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ABSTRACT 

The microstructure and composition of water and KOH activated hardened pastes of 

commercial neat white Portland cement (WPC) and blends ý, Nith 30% fly ash (PFA) 

have been characterised using a multi-technique approach, With particular emphasis on 
the nature of the C-S-H phase. The neat and fly ash blended pastes were activated with 

water or a 5M KOH solution and cured for one year at 25'C, one month at 55'C and one 

month at 85'C. The mean length of the aluminosilicate anion structure of C-S-H (29 Si 

MAS NMR) increased with age and it was higher in the fly ash blended systems. 
Formulae were presented for the average structural units in the C-S-H present in the 

systems analysed by TEM-EDX. SEM micrographs showed that as hydration occurred, 

the microstructure became denser because outer product C-S-H was formed in the ý'N-ater 
filled spaces and additional C-S-H resulted from the pozzolanic reaction. The chemical 

composition of C-S-H could not be determined by SEM-EDX because of intermixing 

with other phases; TEM-EDX was necessary. Inner product C-S-H morphology was 
fine and homogeneous and that of outer product C-S-H was fibrillar in the water 

activated systems and foil-like with alkali activation. Fly ash replacement did not 

change the morphology of lp and Op C-S-H. Small fully hydrated cement and PFA 

particles were filled with a less dense lp C-S-H with morphology very similar to the 

foil-like one. TEM-EDX showed that, in general, the mean Ca/(AI+Si) atomic ratio was 
lower in the water activated blends than that in the neat cement pastes due to the fly ash 

reaction. The composition- structure data were discussed in terms of models for the 

nanostructure of C-S-H 

Higher curing temperature accelerated the rate of the cement hydration. The mean 
length of the aluminosilicate of the C-S-H anions was much higher than that of C-S-H 

formed at lower temperatures, and it was also higher in the blended pastes than with 

neat cement. Backscattered electron images showed that the grey level of C-S-H in the 

systems cured at 55T and 85T was in places quite similar to that of the calcium 
hydroxide: that is, it was brighter than in pastes cured at lower temperature. SEM also 

showed that the microstructure of the systems cured at higher temperature exhibited non 

uniform porosity. Inner product C-S-H with a fine scale, homogeneous morphologý,, 

NN, -as abundant in all sý, stems cured at 550C and 850C. Op C-S-H was generally fibrillar 

with Nvater, and foil-like with alkali. However, the higher temperature curing did result 
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in coarser fibrillar morphology (water activated systems) than that formed at lower 

temperatures. 

The C-S-H gel formed in the commercial WPC-30% PFA blended paste hydrated for 

one year at 25'C and water leached for twelve weeks was also characterised in this 

work. A matrix effect was clearly observed by 29 Si MAS NMR. Cross-linking of the 

aluminosilicate anion structure of C-S-H occurred after leaching the sample for four 

weeks. Formulae were also presented for the average structural units in the C-S-H 

present in the unleached and four weeks water leached systems analysed by TEM-EDX. 

lp C-S-H morphology was fine and homogeneous and Op C-S-H had fibrillar 

morphology. There were many areas in the microstructure of the leached sample where 
Op C-S-H with foil-like morphology coexisted with fibrillar Op C-S-H. 
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I- INTRODUCTION 

1.1 - GENERAL INTRODUCTION 

Concrete is a building material prepared from several constituent materials, usually 
made from the combination of a cement binder, mineral aggregates and water. Cement 

is a powdered material (clinker) that reacts with water, developing strong adhesive 

qualities and forming a hardened mass. These cements are more appropriately known as 
hydraulic cements, and Portland cements are the most widely used. 

Several products result from the exothermic hydration reaction, and the calcium silicate 
hydrate gels, the C-S-H gels, are the main binding phases in all Portland cement-based 

systems. Therefore, the study of C-S-H is fundamental to the understanding of cement 

chemistry and its performance. The morphology and the micro/nano structure of C-S-H 

define the final properties of a hardened cement paste, such as strength and durability, 

capillary pore network, permeability to water or other liquids/solutions, and rate at 

which ions/gases diffuse in it. These properties are also influenced by many factors such 

as the chemical composition of the cement, the solid/solution ratio, the curing 

temperature, the degree of hydration and the presence of other additiveslil. 

The chemical composition of C-S-H varies according to the nature of the cement-based 

system. C-S-H is generally amorphous but, in a short-range scale, similarities are found 

with the natural crystalline minerals tobermorite and jennite. Tobermorite, 

Ca4(SI6018H2)*Ca-4H20 with a Ca/Si ratio of 0.83, presents a layered structure 

containing linear silicate chains of the 'dreierkette' form. Jennite, 

CagSi60l8(OH)6'8H20, also has dreierkette silicate chains but a higher Ca/Si ratio of 

1.5. Consequently. several models for the C-S-H structure were proposed and most of 

them can be divided in two different categories: the tobermorite-'solid-solution' 

calcium hydroxide, denominated as the T/CH viewpoint, and the tobermorite-jennite, 

denominated as the T/J N, iewpoint. Richardson and Groves' structural model proposed 

for C-S-Fl in 1992 121, includes formulations for both structural viewpoints and enables 
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the structural characterisation of the amorphous C-S-H gel, as well as its applicLition 
onto a diverse range of cementitious systems [31 

. 

Blended cements containing recovered waste products from industry. likc ground 
granulated blast furnace slag (ggbfs or ggbs), pulverised fly ash (PFA). or microsilica, 
are also widely used. Hence, it is a way of replacing part of the Portland cement and 
enhancing its properties, as well as a method of recycling some indLlStrý' waste products. 
Fly ash is a pozzolanic replacement that reacts with calcium hydroxide previously 
formed in the cement hydration, to give additional C-S-W'. 

As stated before, many factors affect the nature of C-S-H, and an example is the curing 

temperature. Heat curing Is often used to accelerate early age strength of precast 

concrete. Precast heat-cured concrete is frequently used in v"alls, steps, posts, pad 

stones, stairs, floors, etc... Curing at high temperature has many implications on the 

concrete properties, more particularly in the C-S-H chemical composition, 

mi cro/nano structure and, consequently, in the physical properties, like durability, creep 

and shrinkage. Characterisation of C-S-H in cement-based systems cured at high 

temperature provides very significant information, especially regarding issues like 

delayed ettringite formation (DEF) and alkali-silica reaction (ASR) that induce concrete 

expansion and cracking. 

Degradation of cement-based systems is considered to be an atypical hydration process. 

Leaching is a kind of degradation particularly important for the long-term storage of 

nuclear and other forms of wastes such as concrete dams. In water leaching degradation, 

it is expected that the calcium hydroxide will be the first hydrate phase to be leached, 

followed by C-S-H. After all of the calcium hydroxide is leached, C-S-H will respond 

by rearranging itself into a highly polymerized phase. As leaching proceeds, the C-S-H 

structure collapses giving a disintegrated cement paste. 
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1.2 - POINTS OF STUDY 

The exact nature of the C-S-H phases is not yet completely understood and the aim of 
this work was to obtain more detailed information regarding the morphology and t1le 

mi cro/nano structure of the C-S-H gels forined in neat and blended pastes. In order to 

study the micro/nano structure of C-S-H, the proposed work had the following goals: 

- Determination of the chemical composition and silicate anion structure of 
C-S-H in commercial neat and blended white Portland cement. with class F 

pulverised fly ash; 

- Find the most appropriate structural model for the nanostructure of C-S-H in 

the different studied systems; 

- Determination of the degradation characteristics of C-S-H when undergoing 

water leaching. 

The proposed objectives can only be achieved with a multi-technique approach. 
Analytical Transmission Electron Microscopy (TEM-EDX) and 29Si Solid-State 

Nuclear Magnetic Resonance (MAS NMR) were the main techniques used in order to 

characterise the chemical composition and micro/nano structure of C-S-H. Scanning 

electron microscopy with analytical analysis (SEM-EDX), thermogravimetric 

techniques (STA), powder X-ray Diffraction (XRD), and isothermal calorimetry were 

also used. TEM-EDX and NMR provided important data to establish the silicate anion 

structure of C-S-H as well as the appropriate structural model in which the systems fit. 

In addition, TEM and SEM-EDX provided qualitative data on the morphology of the 

C-S-H gels, very useful for the evaluation of the heterogeneity of the particles and also 

for a general overvieN\, ' of the cement paste surface. 

The cement-based system used was a white Portland cement (WPC), as a control 

sample. WPC was chosen in order to avoid a high iron content that would cause some 

problems in the MAS NMR acquisition and interpretation. Two WPC blends with a 
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30% and 60% of fly ash replacement were also prepared. The neat pastes were prepared 
to water/cement ratio of 0.5 and the blended pastes to a water/binder ratio of 0.5. The 

neat and blended pastes were activated with distilled water or an alkali solution, a KOH 

5M solution. The degree of hydration of the neat and blended cement pastes was 
followed at 25'C and established for one day, one month and one year. The effect of 

curing temperature at 55'C and 85'C for one month was carried out. The latter effect 

was compared with the effect of curing the systems at 25'C. Degradation by water 
leaching of a water activated 30% PFA blended paste after one year of hydration, was 

also performed. 

Understanding the micro/nano structure of the C-S-H gels in several commercial 

cementitious systems will help out engineers to predict the properties and performance 

of concrete. This information will also provide fundamental assistance in modelling 

encapsulation of radioactive and hazardous wastes in commercial cement-based 

systems. 

1.3 - THESIS OUTLINE 

A literature review is presented in Chapter 11. This review covers the general chemical 

composition of Portland cement and the separate hydration of each of the main 

components of cement clinker, particularly the hydration of alite and belite. Several of 

the proposed structural models for C-S-H are discussed and compared. The formation 

and characterisation of the C-S-H phase by various techniques used in this work are also 

considered. Separate sections were created for literature related to white Portland 

cement and fly ash. In the end, final sections consider some atypical hydration processes 

such as curing at high temperature and degradation of cement-based systems. 

In Chapter 111, the experimental procedures used in this work are described. Each 

section is started by a general explanation regarding the experimental technique, 

folloxved by a detailed description of the applied method. 
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The experimental results and discussion are exposed in Chapters IV to VII. Chapter IV 

deals with the degree of hydration at room temperature, and Chapters V and VI \\ ith the 

effect of curing temperature at 55'C and 85'C. Chapter VII covers the degradation 

study by water leaching. 

Finally, Chapter VIII is a summary of the main conclusions considered in this work. 
This chapter also includes some suggestions for future works. 
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11 
- LITERATURE REVIEW 

2.1 - PORTLAND CEMENT: CHEMICAL COMPOSITION 

In this first section, the mineral and chemical composition of Portland cement is 

discussed. The hydration of the individual clinker minerals is also considered as well as 

their significance and part in the total hydration of a Portland cement. 

Hydraulic cements are powders that set and harden through chemical reactions with an 

appropriate amount of water, and continue to develop strength even after they have set. 

The more important properties of a cement paste are setting, microstructure, bond 

formation, density, pore structure, surface area and mechanical properties. These 

properties will have a major influence in the final properties of a concrete such as 

workability, setting, bleeding and segregation, and its mechanical propertieslil. 

The most important known hydraulic cement is Portland cement (PC). The hydration of 

a Portland cement is a complex process because it is a multi-component system and 

there are many factors that influence its kinetics, such as: 

- The phase composition of the cement and presence of foreign ions within the 

individual clinker phases; 

- The fineness of the cement, its particle size distribution and specific surface 

area; 
The water/solid (w/s) or solution/solid ratio (s/s) used; 

The presence of chemical admixtures; 

The presence of additives, such as ground granulated blast furnace slag (ggbfs 

or ggbs), pulverised fly ash (PFA), etc. 

Bearing in mind the complexity of the whole process of Portland cement hydration, it is 

useful to discuss first the hydration of the individual clinker minerals present in it. 
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A different kind of notation is used when referring to the different oxides present in the 

cement clinker. In cement chemical nomenclature, the used abbreviations are[']. 

CaO 

S --"ý S03 

Si02 

N=Na20 

2.1.1 - Alite 

A1203 

T=Ti02 

F= Fe203 

Pý P205 

M= mgo 

H=H20 

K=K20 

C : -ý C02 

The main and most important constituent in Portland cement is alite, a tricalcium 

silicate, Ca3SiO5, modified in composition by the presence of foreign ions, especially 

Mg 2+' A13+ and Fe 3+' in the form of oxides. Alite controls the setting and hardening by 

the amorphous calcium silicate gels, at ages up to twenty eight days. The hydration of 

alite is usually described by the main polymorph of the corresponding tricalcium 

silicate, C3S, the monoclinic phase (X-C3S. Tricalcium silicate reacts quickly with water 

to give an amorphous, or poorly crystalline, calcium silicate hydrate, the C-S-H phase 

(the hyphens emphasize the indefinite composition) and calcium hydroxide, CH. The 

calcium hydroxide natural mineral analogue is known as portlandite. The following 

chemical equation illustrates the hydration0f C3Sý11: 

C3S + (y + z) H*C, SHy +z CH (Eqn. 2.1) 

The determination of x, the Ca/Si ratio, is usually made by electron microscopy with a 

generally accepted mean of 1.7-1.8, for C3S pastes. 

If the kinetics Of C3S hydration is followed by isothermal conduction calorimetry. the 

corresponding curve would be similar to the one presented, in Figure 2.1, where there is 

an initial peak followed by an induction period and then an accelerated period with a 

major peak in heat evolution. 
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Figure 2.1 - Rate of heat evolution at 20'C for a typical Portland cementlij. 

Generally, five different stages can be distinguished in a calorimetric curve f6rC3S and 
Portland cements: a maximum peak for the initial reaction, followed by a minimum in 

the curve which corresponds to the induction period (phase 1); an acceleratory period 

where a second maximum is reached and where the main reactions take place (phase 2 

and 3); a decelerated stage followed by a flat stable curve where the reactions keep on 

taking place in a continuous and slowly mode (phase 4). Several attempts were made to 

explain the induction period and its termination [4] 
, and it is still not possible to make a 

clear distinction between the induction period and the early part of the acceleratory 

period. 

2.1.2 - Belite 

Belite is the second most abundant component of a Portland cement clinker. Just like 

alite, it is an orthosilicate (Ca2SiO4) also modified in composition by the presence of the 

same foreign ions. Once again, the hydration of belite can be described by the hydration 

of the correspondent pure dicalcium silicate, C2S. in the formOf P-C2S, "Nhich is the 

polymorph usually present in cement clinker. When dicalcium silicate hydrates it also 

gives C-S-H and CH, but the kinetics are much slower compared withC3S. and lead to 

less formation of CH. It usually reacts 30% in the first twenty eight days and 90% in 

one ycar'"ý'- The hydration reaction N\ill depend on several factors, as mentioned before. 

4 
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2.1.3 - Calcium Alum inates/Aluminoferrite and Sulfate Phases 

The main aluminate phases present in anhydrous PC are tricalcium aluminate, C3A 

(Ca3AI206), and calcium aluminate ferrite, C4AF (Ca2AI, Fe, 
_, 

Oý), and their hydration 

products will strongly depend on the PC composition. The calcium aluminate phase 

present in most of the ordinary Portland cement (OPC) clinkers is the tricalcium form 

C3A but substantially modified in composition and/or in structure by the presence of 

foreign ions such as Si4+ 
, Fe 3+, Na+ and K+. C3A can rapidly set when reacting with 

water, unless some gypsum (CaS04.2(H20)) is added as a set-controlling agent. One of 

its possible hydration products are the AFt-type phases (Al-)03-Fe2O3-tri) becoming 

AFm-type phases, although it will depend on the type and composition of the OPC. 

AFm-type (A1203-Fe2O3-mono) phases are formed when the proper amounts of the ions 

they contain are brought together when cement hydration occurs. Some of those phases 

are hexagonal crystals but much of them are poorly crystalline and are intermixed with 

the C-S-H phase. Their general formula is [Ca2(AI, Fe)(OH)61 X. xH20, where X is a 

singly changed anion or half or a doubly charged anion, and the term mono corresponds 

to the single formula unit of CaX2. A crystal may contain more than one kind of X 

anion, and the most common are Off, S04 2- 
and C03 2- 

. 
These are the several groups of 

AFm-type phases such asC4AH,,, C4AC0.5H,, andC4A C H, phases, as well asC4AS H, 

phases. C4ASH12 (or C3A-C S -H12) is variously known as the monosulfate phase, and it 

forms solid solutions in which up to one half of theS04 
2- is replaced. by Off. There are 

also other AFm-type phases containing aluminium or iron. The next table summarises 

the type of AFm-type phase's groups that have several layer structures, as well the most 

relevant compounds to cement chemistry [1,5] : 
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Table 2.1 - Group of AFm-type phaseslil. 

GROUP OF AFm PHASES 

C4AH,, C4A Co sH, and C4A C H,, 

C4A S H,: C4A SH 12 - Monosulfate 
Aluminium C3A. CaC]2. IOH20or [Ca2AI(OH)61 CI-2H20 - 
containing 

-Friedel' salt (in the presence of chloride ions) 

C2ASH8 - Natural Str&fingite or gehlenite hydrate 

Naturally occurring: hydrocalumite 

CIM13 
Iron 

C4F S H,: C4F S H12 

containing 
C3F. CaCI2* I OF120 

Other hydration products resulting fromC3A and the calcium aluminoferrite phase are 

the AFt-type phases. AFt-type phases, (A1203-Fe2O3-tri), have the general formula 

[Ca3(AI, Fe)(OH)6* 12H2012'X3. xH20, where x :! ý 2 and X represents one formula unit of 

a doubly charged, or, with reservations, two formula units of a single charged anion. 

Although these phases are formed under similar conditions as AFm-type phases, the 

range of anions which can occupy the X site is smaller, and the AFt-type phases are 

formed at higher ratios of CaX to CAA, F). Within the AFt-type phases, the most 

important ones are ettringite and thaumasite, the latter with silicon replacing aluminium 

in the structure. The following scheme describes the most important calcium aluminate 

hydration products, depending on the composition of the PC clinker [4,6] : 
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i) In the presence of calcium sulfate (gypsum): 

CS+H c, A +H C -, A C6A S -, H32 (ettringite) 7 
C4A S H12 (monosulfate)+ CIAH, 

ii) In the absence of gypsum: 

iii) In the presence of gypsum: 

C3A CH +H C4AH13 

C4AF 
--> AN phases 

iv) In the absence of gypsum: 

C4AF -> AFrn phases (C2(A, F)H8 and/or C4(A, F)H, ) 

(C, (A, F)FIs 
In presence of iron 

v) In the presence of linie (CaO): 

Hydrogarnet pliase ('-, (A, F)i I, 

C4AF 
-> C4(A, F)H, 

vi) In the presence of ettringite or AR phases: 

C6A S -, H, 2 (ettringite) + C3A 
-> Afm phases 

Figure 2.2 - Hydration schemes for the most important calcium alum mate/ferrite phases [4,61 

Ettringite, C6AS31-132, which also occurs as a natural mineral, is formed during the early 
hydration of most PC cements. As shown in equation i) from the above figure, in 

Portland cements, the hydration0f C3A in the presence of gypsum initially produces 

ettringite which is then slowly converted into the thermodynamically stable 

monosulfate, an AFm-type phase. The phenomenon of ettringite formation, after 
hardening of a cementitious material, is called delayed ettringite formation (DEF). It has 

always been considered as a cause of damage in the materials, but some caution must be 

taken before "blaming" DEF for any expansion observed in those materials. Although 

temperature is a critical factor in relation to DEF, the formation of ettringite after 

heating a sample does not necessarily produce expansion and, not all expansion is due 

to DEF. Indeed, delayed ettringite formation will depend on many factors like the nature 

ot'the paste. and it cannot be generallsed to the whole range of cement pastes because 

secondary or recrystallised deposits of ettringite are found in most mature cement pastes 
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and concrete [7] 
. 

Thaumasite, [Ca3Si(OH)6*I2H201(SO4)(CO3) or C3SSC H15, is another 

AFt-type phase and strongly similar to ettringite, but with Si4' replacing A13+. It can be 

formed from the reaction when cement is exposed to both sulfate and carbonation 

attacks, and its presence can cause some cracking or severe strength loss to the cement 

paste, but as usual, it will also depend on the nature of cement paste. Hydrogarnet 

phases, C3(A, F)H6, have structures related to the one of garnet, Ca3AI, Si3Ol2. In the 

hydrogarnet phases, some or all of the silicon is substituted and all or some of the A13+ 

may be also replaced by Fe 3+ ions, forming solid solutions within a compositional 

region bounded byC3AH6, C3FH6, C3AS3 and C3FS3. The most stable hydrogarnet 

phase is C3AH6 and can result from both C3A and/or C4AF hydration. Brucite, 

hydrotalcite and related phases can also be produced as hydration products from 

Portland cements. Brucite, Mg(OH)2, results from magnesium salt attack on PC 

concrete, and also from hydration of PC with a high MgO content, although its presence 

can also be observed in OPC. A range of phases structurally related to brucite are found, 

related as the AFm phases are to CH; that is, some of the Mg 2+ ions can be replaced by 

A13+ or Fe 3+, and the charge balanced by anions which, together with water, occupy 

interlayer sites. Hydrotalcite, M96AI2(CO3)(OH)16-4(H20), results from the hydration of 

slag blended cements and as a minor hydration product of PC, with a similar 

composition to meixnerite, M96AI2(OH)18-4(H20)- Meixnerite, like AFm-type phases 

where anion exchange reactions occur, can readily take up C02, giving a material 

similar to hydrotalcite[l]. It is also necessary to consider the sulfate phases present in a 

PC clinker. Gypsum present in cement is usually of natural origin but some other 

products also belong to the group of hydrated sulfate phases such as hem1hydrates 

(CaS04-0.81-120or CaS04-0.51-120) and syngenite (KCS2H)E']. 

In summary, the most important information to bear in mind is that in OPC. C3A 

hydration leads to the initial formation of AFt-type phases which are, generally. 

converted later into AFm-type phases. The calcium aluminoferrite phases, C4AF and 

C2(A, F), when hydrated, also form AFt-type phases but, once again, lead later to the 

formation of AFm-type phases. Although the reaction is very much slower than the one 

Of CA both hydration rates are slightly retarded by the presence of CH. 
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2.2 - THE C-S-H PHASE 

In this section, the C-S-H phase formation inC3S and QS pastes is discussed. as well as 
the analytical techniques used to completely characterize the C-S-H phase'. the structure 
of the C-S-H phase is also discussed, covering the structural models that have been 

proposed. An overview of its morphology and microstructure, as \\ell its nanostructure 
in cement and blended pastes is also made. 

2.2.1 - C3S andC2S Hydration 

2.2.1.1 - Thermal Analysis 

Richardson [8] examined the hydration reactions Of C3S and found that although there 

was a significant variation in the Ca/Si ratio at the micron- and nanometre-scale, the 

average Ca/Si was - 1.65, and also that CH often occurred as massive crystals but also 

intermixed with C-S-H at the micron-scale. The determination of CH present in a paste 

can be made by several methods, including thermoanalytical methods such as TG, DTG, 

DTA and DSC111, as well as QXDA. There were found to be some significant 

differences between the thermoanalytical methods and QXDA, and although the former 

ones can be inaccurate if experimental conditions are not taken in consideration, STA 

(TG + DTA) is an acceptable method for an estimation of the CH and water content, 

and also shows some of the other phase contents in a cement paste, such as 

C-S-H, AFm, and CH. Regarding hydrogarnet formation, DTG studies191 performed for 

aluminoferrite phases, have shown that after twenty four hours of hydratioll, and in the 

absence of gypsum, three steps in the curve are observed at 100,170 and 280'C. 

corresponding to loss of water from a mixture of hexagonal hydrates and hydrogamet, 

respectively. After twenty eight days, the intensity corresponding to loss of water from 

hydrogarnet increases indicating that a solid solutionOf C3AH6 andC3FH6 is present. 

Considering the C-S-H phase, the loss of water is continuous, with a sharp typical peak 

around the 100'C. The AFm-type phases lose water between 150-200'C. the AFt-typc 

phases around I20'C and, finally, CH loses water between 410-540'C. Figure 2.3 

shows scvcral TG and DTA curves found for a fully reactedC3S paste in different 
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experimental conditions. Curve I in both TG and DTA plots corresponds to the tý pical 
TG and DTA curves found in mature C3S pastes. 
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Figure 2.3 - TG (left) and DTA Curve (right) found for a mature C3S paste"], 

In the TG plots, curve I shows a first weight loss around I OO'C which corresponds to 

the dehydration of the C-S-H phase and a second vxight loss occurs around 4850C 

resulting from the dehydration of CH. Table 2.2 summarises the ordinary thermal 

analysis data known in cement chemistry: 

pq Table 2.2 - Surnmary of thermal analysis data 

Component Peak Position' ('C) 

Tobermorite 2 130 

Ettringite 120-130 

Anhydrous Gypsum 140-170 (Endothermic) 

C-S-H Gel < 150 

Amorphous Hydrates 200-300 

Syngenite 290 

Brucite 420 

Portlandite (CH) 450-550 

Carbonated Samples (Vaterite) 450-600 (Endothermic) 

Carbonated Samples (Calcite) 600-650 

Quartz 578 (Endothermic) 

CaC03 750-850 

'I'harndite 880 (Endothermle) 

1 At I OoC per minute by DTA specific instrurnentation 
Peak appears at about 120 and 130*C, or as a shoulde r on the leading edge of an ettringite peak. 
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QXDA has also been used to determine the ýýater content of the C-S-H phase(] and 
unreactedC3S- 

2.2.1.2 - TMS 

The method of trimethylsilylation, TMS, provides a detailed study of the role of silicate 

polymerization in the process Of C3S hydration, as well as in cement pastes. TMS 

methods follow the degree of polymerization of the silicate chains and their relati%'C 
distribution. Besides microstructure, the change of the anionic structure during 

hydration will also define the complex chemical phenomena of hardening. The method 

itself involves a common procedure used in analytical chemistry, derivatisation. With 

this method, the samples are chemically modified in order to be more easily separated, 
distinguished from each other and, finally quantified. In this particular method of 

trimethylsilylation, the first step of derivatisation involves leaching the solid with an 

acid which leads to the formation of silicic acids that correspond to the original silicate 
ion structures [121 

. The following equation illustrates that step: 

Ca2SiO4+ 4HCI c: > Si(OH)4+ 2CaCI2 (Eqn. 2.2) 

The formed silicic acids will tend to polymerised thus, in order to avoid it, the acids are 

end-blocked by the addition of trimethylsilyl (TMS) groups: 

Si(OH)4+ 4(CH3)3SiCl '*(CH3Si)4SiO4+ 4HCI (Eqn. 2.3) 

The total reaction is: 

Ca2SiO4+ 4(CH3)3SiCl * (CH3Si)4SiO4+ 2CaCI2 (Eqn. 2.4) 

Finally, after the initial process of derivatisation of the silicate ion structures, the 

solution is analysed by gel permeation chromatography (GPC). also known as size- 

exclusion chromatooraphy. The solution passes through a packed column that works as 

a molecular sieve N\here the pore nevvork , vIII define which molecules \\ill reach first 
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the detector used in this technique, the process of elution. Therefore, larger molecules 
are excluded from the pore network and are the first ones reaching the detector and the 
smaller molecules will take longer to diffuse and reach the end of the column. The 

molecules are eluted in order of decreasing molecular weightý 121 
. The following figure 

shows the different polymers in white Portland cement paste, separated by gel 
permeation chromatography (GPC): 
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Figure 2.4 - TMS-GPC chromatogram of a white Portland cement paste hydrated 
[13] for 3 months 

In the C3S hydration, TMS studies showed that the degree of silicate polymerization 
increases as reaction proceeds, although it is not a continuous process like with an 

organic polymer. A few years later, after Tamas and Varady [14] presented a first 

consistent TMS study on C3S and dicalcium silicate (C2S), Mohan and Taylor [151 ended 

some conflict in the results of other investigators, and demonstrated that only pastes of 

similar degrees of reaction should be compared and, more important, established the 

anion polymerization and the development of the silicate chains. In a first stage, and 

during the first few days, C3S reacts to give CH, and breaks down to produce monomers 

and a resulting form of C-S-H containing dimer, but no appreciable polviiier. In a 

second staoc, which lasts for about six months, C3S continues to produce i-noiiomers 

which, at the same time, form dimers and are consequently followed by further 
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polymerization. Since little or no C3S remains, the polymeric anions can only be fon-ned 

by alteration of the C-S-H phase already formed, but it is an extremely slow process and 

only detectable after the C3S hydration is substantially complete. The dimei- content 

reaches a maximum of around 50-60% after six months and then falls to around 40% 

after one year, while that of the polymeric forms steadily increases to 40-60%. Although 

the TMS methods indicate the proportion of the silicon in the different polymers 

present, it has two limitations: side reactions can occur and it is rarely possible to 

account for more than 80-90% of the total silicon. 

2.2.1.3 - Solid State MAS NMR 

In order to complement the TMS methods, the use of 29Si Magic Angle Spinning Solid 

State NMR (MAS NMR) is the best option. NMR techniques are purely physical and 

bulk techniques, avoiding the problem of side reactions or alterations in the structure, 

and also providing data related not directly to the fractions of the silicon present in 

different anionic species like in the TMS methods, but to the fractions present in 

different environments, giving mean chain length values. TMS gives an absolute 

distribution of the different kind of polymerized silicate chains. Since the 29Si isotope 

has an intrinsic magnetic moment, as do some isotopes of other elements important in 

cement chemistry, namely 1H 
, 

27 A] and 1705 it is possible to acquire very important 

information about the local environment and coordination of those elements [1,5,16] 
. This 

is especially useful with poorly crystalline materials such as C-S-H where XRD gives 

almost no significant information on its structure. If a solid sample is spun at the "magic 

angle" of 54'74' to the magnetic field, the orientation effect and consequent line 

broadening are eliminated and resolution of the fine structure in a spectrum is possible. 

Thus, peaks for the different Si site environments can be solved and different Si04. and 

also Si06 units (thaumasite), tetrahedral and octahedral coordination respectiN'ely, can 

be distim)Llished through their chemical shift (6) difference. 29 Si NMR chemical shifts in 

solid silicates, or alummosilicates, depend mainly on the degree of condensation of the 
29 

silicon-oxygen tetrahedra, and increasing anion condensation will lead to increasing S1 

shiclding. Bell et al. 117] follo-wing some previous work, conducted one inN, estigation of 

solid state 29S i MAS NMR. for inorganic materials. They defined well separated ranges 

CHAPTER 11 - LITERATURE REVIEW 



18 

of the chemical shift which could be related to the extent of polymerization in a 

crystalline silicate. Applying those results and some previous ones [51 to the calcium 

silicate hydrate gels that are formed in the hydration of tricalcium silicate. it is knowil 

that the nearest neighbour environment of silicon in cement pastes is almost invariably 

tetrahedral coordination (Si04 group). Its chemical shift is determined by the number of 
SiOT bridges formed by the given Si04 tetrahedron T; the degree Of S104 

polymerization, and the number of Si or Al atoms in the second coordination of the 

central silicon with a given number of SiOT bridges, the degree of tetrahedra Al 

substitution. Regarding the degree Of S104 polymerization, characteristic high-field 

shifts are observed with increasing number n of SIOT bridges at the central silicon atom 

of the Q" (i. e. Si(0Si)n(0_)4-n) structural unit. Q is a silicate tetrahedron and n is the 

number of oxygen atoms which bridge to adjacent tetrahedron. Thus, Q0 denotes 

isolatedSiO4 tetrahedron (orthosilicates), Q1 disilicates Si-107 and the end tetrahedra of 

a chain, Q2 middle groups, Q3 for branching sites in a chain and Q4 for a three- 

dimensional network in which every oxygen in theSi04 tetrahedron is shared by two Si 

atoms. The following table shows the chemical shifts for each Qn structural unit in 

several silicates: 

Table 2.3 - Characteristic NMR shifts of silicate species in cement pastes [17 ] 
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Type of silicates Designation Tetrahedral Range/ppm 
Structure 

0- 

Ortho(mono)silicates Q0 O-Sio- 
-66 to -74 0- 

0- 

Disilicates (endchain groups) Q1 O-SIOSI 
-75 to -82 0- 

0- 

Chain middle groups Q2 
SiOSIOSI 

-85 to -89 0- 

Sl 
0 

Chain branching sites Q3 Siosiosi -95 to -100 
0- 

S1 
0 

Three dimensional framework Q4 SiOSIOSi -103 to -115 
0 
S1 

A 29Si MAS NMR spectrum Of C3S anhydrous reveals chemical shifts between -69 and 

-75 ppm, corresponding to nine resonances in seven resolved lines and two of those 

having double intensity, as the following figure shows: 

A H1H 

-65 -70 - 72 -76 PD- 
29Si C, Figure 2.5 - MAS NMR spectrum of anhydrous 

. 
S[181 
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When C3S pastes are formed, the content of Q0 (monomer) begins to decrease after a 
few hours, with formation of Q1 (dimer). later accompanied by Q2 (middle groups). 11o 
Q3 or Q4 (chain branch sites and three-dimensional net-ý\ork) are detected. Rodger et 
alJ191 found a good correlation between the degree of hydration. indicated by the 

changing relative areas of Q0 and Q1 peaks. the increase of cumulative heat liberated 

and the increase in the amount of CH formed, confirming previous results from TMS 

studies. They found that the product formed in the first few hours only contained 

monomeric anions and that the dimer only begins to form later. The QI/Q2 ratio reached 

a maximum in dimer content indicated by TMS, but the monomer did not disappear 

while further hydration resulted in a slow, small decrease in this ratio indicating a 
higher degree of polymerization. Brough et al. [20] concluded that the C3S hydration 

appears to take place in two distinct stages, as other previous M%, estigations %\,, Ith TMS 
[2 1,221 

methods also found 
. 

Initially, dimerization occurs as: 

Monomer + Monomer * Dimer 

(2QO * Q' ) 

(Eqn. 2.5) 

Then, polymerization occurs as the chains grow by the linking of dimers (or longer 

chains) with monomers: 

Dimer + Monomer + Dimer cý, Pentamer (Eqn. 2.6) 

Dimer + Monomer + Pentamer * Octomer (Eqn. 2. /) 

This also enabled calculations from the observed proportion of the Q' species, the 

proportions of monomeric silicate units which react to form dimers, or which form links 

between chain-crid groups resulting in polymerization. 29Si MAS NMR complements 

TMS studies and the results are consistent with the previously explained for TMS 

methods. Finally, it is also consistent with the 22,5,8... (3n-1) polymerization sequence. 

reported by HirIjac et al. [ 22] 
. This sequence leads to a number of proposed structural 

i-nodels for the C-S-H phase, which will be discussed in this chapter, section 2.2.2. A 

form of simplifying interpretation of spectra is to use the Cross-Polarization NMR 
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technique (CP MAS NMR) in which only Si atoms close to protons signal so the 

resonances of the anhydrous phases are eliminated, i. e. it is possible to discriminate 

between silicon atoms in tetrahedral sites associated to one or more protons due to 

hydration, and ones that do not and are present in the anhydrous material [17,19,2U3-'4. -)5] 
. 

Thus, this technique distinguishes between monomer present in the anhydrous phases 

and those present in a hydration product, which is almost certain to carry hydrogen. 29 Si 

MAS NMR studies Of C3S pastes are often used as a model for ordinary Portland 

cement (OPC) if they have the same w/s ratio and have been cured under the same 

conditions [1,8,13,26,27,28] 
. 

29Si MAS NMR has also been used to study polymorphs of 

C" S[1 8,29,30]. It was established that cc, P and 7-Ca2S104 polymorphs presented chemical 

shifts around -70.3, -71.4 and -73.5 ppm, respectively. The following Figure shows the 

obtained spectra for 7-Ca2SiO4 that also contained some P-Ca2SiO4 [29] : 

-73.5 

B 

-70.9 

-70.0 -90ý0 

Figure 2.6 _ 
29Si MAS NMR spectrum for y-Ca2SiO4 (-73.5 ppm), and P-Ca'Si04 

(-70.9 pprn)J291. 

111 27 Al MAS NMR, it is possible to see two distinct peaks for the tetrahedral and 

octahedrally coordinated aluminium, in aluminosilicates. Since A13+ is a guest ion in the 

silicate phases of cement clinker, ývhen the C-S-H phase is formed from alite (and 

belite). aluininium is incorporated in its structure. Figure 2.7 exemplifies the different 

coordination sites in a 27 Al MAS NMR spectrum. 
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Figure 2.7 _ 
2'Al MAS NMR spectrum of the layer aluminosilicate margarite, ýNliere A Ile'and 

Aloct denote tetrahedrally and octahedrally coordinated aluminium, respectivek (* indicates 

spinning sidebands)ý 
161 

Alummosilicates result from an isomorphous replacement of the SiO4 tetrahedra \N"ith 
A104- tetrahedra. The extra charge introduced by the substitution must be balanced by 

[161 additional cationic charge elsewhere in the structure of the final aluminosilicate . 
In 

the three-dimensional framework, each A104 tetrahedron connected to another Si04 

tetrahedron shifts the 29Si signal by about 5-6 ppm to low field. Thus, in basic 

alummosilicates, it is possible to distinguish the chemical shift ranges for the tetrahedra 

with alummiurn substitution. Here, Si(mAl) designates a Si04 tetrahedron connected to 

mAI04 and (4-m) Si04 tetrahedron. Using the Q' structural unit, where Q is a silicate 

tetrahedron and n is the number of oxygen atoms which bridge to adjacent tetrahedron, 

the aluminium substitution leads to the notation of Qn (mAI) where m corresponds to the 

number of Al substituting silicon in that site. The AI/Si ratio and distribution/ordering 

of Si and Al ions in the framework, will affect the final physical and chemical properties 

of cementsý181. Skibsted et al. [3 11 reported the first evidence for aluminium guest ion 

27 substitution in alite and belite 
. 

Al MAS NMR of alite showed a single peak 

correspondent to a four-coordinated aluminium, AI[IV], with a chemical shift of 

80 <6< 91 ppm. Their results demonstrated that Al preferentially substitutes for 

tetrahedral coordinated silicon in alite. 
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100 80 
60 40 20 

-100 -200 -300 

Figure 2.8 _ 
2'Al MAS NMR spectra of monoclinic aliteý"' 

Tong et al. 
ý32,331 

used 
29Si MAS and CP MAS NMR to fOllOW P-C'2S hydration. 'I'licy 

concluded that the mechanism is substantially similar to the one f6rC3S hydration, and 

also that the overall composition and morphology of C-S-H formed appears to be 

identical to the one formed fromC3S, and presents a Ca/Si ratio in the range 1.6-2.0. 

Another important conclusion arising from those studies, besides the similarities and 
differences between the two systems, is the fact that they also did not find any Q3 or Q4 

peaks in the spectra corresponding to the hydration products of P-calcium disilicate, i. e., 

meaning that no higher polymerized C-S-H was found. Other 29 Si MAS NMR studies 

revealed that for anhydrous C-, S, the spectrum shows a single peak around -71.3 ppm 
[18,34,3 51 

, as the next figure shows: 

Q0 

70 --80 PPM 
-60 -70 -80 -90 ppm 

Figure 2.9 - 
I"Si MAS NMR spectra of anhydrous C S[351 and a C2S paste 

[331 

As mentioned before, another structural factor that affects a 29 Si chemical shift is the 

aluminiurn content in the framework. Skibsted et al. [3 11. besides reporting that AI 
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preferentially substitutes for tetrahedral coordinated Si in alite. also demonstrated the 

same for belite, using 27 Al MAS NMR (Figure 2.10). The observation of a single. Al[lV] 

resonance for belite, 6- 96.1 ppm, demonstrated that Al substitutes for tetrahedral Si 

because the crystal structure for P-C2S shows that all the Si atoms are equivalent. They 

also found another resonance at 6- 10 ppm, corresponding to the Al[VI] site, but the 

absence of octahedral places or vacancies in the crystal structure for P-C-'S suggests that 

this observed resonance originates from a separate aluminate phase. 

ri1iý. IIII. II. I. IIII. III.. IIII. VI.................... 

120 100 80 60 40 20 0 -20 -40 -60 -80 
6 

2 [3 1] Figure 2.10 _ 
'At MAS NMR of At guest ions in belite 

P-C2S hydration was also studied using 
17 0 and 

29Si MAS-NMR by Cong and 

Kirkpatrick [361 

. They already knew that upon hydration, the isolated silicate tetrahedra 

Q0 Of C3S and P-C2Swould polymerize to Q1 and Q2 sites in C-S-H. If isotopically 

unenriched calcium silicates are reacted with 170-enriched water, all the 
17 0 NMR 

signals present in the reaction products must be from the 
170 

originally in the water. For 

the C-S-H phase, 
17 0 NMR allowed the direct observation of oxygen in Si-O-Si 

(bridging oxygen), Si-O-Ca (non-bridging oxygen), Ca-OH and possibly SI-OH 0-sites 

in C-S-H formed by hydrationOf P-C2S and, as expected, Ca-OH sites wcrc also present 

in Ca(OH)2which accompanied the C-S-H phase. The following figures correspond to 

belite 29S 
i and 

170 
spectra, as well to the belite hydration evolution: 
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Jays, 58.4% 

lays, 4ý 

lays, 2: 

days, ( 

nreacte 

Figure 2.11 _ 
29S 

i (A) and "0 (B) MAS NMR spectra of hydratedP-C2 S1361 

-60 -80 -100 
ppm from TMS 

ový 
%Nmý, 

IIITIIT11 100 0 
-1 

Ou 

ppm from water 

Figure 2.12 - 
'9Si-'H (A) and "0-'H (B) CP MAS NMR spectra of P-C-, S hydrated for 100 

days 1361 
. 
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Considering the aluminosilicate/alurninoferrite phase hydration, many works have 

described the hydration kinetics for the formation of ettringite and its conversion into 

monosulfate. For instance, according to Chudek et al. ý371, Skibsted et al. 1381 and 
Andersen et al. [39] 

, the signal observed in a 27 Al MAS NMR spectrum of an hydrated 

OPC paste, for a chemical shift at 79 ppm (tetrahedrally coordinated Al) is due to 

aluminium guest-ions in the C-S-H phase, and a second peak around 10 ppm 

corresponded to a minor quantity of hydrated phases. After hydration, a A1[VI] signal is 

attributed to ettringite at 13 ppm, another peak around 9.8-8.6 ppm (depending on the 

magnetic field) belongs to monosulfate and, finally, a third signal with a chemical shift 

at 74.6 ppm corresponds to tetrahedral coordinated Al incorporated in the C-S-H phase, 
bearing in mind that, after hydration, the chemical shift for AI[IV] changes ca. 10 ppm 

towards lower frequency (A13+) to -65 ppm. It was also concluded that C3A and C. jAF 

are not observed due to their strong quadrupolar couplings. In C4AF, this is due also to 

strong dipolar couplings between 27 Al nuclear spins and the spins of the unpaired 

electrons of the Fe 3+ ions, resulting in severe line broadening of the resonances from 

this phase and others, as mentioned before. Skibsted et al. [401 also found that in synthetic 

ferrites before their hydration, the Al present in the ferrite phase contributes little or 

nothing to the observed 27 Al MAS NMR spectrum (in their experimental conditions). 

Therefore, the 27 Al MAS NMR spectrum can be considered as the sum of subspectra 

coming only from C3A and from Al guest-ions present in alite and belite. In a 21)Si MAS 

NMR spectrum for thaumasite, the Si site shows a chemical shift around - 180 pprn and 

it was also studied using 29Si CP MAS NMR spectroSCOPY[41]. In summary, 27 Al MAS 

NMR studies revealed that the chemical shift for AFt-type phases, in general, is 12 pprn 

and for AFrn phases or C4AH 13, is around 8 ppm. 

2.2.1.4 - Electron Microscopy 

As stated before, the study and knowledge of C-S-H phase microstructure and 

composition is vital to understand the properties of a cement paste, and to obtaill all the 

important information. In order to achicve it, one of the most powerful techniques used 

is electron microscopy. Taplin presented the first microstructural distinction between 

[421 two dit'fcrent types of products resulting from a cement hydration . Outer product 
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(Op) C-S-1 I formed in the originally water-filled spaces, and inner product (1p) C-S-H 

formed within the boundaries of the original clinker particles. This scheme is quite 

straightforward and has been adopted widely with the support of several reported works, 

although other authors have proposed alternative classifications [42 ] since Taplin. 

Following this structural distinction, Groves et al. [43 1 examined ion-beam-thinned 

sections of a synthetic C3S paste, by Transmission Electron Microscopy, TEM. This 

technique allowed them to easily examine morphology of the pastes analysed. Although 

carbonation of the samples was not avoided and carbonation will interfere ýN-ith any 

analysis of a cement paste and may lead to incorrect conclusions, it %Nýas found that 

residual particles Of C3S were embedded in amorphological homogeneous gel, lp, 

formed from the original C3Sparticles. The lp was linked to a morphological distinct 

fibrillar (needle-like and sometimes radial) gel, the Op. The most important conclusion 

that was achieved with this work was that there is no significant difference between the 

Ca/Si ratios of both products. Besides this, it was also found that the calcium carbonate 

(calcite) resulting from carbonation of the samples occurred as microcrystals within the 

Op, and CH as imperfect large crystals. The use of scanning electron microscopy (SEM) 

is also very important in the study of cement and concrete. Representative flat polished 

samples can be observed by SEM and analytical EDX analysis can also be performed. 

SEM provides information regarding the microstructure/bonding between the different 

components in a concrete sample, and also the morphology of the hydrate phases. From 

SEM imaging, it is also possible to obtain data/information about the porosity of a 

certain cement-based sample [44] 
. As hydration takes place in the cement paste, the 

microstructure starts to build up. The resulting hydrate phases fill in the spaces between 

the cement grains leading to the development of a solid mass. The latter is mainly 

constituted by C-S-H that deposits around the grains, and CH that forms in the water 

filled pores. Figure 2.13 shows a typical backscattered image of a Portland cement 

mortar: 
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pore.; 

sand (aggregate', 

ý'outer" or 
.1 Lindifferentinind" 
C-S-H 

"inner" C-S-H 

partially reacted 
cement grain 

calcium hydroxide 
(C H) 

Figure 2.13 - Typical backscattered iniage of a Pot-fland cement mortar with the imcrostrLiCtUral 

constituents dIStIlIgUislied""". 

STA, TMS Studies, solid-state NMR and electron rnicroscopy are a few of the most 

common techniques used in order to obtain partial characterization of the C-S-11 phase. 

STA, TMS and NMR are bulk techniques that identify some of the phases usually 

present in a cement paste, and also provide qualification/quantification of the silicon 

structure in C-S-H. Analytical electron microscopy gives information regarding the 

morphology and phase composition. 

BULK TECHNIQUES 
c 

STA 

TMS 

NMR 

Figtire 2.14 - Scheinatic diagrarn sliowing the relationship between tlie different techniques ti cC 

used for the C-S-H phase characterization. 
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Tlie latter section dealt with vcry simple and pure systems such as C3S and C2S pastes. 
because their hydration process will be fundamental when discussing the proposed 

structural models or when characterizing more complex systems as in 2.2.3, \vlicre 

many other aspects regarding the analytical application of techniques, particularly 

electron microscopy, will be discussed with more detail. 

2.2.2 - Structural Models 

The C-S-1-1 phase is an amorphous, or nearly amorphous, disordered gel but from early 

evidence, it also presents some local short-range structural order. Based on sevcral 

studies, Taylor [45,461 proposed a structural model for C-S-H formed in C3S pastes, at 

room temperature. The model consisted of a combination of highly disordered layer 

structure in which the layers are similar to the ones of two imperfect cr-ystalline 

hydrated calcium silicates, 1.4-nm tobermorite (Ca5S16026H, 8)[471, where 1.4-nm 

denotes the lattice spacing c, and jennite (Ca9Si6032H2'_ Both calcium silicate 

hydrates present a layered structure with linear silicate chains (Si-O), called dreierkette- 

type because the chains have an empirical composition Si03 2- repeating at intervals of 

three tetrahedra. If the chain is fragmented into shorter chains, they would contain 2,5, 

8 
... or, in general, (3n-1) tetrahedra, which is in accord with the (3n-1) sequence of 

polymers reported in TMS studies, as mentioned before. In tobermorite, each layer 

consists of a central part with an empirical formula Ca02 in which all the oxygen are 

shared with those Of Si04 tetrahedra belonging to Si04 chains that envelop the Ca02 

sublayer from both sides. In each S104 triplet, there are two types of tetrahedra: the 

paired ones which are the tetrahedra that share two of their oxygen with the oxygen of 

the CaO sublayer, and the bridging one, positioned between two paired tetrahedra to 

form a continuous Si04 chain, one oxygen atom of the bridging tetrahedra is 

coordinated to the main layer. The interlayer space between the individual layers is 

filled with Ca 2+ ions, to balance out the negative charge of the layers, and also \\ith 

water molecules. The jennite layered structure is very similar to that of tobermorite but 

the main difference is that it is more ordered than in tobermorite and, in jennite, half of 

the chains are alternately replaced by rows of OH groups, resulting in a much larger a 

axis in the crystalline unit cell [24] 
. 

The following figures show representations of the 
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idealised chemical structure of 1.4-nm tobermorite and jennite [4] and the dreierkette- 

type chain present in both of the structures[]: 
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Figure 2.15 - Idealised chemical structure of (a) 1.4-nm tobermorite and (b) jennite [41 
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Figure 2.16 - Silicate chain of the type present in 1.4-nm tobermorite and jennite: the 

dreierkette-type chain. The tetrahedra in the lower row correspond to the paired ones and those 

in the upper row, the bridging tetrahedra. At X, a bridging tetrahedron is missinglil. 
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Many tobermorites, either natural or synthetic, sho-\. v some deviations from the ideal 

composition and those variations can be caused by the following effects: some of the 

bridging tetrahedra may be absent from the dreierkette chain, increasing the Ca, 'Si ratio; 

interlayer links may be formed, decreasing the Ca/Si ratio. and partial substitution of Si 

by Al is balanced by an increase in the interlayer calcium, by introduction of alkali 

cations, or by both charge compensations. Therefore, Taylor's model considers a 

combination of anomalous tobermorite and jennite structures and, at early ages, the Mo 

structures are present in comparable proportions, and all the bridging tetrahedra are 

absent. At later stages, the jennite-type layers become more dominant and the bridging 

tetrahedra are present to an increasing extent. Hence, the silicate anion structure 

polymerises from Si207 groups to chains of various lengths. This transition from 1.4-nm 

tobermorite to jennite explains the observed changes in anion distribution with time, 

changing from a more to a less imperfect structure. The low degree of order is attributed 

to the presence of both structures, together with variability in anion type and ), vatcr 

content. Taylor also compared other type of C-S-H phases, such as C-S-H(l) and 

C-S-H(II), both considerably more crystalline than the C-S-H formed in cement pastes 

under normal conditions. C-S-H(l) is a quasi -crystalline phase with an imperfect 

tobermorite-like structure, and C-S-H (11) is similarly related to jennite, presenting a 

denser structure. Considering the Ca/Si ratios, the next table presents the extreme values 

for infinite chains and dimers in 1.4-tim tobermorite and jennite [451 : 

Table 2.4 - Limiting values for Ca/Si ratios in Taylor's mode 1[45] 

Ca/Si ratio Ca/Si ratio 

Dimer Infinite chains 

1.4-nm Tobermorite 2.25 0.83 

Jennite 2.25 1.5 

Briefly, the structural model for the C-S-H phase proposed by Taylor, consists in the 

following: 

- Most layers are structurally related to imperfect ones of jennite and a smaller 

proportion are similarly related to the 1.4nm- tobermorite, 
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- Many, or all, the silicate tetrahedra are missing from chains, especiallv in the 

tobermorite ones, 

- Some of the AFm phases present are intimately mixed with the C-S-H gel: 

- This model explains the Ca/Si ratio and the increase with time of the avcraoc 

silicate anion size. 

Regarding this last consideration in Taylor's mixed tobermorite-jennite-type model, the 

following figure shows the calculated Ca/Si ratio plotted against a function of chain 
length for jennite and 1.4-nm tobermorite, modified by omission of bridging 

tetrahedrall]. 

0 
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ý2 1.4 nm To,, ), z r ý-r, oritc 

0.8 
2 

Chain Leng th 

Figure 2.17 - Calculated Ca/Si ratio plotted against a function of chain length for jennite and 

1.4-nm toberi-norite[l] 

It was possible to observe that a Ca/Si ratio of about 1.8 could arise from a mixture of 

the two structures, both with dimeric chains, or from a jennite-type structure Nvith, on 

avcraoc, pentarneric chains. 
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Richardson and Groves [2] proposed a general model for the C-S-H phase. based on a 

more thermodynamic approach. This model was not intended to replace Taylor's model 
but another structural perspective could also be considered, dependi1w, on the conditions zg 
under which the C-S-H phase was formed. Besides considering the tobermorite/jennite 

(T/J) viewpoint, another formulation was introduced: layers of tobermorite-based 

structure interstratified with "solid solution" Ca(OH)2, the tobermorite/calcium 

hydroxide (T/CH) point of view. The two-component solid solution systems of Ca(OH)2 

and a C-S-H phase (often an established crystalline C-S-H phase, tobermorite or jennite) 

of low Ca/Si ratio can be described by the following general formula: 

xCaO. SiO2. yH20 (Eq i 1.2.8) 

where x=0.833 and y=0.917 for 1.4-nm tobermorite. Ca(OH)2 is considered as an 

integral component with no independent existence within the structure, designated by 

"bound" Ca(OH)2. The "free" calcium hydroxide is the one reserved for any crystalline 

Ca(OH)2which may be present. This solid solution-type approach results from evidence 

observed from chemical extraction methods which showed that Ca(OH)2 could be 

leached more easily from high Ca/Si ratio C-S-H gels than from low initial Ca/Si ratios, 

indicating that there is a limiting value of extractable calcium from C-S-H gels. The 

general formula proposed for C-S-H, considering that C-S-H has isolated silicate chains 

of varying length and with a variable number of -OH groups attached to Si atoms, and it 

is in a solid solution with a variable amount of Ca(OH)2: 

CaxH2(n+I-X)SinO(3ii+l) zCa(OH)2-MH20 (Eqn. 2.9) 

n defines the length of the silicate chain; 2(n+I-X) the number of hydroxyl units 

attached to the chain; z the number of Ca(OH)2units in the solid solution; m the number 

of water molecules bound but not present as hydroxyl groups; X the calcium ions 

necessary to charge-balance the silicate chain; and (X + z) is the total of calcium ions 

present. The model also considers that the chains are not cross-linked as shown by 
I 

solid-state 29Si MAS NMR studies of C-S-H gels where there are only signals for the 
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chain-end silicon (Q' units) and middle-chain silicon (Q2 units). In order to account for 

the hydroxyl water, the model can be represented by the next formula: 

(Eqn. 
-?. 

10) 'Ca2nH�Si(3n-1)0(9n-2)ý -(OH)w+n(ý -2) 
Can. 

ý/2 -MH20 

Within the brackets, the tobermorite-like core is present. n is the number of units 
(integer for individual and non-integer for mixtures of units), w is the amount of 
hydroxyl water, and (3n-1) the mean length of the silicate chains. In here, the silicate 

anion distribution of the tobermorite units is taken to mirror that of the jennitc units, 

allowing a more flexible approach to the hydroxyl water content of the C-S-H. 

Therefore, when w increases, structurally, it corresponds to increasing the number of S1- 

O-Ca-01-1 and -Si-OH bonds, at the expense of -Si-O-Ca-0-Si-. 

As a result, Taylor's model can be considered as a special case of Richardson and 

Groves' model, where C-S-H is composed of structural units derived from jennite and, 

to a lesser extent, 1.4-nm tobermorite by omission of bridging tetrahedra. Taylor's 

tobermorite-based structural units are derived from Equation 2.10 if y=I and the 

degree of protonation of the silicate chains, w/n = 1. For jennite-based structural units, 

y=5 and w/n = 1. In order to distinguish between the calcium in the main layer and in 

the interlayer, the position of the remainder of the (n. y/2) Ca 2+ ions outside the brackets 

in Equation 2.10, depends on the structural viewpoint adopted. From Taylor's point of 

view, they occur in layers of Ca(OH)2 sandwiched between silicate layers of 

tobermorite-like structure. If the new point of view is adopted, then the calcium ions 

form part of the main layer. Another difference between the two models is that Taylor's 

model consists on '/2 of possible SiOH groups and 1/2Ca coordinated; Richardson and 

Groves' model allows full range of OH from 0- 100%. This gives rise to a greater range 

of Ca/Si ratio and the model perspective also enables the possible mean chain length 

(MCL) to be extended. The following table shows some differences between the two 

models, Taylor's model (T/J viewpoint) and Richardson and Groves' model (T/CH 

point of vicw): 
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(I 1, )l Table 2.5 - Ca/Si ratios assumed by the T/J and T/CH vie,. N, points 

T/J T/Cll 

Ca/Si,,, i,,. (Tobermorite-based infinite units, T, ) 0-83 0.67 

Ca/Si ,,. (Jennite-based dimer, J, ) 2.25 2.50 

The next figures show the tobermorite and jennite-based dimers Nvith the maximum 

degree of protonation, w/n = 2, where (a) shows a schematic diagram demonstrating 

chemical accounting; (b) and (c) show more realistic strLICtLiral representations derived 

LISIng crystal strLICtLire data. 
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Figure 2.18 - Tobermorite-based dimer with a maxiMUrn degree of protonation (w/n =2 )131 
t7l 
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Figure 2.19 - Jennite-based dimer with a maximum degree of protonation (NAl/n ý 2)1'1 

Most of the data present in the literature is consistent with the T/J point of view, but 

Richardson and Groves observed that these results could also be interpreted bv the 

T/Cl-l perspective [49-5 ". A year later, Richardson and Grove S[49] extended their model, 

considering the incorporation of minor and trace elements into the calcium silicate 

hydrate (C-S-H) gel. From OPC blends with ggbfs, they found that the Op was mainly a 

single- phase and lp from alite, belite and slag is compositionally equivalent to Op but 

lp had the addition of elements of brucite-based and AFm-type phases, and MV Al- 

hydroxide-type phases. Based on much evidence for Al (or minor amounts of Fe) 

Substitution in the C-S-H gels, Equation 2.10 becomes: 

'Ca-),, 11,, (Sil-,, R (4 )a)(3n-1)0(9n-2)j 
'I 

C+ 
a(31l-l)/c *(OH)%ý+n(ý-2) -Ca (Eqn. 2.11) 
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where if 0 :! ý y :! ý 2 then n(2-y) :! ý w :! ý 2n, if 2 :! ý v :! ý 4 then 0 :!! ý xv :! ý 211. and if 4 :! ý v :! ý 6 

then 0:! ý %\,:! ý n(6-y). R (4) is a trivalent cation (mainly AI in tetrahedral coordination). and 
Ic+ is an interlayer ion (either a monovalent alkali cation or Ca2-) which 

charge-balances the R 3+ substitution for Si4+ 
. Aluminium is assumed to substitute only 

for Si in the bridging tetrahedra of the dreierkette structure [13], since there are n- I 

bridging sites, 0 :! ý a _< 
(n-l)/(3n-l'). Therefore, Equation 2.9 for the T/CH viewpoint is 

transformed from Equation 2.11 by X= 1/2 (6n- w) and z= V2 (w + n(y-2)) into: 

Caxll(on-2X)(Sil-aR (4 )a)(3n+l) 0(9n-2) 'V'a(3n-l)/c zCa(OH)2 mH20 (E(Il 7.2.12) 

Richardson and Groves also considered Al substitution in C-S-H cls. Aluminitim 

substitution plays a significant role in the chemical behaviour of a cement paste. It also 

influences the cation/anion solubility and the suitability of the cement paste for 

hazardous waste applications. In a 29Si MAS NMR spectrum the observed resonances at 

about -79.5 and -84.5 ppm, originating from Q1 and Q2 sites respectively were again 

observed but in addition another resonance was observed at around -82 ppm, which they 

assigned to a Q2(IAI) site. It corresponds to aS104 chain unit connected to oneSi04 and 

one A104 tetrahedron. They also found that aluminium can only substitute for Si in the 

bridging site, Q2. The tetrahedral coordination for aluminium in the C-S-H gel was also 

supported by observation of a broad resonance at about 70 ppm in the 27 Al MAS NMR. 

Although some authors considered that Al substitution could also occur in non-bridging 
[52,53] tetrahedra , several other NMR studies and Electron Energy Loss Spectroscopy 

(EELS) studies confirmed the Al incorporation in C-S-H in the bridging tetrahedra 

resulting in a resonance at -81 ppm from aQ2 (IAI) site, as well the assignment of the 

resonance at about 74.6 ppm in a 27 Al NMR spectrum to tetrahedrally coordinated 

aluminium incorporated in the C-S-H phase (29,54-57] 
. 

The following figure illustrates the 

t\N'o possible aluminium substitutions but it was demonstrated that aluminium only 

substitutes in the bridging tetrahedra, as seen in the middle representation (b). 
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Figure 2.20 - Schernatic representation of a pentameric silicate chain of the type present in 

dreierkette-based models for the structure of C-S-H. (a) Q1 and Q' units are identified and 

Q2 Unit the middle is the "bridging" tetrahedron. (b) The same as (a) but with Al- 

substituted for Si" in the bridging tetrahedron. (c) The same as (a) but with A 13+ substituted 
131 for Si" in the non-bridging tetrahedroný . 

Finally, Richardson and Groves also concluded that: 

- Increasing Al substitution reduces the Si/Ca ratio; 

- The degree of substitution of Si by Al is evaluated from the mean Ca/Si ratio 

of the single-phase C-S-H. Al incorporation is easier in low Ca/Si ratios 

systems because it is associated with the calcium available for substitution-, 

For the limiting Ca/Si ratio of 2.25 where no Al can be incorporated, the mean 

aluminosilicate chain length is 2, since in dimers there are no bridging 

tetrahedra and no substitution is possible; 

From 27 Al MAS NMR data, when the gel is saturated v, 'ith respect to calcium, 

the Al occurs in 6-fold coordination, therefore, it appears improbable that 

tetrahedral Al NVOUld occur in jennite-type units which are saturated; 

Pozzolanic reactions and KOH activated pastes lead to more highly 

polyincrizcd C-S-H. 
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Richardson [3] also demonstrated that a proper structural model for C-S-H must take in 
consideration the observed compositional variations and distributions of composition, 
within any particular system. Therefore, it should account for the follo%%ing 

observations: 

- In commercial cements, the mean Ca/Si ratio of C-S-H varies considerably 
between -2.3-0.7, 

- In (ý3S and OPC pastes, the mean Ca/Si ratio of C-S-H does not var\, with 

- C-S-H shows a very fine-scale compositional heterogeneity; 

- Generally, C-S-H becomes compositionally more homogeneous witli agoc. 

- In many cement-based systems, C-S-H contains significant amounts of 

substituent ions, the most important being A13+. 

Richardson showed the application of the proposed model to hardened pastes of 

tricalcium silicate, P-dicalcium silicate, PC, and blends of PC with blast-furnace slag, 

metakaolin and silica fume. Many of the experimental results presented in Richardson's 

work [31 will be more detailed discussed in the next section. 

Cong and Kirkpatrick [58-62] proposed a structural model similar to the Richardson and 
Groves' model. Cong and Kirkpatrick's model is also a defect-tobermorite structural 

model for C-S-H, in which the structure is based on that of 1.4-nin tobermorite but more 
disordered, containing a significant concentration of defects. As in Richardson and 
Groves' model, Cong and Kirkpatrick considered the presence of Ca 2+ ions and water 

molecules in the interlayers, as well as the missing tetrahedra and layers of Ca(OH)2 

occurring within the stacking sequences, the T/CH point of view. The diversity 

observed among different C-S-H samples was explained by disorder in the stacking 

among adjacent layers and structural disorder within each layer. Therefore, this model 

did not add anything iiew to the previous proposed model. 

Another proposed model [3 1 based on tobermorite was the one from Nonat and Lecoq. 

Nonat and Lecoq considered three distinct C-S-H phases, corresponding to three 

different calcium hydroxide concentrations. The model was based in two different 
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hypotheses: a first one that corresponded to tobermo rite -based structural units with 
absent Si-OH groups; a second hypothesis that involved the presence of calcium and 
hydroxyl cations in the interlayer space. 

A few years after Cong and Kirkpatrick, Grutzeck [631 Proposed another model in the 

attempt of creating an universal model and that could be used as a link to the majority of 

the experimental data in the literature. Grutzeck considered it in a way that it should be 

simple, easy to apply and rigorous in its formulation, and based his model on a 

sorosilicate-like structure. Sorosilicate minerals are a subclass of the silicates which 

present two silicate tetrahedra linked by one oxygen ion and, therefore, the basic 

6- chemical unit is the anion group S1207 . Although this class includes normal silicate 
tetrahedra as well the double tetrahedra, it only has a few common members in 

comparison with all the other silicate subclasses. In Grutzeck's model, it is suggested 

that the dimeric C-S-14 that forms soon after setting and hardening, may be a metastable 

phase in its own right, a rigid gel precursor phase whose stability is related to its 

calcium content. The proposed model differs from the rest of the models because it 

proposes a relatively rapid equilibrium followed by a much slower diffusion-controlled 

phase change process. Usually, the dimeric C-S-H is formed later, at the end of the 

induction period, given by NMR evidence. Although both models predict the same final 

mature paste containing a mixture of dimer and dreierkette chain, Grutzeck's model 

explains the presence of consistently large amounts of dimer throughout the entire 
hydration process, depending on hydration time and temperature, but does not explain 

the dreierkette chain structure because it can not form dimers [64] 
. The most inconsistent 

conclusion taken from this model is probably the fact that a sorosilicate-like C-S-H with 

a rudimentary sorosilicate-like structure can easily accommodate alurninium in 

octahedral coordination [631 
, but not in tetrahedral coordination. Therefore, this goes 

against all the previous studies which confirmed the tetrahedral-co ordination of 

aluminium in C-S-H and the only octahedral environment that was found belongs to 

other phases present in the cement Pastes, as stated before. Grutzeck's model is not 

uniN, ersal and rigorous in its formulation. 
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The most recently proposed model is the one by Jennings and Tennis [651 and presented 
by Chen et al. [661 

. 
The original colloid model by Powers, suffered some extensions and 

refinements but, basically, it is based on several studies made considering the concept of 
two distinct densities of C-S-H and accounts for a number of physical characteristics of 
C-S-H gel in mature pastes including density. surface area, fractal character. pore 

structure and size of the individual particles. Considering that the C-S-H gel is an 

aggregation of precipitated, colloidal-sized particles, they concluded that aging is a 

process of increasing the number of bounds between globules of C-S-H. causing the 

C-S-H to become stronger and denser. C-S-H is divided in t,, \-o different densities: lov'r 

density (LD C-S-H) and high density (HD C-S-H), both of them with different and 

specific pore sizes [67-691 
. 

As stated by Jennings and Tennis, only a colloid model can 

explain the observed physical properties and some changes in the microstructure of 

C-S-H, presented in their experiments. Nevertheless, the model does not consider most 

of the experimental observations that Richardson and Groves considered in their 

models, as well as Taylor's model. Mainly, in this model, the ways in %vhIch the Ca/Si 

ratio can vary in the dreierkette-based structural model are discussed, but the used 
[21 

arguments are not very different from the ones used by Richardson and Groves 
. 

Jennings and Tennis' model might be suitable when considering the 

meso/macro structure of C-S-H but not when considering the nano/mi cro structure of the 

C-S-H phase where the most appropriate structural model is the one from Richardson 

[2] and Groves 

In summary, six of the proposed structural models for the C-S-H phase were discussed 

and it is possible to conclude that the most suitable model is the Richardson and 

Groves' model. Jennings and Tennis' model should also be considered as it might be 

valid when regarding the me so/macro structure of the C-S-H phase. 

2.2.3 - Morphology, Microstructure and Nanostructure 

The C-S-H phase has been widely studied from the viewpoint of microstructure and 

nanostructure, but many questions are still to be answered. Several techniques have 

been used in order to characterize C-S-H as well other phases resulting from cement and 
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blended cement hydration. Taylor and Newburyl"'I performed electron microprobe 
analysis (EMPA) on a mature cement paste twenty three years old, which provided tile 
chernical compositions of the different phases present (Figure 2.21). They made an 
attempt to determine a possible significant compositional difference between the C-S-Ij 

phase in the inner and outer products, lp and Op, respectively. It was found that they are 
quite similar and only the Mg/Ca ratios were variable in the lp C-S-11 reflecting 
variations in the Mg contents both between and within the alite and belite originally 
present. The Fe content tends to concentrate in the hydrogarnet phases, intermixed with 
other phases, and they also found small amounts of AFm phases, including monoSU1fate. 
The next figure shows a general impression of the distribution of compositions from C- 
S-1 1, Cl 1, hydrogarnet or mixtures of two or all of the phases, in terms of (Al + Fe/Ca) 

ratio versus Si/Ca ratio. 

Al + Fe 
Ca 

Hydrogarnets 
0-6 

j'AFm Phases, 
iL. 

0-4 

0.2 - 

C-Sýl 
0 Ca(00ý7-0.4 0'6 Si /Ca 

Figure 2.21 - Electron microprobe spot analyses performed in a mature cement paste [70] 

Richardson and Groves [7 1] performed microanalysis and studied the microstructUre of 

hardened OPC blended pastes with ground granulated blast furnace slag (ggbfs or ggbs). 

Partial replacement of OPC with ggbs, pulverised fuel fly ash (PFA), or silica fume, 

produces a significantly less permeable paste with improved resistance to attack from 

sulfates, chloride, acids and alkali-silica reaction. The use of ggbs, PFA or silica furne is 

also a way of re-using waste products from manufacture. These additives underao a so- 

called pozzolanic reaction where they react and constime CH, mainly generated from 

the cement hydration of alite, to give C-S-H, They also act like a hydraulic binder, as 
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any pozzolanic material. The nature of the pozzolanic reaction ý'vill be discussed later. 

Ground blast furnace slag is produced during the manufacture of pig-iron. ý\hen slaa is 

cooled down rapidly by pelletization or granulation, forming a glassy material. After 

being ground to fineness similar to that of OPC, it reacts with water to produce 
hydrates, depending on its composition, glass content and particle size distribution. 

Regarding the microstructures present in blended pastes and OPC pastes, C-S-H can be 

morphologically distinguished as lp C-S-H and Op C-S-H. Op C-S-H is formed in the 

originally water-filled spaces, and Ip C-S-H formed within the boundaries of the 

original anhydrous grains. In pure OPC, the Op C-S-H morphology is fibrillar as shown 
by transmission electron microscopy (TEM) micrographs, but Op C-S-H acquires a foil- 

like aspect with slag introduction (Ca/Si decreases), gradually replacing the previous 

morphology. AFt/AFm-type phases also occur in the blends and have identical 

morphologies as AN and AFm-type phases present in neat OPC pastes. Regarding lp 

C-S-H regions, they are morphologically identical to the ones found in pure OPC, with 

a coarse and globular morphology. Morphology is also affected by the paste activation, 

either using water or an alkaline solution, the latter leading to Op 

C-S-H morphology with a foil-like aspect. Larger grains of slag or alite often have a rim 

of fine textured C-S-H which can persist for many years and which are easily spotted 

within the Op C-S-H. At the Ip/Op C-S-H interface, plates of AFm-type phases and 

relicts of AFt-type phases needles are also observed. Almost round, poorly crystalline 

particles rich in iron and aluminium, which often also contain significant amounts of 

titanium can also be observed. The latter might be a poorly crystalline form of calcium- 

deficient hydrogarnet. Ca/Si ratios in both Ip and Op C-S-H are similar to the ones 

found in neat OPC pastes, with an average value of 1.7. Richardson and Groves also 

found that although there was no significant difference between the Ca/Si ratios in Ip 

C-S-H formed from alite and slag, the aluminium content is substantially greater in the 

lp C-S-H formed from slag, as well as the magnesium content. Magnesium does not 

migrate from the volume originally occupied by the slag grain because it is fixed to 

form hydrotalcite with part of the migrating aluminium. Finally, Richardson and Groves 

also concluded that increasing the slag content reduced the Ca/Si ratio and increased the 

A]/Ca ratio in both Ip and Op C-S-H. The sulphur content of the AFm-type phases also 

CHAPTER 11 - LITERATURE REVIEW 



44 

increased with the increasing slag substitution. Figures 2.22 and 2.223 illustrate the 

morphology oflp and Op C-S-H in selected neat and blended cement pastes. 

44 

- 

Figure 2.22 - Ti-ansmisslon electron micrograph showing lp C-S-1 I In OPC paste 1131 
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Figure 2.23 - Moi-phology difference between Op C-S-H in neat OPC (left) and OPC/slag, both 

\vatei- activated pastes (i-Wht)f"' 
11 

A year later, the same authors demonstrated the major importance of TEM, comparing 

TEM studies with EMPA studies, performed on OPC and C3S pastes [72] 
. 

The difference 

betweei-i the morphology of lp and Op C-S-H was confirmed, but not in terms of Ca/Si 

ratio, lp C-S-H occasionally was intermixed vvith small amounts of AFt/AFm-type 

phases, a inaoriesitim-rich phase and CH. It was also Concluded that, in general, the 

composition of C-S-H does not change significantly with age but changes from one area 
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to another in the same sample. The microanalysis by EMPA is in agreement \\Ith the 

TEM-EDX results but it is impossible to obtain analytical data from a single-phase in 

EMPA. avoiding admixture with other phases. When not analysing finely di\'ided 

materials, the main reason that confirms the requirement of TEM studies in cement 

chemistry is the ability of carrying out chemical analysis correctly and unambiguously 

on each phase in a cement paste. Following their studies, Richardson and co- 

workers [8,13,55,56,73-771' used 29Si MAS NMR and TEM-EDX to study the C-S-H gel 

present in both water and alkali -activated (KOH solution) pastes of P-C2S, C3S, neat 

OPC and white Portland cement (WPC), blends of OPC/slag, WPC/slag, WPC/PFA and 

WPC/metakaolin, 100% slag paste, and alkali activated silica. The following 

conclusions were found: 

C-S-H gels (lp and Op) present in both water and alkali -activated pastes are 

different being nearly amorphous in the first case, and semi-crystalline in the 

case of alkali-activation; 
Aluminium, the main substituent in C-S-H, substituted for silicon in tetrahedral 

sites and only at the central tetrahedron (bridging tetrahedra of dreierkette 

chains) of the pentamer, or longer silicate chains; 

- Due to compositional resemblance, the proposed Richardson and Grove' 

structural model principles could be applied to the OPC/slag and OPC/PFA 

hardened cement pastes-, 

- lp C-S-H from larger cement grains had a fine-scale and homogeneous 

morphology but lp C-S-H from slag grains were chemically distinct in 

composition by having a higher content of Mg and Al; 

- Hydrated remains of small particles contained a less dense and more porous 

product, surrounded by dense C-S-H-, 

- The Ca/Si ratio for C-S-H in pure cement pastes varied from -1.2 to -2.3, ký'ith 

a mean value of -1.75; 

- The Ca/(Si+Al) ratio for C-S-H in water activated cement/slag pastes varied 

from -0.7 to -2.4, 
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With increasing slag content, the Si/Ca and Al/Ca ratios for C-S-H also 

increased as well as the alummosilicate chains length. The morphology of 
C-S-1 I changed from fibrillar to a foil-like morphology (Figure 2.24): 

The microstructure Of C3S pastes was a verv useful reference for more complex I 
systems such as neat OPC, OPC/ slag or OPC/silica furne blends, and alkali- 

activated slag cements. 

Figure 2.24 -- TFM mici-ogi-aplis offibi-Illar Op C-S-H in a mature OPC paste. Oil the i-ight side, 

a 1-011-like Op C-S-1 I in an alkah-activated 100% slag paste 18 J. 

Besides aII the fundamental information given by thermogravimetry and 

SEM/'FEM-EDX data, the rnicrostrUCture and the silicate anion structure of the C-S-H 

phase can be characterised by two cornplementary techniques, as explained before: 

'FMS-GPC, which gives semi -quantitative data on the fractions of silicon present in 

different anionic species, and 29Si MAS NMR, which allows a quantitative analysis, 

giving information on the fractions of Si present in silicate tetrahedra with different 

environments. It has been shown by both techniques that the dimeric silicate species 

predominate in the first twenty four hours of hydration followed by the formation of 

h1oher polymeric species, pentamer, octamer, etc in the (3)n-l) sequence. From 29 S1 

SIII(ý)le Pulse MAS NMR, it is possible to calculate a mean silicate chain lenoth by the 

t'011OW-1112, t'01-111LIla, considerinO C3S pastes kvith no alUminium substitution at the chain 

bri&ino sites: 1-1 CI 
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MCL 2 
Q 

Q I+Q 2 

(Eqn. 

In the spectra of slag blended pastes, the peaks corresponding to unreacted components 

are simple to identify, but the hydrate peaks are not that easy to be fit due to 

overlapping. In order to deconvolute the spectra and if the blends are activated with 

KOH solution, then this alkali activation leads to very similar hydration products and 

microstructure to the ones resulting from water activation. The main difference is that in 

the alkaline pastes, the C-S-H phase is structurally better ordered and CH is 

microcrystalline, as Groves [781 determined in a previous TEM study of low 

water/cement ratio pastes. Therefore, this improves the resolution of the spectra leading 

to narrower NMR line widths, and allows the determination of the peaks that are 

present. After that, the spectra are ultimately fitted independently. There is a sharp peak 

Q0 at - 71.3 ppm corresponding to belite phase superposed on a broader peak due to 

many peaks corresponding to alite. The hydrate peaks in the alkali-activated pastes are 

more defined and easier to fit, as next figure illustrates: 
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Figure 2.25 - (A) Single-pulse )q Si NMR spectrum for water activated 50%WPC/50% slag 
blend hydrated for 5 months. (B) Single-pulse "'SI NMR spectrum for a 5AI KOH-activated 

[13] 50% WPC/50% slag blend hydrated for 5 months 

The fit of these spectra became a powerful aid in the deconvolution of the spectra 
corresponding to the water activated corresponding spectra, leading to the following 

general conclusions resumed in the next table: 

Table 2.6 - 
"'Si MAS NMR peak assignment in spectra corresponding to slag blended pastes [131 

Assignment 5/ppm 

Unreacted belite (Q') -71.3 
Unreacted slag -73.0 

Q1 -79.0 
Q2( 1AI) -82.0 

-85.0 

It should be noted that the presented values are only approximated values and often vary 

due to their dependence on the nature of the cement-based system. The aNcrage Al,, Si 

ratios for the C-S-1 I phase can be calculated from the deconvoluted peak areas using 
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Equation 2.14. The values calculated, using Equation 2.14, are in good agreement with 

values found by microanalysis in the TEM: 

A Si =I 
2Q2(IAI) 

QI+ Q2 + Q2 (IAI) 

The same can be applied in the calculation of the mean aluminosilicate chain length, 

(Eqn. 2.14) 

with Al substituting at the bridging sites: 

MCL = 
2 (Eqn. 2.15) 

( 
I+Q2 Q +3 2Q2(1,41) 

In this section, different analytical techniques and resulting data for complete 

characterization of the C-S-H phase were discussed, as well as the relationships between 

nano/mi cro structure, lp and Op C-S-H, their different morphologies and Ca/Si ratios, 
behaviour of different types of blended cement pastes analysed and aluminiurn 

substitution in the C-S-H phase. 

2.3 - WHITE PORTLAND CEMENT 

A particular kind of Portland cement is considered in this section because the studied 

cement systems were prepared with white Portland cement (WPQ and its chemistry is 

slightly different from the chemistry of ordinary Portland cement (OPC), the latter more 

widely used. 

White Portland cement, WPC, is manufactured from purer raw materials than the ones 

usually used in OPC manufacture. The purer raw materials can be china clay (kaolinite) 

and a selected \\,, hite chalk or limestone. If these raw materials do not contain enough 

free silica in order to produce the required level of silicates, then ground white sand can 

be added to thern. NNTC contains an iron oxide (Fe--)03) content of less than about 0.3%, 
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and the manganese and chromium oxides must be one order and mo orders of 

magnitude lower than 0.3%, respectively. Therefore, it is expected that typically lower 

C3A content also means much lowerC4AF content. Although it is more expensive thail 

OPC, the use of WPC in this work is justified by its low iron content, a paramagnetic 

element, which causes NMR line broadening. The hydration products of WPC are quite 

similar to the hydrate phases present in OPC although that will always depend on the 

initial chemical composition of any cement. Regarding TMS-GPC studies (Figure 2.4), 

the (3n-1) sequence is followed with increasing hydration time and consequent 

polymerization . 
29Si MAS NMR and 'H_29Si CP MAS NMR has also been used in the 

characterisation of WpC[13-791 
, and some of the obtained results for a fi\, e month neat 

WPC paste [13] are shown in Figure 2.26: 

-60 -70 -80 -90 -100 
PPM 

Figure 2.26 _ 
29Si 

single-pulse (bottom) and 
'H_29Si CP (top) MAS NMR spectra of WPC 5 

131 
months o0 . 

From the interpretation and fitting of these spectra, it was possible to observe that in the 

CP MAS NMR spectrum (top spectrum), there was an amount of hydrated monomer, 

Q'(H), and Q1 and Q2, the corresponding peaks to the different silicate species present 

in the hydration products. In the single-pulse spectrum, the first peak at around -71.3 

pprn corresponded to unreacted belite (Q), the second peak around -733_5 pprn probably 

corresponded to anhydrous y-C-, S, the third and fourth peaks at -79 and -85 ppm were 
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due to the end-chain (Q1) and the middle-chain (Q2) groups, respectively. The Q, (LAI) 

peak is comprised between the Q1 and Q2. Using high-field 27 Al MASNMR ý39,801. it 

was possible to distinguish the different octahedral and tetrahedral coordination of 
aluminium in a WPC paste, as the next figure demonstrates. 

(a) 

too 80 40 Q 111, 
Z 

Figure 2.27 - High- field 27 Al MAS NMR spectra of WPC hydrated for (a) 6h, (b) I week and 

(c) I year. (* indicate spinning sidebands from ettringite, * indicates Al incorporated in 

alite/belite, o Al in the calcium alurninate phase, 9 the Al incorporated in the C-S-H phase) ý391 

After six hours of hydration, the tetrahedral resonances were assigned to aluminium 
incorporated in the calcium silicates alite and belite, as well as aluminium present in an 

impure form of calcium aluminate. In the one week spectrum, three different peaks were 

observed for the octahedral coordination, corresponding to ettringite, monosulfate and a 

third aluminate hydrate phase. Aluminium was also incorporated in the C-S-H phase, in 

a tetrahedral environment. After one year of hydration, the intensity of the peak 

corresponding to aluminium tetrahedrally coordinated in the C-S-H phase increased, 

and a peak corresponding to penta-coordinated aluminiurn was also clearly observed. 

2.4 - PULVERISED FLYASH 
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Pulverised fly ash (PFA) is a waste product recovered from the process of burning 

pulverised coal and, as a pozzolanic material, is widely used as a replacement for 

Portland cement. Fly ashes are very heterogeneous fine poxý-ders consisting mostl\' of 

rounded or spherical glassy particles of variable silica, alumina, and iron oxide contents; 

there are also some irregular or angular particles. According to the ASTM C618, flý' 

ashes can be classified in three different classes, depending on the coal burnt process 

that originates it [811 : 

- Class C is pozzolanic and cementitious fly ash usually produced from burning 

lignite or subbituminous coal; it has self-cementing properties leading to early 

strength development. 

- Class F is also pozzolanic, usually derived from burning anthracite or 

bituminous coal; it has little or no cementing value alone, high silica content 

and slower early strength development. 

- Class N is raw or calcinated natural pozzolan such as some diatomaceous 

earths, opaline cherts, and shales. 

Variations in the coal composition, combustion conditions, ash collection systems, and 

other variables can affect largely the composition and fineness of fly ash. The fly ash 

composition originated by a single source may vary greatly over a relatively short daily 

time intervals [82-85] 
. Fly ash is also used as a fill material, soil stabilization and waste 

remediation. In blended cements, the use of fly ash can fulfil two main roles: 

participation in the cementitious hydration products and modification of the 

characteristics of the hydrated cement. As a binder in Portland cement blends, it 

presents several benefits such as enhanced workability and less water demand due to the 

spherical shape of the particles; reduced bleeding; increased ultimate strength; reduced 

permeability and chloride ion penetration; lower heat of hydration; greater resistance to 

sulfate attack; greater resistance to alkali-aggregate reactivity, i. e., resistance to the 

alkali-silica reaction, ASR; reduced drying shrinkage: etc... The alkali-silica reaction, 

ASR, has been effectively inhibited by class C tly ash. It suppresses or reduces the 

cxpansive reactions resulting from the ASR 181-841 
.A "pozzolan" material is a siliceous or 
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a siliceous alummous material which in itself possesses little or no cementitious %-alue. 
However, when finely divided and in the presence of a moistui-c. it can react %\-ith 

calcium hydroxide giving products with cementitious properties. In the case of PFA, 

pozzolanic activity refers to the ability of the silica and alumina components to react 

with available alkali (calcium and or magnesium) from the hydration products present 
in the cement pastes. The pozzolanic reaction between the reactive silica and CH, 

producing C-S-H gels can be expressed according to the chemical reaction for pure 

materials: 

xCH + yS + zH * C, S, H,,, (Eqn. 2.16) 

The alumina present in the pozzolan may lead to the formation of several hydrates 

including calcium aluminate hydrate W4AI-119), strdtlingite (C2ASH8). ettringite 

((73A-C S 
-1-132) and monosulfate (C4ASH12). Nevertheless, aluminium can also be 

incorporated in the C-S-H phase, as seen before. After AFt-type phases are formed, if 

some carbonation occurs, calcium carboaluminate hydrates are formed and will tend to 

stabilize ettringite with respect to its transformation into mono sulfate ý813. KovacS[85] 

found that in fly ash blended cement pastes from Hungary, the hydration products were 

very similar to the ones found in the neat pastes. Using XRD and thermal analysis, it 

was also concluded that increasing the fly ash content, the CH phase decreased as it was 

consumed in the pozzolanic reaction. Besides the additional formation of C-S-H gels, 

the concentration of the calcium aluminate hydrates also increased, being poorly 

crystalline, and leading to additional problems in the XRD and TG interpretation. 

Kovacs also established a relationship between the fly ash content and the developed 

strength. Mohan and Taylor [863 studied pastes Of C3Swith a fly ash with high glass 

content. They confirmed the results from Kovacs' work and also found that about 15% 

of the fly ash reacted in twenty eight days and 45% in one year. It was also observed 

that the mean Ca/Si ratio decreased slightly and the degree of polymerization of C-S-H 

was significantly higher than the degree of polymerization observed in pureC3Spastes, tl 
after several weeks of hydration. The microstructure and composition of the hydrated 

products of similar pastes were studied by Rodger and Groves [87] 
. 

In general, the 

inicrostructurc of theC3Spaste was not very much affected by the presence of the PFA 

CHAPTER 11 - LITERATURE REVIEW 



54 

particles, apart from a reduction in the quantity of CH crystals. On the other hand. the lp 

and Op C-S-H compositions were affected, presenting a reduced Ca/Si ratio. It was also 

observed that Ip C-S-H was free of other elements but Op retained many trace elements, 

particularly large quantities of potassium. Considering the PFA reactivity, crystalline 

phases like i-nullite and iron oxide were unreactive, except quartz, alumino-silicate and 

silicate glass, which had a similar reactivity. When reacting, they formed a rim of dense 

C-S-H and, within this rim, there were also areas of low density radially fibrillar C-S-1 1. 

Partial shells of hydrogarnet were also present in the C-S-H phase. As v'-ith C,, S/PFA 

pastes, Rodger and Groves 1881 reached similar Conclusions in the study of OPC/PFA 

pastes. Once again, the microstructure of OPC/PFA was not greatly affected by tile PFA 

presence and the Ca/Si ratio was reduced. Besides the natural hydrate phases present in 

OPC pastes like CH, C-S-H, and AFt/AFrn-type phases intermixed with C-S-Fl, there 

were also regions of small particles of poorly crystalline iron-containing material and 

needles ot'hydrotalcitc-type phases. Those regions probably were originated from C4AF 

interstitial phases in the cement clinker and these observations were made for both OPC 

and PFA blended OPC pastes. Some TEM micrographs illustrate these features: 

ig 

Figui-e 2.28 - On the left side, a TEM photograph showing poorly crystalline iron-containing C) -- 

material intermixed with inagneSILIm-rich crystalline needles and C-S-H, in a 30-month-old cernent 

paste. On the right side, the saine is observed with the magnesiurn-rich crystalline needles lying 

beside a region of lp C-S-H and showing both phases within a fibrillar rim of C-S-1-11881. 
? -I 
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V 

Figure 2.29 -- TEM photographs showing some reactive PFA particles and the fibrillar Op C-S-11 

gel at different ages less than one year. Oil the right side, it is possible to also observe an area of 
1881 

crystalline hydrogarnet within the original outer boundary ofthe particle 

Pictersen el ul. '" studied the OIIC/PFA (class F) systern by 29S i MAS NMR. They 

J`6LInd that an increase in the amount of' silica middle groups (Q 2) at -84 ppin occurred 

when compared with the arnount of silica end groups (QI), at -79 pprn. These rcsults 

were in very good agreement with previous TMS Studies on the sarne systern, 

supporting the tendency to form longer C-S-H chains, at later ages. Figures 2.30 and 

2.3 1, show the spectra of anhydrous fly ash and the time-evolution stack plot of the 

StUdied OPC/fly ash blend. 

ri' 

/ 
0 -40 -80 -120 -160 -200 

PPM 

Figure 2.30 - 
2') SI NMR spectrUm of class F fly ash aftet- removal of magnetic matenal'891 
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[89] Figure 2.31 -Evolution ofthe Q" distribution in a OPC/20% (m/m) class F fly ash blend . 

The hydration reaction appeared to be affected by the size-distribution and glass-content 

of the fly ash used, reflecting a higher Q2/Q1 ratio and an increased initial hydration. It 

should be pointed out that a general problem in the deconvolution of the Q' chemical 

shift occurred because of the high paramagnetic iron content which made the peak 
broader. It was also observed that even when the Si signal was split up in several 

spinning bands it did not seemed to affect the distribution of the Q" species. Pietersen[901 

also used TEM in order to characterize Portland fly ash cement pastes, accomplishing 

similar conclusions to the same that Rodger and Groves established before. Pietersen 

TEM studies were in good agreement with Rodger and Groves' proposed mechanism 
for the formation of concentric C-S-H rings, surrounding the fly ash spheres: the 

Liesegang-type ring mechanism. Love and Richardson[911 studied the composition and 

structure of C-S-H in the KOH-activated WPC/PFA system, by 29Si MAS NMR and 'H- 

29Si CP MAS NMR, TEM, Energy-Loss Near Edge Spectroscopy (ELNES) and 

TMS-GPC. The following figures illustrate some of the observed results: 
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Figure 2.32 - TL 'M mici-mm-aphs showing, on the left side, Op C-S-11 (foil-like moi-pholooy) and 

a pai-tially hydi-ated fly ash grain. On the right side, typical lp C-S-Yl (fine-scale and 
homogeneous 11101-phology), "I. 

Once more, Op C-S-11 has a foil-like morphology, lp C-S-H formed frorn alite is 

homogeneous and with a fine-scale and alkali activation led to microcrystalline CI I and 

semicrystalline C-S-H. 
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Figure 2.33 -- Single pulse 2'Sl MAS NMR and 'H_29Si CP MAS NMR spectra of the 

WPC/30%PFA paste hydrated for 4 months. Oil the right side, TMS-GPC chromatograrn of the 

same blend KOH activated, but hydrated for 7 months [91] 
. 

Reprding the silicate anion structure, the assignment of the NMR peaks in both spectra ? -I 
is presented in the next table: 
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Table 2.7 - Single pulse 29Si MAS NMR peak assignment in spectra correspond i ii gy to 

WPC/PFA blended pastes fqIj 
. 

Assignment 5/ppm 

Unreacted belite (Q) -71.3 
Unreacted PFA (Q) -105.0 

Q1 -79.0 
Q2(lAl) -82.0 

Q2 -85.0 

In the 'H_29Si CP MAS NMR spectrum, there ý, vas no peak assigned as corresponding to 
Q'(IAI) at around -75 ppm, meaning that aluminium only substituted for silicon in the 
bridging tetrahedra of the dreierkette chains, which was also confirmed by the 
TMS-GPC study. Finally, the AI/Si ratio found was 0.22 and the MCL 5.82, being in 

good agreement with previous studies on other systems with the same age. 

Concerning class F fly ashes, LaRosa et al. E92,931 observed zeolite formation in 

OPC/PFA systems when alkali-activated with concentrated NaOH, cured for two days 

at room temperature, followed by six days at 90'C. Those samples presented higher 

compressive and flexural strengths than the equivalent ones that were water activated, 

and the presence of zeolite did not degrade the mechanical properties. One of the 

applications of cement pastes is for potential immobilization of low-level nuclear waste 

solutions and other hazardous wastes. In order to study this potential application, 

Brough et ell. [94,951 found that waste forms made by reaction of a cementitious blend high 

in fly ash, with a simulated highly alkaline waste stream under adiabatic conditions led 

to zeolite formation, in addition with other amorphous and crystalline calcium silicate 

hydrates. As fly ash reacted, more zeolites were formed liberating additional heat which 

in the long-term can damage significantly the material. Although the strength was 

increased by the formation of zeolite, it also suffered a major decrease after fourteen 

days of hydration, possibly due to recrystallisation of C-S-H or its conversion to zeolite. 

Therefore, those rearrangements and the fact that zeolites were capable of going under 

pozzolanic reaction can also cause damage in the structure of the containers. Some other 
[96,99] 

authors studied different systerns using blends of fly ash 7 concluding that the týpe 

and composition of the zeolite formed depended strongly on many factors, includino the 
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initial solution composition and the experimental conditions. Further studies should be 

performed in order to characterize fully the processes involved before predicting the 
long-term properties of these materials. 

2.5 - CURING AT HIGH TEMPERATURE 

In this section, a different hydration process is considered. Curing cement pastes at 
higher temperature than room temperature will affect the development of the physical 

properties of a cement paste because it affects the kinetics of hydration and the 
distribution/nature of the hydration products. Therefore, it will influence the 

composition, morphology and micro/nano structure of C-S-H. Some of the previous 

works dealing with this atypical process of curing cement-based systems are reported. 

Using SEM, Kjelssen et al. "0'101J found that the effect of high curing temperature led to 

an increase of the reaction rate and since it was faster than the rate of diffusion, most of 
the hydration product remaining near the cement grains, left the interstitial space 

relatively open: high concentrations of hydration products in the surrounding zones of 
the hydrating cement grains, and large pores in the interstitial space. This effect also led 

to a coarsening of the hydration products and they were less homogeneously distributed 

in the hydrated specimen. The C-S-H formed was denser and, apparently, stronger but it 

was also important to account with the porosity of the microstructure which will also 
have implications in the durability of the concrete. The CH crystals morphology was 
kept lamellar and elongated but the crystals were more compact. Similar conclusions 

were also drawn by Cao and Detwiler [102] regarding the coarsening of the hydration 

products, increasing of porosity and decreasing of the general uniformity of the 

microstructure. It was also demonstrated that the morphology reflected the curing 

temperature and degree of hydration. Paying more attention to the hydration products 

nature, namely their morphology/chemical composition, Scrivener [103] observed that, 

immediately after heat curing, the lp C-S-H formed was brighter than the Ip that would 
have been observed at room temperature. After 35 days of subsequent curing at room 

temperature. a darker rim of lp C-S-H formed inside the brighter rim and as hydration 
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continued the same darker rim had grown thicker. The chemical composition of both 

rims was the same and the difference of contrast was attributed to a greater degree of 
fine porosity in the material, which could be wholly or partly due to more \vatcr 

originally present in the C-S-H. Kjelssen [104] also found that, in heat curing and post- 
heat curing regimes, for a cement Paste cured at 50'C, at later ages, the lp C-S-H 

revealed a lower fine porosity than that of the corresponding Op or lp C-S-H present in 

a cement paste cured at 5'C. Apparently, the Ca/Si ratios were not affected by the effect 

of temperature and the distribution of the reaction products were less uniformly 
distributed than the ones present in the cement paste cured at lower temperature. It also 

appeared that the (Al/Fe)/Ca ratio of the Ip C-S-H increased with decreasing 

temperature, which may have influenced the distribution and formation of the AFt and 
AFm-type phases in the matrix. AFm-type phases formed as small crystals in the 

capillary pores or were intermixed with C-S-H at later ages. Finally, Escalante- 

Garcia [105] observed that for different blended cement pastes (OPC-PFA) cured at 10, 

20,30,40 and 60'C, increasing hydration temperature increased the porosity. the degree 

of hydration and the rate of the pozzolanic reaction between volcanic fly ash and CH. 

Hime and Marusin [106] explained that the curing temperature is not the main cause for 

the delayed ettringite formation (DEF) that was previously observed in some steam- 

cured precast concrete products. Other factors were involved and related to the sulfate 

content and chemistry of the cement paste. In a review paper, Taylor et al. 17] concluded 

that temperature was a critical factor in relation to DEF. Expansion from this cause did 

not occur if the temperature within a mortar or concrete would not exceeded - 70'C. 

Using 29S, MAS NMR, Masse and Zannill 07] studiedC3S and cement pastes cured for 

six hours or four days at 60,80,100 and 120'C. It was concluded that the C-S-H 

structure was only based on Q1 and Q2 entities. The anhydrous particles disappeared 

completely after 14 hours at 120'C and the chains became longer with temperature, 

with a Q2/Q' ratio exceeding I after fourteen days cured above 80'C. The temperature 

rise accelerated the hydration reaction kinetics and the structural changes observed 

between 60'C and 120'C were probably linked to a change of the Ca/Si ratio. In a study 

by Cong and Kirkpactrickl'081, synthetic samples of C-S-H were analysed by 29Si MAS 

NMR, XRD and thermal analysis. It was showed that heating removed interlayer water 

molecules and OH- groups from C-S-H, resulting in a more polymerized and disordered 
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structure. It was also observed that heating affected the Q1 and Q2 intensities: as 
temperature increased, the relative intensity of Q' decreased and Q2 increased, and there 

may have been present some Q3 Si-sites. 

2.6 - DEGRADATION OF CEMENT PASTES 

Degradation of cement pastes can also be considered as another atypical hydration 

process, and many factors can contribute to the degradation. The followiii,, table 

classifies several degradation processes as chemical or physical attac0,1091: 

Table 2.8 - Classification of several degradation processes in cement pastes [109] 

Chemical Process Physical Process 

Carbonation 

Chloride lon Penetration Freeze/Thaw 

Magnesium Sulfate (Seawater) Erosion 

Sulfate Attack Early-age thermal cracking 

ASR Inadequate Abrasion Resistance 

Leaching High Curing Temperature 

Acid Attack 

DEF 

2.6.1 - Carbonation 

Carbonation begins at exposed surfaces and then spreads inside the material. When 

atmospheric carbon dioxide dissolves in the pore solution of the cement paste, C03 2- 

ions are produced and react with the Ca 2+ ions, giving CaC03- In order to charge- 

balance this reaction, OF and Ca 2+ are required and obtained by dissolution of CH and 

decomposition of the hydrated silicate and aluminate phases. This reaction leads to 

many others including carbonation0f C4AH, which is converted intoC4AC HI, and in 

the end, into CaC03 and hvdrous alumina; monosulfate and ettringite give CaC03- 
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hydrous alumina and gypsum; C-S-H is decalcified lo,, N-ering its Ca/Si ratio and 

ultimately, coný'crting itself to a highly porous hydrous form of silica. Like aný other 
kind of physical and/or chemical attack, the degree of deuradation will depend on the 

cement paste type and age. In the case of carbonation, it also depends on the diffusion 

rate into the paste and that is dependent on its permeability, chemical binding of carbon 

dioxide and degree of hydration of the paste. Carbonation is considered to haN, e both 

good and bad effects on a cement paste. It decreases the strength (pore size dependent), 

increases porosity and also causes irreversible shrinkageE"1091. GroN, es et al. ý1101 studied 

the progressive changes in the microstructure in a CIS paste due to carbonation, using 
29 Si MAS NMR and TEM. It was found that the reaction of CH is initially more rapid 

than that of C-S-H but the core of a large CH particle is protected by the layer of 

calcium carbonate formed in the surface, which acts as a "shield" to further carbonation 

of CH. It was also found that there are significant differences in the various degradation 

products when carbonation occurs as a natural degradation with low atmospheric level 

Of C02, or when it is induced by a concentratedC02gas flow. 

2.6.2 - Sulfate Attack 

This kind of attack is made by exposure to some natural or polluted ground water as 

well to sulfate solutions in the soil. This form of degradation can easily lead to strength 
loss, expansion, cracking and, in the end, to disintegration. Once again, the extent of 

this kind of degradation will depend on the mobility of the sulfate ions. Sulfate reacts 

with calcium aluminate phases and CH leading to the formation of ettringite and often, 

some gypsum. CH is consumed and the Ca/Si ratio in the lp 

C-S-H phase decreases and it might be converted into hydrous silica. The main source 

of AI(OH)4- and Off, and some of the Ca 2+ to form ettringite is, at later age, AFm-type 

phase monosulfate, although they can also be supplied by unreacted aluminate or ferrite 

phases. Nevertheless, additional calcium is needed and this means that CH is dissolved 

and C-S-H decalcified. The sources of dissolved sulfates are usually calcium and 

i-riagnesium sulfate. The latter is the more aggressive one. In this case, besides 

decalcification of C-S-H and CH dissolution, the Mg 2+ ions react with OH- from the 

pore solution to form brucite. Brucite can cause direct damage but also forms a hard and 
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dense skin on the material which can inhibit further degradation. A combination of 
carbonation and sulfate attack leads to the formation of thaumasite, 

[Ca3Si(OH)6* 12H20](SO4)(CO3) or C3SSCH15, easily misidentified as ettringitc due to 
their structural similarities. Ettringite probably functions as a nucleating agent but its 
formation is limited by the source of A1203. Assuming that there is a continuous supplý' 

2- 
Of S04 , thaumasite formation will only be limited by the available amounts of CaO 

and S102. Thus, it can be formed in large quantities and ultimately, since it is A poor 
[1,109] binder, reduce the material to a paste 

2.6.3 - Chloride Ion Penetration 

As with sulfate ions, the depth of penetration of the chloride ions depends on its 

mobility. If the chlorides present in the pore solution are at a concentration above a 

critical level, they are partly bonded to the calcium aluminate phases 

(C3A-CaC12 * 101-120) but some are "free". The latter will tend to bond to hydroxyl ions 

and, once more, CH is dissolved. Carbonation may also lead to an increase in the 

chloride ion concentration in the cement pore solution. There is a substantial amount of 

evidence that blended cements containing fly ash or slag present a higher resistance to 

chloride ion penetration than neat OPC pastes. The most significant form of degradation 

[1,109,110] by this process is the corrosion of embedded steel in reinforced concrete 

2.6.4 - Alkali-Silica Reaction 

As explained before, alkali-silica reaction (ASR) produces an arbitrary network of fine 

and large cracks in the material, and potentially may occur in blended cement pastes 

that involve pozzolanic reactions. As in the pozzolanic reaction, ASR will depend on 

the particle size and distribution of the siliceous material. Hydroxyl ions attack the silica 

forming silicates that substitute the Si-O-Si bridges, deforming and breaking the 

framework. This leads to the formation of an alkali silicate gel very different from 

C-S-H, occurring as a massive and persistent phase that causes the expansion in the 

paste. The details of the mechanism are still poorly understood 1', 1091. The reaction 

between silica and. fDr example, KOH leads to the formation of alkali silicate solutions 
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and gels [751 
.A way of inhibiting or preventing, ASR is the use of alkali activated pastes 

in pozzolanic systems, because C-S-H becomes more dense and higher polymerised 

with little available amount of CH to react in the pozzolanic reaction[' 101. 

2.6.5 - Leaching 

Leaching is the process by which a soluble portion of a solid mixture is dissolN, ed bý' 

some solvent. An example is the dissolving of inorganic/organic contaminants from 

rejects in a landfill, by infiltrating rain water. This kind of degradation is particularly 
important for the long-term storage of nuclear and other forms of wastes such as 

concrete dams. For research purposes, there are two usual methods of leaching cement 

pastes, ammonium nitrate and water leaching. In both cases. the final residue consists of 

hydrous forms of silica, alumina and iron oxide with all the CaO being lost, and leading 

to a disintegrated paste. CH is most likely to be the first to be removed from the 

material, followed by the remainder phases, including decalcification of the C-S-H 

phase. The leaching rate will depend on many factors namely the nature of the paste, the 

solution flow rate, its concentration or nature, temperature and concentrations of solutes. 

In general, water leaching is moderately slow and many studies have been performed 

with the objective of accelerating the leaching. Accelerated leaching techniques are 

unlikely to correspond to the natural leaching of a cement paste. Many authors used 

excessively concentrated ammonium nitrate solutions and some with the addition of 

other accelerating methods to carry out the leaching process [111-115] 
. 

Using highly 

concentrated ammonium nitrate corresponds to a reaction rate increased by a factor of 

three hundred, when compared with natural water leaching. CH reacts with the nitrate 

ions giving soluble calcium nitrate. This process induces mainly a total leaching of the 

CH and consequent rapid decalcification of C-S-H. Water leaching is another way of 

predicting the long-term properties of a cement container for wastes. It is expected that 

CH will be the first phase to be leached, followed by C-S-H. Porteneuve et al. [116,117] 

found that as the CH was leached, the C-S-H rearranged itself into a highly polymerized 

phase containing Q3 (chain branching sites, probably pentameric units) peaks in the 29si 

MAS NMR spectra. This polymerization is a consequence of the C-S-H response to the 

leachiii. o. in order to compensate the concentration gradient. In theory, it is expected that 
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the leaching will be easier in C-S-H that fits the T/CH viewpoint than the T/J one due to 

the nature of the structures. In both cases, the CaO layers will be leached from the 
layered structure but, in the T/CH point of vle-w, there is some CH that Ný111 be first 

leached than the layers of CaO, meaning an easier CH leaching in the T/CH viewpoint. 
More recently, Harris ei alJ1 181 concluded that the leaching behaviour of synthetic 
C-S-H gels was very similar to the leaching of cement pastes although it can not be said 

that this is validation for the use of synthetic C-S-H gels as a suitable analogue of the 

C-S-H phases formed in the hydration of Portland cement. 
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III 
- EXPERIMENTAL 

3.1 - MATERIALS 

The used materials were a white Portland cement (WPC), Ribble while PC8108, from 

Castle Cement Limited (Clitheroe, U. K. ) and a class F pulverised fly ash (PFA), 

PPA 8109, from Drax power station (Selby. U. K. ). The anhydrous WPC and PFA oxide 

composition obtained by X-Ray fluorescence spectroscopy (XRF) are shown in Table 

3.1, as well as the mineral distribution as obtained from the Bogue-Taylor 

calculationý1191 for the white cement. In Figure 3.1, the correspondent X-ray diffraction 

patterns (XRD) are also shown. XRD principles and experimental conditions are 

described in section 3.5. 

Table 3.1 - Anhydrous WPC and PFA oxide composition frorn XRF and BOgLie-'I'aylor 

calculation for the WPC. 

Oxides (%) WPC PITA 

Si02 24.81 52.92 

A1203 2.35 26.85 

Fe'03 0.49 8.64 

mgo 0.80 1.65 

CaO 68.61 4.49 

Na20 0.15 1.20 

S03 2.03 0.44 

K20 0.06 3.26 

C1 n. a. 0.005 

Total 99.30 99.46 

Free CaO 2.03 n. a. 

LOP (at 1025'C) <0.01 4.36 

Bogue-Taylor calculation: 

% Alite 67.9 

% 3elite 22.1 

% Aluminate 2.7 

% Ferrite 0.8 
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Figure 3.1 -- XRD pattern for the anhydrous WPC. 

The above pattern shows that the anhydrous WPC was mainly composed of the 

following crystalline phases: anhydrite (CaS04), calcium silicate (CaSi03), larnite 
(Ca2SiO4) and tricalcium aluminate (Ca3AI206)- 
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Figui-e 3.2 - XRD pattern for the anhydrous PFA. 
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The latter XRD pattern illustrates that the anhydrous PFA was composed of an 
amorphous phase, as shown by the broadness of the baseline which is typical of a glassy 
phase, and also of crystalline phases such as mullite (A14.5SI1.509.75), quartz (SiO, ) and 
maghemite (y-Fe203)- 

3.2 - SAMPLE PREPARATION 

The neat pastes were hand mixed to a water/cement ratio of 0.5 (mUg), with distilled 

water or 5M KOH solution. The blended WPC containing 30% or 60% class F PFA 

were also hand mixed to a water/binder ratio of 0.5 and were activated with distilled 

water or a 5M KOH solution. The mixes were cast in 7 ml polystyrene tubes, sealed in 

plastic bags and cured in a continuously stirred water bath at 25'C (±VC). The pastes 

were analysed at different stages of hydration: one day, one month and one year of 
hydration. For the higher temperature studies, the samples were prepared in the same 

way as mentioned above, double sealed in plastic bags and placed in a continuously 

stirred distilled water bath at 55'C (±VC), or 85'C (±VC). The samples were analysed 

with one day and one month of hydration. It is possible that premature drying of the 

cement pastes might have occurred. However, when retrieving the samples there was no 

moisture evidence around the plastic tubes or in the plastic bags. In order to perform the 

degradation study, the blended cement paste with 30% of PFA replacement, water 

activated and cured in a continuously stirred distilled water bath at 25'C (±VQ for one 

year, was used. For the water leaching experiment, the samples were demoulded and cut 
into 200 [im thick slices, using a Buehler cut off saw with a diamond blade slow saw 

speed. The slices were placed in a stainless steel apparatus, designed by Dr. Adrian 

Brough and as seen in Figure 3.3. They were then immersed in a closed and 

continuously stirred distilled water bath (2.6L), at room temperature. The samples were 

analysed with one to twelve weeks of leaching and the leachate was replaced by fresh 

distilled water each time the samples were collected for analysis, i. e. every week. 
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Figure 3.3 - Stainless apparaws for the water leadmig experiment. 

3.3 - ISOTHERMAL CONDUCTION CALORIMETRY 

3.3.1 - General Introduction to Conduction Calorimetry 

Isothermal conduction calorimetry is an experimental technique used to follow the 

hydration behaviour of neat and blended cement pastes. Cement hydration reactions are 

mostly exothermal reactions where heat is released. The evolved heat of hydration can 

be measured as a function of time using isothermal conduction calorimetry. lil reality, 

this technique gives information on the chemical reactions occurring during cement 

hydration, examines the hydration behaviour of different type of cements, estimates the 

heat evolved and provides the instantaneous rate of heat liberation at any time of the 

1211] processý . 
It is a simple, direct and continuous method, independent of the type of 

cement and rapid with precise measurements. This technique is also used to study the 

rate of hydration at different temperatures, the role of admixtures like accelerators and 

retarders, and determine kinetics of hydration [120,12 1]. An example of a typical isothermal 

conduction calorimetrv curve is presented in Fic'Ure 3.4: 
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Figure 3.4 - Example of a typical isothermal conduction curve for an OPC paste [121] 

Usually, a first major peak is observed in only a few minutes of hydration which 

corresponds to the early-age reactions and AFt-type phases formation. This peak is then 
followed by a severe decrease of heat evolution, the dormant or induction period that 

lasts between 0.5-2 hours of hydration. After the induction period, the heat evolution 

accelerates giving a second heat peak where C-S-H is formed from mainly the hydration 

of alite. A third peak is observed after 12-15 hours of hydration time where the reactions 
involving the aluminate and/or ferrite phases occur and ettringite is also formed. 

3.3.2 - Experimental Procedure 

The samples were prepared by mixing 30 g of WPC or blended WPC containing 30% or 
60% class F PFA to a distilled water/binder ratio of 0.5. After being hand mixed, the 

pastes were placed inside a polythene bag and heat sealed. The bag was formed around 

the aluminiurn heater disc connected to the lid of the sample holder. Around 20 mL of 

oil was placed in the can to act as a heat conductor from the sample bag and the sample 
holder. The lid Nvith the sample bag formed around the heater was fitted to the sample 

holder and an anodised aluminium compensating ring , vas placed in the centre of the 
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JAF conduction calorimeter (Wexhai? i Dei, elopmenLs', U. K. ). The sample holder kN-as 

placed in the centre of the calorimeter and it xý'as properly connected to an intert'ace 

monitor and sealed before being immersed in the water bath at 25 'C (±I'C). The 

isothermal heat of hydration of the samples was constantly measured for se\, Ctitý, two 
hours and the data was processed and analysed using the software provided \\Ith the 

calorimeter system computer. 

3.4 - STA-EGA 

3.4.1 - General Introduction to Thermal Analysis 

Thermal analysis is a general term which covers a variety of techniques that record the 

physical/chemical changes occurring in a substance as a function of temperature. It 

comprises techniques like thermogravimetry JG), evolved gas analysis (EGA), 

differential thermal analysis (DTA) and differential scanning calorimetry (DSQ. In 

thermogravimetry, the mass of a substance is measured as a function of temperature, i. e. 

the weight loss of a sample is monitored in a chosen atmosphere and under a controlled 

program of temperature. TG determines the weight changes occurring as temperature 

increases, but it is also often used simultaneously with differential thermal analysis. 

This combined technique is usually referred as STA. Differential thermal analysis is 

very useful and fulfils some of the TG handicaps such as detecting crystalline 

transitions that do not involve weight losses. In DTA, the difference in temperature 

between the sample and a reference material, under the same temperature program, is 

followed. DTA shows the exo/endothermal effects occurring in the sample and by 

determining the nature of the peak, the temperature of the characteristic peak and other 

features, it is possible to obtain qualitative and quantitative analysis [1201 
. 

The 

information provided by DTA can be enhanced when other techniques such as a mass 

spectrometer are combined. This type of hyphenated technique becomes very useful in 

the identification and quantification of the gases evolved in the process. Therefore, 

evolved gas analysis (EGA) provides chemical information of the gases generated as a 

function of time and temperature. Usually, a simple mass spectrometer is used: the ion 
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source is the DTA connected to the EGA by a heated capillary that prevents 

condensation of the gases until they reach the EGA. A turbo pump forces the -, Llses to 

reach the mass analyser, usually a quadrupole ion trap that uses static nidio 
frequency/electric fields to trap and analyse the ions. Finally. an electron multiplier is 

used to amplify the signal and provides the final mass spectrum where the measure of 
12] mass/charge (m/z) of the ions is plotted as a function of time or temperatureý . 

3.4.2 - Experimental Procedure 

The samples were demoulded and cut into 200 [tm thick slices. Hydration %\-as stopped 

through solvent exchange with propan-2-ol (Fischer Scientific) and the slices NN'cre dried 

in a vacuum desiccator. Stopping hydration with methanol, acetone and other organic 

solvents leads to alteration in the paste composition and the solvents are not completely 

removed by vacuum drying. Heating the sample to evaporate the solvent is not an 

option due to verified alteration in the composition of the samples. Therefore, any 

alteration to the composition will lead to incorrect interpretation of the results [10,122,1231 
. 

All dried samples were stored in glass tubes and placed in a desiccator containing silica 

gel, which was changed when required. Thermal analysis data was acquired using a 

, ýtanton Recicroft STA 1000 (U. K. ) with simultaneous thermogravimetric and differential 

thermal analysis (STA). The samples were crushed and ground to finer powders in an 

agate mortar/pestle. Approximately 18 mg of sample was placed in a platinum crucible 

and heated up to 1000'C with a rate of 20'C/min, under a constant flow of nitrogen 

(BOC, U. K) at the rate of 58 ml/min. Regarding the STA apparatus, it was slightly 

unstable from run to run and, therefore, the obtained values were not absolute. An 

evolved gas analysis (EGA) interface (Cirrus mass spectrometer. MKS Spectra Products 

Ltd, U. K. ), provided with a mass spectrometer and a quadrupole residual gas analyser, 

was combined with the STA equipment in order to help the identification of the 

different gases involved in the thermal process. The thermogravimetric curve JG). 

where the % weight loss is plotted as a function of temperature or time. was used to 

calculate the estimated amount of CH present in each sample. The followli-ig chemical 

reactions were consideredl'2"l- 
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Ca(OH)2 * CýýIC03 + 1120 (Dehydration) 
74 gmol-1 

Ca(OH)2 + C02 r* CaC03+ H20(Carbonation) 

18 gmol-l 

74 gmol-1 100 gmol-l 

CaC03* CaO+ C02 (Decarbonation) 

100 gmol-l 44 gmol-1 

(Eqn. '). 1) 

(Eqn. 3.2) 

(Eqn. 3.3) 

In the region of 420-550'C, dehydration of CH occurs, according to equation 3.1. \\'IICI-c 

one mole of water (18 gmol-1) results from one mole of CH (74 gmol-1). Most care ývas 

taken when handling the samples, always in order to expose them to air as less as 

possible but carbonation of the CH might have occurred. Thus, the estimation of the 

amount of CH was also corrected considering equations 3.2 and 3.3 which illustrate the 

carbonation and decarbonation reactions. Decarbonation occurs in the region of 600- 

780'C and one mole of carbon dioxide results from one mole of calcium carbonate 

previously formed from carbonation of the CH. The total amount of CH was calculated 

according to the following equation: 

Estimated amount of CH = (74/18)*(A) + (74/44)*(B) (Eqn. 3.4) 

A is the weight loss in the TG curve corresponding to the dehydration of CH, and B the 

weight loss in the TG curve corresponding to the decarbonation reaction. The 

calculation of A and B was carried out as illustrated in the following example: 
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Figure 3.5 - Example illustrating the calculation of A and B in the TG curve. 

A corresponding derivative curve to the weight loss curve (blue) was plotted and two 

tangent lines (red) to the inflection points of the derivative curve were drawn as in 

Figure 3.5. Between the two tangent lines, a middle point was considered in the weight 
loss curve. The vertical length of the line (arrow) that unified the two tangent lines and 

passed through the previously found middle point was drawn and measured in terms of 

percentage of weight loss. This measurement corresponds to A in Equation 3.4. In this 

example, there was a small weight loss associated with carbonation, given by B and the 

estimated amount of CH was obtained after using Equation 3.4. Finally, the calculated 

amount of CH was divided by the percentage of residue left in the crucible, giving an 

estimated amount of CH as % of ignited weight (CH as % ig. wg. ). 

3.5 - XRD 

3.5.1 - General Introduction to XRD 
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Electromagnetic radiation is the transmitted wave in space ý, Nith two different electrical 

and magnetic components, and it also is associated to electromagnetic waves. These 

waves are associated to the movement of electrons and are usually represented in terms 

of their energy and wavelength in the electromagnetic specti-1-1111, as showed in Figure Z, 
3.6. 

INFRARED 

VISIBLE 

ULTRAVIOLET 

y-RAYS I X-RAYS 

10-6 10-1 10 

nni 11111 nm 

Figure 3.6 - The electromagnetic spectrum. 

X-rays are highly energetic photons resulting from electronic transitions in the atoms of 

a targeted metal by an incident of accelerated electron beam. An incident accelerated 

electron hits the metal atom and knocks out an electron from the K-shell (n =I shell) of 

the metal, and a vacancy or hole is left in that shell. If an electron from another shell 

fills in the vacancy (electron transitions), X-rays are emitted [1 25 1. Figure 3.7 is a scheme 

of this event: 
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X-ray 

Figure 3.7 - Schematic illustration X-rays emission. 

Electronic transitions to the K-shell (n =1) are named Kx-,,, y, and electronic transitions 

to the L-shell (n = 2) are LX-rays. These transitions are characteristic of each chemical 

element but only a small range is used as source of X-rays, typically copper. X-ray 

diffraction results from the diffraction of X-rays when they interact with a crystalline 

structure. Crystalline structures have regularly repeating atomic structures with typical 

interatomic distances in the same order as the wavelength of the X-rays. Bragg's law 

shows the relationship between the interatomic spacing (d-spacing), the angle of 
diffraction (0) and the wavelength of the incident X-ray radiation ( ý, )[ 125]: 

2d sinO =ný, (Eqn. 3.5) 

The d-spacing and k are measured in angstroms, 0 in degrees and n is an integer. The 

interaction between X-rays and a crystalline structure are presented in Figure 3.8. 

"i 

d 

. 
0 

Figure 3.8 - Bragg's law. 

. . 
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The diffracted beam is detected and recorded in a diffraction pattern. In a crystalline 

structure, the unit cell is the smallest possible volume that repeated. is 

representative of the entire crystal and has an exclusiý'e symmetry. By measuring the 

angle and d-spacing where a characteristic reflection line is observed, the crý'stallinc(s) 

structure(s) can be determined and the different compound(s) present in a powder 
1251 identifid 

3.5.2 - Experimental Procedure 

The XRD measurements were performed using a Panal-vtical diffractometer system 

X'PERT-PRO (with XCelerator real time multiple strip detector), operated with Cu K(X 

radiation at 40mA and 45 kV (W. R. Grace & Co. (Boston, U. S. A. )). The samples \vcrc 
demoulded, freshly crushed and ground to finer powders in an agate mortar/pestle. 

Rutile was added as an internal standard (10% of the total weight of the sample), and 

the samples were mounted on a sample holder that was spun at 2 revolutions per 

second. XRD acquisition was carried out using a spinner sample stage running in a 

continuous scan mode over the range 6.03 to 54.95 '20 with a step size of 0.01675' (i. e. 

2921 steps) and a counting time of 34.29 seconds, corresponding to a total acquisition 

time of nearly 14 minutes. The patterns were analysed and the different phases were 

identified by Panalytical X'Pert HighScore software. The addition of an internal 

standard would give way to Rietveld refinement and consequent quantitative 

determination of the different phases formed in each sample. Regrettably, that was not 

possible due to contrasting peak intensities conceming rutile. The latter will be 

discussed in more detail in the next chapter. 

3.6 - COMPRESSIVE STRENGTH 

Mortar cubes Nvere used in the compressive tests (carried out in W. R. Grace & Co. 

(Boston, U. S. A. ). The mortar samples had a water/cement ratio of 0.5 (mL/g), with 

distilled water or 511 KOH solution. The blended WPC mortars containing 30% class F 

PFA had a water/binder ratio of 0.5 and were also activated with distilled water or a 5. ýI 
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KOH solution. The mortar cubes were prepared with EN-196 sand, folloýN-111, -, the 
standard mortar protocol, and placed in environmental rooms at 25.55 and 85"C, at high 
humidity. The compressive tests were performed after I day and I month of hydration. 

3.7 - SOLID STATE MAS NMR 

3.7.1 - General Introduction to Solid State MAS NNIR 

Solid state nuclear magnetic resonance spectroscopy is a very powerful technique that 

provides information about the structure and atomic environments of many materials. 

An extensive database of NMR spectra is established for well known materials and the 

structural characteristics of unknown materials can be obtained by comparison. The 

general principles of NMR are based in the physical spinning of the nucleus of a certain 

chemical element. Nuclei with a spin (quantum parameter) different from zero are used 

in NMR. When such nuclei are under the influence of a strong magnetic field, a split of 

the energy levels between the various spin states occurs, which is usually known as the 

Zeeman interaction [1261 
. 

Electronic transitions take place between adjacent energy 

levels, with the absorption or emission of a photon in the radiofrequency range (Figure 

3.6). In a NMR experiment, the frequency of this radiofrequency is measured, giving 

information about the position of the resonance peak, the isotropic chemical shift (6). In 

a solution or in a solid, the nuclei will experience the magnetic field in different ways 

and with different intensity due to their structural environment and electron neighbours. 

Thus, the nuclei will absorb or emit a photon of different frequency which is reflected 

on the value of its chemical shift. It is not possible to measure absolute frequencies and 

the frequencies are usually expressed as chemical shifts and relative to an external 
126] compound[ . 

In summary, the nucleus is placed under an external strong nuclear field 

and the consequent split of the energy levels of the nucleus depends on their different 

structural environments. The nucleus is then perturbed by an applied pulse of 

radiofrequency radiation, which induces electronic transitions. The perturbation is 

removed and the returning of the nucleus to its fundamental or initial state will absorb a 

photon. whose frequcncy is measured as a chemical shiftl 126] 
. 

NMR was firstly used in 
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experiments involving liquids or solutions but NMR spectra of solids had N-Cry broad 

peaks caused by a variety of interactions, such as the dipolar broadenino. chemical shift 

anisotropy and spin-spin/spin lattice relaxation. This problem was overcome by 

spinning the sample very rapidly, typically 10-15 kHz at an angle of 54.74' to the axis 

of the applied magnetic field, the magic angle spinning (MAS). Therefore, MAS 

reduces or cancels the line broadening in solid samples caused by a number of 

important nuclear interactions. 29 Si is a nucleus with odd mass number and half-integer 

spin and one of the most studied nuclei in solid state single pulse (SP) MAS NMR. The 

line broadening of the peaks also depend on the characteristic spin of the nuclei. Silicon 

29 is a nucleus with spin 1 2. Si NMR chemical shifts for all silicates become more 

negative with increasing polymerisation due to the fact that they become more shielded 

and that affects their chemical shiftý 126] 
. 

In systems containing two nuclei, in wliich onc 

has more abundant spins (frequently 1H) than the other, magnetisation can be 

transferred from the protons to the less abundant nuclei. The signal from the less 

abundant nuclei located in structural sites nearer to the protons, is improved. Cross 

polarization (CP) NMR is based on experimental measures where the less abundant 

nuclei signal is enhanced. Thus, additional information is obtained by comparing CP 

[126] and SP spectra of the same sample 

3.7.2 - Experimental Procedure 

The pastes were demoulded, freshly crushed and ground to finer powders in an agate 

mortar/pestle. The powders were packed in a6 mm. diameter zirconia rotor sealed with 

teflon end caps. The 29Si single pulse proton decoupled and the 'H_29Si cross- 

polarization magic (CP) angle spinning solid-state nuclear magnetic resonance (MAS 

NMR) measurements were performed in a Varian InfinityPlus 300 MHz, equipped with 

Chemagnetics style MAS probes (U. S. A. ), and operated at a magnetic field of 7.0 T. 

The 29 Si chemical shifts were given in ppm from tetrameth yl si lane JMS). The spectra 

wcre acquired using a magic angle spinning speed of 6 kHz, pulse delaý' of 2 or 5 s, 

pulse width of 2 or 4 ps and acquisition time of 20.48 ins, -ýNrith over 10000 scans. The 

single-pulse 29S i NIAS NMR spectra were iteratively fitted using software lFaivinetrics 
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Igor Pro 5.0 (U. S. A. ), with additional macros written particularly for the fitting of the 

spectra [127,128]. AI OkHz exponential line broadening was applied and zero filling to 8k; 

first and second order phasing of the spectra were done visually. Figure 3.9 shows the 

spectra corresponding to the anhydrous WPC and PFA and Figure 3.10 shows the 

spectra obtained for the anhydrous blended WPC with 30 and 60% PFA. 

Figure 3.9 _ 
29S i MAS NMR spectra for the anhydrous WPC (left) and PFA (right). 

Figure 3.10 _ 
29Si MAS NMR spectra for the anhydrous blends WPC with 30% PFA (left) and 

60% PFA (right). 

The acquired data was directly used as input data in Igor Pro software. Unless there was 

experimental evidence given by the other used experimental techniques, the fitting 

procedure was used assuming that the observed resonances corresponded to those of 

C-S-H, i. e. it was more sensible to fit the 29Si MAS NMR spectra on the basis of the 

CHAPTER III - EXPERIMENTAL 

-60 -80 -100 -120 -140 
PPM 

-W -60 -70 -00 -90 -100 -110 -120 -130 . 140 -i5o 
pp. 

-60 -80 -100 -120 -140 
PPM 

40 0 -40 -80 -120 
PPM 



81 

phases known to be present in the samples. Fitting of the spectra %\-as started bý' 

subtracting, from the initial spectrum, the residual anhydrous WPC spectrum previously 

acquired in the same experimental conditions. i. e. subtraction of a contribution from a 

spectrum taken from anhydrous cement, which thus accounted for the unreacted alite 

and some of the belite. The distinct chemical shifts corresponding to alite are not ý'et 

reported, thus this subtraction avoids problems related with peaks due to alite Icaving a 

residual peak corresponding to most of the belite present in the sample, %%-hich can be 

more easily fitted. The resulting spectrum was used for fitting and an example of this 

Subtraction is shown in Figure 3.11. 

Initial spectrum 
Anhydrous WPC spectrum 
Final spectrum 

PPM 

Figure 3.11 - Example of 19 Si MAS NMR single pulse spectrum for a WPC blend with 

30% PFA, before and after the anhydrous WPC subtraction. 

The baseline of the spectrum was iteratively fitted to a cubic polynomial function and 

the peaks to Voight line shapes where each peak had a shift, intensity. shape and width 

parameters. After the parameters for each present peak in the spectrum were fitted, the 

integrated areas of the fitted peaks were used to calculate the mean aluminosilicate 

chain length, the Al/Si ratio and the percentage of each present peak in the spectrum. 

The latter was always expressed as a percentage of the total silicon present in each 

studied system. In the case of the blended WPC pastes with 30% PFA, a fe"\ correction 

factors wcre tested because part of the signal was "lost" in the sidebands due to the 

paramagnetic interactions caused by the iron present in the PFA. Ideally. by iterative 
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fitting of the side bands. it would be possible to estimate the signal lost into the 
sidebands but it was not possible especially for the 60% PFA blended pastes due to 
low signal/noise ratio. Figure 3.12 shows an example of a fitted and deconvoluted 

spectrum. 

wo 108 
Residual 
Initial spectrum 
Fitted spectrum 
Q0 

Q extra 
Q1 

Q2 (1 Al) 

Q2 

Q4 

-60 -80 -100 -120 
PPM 

Fi gu re 3.12 _ 
29S i MAS NMR spectra deconvoluted fit for a WPC blend with 30% PFA. 

The 'H_29S, Cp MAS NMR spectra were acquired using a magic angle spinning speed 

of 6 kHz, with a total of 10000 scans or, when the signal/noise ratio was not acceptable, 

a total of 80000 scans were acquired. All spectra were obtained with a pulse delay of 2 

ms, 'H-90' pulse of 5 ms and a contact time of I ms. 

3.8 - SCANNING ELECTRON MICROSCOPY 

3.8.1 - General Introduction to SEM 

In electron microscopy (EM), a beam of electrons of controlled energy, usually 

generated by thermionic emission, is directed at the specimen. The electron beam 

interacts with the sample and many events usually take place and some of the resulting 
[129,130] 

signals are used in electron microscopy 
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Incident electrons 

Bnek,, vAttered plietrons 

Transmitted electrons 

v 
Unscattered electrons 

Figure 3.13 -- Schematic representation of the sigmals reSUItIlIg from the electron beam 

interaction with a specimen. 

As shown in Figure 3.13, different effects can result from the interaction between the 

electron bean-i and the electrons in the sample. Part of the electron beam will be 

Unscattered but most of the electron beam interacts with the specimen and undergo 

inelastic and elastic scattering. In the first case, the direction of the primary electrons is 

changed but their overall energy is kept. Elastic scattering is very important in electron 

microscopy because most of the electrons are deflected and these are also the electrons 

that generate diffraction patterns. Inelastic scattered electrons change their direction and 
[129,130] lose part of their energy . 

Transmission electron microscopy is based in the 

scattering processes which will be discussed with more detail in the next section. Most 

of the electron beam energy will end up in the specimen as heat but it can also cause 

other events that are detected outside the specimen: secondary effects. Secondary effects 

include emitted secondary electrons, backscattered electrons and characteristic X-rays. 

The secondary electrons are generated when an incident electron changes its path and 

loses part of its energy vv1iich is transferred to an atom in the specimen (inelastic event), 

and leaves the sample with a very small energy. Each primary or incident electron can 

produce several secondary electrons, thus secondary electrons are abundant and the 

most used imaging signal (topooraph-, 7) in scanning electron microscopy (SEM). 

Backscattered electrons result from the collision between an incident electron with an 
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atom in the specimen and the incident electron loses part of its energy and is scattered 

"backward" 180 degrees. Some of the backscattered electrons can generate more 

secondary electrons when exiting the specimen. The production of backscattered 

electrons varies directly with the sample's atomic number and the higher the atornic 

number, the brighter that region will appear. X-rays production has been explained 

before In section 3.5, although in electron microscopy results from the 

de-energisation of an atorn in the sample after a secondary electron is produced. These 

characteristic X-rays are an analytical signal and used in electron microscopy for 

chernical analysis. An X-ray spectrum emitted by the specimen provides both 

qualitative and quantitative information, allowing identification of xvhich elements are 

present in the sample and how much of each element is detected. In addition to the 

emitted X-ray, a small amount of secondary X-ray can also be indLICCd When the 

primary X-ray pass thrOLIgh the specimen and interacts with the sample's atoms. A key 

tactor in SEM is the interaction volume. By definition, the interaction volurne is the 

region into which the electron beam Penetrates the specimen, i. e., the correspondent 

three-dimensional VOILime between the electron bearn and the specimen atoms [129,1301 
. 

trons 

J electrons 

Figm-e 3.14 - Schematic representation of the volume interaction in SEM. 

The emission depth of the different signals used in SEM is influenced by the electron 

beam energy. the specimen nature and composition, and the sample preparation. The L- - 

hiolier the accelerating voltage on the electron beam is, the larger the interaction volurne L- L- 

CHAPTER III - EXPERIMENTAL 



85 

is. Specimen preparation is a critical factor because it will determine the depth of the X- 

ray generation and range. For a correct quantitative X-ray analysis. the sample needs to 
be polished into a flat surface, minimizing height differences at interfaces and 

[129,130] 
eliminating the geometric effects that arise from the specimen surface . In SEM, 
imaging is carried out by using the emission of secondary electrons (topography) and 
backscattered electrons (atomic number). Analytical X-rays provides qualitative and 

quantitative analysis of the studied samples. 

3.8.2 - Experimental Procedure 

The pastes were demoulded and cut into 400 Vtm thick slices, using a Buehler cut off 

saw with a diamond blade slow saw speed. Hydration was stopped through solvent 

exchange with propan-2-ol (Fischer Scientific) and the slices were dried in a vacuum 
desiccator. All dried samples were stored in glass tubes and placed in a desiccator 

containing silica gel. The latter was changed when required. The slices were 
impregnated with Striters epoxy-resin under vacuum and, after hardening, demoulded 

and polished to a flat surface in a Struers mechanical grinding (PdM-Force20 mounted 

on Rotopol-35) using Striters silicon carbide paper of different grades: 600,1200 and 

2400 Vtm grit. Subsequently, the samples were polished with diamond paste cloth of 3,1 

and '/4 Vtm (Striters, Glasgow, U. K. ). The surface of the polished samples was carbon 

coated in a vacuum coating unit EMSCOPE TB500 (U. K. ), and analysed in a CamScan 

Series 4 scanning electron microscope (SEM), equipped with an Oxford Instruments 

UTW energy dispersive X-ray (EDX) detector provided with the Oxford Instruments 

ISIS software for imaging/X-ray analysis (U. K. ). The microscope was operated at an 

accelerating voltage of 20 kV and, when it was possible, the same magnification of 
1000,28 mm working distance and spot size of two or three, were used. For the C-S-H 

phase, between eighty and ninety points of EDX analysis were collected randomly in 

different areas of the sample. The EDX results were processed with the ISIS software, 

the matrix corrections were carried out with oxygen calculated by stoichiometry and the 

appropriate Z, -, IF (the atomic number, absorption and fluorescence correction) procedure 

\Nl, as applied to the data. Imaging of the microstructure was carried out in a Philips XL30 
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environmental scanning electron microscope (ESEM), which provided imaucs 

with better definition and resolution. 

3.9 - TRANSMISSION ELECTRON MICROSCOPY 

3.9.1 - General Introduction to TEM 

In transmission electron microscopy (TEM), the optical system is to some cxtcnt more 

complex than the one in SEM. All electron microscopes have an electron gun (either 

thermionic or field emission), a system of condenser lenses and signal detectors. 

However, the transmission electron microscope needs an objective lens and another set 

of lenses in order for an image to be projected onto a viewing screen. The objective lens 

forms a first intermediate image and a diffraction pattern. These image and pattern are 
[129,13 1] consequently enlarged onto the viewing screen by the projector lenses 

. 
An 

extremely important aspect in electron microscopy is the alignment of the electron 

beam. A correct alignment guarantees that the electrons can follow a straight line 

through the different lenses/apertures until they reach the specimen. The alignment also 

assures that optical aberrations, such as spherical aberration or astigmatism, are 

minimised and corrected, improving the image quality/resolution. The objective lens 

plays a very important role in TEM because it creates a diffraction pattern in the back 

focal plane, and also forms a static-beam image in the image plane. Diffraction patterns 

are very useful, in particular for identification of the different phases present in the 

sample and their crystallographic structures. When a selected-area diffraction (SAD) 

pattern is projected onto the viewing screen, the pattern can be used to perform two of 

the basic imaging operations in TEM. In a SAD pattern, a bright central spot containing 

the direct electrons is formed as well as some spots of the scattered electrons. If the 

central spot is used to form images, this is called bright-field imaging (BFI); if some or 

the totality of the scattered electrons are used to form images, it is named dark-field 

imaging (DFI). Both images are complementary and very useful to identify the 

[129,13 1] specimen features and different morphologies . 
Specimen preparation is another 

important aspect in TEM. The sample should be thin enough and beam transparent. 
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Thus, less scattered electrons will be produced. Very thin, almost transparent, 

specimens for TEM can be prepared using ion milling. The process involves 

bombarding the sample with energetic ions or neutral atoms that sputter material from 

the specimen until it is thin enoug ,h to be analysed. Argon is one of the most common 

ion Sources and, controlling other parameters like the ion energy (current/voltage 

applied), angle of incidence, rotation and temperature of the sample, ion milling is the Z-- 
most versatile thinning process [129,13 11. For thin specimens, the interaction Volume IS 

i-nuch smaller than the interaction volume in SEM, as seen in Figure 33- 15. 

Figure 3.15 - Schematic representation of the volume Interaction In SEM and TEM. 

In TEM, the total volurne of material analysed is determined by the probe diameter and 

the sample thickness, in the nanometre scale. Therefore, X-ray generation will be much 

lower than for thick samples. As seen and explained for SEM, quantitative X-ray 

analysis in TEM can also be performed by relating the intensity of the different peaks 

present in the spectrum and their concentration in the specimen. In the analysis of very 

thin films, the ZAF correction or matrix correction are not needed because self 

absorption is negligible in thin films. Thus, absorption and X-ray fluorescence are 

ionored and this assumption is called the thin-foil criterion. Cliff and Lorimer related t, 
the intensitv ratio to the concentration ratio and, usually, this is the correction applied 

Nvhcn quantitative microanalysis is carried out in a TEM sample [129,13 1] 
. 
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3.9.2 - Experimental Procedure 

The samples were demoulded and cut into 200 prn thick slices. using a Buehler cut off 

saw with a diamond blade slow saw speed. Solvent exchange with propan-21-ol (Fischer 

Scientific) was used to stop hydration because freeze drying might induce cracking in 

the slices. After hydration was stopped, the slices were dried in a vacuum desiccator. 

All the dried samples were stored in glass tubes and placed in a desiccator containing 

silica gel, which was changed when required. The samples that were more fragile in 
handling were resin impregnated with Struers epoxy-resin, under vacuum. A slice %Nras 

glued to a glass slide, using cyanoacrylate glue and then hand thinned using silicon 

carbide papers of different grades (600,1200 and 2400 ýtrn grit, Siruers, Glasgow,, 

U. K. ), until they were approximately 30 pm thick and, at this stage, it %N, as possible to 

read print through the specimen. The glass slide with the glued cement slice was placed 
face up in a glass Petri dish, and filled with acetone (Fischer Scientific) to dissolve the 

cyanoacrylate glue. The thinned slice floated from the glass slide and was removed and 

stored flat in a Petri dish on filter paper, in a desiccator as the slice was very fragile and 

easily to be carbonated in contact with air. Using araldite glue, 3 min diameter Ni grids 
(with a 2x I mm slot in them) were glued on one of the sides of the specimen. The grids 

were allowed to glue dry inside a covered Petri dish. The slice was turned over and 

more Ni grids were glued on the reverse, making a kind of "sandwich" with the cement 

paste between two grids, aligning the slots in the grids. The latter grids %ý'cre allowed to 

dry and the sample was kept in a desiccator. Using the points of a pair of fine stainless 

tweezers, the "sandwiched" samples were trimmed to remove excess sample around the 

edges of the grided "sandwich". The samples were handled with extra care in order to 

avoid carbonation, which would be more rapid due to the thickness of the samples. 

Thus, when being handled, the samples were always on top of a Petri dish and covered 

by the corresponding lid. A mask was also used to avoid breathing into the sample and 

to protect from the dust produced in the hand thinning. Finally. using a Fischione 

Instruinents Low Angle Ion Mill and Polishing System Model 1010 PA (U. S. A), the 

samples were aroon ion-beam milled using a liquid nitrooen cooled stage in order to 

a\, oid excesskýc specimen heating. and consequent sample damage/alteration. The angle 

used was 150, N\ ith a voltage of 4kV and a current of '3mA per ion gun. The ion-milling 
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was stopped when a hole was visible in the centre of the "sandvý'ich", under all optical 

microscope incorporated in the equipment. After being milled, the specimens were 

carbon coated in an 4gai- turbo carbon coater provided with an . 4gcn- thickness monitor 

(U. K. ). A Phili'Ps CM20 (Netherlands) transmission electron microscope with energy 
dispersive X-ray analysis (TEM-EDX) was used to examine and obtain micro-raphs 

(bright field imaging) of the typical morphology of each studied system. The TEM was 

CCIL11pped with an Oxfi)i-d UTW EDX detector (U. K. ) and OxIM-(I ISIS software for 

iniaging/X-ray analysis in order to determine the chemical composition of cacli phase 

present in the pastes. For the most part of the samples, a total of thirty analysis points 

were taken for inner product C-S-H and fifty analysis points for outer-product C-S-11. 

and a tewer analysis points were also taken for other phases present in the samples. The 

EDX points were taken randomly around the thinner areas of the sample, using a 

magnification of 17500 and spot size four, with a corresponding analysis diameter of 

150 rim. Bet-Ore acquiring each EDX point of analysis, the inrler (1p) and outer-prodUCt 

(0p) C-S-H areas, the selected-area diffraction pattern was checked for intermixing with 

other crystalline phases. Thus, when it was possible, free intermixed areas were 

analysed by EDX. As seen in Figure 3.16, areas where the selected-area dirfraction 

pattern showed spots (left image), were avoided and EDX analysis were taken in areas 

where the selected-area diffraction pattern did not show the presence of crystalline 

phases intermixed with C-S-H. 

Fioure 3.16 - SAED patterns showing C-S-H intermixed xvith crystalline phases and 

'111101-phous C-S-Yl (I-H, 1101- 1. 
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The EDX results were processed with the ISIS software, with oxygen calculated by 

stoichiornetry and the appropriate Cliff Lorimer correction was applied to the data. 
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IV - RESULTS AND DISCUSSION: CURING AT 25'C 

The experimental results related to the systems cured at 25'C are presented and 
discussed in this chapter. Different sections were created according to the techniques 

used to characterise the neat WPC and 30-60% PFA blended cement pastes. In the next 

chapters, the Studied systems are referred to as: 

- wpc and kNvpc (neat WPC paste water and KOH activated, respectively), 

- pfa')O (30% PFA blended WPC paste water activated), 

- kpfa')O (30% PFA blended WPC paste KOH activated), 

- pfa60 (60% PFA blended WPC paste water activated); 

- kpfa60 (60% PFA blended WPC paste KOH activated). 

4.1 - ISOTHERMAL CONDUCTION CALORIMETRY 

Figure 4.1 shows the isothermal conduction curves measured for the water activated 

neat WPC paste as well as the corresponding curves for the 30 and 60% PFA blended 

cement Pastes. 
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Fioure 4.1 - Isothermal condLICtIOll Clirves at 25'C for the water activated neat WPC and 330- 
b 

60% PFA blended cement pastes. 
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Considering the isothermal conduction curve for the neat WPC paste, it was observed 
that after the induction period, the heat evolution accelerated and gave a heat peak after 

six hours of hydration. This peak corresponded to the formation of C-S-H gel resulting 
from alite hydration. A second peak was observed after nine hours of hydration time. 

where the reactions involving the aluminate and/or ferrite phases occurred and ettrinoite 

was also formed. The total heat evolved in the process was found to be 282.9 KJ/Kg, 

with a maximum rate of 4.916 W/Kg, after six hours of hydration, which was in good 

agreement with reported dataý 121 1. The following table summarises the obtained data 

from the isothermal conduction calorimetric study. 

Table 4.1 -- Evolved heat obtained by Isothermal conduction calorimetry for the neat and 

blended systerns cured at 25T. 

WPC PFA30 PFA60 

Maximum rate (W/Kg) 

Total heat (KJ/Kg) 

4.92 (6.08 hours) 2.97 (6.92 hours) 2.26 (8.25 hours) 

282.9 175.5 118.9 

The blended systems curves were comparable to the curve found for the neat paste, but 

presented lower heat evolution and later C-S-H formation, as seen in the previous table. 

Apparently, the addition of fly ash could accelerate hydration after the first day, acting 

as a nucleation site for C-S-H formationý'I. This was not verified in both blended cement 

pastes resultant calorimetric curves after seventy hours of continuous measuring. 

4.2 - STA-EGA 

STA-EGA was used in order to estimate the amount of calcium hydroxide (CH) present 

in the studied systems. Figure 4.2 shows an example of a STA curve. where it 'ý""as 

possible to identify the exothenns that corresponded to C-S-H and CH dehydration 

around 1200C and 475T, in that order, and estimate the amount of CH present in each 

sample. EGA helped to identify the evolved gases whilst the heating process took place. 
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Figure 4.2 - STA CLII-Ve for the water activated neat WPC paste at I day, cured at 25T. 

As shown in Figurc 4.2, in the TG curve two main weight losses occurred around I OO'C 

and 450'C corresponding to the dehydration of C-S-H and CH, respectively. In the DTA 

curve, dehydration is recognised as exotherin peaks. FF0111 this example, it was also 

possible to identify the higher losses of water around those temperatures. Carbonation 

of the studied samples Could also be easily detected by EGA if evolved carbon 

monoxide was detected around 600-780'C. Table 4.2 summarises the estimated CH as 

percentage of ignited weight obtained for all the studied systems at one day, one month 

and one year of hydration. 

'rabic 4.2 - Estimated amount of CH, as percentage of ignited weight, Present In the water and 

KOH neat and blended cement pastes cured I day, I month and I year at 25T. 

I day 1 month I year 

WPC 13 26 27 

KWPC 18 31 37 

PFA30 9 20 18 

KIIFA30 9 17 15 

PFA60 7 11 5 

KPFA60 8 5 
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Before any consideration, it should be kept in mind that the results are not absolute 
values. The results in Table 4.2 are only estimation of the amount of CH formed in each 

cementitious system. Considering the neat cement pastes. the amount of CH increased 

gradually with age. In the case of the kwpc sample, the amount of CH estimated was 
higher which indicated that the cement hydration rate and consequent production of CH 

were increased by the alkaline activation. In both neat systems at all ages, carbonation 
did not occur. 

In the case of the blended systems, more attention was required w1len analysing the 

estimated amount of CH because besides cement hydration, the pozzolanic reaction 

where CH is consumed by the fly ash, also occurs simultaneously. In the systems 

containing 30% of PFA replacement, the amount of CH increased after one month of 
hydration but, after one year, part of it was consumed in the pozzolanic reaction. 
Apparently, the alkaline activation did not have the same effect on the blended cement 

paste as verified in the neat paste. Comparing the 60% PFA blends with the 30% PFA 

blends, a smaller amount of CH was present after one month. After one year of 
hydration, small quantities of CH were estimated. This could be due either to a higher 

extent of the pozzolanic reaction because more fly ash was present, or to the cement 
hydration rate was somehow slowed down by the greater amount of PFA. Again. EGA 

showed that none of the blended pastes was carbonated. 

STA experimental results are not conclusive by themselves. If related with experimental 
data obtained from MAS NMR and electron microscopy, discussions considering the 

extension of the cement hydration and pozzolanic reactions can become clearer. 

4.3 - XRD 

XRD patterns \vcre obtained by running the specimens with added rut, le as Diternal 

standard (10% of the total mass of each sample). The following table summarises the 

different phases identified in the powder diffractograms obtained for the neat and 30% 
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PFA blended WPC pastes, either water or KOH activated. one day and one month, 
cured at 25'C. The corresponding XRD patterns are shown in Appendix A. 

Table 4.3 - Identified phases in the XRD patterns for the water and KOH neat and blended 

cernent pastes cured I day and I month at 25T. 

wpe kwpc pfa30 kpfa30 
C3S 

P-C2S 

CH 

Ettringite x x 

Arcanite x 4 x 

Quartz x x 

After one day of hydration portlandite and ettringite (AFt-type phase) ý'ý'erc present and 

identified. This was in very good agreement with what usually happens in a Portland 

cement paste, where portlandite and ettringite are formed after one day of hydration and 

most of the alite reacts after twenty eight days. Belite has a smaller rate of hydration, 

therefore reacts slower than aliteý'J. After one month, most of alite reacted but belite was 

still present. AIm-type phases were not present in sufficiently large quantity or with 

sufficiently large or ordered crystals to be detected by this technique. There was a 

discrepancy in the relative intensities obtained for rutile at both ages because the same 

rutile amount was always added to the samples. Considering the reflection around 28' of 

20 for rutile, at both ages it should be very similar. Although more ettringite could have 

been formed, it should not be more crystalline and lead to a higher relative intensity. 

Therefore, it appears that the amount of rutile added to both samples was not the same, 

i. e. 10% of the total mass of each sample. Consequently, Rietveld refinement was not 

carried out as well as quantification of the crystalline phases present in the sample. It 

\\7as also confirmed that carbonation of the samples did not take place because there 

N\'cre no traces of peaks for any of the polymorphs of calcium carbonate. 

In the alkaline systems, the peaks for CH were broader than those in the previous 

systcm due to small avcrage crystal sizel 
1321 Arcanite, K2SO4, was a crystalline phase 
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that was also formed due to the KOH activation. Alkaline activation reduces the activitv 

of water in solution and destabilises AFt-type phases due to the number of water 
[71 

molecules needed in the formation of those phases . Consequently, ettringite \\*as not 
formed after one day or one month of hydration. 

Considering the 30% fly ash blended systems, originally present in the anhydrous flý- 

ash, unreacted quartz was also detected at both ages. As hydration took place, part of 
CH was consumed in the pozzolanic reaction, which was in good agreement ývith STA- 

EGA estimation. 

4.4 - COMPRESSIVE STRENGTH 

Compressive tests were carried out on mortars with the same chemical composition as 

the studied systems, cured at 25'C in an environmental chamber. The following table 

summarises the data obtained for the neat and 30% PFA blended WPC pastes, either 

water or KOH activated, one day and one month cured at 25'C. 

Table 4.4 - Compressive strength data obtained for the neat and 30% PFA blended cement 

pastes I day and I month, cured at 25'C 

Compressive Strength (MPa) S 

I day 20.1 0.4 
WPC 

1 month 72.4 5.0 

I day 7.4 0.9 
KWPC 

1 month 15.3 0.7 

I day 10.9 0.1 
PFA30 

I month 49.2 0.7 

I day 2.9 0.6 
KPFA30 

1 month 7.5 1.2 

Generally, compressive strength increased after one month of hydration, indicating that 

the samples became more dense and compact. This was already expected because as 

hydration took place, the interstitial space originally filled with Nvater, is replaced by the 
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resulting hydration products, such as C-S-H and CHý11. Howcver. in order to interpret 

correctly the above presented results, porosity of the samples should have been 

evaluated. Porosity, pore size and other microstructural features define the strength, 
1,1201 elasticity and microhardness of cement pastesl . 

Several techniques are used in 

porosity structure determination and characterisation. The most commonly used are the 
helium inflow technique and mercury-intrusion porosimetry. An estimation of the level 

of porosity can also be obtained from backscattered electron microscopy (BSE), wilere 

resin impregnated samples reveal their porosity. 

4.5 - SOLID STATE 29Si MASNMR 

29S, MAS NMR was used to determine the silicate anion structure present in the C-S-H 

phase. The different used techniques (including TEM-EDX, Section 4.7) did not give 

evidence for the presence of any other polymerised aluminosilicate phase. Therefore, 

the fitting procedure was used assuming that the observed resonances corresponded to 

those of C-S-H. As explained in section 3.7.2.2, the acquired spectra were iteratively 

fitted and the integrated areas of the fitted peaks were used to calculate the mean 

aluminosilicate chain length and the AI/Si ratio. For the neat WPC pastes, it ýý7as 

possible to calculate the percentage of cement reacted, assuming that the total silicon 

present in the system and detected by MAS NMR was 100%. For the blended cement 

pastes, the same quantification was attempted by using the total percentage of silicon 

present in each system, calculated from the XRF results. Unfortunately, it was not 

possible to obtain an accurate and correct quantification as well as calculated 

percentages of cement and fly ash reacted. Two main reasons contributed to the lack of 

fully quantified MAS NMR data for the blended systems: not all the silicon present in 

those systems was detected by MAS NMR and part of the signal was "lost" in the 

sidebands, due to the paramagnetic interactions caused by the iron present in the fly ash. 

The use of several correction factors in order to relate the data with XRF results and 

balance the losses of sional proved to be inefficient. Iterative fitting of the sidebands 

was not possible. Therefore, data related to the 30% PFA blended systems should be 

considered scmi-quantitative. 
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Preceding the analysis of the experimental spectra obtained for the different systems. a 

consideration/observation was attained. It was noticed that all MAS N, \IR spectra 

obtained for the hydrated systems showed a very small and sharp peak around -73.5 
ppm. The latter was initially assigned to hydrated monomeric silicate species formed 

during the induction period, QO(H), with a broad resonance in the region between -70 
and -75 PPMý20,231 . 

The corresponding chemical shift for hydrated monomeric silicate 

species is not easy to be determined due to significant o%, crlapping with the more 

intense Q1 resonance. Cross-polarisation (CP) 'H_29S i MAS NMR spectra was acquired 

and, although QO(H) resonance is very broad and much less intense than Q1, evidence 
for the existence of QO(H) species was not found, as shown in Figure 4.11. Therefore, 

the sharp peak enduringly found around -73.5 ppm should not correspond to hydrated 

Q11 species and could only be assigned to species initially present in the anhydrous 

WPC. The main belite polymorph present in Portland cement is P-C-'S and rarely, or in 

minor quantities, other polymorphs can be presentIll. Although belite contains enough 

stabilising ions to prevent the formation Of Y-C2S, another polymorph for belite, a small 

amount Of 7-C2Scanbeformeddependingonthe clinker production 111. y-C, S is inert at 

ordinary temperatures and has no cementing ability. In order to investigate the 

possibility of y-C-, S being present in the white cement, a 29S i MAS NMR spectrum for a 

synthetic y-CS was acquiredE 1331 
. 

As seen in Figure 4.3, Y-C2S has a sharp resonance 

around -73.5 ppm which was precisely the resonance found for the unknown resonance 

found in the spectra for the hydrated samples [30-36]. Other possibilities \ý-crc considered 

but it was concluded that resonance at -73.5 ppm should be assigned to Y-C2S- 
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Figure 4.3 _ 
29Si MAS NMR spectrurn for synthetic anhydrous y-C, S (upper), 'H_29Si Cp 

MAS NMR spectrum (middle) and single-pulse 29Si MAS NMR (bottom) for I 

month water activated WPC paste, cured at 25T. 

From the previously presented considerations and from the above spectra, it was 

possible to clearly assign the resonance at -73.5 PPM to Y-C2S. The latter resonance was 

present in the single-pulse spectrum (bottom) but absent in the CP spectrum (middle). 

The following figure illustrates the single pulse 29Si MAS NMR spectra obtained for 

the neat WPC water and KOH activated, cured at 25T for one year. 
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Figure 4.4 _ 
29S, MAS NMR spectra for I day, I month and I year iieat WPC pastes, cured at 

25'C, water (left) and KOH (right) activated. 

In view of the hydration evolution of the water activated neat WPC paste, after one day 

of curing at 25'C, three main peaks were observed: a first peak corresponding to 

anhydrous cement containing belite and alite (QO) at -71.3 ppm, a smaller peak at -79 
ppm assigned to the resonance Q1 (end chain groups), and a very small peak for Q2 

(chain middle groups) species at -84.9 ppm. It was possible to conclude that part of the 

cement reacted to give Q1 species as dimers were formed and also polymerised to give 
Q2 species. Q2(IAI) species were also formed and accounted in the quantification 

proceedings described in Section 3.7.2.2. As hydration proceeded, the relative intensity 

of Q0 decreased because most of the alite reacted to give C-S-H and part of belite 

remained unreacted. Ql increased, indicating that more cement reacted with more 

dimers and end chain groups being created. Q2 relative intensity also increased because 

more chain middle groups were formed and consequent longer chain lengths. 7-C, S 

correspondino rcsonance was also present. After one year of hydration, most of the 

belite reacted seeing that the relative intensity of Q0 decreased. The percentage of Q, 
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decreased slightly, indicating that further polymerisation of C-S-H occurred with the 

consequent increase of Q2 relative intensity. 7-C2S relative intensity remained the same 

after one year of hydration which was expected due to its inability to react at room 
tcmperatureý'I. Considering that the total silicon present in the system %vas 100% and 
that the same percentage was detected by MAS NMR, the peaks , \-ere quantified as 

percentage of intensity. Table 4.5 presents the quantified data obtained from iteratlVe 
deconvoluted fitting of the peaks, including the mean aluminosilicate chain length 

(MCL) found for C-S-H and corresponding AI/Si ratio. Other very useful parameters 

were determined like %B and Bwater/BKOH. The proportion of bridging tetrahedra that are 

occupied by aluminium is given by %B, according to the following equation [3] : 

%B=- Q-, (1,11) 
2" g2 + Q2 (IAI) 3 

(Eqn. 4.1) 

Table 4.5 - 
-)g Si MAS NMR quantitative data obtained for the neat cernent pastes I day, I 

nionth and I year, cured at 25'C 

Water activated KOIJ activated 
I day I month 1 year 1 day I month I year 

MCL 2.7 3.3 4.3 2.8 3.4 4.0 
AIN 0.050 0.056 0.066 0.069 0.093 0.083 

% Anhydrous cement 63.4 19.8 5.4 52.6 22.6 3.4 
% Cement reacted 36.6 80.2 94.6 47.4 77.4 96.6 
% Y-C's - 1.8 1.8 1.3 1.4 1.4 

%Ql 28.4 49.7 45.7 35.5 49.2 51.9 
% Q2( IAI) 3.7 8.8 12.2 6.3 14.2 15.9 
% Q2 4.6 19.9 34.9 4.3 12.7 27.5 
%B 55 40 34 69 63 46 
B,,;, ter/BKOH 80 64 74 - - - 
CH as % of ig. vv, t. (STA) 13 26 27 18 31 37 

From the above experimental results, the amount of reacted cement increased as 

hydration took place. As expected, some polymerisation of C-S-H occurred but dimeric 

species were predominant at all ages in both neat pastes. Aluminiurn substitution in 

tetrahedral places in C-S-H occurred and increased a very small amount with time of 

hydration. because Q2 (IAI) relative intensity increased as well as the Al/Si ratio. In 

good agreement with all of these observations, the amount of CH resulting from the 
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cement reaction also increased, indicating that most of the cement reacted after one 

month of hydration. Similar results were found for the alkaline system. Better resolved 

spectra were obtained because KOH leads to greater degree of structural order, also 

observed in other KOH activated systems. [13,57,132] Therefore, the spectra obtained for 

the alkaline samples were used in order to help deconvolution of the corresponding 

spectra for the water activated samples. At one day, almost half of the cement reacted 

giving mainly Q1 species. Q2( IAI) and Q2 were perfectly distinguished in the spectrum. 
As hydration continued, most of the alite and part of the belite reacted and 

polymerisation of C-S-H also occurred, as the consequent increase of the relatiVe 
intensity of Q2 and Q2(IAl) demonstrated. After one year, around 97% of the cement 

was hydrated. The MCL found for C-S-H was 4 and the Al/Si ratio around 0.083.7-C, S 

corresponding resonance was also present and had a constant relative intensity. After 

comparing the water and KOH activated neat WPC pastes, it was possible to conclude 

that the activation method did not influence the kinetics of cement hydration. Dimeric 

species were predominant at all ages in both systems. The Al/Si ratio in the alkaline 

neat cement paste was higher than that found for the water activated sample. The 

proportion of occupied bridging sites in the dreierkette chains that are occupied by A13+ 

and not S1 4+ (%B) slightly decreased with hydration time in both neat pastes. 

Consequently, the BN%ater/BKOH ratio was affected: around four fifths at one day, three 

fifths at one month and four fifths after one year of hydration. At one month and one 

year, the proportion of aluminiurn substituted bridging sites was mainly the same in the 

water activated cement paste. In the alkaline system and at all ages, more than half of 

the bridging sites in the C-S-H chain were aluminium substituted. Although the studied 

systems have very different Al/Si ratios and MCL values, the Bwater/BKOH ratios were 

similar to those found for a 20% metakaolin blended white Portland cement (6 1% at one 

day and 82% at one month). [132] 

The following figure and table illustrate the MAS NMR experimental results obtained 

for the 30% PFA blended ývhite cement pastes. It should be kept in mind that these 

experimental results are semi -quantitative. The latter Nvere expressed as percentages of 

iiitensitNi obtained from the iterative fittina of the spectra. The reasons for absent full 

quantitative data have been explained before. Ho,, vever, the information obtained for the 
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MCL and Al/Si ratio was considered to be accurate and acceptable. If a correction factor 

was found and used, it would affect all the obtained intensities by the same amount. 
Thus, by applying Equations 2.14 and 2.15, the ratio between the different intensities 

was invariable and not affected by the loss of signal that unable full quantification. 
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Figure 4.5 - 
-)q Si MAS NMR spectra for I day, I month and I year 30% PFA blended WPC 

pastes, cured at 25'C, water (left) and KOH (right) activated. 

Considering the water activated blend, after one day of curing at 25'C, a peak 

corresponding to anhydrous cement containing belite and alite (QO) at -71.3 ppm, was 

observed, as well as a smaller peak at -79 pprn assigned to the resonance Q1 (end chain 

groups). By this time of hydration, it was not possible to clearly distinguish the 

resonance assigned to Y-C2S. The resonance Q4 at -103 ppm corresponded to silicon 

present in the anhydrous PFA. With further hydration occurring, the relative intensity of 

Q0 decreased due to the reaction of alite and some belite to give C-S-H. Q1 relative 
intensity increased because more dimers and end chain groups were formed, as 

polymerisation of C-S-H also took place. A peak assigned to Q2 resonance at -84.9 ppm 
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(chain middle groups were formed and consequent longer chain lengths) , \-as identified. 

along with 7-C-, S corresponding resonance. From deconvolution of the spectrum, a \'erý 
small resonance tor Q2 (IAI) was observed at -82 ppm. After one year of hydration, 

. part 
of the belite reacted with corresponding decrease of the relative intensitý of Q'). as seen 
in Table 4.6. Further polymerisation of C-S-H occurred with the consequent decrease of 
Q1 and increase of Q2 relative intensity. 7-C2S relative intensity did not change 

significantly after one year of hydration, as expected. The relative intensity of Q4 
decreased with time indicating that PFA was consumed in the pozzolanic reaction. In 

Table 4.6, the spectra deconvolution results found for the water and KOH activated 30% 

PFA blends are presented. 

Table 4.6 - 
29SI MAS NMR serni-quantitative data obtaiiied 

pastes I day, I month arid I year, cured at 25'C. 

Water activated 
I day I month I year 

MCL 2.5 3.6 11.5 
AIN 0.020 0.070 0.189 

for the 30% PFA blended cernent 

KOH activated 
I day I month I year 

2.9 4.2 8.8 
0.09 0.145 0.214 

% Anhydrous cement 39.3 14.3 6.1 32.3 12.0 4.4 
% Y-C2S - 0.6 1.4 - 0.5 0.8 

%Ql 20.3 37.8 16.2 26.4 31.3 22.5 
% Q2( 1AI) 1.0 9.0 29.7 6.0 16.6 35.0 
% Q2 3.4 17.6 32.5 2.9 9.3 24.1 
% Anhydrous PFA 36.0 20.7 14.1 32.5 30.3 13.2 
%B 31 43 58 12 32 73 
Bwatej, /BKOH 259 138 79 - - - 
CH as % of ig. wt. (STA) 9 20 18 9 17 15 

From the above results, it was possible to conclude that polymerisation of C-S-H 

occurred with time because MCL and the relative intensity of Q2 increased. The 

bridging silicon in C-S-H was substituted, to a certain extent, by aluminium because 

Q2 (1 AI) relative intensity increased with time as well as the AI/Si ratio. Considering the 

pozzolanic reaction between PFA and CH, the decrease of the relative intensity of Q4 

indicated that as CH was formed from cement hydration, it was consumed by PFA to 

oive additional C-S-H gel. However, after one year of hydration, some anhydrous PFA 

was still present in the sample as well as a considerable amount of CH. Regarding the 

alkaline 30% PFA blend sample, generally, similar results but better resolved spectra 
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were obtained. For example, the spectrum at one day of hydration showed that a 
resonance assigned to Q2( IAI) was present, although that was not visible in the 
corresponding water activated sample spectrum, and it was only identified after 
comparison with the spectrum for the alkaline blend and consequent iterative fitting. 
KOH activation led to shorter MCL, but to high alurninium. substitution in C-S-11 as 
continuing increase of Al/Sii ratio and Q2(lAl) confinned. Comparing the \\ýatcr and 
KOH activated 30% PFA blended WPC pastes, the alkaline activation did not influence 
the kinetics of cement hydration. Although KOH activation increased slightly the 

relative intensity of Q1, Q2( 1AI) and the Al/Si ratio, it did not accelerate or decelerate 

the reaction rate. However, this kind of activation influenced to a larger extent the 

silicon substitution in C-S-H, as proved by higher relative intensity of Q2(IAI) and 
Al/Si ratio. In both systems, most of the cement reacted at I month and further 

polymerisation of C-S-H took place till I year. Considering the proportion of bridging 

tetrahedra occupied by aluminium, it was higher in the water activated blend but it 

gradually decreased as hydration progressed. The B,,,,, /BKOH ratio was around thirteen 
fifths at one day, seven fifths at one month and four fifths at one year. It was clear that 

as hydration advanced, the amount of bridging tetrahedra that were occupied by 

aluminium increased considerably (nine fifths) in the alkaline blended cement paste. 

Fiiially, the MAS NMR results were compared between the neat and 30% PFA blended 

WPC pastes. Table 4.7 surnmarises the comparable parameters found for the water 

activated neat and blended (30% PFA) WPC pastes, after one month of hydration. 

Table 4.7 - 
29 SI MAS NMR data comparison between water activated neat and 30% PFA 

blerided cement pastes I month, cured at 25T. 

Neat WPC 30% PFA blended WPC 
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MCL 3.3 3.6 
% Anhydrous cement 19.8 14.3 

AI/Si 0.056 0.070 

% Q2( IAI) 8.8 9.0 

CH as % of ig. wt. (STA) 26 20 

As shown in the previous table. substituting WPC with class F PFA affected slightly the 

amount of reacted cement, because it was higher in the blend. On the other hand, it also 
led to higher polymerisation of C-S-H with a mean alummosilicate chain length of four 

instead of three for the neat paste. Due to its higher aluminium content, fly ash acted as 

a source of aluminium free to substitute the central silicon in the C-S-H drelerkette 

chain. Therefore, the Al/S1 ratio was slightly higher in the blend than in the neat white 

cement. It was expected that the relative intensity of Q2(IAI) would also be higher. 

However, the discussed effects of PFA substitution were more obvious after one year. 
The blended sample presented a mean chain length of 12 and AUSI ratio of 0.189 

whereas the neat cement paste had a MCL of 4 and Al/Si ratio of 0.066. In addition, 
STA results showed that pozzolanic reaction between PFA and CH occurred. For 

example, after one year, both samples had the same degree of hydration/percentage of 

anhydrous cement, but less CH was present in the blended cement paste. Table 4.8 

shows the same comparable parameters calculated for the KOH neat and 30% PFA 

blended WPC pastes, after one month of hydration. 

Table 4.8 Si MAS NMR data comparison between KOH activated neat and 30% PFA 

blended cement pastes I month, cured at 25T. 

Neat WPC 30% PFA blended WPC 

MCL 3.4 4.2 

% Anhydrous cement 22.6 12.0 

AI/Si 0.093 0.145 

% Q2( IAI) 14.2 16.6 

CH as % of ig. vv, t. (STA) 31 17 

In the alkaline pastes, the effects of PFA substitution were not as clear as previousl,, " 

obscrved in the watcr activated cement pastes. The MCL was similar in both systems as 

well as the relative intensity of Q2 (1 Al). The major differences were in the amount of 
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cement reacted and Al/Si ratio. After one month of hydration, there was only around 
10% of anhydrous cement in the blend, but the double of the amount was present in the 

neat paste. It appears that alkaline activation promoted the cement hydration Nvhen the 
latter was competing with the pozzolanic reaction. but not when it was the main reaction 
taking place in the neat paste. Thus, comparing the amount of CH present in both 

samples, PFA consumed CH to give C-S-H. Ultimately, after one ycar, the KOH 

activated blended cement paste had a higher MCL and Al/Si ratio than the alkaline neat 
WPC paste. 

The 29 Si MAS NMR spectra acquired for the water and KOH activated 60% PFA 

blended WPC cement pastes are shown in Appendix B. As said before, it was not 

possible to deconvolute and iterative fit these spectra due to a very lok\ signal/noise 

ratio caused by the higher iron content of the fly ash. From the spectra, it was possible 

to verify that polymerisation of C-S-H occurred to a certain extent as hydration took 

place. Pozzolanic reaction between fly ash and calcium hydroxide also happened. 

4.6 - SEM-EDX 

SEM-EDX analysis was used in order to determine the chemical composition of 

different phases present in the neat and blended cement pastes. The samples were resin 

impregnated and flat polished, revealing porosity. Using this kind of sample 

preparation, the contrast due to topography is reduced but that due to different chemical 

compositions is enhanced. Considering the microstructure itself, it is possible to observe 

that CH grows in the water-filled space, forming isolated masses. C-S-H gel forms in 

situ from the anhydrous cement grains described as inner product C-S-H. lp C-S-H. 

Outer product C-S-H, Op C-S-H. forms in the water-filled space. In the backscattered 

imaging mode, different phases with different chemical compositions show different 

greyscales. Usually, in a cement paste, the brightest phases are CH and anhydrous 

cement grains. C-S-H gel has a transitional greyscale and darkest regions usually 

correspond to pores filled with epoxy resin. In SEM-EDX, the interaction volunie 

between the electron bearn and the sample is quite large and signal interference from 
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intermixing with other phases present in the microstructure can not be avoided. 
Therefore, careful must be taken when analysing EDX data. In order to identiýy 

intermixing between phases and determine the Ca/Si and Al/Si ratios for C-S-H. EDX 

data is plotted in terms of atomic ratios. Plotting atomic ratios like Al/Ca against Si/Ca 

atomic ratio and S/Ca against Al/Ca, usually helps visualising if there are aný- trend 

lines. If a trend is found from the bulk of C-S-H chemical composition in the direction 

of other phase's composition, then it is possible to say that C-S-H gel is intermixed \N'ith 

that phase, bearing in mind the total interaction volume between the electron beam and 

the sample. Figure 4.6 shows backscattered electron images illustrating the t7 
microstructure found in the neat WPC paste water activated one day, one month and one 

year, cured at 25'C. Low magnification images are shown on the left-hand side and 

higher magnification on the right-hand side. 
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Figure 4.6 - Backscattered electron images showing typical regions in the water activated 

WPC paste after I day (Lipper images), I morith (middle) and I year (lower images) of Z: ) -- 

hydration at 25'C. 

From visual observation, it was possible to observe that, after I -day hydration, the 

microstructure was very porous and some large areas of CH were formed. SEM 

backscattered electron images need to be cautiously analysed because removed material 

frorn the samples whilst polishing, can be easily mistaken for porosity. Anhydrous 

cement orains were also visible and the darker lines/spots inside the particles 

corresponded to traces of ferrite. lp C-S-H rims were very well defined but generally 

not laroe enOL11111 to perform E-DX analysis avoiding major intermixino with other 
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phases. The latter can be concealed underneath C-S-H but not easil", noticed due to the 

interaction volume and consequent resolution of this technique. As hydration took 

place, at one year around 95% of the cement reacted and the microstructure became 

denser and better defined due to the formation of more Op C-S-H in the ý\atcr-filled 

space. Areas of CH were detectable as well as some anhydrous cement c. ), rains. It was 

not possible to perfectly distinguish the chemical composition of lp C-S-H from that of 
Op C-S-H. Partially reacted cement particles appeared to be hollow but, in fact, %\crc 
filled with a low-density product, as images acquired using a field emission-SEM (FEG- 

1361 SEM) demonstratedl 
. It has also been previously observed in other systems that these 

particles are not hollow [13 Figure 4.7 shows plots for the EDX analysis. lp and Op C-S- 

H were analysed and the corresponding points of analysis were referenced as C-S-H. 

Other interesting points of analysis were also plotted, such as CH+, Pfa+ and ., InhYý[ 

CH+ denominates CH in a non pure form, i. e., not free of intermixing, Pfa+ for fly ash 
in an impure form and Anhy(l corresponds to analysis of anhydrous cement particles. If 

trend lines were identified, they are represented by arrows pointing in the direction of 

the chemical composition of other phases intermixed with C-S-H, like CH or AFt-type 

phases or AFm-type phases. The AI/Ca atomic ratio for the pure phases of CH, AFt and 
AFm-type phases is 0,0.33 and 0.5, respectively. 
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Figure 4.7 - Al/Ca against Si/Ca (left) and S/Ca against Al/Ca (right) atomic ratio plots for the 

SEM-EDX phase analysis of the water activated WPC paste after I day (upper plots), I month 

(middle) and I year (lower plots) of hydration at 25'C. 

The above figure clearly shows that plotting the EDX data in terms of the atomic ratio, a 

trendline going from the bulk of the C-S-H chemical composition towards the chemical 

composition of AFt-type phases was identified. Comparing the chemical composition of 

C-S-H with that of anhydrous cement, the mean Ca/Si ratio was slightly lo"ver but the 

mean Al, /Si ratio was generally higher. This could be understood as the fact that 

aluminium substitutes bridging silicon in the C-S-H chain but, as pointed out before. 

due to larger volume interaction inherent to this analytical technique, caution must be 
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taken when interpreting SEM-EDX experimental results. As hydration proceeded, after 

one month, the mean Ca/Si ratio decreased to 2.01 (s = 0.28) and to 2.02 (s = 0.38) after 

one year. The mean Al/S1 ratio also decreased to 0.11 (s = 0.05) after one month and 

one ý'car. This was due to a better organisation and distribution of the microstructure as 

well as maturing of the C-S-H gel. The mean atomic ratios obtained at one year are in 

very good agreement with those from a similar SEM-EDX prior study by Escalante- 

Garcia and Sharp. [13 51 Although experimental conditions of initial curing were quite 

different, the mean Ca/Si and AI/Si atomic ratios found for an OPC paste cured at 300C 

for one year were 2.08 and 0.096, respectively. According to the authors, EDX analysis 

was individual for lp C-S-H. However, considering prior TEM-EDX data and the 

chemical composition limits for C-S-H (discussed according to Richardson and Grove's 

structural models), it is clearly demonstrated that SEM-EDX analysis was not free of 

intermixing with other phases. [3,72] 

Generally, similar findings were obtained for the other studied systems (kwpc, pfa30, 

kpfa30, pfa60 and kpfa60). The corresponding backscattered images can be found in 

Appendix C. The microstructure was usually porous after one day of hydration, 

becoming denser as hydration took place. Regions of CH, anhydrous and partially/fully 

hydrated particles of cement and fly ash (blended systems) were identified. lp C-S-H 

rims, although well defined, were not EDX analysed. Again, partially reacted cement 

grains were not hollow but were filled with a less dense product. [13,136] Considering 

EDX analysis, intermixing between C-S-H and other phases like CH. AFm and AFt- 

type phases was clearly observed from the trend lines identified in the atomic ratio 

plots. Therefore, the chemical composition of C-S-H could not be determined by SEM- 

EDX. The atomic ratio plots for the other studied systems (kwpc, pfa30, kpfa, 30, pfa60 

and kpfa60) are also presented in Appendix C. In the alkaline neat and blended pastes, a 

trend line was visible from bulk C-S-H composition towards CH composition. 

According to Groves [78] 
, alkaline activation of a cement paste induces the formation of 

microcrystal line CH which is finely intermixed with C-S-H gel. Therefore, the trend 

line in the direction of CH confirms that microcrystalline CH was formed and was 

fineIN, intermixed with C-S-H. As expected, and explained before, a trend line in the 
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direction of the AFt-type phases was not detected because those phases al-C not 
thermodynamically stable enough to be formed [7] in alkaline activated cement pastes. 
The EDX data analysis relative to the neat and fly ash blended cement pastes. either 
water or KOH activated and cured at 25'C for one day, one month and one yeai-, are 
presented in Table Cl (Appendix Q. In order to estimate the precision of the EDX 

results, standard deviation, s, was also calculated. From the statistical point of ý'iew, the 

standard deviation values showed that precision of the measurements was higher in the 

estimation of the mean AUSI atomic ratio than in the estimation of the mean Ca/Si 

atomic ratio. The calculated atomic ratios for C-S-H ý. ý'cre influenced by the large 
interaction volume between the electron beam and the sample. In the next section, 
SEM-EDX results will be compared with those obtained using TEM-EDX, and it will 
be clearly showed that the chemical composition of C-S-H could only be determined by 

TEM-EDX. 

4.7 - TEM-EDX 

As explained in Chapter 111, TEM-EDX provides information concerning the 

morphology of the different phases present in a system, as well as local chemical 

analysis for each of those phases. Due to a smaller interaction volume between the 

sample and the electron beam, intermixing with other phases is reduced to a larger 

extent than in SEM-EDX. For example, Op C-S-H might be intermixed with AFm-type 

phases according to SEM but TEM-EDX might show that AFm-type phases were not 
finely intermixed with the gel, because observation and analysis are done in a smaller 

scale. Besides this reason, in TEM-EDX, the samples are very thin, almost transparent, 

allowing observation and local analysis of phases nearly free of admixture with others. 

4.7.1 - Morphology and Chemical Analysis 

The studied systems using TEM-EDX were the water activated neat NVPC and 30% 

PFA blended pastes, cured for one month, and the KOH activated neat WPC paste, also 

cured for one month. The reason for this choice ý, vas that by one month, the 
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inicrostruCtUre of the system is better defined and more easily recognisable. The 
following micrographs show the morphology found for the water activated neat \VPC 

paste. 

activated neat WPC paste, I month cured at 250C. 

The above figure shows a fine and very dense Ip C-S-H formed in the water activated 

neat paste after one month of hydration at 25'C. This kind of morphology is typical for 

lp C-S-H in most of Portland cement-based systems [3,8,42] 
. At room temperature, lp 

C-S-H is formed of aggregates of small globular particles with 6-8 rim in diameter 

homogeneously distributed [3 ]. The microstructure of this sample was mainly composed 

of anhydrous particles of cement, large pieces of CH, fine and dense lp C-S-H, fibrillar 

Op C-S-H and other phases intermixed with C-S-H such as AFt-type phases. AFill-type 

phases were also distinguished. The next figure also shows a fine and dense lp C-S-H 

fnely intermixed with relicts of AFt-type phases. The latter present a hexagonal form, 

as well as large fibres which, under the electron beam dehydrate and shrink to form 

relicts. 
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Figure 4.9 -TEM microoraph showing fine and very dense lp C-S-H finely intermixed with L- 
AFt-type phases, formed in the water activated neat WPC paste and cured at 25T for I month. 

Figure 4.10 shows the fine fibrillar Op C-S-H morphology, also typical in water 

activated neat Portland cements [ 3,8,421. Op C-S-H morphology depends on the space that 

is available for it to be formed. If formed in large pore spaces, then it is considered to 

have coarse and fibrillar morphology; if formed in smaller spaces, it has fine fibrillar 

morphology. The space between the fibrils of Op C-S-H is the three-dimensional 

interconnected network, i. e., capillary porosity [3 ]. Figures 4.10 and 4.11 show Op C-S-H 

with fibrillar morphology. Although Op C-S-H appears to be coarse fibrillar, as seen in 

[42] Portland-cement based systems cured at high temperature it was probably bearn 

darnaged. 
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Figure 4.10 -1-1--M micrograph showing fine fibrillar Op C-S-H formed in the water activated 

neat WIT paste, I nionth cured at 25T. 

Fhe following figure shows a micrograph with more details of the fibrillar Op C-S-H 

morphology. 

-4 

Figure 4.11 - TEM micro-raph showing fine fibrillar Op C-S-H formed in the %ýater activated tl-l -- 
neat WPC paste and cured at 25'C for I month. 
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Figure 4.12 shows the atornic ratio plots obtained using EDX analysis. lp and Op C-S-H 

gel were analysed as well as other interesting points of analysis such as Al't-type 

phases. If trend lines were identified, they are represented by arrows pointinc, in the 

direction of the chemical composition of other phases intermixed with C-S-H. 
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Figure 4.12 - Al/Ca against Si/Ca (left) and S/Ca against Al/Ca (right) atomic ratio plots for 

the TEM-EDX phase analysis of the water activated neat WPC paste after I month of hydration 

at 250C. 

The atornic ratio plots show that Op C-S-H was finely intermixed with AFt-type phases 
11351 

and also with a calcium aluminoferrite hydrate phase with low sulfate content . 
lp 

C-S-11 had a mean Ca/Si ratio of 1.75 (s = 0.09) and Al/Si ratio of 0.075 (s = 0.011). 

The mean Ca/Si ratio calculated for Op C-S-H was 2.00 (s = 0.17) and Al/Si ratio 0.114 

(s = 0.048). Both atomic ratios were higher than those of lp C-S-H. This is due to the 

higher degree of intermixing between Op C-S-H and other phases, while lp C-S-H is 

formed locally in place of the anhydrous particles of cement. 

The following figure illustrates a fully hydrated cement particle surrounded by Op 

C-S-H in the KOH activated neat WPC paste. 
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Figure 4.13 -TEM micrograph showing a fully hydrated cement grain surrounded by f0il-like 

Op C-S-11, in the KOH activated neat WPC paste I month, cured at 25T. 

As expected, activating a cernent paste with alkalis decreased the Ca/Si ratio and, 

consequently, induced the foil-like morphology of Op C-S-HJ 13 1 The previous 

micrograph shows a clear fully hydrated cement particle, where a dense lp C-S-H was 

formed. Surrounding the grain, Op C-S-H with foil-like morphology was formed. 

Generally, lp C-S-H had a fine and dense morphology, Op C-S-H a foil-like 

morphology, large pieces of CH were also observed as well as CH finely intermixed 

with C-S-H. AFm-type phases were also distinguished. The next figure illustrates Op 

C-S-H foil-like morphology. 

CHAPTER IV - RESULTS AND DISCUSSIW CURING AT 25C 



119 

Figure 4.14 -TEM micrograph showing foil-like Op C-S-H with different densities intermixed 

with CH, In the KOH activated neat WPC paste, cured at 25'C for I month. 

Op C-S-H foil-like morphology presented different densities. In the above figure, it was 

possible to observe CH layers finely intermixed with Op C-S-H. 

Figure 4.15 shows the EDX atomic ratio plots for the KOH activated neat WPC paste 

one month cured at 25'C. 
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Figui-e 4.1'5 - Al/Ca against Si/Ca (left) and S/Ca against Al/Ca (right) atomic ratio plots for 

the TEM-EDX phase analysis of the KOH activated neat WPC paste after I month of 

hydration at 25'C. 
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The previous plots show that Ip C-S-H was finely intermixed with CH as well as Op 

C-S-FI, because alkaline activation besides inducing Op C-S-H foil-like morphology, it Z: ýý 
also induces microcrystalline CH formation. The latter was found finely intermixed 

WIth C_S_I 1131. Ip C-S-H had a mean Ca/Si ratio of 1.76 (s = 0.46) and AUSI ratio of 
0.101 (s = 0.008). The mean Ca/Si ratio calculated for Op C-S-H was 1.24 (s = 0.221) 

and Al/SJ ratio 0.120 (s = 0.04). Comparing this sample with the correspondinO water 

activated ricat WPC paste, the expected alkaline effect on the C-S-H morphology and 

composition was verified. Op C-S-H had a lower mean Ca/Si ratio than that in the water 

activated ricat WPC paste, the morphology changed from fibrillar to foil-like and the 

mean AI/Si ratio was slightly increased. 

I'IgLire 4.16 111LIstrates Op C-S-H formed in the water activated 30% PFA blended WIT 

pastc. 

Figui-c 4.16 - TEM micrograph showing fibrillar Op C-S-H, in the water activated 30% 

PFA bleiided WPC paste I mmith, cured at 250C. 

'I'lle pi-evious micrograph shows fine fibrillar Op C-S-H finely intermixed with AFt-type 

phases i-clicts. In this sample, lp C-S-H presented a fine and dense rnOrphOlOgy. ChUnks 
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of CI I were also detected and Op C-S-H was fine and fibrillar. AFrn-type phases were 

also distinguished. Intermixing between C-S-H and other phases was also observed. Tile 

following figure also shows Fine fibrillar Op C-S-H. 

Figure 4.17 -TFM micrograph showing fibrillar Op C-S-H, In the X\ater activated 30% PFA 

blended WPC paste, CUred at 25T for I month. 

EDX atornic ratio plots obtained for the water activated 30% PFA blended WIT pastc 

are displayed in the following figure. 
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Figure 4.18 - Al/Ca apainst Si/Ca (left) and S/Ca against Al/Ca (right) atornic ratio plots for 

the 'FEM-EDX phase analysis of the water activated 30% PFA blended cerrient paste after I 

nionth of hydration at 25'C. 

The atornic ratio plot on the right side shows two trendline in the direction of the Aft 

and AF'i-n-tN, pe phases but the S/Ca. against Al/Ca atomic ratio plot confirmed that 
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clearly Op C-S-H was finely intermixed with AFt-type phases and with a calcium 

aluminoferrite hydrate phase with low sulphate contentE 1351. Ip C-S-H had a mean C,, -I, Si 

ratio of 1.34 (s = 0.08) and AI/Si ratio of 0.113 (s = 0.055). The mean Ca"Si ratio 

calculated for Op C-S-H was 1.62 (s = 0.29) and AI/Si ratio 0.186 (s = 0.109). 

Comparing this sample with the corresponding water activated neat WPC paste, PFA 

replacement lowered the mean Ca/Si ratio increased the mean AI/Si ratio because the 

aluminiurn content in the blended system was higher than in the neat system. Although 

the pozzolanic replacement changed the mean atomic ratios, it did not change Ip or OP 

C-S-H morphologies. Table 4.9 resumes the EDX results obtained for the analysed 

samples. EDX data was carefully examined and the mean atomic ratios were calculated 
for lp and Op C-S-H on a significant basis, i. e. data that clearly showed intermixing 

with other phases was not accounted for the lp and Op C-S-H mean atomic ratios 

calculations. 

Table 4.9 - Mean Ca/Si and A]/Si atomic ratios obtained for C-S-H using TEM-EDX, for the 

water or KOH activated neat WPC pastes and for the water activated 30% PFA blended cement 

paste, I month cured at 25T. 

Ca/Si Ca/(AI+Si) AIN 
N mean s mean s mean s 

Op 39 2.00 0.17 1.95 0.93 0.114 0.048 
Wpc Ip 8 1.75 0.09 1.75 0.30 0.075 0.011 

All 67 2.00 0.18 1.91 0.93 0.106 0.050 
Op 50 1.24 0.22 1.11 0.20 0.120 0.040 

Kwpc Ip 30 1.76 0.46 1.60 0.43 0.101 0.008 
All 80 1.44 0.42 1.29 0.39 0.113 0.036 
Op 51 1.62 0.29 1.35 0.20 0.186 0.109 

Pfa30 Ip 30 1.34 0.08 1.21 0.08 0.113 0.035 
All 81 1.52 0.27 1.30 0.18 0.159 0.096 

TEM-EDX proved to be a very powerful technique. It allowed differentiation between 

the many phases present in each system, as well as their morphologies. EDX analysis 

gave more accurate mean atomic ratios for lp and Op C-S-H, as well as clear trendlines 

indicating fine intermixing between C-S-H and other calcium aluminoferrite hydrate 

phases. 
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Finally, it is very useful to compare the different chemical compositions obtained for 
C-S-H using different techniques. Table 4.10 summarises the mean Ca Si and Al Si 
atomic ratios obtained using TEM-EDX, SEM-EDX and MAS NMR. 

Table 4.10 - Mean Ca/Si and AUSI atomic ratios obtained for C-S-H usin, -, TF'\I-I-'I[)X. SIAI- 

EDX and MAS NMR, for the water or KOH activated neat WPC pastes and for the %ýater 

activated 30% PFA blended cement paste, I month cured at 25'C 

All Ca/Si All AI/Si AIN 
Ca/Si (SEM) AIN (SEM) (NMR) 

Wpc 2.00 2.01 0.106 0.110 0.056 
Kwpc 1.44 3.46 0.113 0.100 0.093 
Pfa30 1.52 1.74 0.159 0.150 0.070 

Comparing SEM-EDX with TEM-EDX, it was concluded that due to greater interaction 

volume in SEM, intermixing with other phases was not avoided. Therefore, the mean 
Ca/Si ratio was generally higher than that found for C-S-H using TEM-EDX. A better 

agreement was found between the mean Al/Si ratios obtained by these electron 

microscopy techniques. No reasonable agreement was obtained between TEM-EDX and 
MAS NMR. Although MAS NMR is a bulk technique, it should give very similar 

results to those from TEM-EDX ý3,8,4 2j. Regrettably, that was not verified and a cause for 

this discrepancy was not found. 

4.7.2 - T/J and T/CH-based models for the structure of C-S-11 

In this section, the applicability of the structural models tobermorite-jennite (T/J) and 

tobermorite-"solid-solution" calcium hydroxide (T/CH) for the nanostructure of C-S-H 

to the studied cement-based systems was discussed. According to Richardson and 

Groves [3,49-511 
, 

in some systems data could only be consistent with T/CH viewpoint but 

many others could also be consistent with T/CH and T/J structural models. A feýv 

considerations were arranged in order to plot correctly both models. Firstly, respecting 

the polymerisation sequence, dimmers, pentamers, octamers, (3n-1) structural units for 

toberi-norite and jennite were considered. For these structural units, Si/Ca and Al/Ca 

ratios calculated and accounted for fully protonated, half protonated and 

unprotonated tobermorite and jennite structural units. It should be pointed out that the 
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degree of protonation is only estimated because it is not possible to kno\ý exactlý- mllý70 
in Equation 2.9. The degree of protonation was assessed accounting with atomic ratios 

calculated from TEM-EDX. The latter are intimately related to the mean aluminosilicate 

chain length given by 29S, MAS NMR. Finally, aluminium substitution for silicon was 

also considered in the structural units. For the latter concern, the proportion of brid, " 
_-ing 

tetrahedra occupied by aluminium. was calculated, according to the follm, 6ng 

equation [31 : 

%B= - 
bridging tetrahedra occupied by Al 

(Eqn. 4.1) 
bridging lelrahedra occupied by AI and Si 2, Qý + Q2 (IAI) 

The following plot shows structural units for tobermorite (T) and jennite (J) witli 
different degrees of protonation and different percentage of aluminium substitution in 

tobermorite-based units: 
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Figure 4.19 - Al/Ca against Si/Ca atornic plot for tobermorite and jennite structural units with 

, ng tetrahedra occupi different degrees of protonation and proportion of bridgi led by aluminlurn 

(X fülly protonated, [l half protonated-, 0 unprotonated). 

Figure 4.19 shows representing points for toben-norite-based units with chain lengths of 

'1,5,8,11,14,17 and oo. The same was Prepared for the jennite-based units Nvith chain 
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lengths between 2 and 11. Different degrees of protonation were also sho%\ n: x symbol 
for fully protonated units, 11 symbol for half protonated units and 0 symbol for 

unprotonated units. Aluminium substitution in bridging tetrahedra in tobermorite-based 

units was also considered and, for example, indicated by T5(IAI) or T17(4AI). The 
dashed lines between CH and tobermorite-based units with the minimum (0) and 
maximum (X) degree of protonation represent the T/CH viewpoint 'ýN-here tobermorite- 
based units are intermixed with layers of calcium hydroxide. 

The next table summarises the experimental data that was accounted for application of 
the different structural models for the TEM-EDX analysed systems. 

Table 4.11 - Experimental data used in Al/Ca against Si/Ca atomic plots discussim, the 

applicability of the T/CH and T/J structural models for C-S-H, in the systems cured at 25T 

lp Op lp Op AI/Si 
Ca/Si Ca/Si AIN AIN (NM 

ý) MCL %B 

Wpe 1.75 2.00 0.075 0.114 0.056 3.3 40 
Kwpc 1.76 1.24 0.101 0.120 0.093 3.4 63 
Pfa30 1.34 1.62 0.113 0.186 0.070 3.6 43 

Regarding the water activated neat WPC paste, MCL was around 3.3 which means that 

dimeric and pentameric units should be considered. In terms of alurnimurn substitution, 

tobermorite and jennite dimer-based units J2 and J2, in that order) do not hold 

aluminiurn substitution. Aluminiurn substitution was only considered in tobermorite- 

based units [3]. Pentamers tobermorite-based (T5) have one bridging tetrahedra that can 
be aluminiurn substituted, T5(lAI). The %B calculated was around 40% which indicates 

that less than half of the bridging sites were occupied by aluminium. Therefore, 

T2/J2/T5 and T5(IAI) must be considered because MCL was around 3 and %B 

indicated that aluminiurn substitution took place in less than half of the bridging sites of 

T5 units. If data was comprised between the atomic ratios for T5(IAI) and those for 

T2/J2, then it would be possible to say that experimental data was consistent \\'Itll T/J 

point of \, iew. If data was comprised between the atomic ratios for T5(IAI) and those 

for '1'2/J2. but clear trendline(s) from T5(IAI) and/or T242 were found in the direction 

of CH, then it \\'ould be possible to say that experimental data was consistent with PCH 

point of vieN\-. Figure 4.20 illustrates lp and Op C-S-H TEM-EDX data in the AI/Ca 
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against Si/Ca atomic ratio plot considering the T/J and T/CH structural models. For 

testing the models, TEM-EDX raw data points were plotted. Only data points that 

clearly showed that C-S-H was intermixed with other phases or those points that clearly 
followed a trend line were excluded. 
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0.5 X 
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0.2 
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T2 T5 T8 
0 EIG GE El XX 

CH 0-0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

J2 - Al Si/Ca 

Figure 4.20 - Al/Ca against Si/Ca atomic plot for the Nvater activated neat WPC paste cLired for 

I month at 25'C, accounting with T/J and T/CH viewpoints (* lp C-S-H, N Op C-S-H, 0 

unprotonated units, El half protonated, X fully protonated, Too toberillorite, --- T/CH, - T/J). 

From the above figure, it was possible to verify that C-S-H experimental data for the 

water activated neat WPC paste cured at 25'C, was consistent with the T/J structural 

model. The dashed lines represent T/CH viewpoint and it was observed that both lp and 

Op C-S-H corresponding points were not distributed along the trendline between CH 

and T5(IAI). lp and Op C-S-H data was compactly distributed around the mean Si/Ca 

for jennite-based units and most of them distributed between the trendline from T5(IAl) 

and J2. It was considered that jennite-based structural units do not include alurniniurn 

sLibstitLition but alurniniLim Substitution in C-S-H occurred. As seen in the previous 

fl"LII-C, experimental data distribution revealed that C-S-H was mainly composed of 

dimers of toberi-norite and Jennite, and some pentamers with and WIthOUt alLI1111111LI111 
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Substitution. The following figure shows the Al/Ca against Si//Ca atornic ratio plot 

considering the T/CH and T/J models for the KOH activated neat NNTC paste, one 

month cured at 250C. 
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Figure 4.21 -Al/Ca against Si/Ca atomic plot for the KOH activated neat WPC paste cured for 

I month at 25'C, accounting with T/J and T/CH viewpoints (* lp C-S-H, 0 Op C-S-H, 0 ZD 

Ullprotonated LlIlItS, '---l half protonated, X fully protonated, TCXD toberillorite, --- T/CH, - T/J). 

As shown In FIgUre 4.21, C-S-H data was consistent with the T/CH viewpoint because 

most of the data "fell" into trendlines in the direction of CH, and not on the trendline 
tI rom T5 (I Al) to J2. 

FigUre 4.22 shows the application of the two models to experimental data obtained for 

the water activated 330% PFA blended system. This system had a MCL of 3.6 and 

)% of the bridging tetrahedra. MUM OCCLIpying 4' 
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Figure 4.22 - AI/Ca against SI/Ca atomic plot for the water activated 30% PFA blended WIT 

paste cured for I month Lit 25'C, accounting with T/J and T/CH viewpoints (* lp C-S-1 1,0 Op 

C-S-Fl, 0 Linprotonated units, -1 half protonated, X ftilly protonated, 1-co tobermorite, --- T/C11, 

- T/J). 

The above figure shows that data was more scattered than in neat systems and it was 

consistent with both T/J and PCH viewpoints, as shown by the distribution of the data 

around trendlines in the direction of CH but some as well in the direction of jennite- 

based units. 

4.8 - C-S-H sTRUCTURAL-CHEMICAL COMPOSITION 

C-S-1 I chemical cornposition can be easily determined according to both T/J and T/CH 

vieývpolnts and using TEM-EDX and MAS NMR data. 

From the T/J point of view, C-S-H structural -chemical composition call be determined 

according to the following expression [31 
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1R4 Ca H�, (Si ý ý+ . (OH) Can, - mH (Eqn. 2.11) 2n l-a a ki +n(j-2) 20 
1) 

(3n-1) 
09n-2 

JIa 
2 

If 0-:! ýy--<2 then i7(2-_i, ) -: 5w-: ý2n-, if then 0-: 5w--<2n; and if then 0-sw.: 5-n(6-,, ). 

The number of silanol groups (SiOH) is given by it, and Rý"j is a trivalent cation, maiilly 
A 13+ in tetrahedral coordination. I` is an interlayer ion, either a monovalent alkali 

cation or Ca 2+ charge-balancing the R 3+ substituting for Sl'+. In alkaline activated 

pastes, f'' is considered to be K+. The latter can not be considered in activated 

simple systems. The number of water molecules bound to C-S-H is giveii by 1)7 but it 

can not be accurately determined. Assuming that charge compensation of the R 3- 

substitution for Si4+ is entirely by alkali cations, the mean CalSi atomic ratio can be 

expressed as: 

n (4 + 
s 
/. 

- 
(Eqn. 4.2) ýsl 

')(1-a)(3 )n 

Finally, the mean AIISi ratio can be determined by: 

411 -a (Eqn. 4.3) 
ISi I-a 

The mean CalSi and AII'Si atomic ratios are given by TEM-EDX that consequently gives 

a. MAS NMR results give the mean chain length, (3n-1) and also the mean AIISi atomic 

ratio that should be very similar to that obtained using TEM-EDX. After substitution 

into Equations (4.2) and (4.3), y is obtained as well as a possible range of values for the 

degree of protonation of the silicate chains, w/n. 

From the T/CH point of view, C-S-H chemical composition can be determined by: 

[4] - -Ca(OH)2 (Eqn. 2.12) Gi 
x, 

H(6n-2X) (S'I-a Ra )(311-1) 09n-2 
* 

Ia+ niH, 0 

-(3n-1) 
C 
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X is the number of Ca 2+ ions necessary to charge-balance (X = 0.5(6n-w)) and _- is the 
number of Ca(OH)2units in - solid- solution" (Z = 0.5(it, - n(v-2)). Equation 2.12 can be 

2+. rearranged assuming that some of the charge is compensated by Ca . 

Ca,,, H,, (Sil 
-,, 

R I'l ý+ (OH) - Ca,,,, - mH (Eqn. 4.4) a 
)(3n-1)09n-21, 

a w+n(. v-2) 20 (3n-1) 
c2 

The mean ,, IIISi atomic ratio is also given by Equation 43 and the mean Ca Si ratio is 

determined by: 

Cax n(4 + y') + a(3n - 1) 
xsl . 2(l - a)(3n - 1) 

(Eqn. 4.5) 

Table 4.12 resumes the data used in the determination of C-S-H chemical composition 
from the T/J and T/CH viewpoints. Minimum of protonation was considered, i. e. the 

minimum limit value for ii, was used in the calculations. 

Table 4.12 - TEM-EDX and MAS NMR data used in the determination of C-S-H chemical 

composition according to the T/J and T/CH structural viewpoints for the systems cured at 25T. 

Ca/Si AI/Si AI/Si MCL 
(TEM) y w y9 W9 (TEM) (NMR) a (3n-1) 

Wpe 2.00 4.74 0 4.62 0 0.106 0.056 0.05 3.3 1.43 
Kwpc 1.44 2.11 0 1.92 0.12 0.113 0.093 0.09 3.4 1.47 
Pfa30 1.52 2.15 0 1.82 0.26 0.159 0.070 0.14 3.6 1.53 

C-S-H chemical composition determined according to the T/J structural point of N, lc\\, - is 

given in Table 4.13. 

Table 4.13 - C-S-H chernical composition determined according to the T/J structural viewpoint 

for the sYsterns cured at 25T. 

T/J (minimum degree of protonation) 
Wpc ýCa,. 86(SIO, 95AIO. 05)3.3012.9j -(OH)3.92-Ca3.39*rnH20 

Kwpc tCa,. 94(SiOg IA 
10.09)3.4011.21-Ko 

, ). (OH)o.,,,. Ca I. 55*MH20 
Pfa30 Ca3 06(S 10.86A 10 

14)3.6011.81 (OH)O 23-Cal 64'rnH20 

CHAPTER IV - RESULTS AND DISCUSSION- CURING AT 25'C 



131 

Chemical composition inside the brackets indicates the tobermorite-based skeleton of 
C-S-H. The presence of hydroxyl groups outside the brackets indicates that there must 
be some jennite-like structure besides tobermorite-like units. In the alkaline neat paste, 
it was assumed that substitution of Si4+ by A13+ is charge balanced entirely by K- ions. 

The structure of C-S-H can also be reorganised according to the T,, C'H vie\\Jýoint. 

resumed in Table 4.14: 

Table 4.14 - C-S-H chemical composition determined according to the T/CH structural 

viewpoint for the systerns cured at 25'C. 

T/CH (minimum degree of protonation) 
Wpc Ca4.29(SIO. 95AI0.05)3 01,, ), Cao og, 1.87Ca(OH)2* MH20 

Kwpc Ca4.35HO. 
12(SiO. 9, Aloog), 

)40112. 
Ko, 29-4.35Ca(OH)2' mH20 

Pfa30 Ca4.45HO. 28(SIO. 86AIo 14)3.001 1, ý-Cao 15-0.002Ca(OH)2* mH20 

Finally, it should be kept in mind that according to the plots for the structural models 

(Figures 4.14 to 4.16) C-S-H formed in wpe was consistent with the T/J point of view, 

that in kwpc with T/CH viewpoint and that in pfa30 with both structural models. 
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V- RESULTS AND DISCUSSION: CURING AT 55'C 

The experimental results related to the systems cured at 55'C are presented and 
discussed in this chapter. The studied systems will be designated by the previousk Lised 

notation. 

5.1 - STA-EGA 

The arnount of' calCILIIII hydroxide (CH) present in the different systems cured at 55'C 

was estimated by STA-EGA. Figures 5.1 shows the STA-EGA Curve obtained f'or the 

30% PFA blended WPC paste. EGA gave identification of the evolved gases duririg the 

heating process and carbonation of the samples did not take place. 
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Figure 5.2 - STA curve for the water activated 30% PFA blended WPC paste I ilionth. CLircd at 

55 "C. 

'Fable 5.1 surnmarises the estimated CH as percentage of ignited vveight obtained for all 

the SN'StC111S Cured at 55'C after one day and one month of hydration. It should be kept in 
I 

mind that the obtained results are only estimated and that they are not absolute values. 
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Table 5.1 - Estimated amount of CH, as percentage of ignited weight, present in ffie ý\ater and 
KOH activated neat and blended cement pastes cured at 55'C at I day and I montil. 

I day I month 

WPC 21 27 

KWPC 25 35 

PFA30 15 13 

KPFA30 13 11 

PFA60 76 

KPFA60 53 

Comparing these results with those obtained at 25'C (Table 4.1), apparently higher 

curing temperature increased slightly the kinetics of the cement hydration as higher 

amounts of CH were estimated. As mentioned in the previous chapter, STA results give 

a good indication of the amount of CH that was formed in each system. However, the 

results are not conclusive by themselves and are not very accurate in quantitative terms. 

5.2 - XRD 

The obtained XRD patterns for the neat and 30% PFA blended cement pastes, either 

water or KOH activated, and cured at 55'C for one day and one month are presented in 

Appendix A (A5-A8). The results were very similar to those obtained for the same 

systems cured at 25'C, i. e. the same type and number of phases were identified (Table 

4.2). 

5.3 - COMPRESSIVE STRENGTH 

Compressive tests were carried out on mortars with the same chemical composition as 

the studied systems, cured at 55'C in an environmental chamber. The following table 

summarises the data obtained for the water and KOH activated neat and 30% PFA 

blended WPC pastes at one day and one month, cured at 55'C. 
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Table 5.2 - Compressive strength data obtained for the neat and 30% PFA blended cernent 

pastes after I day and I month, cured at 550C. 

Compressive Strength (MPa) S 

I day 
WPC 27.6 1.2 

1 month 66.0 1.9 
1 day 

KWPC 10.0 1.0 
I month 18.1 0.9 
1 day 

PFA30 14.7 0.2 
1 month 0.3 
I day 

KPFA30 13.0 0.8 
1 month 30.4 6.7 

Compressive strength increased after one month of hydration, indicating that the 

microstructure of the samples became more dense and packed. As hydration took place, 
the resulting hydration products, especially Op C-S-H filled in the interstitial space 

originally filled with water. As mentioned in the previous chapter, compressive strength 

results should be analysed along with data indicating the type and degree of porosity 

present in the microstructure. Porosity, pore size and other microstructural features 

define the strength, elasticity and microhardness of cement pastesý 1,1201. Backscattered 

electron microscopy can also give some information regarding porosity. 

Comparing these results with those from the previous chapter., it was verified that the 

water activated neat and blended cement pastes acquired higher strength after one day 

of hydration but lower strength after one month of curing at 55'C. The alkaline neat and 

blended cement pastes presented higher strength after one day and one month. It was 

concluded that, although it appears that higher curing temperature increased cement 

hydration, it does not mean that the final physical properties are improved. Accurate 

evaluation of the porosity should be conducted. 
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5.4 - SOLID STATE 29Si NIASNNIR 

Single pulse 29 Si MAS NMR provides quantitative information on the silicate anion 

structure of the C-S-H gel, namely the fractions of silicon present in different tetrahedral 

environments, Q where n denotes the connectivity of the silicate tetrahedron, in 

dreierkette chains. Quantification was achieved in the case of the neat WPC pastes but 

only semi -quantitative data was obtained for the 30% PFA blended systems. For the 

60% PFA blended pastes, only qualitative analysis was conducted. The spectra are 

included in Appendix B (132-134). The interpretation of the spectra Xý-as x, ýcry similar to 

that done for the same cementitious systems cured at 25'C (Chapter IV, Section 4.5). 

The following table summarises the quantitative MAS NMR data found for the neat 

WPC pastes. 

Table 5.3 _ 
29S, MAS NMR quantitative data obtained for the neat cement pastes I day and I 

month, CLired at 55'C. 

Water activated KOH activated 
I day I month I day I month 

MCL 3.5 6.5 3.5 5.2 
AI/Si 0.058 0.095 0.098 0.103 

% Anhydrous cement 41.9 9.6 41.8 6.9 
% Cement reacted 58.1 90.4 58.2 93.1 
% Y-C2S 4.0 2.6 5.9 3.7 

%Ql 32.6 29.5 32.5 38.2 
% Q2( 1AI) 6.3 16.8 10.3 18.4 
% Q2 15.2 41.5 9.5 32.9 
% Q3 - - - - 
%B 38 62 38 46 
B,, jte,, /BKOH 62 83 - - 
CH as % of ig. wt. (STA) 21 27 25 35 

The above data shows that the amount of reacted cement increased with time of 

hydration. Polymerisation of C-S-H also occurred because MCL increased as well as the 

relative intensity of Q 2. After one month - when most of the cement reacted - the MCL 

indicated that the alurninosilicate chains were either mainly pentameric, or mixtures of 

dirners with longer chains. Aluminiurn substitution in tetrahedral places in C-S-H 

occurred and also increased as hydration took place, as the relative intensity of Q2 (1 Al) 

increased alono with the Al/Si ratio. STA estimation of the amount of CH present in 
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each system (Table 5.1) was in good agreement with all of these observations. The 

amount of CH resulting from cement hydration increased xvith time. As expected in the 
[78] 

case of alkaline activation , the spectra were better deconvoluted indicating greater 
degree of structural order. 7-C2S corresponding resonance was also present and had a 

more or less constant relative intensityll]. Comparing the water and KOH activated 11cat 
WPC pastes, alkaline activation appeared not to have any effect on the kinetics of the 

cement reaction. Shorter mean aluminosilicate chain lengths ý'vere formed. This is 
intimately related with Q2 resonance because the latter indicates the extent of C-S-H 

polymerisation. The proportion of occupied bridging sites in t1le dreierkette chains t1lat 

are occupied by A13+ and not Si4+ remained unchanged between one day and one month 

with water activation (at 3 8%) but reduced with KOH activation (from 6-1 % to 46' o). As 

a consequence the ratio of Bwate, /BKOH was affected. At one day, KOH activation 

produced five thirds as much aluminium substitution as did ýN-ater, and at one month it 

produced six fifths (the mean Al/Si atomic ratios Nvere the same but MCL ý%'as shorter 

with KOH). Interestingly, these values fall either side of the value observed previously 
for ground granulated blast-furnace slag/WPC blends with 50 and 90% slag - which had 

four thirds as much aluminium substitution with KOHIS7] - and were the same as those 

for a metakaolin (MK)/WPC blend containing 20% MKI 132] 
, despite having very 

different mean Al/Si atomic ratios and mean aluminosilicate chain lengths. STA data 

also supports the idea that the percentage of reacted cement increased slightly with the 

alkaline activation because the amount of estimated CH was higher than the amount of 

estimated CH present in the water activated neat paste. 

Comparing with the same systems cured at 25'C, the effect of temperature affected to 

some extent the cement hydration. In both systems, curing at 55T led to slightly higher 

MCL indicating that further polymerisation of C-S-H occurred with decreasing of the 

relative intensity of Q1 and increasing of the relative intensity of Q2. It also increased 

the percentage of cement reacted as well as the Al/Si ratio and the relative intensity of 

Q2(l A]). 

The serni-quantitative MAS NMR data obtained for the 30% fly ash blends cured at 

5 5'C for one day and one month are presented in the next table. 

CHAPTER V- RESULTS AND DISCUSSION- CURING AT 550C 



137 

Ta bIe5.4 _ 
29S, MAS NMR semi-quantitative data obtained for the 30% PFA blended cement 

pastes I day and I month, cured at 55T. 

Water activated KOH activated 
1 day 1 month I day I month 

MCL 4.0 12.4 4.2 10.7 
AI/Si 0.099 0.181 0.147 0.214 7 

% Anhydrous cement 20.9 12.5 20.2 19.3 
% Y-C2S 7.2 7.8 7.7 1.8 

%Ql 18.7 12.6 19.0 16.6 
% Q2( IAI) 6.7 24.0 10.1 

-35.0 % Q2 8.5 29.6 5.3 19.3 
3 

%Q 
% Anhydrous PFA 38.0 13.5 37.7 16.3 
%B 54 74 55 733 
Bw 

ate , 
/B KO 11 73 75 - - 

CH as % of ig. wt. (STA) 15 11) 13 11 

In the blended system, the relative intensity of the Q2 (IAI) peak, the Al/Si atomic ratio 

and the MCL were higher and PFA replacement provided more available aluminium to 

be incorporated in the C-S-H structure. Regarding the KOH activated blend, the 

percentage of cement and PFA reacted increased after one month and, as expected, the 

alkaline activation caused a decrease of the MCL but an increase of the relatiN, e intensity 

of Q2(IAI) and Al/Si atomic ratio. Comparing the water and KOH activated 30% PFA 

blended WPC pastes, alkaline activation did not affect significantly the kinetics of the 

cement reaction or that of the pozzolanic reaction. Considering aluminium substitution, 

%B was higher in the alkaline pastes indicating higher number of aluminiurn substituted 

sites. The %B increased the same amount in both systems. Consequently Bwater/BKOH 

was also the same at both ages although the mean Al/Si increased as well as MCL. 

From STA data (Table 5.1) it appears that pozzolanic reaction took place. 

Finally, the MAS NMR results were compared between the neat and. )'O% PFA blended 

WPC pastes. Table 5.5 resumes the comparable parameters found for the water 

activated neat and blended (30% PFA) WPC pastes, after one month of hydration at 

5 5T. 
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Table 5.5 _ 
29S, MAS NMR data comparison between %\ater activated neat and 30% PFA 

blended cernent pastes I month. cured at 55T. 

Neat WPC 30% PFA blended NNTC 

MCL 6.5 12.4 

% Anhydrous cement 9.6 12.5 

AI/Si 0.095 0.181 

% Q2( IAI) 16.8 24.0 

CII as % of ig. wt. (STA) 27 13 

As observed in the previous chapter, PFA replacement slightly affected the amount of 

reacted cement and increased polymerisation of C-S-H, -,, vith a mean aluminosilicate 

chain length of 12.4. PFA substitution was a source of aluminium for C-S-H and, as a 

result, the AI/Si ratio and the relative intensity of Q2( IAI) \ýci-c also higher in the 

blended cement paste. Pozzolanic reaction occurred as STA results confirmed. Table 5.6 

shows the same comparable parameters calculated for the KOH neat and 30% PFA 

blended WPC pastes, after one month of hydration. 

Table 5.6 - 
"9SI MAS NMR data comparison between KOH activated neat and 30% PFA 

blended cement pastes I month, cured at 55T. 

Neat WPC 30% PFA blended WPC 

MCL 5.2 10.7 

% Anhydrous cement 6.9 19.3 

AI/Si 0.103 0.247 

% Q2( IAI) 18.4 35.0 

CH as % of ig. wt. (STA) 35 11 

Table 5.6 clearly shows the effect of PFA replacement when comparing the neat and 

blended alkaline systems. The MCL doubled its value in the blend as well as the mean 

AI/Si ratio and relative intensity of Q2(IAI). 

Ultimately, it was necessary to compare the MAS NMR obtained at 55T %\Itli those at 

'5'C presented in the previous chapter. In order to simplify the comparison, the results 

xvcrc compared after one month of hydration because by then most of the cement 
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reacted and the microstructure formed is better defined and distributed, i. e. the cement 
paste reaches higher maturity. Starting with the water activated neat and blended 

systems, Table 5.7 summarises the key data obtained using MAS NMR. 

Table 5.7 _ 
29S, MAS NMR data comparison between water activated neat and 30% PFA 

blended cement pastes I month, cured at 25'C and 551C. 

Neat Neat 30% PFA 30% PFA 

WPC WPC Blended Blended 

(25'C) (550C) (25'C) (55-C) 

MCL 3.3 6.5 3.6 12.4 

% Anhydrous cement 19.8 9.6 14.3 12.5 

AI/Si 0.056 0.095 0.070 0.181 

% Q2( 1AI) 8.8 16.8 9.0 24.0 

CH (STA) 26 27 20 13 

From the above results, it was concluded that, generally, higher curing temperature 

increased slightly the rate of the cement hydration. Further polymerisation also occurred 
because, at 55'C, in both neat and blended systems, the MCL was much higher. High 

curing temperature increased the mean AI/Si ratio as well as the amount of central 

silicon substituted by aluminium in the C-S-H dreierkette chain. Table 5.8 summarises 

the MAS NMR results obtained for the alkaline neat and blended cement pastes cured 
for one month, at 25'C and 55'C. 

Table 5.8 _ 
29Si MAS NMR data comparison between KOH activated neat and 30% PFA 

blended cement pastes I month, cured at 25'C and 55'C. 

Neat Neat 30% PFA 30% PFA 

WPC WPC Blended Blended 

(25'C) (55'C) (25'C) (55'C) 

MCL 3.4 5.2 4.2 10.7 

% Anhydrous cement 22.6 6.9 12.0 19.3 

AI/Si 0.093 0.103 0.145 0.247 

% Q2( IAI) 14.2 18.4 16.6 35.0 

CH (STA) 31 35 17 11 
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Similarly to the comparison between the water activated samples cured at both 

temperatures, higher temperature increased MCL, the rate of cement hydration and the 

amount of aluminium present in the C-S-H aluminosilicate chain. In general, MAS 

NMR experimental results showed that PFA replacement in a WPC system and higher 

curing temperature enhanced incorporation of aluminium in the C-S-H phase in the 

bridging tetrahedra of dreierkette chains. C-S-H polymerised as hydration took place 

and the cement hydration and pozzolanic reaction rates were generally increased by 

higher curing temperature. 

5.5 - SEM-EDX 

The backscattered electron images illustrating the microstructure found in the neat and 

30% or 60% fly ash blended cement pastes (water or KOH activated) one day and one 

month, cured at 55'C are presented in Appendix C. Low magnification images are 

shown on the left-hand side and higher magnification on the right-hand side. The 

features identified in the microstructure of the different systems were very identical to 

those observed in the same systems cured at 25'C. Nevertheless, another very 

interesting feature in the microstructure of the water activated systems was noticed. The 

grey level of C-S-H was in places quite similar to the CH: that is, it was brighter than in 

pastes cured at lower temperature (Chapter IV, Section 4.6), an observation that is in 

good agreement with previous studies 
[103,138-1401 

. Figure 5.2 shows the similarity 

between the grey scale found for C-S-H and that of CH. 
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r 10 microns 

CH 
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Figure 5.2 - Backscattered image that 111LIstrates an area of dense microsti-LICtUre of the 

water activated 30% PFA blended WPC paste I 111011th, CUred at 55T. Regi 111111 ions of calci 

hydroxide (CH), Unreacted cement (U), inner prodLICt C-S-H (1p) and OLIter prodLICt C-S-H 

(0p) are labelled. 

Regarding EDX analysis, as seen in the previous chapter, C-S-H chemical composition 

could not be accurately obtained for the sarne reasons presented before. The 

corresponding EDX plots are illustrated in Appendix C as well as EDX calculated data 

(Table C2). The mean Ca/Si atomic ratios for the water activated neat cement paste (one 

day: 2.12, sý0.51; one month: 1.93, s=0.20; Appendix C, Table C2), were very 

similar to values found previously using the same technique by Escalante-Garcia and 

Sharp' 1341 for lp C-S-H present in two ordinary Portland cements with w/c of 0.5 

hydrated at 60'C and by Kjellsený 1371 for both lp and Op C-S-H in an OPC-based high 

performance concrete (containing 5% silica fume) with water/binder ratio of 0.31 

hydrated at 50'C; the distribution of the data is similar to those in the work of Escalante- 

Garcia and Sharp. The data is, however, at the high end of values measured previously 

by TEM-EDX for C-S-1-1 in Portland cement pastes hydrated at lower temperature 

(2 OoC)[72 I 
and those for the KOH activated system were much higher than is possible to 

[3] 
achieve for C-S-H in models for the structure of C-S-H 
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5.6 - TEM-EDX 

5.6.1 - Morpholop, and Chemical Analysis 

The systerns cured at 55'C and studied using TEM-EDX were the water and KOH 

activated neat WPC and 30% PFA blended pastes, cured for one month. As stated 

before, the reason for this choice was that by one month, the microstructure is better 

defined and its features and phase are more easily recognisable. The following 

micrographs show the morphology found for the water activated neat WPC paste Cured 

at 55'C for one month. 

Figure 5.3 -TEM micrograph showing fine and dense lp C-S-H formed in the water activated 

neat WPC paste, I 111011th CUred at 55T. 

The above micrograph shows Ip C-S-H had a very fine homogeneous morphology 

formed in the water activated WPC paste that has been observed previously in cements 

hydrated at 20'Cl 13ý72 1, also in the previous chapter at 25'C. The Op C-S-H was also 

similar to that formed at lower temperatures in being essentially fibrillar, although often 

somewhat coarser fibrillar, -which is consistent with previous observations at high 

temperature [42 ]. Anhydrous particles of cement, large crystals of CH and relicts of AFt- 
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type phases were also observed in the microstructure. The following figure shows the 
EDX data plots found for the water activated WPC paste cured at 55'C, for one month. 
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Figure 5.4 - Al/Ca against Si/Ca (top left), S/Ca apainst Al/Ca (top right) and M, ý/Ca a,, amst 

Al/Ca (bottom) atomic ratio plots for the TEM-FDX phase analysis of the water activated neat 

WPC paste after I month of hydration at 55'C. 

It was sometimes difficult to select areas totally free of relicts of AFt-type phases 

which, because they were partially decomposed, could not be discarded on the basis of 

the presence of crystalline reflections on the SAED pattern. The following micrographs 

Will Illustrate that fine intermixing between C-S-H and relicts of Al't-type phases. 

Analyses of such mixtures contained enhanced amounts of Ca, Al and S, as seen in the 

above figure. Stich analyses were excluded when calculating the mean atornic 

compositions for the C-S-H. The two analyses of Op C-S-H that have the highest Al/Ca 

atornic ratio, together with a number of analyses of Ip C-S-H, also appear to include a 

contribution from microcrystals of a hydrotalcite-like phase (i. e. a Mg, Al double 

hydroxide phase, which can contain various interlayer anions), as indicated in the 

bottom plot from Figure 5.4. The Al/Ca against Si/Ca atornic ratio plot showed two 
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trendlines in the direction of the calcium aluminoferrite hydrate phases but the S/Ca 

against Al/Ca showed only a clear trendline in the direction of the AFt-type phases. 
Therefore, it was concluded that Op C-S-H was finely intermixed with AFt-type phases. 
The mean Ca/Si ratio calculated for Ip C-S-H was 1.56 (s = 0.16) and mean AI/Si ratio 
0.084 (s = 0.021). Op C-S-H had a mean Ca/Si ratio of 1.78 (s = 0.028) and Al/Si ratio 
of 0.107 (s - 0.0833). The corresponding 27 Al MAS NMR spectrum (Figure 5.7) shoxved 
a broad resonance assigned to AFrn-type phases. From TEM-EDX observations, it was 
concluded that the broad peak also included a resonance assigned to AFt-type phases. 

The next figUre shows Op C-S-H typical morphology fOUnd in the KOH neat WPC 

microstructUre. 

Figure 5.5 -TEM micrograph showing large CH crystals and foil-like Op C-S-H formed in the tI5 z::, 

KOH activated neat WPC paste, I month cured at 55T. 

The micrograph in Figure 5.5 illustrates large crystals of CH surrounding foil-like Op 

C-S-H. The morphology of Op C-S-H formed with KOH activation was foil- and lath- 

like rather than fibrillar. The laths appeared to consist of stacks of very poorly ordered 

layers, xvhich merge with crumpled foils. This observed morphology is in good 

a2reernent with that found in other systems [57] cured at 25'C. The foil-like morphology 

of Op C-S-H was also consistent with that characterised in the same system cured at 

25'C, previously seen in Chapter IV. Due to the alkaline activation, Op C-S-H 
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morphology changed from coarse fibrillar to foil-like. The microcrystalline nature of 

CII in the KOH activated neat paste indicated by XRD (Appendix A, Figure A6) was 

confirmed by TEM. In the next figure (bottom right), the CH microcrystals appeared 

darker where they are oriented such that they Bragg-reflect electrons stronalv. This is a 

typical feature of KOH activated systems, as previously reported for pastes of neat 

WPC and slag-WPC blends [ 571 and a metakaolin-WPC ble4 1321 hydrated at 25'C. 

Microcrystal line CH intermixed with C-S-H has not been observed in water activated 

Portland cement pastes of normal w/c ratio hydrated at 20-25T. Whilst sucli fine 

intermixing has been observed in pastes hydrated at 80, C131 it was not observed in this 

StUdy. The following micrograph shows an interface between fine and dense lp C-S-11 

and I'011-like Op C-S-11. 

io 

lp 

40 

Figuire 5.6 -TEM micrograph showing the interface between fine and dense lp and foil-like 

Op C-S-H formed in the KOH activated neat WPC paste, I month cured at 55T. 

The subsequent figure shows the foil-like Op C-S -H morphology in more detail. The 

inicrostructure of' this system was mainly formed of some AFni-type phases crystals, 

tI oil-like Op C-S-H, firic and dense lp C-S-H, large crystals of CH as , N,, ell as 

microcrystalline CH finely intermixed with C-S-H. 
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4A 
Figure 5.7 TE M mici-ographs showing details of the foll-like Op C-S-11 formed in the 

KOll activated neat WPC paste, I month cured at 5 5'C. 

EDX data plots corresponding to this sample are illustrated in the next Figure. 
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Figui-e 5.8 - Al/Ca against Si/Ca (top left), S/Ca apainst Al/Ca (top right) and K/Ca against 

S/Ca (bottom) atomic ratio plots for the TEM-EDX phase analysis of the KOH activated neat 

NAIPC paste after I month of hydration at 55'C. 
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The previous atomic ratio plots clearly showed that Op C-S-H was fineiv intermixed 

with microcrystalline CH. As previously observed in the last chapter for tile alkaline 

neat paste, relicts of AFt-type crystals were not observed in the KOH activated 

specimen. This is also in very good agreement with recent work on a metakaolill-%N"PC 

blend activated with KOH' 1321 
. 

As a consequence, the mean Al/Ca atomic ratio against 

the mean SI/Ca atomic ratio and the S/Ca against Al/Ca plots show that none of tile 

analyses contain contribution from AFt-type phases. Whilst AFrn-type phases can occur 
[73] in KOH activated cements , there was no contribution from such phase in these data. 

lp C-S-H had a mean Ca/Si ratio of 1.28 (s = 0.05) and Al/S1 ratio 0.093 (s = 0.012). 

The mean Ca/Si ratio for Op C-S-H was 1.50 (s = 0.28) and mean AI/Si ratio of 0.096 (s 

= 0.0 19). The higher S/Ca values were clearly associated with enhanced K/Ca, i. e. the 

K/Ca and S/Ca values increased in an approximate 2: 1 ratio suggesting stronidy that 

sa, 2- ions were adsorbed on the C-S-H balanced by potassium ions. The regression line 

indicated that the C-S-H itself had a KICa ratio of 0.09. 

Regions ofthe inicrostructure of the 30% PFA blended WPC paste CUred for one month 

at 55T are shown in the following figures. 

Fi(YUI'e 5.9 - TEM mici-o-raph showing coarse fibi-illar Op C-S-H formed in the water tn ? -I C) 

activated 330% PFA blended WPC paste, I ITIOIlth CLired at 55T. 

FqUire 5.9 illUstrates coarse fibrillar Op C-S-H intermixed with AFt-type phase relicts. 

The nIi crostructure observed in this sample was mainly fine and dense lp C-S-fl. coarse 
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fibrillar Op C-S-14, AFt-type relicts intermixed with Ip and Op C-S-H. and larpe crystals 

of CH and AFm-type phases. The next figure shows a small fully hydrated cement 

particle, Surrounded by dense and coarse fibrillar Op C-S-H. The latter was firiely 

intermixed with AFt and AFm-type phases. 

Figure 5.10 -TEM micrograph showing a small fully hydrated cement grain in tile water 

activated 30% PFA blended WPC paste, I month cured at 55'C. 

It was observed that in fully reacted cement grains, the interior is not hollow, but filled 

with a less dense and porous product, lp C-S-H with a foil-like morphology. Contrary to 

fine and dense lp C-S-H formed in large grains, small fully hydrated particles are filled 

with an almost transparent product, with similar morphology to the fine foil-like Op C- 

S-H observed in water activated slag pastes or alkaline Portland cement pastes [31 
. 

This 

microstructUre of this system presented mainly fine and dense lp C-S-H, coarse fibrillar 

Op C-S-H, AN and AFm-type phases intermixed with Op C-S-H and large crystals of 

AFrn-type phases or CH. The following figures illustrate the difference in morphology 

in a partially and fully reacted PFA particle. 
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Figure 5.11 -TEM micrograph showino a partially hydrated PFA particle in the water activated 
30% PFA blended WPC paste, I nionth cured at 55T. 

".:!, -11 

Figure 5.12 -TEM micrograph shoýýIng a t'Lillý hýdratcd PFA particle in the water activated 

30% PFA blended WPC paste, I month cui-ed at 55'C. 
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The above figures show that PFA reacts from the outside to the inside of their particles. 
Small fully hydrated PFA particles have morphology very similar to the foil-like 

morphology small fully hydrated cement grains. EDX data plots are in the next figure. 
I 
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Figure 5.13 - Al/Ca against Si/Ca (left) and S/Ca against Al/Ca (ri, )Iit) atomic ratio plots for L- 
the TEM-EDX phase analysis of the water activated 30% PFA blended cement paste after I 

morith of'hydration at 55'C. 

The first plot indicated that Ip and Op C-S-H were finely intermixed with AFm-type 

phases but the second plot showed that Ip C-S-H was finely intermixed with Al'i-n-type 

phases and Op C-S-H with AFt-type phases. Hydrogarnet-type phases were also 

intermixed with C-S-H. Usually, hydrogarnet-type phases are formed in ordinary 

Portland cement paste, but not typically in WPC pastesý'J. The mean Ca/Si and AI/Si 

ratios for Ip C-S-H were 1.42 (s = 0.18) and 0.178 (s = 0.059), respectively. Op C-S-H 

had a mean Ca/Si ratio of 1.52 (s = 0.16) and AI/Si ratio 0.165 (s =0.058). 

The next figures show in detail fine and dense lp C-S-H as well as foil-like Op C-S-H 

formed in the KOH activated 30% PFA blended WPC paste. 

lp C-S-H 9 Op C-S-H , AFm 
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Figure 5.14 - TEM micrograph showing details of the foil-like Op C-S-H formed ill the KOH 

activated neat WPC paste, I month cured at 55T. 
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Figure 5.15 -TEM mici-ogi-aph showing details of the foil-like Op C-S-H formed in the KOH 

activated neat WPC paste, I month cm-ed at 55T. 

'Hie following micrographs illustrate CH finely intermixed with foil-like Op C-S-H and L_ 

a partially reacted PFA particle. 
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OF 

Figure 5.16 -TEM micrographs showing details of the foil-like Op C-S-1-1 Intermixed with 
('11 and a partially hydrated PFA particle in the KOH activated neat WPC paste, I morith 

cured at 55'C. 

EDX data atornic ratio plots for the KOH activated 30% PFA blended WPC paste, 
hydrated for one month at 55'C, are presented in Figure 5.17. 
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Figure 5.17 - Al/Ca against Si/Ca (left) and S/Ca against Al/Ca (right) atornic ratio plots for 

the TFM-EDX phase analysis of the KOH activated 30% PFA blended cernent paste after I 

nionth of hydration at 55'C. 

The atornic ratio plots demonstrated that lp and Op C-S-H were both finely intermixed 

xvith rnicrocrystalline CH. lp C-S-H presented a mean Ca/Si ratio of 1.12 (s = 0.32) and 
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Al/Si ratio of 0.211 (s = 0.028). The mean CaJSi and AI/Si ratios for Op C-S-H were 
1.02 (s =0.16) and 0.215 (s = 0.017). in that order. Table 5.9 resumes the mean CaSi 

and AI/Si ratios obtained for the systems studied using TEM-EDX. 

Table 5.9 - Mean Ca/SI and Al/SI atomic ratios obtained for C-S-H using TEM-EDX, for the 

water or KOH activated, neat WPC pastes and 30% PFA blended cement paste, I month cured 

at 550C. 

Ca/Si 
_ 

Ca/(AI+Si) AIN 
N mean s mean s mean s 

Op 35 1.78 0.28 1.60 0.16 0.107 0.0833 
Wpe Ip 40 1.56 0.16 1.44 0.15 0.084 0.021 

All 75 1.64 0.21 1.51 0.18 0.087 0.032 
Op 44 1.50 0.28 1.37 0.11 0.096 0.019 

Kwpc Ip 30 1.28 0.05 1.17 0.05 0.093 0.012 
All 74 1.40 0.14 1.29 0.13 0.090 0.013 
Op 34 1.52 0.16 1.29 0.09 0.165 0.058 

Pfa30 Ip 26 1.42 0.18 1.21 0.18 0.178 0.059 
All 60 1.46 0.16 1.25 0.14 0.164 0.048 
Op 24 1.02 0.16 0.84 0.13 0.215 0.017 

Kpfa30 Ip 30 1.12 0.32 0.92 0.27 0.211 0.028 
All 54 1.07 0.26 0.89 0.22 0.213 0.023 

Generally, as shown in the above table, the mean Ca/Si ratio found for Op C-S-H was 

higher than that for lp C-S-H. Op C-S-H morphology changed according to its Ca/Si: 

the decrease of the Ca/Si changed the fibrillar morphology to a foil-like morphology. 

The mean Ca/Si and Ca/(AI+Si) atomic ratios of the lp C-S-H were in both neat pastes 

statistically significantly lower than those of the Op C-S-H. The mean value of the mean 

Ca/(AI+Si) atomic ratio of the C-S-H present in the alkaline paste (1.29, s=0.13) is also 

significantly lower than with water activation (1.51, s=0.18), which was consistent 

with the lower amount of CH in the water activated paste (Table 5.3). The same ý\-as 

verified in the blended systems. Regarding KOH activation, intuitively, one would 

expect the smaller average crystal size of the CH to lead to a smaller cluster in the 

SEM-EDX data than that with water activation (Appendix Q. However. in contrast to 

the water activated neat and blended cement pastes, almost all the CH in the alkaline 

pastes was in fact intimately mixed with C-S-H, ranging from small microcrystals 

embedded in C-S-H to large CH-rich regions that had small amounts of C-S-H 

interstratified betwecii layers of CH; such intermixing resulted in the wide range of 

S*/Ca atornic ratio observed in both the SEM-EDX and TEM-EDX data. Comparing the 
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mean Ca/Si atomic ratio found for lp and Op C-S-H in the neat and blended pastes, Pl: A 

replacement decreased the mean Ca/Si ratio. There was no difference between the mean 
AI/Si atomic ratios of the lp and Op C-S-H in the neat pastes and as well as in the 
blended cement pastes. Due to more available aluminium provided bý- the PFA 

replacement and consequently, lp and Op C-S-H had higher mean AI/Si atomic ratios. 

Fable 5.10 resumes TEM-EDX, SEM-EDX and MAS NMR experimental results found 
for the water and KOH activated neat and 330% PFA blended WPC pastes cured for mic 
month at 55T. 

Table 5.10 - Mean Ca/Si and At/Si atomic ratios obtained for C-S-H using TEM-EDX, SEM- 
EDX and MAS NMR, for the water or KOH activated, neat WPC pastes and 30% PFA blended 

cement paste, I month cured at 550C. 

All Ca/Si All AI/Si AI/Si 
Ca/Si (SEM) AI/Si (SEM) (NMR) 

Wpc 1.64 1.93 0.087 0.106 0.095 
Kwpc 1.40 2.66 0.090 0.098 0.103 
Pfa30 1.46 1.73 0.164 0.325 0.181 
Kpfa30 1.07 1.62 0.213 0.272 0.247 

Comparing the mean Ca/Si and AI/Si ratios using TEM-EDX and SEM-EDX, it \\, as 

concluded that due to the different volume interaction verified in both techniques, SEM- 

EDX analysis always led to higher values. It was noted in Section 5.5 that the mean 

Al/Ca atomic ratio against the mean Si/Ca atomic ratio plot for the water activated neat 

paste (Appendix C) was very similar to data reported by Esc alante- Garcia and Sharp [134] 

for lp C-S-H. Those authors considered that such clusters of analyses corresponded to 

essentially pure C-S-H. However, comparison of the SEM-EDX data ýN,, ith the TEM- 

EDX showed that in this case it was unlikely that the considered cluster was due solely 

to C-S-H; the difference between the mean values for the Ca/Si atomic ratios 

determined by SEM-EDX and TEM-EDX is statistically extremely significant, so the 

SEM-EDX data would appear to be due to C-S-H intermixed with other phases, in 

particular CH: that is, that many crystals of CH and other hydration products were 

sufficiently small compared with the size of the X-ray generation volume - and cvcillý- 

distributed - that the intermixture of phases in the cluster of analyses obser', 'ed b\ SENI- 

EDX, which understandably could be interpreted as being due to "pure" C-S-H. 
., \ good 
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agreement was found between the mean Al/Si atomic ratios obtained using TE, \I-EDX 

and 29Si MAS NMR, bearing in mind that in the first technique. chemical composition 
analysis is not free of phase intermixing and that MAS NMR is a bulk technique. 

Finally, it was also necessary to compare the TEM-EDX data obtained for thesc s-, -.,, tcins 

cured at 55'C, with that found for these pastes cured at 25'C. Table 5.11 resumes those 

experimental results. 

Table 5.11 - Comparison between the mean Ca/SI and AUSI atomic ratios obtained for the 

cernent-based studied systems after I month cured at 25'C and 55T. 

lp lp Op Op lp lp Op Op 

Ca/Si Ca/Si Ca/Si Ca/Si AI/Si AIN AI/Si AIN 
(25') (55') (25') (55') (25') (55') (25') 

Wpe 1.75 1.56 2.00 1.78 0.075 0.084 0.114 0.107 
Kwpc 1.76 1.28 1.24 1.50 0.101 0.093 0.120 0.096 
Pfa30 1.34 1.12 1.62 1.02 0.113 0.211 0.186 0.215 

From the presented data, it was concluded that, in all the systems, the lp C-S-H mean 

Ca/Si ratio decreased with higher curing temperature. Op C-S-H mean Ca/Si ratio and 

lp C-S-H mean Al/Si ratio decreased in the water activated systems, after curing at 

55T. Finally, Op C-S-H mean AI/Si ratio decreased in the neat cement pastes %\'ith 

higher curing temperature but increased in the water activated blend. 

In summai-y, TEM-EDX allowed characterisation of lp and Op C-S-H morphology and 

it was concluded that with higher curing temperature, they became coarser. It also 

demonstrated that CH and Al't-type phases were finely inten-nixed with Ip C-S-H and 

AFm-type phases with Op C-S-H. In the 30% PFA blended cement paste, hydrogamet- 

type phases were formed and intermixed with C-S-H, which is not often observed in 

WPC pastes. Some agreement was found between the mean Ca/Si ratios obtained using 

SEM-EDX and TEM-EDX. Good agreement was found between the mean values for 

the Al/Si atornic ratios, when using TEM-EDX and MAS NMR. 

5.6.2 - T/J and T/Cll-based models for the structure of C-S-H 
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The next table surnmarises data that was used for application of the different structural 

models For the TEM-EDX analysed systerns. 

Table 5.12 - Experimental data Used In Al/Ca against Si/Ca atomic plots dISCLISSIIIO tlIC 

applicability of the TICI I and T/J structural models for C-S-H, in the systerns cured at 55'C. 

lp 
Ca/Si 

Op 
Ca/Si 

lp 
AIN 

Op 
AIN 

AI/Si 
(NMR) 

MCL 'VoB 

Wpc 1.56 1.78 0.084 0.107 0.095 6.5 38 
Kwpc 1.28 1.50 0.093 0.096 0.103 5.2 46 
Pfa30 1.42 1.52 0.178 0.165 0.181 12.4 55 
Kpfa30 1.12 1.02 0.211 0.215 0.247 10.7 73 

FIgLire 5.18 shows lp and Op C-S-H raw data in Al/Ca against Si/Ca atornic ratio plot 

considcring the T/J and PCH strLICtLiral models. 
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Fig ui-e 5.18 -A I/Ca a gainst S*/Ca atomic plot forthe water activated neat W PC paste cu red t- rI 
L- IIIo 

month at 55'C, accounting with T/J and T/CH viewpoints (* lp C-S-H, 0 Op C-S-H, 0 

unprotonated Lillits, E half protonated. X fully protonated, Too toberl-norite, --- T/Cli. - T/J). 

From evaluation of the above plot, it was C011CILided that the T/J pol"t Of Niew was 

consistent with experimental data. The dashed lines represent T/CH viewpoint and it 

was observed that both lp and Op C-S-H corresponding points were not distribUted 
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along the trendline between CH and T8(IAI), and CH and T5(IAI). lp and Op C-S-H 

data was mainly distributed around the mean SI/Ca for jennite-based units and most of 
them distributed between the trendline from T5(IAI) and TS(IAI) to J. ". 

The following figure shows the A]/Ca against Si/Ca atornic ratio plot considering the 
T/CI I and T/J models for the KOH activated neat WPC paste, one month Cured at 55T. 

0.6 
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00.3 
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0.1 

0A 

CH 0-0 

Toc(Al) 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

J2 - Al Si/Ca 

Figure 5.19 - Al/Ca against SI/Ca atomic plot for the KOH activated neat WPC paste cured for 
t7l 

I month at 55'C, acC0LIIItIIIg with T/J and T/CH viewpoints (+ Ip C-S-H, 0 Op C-S-11,0 

Unprotonated 1-111its, E half protonated, X fully protonated, Too tobermorite, --- T/CH, - T/J). 

As the above figure illustrates, C-S-H data was consistent with T/CH viewpoint because 

most of the data was consistent with trendlines in the direction of CH, and not on the 

trendline from 'F5(IAI) to J2. 

Figure 5.20 shows die applickon of the two models to experimental data obtained for 

the water activated 30% PFA blended systern, one month cured at 55T. 
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Figure 5.20 -Al/Ca against Si/Ca atomic plot for the water activated 30% PI-A blended WPC 

paste cured for I nionth at 55'C, accounting with T/J and PCH viewpoints (* lp C-S-1 1, 

Op C-S-1 1,0 Unprotonated units, L lialf protonated, X fully protonated, Týýf-, tobermoritc, --- 
T/CH, -T/J). 

Although data was more scattered than in neat systems and it was consistent with both 

T/J and T/CH viewpoints, as shown by the distribution of the data around trendlincs ill 

the direction of J2 from TI I(IAI), TI 1(2AI), T8(IAI), T8(2AI) and T5(IAI). It COUld 

also be considered that some of the data was consistent with trendlines going froill 

toberi-norite-based units to CH. 

Finally, the next figUre shows the atomic ratio plot for the KOH activated 30% PFA 

blended WPC, cured for one month at 55T. 
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Figure 5.21 -Al/Ca against Si/Ca atomic plot for the KOH activated 30% PFA blended WlIC 

paste cured for I niontli at 55'C, accounting with T/J and PCH viewpoints (* lp C-S-H, 

Op C-S-11,0 unprotonated units, '. 
- 

half protonated, X fully protonated, TuD tobermorite, --- 

T/C H, - T/J ). 

It was concluded that most of the data, especially Op C-S-H, was consistent with the 

trendline from TI 1(2AI) in the direction of J2 but also in the direction of CH. The same 

was verified for the tie line from T5(IAI) to J2 or CH. Therefore, experimental data for 

this system was consistent with both T/J and T/CH viewpoints. 

5.7 - C-S-11 STRUCTURAL-CHEMICAL COMPOSITION 

C-S-H chemical composition can be easily determined according to both T/J and T/CH 

viewpoints and using TEM-EDX and MAS NMR data. Using the equations 4.2 to 4.7 

(Chapter IV), the structural-chemical composition of C-S-H was determined and Table 

5.1 33 reSLIMCS the data used in the calculations: 
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Table 5.13 - TEM-EDX and MAS NMR data used in the determination of C-S-H chemical 
composition according to the T/J and T/CH structural viewpoints for the s% steii-is cured at 5 51C. 

Ca/Si 
I I AI/Si AIN MCL 

(TEM) w J, w (TEM) (NMR) a (3n-1) 11 
Wpc 1.64 3.80 0 3.59 0 0.087 0.095 - 0.08 6.5 1.4 
Kwpc 1.40 2,67 0 2.47 0 0.090 0.103 0.08 5 11 
MAN 1.46 2.92 0 2.5 0 0.164 0.181 0.14 .2 12.4 4.5 
Kpfa30 1.07 0.9 4.18 0.43 5.97 0.213 0.247 0.18 10.7 3.8 

Again, minimum degree of protonation was considered. C-S-H chemical composition 
determined according to the T/J structural point of view is given in Table 5.14. 

Table 5.14 - C-S-H chernical cornposition determined according to the T/J structural viewpoint 
for the systems cured at 55'C. 

T/J (minimum degree of protonation) 
Wpc ICas(Slog, A]O. 09)6.5020.51. (OH)3 

7-Cat,,. mH20 
Kwpc f Ca4JAS 11 0.9, A 10.09)5 

2016.61-Ko. 47. (OH)1.21 
-C a-, 67*i-nH, 0 

Pfa30 ýCaq(S]0,86AIO. 
14)13.40ý8 5). (OH)4.14'C aI3.1. mH, 0 

Kpfa30 I CaTA. 010.86AIo 
14)10 7034.21-K, 9-Ca3.4'MH20 

As seen in the previous chapter, the chemical composition inside the brackets indicates 

the tobermorite-based skeleton of C-S-H. The presence of hydroxyl groups outside the 
brackets indicates that there must be some jennite-like structure besides tobermorite-like 

units. In the alkaline neat paste, it was assumed that substitution of Si"' by A13+ IS 

charge balanced entirely by K+ ions. The structure of C-S-H can also be reorganised 

according to the T/CH viewpoint, resumed in Table 5.15. 

Table 5.15 - C-S-H chemical composition determined according to the T/CH structural 

viewpoint for the systerns cured at 55T. 

T/CH (minimum degree of protonation) 
Wpc Ca7.5(SiOgIAI0.09)6.5020.5-CaO3*l. 84Ca(OH)2' mH20 
Kwpc Ca6,2(SlogAIO. 09)5,2016.6-Ko47-0.6lCa(OH)2- mH20 
Pfa30 Cal3,5(SIO. 86AIo 14)13.4038.5*CaO. 94* 1.1 Ca(OH)2* mHO 
Kpfa30 Ca8.4H6(SiO. 86AI0 14)10.7034.2-K, 9- mH20 

In the alkaline neat paste, the presence of hydroxyl groups outside the brackets again 

indicates that on the T/J viewpoint for the nanostructure of C-S-H, there must be some 

. 
1-like structure. Howcvcr. in this case, the distribution of TEM-EDX (Figure 5.19) 
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indicated clearly that the T/CH viewpoint was more adequate than the TIJ, so the 
formula for an average structural unit more appropriate should be the one in Table 5.8. 

Interestingly, the K/Ca atomic ratio on that formula (K/Ca=0.07) is \ crý- similar to the 

atomic ratio given by the regression equation in Figure 5.8 for C-S-H. (i. e., the \'alue at 
S/Ca=O, on the assumption that all sulfur was adsorbed on the C-S-H as suffate ions 

balanced by potassium ions). Regarding the pfa30 paste, the structural formulas shmN. 

that on the T/J point of view, there was some J-Iike contribution and on the T,, C1j point 

of view, there were also some CH units in "solid-solution". This is in verý- good 

agreement with both models as previously seen in Figure 5.20 where both models \\, ere 

consistent with the TEM-EDX data. Finally, considering the alkaline blended paste, the 

structural formulas showed that there were no jennite units present (T/J viewpoint) as 

well as CH "solid solution" units (T/CH viewpoint). However, Figure 5.21 shows that 

TEM-EDX data for this system was consistent with both models. 
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VI - RESULTS AND DISCUSSION: CURING AT 85'C 

The experimental results related to the systems cured at 85'C are presciitcd and 
discussed in this chapter. The studied systems vvill be designated by the pi-cvIOUSly used 
notation. 

6.1 - STA-EGA 

The amount of CH present in the different systems cured at 85T was estimated bv 
II 

STA-FGA. Figures 6.1 shows STA-EGA CUrve obtained for the water activated neat, 

after one month of hydration. EGA indicated that carbonation of the analysed samples 
did not occur and the main exotherms corresponding to C-S-H and C'll al-OLind 120T 

and 475'C, in that order. 
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Figui-e 6.1 - STA CLII-Ve for the Nvater activated neat WPC paste I month, cured at 85T. 

Fstlinated CH as percentage of ignited weight obtained for all the systems cured at 

85'C, aftcr one clay and one month of hydration. is presented in Table 6.1. 
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Table 6.1 - Estimated amount of CH, as percentage of ignited ýýelght, present in the \ýater and 
KOH activated neat and blended cement pastes cured at 85'C at I day and I 1-nonth. 

1 day I month 

WPC 25 25 

KWPC 25 30 

PFA30 11 8 

KPFA30 6 

PFA60 40 

KPFA60 0 

As mentioned in the previous chapters, the estimated amount of CH gives a good 
indication of the reaction extension but STA results are not conclusive by themselves or 

very accurate in quantitative terms. 

The next table resumes the estimated amount of CH obtained at 25'C, 55'C and 85'C. 

Table 6.2 - Estimated amount of CH, as percentage of ignited weight, present in the water and 

KOH activated neat and blended cement pastes one month cured at 25'C, 55'C and 85'C. 

25'C 55"C 85'C 

WPC 26 27 25 

KWPC 31 35 30 

PFA30 20 13 8 

KPFA30 17 11 6 

PFA60 11 6 0 

KPFA60 5 3 0 

Comparison between the STA results obtained at different temperatures clearly 

indicates that higher curing temperature increased the pozzolanic reaction rate and could 

also have affected the cement hydration rate. 
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6.2 - XRD 

Appendix A includes the obtained XRD patterns for the neat and 30% PFA blended 

cement pastes, either water or KOH activated, and cured at 85'C for one day and one 

month. The results were very similar to those obtained for the same systems cured at 

25'C and 55T, i. e. the same type and number of phases \\ere identified. Ho\\c\, cr, 

additional phases were also identified in the diffractograms. 

Table 6.3 - Identified phases in the XRD patterns for the water and KOH neat and blended 

cement pastes cured I day and I month at 85'C. 

wpc kwpc pfa30 kpfa30 

C3S 

P-C2S 

CH xx 

Microcrystalline CH x x 

Ettringite 4 x x x 

C-S-H (1) x x 

Microcrystalline Hydrogarnet 4 x 

Arcanite x 4 x N 

Quartz x x 4 

By twenty eight days, in the water activated neat pastes, AFt and AlFm-type phases were 

not present in sufficiently large quantities or with sufficiently large or ordered crystals 

to be detected by the technique. In the alkaline paste, the peaks for CH \\, ere broad 

indicating a small average crystal size, as observed previously for the alkaline samples 

in Chapters IV and V, as well as in other KOH activated systems [132] 
. However, the 

peaks were not all broadened to the same extent, indicating that the crystals were 

anisotropic. The crystalline phases present in the water activated pastes and in the 

alkaline blend included a significant quantity of a microcrystal line hydrogamet phase. 
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6.3 - COMPRESSIVE STRENGTH 

Compressive tests were carried out on mortars with the same chemical composition as 

the studied systems, cured at 85'C in an environmental chamber. The follo%ý-iii, 
-, table 

summarises the data obtained for the water and KOH activated neat and 30% PFA 

blended WPC pastes at one day and one month, cured at 85'C. 

Table 6.4 - Compressive strength data obtained for the neat and 30% PFA blended cernent 

pastes after I day and I month, cured at 850C. 

Compressive Strength (MPa) S 

1 day 
WPC 45.3 

-3.8 1 month 54.0 7.7 

KWPC 
I day 14.6 1.7 
1 month 23.9 11.4 

PFA30 
I day 42.7 2.9 
1 month 43.4 14.5 

KPFA30 
1 day 7.6 1.3 
1 month 45.0 3.9 

From the above table, it was concluded that compressive strength increased after one 

month of hydration. This was due to further developing of the microstructure that 

became more dense and packed. As hydration took place, the resulting hydration 

products, especially Op C-S-H filled in the interstitial space originally filled with water. 

Backscattered electron microscopy should provide some information regarding porosity 

of the different sý, stems cured at 85'C. 

The following table resumes the compressive strength experimental results obtained for 

all the studied systems, cured for one day and one month at 250C, 55'C and 850C. 
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Table 6.5 - Compressive strength data obtained for all the studied s\ stems cured for I daý and 
I month, at 25'C, 55"C and 850C. 

Compressive Strength (MPa) 

I day 

Compressive Strength (MPa) 

I month 

25"C 20 1 
. 72.4 

WPC 550C 6 27 
. 66.0 

85'C 45.3 54.0 
25'C 7.4 15.33 

KWPC 55'C 10 0 
. 18.1 

85'C 14.6 ý. q 
25'C 10.9 49.2 

PFA30 550C 14.7 43.2 
85'C 42.7 43.4 
25'C -). g 7.5 

KPFA30 55C 13.0 30.4 
850C 27.6 45.0 

Comparing these results, it was verified that increasing the curing temperature increased 

the compressive strength. However, by one month, that was not verified because there 

was no linear relationship between increasing hydration temperature and this physical 

property of the cement mortars. Therefore. although higher curing temperature probablý' 

accelerated cement hydration, it did not bring further enhanced strength to the tested 

mortar cubes. Again, it is necessary to bear in mind that accurate evaluation of the 

porosity should be conducted. 

6.4 - SOLID STATE 29 Si MAS NMR 

Single pulse 29Si MAS NMR provides quantitative information on the silicate anion 

structure of the C-S-H gel. Quantification was achieved in the case of the neat NVPC 

pastes but only semi -quantitative data x\,, as obtained for the 30% PFA blended systems. 

For the 60% PFA blended pastes. only qualitative analysis was conducted. The spectra 

are included in Appendix B. As seen in the neat svstems cured at -15'C and 55'C the 
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deconvolution/fitting of the spectra for the same pastes cured at 85'C %%ere similar. 
Q' for the anhydrous WPC at -71 ppm (mainly the sharp peak component from belite), 

Q1 for the chain-end group tetrahedra at -79 ppm, Q2 for the middle-chain groups at -85 
ppm and Q2(IAI) for the middle-chain groups where one of the adjacent tetrahedra is 

occupied by Al at -82 ppm (this substitution results in a do,, \-n-field shift of around 33 

ppm). Following previous studies and what was shown in Chapter IV, the chemical shift 

around -73.5 ppm was assigned to anhydrousY-C2 S[133] . Table 6.6 summarises the data 

obtained from fitting of the spectra. 

Table 6.6 - 
2"Si MAS NMR quantitative data obtained for the neat cement pastes I day and I 

month, cured at 85'C. 

Water activated KOH activated 
I day 1 month I day 1 month 

MCL 8.2 9.9 5.5 7.4 
AI/Si 0.108 0.099 0.120 0.118 

% Anhydrous cement 20.4 5.0 39.6 3.2 
% Cement reacted 79.6 95.0 60.4 96.8 
% 7-C2S - 1.8 - 2.1 

% Q1 21.6 20.7 24.7 28.6 
% Q2( IAI) 17.2 18.5 14.4 22.4 
% Q2 40.8 54.1 21.3 43.7 

%Q 
3 

- - - - 

%B 39 33 4 50 43 
% B%vate, 

-/BKOH 
77 78 - - 

CH as % of ig. wt. (STA) 25 25 25 30 

After one day of hydration, part of the cement reacted and the silicate anion of the 

C-S-H gel was polymerised. Following one month, most of the anhydrous cement 

reacted and further polymerisation of C-S-H occurred. MCL increased slightly as ý, N'ell 

as the relative intensity of Q2. Octamers, pentamers, dimers and mixtures of those 

structural units Nvere present in both pastes at one day and one month of hydration. 

Aluminium substitution in tetrahedral Places in C-S-H occurred but the relati\'e intensity 

of Q2(IAI) and the Al/Si ratio were more or less the same at one day and one month. 

'013 and % BN%ater/BKOHalso confirm that the amount of tetrahedra aluminium subst]tLitcd 

x\'as mainly the same for both systems at both ages. It should be pointed out that the 

deoree of hydration after one month in the water activated sample was the same as that 

found in the same systern cured at 25'C, after one year of hydration (Table 4.5). STA 
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estimation of the amount of CH present in each system was in poor agreement with 
MAS NMR observations because more cement reacted with time and the estimated 

amount of CH was constant at one day and one month. As expected in the case ot, 

alkaline activation 
[78], 

the spectra were better deconvoluted due to hiolier degree of 

structural order induced by KOH activation. Y-C2S corresponding resonance was also 4: 7 

present and had the same relative intensity in both systems [1331 
. Comparing the %Nater 

and KOH activated neat WPC pastes, it was concluded that alkaline activation led 

shorter mean aluminosilicate chain lengths, and that the relative intensity of Q2 was 

slightly lower than that in the water activated WPC paste. However. alkaline activation 
did not affect the kinetics of cement reaction. Q2(lAl) and the AI/Si ratio \\ ere higher in 

the alkaline paste. STA data showed that more CH was produced after one month, wlien 

more cement reacted. 

Before analysing the spectra and corresponding data for the 30% PFA blended cement 

pastes, a few considerations were taken in account. Alkaline cements can be considered 

as an alternative to Portland cements. Two types of cementitious materials are produced 

by alkaline activation: a first type based on Si and Al composition; a second type based 

on Si and Ca, that includes alkali activation of fly ashes (141] 
. Some previous studies 

showed that zeolites were formed but the nature of the aluminosilicate obtained from 

the alkali activation depends on many parameters like alkalinity, temperature. particle 

size and silicon source [14 11. Therefore, curing at 85'C the KOH activated fly ash blends 

could easily lead to zeolites (or zeolites precursors) formation. However, other 

experimental data for those samples indicated that no such type of phases was obtained. 

The XRD patterns for the one day and one month KOH activated 30% PFA blend gave 

evidence for microcrystal line phases like CH, hydrogarnet and C-S-H (1). The latter is a 

semi-crystalline C-S-H phase with a layered structure related to tobermorite %\-Ith linear 

silicate chains (Q1 and Q). TEM-EDX data also did not give evidence for the presence 

of zeolites or zeolites precursors. Consequently, it seemed most sensible to fit the NMR 

spectra on the basis of the phases known to present (i. e. fit with Q1ý Q2, Q2(l Al)), rather 

than to speculate the presence of an amorphous zeolite precursor. 
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In the spectra (Appendix B), Q3 represents branching sites and Q4 cross-linknig sites 
(anhydrous fly ash) in a three dimensional framework Nvere identified. There was an 
additional peak at around -89 ppm in the spectrum for the KOH activated '10% PFA 
blend after one month of hydration. This peak could have indicated the presence of all 
amorphous zeolite precursor [14 11. Nevertheless, the peak was assigned to silicon present 
in a hydrogarnet phase: hydrogarnet was detected by XRD (Appendix A) and a peak at 
this chemical shift has been reported recently for hydrogametl 142 1. The following table 
presents the semi -quantitativ c NMR data obtained for the water and KOH actl\'ated 
30% PFA blended pastes. 

Table 6.7 - 
29S i MAS NMR serni-quantitatke data obtained for the 30% PFA blended cement 

pastes I day and I month, cured at 85T. 

Water activated KOH activated 
I day I month I day I month 

MCL 19.7 16.6 12.6 11.7 
AIN 0.187 0.139 0.274 0.226 

% Anhydrous cement 19.6 7.9 52.4 21.1 
% Y-C2S - 1.0 - 4.1 
%Ql 8.5 11.1 7.6 14.9 
% Q2( IAI) 26.3 22.5 20.7 32.3 
% Q2 35.5 47.2 9.5 

-14.2 % Q3 - - - 0.9 
% Anhydrous PFA 10.1 13.4 9.7 2.4 
%B 53 42 77 67 
% Bwater/BKOH 69 63 - - 
CH as % of ig. wt. (STA) 11 8 2 6 

Generally, both systems had higher MCL and AI/Si ratios because PFA replacement 

provided more available aluminium to be incorporated in the C-S-H structure. After one 

month of hydration, more cement appears to have reacted in the water activated sample 

than in the alkaline blend. On the other hand, more PFA reacted in the KOH system, 

well supported by STA-EGA evidence. It appeared that alkaline reaction inhibited the 

cement hydration. In the water activated blend, Q2 was the most intense peak indicating 

that C-S-H had a longer chain, whereas the most intense peak in the kpfLl')O was 

Q2(IAI) indicating that although MCL Nvas shorter, the chains were more aluminium 

substituted as the calculated AI/Si ratio and the %B confirm. Considering aluminium 

Substitution. " oB decreased very slightly after one month but %B\%ate, /'BKOH was mainly 
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the same at both ages. The same ratio %Bwater/BKOH showed that alkaline activation 

produced more Al substitution in the blended system than in the neat sý steiii. Tables 6.8 

and 6.9 show data comparison between the water activated samples and that between 

the alkaline pastes. 

Table 6.8 _ 
29S, MAS NMR data comparison between water activated neat and 30% PFA 

blended cernent pastes I month, cured at 85'C. 

Neat WPC 30% PFA blended NN'PC 

MCL 9.9 16.6 

% Anhydrous cement 5.0 7.9 

AI/Si 0.099 0.139 

% Q'(IAI) 18.5 22.5 

CH as % of ig. wt. (STA) 25 8 

As observed in the previous chapter, PFA substitution affected the amount of reacted 

cement and increased polymerisation of C-S-H because the mean aluminosilicate chain 

length was higher. PFA substitution also resulted in the increase of the Al/Si ratio and 

relative intensity of Q2(IAI). STA results showed that pozzolanic reaction between PFA 

and CH took place. Table 6.9 shows the same comparable parameters calculated for the 

KOH neat and 30% PFA blended WPC pastes, after one month of hydration at 850C. 

Table 6.9 _ 
29Si MAS NMR data comparison between KOH activated neat and 30% PFA 

blended cement pastes I month, cured at 85'C. 

Neat WPC 30% PITA blended WPC 

MCL 7.4 11.7 

% Anhydrous cement 3.2 21.1 

AI/Si 0.118 0.226 

% Q2( 1AI) 22.4 32.3 

CH as % of ig. wt. (STA) 30 6 

The effect of PFA replacement is clearly shown in the above table. The MCL was 

higher in the blend as well as the mean AI/Si ratio and relative intensity of Q2( I'm). 

After one month of hydration, more anhydrous cement was left in the blended sample 
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which perhaps indicates that KOH activation did not increase the rate of the cement 
hydration. Alkaline activation appears to have favoured the pozzolanic reaction becaLise 

the estimated amount of CH present after one month was a lot less in the blended 

system than in the neat sample. 

Ultimately, the MAS NMR results obtained at 85'C were compared with those at 25"C' 

and 55'C. The results were compared at one month of hydration. Starting with the ýitcr 

activated neat and blended systems, Table 6.10 resumes the key data obtained using 
MAS NMR. 

Table 6.10 _ 
29Si MAS NMR data comparison between water activated neat and 30% PFA 

blended cernent pastes I month, cured at 250C, 55'C and 85'C. 

WPC 

(25'C) 

WPC 

(55, C) 

WPC 

(85'C) 

PFA30 

(250C) 

PFA30 

(55'C) 

PFA30 

(850C) 

MCL 3.3 6.5 9.9 3.6 12.4 16.6 

'! /o Anhydrous cement 19.8 9.6 5.0 14.3 12.5 7.9 

AI/Si 0.056 0.095 0.099 0.070 0.181 0.139 

% Q2( IAI) 8.8 16.8 18.5 9.0 24.0 22.5 

%B 40 62 34 43 74 42 

CH (STA) 26 27 25 20 13 8 

The above results show that the higher curing temperature, the more accelerated ýý' as the 

rate of cement hydration, as well as the rate of the pozzolanic reaction. Further 

polymerisation was also enhanced by higher curing temperature as the increase of MCL 

showed. The %B indicated that at 55'C the proportion of bridging tetrahedra occupied 

by aluminium was higher than that at the other curing temperatures. Table 6.11 

summarises the MAS NMR results obtained for the alkaline neat and blended cement 

pastes cured for one month, at 25T, 55T and 85T. 
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Table 6.11 - 
I"Si MAS NMR data comparison between KOH activated neat and 30"o PFA 

blended cernent pastes I month, cured at 25'C, 55'C and 85'C. 

KWPC 

(250C) 

KWPC 

(55'C) 

KWPC 

(850C) 

KPFA30 

(25'C) 

KPFA30 

(55-C) 

KPFA30 

(85'C) 

MCL 3.4 5.2 7.4 4.2 10.7 11.7 

% Anhydrous 
22.6 6.9 3.2 12.0 19 3 21 1 

cement . . 

AI/Si 0.093 0.103 0.118 0.145 0.247 0.226 

% Q2( IAI) 14.2 18.4 22.4 16.6 33 5.0 3 2.3 

%B 63 46 43 32 73 67 

CH (STA) 31 35 30 17 11 6 

In a similar way to what was concluded before for Table 6.10, higher temperature 

increased MCL, the rate of cement hydration and the amount of aluminium present in 

the C-S-H aluminosilicate chain. The %B decreased with higher curing temperature in 

the neat paste but increased in the blended paste. At 55'C and 85'C. the %B \vas mainlý' 

the same for both systems. Generally, MAS NMR experimental results sllo\%Cd that the 

PFA replacement in a WPC system and higher curing temperature enhanced 

incorporation of aluminium substituting for central silicon in the C-S-H phase. In all 

systems, C-S-H polymerised as hydration took place and the cement hydration and 

pozzolanic reaction rates were generally increased by higher curing temperature. 

6.5 - SEM-EDX 

Backscattered electron images for the microstructure of the neat WPC paste water 

activated one day and one month, cured at 850C, are presented in Appendix C. Low 

magnification images are shown on the left-hand side and higher magnification on the 

right-hand side. As observed in all systems cured at 55T. the orey le\'el of C-S-H was 
25'C (Chapter IV) similar to that of CH and brighter than that formed in pastes cured at ý_ 

and at lowci- temperature, an observation consistent with other studies 1103,138-140 1. The 

inicrostructure was generally porous at one day but it also presented areas of quite 

higher density. This indicated that the distribution of the hydration products was less 
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homogeneous due to high curing temperature. which is in very good agreement with 
previous studies [100-102,1051, where the effect of curing temperature on the microstructure 
in several cement-based systems ýýcre analysed using scanning electron microscopy. 
The authors concluded that increasing curing temperature led, generally. to coarscilino 
of the hydration products, increased porosity and decreasing of the general uniformit\ 

of the microstructure. In fact. some of the studied systems in this chapter exhibited 

many areas with low and high porosity, i. e., porosity was not uniform in the whole 

microstructure. Higher curing temperature also increased the degree of hydration, as 
MAS NMR results demonstrated (Table 6.10), and increased the rate of the pozzolanic 

reaction. Finally, evaluating the effect of curing temperature on the microstructure of 

cement-based systems should be carried out using more than one experimental 
technique like scanning electron microscopy because extrapolated observations and'or 

conclusions can become misleading. 

6.6 - TEM-EDX 

6.6.1 - Morphology and Chemical Analysis 

The systems cured at 85'C and studied using TEM-EDX were the water activated neat 

WPC and 30% PFA blended pastes, cured for one month. The following micrographs 

show the morphology found for the water activated neat WPC paste cured at 85'C for 

one month. 
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Figure 6.2 -TEM micrograph showing the interface between fine and densc lp C-S-11 and 

coarse fibrillar Op C-S-11 formed in the water activated neat WPC paste, I month cured at 

85'C. 

The previous micrograph shows the interface between lp C-S-H Op C-S-11. lp C-S-H 

had a fine scale homogeneous morphology already previously observed at 25T III 

Chapter IV, and also in other Portland cement-based systems hydrated at 20T. ' 72 1 Op 

C-S-H was similar to that formed at lower temperatures but it was coarser than at 55T 

(Chapter V), which is in good agreement with earlier observations at higher curing 

temperature. [42] In this microstructure, large crystals of CH and AFm-type phases were 

identified. Small fully hydrated cement grains contained a less dense lp C-S-11 with a 

foil-like morphology typically observed for Op C-S-H in other cement based 

systems. [57] 
. 
The following figures show the coarse morphology of Op C-S-H. tl 
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Figure 6.3 -TEM micrographs showing coarse fibrillar Op C-S-fl formed in the water 

activated neat WPC paste, I 111011th CLired at 85'C. 

1 'N. 

Figin-e 6.4 -TEM micrograph showing coarse fibrillar Op C-S-H and some globules formed in the tn Z7, 

Nvater activated neat \VPC paste, I month cured at 85T. 
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Figure 6.5 -'f'F, M micrograph showing CH SUrrounding coarse fibrillar Op C-S-11 and small 

globules formed in the water activated neat WPC paste, I moilth cured at 85T. 

Figure 6.5 shows a different and curious feature also observed in the microstruCtUre: 

sorne globules were formed and dispersedly embedded in Op C-S-H coarse fibrils. In 

this neat cement paste most of the globules were too small or thick for EDX to be used. 

CH closely surrounding Op C-S-H IS Illustrated in Figure 6.6. The next micrographs 

show the difference between bright and dark field TEM imaging for a partially hydrated 

cement grain. In Figure 6.7, the dark field image shows a different contrast from the one 

observed in bright field. The brighter area corresponds to crystalline material and the 

light-grey corresponds to amorphous lp and Op C-S-H. Complementing these two 

imaging modes is very helpful in distinguishing crystalline areas from less crystalline or 

amorphous products. 
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Figure 6.6 - Bright field TEM microoraph showing a partially hydrated cement grain in the 

water activated neat WIIC paste, I month cured at 850C. 

lop - 
AD 

4dol 

,-"!! ý. " -%w 

I 

£e, -; 0 co 
Figui-e 6.7 - Dark field 'I'EM micrograph corresponding to Figure 6.30 for a partially hydrated 

cement orain in showino in the \vater activated neat WPC paste, I 111011th Cured at 850C. L- 

The followim4 fiourc shows the EDX data plots found for the water activated WPC L- 

paste cured at 850C, for one month. 
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Figure 6.8 - Al/Ca against Si/Ca (right) and S/Ca against Al/Ca (left) atomic ratio plots for 

the TEM-EDX phase analysis of the water activated neat WPC paste after I month of 

hydration at 85'C. 

'I'lic Al/Ca against Si/Ca atomic ratio plot showed two trendlines: one in the direction of 

high alurniIIII-Im AFrn-type phases and another less clear in the direction of CH. The 

S/Ca against Al/Ca plot showed only one trendline in the direction of the AFrn-type 

phases. Therefore, Ip C-S-H was finely intermixed with AFrn-type phases rich in 

all-11111niurn but with low sulfate content. Op C-S-H appears to be finely intermixed ýN71th 

i-nicrocrystallIne CH, although the micrographs and XRD did not give any evidence of 

that because the extension of this intermixing was probably very small. The mean Ca/Si 

ratio calculated for Ip C-S-H was 1.61 (s = 0.08) and mean AI/Si ratio 0.066 (s 0.023). 

Op C-S-H had a mean Ca. /Si ratio of 1.91 (s = 0.29) and AI/Si ratio of 0.052 (s 0.026). 

The other analysed sample using TEM-EDX was the water activated 30% PFA blend. 

The following figure shows CH and fine dense Ip C-S-H interfacing with coarse fibrillar 

Op C-S-H. 
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Figure 6.9 - TEM micrograph showing CH, dense lp C-S-Fl and coarse fibrillar Op C-S-1 I 

formed in the water activated 330% PFA blended WPC paste, I month cured at 85T. 

Again, the effect of high curing temperature changed Op C-S-H morphology into a 

coarse fibrillar one. Ip C-S-H was dense and fine, large crystals of CH and AFin-type 

phases were observed. As in the previous system, blobs dispersed in Op C-S-11 were 

observed. Most of those globules were large enough to be analysed but sonic of them 

were still too thick to be identified by EDX analysis. The majority had a chemical 

composition very similar to that of Op C-S-H although a few were higher in aluminium 

content. The next micrograph shows some globules surrounded by coarse fibrillar Op 

C-S-14. 
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Figure 6.10 -- TEM micrographs shoxvinv coarse fibrillar Op C-S-H and some large globules I 
formed iii (lie water activated 330% PI-A blended WPC paste, I month cured at 85T. 

Figui-e 6.11 - TEM micrograph showing details of globules embedded in coarse fibrillar Op 

C-S-1 I formed in the water activated 30% PFA blended WPC paste, I month cured at 850C. 

Fioure 6.12 shoxvs EDX atomic ratio plots for the water activated 30% PFA blended 

WPC paste. 
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Figui-e 6.12 - Al/Ca against Si/Ca (right) and S/Ca against Al/Ca (left) atomic ratio plots for 

the TEM-EDX phase analysis of the water activated 30% PFA blended WPC paste after I 

month of hydration at 85'C. 

The first plot showed Op C-S-H data slightly scattered and did not indicate ariv 

trendline in the direction of the calcium alurninoferrite hydrate phases. It was not clear 

e1101-1011 if Op C-S-H was intermixed xvith microcrystalline CI 1. The S/Ca ap L- gairist AI/Ca 

atornic ratio plot showed a clear trendline from Op C-S-H and AFin-type phases with 
low SLIlfLii-. A less clear trendline was identified in the direction of Ali-n-type phases 

With LISUal chemical composition. It was concluded that lp C-S-1-1 was finely intermixed 

with AFrn-type phases as well as Op C-S-H. The mean Ca/Si and AI/Si ratios tor lp 

C-S-H were 1.48 (s 0.21) and 0.201 (s = 0.069), respectively. Op C-S-11 had a mean 

Ca/Si ratio of 1.34 (s 0.11) and AUSI ratio 0.165 (s = 0.032). 

'Fable 6.12 resurnes the inean Ca/Si and Al/Si ratios obtained for the systems StUdied 

Using TEM-EDX. 

'Fable 6.12 - Mean CVSi and AI/Si atomiC ratios obtained for C-S-H using TEM-EDX, tOr the 

water activated neat WPC and 30% PFA blended cement pastes, I month cured at 85T. 

Ca/Si Ca/(AI+Si)_ 
_ _____AI/Si N inean S tnean S mean S 

Op 26 1.91 0.29 1.81 0.0-1 0.052 0.026 
Wpc lp 18 1.61 0.08 1.51 0.25 0.066 0.023 

All 44 1.79 0.27 1.69 0.25 0.058 0.026 
Op 44 1.34 0.11 1.16 0.17 0.165 0.032 

Pfa30 lp 7 1.48 0.21 1.12 0.19 0.201 0.069 
All 51 1.36 0.14 1.15 0.18 0.170 0.041 
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The mean Ca/Si ratio found for Op C-S-H was higher than that for C-S-H Ip in the neat 
paste. The opposite was verified in the blend but, as explained and verified before PFA 

replacement decreases the mean Ca/Si ratio of C-S-H. Thus, the mean Ca"Si ratio ý\as 
higher in the neat paste and mean AI/Si ratio higher in the blended paste. Due to more 
available aluminium provided by PFA replacement, Ip and Op C-S-H had higher mean 
AI/Si atomic ratios. 

Table 6.13 resumes TEM-EDX, SEM-EDX and MAS NMR experimental results found 

for the water and KOH activated neat and 30% PFA blended WPC pastes cured for one 

month at 85'C. 

Table 6.13 - Mean Ca/Si and AI/SI atomic ratios obtained for C-S-H using TEM-EDX, 

SEM-EDX and MAS NMR, for the water activated neat WPC and 30% PFA blended cement 

pastes, I month cured at 85T. 

All Ca/Si All AI/Si AI/Si 
Ca/Si (SEM) AIN (SEM) (NMR) 

Wpc 1.79 2.08 0.058 0.10 0.099 
Pfa30 1.36 1.58 0.170 0.24 0.139 

Comparing the mean Ca/Si and AI/Si ratios obtained by the two microscopy techniques, 

they were statistically significantly different as a consequence of the difference in the 

interaction volume between the electron beam and the sample, i. e. the higher interaction 

volume in SEM-EDX led to higher mean atomic ratios for C-S-H. The mean AI/Si 

atomic ratios obtained for both samples using TEM-EDX and 29Si MAS NMR were in 

some agreement. 

Finally, it was also necessary to compare the TEM-EDX data obtained for these systems 

cured at 55'C, with that found for these pastes cured at 25'C. Table 6.14 summarises 

those experimental results. 
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Table 6.14 - Comparison between the mean Ca/Si and AVSi atomic ratios obtained I'Or the 

cement-based studied systerns after I month cured at 250C. 55'C and 85T. 

WPC PFA30 

25' 2.00 1.52 
All Ca/Si 

55' 1.64 1.46 

85' 1.79 1.36 

25' 0.106 0.159 

All AIN 55' 0.087 0.164 

85' 0.058 0.170 

The previous data did not show clear relationships between increasing curing 

temperature and its effect on the mean atomic ratios for C-S-H. Before analysing the 

effect caused by curing at 85'C, it was concluded that higher temperature decreased the 

mean Ca/Si ratio for lp and Op C-S-H in both systems; increased the mean AI/Si ratio 

of lp C-S-H in both systems; and decrcased Op C-S-H AI/Si ratio in the neat paste but 

increased in the blended pastes. Comparing these relationships with additional data at 

85'C, the mean Ca/Si ratio for lp and Op C-S-H in both systems increased. It was 

possible to conclude that the variation of the mean atomic ratios was not sN'stematic 

with increased curing temperature. Escalante-Garcia and Sharp also found that for 

SEM-EDX studies, the atomic ratios for C-S-H did not vary consistently in a systematic 

way with increasing hydration temperature [1 3341 
- 

In summary, TEM-EDX allowed characterisation of Ip and Op C-S-H morpholoov in 

different systems cured at different temperatures. Op C-S-H changed its morphology 

from fine fibrils to coarse fibrils and Ip C-S-H was formed of slightly larger globular 

particles. It was also demonstrated that either CH, AFt/AFm/hydrogarnet-type phases 

were finely intermixed with lp and/or Op C-S-H. Some agreement was found between 

the mean Ca/Si ratios obtained using SEM-EDX and TEM-EDX and. generallý'. good 

agreement was found between the mean values for the AI/Si atomic ratios, when Lising, 

'rEM-EDX and MAS NMR. 

6.6.2 -T/J and 'F/Cil-based models for the structure of C-S-H 
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Application of the different structural models to TEM-EDX data relative to the analysed 
systems is presented in this section. 

Table 6.15 - Experimental data Lised in Al/Ca against Si/Ca atomic plots discussing the 

applicability ofthc'F/CH andT/J structural i-nodelsforC-S-11. inthesysteinscuredat 85T. 

lp Op lp Op AI/Si 
Ca/Si Ca/Si AI/Si AI/Si MCL 'VO B (NMR) 

Wpc 1.67 1.91 0.126 0.052 0.099 9.9 33 -4 
Pfa30 1.48 1.34 0.201 0.165 0.139 16.6 42 

J, IgUrc 6.133 show's lp and Op C-S-11 raw data III1 10 in the Al/Ca against Si/Ca atomic rat" 

plot considering the T/J and T/CH StRICtUral models. 
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Figui-e 6.13 -Al/Ca against Si/Ca atomic plot for the water activated neat WPC paste CUred for 

I nionth at 85T, accountino with T/J and T/CH viewpoints (* lp C-S-H. 0 Op C-S-H, 0 

unprotonated UllItS, , -ý 
half protonated, X fully protonated, Too tobermorite, --- T/Cli, - T/J). 

The prcViOLIS Plot shows that data was consistent with both models: tie line from 

TI I(IAI) or TI 1(2AI) in the direction of CH but also trendlines from -1-5(IAI), -1-8(IAI) 

and 'I'l I( I Al) in the direction of J2. 
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The following figure shows the AI/Ca against Si"Ca atomic ratio plot consid - _, Cl in, the 
TICH and T/J models for the KOH activated neat WPC paste, one month CUred at 550C. 
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Figure 6.14 -Al/Ca against Si/Ca atomic plot for the ýNatcr activated 30% PFA blended WIT 

paste cured for I montli at 85'C, accounting with T/J and TICI I vieý. ýpoints * lp C-S-11, 

Op C-S-11,0 Unprotonatcd units, F lialf protonated, X fUlly protonated, Tcýr, toberniorite, 

T/CH, - T/J). 

AlthouOh data was slightly more scattered than in neat svstems, it was considered to be 
L- I 

consistent to both models: tie line from TI 7(")AI) in the direction of J2 for the T/J point 

of view, and T8(IAI) in the direction of CH for the T/CH viewpoint. 

Comparing the applicability of T/J and T/CH structural models, the following table 

reSLIIlleS It f0l' the StUdied SyStellIS CUred at different temperatures: 

Table 6.16 - Applicability of' PCH and T/J structural models for C-S-Yi tbri-ried in the studied 

systems cured at 25T, 55T and 85T for one month. 

T/i T/Cll 
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Wpe x 
25'C Kwpc x 

Pfa3 0 

Wpc x 
550C Kwpc x 

Pfa3 0 
Kpfa3 0 

85'C Wpe 
Pfa30 

From the above table, it was concluded that C-S-H in water activated blended s"'stems 
could be consistent with both systems and that formed in KOH neat WPC pastes ý\, as 
only consistent with the T/CH system. Increasing curing temperature affected the 
applicability of T/J and T/CH models because C-S-H present in watcl, activated neat 
samples cured at 25'C and 55'C was only consistent with the T/J viewpoint but at 85"C, 
it was consistent with both structural models. Therefore, increasing temperature could 
have induced the formation of microcrystalline CH present in the interlayers of C-S-H 

structure, i. e., tobermorite-"solid solution" CH. 

6.7 - C-S-H STRUCTURAL-CHEMICAL COMPOSITION 

C-S-H chemical composition can be easily determined according to both T/J and T/CH 

viewpoints and using TEM-EDX and MAS NMR data. Using the equations 4.2 to 4.7 

(Chapter IV), the structural-chemical composition of C-S-H was determined and Table 

6.17 resumes the data used in the calculations: 

Table 6.17 - TEM-EDX and MAS NMR data used in the determination of C-S-H chemical 

composition according to the T/J and T/CH structural viewpoints for the systems cured at 55T. 

Ca/Si AI/Si AI/Si MCL 
(TEM) (TEM) (NMR) (3n-1) 

Wpe 1.79 5.10 0 4.99 0 0.06 0.099 0.06 9.9 33.6 
Pfa30 1.36 2.50 0 2.10 0 0.17 0.139 0.15 16.6 5.9 

Again, minimum degree of protonation was considered. C-S-H chemical composition 
determined according to the T/J structural point of view is given in Table 6.18. 
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Table 6.18 - C-S-H chemical composition determined according to the T/J structural %iieý%pojjit 
for the systems cured at 55'C. 

T/J (minimum degree of protonation) 
Wpc jCa7.2(SIO. 

94AIO. 06)9.9030.4j -(OH), ]. 2-Caq, 2'MHQ 

Pfa30 ýCaj 1.8(SIO85AI0.15)16.6051.11. (OH)2 
95-Ca7.4*1'nH'O 

Chemical composition inside the brackets indicates the tobermorite -based skeleton of 
C-S-H. The presence of hydroxyl groups outside the brackets indicates that there must 
be some jennite-like structure besides tobermorite-like units. The structure of C-S-H can 

also be reorganised according to the T/CH viewpoint, resumed in Table 6.19. 

Table 6.19 - C-S-H chemical composition determined according to the PCH structural 

viewpoint for the systerns cured at 55T. 

T/CH (minimum degree of protonation) 
Wpc Cal 0.5(SiO. 94AI0.06)9.900.4*Cao. 3-5.4Ca(OH)2' i-riH, O 
Pfa30 Cal7.7(SIO. 85AIo 15)16.6051.1-Caj. 25-0.3Ca(OH)2* mH20 

In the water neat paste, the presence of hydroxyl groups outside the braces indicates that 

on the T/J viewpoint for the nanostructure of C-S-H, there was some J-1ike structure. 

However, in this case, the distribution of TEM-EDX (Figure 6.13) indicated that the 

both points of view were applicable. Interestingly, Table 6.19 shows a high amount of 

calcium hydroxide present in the structural -chemical formula for C-S-H. Regarding the 

pfa30 paste, the structural formulas show that on the T/J point of view, there was some 

J-1ike contribution and on the T/CH point of view, there was only a small amount of CH 

units in "solid-solution". This is in good agreement with both models as previously seen 

in Figure 6.15 where both models were consistent with the TEM-EDX data. 
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VII - RESULTS AND DISCUSSION: WATER LEACHING 

In this chapter, experimental results related to the one year old \\atcr activated 300 
PFA blended WPC paste water leached, are presented and discussed. 

7.1 - STA-EGA 

After one year of hydration, the water activated 30% PFA blended WlIC paste was cut 
into 200 ýtm thick slices and immersed in a closed and continuously stirred distilled 

water bath, kept at room temperature. The samples were analysed after I to 12 Nvcclýs of 
leaching and the leachate was replaced by fresh distilled water each time the samples 

were collected for analysis. The samples did not carbonate \7crified by the EGA curves. 

STA-EGA results are presented in the following figure. 

C H_ 

20 

15 

10 

Z: 
0 

\ 

Time (weeks) 

Figure 7.1 - CH evolution during 12 weeks of water leaching the mature PFA blended paste. 

STA-EGA demonstrated that as leaching progressed. the amount of CH decreased 

because it was removed from the paste into the leachate. Another possible explanation is 

that Nvatcr leaching enhanced the pozzolanic reaction between CH and ff. ý\ to give 
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additional C-S-H. Both processes could have happened at the same time. The amount of 
CH decreased with time of leaching and by four weeks, no CH was detected. 

. -\fter I-i\, c 
weeks, a very small amount of CH was present in the sample. Although CH \\as leached 

or consumed in the pozzolanic reaction, it was possible that the residual anhN-drous 
cement reacted to give additional C-S-H as well as CH. From seven wecks till mek-c 

weeks, CH was not detected by STA-EGA because it was either leached or consumed in 
the pozzolanic reaction. MAS NMR should give some evidence that might support one 

of these two justifications, or even both. As explained in the previous chapters. S'TA 

results might have been affected by a small error associated to the estimations. 

7.2 - SOLID STATE 29Si NIASNMR 

29Si MAS NMR was used to determine the silicate anion structure present in the C-S-H 

phase. As previously explained, the leached sample was a 30% PFA blended cement 

paste and, therefore, only semi -quantitative data was obtained from iterative fitting of 

the spectra. The obtained spectra and corresponding figure sho'ýý'ing the Qn relative 
intensity evolution during the twelve weeks of water leaching are presented in 

Appendix B (B8-B9). 

After four weeks of leaching it was possible to observe small differences betýveen the 

spectra, indicating that the silicate anion structure was altered and most probably the 

C-S-H chemical composition was also affected. However, the main change observed in 

the spectrum was the appearance of another resonance assigned to Q3 crossed-linked 

entities. This has also been previously observed in high performance concrete samples 

leached for one year [116] 
. After twelve weeks of water leaching, most of the anhydrous 

cement reacted as well as 7-C-, S. Chain branching sites were fonned to greater extent as 

Q3 became the second most intense peak in the spectrum. Apparently, anhydrous fly ash 

(Q4) was relatiN, cly in the same amount after seven weeks but decreased significantly 

after nine wcelýs of leaching. It should be pointed out that as the pozzolanic reaction 

occurs, the correspondim, broad resonance might shift slightly and is mainly assi, med to 
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the silicon present in the three dimensional framework of the non reactive fraction of fl\ 

ash, i. e. the peak assigned to Q' (anhydrous fly ash) becomes slightl" decom-oluted and 
that causes a shift of the chemical shift. Nevertheless, it was also observcd that all 

chemical shifts moved around I ppm in the direction to lower chemical shifts. This can 
[116] be explained by a matrix effect , i. e. when a systems experiences a coiicentration 

gradient it reacts to re-establish equilibrium. In the MAS NMR spectra. all the peaks 

were shifted the same amount and the relative intensity of a certain resonance may be 

enhanced. In this particular case, the relative intensity of the anhý drous flý- ash was 

enhanced (between three and seven weeks of leachiiig). as shown in Table 7.1 where the 

semi -quantitative data obtained from iterative spectra fitting is summarised. 

Table 7.1 - 
ý"Si MAS NMR serni- clUantitative data obtained for the 30% PFA blended cernent 

paste I year, water leached for 12 weeks. 

UNL INN'K 2WK 3NN'K 4NN'K 5NN'K 7NN'K 9NN K 12NN'K 
MCL 11.6 10.5 9.0 8.2 9.2 9.2 11.1 14.5 14.7 
AI/Si 0.184 0.175 0.14") 0.131 0.132 0.131 0.1333 0.133) 0.133 

% WPC 4.5 3.8 3.1 2.8 2.1 1.8 1.6 0.6 0.1 
% Y-C2S 1.5 1.4 0.7 0.8 0.6 0.4 0.6 0 0 

% Q1 14.7 16.5 17.8 18.5 16.3 16.3 12.9 9.6 8.7 
% Q2( 1AI) 26.3 25.9 20.1 17.7 17.5 17.4 16.9 16.3 15.0 
% Q2 30.5 31.5 32.3 31.4 32.5 32.5 33.6 35.6 32.6 
% Q3 - - - - 2.7 2.1 1.7 20.6 30.9 
% PFA 22.6 21.0 26.1 28.9 28.2 29.2 2.7 17.2 12.7 
%B 56 55 48 46 45 45 43 41 41 
CII (STA) 16.7 10.8 8.8 1.7 0 4.6 0 0 0 

It was concluded that as the leaching process continued, MCL decreased for three weeks 

but increased till tx\-clve weeks of leaching. The final MCL was 14.7, higher than that 

found for the unleached sample. The AI/Si atomic ratio decreased Xvith increasing time 

of leaching but after three weeks, it remained relatively constant. The AI/Si atomic ratio 

was roughly the same during the twelve leaching weeks. Therefore, aluminium \vas not 

removed from the C-S-H structure. The proportion of aluminium substituted tetrahedra 

(%B) decreased slightly in the first four weeks, remaining constant for the rernaining 

leaching time. Most of the anhydrous cement and y-C-, S reacted. The relative intensity 

of Q1 increased as more cement reacted but after three , \-ecks of leaching, it started to 

decrease. Q2 was always the most intense peak and Q2(IAI) relative intensity decreased 
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gradually. At four weeks of leaching, the bridging sites aluminiurn substituted became 

unstable and were probably destroyed when cross-linking occurred. Around this time. 

all the CH was leached and then the CaO layers in the dreierkette structure of C-S-H. In 

order to stabilise and react to the concentration gradient, C-S-H rearranged itself into a 
highly polymerised phase and as a result, Q3 species xere formed. The latter increased 

massively till twelve weeks of leaching indicating that the difference in the 

concentration gradient caused further cross-linking of the silicate anion structure. 

Finally, the decrease of the CH amount was attributed mainly to the leaching process 

because the intensity of the anhydrous fly ash resonance only decreased after sevell 

weeks of leaching. In order to better visualise the data in Table 7.1, some plots ýIrc 

shown in the following figures. 
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Figure 7.2 - Mean chain aluminosilicate length evolution during 12 weeks of water leaching 

the mature PFA blended paste. 

The above figure and the following one show the MCL and AI/Si ratio evolution during 

twelve weeks of water leaching. 
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Figure 7.3 - AI/Si ratio evolution during 12 weeks of water leachim, the mature PFA blended 

paste. 

7.3 - TEM-EDX 

7.3.1 - Morphology and Chemical Analysis 

The unleached sample and the same sample leached for four weeks \verc analysed using 
TEM-EDX. SEM-EDX was not used because porosity could be easily mistaken for 

material removed from the paste during water leaching [136] 
. Based on the STA-EGA and 

MAS NMR results and as previously observed, the C-S-H silicate anion changed after 

four weeks of leaching. By that time, all the CH was leached from the sample as Nvell as 

CaO layers of the dreierkette structure with consequent cross-linking that should affect 

the chemical composition of C-S-H. The next figures show the microstructure of the 

unleached sample, the water activated 30% PFA blended WPC paste one year old cured 

at 250C. 
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Figure 7.4 - TEM mici-ogi-aph showing fine and dense lp C-S-1-1 in the water activated 30% 

PFA blended paste one year. 

It was observed that PFA blend had a typical microstructure where lp C-S-H was very 

dense and fine, Op C-S-H fine and fibrillar, large crystals of CH and AFt-type relicts 

were also present. The microstructure was very similar to that of the same sample cured 

at 25'C for one month (Chapter IV, Section 4.7.1). The micrograph in Figure 7.5 sho%ý"s 

the fine and fibrillar morphology of Op C-S-H. 
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Figure 7.5 -- TEM micrograph showing fine and fibrillar Op C-S-H in the water activated 30', o 
IIFA blended paste one year. 

The following micrograph shows a fully hydrated fly ash particle. 

Figure 7.6 -TEM micrograph showing a fully hydrated PFA particle III tile ýNater activated 
tn L- Cl 

30% PFA blended paste one year. 
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Figure 7.6 shows a fully hydrated PFA particle where it was possible to observe the 
difference in density between the centre of the particle and the outside crystalline rim. 
Fly ash particles react with CH from the outside rim towards the centre. The 

morphology of lp C-S-H was the same as that observed in small fully hydrated cement 

grains containing a less dense lp C-S-H with a foil-like morphology (Chapter V, Section 

5.6), typically observed for Op C-S-H in other cement based systems. [ 13.57] 
. 

Figui-c 7.7 - TEM micrograph showing CH, fine fibrillar Op C-S-H and AFt-type relicts in the 

water activated 30% PFA blended paste one year. 

As the above micrograph clearly shows, relicts of AFt-type phases were identified and 

finely intermixed with fibrillar Op C-S-H. 
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-, (4ý -, .-, j-; ' -- 
* '4, F, 

ý-, koý, NAM. ý=, -ý AIM Figui-e 7.8 -TEM micrograph showing bright field image (left) and dark field ima-ge (ri-, -, ht) ol'a 

semi-reacted PFA particle in the water activated 30% PFA blended paste one year. 

The above micrograph bright field (left) and dark field (ripht) images ot'a sci-ril-reacted 

particle of PFA. It was possible to distinguish inside the particle the amorphous material 
from the crystalline one. The latter appears darker in the bright field image and brighter 

in the dark field image. EDX data analysis for the StUdied systern is presented in the 

next figure. 
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Figui-c 7.9 -- Al/Ca against Si/Ca (left top), S/Ca against Al/Ca (right top) and M- Ca against 

AI/Ca (bottom) atomic ratio plots for the TEM-EDX phase analysis of the water activated 30% 

PFA blended WPC paste, before water leaching. 
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The Al/Ca against Si/Ca atomic plot showed two distinct trendlines. A first trendline 

was identified in the direction of the AFt-type phases and another probably in the 
direction of hydrogarnet-type phases. As explained before. hydrogarriet-type phases are 

not usually formed in WPC pastes. The sulfur plot confirmed fine intermixing bct%\eell 

Op C-S-H and AFt-type phases. Intermixing between lp C-S-H and AFt-type phases 

Could too be considered. The same plot also showed a less clear trerldlirle in the 
direction of a Sulfur free phase, probably hydrogarnet-type phases. The analyses of lp 

and Op C-S-1-1 that have the highest Al/Ca atomic ratio appear to Include a contribution 
from microcrystals of a hydrotalcite-like phase. The latter was not observed at one 

month of hydration (Chapter IV, Section 4.7.1). 

The following figures show micrographs for the microstructure of the fOLir weeks %vater 
leached sample. 

Figure 7.10 - TEM micrograph showHig fiiie aiid deiise Ip C-S-H in the water activated 30% 

PFA bleiided paste oiie year after 4 weeks water leached. 

The previous fi"Ure shoNved that, after four xveeks of ývater leaching. Ip C-S-11 had the 

sanic fine scale homogeneous morphology as that in the Unleached sample. In the 
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microstrLICtLire of the leached system fine fibrillar Op C-S-H. crystals of CH and AFni- 
I 

type phases and very small relicts of AFt-type phases were also observed. AlthOLIgh 

after four weeks of leaching STA showed that there was no CH in the sample. TEM- 
EDX showed that CH was still present in the microstructure. This discrepancy can be 

explained by limitations of STA and the error associated to the estimation of the ainOLInt 

of Cl I formed in the system. 

t; 

ý "It- I 

Figui-e 7.11 - TEM micrograph showing fine fibrillar Op C-S-H and large crystals of AFm-type 

phases (left) and a fully hydrated cernent grain surrounded by fine fibrillar Op C-S-11 (right) C, I -- 
present in the III iCI'OStI'LICtL1I'C Of the water activated 330% PFA blended paste one ýear, after 4 

\veeks water leached. 

The previOLIS micrographs showed the fine and fibrillar Op C-S-H, crystals of'-AFl-n-tvpc 

phases and a fully hydrated cernent grain. The latter contained lp C-S-H v, -ith a foil-like 

niorpholog , y, -rounded by fibrillar Op C-S- sui H finely intermixed with very small AFt- 

type rclicts. The foil-like morphology of Ip C -S-H formed fully hydrated cement 

orains is dcnionstrated in the next figures. 
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Figure 7.12 - TFM micrograph shomm, a fully hydrated cement grain sm-roLinded by Op 

C-S-H, in the water activated 30% PFA blended paste one year, after 4 \ýeeks water 

leached. 

Fi(jui-e 7.13 - TEN/I micrograph Am\ in,, fibrillar Op C-S-li SUrrounding a fully hydrated 

cement ()rain, in the water activated 30% PFA blended paste one year, 4 ýýeeks N\ater 

leached. 
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The following figure shows fibrillar Op C-S-H and some CH crystals present in the 

in i cro struct Lire. 

Figure 7.14 - TEM micrograph showing fine fibrillar Op C-S-11 and CH, in the water 

activated 30% PFA blended paste one year, after 4 weeks water leached. 

Generally, Op C-S-11 had a fine and fibrillar morphology. f lowever, many areas of Op 

C-S-1-f with a foll-like morphology were also observed. Figure 7.15 shows an example 

of the different morphologies observed for Op C-S-H in the four weeks leached blend. 

Fiogui-c 7.15 - TEM microora 
-brillar (right) and foil-like (left) Op C-S-11 

g pli showing both fine hi 

in the N\atcr activated 30% PFA blended paste one vear, after 4 weeks water leached. 
I 
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The two different morphologies found for Op C-S-H were observed coexistincy in the 
rnicrostructure. In Figure 7.15, small relicts of AFt-type phases were identified in both 
fibrillar and foil-like morphologies. The next figure illustrates EDX data atornic ratio 
plots f-Or the PFA blended cement paste water leached for four weeks. 
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Figui-e 7.16 - Al/Ca against Si/Ca (left top), S/Ca against Al/Ca (right top) and Mg/Ca against 
Al/Ca (bottom) atomic ratio plots for the TEM-EDX phase analysis of tile water activated 30% 

PFA blended WPC paste, after 4 weeks water leached. 

EDX analysis showed that there was no difference between the chemical composition of 

the foil-like Op C-S-H and that of fibrillar Op C-S-H. In the first plot, a clear trelldline 

from bulk Op C-S-H in the direction of the AFt-type phases was identified. The analysis 

points for the globules appeared to go in the direction of hydrogarnet-type phases. S/Ca 

against Al/Ca atomic ratio plot confirmed fine intermixing between Op C-S-H and AFt- t, 
type phases. The same fine intermixing was observed in the unleached sample. A 

second trendline could also be considered in this second plot, going from OP C-S-11 in 

the direction of a free Sulfate phase that could be hydrogarnet-type phases. As 

previously observed for the Unleached sample, there was a contribution from 

i-nicrocrystals of a hydrotalcite-like phase to the mean atomic ratios of lp C-S-H. Table 
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7.2 summarises the EDX data obtained for the reference sample and for the sainple 
leached four weeks. 

Table 7.2 - Mean Ca/Si and AUSI atomic ratios obtained for C-S-H using TEM-EDX. for the 

water activated 330% PFA blended WPC paste, before water leachim, and 4 ýNeeks leached. 

Ca/Si Ca/(AI+Si) AIN 
N mean S tnean S mean S 

Op 63 1.31 0.11 1.10 0.15 0.198 0.039 
Unleached Ip 14 1.33 0.19 1.09 0.11 0.212 0.055 

All 77 1.32 0.13 1.10 0.15 0.201 0.043) 
Op 53 1.42 0.11 1.19 0.11 0.195 0.043 

4 weeks leached Ip 32 1.28 0.05 1.09 0.05 0.172 0.020 
All 85 1.37 0.15 1.15 0.11 0.186 0.038 

In the unleached sample, the mean atomic ratios were very similar for lp and Op C-S-11. 

These values can be compared with those obtained for an OPC-30% fly ash blend 

hydrated for 17 months, where the mean Ca/Si atomic ratio for Ip C-S-H was 1.50 and 

for Op C-S-H was 1.56 [881 
. It can be concluded that the obtained values are similar 

although those for the unleached sample were slightly lower. Considering the leached 

sample, the mean Ca/Si and Al/Si atomic ratios were higher for Op C-S-H than those 

for lp C-S-H. The mean Ca/(AI+Si) atomic ratio was similar in both samples. As TEM 

micrographs showed, inner and outer product C-S-H morphologies were the same as 

those found for lp and Op C-S-H formed in unleached PFA blended cement paste, 

except that foil-like Op C-S-H was also identified. As seen in the previous chapters for 

the alkaline pastes (and other cement-based systems [57]), the change of fibrillar Op C-S- 

H morphology into foil- or lath-like was associated with a decrease of the mean Ca/Si 

atomic ratio, when compared with the corresponding water activated systems. However, 

that was not verified for these two systems, i. e. a statistically significantly decrease of 

the mean Ca/Si atomic ratio was not observed for Op C-S-H in the two samples that 

would be associated to the change of Op C-S-H morphology. Therefore, it appears that 

Op C-S-H morphology might not be solely associated to its mean CaJSi atomic ratio. In 

the following table, TEM-EDX results were compared with those from MAS NMR. 
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Table 7.3 - Mean Ca/Si and AI/Si atomic ratios obtained for C-S-H using 'I-E, *,, l -EDX and Ntvý" 
NMR, for the 30% PFA blended WPC paste, before water leaching and 4 weeks leached. 

All AIN 
AIN (NMR) 

Unleached 0.201 0.184 
4 Weeks leached 0.186 0.133 

Some agreement was found between TEM-EDX data and MAS NMR for the unleached 
sample. 

7.3.2 - T/J and T/C11-based models for the structure of C-S-H 

Application of the different structural models to TEM-EDX data relative to the analysed 
systems is presented in this section. 

Table 7.4 - Experimental data used in Al/Ca against Si/Ca atomic plots discussing the 

applicability of the T/CH and T/J structural models for C-S-H, in the unleached and 4 weeks 

water leached systerns. 
lp Op lp Op AI/Si MCL %B 

Ca/Si Ca/Si AI/Si AIN (NMR) 
Unleached 1.33 1.31 0.212 0.198 0.184 11.6 56 
4 weeksleached 1.28 1.42 0.172 0.195 0.132 9.2 45 

Figure 7.17 shows Ip and Op C-S-H data in the Al/Ca against Si/Ca atomic ratio plot 

considering the T/J and T/CH structural models. 
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Figure 7.17 -A I/Ca against Si/Ca atom IcpI ot for the ýýatcr act I vated 30% PI 'A M endcd WTC 

paste CUred for I year at 25'C, accounting with 'F/J and T/Cll viewpoints (* lp C-S-1 1,0 Op 

C-S-H, 0 unprotonated units, E half protonated, X fully protonated, Tc, - tobermorite, --- TICI 1, 

T/J). 

The previous plot shows that data was consistent with the T/J structural model because 

most of the results fitted in the tie lines from TI 1(2AI) and T5(IAI) in the direction of 

J2 and some data also in the trendline from T8(2AI) to J2. It should be pointed out that 

this system after one month cured 225T, 
C-S-H data was consistent with both structural 

models. Apparently, with increasing hydration time, C-S-H structure became more 

consistent with the T/J point of view. 

Frorn the viewpoint of the models, water leaching should firstly remove CH formed 

from cement hydration. After most of the CH is removed, than CH is removed from 

C-S-H. If C-S-H is consistent with the T/CH model, than CH present in the interlayers 

is removed and MCL should not be disturbed to a very large extent because C-S-11 will 

preserve its T/J structure. In the case of C-S-H being consistent with the T/J model, CH 

is removed from C-S-H and the T/J structure is not maintained leading to the decrease 
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of MCL. The t'0110WIng figure shows the Al/Ca against Si/Ca atornic ratio plot 
considering the T/CH and T/J models for the four weeks water leached sample. 

0.6 
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Figui-e 6.18 -Al/Ca against SI/Ca atomic plot for the 4 weeks water leached sample, accounting 

with 'F/J and T/CH viewpoints (* lp C-S-li, 0 Op C-S-H, 0 unprotonated UllitS, Ila I t, 

protonated, X fully protonated, TY-) tobermorite, --- T/CH, -T/J). 

Although data was slightly less scattered than that in the unleached system. C-S-I I was 

still consistent with the T/J viewpoint. This was indicated by the trendlines TI 1(2AI), 

T8(2AI) and T5(IAI) in the direction J2. It was concluded that even after four XN'ecks of 

continuous water leaching of this system, C-S-H was consistent with the T/J structural 

model. Although MCL did not changed significantly (it would indicate that C-S-11 data 

was consistent with the T/CH point of view for the reasons explained betore), the plots 

indicate that after twelve weeks of water leaching, C-S-H nanostructure was still 

consistent with the toberi-norite-jennite structural model. 

As explained before, the , vatcr leaching process removes most of the CH formed in the Z-- 
cementitious paste and possibly part of the AFm/AFt-type phases. Then. the calclurn 

ide from C-S-1-1 starts to be also leached. The leaching behaviour and consequent oxi L- 

Toc(Al) 

T1 7(5A 1) 
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changes in the system depend on the nanostructure of C-S-H and also on the T/J and 
T/CH viewpoints. If the nanostructure is consistent AA-Ith the T, "CH point of vlew. then 
calcium hydroxide layers from C-S-H are removed but the to bermorite -structure of 
C-S-H is preserved. On the other hand, if it is more consistent with the T/J viewpoint, 
then CaO layers from the tobermorite-structLire will be leached and the skeleton of 
C-S-H is profoundly affected, responding by rearranging itself onto a higlier 

polymerised structure (Q3 species are formed). Ultimately, leaching can destabillse and 
destroy the C-S-H nanostructure reducing the gel into a soft mass of silica ý_, cl- 

7.4 - C-S-11 STRUCTURAL-CHEMICAL COMPOSITION 

The structural- chemi c al composition of C-S-H was determined (equations 4.2 to 4.7, 

Chapter IV), and Table 7.5 resumes the data used in the calculations: 

Table 7.5 - TEM-EDX and MAS NMR data used in the determination of C-S-H chemical 

composition according to the T/J and T/CH structural viewpoints for the unleached and leached 

systerns. 

Ca/Si AI/Si AI/Si MCL 
y (TEM) wy9 w9 (TEM) (NMR) n a (3n-1) 

Uni. 1.32 2.05 0 1.58 1.76 0.20 0.184 0.17 11.6 4.2 
Leac. 1.37 2.47 0 2.02 0 0.19 0.133 0.16 14.7 5.2 

Tables 7.6 and 7.7 resume the structural composition obtained for the unleached and 

leached samples according to the T/J and TCH viewpoints. 

Table 7.6 -- C-S-H chernical composition determined according to the T/J structural viewpoint 

for the Luileached and leached systems. 

T/J (minimum degree of protonation) 
Unleached fCa8A(SiO. 83AI0 17)11.6035.8)'(OH)0.21-Ca4.31. mHO 

4 weeks Leached ýCaIOASIO. 84AIO 16)14.7045.1 1*(OH)2 4(, *Ca,, ,,. mHO 

The structure of C-S-H can also be reorganised according to the TICH viewpoint. 

resurned in Table 7.7. 
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'Fable 7.7 - C-S-H chernical composition determined according to the T CH structural 

viewpoint for the unleached and leached systems. 

T/CH (minimum degree of protonation) 
Unleached CaI1.7(SiO. 83A 10 

17)11.6035.8'CaO, 99* rnH-)O 
4 weeks Leached Cal 

5.7( 
S iO. 

84AIo 16)147045 -Cal 18*0.05Ca(OH),. rnH, O 

The presence of hydroxyl groups outside the brackets indicates that on the T/J 

viewpoint for the nanostructure of C-S-H, there výas some J-1ike structure. As 

previously observed for the blend at one month (Chapter IV, Section 4.8). there was 

hardly any "solid-solution" CH units. Figures 7.17 and 7.18 also sllmv that both samples 

were consistent with the T/J point of view. 
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VIII - CONCLUSIONS 

8.1 - GENERAL CONCLUSIONS 

8.1.1 - STA-EGA and XRD 

The amount of calcium hydroxide formed in the studied systems was simplý, estimated 
using STA. The analysed samples carbonate because EGA curves did not give cvideiicc 
for the presence of any evolvedC02gas. 

XRD patterns showed that the main crystalline phases present in the anhydrous white 
Portland cement were anhydrite (CaS04), alite (CaS103), belite (Ca2SI04) and 
tricalcium aluminate (Ca3AI206). The flv ash was mainly composed of an amorphous 

phase as well as crystalline phases such as mullite (Al4.5S11 ý09.7ý), quartz (S10, ) and 

maghemite (y-Fe203). CH was formed in all hydrated systems but its nature depended 

on the type of activation and the curing temperature. AFm-type phases \vcre not present 

in sufficiently large quantity or with sufficiently large or ordered crystals to be detected 

by this technique. Considering the water activated neat and blended pastes ettringite and 

portlandite were formed and remaining alite and belite were present after one month of 
hydration. In the KOH activated pastes, ettringite was not formed and additional 

arcanite, K2SO4, was identified. As hydration continued, residual quartz ýN-as also 
identified in the blended pastes corresponding powder diffractograms. In the alkaline 

systems, microcrystalline CH had a smaller average crystal size (causing broadening of 

the peaks), and ranged from microcrystalline particles intermixed with C-S-H and large 

regions with small amounts of it interstratified with C-S-H. XRD also confirmed that 

none of the samples was carbonated (STA-EGA) because there was no evidence for any 

of the calcium carbonate polymorphs. 
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8.1.2 _ 
29Si Solid State MAS NMR 

29 Si MAS NMR was used to determine the silicate anion structure present In the C-S-H 

phase. This technique provided quantitative inforination on the silicate anion structure 
of the C-S-H gel, namely the fractions of silicon present in different tetrahedral 

environments, Q, where n denotes the connectiý, ity of the silicate tetrahedron, in 
dreierkette chains. Quantification was achieved in the case of the neat WPC pastes but 

only semi -quantitative data was obtained for the 30% PFA blended systems. III the 

spectra obtained for all the hydrated systems. Q0 resonance (around -71.3 ppm) was 

assigned to belite. This broad resonance is a convolution between a sharp peak 

component from belite (at -71 ppm) and a broader peak component from alite. A peak at 

-79 ppin was assigned to the resonance Q1 (end chain groups). another peak for Q2 

(chain middle groups where both adjacent tetrahedra are occupied by silicon) species at 

-84.9 ppm, and a resonance for Q2(IAI') at -82 ppin (chain middle groups where one of 

the adjacent tetrahedra is occupied by aluminium) which results in a down-ficld shift of 

around 3 ppm. In the blended pastes. an additional resonance at around -103 ppin %vas 

assigned to a broad peak Q4 (cross-linking sites in a three dimensional framework) 

corresponding to silicon present in the anhydrous fly ash. It was obser,,, ed that as 
hydration proceeded, dimers were formed (Q1 species) that also polymerised to gi\! C Q2 

species and Q2( IAI) species. The mean length of the alummosilicate anions (MCL) in 

the C-S-H polymerised and it was higher in the fly ash blended pastes. Alkali activation 

resulted in C-S-H with slightly more structural order than with water. Formulae were 

presented for the average structural units in the C-S-H present in the systems analysed 

by TEM-EDX. At 25'C and 55'C, alkaline activation did not influence the kinetics of 

the cement reaction or that of the pozzolanic reaction. In the blended systems, more 

aluminiurn was available to substitute for silicon in the dreierkette chain of the silicate 

anion of C-S-H (PFA reaction), leading to higher mean Al/Si atomic ratio in C-S-H. 

8.1.3 - SEM-EDX 

SFM-EDX provided very useful information regarding the microstructure development 

as hydration took place. Generally, as hydration occurred. the microstructure became 
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more dense and better packed because more Op C-S-H was formed in the water filled 

spaces and additional C-S-H resulted from the pozzolanic reaction. The values for tile 

mean atomic ratios were influenced by the large interaction volume between the 

electron beam and the sample, leading to higher Ca/Si and AI/Si atomic ratios for C-S-H 

due to the extension of intermixing with other phases. The data was at the high end of 

values measured previously by TEM-EDX for C-S-H in Portland cement pastes 
hydrated at lower temperature (20'C) [721 and those for the KOH activated systern were 

much higher than is possible to achieve for C-S-H in models for the structure of 
C-S-H [31 

. Therefore, it was not possible to determine the chemical composition of 
C-S-H free of intermixture with other phases by X-ray anal-,, Isis in the SEM, the higher 

I 
resolution of TEM-EDX was necessary. 

8.1.4 - TEM-EDX 

TEM-EDX is a very powerful technique since it provided information concerning the 

morphology of the different phases present in the systems and local chemical analysis 

(EDX). Generally, inner product and outer product C-S-H presented different 

morphologies. At 250C, lp C-S-H had a fine and dense morphology and Op C-S-H was 

fine and fibrillar. These morphologies were typical in room temperature cured pastes 

which was consistent with previous observations in other systems. Op C-S-H 

morphology changed from fine fibrillar to foil or lath-like with alkali, also consistent 

with previous observations. Fly ash replacement did not affect the morphology of lp and 

Op C-S-H. Large crystals of CH and AFm-type phases were identified in the 

microstructure as well as smaller relicts of AFt-type phases that were usuallý' finely 

intermixed with Ip and/or Op C-S-H. 'Small fully hydrated cement and PFA particles 

were filled with a less dense Ip C-S-H with morphology very similar to the foil-like one. 

EDX analysis gave accurate mean atomic ratios for Ip and Op C-S-H. Generally, the 

mean Ca/(AI+Si) atomic ratio was lower in the water activated blends than that in the 

neat cement pastes due to the fly ash reaction. Plots for the obtained mean atomic ratios 

showed clear trendlines indicating fine intermixing between C-S-H and other calcium 

aluminoferrite hydrate phases like AFt-type phases, AFrn-type phases witli lo-ýN' sulfate 
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content or sulfate free phases. In the alkaline pastes, a fine intermixino bem-cen lp and 
Op C-S-H with microcrystalline CH was observed, confirming evidence -giveil 

by XRD. 
Comparing TEM-EDX and 29Si MAS NMR results for the mean AIN atomic ratio, 
generally some agreement was not found. Although MAS NMR is a bulk technique, it 
should have given very similar results to those using 29 Si TEM-EDX as previously 
reported works confirmed. A plausible explanation for the NMR giving a higher value 
than that measured in the TEM is that for C-S-H that has a high mean Ca/Si atomic ratio 
there is an additional peak at a similar chemical shift to Q2(lAI) that is not associated 
with aluminium-, clearly the omission of such a peak from deconvolution procedul-C 
would result in an overestimation of the mean AI/Si atomic ratio. Based on TEM-EDX 

and MAS NMR results, the composition-structure data was discussed in terms of the 

structural models proposed for the nanostructure of C-S-H. 

8.2 - GENERAL EFFECTS OF CURING AT HIGH TEMPERATURE 

8.2.1 - STA-EGA and XRD 

The main crystalline hydration products were CH and AFt-type phases \ý'ith water 

activation, and microcrystalline CH with alkali. At 85'C, the calcium hydroxide and 

hydrogarnet phases present in the KOH activated systems were micro crystalline. The 

CH microcrystals were anisotropic because the peaks were not broadened to the same 

extent. 

8.2.2 - Compressive Strength 

There was no linear relationship between increasing hydration temperature and this 

physical property. Therefore, although higher curing temperature accelerated cement 

hydration, it did not enhance strength of the tested mortar cubes. Again, it is iiecessarN 

to bear in mind that accurate evaluation of the porosity should have been conducted. 
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8.2.3 _ 
29Si Solid State MAS NMR 

Higher curing temperature accelerated the rate of cement hydration. PolYrner'sation of 
C-S-H was also affected. MCL of the C-S-H anions was much higher than that of 
C-S-H formed at lower temperatures and was higher in the blended pastes than ý\-Ith 
neat cement. Generally, the method of activation had no effect on the kinetics of the 

cement and/or pozzolanic reaction. 

8.2.4 - SEM-EDX 

Increasing the curing temperature led, generally, to coarsening of the hydration 

products, increased porosity and decreasing of the general uniformity of the 

microstructure. Many of the studied systems exhibited non uniform porosity in their 

microstructure. With higher curing temperature, the grey level of C-S-H was in places 

very similar to that of the calcium hydroxide [138-140] 
. 

EDX data was again utirewarding 

and the chemical composition of C-S-H free of intermixture was not found using 

SEM-EDX. 

8.2.5 - TEM-EDX 

Inner product C-S-H with a fine scale, homogeneous morphology, was abundant in all 

systems cured at 55'C and 85T. Op C-S-H was generally fibrillar with water. and foil- 

like with alkali. However, the higher temperature curing did result in coarser fibrillar 

morphology (water activated systems) than that formed at lower temperatures. 

Considering EDX analysis, relationshiPs between increasing curing temperature and its 

effect on the mean atomic ratios for C-S-H were not very clear. Little agreement was 

found between the mean Ca/Si ratios obtained using SEM-EDX and TENI-EDX but, 

ocrierally, some agreement was found between the mean values for the mean AI/Si 

atornic ratios, when using TEM-EDX and MAS NMR. 
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8.3 - WATER LEACIIING 

8.3.1 _ 
29Si Solid State MAS NMR 

After four weeks of water leaching, small differences ý\erc observed in the 
nanostructure of C-S-H, the appearance of an additional resonance assigned to Q3 cross- 
linked entities [116] 

. As leaching proceeded, chain branching sites N\ cre formed to -, i-cýitci' 
extent as Q3 became the second most intense peak in the spectra. It was observed that all 
the chemical shifts moved around I ppm in the direction to lo-"ý-er chemical shifts, 
explained by the matrix effect [116] 

. The increase of the relative intensity of Q' resonance 
between three and seven weeks was another evidence for the matrix el'I'ect. 

8.3.2 - TEM-EDX 

Considering the unleached systeni, after one year. the observed microstrUcture was %'crN' 

similar to that after one month of hydration. Ip C-S-H was fine and dense and Op C-S-H 

was fine and fibrillar. The microstructure in the four weeks of leaching changed because 

it affected Op C-S-H morphology. Many areas where Op C-S-H had a foil-like 

morphology coexisting with Op C-S-H with fibrillar morphology were obser%'ed. A 

statistically significantly decrease of the mean Ca/Si atomic ratio was not observed for 

Op C-S-H in the two samples that would have been associated with the change of Op 

C-S-H morphology. Therefore, it appears that Op C-S-H change of morphology might 

not be solely associated to its mean Ca/Si atomic ratio. 29Si MAS NMR results were in 

some agreement with those from TEM-EDX. 

8.4 - FUTURE WORK 

In general, some gaps Nvere left in this work and other ideas can outcome for future 

Nvork. For example, isothermal calorinietry should be conducted on both neat and 

blended cement-based systems at 55'C and 85'C. This study would provide informatim 

reom-ding the induction period and the heat evolution in those sN-stems cured at higher 
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temperature. Corresponding peaks to C-S-H resulting from alite hydration and reactions 
involving the aluminate and/or ferrite phases with ettringite formation would be 

identified. Evaluation of the microstructure porosity through SEM imaging analysis. or 

using other techniques like helium inflow technique or mercury- intrusion porosimetrv, 

would give complementary information to compressive strength results. TENI-EDX 

should also be carried out on the KOH activated 30% PFA blended system after one 

month of hydration, as well as on the 60% PFA blended pastes. Mature pastes one ý'car 

old like the water and KOH activated neat WPC and KOH 30%PFA blended pastes 

should also be analysed by TEM-EDX. With the purpose of balancing the TEM-EDX 

results obtained for the 85'C study, alkaline neat and blended pastes should be 

characterised. Finally, considering the water leaching study, 29Si MAS NMR showed 

that the silicate anion structure changed between four and twelve weeks of leaching. 

TEM-EDX characterisation of those samples leached between four and twelve weeks 

would give very helpful data regarding the nature of C-S-H formed in the same systems. 

After one month of being cured at 550C and 850C, the studied samples were placed in a 

water bath at room temperature. It would also be very interesting to observe their 

microstructure after a certain period of time cured at room temperature. Water leaching 

all the systems cured at higher temperature would also give very interesting information 

regarding their behaviour in those conditions and application of the structural models 

for C-S-H. 

A sideline work was conducted regarding the study of the pozzolanic reaction between 

PFA and CH and the nature of C-S-H formed in that system. Mixes of fly ash and 

calcium hydroxide were prepared and cured at 55'C and 85'C. Curiously, at both 

temperatures and, at one day and one month, aluminium solid state MAS NMR ( 27 Al 

MAS NMR) presented two resonances assigned to tetrahedrally coordinated Al present 

in C-S-H and a third aluminate hydrated (TAH) for a slightly broad peak centred at 3 

PPME801 . TEM-EDX would allow characterisation of C-S-H morphology as well as that 

of TAH whose nature and chemical composition is still unknown. 
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APPENDIX A 
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Figure Al - Powder diffractograms for the I day and I month neat WPC paste water activated 

cured at 25'C. 
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Figure A2 - Powder diffractograms for the I day and I month neat WPC paste KOH activated 

cured at 25T. 
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Figure A3 - Powder diffractograms for the I day and I month 30% PFA blended WPC paste 

water activated cured at 25T. 
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Figure A4 - Powder diffractograms for the I day and I month 30% PFA blended WPC paste 

KOH activated cured at 250C. 
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Figure A5 - Powder diffractograms for the I day and I month neat WPC paste water activated 

cured at 550C. 
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Figure A6 - Powder diffractograms for the I day and I month neat WPC paste KOH activated 

cured at 55T. 
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Figure A7 - Powder diffractograms for the I day and I month 30% PFA blended WPC paste 

water activated cured at 550C. 
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Figure A8 - Powder diffractograms for the I day and I month 30% PFA blended \V11C paste 

KOH activated cured at 550C. 
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Figure A9 - Powder diffractograms for the I day and I month neat WPC paste water activated 

cured at 85T. 
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Figure A10 - Powder diffractograms for the I day and I month neat WPC paste KOH 

activated cured at 85T. 
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Figure All - Powder diffractograms for the I day and I month 30% PFA blended WPC 

paste water activated cured at 85T. 
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Figure A12 - Powder diffractograms for the I day and I month 30% PFA blended WPC 

paste KOH activated cured at 85'C. 
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Figure BI _ 
29Si MAS NMR spectra for I day, I month and I year 60% PFA blended WPC 

pastes, cured at 25'C, water (left) and KOH (right) activated. 
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Figure B2 _ 
29Si MAS NMR spectra for I day and I month neat WPC pastes, cured at 55'C, 

water (left) and KOH (right) activated. 
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Figure B3 _ 
29Si MAS NMR spectra for I day and I month 30% PFA blended WPC pastes, 

cured at 55'C, water (left) and KOH (right) activated. 
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Figure B4 _ 
29Si MAS NMR spectra for I day and I month 60% PFA blended WPC pastes, 

cured at 55'C, water (left) and KOH (right) activated. 
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Figure B5 _ 
29Si MAS NMR spectra for I day and I month neat WPC pastes, cured at 85'C, 

water (left) and KOH (right) activated. 

APPENDIX B_ 29Si MASNIVIR 



245 

Q2 (M) 
Q2 

Y-C2S 

Q 

Anhyd. PFA 

Anhyd. WPC- 

Q2 (M) 

Q2 
Y-C2S 

Anhyd. WPC 
3 

Anhyd. PFA 

1 month 

1 day 

ydrous bl 

-60 -80 -100 -120 -60 -80 -100 -120 
PPM PPM 

Figure B6 _ 
29Si MAS NMR spectra for I day and I month 30% PFA blended WPC pastes, 

cured at 85'C, water (left) and KOH (right) activated. 
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Figure B7 _ 
29Si MAS NMR spectra for I day and I month 60% PFA blended WPC pastes, 

cured at 85'C, water (left) and KOH (right) activated. 
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Figure B8 _ 29Si MAS NMR spectra for the PFA blended cement paste leached for 12 weeks. 
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Figure CI - Backscattered electron images showing typical regions in tile KOH activated 

WPC paste after I day (Lipper images), I month (middle) and I year (lower n1laps) of 
L- -- 

hydration at 25'C. 
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Figure C2 - Al/Ca against SI/Ca (left) and S/Ca a2gaInst Al/Ca (right) atomic ratio plots for 

the SEM-EDX phase analysis of the KOH activated WPC paste after I day (Lipper plots), I 

month (middle) and I year (lower plots) of hydration at 25'C. 
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Figure C4 Al/Ca against Si/Ca (left) and S/Ca against A]/Ca (right) atomic ratio plots for 

the SEM-EDX phase analysis of the water activated 30% PFA blended paste after I day (Lipper 

plots), I month (middle) and I year (lower plots) of hydration at 25'C. 
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plots), I month (middle) and I year (lower plots) of hydration at 25'C. 

APPENDIX C- SEM-EDX 



255 

rn Zd.. ; Jýx 
I 6ý ý 

A, 
IU . "'m 

v 

I .".. '.., .4, oi11, 
It ,I 

A 

Figure C7 Backscattered electron inages showIng typIcal reg, ons 11 the ýýater act iý ated 

60% PFA blended paste after I day (upper imapes), I month (middle) and I year (lower 

images) of hydration at 25'C. 

APPENDIX C- SEM-EDX 



256 

ý*C-S-HOCH+ Anhyd] 

0.7 

0.6 

0.6 

ýOý4 
(> 

"'CO, 3 

0.2 

0 
0.2 0.4 M 1.2 1,4 

Si/Ca 

'L* C-S-H » CH+ Anhydý 

0.7 

0.6 
AFm 

, 0.4 
y AFt 

"(0.3 

0.2 

0.1 

0 
0 M 0.4 0.6 0.8 1 1.2 1,4 

silca 

J*CýS. H iz-CH+ Anhydl 

0.5 

0.4 

0.3 

0.2 

01 

I 

0.1 0.2 0.3 OA 0,6 0.6 0.7 
AI/Ca 

C-S-H a CH+ Anhyd 

06 

0.4 

0,3 

0.2 

0.1 

00 0 O'l 020304060607 AI/Ca 

C-S-H 0 CH+ Anhyd! 

0.7 0.6 

0.6 

AFm 04 
0.6 

ý0.4 
0.3 

`C0.3 
01 

0.2 

OA 
OA 

0 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.1 0.2 0.3 0.4 0.6 0.6 0.7 

Si/Ca AI/Ca 

Figui-e C8 - M/Ca apinst Si/Ca (left) and S/Ca against Al/Ca (right) atomic ratio plots for 

the SEM-EDX phase analysis of the water activated 60% PFA blended paste after I day (Lipper 
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Table CI - Mean Ca/Si and Al/Si atomic ratios obtained for C-S-H using SF\I-EDX. fOr the 

water or KOH activated neat and blended pastes, cured at 25'C for I day. I month and I% ear. 
Mean Ca/Si 

ratio 
s 

Mean AUSi 

ratio 

Number 

Analysis (N) 

WPC 2.31 0.50 0.17 0.10 89 

KWPC 3.21 0.50 0.17 0.05 88 

PFA30 2.10 0.40 0.19 0.07 70 
1 day 

KPFA30 2.56 0.71 0.21 0.12 96 

PFA60 2.04 0.65 0.18 0.09 75 

KPFA60 1.96 0.54 0.28 0.10 97 

WPC 2.01 0.28 0.11 0.05 102 

KWPC 3.46 1.10 0.10 0.02 101 

PFA30 1.74 0.25 0.15 0.05 92 
1 month 

KPFA30 1.30 0.54 0.21 0.12 95 

PFA60 1.52 0.30 0.3) 2 0.13 73 

KPFA60 1.52 0.38 0.25 0.06 82 

WPC 2.02 0.38 0.11 0.05 71 

KWPC 1.91 0.29 0.10 0.03 79 

PFA30 1.54 0.14 0.20 0.06 75 
year 

KPFA30 1.58 0.421 0.214 0.09 71 

PFA60 1.47 0.28 0.29 0.11 54 

KPFA60 1.47 0.45 0.29 0.09 64 
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Figure CI I -- Backscattered electron images showing typical regions in the water activated 

WIT paste after I day (Lipper images) and I month (lower images) of hydration at 55'C. 
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Figuire C12 - Al/Ca against SI/Ca (left) and S/Ca against Al/Ca (right) atomic ratio plots fOr tile 

SEM-EDX phase analysis of the water activated WPC paste after I day (tipper plots) and I 

month (lower plots) of hydration at 55'C. 
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Figure C13 - Backscattei-ed electron images showing typical regions in the KOI I activated 

WPC paste after I day (LIPPCI- images) and I month (lower images) ot'hydration at 55'C. 
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Figure C14 - Al/Ca a-amst Si/Ca (left) and S/Ca against Al/Ca (ri-l-it) atomic ratio plots for L- -- 
the SEM-EDX phase analysis of the KOH activated WPC paste after I day (tipper plots) and I 

month (lower plots) of hydration at 55'C. 
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Figure C15 -- Backscattered clectron images showing typical regions in the water activated 

30% Pl, A blended paste after I day (Lipper images) and I 111011th (lower images) of 

hydration at 55'C. 
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Figure C16 - Al/Ca against Si/Ca (left) and S/Ca a0ainst Al/Ca (ri-lit) atomic ratio plots for 

the SEM-EDX phase analysis of the water activated 30% PFA blended paste after I day (Lipper 

plots) and I month (lower plots) of hydration at 55'C. 

APPENDIX C- SEM-EDX 



266 

10 

IL 

air 

Figure C17 - Backscattei-ed clectron images showing typical regions in tile KOI I activated 

30% PFA blended paste after I day (Lipper images) and I month (lower images) of hydration at 

5 5'C. 
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Figure C18 - Al/Ca against Si/Ca (left) and S/Ca against Al/Ca (right) atomic ratio plots for 

the SEM-EDX phase analysis of the KOH activated 30% PFA blended paste after I day (Lipper 

plots) and I month (lower plots) of hydration at 55'C. 
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Figure C19 -- Backscattered clectron Images shoming typical regions in the water activated 1-1 -ý 11 

60% PFA blended paste after I day (upper images) and I month (lower images) of hydration at 

5 5C. 
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Figure C20 - Al/Ca against Si/Ca (left) and S/Ca against AI/Ca (right) atomic ratio plots for 

the SEM-EDX phase analysis of the water activated 60% PFA blended paste after I (lay (Lipper 

plots) and I month (lower plots) of hydration at 55'C. 
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Figure C21 Backscattered electron images showing typical regions In tile KOI I activated 

60% PFA blended paste after I day (Lipper images) and I morith (lower images) ol'hydration at 

55"C. 
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Figure C22 - Al/Ca against Si/Ca (left) and S/Ca against Al/Ca (right) atomic ratio plots for 

the SEM-EDX phase arialysis of the KOH activated 30% PFA blended paste after I day (Lipper 

plots) and I month (lower plots) of hydration at 55'C. 
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Table C2 - Mean CaJSi and AI/Si atomic ratios obtained for C-S-H using SF%1-1-, I)X. for tile 

water or KOH activated neat and blended pastes, cured at 55T for I day and I month. 

Mean Ca/Si 

ratio 
s 

Mean AIN 

ratio 
s 

Number 

Analýsis (A) 

WPC 2.12 0.51 0.13 0.03 8- 

KWPC 3.45 1.38 0.11 0.01) 74 

PFA30 1.83 0.39 0.15 0.09 86 
1 day 

KPFA30 1.92 0.63 0.19 0.04 84 

PFA60 1.71 0.65 0.26 0.17 98 

KPFA60 1.70 0.61 0.27 0.10 96 

WPC 1.93 0.20 0.11 0.03 99 

KWPC 2.66 0.79 0.10 0.04 90 

PFA30 1.73 0.60 0.33 0.35 89 
1 month 

KPFA30 1.62 0.42 0.27 0.17 96 

PFA60 1.31 0.77 0.36 0.33 87 

KPFA60 1.38 0.43 0.27 0.09 94 
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Figure C24 - Backscattei-ed clecti-on images showing typical regions in the water activated L- -IIII 
WIIC paste after I day (tipper images) and I month (lower images) ot'hydration at 85'C'. 
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Figure C25 - Al/C'a against Si/C'a (right) and S/Ca against Al/Ca (left) atomic ratio plots for the 

SEM-EDX phase analysis of the water activated WPC paste after I day (Lipper plots) and I 

month (lower plots) ofhydration at 85'C. 
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Figure C26 - Backscattered electron images showing typical re-Ions in the KOI I activated 

WPC paste after I day (LIPPCI- images) and I month (lower images) of hydration at 85'C. 
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Figui-e C27 - Al/Ca against Si/Ca (right) and S/Ca against Al/Ca (left) atomic ratio plots I-or 

the SFM-EDX phase analysis of the KOH activated WPC paste after I day (Lipper plots) and I 

month (lower plots) ot'hydration at 85'C. 
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Figure C28 - Backscattered clecti-on images showing typical regions in the water activated 

30% PI-A blended paste after I day (Lipper images) and I month (lower inlaves) of' 

livdi-ation at 85'C. 
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Figure C29 Al/Ca azgainst SI/Ca (ripht) and S/Ca agaInst Al/Ca (left) atomic ratio plots for 

the SEM-1-DX phase analysis of the water activated 30% PFA blended paste atter I day (Lipper 

plots) and I month (lower plots) of hydration at 85'C. 
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Figure C30 - Backscattered clectron ima-cs showino typical regions In the KOH activated 
30% PFA blended paste after I day (upper images) and I month (lower images) ot'hydration at 

85'C. 
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Figure C31 Al/Ca apainst Si/Ca (right) and S/Ca a-ainst Al/Ca (left) atomic ratio plots for 

tile SEM-EDX phase analysis of the KOH activated 30% PFA blended paste after I day (tipper 

plots) and I month (lower plots) of hydration at 85'C. 
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Figure C32 Backscattered electron Images showing typical regions In the water activated 
60% PFA blended paste after I day (Lipper iniages) and I morith (lower ii-nages) of'hydration at 
85"C. 
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Figure C33 - Al/Ca against Si/Ca (right) and S/Ca against Al/Ca (left) atomic ratio plots for 

the SEM-EDX phase analysis ofthe water activated 60% PFA blended paste after I day (tipper 

plots) and I month (lower plots) of hydration at 85'C. 
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Figure C34 - Backscattered electron images showing typical reolons in the KOI I activated L- 
60% 11FA blended paste al-ter I day (Lipper ima0es) and I month (lower inia-cs) ofh\dration at 

8 5'C. 
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Figure C35 - Al/Ca against Si/Ca (right) and S/Ca against Al/Ca (left) atomic ratio plots for 
Z-- L- 

the SEM-EDX phase analysis of the KOH activated 60% PFA blended paste after I day (Lipper 

plots) and I month (IoNver plots) of hydration at 85'C. 
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Table C3 - Mean Ca/Si and At/Si atomic ratios obtained for C-S-H usHIL), SEM-FDX, for tile 

water or KOH activated neat and blended pastes, cured at 85'C for I day and I morith. 
Mean Ca/Si 

ratio 

Mean AUSi 

ratio 
s 

Number 

Analysis (N) 

WPC 2.20 0.74 0.11 0.02 78 

KWPC 3.03 0.80 0.12 0.02 70 

PFA30 1.80 0.20 0.24 0.14 76 
1 day 

KPFA30 1.93 1.09 0., )4 0.17 7-2 

PFA60 1.52 0.46 0.33 0.12 50 

KPFA60 2.39 1.12 0.20 0.08 42 

WPC 2.08 0.37 0.10 0.05 78 

KWPC 2.65 1.03 0.10 0.03 71 

PFA30 1.58 0.15 0.24 0.18 76 
1 month 

KPFA30 1.48 0.35 0.28 0.10 66 

PFA60 1.63 0.60 0.35 0.2 5 60 

KPFA60 1.55 0.83 0.24 0.03 10 
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