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Abstract 
 

Current models of language processing advocate that word meaning is partially stored in 

distributed modality-specific cortical networks. However, while much has been done to 

investigate where information is represented in the brain, the neuronal dynamics 

underlying how these networks communicate internally, and with each other are still 

poorly understood. For example, it is not clear how spatially distributed semantic 

content is integrated into a coherent conceptual representation. The current thesis 

investigates how perceptual semantic features are selected and integrated, using 

oscillatory neuronal dynamics. Cortical oscillations reflect synchronized activity in large 

neuronal populations that are associated with specific classes of network interactions. 

The first part of the present thesis addresses how perceptual semantic features are 

selected in long-term memory. Using electroencephalographic (EEG) recordings, it is 

demonstrated that retrieving perceptually more complex information is associated with a 

reduction in oscillatory power, which is in line with the information via 

desynchronization hypothesis, a recent neurophysiological model for long-term memory 

retrieval. The second, and third part address how distributed semantic content is 

integrated and coordinated in the brain. Behavioral evidence suggests that integrating 

two features of a target word (e.g., Whistle) during a dual property verification task, 

incurs an additional processing cost if features are from different (visual: tiny, audio: 

loud), rather than the same modality (visual: tiny, silver). Furthermore, EEG recordings 

reveal that integrating cross-modal feature pairs is associated with a more sustained low-

frequency theta power increase in the left anterior temporal lobe (ATL). The ATL is 

thought to converge semantic content from different modalities. In line with this notion, 

ATL is shown to communicate with a widely distributed cortical network at the theta 

frequency. The fourth part of the thesis uses magnetoencephalographic (MEG) 

recordings to show that, while low frequency theta oscillations in left ATL are more 

sensitive to integrating features from different modalities, integrating two features from 

the same modality induces an early increase in high frequency gamma power in left 

ATL and modality-specific regions. These results are in line with a recent framework 

suggesting that local, and long-range network dynamics are reflected in different 

oscillatory frequencies. The fifth part demonstrates that the connection weights between 

left ATL and modality-specific regions at the theta frequency are modulated consistently 

with the content of the word (e.g., visual features enhance connectivity between left 

ATL and left inferior occipital cortex). The thesis concludes by embedding these results 

in the context of current neurocognitive models of semantic processing. 
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Chapter 1 

Divide and conquer: Words are represented in a 

distributed cortical network 
 

 
 
 
 

“Knowledge is power” 
Francis Bacon 

 

What would the world look like if we could not compare it to our rich system of 

conceptual knowledge1? We would not know how to use a cup, or drive a car. Even the 

mere distinction between an animal and an object would be alien to us. Successful 

adaptation to the environment is built on the foundation of this conceptual system. But 

beyond understanding what is right in front of us, we encode complex conceptual 

knowledge in the form of words, allowing us to preserve, share, and recombine 

information beyond the limits of space and time.  

 Embodied theories of language postulate that accessing word meaning engages a 

distributed cortical network including areas primarily associated with perception and 

action (Barsalou, 1999; Martin and Chao, 2001; Barsalou et al., 2003; Pulvermüller and 

Fadiga, 2010). Specifically, different parts of the network are thought to represent 

different conceptual features. For example, retrieving the concept apple will engage 

neural pathways that encode what the object looks like (e.g., green and round), tastes 

like (e.g., sweet), and sounds like (e.g., crunchy). Indeed, a plethora of behavioral and 

functional imaging studies over the past decade have provided compelling evidence that 

these pathways are, to some extent, shared with perception and action systems 

(González et al., 2006; Hauk, Johnsrude, Pulvermüller, & Pulvermuller, 2004; Kiefer, 

Sim, Herrnberger, Grothe, & Hoenig, 2008; Simmons et al., 2007). However, while 

much has been done to understand the spatial extent (Goldberg, Perfetti, & Schneider, 

2006), and flexibility (Hoenig et al., 2008; van Dam et al., 2012) in these networks, as 

well as the timing of lexical access (Pulvermüller et al., 2009), little is known about the 

neurophysiological mechanisms of how word content is retrieved and integrated in a 

distributed cortical network.  

                                                        
1 Throughout the thesis, the terms conceptual and semantic will be used interchangeably. 
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 The present thesis explores how patterns of synchronized neuronal activity 

contribute to the retrieval and integration of word meaning. To this end, the thesis will 

focus on two main themes. The first theme addresses how and when perceptual semantic 

features are selected during lexical-semantic retrieval. The second theme explores how 

these lexical-semantic features are integrated at multiple cortical scales, that is, within 

and across different modalities. The next part of this chapter will discuss empirical 

evidence suggesting that word meaning is partially stored in distributed cortical 

networks. Furthermore, current neurocognitive models will be presented that explain 

how conceptual features are integrated into coherent conceptual representations. The 

subsequent section will focus on previous neurophysiological work relating oscillatory 

dynamics to language and memory processes. Lastly, the final section will outline the 

general framework of the thesis and provide a preview of the empirical work presented 

in the following chapters. 

Representation of conceptual knowledge in the mind and brain 

Understanding the nature of the human conceptual system is a problem that has 

fascinated scholars since ancient times (Aristotle et al., 1993). However, the question 

how our knowledge system is organized has regained interest with the cognitive 

revolution in the 1950s. Psychologists at the time considered the human mind to be 

analogous to a computer. Perception and action were considered inputs and outputs to a 

modular cognitive system that operates through abstract symbolic processes (Fodor, 

1981). However, it soon became clear that this view could not explain how abstract 

representations in the conceptual system relate to perceptual experiences of objects in 

the real world. This was famously referred to as the symbol grounding problem (Harnad, 

1990).  

 A possible solution to this problem has been advocated in the form of embodied 

theories of conceptual representation, and language in particular. These theories 

postulate that conceptual knowledge is stored in a perceptual format, which shares 

common neural pathways with perception and action systems (Barsalou, 1999; Martin 

and Chao, 2001; Barsalou et al., 2003; Pulvermüller and Fadiga, 2010). For example, 

retrieving the meaning of a word reactivates or simulates previous experiences with its 

referent (Barsalou, 1999). The grounding problem does not arise in embodied theories 

because information is thought to be stored in the same format in which it was originally 

experienced. 

 Over the last decade, behavioral and neuroimaging studies have provided ample 

empirical support for embodied theories of language. Specifically, behavioral studies 
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have shown that understanding word meaning interferes with perception and action 

systems in a modality-specific way (Creem & Proffitt, 2001; Dils & Boroditsky, 2010; 

Gentilucci & Gangitano, 1998; Glenberg & Kaschak, 2002; Richter & Zwaan, 2009; 

Zwaan, Stanfield, & Yaxley, 2002). Furthermore, neuroimaging studies have 

demonstrated that word meaning engages neural substrates that are partially shared with 

perception and action systems. (Hauk et al., 2004; Kiefer et al., 2008; Simmons et al., 

2007). For example, reading a word like cup activates part of the system that navigates 

our hand to grasp the object (Rueschemeyer, van Rooij, Lindemann, Willems, & 

Bekkering, 2010). The next section will take a closer look at the behavioral and 

functional imaging evidence for embodied theories of language and point out which 

results are still inconclusive. 

Links between language understanding and perception/action systems 

Behavioral studies investigating the link between language processing and 

perception/action systems can be categorized into those who show a) interference effects 

(e.g., inhibition or facilitation of reaction times) or b) mechanistic similarities between 

accessing word meaning and perception/action (e.g., after effects, modulation in 

kinematics) (Gentilucci and Gangitano, 1998; Creem and Proffitt, 2001; Glenberg and 

Kaschak, 2002). Here, both types of research are discussed for word meaning relating to 

action-related, versus perceptual information. 

 

Action-related word meaning. The main source of evidence for embodied theories of 

language comes from studies investigating the relationship between language 

understanding and action planning. For example, Creem and Proffitt (2001) asked 

participants to grasp objects in various orientations, while performing a semantic paired 

associates, or visuo-spatial task. The authors demonstrated that participants are less 

likely to pick up the object in a goal-directed way, that is, at the handle, while 

performing the semantic task. This suggests that using an object in a functionally 

meaningful way requires retrieval of semantic knowledge from a system that is at least 

partially shared with language processing. These results could not be attributed to task 

difficulty, as the authors demonstrated in a control experiment. Here the task to pick up 

an object was replaced with a standard visuo-motor task (visual pursuit tracking). In 

contrast to the goal-oriented task in the first experiment, Creem and Proffitt found 

selective interference effects with the visuo-spatial, but not the semantic task. Taken 

together, these results demonstrate that at some level, conceptual knowledge is shared 

between action planning, and language processing.  
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 Other studies have corroborated these findings showing that conceptual 

knowledge is shared between language understanding and action planning even at the 

level of specific action features. For example, Gentilucci and Gangitano (1998) asked 

participants to grasp a rod with the labels ‘long’ or ‘short’ printed onto the visible 

surface. The authors demonstrated that basic kinematic parameters during the execution 

of the grasping action, such as peak acceleration, velocity and deceleration were 

modulated as if the rod was indeed physically different in size. The authors concluded 

that participants rapidly, and automatically retrieve word meaning, which interferes with 

movement execution at a conceptual level. 

 However, the relation between language understanding and action planning is 

not restricted to the word level. Glenberg and Kaschak (2002) asked participants to 

make sensibility judgments on sentences describing either a movement towards their 

body (open the drawer) or away from their body (close the drawer). The results 

indicated that participants are slower to process a sentence when the response is 

incongruent with the sentence meaning, demonstrating that language understanding and 

action share a common motor code, even at a sentential level.  

 Taken together, behavioral studies have shown that performing goal-directed 

actions and language understanding compete for resources in a shared conceptual 

system. Interference effects are observed at the level of specific action features (e.g., 

spatial direction, acceleration, grip aperture, etc.), and go beyond the level of single 

word. 

 

Perceptual word meaning. Similar to action-related language, accessing perceptual 

word meaning has been shown to interfere selectively with perceptual processing. In this 

line of research, most studies have focused on shared visual features such as shape, 

color, and motion. (Dils & Boroditsky, 2010; Richter & Zwaan, 2009; Zwaan et al., 

2002). For example, Richter and Zwaan (2009) presented participants with a color patch, 

followed by a word, and another color patch. The word could be a color word, a non-

color word or a non-word. Furthermore, the second color patch could either match the 

first one exactly, or differ minimally. The task was to perform a lexical decision on the 

word and subsequently decide whether the second color patch was the same as the first. 

The authors found that lexical decision latency was selectively reduced for color words, 

if word meaning was congruent with the first color patch. In addition, responses were 

slower during color discrimination on the second color patch, if the word meaning on the 

same trial had been incongruent with the first patch. The study by Richter and Zwaan 

demonstrates that perceiving a color affects retrieval of color related word meaning and 

vice versa. 
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 Shared conceptual representations between language understanding and visual 

processing have also been reported for visuo-spatial information. Specifically, Zwaan 

Stanfield and Yaxley (2002) showed that verbal information about the location of an 

object induces a prediction/simulation about the likely shape of the object, which 

interferes with subsequent visual processing. Participants read sentences describing an 

object and its location, followed by a visual image. The task was to decide whether the 

object had been mentioned in the previous sentence. The rationale for the experiment 

was that the shape of an object changes with its location. For example, an eagle in the 

sky evokes the image of a bird with outstretched wings, while an eagle in the nest evokes 

the image of a bird with closed wings. Analysis of response latencies revealed that 

participants responded faster if the image was congruent with the shape implied by the 

location of the object in the preceding sentence. These results suggest that language 

understanding induces retrieval of visuo-spatial features, which selectively guide visual 

processing in the real word.   

 A different way to study commonalities between language understanding and 

visual perception is to identify perceptual phenomena that also exist in language 

understanding. For example, a well-known phenomenon in the study of visual motion is 

the visual motion aftereffect. The motion after effect describes the phenomenon that 

observing a motion in one direction – such as watching a waterfall – induces the 

perception of an illusory motion in the opposite direction when observing a physically 

static or randomly moving scene. Dils and Boroditsky (2010) presented participants with 

stories describing motion in the upward or downward direction followed by a randomly 

moving dot pattern. The task was to indicate whether dots were moving upwards or 

downwards. The authors demonstrated that similar to visual perception, understanding 

stories denoting a motion in one direction, elicits a motion-after effect in the opposite 

direction. These results further show that retrieving motion-related conceptual features 

during language understanding, and perceiving visual motion operate through shared 

cognitive systems. 

 In sum, evidence from behavioral studies suggests that retrieving modality-

specific conceptual features, at some level, competes with perception and action in a 

shared conceptual system. These studies range from simple interference paradigms 

(Glenberg and Kaschak, 2002; Zwaan et al., 2002) to fine grained analyses of the effect 

of language understanding on movement kinematics (Gentilucci and Gangitano, 1998), 

or visual adaptation (Dils and Boroditsky, 2010). However, behavioral studies alone do 

not satisfy the anatomical claim of embodied theories of language, which states that 

language understanding engages shared neural substrates with perception/action 

systems. In the next section, I will discuss evidence from neuroimaging studies 
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supporting the idea of shared neural substrates between language understanding and 

perception/action systems. 

A distributed cortical network of modality-specific regions supports language 

understanding 

The previous section has provided an overview of behavioral studies showing functional 

links between language understanding and perception/action systems. At the neural 

level, embodied theories of language predict that words are at least partially represented 

in a distributed network of areas including neural pathways for perception and action. 

For example, words associated with visual information should engage ventral visual 

areas, while words denoting actions should engage a fronto-parietal motor network. A 

large number of studies over the last years have tested these predictions using imaging 

methods such as functional magnetic resonance imaging (fMRI). The majority of these 

studies have compared neural activation patterns to words that are associated with one 

dominant modality (e.g., action words, color words, etc.), to activation patterns during 

action execution or perceptual processing. 

 

The motor network. In line with behavioral studies, functional imaging research has 

mainly focused on the representation of action words. In a seminal study Hauk, 

Johnsrude and Pulvermüller (2004) compared activation patterns during passive reading 

of words denoting foot, hand, or mouth actions (e.g., kick, pick, and lick) to patterns of 

activation in the motor system when participants were asked to move each effector 

individually.  The authors found that action-related word meaning recruits regions in 

primary and pre-motor cortices in a somatotopic fashion, similar to action execution. 

Complementary results have been reported at the sentence level, when participants listen 

to sentences denoting foot, hand or mouth actions (Tettamanti et al., 2005). However, 

several recent studies failed to show primary motor activation in response to action 

words (e.g., Postle, McMahon, Ashton, Meredith, & de Zubicaray, 2008). While the role 

of primary motor cortex is still debated, many studies have shown selective sensitivity to 

action words in regions involved in action planning and action understanding. These 

regions comprise pre-motor cortex (Postle et al., 2008) and the inferior parietal lobule 

(van Dam et al., 2010, 2012).  

 Conceptual knowledge about actions is not only encoded in action verbs, but 

also in nouns describing objects or tools, which require a particular type of manipulation 

(Martin and Chao, 2001; Rueschemeyer et al., 2010b). For example, Rueschemeyer and 

colleagues (2010) found that nouns describing tools, which require a particular type of 

action (e.g., cup) engage a fronto-parietal motor network more than objects that do not 
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require an action in order to be used (e.g., bookend). The same fronto-parietal network 

has also been demonstrated to be sensitive to functional object knowledge of visually 

presented objects (Beauchamp and Martin, 2007). In conclusion functional imaging 

studies have shown that action related word meaning (action verbs, tools) engages parts 

of the cortical motor network that are also involved in action planning and action 

execution.  

 

Perceptual networks. In line with research on the representation of action words in the 

cortical motor networks, different perceptual pathways have been shown to respond 

selectively to perceptual features of word meaning. Specifically, shared neural pathways 

between perception and word retrieval have been demonstrated for visual, auditory, 

tactile, and olfactory systems (González et al., 2006; Kiefer et al., 2008; Rueschemeyer, 

Glenberg, Kaschak, Mueller, & Friederici, 2010; Simmons et al., 2007; van Dam et al., 

2012). Some of this evidence will be discussed below. 

 In the previous section, evidence was presented, which showed that color 

perception affects color word processing and vice versa, suggesting that the two 

domains, at some level, compete for the same neural resources (Richter and Zwaan, 

2009). This conclusion has been corroborated by functional imaging research showing 

that the two engage overlapping cortical pathways. (Simmons et al., 2007; van Dam et 

al., 2012). For example, Simmons and colleagues (2007) asked participants to perform a 

color perception task and a property verification task. In the property verification task, 

participants were asked to indicate whether a specific color or action was associated with 

an object (e.g. TAXI - yellow). The study showed that a region in the left posterior 

fusiform gyrus is sensitive both to the perception of chromatic contrast and the retrieval 

of color-specific semantic features from words.  

 Evidence for shared neural substrates with perceptual processing has also been 

reported for sentences describing motion. For example, Rueschemeyer et al. (2010) 

presented participants with sentences that described an object motion towards the 

observer, a motion away from the observer, or no motion at all. The authors found that 

area MT/ V5, which is predominantly associated with the perception of visual motion, is 

also sensitive to understanding sentences describing object movement. However, MT/V5 

was only sensitive to object motion, which was directed towards the observer. 

Rueschemeyer et al. (2010) conclude that motion sensitive regions are also recruited by 

motion related language. However, the authors argue that the effect was likely subject to 

top-down influences, such as relevance to the observer.  

 Beyond the visual modality, other studies have reported evidence for shared 

neural substrates between language understanding and perception for auditory 



8 

information. For example, in a combined fMRI and EEG study, Kiefer and colleagues 

(2008) presented subjects with an auditory perception, and a lexical decision task. The 

critical words in the lexical decision task were strongly associated with auditory features 

(telephone). The authors found that a region in superior/middle temporal gyrus responds 

selectively to both meaningful sounds and words with strong acoustic associations. 

Furthermore, the analysis of event-related potentials (ERP) revealed that words with 

acoustic features activate auditory regions within the first 150ms after word onset.  

 There is also evidence for neural overlap between language and perception in 

less salient modalities. Specifically, Gonzalez and colleagues (2006) asked subjects to 

read words with strong (cinnamon) or weak olfactory associations (coat). In line with 

previous findings in other modalities, the authors found regions in the bilateral piriform 

gyrus, and the right amygdala that are more sensitive to words with strong olfactory 

associations. These regions have been associated with olfactory perception in previous 

studies. Again, this is evidence for shared neural processes underlying the retrieval of 

olfactory features during word processing and olfactory perception.  

 In sum, functional imaging studies in recent years have provided compelling 

evidence for shared anatomical substrates between language understanding and 

perception/action systems. These diverse findings suggest that word meaning engages 

distributed networks of modality-specific regions in the cortex. However, it should be 

noted that data from functional imaging is necessarily correlational and the fact that 

modality-specific networks are sensitive to word content does not mean that are also 

necessary for retrieving modality-specific word content (Mahon and Caramazza, 2008; 

Willems and Casasanto, 2011). Furthermore, patients with lesions resulting from stroke 

or neurodegenerative disease often report semantic deficit at a more general level (e.g., 

deficits for specific categories), that is, beyond a single modality (Damasio, 1989; 

Damasio, Grabowski, Tranel, Hichwa, & Damasio, 1996; Jefferies & Lambon Ralph, 

2006). In the next section, I will discuss neurocognitive models, which have been used 

to address some of these issues. 

 

Neurocognitive models of conceptual organization. Current neurocognitive models 

agree that accessing conceptual knowledge through verbal or non-verbal information 

engages distributed modality-specific cortical networks. However, the way in which 

modality-specific networks contribute to the retrieval of conceptual knowledge is still 

debated (Mahon & Caramazza, 2008; Rueschemeyer, Lindemann, van Elk, & 

Bekkering, 2009; Willems & Casasanto, 2011). For example, it is not clear whether 

conceptual knowledge is encoded in modality-specific networks only (distributed 

model), or whether it converges in one (hub-and spokes model), or multiple 
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(convergence zones) high-level association cortices that link multiple modality-specific 

networks. 

 Distributed models postulate that conceptual information is encoded in 

modality-specific regions and the connections between them (Martin and Chao, 2001; 

Pulvermüller and Fadiga, 2010). A key prediction of this framework is that damaging 

modality-specific networks will directly impair the retrieval of modality-specific word 

content. For example, lesions in motor cortices will not only impair action execution, but 

also the understanding of words denoting actions and tools. This hypothesis has been 

addressed in patients with focal lesions to modality-specific networks, as well as healthy 

individuals where neural activity was modulated locally through transcranial magnetic 

stimulation (TMS) (Neininger and Pulvermüller, 2003; Buccino et al., 2005; 

Pulvermüller et al., 2005a; Boulenger et al., 2008; Tomasino et al., 2008; Papeo et al., 

2009; Bonner and Grossman, 2012) 

 For example, Boulenger and colleagues (2008) compared masked priming 

effects for verbs and nouns in a group of patients suffering from Parkinson’s Disease 

(PD) that were either on, or off medication. PD is a motor disease that is associated with 

subcortical atrophy in the substantia nigra, as well as a deterioration of apical dendrites 

in the motor cortices. The authors demonstrated stronger priming effects for action verbs 

when participants were on versus off medication, suggesting that medication directly 

improving motor function also selectively improves the retrieval of action-related word 

meaning. In a different study Neininger and Pulvermüller (2003) presented action verbs 

and concrete nouns with dominant visual, or visual and motoric associations to a group 

of stroke patients. Patients showed damage to either right frontal, or right temporal-

occipital regions. The task was a speeded lexical decision task. The results revealed that 

patients with frontal lesions around motor cortices performed less accurately for action 

verbs than for concrete nouns. In contrast, patients with temporal-occipital lesions were 

less accurate for nouns with strong visual associations, but not action verbs. These data 

suggest that damage in modality-specific regions selectively impairs retrieval of 

modality-specific word meaning. However, an inherent problem with the interpretation 

of these results is due to the fact that verbs and nouns usually differ in more than just 

semantic aspects. For example, the dissociation in Neininger and Pulvermüller (2003) 

could equally well be explained with differences in word category (Mahon and 

Caramazza, 2008). To prevent this objection, more recent studies have compared nouns 

associated with semantic features from one dominant modality. For example, Bonner 

and Grossman (2012) tested word recognition for words with strong auditory, visual, or 

action associations in a group of patients with a logopenic variant of primary progressive 

aphasia. Specifically, these patients show cortical lesions in auditory association areas. 
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In line with predictions from distributed models of conceptual representation, patients 

showed a selective deficit for nouns with auditory associations (e.g., thunder). 

Furthermore, the authors demonstrated that impaired recognition of sound-related words 

was correlated with grey matter atrophy in auditory cortical networks. In conclusion, 

neuropsychological studies in patients with focal brain lesions provide evidence that 

modality-specific networks could causally be involved in the representation of word 

meaning. 

 Further evidence for a causal role of modality-specific networks in word 

retrieval has also been demonstrated in healthy individuals through the use of TMS. 

(Buccino et al., 2005; Pulvermüller et al., 2005a; Tomasino et al., 2008; Papeo et al., 

2009). For example, Pulvermüller and colleagues (Pulvermüller et al., 2005a) applied 

single pulse TMS to hand regions or arm regions on primary motor cortex while subjects 

performed a lexical decision task on verbs denoting hand or foot actions. The results 

showed that participants responded faster to words denoting hand actions when hand 

regions were stimulated. Conversely, stimulating foot regions improved processing of 

foot related words Other studies have used TMS to measure motor evoked potentials 

(MEP’s) while subjects read action verbs or sentences. However, it is very difficult to 

integrate these findings as some studies report facilitation of MEP’s (Papeo et al., 2009) 

during action language processing, while others report suppression (Buccino et al., 

2005).  

 In summary, studies in patients with focal brain regions have demonstrated that 

modality-specific cortical networks are causally linked to the representation of word 

meaning (Neininger and Pulvermüller, 2003; Boulenger et al., 2008; Bonner and 

Grossman, 2012), which is also partially supported by TMS research in healthy 

individuals (Buccino et al., 2005; Tomasino et al., 2008; Papeo et al., 2009). However, it 

is noteworthy that in all of these studies retrieval of word meaning was merely affected 

by focal lesions in modality-specific cortical networks, yet never fully disrupted. In 

addition stroke patients rarely show major deficits in retrieving word content of a 

particular modality. Rather, depending on the lesion foci, patients are severely impaired 

in retrieving multimodal content about a particular category (e.g., tools, animals, or 

persons). Thus, while conceptual knowledge may be partially represented in modality-

specific cortical networks, it is unlikely to be exclusively represented in these networks 

as postulated by distributed models of conceptual representation (Martin and Chao, 

2001). 

 In order to account for category-selective semantic deficits (e.g., tools, or 

animals) in stroke patients with focal lesions in temporal and parietal cortices, Damasio 

and others have argued that perceptual knowledge is integrated via multiple convergence 
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zones (Damasio, 1989; Damasio, Grabowski, & Tranel, 1996). The model argues that 

different convergence zones are sensitive to different sets of perceptual features. 

Damage to a convergence zone, following stroke, may result in selective deficits in 

categories that are most reliant on a particular set of features. For example, animals and 

food are more easily distinguished based on shape, color and motion, while knowledge 

about tools may dependent more on visuo-motor associations. The idea of graded 

perceptual integration has successfully been demonstrated in connectionist models 

(Plaut, 2002), and remains an important aspect of more recent embodied theories of 

language (Meteyard & Vigliocco, 2008; Meteyard & Cuadrado, 2010; Vigliocco, 

Meteyard, Andrews, & Kousta, 2009). However, convergence zone models alone fail to 

explain the whole clinical spectrum of semantic deficits. For example, patients with 

semantic dementia (SD), a neurodegenerative disease affecting the anterior temporal 

lobes, show a generalized semantic deficit that cannot be reduced to a single category, or 

modality. 

  The hub and spokes model (Patterson et al., 2007), postulates that conceptual 

knowledge is partially stored in a distributed network of modality-specific areas, but 

linked through supramodal association cortices in the anterior portion of the temporal 

lobe. In other words, information from all modality-specific networks converges in a 

single semantic hub. In connectionist terms, the hub can be thought of as a hidden layer 

in which conceptual knowledge is clustered in multidimensional features space. This 

could explain, how individuals are able to associate objects that do not share a dominant 

perceptual feature. Indeed SD patients with damage the anterior temporal lobes are more 

likely to categorize objects in terms of perceptual similarity, which can result in 

undergeneralization for atypical members of a category (a penguin is a bird), or 

overgeneralization for perceptually similar non-members of a category (Lambon Ralph 

et al., 2010). In line with these observations in clinical populations, computational 

models have shown that a hub-like hidden layer is necessary to account for the ability to 

generalize and abstract beyond simple perceptual features (Rogers et al., 2004).  

 Taken together, current neurocognitive models on conceptual representation 

largely agree that perceptual word meaning is at least partially stored in distributed 

modality-specific cortical networks (Damasio, Grabowski, & Tranel, 1996; Patterson et 

al., 2007; Pulvermüller & Fadiga, 2010; Vigliocco et al., 2009). Neuropsychological 

evidence further suggests that modality-specific networks might be linked via one 

central hub (Patterson et al., 2007), or multiple convergence zones (Damasio, 1989; 

Damasio, Grabowski, & Tranel, 1996). However, there is currently a striking 

explanatory gap in all of these theories as to how modality-specific semantic content is 
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integrated into more complex multimodal representations. The next section will discuss 

this problem in more detail and outline a possible way to study conceptual integration. 

 

Binding multimodal conceptual features. Previous research on conceptual 

representations has mainly focused on words associated with one dominant modality. 

Some of this evidence has been discussed in earlier sections of this chapter. For 

example, words associated with actions (e.g., grasp) engage a fronto-parietal motor 

network (Hauk et al., 2004; Postle et al., 2008), while words describing visual 

information (e.g., red) engage a ventral visual occipito-temporal network (Simmons et 

al., 2007). In contrast, other research has identified regions that are sensitive to a 

particular category, such as animals or tools (Damasio, Grabowski, & Tranel, 1996; 

Tranel, Damasio, & Damasio, 1997). However, the mechanism of how modality-specific 

features are integrated into complex multimodal object representations is still poorly 

understood.  

 Functional imaging studies have only recently started to address the question 

how multimodal conceptual information is retrieved and integrated. In a recent study, 

van Dam and colleagues (2012) presented participants with words that are strongly 

associated with bimodal (i.e., visual and action) conceptual features. For example, a 

tennis ball is strongly associated with visual information, (yellow, round) and 

information on how to use it (hit with racket). The authors demonstrated that words with 

bimodal associations engage both ventral visual networks (fusiform gyrus), as well as 

posterior motor networks (inferior parietal lobule). Additionally, the authors showed that 

modality specific changes in the BOLD signal were subject to top-down modulations. 

That is, activation in motor areas was enhanced when participants were asked what to do 

with the object versus what it looked like. The study illustrated what, up to that point, 

had only been an implicit assumption in neurocognitive models of language; word 

meaning engages multiple modality-specific networks simultaneously, which are 

modulated, as a function of what information is currently needed.  

 However, the idea that conceptual features from multiple modalities are 

activated simultaneously is not straightforward. Pecher Zeelenberg and Barsalou (2003) 

demonstrated that property verification latencies increase when the current property 

(BLENDER-loud) is from a different (CRANBERRIES-tart) versus the same 

(LEAVES-rustling) modality as the previous trial. The conceptual modality switch 

effect complements earlier findings showing perceptual switching costs in visual and 

auditory discrimination tasks (Spence, Nicholls, & Driver, 2001). Pecher and colleagues 

(2003) conclude that this is evidence for a distributed representation of word meaning in 

modality-specific conceptual networks. However, the study also shows that accessing 
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and switching between different modalities potentially recruits different, and more 

costly, mechanisms than accessing information from the same modality. 

 Taken together, few studies to date have attempted to bridge the gap between 

word content from a single dominant modality and words describing complex 

multimodal objects. A first step towards this direction was the study by van Dam et al. 

(2012) in which the authors illustrated that words strongly associated with features from 

two modalities engage modality-specific cortical networks relating to each feature type 

simultaneously. However, the fact that we access and bind information from multiple 

modalities simultaneously is hard to reconcile with the finding that evaluating 

conceptual features from different modalities in short succession incurs a processing cost 

(Pecher et al., 2003). Neurocognitive models presented in the previous section propose 

that conceptual knowledge from different modalities is integrated through a central hub 

(Patterson et al., 2007), or multiple convergence zones (Damasio et al., 2004). However, 

while these models can be used to generate predictions about where conceptual 

information might be integrated, they are silent with respect to how information is 

integrated within and across different modalities. In the study of visual perception, this is 

known as the binding problem (Treisman, 1996). Specifically, the problem describes 

how visual shape and color of an object are combined into a coherent visual percept of 

e.g. an apple. In recent years, evidence from neurophysiological studies in humans and 

animals has led to the hypothesis that information from different regions in the brain can 

be associated or integrated if the underlying neural populations discharge in synchrony 

(Engel, Fries, Singer, & others, 2001; Fries, 2009; Tallon-Baudry & Bertrand, 1999). In 

the next section, I will discuss how synchronous activity in large populations of neurons 

generates oscillatory activity at the level of the scalp, as well as evidence for the role of 

rhythmic neuronal activity in perceptual binding, memory, and language – three 

cognitive domains that are key to understanding the processes underlying conceptual 

knowledge representation. 

Cortical oscillations in cognition: Organization via synchronization 

Physiological basis and measurement 

The ability to perceive the world in a coherent and stable manner arises from 

interactions between neural populations in the brain. At the microscopic level, 

information in the central nervous system is transmitted through neuronal axons and 

synaptic connections between neurons. Both of these mechanisms induce measurable 

electrical potentials. Information transmission through neuronal axons can be recorded 

through invasive techniques such as single cell or multi unit recording, which are 
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frequently applied in animal models. However, as these invasive techniques are not 

feasible in healthy human individuals, neurophysiological research in humans has been 

restricted to measuring electromagnetic brain activity at the surface of the scalp. 

These macroscopic dynamics are the result of a chain of events at the 

microscopic level. When an action potential reaches the synapse, neurotransmitters are 

released into the synaptic cleft between two neurons. These neurotransmitters bind to 

receptors on the post-synaptic membrane. As a result, ion channels open or close, such 

that ions diffuse through the membrane on the receiving synapse. This modulation of ion 

influx induces a change in the post-synaptic membrane potential, which lasts an order of 

magnitude longer than an action potential. This is critical because it allows projections 

from multiple neurons to summate near the dendrite of the receiving neuron. In other 

words, synchronous firing of multiple neurons elicits a larger increase in the post-

synaptic membrane potential. This causes a separation between a positive and a negative 

charge, which is called a dipole. Finally, the summation of spatially aligned dipoles from 

multiple post-synaptic potentials will generate a signal that is strong enough to be 

recorded at the level of the scalp. These rhythmic dynamics can be measured as 

electrical potentials (EEG) or magnetic fields  (MEG) (Niedermeyer and Lopes da Silva, 

1993).  

 In contrast to functional imaging (PET, fMRI), electrophysiological techniques 

(EEG and MEG) provide a very precise measure of the timing of neurophysiological 

responses. As a result, these techniques are widely used to study the latency, and spectral 

structure of a neural event. With respect to the latter, a line of research, beginning in the 

previous century (Berger, 1929), has associated oscillatory dynamics at different 

frequencies with distinct cognitive functions, ranging from low-level perceptual 

encoding to high-level memory and language (Donner & Siegel, 2011; Engel et al., 

2001; Tallon-Baudry & Bertrand, 1999; von Stein & Sarnthein, 2000). For example, 

Hans Berger (1929), the pioneer of electroencephalography, observed a sustained 

cortical rhythm around 10 Hz at the back of the brain when the participant’s eyes were 

closed. This rhythm disappeared when the participant’s eyes were opened (Berger, 

1929). Since its discovery, the alpha rhythm has been associated with a number of 

different cognitive functions such as attention, memory, and consciousness (Donner & 

Siegel, 2011; Fell & Axmacher, 2011; Jensen, Kaiser, & Lachaux, 2007; Klimesch, 

Freunberger, & Sauseng, 2010; Panagiotaropoulos, Deco, Kapoor, & Logothetis, 2012). 

It is now thought that alpha oscillations reflect a more general inhibitory, or gating 

mechanism that operates via thalamo-cortical pathways (Jensen & Mazaheri, 2010).  

The current section has provided a primer of the physiological mechanisms 

underlying neuronal communication and how it can be measured at the macroscopic 
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scale using MEG and EEG. Through the example of the alpha rhythm, it has been 

argued that cortical oscillations are linked to specific cognitive processes. In recent 

years, other rhythms have been identified and associated with different cognitive 

functions. These are the delta rhythm (1-3 Hz), the theta rhythm (3-7 Hz), the beta 

rhythm (13-30 Hz) and the gamma rhythm (>30 Hz) (Niedermeyer and Lopes da Silva, 

1993). These rhythms have been observed in different, or sometimes the same, cortical 

pathway (Donner and Siegel, 2011), and some have been linked to specific 

neurotransmitters (Singh, 2012). The next sections will review some of the evidence 

relating oscillatory dynamics at different frequencies to memory and language. But first, 

an influential theoretical framework will presented that explains how oscillatory activity, 

or synchronous discharges in large neuronal populations, supports the integration of 

information at a larger scale. 

A dynamic view on cognition 

The human brain is unique in the way it allows us to adapt to the demands of an ever-

changing environment. In line with this idea, the study of human cognition has 

undergone a major paradigm shift in recent years. In classical frameworks, perception is 

considered as the process of matching objects in the environment to context-invariant 

internal representations. In contrast, the dynamicist view of cognition emphasizes that 

cognitive processes are tuned to the agent’s interaction with the environment (Engel et 

al., 2001). Accordingly, brain states should not be considered as stable representations, 

but rather as biases towards our interaction with the environment. However, this 

introduces the question how we are nevertheless able to experience coherent and stable 

objects in our environment. 

 A tentative solution to this problem lies in the fact that the perception of an 

object in the environment elicits synchronized, or correlated, discharges in distributed 

neural populations. According to the temporal binding hypothesis (Singer and Gray, 

1995), these correlated discharges increase the impact, or saliency of a neural assembly 

within the network as a whole. This idea relates to the mechanics of synaptic 

transmission in which the number of synchronized neuronal discharges is proportional to 

the amplitude of the post-synaptic potential. In other words, the more neurons participate 

in synaptic transmission, the more likely the information will be transmitted further 

through the system. For example, neural populations encoding different features of a dog 

will frequently correlate with each other, creating a bias towards perceiving the dog as a 

coherent and stable percept.  

 An example of such a bias is a study by Tallon-Baudry and colleagues (Tallon-

Baudry et al., 1997a), in which the authors recorded electrical potentials from the scalp 
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while presenting a modified version of the famous Dalmatian dog picture (Figure 1.1). 

Naive participants do not perceive the Dalmatian dog among scattered monochrome 

blobs. However, with some training the hidden dog is easily perceived by all 

participants. Thus, while the physical properties of the image are identical before and 

after training, the way in which the information was integrated or bound changed after 

the training phase. In line with predictions from the temporal binding hypothesis, the 

authors found an increase in oscillatory power around 40Hz when a participant 

consciously perceives the dog. The authors conclude that integrating visual object 

features is reflected in synchronized neuronal activity, or an increase in oscillatory 

power.  

 

 

 

Figure 1.1. Gamma oscillations in visual feature binding. In the study by Tallon-Baudry 

and colleagues (1997) recognition of the Dalmatian dog among the monochrome pattern 

after the training phase elicited a larger power increase in the gamma band (~ 40 Hz). 

(From Tallon-Baudry et al., 1997) 

 

The current section introduced the temporal binding hypothesis, which argues that 

synchronous neuronal activity could explain how information in the brain converges 

towards a coherent interpretation of the environment. This was demonstrated in humans, 

where successful integration of a coherent percept (Dalmatian dog) from visual noise 

was correlated with enhanced power in cortical gamma oscillations. The review of 
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embodied theories of language in earlier sections concludes with a related enigma: How 

is stored knowledge from distributed modality-specific networks integrated into a 

coherent conceptual representation? The next section first discusses the role of 

oscillatory dynamics for cognitive functions, and modalities other than vision. 

Subsequently, these data are used to generate a prediction for how conceptual features 

could be integrated into a coherent representation.  

Oscillatory dynamics in memory and language 

The study by Tallon-Baudry et al. (1997) has demonstrated that feature binding in the 

visual modality is reflected in high frequency oscillatory dynamics in the gamma range. 

In recent years, these findings have been corroborated in vision (Tallon-Baudry et al., 

1997b; Tallon-Baudry and Bertrand, 1999; Donner and Siegel, 2011), and extended to 

other perceptual modalities (Kaiser et al., 2002; Cervenka et al., 2011), as well as the 

motor system (Donoghue et al., 1998; Muthukumaraswamy, 2010). A number of studies 

have also reported changes in lower frequency ranges, such as the alpha band. However, 

these slow oscillatory dynamics are often attributed to high-level cognitive functions, 

such as attention (Foxe, Simpson, & Ahlfors, 1998; Foxe & Snyder, 2011). 

Oscillatory dynamics have also been observed during tasks involving higher 

cognitive functions such as decision making, attention, memory, and language (Donner 

& Siegel, 2011; Klimesch, 1999; Klimesch et al., 2001; Klimesch et al., 2010; Sauseng, 

Griesmayr, Freunberger, & Klimesch, 2010; Summerfield & Mangels, 2005; Wu, Chen, 

Li, Han, & Zhang, 2007). Of particular interest for the question how word meaning is 

integrated, are studies investigating the role of oscillatory dynamics in memory and 

language processing. The next two sections will provide an overview of research that 

has linked oscillations in distinct frequency ranges to memory maintenance and retrieval 

as well as lexical-semantic and sentence level language processing. 

 

Long-term memory retrieval. The strongest evidence that oscillatory dynamics are 

involved in memory processes came from recordings of local field potentials in free 

moving rodents. In a seminal study, O’Keefe and Recce (1993) demonstrated that the 

spatial location of the rat is encoded within the phase of the theta rhythm. In humans, 

electrophysiological studies have reported changes in oscillatory activity in the theta (3-

7), alpha (8-12 Hz), and gamma (>30 Hz) range during various memory-related tasks 

(Jensen & Tesche, 2002; Klimesch, Schimke, & Schwaiger, 1994; Lisman, 2010; 

Osipova et al., 2006; Raghavachari et al., 2001; Sauseng et al., 2010). For example, in an 

MEG study by Osipova and colleagues (2006), participants were asked to memorize a 

set of images depicting buildings or landscapes. The authors found that theta and gamma 
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power were enhanced during both retrieval and encoding of items that were correctly 

remembered versus items that were not remembered, or had not been presented in the 

training set. This effect is known in the literature as the subsequent memory effect 

(Brewer et al., 1998). Furthermore, the authors showed, using a beamformer source 

reconstruction method, that the effect in the gamma band was strongest around occipital 

cortex. Based on these results, the authors conclude that theta oscillations are involved in 

mnemonic operations, while gamma oscillations could reflect a top-down facilitation of 

representational content. The latter is in line with the idea presented in the previous 

section, suggesting that high-frequency gamma oscillations are involved in local binding 

of perceptual features (Tallon-Baudry and Bertrand, 1999). 

 Theta oscillations in particular have also been shown to be sensitive to the 

quality of a memory trace. In cognitive models of memory retrieval, the quality of a 

memory is captured in the distinction of familiarity (poor quality) versus recollection 

(high quality). A number of studies in previous years have demonstrated that theta 

power is enhanced during recollection versus familiarity (Guderian & Düzel, 2005; 

Klimesch et al., 2001; Klimesch, Schimke, & Schwaiger, 1994). For example, Klimesch 

et al. (2001) asked participants whether they consciously remembered seeing a word, 

which had been presented earlier, or whether the word was just familiar. Enhanced theta 

power was observed during items that were consciously remembered versus familiar. A 

more recent MEG study by Guderian and Düzel (2005) replicated this effect with images 

if faces, and showed, using source reconstruction, that the theta modulation was 

reflected in a widespread cortical network including temporal, frontal, and occipital 

regions. The authors conclude, that recollection engages a more distributed cortical 

network and theta oscillations in particular could be involved in binding this information 

into a coherent memory trace. 

 In addition to an increase in theta and gamma power, many studies report a 

stimulus-induced reduction or desynchronization in the alpha and beta band (8-30 Hz) 

during long-term memory retrieval (Burgess and Gruzelier, 2000; Spitzer et al., 2009; 

Khader and Rösler, 2011). For example, Khader and Rösler (2011) trained participants 

to associate abstract words with a) a spatial location on a checkerboard, b) an image of 

an object (cup), c) or both. During the test phase participants saw two words and were 

asked whether they shared a common features. Thus, the authors could manipulate 

parametrically the number of features participants were required to retrieve (2,3,4), as 

well as the information type (object identity, spatial location). Using EEG, Khader and 

Rösler demonstrated a parametric effect for theta synchronization as well as alpha de-

synchronization. However, only the latter showed a topographic interaction as a function 

of stimulus type. The authors conclude that theta oscillations might reflect more general 
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memory retrieval processes, while beta oscillations reflect the reactivation of stored 

information. In line with this finding, a recent framework, the information via 

desynchronization hypothesis (Hanslmayr et al., 2012) has proposed that 

desynchronization in the alpha/beta band (8-30 Hz) could be related to the richness, or 

entropy, of information that is currently represented in the system. In their model, the 

authors illustrate that desynchronization in neural population effectively increases their 

informational content. Thus, the richer the informational content of an item in our 

memory system, the more desynchronization the model predicts. However, despite the 

models appeal, very few studies have yet tested this hypothesis directly.  

 

Working-memory maintenance. Changes in theta and alpha power have also 

consistently been linked to memory control processes (Jensen, Gelfand, Kounios, & 

Lisman, 2002; Ole Jensen & Tesche, 2002; Raghavachari et al., 2006; Sauseng et al., 

2010; Wu et al., 2007). For example, Raghavachari and colleagues (2006) recorded from 

electrode grids at the cortical surface in a group of epileptic patients, while their 

participants performed a Sternberg working memory task. The recordings indicated a 

sustained increase in theta power during the entire trial, linking low frequency 

oscillatory changes directly to working memory processes. Similar findings have been 

reported in human MEG (Jensen & Tesche, 2002), suggesting that theta oscillations are 

sensitive to the amount of information in working memory. It should be pointed out 

though, that some studies also find effects relating to the number of items in memory in 

the alpha band (Jensen et al., 2002). It is important to realize that these findings are 

event-related increases in alpha power. This is different from the event-related decrease 

that was discussed in the previous section. Jensen and colleagues hypothesize that alpha 

power contributed to working-memory maintenance by inhibiting irrelevant sensory 

information (Jensen & Mazaheri, 2010; Jokisch & Jensen, 2007) 

More recent studies have demonstrated that theta oscillations might not only be 

involved in maintaining, but also integrating information in working memory. For 

example, Wu and colleagues (2007) recorded EEG in participants who were asked to 

remember a number of locations on the screen (indicated by parenthesis), and a set of 

letters. Letters were either presented at the same locations a participant needed to 

remember (bound), or at different locations on the screen (separate). The authors found a 

larger power increase in the theta band in the bound condition, that is, when location and 

letters were successfully coupled. Furthermore, there was an increase in coherence 

between frontal and temporal electrode sites. Based on these findings, the authors 

conclude that large-scale theta oscillations support binding mechanisms in working 

memory. The study by Wu and colleagues fits into a larger body of research arguing that 
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theta oscillations could reflect a general memory control process that is involved in 

coordinating information from distributed cortical networks  (for a review see Sauseng 

et al., 2010). This interpretation is also in line with research showing a close coupling 

between theta phase and gamma power during memory operations (Lisman & Idiart, 

1995; Nyhus & Curran, 2010; Voytek et al., 2010). Theta oscillations could gate 

memory encoding and retrieval in local neuronal assemblies through high-frequency 

gamma oscillations. 

 In conclusion, oscillatory dynamics in the theta, alpha/beta, and gamma band 

have been linked repeatedly to memory retrieval and memory control processes. While 

theta oscillations could be involved in coordinating and possibly integrating distributed 

cortical networks, alpha/beta and gamma oscillations are particularly sensitive to the 

stimulus type and thus could be involved in local memory encoding and retrieval 

processes. The next section will relate some of these dynamics to language processing. 

 

Lexical-semantic retrieval. Memory representation and control are closely intertwined 

with the ability to understand and produce language. That is, understanding word 

meaning requires retrieving information from long-term memory, integrating multiple 

words is required for sentence processing, and following a conversation requires 

working memory maintenance and control. However, there is currently very little 

consensus with respect to how oscillations at different frequencies are related to 

different components of language processing. 

 At the word level, frequency modulations in the theta, beta and gamma range 

have been associated with lexical-semantic retrieval (Bastiaansen, Mazaheri, & Jensen, 

2008; Bastiaansen, van Berkum, & Hagoort, 2002; Bastiaansen et al., 2005; Bastiaansen, 

Oostenveld, Jensen, & Hagoort, 2008; Bastiaansen & Hagoort, 2006; Hagoort, Hald, 

Bastiaansen, & Petersson, 2004; Hald, Bastiaansen, & Hagoort, 2006; Pulvermüller, 

Lutzenberger, & Preissl, 1999; Van Elk, Van Schie, Zwaan, & Bekkering, 2010; Wang, 

Zhu, & Bastiaansen, 2012; Wang, Jensen, et al., 2012). For example, Bastiaansen and 

colleagues (2005) compared event-related oscillatory dynamics in EEG between open 

and closed class words during story comprehension. The results revealed an increase in 

theta power and decreases in alpha and beta power in response to open versus closed 

class words. Only the modulation in the theta band revealed a topographically different 

effect in open versus closed class words. Based on these results, the authors conclude 

that theta oscillations most likely reflect lexical-semantic retrieval, while the modulation 

in alpha could reflect sensory properties of the stimuli. However, since open and closed 

class words also differ in other ways such as grammatical function, length, word 

frequency, and neighbourhood size, the interpretation the authors present is not 
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straightforward. In addition, it is unclear what studying cortical oscillations in this 

approach contributes that other methods (ERP’s, fMRI) could not.  

 In a different study, Bastiaansen et al. (2008) demonstrate that reading words 

with strong auditory associations elicits a stronger increase in theta power over temporal 

sites, while words with strong visual associations show enhanced theta power over 

occipital electrodes. The authors interpreted these findings as evidence that theta 

oscillations are selectively involved in the retrieval of sensory-semantic information. In 

a similar design, Pulvermüller and colleagues (1999) compared nouns with strong visual 

associations to verbs denoting actions. While nouns showed a relative increase in 

gamma power as compared to verbs over occipital electrode sites, this pattern was 

reversed over central sites. Although the design is very similar to Bastiaansen et al. 

(2008), it should be noted that the conditions in the Pulvermüller study do not only differ 

in terms of their semantic content but also word category and grammaticality. However, 

the two studies are not necessarily in conflict with each other. As pointed out in the 

previous section, there is a tight coupling between theta and gamma oscillations during 

memory processes and oftentimes a power increase is observed in both bands. Taken 

together, both Pulvermüller et al. (1999), and Bastiaansen et al. (2008) provide evidence 

for topographic differences, as a function of modality-specific word content. However, 

as neither of the two studies attempted to localize the effect in source space, these results 

should be considered with caution.  

A somewhat different spectral profile has been reported for action verbs. For 

example, in a study by van Elk et al. (2010), participants were presented with sentences 

including an action verb in an animal or a human context. The premise of the study was 

that there is a difference in how familiar the participant is with the action in either of the 

two contexts. Contrasting these two conditions, the authors observed stronger de-

synchronization in alpha and beta bands in the animal as compared to the human 

context. Critically, similar spectral changes have been reported during action planning 

and execution (Hari et al., 1998; Neuper et al., 2006; Pfurtscheller and Neuper, 2010). 

The authors interpret these results as evidence that motor processes support lexical-

semantic retrieval and integration. However, there are two fundamental problems with 

this study. First, human participants are much more familiar with the actions of other 

human beings, therefore motor related spectral components should be stronger in the 

human context as compared to the animal context. The fact that the authors found the 

reversed pattern of results makes the study difficult to interpret in this framework. 

Second, the authors find a strong correlation between motor related spectral modulations 

and cloze probability. This suggests that the difference is more likely to be the result of 

sentence level processes rather than lexical semantics.  
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Sentence-level integration. Understanding the meaning of words requires the ability to 

retrieve conceptual knowledge from long-term memory. However, the demands of 

everyday language understanding go beyond retrieving isolated chunks of information. 

In order to understand a sentence, or even a story, the language user needs to maintain, 

integrate, and respond to this information in the blink of an eye. Accordingly, oscillatory 

dynamics during sentence comprehension are thought to reflect these control and 

integrative mechanisms.  

 A common method in the electrophysiological investigation of language 

functions is the comparison of control sentences with sentences that contain a 

grammatical (Osterhout & Holcomb, 1993) or semantic anomaly (Kutas & Hillyard, 

1980). A range of studies have used this paradigm to show that semantic violations elicit 

enhanced oscillatory activity in the theta and gamma band, whereas decreases in the beta 

band are more common during grammatical violations. For example, Hagoort and 

colleagues (2004) compared oscillatory responses to three different types of sentence 

types. The sentences were exactly the same except for the last word, which could be a 

semantic violation (Dutch trains are sour), a world knowledge violation (Dutch trains are 

white – Dutch trains are yellow, and every participant knew this), or no violation (Dutch 

trains are yellow). The authors found that semantic violations elicit a stronger increase in 

theta power while world knowledge violations induce enhanced gamma activity, 

suggesting that different processes could be involved in retrieving the different types of 

information. In a more recent study, Wang and colleagues (Wang, Zhu, et al., 2012) 

used a similar paradigm in which the final word of the sentence was predictable, 

unpredictable, or incongruent. The authors show that theta oscillations are more 

sensitive to semantic violations, while gamma oscillations are reduced if the upcoming 

word is unpredictable. In line with previous sections (Engel et al., 2001; Tallon-Baudry 

& Bertrand, 1999), one could argue that gamma oscillations in both tasks operate at the 

level of perceptual-semantic information retrieval. For example, a highly predictable 

sentence might elicit a perceptual model of the sentence meaning more readily than a 

sentence that is unpredictable (Zwaan, 2003). Theta oscillations in turn might be 

involved in the accumulation of semantic knowledge more generally. Additional support 

for this claim is the discovery that only theta power shows a linear increase over the 

course of sentence processing (Bastiaansen, van Berkum, & Hagoort, 2002) 

While enhanced theta and gamma power are often observed during semantic 

violations, reduced beta and alpha power are more frequently reported during 

grammatical violations. For example, Davidson and Indefrey (2007) presented 

participants compared control sentences to sentences with either a semantic or a 

grammatical violation. In line with previous findings, semantic violations elicited a 
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power increase in the theta band. In contrast, grammatical violations elicited a decrease 

in the alpha and beta band. These results are in line with other studies showing effects in 

the beta band to grammatical violations (Bastiaansen, Magyari, & Hagoort, 2010). A 

different way to study grammatical processing in the brain is to compare sentences of 

different complexity. For example, Weiss and colleagues (Weiss et al., 2005) have 

compared oscillatory responses to sentences of different complexity (center-embedded 

versus relative clauses), and demonstrated that more complex sentences (center-

embedded) show a change in connectivity between anterior and posterior electrodes 

covering a wide range of frequencies (theta, gamma, and beta). Thus, although research 

on grammatical processing has mainly found evidence for a contribution of beta 

oscillations, these results are even less conclusive than findings at the word level.  

The previous section has introduced the temporal binding hypothesis (Singer 

and Gray, 1995), a framework which explains how synchronized neuronal activity could 

benefit perceptual feature integration. In addition, evidence was presented that such a 

mechanism in humans is reflected in oscillatory dynamics in the gamma range (Tallon-

Baudry and Bertrand, 1999). The current section has reviewed evidence suggesting that 

similar mechanisms may also be important for memory retrieval, working memory, and 

language processing. For example, local chances in high frequency gamma oscillations 

in visual areas have been associated with successful retrieval of perceptual information 

(Osipova et al., 2006). In addition, a number of studies have related memory retrieval, 

and integration with slow cortical oscillations in the theta band (Wu et al., 2007; 

Sauseng et al., 2010). It has been argued that these slow oscillations could be involved in 

coordinating information at a larger spatial scale, that is, across distributed cortical 

networks. The idea that low and high frequency oscillations operate at different spatial 

scales is not new (von Stein and Sarnthein, 2000; Donner and Siegel, 2011), but so far 

few studies have used this framework to study language understanding through cortical 

oscillations.  

Although previous studies have reported oscillatory changes at multiple 

frequencies for language-related phenomena (e.g., semantic/grammatical violations, 

processing of open-class words), it is often not clear why a change in a particular 

frequency band would be expected. In addition, the reasons for using oscillatory 

dynamics to study language processing are often poorly motivated, which might have 

led to the variability in the findings. Specifically, cortical oscillations in a specific 

frequency band may support multiple cognitive processes, while a single process likely 

induces changes in multiple frequency bands. Given this many-to-many mapping 

between oscillatory dynamics and cognitive processes it becomes even more important 

to formulate hypotheses in terms of the underlying network dynamics, rather than 
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linking individual frequency-bands to cognitive phenomena directly. Examples of the 

latter are studies who have linked cortical oscillations at specific frequency bands to 

semantic violations (Wang et al., 2012a, 2012b), or even a particular word class such as 

action words (Van Elk et al., 2010; Moreno et al., 2013). 

However, as the memory literature shows, cortical oscillations can reveal unique 

and novel insights, provided the hypotheses are formulated in terms of the underlying 

neurophysiology (Axmacher, Mormann, Fernández, Elger, & Fell, 2006; Hanslmayr et 

al., 2012; Jensen & Mazaheri, 2010). For example, the idea that low and high frequency 

oscillations operate at different scales has profound implications for the problem of how 

distributed semantic information is integrated into coherent conceptual representations. 

Particularly, the level at which information is integrated or processed (local modality-

specific, or global supramodal), should be reflected in oscillatory dynamics at different 

frequencies. The last section will provide an outline of the empirical work presented in 

the present thesis and how oscillatory dynamics are used to study conceptual integration 

in the brain. 

Thesis outline and aims 

The first section of this review has presented evidence that word meaning is represented 

in a distributed cortical network, which may be supported by a central hub, or multiple 

convergence zones. Yet, the mechanism of how distributed word content is integrated 

into a coherent concept is still poorly understood. The second section has discussed 

evidence that synchronized neuronal activity, which is reflected in oscillatory neuronal 

activity at the level of the scalp, could be involved in integrated perceptual information 

as well as information that is stored in long-term memory. But, while oscillatory 

dynamics at different frequencies have been frequently linked to language 

understanding, there is currently no coherent mechanistic framework of how oscillatory 

neuronal activity contributes to word retrieval. The aim of the current thesis is to explore 

how cortical oscillations at different frequencies   contribute to the integration of word 

meaning at different cortical scales. Furthermore, the current thesis aims to provide a 

mechanistic and physiologically plausible model of semantic feature integration.  

 Chapter 2 will address how the complexity of perceptual information, encoded 

in word meaning, is reflected in oscillatory neuronal activity in EEG. According to the 

information via desynchronization framework (Hanslmayr et al., 2012), the amount of 

information that is currently represented in the system should be reflected in reduced 

oscillatory activity in the alpha/beta band. This hypothesis is tested by asking 
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participants to generate perceptual features from different modalities in response to a 

concept cue. 

Chapter 3 directly addresses whether integrating information across multiple 

semantic networks is reflected in slow cortical oscillations in the theta band. In a dual 

property verification task, participants are presented with two features, followed by a 

target word. Critically, the features are either from the same or two different modalities. 

In two experiments, reaction times and EEG are recorded. It is hypothesized that 

information that is more widely distributed in the brain will take longer to be processed, 

which should elicit longer reaction times in the multimodal condition. Additionally, 

integrating two features from multiple modalities should engage low-frequency 

oscillatory dynamics that are involved in gating or control mechanisms during memory 

operations. 

Chapter 4 builds on the results from Chapter 3 by investigating whether 

oscillatory dynamics during multimodal conceptual integration reflect semantic 

integration or conceptual switching. Dual property verification is used to test whether 

the modality-specificity effect is specific to feature pairs that are congruent with a target 

word (integration), or whether the effect is observed independent of feature congruency 

(switching).  

Chapter 5 presents a further extension of previous chapters using MEG. MEG 

offers a much better spatial resolution in source space as well as a sufficient signal-to-

noise ratio in higher frequency bands. Specifically, the aims are to test which areas 

generate low frequency oscillatory activity during cross-modal semantic feature 

integration, and whether integrating features from the same modality is reflected in high 

rather than low frequency bands. In line with previous memory research, this effect 

should be observed in modality-specific memory networks. 

Chapter 6 investigates directly how modality-specific and central hub like 

structures in the brain communicate when participants retrieve semantic features from 

the same or different modalities.  

Chapter 7 integrates the results from empirical work presented in the current 

thesis into a neurophysiologically plausible framework. The framework describes how 

oscillatory dynamics at different frequencies contribute to the selection and integration 

of semantic features from long-term memory. 
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Chapter 2: 

When less is more: Perceptual complexity of lexical-

semantic content is reflected in reduced oscillatory 

neuronal activity  
 

 

 

 

Abstract 

In recent years, a plethora of studies have demonstrated that retrieving perceptually 

complex word meaning engages distributed cortical networks in a modality-specific 

way. While much is known about where word meaning is stored in the brain, the neural 

mechanisms underlying how this information is retrieved are still poorly understood. 

The current study contributes to a better understanding of this problem by investigating 

how differences in perceptual complexity between modality-specific semantic content is 

reflected in dynamic changes in oscillatory neuronal activity. Participants were 

presented with concrete nouns and asked to generate two semantic features from one of 

three modalities (visual, auditory, haptic). The informational complexity (entropy) in the 

features that participants used to describe an object in a given modality was taken as a 

proxy for the perceptual complexity of each modality. The EEG signal was recorded and 

used to compute event-related potentials, and changes in oscillatory neuronal activity 

while participants retrieved modality-specific features. The results indicate that 

retrieving perceptually complex semantic content is reflected in suppressed oscillatory 

neuronal activity in the beta band (16-30Hz), as well as an early modulation (220-

240ms) in event-related potentials. These results are in line with a recently proposed 

account arguing that suppressed oscillatory power or de-synchronization in the alpha and 

beta band is associated with richer informational content in memory. 
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Introduction 

Semantic memory comprises an individual’s knowledge about the objects and entities in 

the world. Functional imaging studies over the last years have shown that semantic 

knowledge is at least partially organized in modality-specific cortical networks (Martin 

and Chao, 2001; Patterson et al., 2007; Pulvermüller and Fadiga, 2010; Binder and 

Desai, 2011). However, while much is known about where semantic information is 

stored, the neuronal dynamics supporting how this information is retrieved in a dynamic 

and flexible way are still poorly understood. For example, modalities differ in perceptual 

complexity, and this is reflected in the relative number of words we have in our mental 

lexicon to describe e.g. what on object looks like (visual) versus what it feels like 

(haptic) (see relative feature quantities in Lynott & Connell, 2009; van Dantzig, Cowell, 

Zeelenberg, & Pecher, 2010). Investigating how perceptual complexity affects the 

neuronal dynamics of the brain during word processing is a vital step in understanding 

the format of lexical-semantic representations and how it affects lexical retrieval. 

 Numerous imaging studies in previous years have shown that accessing word 

meaning engages modality-specific networks in the brain. For example, action words 

have been shown to engage a fronto-parietal motor system (Hauk et al., 2004; Postle et 

al., 2008; Rüschemeyer, Brass, & Friederici, 2007), color words activate parts of the 

ventral visual system (Simmons et al., 2007), and words with acoustic associations 

activate auditory areas in superior and middle temporal lobes (Kiefer et al., 2008). 

However, while this is compelling evidence for the existence of a distributed semantic 

network, these findings do not explain how information is represented in different 

modalities. 

 As many embodied theories of language postulate (Barsalou, 2008; 

Pulvermüller and Fadiga, 2010), one possibility is that word meaning is stored in a 

perceptual format. It follows that modality-specific networks should be sensitive to the 

complexity with which perceptual information is encoded in word meaning. This has 

been demonstrated for visual and action related information (Gauthier et al., 1997; van 

Dam et al., 2010). For example, Gauthier and colleagues reported that nouns denoting 

less richly encoded basic level categories show less activation in visual cortices than 

nouns denoting more specific subordinate categories. Following up on this idea, van 

Dam and colleagues showed a similar effect for subordinate versus superordinate action 

verbs in the inferior parietal lobule, which is part of a fronto-parietal motor network. 

These results suggest that retrieving modality-specific semantic content is sensitive to 

the perceptual complexity of a word. 
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 However, the impetus to study modality-specific word meaning has led to an 

artificial emphasis on stable semantic concepts from one dominant modality. In contrast, 

more recent studies suggest that the recruitment of modality-specific networks is highly 

dependent on the context (Hoenig et al., 2008; Raposo et al., 2009; van Ackeren et al., 

2012; van Dam et al., 2012). For example, van Ackeren and colleagues showed that non 

action related sentences such as It is hot in here activate action-related semantic features 

if presented as an indirect request to open a window (van Ackeren et al., 2012). In 

addition, van Dam and colleagues showed that the relative activation in motor networks 

in response to a target word is different when participants think about the function of an 

object versus its color (van Dam et al., 2012). But modalities also differ in terms of their 

perceptual complexity. For example, the resolution of the human visual system is far 

superior to the haptic, or olfactory system, and this is also reflected in the number of 

words/features we can use to describe what an object looks (visual) like versus what it 

feels like (haptic). Thus, an attention shift from a perceptually poor modality to a 

perceptually rich modality also requires a shift in perceptual complexity, and the amount 

of retrieved features. 

 One way to conceptualize perceptual complexity physiologically is in terms of 

the amount of information that is encoded in the underlying neuronal populations. 

According to the information via de-synchronization hypothesis (Hanslmayr et al., 

2012), the amount of information that is encoded or retrieved from memory is inversely 

related to spectral power in the alpha (10-14 Hz) and beta band (16-30 Hz). It is widely 

accepted that an increase in spectral power reflects enhanced neural synchronization in 

the underlying populations. However, if multiple neurons fire in synchrony, there is an 

overall reduction in the amount of information, or entropy (Shannon and Weaver, 1949), 

which is encoded in the signal. Conversely, a decrease in power, or neuronal de-

synchronization, should reflect an increase in information. Indeed, empirical evidence 

suggests that retrieving items that were initially encoded with more information is 

associated with a stronger reduction in spectral power than items that were encoded with 

less information (Khader & Rösler, 2011; Waldhauser, Johansson, & Hanslmayr, 2012). 

An interesting prediction can be derived from this idea: Accessing information from 

perceptually complex modalities (e.g., vision) will be reflected in more suppressed 

oscillatory power than accessing information from perceptually less complex modalities 

(e.g., touch). 

 The primary aim of the current study is to test whether retrieving information 

from perceptually complex modalities is reflected in suppressed oscillatory neuronal 

dynamics in the alpha/beta band. EEG is used to measure oscillatory neuronal activity 

while participants retrieve two visual, auditory, or haptic features of a given target word. 
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After the experiment, a measure of informational complexity (entropy) is computed 

from the participants’ responses for each modality. In line with the information via de-

synchronization hypothesis (Hanslmayr et al., 2012), we predict that modalities with 

perceptually complex feature content show a stronger suppression in oscillatory 

alpha/beta power. A secondary goal of the study was to explore when perceptual 

complexity effects arise during language processing. To this end event-related potentials 

were compared when participants think about features of an object from different 

modalities. 

Methods 

Participants 

 Participants were sixteen healthy individuals (5 male) with no known 

neurological disorder and normal or corrected to normal vision. The age range was 

between 18 and 27 years (M=20.18). All participants were students at the University of 

York, and participated on a voluntary basis. Participants received either a financial 

reward or course credits for taking part in the experiment. All participants gave written 

informed consent according to the Declaration of Helsinki and were debriefed after the 

study. The study was approved by the Ethics Committee of the York Neuroimaging 

Centre. 

Experimental design 

Participants performed a feature generation task. After a brief baseline period (1000 ms) 

the participant saw a visual cue (visual, auditory, haptic), followed by a delay (500 ms) 

and a target noun (1500 ms). The participants were instructed to think about features of 

the target word from the cued modality. After each trial, the participant was prompted to 

enter two modality-specific features using the keyboard (Figure 2.1). The experiment 

was preceded by 10 practice trials to familiarize participants with the experiment. 

 The experimental items consisted of 180 nouns referring to different semantic 

categories (100 artificial objects, 40 animals, 26 natural objects, 8 types of food, and 6 

body parts). As each noun was presented in all of the three conditions (Visual, Auditory, 

Haptic), no further matching of the words was required. In order to prevent priming 

effects, each participant saw a target word only with one of the three cuing conditions. 

The order of nouns and conditions was pseudo-randomized within participants and the 

pairings between nouns and conditions was counterbalanced across participants.  
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Data recording and pre-processing 

EEG was acquired from 64 Ag-AgCl electrodes that were positioned on an electrode cap 

according to a 10-20 system. All electrodes were re-referenced offline to the algebraic 

average of the two mastoids. Horizontal and Vertical eye movements were recorded with 

a set of bipolar Ag-AgCl electrodes. The signal was amplified using an ANT amplifier. 

Impedances of the cortical electrodes were kept below 10 kΩ. The signal was recorded 

with a sampling frequency of 500 Hz. 

 

Figure 2.1. Experimental design. The trial started with a period of rest (1000 ms), which 

served as baseline for subsequent spectral analysis. The baseline period was followed 

by a modality-cue (Visual, Auditory, Haptic) (500 ms), a delay period (500 ms), and the 

target noun (1500 ms). After each trial, participants were asked to report two features of 

the target word from the cued modality.	  

 

Offline analyses were conducted using Matlab 7.14 (Mathworks, Natick, MA) and 

Fieldtrip, a Matlab toolbox for analyzing EEG/MEG data (Oostenveld et al., 2011). For 

subsequent analysis, the data were band-pass filtered (0.05-170 Hz, Butterworth filter, 

low-pass filter order = 4, high-pass filter order = 3). Line-noise was suppressed by 

filtering the 50, 100, and 150 Hz Fourier components. Artifact rejection was performed 

in three consecutive steps. First, muscle artifacts were removed using semi-automatic 

artifact rejection. Subsequently, extended infomax independent component analysis 
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(ICA), with a weight change stop criterion of < 10-7, was performed to identify, and 

reject ocular components. One participant was excluded from the analysis due to 

excessive muscular and ocular artifacts. In addition, seven trials had to be excluded from 

each dataset due to a technical error. 

Analysis of event-related potentials 

For the analysis of event-related potentials, the data were further low-pass filtered at 30 

Hz. Subsequently; data were segmented into epochs from 150 ms before stimulus onset 

to 600 ms after target onset and corrected with a pre-stimulus baseline of 150 ms. 

 Statistical analysis of event-related potentials was performed using a two-step 

procedure. First, in order to objectively identify evoked components for subsequent 

analyses, the global root mean square (RMS) was computed. Data from all conditions 

were averaged, and the square root was computed for the mean of the squared signal 

amplitude across electrodes at each point in time. Local peaks were identified at ~110 

ms, ~150 ms, 230 ms, and ~350 ms, which fall in to the time windows of the N1, P2 and 

N4 (Figure 2.2). Given a priori knowledge about the morphology of these peaks, 20 time 

windows of interest (TOI) were chosen for the first three components, and a 100ms TOI 

for the last component. Second, separate analyses of variance with repeated measures 

(ANOVA) were computed for each electrode position and subjected to a cluster-

randomization technique (Maris and Oostenveld, 2007). Cluster-randomization 

effectively reduces the number of comparisons by combining neighboring electrodes 

above a given threshold (α =  .05). The summed F-values are compared to a permutation 

distribution in which the condition labels are permuted on 1000 iterations. Subsequently 

a maximum statistic is applied to correct for the number of clusters. This procedure is 

highly objective, as it does not require the manual selection of electrodes for statistical 

comparisons. Lastly, to investigate the possible effect of feature entropy for each of the 

three conditions, linear regression was applied to the time windows of interest and 

subjected to a cluster-based permutation analysis. 
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Figure 2.2. Global root mean square amplitude. RMS was calculated across all 

conditions and electrodes. Local peaks were found at (I) ~110ms, (II) ~150ms, (III) 

~230ms, and (IV) ~350ms. 20ms time windows of interest was chosen for the first three 

peaks (I, II, III), and a 100ms time window for the last peak (IV) (shaded bars). 

 

Analysis of spectral power 

Dynamic changes in spectral power during the presentation of the target word were 

computed by convolving the signal with a complex Morlet wavelet (5 cycle width) using 

50ms time steps and a step size of 2Hz in the frequency domain. These transformations 

were performed at the individual trial level and reflect both evoked and induced 

components of the signal. Subsequently, trials were averaged for each condition and 

subject, and percentage signal change was computed using a time window between 500 

and 200 ms before the onset of the cue. The baseline normalization procedure is 

equivalent to the event-related de-synchronization technique (Pfurtscheller & Lopes da 

Silva, 1999), except that positive values denote synchronization, and negative values de-

synchronization. 

 Similar to the analysis of event-related potentials, ANOVA with repeated 

measures was used in combination with a cluster randomization technique to identify 
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spectral power changes that are tuned to memory search in a given modality. Cluster-

based permutation was performed on 2 frequencies of interest (alpha: 8-14 Hz, and beta: 

16-30 Hz) in a time window from 200-400ms after stimulus onset. Clustering was 

performed across space (electrode locations) 

Results 

Behavioral analysis  

Each participant supplied two features for a given target word from one of three cued 

modalities (visual, auditory, haptic). For subsequent analyses, these responses were 

cleaned in the following way. Any spelling errors or inconsistencies in spelling were 

corrected. Further, words with different morphological inflections were converted into a 

single form (e.g., jingle, jingly, jingling all became jingling). Any onomatopoeia (e.g., 

ding ding, broom broom) were removed from the data if they did not resemble an 

existing lexical item in the English language. Lastly, responses such as car sound (for 

auditory feature of car), or car shaped (for visual feature of car) were excluded from any 

further analyses. 

 Subsequently, the entropy of these features was computed for each condition 

(visual, auditory, haptic), and participant. Entropy (H) is a mathematical concept from 

information theory that quantifies the unpredictability or complexity of informational 

content as: 

 

     

 

where P(xi) is the probability of a specific event in a set of events (X). Here P(xi ) is the 

probability that a participant uses a given feature in one of three modalities. Concretely, 

if a participant uses few features, many times, there is less information in the responses 

(low entropy) than if a participant uses many different features only a few times (high 

entropy). 

 To test whether different semantic modalities are associated with different levels 

of informational complexity, feature entropy was subjected to analysis of variance 

(ANOVA) with repeated measures. The test statistic revealed a main effect of cued 

modality on semantic entropy (F(2,28)=60.21, p<.001 partial η2 =.513). To further 

explore this effect, post-hoc tests were applied using FDR-adjustment to correct for 

multiple comparisons. Feature entropy was higher in both visual and auditory conditions 

than in haptic conditions (both p < .001), yet there was no difference between the visual 

H (X) = −∑P(xi )log2 P(xi )
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and auditory condition (p = .13). These results confirm the notion that the visual and 

auditory modalities encode perceptually rich information, while the haptic modality 

encodes perceptually poorer information in comparison. 

 

Table 2.1. Behavioral results depicted as the mean entropy of semantic features in each 

of the three priming conditions. 

Modality Cue 
 

Feature entropy 

Visual 
M 5.91 

SE 0.09 

Auditory 
M 5.80 

SE 0.08 

Haptic 
M 4.94 

SE 0.16 

 

Event-related potentials 

100-120ms. There was a negative deflection in the event-related time course around 

110ms. However, no clusters were identified in this time window by our clustering 

algorithm. In addition, no significant clusters were found for the feature entropy 

regression in any of the three conditions.  

 

140-160ms. Despite a minor divergence between the visual condition and the auditory 

and haptic conditions around 150ms, the clustering algorithm did not identify a cluster in 

this time window.  

 

220-240ms. There was a positive peak in the time window around 230 ms. The cluster-

based randomization procedure identified one significant cluster (p=.037, cluster-

corrected; Figure 2.3), which was centered over left posterior electrodes, suggesting that 

memory search is reliably constrained by the modality-specific cue in an early time 

window corresponding to the P2 event-related component.  Post hoc tests revealed that 

there was a stronger deflection for the visual and auditory as compared to haptic cues 

(p=.01, and p=.024, respectively), while there was no difference between visual and 

auditory cues (p=.846). All p-values are FDR-adjusted. 

 

300-400ms. The last time window around 350ms revealed a negative deflection in the 

signal. Cluster-based permutation revealed one significant cluster over central and 
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posterior electrodes (p=.036, cluster-corrected; Figure 2.3), suggesting that the effect of 

modality-constrained memory search leaks into the time window corresponding to the 

N400 effect, which has been associated consistently with semantic processing. Post hoc 

tests revealed that there was a stronger negative deflection for the visual and auditory as 

compared to haptic cues (p=.01, and p=.03, respectively), while there was no difference 

between visual and auditory cues (p=.865). All p-values are FDR-adjusted. 

Figure 2.3. Event-related potentials during target presentation. The left panel shows the 

event-related time course for 8 representative electrodes during the presentation of the 

target in each of the three cue conditions (Visual: black; Auditory: blue; Haptic: red). The 

left panel depicts a magnified illustration of the event-related time course at electrode 

PO3. Shaded areas depict the early (220-240ms) and late (300-400ms) time window in 

which the clustering algorithm identified a significant interaction between conditions. The 

distribution of each effect is represented in the adjacent topographic scalp maps. Black 

dots depict channels that are part of the significant cluster (mean time courses were 

smoothed at 10Hz for illustration puproses). 

 

Spectral analysis 

ANOVA with repeated measures in combination with cluster-based permutation was 

performed in a time window from 200 to 400 ms after the presentation of the target word 

in two frequency bands of interest. The clustering algorithm identified ones significant 

cluster in the beta band (16-30 Hz) (p = .028, cluster-corrected) for the effect of 

modality-cueing. Post-hoc tests revealed that there was a significantly stronger beta 
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suppression for the visual and auditory condition versus the haptic condition (p=.015, 

and p=.019, respectively), while there was no difference between the visual and auditory 

condition (p=.61). 

 

Figure 2.4. Spectral decomposition showing the effect of the cued modality. A. Time-

frequency decomposition showing the effect of the cued modality (rectangle) on the 

target word averaged over all electrode locations in the cluster. The topographical 

representation at the right bottom depicts the spatial extend of the cluster (black dots). B. 

Time frequency representations for each of the three conditions individually. During the 

time period of interest  (rectangle) there is a reduction in all conditions relative to 

baseline.  C. Bar graphs show the average signal decrease in the beta band for all three 

conditions. The graph shows that the visual (black) and auditory (blue) conditions show 

a larger decrease in beta power as compared to the haptic condition (red). D The 

spectrogram shows the distribution of the effect of cued modality in the frequency 

domain during the time period of interest.  The illustration shows that the effect reaches 

significant (depicted as dashed line) between 20 and 30 Hz with a peak at 26 Hz. 

 

Discussion 

The aim of the current study was to test whether accessing lexical-semantic features 

from perceptually complex modalities is reflected in suppressed spectral power in the 

alpha/beta band. To this end, EEG was recorded while participants were asked to 

retrieve two perceptual features from one of three modalities (visual, auditory, haptic) 

for a given target word. Perceptual complexity was estimated as the entropy in the 

features that participants generated in a given modality. Entropy was similar in the 

visual and auditory modality, but reduced in the haptic modality. This pattern was 

reflected in more suppressed oscillatory power in the beta range (16-30 Hz) for 

perceptually rich modalities (visual, auditory) compared to the perceptually poor 

modality (haptic). Analyses of event-related potentials revealed a similar pattern around 
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~230, and ~350 ms, suggesting that context-dependent perceptual features are retrieved 

early during lexical-semantic processing. The implications of these findings are 

discussed below. 

Oscillatory power diminishes as information increases 

Reduced oscillatory neuronal activity in the alpha/beta band (~8-30 Hz) has been 

reported in a range of cognitive tasks, including language processing (Davidson and 

Indefrey, 2007; Van Elk et al., 2010; Wang et al., 2012a; Moreno et al., 2013). However, 

the cognitive function of this phenomenon is still poorly understood. According to a 

recent account, oscillatory de-synchronization reflects the amount of information that is 

encoded/retrieved at a given moment in time (Hanslmayr et al., 2012). In line with this 

hypothesis, the current study reports a reduction in spectral power in the beta band (16-

30 Hz) when participants think about lexical-semantic features from perceptually 

complex (e.g., visual, and auditory features) modalities. In other words, the pattern of 

de-synchronization reflects the entropy of the features that participants use to describe 

visual, auditory, or haptic aspects of an object. While beta de-synchronization has been 

shown repeatedly to reflect encoding and retrieval complexity in memory research 

(Hanslmayr et al., 2012; Waldhauser et al., 2012), the present study is the first to directly 

apply these concepts to the retrieval of lexical-semantic content.  

 As multiple studies have reported beta suppression during action observation 

and execution (Hari et al., 1998; Neuper et al., 2006; Pfurtscheller and Neuper, 2010), 

research on lexical-semantics has focused primarily on the role of beta oscillations in 

action word processing. For example, Moreno and colleagues found reliable alpha and 

beta suppression when participants listened to action-related sentences versus abstract 

sentences, and this effect resembled the pattern of de-synchronization during action 

observation (Moreno et al., 2013). Similar to functional imaging studies, alpha and beta 

de-synchronization have also been shown to be sensitive to the context in which action 

verbs are presented (Van Elk et al., 2010). These findings are not in conflict with the 

current study. For example, in the study by Moreno and colleagues (2013), action 

sentences clearly contained more complex perceptual content than abstract sentences. 

The current study extends this research showing that beta suppression is indicative of 

perceptual complexity more generally - that is perceptual complexity in multiple 

modalities. This is in line with a growing body of evidence suggesting that beta 

oscillations are involved in multiple cognitive processes, without motor involvement 

(Engel and Fries, 2010; Donner and Siegel, 2011; Hanslmayr et al., 2012).   

 A different line of research has shown suppression in beta power during 

grammatical and semantic expectation violations (Davidson and Indefrey, 2007; Wang 
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et al., 2012a). Violations require a form of reanalysis or adaptation, which involves 

additional information retrieval. This interpretation would be in the spirit of the present 

study. However, expectancy violations in language induce a complex change in the 

frequency domain covering multiple frequency bands, and other studies have 

emphasized the role of different frequency bands, such as theta, in expectancy violations 

(Hald et al., 2006; Wang et al., 2012b). For these reasons, a direct comparison to the 

current study remains difficult. 

 In sum, in line with the information via de-synchronization hypothesis 

(Hanslmayr et al., 2012), and previous memory research (Waldhauser et al., 2012), the 

present findings show that retrieving information from perceptually rich modalities 

during word processing induces enhanced beta suppression. While previous research has 

reported beta suppression during action verb processing, the current study extents this 

work suggesting that beta suppression might be a more general mechanism that is linked 

to the complexity of information retrieval. 

Complex perceptual information is activated early during language processing. 

Early electrophysiological research using the event-related potential technique has 

reported effects of semantic task manipulations around 400ms after stimulus onset 

(Kutas and Hillyard, 1980; Kutas and Federmeier, 2000). Yet, more recent evidence 

suggests, that retrieving modality-specific word content may already start around 150 ms 

(Pulvermüller et al., 2005b, 2009; Kiefer et al., 2008; Pulvermüller and Shtyrov, 2009). 

For example, Kiefer and colleagues found that words with strong auditory associations 

engage left superior temporal areas as early as 150ms (Kiefer et al., 2008). Further, 

Pulvermüller and colleagues have shown that motor areas in the cortex are sensitive to 

lexical-semantic retrieval of words with action-specific content as early as 150ms 

(Pulvermüller et al., 2005b; Pulvermüller and Shtyrov, 2009).. The present study is in 

line with these findings showing an early effect of perceptual complexity around 

~230ms.  

Relation to semantic richness 

In the current study, perceptual complexity was operationalized as the entropy in the 

feature words that participants used to describe modality-specific aspects of the target 

word. The concept of perceptual complexity in the current study relates to earlier work 

on semantic richness. While there are multiple metrics for semantic richness, the most 

commonly used is the number of features that are associated with a particular word.

  Semantic richness has been shown to modulate both naming and lexical 

decision latencies (Pexman et al., 2002, 2003), with faster responses to words with richer 
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semantic content. More recent studies have emphasized that for concrete objects, 

particularly the number of perceptual features seem to modulate the effect, which, in 

line with the current study emphasizes the role of modality-specific information in 

lexical-semantic retrieval. 

 In line with the current study, semantic richness has been shown to modulate 

lexical-semantic retrieval early (Kounios et al., 2009; Rabovsky et al., 2012). For 

example, Kounios and colleagues (2009) used the event-related potential technique to 

show that words with more semantic features, diverge from words with few semantic 

features already around ~200ms. In the current study a difference between perceptually 

rich and poor modalities was found as early as 230ms. 

 However, there are at least two important differences between the current study 

and previous work on semantic richness. First, semantic richness is quantified as a 

property of a concept. In contrast, perceptual complexity in the present study captures 

the amount of information (entropy) that is used to describe concepts by each individual. 

The term perceptual here refers to the use of perceptual modality-specific features. In 

addition, it should be mentioned that perceptual complexity in the current task is highly 

context-dependent. That is, how many features are retrieved depends on which aspects 

of the concept (e.g., which modality) a participant is currently thinking about. Second, 

while perceptual complexity is often quantified across a population of raters, here 

perceptual complexity is quantified as the number of features a participant uses for a 

given target modality, and their probability of use. This is relevant as features may be 

used equally often, or one feature may be used far more than the others. In sum, while 

semantic richness and perceptual complexity certainly capture similar aspects of lexical-

semantic retrieval, the latter specifically takes into account the dynamic nature and 

modality-specific organization of the semantic system.  

Conclusion 

The aims of the current study were twofold. The first aim was to test whether retrieving 

perceptually rich word meaning is reflected in suppressed oscillatory activity in the 

alpha/beta band. In line with a recently proposed framework, the information via de-

synchronization hypothesis, beta power was reduced for the perceptually more complex 

visual and auditory modalities as compared to the less perceptually rich haptic modality, 

suggesting that beta suppression is sensitive to the amount of information retrieved at a 

more general level. Here, we extent previous research on oscillatory suppression during 

lexical-semantic retrieval, which has almost exclusively focused on action 

word/sentence processing. The second aim was to track when in time perceptually rich 
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semantic features are retrieved. In line with recent evidence (Pulvermüller et al., 2005b, 

2009; Kiefer et al., 2008; Kounios et al., 2009; Pulvermüller and Shtyrov, 2009; 

Rabovsky et al., 2012), we found an early effect (~230ms) of perceptual complexity 

suggesting that multiple features are activated in a rapid and possibly parallel way. 
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Chapter 3: 

Cross-modal integration of lexical-semantic features  

during word processing: Evidence from oscillatory 

dynamics during EEG 
 

(based on: van Ackeren MJ, Rueschemeyer S-A (2014) Cross-modal integration of 

lexical-semantic features during word processing: Evidence from oscillatory dynamics 

during EEG.  PLoS ONE 9(7): e101042. doi: 10.1371/journal.pone.0101042)2 

 

Abstract 

In recent years, numerous studies have provided converging evidence that word meaning 

is partially stored in modality-specific cortical networks. However, little is known about 

the mechanisms supporting the integration of this distributed semantic content into 

coherent conceptual representations.  In the current study we aimed to address this issue 

by using EEG to look at the spatial and temporal dynamics of feature integration during 

word comprehension. Specifically, participants were presented with two modality 

specific features (i.e., visual or auditory features such as silver and loud) and asked to 

verify whether these two features were compatible with a subsequently presented target 

word (e.g., WHISTLE). Each pair of features described properties from either the same 

modality (e.g., silver, tiny = visual features) or different modalities (e.g., silver, loud = 

auditory, visual). Behavioral and EEG data were collected. The results show that 

verifying features that are putatively represented in the same modality-specific network 

is faster than verifying features across modalities. At the neural level, integrating 

features across modalities induces sustained oscillatory activity around the theta range 

(4-6 Hz) in left anterior temporal lobe (ATL), a putative hub for integrating distributed 

semantic content. In addition, enhanced long-range network interactions in the theta 

range were seen between left ATL and a widespread cortical network. These results 

suggest that oscillatory dynamics in the theta range could be involved in integrating 

multimodal semantic content by creating transient functional networks linking 

distributed modality-specific networks and multimodal semantic hubs such as left ATL.        

 
                                                        
2  The author designed the experiment, analyzed the results, and wrote the article under 
supervision of Dr. Shirley-Ann Rueschemeyer 
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Introduction 

The embodied framework of language suggests that lexical-semantic knowledge (i.e., 

word meaning) is stored in part in modality-specific networks that are distributed across 

the cortex (Barsalou, 2008; Vigliocco et al., 2009; Pulvermüller and Fadiga, 2010; 

Binder and Desai, 2011). For example, words denoting colors (e.g., red, green) have 

been shown to engage parts of the ventral visual stream (Simmons et al., 2007), while 

words denoting actions (e.g., kick, pick) engage the dorsal motor network (Hauk et al., 

2004). In recent years, much has been done to understand the automaticity, flexibility 

and reliability of the link between action/perception and word meaning (Martin and 

Chao, 2001; González et al., 2006; Simmons et al., 2007; Hoenig et al., 2008; van Dam 

et al., 2012). The current study extends this body of literature by addressing the question 

of how distributed lexical-semantic features are integrated during word comprehension. 

 Although ample evidence for the link between word meaning and 

perception/action systems exists, the bulk of research in this field has reduced lexical-

semantic information to one dominant modality (e.g., vision for red and action for kick). 

The motivation for focusing on single modalities is clearly methodological: by focusing 

on words with a clear association to one modality, good hypotheses can be generated for 

testing empirically. However, words clearly refer to items that are experienced through 

multiple modalities in the real world (e.g., a football is associated with both a specific 

visual form and a specific action), and embodied accounts of language have done little to 

address how multimodal information interacts during the processing of word meaning. 

The one exception to this rule has been the attempt to understand how lexical-semantic 

processing can be focused flexibly on information from one modality versus another. 

For example, van Dam and colleagues (2012) demonstrated that words denoting objects 

that are strongly associated with both action and visual information (e.g., tennis ball) 

reliably activate both motor and visual pathways in the cortex. Interestingly, motor 

pathways also responded more strongly when participants were asked to indicate what to 

do with the object rather than what it looks like. Likewise, Hoenig and colleagues 

(Hoenig et al., 2008) have shown that even for objects with dominant modality-specific 

features (e.g., actions for artifacts), the pattern of activation in visual and motor 

networks is differentially modulated if a dominant (action) or non-dominant (visual) 

feature is primed. Notably, modality-specific networks show a stronger response to the 

target if the prime was not a dominant feature. Taken together, the studies by van Dam 

et al. (2012) and Hoenig et al. (2008) suggest that word meaning is partially stored in a 

network of areas that are recruited in a modality-specific and flexible way. However, it 

should also be pointed out that most of this evidence is of a correlational nature. As yet, 
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little is known about the causal role of modality-specific networks in lexical-semantic 

processing, and how they are related to more abstract semantic knowledge (Chatterjee, 

2010; Hauk & Tschentscher, 2013). 

 While studies highlighting the flexible recruitment of different types of 

modality-specific information confirm that single words are associated with multiple 

types of perceptual experience, it is still unknown how information from multiple 

sources in the brain (e.g., visual and action features) is united to form a coherent concept 

that is both visual and motoric. Cross-modal integration has been studied extensively 

with respect to object perception (Schneider et al., 2008a, 2008b, 2011; Senkowski et al., 

2008). However, its role in forming lexical-semantic representations has been largely 

neglected, even within the embodied framework. Several theoretical perspectives have 

argued for the existence of amodal integration ‘hubs’ or foci, at which information 

relevant for lexical-semantic processing is combined (Damasio, 1989; Patterson et al., 

2007). Neuropsychological data has provided compelling evidence that the anterior 

temporal lobes (ATL) may be a good candidate for such a hub (Warrington, 1975; 

Hodges et al., 1992; Patterson et al., 2007). Thus, there is a general acceptance that 

information from distributed modality-specific networks is integrated in some way, 

somewhere in the brain. However, virtually no research has looked at what the neural 

mechanisms underlying semantic integration might be in these hub regions or more 

widely across the brain. 

 One way to investigate the mechanisms underlying integration across cortical 

areas is to study modulations in oscillatory power in EEG and MEG signals that have 

been related to network interactions at different cortical scales (von Stein and Sarnthein, 

2000; Donner and Siegel, 2011). Specifically, low frequency modulations (< 20Hz) are 

often reported when tasks require the retrieval and integration of information from 

distant cortical sites, which is generally the case for memory and language (Bastiaansen, 

van der Linden, Ter Keurs, Dijkstra, & Hagoort, 2005; Bastiaansen, Oostenveld, Jensen, 

& Hagoort, 2008; Klimesch, 1999; Klimesch et al., 2010; Tallon-Baudry & Bertrand, 

1999). In contrast, modulations in high frequency bands (>30Hz) are observed when 

tasks require local, modality-specific, network interactions such as saccade planning or 

visual object binding (Tallon-Baudry and Bertrand, 1999; Van Der Werf et al., 2008). 

According to this framework, the specific network dynamics underlying the integrating 

of lexical-semantic features across different modalities should be reflected in a 

modulation in low frequencies. 

 The aim of the current study was to investigate what mechanisms underlie the 

integration of semantic features across modalities. This question was addressed in two 

experiments using a dual property verification task. Participants were asked to indicate 
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whether a feature pair (e.g., silver, loud) is consistent with a target word (e.g., 

WHISTLE). Critically, the feature pair could either be from the same modality (e.g., both 

visual), or from different modalities (e.g., visual and auditory). In Experiment 1 we 

analyzed verification times for cross-modal and modality-specific feature contexts to 

investigate whether integrating multimodal semantic content, that is content, which is 

represented in distributed semantic networks, incurs a processing cost. Specifically, we 

hypothesize that integrating features represented within a single modality-specific 

network is faster than integrating features across modalities.  In Experiment 2, we used 

EEG to measure changes in oscillatory neuronal activity during the target word when 

participants were asked to integrate features from the same or different modalities. 

Oscillatory neuronal activity could be a neural mechanism that contributes to semantic 

integration by linking modality-specific networks to multimodal convergence zones such 

as ATL. In line with this idea, we hypothesize that integrating semantic information 

from multiple modalities will be reflected in enhanced low frequency oscillatory activity 

in multimodal convergence zones, as well as substantial network interaction between 

these regions and a widespread cortical network. 

Experiment 1 

In Experiment 1 participants indicate whether two features (e.g., silver, loud) are 

consistent with a target word (e.g., WHISTLE). Specifically, a feature pair could either 

be associated with modality-specific or cross-modal semantic content. We hypothesize 

that integrating modality-specific feature pairs is faster than integrating cross-modal 

feature pairs, highlighting that word meaning is integrated more readily within modality-

specific semantic networks than across. 

Methods 

Participants 

Sixteen healthy individuals participated in Experiment 1 (13 female), all of which had 

normal or corrected to normal vision and no known auditory deficit. The age range was 

18 to 24 (M=19.88). All participants were students at the University of York, and 

participated on a voluntary basis. As compensation for their participation, participants 

received either a financial reward or course credits. Participants gave written informed 

consent according to the Declaration of Helsinki. In addition they were given the 

opportunity of a more detailed debriefing after the study. The study was approved by the 

Ethics Committee of the Psychology Department at the University of York. 
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Stimulus material 

120 target nouns (e.g., WHISTLE) were each paired with two adjective features from the 

same (e.g., silver-tiny), and two features from different modalities (e.g., silver-loud) 

(Figure 3.1A). Crucially, targets were presented only in one of the two feature contexts. 

That is, each participant saw 60 targets with a modality-specific (MS) feature pair and 

60 different targets with a cross-modal (CM) feature pair. The conditions were 

counterbalanced and trials were presented in a pseudo-randomized order. In addition, 60 

trials were included in which at least one feature was false. To familiarize participants 

with the experiment 10 additional practice trials were presented before the start of the 

experiment. Thus, each participant saw 190 target words and feature pairs. 

 

Figure 3.1. Experimental design of the dual property verification paradigm. A The top 

panel provides an overview of the design in which a target was either paired with a 

cross-modal (visual-haptic [VH; HV], visual-auditory [VA; AV], auditory-haptic [AH; HA]), 

or modality-specific feature pair (Visual [V], Auditory [A], Haptic [H]). The three 

modalities of interest were visual, haptic, and auditory. B The bottom panel depicts the 

time course of a single trial. All words are presented one after the other. Therefore, 

features can only be fully integrated when the target appears (e.g., WHISTLE). 

 

Since the target (WHISTLE) and one feature (silver) were the same in both conditions, 

only variable features (tiny - loud) were matched for word frequency (log-scaled, British 
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National Corpus), and length. In order to control for differences in semantic association 

between feature pairs and targets, latent semantic analysis (LSA) scores were extracted 

for each feature pair and target combination. LSA is a measure of semantic similarity 

that quantifies how commonly two or more words occur in the same context in written 

texts (Landauer et al., 1998). For example highly associated words like Camel and hump 

yield a higher LSA score (LSA = .53) than less highly associated words such as Camel 

and hairy (LSA = .20). Lastly, each feature pair was rated on a five-point scale (N = 18) 

for how diagnostic and how related it is to its target word. None of these scores differed 

significantly between conditions (see Table 3.1). 

 

Table 3.1. Matching of the experimental items. Scores were averaged over all items in 

each condition. P-values were computed using independent-samples t-tests. The 

standard error of the mean is provided in brackets. 

Feature Pair LSA Relatedness Diagnosticity Frequency Length 

Cross-modal 0.21 (.01) 3.28 (.06) 2.65 (.07) 3.88 (.07) 6.48 (.18) 

Modality-

specific 
0.22 (.01) 3.37 (.07) 2.66 (.08) 3.87 (.08) 6.24 (.17) 

p-value 
n.s. 

(p = .66) 

n.s. 

(p = .32) 

n.s. 

(p = .92) 

n.s. 

(p = .93) 

n.s. 

(p = .48) 

 

 

Language is inherently polysemous, and most semantic features can be associated with 

multiple modalities, depending on the context. For example, a feature like high can be 

used to describe the size of a mountain (visual) or the pitch of a sound (auditory).  This 

issue was addressed recently in two norming studies (Lynott and Connell, 2009; van 

Dantzig et al., 2010). Specifically, participants were asked to rate features in isolation or 

as feature-concept pairs on how likely the feature is experienced through one of five 

modalities (visual, haptic, auditory, olfactory, and gustatory). The features in the current 

study were based on averaged ratings from previous studies (Lynott and Connell, 2009; 

van Dantzig et al., 2010) and a small proportion (2.6%) of additional auditory features 

(e.g., ticking, quacking). Features were selected, which had been categorized as 

predominantly visual, haptic, or auditory (see Figure 3.2). All stimuli were presented 

using Neurobehavioral Systems Presentation software (www.neurobs.com) on a 22” 

TFT screen with a screen resolution of 1680x1050 and a refresh rate of 60 Hz. 
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Figure 3.2. Mean of the modality ratings for visual, haptic, and auditory features. The 

three spider plots indicate the mean rating score (Lynott and Connell, 2009; van Dantzig 

et al., 2010) over all features in the each of the three modalities of interest (Visual, 

Haptic, and Auditory).  

  

Procedure 

Participants were seated in front of a computer screen at a distance of 40 cm. Words 

were presented in light grey on a black background with a font size of 40 pt. Each trial 

started with the disappearance of a fixation cross that was presented at a variable interval 

between 1500 and 2500ms. Individual features were presented subsequently, for 500ms, 

with a 500ms blank screen in between. The target was presented last (Figure 3.1B). 

Participants were instructed to indicate whether both features are consistent with the 

target. Responses were provided on a button box while the target was on the screen 

(2000ms). Response times and number of errors were measured for subsequent analyses. 

Each participant saw a target only once and in one of two conditions (CM or MS).  

Results and Discussion 

One participant was excluded from the analysis because performance rates on the task 

were at chance. Furthermore, outliers at three standard deviations from the mean were 

excluded from the analysis. 

 In order to test whether participants were able to perform the task, a one-sample 

t-test was conducted on the proportion of correctly identified feature-target pairs, against 

a test-value of 0.5. This test confirmed that participants’ performance on the task was 

well above chance (t(14) = 15.43, p<.001) with a mean proportion of .73 correctly 

recognized features. 

 To test for a main effect of modality-specificity, the median reaction time was 

computed for each condition and participant, and averaged separately for MS (Visual, 

Auditory, Haptic) and CM (Visual-Auditory, Auditory-Haptic, and Visual-Haptic) 
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feature pairs, resulting in two values per participant (CM and MS). The distribution of 

these values across participants met the assumptions of a paired-sample t-test. The test 

statistic revealed that participants were overall slower to respond to CM (M=981.6, 

SE=64.64) versus MS (M=909.36, SE=55.95) feature pairs (t(14)=3.65, p=.003). 

 The effect of modality-specificity on verification time was further investigated 

for each of the three possible modality combinations using analysis of variance 

(ANOVA) with repeated measures (Figure 3.3). In each analysis, a CM condition (e.g., 

Visual-Auditory) was compared to two MS conditions (e.g., Visual and Auditory). The 

first ANOVA tested for an effect of condition on verification time across the visual (V), 

auditory (A), and visual-auditory (VA) conditions. The test revealed a significant main 

effect of condition (Wilks’ Lambda = .33, F(2,13)=13.24, p=.001, partial η2=.67). 

Planned comparisons using a Helmert contrast indicated that participants responded 

more slowly during CM (visual-auditory) than MS feature pairs (visual and auditory, 

respectively) (F(1,14)=26.67, p<.001, partial η2=.66). The second ANOVA tested for a 

main effect of condition on verification time across the auditory (A), haptic (H), and 

auditory-haptic (AH) conditions. The results showed a significant main effect of 

condition (Wilks’ Lambda = .43, F(2,13)=8.61, p=.004, partial η2=.57). Planned 

comparisons using a Helmert contrast revealed that participants verified CM feature 

pairs (auditory-visual) more slowly than MS feature pairs (auditory and haptic 

respectively) (F(1,14)=9.22, p=.009,  partial η2=.40). The final ANOVA was conducted 

to test for a main effect of condition across the visual (V), haptic (H) and visual-haptic 

(VH) condition. There was no main effect in this analysis (Wilks Lambda = .72, 

F(2,13)=2.64, p>.1). 
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Figure 3.3. Cross-modal integration costs in verification times. Bar graphs depict the 

mean verification time in the MS (Visual, Auditory, and Haptic), and CM condition 

(Visual-Auditory, Auditory-Haptic, Visual-Haptic). Error bars denote standard error of the 

mean (*** p<.001; ** p<.01). 

 

The goal of Experiment 1 was to investigate whether integrating semantic features 

represented within a single modality is faster than integrating features across modalities. 

The current results suggest that this is indeed the case. Verification times for two 

semantic features with respect to a target (e.g., WHISTLE) were delayed when 

participants saw two features from different modalities (e.g., silver, loud). However, this 

effect seems to be restricted to visual-auditory, and auditory-haptic feature 

combinations. A possible explanation for this finding is that visual lexical-semantic 

features can be difficult to distinguish from haptic features. This was also evident in the 

rating study in which features were often rated similarly as being experienced by seeing, 

and touching (Figure 3.2) (Lynott and Connell, 2009; van Dantzig et al., 2010). 

Experiment 2 

Experiment 2 uses EEG to investigate oscillatory dynamics during semantic integration 

within, and across different modalities. We hypothesize that integrating cross-modal 

semantic content will be reflected in enhanced low frequency oscillatory activity in 

multimodal semantic hubs, such as ATL, as well as substantial network interaction 

between these regions and a widespread cortical network. 
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Methods 

Participants 

For Experiment 2, 22 healthy participants (8 female) were tested, all of which had 

normal or corrected to normal vision and no known auditory deficit. The age range was 

between 19 and 34 (M= 21.26). Four participants were excluded from the analysis due to 

excessive movement and blinking (3), and a technical error (1). None of the participants 

had participated in Experiment 1. Participants gave written informed consent according 

to the Declaration of Helsinki. In addition they were given the opportunity of a more 

detailed debriefing after the study. The study was approved by the Ethics Committee of 

the Psychology Department at the University of York. 

Stimulus material 

The stimulus materials in Experiment 2 were exactly the same as in Experiment 1. 

Procedure 

In Experiment 2, participants were wearing an electrode cap that was connected via an 

amplifier to the recording computer while performing the verification task. The setting 

was the same as in Experiment 1. However, in order to prevent contamination of the 

EEG signal from movement and response planning (Neuper et al., 2006), the task was 

changed such that participants only responded in case they encountered a false feature.  

Data recording and pre-processing 

EEG was acquired from 64 Ag-AgCl electrodes that were positioned on an electrode cap 

according to a 10-20 system. All electrodes were re-referenced offline to the algebraic 

average of the two mastoids. Horizontal and Vertical eye movements were recorded with 

a set of bipolar Ag-AgCl electrodes. The signal was amplified using an ANT amplifier 

with a band-pass filter between 0.5 and 100 Hz. Impedances of the cortical electrodes 

were kept below 10 kΩ. The signal was recorded with a sampling frequency of 500 Hz. 

 Offline analyses were conducted using Matlab 7.14 (Mathworks, Natick, MA) 

and Fieldtrip, a Matlab toolbox for analyzing EEG/MEG data (Oostenveld et al., 2011). 

Trials were only considered if the participant correctly withheld the response on a target. 

Artifact rejection was performed in three consecutive steps. First, muscle artifacts were 

removed using semi-automatic artifact rejection. Subsequently, extended infomax 

independent component analysis (ICA), with a weight change stop criterion of < 10-7, 

was performed to identify, and reject ocular components. Finally, each trial was visually 
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inspected for any remaining artifacts. The average number of correct trials that survived 

the rejection protocol did not differ significantly between condition (MS: M=48, 

SE=1.26; CM: M=47, SE=1.24; t(17)=-1.29, p =.21). 

Spectral analysis 

In order to estimate spectral power changes over time, time-frequency representations 

(TFR) were computed for each trial, using a 500 ms fixed sliding time window with time 

steps of 50 ms, resulting in a frequency resolution of ~2 Hz. A Hanning taper was 

applied to each of these segments to reduce spectral leakage.  TFR’s were calculated for 

frequencies between 2 and 20 Hz in steps of 2 Hz. These transformations were 

performed at the individual trial level and reflect both evoked and induced components 

of the signal. Subsequently, trials were averaged for each condition and subject, and 

percentage signal change was computed using a common baseline over both conditions. 

The time window for the baseline was between 750 and 250 ms before the onset of the 

trial. The baseline normalization procedure is equivalent to the event-related de-

synchronization technique (Pfurtscheller & Lopes da Silva, 1999), except that positive 

values denote synchronization, and negative values de-synchronization3. Total power 

was averaged over 6 regions of interest (Figure 3.5). 

Statistical analysis 

Inferential statistics on the time-frequency windows following the presentation of the 

target word were computed using a cluster-based permutation approach (Maris and 

Oostenveld, 2007). Cluster-based permutation effectively reduces the number of 

comparisons by clustering neighboring samples above a given threshold along the 

dimensions: time, frequency, and space. In the current study, paired-sample t-tests were 

computed over subjects for each ROI-time-frequency point (0-1000 ms, 2-20 Hz, 6 

ROI).  Subsequently, t-values were thresholded at α=.05. Neighboring t-values above the 

threshold criterion were included into the same cluster, and ranked according to the size 

of the cluster. Finally, cluster-level statistics were computed by comparing the sum of all 
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t-values within a given cluster against a permutation null-distribution. The null-

distribution was constructed by randomly permuting the conditions (iterations=1000), 

and calculating the maximum cluster-level statistic for each iteration. 

 A similar procedure was used for the seed-based whole-brain connectivity 

analysis. The difference between each condition (CM and MS) and the baseline was 

computed for an early (0-500 ms) and late (500-1000 ms) time window. The value at 

each location in source space was thresholded using a permutation distribution (α=.05, 

1000 iterations), and combined with values from spatially adjacent locations. We used a 

maximum statistic to control for multiple comparisons at the cluster-level, which was 

equivalent to the sensor space analysis. 

Source reconstruction 

The forward model was computed using the Boundary Element Method (BEM) on a 

regular three dimensional grid (10x10x10mm spacing), containing 3000 vertices. The 

model is based on the segmentation of the colin27 template and is described in detail in 

Oostenveld, Stegeman, Praamstra, & Van Oosterom (2003). As the same model was 

used for all individuals, no additional normalization of individual grids was required. 

Sources of oscillatory activity at the whole-brain level were estimated using a 

frequency domain beamforming method called Dynamic Imaging of Coherent sources 

(DICS: Gross et al., 2001; Liljeström, Kujala, Jensen, & Salmelin, 2005). DICS uses an 

adaptive spatial filter, which is a linear transformation, that when applied to the data 

passes activity at each source location with unit gain, while suppressing all other 

sources. The transformation matrix is computed as a constrained optimization problem 

on the basis of the cross-spectral density matrix (CSD) and the solution to the forward 

model (lead field). The CSD matrix was computed between all 30 EEG electrodes in the 

time and frequency window of the effect of interest (500-1000ms, ~4-8Hz) using a 

Hanning taper. In addition, a regularization of 5% was introduced to avoid non-

invertibility of the CSD. The power in the dominant source direction was computed 

using single value decomposition.  

Paired-sample t-tests were computed for the difference between conditions at 

each location in the brain. Subsequently, t-values were transformed into z-values and 

masked at α = 0.05. 

Connectivity analysis 

The analysis of cortico-cortical connectivity in source space was conducted for an early 

(0-500 ms) and a late time window (500-1000 ms) at the frequency that showed the 

strongest power difference in sensor space (~6 Hz). The same number of trials were 
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randomly selected for the CM and MS condition as well as the baseline period. A cross-

spectral density (CSD) matrix was computed from the tapered Fourier spectra of each 

trial and used to estimate filter coefficients for the adaptive spatial filter. Subsequently, 

the Fourier spectra were projected through these filter coefficients along the strongest 

dipole orientation.  

 Functional connectivity between each location in the brain and all others was 

estimated using the imaginary part of coherency (ImCoh). ImCoh is only sensitive to 

signals at a non-zero time-lag, and therefore insensitive to connectivity artifacts resulting 

from volume conduction (Nolte et al., 2004). We computed ImCoh based on the Fourier 

spectra at each location in the grid. Subsequently, a stabilizing z-transform was applied 

using the inverse hyperbolic tangent (tanh-1). Since the main interest was in the 

functional connectivity between nodes rather than the direction of the effect, the absolute 

was computed for each of the resulting z-values. 

 For subsequent graph analysis, a binary adjacency matrix was computed for 

each participant by thresholding with the maximum value at which none of the nodes in 

any of the conditions was disconnected to the rest of the network. Finally, the log10 

transformed difference between the number of connections (degrees) in the seed region 

versus baseline was computed for each condition, and subjected to statistical testing. 

Results and Discussion 

The time-frequency analysis of total power revealed a sustained increase in the theta 

band (4-6 Hz) and a decrease in the alpha, and low beta band (8-20Hz) while the target 

word (e.g., WHISTLE) was on the screen (Figure 3.4A).  In order to test for differences 

between conditions (CM>MS), a cluster-based permutation approach was used (Maris 

and Oostenveld, 2007). In the first step of the analysis, the clustering algorithm revealed 

one significant cluster (4-6 Hz, peak at 750-850 ms) at left and central electrodes (LA, 

LP, MA, MP) (Figure 3.4B; Figure 3.5). In order to control for multiple comparisons, a 

maximum permutation statistic was used in which the summed cluster t-value was 

compared against a permutation distribution with 1000 iterations. The maximum statistic 

revealed a significant difference between conditions at the cluster level (p=.002, two-

tailed), suggesting enhanced theta power in the cross-modal condition. Source 

reconstruction of this effect revealed a major peak in left ATL as well as left middle 

occipital gyrus (MOG) (Figure 3.6A).  
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Figure 3.4. Modulation in low frequency cortical oscillations for the target word in a 

cross-modal or modality-specific context. A The top panel shows time-frequency 

representations, averaged over all significant clusters. The first two panels show the 

grand average percent signal change with respect to the baseline. The third panel 

depicts the masked statistical difference between the two conditions in t-values. The 

contour plot reveals one significant cluster in the theta range (4-6 Hz). B The first two 

bottom panels depict the topography of the effect in each condition (4-6 Hz, peak at 750-

850 ms) relative to baseline. The third panel signifies the statistical difference between 

conditions in t-values. Electrodes within significant clusters are marked with dots (p=.002, 

cluster-corrected) 
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Figure 3.5. Time-frequency plots for each of the 6 ROI. The ROI were middle anterior 

(MA), left anterior (LA), right anterior (RA), middle posterior (MP), left posterior (LP), and 

right posterior (RP) electrodes. Time-frequency representations depict the statistical 

difference in t-values for the target word in the CM versus MS feature context. The 

contours indicate the peak of the cluster-corrected statistical difference (p=.002). 

 

The grid point in the left ATL (mni coordinate: -49 22 -30), which was most sensitive to 

the power difference between conditions, was taken as the seed for subsequent 

connectivity analyses. One sample t-tests were used to test for an increase in the log-

transformed number of connections (degrees) relative to baseline in an early (0-500 ms) 

and late (500-1000 ms) time window. In the early time window, both conditions showed 

a significant increase in the number of connections (CM: t(17) = .389, p<.001; MS: t(17) 

= .355, p=.001, one-sided). However, in the late time window, an effect was found only 

in the CM condition (CM: t(17) = 2.13, p=.024; MS: t(17)=.56, p=.291, one-sided). 

Further, paired-sample t-tests were used to test for a difference between conditions 

directly. A difference between conditions was observed only in the late (t(17)=2.36, 

p=.031, two-sided), but not the early time window (t(17)=.012, p=.991, two-sided). 

Taken together, this suggests that during the first 500 ms after target onset, the ATL is 

communicating with a wide cortical network in both conditions (CM and MS). 

However, during the second 500 ms, this effect persists only in the CM condition 

(Figure 3.6B). 
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Figure 3.6. Source reconstruction and connectivity analysis. A Source reconstruction of 

the effect in the theta band, depicted as thresholded z-values, reveals peaks in left ATL 

and MOG.  B Bar graphs show a significant increase in the number of connections 

between ATL and the rest of the brain in the early time window (0-500 ms). In the late 

time window (500-1000 ms), only the CM condition shows a significant increase in the 

number of connections relative to baseline. Error bars depict SEM C Results of the 

whole-brain connectivity analysis, seeded in the ATL (white dot). Connectivity maps 

show the difference in absolute, z-transformed, imaginary coherence between each 

condition and the baseline. In the early time window both conditions show a strong 

increase in connectivity between the ATL and a widespread cortical network. In the 

second time window, only the cross-modal condition shows continuing network activity 

above baseline. 

 

To illustrate which specific regions show enhanced functional connectivity with the 

ATL, we used a whole-brain cluster-based permutation procedure on the z-transformed 

ImCoh values, comparing each condition to the baseline. This approach was similar to 

the procedure we used in sensor-space. As depicted in the top panel of figure 3.6C, a 

large cluster of nodes was connected to the ATL in the early time window for both 

conditions (CM: p=.004; MS, p=.008, one-sided). However, in the late time window a 

significant difference relative to baseline was only observed in the CM condition 

(p=.032, one-sided). Connections during the second time window were found to regions 
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that are involved in auditory (right Heschl’s gyrus), somatosensory (bilateral post-central 

gyrus), and visual object processing (right posterior MTG), as well as medial and lateral 

frontal lobes. 

 The aim of Experiment 2 was to investigate whether integrating semantic 

features over a wider cortical network is reflected in enhanced oscillatory activity at low 

frequencies. Time-frequency analysis revealed an increase in theta power (4-6 Hz) for 

both conditions, which was more sustained during cross-modal integration. This effect 

localized most strongly to the left ATL, which is thought to be a major hub for 

integrating multimodal semantic content (Patterson et al., 2007). Subsequent seed-based 

whole-brain connectivity analysis confirmed that the number of connections between the 

ATL and the rest of the network increases in both CM and MS conditions during the 

first 500 ms. However, these network interactions extend into the second 500 ms only in 

the CM condition. Specifically, the ATL communicates with modality-specific auditory, 

somatosensory and high-level visual areas as well as regions in the frontal lobe. Taken 

together, these findings suggest that theta oscillations are associated with network 

dynamics in a widespread cortical network.  Previous research has associated theta 

oscillations with lexical-semantic processing (Bastiaansen et al., 2005; Bastiaansen et 

al., 2008). However, the current study is the first to show that theta power is sensitive to 

the spatial distribution of semantic features in the cortex. The implications of these 

findings for semantic processing are discussed in the next section. 

General discussion 

Embodied theories of language have argued that word meaning is partially stored in 

modality-specific cortical networks, converging in multisensory association areas in 

anterior temporal, and inferior parietal lobes (Barsalou, 2008; Binder & Desai, 2011; 

Damasio, 1989; Pulvermüller & Fadiga, 2010; Vigliocco et al., 2009). The aim of the 

current study was to investigate the mechanisms underlying integration of semantic 

features during language processing. Two experiments are reported in which participants 

were asked to verify whether two features from the same (e.g., silver - tiny) or different 

modality (e.g., silver - loud) are consistent with a given target word (e.g., WHISTLE). 

The results from Experiment 1 show that integrating features from the same modality is 

faster than integrating features from different modalities. These findings suggest that 

word meaning is integrated more readily within a single modality-specific network than 

across networks. Integrating information across networks in particular should engage 

multimodal convergence zones. Experiment 2 shows that integrating features from 

different modalities induces a sustained theta power increase in left ATL, a putative hub 
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for semantic convergence (Patterson et al., 2007). Low frequency theta oscillations 

could reflect a neural mechanism by which multimodal word meaning is combined 

locally in temporal association cortices. However, assuming that word meaning is 

partially stored in distributed cortical networks, multimodal integration necessarily 

requires long-range communication between left ATL and the rest of the cortex. The 

seed-based connectivity analysis in the theta range revealed that this is indeed the case; 

left ATL communicates with a widespread cortical network that includes, but is not 

limited to, modality-specific regions. In other words, local theta power in left ATL 

reflects long-range communication between temporal areas and the rest of the cortex, 

which, according to embodied theories of semantics, is necessary for the integration of 

word meaning from multiple modality-specific semantic networks. 

Integrating multimodal semantic information comes at a cost 

Experiment 1 shows that participants are faster to verify features of a target word (e.g., 

WHISTLE) from the same (e.g., silver-tiny) versus two different modalities (e.g., silver-

loud), suggesting that word meaning converges more readily within a modality-specific 

semantic network than across networks. This is in line with behavioral studies that have 

examined switching costs during word comprehension (Pecher et al., 2003) as well as 

dual property verification tasks (Barsalou et al., 2005) (but also see McNorgan, Reid, & 

McRae, 2011). It is also broadly in accordance with a cognitive model proposing graded 

semantic convergence from modality-specific to multimodal (Plaut, 2002).     

Theta oscillations in left ATL during multimodal semantic feature integration  

The principle by which information from distributed neural populations is combined is a 

much-debated topic in neuroscience. It has been argued that transient networks emerge 

from synchronized firing of large neuronal populations, which is recorded as oscillatory 

activity at the scalp (Milner, 1967; von der Malsburg and Schneider, 1986; Singer and 

Gray, 1995). In humans, changes in oscillatory neuronal activity in the theta range have 

been observed during different stages of memory processing, as well as lexical-semantic 

retrieval (Bastiaansen et al., 2005; Bastiaansen et al., 2008; Jensen & Tesche, 2002; 

Klimesch, 1999; Klimesch et al., 2010; Raghavachari et al., 2006; Summerfield & 

Mangels, 2005; Wu et al., 2007). The current study extends previous findings to show 

that theta oscillations are particularly sensitive to the integration of semantic features of 

an object, which are thought to be partially represented in distributed, modality-specific, 

networks (Barsalou, 2008; Vigliocco et al., 2009; Pulvermüller and Fadiga, 2010; Binder 

and Desai, 2011). 
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 It has been argued that modality-specific semantic networks converge in 

multimodal association cortices (Damasio, 1989; Patterson et al., 2007). For example, 

there is compelling evidence from patients with semantic dementia suggesting that ATL 

is involved in semantic processing at a general level (Warrington, 1975; Hodges et al., 

1992; Patterson et al., 2007), yet little is known about the neural dynamics within this 

region. Experiment 2 reports a modulation in local theta power within left ATL when 

participants integrate features from multiple modality-specific semantic networks. The 

connectivity analysis of the data from Experiment 2 further revealed that theta 

oscillations also participate in long-range network interactions linking left ATL with a 

widespread cortical network. These findings are an important step in bridging the gap 

between anatomy and cognition; the theta rhythm could be a neural signature reflecting 

transient network interactions within left ATL, as well as between this region and 

distributed modality-specific networks. Such functional networks are necessary for 

linking semantic content in space and time.  

 Lastly, we find that the effect peaks at a very late point in time (~750 ms), most 

likely reflecting the tail of a sustained oscillatory response that is triggered much earlier 

in time. Importantly, we do not argue that this is the moment when semantic integration 

takes place. Rather, oscillatory dynamics in the theta range could be involved in creating 

the conditions necessary for semantic integration by linking multiple functional 

networks over a period of time. The fact that cross-modal integration incurs a higher 

processing demand is reflected in a longer integration window. This is also in line with 

the finding that theta is the only known oscillatory frequency which shows a linear 

increase during sentence processing (Bastiaansen et al., 2002). Again, we would like to 

emphasize that the primary goal of the current study was to investigate the oscillatory 

dynamics, rather than the timing of semantic integration, which has been addressed 

extensively in previous work using the event-related potential technique (Kutas and 

Federmeier, 2000).  

Relation to multisensory integration and cross-modal matching 

Multisensory integration is an essential component of everyday life. For example, both 

visual and proprioceptive information are required when performing goal-directed 

actions (Sober and Sabes, 2003), speech comprehension greatly benefits from visual 

information about lip movements (Rosenblum, 2008), and hearing the sound of an 

animal facilitates its visual detection (Schneider et al., 2008b). Although these examples 

bear a superficial resemblance to the processes we investigated in the current study, it 

should be noted that there are fundamental differences in integrating cross-modal 
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sensory, and lexical-semantic content respectively. These differences are with respect to 

a) the time scale and b) the directionality of information flow. 

 Previous studies have investigated oscillatory changes during multisensory 

integration using cross-modal matching. For example, Schneider and colleagues 

(Schneider et al., 2008a) showed that matching the visual image of an object (e.g., 

picture of a sheep) to its sound (e.g. sound of a sheep) induces an early increase in the 

gamma band (40-50 Hz) between 120-180 ms. Similar findings have been reported for 

haptic to auditory matching (Schneider et al., 2011). In contrast, effects of semantic 

integration in language are usually observed around 400 ms (Kutas and Federmeier, 

2000) and at frequencies below 30 Hz (Bastiaansen et al., 2005; Bastiaansen et al., 2008; 

Hald et al., 2006; Wang, Jensen, et al., 2012) (however, see Hagoort, Hald, Bastiaansen, 

& Petersson, 2004). This is not surprising given the fact that lexical retrieval involves 

multiple processing stages (e.g., visual processing of letters). In this respect, the current 

findings should primarily be interpreted as reflecting language but not sensory 

processing. 

 Another difference between sensory and semantic integration is the 

directionality of information flow. While sensory processing in a given modality is 

largely automatic and dependent on external stimulation (bottom-up), retrieving 

modality-specific word meaning requires prior experience with the referent of a word 

and is highly context-dependent (top-down). For example, previous imaging work has 

shown that action words do not activate the action system to the same extent if they are 

presented as idiomatic expressions (e.g., he kicked the bucket) (Raposo et al., 2009) (but, 

see Boulenger, Hauk, & Pulvermüller, 2009). Furthermore, it has been shown that 

neutral sentences (e.g., it is hot in here) activate parts of the action system if presented in 

a context in which they are interpreted as indirect requests (e.g., a room with a closed 

window) (van Ackeren et al., 2012). In the current study, participants were primed to 

think about a particular instance of an object (e.g., a silver and loud whistle). In other 

words, the relevant information was not directly encoded in the stimulus (a visual word), 

but needed to be retrieved from memory.  

 In sum, imaging studies have shown that lexical-semantic content activates 

modality-specific cortical networks similar to sensory stimulation (Hauk et al., 2004; 

Kiefer et al., 2008; Simmons et al., 2007). But despite their spatial similarity, lexical-

semantic and sensory processes operate at very different time-scales and through 

different computations (bottom-up versus top-down). While much is known about the 

mechanisms underlying multisensory integration, the current study is among the first to 

address how cross-modal semantic information is integrated through language.  
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Conclusions 

Previous research suggests that word meaning is partially stored in modality-specific 

cortical networks. However, little is known about the mechanisms by which distributed 

semantic information is combined into a coherent conceptual representation. The current 

study addresses exactly this question: What are the mechanisms underlying cross-modal 

semantic integration?  Participants were asked to indicate whether two features from the 

same (e.g., silver - tiny) or different modalities (e.g., silver - loud) are consistent with a 

target word (e.g., WHISTLE). Experiment 1 revealed that integrating semantic features 

represented within a single modality is faster than integrating features across modalities. 

In Experiment 2, EEG recordings revealed sustained oscillatory activity in the theta 

range, when participants were asked to integrate features from different modalities. The 

effect was localized to left ATL, a putative semantic hub that is thought to be involved 

in linking multimodal semantic content (Patterson et al., 2007). While the importance of 

this region for semantic processing and integration is largely uncontested, little is known 

about its mechanics. The current findings are an important step towards bridging this 

gap between anatomy and function; oscillatory dynamics in the theta range could be a 

neural mechanism that is involved in establishing transient functional connections 

between distributed modality-specific, and multimodal semantic networks. Further 

evidence for this claim is the finding that theta oscillations in Experiment 2 also 

participate in long-range interactions linking left ATL to a widespread cortical network. 
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Chapter 4: 

Oscillatory dynamics in the theta band reflect cross-

modal feature integration not switching  
 

Abstract 

Research from the previous decade suggests that word meaning is partially stored in 

modality-specific cortical networks that are distributed across the cortical surface. Yet, 

little is known about how this information is combined into a coherent word 

representation. It has been suggested recently, that low frequency cortical oscillations in 

the theta band could reflect a mechanism involved in linking multiple memory networks 

(van Ackeren and Rueschemeyer, 2014). The aim of the current study is to test whether 

theta oscillations are indeed sensitive to the integration of multimodal semantic 

knowledge as argued by van Ackeren and Rueschemeyer or rather switching between 

different modalities (Pecher et al., 2002). A dual property verification task is used in 

which two features are combined with a target word. Word content of the feature pairs 

was either from the same or different modalities (modality-specificity), while the target 

words could be either congruent or incongruent with the features (congruency). EEG 

was recorded while participants performed the task to test for modulations in low 

frequency power (4-6 Hz). Statistical analysis of spectral power in the theta range 

revealed an interaction effect between the factors modality-specificity and congruency. 

Specifically, theta power was enhanced for cross-modal versus modality-specific feature 

target combinations. However this effect was only observed for congruent feature target 

combinations. Taken together, these results replicate the earlier finding of sustained 

theta oscillations during cross-modal feature verification. Furthermore, the present study 

corroborates the claim that low frequency theta oscillations are sensitive to cross-modal 

semantic integration rather than modality switching.  
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Introduction 

Embodied theories of language argue that word meaning is partially stored in modality-

specific cortical networks (Barsalou, 2008; Binder et al., 2009; Pulvermüller and Fadiga, 

2010). For example, multiple studies have demonstrated that words denoting actions 

engage a cortical motor network (Hauk et al., 2004; Postle et al., 2008), and words 

denoting visual features (color, shape) engage visual networks (Simmons et al., 2007; 

Zwaan et al., 2002). While there is much evidence for the existence of these modality-

specific networks, little is known about how information from multiple networks is 

integrated into a coherent conceptual representation during language understanding.  

 Over the last decade, most studies have tested predictions of embodied language 

theories using words from a single dominant modality (e.g., action words, colors, 

sounds) (Hauk et al., 2004; Kiefer et al., 2008; Simmons et al., 2007). However, more 

recent research stresses that words are associated with information from multiple 

modalities that is accessed in a dynamic, and context-dependent way. For example, van 

Dam and colleagues (2012) demonstrated that words with strong bimodal (visual and 

auditory) associations (e.g., tennis-ball) engage both action (inferior parietal lobule) and 

visual (inferior temporal lobe) association networks. Furthermore, the authors showed 

that the pattern of activation in these networks is modulated differently if participants are 

asked to think about visual- versus action-related features of the object. Converging 

evidence for the flexibility of these modality-specific networks has also been reported in 

a different study for words with one dominant modality (visual or motoric) (Hoenig et 

al., 2008). Taken together, these results illustrate that semantic information is at least 

partially represented in distributed functional networks that dynamically adapt to the 

demands of the task. 

The distributed organization of semantic knowledge has direct implications for 

word processing. Specifically, as information transfer over long distances is costly (e.g. 

due to conduction delays), it should be easier to process information that is represented 

in spatially adjacent versus more distributed networks. Indeed, property verification 

studies have shown that participants are faster to verify semantic features of a target 

noun following features from the same versus different modality. Interestingly, this 

effect was also found for novel/impossible feature concept relations such as jingling 

onion (Connell and Lynott, 2011). Similarly, dual property verification studies have 

shown that participants are faster to evaluate two features of a target concept (e.g., 

whistle) from the same (tiny, silver) versus different modalities (tiny, loud) (Barsalou et 

al., 2005; van Ackeren and Rueschemeyer, 2014). These results support the idea that 
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processing spatially distributed information is more costly than processing modality-

specific information. 

The physiological mechanisms of how information is combined within and 

across modalities are still poorly understood. One possibility is that neuronal populations 

communicate by firing in synchrony (Singer and Gray, 1995; Womelsdorf et al., 2007), 

which is reflected in oscillatory activity during MEG/EEG recordings. For example, van 

Ackeren and colleagues (van Ackeren and Rueschemeyer, 2014) asked participants to 

indicate whether two features from the same or different modality are consistent with a 

target word, while recording oscillatory neuronal activity in EEG. The study revealed a 

more sustained increase in low frequency (theta) power in left anterior temporal lobe 

(ATL), a putative hub supporting multimodal semantic integration (Patterson et al., 

2007). The same region showed enhanced communication with a widely distributed 

cortical network in the theta band when participants verified features from different 

modalities. The authors argue that slow cortical theta oscillations could be involved in 

linking modality-specific and supramodal semantic networks, which is critical for 

semantic feature integration. However, these results might also be attributed to a 

modality-switching effect in which information from two features is never fully 

integrated with the concept. 

 The aim of the current study is to test whether sustained low frequency theta 

power during cross-modal feature integration reflects feature integration, or modality 

switching. To this end, participants perform a dual feature verification task where 

features are presented from the same (auditory or visual) or different modalities (audio-

visual). In addition, all feature combinations are paired with congruent, or incongruent 

target words. If the sustained theta response is sensitive to semantic integration, there 

should be a modality-specificity effect in the congruent, but not the incongruent 

conditions. In contrasts, switching effects have been observed even for novel or 

incongruent feature-target (jingling onion) combinations. Thus a sustained theta 

response would be expected during cross-modal trials in both the congruent and 

incongruent condition if the effect reflects modality switching. 

Methods 

Participants 

Participants were 32 healthy individuals (9 male) between 18 and 29 years (M=22.11), 

who were native speakers of English and had no known neurological impairment. All 

participants were students at the University of York, and participated on a voluntary 

basis. Participants received either a financial reward or course credits for taking part in 
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the experiment. All participants gave written informed consent according to the 

Declaration of Helsinki and were debriefed after the study. The study was approved by 

the Ethics Committee of the Department of Psychology at the University of York. 

Stimulus material 

304 target nouns (e.g., APPLE) were paired with two feature words from the same (e.g., 

green - round), and two features words from a different modality (e.g., green - crunchy). 

152 nouns were paired with congruent feature pairs (modality-specific and cross-modal) 

and 152 nouns were paired with incongruent feature pairs. Thus, the same feature pair 

was used once in a congruent condition and once in an incongruent condition. In 

addition, each participant saw each noun only once, that is, in a cross modal or a 

modality-specific feature context.  

 Modality-specific (auditory or visual) features of the 152 nouns in the congruent 

condition were selected based on a previous experiment and a rating (N=46) in which 

participants were given a list of nouns and asked to provide two features that describe 

what the object sounds like (auditory) or looks like (visual). Subsequently, features 

(Table 4.1) and target nouns (Table 4.2) were matched across conditions for word 

frequency (Brysbaert et al., 2012), and length. In addition, a separate rating (N=20) was 

conducted to ensure that feature combinations in the congruent modality-specific and 

cross-modal condition were equally diagnostic with respect to the target noun. 

Specifically, participants were given a list of feature pairs and asked to predict the target 

word. The number of participants that correctly predicted the target word was matched 

across conditions. Thus, the target word was not more predictable in the cross modal 

versus modality-specific condition (Table 4.1).  
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Table 4.1. Matching of features for psycholinguistic variables and diagnosticity. 

Condition 
 

Word length 
Word frequency 

(log10) 
Diagnosticity 

     Cross-modal 
 

 
  

 

M 5.28 2.64 1.11 

 

SE 0.13 0.07 0.12 

Modality-specific 
 

 
  

 

M 5.30 2.62 1.07 

 

SE 0.10 0.07 0.12 

     

 p 0.87 0.74 0.82 
	  

 

Table 4.2. Matching of nouns in the congruent and incongruent condition. 

Condition 
 

Word length 
Word frequency 

(log10) 

 
   

Congruent M 6.04 2.67 

 
SE 0.19 0.07 

Incongruent 
   

 

M 6.07 2.65 

 

SE 0.17 0.05 

 
p 0.9 0.79 

  

Procedure 

Participants performed the task on a computer screen at a distance of 40cm. Words were 

presented in white on a black background and a font size of 40 pt. Before the start of the 

main experiment, participants were familiarized with the task during a practice run (10 

trials). Each trial began with a fixation cross (1000ms), followed by the first and second 

feature word (800ms, each) with a short fixation period between features (200ms). The 

target word was presented for 2000ms. To avoid response related contamination of the 

EEG signal participants were instructed to respond only after the target word was 

replaced by a question (Figure 4.1). Responses were provided on a button box. 
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Figure 4.1. Timeline of the dual feature verification task. 

 

Data recording and pre-processing 

EEG was acquired from 64 Ag-AgCl electrodes that were positioned on an electrode cap 

according to a 10-20 system. All electrodes were re-referenced offline to the algebraic 

average of the two mastoids. Horizontal and Vertical eye movements were recorded with 

a set of bipolar Ag-AgCl electrodes. The signal was amplified using an ANT amplifier 

with a band-pass filter between 0.5 and 40 Hz. Impedances of the cortical electrodes 

were kept below 10 kΩ. The signal was recorded with a sampling frequency of 500 Hz. 

Offline analyses were conducted using Matlab 7.14 (Mathworks, Natick, MA) and 

Fieldtrip, a Matlab toolbox for analyzing EEG/MEG data (Oostenveld et al., 2011). 

Trials were only considered if the participant correctly withheld the response on a target. 

Artifact rejection was performed in three consecutive steps. First, muscle artifacts were 

removed using semi-automatic artifact rejection. Subsequently, extended infomax 

independent component analysis (ICA), with a weight change stop criterion of < 10-7, 

was performed to identify, and reject ocular components. Finally, each trial was visually 

inspected for any remaining artifacts. Due to excessive ocular and movement related 

artifacts, 8 participants were excluded from the analysis. 

Spectral analysis  

Time resolved changes in spectral power were computed for each trial using Fourier 

analysis on 500ms sliding time windows with a step size of 50ms. This results in a 

frequency resolution of ~ 2Hz. To reduce spectral leakage, a Hanning taper was applied 
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to each of these segments. Time-frequency windows were computed for the first 1200 

ms after the presentation of the target word between 2 and 20Hz. All, transformation 

were applied at the individual trial level that is before averages were computed for each 

condition and participant. Thus, the spectral power changes reflect both induced and 

evoked activity in the signal. Finally, averages were normalized per participant using a 

common baseline between 750 and 250ms before the onset of the trial. Baseline 

normalization was performed as the dB change with respect to baseline: 

 

signalChange(dB) = 10*log10 criticalPeriod
baseline

⎛
⎝⎜

⎞
⎠⎟  

Statistical analysis 

Statistical analysis was performed using a cluster-based permutation approach (Maris 

and Oostenveld, 2007). Cluster-based permutation reduces the number of tests in a given 

comparison by clustering electrodes based on a spatial adjacency and a threshold 

criterion (α=.05). Subsequently, the summed t-value of each cluster is tested against a 

permutation distribution in which the condition labels are randomly permuted (1000 

iterations). Given the a priori assumptions about the time and frequency range of the 

effect, based on van Ackeren and Rueschemeyer (2014), statistical analysis was 

performed in the theta range (4-6 Hz), and a time window of 750-1000ms after the onset 

of the target word.  

Results 

Behavioral results 

Data from all 32 participants were included in the analysis of the behavioral data. To 

avoid movement related contamination of the EEG signal participants were asked to 

respond after a delay period of 2000ms. For this reason, the analysis of reaction time 

would not be informative. Therefore, the main behavioral analysis focused on the 

number of correct verifications of feature target combinations. 

 First, a one-sample t-test was computed on the percentage of correctly 

verified/falsified feature-target combinations against a test value of .5. This test revealed 

that overall accuracy (M = 90% SE = 1%) was significantly higher than chance 

(t(31)=51.79, p<.001). 

Second, a sensitivity index (d’) was calculated to test whether participants could 

more accurately distinguish between correct and incorrect feature pairs in one of the two 

conditions. In signal detection theory, d’ quantifies how accurately a signal (congruent 
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feature target combinations) is detected, taking into account the contribution from a 

possible response bias. Here, d’ was calculated as the difference between the z-

transformed hit rate (correctly identified congruent/total congruent) and the z-

transformed false alarm rate (incorrectly identified incongruent/total incongruent). 

Subsequently, as the data was not normally distributed, a Wilcoxon sign-rank test was 

conducted to test for a difference between conditions. This analysis revealed that d’ was 

overall higher for modality-specific (M = 3.54, SE = .27) versus cross-modal (M = 2.83, 

SE = .16) feature combinations (z(31)=3.72, p<.001). In line with previous findings, 

these results suggest, that participants verify features from the same modality more 

easily than features from different modalities. 

Analysis of sustained theta power 

Cluster-based permutation was performed to test for an interaction effect between 

veracity (congruent versus incongruent), and modality-specificity (cross-modal versus 

modality-specific). Specifically, the average theta power time course of the modality-

specific condition was subtracted from the cross-modal condition, separately for the 

congruent and incongruent target feature combinations (Figure 4.2A). Subsequently, 

cluster-permutation was applied to test for a difference between the two difference 

curves. The analysis revealed one significant cluster between 750 and 1000ms after the 

presentation of the target word (p=.006), showing a fronto-central scalp topography 

(Figure 4.2B). To further investigate whether this effect was driven by a modality-

specificity effect in the congruent condition, permutation-based paired-sample t-tests 

were computed to test for a difference between the cross modal versus modality-specific 

condition for congruent and incongruent feature-target combinations. These tests 

revealed a significant difference between cross-modal and modality-specific feature 

contexts in the congruent (t(23)=2.098, p=.04), but not the incongruent condition 

(t(23)=-.364, p=.687) (Figure 4.2). 
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Figure 4.2. Spectral analysis of the post-stimulus period. A. The left panel depicts the 

theta (4-6 Hz) time course during the presentation of the target word when participants 

activate congruent features from different (black) or the same (red) modality. The 

shaded area highlights the time window of interest. The start signals that there is a 

significant difference between conditions. The topography at the top illustrates the 

statistical contrast between the cross-modal and modality-specific condition. The right 

panel depicts the timecourse for the incongruent feature context. B. Bar graphs show the 

difference between the cross-modal and modality-specific feature context for congruent 

(black), and incongruent (grey) feature-target pairs. Error bars depict standard error of 

the mean. The stars highlight the significant interaction effect and the effect of modality-

specificity for congruent feature-target combinations. The topography at the top 

represents the interaction effect. Black dots depict the electrode locations that were part 

of the significant cluster. C. Spectral decomposition in the time window of interest, and 

across all electrodes. A peak difference effect of modality-specificity in the theta range (6 

Hz) for the congruent (black), but not the incongruent features-target pairs (grey). 

Dashed lines illustrate the significance threshold (α =.05, two sided) 

 

Discussion 

In previous years, numerous studies have demonstrated that words with dominant 

modality-specific semantic content (color words, action verbs) engage modality-specific 

semantic networks in the brain ( Hauk et al., 2004; Simmons et al., 2007). A recent study 
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(van Ackeren and Rueschemeyer, 2014) has suggested that information from these 

distributed semantic networks could be integrated via slow oscillatory neuronal activity 

in the theta. The aim of the present study was to test whether oscillatory neuronal 

activity in the theta range is sensitive to integrating multimodal semantic knowledge or 

rather switching between modalities. To this end, a dual feature verification task was 

used in which the same cross- and modality-specific feature pairs were either paired with 

a congruent or incongruent target word. As switching effects are also observed in 

incongruent or novel feature target combinations, a difference between cross-modal and 

modality-specific feature pairs should be observed in both congruent and incongruent 

feature-target pairs. In contrast, effects of modality-specificity should only be observed 

in the congruent condition if the effect reflects feature integration with the target word. 

Replicating previous findings by van Ackeren Rueschemeyer (2014), a more sustained 

theta power increase was observed in the cross modal versus modality-specific condition 

for congruent feature-target combinations. However, no difference was observed in the 

incongruent trials. These results further support the hypothesis that the delayed theta 

offset is indicative of cross-modal feature integration, but not modality switching. 

 The current study revealed enhanced theta power during the presentation of the 

target word when participants evaluated two features from different versus the same 

modality, and this difference was restricted to the congruent condition. However, it 

should be mentioned that there was also a relative power increase during both cross-

modal and modality-specific feature pairs for the incongruent condition. There are at 

least two possible explanations for this finding. First, van Ackeren and Ruechemeyer 

(2014) showed that more sustained theta power during the cross-modal conditions is 

indicative of prolonged network interactions between the ATL and a widely distributed 

cortical network. In line with this idea, incongruent trials could be argued to elicit a 

more prolonged memory search. Second, enhanced theta power during incongruent trials 

could reflect an entirely different mechanism that is sensitive to semantic violations. 

Specifically, a number of studies have reported enhanced theta power during semantic 

violations in sentences (Hald et al., 2006; Wang et al., 2012b). The relation and possible 

overlap between theta modulations for error detection and memory integration or 

retrieval remain unclear. However, while the pattern of the congruent versus incongruent 

condition reveals interesting questions for future research, it does not directly affect the 

interpretation of the current study. Even though theta oscillation are sensitive to 

incongruent feature-target combinations overall, there is no added effect of modality-

specificity. 

 The current study revealed that sustained theta power during cross-modal versus 

modality-specific feature verification likely reflects semantic integration between 
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semantic features and the target word rather than merely modality-switching. These 

results further substantiate the idea that slow frequency cortical oscillations are involved 

in language integration processes. However, similar to van Ackeren and Rueschmeyer 

(2014), the current study was constrained to the lower frequency range, and in particular 

the theta band (4-6 Hz). As suggested, by the authors local network interaction, that is, 

modality-specific feature integration could be reflected in higher frequency ranges (>30 

Hz). Future work could address this possibility using more sensitive recording methods 

such as electrocorticography (ECoG) or magnetoencephalography (MEG). 
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Chapter 5: 

Oscillatory neuronal activity reflects lexical-semantic 

feature integration within and across sensory modalities 

in distributed cortical networks 
 

(based  on: van Ackeren MJ, Schneider TR, Müsch K, Rueschemeyer S (in press) 

Oscillatory neuronal activity reflects lexical-semantic feature integration within and 

across sensory modalities in distributed cortical networks. The Journal of 

Neuroscience)4 

 

 

Abstract 

Research from the previous decade suggests that word meaning is partially stored in 

distributed modality-specific cortical networks. However, little is known about the 

mechanisms by which semantic content from multiple modalities is integrated into a 

coherent multisensory representation. Therefore we aimed to characterize differences 

between integration of lexical-semantic information from a single compared to two 

sensory modalities. We used magnetoencephalography (MEG) in humans to investigate 

changes in oscillatory neuronal activity while participants verified two features for a 

given target word (e.g., bus). Feature pairs consisted of either two features from the 

same (visual: red-big) or different modalities (audio-visual: red-loud). The results 

suggest that integrating modality-specific features of the target word is associated with 

enhanced high-frequency power (80-120 Hz), while integrating features from different 

modalities is associated with a sustained increase in low-frequency power (2-8 Hz). 

Source reconstruction revealed a peak in the anterior temporal lobe (ATL) for low- and 

high-frequency effects. These results suggest that integrating lexical-semantic 

knowledge at different cortical scales is reflected in oscillatory neuronal activity in 

modality-specific and multimodal association networks. 

 
                                                        
4 The author designed the experiment, tested the participants, analyzed the results, and wrote the 
manuscript. The project was supervised by Dr. Shirley-Ann Rueschemeyer, and additional 
support with the analysis was provided by Dr. Kathrin Müsch, and Dr. Till Schneider. 
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Introduction 

Imaging studies have shown that processing verbal descriptions of perceptual/motoric 

information activate neural networks also engaged in processing this information at the 

sensory level. For example, colour words activate pathways that are also sensitive to 

chromatic contrasts (Simmons et al., 2007), action words engage areas that are involved 

in action planning (Hauk et al., 2004; van Dam et. al, 2010), and words with acoustic 

associations (e.g., telephone) engage regions that are sensitive to meaningful sounds 

(Kiefer et. al, 2008). More recent studies have investigated words that are associated 

with features from more than one modality. For example, van Dam et al. (2012) showed 

that words that are associated with visual and action features (e.g., tennis ball) activate 

networks from both modalities. While this is evidence that lexical-semantic knowledge 

is partially stored in modality-specific cortical networks, the interactions within and 

across these networks remain largely unexplored. 

 Many current models agree that modality-specific knowledge is partially stored 

in distinct modality-specific networks. However, where, and how this information is 

integrated is still debated. Some accounts postulate that information is integrated in 

distributed convergence zones, (Damasio et al., 2004; Barsalou, Simmons, Barbey, & 

Wilson, 2003), while others have argued for a single semantic hub in the ATL (Patterson 

et al., 2007). While there is compelling neuropsychological evidence for the existence of 

a semantic hub (Hodges et al., 1992), little is known about how the network dynamics 

within this region combine semantic content from distributed sources in the cortex.  

Combining multiple semantic features may be particularly relevant for identifying a 

specific token of a concept (e.g., a red car), and detecting relationships between concepts 

that are not perceptually-based. 

 Physiological evidence from animals and humans suggests that distributed 

information is integrated through synchronized oscillatory activity (Singer and Gray, 

1995). Several accounts have attempted to link oscillatory activity with specific 

perceptual and cognitive processes, (e.g., Bastiaansen et al., 2005; Raghavachari et al., 

2001; Schneider et al., 2008), however the link between power changes in a given 

frequency band and specific perceptual/cognitive processes remains contentious. One 

compelling recent account suggests that high- and low-frequency oscillations may 

operate at different spatial scales at the level of the cortex (Donner and Siegel, 2011; von 

Stein and Sarnthein, 2000). Specifically, it has been argued that oscillatory activity at 

low frequencies (<30 Hz) are involved in coordinating distributed neural populations 

whereas interactions within a neural population are reflected in high frequencies (>30 

Hz). This idea converges with evidence suggesting that high-frequency oscillatory 
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activity can be nested in low-frequency cycles (Canolty et al., 2006). With respect to 

embodied accounts of lexical-semantics this is interesting, because integrating 

distributed information across modalities (e.g., colour-sound) may be reflected in lower 

frequency bands than integrating modality-specific information locally (e.g., colour-

shape).  

 We used MEG to test whether oscillatory neuronal activity is relevant for the 

integration of multimodal semantic information during word comprehension. In the 

experimental paradigm two feature words and one target word were presented visually. 

Feature-words either referred to modality-specific (MS) information from the same, or 

cross-modal (CM) information from different modalities (Figure 5.1A). We 

hypothesized that integrating features of the target word from local modality-specific 

networks will be reflected in high-frequency oscillatory activity, while integrating 

features across modalities will induce a modulation in low frequencies.  

Materials and Methods 

Participants 

Participants were twenty-two healthy, right-handed individuals (9 male) with no 

neurological disorder, normal or corrected to normal vision, and no known auditory 

impairment. The age range was 18 to 35 years (M=24.45, SE=1.19). Four participants 

were excluded from the analysis due to excessive ocular and movement-related artifacts. 

All participants were students at the University of York, and participated on a voluntary 

basis. Participants received either a financial reward or course credits for taking part in 

the experiment. All participants gave written informed consent according to the 

Declaration of Helsinki and were debriefed after the study. The study was approved by 

the Ethics Committee of the York Neuroimaging Centre. 

Experimental design 

Participants performed a dual property verification task. After a baseline period of 

fixation (1000 ms) two feature words (e.g., red-big) (400 ms each) and a target (e.g., 

bus) (1500 ms) were presented (Figure 5.1C). Participants were instructed to decide 

whether the two features can be used to describe the target. To reduce motor response 

related activity in the signal, participants were asked to respond only on catch trials 

(33%, see below). 

 196 unique features were extracted from previous feature rating studies (Dantzig 

et al., 2010; Lynott and Connell, 2009) and a rating for the purpose of the current 

experiment (N=10) in which participants rated how likely they perceived a given feature 
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by seeing, hearing, feeling, tasting and smelling. Dependent-sample t-tests confirmed 

that visual features were more strongly experienced by seeing as compared to hearing, 

feeling, tasting, and smelling (all p<.001). Similarly, auditory features were more 

strongly perceived by hearing than seeing, feeling, tasting or smelling (all p<.001). 

 300 target words were either paired with a CM, or MS feature pair. For 

example, bus was paired with visual features (red-big) in the MS condition, and a visual 

and auditory feature in the CM condition (red-loud). Feature pairs were rated (N=10), 

and matched for relatedness and predictability with respect to the target word in the CM 

versus MS condition (p=.83; p=.123), as well as the modality-specific visual (MS-v) 

versus auditory (MS-a) condition (p=.092; p=.95). In addition, features were matched 

between the cross-modal and modality-specific condition for word length (p=.75), log10 

frequency (p=.86) (British National Corpus BNC; http://www.kilgarriff.co.uk/bnc-

readme.html), and the proportion of gerundives to adjectives (p<.24). 

Target words were the same in the CM and MS conditions, but were matched for word 

length and log10 frequency (British National Corpus BNC; 

http://www.kilgarriff.co.uk/bnc-readme.html) across the MS-v and MS-a conditions 

(p=.74; p=.403). 

 Additionally, 150 feature-target (IF) combinations (e.g., rumbling-squeaking-

cactus) were included as non-integrable distracters. Each participant saw an 

experimental target word only in one condition, resulting in 100 CM, 100 MS-v, 100 

MS-a, and 150 IF pairs. The presentation of experimental items in a given condition was 

pseudo-randomized within each participant and counterbalanced over participants. 
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Figure 5.1. Design of the experiment. A. The word bus is associated with visual and 

auditory features. Participants are required to verify features from either the same 

(visual: red-big) or different modalities (audio-visual: red-loud). B Spider plots show that 

auditory (green) and visual features (blue) are rated as predominantly auditory (A) and 

visual (V) rather than haptic (H), olfactory (O), or gustatory (G). C. Features were always 

presented before target words. 

 

Data acquisition 

MEG data were acquired on a Magnes 3600 whole-head 248-channel magnetometer 

system (4-D Neuroimaging Inc., San Diego) using a sampling rate of 678.17 Hz. Head 

position was measured at the start and end of the experiment from five head coils (left 

and right preauricular points, Cz, nasion, and inion) using a Polhemus Fastrack System 

(Polhemus Fastrak, Colchester, VT). Horizontal and vertical eye movements as well as 

cardiac responses were recorded and monitored during the whole experiment. 
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 Structural T1 weighted images (TR=8.03 ms, TE=3.07 ms, flip angle=20°, 

spatial resolution=1.13x1.13x1.0mm, in plane resolution = 256x256x176) were recorded 

on a GE 3.0 Tesla Excite HDx system (General Electric, Milwaukee, USA) using an 8-

channel head coil and a 3-D fast spoiled gradient recall sequence. Co-registration of the 

MEG to the structural images was performed using anatomical landmarks (preauricular 

points, nasion), and a surface-matching technique based on individually digitized head 

shapes. 

Preprocessing 

The analysis was performed using Matlab 7.14 (MathWorks, Natick, MA) and Fieldtrip 

(http://fieldtrip.fcdonders.nl/). For subsequent analysis, the data were band-pass filtered 

(0.5-170 Hz, Butterworth filter, low-pass filter order = 4, high-pass filter order = 3) and 

resampled (400 Hz). Line-noise was suppressed by filtering the 50, 100, and 150 Hz 

Fourier components. Artifact rejection followed a two-step procedure. First, artifacts 

arising from muscle contraction, squid jumps and other non-stereotyped sources (e.g., 

cars, cable movement) were removed using semi-automatic artifact rejection. Second, 

extended infomax independent component analysis (ICA), with a weight change stop 

criterion of <10-7,was applied to remove components representing ocular (eye blinks, 

horizontal eye movements, saccadic spikes) and cardiac signals.  

Time frequency analysis 

Total power was computed using a sliding window Fourier transformation for each trial 

with fixed time windows (500 and 200 ms) in steps of 50 ms during the first 1000 ms 

after the onset of the target word. In order to maximize power low (2-30 Hz) and high 

frequencies (30-120 Hz) were analyzed separately. For low frequencies, Fourier 

transformation was applied to Hanning tapered time windows of 500 ms, resulting in a 

frequency smoothing of ~2 Hz. For high frequencies, a multitaper method was applied 

to reduce spectral leakage (Percival & Walden, 1993); sliding time windows of 200 ms 

were multiplied with 3 orthogonal Slepian tapers and subjected to Fourier 

transformation separately. The resulting power spectra were averaged over tapers, 

resulting in a frequency smoothing of ±10 Hz.  

Statistical analysis 

Power differences across conditions were evaluated using cluster-based randomization, 

which controls for multiple-comparisons by clustering neighboring samples in time, 

frequency, and space (Maris and Oostenveld, 2007). At the sensor-level, clustering was 
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performed by computing dependent-samples t-tests for each sensor-time point in five 

frequency bands of interest: theta (2-8 Hz), alpha (10-14 Hz), beta (16-30 Hz), low 

gamma (30-70 Hz), and high gamma (80-120 Hz), during the first 1000 ms after the 

onset of the target word. At the source-level, clustering was performed across space at 

the frequency-time window of interest. Neighboring t-values exceeding the cluster-level 

threshold (corresponding to α<0.05) were combined into a single cluster. Cluster-level 

statistics were computed by comparing the summed t-values of each cluster against a 

permutation distribution. The permutation distribution was constructed by randomly 

permuting the conditions (1000 iterations), and calculating the maximum cluster-statistic 

on each iteration.  

Source reconstruction 

Following the recommendation from Gross et al. (2013), statistical analysis of the 

contrast CM-MS was performed at the sensor level; subsequent source reconstruction 

was used to localize this effect.  

Individual structural MRI scans were segmented and the brain compartment was 

used to compute a single-shell headmodel for the source analysis. This individual single-

shell headmodel was used to compute the forward model (Nolte, 2003) on a regular 

three-dimensional grid (with 10x10x10mm spacing), containing 3000 vertices. The 

algorithm for the forward model, which is fully implemented in the fieldtrip toolbox is 

based on Nolte (2003). Specifically, the lead field for a spherical volume conductor is 

corrected using the superposition of basis functions, whereby the coefficients are fitted 

to the boundary conditions. Finally, the grid points from each individual structural image 

were warped to corresponding locations in an MNI template grid (International 

consortium for brain mapping; Montreal neurological institute (MNI), Montreal, QC, 

Canada) to allow for statistical analysis at the group level. 

Oscillatory sources were localized at the whole-brain level using Dynamic 

Imaging of Coherent Sources (DICS: Gross et al., 2001; Liljeström et al., 2005). DICS is 

a frequency domain beamformer technique. A linear transformation is applied to the 

data such that activity at each location in the three dimensional grid is passed with unit 

gain, while the activity at all other sources is suppressed. The transformation matrix is 

computed from the cross-spectral density matrix (CSD), and the lead field using a 

constrained optimization algorithm. To avoid non-invertibility of the CSD, a 

regularization of 5% was introduced. The CSD matrix was computed between all MEG 

sensors using Hanning tapers (500-1000ms; 4-8Hz) for low frequencies, and multitapers 

for high frequencies (150-350ms; 7 tapers; 80-120Hz). The power in the dominant 

direction at each grid point was computed using single value decomposition. 
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Results 

Behavioral analysis 

Responses of one participant were not recorded, leaving 17 participants for the 

behavioral analysis. A one-sample t-test confirmed that participants were able to 

correctly verify trials above chance (t(16)=7.652, p<.001, M=.77, SE=.04). There was no 

significant difference between the cross-modal and the modality-specific condition 

(t(16)=-1.287, p=.216, CM: M=.74, SE=.05; MS: M=.78, SE=.34). 

 

Low frequencies are sensitive to semantic integration at the global scale 

In the low frequency range, both conditions (CM, MS) show a power increase in the 

theta band (2-8 Hz) as well as a decrease in the alpha (10-14 Hz) and beta band (16-30 

Hz) (Figure 5.2A). Statistical comparison between conditions (Figure 5.2A, third panel) 

revealed enhanced theta band power (2-8 Hz; 580-1000 ms) to the target word for CM 

versus MS (p=.04, two-sided) over left lateralized magnetometers (Figure 5.2B). In 

other words, enhanced theta power in response to visually presented words is more 

sustained when participants think about a target word in the context of lexical-semantic 

features from different modalities. 

 Source reconstructions for each condition were computed at the center 

frequency (4-8 Hz) (Gross et al., 2001; Liljeström et al., 2005). Figure 5.2C shows the 

difference between conditions, expressed in z-scores. Major peaks are observed in left 

ATL, precuneus and around the paracentral lobule. Smaller peaks are seen in left lingual 

and right posterior fusiform gyrus, as well as right superior occipital and middle frontal 

gyrus. 

 To evaluate whether these effects are related to evoked activity sensitive to 

semantic processing (N400m), time-domain data for each condition were averaged, 

baseline corrected (150 ms pre-target), and converted into planar gradients (Bastiaansen 

and Knösche, 2000). ANOVA’s with repeated measures at all sensors were computed 

for the N400m time window (350-550 ms), and subjected to a cluster-randomization 

procedure. This analysis yielded no significant clusters (p>.7). 
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Figure 5.2. Low-frequency oscillations in sensor- and source space. A. Total power 

changes in the CM and MS condition relative to a 500 ms fixation baseline. Statistical 

differences between conditions are shown in the rightmost panel averaged over the 

identified cluster. The box depicts the significant time-frequency range. B. Topographies 

showing relative signal change across magnetometers between 2-8 Hz and 580-1000 

ms. Significant channels are marked as dots in the rightmost panel. C. Source 

reconstruction revealed peaks in the ATL and parietal lobe. 

 

High frequencies reflect modality-specific semantic integration 

The high frequency range revealed an early increase in high-gamma power (80-120 Hz, 

150-350 ms) for MS, but not CM pairs. Specifically, gamma power was enhanced when 

lexical-semantic features from the same modality were presented (p=.006, two-sided) 

(Figure 5.3A). The topography of the effect showed a left posterior distribution (Figure 

5.3B). This suggests that integrating modality-specific features of a target word is 

reflected in high-frequency gamma oscillations. 

 Source reconstruction in the high frequency range (80-120 Hz) revealed a peak 

in the left ATL, as well as the medial superior frontal gyrus, mid cingulum, and left 

anterior cingulate cortex. Smaller peaks were observed in the right middle occipital 

gyrus (Figure 5.3C).  
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Figure 5.3. High-frequency oscillations in sensor- and source space. A. Total power 

changes in the CM and MS condition relative to a 500 ms fixation baseline, and the 

statistical difference between conditions are shown. The box depicts the significant time-

frequency range. B. Topographies showing relative signal change across 

magnetometers between 80-120 Hz and 150-350 ms. Significant channels are marked 

as dots in the rightmost panel. C. Source reconstruction revealed peaks in left ATL and 

medial frontal lobe. 

 

Modality-specificity to semantic features in auditory and visual cortices 

Whole-brain cluster statistics in source space were performed on the two modality-

specific conditions (visual and auditory) versus baseline to investigate whether enhanced 

gamma power reflects modality-specific network interactions. Both conditions showed 

enhanced gamma power in visual areas, but only the auditory condition showed a peak 

in left pSTS/BA22 (p=.004, two-sided) (Figure 5.4, first two panels). A direct 

comparison between conditions confirmed that gamma power in left pSTS is enhanced 

for the auditory, but not visual condition (p<.002, two-sided) (Figure 5.4, last panel). No 

effect in the opposite direction was found. 
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Figure 5.4. Whole brain contrasts for modality-specific auditory and visual feature 

contexts in the gamma range. The first two panels show the contrast between the 

auditory and visual condition versus baseline. The last panel depicts the contrast 

between the auditory and visual condition. Gamma power is enhanced in visual areas 

for both conditions, but only the auditory condition shows a peak in pSTS/BA22 (dashed 

circle). All contrasts are corrected at the cluster level (p<.005). 

 

Discussion 

The aim of the current experiment was to investigate a) whether lexical-semantic 

information is integrated in distributed modality-specific or in multi-modal hub regions 

and b) whether oscillatory neuronal activity contributes to the integration of semantic 

information from different modalities. Therefore, we aimed at characterizing differences 

in oscillatory neuronal activity when participants integrate semantic features of a target 

word (e.g., bus), from the same or multiple modalities. Our results suggest that 

integrating features from different modalities (e.g., red-loud) is reflected in a more 

sustained increase in theta power, while high gamma power is more sensitive to 

integrating lexical-semantic knowledge from a single modality (e.g., red-big). The 

neural generators of both effects include the ATL, a region that is proposed to be critical 

for semantic association and integration (Patterson, Nestor, & Rogers, 2007). 

Furthermore, a direct comparison between auditory and visual feature contexts revealed 

that gamma power is enhanced in visual areas for both conditions, while only the 

auditory context reveals a peak in auditory areas (pSTS) 

Fast and slow components of lexical-semantic processing are reflected in the 

spectral and temporal profile of the signal. 

Previous research using evoked fields in MEG has shown that modality-specific 

activation of lexical-semantic features can be detected before 200 ms (Pulvermüller, 

Shtyrov, & Hauk, 2009). It has been proposed that these responses reflect early parallel 
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processes during language comprehension. The current study revealed an early (150-350 

ms) modulation in high frequency power (80-120 Hz) in response to the target word if 

participants were asked to access two features from the same modality. The implication 

of these results for neurocognitive models of language understanding is that early 

integration of word meaning from the same modality is reflected in a transient high 

frequency oscillatory response. 

 Furthermore, the current study identified a late theta power increase on the 

target word when participants verified features from different modalities. Previous 

research has shown that theta oscillations are sensitive to lexical-semantic content of 

open-class words (Bastiaansen et al., 2005). Theta is also the only known frequency 

band that shows a linear power increase during sentence processing, suggesting that it 

could be involved in ongoing integration of word meaning (Bastiaansen, van Berkum, & 

Hagoort, 2002). The current study revealed a power increase in the theta band when 

participants evaluated semantic features of the target word. We show that this response 

is prolonged when participants evaluate features from different modalities. A possible 

explanation is that integration demands increase when participants integrate information 

over a more widespread cortical network, that is, information from multiple modality-

specific networks. This account is in line with behavioral findings showing delayed 

reaction times during property verification of cross-modal features (Barsalou et al., 

2005) 

 In sum, the present study identified two processes relevant for lexical-semantic 

processing; an early increase in gamma power for combining similar information (i.e., 

MS), and a sustained increase in theta power that could reflect ongoing integration of 

information from distributed cortical networks. 

Oscillatory neuronal activity in the ATL reflects the distribution of lexical-semantic 

information in the cortex. 

Based on neuropsychological research in patients with temporal lobe atrophy (Hodges et 

al., 1992), Patterson and colleagues (2007) have argued that the ATL might be involved 

in combining semantic knowledge from distributed modality-specific networks. 

However, the physiological mechanisms of how information is integrated within, and 

possibly outside this region are poorly understood. The current study showed that 

integrating information from different modalities is reflected in sustained theta power 

within the ATL. As previously suggested (Raghavachari et al., 2001), theta oscillations 

could operate as a temporal gating mechanism in which incoming information from 

different networks is combined into a coherent representation. 
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 The present data also revealed enhanced gamma power in left ATL when the 

target was presented with two features from the same modality. As recently 

demonstrated by Peelen et al. (2012), using fMRI pattern classification, the ATL is 

sensitive to the modality-specific content of the stimulus (motoric, visuo-spatial). This 

suggests that different activation patterns in the ATL could reflect inputs from 

distributed modality-specific networks. Indeed, recent imaging work (van Dam et al., 

2012) has demonstrated that listening to words that are associated with more than one 

modality (visual and functional) activate multiple modality-specific cortical networks. 

While multiple networks respond to a single word, each network responds differently 

when a participant is asked to think about one modality in particular. For example, a 

motor network in the parietal lobe responds more strongly if the participant is asked to 

think about what to do with an object rather than what it looks like. The current results 

further demonstrate that accessing and combining modality-specific semantic 

information enhances gamma power in local modality-specific networks. Specifically, 

gamma power is enhanced in pSTS when participants are asked to access auditory 

features of an object. No such modulation was observed in the visual feature context. A 

possible reason for the lack of a semantic effect is that the sensory response to a visual 

word desensitizes the visual system to the more subtle semantic modulations 

(Pulvermüller, 2013).  

 Several studies have associated cross-modal perceptual matching with enhanced 

gamma activity (Schneider et. al, 2008). These findings are not necessarily in conflict 

with the current framework. As Donner and Siegel (2011) point out, local gamma band 

modulations can also be the result of higher-order interactions. The current study 

extends this work showing that oscillatory dynamics in temporal association networks 

reflect whether one or multiple local networks participate in these interactions. 

 In conclusion, the current study has demonstrated that combining word meaning 

from a single modality is reflected in early oscillatory activity in the gamma band, 

originating in sensory cortices and left ATL, respectively. Precisely, modality-specific 

networks in the auditory cortex were more sensitive to auditory than visual features. In 

contrast, integrating features from multiple modalities induced a more sustained 

oscillatory response in the theta band that was partially localized to ventral networks in 

the ATL. Taken together, these results represent a mechanistic framework for lexical-

semantic processing. At the physiological level, accessing knowledge from a single or 

multiple semantic networks is reflected in oscillatory activity at different frequencies. At 

the cognitive level, the current data suggest two processes that operate in parallel, but at 

a different temporal resolution; a fast process for combining similar information early 
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on, and a slow process that could be involved in integrating distributed semantic 

information into a coherent object representation.  
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Chapter 6:  

Slow cortical oscillations connect left anterior temporal 

lobe to modality-specific cortical networks during 

semantic feature retrieval and integration 
 

 

Abstract 

Language understanding rests on the ability to retrieve and integrate rich semantic 

information from long-term memory. Current neurocognitive models argue that this 

knowledge is represented in distributed modality-specific cortical networks. For 

example, visual information is represented in ventral visual networks, while auditory 

information is represented in superior temporal auditory networks.  Some theories posit 

that these networks are connected via a central hub in the anterior temporal lobe (ATL), 

which allows us to integrate features from multiple modalities and find relations 

between objects that are not perceptually-based. The aim of the current study is to 

investigate the neurophysiological mechanisms of how the ATL-hub and modality-

specific networks interact during semantic feature retrieval and integration. 

Magnetoencephalography (MEG) was used to record oscillatory neuronal activity, as 

participants performed a dual feature verification task. Participants saw two features 

(e.g., red and big) followed by a target word (bus), and were asked to indicate whether 

the feature pair is consistent with the target word. Feature pairs consisted of two visual 

features, two auditory features, or one auditory and one visual feature. Using the phase-

locking value (PLV) in low frequency theta oscillations as a proxy for long-range 

connectivity, the present study demonstrates that the connection weights between ATL 

and modality-specific networks are modulated consistently with the type of feature the 

participant is asked to retrieve. That is, thinking about visual features of the target word 

selectively enhances the connection between ATL and ventral visual networks (inferior 

lateral occipital), while thinking about auditory features selectively enhances the 

connection between ATL and auditory networks (superior temporal). These results 

corroborate and extend earlier findings, suggesting that the ATL directly exchanges 

information with distributed modality-specific networks in a context-specific way. 

Furthermore, these interactions are reflected slow cortical oscillations in the theta range. 
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Introduction 

Neurocognitive models of semantic cognition agree that accessing perceptual semantic 

information both verbally, and non-verbally engages distributed modality-specific 

cortical networks (Barsalou et al., 2003; Binder et al., 2009; Vigliocco et al., 2009; 

Pulvermüller and Fadiga, 2010; Binder and Desai, 2011). In recent years numerous 

studies have provided support for this idea using a range of behavioral and 

neuroimaging methods (Bonner & Grossman, 2012; Goldberg, Perfetti, & Schneider, 

2006; Hauk et al., 2004; Kiefer et al., 2008; Martin & Chao, 2001; Simmons et al., 

2007). For example, words describing visual information such as color and shape engage 

ventral visual networks in the inferior occipital and temporal lobe (Pulvermüller and 

Hauk, 2006; Simmons et al., 2007; van Dam et al., 2012), while words with dominant 

auditory associations engage auditory networks in the superior and middle temporal lobe 

(Bonner & Grossman, 2012; Goldberg, Perfetti, & Schneider, 2006; Kiefer et al., 2008). 

According to the hub-and-spokes model, an influential theoretical framework in 

semantic cognition, these distributed cortical networks converge in a single putative hub 

in the anterior temporal lobe (ATL). However, the neurophysiological mechanisms of 

how the ATL-hub interacts with modality-specific spokes are still poorly understood. 

The current study directly addresses this issue by testing whether direct connections 

between modality-specific networks and the ATL, are modulated by semantic word 

content. 

 Connectionist models have demonstrated that distributed modality-specific 

networks alone are insufficient to explain the complex taxonomic organization of the 

semantic system in humans (McClelland, Rogers, & others, 2003; Plaut, 2002). Thus, 

current theories postulate that information converges in multiple convergence zones 

(Binder & Desai, 2011; Damasio, 1989; Pulvermüller, 2013) or a single supramodal hub 

(Patterson et al., 2007). According to the hub-and spokes model information from 

multiple modalities converges in a single hub that is thought to be represented in the 

ATL. The model has received substantial support from patients with semantic dementia 

(SD) who show severe atrophy in bilateral ATL (Hodges et al., 1992). As the disease 

progresses patients categorize objects based on simple perceptual features rather than 

abstract category membership. This can result in undergeneralizations for atypical 

members of a category, or overgeneralizations for perceptually similar non-members of 

a category (Lambon Ralph et al., 2010).   

 More recent studies have used fMRI multi-voxel pattern analysis (MVPA) in 

healthy individuals to investigate directly what information is represented in ATL, and 

modality-specific networks. For example, Peelen and Caramazza (2012) presented 
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images of objects that differed in terms of how they are used (action) or where they can 

be found (visuo-spatial). The authors found that classification accuracy for the 

conceptual distinction was above chance in the anterior temporal lobe, while posterior 

regions were sensitive to the perceptual, or pixel-wise similarities between stimuli. 

Using a different approach, Coutanche and Thompson-Schill (2014) presented a verbal 

cue for a visual object (one out of four different types of food) that, after a delay period, 

emerged from Gaussian visual noise. Importantly, objects either shared the same shape 

or color. The authors found enhanced classification accuracy for shape (round versus 

elongated) in lateral occipital cortex (LOC), while color was represented in visual area 

V4. In contrast, classification of food identity only reached significance in left ATL. In 

addition, the authors showed that classification success in ATL was related to 

classification success in both LOC and V4. This is interesting because it shows a direct 

relationship between the representational content in ATL and modality-specific cortical 

networks.  

 Neuropsychological and functional imaging studies have provided important 

insights into the different components of the semantic system, their representational 

content, and mutual dependencies, yet the neurophysiological processes of how 

modality-specific spokes and the putative hub in ATL communicate are still poorly 

understood. It has been hypothesized recently that semantic processing at different 

cortical scales may be reflected in oscillatory neuronal activity at different frequencies 

(van Ackeren et al., in press; van Ackeren and Rueschemeyer, 2014). For example, van 

Ackeren and colleagues (in press) used MEG to study changes in oscillatory neuronal 

activity when participants verified two features of visually presented words. Feature 

pairs consisted of features from the same (auditory or visual) or different modalities 

(audio-visual). The authors report that low frequency theta power in left ATL is 

enhanced when participants access distributed (cross-modal) information, while high 

frequency gamma power is enhanced in left ATL and modality-specific networks when 

information is accessed locally (within modalities). In other words, the way semantic 

information is distributed in the cortex (local versus distributed) is reflected in 

oscillatory dynamics at different frequencies (high gamma versus low theta). In a 

different study van Ackeren and Rueschemeyer (2014) found that the theta power 

increase is directly associated with enhanced theta phase coupling between left ATL and 

a widespread cortical network. Phase coupling is considered a proxy for long-range 

connectivity between distant areas. Based on these results, the authors suggest that slow 

cortical oscillations could be involved in integrating multimodal semantic knowledge 

into coherent object representations by linking modality-specific semantic networks to a 

hub in left ATL. 
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 While van Ackeren and Rueschemeyer (2014) demonstrate that slow cortical 

oscillations are involved in long-range network interactions, it is not clear whether these 

distributed patterns of activation are indeed the result of modality-specific access or 

rather a reflection of the general processing disadvantage for integrating cross-modal 

semantic features. Specifically, if slow cortical oscillations are involved in linking left 

ATL to modality-specific regions, one would expect that the connection weights change 

when participants access features from a single, or multiple modalities (Kiefer et al., 

2008; van Dam et al., 2012). This hypothesis was directly tested in the current study. 

Using the phase locking value (PLV) as a proxy for long-range connectivity (Lachaux et 

al., 1999), we tested whether long-range interactions between the ATL-hub and 

modality-specific spokes in visual (inferior occipital) and auditory (superior/middle 

temporal) networks is modulated as participants retrieve and integrate different semantic 

features of a target word. The analysis was conducted on the dataset from van Ackeren 

et al (in press), which is also discussed in Chapter 5. In line with predictions from the 

hub –and-spokes model, we hypothesize that the connection weights between left ATL 

and a left auditory network (left STG) are enhanced when participant think about 

auditory, rather than visual features of a target word. In contrast, the connection weights 

between left ATL and a ventral visual network (iOC) should be enhanced for visual 

versus auditory features. Lastly, we predict that integrating two features denoting 

auditory and visual information should enhance both ATL-auditory, and ATL-visual 

connection weights. 

 

Materials and Methods 

Participants 

Participants were twenty-two healthy, right-handed individuals (9 male) with no 

neurological disorder, normal or corrected to normal vision, and no known auditory 

impairment. The age range was 18 to 35 years (M=24.45, SE=1.19). Four participants 

were excluded from the analysis due to excessive ocular and movement-related artifacts. 

All participants were students at the University of York, and participated on a voluntary 

basis. Participants received either a financial reward or course credits for taking part in 

the experiment. All participants gave written informed consent according to the 

Declaration of Helsinki and were debriefed after the study. The study was approved by 

the Ethics Committee of the York Neuroimaging Centre. 
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Experimental Design 

The design of the study is illustrated in Figure 6.1. Participants were asked to verify 

whether two feature words are consistent with a target word. The trial started with a 

period of fixation (1000ms), followed by two feature words (400ms each) that were 

separated in time by another brief fixation period (200ms). Finally, the target word was 

presented (1500ms) after another fixation period (1000ms). Participants were asked to 

respond on catch trials (33%) only to reduce motor related contamination of the signal. 

 Target words consistent of 300 nouns that were either paired with a cross-modal 

or modality-specific feature pair from a pool of 196 unique auditory and visual features. 

Thus the same target words were presented in the cross-modal and modality-specific 

condition. For the modality-specific auditory and visual condition, target words were 

matched for word length and log10 frequency (British National Corpus BNC; 

http://www.kilgarriff.co.uk/bnc-readme.html) (p=.74; p=.403). Features rated as 

predominantly visual or auditory were selected based on multiple databases (for details 

of the matching procedure see van Ackeren, Schneider, Müsch, & Rueschemeyer, in 

press), and matched for relatedness and predictability with respect to the target word in 

the cross-modal versus modality-specific condition (p=.83; p=.123), as well as the 

modality-specific visual versus auditory condition (p=.092; p=.95). In addition to 150 

incongruent feature target pairs were included in the experiment as distracters. Thus, 

taken together each participant saw 100 cross-modal trials, 100 visual, 100 auditory, and 

150 incongruent feature pairs. 

 

Figure 6.1. Design of the dual property verification task. After a period of fixation, two 

feature words are presented followed by the target word. Participants are asked to 

respond on catch trials only. 
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Data acquisition 

MEG data were acquired on a Magnes 3600 whole-head 248-channel magnetometer 

system (4-D Neuroimaging Inc., San Diego) using a sampling rate of 678.17 Hz. Head 

position was measured at the start and end of the experiment from five head coils (left 

and right preauricular points, Cz, nasion, and inion) using a Polhemus Fastrack System 

(Polhemus Fastrak, Colchester, VT). Horizontal and vertical eye movements as well as 

cardiac responses were recorded and monitored during the whole experiment. 

 Structural T1 weighted images (TR=8.03 ms, TE=3.07 ms, flip angle=20°, 

spatial resolution=1.13x1.13x1.0mm, in plane resolution = 256x256x176) were recorded 

on a GE 3.0 Tesla Excite HDx system (General Electric, Milwaukee, USA) using an 8-

channel head coil and a 3-D fast spoiled gradient recall sequence. Co-registration of the 

MEG to the structural images was performed using anatomical landmarks (preauricular 

points, nasion), and a surface-matching technique based on individually digitized head 

shapes. 

Data analysis and statistical testing 

The analysis was performed using Matlab 7.14 (MathWorks, Natick, MA) and Fieldtrip 

(http://fieldtrip.fcdonders.nl/). For subsequent analysis, the data were band-pass filtered 

(0.5-170 Hz, Butterworth filter, low-pass filter order = 4, high-pass filter order = 3) and 

resampled (400 Hz). Line-noise was suppressed by filtering the 50, 100, and 150 Hz 

Fourier components. Artifact rejection followed a two-step procedure. First, artifacts 

arising from muscle contraction, squid jumps and other non-stereotyped sources (e.g., 

cars, cable movement) were removed using semi-automatic artifact rejection. Second, 

extended infomax independent component analysis (ICA), with a weight change stop 

criterion of <10-7,was applied to remove components representing ocular (eye blinks, 

horizontal eye movements, saccadic spikes) and cardiac signals.  

The current source space analysis focuses on the long-range connectivity 

reflected in oscillatory dynamics in the theta range (4-8 Hz) between the left ATL as a 

putative hub region (Figure 6.2 bottom) and modality-specific visual (left inferior 

occipital, red contours in Figure 6.2), and auditory (left superior temporal, blue contours 

in Figure 6.2) regions as putative spokes regions. 

Complex Fourier transformations were performed around 5±2Hz for a time 

window between 0 and 800ms after the onset of the target word. Prior to transformation, 

a Hanning taper was applied in the time domain to reduce spectral leakage. For 

subsequent source analysis, individual trial Fourier spectra were converted to a cross-

spectral density (CSD) matrix comprising all MEG sensor combinations. 
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Source space analysis was performed using a linear beamforming method in the 

frequency domain (Gross et al., 2001; Liljeström et al., 2005). Individual brain 

compartments were extracted from structural MRI images and used to create a single-

shell headmodel on a regular three-dimensional grid (103 mm spacing) for source 

analysis (Nolte, 2003). To allow source space statistics at the group level, individual 

headmodels were aligned to standard mni space (International consortium for brain 

mapping; Montreal neurological institute (MNI), Montreal, QC, Canada). Subsequently, 

spatial filters were computed for each point in the source grid using the leadfield and the 

CSD matrix across all conditions.   

For the functional connectivity analysis, a seed region was chosen in left ATL, 

at the grid point which was most sensitive to the power difference between the cross-

modal and modality-specific condition in the theta band [mni: -20 -10 -30] (van Ackeren 

et al., in press). The exact anatomical location of this region is the left parahippocampal 

gyrus. As connectivity measures are sensitive to differences in trial numbers, a random 

selection procedure was used to extract the same number of trials from all conditions. 

Subsequently, the spatial filter coefficients, common to all conditions, were used to 

project Fourier spectra for each individual trial to each grid location in the source model. 

Individual Fourier spectra were used to compute a CSD matrix between all grid 

locations inside the brain compartment for each condition and participant. Finally CSD 

matrices were used to compute the phase locking value (PLV), which can be considered 

a proxy for long-range connectivity (Lachaux et al., 1999). Here, PLV is used to 

quantify to what extend the phase (φ)  of the theta rhythm at all grid points in the brain is 

locked to the phase in the seed region (left ATL). In other words, a high PLV indicates a 

consistent time lag between the seed region and any other location in the brain, while a 

low PLV suggests no consistent relationship between the two locations in the brain. 

Finally, a stabilizing Fischer-z-transform was applied using the inverse hyperbolic 

tangent (tanh-1). 

Statistical analysis in source space was performed on functional connectivity 

maps connecting left ATL to the rest of the network, using a cluster-based 

randomization technique. Cluster randomization reduces the number of individual tests, 

by clustering neighboring locations in the brain that exceed an arbitrary threshold 

(α=.05). Subsequently, the size of the cluster is compared against the distribution of 

largest clusters that was derived from 1000 permutations of the condition labels.  Given 

the strong a priori anatomical predictions for the modality-specific visual and auditory 

conditions, and to maximize sensitivity of the analysis, the search space of the clustering 
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algorithm was reduced to left auditory cortex, and inferior visual areas using masks from 

the BrainMap project (Fox et al., 1994). 

Results 

Behavioral analysis 

A one sample t-test on the responses from 17 participants showed that participants were 

able to perform the task above chance. (t(16)=7.652, p<.001, M=.77, SE=.04). There was 

no significant difference between the cross-modal and the modality-specific (t(16)=-

1.287, p=.216, CM: M=.74, SE=.05; MS: M=.78, SE=.03), or the two modality-specific 

conditions (t(16)=1.0, p=.332). 

Seed-based functional connectivity analysis in left ATL 

Cluster-based permutation was performed on a reduced search space comprising ventral 

visual and auditory areas to test for a difference in functional connectivity to left ATL 

between target words that were presented in the context of two visual, or two auditory 

features (Figure 6.3). The analysis revealed a significant negative cluster in the auditory 

mask (cluster-size: 50mm3; p=.036, two-sided), suggesting that auditory regions are 

more strongly connected to left ATL if participants are thinking about auditory versus 

visual features of the target word. In addition, a significant positive cluster was found in 

the ventral visual mask (cluster-size: 60mm3; p=.028, two-sided), revealing enhanced 

functional connectivity between left ATL and ventral visual areas when participants 

think about visual versus auditory features of an object. Taken together, these results 

suggest that functional connections between left ATL and modality-specific ventral 

visual, and auditory networks are modulated selectively when participants retrieve visual 

or auditory word meaning respectively. 

 If word meaning from a single modality selectively modulates functional 

connectivity between left ATL and modality-specific visual or auditory networks, 

accessing features from both modalities should enhance both pathways. To further test 

this hypothesis permutation-based t-tests with 1000 iterations were conducted 

comparing each modality-specific condition to the cross-modal condition in auditory and 

visual regions of interest. A permutation test was chosen because the data were not 

normally distributed. In the auditory ROI, there was a marginally significant difference 

between the visual and the cross-modal condition (t(17)=-1.92, p=.068), but no 

difference between the auditory and the cross-modal condition (t(17)=.58, p=.589). In 

ventral visual areas, this pattern was reversed. There was a marginally significant 

difference between the auditory and the cross-modal condition (t(17)=-1.88, p=.054), 
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but no difference between the visual and cross-modal condition (t(17)=.60, p=.543). 

Although these results are not considered statistically significant, we observe a trend, 

suggesting that accessing features from multiple modalities show a similar connectivity 

pattern as accessing features from a single modality in the congruent region (e.g. 

accessing visual features enhances functional coupling between ventral visual networks 

and left ATL). 

 

 

 

 

Figure 6.2. Seed-based connectivity analysis between left ATL, ventral visual (red), and 

temporal auditory  (blue) regions. The activation map illustrates the t-contrast between 

modality-specific visual (e.g., green-round-APPLE) versus auditory (noisy-thumping-

DRYER) feature integration (* p<.05;  † p<.08). 

 

Discussion 

Despite compelling evidence that left ATL is sensitive to specific semantic categories 

(Lambon Ralph et al., 2010; Pobric et al., 2010a; Coutanche and Thompson-Schill, 

2014) and widely connected to a distributed cortical network both structurally (Catani 

and Thiebaut de Schotten, 2008) and functionally (Hipp et al., 2012; van Ackeren and 

Rueschemeyer, 2014), there is little evidence for a direct contextual modulation of the 

connection weights between left ATL and modality-specific networks. The present study 
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directly addressed this problem. Participants were probed to think about auditory, visual 

or audio-visual features of a target noun while electromagnetic activity was recorded 

from the scalp using MEG. Seeded functional connectivity in the theta band was 

computed between left ATL and modality-specific visual (inferior occipital), and 

auditory (superior/middle temporal) networks. Based on the hub-and-spokes model and 

previous work (van Ackeren and Rueschemeyer, 2014), we predicted that long-range 

connections between left ATL and modality-specific networks should be selectively 

enhanced when participants access visual versus auditory word content. The current 

results confirmed this prediction. Specifically, the current study demonstrated that a) 

functional connectivity between left ATL and distributed semantic networks is mediated 

by (modality-specific) word content, and b) these long-range connectivity patterns are 

supported by slow cortical oscillations in the theta band. 

Distributed semantic networks are linked via left ATL 

Current neurocognitive models of semantic cognition agree that information is partially 

stored in distributed modality-specific networks (Binder & Desai, 2011; Damasio, 1989; 

Patterson et al., 2007; Tranel et al., 1997). According to the hub-and-spokes model, 

these distributed modality-specific networks are linked via a central hub in the ATL 

(Patterson et al., 2007). However, the neurophysiological mechanisms of how ATL and 

modality-specific networks communicate are currently not well understood. The present 

study demonstrates that accessing modality-specific semantic knowledge directly 

modulates the connection weights between left ATL and modality-specific networks. 

These results strongly support the hub-and-spokes model of semantic cognition, which 

postulates that concrete perceptual knowledge from distributed semantic networks 

converges in the anterior part of the temporal lobe.  

The focus of the current study was on accessing and combining perceptual 

features from one or multiple modalities, which in previous studies has been strongly 

associated with  the left ATL (Chiou et al., 2013; Coutanche and Thompson-Schill, 

2014; van Ackeren and Rueschemeyer, 2014). In previous years, other accounts have 

argued that information is integrated in multiple distributed convergence zones 

(Barsalou et al., 2003; Binder et al., 2009; Binder & Desai, 2011; Damasio, Tranel, 

Grabowski, Adolphs, & Damasio, 2004; Hagoort, 2005). These convergence zones are 

thought to be sensitive to specific feature combinations, and likely integrate information 

over a more local cortical scale than what is predicted about left ATL. While the design 

of the current study was not optimized to test any additional predictions about these 

convergence zones, oscillatory dynamics could provide useful insights about the 

neurophysiological mechanisms in these regions in the future 
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The present study also corroborates research on patients with semantic dementia 

who show a bias towards categorizing objects according to perceptual rather than 

conceptual similarity (Lambon Ralph et al., 2010). Specifically, damage to the 

intermediate layer in the ATL that connects modality-specific regions could prevent any 

cross talk between multiple semantic networks. This would explain SD patients’ reliance 

on simple perceptual features in categorizing concepts. Furthermore, the current results 

complement earlier findings by Coutanche and Thompson-Schill (2014) who showed 

that encoding success of individual items in left ATL depends on encoding success of 

perceptual features (shape and color) in posterior regions (inferior occipital/temporal 

lobe). Specifically, these dependencies could be established via direct long-range 

functional connectivity between hub and spokes as described in the present study. 

Finally, there was partial evidence that accessing features from different 

modalities simultaneously modulates ATL-visual, as well as ATL-auditory connections. 

This result is in line with recent evidence suggesting that words that are associated with 

motoric and visual information engage both modality-specific systems (van Dam et al., 

2012). Hoenig and colleagues (2008) further demonstrated that the activity in visual and 

motoric networks changes depending on which aspect of the object the participant is 

currently thinking about. In the context of the present study, one might predict that these 

patterns of activation could be the result of a modulation in the connection strength to 

left ATL, which is an interesting empirical question for future research. 

Taken together, the current findings provide an important contribution to the 

literature on semantic cognition, showing that the connection strength between left ATL 

and modality-specific cortical networks is indeed sensitive to which aspects of word 

meaning are accessed or integrated. Thus far, these functional interactions were mostly 

assumed or investigated by focusing on ATL and modality-specific networks in 

isolation. 

Slow oscillations support long-range interactions during semantic retrieval 

While many theories assert that the ATL operates as a central hub region during 

semantic cognition, little is known about the underlying neurophysiological processes 

that allow this region to communicate with a distributed cortical network. The present 

study showed that left ATL communicates with modality-specific regions in a task-

dependent way through slow cortical oscillations in the theta band. In addition, the 

current findings fall into a larger pool of previous research in animals and humans, 

suggesting that theta phase synchronization between temporal lobes and more 

widespread cortical structures is involved in memory processes at multiple levels such as 

working memory maintenance, and long-term memory encoding (Buzsáki, 2005; 
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Klimesch et al., 2001; Lisman, 2010; O’Keefe & Recce, 1993; Raghavachari et al., 

2001).  

 The relationship between temporal lobes and theta oscillations has also been 

demonstrated in a recent MEG investigation of resting state networks (Hipp et al., 2012). 

Specifically, the authors showed that temporal lobes show hub-like connectivity patterns 

(e.g., high centrality), particularly at the theta range. In contrast, parietal association 

cortices showed hub-like properties at higher frequency bands. The current study 

complements these earlier results, showing functional changes in these connection 

patterns in the context of semantic retrieval.   

Possible confounds resulting from field spread 

In previous work by van Ackeren and Rueschemeyer (2014), the authors used the 

imaginary part of coherency to study long-range network interactions between left ATL 

and a widespread cortical network. The use of this measure is particularly advantageous 

for EEG data, as it is not sensitive to spurious connectivity patterns resulting from field 

spread (Nolte et al., 2004). However, imaginary coherency is a conservative measure, 

which trades in reliability for reduced sensitivity (Gross et al., 2012). In the present 

study, phase locking (PLV) of oscillatory neuronal activity between two locations in the 

cortex was used as a proxy for long-range connectivity (Lachaux et al., 1999). PLV is 

more likely to detect functional connectivity patterns at the price of also being more 

sensitive to field spread. There were several reasons for choosing PLV over imaginary 

coherency. First, MEG has a more focal source solution than EEG, which effectively 

reduces field spread. The main reason for this is the fact that EEG is very sensitive to 

secondary currents, or volume conduction, whereas MEG is mostly sensitive to primary 

currents (Baillet, 2001). Additional reasons for a more accurate source model estimation 

in MEG include the fact that MEG usually uses more sensors, and is acquired in a 

magnetically shielded room that should reduce the effects of particularly high frequency 

noise sources. Second, field spread is particularly strong around the seed region. 

However, statistical contrasts in the present study were computed by comparing using 

two conditions (with equalized trial numbers) directly using. Field spread should be 

similar in the two conditions, and therefore be cancelled out. Lastly, the problem of field 

spread was reduced as the connectivity analysis was performed after the source-

reconstruction step. 
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Conclusion 

The current study reanalyzed the MEG dataset by van Ackeren et al. (in press), to test 

whether accessing modality-specific word content (auditory, visual, or audiovisual 

features) of a target noun is reflected in the functional connectivity patterns between 

supramodal left ATL and modality-specific cortical networks in inferior occipital 

(visual) and superior temporal lobes (auditory). The results showed enhanced functional 

connectivity between left ATL and inferior occipital networks when participants thought 

about visual features, while accessing auditory features was reflected in enhanced 

connectivity between left ATL and superior temporal regions. Furthermore, there was a 

trend in the data suggesting that accessing word content from both modalities enhances 

connection weights between left ATL and modality-specific auditory and visual regions 

equally. These results support neurocognitive models of semantic cognition, which 

postulate that distributed perceptual information is linked via ATL (Patterson et al., 

2007). Furthermore, the current study corroborates neurophysiological evidence 

suggesting that slow cortical oscillations in the theta band are involved in linking 

distributed semantic content (van Ackeren and Rueschemeyer, 2014). 
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Chapter 7:  

Towards a neurophysiological framework for semantic 

feature selection and integration 
 

The aim of the current thesis was to investigate the neurophysiological processes 

underlying selective retrieval and integration of word meaning using oscillatory 

neuronal dynamics. Oscillatory dynamics have been studied in the context of lexical-

semantic retrieval before (Bastiaansen, van der Linden, Ter Keurs, Dijkstra, & Hagoort, 

2005; Bastiaansen, Oostenveld, Jensen, & Hagoort, 2008; Hagoort, Hald, Bastiaansen, 

& Petersson, 2004; Pulvermüller, Lutzenberger, & Preissl, 1999), however, there is 

considerable variability in these results and it is not clear how to interpret them with 

respect to existing models of semantic cognition. A possible explanation for the lack of 

consistency is that hypotheses in psycholinguistic research are formulated at a different 

level of processing than the level at which oscillatory dynamics operate (Marr, 1982). 

While psycholinguistic research aims to identify specific cognitive computations, and 

how they are carried out, oscillatory dynamics could reflect how these computations are 

realized in an adaptive biological system. I discuss this view in Chapter 1 (‘A dynamic 

view on cognition’).  

The approach in the present thesis differs fundamentally from previous work, as 

the goal was not to relate oscillatory dynamics to cognitive processes directly, but to 

different classes of network interactions that are inherent to these processes. This 

strategy was motivated by current frameworks on cortical oscillations in humans 

(Donner & Siegel, 2011; Engel & Fries, 2010; Hanslmayr et al., 2012; Jensen & 

Mazaheri, 2010; Singer & Gray, 1995), which argue that oscillatory dynamics at 

different frequencies reflect more generic neurophysiological mechanisms, such as 

inhibition (Jensen & Mazaheri, 2010), local, and long-range communication (Donner 

and Siegel, 2011), and the amount of information encoded in the system (Hanslmayr et 

al., 2012), which jointly affect multiple cognitive systems. The empirical work presented 

in the current thesis has implications for two components of word level processing. 

These are a) the selection of perceptual semantic features, and b) the integration of word 

meaning in local and distributed cortical networks. The next section provides a brief 

summary of the results from all five empirical chapters. Subsequently, the findings are 

discussed in the broader context of current research on word retrieval. The discussion 

concludes with the limitations of the work presented as well as recommendations for 

future studies. 
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Summary of the main findings 

Chapter 2 

Recent studies have demonstrated that the neural response in modality-specific semantic 

networks during word retrieval is highly context dependent (Hoenig et al., 2008; Raposo 

et al., 2009; Willems and Casasanto, 2011; van Ackeren et al., 2012; van Dam et al., 

2012). For example, the motor system responds more strongly to a word like hammer, 

when participants think about how to use the hammer versus what it looks like (van 

Dam et al., 2012). However, the neural mechanisms that allow us to selectively retrieve 

specific perceptual features of a word are still poorly understood.  

The experiment described in Chapter 2 investigates this problem under the 

assumption that perceptual complexity, or the number of features in long-term memory, 

differs between different modalities. For example, there are more ways to describe what 

most objects look like (visual), than what they feel like (haptic). Participants were 

presented with concrete nouns and asked to provide two features of the target word 

describing either what it looks like (visual), sounds like (auditory), or feels like (haptic), 

while EEG was recorded from the scalp. Features in each modality were used to 

compute the feature entropy as a proxy for perceptual complexity. Entropy is a concept 

from mathematical information theory (Shannon and Weaver, 1949), which can be used 

to quantify the information richness or predictability of an event.  

The results reveal an early difference (~220ms) in the evoked responses to the 

target word when participants retrieve features from different modalities, suggesting that 

feature selection starts early during word processing. This finding is in line with recent 

research from other groups (Pulvermüller et al., 2005b, 2009; Kounios et al., 2009; 

Rabovsky et al., 2012). However, the main finding is that retrieving more complex 

information is inversely related to oscillatory power in the beta band. In other words, 

retrieving information from perceptually complex modalities (e.g., visual) induces a 

stronger reduction in oscillatory power than retrieving information from less complex 

modalities (e.g., haptic). The study is in line with a recent framework suggesting that a 

reduction in oscillatory power could signal an increase in the amount of information 

represented in the system at a given moment in time (Hanslmayr et al., 2012).  

Chapter 3 

Current neurocognitive models of language argue that word meaning is at least partially 

represented in a widely distributed cortical network (Patterson et al., 2007; Vigliocco et 

al., 2009; Pulvermüller and Fadiga, 2010; Binder and Desai, 2011). However, there is 
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currently a debate in the field as to where, and possibly how, this distributed information 

converges and is combined into a coherent representation. Chapter 3 reports a behavioral 

and an EEG experiment, which aim to address these questions.  Both experiments use a 

dual property verification paradigm: Participants were asked to indicate whether two 

feature words are consistent with a given target word (WHISTLE). Feature pairs were 

either from the same (tiny, silver) or different modalities (tiny, loud).  

The behavioral experiment demonstrates that integrating features across 

modalities incurs a robust processing cost as compared to integrating features from the 

same modality. The EEG experiment shows that integrating cross-modal information 

induces a more sustained increase in low frequency theta power. Source reconstruction 

of the effect reveals that the effect peaks in the left ATL, a region that is thought to link 

semantic content from distributed cortical networks (Patterson et al., 2007; Pobric et al., 

2010a, 2010b; Chiou et al., 2013; Coutanche and Thompson-Schill, 2014). The likely 

function of theta oscillations in linking distributed networks was confirmed in a seed-

based connectivity analysis; theta oscillations in the left ATL show a stable phase 

relationship with theta oscillations in a distributed cortical network. In line with the 

power analysis, these functional networks are more sustained when participants integrate 

cross-modal information.  

Chapter 4 

The EEG experiment in Chapter 3 demonstrates that theta oscillations are enhanced 

during cross-modal feature integration, likely reflecting more sustained network 

interactions between left ATL and a widespread cortical network. Yet, it is unclear 

whether these results reflect the integration of cross-modal information or rather 

modality-switching costs (Pecher et al., 2003). To address this problem, Chapter 4 

reports an EEG experiment using dual property verification where the same cross-modal 

or modality-specific feature pairs were either presented with a congruent, or incongruent 

target word. If the effect in Chapter 3 is sensitive to integrating rather than switching 

between modalities, a relative difference between cross-modal and modality-specific 

feature pairs is expected only for congruent, but not incongruent condition. Indeed, the 

results reveal an interaction effect between modality-specificity and congruency, 

confirming that theta oscillations are sensitive to the integration of multimodal, or 

distributed, semantic content.   

Chapter 5 

Chapters 3 and 4 demonstrate that low frequency theta oscillations could be involved in 

integrating semantic content from distributed semantic networks. Yet, the discussion on 
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oscillatory dynamics in the context of semantic integration has started with the idea that 

oscillatory dynamics at different frequencies reflect network dynamics at different 

cortical scales. Specifically, it has been argued repeatedly that low frequency 

oscillations (<30 Hz) are involved in more widespread network dynamics, while high 

frequency oscillations (>30 Hz) are involved in local network dynamics (von Stein and 

Sarnthein, 2000; Donner and Siegel, 2011). In the context of semantic integration, the 

framework predicts that integrating more distributed cross-modal information is 

reflected in low frequency oscillatory dynamics, which is demonstrated in Chapter 3 and 

4. However, integrating modality-specific information locally should be reflected in 

enhanced high frequency power.  

To address this latter prediction, the experiment reported in Chapter 5 uses 

MEG during dual property verification. The main advantages of using MEG over EEG 

are that MEG usually allows for a more focal source solution than EEG. The main 

reason for this is that MEG is much less sensitive to secondary currents, or volume 

conduction (e.g., in the skin and skull), than EEG. In addition, MEG systems usually use 

a higher number of sensors, further improving the accuracy of the source solution. A 

particular advantage of MEG in the context of studying high frequency oscillations is 

the empirical observation that high frequency dynamics are more common in MEG than 

EEG studies (Muthukumaraswamy & Singh). Possible reasons for this could be that 

MEG is usually recorded in a magnetically shielded room, which should reduce the 

effects of high frequency noise sources (Baillet, 2001), and the fact that MEG is less 

susceptible than EEG to muscle activity (Zimmermann & Scharein, 2004).  

There were three main results. First, the MEG study replicates the findings from 

Chapter 3 and 4, suggesting that theta oscillations reflect the integration of multimodal 

semantic content. Similar to the results from Chapter 3, the effect peaks in left ATL. 

Second, integrating features from the same modality elicits an early power increase in 

high frequency gamma power, which is localized to the left ATL and mPFC. Lastly, 

there is partial evidence for modality-specificity in auditory regions (left STG), which 

show a selective increase in gamma power when participants integrate two auditory 

features. These results confirm that integrating semantic features at different cortical 

scales is reflected in oscillatory neuronal dynamics at different frequencies in line with 

current frameworks on cortical oscillations (von Stein and Sarnthein, 2000; Donner and 

Siegel, 2011)  

Chapter 6 

Chapter 3 to 5 provide converging evidence that low frequency theta oscillations could 

be involved in integrating semantic content from distributed cortical networks. 
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Specifically, Chapter 3 demonstrates that theta oscillations connect distributed modality-

specific networks to a central semantic hub in left ATL. While this is evidence that theta 

oscillations could be involved in linking distributed semantic information, it is not 

conclusive evidence that these transient connections are indeed driven by semantic 

content. Such a conclusion would require that the connection weights between ATL and 

modality-specific networks are modulated as a function of word content (Hauk & 

Tschentscher, 2013).  

Chapter 6 investigates these predictions using an MEG dataset in which 

participants were asked to think about visual, auditory, or both auditory and visual 

features of a target word.  The theta phase-locking value (PLV) between left ATL and 

modality-specific visual (left iOC), and auditory (left STG) networks was used as a 

proxy for long-range functional connectivity between these regions. The results confirm 

that connection weights are higher between left ATL and auditory regions when 

participants think about auditory versus visual features, while connections to visual areas 

are stronger when participants think about visual versus auditory features. Furthermore, 

there is a trend in the data suggesting that both connections are enhanced when 

participants think about visual and auditory features at the same time. These results 

demonstrate that theta oscillations reflect functional network interactions, which could 

explain how word meaning in distributed semantic networks is coordinated and 

eventually integrated into a coherent conceptual representation. 

Selecting perceptual semantic features in memory 

Research investigating the neural basis of semantic memory and word meaning, has 

largely focused on the question where information is represented in the brain. For 

example, functional imaging studies have demonstrated that word retrieval engages 

distributed cortical networks in a way that is consistent with the (perceptual) semantic 

features encoded in the word (Hauk et al., 2004; Kiefer et al., 2008; Martin & Chao, 

2001; Simmons et al., 2007). More recent studies have shown that selecting specific 

features of a word can modulate the level of activation in modality-specific networks 

(Hoenig et al., 2008; Raposo et al., 2009; Willems and Casasanto, 2011; van Ackeren et 

al., 2012; van Dam et al., 2012). However, the neurophysiological processes of how 

these features are selected are still poorly understood. The present thesis addresses this 

problem in terms of when perceptual features are selected, and how local- and 

distributed neural assemblies communicate during feature selection. 
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Timing of lexical access 

Recent evidence suggests that some semantic features are accessed even within the first 

200ms after a word is presented (Hauk, Coutout, Holden, & Chen, 2012; Kiefer et al., 

2008; Pulvermüller et al., 2009; Pulvermüller, Shtyrov, et al., 2005; Shtyrov, Butorina, 

Nikolaeva, & Stroganova, 2014). The experiments described in Chapters 2 and 5 

contribute to this growing body of research. Specifically, Chapter 2 demonstrates that 

top-down selection of modality-specific feature content emerges already around ~220ms 

after a visual word is presented. Furthermore, the results from chapter 5 suggest that, 

around the same time period (150-350ms), the system selects multiple perceptual 

features in parallel, as long as all features come from the same perceptual modality (e.g., 

visual: green, round, shiny, etc.). These results are also in line with behavioral evidence 

from Chapter 3, and studies on conceptual modality switching (Pecher et al., 2003), 

which demonstrated processing benefits for accessing information from the same 

modality.  

Taken together, previous work has demonstrated that dominant semantic 

features (e.g., motor, auditory) become available early during lexical access 

(Pulvermüller et al., 2005b; Kiefer et al., 2008; Shtyrov et al., 2014). Chapters 2 and 5 

further show that early feature selection (around ~200ms) can be biased by the task (i.e., 

focus on visual, auditory, haptic features), which challenges the argument that early 

semantic effects reflect automatic and bottom-up processes. Furthermore, Chapter 5 

reveals that around the same time window, multiple features are selected near 

simultaneously, as long as the information is similar (i.e., from the same modality). 

Network dynamics during perceptual feature access 

It has been argued that oscillatory neuronal dynamics could be used as a window to 

study how local- and distributed neural assemblies communicate during a cognitive task 

(Donner & Siegel, 2011; Hanslmayr et al., 2012; Jensen & Mazaheri, 2010; Singer & 

Gray, 1995; Tallon-Baudry & Bertrand, 1999; von Stein & Sarnthein, 2000). However, 

while oscillatory neuronal dynamics have been studied in the context of lexical-semantic 

retrieval before (Bastiaansen, van der Linden, Ter Keurs, Dijkstra, & Hagoort, 2005; 

Bastiaansen, Oostenveld, Jensen, & Hagoort, 2008; Klimesch et al., 1994; Pulvermüller, 

Lutzenberger, & Preissl, 1999), the rationale for studying oscillatory dynamics is often 

poorly motivated. This issue is discussed in some depth in Chapter 1. 

 Reading a word induces a complex change in oscillatory brain rhythms across 

multiple frequency bands. For example, as the word is presented, theta power (4-8 Hz) is 

enhanced, while alpha, and beta power (10-30 Hz) are suppressed (Figure 7.1). While all 
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experiments in the current study demonstrate a spectral profile of this form, different 

frequency components have been shown to be involved in different neurophysiological 

processes underlying word retrieval.  

Chapter 2 demonstrates that beta power is suppressed when more complex 

information is retrieved from memory. However, no changes in beta power are observed 

in any of the experiments investigating feature integration (Chapter 3 and 5). Thus, 

while it may be that oscillatory suppression or desynchronization is sensitive to the 

amount of information retrieved from memory, as demonstrated previously (Khader and 

Rösler, 2011; Hanslmayr et al., 2012), there is no evidence that these oscillations are 

involved in integrating information (Bastiaansen, Magyari, & Hagoort, 2010). This 

might not be surprising given that the temporal correlation hypothesis states that 

information is integrated via synchronization rather than desynchronization (Singer and 

Gray, 1995). In contrast, a number of recent studies have argued that alpha/beta 

oscillations reflect a sustained gating of neuronal activity, which is suppressed as 

information becomes available (Engel & Fries, 2010; Hanslmayr et al., 2012; Jensen & 

Mazaheri, 2010; Jokisch & Jensen, 2007; Waldhauser et al., 2012). For example Obleser 

and Weisz (2012) have demonstrated, using spectrally degraded speech stimuli, that 

oscillatory power in the alpha/beta band is suppressed as the speech stream becomes 

intelligible, that is when participants start retrieving semantic content. 

Taken together, the empirical work presented in the current thesis suggests that 

oscillatory power in the beta range might reflect an ongoing inhibition of semantic 

information in long-term memory, which is reduced gradually as more complex 

information is retrieved. It is worth pointing out that these mechanisms are by no means 

specific to the language system. For example, it is well established that movement 

initiation relies on the suppression of inhibitory mechanisms in the basal ganglia. 

Interestingly, local field potentials recorded from this region in Parkinson’s disease 

reveal largely enhanced beta power that has been linked to an over-inhibition in this area 

(Brown, 2006). 
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Figure 7.1. Illustration of the oscillatory dynamics during the presentation of a visual 

word. Low frequency-theta power shows a sustained increase, while alpha and beta 

power are suppressed. 

Integrating multimodal semantic content 

The main focus of present thesis was to investigate how multimodal semantic content is 

combined in a distributed semantic network. This problem can be further subdivided by 

asking where semantic information converges, and what the mechanism is that binds 

semantic content at multiple cortical scales. The next sections will discuss how the 

empirical work presented in the current thesis has addressed these two questions and 

what the implications are for neurocognitive models of semantic cognition. 

Multimodal semantic content converges in left ATL 

Many theories agree that semantic knowledge is represented in a distributed cortical 

network (Barsalou et al., 2003; Damasio, Tranel, Grabowski, Adolphs, & Damasio, 

2004; Martin & Chao, 2001; Patterson et al., 2007; Vigliocco et al., 2009), however, 

there is little consensus about where in the brain this information is combined into more 

complex multimodal object representations. Based on functional imaging studies, and 

evidence from patients who show category selective semantic deficits as a result of 

stroke, some theories suggest that modality-specific semantic content is combined at 
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multiple locations, or convergence zones that reside in association cortices between 

sensory areas (Barsalou et al., 2003; Damasio, Tranel, Grabowski, Adolphs, & Damasio, 

2004; Martin & Chao, 2001). In contrast, others have argued that distributed semantic 

content converges in a single hub, possibly in the ATL. This view is mainly based on 

neuropsychological evidence from dementia patients who show a generalized semantic 

deficit resulting from severe and progressive atrophy in the ATL (Hodges et al., 1992, 

1994). However, very few imaging studies have reported ATL activation during 

semantic tasks, as the signal-to-noise ratio in this area is particularly low (Visser et al., 

2010). Which of the two views is correct is still a major discussion in the field. 

Chapter 3, 5, and 6 speak to this issue; left ATL, extending from the temporal 

pole ventrally into the parahippocampal gyrus, is found to be more sensitive to feature 

integration (Chapter 3 and 5), and shows enhanced functional connections to a 

distributed cortical network (Chapter 3 and 6). While other regions do show some 

sensitivity to this condition, only the pattern in left ATL is replicated in a different 

stimulus set and imaging modality (EEG in Chapter 3 and 4, and MEG in Chapter 5). 

Recent studies have demonstrated that conceptual processing in the ATL is partly reliant 

on perceptual processing in posterior areas (Coutanche and Thompson-Schill, 2014), and 

targeting left ATL with theta burst stimulation disrupts binding between an object and 

its canonical color  (Chiou et al., 2013). However, the majority of these studies are 

restricted to visual image processing. The current study uniquely contributes to this body 

of evidence demonstrating that left ATL fulfills a similar function when semantic 

content of words is retrieved from long-term memory.  

But, while much of the evidence in Chapter 3 and 5 suggests that left ATL is 

involved in semantic feature integration, Chapter 5 demonstrates that integrating 

features from the same modality also engages modality-specific semantic networks. For 

example, integrating two auditory features  (e.g., loud, shrill) with a target word 

activates an auditory network in left STG. Taken together, these results suggest that 

semantic features are not integrated at one location only (ATL). Rather, depending on 

the perceptual semantic content, graded feature integration could already occur in 

modality-specific networks. 

Lastly, it should be pointed out that, although the results from Chapter 3, 5 and 6 

support the idea of a central hub in left ATL, this does not mean that convergence zones 

are not relevant for semantic cognition. Indeed, the current thesis suggests that 

integrating features from the same modality already starts in modality-specific networks. 

The hub might be an additional layer where information from multiple modalities 

converges. There is currently a divide between theories that advocate a single hub, 

versus theories in favor of multiple convergence zones. Yet, the current thesis 
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demonstrates that the answer might lie in the combination of both approaches. However, 

one difficulty in comparing the present results to previous work is that many previous 

studies have used images rather than words as stimuli, and there is evidence to suggest 

that category specific patterns of activation might be sensitive to the presentation 

modality (Devlin, 2002; Devereux et al., 2013; Rice et al., 2014). 

Oscillatory dynamics reflect local- and long-range network dynamics during 

semantic retrieval. 

The question where in the brain semantic information is combined has received a lot of 

attention in recent years. However, few studies have investigated what the network 

dynamics within a central hub could be, and how it communicates with distributed 

modality-specific networks. The experiments described in Chapters 3 to 6 directly 

address this problem by investigating changes in oscillatory activity when participants 

combine semantic feature from the same or multiple modalities. Oscillatory dynamics 

are thought to reflect synchronized firing of large neuronal populations (Singer and 

Gray, 1995; Musall et al., 2012), and are considered a proxy for local (von Stein and 

Sarnthein, 2000; Donner and Siegel, 2011), and long-range network interactions (Hipp, 

Engel, & Siegel, 2011; Klimesch, Freunberger, Sauseng, & Gruber, 2008; Lachaux et 

al., 1999; Varela & Lachaux, 2001).  

 Cortical oscillations are interesting for studying how semantic information is 

dynamically integrated at multiple levels. For example, local oscillatory changes 

(changes in spectral power) should respond differently to information that is more 

distributed at the level of the cortex (e.g. information from the same, or different 

modalities). This is an advantage with respect to functional imaging in which the 

dependent variable is referred to as activation or percent signal change (Singh, 2012). In 

addition, phase relationships between oscillatory dynamics in different regions are often 

used as a proxy for how multiple regions communicate (Lachaux et al., 1999). In the 

context of semantic processing, this method can be used to test how retrieving different 

types of information affects the connection weights between a single hub, or multiple 

convergence zones and modality-specific cortical networks.  

 The experiments described in Chapters 3 to 5 consistently demonstrate that low 

frequency theta oscillations, generated in left ATL, are involved in integrating 

perceptual semantic features; all three experiments show a more sustained increase in 

the theta band when participants are asked to integrate features from multiple modalities, 

that is, features that are represented in a more distributed fashion. Importantly, these 

results should not be interpreted such that theta oscillations are sensitive to cross-modal 

features pairs only; rather, theta oscillations could be generally involved in dynamically 
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linking neural assemblies in the temporal lobe to distributed sites in the neocortex (Hipp 

et al., 2012). Specifically, Chapter 3 demonstrates that theta oscillations in left ATL and 

a distributed cortical network become phase-locked when participants retrieve, and 

integrate feature knowledge from the same or multiple modalities. The central role of 

theta oscillations for temporal lobe connectivity has been demonstrated in a recent study 

in resting state networks (Hipp et al., 2012). Hipp and colleagues demonstrated that the 

connectivity pattern in the temporal lobe reveals hub-like network properties (high 

degrees, high betweenness) particularly in the theta range. However, extending these 

findings, and the results from Chapter 3, Chapter 6 demonstrates that theta oscillations 

connecting left ATL to modality-specific networks are modulated by semantic feature 

content. Thus, the empirical work presented in previous chapters suggests that theta 

oscillations reflect the coordination of distributed information from long-term memory, 

which is an inherent component of semantic integration. Furthermore, these dynamics 

likely reflected both in theta power, and phase. 

 While theta oscillations seem to be involved in long-range network interactions, 

Chapter 5 demonstrates that gamma oscillations could be particularly sensitive to local 

network interactions. Specifically, integrating features from the same modality has been 

shown to elicit enhanced gamma activity in left ATL as well as modality-specific 

cortical networks (left STG for auditory feature integration). These results suggest a 

complex system of high and low frequency oscillations that retrieve, and possibly 

integrate, information at different cortical scales (von Stein and Sarnthein, 2000; Donner 

and Siegel, 2011). As discussed in the introduction, enhanced theta and gamma power 

are frequently observed in memory research (Axmacher et al., 2006; Osipova et al., 

2006; Düzel et al., 2010). However, the studies presented in the current thesis are unique 

in the way that the contribution of each frequency is linked to the scale at which 

semantic information is integrated.  

 Nevertheless, a final question remains: how do local and long-range network 

dynamics, or high, and low oscillatory frequencies interface with each other? Previous 

research has demonstrated that local gamma power is modulated, or gated by the phase 

of the theta, and in some experiments alpha, rhythm during memory tasks (Axmacher et 

al., 2010; Canolty and Knight, 2010; Voytek et al., 2010; Friese et al., 2012). The 

analyses in Chapter 5 and 6 provide indirect evidence for this claim. Specifically areas, 

which showed a local increase in gamma power during modality-specific feature 

integration (left STG, and iOC), also revealed enhanced phase-locking with left ATL in 

a way that was consistent with the semantic content of the features.  
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Towards a neurophysiological model of semantic feature retrieval and integration 

The experiments presented in the current thesis provide unique, and novel insights into 

the neurophysiological basis of semantic feature selection and integration. These 

findings should be considered a starting point for future research, and a guide to 

formulate hypotheses about language, and semantic processing, which are in line with 

current frameworks on cortical oscillations. The model described in Figure 7.2 is an 

attempt to integrate the current findings with the hub-and-spokes model, which proved 

to be most consistently supported by the experiments in the present thesis (Chapter 3 and 

5). 

 The main architecture of the model consists of modality specific semantic 

networks that are connected via a central hidden layer in the ATL. The current findings 

suggest that these long-range connections are reflected in slow theta oscillations 

(Chapter 3 and 6). In contrast local interactions in modality-specific regions are 

characterized by high-frequency gamma, and possibly beta oscillations (Chapter 2 and 

5). However, while gamma oscillations are shown to be sensitive to the integration of 

information (Chapter 5), beta suppression might reflect the read-out of semantic features 

from memory (Chapter 2). However, as no source reconstruction was performed on the 

data in Chapter 2, whether beta suppression is modality-specific needs to be further 

investigated. There is some prior research suggesting that this might be the case (Jokisch 

and Jensen, 2007; Khader and Rösler, 2011; Waldhauser et al., 2012). Lastly, Chapter 5 

reports that gamma oscillations in the ATL are also sensitive to local feature integration. 

Modality-specificity in the ATL has only recently been demonstrated (Bonner & Price, 

2013; Peelen & Caramazza, 2012), and certainly merits further investigation. The 

finding that different oscillatory dynamics are sensitive to different types of network 

interactions, even within the same region, can be a powerful way to isolate specific sub-

processes in the ATL. 

 

 

 

 

  



112 

 

 

Figure 7.2. The extended hub-and-spokes model. The foundation of the model is the 

hub-and-spokes model in which modality-specific semantic networks (green, blue, 

orange, grey) are connected via a central hub in the ATL (red). The extended model 

includes parameters illustrating which oscillatory frequencies operate at different levels 

of the model. Long-range connections are reflected in low frequency theta oscillations, 

while local interactions (illustrated as recurrent connections) are dominated by high-

frequency gamma oscillations. Beta suppression could reflect the readout of modality-

specific feature content. 

 

Language as a model for testing theories on cortical oscillations 

The major aim of the current thesis was to investigate the neurophysiological basis of 

semantic feature selection and integration. To this end, oscillatory neuronal dynamics 

were used as a tool to study local- and long-range network interactions during semantic 

tasks. However, the experimental work presented in the current thesis reveals that it is 

possible to use language as a tool to test hypotheses about the function of different 

cortical oscillations. For example, Chapter 2 demonstrates that the complexity of the 

information retrieved is related to oscillatory desynchronization which is directly in line 

with the information via de-synchronization hypothesis (Hanslmayr et al., 2012). 

Furthermore, the dissociation between high, and low frequency oscillations (Chapter 3 

and 5) for integrating local and distributed information is support for a recent framework 

by Donner and Siegel (2011), and an earlier hypothesis by von Stein and Sarnthein 

(2000). In short, despite earlier inconsistencies in studies investigating oscillatory 

dynamics during language processing, the experiments in the current thesis demonstrate 
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that it is possible to address questions about the function of different oscillatory 

dynamics using language processing and vice versa. 

Limitations 

It is argued throughout the thesis that the study of cortical oscillations can provide novel 

and unique insights into the neurophysiological basis of semantic processing, and the 

underlying network dynamics in particular. Yet, there are a number of more general 

limitations that require further clarification.  

The time scale of oscillatory responses  

Recent evidence suggests that modality-specific semantic knowledge is accessed very 

rapidly (Hauk et al., 2012; Kiefer et al., 2008; Shtyrov et al., 2014), and this is 

demonstrated in Chapter 2 of the current thesis. Yet, some of the effects in the frequency 

domain (e.g., theta power increase for cross-modal feature integration) emerge as late as 

750ms after target onset. There are a number of reasons why the timing of oscillatory 

changes is difficult to interpret. First, the time-frequency analyses performed in the 

current thesis, particularly in the low frequency domain, are computed using a sliding 

time window of 500ms. While this is necessary for a robust estimation of spectral power 

in the low frequency domain, as well as a sufficient frequency resolution, it also 

introduces severe time-domain smoothing. Thus a late oscillatory component is likely to 

start much earlier in time.  

Second, one might argue that low frequency oscillatory dynamics are too slow 

to capture fast language phenomena. It is demonstrated in Chapter 2 that low frequency 

cortical oscillations in the first 500ms connect left ATL to a widespread cortical network 

across all conditions. Given the speed and fluency of language processing, it may be that 

the network is triggered already in early stages of visual processing, as a stimulus is 

interpreted or predicted to be a word. From this point onwards, even if it took a full theta 

cycle, modality-specific content could still be accessed between 125 and 250ms after 

stimulus onset (for a 4-8 theta rhythm). However, while activating the network is likely 

to be fast and locked to stimulus onset, the offset is much more variable. Indeed it has 

been demonstrated that cortical rhythms, induced by alternating current stimulation 

(TACS), show an after effect beyond stimulation offset (Neuling et al., 2013). In the 

context of the experiments in Chapters 3-5, the difference between integrating cross 

modal versus modality-specific features observed around 750ms likely emerges at an 

earlier point in time. Again, the timing of the effect is very difficult to interpret, and 

should not directly be compared with data from evoked potentials.  
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Lastly, it should be emphasized that the goal of studying oscillatory dynamics 

should not be to answer questions about the timing of an effect, but rather about the 

neurophysiological mechanisms, or network dynamics 

The preparation period and pre-target integration 

In the dual property verification tasks described in Chapters 3-6, it could be argued that 

some form of integration already occurs before the target word is presented. However, 

while participants will certainly have made predictions about the upcoming stimulus 

during that period, the stimuli were designed, and rated, such that the target word was 

unlikely to be guessed based on the feature pair alone. In addition none of the 

experiments showed a significant effect in the period preceding the target word. Thus, 

the moment of integration was most likely reduced to the presentation of the target 

word.  

Recommendations for future research 

The current thesis has demonstrated that oscillatory dynamics can be used to acquire 

novel insights into the neurophysiological mechanisms underlying semantic feature 

selection and integration. However, as pointed out previously in this chapter, the 

framework presented here should not be considered exhaustive. Rather, it can be used as 

a guide for future studies on language processing. In this section, I will point out some 

of the ways in which the current framework could be used or refined. 

 In recent years, a large number of functional imaging studies have demonstrated 

how MVPA can be used to test whether a region is sensitive to semantic differences 

between conditions (e.g., Peelen and Caramazza, 2012; Coutanche and Thompson-

Schill, 2014). Other studies, particularly in the embodied cognition literature, have used 

conjunction analysis to show that the same region is sensitive to different tasks (e.g., 

color perception and color words) (Simmons et al., 2007; Kiefer et al., 2008). However, 

these studies cannot be considered evidence that two tasks also engage the same 

neuronal populations. In contrast, chapter 5 demonstrates that the same region might be 

sensitive to different conditions, but the oscillatory dynamics are still very different. 

Thus, oscillatory dynamics might be a useful way of insolating different processes even 

within the same region. This could be particularly important for a focused investigation 

of what is encoded in the ATL.  

 Furthermore, fMRI studies are usually interpreted in terms of task induced 

activation in a given region. Yet, Chapter 2 has demonstrated that semantic features 
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might be selected through disinhibition, rather than activation. It is not clear how these 

patterns relate to the neural activity usually reported in fMRI studies (Singh, 2012). 

 The experiments presented in Chapter 3 to 6 suggest that integrating semantic 

features is supported by an interplay between high and low frequency oscillations. It has 

been argued in recent years that theta reflects a gating mechanism such that gamma 

power is more enhanced at specific points in the theta cycle. However, while phase-

amplitude coupling has been demonstrated in memory tasks, much of this evidence is 

based on electrocorticography  (ECoG) data in patients who are undergoing surgery for 

epilepsy (Voytek et al., 2010). Due to a much lower signal to noise ratio, as well as the 

lack of a source reconstruction method that truthfully captures this effect, evidence for 

phase-amplitude coupling in EEG and MEG is rare. Thus, future studies using ECoG 

recordings could use the present framework to test if the theta rhythm in ATL does in 

fact modulate gamma amplitude in modality-specific regions. 

 Lastly, all experiments presented in the current thesis demonstrate oscillatory 

changes that co-occur with a particular task manipulation. Similar to fMRI, these data 

should be considered correlational. In other words, there is no evidence that cortical 

oscillations drive semantic processing in a causal way. However, recent studies have 

started to artificially induce oscillatory frequencies that resemble the natural cortical 

rhythms of the brain (Neuling et al., 2013). This method, called transcranial alternating 

current stimulation (TACS), has great potential for testing whether oscillatory 

frequencies have a causal role in cognitive processes. For example, based on the current 

data one might predict that inducing a theta rhythm in the ATL could activate the 

semantic network and improve performance on semantic tasks. In contrast, inducing a 

beta rhythm should block features selection, and impair semantic processing 

significantly. 

Conclusions 

A large number of studies in recent years, using a range of different methods, have 

suggested that word meaning might at least be partially stored in distributed modality-

specific networks (Barsalou et al., 2003; Binder & Desai, 2011; Damasio et al., 2004; 

Martin & Chao, 2001). Furthermore, the level of activation in each of these networks 

depends on the dominant semantic features of a word (e.g., action verbs activate action 

areas) (Hauk et al., 2004; Kiefer et al., 2008; Simmons et al., 2007), and what type of 

information the person is currently attending to (e.g., do you use the object with your 

hand?) (Hoenig et al., 2008; van Dam et al., 2012). The aim of the present thesis was to 

investigate a) how these features are selected and b) how multiple features are combined 
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into a coherent representation. The main focus of the current work was on the role of 

cortical oscillations in these processes. Specifically, cortical oscillations in recent years 

have been used as a proxy for different types of network dynamics in the underlying 

neuronal populations (Donner and Siegel, 2011). The current results suggest that top-

down selection of semantic features starts early (around ~200ms), and likely involves a 

selective disinhibition, which is reflected in a reduction in oscillatory power around the 

beta band. In contrast, feature integration involves an interplay between local- and long-

range network dynamics that are reflected in low frequency theta, and high frequency 

gamma power. Finally, the results suggest that the left ATL might play a critical role in 

binding semantic information, by linking semantic content from distributed cortical 

networks. 
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Appendix 

 
Complete lists of all stimuli used in the experiments described in Chapter 2-6 can be 

retrieved from the website accompanying this thesis: 

 

https://sites.google.com/site/oscillationslexicalsemantics/  
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