Mean fasting glucose +/- SEM in wt. (blue) and 
MIGFREO (pink) mice. No difference seen between the 2 groups. N=18.  

 

6.3.4 Insulin Tolerance 
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Figure 6.3-10: Insulin tolerance test (absolute). This demonstrates the absolute blood 
glucose seen during an insulin tolerance test at time points following an intra-peritoneal 
injection of insulin. The lines represent the mean blood glucose +/- SEM for both wt. (blue) 
and MIGFREO (pink) mice. N >20 per group. 30 minutes after and intra-peritoneal injection 
of insulin the MIGFEO mice had significantly lower blood sugar than wt. mice, suggesting 
enhanced insulin sensitivity (p=0.01). 
 

Although there were no significant differences between MIGFREO mice and wt. mice with 

respect to their glucose tolerance, there was a difference in the response to an intra-

peritoneal injection of insulin. In response to insulin, although both sets of mice as 

expected experienced a drop in blood glucose, the drop in blood glucose at 30 minutes was 

more profound in the MIGFREO mice. When considering absolute blood glucose (Figure 

6.3-10, Table 27) this was significant at 30 minutes test (5.48 mmol/l +/- 0.23 in MIGFREO 
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vs. 6.39 mmol/l +/- 0.25 in wt., p = 0.01), although MIGFREO blood glucose had a trend 

towards being lower throughout the course of the tolerance test. 

 

Time (mins) wt. mean +/- SEM 
(n=20) 

MIGFREO mean +/- 
SEM (n=22) 

p value 

0 9.5 +/- 0.24 9.98 +/- 0.30 0.23 

30 6.39 +/- 0.25 5.48 +/- 0.23 0.01 

60 5.11 +/- 0.42 4.73 +/- 0.40 0.52 

90 6.41 +/- 0.63 5.95 +/- 0.53 0.58 

120 8.13 +/- 0.52 7.20 +/- 0.44 0.18 

 

Table 27:  Insulin tolerance test (absolute blood glucose). Table of mean +/- SEM blood 
glucose following an intra-peritoneal injection of insulin in wt. and MIGFREO mice. 
Corrected to 2 decimal places. Significantly reduced blood sugar seen in MIGFREO mice 30 
minutes after intra peritoneal injection of insulin suggesting enhanced insulin sensitivity. N 
> 20 per group 

 
 

The difference in response to an intra-peritoneal injection of insulin was more marked 

when percentage change in blood glucose was calculated (Figure 6.3-11, Table 28). 30 

minutes following the insulin injection, MIGFREO mice had a blood glucose 56.65% +/- 2.29 

of baseline, whilst the wt. mice had a blood glucose 67.51% =/- 2.37 of baseline, which was 

significantly different, as demonstrated by a p value of less than 0.001. MIGFREO mice 

display a trend of enhanced insulin sensitivity throughout the tolerance test, and again at 

120 minutes post insulin injection the difference is statistically significant (71.91% +/- 4.24 

in MIGFREO vs. 85.21% +/- 4.60 in wt., p = 0.04) . Area under the curve of percentage 

change in blood glucose is statistically different between the 2 sets of mice (Figure 6.3-13) 

confirming enhanced insulin sensitivity in the MIGFREO mice. 

In order to exclude the possibility that the enhanced insulin sensitivity was related to larger 

doses of insulin given to the slightly heavier MIGFREO mice, a scatter plot was generated 

demonstrating the relationship between insulin dose (calculated by body weight) and % of 

baseline blood glucose at 30 minutes. As is clearly shown in Figure 6.3-12 there is no 
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correlation between these two measurements; R2 for both MIGFREO and wt mice was less 

than 0.1. 
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Figure 6.3-11: Insulin tolerance test (% baseline). This demonstrates the blood glucose 
expressed as a percentage of the baseline blood glucose seen during an insulin tolerance 
test at time points following an intra-peritoneal injection of insulin. The lines represent the 
mean blood glucose +/- SEM for both wt. (blue) and MIGFREO (pink) mice. N>20 per group. 
At 30 minutes and 120 minutes following the intra-peritoneal injection of insulin the 
MIGFREO mice had significantly enhanced insulin sensitivity; at 30 minutes *p=0.0004, at 
120 minutes**p=0.04. 
 

Time (mins) wt. mean +/- SEM 
(n=20) 

MIGFREO mean +/- 
SEM (n=22) 

p value 

0 100 100  

30 67.51 +/- 2.37 54.65 +/- 2.29 0.0004 

60 53.49 +/- 4.08 47.51 +/- 4.11 0.31 

90 66.65 +/- 5.79 59.09 +/- 4.91 0.32 

120 85.21 +/- 4.60 71.91 +/- 4.24 0.04 

 
Table 28: Insulin tolerance test (% change in blood glucose). Table of mean +/- SEM blood 
glucose expressed as a percentage of baseline blood glucose following an intra-peritoneal 
injection of insulin in wt. and MIGFREO mice. Corrected to 2 decimal places. Marked 
enhanced sensitivity to the glucose lowering effects of insulin seen in MIGFREO mice at 30 
and 120 minutes in comparison to wt. mice; p=0.0004 and 0.04 respectively. N > 20 per 
group 
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Figure 6.3-12. Correlation between insulin units given (and hence weight) and blood 
glucose. R2 shows no correlation with insulin dose given vs. blood glucose at 30 minutes. 
This is true for MIGFREO and wt mice and suggests that the response to insulin is not solely 
associated with the dose of insulin give. R2 0.09 for MIGFREO mice, R2 0.01 for wt mice.  
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Figure 6.3-13: Area under curve of insulin tolerance test. Using graph pad prism software 
area under the curve was calculated for each individual insulin tolerance test and the then 
a mean calculated for wt. (blue) and MIGFREO (pink) mice. The Mean +/- SEM is shown. N > 
20 for each group. Area under the curve was significantly elevated in MIGFREO mice 
(*p=0.02) suggesting significantly enhanced sensitivity to the glucose lowering effects of 
insulin in MIGFREO mice. 
 

6.3.5 IGF-1 Tolerance 

In addition to displaying increased sensitivity to an intra-peritoneal injection of insulin, it 

appears that MIGFREO mice have enhanced sensitivity to the glucose lowering effects of 

IGF-1. Absolute blood glucose following IGF-1 is similar between the 2 groups of mice 

(Figure 6.3-14, Table 29), but when the percentage change in baseline is considered, 

MIGFREO mice have enhanced sensitivity to IGF-1 after 30 minutes (Figure 6.3-15, Table 

30). 30 minutes following the injection of IGF-1 the blood glucose of the MIGFREO mice 
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was 57.47% +/- 2.77 of baseline, whilst the blood glucose in the wt. mice was 70.64% +/- 

4.82 of baseline, p value 0.02 (Figure 6.3-15). Although the trend is sustained throughout 

the duration of the test it is not statistically significant at 120 minutes. The area under the 

curve calculation shows a non-statistically significant trend towards enhanced IGF-1 

sensitivity throughout the duration of the test (Figure 6.3-16, Table 26) 
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Figure 6.3-14: IGF-1 tolerance test (absolute). This demonstrates the absolute blood 
glucose seen during an insulin tolerance test at time points following an intra-peritoneal 
injection of IGF-1. The lines represent the mean blood glucose +/- SEM for both wt. (blue) 
and MIGFREO (pink) mice. N >15 per group. No differences seen between the 2 groups. 
 

Time (mins) wt. mean +/- SEM 
(n=16) 

MIGFREO mean +/- 
SEM (n=17) 

p value 

0 9.69 +/- 0.39 10.23 +/- 0.37 0.26 

30 6.68 +/- 0.33 6.17 +/- 0.38 0.32 

60 6.79 +/- 0.42 6.63 +/- 0.45 0.79 

90 7.47 +/- 0.54 7.16 +/- 0.47 0.67 

120 7.81 +/- 0.48 7.58 +/- 0.48 0.73 

 
Table 29: IGF-1 tolerance test (absolute blood glucose). Table of mean +/- SEM blood 
glucose following an intra-peritoneal injection of IGF-1 in wt. and MIGFREO mice. Corrected 
to 2 decimal places. No significant differences between the 2 groups. N > 15 per group 
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Figure 6.3-15: IGF-1 tolerance test (% of baseline). This demonstrates the blood glucose 
expressed as a percentage of the baseline blood glucose seen during an IGF-1 tolerance 
test at time points following an intra-peritoneal injection of glucose. The lines represent 
the mean blood glucose +/- SEM for both wt. (blue) and MIGFREO (pink) mice. N>15 per 
group. At 30 minutes following the intra-peritoneal injection of insulin the MIGFREO mice 
had significantly enhanced insulin sensitivity; at 30 minutes *p=0.02. N > 15 per group 

 

Time (mins) wt. mean +/- SEM 
(n=16) 

MIGFREO mean +/- 
SEM  (n=17) 

p value 

0 100 100  

30 70.64 +/- 4.82 57.47 +/- 2.77 0.02 

60 70.87 +/- 4.68 61.88 +/- 3.57 0.13 

90 77.79 +/- 5.93 67.14 +/- 3.98 0.14 

120 80.89 +/- 4.68 71.26 +/- 4.45 0.14 

 
Table 30: IGF-1 tolerance test (% of baseline blood glucose). Table of mean +/- SEM blood 
glucose expressed as a percentage of baseline blood glucose following an intra-peritoneal 
injection of IGF-1 in wt. and MIGFREO mice. Corrected to 2 decimal places. Marked 
enhanced sensitivity to the glucose lowering effects of insulin seen in MIGFREO mice at 30 
in comparison to wt. mice; p= 0.02. N > 15 per group 
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Figure 6.3-16: Area under curve of IGF-1 tolerance test. Using graph pad prism software 
area under the curve was calculated for each individual IGF-1 tolerance test and the then a 
mean calculated for wt. (blue) and MIGFREO (pink) mice. The Mean +/- SEM is shown. N > 
15 for each group. Trend towards a higher AUC in MIGFREO mice (p=0.07) suggesting a 
trend towards enhanced IGF-1 sensitivity in MIGFREO mice. 

6.3.6 Plasma insulin and IGF-1 level 

As shown in Table 31, Figure 6.3-17 there is no difference observed between the random 

plasma insulin or IGF-1 levels seen in MIGFREO and wt. mice. 

 wt. mean +/- SEM MIGFREO mean +/- 
SEM 

p value 

Random insulin 
(ng/ml) 

3.53 +/ - 0.45 (n=11) 3.34 +/- 0.59 (n=11) 0.80 

Random IGF-1 
(ng/ml) 

322.03 +/- 10.37 
(n=31) 

339.29 +/- 13.63 
(n=35) 

0.33 

 
Table 31: Plasma insulin and IGF-1 levels. The table shows mean +/- SEM plasma insulin 
(ng/ml) and IGF-1 (ng/ml) in wt. and MIGFREO mice. N=11 for plasma insulin 
measurements, n > 30 for plasma IGF-1 level. Results are corrected to 2 decimal places. No 
significant differences seen between wt. and MIGFREO mice. 
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Figure 6.3-17: (A) Plasma insulin ELISA (B) plasma IGF-1 ELISA. Plasma insulin (A) and IGF-1 
(B) levels in wt. (blue) and MIGFREO (pink) mice. Columns represent mean +/- SEM and are 
expressed in ng/ml. N=11 for insulin measurements, n > 30 for plasma IGF-1 level. No 
difference in random plasma insulin or IGF-1 between wt. and MIGFREO mice. 

 

6.3.7 Plasma adiponectin, leptin, free fatty acid and triglyceride 

There is a trend towards elevated levels of plasma adiponectin in MIGFREO mice, (9.29 

ng/ml +/- 0.19 vs. 8.70ng/ml +/- 0.25 in MIGFREO vs. wt. respectively) although this does 

not reach statistical significance (p=0.07) (Figure 6.3-18, Table 32). 

Levels of leptin (Figure 6.3-18, Table 32) and triglyceride (Figure 6.3-19, Table 32) are 

comparable between the 2 sets of mice. 
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 wt. mean +/- SEM MIGFREO mean +/- 
SEM 

p value 

Adiponectin 
(ng/ml) 

8.70 +/- 0.25 (n=19) 9.29 +/- 0.19 (n=19) 0.07 

Leptin (ng/ml) 8.83 +/- 0.91 (n=18) 8.58 +/- 1.04 (n=18) 0.86 

Free fatty acid 
(nmol/µl) 

0.44 +/- 0.07 (n=16) 0.23 +/- 0.03 (n=16) 0.02 

Triglyceride 
(nmol/µl) 

6.16 +/- 0.31 (n=12) 5.31 +/- 0.39 (n=19) 0.14 

 
Table 32: Random plasma levels of adiponectin, leptin, free fatty acid and triglyceride. 
The table shows mean +/- SEM plasma adiponectin (ng/ml), leptin (ng/ml), free fatty acid 
(nmol/µl) and triglyceride (nmol/µl) in wt. and MIGFREO mice. Results are corrected to 2 
decimal places. Numbers of samples are listed within the table. Significantly lower plasma 
free fatty acid seen in MIGFREO mice (p=0.02). No difference seen in plasma leptin or 
triglyceride. There was a trend towards higher plasma adiponectin level in the MIGFREO 
mice (p=0.07). Numbers analysed shown in table. 
 

c
o

n
c

e
n

tr
a

ti
o

n
 (

n
g

/m
l)

w
t

M
IG

F
R

E
O

0

2

4

6

8

1 0

A

c
o

n
c

e
n

tr
a

ti
o

n
 (

n
g

/m
l)

w
t

M
IG

F
R

E
O

0

5

1 0

1 5

B

 

Figure 6.3-18: (A) Plasma adiponectin ELISA (B) plasma leptin ELISA. Plasma adiponectin 
(A) and leptin (B) levels in wt. (blue) and MIGFREO (pink) mice. Columns represent mean 
+/- SEM and are expressed in ng/ml. N=19 for adiponectin measurements, n=18 for plasma 
leptin level. No difference in random plasma adiponectin or leptin between wt. and 
MIGFREO mice. 
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Figure 6.3-19: (A) Plasma free fatty acid quantification (B) plasma triglyceride 
quantification.  Plasma free fatty acid (A) and triglyceride (B) levels in wt. (blue) and 
MIGFREO (pink) mice. Columns represent mean +/- SEM and are expressed in nmol/µl. 
N=16 for free fatty acid measurements, n >11 for plasma triglyceride level. Marked 
reduction in plasma free fatty acid in MIGFREO mice*p=0.02; no difference in plasma 
triglyceride level. 

 

Interestingly there is a statistically significant difference between plasma levels of free fatty 

acid between MIGFREO and wt. mice (Figure 6.3-19, Table 32). MIGFREO mice have a 

plasma free fatty acid level which is 52% that of the level seen in their wt. littermates 

(0.23nmol/μl +/- 0.03 vs. 0.44nmol/μl +/- 0.07 in MIGFREO vs. wt. respectively, p = 0.02).  

6.3.8 Blood pressure 

There is no difference in either systolic or diastolic blood pressure between the 2 sets of 

mice (Figure 6.3-20, Table 33).  

 wt. mean  +/- SEM 
(n=10) 

MIGFREO mean +/- 
SEM (n=10) 

p value 

Systolic mmHg 97.57 +/- 2.15 100.45 +/- 3.90 0.53 

Diastolic mmHg 72.89 +/- 2.73 74.72 +/- 3.60 0.69 

 
Table 33: Systolic and diastolic blood pressure measurements. Mean +/SEM. Corrected to 
2 decimal places. No difference in systolic or diastolic blood pressure seen between the 2 
groups. N =10 per group 
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Figure 6.3-20: Blood pressure. Systolic and diastolic blood pressure measurement in wt. 
(blue) and MIGFREO (pink) mice. Bars represent mean +/- SEM. No significant differences 
seen in either systolic or diastolic blood pressure between the wt. and MIGFREO mice. 
N=10 in each group. 
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6.4 Conclusion and Discussion 

MIGFREO mice have enhanced whole body insulin and IGF-1 sensitivity 

Contrary to the hypothesis which was generated, MIGFREO mice have enhanced whole 

body insulin sensitivity, as measured by change in blood glucose following an intra-

peritoneal injection of insulin (Figure 6.3-10, Figure 6.3-11, Table 27, Table 28). The 

differences measured between the 2 populations of mice were small, but statistically 

significant. A significant difference was seen between the 2 sets of mice 30 minutes after 

the injection of insulin, with the trend persisting throughout the duration of the test, 

becoming significant again at 120 minutes post insulin injection. In accordance with this, 

insulin tolerance throughout the duration of the test as measured by the area under the 

curve (Figure 6.3-13, Table 26) showed enhanced insulin sensitivity  

In common with improved insulin sensitivity the MIGFREO mice have enhanced IGF-1 

sensitivity as measured by the increased response to an intra-peritoneal injection of IGF-1 

(Figure 6.3-14, Figure 6.3-15, Table 29, Table 30) which is significant at 30 minutes, and 

shows a trend towards enhanced IGF-1 sensitivity throughout the 120 minutes. There is a 

strong trend towards enhanced IGF-1 sensitivity in MIGFREO mice as measured by the area 

under the curve (Figure 6.3-16, Table 26). 

Basal blood glucose seen prior to performing the insulin tolerance test was higher in both 

sets of mice than that seen prior to the glucose tolerance test; this is most likely due to the 

shorter period of fasting which the mice were subjected to; at least 12 hours prior to the 

glucose tolerance test and 4 hours prior to the insulin and IGF-1 tolerance tests.  

Following the longer period of fasting prior to the glucose tolerance test there was no 

difference in baseline blood glucose noted between the MIGFREO and the wt mice; 

however when the mice were exposed to a shorter period of starvation prior to the insulin 

and IGF-1 tolerance tests, there was noted to be a trend towards a higher basal blood 

glucose in the MIGFREO mice. Although small, it will have had an effect on the calculation 

of change in blood glucose from baseline and this should be taken into consideration when 

contemplating the apparent enhanced insulin sensitivity seen the MIGFREO mice. The 

MIGFREO mice appear to have marginally larger livers than their wt counterparts, which 

would perhaps correlate with larger glycogen stores in MIGFREO mice. Given that glycogen 

breakdown occurs in response to starvation it is possible that this might have had an effect 



182 
 

on fasting blood glucose. If this is the case, then one might expect that the difference in 

blood glucose would be more marked after a longer period of starvation, whereas the 

contrary was seen here.  

In all cases the tolerance tests were performed in the same order; week 1 glucose 

tolerance, week 2 insulin tolerance, week 3 IGF-1 tolerance. The mice might therefore have 

experienced higher stress levels in the later weeks of testing. Signalling through the IGF-1 

axis is known to have an effect on cortisol signalling (although the exact mechanism is yet 

to be entirely elucidated), and release of cortisol is well known to stimulate 

gluconeogenesis from the liver. It is perhaps the case then, that the MIGFREO mice have 

exaggerated stress responses and enhanced cortisol secretion in response to starvation. 

This would be interesting to examine for further experiments.  

Further investigation of MIGFREO blood glucose in response to differing periods of 

starvation and stress would be interesting. I would suggest that blood glucose in the 

MIGFREO mice should be formally assessed after varying periods of starvation, and that an 

assessment of plasma cortisol would be an interesting adjunct.  

The difference in insulin sensitivity between the 2 groups was admittedly marginal, but 

reached high statistical significance suggesting that there is a real, but small difference. This 

is an interesting finding, and irrespective of the magnitude is worthy of some further 

consideration. The examination of the whole body metabolic phenotype of the mice (as 

discussed shortly) adds some weight to the finding of marginal insulin sensitivity in 

MIGFREO mice. The widely acknowledged gold standard assessment of insulin sensitivity in 

mice would be hyperinsulinaemic euglycaemic clamping which assesses the concentration 

of glucose required to maintain normoglycaemia in the face of hyperinsulinaemia; 

enhanced insulin sensitivity is associated with higher rates of insulin mediated glucose 

disposal, and hence higher concentrations of glucose are required to maintain 

normoglycaemia. This is not a technique currently available locally, although I would 

recommend that in order to fully assess the presence, and indeed the magnitude of 

enhanced insulin sensitivity which the MIGFREO mice appear to demonstrate, this would 

be a useful addition experiment. 
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MIGFREO mice have plasma IGF-1 and insulin levels comparable with wt. counterparts 

The change in insulin sensitivity seen in the MIGFREO mouse does not appear to be related 

to changes in plasma insulin levels; there were no differences seen in random plasma 

insulin or IGF-1 levels between the 2 groups of mice (Figure 6.3-17). As was discussed in the 

introduction, however, a significant proportion of IGF-1 within the plasma is bound to IGF-1 

binding proteins, which themselves play a role in modulating insulin sensitivity. In order to 

make a robust determination of whether there is a difference in plasma IGF-1 levels 

between MIGFREO and wt mice an assessment of both total and unbound IGF-1 should be 

performed. Given that there is good evidence that over-expression of IGFBP-1 in mice has 

been shown to be associated with down regulation of the insulin signalling pathway and 

has an effect on NO production it would be necessary to assess IGFBP-1 levels in the 

MIGFREO mice before concluding that changes in plasma composition are not responsible 

for any whole body changes demonstrated. 

Changes in plasma composition in MIGFREO mice 

Interestingly expression of the mutant IGF-1R on the vascular endothelium was also 

associated with significantly reduced plasma free fatty acid (FFA) level when compared 

with their wt. littermates (Figure 6.3-19, Table 32). Plasma leptin and triglyceride levels are 

comparable between the 2 sets of mice, although there is a strong trend, albeit non-

significant to elevated plasma adiponectin levels in MIGFREO mice (Figure 6.3-18, Table 

32). The reduction in plasma FFA in the MIGFREO mice is consistent with enhanced whole 

body insulin sensitivity.  

The relationship between FFA and insulin sensitivity is somewhat cyclical with elevated free 

fatty acids not only forming a component of the insulin resistance syndrome, but also being 

implicated in the development of insulin resistance. Treatment of cells with FFA has been 

demonstrated to cause insulin resistance via mechanisms involving overproduction of ROS 

and activation of inflammatory pathways [261-263]. On a whole body level, 

pharmacological reduction of plasma FFA improves insulin signalling in muscles from 

subjects with insulin resistance [328] and treatment with the insulin sensitizer metformin is 

associated with reduction in plasma free fatty acid levels in similar cohorts [329, 330] 

although the mechanism behind this is not yet completely understood. It is therefore 

difficult to assess whether the reduction in FFA in MIGFREO mice occurs as a result of 
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enhanced insulin sensitivity, or whether it might be implicated in the development of 

enhanced insulin sensitivity.  

MIGFREO mice have normal blood pressure, weight and fat morphology 

There is no significant difference between MIGFREO mice with regards to blood pressure 

(Figure 6.3-20, Table 33), weight (Figure 6.3-1, Table 21), organ weight, fat pad size (Figure 

6.3-2), or on a microscopic level fat cell number or size (Figure 6.3-4, Figure 6.3-5, Table 

23).  

Although there were no clear statistically significant differences however, the MIGFREO 

mice certainly had a trend to an enlarged liver which requires further investigation. 

Microscopic examination of the liver would be useful, as would an assessment of levels of 

glycogen storage, as clearly both would have an effect on insulin sensitivity and glucose 

homeostasis. 

The assessment of fat cell size and number, could be expanded. Although there were no 

significant differences between cell size or number between MIGFREO and wt mice the 

MIGFREO mice appear to have a trend towards larger, less numerous cells in a field of view 

versus smaller, more numerous cells in the wt mice. In a static area, the number of fat cells 

will of course be inversely proportional to the size of the cells, so to a certain extent only 

one of these variables was strictly speaking necessary to measure. Although not statistically 

significant it is interesting that MIGFREO mice have a trend towards larger, less numerous 

fat cells in combination with a suggestion of enhanced insulin sensitivity, perhaps 

suggesting that there is altered insulin signalling within fat cells. Further examination of 

insulin sensitivity within fat cells (AKT and eNOS phosphorylation in response to insulin 

stimulation) would be interesting. The first step would be further analysis of fat cell size 

and number in more samples – only 4 wt fat samples were examined in order to determine 

if the difference seen was real.  

MIGFREO mice display a divergence between whole body and endothelial insulin 

sensitivity 

Contrary to the original hypothesis, MIGFREO mice have enhanced whole body insulin and 

IGF-1 sensitivity coupled with insulin and IGF-1 endothelial cell insulin resistance. As has 

been discussed the finding of endothelial cell insulin and IGF-1 resistance can be explained 

by the distribution of hybrid receptors, and the expression of the mutation on the 
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endothelial cell of the MIGFREO mice. However, the demonstration of enhanced whole 

body insulin and IGF-1 sensitivity, irrespective of the magnitude of diversion from the wt. 

phenotype (which is admittedly small) is interesting and surprising, particularly given that 

the mutation is expressed, as has been demonstrated, solely on the vascular endothelium.  

The ways which the endothelium may theoretically effect whole body insulin sensitivity, via 

the effect upon insulin mediated glucose disposal have been discussed earlier. There is a 

good body of evidence to suggest that insulin is able to enhance delivery of insulin to, in 

particular, skeletal muscle via the interstitium through the processes of augmenting 

microvascular capillary recruitment [292, 293], enhancing transendothelial insulin 

transportation [301], and probably less importantly on a physiological level by enhancing 

whole limb blood flow. 

Endothelial specific deletion of IRS-2 has been shown to be associated with the 

development of whole body insulin resistance, in association with reduced insulin mediated 

capillary recruitment and reduced insulin mediated glucose disposal [304], so the finding 

that manipulation of the insulin signalling cascade on the endothelium is associated with 

changes in whole body glucose sensitivity is not novel. There are however no previous 

studies demonstrating that manipulation of the IGF-1R specifically on the endothelium has 

an effect on whole body insulin sensitivity.  

That there is a change in insulin sensitivity seen is perhaps then, not unexpected. The 

direction of this change in insulin sensitivity, is however intriguing. In the above study 

Kubota et al [304] demonstrated endothelial cell insulin resistance in association with 

whole body insulin resistance. I have demonstrated that the expression of a non-

functioning IGF-1R on the vascular endothelium is associated with endothelial cell insulin 

resistance, yet have demonstrated whole body insulin sensitivity. 

Several other mouse models have examined the effect of mutation or knockout of the IR 

solely on the vascular endothelium. The ESMIRO mouse expresses a dominant negative 

mutant human IR, which, under control of the Tie2 promoter is expressed solely on the 

vascular endothelium. The ESMIRO mouse is associated with endothelial insulin resistance, 

endothelial dysfunction and the accelerated development of atherosclerosis [195, 322] in 

combination with increased generation of superoxide. Metabolic characterisation of the 

ESMIRO mouse did not display any marked differences in insulin sensitivity between the 
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wt. and the transgenic mouse, although intriguingly, there was reported to be a trend 

towards enhanced whole body insulin sensitivity in the ESMIRO mice. 

 

Figure 6.4-1: Reproduced with permission from Vicent et al [303] published by American 
Society for Clinical Investigation. *p <0.05 † p<0.01 for differences between control and 
VENIRKO mice 

 

Another group looked the effect of knockout of the IR on the vascular endothelium and 

generated the VENIRKO mouse [303]. This mouse was found to have significant reduction 

in IR mRNA on the vascular tissues and was associated with the development of endothelial 

insulin resistance on a low salt diet. Although no metabolic consequences were reported in 

the text, looking at the results and figures within the paper suggests that at 6 months there 

was also enhanced insulin sensitivity in the VENIRKO mice in comparison with wt. 

counterparts. 

Although neither of these 2 mouse models specifically state an association with endothelial 

cell insulin resistance and enhanced whole body insulin sensitivity, in both the ESMIRO and 

more convincingly in the VENIRKO mouse there is a trend towards enhanced whole body 

insulin sensitivity which would seem to concur with my findings.  

Why this should differ from the results seen in the endothelial specific IRS-2 knockout 

model is not clear. In both the ESMIRO and VENIRKO mouse, in common with the MIGFREO 

mouse, manipulation or knockout of the receptor will have an effect on IGF-1R/IR hybrid 

receptor stoichiometry and function. Conversely, manipulation of the IRS-2 receptor would 

not affect hybrid formation or function, although has an effect on downstream insulin 

http://www.jci.org/assets/227317/zoom/off
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signal transduction. Given the emerging importance of hybrid receptors in modulating the 

signalling of insulin this may be of vital importance. 

A similar phenotype to that seen in the MIGFREO mouse has recently been demonstrated 

in a mouse with endothelial specific knockout of PDK-1 (VEPDK1KO) [326]. These mice have 

endothelial cell insulin resistance (as measured by reduced threonine 308 phosphorylation 

of Akt in response to insulin) coupled with loss of insulin stimulated increases in blood flow 

in VEPDK1KO mice. When fed a normal diet VEPDK1KO mice have enhanced whole body 

insulin sensitivity coupled with the endothelial cell insulin resistance, and also had smaller 

epididymal fat pad sizes and inhibition of angiogenesis in white adipose tissue.  Following a 

period of high fat feeding the VEPDK1KO were protected against the development of 

insulin resistance and weight gain. The authors hypothesised that endothelial cell insulin 

resistance and inhibition of PDK had led to reduced angiogenesis in white adipose tissue 

with reduction of age or high fat fed induced adipose tissue hypertrophy. This was 

associated with modification of the adipokine profile and consequent enhanced whole 

body insulin sensitivity. Unfortunately, especially given the reduction in plasma FFA seen in 

the MIGFREO mice, plasma FFA was not measured in this model. 

In the VEPDK1KO mice, the authors concluded that the divergence between whole body 

and endothelial insulin sensitivity was related to differences between angiogenesis in fat in 

the wild type and transgenic mice. This was associated with smaller epididymal fat pads 

and smaller fat cell size in transgenic mice and subsequent improvement in the adipokines 

profile. This would not appear to be the case in MIGFREO mice. In MIGFREO mice fat pad 

size, fat cell size and fat cell number were comparable with wild type.  

Although there is no apparent difference in the macroscopic appearance of fat tissue 

between the 2 sets of mice, there is a clear reduction in FFA seen in the MIGFREO mice. 

The relationship between FFA, insulin sensitivity, and adipose tissue mass is complex and 

not yet fully understood.  A recent review of evidence did not find a relationship between 

adipose tissue mass and plasma FFA level in humans [331], which would appear to support 

the findings of comparable fat pad mass and cell size, with a significant disparity in plasma 

FFA between the MIGFREO and wt. mice.  

It is possible that the enhanced insulin sensitivity seen in the MIGFREO mice could relate to 

changes in FFA metabolism and storage, and certainly, further assessment of this should be 
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considered in this mouse as future work. In view of the findings from the VEPDK1KO 

mouse, it would be particularly interesting to assess how angiogenesis is affected, if at all, 

in MIGFREO mice, although this is beyond the scope of this particular project.   
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Chapter 7: Measuring Reactive 

Oxygen Species 
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7 Measuring reactive oxygen species 



191 
 

7.1 Introduction 

MIGFREO mice have been demonstrated to display a surprising divergence between whole 

body and endothelial cell insulin resistance. Compared with their wild type littermates, 

MIGFREO mice have enhanced whole body insulin and IGF-1 sensitivity and varying degrees 

of endothelial insulin and IGF-1 resistance.  As has been discussed there is emerging 

evidence that ROS, particularly H2O2 plays a role in modulating insulin signalling, and 

indeed there is good data to support that H2O2 can enhance insulin signalling. By oxidising 

cystine residues on the thiol side chain, H2O2 has been shown to inhibit PTP1B signalling, 

which has the net effect of enhancing insulin signalling [272-274]. H2O2 also has an effect 

directly on the insulin receptor; oxidation of cystine residues within the activation loop of 

the IR by H2O2 leads to “priming” of the IR and enhanced autophosphorylation, and 

enhanced insulin signalling [278, 280]. As has been discussed the converse is true of the 

effect on the IGF-1R: stimulation with low doses of H2O2 is associated with inhibition of 

kinase activity of the IGF-1R [281]. 

It has been previously demonstrated that endothelial insulin resistance is associated with 

increased production of reactive oxygen species. In addition to endothelial insulin 

resistance the ESMIRO mouse produces a higher level of vascular superoxide than its wild 

type litter mates [195] and expresses higher levels of Nox 2 and Nox 4 mRNA. No 

distinction was made between the various reactive oxygen species, but given that there 

was an approximate 2 fold increase in aortic Nox 4 mRNA, and also considering that Nox 4 

predominantly produces H2O2 it would seem possible that the ESMIRO mouse 

overproduces H2O2. Interestingly, as has been alluded to, Duncan et al noted that during 

insulin tolerance tests the ESMIRO mouse had a “trend toward improved insulin sensitivity” 

[195]. 

I therefore hypothesised that the improvements in whole body insulin and IGF-1 sensitivity 

in the MIGFREO mouse were related to overproduction of H2O2 in the vasculature.  

I made the decision to investigate this in several ways: 

1. Assessment of change in endothelial dependent vasodilatation in the organ 

bath when exposed to catalase 

2. Assessment of vascular H2O2 production using Amplex® Red 

3. Assessment of expression of mRNA from Nox and SOD isoforms in PEC 
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7.2 Methods 

7.2.1 Assessment of Hydrogen Peroxide levels using the Organ Bath 

It has been discussed that H2O2 has been shown to be an important EDHF, particularly in 

the micro-vasculature [283-285] . Vasodilatation induced by H2O2 is independent from 

endothelial function; it is independent of eNOS but is blocked by treatment with high levels 

of K+ and KCa channel inhibitors [82]. If present in significant levels, elimination of H2O2 by 

using catalase, in for example the organ bath, is associated with reduced vasodilatation.  

The organ bath was set up as is described earlier (see section 5.2.1). Rings were constricted 

with KCl as described above to ensure viability, and ACh mediated, endothelial dependent 

vaso-relaxation was measured prior to addition of catalase. 

7.2.1.1 Effect of catalase on endothelial dependent vasodilatation 

12500 units of catalase from bovine liver (Sigma) was added to each chamber 

(1250units/ml) and immediately afterwards rings were partially constricted with 300nM of 

phenylephrine (Sigma).  Calcium dependent endothelial mediated vasodilatation was then 

assessed by the subsequent relaxation in response to cumulative doses (1nM-10M) of 

acetylcholine (Sigma). Rings examined in this way were not used for any further 

experiments. Vaso-relaxation in the presence of catalase was determined by calculating the 

percentage of relaxation from peak constriction to base ([preconstriction-

result]/[preconstriction-base]*100) where relaxation to the baseline would be 100%. 

Results are expressed as percentage relaxation. 

Results of endothelial dependent vaso-relaxation in the presence of catalase were 

compared with the initial ACh curve.  

7.2.2 Amplex® Red to detect H2O2 from Homogenised Aorta 

Measurement of H2O2 in homogenised aorta was performed using the Amplex® Red 

Hydrogen Peroxide/Peroxidase Assay kit (Invitrogen™, Molecular Probes®). Using 

horseradish peroxidise as a catalyst, H2O2 reacts with colourless Amplex® Red (N-acetyl-3-

dihydroxyphenoxazine) in a 1:1 stoichiometry to produce resorufin, which, when excited at 

530 nm, emits light at 590nm. Due to the high extinction coefficient measurements of 

optical density can be made both fluorometrically and spectrophotometrically [332]. 
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7.2.2.1 Optimisation of Protocol: 1 

Although previously published [332, 333] this method of assessing H2O2 production by 

aortas has not previously been used in our laboratory, and therefore the method required 

optimisation.  

Stock solutions were prepared in accordance with the manufacturer’s instructions: 

1. 10mM Amplex® Red stock solution 

A vial of room temperature Amplex® Red (154µg) was reconstituted with 60µl of 

dimethylsulfoxide (DMSO)   

2. 1x  Reaction Buffer 

4ml of reaction buffer (28ml of 0.25M sodium phosphate pH 7.4) was added to 16ml of 

deionized H2O2. 

3. 10U/ml of Horseradish Peroxidase (HRP) stock solution 

Contents of the supplied horseradish peroxidise (HRP, 10U) were dissolved in 1ml of 1x 

reaction buffer. 

4. 20mM Hydrogen Peroxide (H2O2) working solution 

Using the supplied 3% H2O2 solution a working solution of 20mM was made by diluting 

22.7µl of 3.0% H2O2 into 977µl of 1x reaction buffer. Serial dilutions were performed to 

make solutions of 10µM, 5µM, 1µM, 0.5µM, 0.1µM 0.01µM and 0.001µM. Final 

concentrations in the plate were 2 fold lower.  

5. Working solution of 100µM of Amplex® Red reagent and 0.2U/ml of HRP 

 

Working solution of Amplex Red®  and HRP was made by adding 50µl of 10nM Amplex® 

Red stock solution with 100µl of 10U/ml HRP stock solution and 4.85ml of 1x reaction 

buffer. 

To prepare tissue samples, freshly excised aortas were placed into ice cold PBS and cleaned 

of fat and surrounding connective tissue. Aortas were homogenised in 1ml of PBS using a 

tissue lyser (Qiagen®) for 30 sec at 30 Hz using a stainless steel cone ball (Retsch®). 

Following centrifuge for 5 minutes at 8000 rpm the supernatant was removed. In order to 
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ascertain the optimum dilution of supernatant to use, several dilutions were prepared for 

the initial experiment: neat; 1:2; 1:5; 1:10; 1:20; 1:50; 1:100. Dilutions were made using the 

supplied reaction buffer.  

Samples were loaded in triplicate onto the plate by adding 50µl of blank, prepared H2O2 

standards, or diluted samples, with the addition of 50µl of the Amplex® Red working 

solution. The plate was kept protected from light at room temperature for 30 minutes. 

Absorbance was read at 560nm on a SpectraMax® 190 microplate reader (Molecular 

Devices).  Baseline OD was subtracted from all standard and sample readings.  H2O2 

concentrations were calculated using an H2O2 standard curve (R2 =0.999) using Graph Pad 

Prism software and baseline measurements were subtracted.  
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Figure 7.2-1: Standard Curve generated from optimisation experiment. H2O2 standard 
curve obtained from optimisation amplex red experiment. Curve generated using supplied 
standards.  R2 = 0.999 
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Figure 7.2-2:  Results of optimisation experiment. Total H2O2 per well using different 
dilutions of homogenised aorta (n=5). In view of the limits of the assay it was decided to 
use a dilution of 1:5 of homogenised aorta. 

7.2.2.2 Pilot experiment 1 

Using the results generated from the optimisation experiment it was decided to use 

standard concentrations of H2O2 of 20µM, 10µM, 5µM, 1µM, 0.5µM, 0.1µM and 0.01µM. 

Supernatant from homogenised aorta was diluted 1:5 before adding to the plate, and 

protocol was followed as described above.  

Protein concentrations of supernatant were measured using Pierce® BCA Protein Assay kit 

(Thermo Scientific), as described in section 4.2.5.2, and results are expressed as µM per mg 

of protein. 

Initial results which were obtained from using the above method were promising, and are 

shown in Figure 7.2-3. The results suggested that the aortas of the male MIGFREO mice had 

a significantly elevated level of hydrogen peroxide when compared to their wt. 

counterparts. This concurred with the evidence from adding catalase to the organ bath, 

and supported our theory that the MIGFREO mice may have elevated levels of H2O2, which 

enhances insulin signalling on a whole body level.  
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Figure 7.2-3: Results from pilot experiment 1: H2O2 in aorta using amplex® red assay in 
homogenised aorta. Graph shows mean +/- SEM for wt. (black) and MIGFREO (grey) 
samples. Following subsequent experiments it was decided that this method was likely to 
be an inaccurate method of measuring H2O2. 

 

During setting up the experiments it was noted that although the aortas had been 

immersed in fresh PBS and were cleaned of connective tissue, there was some residual 

pinkish discolouration of the sample. It was noted that the more darkly coloured samples 

tended to give results suggesting a higher concentration of H2O2; it was therefore felt 

important to ensure that the signal measured from the homogenate was due to amplex® 

red rather than the inherent discolouration of the sample.   

We attempted to ensure that the assay was robust in 2 ways: 

1. Absorbance of samples was measured without the addition of amplex® red on 

the same plate reader (at 560nM) 

2. Samples were incubated with catalase for 1 hour to assess whether the signal 

was inhibitable by catalase (200 units/ml) (as should have been the case if the 

signal was originating from the formation of resorufin by amplex red combining 

with H2O2). 
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Figure 7.2-4: Results from pilot experiment 1:  H2O2 in aorta using amplex® red assay in 
homogenised aorta. These results demonstrate that the initial method of using amplex red 
to calculate H2O2 was inaccurate. There was no demonstrable reduction in signal seen 
following incubation with catalase and again, no demonstrable reduction in signal seen 
when the samples were incubated without amplex red. 

 

The results are shown in Figure 7.2-4. In pilot experiments the addition of catalase did not 

lead to a reduction in measured optical density, and measurements of the homogenate 

without amplex® red were similar to those measured with amplex® red. This strongly 

suggests that this method of using amplex® red was not sufficiently robust in our samples 

to allow for accurate measurement of H2O2, and that the inherent discolouration of the 

sample was the significant contributing factor to the measured optical density. It is unclear 

from the literature whether the studies using this method encountered similar problems, 

or whether any attempt to inhibit the signal using catalase was made.  

7.2.3 Amplex® Red to measure H2O2 in aortic rings 

In view of the results obtained from the homogenised aorta it was decided to design a 

further protocol to assess H2O2 production in aorta. 

Several other papers have been published using rings of aorta incubated in Krebs solution 

to assess H2O2 production [334-336]; it was decided to follow similar protocols to assess 

H2O2 production. 
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Stock solutions, H2O2 standards and amplex® red working solution were prepared as in 

section 7.2.2. 

 mM g/litre 

HEPES 20 5.206 

NaCl 119 6.950 

KCl 4.6 0.343 

MgSO47H2O 1 0.246 

Na2HPO4 0.15 0.021 

KH2PO4 0.4 0.054 

NaHCO3 5 0.420 

CaCl2 1.2 0.133 

Glucose 5.5 0.991 

 
Table 34: Composition of modified Krebs-HEPES buffer 

 

Freshly excised aortas were collected into modified Krebs-HEPES buffer (pH 7.4) (see Table 

34) and cleaned of outer adipose tissue. The aortas were divided into 2 approximately 

equal segments and each of these divided in to 3 equal rings. 3 x 2mm rings were incubated 

in 50µl of modified Krebs-HEPES buffer for 1 hour at 37°C. The remaining 3 x2mm rings 

were incubated with modified Krebs-HEPES buffer with 200 iu/ml of catalase for 1 hour at 

37°C. 50µl of 100µM amplex® red working solution was added to the samples and 

standards and they were incubated for 1 hour protected from light at 37°C. Rings were 

removed from the samples and the absorbance read at 560nm on a Spectra Max 190 plate 

reader (Molecular Devices). As detailed before, a standard curve was generated from the 

H2O2 standards using Graph Pad prism software and used to determine H2O2 concentration.  

Protein concentrations of supernatant were measured using Pierce® BCA Protein Assay kit 

(Thermo Scientific), as described in section 4.2.5.2, and results are expressed as µM per mg 

of protein. 
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In this pilot experiment we were able to demonstrate a reduction in signal in the presence 

of catalase, albeit of a modest magnitude. Further examination of the literature suggested 

that a dose of 1250 iu/ml of catalase would be a more appropriate dose and hence this was 

used in the experimental protocol.   
n

M
 H

2
O

2
 /


g

 p
r
o

te
in

A
 b

a
s
e

A
+
 c

a
ta

la
s
e

A
 b

a
s
e
 -

 c
a
ta

la
s
e

B
 b

a
s
e

B
 +

 c
a
ta

la
s
e

B
 b

a
s
e
 -

 c
a
ta

la
s
e

C
 b

a
s
e

C
 +

 c
a
ta

la
s
e

C
 b

a
s
e
 -

 c
a
ta

la
s
e

0

2 0

4 0

6 0

A

 

n
M

 H
2

O
2

 /


g
 p

r
o

te
in

b
a
s
e

+
 c

a
ta

la
s
e

b
a
s
e
 -

 c
a
ta

la
s
e

0

1 0

2 0

3 0

4 0

5 0

B

 

Figure 7.2-5: Results from pilot experiment 2: (A) shows results from 3 samples (A-C) 
demonstrating a consistent reduction in signal seen when catalase was added (approx. 10% 
reduction in signal), the bars labelled base – catalase represent the signal inhibitable by 
catalase. (B) shows the mean +/- SEM of these results.  
 
 

7.2.4 Quantitative polymerase chain reaction assessment of potential sources 

of ROS 

Quantitative PCR was performed as in chapter 4.2.3. Expression of mRNA of Nox1-4 and 

SOD1-3 was assessed using primers shown in Table 35. 
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Gene  Sequence 

Nox1 Reverse 

Forward 

TTACACGAGAGAAATTCTGGG 

TCGACACACAGGAATCAGGA 

Nox2 Reverse 

Forward 

GCGGTGTGCAGTGCTATCAT 

GGTTCCAGTGCGTGTTGCT 

Nox3 Reverse 

Forward 

GTCACTCCCTTCGCCTCTCT 

CCGGCAGATCCAATAGAAGT 

Nox4 Reverse 

Forward 

TGTATAACTTAGGGTAATTTCTAGAGTGAATGA 

GGAGACTGGACAGAACGATTCC 

SOD1 Reverse 

Forward 

GGTCTCCAACATGCCTCTCTTC 

GGACCTCATTTTAATCCTCACTCTAAG 

SOD2 Reverse 

Forward 

GGTGGCGTTGAGATTGTTCA 

CACACATTAACGCGCAGATCA 

SOD3 Reverse 

Forward 

ACACCTTAGTTAACCCAGAAATCTTTTC 

GGGATGGATCTAGAGCATTAAGGA 

 
Table 35: Primers used to assess mRNA in Nox 1-4 and SOD 1-3 
 

7.2.5 Statistics 

Results are expressed as mean +/- SEM. Comparative analysis within groups was performed 

using paired Student t test; between groups unpaired Student t test. P <0.05 was 

considered to be statistically significant.  
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7.3 Results 

7.3.1 ACh + catalase 

Treatment of the aortic rings with catalase before preconstriction with PE and subsequent 

induction of vasorelaxation with ACh affects acetylcholine induced vasorelaxation in both 

groups of mice: although the magnitude of the effect is more marked in the MIGFREO mice 

and the effect in MIGFREO mice is seen immediately and is more sustained.  In MIGFREO 

mice at every dose of ACh, catalase is associated with a significant reduction in vaso-

relaxation (Figure 7.3-2, Table 36); a significant change is noted in wt. mice at moderate 

doses of ACh, but not at low or maximal doses (Figure 7.3-1, Table 36). The difference in 

maximal relaxation with peak ACh dose achieved pre and post catalase is significantly 

different in MIGFREO mice (87.27% +/- 2.78 vs. 70.46% +/- 5.40 respectively, p = 0.008) 

(Figure 7.3-3 and Figure 7.3-4) whilst there is no difference pre and post catalase in wt. 

mice (89.29% +/- 3.27 vs. 88.50% +/- 8.58 respectively, p = 0.93). 

ACh 
dose 
(nM) 

wt. control 
+/- SEM  

wt. 
catalase +/- 
SEM 

MIGFREO 
control +/- 
SEM 

MIGFREO 
catalase +/- 
SEM 

p value wt. 
con vs. wt. 
cat 

p value 
MIG con vs. 
MIG cat 

1 6.74 +/- 
2.43 

3.817 +/- 
2.93 6.97 +/- 1.79 1.62 +/- 0.84 0.44 0.009 

3 11.37 +/- 
3.20 

7.66 +/- 
3.30 

12.21 +/- 
1.80 2.64 +/- 1.45 0.42 0.00011 

10 24.09 +/- 
3.34 

10.50 +/- 
4.61 

23.68 +/- 
2.92 5.68 +/- 2.03 0.02 2.8E-06 

30 47.81 +/- 
4.86 

22.16 +/- 
6.25 

44.84 +/- 
4.58 

17.97 +/- 
3.04 0.022 8.3E-06 

100 69.55 +/- 
4.50 

40.81 +/- 
7.85 

69.28 +/- 
4.30 

37.93 +/- 
4.06 0.0025 2.4E-06 

300 85.40 +/-  
4.09 

70.06 +/- 
3.36 

84.16 +/- 
3.68 

57.49 +/- 
4.96 0.10 6.1E-05 

1000 89.29 +/- 
3.27 

88.50 +/- 
8.58 

87.27 +/- 
2.78 

70.46 +/- 
5.40 0.93 0.008 

 
Table 36: Acetylcholine induced vasodilatation in presence and absence of catalase. This 
demonstrates that following incubation with catalase there was reduction in response to 
Ach in both wt. and MIGFREO mice, although this effect was more marked in MIGFREO 
mice (peak relaxation in MIGFREO mice was significantly reduced in response to catalase 
when compared to wt. mice p=0.008) Mean +/- SEM. Corrected to 2 decimal places. N=6. 
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Figure 7.3-1: ACh relaxation +/- catalase (wt.). Relaxation of aorta in the organ bath in 
response to increasing doses of Ach either with (dotted line) or without (solid line) 
incubation with catalase. Addition of catalase is associated with reduction of relaxation at 
lower doses but is not associated with any change in peak relaxation in wt. aorta. N = 6 
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Figure 7.3-2: ACh relaxation +/- catalase (MIGFREO). Relaxation of aorta in the organ bath 
in response to increasing doses of Ach either with (dotted line) or without (solid line) 
incubation with catalase. Addition of catalase is associated with significant reduction of 
maximal relaxation in response to acetylcholine. This suggests that some vasodilatation is 
due to H2O2. N =6 
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Figure 7.3-3: Maximal % change in relaxation +/- catalase. This shows the percentage of 
relaxation towards the base in wt. (blue) and MIGFREO (pink) aorta in response to 
acetylcholine either with (hashed box) or without (solid box) the addition of catalase. Bars 
represent mean +/- SEM. There is no significant reduction in maximal relaxation in wt. 
samples following exposure to catalase (p=0.93) although there is a significant reduction in 
maximal relaxation following exposure to catalase in MIGFREO mice (*p=0.008). N = 6 per 
group 
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Figure 7.3-4: Percentage change in relaxation with catalase. Percentage change in 
maximal relaxation following addition of catalase.  

 

7.3.2 H2O2 production in aorta 

Results from the amplex® red assay are shown below (Figure 7.3-5 Figure 7.3-6). Although 

the “total” H2O2 is plotted this represents the concentration of H2O2 normalised to total 

protein in the sample without catalase added, and given that the concentrations of H2O2 

seen were relatively small, any contamination of the sample with plasma or red cells would 
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have significantly skewed the results. I attempted to minimise this by looking at the 

catalase inhibitable fraction. Use of the catalase inhibitable fraction ensures that the signal 

obtained is derived solely from resorufin generated from the combination of H2O2 and 

amplex® red, rather than from any inherent discolouration of the sample. There is a clear 

and statistically significant difference in basal H2O2 production between wt. and MIGFREO 

mice. MIGFREO mice produced significantly more H2O2 than wt. mice. 
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Figure 7.3-5: Total and catalase inhibitable signal from amplex red assay. Total H2O2 
production (in nMH2O2 / µg protein) (solid bars) and catalase inhibitable fraction (hashed 
bars) in modified krebs solution following incubation with aortic rings. The columns display 
Mean +/-SEM with wt. (blue) and MIGFREO (pink). When the catalase inhibitable fraction is 
calculated, there is significantly higher concentration of basal H2O2 in the krebs incubated 
with rings from MIGFREO aortae. N = 10 per group 
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Figure 7.3-6: Catalase inhibitable H2O2 production in aorta as measured using amplex® 
red. The columns display Mean +/-SEM nMH2O2 / µg aortic protein taken from wt. (blue) 
and MIGFREO (pink). When the catalase inhibitable fraction is calculated, there is 
significantly higher concentration of basal H2O2 in the modified krebs incubated with rings 
from MIGFREO aortae *p<0.05. N= 10 per group 
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7.3.3 Quantitative PCR of potential sources of ROS 

Quantitative PCR does not demonstrate any significant differences between MIGFREO and 

wt. mice with regards to expression of the mRNA of various sources of ROS (Figure 7.3-7). 

There is a significant variation in results as exhibited by large error bars on almost all data. 

For each enzyme RNA was obtained from 4 MIGFREO and 4 wt. animals, and it may be that 

more numbers are required to establish if there is a difference between the 2 sets on 

animals. As with the quantitative PCR performed to assess expression of human and mouse 

IGF-1R on the PEC the housekeeping gene used was β actin. Certainly variable expression of 

β actin may have accounted for differences of apparent expression of human IGF-1R seen 

between different tissues (Figure 4.3-6) but it seems unlikely that this may explain the large 

error seen here: the RNA was all derived from PEC. The issue with variation in results may 

lay more with the quality of the RNA. Although RNA quality was assessed following 

extraction, the RNA was then frozen at -80°C for in excess of 24 months, and defrosted and 

re-frozen several times before it underwent the reverse transcription to cDNA prior to the 

quantitative PCR. In retrospect I suspect that it is possible that the RNA may have degraded 

in the interim, and the use of fresh samples would have been more appropriate. Certainly it 

would have been appropriate to reassess quality and concentration of RNA immediately 

prior to converting it to cDNA. 
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Figure 7.3-7: Relative expression of Nox and SOD in PEC. Mean +/- SEM relative expression 
of various genes associated with enhanced production of reactive oxygen species in 
pulmonary endothelial cells derived from wt. (blue) and MIGFREO (pink) lungs. There were 
no significant differences in gene expression between wt. and MIGFREO. N = 12 per group 
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7.4 Conclusion and Discussion 

MIGFREO mice have elevated basal levels of H2O2 

The presented data demonstrate enhanced basal H2O2 in vascular and endothelial tissue 

from the MIGFREO mice when compared with wt. counterparts. 

The data from the organ bath demonstrates that catalase significantly blunts maximal 

endothelial dependent vasodilatation in MIGFREO mice; maximal relaxation achieved pre 

and post catalase (87.27% +/- 2.78 vs. 70.46% +/- 5.40 respectively, p = 0.008) (Figure 7.3-3 

and Figure 7.3-4) whilst there is no difference pre and post catalase in wt. mice (89.29% +/- 

3.27 vs. 88.50% +/- 8.58 respectively, p = 0.93). This strongly suggests that H2O2 is higher in 

MIGFREO mice; the quenching of H2O2 dependent vasodilatation with catalase has a 

significant impact on maximal endothelial dependent vasodilatation in MIGFREO mice. The 

same is not true in wt. mice. At modest doses of ACh, catalase does have an effect on 

endothelial dependent vasodilatation in wt. mice however this is less marked than the 

change seen in endothelial dependent vasodilatation in MIGFREO mice, and indeed at 

maximal vasodilatation catalase has no effect on endothelial dependent vasodilatation in 

wt. mice. Given that H2O2 acts as an EDHF [283, 337], it is unsurprising that catalase effects 

endothelial dependent vasodilatation in wt. mice, although Noronah et al [338] using an 

identical protocol did not demonstrate any effect of catalase on endothelial dependent 

vasodilatation in wt. chow fed mice.  

As a single method of assessing vascular H2O2 production, the data from the organ bath is 

certainly highly suggestive that MIGFREO mice produce higher basal levels of H2O2 than 

their wt. littermates. Whilst this demonstrates an association, further corroboration was 

sought from alternative methods of assessing H2O2 production.  

Data from the Amplex® Red assay, which produces resorufin in a 1:1 stoichiometry with 

H2O2 demonstrates a clear and significant difference in basal H2O2 production between 

MIGFREO and wt. mice, with the MIGFREO mice producing significantly elevated levels of 

H2O2 at baseline. This assay measures extracellular H2O2: the concentration of H2O2 

measured is the concentration of H2O2 within the Krebs HEPES buffer after a 2 hour 

incubation period (1 hour with and 1 hour without the amplex® red working solution). 

Although measurement of the intracellular concentration of H2O2 would have been 

interesting, the measurement of extracellular H2O2 was important, given the theory that 
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endothelial derived H2O2 may be responsible for the improved whole body insulin 

sensitivity seen in the MIGFREO mice. 

How could endothelial derived H2O2 be responsible for changes in whole body insulin 

sensitivity? There are several potential possibilities. It has been extensively discussed that 

H2O2 is able to positively regulate insulin signalling, either by directly priming the insulin 

receptor, or by inhibiting PTP1B. Given that H2O2 is relatively stable and diffuses easily 

through aquaporins [69], it could have a direct effect on insulin signalling, and hence insulin 

mediated glucose transportation in skeletal muscle, thereby having a paracrine effect. 

Alternatively, the H2O2 could act locally on endothelial cells to enhance local insulin 

sensitivity, therefore enhancing insulin mediated increases in capillary recruitment and 

transendothelial insulin transportation. The latter seems less likely given that we have 

demonstrated reduced endothelial insulin sensitivity. 
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Chapter 8: Conclusion, Discussion 

and Future Plans  
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8 Conclusion, Discussion and Future Plans 
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8.1 Discussion 

The work presented above details the validation of, and investigation into the metabolic 

and endothelial phenotype of the MIGFREO mouse.  

The MIGFREO mouse model has been validated as expressing a mutated form of the human 

IGF-1R which is expressed solely on the vascular endothelium. Quantitative PCR 

demonstrates that the human IGF-1R was expressed solely on the endothelial cells derived 

from the MIGFREO mice. As has been discussed, quantitative PCR used primers specific for 

the presence of the human IGF-1R, but not specific for the K1003 mutation, which renders 

the IGF-1R functionally inactive, a strategy employed by Fernandez et al [306] who 

examined the effect of incorporation of a human IGF-1R with the K1003R mutation in the 

skeletal muscle. The unique presence of human IGF-1R mRNA on the cells labelled with 

CD146 microbeads strongly supports, not only the method of PEC isolation used in this 

project, but also that the human, and therefore mutated, IGF-1R is expressed only on 

endothelial cells. Assessment of protein shows that there is a significantly elevated level of 

IGF-1Rβ in PEC extracted from MIGFREO lung tissue. This coupled with assessment of levels 

of mouse IGF-1R mRNA shows that incorporation of the human IGF1-R does not down 

regulate expression of the native mouse IGF-1R in MIGFREO mice. 

The MIGFREO mouse displays normal growth and development and is fertile, producing 

wild type and transgenic offspring in a characteristic Mendelian pattern of inheritance. 

There is no discernible difference in weight, organ weight, fat pad size or systemic blood 

pressure in the MIGFREO mice, and microscopic examination of the epididymal fat pad 

shows that fat cell size and number are comparable with their wild type litter mates.  

As was hypothesised, the MIGFREO mouse has endothelial insulin resistance, as 

demonstrated by an absent vasodilatory response to insulin (Figure 5.3-2, Error! Reference 

source not found., Error! Reference source not found., Figure 5.3-3) and significantly 

reduced insulin stimulated eNOS activity (Figure 5.3-9, Figure 5.3-10). Assessment of 

protein phosphorylation in response to insulin did not show any significant difference 

between MIGFREO and wt. mice, although the potential reasons for this have already been 

discussed. In addition to reduced endothelial insulin sensitivity the MIGFREO mouse also 

has a degree of endothelial resistance to IGF-1, with marked reduction in IGF-1 stimulated 

eNOS activity (Figure 5.3-9, Figure 5.3-10), although there was no detectable difference 

seen between the groups of mice with regards the vasodilatory response to IGF-1. As was 
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previously discussed I suspect that this disparity related to the relative sensitivities of the 2 

methods of detecting response to IGF-1 and insulin.  

The cause of endothelial insulin resistance in the MIGFREO mice is, I believe, explained by 

the postulated distribution of hybrid receptors on the endothelium: the incorporation of 

the mutant non-functioning IGF-1R drives the production of increased numbers of the 

hybrid receptors. The functional IGF-1R will continue to be incorporated into hybrid 

receptors, which by their nature will be less sensitive to insulin; incorporation of the non-

functional IGF-1R will render the entire receptor, whatever its composition, entirely 

inactive. This would be associated with marked endothelial insulin resistance and less 

marked IGF-1 resistance, as has been shown. 

Although this seems a reasonable explanation, it has, of course not been demonstrated. I 

have not assessed the ratio of hybrid receptors on tissue from either the MIGFREO mouse 

or wt. mice which is a clear limitation of this project. Using co-immunoprecipitation it is 

possible to assess the relative density of hybrid receptors in any tissue, and it is possible to 

assess whether the hybrid are functional or non-functional using either whole body or cell 

directed stimulation with insulin. Clearly complete characterisation of this model for future 

should include examination of the density and function of the hybrid receptors.  

Whilst the presence of endothelial insulin resistance in the MIGFREO was perhaps 

predictable, the presence of whole body insulin sensitivity was unexpected and has proven 

to be very interesting. Although the magnitude of whole body insulin sensitivity in the 

MIGFREO mice is relatively small it is highly statistically significant and as such merits 

further consideration. In addition to insulin sensitivity the MIGFREO mouse also has a 

degree of enhanced IGF-1 sensitivity, and an overall favourable metabolic profile is 

suggested by lower plasma FFA. As has been discussed the presence of lower FFA is 

certainly consistent with enhanced insulin sensitivity, although whether lower FFA have any 

causative role in the development of insulin sensitivity in the MIGFREO mouse is not 

known. Importantly, plasma IGF-1 and insulin levels are comparable between the groups of 

mice. Although there are no significant changes in any other plasma component measured, 

there is a strong trend towards elevated levels of the beneficial adipokine adiponectin in 

the MIGFREO mouse, which would not be inconsistent with enhancement of whole body 

insulin sensitivity. 
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A divergence between whole body and endothelial insulin sensitivity is not a novel finding 

in the literature. The VEPDK1KO mouse displays endothelial insulin resistance and whole 

body insulin sensitivity, which appears to be modulated by changes in angiogenesis, 

particularly in white adipose tissue [326]. I was unable to demonstrate any changes in fat 

cell size or number in the MIGFREO mice which would suggest that the mechanism may be 

different, although many of the changes in fat cell number and angiogenesis within adipose 

tissue in the VEPDK1KO mouse were shown either at 6 months of age or at 3 months of age 

with a high fat diet. The MIGFREO mice were used at approximately 3 months of age, and 

further investigation of the adipose tissue of the MIGFREO mouse would be appropriate at 

an older age, and perhaps after a period of high fat feeding. Given the role of insulin 

signalling in angiogenesis it is not unreasonable to consider that this too might be affected 

in MIGFREO mice and could have a role to play in the development of whole body insulin 

sensitivity.  This should certainly be considered as future work. 

It seems reasonable at this stage to consider other animal models of endothelial insulin 

resistance and the effect seen on whole body glucose homeostasis. The ESMIRO mouse 

[195]  expresses a dominant mutant form of the IR expressed on the vascular endothelium, 

which is associated with endothelial insulin resistance and excess oxidative stress. The 

ESMIRO mouse displayed a significant trend towards enhanced whole body insulin 

sensitivity (p=0.05), but this was not particularly commented on by the authors. The 

VENIRKO mouse [303], which has knockout of the IR on the vascular endothelium, also has 

endothelial insulin resistance and, as shown in Figure 6.4-1 at 6 months also has enhanced 

insulin sensitivity when compared to the wild type mouse, although again this was not 

particularly commented on by the authors. In both cases the magnitude of effect was quite 

small, which may explain why it was not commented on. I wonder if this is related to the 

degree of endothelial insulin resistance seen.  

Although it is difficult to make judgements of the relative degree of endothelial insulin 

resistance in different models, a useful comparison would be the differences in insulin 

sensitivity shown when similar strategies are used to affect insulin signalling in skeletal 

muscle. The MIRKO mouse [305] has a muscle specific deletion of the IR receptor. One 

might expect, given that muscle is one of the most important sites of insulin mediated 

glucose disposal that this would have a profound effect on whole body glucose 

homeostasis. Interestingly, whilst in vitro there was an effect on insulin sensitivity whole 

body insulin sensitivity in the MIRKO mouse was comparable with wild type. In comparison, 
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mice with muscle specific K1003R mutation of the IGF-1R receptor [306] have profound 

insulin resistance and develop type 2 diabetes at an early age. Whilst this is initially 

somewhat counterintuitive, the explanation is likely to involve the formation of non-

functional IGF-1R/IR hybrid receptors in the latter mouse, whilst insulin signalling via native 

hybrid receptors would not be affected in the former. I suggest that the same might apply 

in the endothelium: the MIGFREO mouse may be a more profound model of endothelial 

insulin resistance than either the ESMIRO or the VENIRKO mouse in view of the likely 

formation of non-functional hybrid receptors. 

But how might this be relevant in considering why there is divergence between whole body 

and endothelial insulin sensitivity seen in the MIGFREO mice? 

In view of the increasing body of evidence which supports a role for low levels of H2O2 to 

play a role in enhancing insulin signalling, either by oxidative inactivation of the PTPs, or by 

directly priming the IR I hypothesised that the endothelial insulin resistance would be 

associated with higher levels of H2O2 which could be associated with whole body insulin 

sensitivity. It follows that more profound insulin resistance on the endothelium might be 

associated with higher levels of H2O2, which could explain the disparity between degrees of 

whole body insulin sensitivity seen in ESMIRO and VENIRKO mice, although this of course is 

purely conjecture. 

The data looking at H2O2 production in MIGFREO mice appears to support the premise that 

H2O2 may play a role in enhanced whole body insulin sensitivity. Significantly reduced 

vasodilatation in the MIGFREO mice in the presence of catalase suggests the presence of 

higher levels of H2O2; H2O2 production in the aorta assessed by amplex® red is also higher in 

the MIGFREO mice, substantiating, but not proving the hypothesis. The source of the 

apparent H2O2 is also, as yet undetermined. Qualitative PCR did not demonstrate any 

significant differences in expression of the various isoforms of Nox, notably Nox4, between 

the 2 sets of mice, although the limitations of this set of experiments have been previously 

discussed. 

There is a considerable amount of further work which would need to be performed to 

prove it, but I suggest that in the presence of endothelial insulin resistance, the 

endothelium acts as a paracrine organ, releasing H2O2 which is able to modulate whole 

body insulin sensitivity. 
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8.2   Suggested future work 

As has been previously discussed, it is necessary to attempt to characterise the distribution 

of hybrid receptors in MIGFREO mice. It would not be possible to establish whether a 

particular hybrid receptor actually had the mutation rendering it inactive, but it should be 

possible to assess the relative density and activity in response insulin and IGF-1 of the 

hybrid receptors seen on endothelial and non-endothelial cells.  

Whilst I feel confident that endothelial insulin resistance has been unequivocally 

demonstrated in the MIGFREO mice, I was unable to demonstrate any change in protein 

phosphorylation following insulin and IGF-1 stimulation between the 2 groups of mice. The 

reasons for this have been discussed, and I would suggest that the western blots should be 

repeated using endothelial cells at P0, and using milk-free blocking buffer. 

The antioxidant N-acetyl-cysteine (NAC) has been widely used in mice to study the effects 

of reducing ROS on various biological and cellular processes. The hypothesis that elevated 

levels of H2O2 produced by the MIGFREO mouse could be responsible for enhancing whole 

body insulin sensitivity could be assessed by treating the mice with NAC for 2 weeks and 

assessing insulin tolerance before and after treatment. 

Whole body insulin sensitivity, with particular respect to sensitivity to insulin in muscle and 

fat could be performed by taking tissue and assessing protein expression and 

phosphorylation with and without insulin stimulation. A useful further addition would be to 

see if this changes pre and post treatment with  

Further assessment of H2O2 is also imperative if a causative association between higher 

basal levels of H2O2 in MIGFREO mice and enhanced insulin sensitivity is to be shown. 

Assessment of total levels of ROS with lucigenin enhanced chemiluminescence will help to 

establish if total superoxide levels are elevated. This can be performed in response to a 

number of stimuli and inhibitors, such as L-NAME, oxypurinol and specific inhibitors of Nox 

in an attempt to establish the source of ROS. H2O2 production from cells can also be 

established using the amplex® red assay, again this could be performed in response to a 

number of stimuli and inhibitors. In order to corroborate the results of the amplex® red 

assay in the aorta further assessment of H2O2 production can be performed using the 

ferrous oxidation-xyenol orange method. This assay is based on the ability of H2O2 to 

convert ferrous into ferric ions which subsequently form a purple complex with xylenol 
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orange. The resultant colour change can be detected on a plate reader. High performance 

liquid chromatography can be used to measure the conversion of dihydroethidium to 

oxyethidium which reflects the rate of intracellular superoxide production and would also 

be a further useful adjunct to the data already generated.  

Given the results seen with the VEPDK1KO mouse [326] It would also be interesting to look 

more closely at fat composition, metabolism and angiogenesis in the MIGFREO mice to 

assess whether the endothelial insulin resistance seen in MIGFREO mice is associated with 

any changes in angiogenesis in fat, with subsequent changes in fat metabolism, particularly 

in mice at an older age, and following a period of high fat feeding.   

Following on from this, further consideration should be given to the way H2O2 is affecting 

insulin signalling in sites of insulin stimulated glucose uptake: is it acting to oxidise PTP1B 

and therefore enhance insulin signalling; or is the major action at the insulin receptor itself, 

causing modification of the activation loop and enhancing autophosphorylation? In 

addition, how is H2O2 reaching sites of glucose uptake: is transendothelial insulin 

transportation or the recruitment of the microvasculature affected or does the H2O2 diffuse 

easily through aquaporins to the sites of glucose disposal? 

Arrangements are being made to investigate this further and attempt to understand the 

mechanism of whole body insulin sensitivity seen in the MIGFREO mouse.   
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8.3 Concluding remarks 

The generation of a mouse with divergent endothelial and whole body insulin sensitivity is 

an unusual, but not novel finding. However the demonstration that in the MIGFREO mouse 

this is accompanied by elevated levels of H2O2 raises the intriguing possibility that in the 

face of significant endothelial insulin resistance the endothelium may play a role in 

modulating, and indeed enhancing whole body insulin sensitivity. If this is confirmed by 

further work, this would be a novel role of the endothelium, and would potentiality be 

open to manipulation by pharmacological methods in an attempt to improve treatment for 

patients with insulin resistance and accelerated atherosclerosis.  
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