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ABSTRACT

TI'he microstructure and composition of water and KOH activated hardened pastes of
commercial neat white Portland cement (WPC) and blends with 30% fly ash (PFA)
have been characterised using a multi-technique approach, with particular emphasis on
the nature of the C-S-H phase. The neat and fly ash blended pastes were activated with
water or a SM KOH solution and cured for one year at 25°C. one month at 55°C and one
month at 85°C. The mean length of the aluminosilicate anion structure of C-S-H (-’S;
MAS NMR) increased with age and it was higher in the fly ash blended systems.
Formulae were presented for the average structural units in the C-S-H present 1n the
systems analysed by TEM-EDX. SEM micrographs showed that as hydration occurred.
the microstructure became denser because outer product C-S-H was formed in the water
filled spaces and additional C-S-H resulted from the pozzolanic reaction. The chemical
composition of C-S-H could not be determined by SEM-EDX because of intermixing
with other phases; TEM-EDX was necessary. Inner product C-S-H morphology was
fine and homogeneous and that of outer product C-S-H was fibrillar 1n the water
activated systems and foil-like with alkali activation. Fly ash replacement did not
change the morphology of Ip and Op C-S-H. Small fully hydrated cement and PFA
particles were filled with a less dense Ip C-S-H with morphology very similar to the
foil-like one. TEM-EDX showed that, in general. the mean Ca/(Al+S1) atomic ratio was
lower 1n the water activated blends than that in the neat cement pastes due to the fly ash
reaction. The composition-structure data were discussed 1n terms of models for the

nanostructure of C-S-H

Higher curing temperature accelerated the rate of the cement hydration. The mean
length of the aluminosilicate of the C-S-H anions was much higher than that of C-S-H
formed at lower temperatures, and it was also higher in the blended pastes than with
neat cement. Backscattered electron images showed that the grey level of C-S-H 1n the
systems cured at 55°C and 85°C was in places quite similar to that of the calcium
hyvdroxide: that 1s. 1t was brighter than in pastes cured at lower temperature. SEM also
showed that the microstructure of the systems cured at higher temperature exhibited non
uniform porosity. Inner product C-S-H with a fine scale., homogeneous morphology.
was abundant 1n all systems cured at 55°C and 85°C. Op C-S-H was generally fibrillar

with water, and foil-like with alkali. However, the higher temperature curing did result
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In coarser fibrillar morphology (water activated systems) than that formed at lower

temperatures.

The C-S-H gel formed 1n the commercial WPC-30% PFA blended paste hydrated tor
one year at 25°C and water leached for twelve weeks was also characterised in this
work. A matrix effect was clearly observed by *Si MAS NMR. Cross-linking of the
aluminosilicate anion structure of C-S-H occurred after leaching the sample for four
weeks. Formulae were also presented for the average structural units in the C-S-H
present in the unleached and four weeks water leached systems analysed by TEM-EDX.
I[p C-S-H morphology was fine and homogeneous and Op C-S-H had ftibnllar

morphology. There were many areas in the microstructure of the leached sample where

Op C-S-H with foil-like morphology coexisted with fibrillar Op C-S-H.
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LLIST OF ABBREVIATIONS AND SYMBOLS
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BEI — Backscattered Electron Imaging

a-C3S — o Polymorph phase of tricalcium silicate (Ca3SiOs)
B-C2S — B Polymorph phase of Dicalcium silicate (Ca>S104)
C - Calcium oxide (CaO)

(' - Carbon dioxide (CO»)

cc/g — Cubic centilitre per gram

c¢cm - Centimetre

C/S — Calcium/silicate ratio (Ca/St)

C,S — Dicalcium silicate (CayS104)

C3A - Tricalcium aluminate phases (CazAl,Og)

C;3S — Tricalcium silicate (Ca3;S105)

C4AF - Calcium aluminate ferrite phases (Ca,AlFe,.(Os)
CH -- Calcium hydroxide (Ca(OH);)

CP MAS NMR - Cross-Polarization Magic Angle Spinning Solid-State Nuclear
Magnetic Resonance

C-S-H — Calcium silicate hydrate

DEF — Delayed ettringite formation

DSC — Differential Scanning Calorimetry

DTG - Differential Thermogravimetric Analysis

EELS — Electron incrgy Loss Spectroscopy

EGA - I'volved Gas Analysis

ELNES — Energev-Loss Near Edge Spectroscopy

ENPA or EPMA - Electron Microprobe Analyvsis
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F - Iron oxide (Fe>0;3)

Ggbfs or ggbs — Ground granulated blast furnace slag
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Ip - Calcium silicate hydrate inner product
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LD — Low density

1.LOI - Loss on 1gnition

M — Magnesium oxide (MgO)
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MAS NMR - Magic Angle Spinning Solid-State Nuclear Magnetic Resonance
MCL — Mean silicate (aluminosilicate) chain length
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N — Sodium oxide (NaO)
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Op — Calcium silicate hydrate outer product

OPC — Ordinary Portland cement

P — Phosphorus pentoxide (P,0Os)

PC — Portland cement

PFA - Pulverised fly ash

ppm - Parts per million

Q" - Isolated silicate unit
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Q’ - Chain middle silicate groups
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Q" — Three dimensional framework silicate groups

Q"(m:Al) or Si(nAl) — Silicate tetrahedron Q connected via n (number of bridging

oxyeen) connected to mAl and (n-m) silicate atoms {(n=0-4) and (m=0+0n)
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I -INTRODUCTION

1.1 - GENERAL INTRODUCTION

Concrete 1s a building material prepared from several constituent materials, usually
made from the combination of a cement binder. mineral aggregates and water. Cement
1s a powdered material (clinker) that reacts with water. developing strong adhesive
qualities and forming a hardened mass. These cements are more appropriately known as

hydraulic cements, and Portland cements are the most widely used.

Several products result from the exothermic hydration reaction, and the calcium silicate
hydrate gels, the C-S-H gels, are the main binding phases in all Portland cement-based
systems. Therefore, the study of C-S-H is fundamental to the understanding of cement
chemistry and 1ts performance. The morphology and the micro/nanostructure of C-S-H
define the final properties of a hardened cement paste. such as strength and durability,
capillary pore network, permeability to water or other hiquids/solutions, and rate at
which 1ons/gases diffuse 1n 1t. These properties are also influenced by many factors such
as the chemical composition of the cement, the solid/solution ratio, the curing

temperature, the degree of hydration and the presence of other additives!''.

The chemical composition of C-S-H varies according to the nature of the cement-based
system. C-S-H is generally amorphous but, in a short-range scale, similarities are found
with the natural crystalline minerals tobermorite and jennite. Tobermorite,
Cay(SigOsHy) Ca'dH,O with a Ca/Si ratio of 0.83, presents a layered structure
containing  linear silicate chains of the ‘“dreierkette’ form. Jennite.
CaoeSig03(OH)e-8H-0, also has dreierkette silicate chains but a higher Ca/Si ratio of
1.5. Consequently. several models for the C-S-H structure were proposed and most of
them can be divided in two different categories: the tobermorite— solid-solution’
calcium hydroxide, denominated as the T/CH viewpoint: and the tobermorite-jennite,
denominated as the T/J viewpoint. Richardson and Groves' structural model proposed

for C-S-H in 1992 includes formulations for both structural viewpoints and enables
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the structural characterisation of the amorphous C-S-H gel, as well as its application

onto a diverse range of cementitious systems!*/,

Blended cements containing recovered waste products from industry. like ground
granulated blast furnace slag (ggbfs or ggbs), pulverised fly ash (PFA). or microsilica,
are also widely used. Hence, it is a way of replacing part of the Portland cement and
enhancing its properties. as well as a method of recycling some industry waste products.
Fly ash is a pozzolanic replacement that reacts with calcium hydroxide previously

formed in the cement hydration, to give additional C-S-H'!

As stated betore, many factors affect the nature of C-S-H, and an examplc is the curing
temperature. Heat curing 1s often used to accelerate early age strength of precast
concrete. Precast heat-cured concrete is frequently used in walls, steps, posts, pad
stones, stairs, floors, etc... Curing at high temperature has many implications on the
concrete properties, more particularly 1n the C-S-H chemical composition,
micro/nanostructure and, consequently, in the physical properties, like durability, creep
and shrinkage. Characterisation of C-S-H 1n cement-based systems cured at high
temperature provides very significant information, especially regarding issues like

delayed ettringite formation (DEF) and alkali-stlica reaction (ASR) that induce concrete

expansion and cracking.

Degradation of cement-based systems 1s considered to be an atypical hydration process.
Leaching is a kind of degradation particularly important for the long-term storage of
nuclear and other forms of wastes such as concrete dams. In water leaching degradation,
it is expected that the calcium hydroxide will be the first hydrate phase to be leached,
followed by C-S-H. After all of the calcium hydroxide 1s leached. C-S-H will respond
by rearranging itself into a highly polymerized phase. As leaching proceeds, the C-S-H

structure collapses giving a disintegrated cement paste.
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1.2 — POINTS OF STUDY

T'he exact nature of the C-S-H phases is not yet completely understood and the aim of
this work was to obtain more detailed information regarding the morphology and the
micro/nanostructure of the C-S-H gels formed in neat and blended pastes. In order to

study the micro/nanostructure of C-S-H. the proposed work had the following goals:

- Determination of the chemical composition and silicate anion structure of
C-S-H in commercial neat and blended white Portland cement. with class F

pulverised fly ash;

- Find the most appropriate structural model for the nanostructure of C-S-H 1n

the difterent studied systems;

- Determination of the degradation characteristics of C-S-H when undergoing

water leaching.

The proposed objectives can only be achieved with a multi-technique approach.
Analytical Transmission Electron Microscopy (TEM-EDX) and *Si  Solid-State
Nuclear Magnetic Resonance (MAS NMR) were the main techniques used 1n order to
characterise the chemical composition and micro/nanostructure of C-S-H. Scanning
electron microscopy with analytical analysis (SEM-EDX), thermogravimetric
techniques (STA), powder X-ray Diftraction (XRD), and i1sothermal calorimetry were
also used. TEM-EDX and NMR provided important data to establish the silicate anion
structure of C-S-H as well as the appropriate structural model in which the systems fit.
In addition, TEM and SEM-EDX provided qualitative data on the morphology of the
C-S-H gels. very useful for the evaluation of the heterogeneity of the particles and also

for a general overview of the cement paste surtace.

The cement-based system used was a white Portland cement (WPC). as a control
sample. WPC was chosen in order to avoid a high iron content that would cause some

problems in the MAS NMR acquisition and interpretation. Two WPC blends with a

= B v . ik
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30% and 60% of fly ash replacement were also prepared. The neat pastes were prepared
to water/cement ratio of 0.5 and the blended pastes to a water/binder ratio of 0.5. The
neat and blended pastes were activated with distilled water or an alkali solution, a KOH

SM solution. The degree of hydration of the neat and blended cement pastes was

followed at 25°C and established for one day, one month and one year. The effect of
curing temperature at 55°C and 85°C for one month was carried out. The latter effect

was compared with the effect of curing the systems at 25°C. Degradation by water

leaching of a water activated 30% PFA blended paste after one year of hydration, was

also performed.

Understanding the micro/nanostructure of the C-S-H gels 1n several commercial
cementitious systems will help out engineers to predict the properties and performance
of concrete. This information will also provide fundamental assistance in modelling
encapsulation of radioactive and hazardous wastes 1n commercial cement-based

Systems.

1.3 - THESIS OUTLINE

A literature review 1s presented 1n Chapter II. This review covers the general chemical
composition of Portland cement and the separate hydration of each of the main
components of cement clinker, particularly the hydration of alite and belite. Several of
the proposed structural models for C-S-H are discussed and compared. The formation
and characterisation of the C-S-H phase by various techniques used 1n this work are also
considered. Separate sections were created for literature related to white Portland
cement and fly ash. In the end, final sections consider some atypical hydration processes

such as curing at high temperature and degradation of cement-based systems.
In Chapter IlI, the experimental procedures used in this work are described. Each

section 1s started by a general explanation regarding the experimental technique,

followed by a detailed description of the applied method.
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The experimental results and discussion are exposed in Chapters IV to VII. Chapter [V

deals with the degree of hydration at room temperature, and Chapters V and VI with the

eftect of curing temperature at 55°C and 85°C. Chapter VII covers the degradation

study by water leaching.

Finally, Chapter VIII 1s a summary of the main conclusions considered in this work.

This chapter also includes some suggestions for future works.
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II - LITERATURE REVIEW

2.1 = PORTLAND CEMENT: CHEMICAL COMPOSITION

In this first section, the mineral and chemical composition of Portland cement 1s
discussed. The hydration of the individual clinker minerals 1s also considered as well as

their significance and part 1n the total hydration of a Portland cement.

Hydraulic cements are powders that set and harden through chemical reactions with an
appropriate amount of water, and continue to develop strength even aftter they have set.
The more important properties of a cement paste are setting, microstructure, bond

formation, density. pore structure. surface area and mechanical properties. These

properties will have a major influence in the final properties of a concrete such as

workability, setting, bleeding and segregation, and 1ts mechanical properties“].

The most important known hydraulic cement is Portland cement (PC). The hydration of
a Portland cement is a complex process because it 1s a multi-component system and

there are many factors that influence its kinetics, such as:

- The phase composition of the cement and presence of foreign 1ons within the

individual clinker phases;

- The fineness of the cement, its particle size distribution and specific surtace

area;

- The water/solid (w/s) or solution/solid ratio (s/s) used;

- The presence of chemical admixtures;

- The presence of additives, such as ground granulated blast furnace slag (ggbfs

or ggbs). pulverised fly ash (PFA), etc.

Bearing in mind the complexity of the whole process of Portland cement hydration, 1t 1s

useful to discuss first the hydration of the individual clinker minerals present in it.

CHAPTER Il — LITERATURE REVIEW
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A different kind of notation is used when referring to the different oxides present in the

cement clinker. In cement chemical nomenclature, the used abbreviations are'':

C =Ca0O S = SlOz A = Aleg, F = F€203 M = MgO K = K20
S =SO; N=NaO T=TiO, P =P,0: H=H,0 C =CO,

2.1.1 — Alite

The main and most important constituent in Portland cement is alite, a tricalcium
silicate, Ca3S10s, modified in composition by the presence of foreign ions, especially
Mg2+., Al’" and Fe’". in the form of oxides. Alite controls the setting and hardening by
the amorphous calcium silicate gels, at ages up to twenty eight days. The hydration of

alite 1s usually described by the main polymorph of the corresponding tricalcium
stlicate, C;S, the monoclinic phase a-C;S. Tricalcium silicate reacts quickly with water
to give an amorphous, or poorly crystalline, calcium silicate hydrate, the C-S-H phase

(the hyphens emphasize the indefinite composition) and calcium hydroxide, CH. The

calcium hydroxide natural mineral analogue 1s known as portlandite. The following
J

chemical equation 1llustrates the hydration of C,SH

CiS+(y+2z)H = CSH,+zCH (Eqn.2.1)

The determination of x. the Ca/Si ratio, 1s usually made by electron microscopy with a

generally accepted mean of 1.7-1.8, tor C3S pastes.

If the kinetics of C3S hydration is followed by 1sothermal conduction calorimetry. the
corresponding curve would be similar to the one presented, in Figure 2.1, where there 1s
an 1nitial peak followed by an induction period and then an accelerated period with a

major peak 1n heat evolution.

eyl —
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Figure 2.1 — Rate of heat evolution at 20°C for a typical Portland cement''.

Generally, five different stages can be distinguished in a calorimetric curve for C3S and
Portland cements: a maximum peak for the initial reaction, followed by a minimum in

the curve which corresponds to the induction period (phase 1); an acceleratory period

where a second maximum 1s reached and where the main reactions take place (phase 2
and 3); a decelerated stage followed by a flat stable curve where the reactions keep on
taking place 1n a continuous and slowly mode (phase 4). Several attempts were made to
explain the induction period and its termination'”, and it is still not possible to make a

clear distinction between the induction period and the early part of the acceleratory

per1od.

2.1.2 — Belite

Belite 1s the second most abundant component of a Portland cement clinker. Just like
alite. 1t 1s an orthosilicate (Ca,;S104) also modified in composition by the presence of the
same foreign 1ons. Once again, the hydration of belite can be described by the hydration
of the correspondent pure dicalcium silicate, C,S, 1n the form of B-C,S. which 1s the
polymorph usually present in cement clinker. When dicalcium silicate hydrates it also
eives C-S-H and CH. but the kinetics are much slower compared with C;S. and lead to

less formation of CH. It usually reacts 30% in the first twenty eight days and 90% in

one year I The hydration reaction will depend on several factors. as mentioned before.
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2.1.3 — Calcium Aluminates/Aluminoferrite and Sulfate Phases

The main aluminate phases present in anhydrous PC are tricalcium aluminate, C;A
(CazAl,04), and calcium aluminate ferrite, C4AF (Ca;AliFe,.(Os), and their hydration
products will strongly depend on the PC composition. The calcium aluminate phase
present 1n most of the ordinary Portland cement (OPC) clinkers 1s the tricalcium form
C3A but substantially modified in composition and/or 1n structure by the presence ot

foreign ions such as Si*', Fe’", Na" and K. C3A can rapidly set when reacting with
water, unless some gypsum (CaSQO4-2(H;0)) 1s added as a set-controlling agent. One of

its possible hydration products are the AFt-type phases (Al,O3-Fe,O;-tr1) becoming
AFm-type phases, although it will depend on the type and composition of the OPC.
AFm-type (Al,03-Fe;O3-mono) phases are formed when the proper amounts of the 10ns
they contain are brought together when cement hydration occurs. Some ot those phases

are hexagonal crystals but much of them are poorly crystalline and are intermixed with

the C-S-H phase. Their general formula is [Cay(Al,Fe)(OH)g] -X-xH,O, where X 1s a

singly changed anion or half or a doubly charged anion, and the term mono corresponds
to the single formula unit of CaX,. A crystal may contain more than one kind of X

anion, and the most common are OH", SO4* and CO;”". These are the several groups of
AFm-type phases such as C;AH,, C4A CosHy and C4A CH, phases, as well as C4A§ H.,

phases. C4A§ Hi, (or C3A~C§ H,) is variously known as the monosulfate phase, and 1t

forms solid solutions in which up to one half of the SO4~ is replaced by OH". There are
also other AFm-type phases containing aluminium or iron. The next table summarises
the type of AFm-type phase’s groups that have several layer structures, as well the most

relevant compounds to cement chemistry!'~;

CHAPTER Il — LITERATURE REVIEW '
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Table 2.1 — Group of AFm-type phases''.
GROUP OF AFm PHASES

C4AH.. C4A CysH, and C4A C H,

C4A§ H,: C4A§ H,, - Monosulfate
Aluminium C;3A-CaCl,-10H,0 or [Ca,Al(OH)] CI-2H,0 -

contamning -Friedel’ salt (in the presence of chloride 1ons)

C,ASH;g — Natural Stratlingite or gehlenite hydrate

Naturally occurring: hydrocalumite

C,FH,;
Iron _ _
C4F S H_\.{: C4F S le

C;F-CaCly-10H,0

containing

Other hydration products resulting from C;A and the calcium aluminoferrite phase are

the AFt-type phases. AFt-type phases. (Al,O;-Fe;Os-tr1), have the general formula
[Ca3;(Al.Fe)(OH)y-12H,01,-X3-xH>0, where x < 2 and X represents one formula unit of
a doubly charged, or., with reservations, two formula units of a single charged anion.
Although these phases are formed under similar conditions as AFm-type phases, the
range of anions which can occupy the X site 1s smaller, and the AFt-type phases are
formed at higher ratios of CaX to C;(A,F). Within the AFt-type phases, the most
important ones are ettringite and thaumasite, the latter with silicon replacing aluminium
in the structure. The following scheme describes the most important calcium aluminate

hydration products, depending on the composition of the PC clinker'*®:
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1) In the presence of calcium sulfate (svpsum):

CA CS+H CA+H

> C4A 'S sHs, (ettringite) — > C4A S H,, (monosulfate)+ C,AH.

i) In the absence of gypsum:

C5A 'CH +H > C4AH;

i) In the presence of gypsum:

C4AF — AFt phases
“iv) In the absence of gypsum:

1 C,AF -> AFm phases (C(A,F)Hg and/or Cy(A.F)H.)

| [n  presence of iron

(C-(ALF)H — —> Hydrogarnet phase C:(A.F)lI,

v) In the presence of lime (CaO):
C4AF —> C4(A,,F)H;\

vi) In the presence of ettringite or AFt phases:

CﬁAg 1H1, (ettringite) + C;A — Afm phases

P o — e —

Figure 2.2 - Hydration schemes for the most important calcium aluminate/ferrite phases'"*.

Ettringite, C6A§ 3H3,, which also occurs as a natural mineral, 1s formed during the early
hydration of most PC cements. As shown in equation 1) from the above figure, in
Portland cements, the hydration of C;A 1n the presence of gypsum initially produces
ettringite  which 1s then slowly converted into the thermodynamically stable
monosulfate, an AFm-type phase. The phenomenon of ettringite formation, after
hardening of a cementitious material, 1s called delayed ettringite formation (DEF). It has
always been considered as a cause of damage 1n the materials, but some caution must be
taken before “blaming” DEF for any expansion observed in those materials. Although
temperature 1s a critical factor in relation to DEF. the formation of ettringite after
heating a sample does not necessarily produce expansion and, not all expansion 1s due
to DEF. Indeed, delayed ettringite formation will depend on many factors like the nature
of the paste. and 1t cannot be generalised to the whole range of cement pastes because

secondary or recrystallised deposits of ettringite are found in most mature cement pastes
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and concrete'”. Thaumasite, [Ca3;Si(OH)g- 12H;0](S04)(CO3) or C 3S§ CH;s, is another

AFt-type phase and strongly similar to ettringite, but with Si*" replacing AI’". It can be
formed from the reaction when cement 1s exposed to both sulfate and carbonation
attacks, and its presence can cause some cracking or severe strength loss to the cement
paste, but as usual, 1t will also depend on the nature of cement paste. Hydrogarnet
phases, C;(A,F)Hg, have structures related to the one of garnet, Ca;Al,S1;0;. In the

hydrogarnet phases, some or all of the silicon is substituted and all or some of the Al’*

may be also replaced by Fe’" ions, forming solid solutions within a compositional
region bounded by C3;AHg, C3;FHg, C3AS; and C3FS;. The most stable hydrogarnet
phase 1s C3AHg and can result from both C;A and/or C4Al hydration. Brucite,
hydrotalcite and related phases can also be produced as hydration products from
Portland cements. Brucite, Mg(OH),, results from magnesium salt attack on PC
concrete, and also from hydration of PC with a high MgO content, although 1ts presence
can also be observed in OPC. A range of phases structurally related to brucite are tound,
related as the AFm phases are to CH; that 1s, some of the Mg*" ions can be replaced by
AI’" or Fe’", and the charge balanced by anions which, together with water, occupy
interlayer sites. Hydrotalcite, MggAl,(CO3)(OH)64(H,0), results from the hydration of
slag blended cements and as a minor hydration product of PC, with a similar
composition to meixnerite, MgeAl,(OH)3-4(H,0). Meixnerite, like AFm-type phases
where anion exchange reactions occur, can readily take up CO,, giving a material
similar to hydrotalcite[l]. It is also necessary to consider the sulfate phases present in a
PC clinker. Gypsum present in cement is usually of natural origin but some other

products also belong to the group of hydrated sulfate phases such as hemihydrates

(CaS0,-0.8H,0 or CaS04-0.5H,0) and syngenite (KCS ,H)".

[n summary, the most important information to bear in mind is that in OPC. C3A
hydration leads to the initial formation of AFt-type phases which are, generally.
converted later into AFm-type phases. The calcium aluminoferrite phases, C;AF and
C5(A.F). when hydrated, also form AFt-type phases but, once again, lead later to the
formation of AFm-type phases. Although the reaction is very much slower than the one

of C3A. both hydration rates are slightly retarded by the presence ot CH.

el Ny I
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2.2 —THE C-S-H PHASE

In this section, the C-S-H phase formation in C;S and C,S pastes is discussed. as well as
the analytical techniques used to completely characterize the C-S-H phasc: the structure
ot the C-S-H phase is also discussed, covering the structural models that have been
proposed. An overview of its morphology and microstructure, as well its nanostructure

in cement and blended pastes is also made.
2.2.1 - C35 and C,S Hydration
2.2.1.1 — Thermal Analysis

Richardson'® examined the hydration reactions of C3;S and found that although there
was a significant variation in the Ca/Si ratio at the micron- and nanometre-scale. the
average Ca/S1 was ~ 1.65, and also that CH often occurred as massive crystals but also
intermixed with C-S-H at the micron-scale. The determination of CH present in a paste
can be made by several methods. including thermoanalytical methods such as TG, DTG,
DTA and DSC!". as well as QXDA. There were found to be some significant
differences between the thermoanalytical methods and QXDA, and although the former
ones can be 1naccurate 1f experimental conditions are not taken in consideration, STA
(TG + DTA) 1s an acceptable method for an estimation of the CH and water content,
and also shows some of the other phase contents 1n a cement paste. such as
C-S-H. AFm, and CH. Regarding hydrogarnet formation, DTG studies'” performed for
aluminoferrite phases, have shown that after twenty four hours of hydration. and 1n the
absence of gypsum, three steps in the curve are observed at 100, 170 and 280°C.
corresponding to loss of water from a mixture of hexagonal hydrates and hydrogarnet,
respectively. After twenty eight days, the intensity corresponding to loss of water from
hydrogarnet increases indicating that a solid solution of C3AH¢ and C3;FHg 1s present.
Considering the C-S-H phase, the loss of water 1s continuous, with a sharp typical peak

around the 100°C. The AFm-type phases lose water between 150-200°C. the AFt-type

phases around 120°C and. finally. CH loses water between 410-540°C. Figure 2.3

shows several TG and DTA curves found for a fully reacted C;S paste in different
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experimental conditions. Curve 1 in both TG and DTA plots corresponds to the tyvpical

TG and DTA curves found in mature C;S pastes.
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Figure 2.3 — TG (left) and DTA curve (right) found for a mature C;S paste' .

In the TG plots, curve 1 shows a first weight loss around 100°C which corresponds to
the dehydration of the C-S-H phase and a second weight loss occurs around 485°C

resulting from the dehydration of CH. Table 2.2 summarises the ordinary thermal

analysis data known 1n cement chemistry:

Table 2.2 — Summary of thermal analysis data''".

Component Peak Position' (°C)
Tobermorite - 130
Ettringite 120-130
Anhydrous Gypsum 140-170 (Endothermic)
C-S-H Gel < 150
Amorphous Hydrates 200-300
Syngenite 290

Brucite 420
Portlandite (CH) 450-550
Carbonated Samples (Vaterite) 450-600 (Endothermic)
Carbonated Samples (Calcite) 600-650
Quartz 578 (Endothermic)
CaCO; 750-850
Tharndite 880 (Endothermic)

' At 10°C per minute by DTA specific instrumentation
- Peak appears at about 120 and 130°C, or as a shoulder on the leading edge of an ettringite peak.
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QXDA has also been used to determine the water content of the C-S-H phase“] and

unreacted ('3S.

2.2.1.2 - TMS

TI'he method of trimethylsilylation, TMS, provides a detailed study of the role of silicate
polymerization in the process of C;S hydration, as well as in cement pastes. TMS
methods follow the degree of polymerization of the silicate chains and their relative
distribution. Besides microstructure, the change of the anionic structure during
hydration will also define the complex chemical phenomena of hardening. The method
itselt involves a common procedure used in analytical chemistry. derivatisation. With
this method, the samples are chemically modified in order to be more easily separated,
distinguished from each other and, finally quantified. In this particular method of
trimethylsilylation, the first step of derivatisation involves leaching the solid with an
acid which leads to the formation of silicic acids that correspond to the original silicate

[12

ion structures'' 2. The following equation illustrates that step:

Ca,S104 + 4HCI = Si1(OH)4 + 2CaCl, (Egn. 2.2)

The formed silicic acids will tend to polymerised thus. in order to avoid 1t, the acids are

end-blocked by the addition of trimethylsilyl (TMS) groups:

Si(OH)4 + 4(CH;3);S1Cl = (CH3S81)4S104 + 4HC (Egn. 2.3)
The total reaction 1s:

Ca,Si0, + 4(CH;3);Si1Cl = (CH;3S1)4S104 + 2CaCly (Egn. 2.4)

Finally, after the initial process of derivatisation of the silicate ion structures, the

solution is analvsed by gel permeation chromatography (GPC). also known as size-
exclusion chromatography. The solution passes through a packed column that works as

1 molecular sieve where the pore network will define which molecules will reach first
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the detector used in this technique. the process of elution. Therefore. larger molecules
are excluded from the pore network and are the first ones reaching the detector and the
smaller molecules will take longer to diffuse and reach the end of the column. The
molecules are eluted in order of decreasing molecular weight''?), The following figure

shows the different polymers in white Portland cement paste. separated by oel

permeation chromatography (GPC):
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Figure 2.4 — TMS-GPC chromatogram of a white Portland cement paste hydrated

for 3 months!'.

In the C3;S hydration, TMS studies showed that the degree of silicate polymerization
Increases as reaction proceeds, although 1t 1s not a continuous process like with an
organic polymer. A few years later, after Tamas and Varady!'* presented a first
consistent TMS study on C;S and dicalcium silicate (C,S). Mohan and Taylor[15 lended
some conflict in the results of other investigators, and demonstrated that only pastes of
similar degrees of reaction should be compared and, more important, established the
anion polymerization and the development of the silicate chains. In a first stage, and
during the first few days. C3S reacts to give CH. and breaks down to produce monomers
and a resulting form of C-S-H containing dimer, but no appreciable polymer. In a
second stage. which lasts for about six months, C;S continues to produce monomers

which. at the same time, form dimers and are consequently followed by further
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polymerization. Since little or no C3S remains. the polymeric anions can only be formed
by alteration of the C-S-H phase already formed, but it is an extremely slow process and
only detectable after the C;S hydration is substantially complete. The dimer content
reaches a maximum of around 50-60% after six months and then falls to around 40%
after one year, while that of the polymeric forms steadily increases to 40-60%. Although
the TMS methods indicate the proportion of the silicon in the different polymers
present, 1t has two limitations: side reactions can occur and it is rarely possible to

account for more than 80-90% of the total silicon.

2.2.1.3 — Solid State MAS NMR

In order to complement the TMS methods. the use of *’Si Magic Angle Spinning Solid
State NMR (MAS NMR) 1s the best option. NMR techniques are purely physical and
bulk techniques, avoiding the problem of side reactions or alterations in the structure.
and also providing data related not directly to the fractions of the silicon present in
different anionic species like 1n the TMS methods, but to the fractions present in
different environments, giving mean chain length values. TMS gives an absolute
distribution of the different kind of polymerized silicate chains. Since the *’Si isotope
has an intrinsic magnetic moment. as do some 1sotopes of other elements important in
cement chemistry. namely 'H, “’Al and 'O, it is possible to acquire very important
information about the local environment and coordination of those elements!'>'*). This
1s especially useful with poorly crystalline materials such as C-S-H where XRD gives
almost no significant information on its structure. If a solid sample 1s spun at the “magic
angle”™ of 54°74° to the magnetic field. the orientation effect and consequent line
broadening are eliminated an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>