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Abstract

The first chapter presents an extended survey of the literature on dynamic deci-
sion making under ambiguity, focusing both on the theoretical modelling and the
available empirical findings. The second chapter, experimentally investigates indi-
vidual choice under ambiguity in a dynamic setting. Assuming that people have
non-Expected Utility preferences, the study is aiming to understand how people
update their prior beliefs in a sequential problem. Three different types of decision
makers are identified: resolute, naive and sophisticated. In the third chapter, three
alternative ways to model stochastic decision making when the choice variable is
continuous are presented. These specifications are then tested with data collected

from a tailor-made economic experiment.
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Introduction

This thesis focuses on issues of Dynamic Decision Making under Ambiguity. The
term ambiguity is used in the sense that was initiated in the literature by Knight
(1921) and Keynes (1921) and describes situations different than risk. In risky
choice, a probability distribution exists and it is well-defined and known to the
decision maker, while in ambiguous environments there is a lack of a similar
distribution. Decision making under ambiguity consists one of the most rapid-
growing topics in economic theory and this is not quite surprising, since most of
the decisions in actual economic life need to be made in environments where the
available information is limited and the decision maker is expected to form some
kind of prior beliefs.

The standard model in economic theory, Subjective Expected Utility (SEU, Savage
(1954)) assumes that the decision makers are Bayesian, which means that they are
able to form subjective beliefs in the form of an additive probability distribution
and that they make decisions by maximising the Expected Utility based on their
beliefs and the outcomes at each possible state of the world. In addition, this
model is easily extended to its dynamic framework, as it suffices to assume that
these prior beliefs are updated in line with the Bayesian updating rule, which
ensures the dynamic consistency in choice, a standard assumption in both the
microeconomics and macroeconomics literature. Ellsberg (1961) with his famous
paradox, challenged the validity of SEU and the result was a vast literature of
non-Expected Utility models with the respective experimental studies to emerge.
A direct extension of these models is their dynamic version and how they can cope
with information reception and updating of prior beliefs. Although the theoretical
contributions on this topic are quite extended, there is a lack of empirical studies to

confirm or reject the various models and updating rules that have been suggested.
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The scope of this thesis is to provide some insights on how people update their

prior beliefs and how they decide in the presence of ambiguity.

This thesis consists of three chapters. The first chapter provides a comprehen-
sive literature review on dynamic choice when ambiguity characterises the future
states of the world. The main scope is to present a coherent survey on the problems
of consistency of behaviour in ambiguous environments, and critically discuss the
different approaches that have been suggested in order to interpret these incon-
sistencies. The survey is then complemented with a discussion on the empirical
findings that are available on this issue and a presentation of the updating rules
for one of the most eminent family of models of decision making under ambiguity

(MaxMin Expected Utility).

In the second chapter, building on the conclusions of chapter 1, that when sub-
jects exhibit attitudes towards ambiguity (either aversion or preference for ambi-
guity) then preferences cannot be represented by the standard Expected Utility
model, we present the design and the results of an economic experiment on dy-
namic decision making under ambiguity. In this experiment we aim to understand
how people behave in a dynamic problem under ambiguity, how do they update
their prior beliefs and which is the alternative, non-EU model that best captures
all these issues. One of the novelties of this experiment is that it deviates from
the standard way that ambiguity is represented in the lab and instead of using
standard Ellsberg type urns, a Bingo Blower was used. This device is a transpar-
ent, non-manipulable way to represent ambiguity, which eliminates the suspicion
that the Ellsberg-type urns generate. Then, we ask a series of allocation problems
to the subjects in a sequential choice problem. Based on the data gathered from
the experiment, we specify different types of decision makers and we fit the data
to different preference functionals and updating rules. We identify three types of

decision makers, the resolute, the naive and the sophisticated.

In the third chapter, we build on a methodological problem that was created
in the analysis of the experimental data in chapter 2 in the modelling of stochas-
tic choice. As the decision task includes allocation problems (instead of pairwise

choices, Holt-Laury price lists, Holt and Laury (2002) and the Becker-DeGroot-
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Marschak mechanism, Becker et al. (1964)) with two of more assets, standard ways
of modelling stochastic choice are not any more applicable. When the optimal allo-
cation is zero or negative, and a CARA utility function is assumed, then technical
difficulties render the estimation of the assumed preference functional impossible
as the underlying distributions degenerate. In addition, assuming a power func-
tion to represent utility, is a quite restricting assumption as it rules out behavioural
patterns (boundary allocations)that are reasonable to be expected during an ex-
perimental session or even in real-life economic applications. In this chapter, we
present two alternatives to the CRRA modelling specifications for the stochastic
term, that allow for boundary allocations. We run an extended simulation and
an economic experiment to compare the three proposed stochastic specifications
and to understand the consequences that mis-specification in the stochastic choice

modelling has.



Chapter 1

A Survey on Dynamic Decision
Making under Ambiguity:
Theoretical Findings and

Experimental Evidence

1.1 Introduction

The scope of this chapter is to provide a comprehensive literature review on
dynamic choice when ambiguity for the future states of the world is present. It is
taken for granted that the issues that this survey aims to cover, require space that
considerably exceeds the size of a doctoral thesis. Nevertheless the main scope
is to present a coherent survey on the problems of consistency of behaviour in
ambiguous environments, and critically discuss the different approaches that have
been suggested in order to interpret these inconsistencies. The survey is then com-
plemented with a discussion on the empirical findings that are available on this
issue and a presentation of the updating rules for one of the most eminent family
of models of decision making under ambiguity (MaxMin Expected Utility). Sim-
ilar work has been done by Al-Najjar and Weistein (2009) and to a less extended
degree by Klibanoff and Hanany (2007) and Siniscalchi (2011) and more recently
by Hammond and Zank (2014). In all the above works, the discussion is con-

strained to comparing the different ways that deviations from Subjective Expected
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Utility (SEU) in a dynamic problem can be accommodated. Nonetheless, they do
not proceed to discuss the behavioural implications of certain approaches, neither
the descriptive validity they have. The chapter is organised as follows: In the next
section, the problem of decision making under ambiguity in a static framework
is presented. The aim is to introduce some basic notions, upon which the topic
of the thesis is based. Then, the standard problem is extended to its dynamic,
or differently, its sequential version and the subsequent behavioural anomalies
that emerge are explained. In section 1.3, the different theoretical approaches to
overcome similar anomalies are illustrated. In section 1.4, we present the differ-
ent types of decision makers that can be identified, depending on the way they
cope with the dynamic problem. Section 1.5 presents the main empirical findings
based on experimental results. The experiments are divided in four categories,
dynamic choice under risk, experiments that aim to classify different types of de-
cision makers, dynamic choice under ambiguity and finally experiments that test
learning under ambiguity. In section 1.6, we present an example of how differ-
ent updating rules are applied to the 3-colour Ellsberg paradox, when MaxMin

Expected Utility preferences are assumed. Then we conclude.

1.2 Theoretical Framework and Notation

Before starting, it is necessary to introduce some notation and some definitions
that will be useful for the presentation of the axioms to follow. We consider a set
S as the set of states of the world and a X-algebra of subsets of S and denote X as
the set of consequences. Let F the set of all the simple acts, all the ¥-measurable
functions f : S — X. X is defined as the subset of constant acts in F such that,
for any x € X, x(s) =s for any s € S. For any f,g € F and A € ¥, fAg denotes
the act which yields f(s) for s € A and g(s) for s € A° = S\ A. Also we define the
preference relationship 2~ and we for the moment we assume a von Neumann-
Morgenstern utility function u : X — R.

A prospect is denoted as (Ej,x1;E2, x2,...;Eyx,) where the outcome x; is ob-
tained if the event E; happens. The idea of ambiguity is that there is a series of
events Eq,Ey,...E, and only one will happen but this is not known with certainty

and there is a lack of an objective probability distribution over the different events.
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The standard assumptions of weak ordering hold in this framework. The decision
maker is endowed with a preference relationship 77 over the different prospects
which is complete and transitive. Similarly, >~ defines strict preference and ~
defines indifference. The certainty equivalent is defined as the sure amount of
income that makes the decision maker to be indifferent between this amount and
the prospect.

Then, since the focus is on dynamic or sequential choices that are realised after
the acquisition of some relevant information, the preference relationship should be
extended to its conditional form. Thus, by 2~ we refer to a preference relation on
F, which represents the preferences of the decision maker based on the updated

beliefs after receiving the information related to E.

1.2.1 The Ellsberg Paradox

The thought experiment that Daniel Ellsberg presented in his seminal paper on
1961 became the departure point for a vast literature that challenges the famous
Savage Axiom, or the Sure-Thing Principle, but also the notion of probabilistic sophis-
tication (both to be explained later). The main message of these experiments is that
regardless of the way the subjects decide, it is impossible to assume that they act
according to a well-defined probability distribution. The idea was that due to the
presence of ambiguity aversion the subjects experience preference reversals. The

decision task is the following:

Ellsberg’s Two-colour Urn

In the first experiment (Two-Colour Ellsberg Paradox) the subject is asked to
choose between bets that involve two urns, urn I and urn II. Each urn has 100
balls. In urn I it is known that 50 balls are Black and 50 are Red. In urn II there
is no information given concerning its composition. The subject needs to decide
between the bets that are shown on Table 1.1.

Bet f pays 100 monetary units if a Red ball from urn 1 is drawn (denote this
as Rp) and zero otherwise. Similarly, bet ¢ offers a prize of 100 if a Red ball is
drawn from urn 2 and zero otherwise (Ry). f’,¢’ are symmetrically defined as
(B1,B2). Then, a subject is asked to choose between the following bets: (Ri, By),

(R2,B2), (R1,Rz) and (By, By). Focusing on the last two bets, a common response to
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Table 1.1 Two-colour Ellsberg Urn

URN I URN II
bet r b r b
f 100 0

g 100 0
% 0 100
g’ 0 100

Table 1.2 Three-colour Ellsberg Urn

30 60
bet b r y
f 100 O 0
g 0 100 O
f’ 100 0 100
g 0 100 100

these bets is that: (R; > R») and (By > Bp). Choosing so, means a direct violation
of the axioms of Expected Utility (EU). In this experiment if we obtain that g < f
and ¢’ < f’ this is a violation of the requirement that the probabilities should
sum up to 1 since if the preferences are like above, it holds that P(R;) < P(R)
andP(B;) < P(B,) violating the relationship that

P(R1) + P(B1) = P(Rz) + P(B2) =1

This pattern is inconsistent with the Sure-Thing Principle leading to contradiction
with the subjective Expected Ultility model, but it is also a violation of the proba-

bilistic sophistication as it is defined by Machina and Schmeidler (1992).

Ellsberg’s Three-colour Urn

In the second experiment (Three-Color Ellsberg Paradox), urn I has 90 balls of
which 30 are Black (B) and the rest 60 are Red (R) and Yellow (Y) (unknown
proportions) and could be any number between 0 and 60. The decision maker
(DM) has to decide between the following bets that pay the amounts below:

The DM firstly has to decide between the bets f and g and then between f’ and
¢'. Empirically, subjects prefer f to g and ¢’ to f’ which is a violation of the Sure-
Thing Principle since the bets f’ and ¢’ are obtained by changing the common

outcome in yellow from 0 to 100. Using the SEU and assigning to a normalised
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utility function such that #(100) =1 and u(0) = 0 it holds that:

if f - g then P, > P, and if ¢’ > f’ then P, 4- P, > P}, + P, which generates a contra-
diction that leads to decisions incompatible with SEU. Following Hammond and
Zank (2014), this can be shown by assuming that there are b Black balls inside the
urn. Then, the composition of the urn can be represented by the following vector
(R,B,Y) = (30,b,60 — b) and the respective probabilities attached to the events are
(1/3,p,q). Assuming that for each b in {1,2,---,60} the decision maker forms
some kind of subjective beliefs (P,) that b Black balls are inside the urn. The
probability that a Black ball is randomly drawn is given by p = Y52 1 p,b/90 and
similarly for a Yellow ball p = Y"5° 1 p,(60 — b)/90. Preferring f to g implies that
1 > p while preferring ¢’ to f’ implies that p + g > % + g which contradicts with

the previous result and ensures the violation of the probabilistic sophistication.

This is a proof of why we cannot expect that the agents are probability sophis-
ticated. The above result is aimed to be explained as a rational choice that violates
one of the axioms! of the Subjective Expected Utility model due to the existence
of attitudes towards ambiguous events. More specifically, speaking in terms of
the Savage setup (Savage (1954)), the axiom of the Sure-Thing Principle, is violated.
This axiom resembles the Independence axiom, when Expected Utility is set up
to accommodate risky prospects®>. Formally, the axiom require that for all acts

f,g,h,1' and for every event E,
fEh = gEh < fENW = gENW

Verbally, this axiom requires that the preference over two acts f,g should only

depend on the values of f,¢ when they differ. Let for instance, f,g to differ on

IThe Savage Expected Utility model, requires that a series of rationality axioms are being
satisfied. These axioms include, the Weak Ordering of Acts (P;), the Sure Thing Principle (P»),
the Existence of Intrinsic Preferences (P3), the Non-Influence of the Prize (P;), the Non-Triviality
of Preferences under Certainty (Ps), the Continuity (Ps), the Dominance (P;), the Measurability
(Pg) and the Event-wise Continuity axiom. When all the axioms above are satisfied, then a von
Neumann-Morgenstern utility function exists and preferences can be represented by the Expected
Utility model. For an analytical discussion of the axioms see Gilboa (2009).

2Camerer and Weber (1992), Camerer (1995) and more recently Starmer (2000), although a bit
dated, survey the literature on the experimental evidence of individual choices and the violations of
rational behaviour that are observed. A recent review of the literature on this topic is provided by
Hey (2014).
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an event A. Then, if A does not occur, f,g result in exactly the same outcomes.
In other words, when the two acts are compared, it suffices to focus on A and
ignore the complement event A°. What needs to hold is that f(s) = g(s) when
s ¢ A. As a consequence, a vast literature has emerged on decision theory under
ambiguity when the problem under investigation is static. Several theories have
been developed in order to accommodate Ellsberg-type behaviour, with the most
prominent being the Multiple Prior preferences (MaxMin Expected Utility, Gilboa
and Schmeidler (1989)), the Choquet Expected Utility (Schmeidler (1989)), the Cu-
mulative Prospect Theory (Tversky and Kahneman (1992)), the x--MaxMin Model
(Ghirardato et al. (2004)), the Smooth Preferences model (Klibanoff et al. (2005)),
the Vector Expected Utility (Siniscalchi (2009)), the Contraction model (Gajdos
et al. (2008)), the Variational Preferences model (Maccheroni et al. (2006a)), to
name but a few. For an extended review of the models of decision making under
ambiguity see Etner et al. (2012). All the theories mentioned above succeed to
accommodate preferences that are able to explain the Ellsberg paradox due to the
relaxation of the Sure-Thing Principle. Besides, all these alternative approaches,
assume some kind of preference functional which also account for attitudes to-

wards ambiguity. The latter allows for the empirical testing of these theories.

Several experiments have been conducted in order to compare the different
models regarding their fitting on the heterogeneous behaviour of the subjects
under ambiguity and their predictive power. These studies include a variety of
different methods to represent ambiguity as well as different types of questions
and decision tasks that allow for the elicitation of beliefs and ambiguity attitudes.
Halevy (2007), tests four basic models using reservation values found applying
the Becker-DeGroot-Marschak mechanism (Becker et al. (1964)) for four different
urns without being able to show which model performs best as he did not pro-
ceeded econometrically in a way that allows similar inferences. What he did was
to perform tests individually on each model to conclude that the Ellsberg paradox
is created due to the inability to reduce compound lotteries, a fact that the current
models are not able to capture. Andersen et al. (2009), use a task that allows to
simultaneously estimate a two-parameter model that captures attitudes towards

risk and ambiguity. They found that ambiguity aversion is quantitatively signifi-
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cant and that attitudes towards risk and ambiguity are significantly different. Hey
et al. (2010), perform an extensive comparison among the different models by fit-
ting preference functionals and using a set of pair-wise questions. They found that
models that lack some kind of preference functional do not perform well, neither
do more sophisticated models such as the Choquet Expected Utility. Hayashi and
Wada (2010), find remarkable violations of the a-MaxMin model in an experiment
with imprecise information which is represented in the form of a set of possible
probability values. In Abdellaoui et al. (2011) ambiguity is created using two dif-
ferent devices, an 8-ball Ellsberg-type urn and bets among natural, ambiguous
events (e.g. the weather in a known compared to a less known country). They test
only Rank Dependent Expected Utility and applying a set of Holt-Laury price lists.
They found considerable heterogeneity in subjects” preferences. They also intro-
duce the source dependent approach. Ahn et al. (2014), represented ambiguity with
an Ellsberg-type urn where they specified three different assets for three respective
states of the world, of which the one would occur with probability equal to 1/3,
while there was no information on the likelihood of the two remaining states. The
problem task was an allocation problem, transforming the experiment to a port-
folio choice one. Instead of fitting different preference functionals of the various
specifications, they split the models in two large families, namely the kinked and
the smooth. They found remarkable degrees of heterogeneity on individual pref-
erences and high degrees of ambiguity aversion. Also they found that a specific
percentage of the subjects adheres to the x-MaxMin model while the behaviour of
another significant proportion agrees with the Smooth model. Finally, Hey and
Pace (2014), using a set of allocation type questions and representing ambiguity
using a Bingo Blower, they test the descriptive power of a set of different theories
of decision making under ambiguity. The authors go one step further and use a
part of the data to test the predictive power that these models have. They found
that the most sophisticated models do not necessarily perform better than the sim-

pler ones.

It is for sure that there is still long way to go before adopting a suitable model
for static settings. Nevertheless, the real important issues in all fields of economic

theory involve time, acquisition of information, updating of beliefs and sequen-
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tial choice. Thus it is of paramount importance to identify which of the available
models is the most suitable to describe behaviour in a dynamic, ambiguous envi-

ronment. Gilboa and Schmeidler (1993) stress the importance of belief updating:

1. The theoretical validity of any model of decision making under uncertainty

is quite dubious if it cannot cope successfully with the dynamic aspect.

2. The updating problem is at the heart of statistical theory. In fact, it may be

viewed as the problem statistical inference is trying to solve. [...]

3. Applications of these models to economic and game theory models require
some assumptions on how economic agents change their beliefs over time.
The question naturally arises, then: What are reasonable ways to update

such beliefs?

4. The theory of artificial intelligence, which in general seems to have much in
common with the foundations of economic, decision and game theory, also

tries to cope with this problem [...]

The next example presents a famous paradox, the Monty Hall problem. Although
the problem refers to risky choice, where the distribution of the probabilities is
known, it is quite interesting to motivate this discussion by presenting this up-
dating anomaly as it shares the element of sequential decision making upon the

receipt of information.

1.2.2 The Monty Hall Problem

This famous probability puzzle shows the difficulty that decision makers may
experience when receive new information. The Monty Hall problem firstly stated
by Selvin (1975) and is named after by Monty Hall, the host of the TV game show
Let’s Make a Deal. In this problem, a contestant faces three different doors (let
them be doors A, B and C) where one of them hides a prize of high value (e.g. a
car) while the other two something valueless. The contestant chooses a door (let
us say A) and then the presenter opens one of the other two doors that hides one
of the valueless prizes (let it be door B). Then, the contestant is asked if she wishes
to switch the initial choice and choose door C or not. The empirical evidence

shows that the majority of the participants turns down the switching option (as
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there are no available data from the actual show, a number of studies have tried to
replicate the problem with experimental subjects, with the most prominent being
the one conducted by Friedman (1998) who found that in overall only 28.7% of
the subjects do change their initial choice). The puzzle appears in the fact that
subjects do not seem to be probabilistically sophisticated and consequently, fail
to accordingly update their beliefs. The common argument in favor of sticking
to the initial decision, is that since ex-ante the prize can be behind either of the
three doors with equal probability P(A) = P(B) = P(C) = 1/3, now that there are
only two doors remaining the probability of the prize being behind the chosen
door is equal to P(A|{A,C}) = P(C|{A,C}) = 1/2 thus, there is no reason to
change. Nevertheless, reasoning like this fails to anticipate that switching actually
improves the probabilities of winning. It can be shown that the two posterior
probabilities are not identical by applying the Bayesian rule. Let E be the event
that the door opened is door B. Then the posterior probabilities for the two states

A and C are given by the following formula:

P(A[E) = 713(1‘21;(‘4)
P(CIE) = 7P(EILC(EEI;(C)

ex-ante it is known that P(A) = P(C) = 1/3. The crucial point for the decision
maker is to realise that P(E|A) # P(E|C). An assumption that is made here is
that the decision on which door Monty Hall opens, is not independent on where
the car is hidden. The probability that door B is opened when the car is in A
is equal to 1/2. Similarly, the probability that the door B is opened when the
car is in door C is equal to 1. Consequently, P(E|A) < P(E|C) which means that
P(A|E) < P(CIE) and the contestant increases her probability of winning when
she decides to switch. To translate these probabilities to numbers, it suffices to cal-
culate P(E) which is simply P(E) = P(E|A)P(A) + P(E|B)P(B) + P(E|C)P(C) =
1/2x1/34+0x1/34+1x1/3 =1/2 and substituting to the Bayesian formula
gives that P(A|E) =1/3,P(C|E) =2/3

The problem becomes even more interesting in the case where the candidate
has the opportunity to explicitly state her actions ex-ante as for example to state a

plan that says choose door A, switch if door B is opened, stay otherwise. Having
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similar information allows to test the fundamental assumption in economic theory
that application of the Bayes rule, demands subjects to be dynamically consistent.
Let us now move to a sequential problem under ambiguity, where the probability
distributions are not any more well-defined. The standard way to do so in the
literature is by extending the Ellsberg-type thought experiment to its sequential

form task that we present below.

1.2.3 The Sequential Ellsberg Paradox

Extending the Ellsberg’s paradox in a dynamic framework® is useful in order
to understand how dynamic consistency is violated. In this setup, the decision
maker is assumed to have ex-ante and ex-post preferences over acts. Consider the
Ellsberg three-colour case. In the urn there are 90 balls, 30 of those are Red (R)
and the rest Black (B) or Yellow (Y). Again there are three states of the world in
the state space () = {B,R,Y} and we assume a three-period model where at t =0
the decision maker forms the prior probabilities for each colour (always knowing
that the proportion of Red balls is equal to 1/3), at t = 1 she receives the filtration
F1={{R,B},{Y}} which provides the information whether the ball is Yellow or
not and at t = 2 all the ambiguity is resolved and the colour of the ball is revealed
(in case that the ball was not Yellow). The different bets presented above (Table
1.2), can now be represented as a dynamic problem. In the first case the decision
maker must choose between f and g. So writing the payoffs in the form (B,R,Y)
she has to decide between (100,0,0) and (0,100,0). Assuming that the decision

maker at t = 0 typically expresses the following preference:
(100,0,0) >~ (0,100,0)

Using the standard tree representation firstly presented by Raiffa (1968) where

squares denote decision nodes and circles chance nodes the choice between f and

gis:

3A similar approach can be found in the literature in Epstein and Schneider (2003), Klibanoff
and Hanany (2007), Hanany and Klibanoff (2009), and Siniscalchi (2011).
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Now, given that a ball is drawn the decision maker has to decide between the
bets of getting 100 if the ball is either black (B) or red (R) or getting 100 if the ball
is either red (R) or yellow (Y). So writing the payoffs in the form (B,R,Y) she has
to decide between (100,0,100) and (0,100,100). Typically, at t = 0 the following

preference is expressed:

(100,0,100) < (0,100,100)

which is the expression of ambiguity aversion as the decision maker seems to

prefer the less ambiguous bets. The respective tree in this case is:
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Now if at time t = 1 the DM is informed that the ball is not Yellow {—Y} thus
the event {R, B} happened, and then she is given the chance to choose between a
bet on a Black ball (B) or on a Red ball (R). Following the same line of thinking as

before, the preferences that are expressed are:
(100,0,100) >1 ¢ 5} (0,100,100)
if the ball is not Yellow and
(100,0,100) ~1 ¢y} (0,100,100)

if the ball is green, which leads to a violation of dynamic consistency and con-
sequently backward induction does not seem to apply anymore. A result which
according to the standard theory should not happen since the opportunity to con-
dition the choices on the new information does not change the problem in an
essential way (Klibanoff and Hanany (2007)). This leads to the question of how
dynamic models of decision making under ambiguity are able to explain similar
behaviour, or, in other words, how decision makers update their beliefs in the
presence of new information.

Therefore, a crucial question in the theory of decision making under ambiguity is

the way that beliefs are updated upon the arrival of new information. In the stan-
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dard economic theory when a decision maker has to cope with a similar dynamic
problem where the various probabilities of the possible states of the world are
given (are subjective), it is common to assume that beliefs are updated according
to the Bayesian rule in the arrival of new information. This is based on the theory
of Subjective Expected Utility (SEU, Savage (1954)) where when certain axioms
are satisfied, the preferences of the decision maker can be represented by a utility
function unique up to a linear positive transformation and her beliefs are repre-
sented by a subjective, additive probability measure. In other words, assuming
that the decision maker has Expected Utility preferences, this leads to the result
that her beliefs are updated in the arrival of new information in a Bayesian way,
securing in this way Dynamic Consistency. On the other hand, if the decision
maker is dynamically consistent then the preferences are updated in a Bayesian
way. This result is stated in the literature by Ghirardato (2002), and it is proven
in Klibanoff and Hanany (2007) that Dynamic Consistency is the primary justifi-
cation for Bayesian updating and under the view that Bayesian updating should
be taken as given, dynamic consistency comes “for free” under Expected Utility
. In addition, In Epstein and Le Breton (1993), it is shown that when conditional
preferences are based on beliefs in a Dynamically Consistent way then the deci-
sion maker must be probabilistically sophisticated and has a Bayesian prior which
automatically rules out Ellsberg type behaviour.

But before going on, it is necessary to formally define the rationality axioms
that should hold, when preferences are characterised by SEU. The axioms of the
Savage Expected Utility require among the other standard axioms of weak order
preferences, the axiom of Dynamic Consistency (DC), the axiom of Consequentialism
(C) and the axiom of Reduction of Compound Lotteries (RCL).*

In the literature of dynamic decision making, the axioms of Dynamic Con-
sistency and Consequentialism are also known as rationality criteria in the sense
that a decision maker should always comply with the two axioms if she is ra-
tional. From a normative point of view, behaviour that is non DC can lead to
dominated choices. According to Wakker (1998), DC is useful as it ensures that in-

formation does not have negative value. DC makes it easier to describe a decision

4This holds in decision under risk. When the acts are Savage then a formalisation of the reduc-
tion of compound lotteries axiom in a subjective setting is not possible.
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maker that plans ahead and according to this we can make welfare statements
in dynamic models. From a psychological point of view DC can be viewed as a
rationalisation property: DC updating rules are those that support earlier choices
or plans. Finally, in general it is assumed that when a decision maker is dynami-
cally consistent then she maximises her welfare®. We next define formally the two
rationality axioms.

Assume two acts f and g and we want from the prior preferences to predict the
conditional preferences when an event E occurs. The axiom of the Sure-Thing Prin-
ciple (P,), suggests that it suffices to check the unconditional preference between
any pair of acts, let them to be f’ and ¢/, that agree outside the event E but in
the event E, f' agrees with the act f and ¢’ with g. Thus it holds f' = ¢’ if w € E
and f' = f,¢' = g if w € E°. Then the idea is that only the states in E count for
the preferences and consequently, if f' = ¢’ then f =f ¢°. To illustrate this it is
useful to consider again the Ellsberg paradox that was presented before. In the

Table below there are the payoffs in the event {Y}. It is easy to see that f' = ¢’ and

f=s

bet

f 0
g 0
7 100
g’ 100

In a similar manner, in the following Table it can be seen that in the event

{B,R} f=fand g=¢'.

bet b r
f 100 0
g 0 100
f 100 O
g’ 0 100

5 Although Ozdenoren and Peck (2008) using a game theoretical model, show that there are
certain situations where it is optimal to be dynamic inconsistent.

®This is the analysis in the Savage framework. The same can be presented in the Anscombe-
Aumann framework. In this case, instead of Savage acts we have lotteries. The Sure-Thing Principle
is defined as: for f,g,h,k € Lo and E € &, fEh 7 gEh, implies that fEk 77 gEk.
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Summarising, the idea is that the unconditional preferences are determined
only by the differences that appear on the conditioning event since the two ac-
tions are equivalent outside this event. This idea is crucial since it incorporates
the two rationality criteria that are used in order to explain how the decision
makers update their beliefs, dynamic consistency and consequentialism. A DM is
dynamically consistent when the ex-ante preferences coincide with the ex-post. If
an act is preferred to another unconditionally and receiving the information that
the complementary of an event where the two acts agree has been obtained, the

conditional preference should remain the same.

Definition 1. (Dynamic Consistency)

For any non-null event E and acts f,g € F such that f(w) = g(w) foreachw € O, f = g

implies f 7 g.

The importance of the axiom of Dynamic Consistency can be easily understood
if one thinks all the applications in the standard economic theory where time is
incorporated in the decision process. The majority of models in macroeconomics
assume that the agents or the governments are dynamically consistent and thus
an exponential discount factor is applied in order to discount future values. These
kind of models includes models in finance, saving models and generally whenever
dynamic or long-horizon decisions are analyzed (i.e. environmental economics,
retirement plans). In addition, another field of economics where the assumption
of DC is crucial, is the dynamic game theoretical models. In the majority of the
literature, the players are assumed to be dynamically consistent and to update
their beliefs using the standard Bayesian rule.

Accordingly, consequentialism is satisfied when the DM does not take into account
states that are not available anymore and thinks of the rest of the decision tree
as being a new problem (Hammond (1988)). A DM satisfies consequentialism
when the decision maker conditions her preferences on an event E taking into

consideration her unconditional preference and treating E¢ as a null-event.

Definition 2. (Consequentialism)

For any non-null event E and acts f,g € F such that f(w) = g(w) for each w € Q)
implies f ~f g.
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Machina (1989) and McClennen (1990) suggest that consequentialism is to be
avoided as this requires some kind of dynamic separability of preferences while
ambiguity aversion suggests that preferences do not need to be separable across
events. Al-Najjar and Weistein (2009) is using the term “fact-based updating”
to describe situations where the DM displays preference reversals and thus ex-
periences a conflict between the ex-ante and the ex-post preferences. An updated
preference is fact-based if for any event E and acts f,g, f/,¢" if f = f'&g = ¢ then
fZeg<e f Ze g. Updating in this way means that when the two acts are com-
pared conditionally on the event E, and no weight is placed on situations outside
E or in any other ex-ante optimal plan (form of consequentialism). In the example
of Ellsberg this can be thought as the updating of the initial set of priors when
the DM learns that the event is {R,B} where the conditional preference relation is
independent of the acts that are related to {Y}.

The evidence obtained by the Ellsberg paradox shows that the modal prefer-
ences violate the Sure-Thing Principle. Therefore, when a decision maker does not
have Expected Utility preferences, satisfaction of Bayesian updating, consequen-
tialism and dynamic consistency are not feasible at the same time. As a conse-
quence, a huge literature emerged aiming to model choice that rationally violates
the Sure-Thing Principle. In order to be able to do so, one of the rationality axioms
DC and C, should be relaxed. In addition, there are theoretical constructions that
aspire to preserve both axioms. This comes at a cost regarding the behavioural
assumptions that need to be made, as either the feasible interval inside which the
priors can be updated, or the information structure that is received by the decision
maker. Moreover, each theoretical approach should be accompanied by a story on
how beliefs are updated. In the literature, there are three ways that have been
suggested, either to preserve dynamic consistency, or to preserve consequential-
ism, or to impose a recursive structure. We analytically present all the different

modelling ways.
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1.3 Theoretical Literature

For non-additive beliefs there have been two different approaches of how be-
liefs are updated. The first one is the statistical approach that considers for different
updating rules the statistical properties of the updated beliefs that are derived
from such rules’. The other approach is the Decision Theoretic approach where the
updating rules arises from axioms on the preferences both conditional and un-
conditional. We focus on the latter. In this literature, a classification can be done
according to the axioms that are preserved in order to explain behaviour. This
leads to the inevitable need for some kind of behavioural justification as there
are several cases where the choice of the axioms seems to serve the mathematical
robustness or some normative objective though it is difficult to explain economic
subjects’ behaviour. According to this, the different rules that have been suggested
in the literature can be categorised in three different approaches: the dynamic in-
consistent approaches which preserve consequentialism, the dynamic consistent
updating rules (non-consequentialist) and the recursive methods (both dynamic

consistent and consequentialist).

1.3.1 Consequentialist

The idea of preserving C and abandoning DC is that the preference conditional
on the event E depends only on the unconditional preference, the event E and
treats E€ as a null event. Al-Najjar and Weistein (2009) refer to this naive-updating,
as they show that using similar updating rules may lead to dominated outcomes.
All the updating rules that are applied under this framework are dynamically in-
consistent. Rules have been proposed for the MaxMin Expected Utility (MEU) by
Gilboa and Schmeidler (1993) and for the Choquet Expected Utility model (CEU)®
by Eichberger et al. (2007) and Eichberger et al. (2010). In section 1.6 an analytical
example of the updating rules proposed by Gilboa and Schmeidler (1993) is pre-
sented. Pires (2002) axiomatises a Bayesian update rule where all priors are kept,
and all are updated according to the Bayes rule. Similar approaches include the

work by Wang (2003) and Siniscalchi (2011). A behavioural interpretation of this

"For references see Eichberger et al. Eichberger et al. (2007).

8These rules are analytically presented in chapter 2.
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rule is provided by Eichberger et al. (2007):

Our reason for retaining consequentialism and dropping dynamically
consistency is because, [...] we feel ambiguity arises in a fundamen-
tal sense from uncertainty about probability created by missing infor-
mation that is relevant and could be known. Hence once an event is
known to have obtained, the only remaining ambiguity the individual
faces relates to uncertainty about the probabilities of sub-events of that
event. Past (or borne) uncertainty one may have had about the prob-
ability of counterfactual event and its subsets are no longer relevant.
But such uncertainty might have been relevant to the individual at the
time when she did not know whether the event or its complement had
obtained, and so such ambiguity that she perceived there to have been

ex-ante, may well have had an impact on her unconditional preferences.

1.3.2 Dynamic Consistent (non-consequentialist)

These approaches suggest that in order to preserve some form of consistency,
the axiom of consequentialism must be dropped. Machina (1989) and McClennen
(1990) impose strong requirements for the definition of dynamic consistency, as
they require conditional choices to be in agreement with the unconditionally op-
timal plan. In a similar way, Klibanoff and Hanany (2007), Hanany and Klibanoff
(2009) using a weaker version of dynamic consistency, are able to obtain an ax-
iomatisation of dynamic consistent updating rules. In Klibanoff and Hanany
(2007), the updating rules are given for the MEU model. Bayes rule is applied
to subsets of the priors which subset is a function of the preferences, the con-
ditioning event and the choice problem. In Hanany and Klibanoff (2009), they
explore the ways that the models can be extended and try to find the updating
rules for more general preferences rather than Expected Utility preferences. They
characterise dynamically consistent updating rules for essentially all continuous,
monotonic preferences that are ambiguity averse. Using this methodology, they
characterise dynamically consistent updating rules satisfying closure for specific
models of ambiguity averse preferences. In their approach, they drop consequen-
tialism, without providing any behavioural intuition for doing so and they drop all

the problematic priors that could cause reversals satisfying dynamic consistency.
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Recursive Methods

This approach was firstly suggested by Epstein and Schneider (2003) and it was
applied in the MEU model. The axiomatisation of the preferences preserves both
dynamic consistency and consequentialism and this happens due to recursion. In
order for recursion to hold, and therefore for the decision maker to be able to
use standard dynamic programming techniques, the representing set of measures
must be rectangular, a quite restrictive assumption that constrains the informa-
tion structures. In other words, it requires that preferences over acts are recursive
and consequently dynamic consistent, in all decision trees consistent with a given
filtration. As Al-Najjar and Weistein (2009) describe this approach: “[...] to elim-
inate the updating paradoxes is to limit attention to decision trees (information
structures) on which no reversals occur.” Consequently, imposing such restric-
tions to the information filtration rules out Ellsberg type behaviour. Nevertheless,
there is no clear behavioural explanation of why one should update the prior be-
liefs based on this methodology. Similar work using the recursive methodology in
several different models of decision making under ambiguity includes the work
of Maccheroni et al. (2006b) for the dynamic Variational model, Klibanoff et al.
Klibanoff et al. (2009) for the Smooth ambiguity model. Finally, there is the work
by Ozdenoren and Peck (2008) who show that in a game theoretical framework
and using Ellsberg-type problems, there are cases where the optimal strategy is
either to be dynamically inconsistent or consequentialist, depending on the type
of the nature that the agent is playing against (i.e. if the nature is perceived as
benevolent or malevolent). This can be interpreted as a subgame perfect equilib-
rium strategy and can rationalise both the violation of dynamic consistency and

consequentialism.

1.4 Types

Till now, it has been clear that when decision makers do not have Expected
Utility preferences, then they do not update their prior beliefs according to the
Bayesian rule and the direct implication of this is the violation of one of the two
main axioms, that of dynamic consistency and consequentialism. What seems

to be remarkably interesting now, is to identify what people are doing in order
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to cope with these inconsistencies. All the alternatives that have been presented
above, imply either implicitly or explicitly a certain type of behaviour. Al-Najjar
and Weistein (2009) discuss the issues on how realistic are the several different
rules suggested in the literature from a positive point of view. Recursive methods
as well as dynamic consistent updating rules do not seem to apply in real life.
As a consequence it is useful to focus on dynamically inconsistent updating rules
and to question how this inconsistency is resolved. In this section we describe the
three most prominent types’ that have appeared in the literature and have been
exploited in applications such as game theory or information economics to name
but a few. The types we consider here are three, the resolute, the naive and the
sophisticated.!” The sophisticated decision maker anticipates that the preferences
of the future ex-post self are those that are imposed . A sophisticated plan takes
into consideration the constraint that choice at the last node must be optimal by

the perspective of the conditional preference 7.

1.4.1 Resolute

This type of decision maker solves the problem as if it is a one-period prob-
lem. A decision maker who is resolute is supposed not to change her first period
decisions and this can be done either violating consequentialism or dynamic con-
sistency. This theory was firstly suggested by Hammond (1988), and then was
formalised by McClennen (1990) and Machina (1989) in the context of risk prefer-
ences. The idea of a resolute decision maker embraces the notion of commitment
where it is implicitly assumed that a decision maker realises that violating the con-
tingent plan will have detrimental effects, she chooses to use some kind of com-
mitment device and stick to the ex-ante preferences. This is a well known strategy

when one has to cope with situations such as temptations or addictions and needs

%In this chapter, the types are discussed in a general context without applying them to a specific
problem. An application of heterogeneous decision makers is presented in chapter 2 where real
subjects participate in a dynamic choice experiment.

10Tn the literature there are different ways that these types have been modeled. In Al-Najjar and
Weistein (2009) the resolute type coincides with the sophisticated as both are dynamic consistent
and commit to their initial choice. Our definition of the sophisticated type is closest to Hammond
and Zank (2014) who assume backward induction methodology that is not necessarily dynamic con-
sistent as the decisions are made in a myopic way. This modelling way agrees with the sophisticated
type in Hey and Panaccione (2011) with the difference being that no updating takes place. In ad-
dition, Hey and Panaccione (2011) distinguish between the naive and the myopic type (we use this
term interchangeably for the same type) with the latter being the decision maker that is confused.
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to reassure that there will be zero deviation from the ex-ante plan. Al-Najjar and
Weistein (2009) characterise this strategy as aversion to information where the agent

commits to not learning whether an event occurred or not.

1.4.2 Naive

A naive or myopic decision maker fails to understand the sequential nature of
the problem. As a consequence, each of the stages is faced independently of the
other, strategy that leads to dynamic inconsistencies and dominated results. The
allocation at each stage is based on the optimisation of the objective function at
the current stage, or stating in a different way, the decision maker solves a series
of static problems and maximises present utility. When a decision maker faces
a series of sequential problems, she fails to anticipate the impact that the cur-
rent choices will have to the future utility and thus at each period maximises the
current objective function. Naive decision makers ignore that they are time incon-
sistent since they tend to evaluate the several alternatives and to choose according
to what seems to be optimal at present. As a result, the decisions that are made

differ from those that had been planned.

1.4.3 Sophisticated

Strotz (1955-56) and later Pollak (1968), were among the first to recognise that
the resolute type or in other words the pre-commitment strategy is not always the
optimal decision. More specifically, the idea is that a decision maker that is not
able to commit to her or his future behaviour, would prefer to adopt a strategy
of consistent planning and then pick up the optimal plan that will be actually
followed sketching the profile of a sophisticated type. A sophisticated decision
maker uses backward induction in order to figure out the optimal strategy for every
given problem. It is quite close as an idea to what Selten, 1965 has suggested where
the problem can be defined as an extensive form game and each step is solved as
a sub-game perfect equilibrium. The agent of this type uses backward induction in
order to determine the optimal strategy that she is going to follow. Starting from
the last decision nodes of the tree she is able to take into consideration all the
alternative outcomes and their respective prospects. Applying the same approach

to all the previous decision nodes she can define the optimal path that will lead
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her from the start of the tree to the most preferable node. Following this process
she will be dynamically consistent and the ex-ante preferences will coincide with
the ex-post. Hammond and Zank (2014) explain that this way of modelling has to
do with the fact that the individual is not able to pre-commit. Using backward
induction she concludes to an optimal plan of action for the whole problem that
starts from period 1. Sophistication is the prevailing model in economics.

A similar categorisation among different types has been done before for risky
choice by Machina (1989) who makes the differentiation among the different types
of behaviour using the criterion of consequentialism. There are the so called a-
people, the dynamically consistent agents that follow Expected Utility, the B-people
that are non-Expected Utility agents and apply consequentialism acting in a time-
inconsistent way (myopic behaviour), the y-people who are non-Expected Utility
agents but are dynamically consistent and finally the J-people who are charac-
terised as sophisticated. As is later shown, when the preferences collapse to
Expected Utility, all types coincide as both consequentialism and dynamic con-

sistency are satisfied.

1.5 Experimental Literature

1.5.1 Dynamic Decision Making Under Risk

As the experimental investigation of dynamic decision making under ambigu-
ity is a relatively new field, we start by surveying the studies that include problems
with exogenously given probabilities for the various states of the world (presence
of risk). In this literature there are several experiments that have been conducted
which focus either on testing the several hypotheses and axioms of the theoretical
models of dynamic decision making under risk (mainly EU) or to discover the
different strategies that the agents apply when they face inter-temporal problems
in order to resolve dynamic inconsistency. We present the experimental findings
on risky choice for two reasons. The first is that there is a lack of empirical studies
on how do people update ambiguous beliefs or stating in a different way how do
they decide in a similar dynamic problem. On the other hand, risk can be thought
as an extreme form of ambiguity. In both cases, it is useful to present the vari-

ous different experimental protocols that have been applied, their main theoretical
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predictions and results and then to discuss how this analysis can be useful for the
case of ambiguous beliefs. A famous result stated by Karni and Schmeidler (1991)
states that non-EU subjects who violate the independence axiom, will necessar-
ily violate one of the axioms of dynamic consistency, consequentialism or reduction of
compound lotteries. A number of experiments aim to test this result.

Early experiments on dynamic decision making in the presence of risk, include
the work of Tversky and Kahneman (1981). Cubitt et al. (1998) focus on testing
several hypotheses of the Expected Utility theory, the violation of the axiom of
independence and the consequences that this violation has to the other princi-
ples of dynamic choice (separability, timing independence, framing independence
and reduction of compound lotteries). In the experimental design they use, they
present to the subjects several different decision trees and test for the equivalence
of the four dynamic choice principles. They also test for the common ratio effect.
Their results report violation of the common ratio effect as well as rejection of the
standard theoretical strategies used to explain this effect. These results are also
verified by Hey and Paradiso (1999) and Hey and Paradiso (2006), though in a
different framework. In Hey and Paradiso (1999), the issue of timing indifference
is being examined. More specifically, they ask whether the timing of ambiguity
resolution affects the decisions of the agent and whether a sequential choice prob-
lem differs from an equivalent planned one. They present an experiment with
three equivalent choice problems, a sequential choice problem, a planned choice
problem and a non-sequential choice problem, showing that the assumption of
timing-independence is not appropriate for individual preferences. In Hey and
Paradiso (2006), the authors collect data on the evaluations of the subjects for
several decision problems that are strategically equivalent, but differ in respect
of their temporal framing. They obtain the interesting finding that many of the
subjects realise that they are dynamically inconsistent and are willing to pay an

amount of money to avoid their inconsistencies being exposed.

A different approach on dynamic decision making under uncertainty has fo-
cused on the psychological factors that influence behaviour. Experimental evi-
dence on this includes the work of Cubitt and Sugden (2001) and Busemeyer et al.

(2000). In the first paper, the authors discuss the role that certain emotions play in
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the formation of decisions, and the importance of affective experiences in dynamic
choice under risk. The main result is a rejection of the timing independence prin-
ciple as well as rejection of the principles of separability. In Busemeyer et al. (2000)
and later in a replication of the experiment in Johnson and Busemeyer (2001), the
focus is on the psychological aspects of the problem and similar questions are ap-
plied in the presence of risk in order to test the way that emotional factors affect
dynamic consistency. Their findings include violations of dynamic consistency but
not of consequential consistency. The main drawback of the experiment is the lack
of incentivised responses.

Additionally, there are the experimental studies that focus on updating issues.
As the decisions concerned are under risk, the main test is constrained on the va-
lidity of the Bayesian updating rule and the various biases that may appear. Char-
ness and Levin (2005), compare the Bayesian rule and the reinforcement heuristic.
There are two states of the world and at each state either the white balls win or the
black balls wins. In addition, there are two urns. One has balls of the same colour
that are valuable or valueless balls, depending on the state and the other urn con-
tains a mixture of the two. The subjects are getting paid for drawing valuable balls.
After a draw they have the opportunity to change urn or to keep drawing from the
same. They also controlled for emotions. They found that when the two heuristics
are aligned, there is very low rate of switching error and people behave close to the
Bayesian Expected Utility model. The same happens when affection is removed.
When the two heuristics disagree, then there is a mixture of behaviour. Holt and
Smith (2009), report an experiment where subjects are asked to assess probabil-
ities for unknown events based on the information they gather from observing
random draws of their risk representation device. As a device, they performed
draws from two different cups that contained light and dark marbles in different
proportions. Using the Becker-DeGroot-Marshak (Becker et al. (1964)) method to
elicit beliefs, they test how well the Bayesian update rule can predict subjects’ de-
cisions. The experiment included two versions, a standard one in the lab and a
web-based experiment. The results show that the reported probabilities appear to
be slightly upward biased when the Bayesian prediction is low and similarly being
downwards biased when the prediction is high, biases that become stronger for

means than for medians. In addition, they find representativeness bias to be present.
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Two important aspects that have been tested in this study include the way that
different prior information affects the assessment of probabilities, and how the
average reported probability changes when uniform signals are reinforced by sub-
sequent draws. The former shows that when the priors are not equal (50% for
each cup) then there is a tendency to predict too high for low probabilities (prior
=1/3), behaviour that is not verified in case of high priors (prior =2/3). Regarding
the representativeness bias, they found that the average elicited probabilities are
higher than the Bayesian predictions when the draws are representative of one of
the two cups and similarly elicited probabilities are driven down when the draw is
in contrast to the expected. Charness et al. (2007) test both individuals and groups
on whether they satisfy first order stochastic dominance and if they respect the
Bayesian rule when decisions made under risk. The design is similar to Charness
and Levin (2005) with the only difference being that they allow for interaction by
forming small groups. Their main results include that when subjects make deci-
sions in isolation, they tend to violate first order stochastic dominance, violation
that is significantly reduced when the subjects are allowed to communicate and
take common decisions in groups. They claim that part of the deviations from EU
that are observed in experiments, are mostly due to the nature of the lab, where
decisions are made in an unfamiliar, isolated environment. Poinas et al. (2012) re-
port an experiment on updating under risk, where the subjects receive a message
that constraints the possible states of the world. The subjects must determine the
number of yellow balls, in an urn containing 20 balls that are either blue or yel-
low. They observe a sample of 6,10 or 14 balls. The subjects are asked to report the
number of yellow balls, which also consists the prior beliefs. Then, they receive
some signal on the composition of the urn, and subjects are again asked to predict
the number of balls. They find that signals are helpful for more precise predic-
tions. When signals confirm the initial belief, it is quite likely that subjects will
change their prediction, when the level of risk is high. Recently, in a different type
of study, Deryugina (2013) discusses how beliefs about climate change are formed
and updated. Starting from the standard premise that both updating and learning
are realised in a Bayesian way, she tests how well this model predicts behaviour
and if there are biases (representativeness, availability and spreading activation)

observed. Using a multi-year survey she tests how individuals form inferences
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about the occurrence of global warming. She found that some features of the up-
dating process are Bayesian, but she also finds that the updating process is in line
with the representativeness heuristic. There is also some evidence of the availabil-
ity heuristic, where people give more weight to local temperatures. The majority
of the studies presented above make the assumption that the decision makers are
risk neutral. Antoniou et al. (2013) use a standard psychological experiment, suit-
ably adapted to accommodate experimental economics practices, they account for
preferences consistent with non-linear utility and they estimate structural models
in order to test whether taking into consideration non-linearities, actually reduces
deviations from the Bayesian updating or not. They applied two tasks, one to elicit
risk preferences and the second to elicit beliefs. The elicitation of risk preferences
was realised with the use of lottery pairs. To elicit beliefs, they used two boxes
(blue and white), where in each urn there were a number of 10-side dice with
coloured sides (blue and white). Then, subjects were given information on a roll
of all the dice in the box, which allowed them to form a prior. After announcing
the outcome of the rolling, subjects were asked to place their bets in 19 differ-
ent betting houses. With this methodology, they were able to find the “switch
point”. They found modest risk aversion. They also found that failing to correct

for non-linearity provides stronger support for the Bayesian rule.

1.5.2 Classifying Different Types

Then, another approach in the literature of dynamic decision making with ex-
ogenous probabilities, aims to test how individuals that are dynamic inconsistent
resolve this inconsistency (when they do). The latter, was motivated by the sem-
inal work of McClennen (1990) who firstly categorised three behavioural types:
the resolute, the naive and the sophisticated decision maker. In Hey and Lotito
(2009), the experimental structure is formed in such a way that allows the inves-
tigation of behaviour and the preferences of the agents at the same time. Using
problems that were presented in both static and dynamic decision trees and with
several combinations of outcomes and probabilities they were able detect the non-
Expected Utility agents and furthermore to identify the specific type of behaviour
that each subject adopts. An additional feature of the experiment was the use of a

second-price sealed-bid auction in order to obtain the subjects’ evaluations for the
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different trees. Several restrictions needed to be made regarding the preference
functional, assuming that preferences can be represented by the Rank Dependent
Expected Utility model with a CARA or CRRA utility function and a weighting
function w(p) following either the Quiggin or the Power specification. The results
were interesting for verifying the dynamic consistency problem since 50% of the
subjects were proven to be of naive type, 40% to be resolute and only 10% so-
phisticated. In another experiment, Hey and Panaccione (2011) applied a different
experimental framework to test dynamic decision making and asked the subjects
to allocate an amount of money m in N decision problems that included two-stage
problems. The decision makers were assumed to have Rank Dependent Expected
Utility preferences and a non-linear weighting function w(p). This allowed for
a classification of the subjects in different types (myopic, naive, sophisticated and
resolute) with most of the subjects appearing to be resolute. More recently Nebout
and Willinger (2014), aim a type-categorisation from data obtained from an exper-
iment in dynamic choice under risk. They define three different types, naive,
resolute and sophisticated and they distinguish between dynamic consistency and
strategic dynamic consistency (the latter is the case where the choice at each de-
cision node agrees with the strategy that has been chosen at the beginning of the
problem). They use three different tasks and they proceed to two different tests.
Initially, they divide subjects to EU and non-EU. Then, they test if they are strate-
gically dynamic consistent or not. The results show that only 20% of the subjects
are EU and 85% of the EU subjects satisfy DC and (92.5% satisfy strategic dynamic
consistency-SDC). For non-EU subjects, they find that 72.5% satisfy DC and 65 %
SDC. A serious drawback of their methodology is the low number of questions.
They ask in total 16 questions which were divided in two groups: the parameter
elicitation questions (11) and the categorisation questions (5). In addition, they do
not explicitly explain how the lotteries were played out for real at the end of the
experiment. In their analysis they have an interesting feature, where they do not
exclude non-EU decision makers from having dynamically consistent preferences.
Finally, Houser et al. (2004), in a different framework, present a methodologi-
cally interesting experiment, where instead of assuming different types and their
respective optimal decisions, they classify the subjects based on a Bayesian type

classification algorithm. They claim that this approach allows to draw inferences
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about both the type and the number of decision rules that are present in a pop-
ulation. The experiment is on a dynamic stochastic optimisation problem under
certainty where subjects choose between two discrete alternatives in 15 time peri-
ods. Applying their algorithm to the data, identified three types, the near rational,

the fatalist and the confused.

1.5.3 Dynamic Decision Making Under Ambiguity

The literature is extended to a lesser degree when dynamic problems under
ambiguity are investigated. To the best of our knowledge, there are only two
experiments that focus on pure!! updating under ambiguity, Cohen et al. (2000)
and Dominiak et al. (2012). Cohen et al. (2000) are motivated by the evidence on
the non-universality of the Bayesian rule and the contradictory results on how am-
biguous beliefs are updated. They focus on the descriptive validity of the main two
updating rules, the Maximum Likelihood updating rule (MLU) and the Full Bayesian
rule. Using the standard extension of the three-colour Ellsberg urn, with the rev-
elation of some information at an interim point, they test for the two updating
rules confirming the Ellsberg type behaviour and show that the FBU rule is used
more often that the MLU rule. The drawback of the paper is that separability is
assumed (an assumption close to consequentialism -the capacity v of the decision
maker depends only on the available information and on possible counterfactu-
als). The latter does not allow for a direct test of which axioms subjects satisfy. In
addition the experiment was not incentivised in monetary terms. Dominiak et al.
(2012) using an experiment on the Ellsberg urn in a dynamic framework, try to
test the two rationality criteria on dynamic decision making, dynamic consistency
and consequentialism. The design they adopt is the same as in Cohen et al. (2000).
The main result is that subjects adhere to C and reject DC (45%, contrary to 21%
that satisfied DC.) . They also find support for the Full Bayesian updating rule.
In order to avoid offering an option that expresses “indifference”, they decided to
ask subjects how confident they feel about their choices, using a measured scale
(Null-Very Strong). They suggest that an answer close to null is equivalent to an

expression of indifference regarding preferences. It is not quite clear why this

HThe term pure is used, to distinguish this kind of experiments from those that use a sequential
decision task, but they also involve some kind of learning. We expand on this later.
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should be the case and in top of that, there was no incentive mechanism to induce
subjects to reveal their true level of confidence (assuming that it can be measured).
This experimental protocol suffers from a serious drawback. The results are based
only on 4 observations per subject, regarding their preferences on the bets on the
different urns. Even if one wants to allow for stochastics in the decision process,
the number of questions is extremely low to draw any reasonable inferences from

the data. The same applies to Cohen et al. (2000).

1.5.4 Learning under Ambiguity

A slightly different way of updating of prior beliefs under uncertainty, hap-
pens when the decision maker receives information repeatedly. If the case is such,
then it is reasonable to expect that learning takes place. This learning process plays
a significant role, leading to results closest to optimality. The intuition behind this
lies on the fact that consecutive updating of beliefs will allow the agent to form a
more precise subjective distribution function which will highly resemble the objec-
tive one, allowing the decision maker to get rid of any kind of ambiguity. The the-
oretical contributions on this subject include Epstein Moreno and Rosokha (2013)
who report the results of an experiment where subjects were making sequential
choices over pairs of lotteries involving two kinds of urns, a risky one and an am-
biguous one. Black or white marbles were drawn with replacement from the urns
and the subjects were asked to choose between a lottery and a certain amount of
money. A series of draws was providing information on the composition of the
urn, and the it was assumed that the evaluation of the bets was based on this in-
formation. Two models of learning are estimated, the Bayesian updating allowing
for base rate fallacy and the reinforcement learning model. They find that the in-
formation incorporated in the ambiguous situation is lower compared to the risky
one. Information is incorporated in a consistent way with Bayesian updating in
the case of risk. In the experiment that Baillon et al. (2013) conducted, the authors
aim to test the effect of learning on beliefs and ambiguity attitudes. They study
the updating of decision weights in the context of a general preference model.
As source of uncertainty, they used the variation of stock returns of IPOs (Initial
Public Offerings) traded at the New York Stock Exchange. They included for three

informational conditions, no information, one week information of the daily re-
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turns of the stock and one month information. Assuming a Power utility function
and using nonlinear least squares, they estimate the parameters of interest. Al-
though they claim they conduct an experiment on learning, in fact the experiment
is just decision making with different levels of information. Each informational
condition included different stocks. Consequently, there was no learning process
where the subjects acquire new information, update their beliefs and then decide
again. Finally, Qiu and Weitzel (2013) use an experimental framework that aims
to elicit multiple priors. They used two different types of urns with type 1 con-
taining 3 black and 6 white balls and type 2 containing 6 black and 3 white balls
which were constructed based on numbers that the subjects have submitted in
advance, without knowing where these numbers are going to be applied. Then,
they asked subjects to estimate the probability that an urn of type 1 is chosen,
with the use of a quadratic scoring rule!?. This would form a prior. Afterwards,
using again a scoring rule, the subjects were asked estimate the priors of the rest
of the participants. This was applied in order to elicit the confidence regarding the
distribution of multiple priors. In order to test the updating process, balls were
drawn with replacement form the urn. This allows to update both the beliefs and
the confidence towards the priors. The results do not show strong deviations from
Bayesian learning. They also find that a confirmatory signal differs from a con-
tradictory signal in terms of priors and distributions of multiple priors. Subjects

under-react to confirmatory and over-react to contradictory signals.

1.6 Ellsberg Paradox with MEU Preferences

In this section, we use one of the most commonly used models of decision
making under ambiguity and show an example of how non-dynamically consis-
tent updating rules are applied in a sequential choice task. This example shows
that depending on the preferences (and the updating rule that is applied), there
is no unique way to update beliefs in ambiguous environments and consequently
further empirical investigation is required. We consider the standard Ellsberg
three-colour urn problem, with 1/3 of the balls to be Red and the rest 2/3 to be

Blue and Yellow creating the state space Q = {R, B, Y'}. Then, to introduce dynam-

12 A weakness of this methodology is that risk neutrality is assumed.
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ics, we assume a three-period model where at t = 0 the decision maker chooses
between f’ and ¢/, at t = 1 receive partial information in the form of a filtration
that presents the complementary event (e.g. 71 = {{R,B},{Y}} which provides
the information whether the ball IS Yellow or not) and at f = 2 all relevant un-
certainty is resolved. The MaxMin Expected Utility (MEU) model, proposed by
Gilboa and Schmeidler (1989) assumes that an individual acts as if she had multi-
ple (additive) priors regarding the subjective probability. The Expected Utility of
a prospect is the minimum Expected Utility across all these priors. Then objective
is to maximise across these minima. Given a set of priors P, the utility of an act f

over the set of priors P is given by:

V(f) = minyepEp[f]

Using this notion and taking into consideration all the possible distributions of

Blue and Yellow balls, then a set of priors is the following:

o(R)=3,0(B) =v(Y)=0
)=

o(RUB)=2(RUY)=3;0(BUY)=3
v(S)=1
An alternative way to express the prior distribution is to write down all the
possible distributions. For the three outcomes, and since v(R) = 3, the set of
priors is
1 2
{P(R) = 5,P(B) = p,P(Y) = 5 — p} (1)

with p € [0, %] This allows for a lower and an upper bound for p in this interval
and can be written as p, < p < p* = % —A<p< %—i—/\with)\ € [—%,%]

As lower bounds have been characterised, it is possible to represent the set of
priors with the use of the Marschak-Machina Triangle. In Figure 1.1 the Marschak-
Machina Triangle is illustrated, with the probabilities of Red and Blue to be de-
picted on the horizontal and vertical axis respectively. Assuming that A takes
values different than -1/3 or 1/3, which means some positive probability is at-
tached to the other two states of the world, these priors lie along the AC line as

the probability of Red is fixed to 1/3. Consequently, this gives two possible sets
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of priors {P(R),P(B),P(Y)}, one at point A ({1/3,1 — A, + A}) and one at point
C ({1/ 3,% + A,% — A}). P(B) stands for the lower value that P(B) can take and
is equal to 1/3 — A. Similarly, P(B) is the upper limit of P(B) which is equal to
1/3 + A. Both the updating rules that we consider apply prior by prior updating
to these sets of priors with the only difference that different updating rules fo-
cus on different priors. The crucial point now is to determine how these updated
weights are formed. Gilboa and Schmeidler (1993) presented and axiomatised sev-

eral update rules for both the cases where there is no unique additive prior and

for non-additive probabilities.
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Figure 1.1 Priors in the Ellsberg Paradox

1.6.1 Updating Rules

The Maximum Likelihood Update rule (MLU) that has been axiomatised in
Gilboa and Schmeidler (1993) and earlier by Dempster (1967) and Shafer (1976).
Given that the ambiguous beliefs are characterised by a capacity v, given an event
E, the beliefs that the state A has occurred is given by:

v(AUE®) —v(E°)

1—ov(E°) (12)

omLu(A|E) =

for all A € A. According to this update rule, the decision maker considers only
the prior that maximises the probability of the event and updates probabilities

according to the Bayesian rule. This provides a new set of probabilities for the
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event that forms exactly the Core. This is a convex capacity, given that v is convex.

The Full Bayesian Update rule (FBU) is defined as:

v(ANE)
(ANE)+1—0v(AUE")

vrpu(A|E) = p (1.3)

for all A € A. In this rule, all the priors are updated in a Bayesian way and the set
of posteriors is used to evaluate the different acts.

Let us now see how these rules apply in the case of the sequential Ellsberg urn.
A ball is randomly drawn from the urn. Let a filtration be F; = {R, B} that is to
say the information “the ball is not Yellow” is revealed to the decision maker. Now
the objective is to choose between bets f and g. Using this partial information, the
payoffs in Yellow are not relevant anymore and as a result only the priors of Red
and Blue are updated. The initial set of priors at A and C, are now reduced to
{1/3,# — A} and {1/3,% + A}. First we consider the MLU rule. The event now
is R U B so the decision maker updates those priors that maximise the probability
P(RU B). In this example, this happens when the v(B) = 1 + A as v(R) is constant
and equal to % In the triangle, the set of priors that satisfies this condition is the

one in point C. Using 1.2 and expanding the capacities, we have:

9(RU (RUB)°) — v(R U B)°)

omu(RIRUB) = 1-o(RUB))

U(RUB)C)zl—U(RUB):1—U(R)—U(B):§—/\

mewRumﬂ:vmy+mRumw:§—A

1-o(RUB)) =2 +A
and combining all the above:

1
'UMLU(R|R U B) = m

and similarly, the updated capacity for Red (always using the prior probability

of Blue that maximises the event!?, the updated capacity for Blue is:

13In this example it is easy to see that the probability of the event is maximised when the prior
of Blue is equal to % -+ A, and since A is a non-negative number it is clearly greater than the prior of

Red (%). In our experiment, this is not clear as there are no fixed capacities and a check of which
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1+3A
T)MLU<B’RUB) = 2130

Applying the FBU rule, the set of priors that is updated depends on the colour
that we focus on. As it was discussed before, and using Figure 1.1, we can iden-
tify two different sets of priors for {P(R),P(B)} at points A and C which are
respectively the sets {1,1 — A} at point A and {3,1 + A} at C. We can write the

updated set as P’ = {5 RI;Tg(B), B ng(fg(B) }. This rule is applied to all the available
sets of priors. Then the decision rule requires to choose according to the updated
prior that provides the lowest Expected Utility. Take for instance a bet to a Red
ball. The updated probability for Red is 551 by updating the set of priors in A,
or ﬁ in C. Comparing the two, it is easy to observe that ﬁ is the updated
probability that minimises the Expected Utility. when the which offers minimises
the Expected Ultility, it is easy to see that. Updating both sets of priors The FBU
rule suggests that this prior is updated using the Bayes rule, so writing this in the
general form of the priors of expression 1.1, the set of posteriors will simply be ,
where the value of p depends on which vertex of the triangle we are in.
Assuming that we want to calculate the minimum Expected Utility for Red.
Since A is not available anymore, this means that the set of priors is the set on C,
%,% + A} . Substituting in 1.3, the posterior of Red conditional to the event RU B
when the set of priors that minimises the event (C) is updated is:

1
2+3A

UFBU(R’R U B) =

asv(RN(RUB)) =o(R)=1and o(RU(RUB)*) =v(R)+1-v(RUB) =3 +A.
Similarly, the conditional probability for Blue that minimises Expected Ultility,
using the FBU rule, is calculated at the point B. This is the case as in B the set of
priors is {1,1 — A}. In this case v(RU (RU B)) = 3 — A and substituting to the

formula of the update rule the conditional probability is:

1-3A
UFBU(B‘RU B) = m

Both update rules can be applied in the case of Hurwicz-type models (a-

prior is maximised must be done.
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Expected Utility) using the formula:

vi(A|E = aw;(A[E) + (1 — &) (1 — wi(A%|E))

with i € {MLU, FBU}

1.7 Conclusion

This chapter surveyed the literature of dynamic decision making under ambi-
guity. After introducing some fundamental definitions of choice under ambiguity,
we presented the main behavioural anomaly (Ellsberg paradox), due to which the
ambiguity aversion literature emerged. Then, the way that the Ellsberg anomaly
may appear in a sequential problem was illustrated, followed by a discussion on
the extensions that the current models of static choice under ambiguity require,
so that they can accommodate inter-temporal choice problems. Then, the relevant
empirical evidence was discussed, based on the available experimental findings.
Finally, using the example of the sequential version of the Ellsberg paradox, we
briefly introduced updating rules for a special family of models and we show
how different updating rules, lead to different results. The main message from this
chapter is that, although there is a rich theoretical literature on dynamic choice un-
der ambiguity that is continuously expanded, there is yet little evidence on what
people are really doing when they face similar problems. Most of the theoretical
contributions need to make extremely restrictive assumptions on the process that
is followed when prior beliefs are updated. The latter, seems to have little con-
nection with the actual cognitive procedure that is actually applied. In the next
chapter, we present an economic experiment in which we allow for behaviour that
deviates from the optimal. With the results gathered by the experiment, we aim
to behaviourally test what people are doing when they face a sequential problem
and they are not aware of an exact probability distribution regarding the various

states of the world.



Chapter 2

Dynamic Decision Making under
Ambiguity: An Experimental
Approach!

2.1 Introduction

In this chapter we present the design and the results of an economic experi-
ment on dynamic decision making under ambiguity. Building on the conclusions
of chapter 1, it has become apparent that when subjects exhibit attitudes towards
ambiguity (either aversion or preference for ambiguity) then preferences cannot
be represented by the standard Expected Utility model. The direct consequence
of this is that the decision will not necessarily be dynamically consistent, an as-
sumption that is one of the main cornerstones in mainstream economic theory. In
this experiment we aim to understand how people behave in a dynamic problem
under ambiguity, how they update their prior beliefs and which is the alternative,
non-EU model that best captures all these issues. One of the novelties of this ex-
periment is that it deviated from the standard way that ambiguity is represented
in the lab and instead of using standard Ellsberg type urns, a Bingo Blower was
used, a device which eliminates the suspicion that the Ellsberg-type urns gener-

ate. Then we ask a series of allocation problems to the subjects in sequential choice

IThis study was funded by the Research and Impact Support, Department of Economics, Uni-
versity of York (RIS 39), fund jointly awarded to John Hey and the author.
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problem. Based on the data gathered from the experiment, we specify different
types of decision makers and we fit the data to different preference functionals
and updating rules. We identify three types of decision makers, the resolute, the

naive and the sophisticated.

It is crucial to make a clarification regarding the term dynamic. While in the
relevant literature the term dynamic has prevailed when decisions in similar en-
vironments are discussed, one should be very careful not to confuse it with the
more generalised notion of dynamic choice which requires the decision to take
place at different points of time (this may be the duration of one day, one week
or even several years) and discounting of the future takes place. Alternatively, the
term sequential choice seems to be more appropriate for the kind of problems that
we discuss. It is a sequential decision task in the spirit that an agent is required
to make a sequence of decisions under incomplete information based on the prior
beliefs that somehow exist. After each decision, a certain amount of partial infor-
mation is obtained, which allows for the updating of the prior beliefs. Based on
the updated probabilities, a new decision must be made. The inconsistencies in
the preferences that may be observed are due to the non-dynamically updating of
the priors instead of some kind of time discounting.

To the best of our knowledge there are only two experimental studies, Cohen
et al. (2000) and Dominiak et al. (2012), that address the issue of updating of prior
beliefs in an sequential choice problem under ambiguity. Our study differs in four
substantial ways from these studies. To begin with, the main differentiation is to be
found in the representation of ambiguity. Both Cohen et al. (2000) and Dominiak
et al. (2012), use the sequential Ellberg-type urn, as this was presented in chapter
1. Instead, in our framework, a transparent and non-manipulable device has been
applied by using a Bingo Blower, in the same way as Hey and Pace (2014) did. A
second difference is found in the decision task and the number of questions. While
in the previous experiments, the decision task is constrained to pairwise choices,
in our study we adopt allocation type questions, first introduced by Loomes (1991)
and then exploited by Choi et al. (2007), Hey and Pace (2014) and Ahn et al. (2014),
which seem to provide informationally richer datasets. Furthermore, we ask sub-

jects a total of 60 questions compared to the just 4 questions that have been asked
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before. A third point has to do with the econometric specification. In order to pro-
ceed with our analysis, we make explicit assumptions on the utility function and
the preference functional that characterise subjects’ preferences. This allows us to
investigate decisions by applying different theoretical models (and consequently
test different models and updating rules). The final point that this study differs
from what has already be done, is that it accounts for error in decision making.
Assuming that subjects make their decisions with error, we account for this noise
in the data by assuming a specific stochastic specification. The framework that we
adopt allows us to consider non-linearity of the utility function.

As is highlighted by the results of Antoniou et al. (2013), failing to correct for
the non-linearity of the utility function provides stronger behavioural support for
the Bayesian rule. In this paper, they focus on decision making under ambiguity
and they account for non-linearities in the utility function and the effects they have
in deviations from Bayesian updating. In addition, they assume that the subjects
are neutral towards ambiguity. They conclude, that in order to be able to capture
ambiguity aversion, there are three extensions than need to be done, in theoretical,
experimental and econometrics terms. The theoretical extensions include the use
of preference functionals that allow for ambiguity aversion. Then, the extensions
in the experimental framework and the subsequent econometric analysis require
tasks that will make the identification of different theoretical structures possible.
In this chapter, we apply all the above extensions. We aim to elicit beliefs by using
an alternative method compared to the standard one that has been used in the
literature. Using this kind of elicitation method, one is able to construct struc-
tural models that are capable of capturing attitudes towards ambiguity. The ex-
perimental framework, as is analytically described later, allows for a transparent
and non-manipulable representation of ambiguous events. Finally, the stochas-
tic specification along with the parametrisation of the preference functionals and
combined with the fact that the analysis is done on a subject level analysis, allows
for the identification and classification of several different structures that aim to
model decision making.

The chapter is organised as follows. In the next section, the theoretical frame-
work is discussed concerning theories of decision making under ambiguity and

updating. Section 2.3 presents the experimental procedure. Then, in section 2.4
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we present the econometric specification and the stochastic assumptions. In sec-
tion 2.5 the results of the experiment are presented followed by an interpretation.
Then we conclude. At the end of the chapter we provide two different appendices,
one non-technical and one technical. The non-technical (Appendix C) includes the
instructions for the experiment. Appendix A provides the analytical solutions for
all the different types of decision makers and all the preference functionals that

we test.

2.2 The Theoretical Framework

2.2.1 The Decision Task

An agent is endowed with an income m and is asked to make an allocation
between three Arrow security assets (xs,s € {7,j,k}) where an Arrow security asset
is defined as an asset that pays 1 monetary unit if the state of the world is s and
zero otherwise. Defining as z a normalised payoff function of the capital allocated

to asset x;, the return on this asset is defined as:

1 ifseE
0 ifseE*

z(xs) =

There are three possible states of the world and the decision maker faces am-
biguity about which state will occur. Although there is ambiguity, the agent is
assumed to be always in a position to form some kind of subjective priors. At each
state only one asset yields a payoff which is based on the exchange rate of this as-
set.2. We denote the three states of the world by the finite state space S = {s;,s;, 5}
where assets 7,j and k imply payments in their respective states. The respective
probabilities® for each state of the world are p(s;), p(s;j), p(sc) which we simply
write as p;,p; and pi. Similarly, we define e;,¢j,ex as the exchange rates of the

assets. The problem can be described with the use of a three-period model. At

20ne may think of this exchange rate as the rate of return of this asset. In the experiment that we
present later, this exchange rate was applied in order to transform experimental income to monetary
value.

3Here we implicitly assume that these probabilities exist and are additive. We expand on this
later.
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t =0, the agent makes an initial allocation to the three assets, based on her or
his* subjective beliefs, the available income, the exchange rates and her individual
characteristics (risk aversion, ambiguity aversion). The objective is to maximise
her utility, knowing that only one state of the world will prevail and that she will
get paid only by the asset that corresponds to this state. Before learning the actual
state of the world, some partial information is revealed that allows the decision
maker to update her initial beliefs and to change the initial choices if necessary.
This means, that at t = 1 the information in the form of a filtration that presents
the complementary event (e.g. F1 = {{ij},{k}} is revealed, which provides the
information of whether the state of the world is k or not. The filtration becomes
trivial if the state is k. This additional information allows the decision maker to
adjust the initial choices if necessary. This happens in the following way: assum-
ing that the available information is that the state of the world is not k, which we
will denote as —k, then the available income is reduced to m — x;, where x; is
the amount that was allocated to asset k at time t = 0, and the decision maker is
allowed to allocate this remaining income to the two remaining assets. At t =2
all relevant uncertainty is resolved and the agent receives the payoff. The problem

can be represented by a decision tree in the way that is defined by Raiffa (1968):

(i) xp

\

I

p(l\/‘]) Xi—j

P (k| /) X

P@\ﬂm Xk

PGl-g) ik
Figure 2.1 The 2-Stage Decision Tree

where —i denotes that the state of the world is not i, p(jlUk) is the joint proba-
bility that the state is either j or k and is equal to the sum of the probability that the

4Henceforth, wherever in this thesis we want to refer to an agent, instead of “her or his” we will
use “her” to include both, and avoid distracting repetition.
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state is j and the probability that the state is k, p(s;) + p(sx) (similarly are defined
p(iUk) and p(ilUj) and p(j|—i) denotes the conditional probability of state j given

that the state is not i. Based on the standard laws of conditional probabilities, this

p(s))
p(s)+p(si)
when the state of the world is not i. This asset provides payoff equal to ¢; X x;-;.

is equal to p(j|—i) = . Finally, x;; is the conditional allocation to asset j

For the time being it is irrelevant what the source of ambiguity is. What is
important is to define the decision criteria that the agent is using in order to make
the allocation. We keep in line with the standard assumption that the objective of
the decision maker is to maximise her utility levels based on some kind of pref-
erence functional. We now present the specifications that we will experimentally
test. We include the Savage (1954) Subjective Expected Utility model (SEU), the
Gilboa and Schmeidler (1989) MaxMin Expected Utility (MEU), the Schmeidler
(1989) Choquet Expected Utility (CEU) and a parsimonious version of the CEU
model, based on Kothiyal et al. (2014) which uses the Source method proposed
by Abdellaoui et al. (2011). We call this model the Source Choquet Expected Util-
ity model (SCEU).> . All the suggested preference functionals are accompanied
with a specific story of how the ambiguous priors are updated with the arrival of
new information. Based also on the fact that the problem can be represented as a
decision-tree, it is reasonable to expect that a decision maker chooses paths along
this tree when making a decision. This allows the specification of different types
of behaviour towards those kinds of problems. Overall, combining the preference
functionals, the updating rules and the types, provides a set of 14 specifications
to be tested. In the next part we apply the following strategy. For each model, we
present its main specification. Then, for each type6 (Resolute, Naive and Sophis-
ticated) we present the respective optimisation problem that the decision maker
faces in its general form and we also present the updating process, if updating

takes place.

5 Although Machina (2013) shows that in the case of three outcomes, there are a series of para-
doxes that the standard models are not able to accommodate. This is mainly due to the nature of
the decision task which is constrained to pairwise choices. There is no straightforward way to see
how this affects our case since we do not require strict ranking over the outcomes as the expression
of indifference is allowed. We elaborate on this later.

®For an analytical presentation of how each types decides see chapter 1, section 1.4.
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2.2.2 Subjective Expected Utility (SEU)

The SEU model is the standard model in the economics literature when one
wants to model uncertainty. It assumes that the decision maker holds subjective
beliefs on the various states of the world and these beliefs are represented by a
unique, subjective, additive probability measure (Y ps =1, s € {i,j,k}). We as-
sume that the agent derives utility from a standard Neumann-Morgenstern utility
function” u : X — R. Then, the optimisation problem of the decision maker is to
find an allocation of the three different assets that maximises her utility and sat-
isfies the budget constraint. Denoting the optimal allocation to assets i,j and k as
x7,x7,x; (which we will refer to as the outcomes), the problem in its general form

can be written as:

s
max, Y psti(esxs) = piut(eix;) + pjulejx;) + prut(exxr) (2.1)

G
s.t. xj + x;-‘ +x;=m (2.2)

The Lagrangian writes:
L = piu(eix;) + pjulejx;) + pru(exx) + A(m — x; — xj — xi)

where m is the available income and e;,s € {i,j,k} the exchange rates. Based on the
first order conditions and the budget constraint, it is possible to derive analytical
formulas for the optimal allocations.®. In this model there is no way to capture
ambiguity aversion as there is an implicit assumption that the subjective beliefs exist

and sum to 1.

Different Types and Updating in SEU

An interesting property of SEU is that there is no way to distinguish between
resolute, naive and sophisticated decision makers as all types update using the
Bayesian rule which guarantees dynamic consistency. Nevertheless, in Appendix

A we provide the solution for all the three types by assuming SEU preferences. A

"The form of the utility function is defined later.

8In Appendix A we derive the optimal allocations for all the specifications assuming a CRRA
utility function. These specifications are then fitted to our experimental data.
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resolute decision maker, solves the problem as if it is a one-period problem. The
allocation that is made at stage 1 based on the subjective probabilities, coincides
with the conditional allocations. The objective function is the same with Equation
2.1.

A naive decision maker fails to realise the sequential nature of the problem. At
the first stage, this type behaves in the same way as a resolute does and solves the
problem as if it is a static one. Then, at stage 2 receives the partial information, up-
dates the prior beliefs according to Bayesian rule and then solves the maximisation
problem that involves the two remaining states.

At stage 1 the decision maker makes the allocations based on the optimal at the
present state (solves the problem as if it is a static one). Then receiving the partial
information there are two effects. On the one hand, the part of the income that
was allocated to the state that has not happened is lost. On the other hand, the
initial beliefs on the different states are now updated based on this information.
There are three events that can happen, that the state is not i, state is not j or the
state is not k. We denote each not state as —i,—j,—k for not i and so on. Let us
focus on the case where the information received is that state of the world is not
i. In the first stage, the problem is the same as in 2.1 which implies the vector of
optimal allocations x = (x},x},x;). Knowing that the state of the world is not i,
the remaining income m’ is now equal to m — x}. In addition, the prior beliefs for

the two remaining states j and k are given by applying the Bayesian rule:

= PG)
P = o+ po)
plsel—i) = - P

p(sj) + p(sk)
In the second stage, the naive decision maker behaves as if she is confronting a
new problem that is not related to the previous one. The objective function in this

case is

x{nwj Pjﬂiu(ejxjﬂi) + Pkﬁiu(ekxkﬁi) (2.3)
joir ki

(2.4)

* * *
s.t. x];‘l‘ + .xk_‘l' =m — xi
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Where x;; stands for the allocation to asset j when the state of the world is not

9 as well as

i. Symmetrically are defined all the remaining 5 conditional allocations
the solution to the objective function of the 2 remaining conditional states.

Finally, a sophisticated type solves the problem in two steps using backward in-
duction. For the description of this type’s strategy it will be useful to use the
decision tree in Figure A.1. Solving backward, in the first step, the decision maker
thinks what she would do if she was to reach a specific decision node. In this prob-
lem there are three decision nodes that can which form the set {sﬂi,sﬁj,sﬁk}. At
each decision node, the objective is to solve for the optimal conditional allocation
taking as given the available income (which is the sum of the optimal amounts
that were allocated at stage 1 of the experiment (xj + x;) if the state of the world
is s—;). This leads to the solution for the conditional allocations as a function of the
available conditional income. We define as conditional income the available income
at each conditional state and it is simply the initial income m minus the allocation
to the foregone asset. If the state is not 7, the conditional allocation m-; is equal to
m — x7. In the second step, taking into consideration these conditional optimal allo-
cations, the decision maker solves for the unconditional optimal allocation x7, x7, Xi
which is exactly what the decision maker does at the initial stage. In this task, the
decision maker is liable to face three different events. This means that she has to
solve three different conditional maximisation problem in the second stage, and
the solutions from these problems will be used to define the initial allocations at
stage 1.

Let us consider the case where the information revealed is the ball is not i. Then,

the problem in the general form can be written as:

max  p(sj|s—;)u(ejxj-i) + p(sk|s—i)u(exxi—i)
{xjmixi—i}

s.t. Xjoi + X = x;‘ + x;

which provides the solution for the optimal conditional allocations as a func-
tion of the optimal unconditional allocations (two additional problems need to
be formed for the cases of not k and not j. We skip this part due to symmetry).

In the second step, the decision maker solves for the optimal levels of the three

91n total 6 conditional allocations, 2 for each conditional state.
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conditional incomes M, M—j, M taking as given the conditional allocations from
step 1. In order to do so, one should solve the decision tree for the six conditional
states, as viewed from t = 0. This requires the use of compound probabilities that
provide the chances that specific outcome may happen. We recall that p_; stands
for the unconditional probability that the state of the world is not i and is equal
to p; + px. With g;-; we denote the compound probability that state j will happen,
when the state of the world is not i, which is simply the product of the uncondi-
tional probability that the state will be either j or k and the conditional probability
of getting j when the event is that the state is not i. The formula for this compound
probability is: gj—; = p-ipj-i = qj-i = pﬂi%. 10 The objective function can now be

written as:

1
L=3 [q-iu(ejxj—i(m—;)) + qroitt(exXp—i(m—;)) + gimju(eixi-j(m—;)) (2.5)

Fqr-ju(exxp—j(m—j)) + qigu(eixi—x (m-x)) + gj-xu(ejxj-k(m))]

+/\(2m — mﬂi* — m_.]'* — mﬁk*)

The solution of the optimisation program in 2.5 provides the optimal levels of
the conditional incomes. Manipulating these, it is possible to derive the optimal
unconditional allocation that the agent applies when no information is available.

The full analytical solutions of how the types decide are provided in Appendix
A. As was noted , the case of SEU preferences has no interest as the three types
take exactly the same actions. The reason why we presented it in this specification,
was to provide an illustration of how the problem is solved. This allows us to
focus on the updating process. In the non-expected utility specifications that we
will present in the rest of the section, the way that updating takes place, as well as
the representation of beliefs, are totally different. Hence, it is possible to identify

behavioural types of decision makers and accordingly to test for these differences.

10Tn this point becomes obvious how the different types coincide. Since the compound probability
reduces to the unconditional one, it is reasonable to expect the same allocations, no matter the type
of the decision maker.
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2.2.3 MaxMin Expected Utility (MEU)

The MaxMin Expected Utility model was proposed by Gilboa (1987), Gilboa
and Schmeidler (1989) and since then it has been extended and applied in several
different frameworks (for an extended survey see Mukerji and Tallon (2004)). The
MaxMin Expected Utility (MEU) model assumes that an individual acts as if she
had multiple (additive) priors regarding the subjective probability. The expected
utility of a prospect is the minimum expected utility across all these priors. Then
objective is to maximise across these minima. Given a set of priors P, the utility

of an act f over the set of priors P is given by:

V(f) = minyepEp[f]

In its general form, the model assumes that each decision maker constructs a
set of probability measures on the state space S and this set constitutes her or his
priors. The representation of the MEU model requires a - preference relation-
ship on the set of actions. Then, when a series of standard Anscombe-Altmann
axioms!! along with two additional axioms, that of C-Independence'? and that of

Uncertainty Aversion'3

are satisfied, the representation theorem suggest that there
exists a non-constant function u# : X — R and a non-empty, weak, compact, convex

set C C A(X) of probability measures such that, for all f,¢ € F:

frgemin[ | ¥ w@fs) |dPE zmin [ | L ulxgs) | aps)
xesup f(s) xesupg(s)

Both in the decision problem that we present now and later when analysing the
data from the experiment, a tractable version of this model is needed to model the
behaviour of the subjects that comply with MEU preferences. However, the theory
does not provide any kind of information on how this set of priors is formed. Since
there are three states of the world, we follow Hey et al. (2010) and characterise the

set of prior using the Marschak-Machina Triangle (MMT), which consists a possible

'Weak order, continuity, monotonicity, non-triviality.

12C-Independence requires that for every action f,g € F every constant i € F and every a € (0,1),
frgifandonlyif af + (1 —a)g 2z ag+ (1 —a)h.

13For every f,g € F, if f ~ g then for every a € (0,1), af + (1 —a)g = f.
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way to represent priors.
We assume that there is a set of priors P and the three states of the world i,j,k

such that:
11={P:P(i) > p, P() > pj, P(K) > pe}

where Ps,S € i,j,k is the lower bound probability for event s with Ps >(0and Zf Ps <
1. Using these priors that belong to the three-parameter space it is now possible
to model the decision process of the subjects using the MEU model. It is possible to
characterise these priors in the probability simplex using the Marschak-Machina
Triangle. The triangle is a right-isosceles triangle with sides equal to 1. On the
horizontal axis the probability for state i is represented while on the vertical axis
for state k. The distance from the hypotenuse stands for the residual probability
of state j. Figure 2.2 illustrates this idea. The small triangle inside the MMT is

formed by the lower bounds of the priors for each of the states of the world.
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Figure 2.2 Prior Beliefs

The objective of the decision maker is, given the set of priors, to maximise the
minimum level of utility that can be achieved. As the priors now are depicted as
a triangle area inside the MMT (if the area of this triangle is small enough, such
that it is transformed to a point, the MEU reduces to SEU), the utility is minimised

along one of the corners of the triangle. Consequently, when calculating the MEU,

4When ):SS ps =1 the model is reduced to the SEU.
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it is important to rank the different outcomes from the worst to the best. This
means that when a decision is made, it is evaluated at its worst possible scenario.
Consequently, depending on the various rankings, the utility is minimised at one
of the three corners of the triangle (denoted A,B and C). Notice that each one of
the prior sets, consists of an additive probability distribution. Table 2.1 shows the

prior sets that characterise each of the vertices.

Table 2.1 Sets of Prior Beliefs

Case Weights
wi ZU] Wi
A 1—&—& pj Pk
B pi l—pi—p  p
C pi pj L—pi—p;

Now returning to the sequential decision problem, the objective for a resolute
decision maker is, based on the prior sets in Table 2.1 and the person-specific
preference parameters, to find the vector of optimal allocationsx = {x?‘,x;‘,x,f} that
maximises the lowest expected utility possible. Or stating it mathematically, by
characterising the three different priors as P4, P, Pc € P, to find the optimal vector

x that solves 2.2.31°.

max (min(EU(Py,x),EU(Pg,x), EU(Pc,x))) (2.6)
{xfx gt

The interesting cases are to be found on the two other types (naive and so-
phisticated) where a process of information and revision of beliefs takes place.
Although this family model consists of a generalisation of the Bayesian-type mod-
els, in contrast to the SEU, the Bayesian rule cannot be applied in a direct way
and consequently dynamic consistency is not guaranteed. In the case of multi-
ple priors, there are many different updating rules that have been suggested (see
Dempster (1967), Dempster (1968), Shafer (1976) and more recently Jaffray (2008))
for situations where there are non-additive probabilities and a lack of a unique
additive prior. The two that we consider here are based on the work of Gilboa

and Schmeidler (1993) who axiomatise these Bayesian-type generalisation rules'®,

15The full expression of the objective function is provided in Appendix A.

16Gilboa and Schmeidler (1993) refer to these rules as pseudo-Bayesian rules.
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the Full Bayesian updating rule and the Maximum Likelihood updating rule. In all
these rules, it is explicitly assumed that the axiom of consequentialism is satisfied
(thus dynamic consistency is violated if the preferences are not SEU, Ghirardato
(2002)). The two rules are defines as following: given that the ambiguous beliefs
are characterised by a capacity!” v, given an event E, the beliefs that the state A
has occurred, the Maximum Likelihood updating (MLU) rule is given by:

v(AUE®) —o(EY)

o(AlE) = =—— o(EY)

forall A € A.
The Full Bayesian updating rule (FBU) is defined as:

v(ANE)
(ANE)+1—0v(AUE?)

o(A[E) = -

where E° stands for the complement of the event E. In chapter 1, we presented the
way that these rules are applied to a particular case of the Ellsberg urn. Although
it is a similar 3-state problem, it is fundamentally different in the fact that in the
Ellsberg case, the probability of one state of the world is known, leaving only two
uncertain states. In our decision task, there is ambiguity in all three states. Later
we will show how this affects our result. Let us now see how beliefs are updated
in the MEU framework.

As was described before, when some partial information is revealed, different
priors are updated. For example, when the underlying event is that the state of
the world is not i the decision maker updates her beliefs on j and k. Geometrically,
this means that upon the reception of information, the dimension of the space that
represents beliefs, is reduced from two to one and the beliefs are represented by a
line instead of a triangle. This is illustrated in Figure 2.3.

Using the triangle, it is easy to illustrate the points that are updated. For
instance, if the information revealed is that the state is not j then automatically
the point B is not any more available as this is the point where the event j is

maximised. In other words, the available points now are those along the line AC

7The notion of a capacity is fully described in the next section where the Choquet Expected
Utility is presented. In general a capacity is a set function to [0,1] that represents beliefs but does
not require to be additive.
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Figure 2.3 Feasible Update Intervals

(and the priors between A and C). Then again, using one of the two rules, each of
the priors is updated (both the prior at A and at C). Then, the allocation between i
and k is calculated by maximising the minimum expected utility inside the interval
of the updated posteriors (this point lies along the segment AC and must be one
of the two extremes).

Take for example the case that the event is not j. This means that from the tri-
angle, we move to the side where p; =0 and this is true along the hypotenuse (side
b). Consequently, the new updated sets will lie along b. However, notice that the
updated beliefs cannot include the total length of this side as there are constraints
imposed by the lower bounds of the beliefs. In our example, the feasible interval
is the line between K and L. The interval cannot lie below K, as this corresponds
to the level for the minimum prior for state k. Similarly, it cannot exceed L as this
would require an updated probability for state i lower than its minimum value.
The feasible interval is indicated with a red, bold line in Figure 2.3. In the same
way, the feasible intervals for the other two conditional states are illustrated.

We return to out sequential decision task. Let for example the filtration F; =
{{i,j}}, that is the ball is not k. Then the MLU rule, requires that only the priors
that maximise the probability of the event should be updated. In this case the
priors that maximise the joint probability P(i U j). It is to show that this happens



2.2 The Theoretical Framework 54

at points A and B!®. Consequently, instead of having only one unique posterior
(as in the case of the Ellsberg urn) in this case the updating process provides an
interval of possible posteriors. Practically, this means that the two rules coincide
and thus, there is no way to discriminate between the two as they will result to
the same decision. In section 2.2.3, we show that this holds, as in this framework
the decision variable is continuous and as such there is only a unique allocation,
given the interval of posteriors, that minimises the Expected Utility. In Tables 2.2
and 2.3, we summarise the set of posteriors for each possible event for MLU and

FBU respectively.

Table 2.2 Maximum Likelihood Updated Posteriors

Event Maximise Points Updated Posterior

noti  P(UK)  B,C  Pp=[l Ry pr [l SR

notj P(iUk) AC P,= [ﬁ%ﬁ,lﬁ;’;]m’ = [r% 1]?&]

notk  P(iUj)  AB Py=[L R g p = s

Table 2.3 Generalised Bayesian Update Rule

Event Updated States Updated Posteriors
not i ik P, = [pj%ﬂ/pjpfkﬁ]/l)é = [171%;&'%]/136 = [%, 1;%;&
not ik Ph= LR R = [ S P = [,
not k ij P, = [1 1?;7}(, 1,*];],135’; = [%/ 171%7;](]1136 = T%pj’ p,?

We now describe the way that a sophisticated decision maker chooses. Starting
from period t=1 and considering the case where the available information is that
the state is not j. The allocation is now made between i and k. The decision maker
should update the beliefs according to the available information and using this
beliefs, to maximise the minimum expected utility. As was described before, the

posterior beliefs now represented by an interval, instead of a single point, where

. . 1-p;— i ...
the two extremes are defined by the updated priors pj ,p*k and ? -. The objective
1-p; 1-p;

18By definition, the MLU rule is applied to the priors that maximise the probability of the event.
In this example this is the probability that the event is either i or j so we need to find at which sets
of priors the P(i Uj) is maximised. At point A this probability is equal to p; + p; while at points B
and C it is equal to 1 — py where the probability of the event is maximised. To see why this is true,
assume that the event is maximised at point A. This means that p; + p; > 1 — p; .This holds if and
only if p; + pj + px > 1 which cannot hold. In the case where this holds with equality, the model
collapses to the Subjective Expected Utility and the little triangle collapses to a point.
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function can now be written as:

max {min{w;(u(x;-j) + (1 — wi)u(xx—j), w(u(xi;) + (1 — wi)u(xe—) 1}
{xinjixii} (2.7)

st Xjnj + X = X +xp

1—pi— ; . . .
where w; = %p_ﬂ, wy = 1%_, Xi-;j is the allocation to asset i at t=1 when
Pi j

the state is not j and x; is the allocation to asset i at period t=0. Solving this,
will provide an optimal conditional allocation which is a function of the initial
allocations as these define the available income at the next stage. So we have
Xjnj = xiﬁj(xj‘ + x;;) or writing the available income as m — x]“f the optimal allocation

*_

can be expressed as x;-; = x;-j(m — x7). Consequently, x;; = m — x7 — xj;).

max {min{w;(u(x;-j) + (1 — w;)u(xx—j), w(u(xi;) + (1 — wi)u(xe—) }}
{xinjxij} (2.8)

s.t. Xjnj + Xp-j=m — x;‘

The same process is applied for the two remaining conditional states. When
the state is not 7, the allocation is between assets j and k and the available income
is m — x}. This gives the allocation x;-; = xj-;(m — x}) and x—; = m — x} — xj-;).
And similarly for the event not k, x;—x = x;—x(m — x) and Xjok =M — X[ — Xj-f OF
the latter can be written as x;, = x; + x]?" — Xx;j—x). All the conditional allocations
are a function of the optimal unconditional allocations. In Table 2.4, the decisions
at t = 1 are summarised'®.

Table 2.4 Conditional Allocations at t =1

State Conditional Allocation

.. *
not i x]ﬁ’(xi*)
xkﬂ'(xi)
not j Xinj (x]*)
xkﬂj(xj)
. * *
not k Xik (X7 + Xj )

x]-ﬁk(xj‘ + x]*)

At the second stage of the solution, the decision maker takes into consideration

Notice that the optimal unconditional allocation for asset k is calculated as the residual m —

* *
Xl» X]».
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these optimal conditional allocations and solves for the optimal unconditional al-
location at the stage where she holds no information. That is to say, at the second
level, the decision maker solves the problem for x} and x;f. The objective now is to
solve the problem as it is conceived at t = 0 for all the six conditional allocations .

The objective function is:

max {min {P(not i) x EU(not i) + P(not j) x EU(not j) + P(not k) x EU(not k) } }

Xj=irXk=irXinjrXk=jrXi=kiXj—k

where P(—i) stands for the joint probability that either j or k will happen. As
the beliefs are ambiguous and we are not aware where exactly in the triangle
these beliefs lie, we follow the same methodology as in the case of the resolute
MaxMin preferences. For each point in the triangle, the MaxMin expected utility
is calculated given the set of priors and the respective updated posteriors. The
joint probabilities that an event will happen is summarised in Table 2.5 for each of

the prior sets.
Table 2.5 Joint Probabilities for each Prior

Point noti not; notk
A pitpe 1-pi 1—px
B 1—pi pi+tpe 1—px
C 1-pi 1-p; pitp

We calculate the expected utility at all three points. For example, at point A,

the optimisation problem can be written as:

max {min {P4(not i) x EU(not i) + Pa(not j) x EU(not j) + P4(not k) x EU(not k)} }

Xj=irXk=irXinjrXk=jrXi=kiXj—k

and substituting:

EUy =(p; + pi) % [(@(xj-i(x)) + (1= w)u (i ()] + (1= py) x [wuximg(x)+
(1= w)u (i ())] + (1= pi)  [wom(xi (x5 + 7)) + (1= w)u(xjoe (37 + )]

(2.9)

where w is the posterior probability as was defined in Table 2.2 and differs

at each conditional state. Then following the same line of thinking, the expected
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utility at points B and C are respectively:

EUp =(1 — pi) x [(wu(xj-i(x7)) + (1 = w)u(x-i (x7)] + (pi + pi) x [wu(xi-j(x7)) +

(1 = w)u(xe ()] + (1= pi) x [aou(xie(x + 7)) + (1= w)u(xj-x(x] +7))]

Elc =(1 — pi) x [(wu(xj-i(x7)) + (1 = w)u(x-i (x7)] + (1= pj) X [wu(xi-i(x7)) +

(2.10)

(1 = w)u(xe— (x7)] + (pi + pj) X [wu(xige(x] + x7)) + (1 — w)ulxjp(xi +x7))]

Finally, the objective is to solve for the optimal levels of (x;‘,x;‘) that solve the
following expression:

max{min{EU4 (x},x}), EUs(x},x), EUc(x},x7) }}

providing the optimal conditional and unconditional allocations.?’

A naive decision maker combines the strategies of the resolute and the sophis-
ticated type but in a reverse order. Firstly decides as if the problem is a one stage
task by solving Equation . Then she receives partial information, updates her be-
liefs and uses these revised beliefs to solve Equation 2.7. Based on the type?! of
information revealed, the decisions may satisfy dynamic consistency or they may

not.

FBU Vs MLU

In cases where the decision is constrained to discrete choice problems (such as

pairwise problems), the distinction of the two rules is important as using either

20The optimal allocations for the MEU model were obtained numerically. For this purpose, the
R package optim was applied using a general-purpose optimisation routine based on Nelder Mead,
quasi-Newton and conjugate-gradient algorithms. This routine allows box-constrained optimisation
and uses simulated annealing.

2IThe type of information can be classified as good news, bad news and neutral. This is a function
of the probability that an event will happen and the respective exchange rate of this event. If for
example there is a state that has high prior probability and yields a high payoff, by learning that
this state has not happened, it can be regarded as bad news.

(2.11)
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may lead to different choices (see sequential Ellsberg urn in chapter 1). If this is the
case, then it is possible to identify and then test which of the rules is applied. In the
problem that we are studying, due to the lack of a fixed probability this does not
hold any more and consequently we are unable to identify which rule governs. We
prove this formally. Consider again Figure 2.3. In this MMT p; is depicted along
the horizontal axis and pjy along the vertical and the internal triangle is formed by

122 and also we

the lower bounds of p;, pj, px. We assume that 0 < p; + p; + px <
assume that the information that the state is not k is revealed. The priors at each
of the vertices A,B and C are:

B [pi1—pi— prpil

Updating prior by prior using the Bayesian rule provides the posteriors A’,B’
and C’

1-pi—px P

7 o 0

A 1-pr 7 1—px
’ P 1-pi—pe

B [y 1]
/ pi P

C Ity )]

The question now is whether the point C’ (the one that is excluded by the MLU
rule) is within the set B’ to A". Note that A’ is to the right of B". We have that C" is
to the left of B’ if:

pi pi
P _
pitp 1-p

that is if 1 — p; < p; + p; which means that 1 < p; + p; + px which is impossible.
Also C’ is to the right of A’ if

pi 1—pj—px
L ¢
pitp 1= pk

that is if

pi(1=p) > (1= pj = ) (pi+ pj) = pi — pibx > pi+ pj — pipj — Pi° — Pib = Pipx

22We assume strict inequality as, if the sum of the probabilities is equal to zero then the problem
is trivial and if it is equal to 1 it reduces to the SEU case.
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which holds when
Pj—Pin—ﬁz—&ﬂ<0

and simplifying
1—pi— pi—pr < 0

which leads to contradiction. Thus, the sets should be the same. B
The previous result indicates that the two updating rules will lead to the same
allocations that the MEU preferences generate and even if the prior that the GBU

rule requires to be updates is ignored, we will obtain the same result.

2.2.4 Choquet Expected Utility (CEU)

The Choquet Expected Utility (CEU) model belongs to the family of rank-
dependent utility models and was firstly axiomatized by Schmeidler (1986), Schmei-
dler (1986) and later by Gilboa (1987) and Wakker (1989) among others. The main
characteristic of this model is that beliefs do not need to be additive any more,
as now these beliefs are represented by a non-additive capacity. Following Gilboa
(2009), an unknown coin can be an example of a non-additive capacity. When the
coin is fair, then it is quite reasonable to assume that v(Heads) = v(Tails) = .5.
When one is not sure, the theory of non-additive capacities suggests that one can
hold beliefs that do not sum up to 1. In other words, there is no contradiction in
believing that v(Heads) = v(Tails) = .4 while at the same time v(Heads U Tails) = 1.

This means that the standard result v(A U B) + v(A N B) = v(A) 4+ v(B), when
A and B are disjoint, does not hold any more and as we see later, this lack of
equality is used to represent attitudes towards ambiguity. This non-additive capacity
v is defined as a real-valued, non-linear increasing function from S — [0,1]. This

function satisfies the following properties:
1. v(0) =0
2. A C Bimplies v(A) < v(B)
3. v(S)=1

When 1-3 are satisfied at the same time, the function v consists a non-additive

probability, or a capacity. One of the contributions of this model is that it allows
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the expression of ambiguity aversion. More specifically, Schmeidler shows that a
CEU decision maker is ambiguity averse?}, when the capacity that expresses her

beliefs is convex. A convex capacity for all events A, B € X satisfies:
v(AUB)+v(ANB)>v(A)+v(B)

Schmeidler’s idea was based on the notion of an integral for capacities in the same
why that it was developed by Choquet. More specifically, for a given capacity
space (S,%,v) and a X-measurable function a : S — R, « = (a1, E1;a2,E;...;an, EN)
that satisfy the ranking a1 > & > ... > ay, the Choquet integral of « with respect

to a capacity v is defined as:

N-1 n
/och =Y (an — @) ( U Em> +ay

n=1 m=1

This expression can be written as:

N n n—1
/uch: szn [v(U Em> —v(U Em>]
n=1 m=1 m=1
We next apply this definition of the Choquet integral to a utility maximisation
problem, using our sequential decision task with three states of the world. This is
the way that a resolute decision maker would approach the problem. We assume a
state space S = {si,s]-,sk} which corresponds to the three different states that can
be observed in the world, the set X = {x,-,x]-,xk} is the set of the corresponding
consequences at each state of the world and v the subjective capacity of non-
additive probabilities. We then need to specify 6 capacities, three capacities-one
for each state (v{s;},v{s;},v{sc}) and three for the joined capacities over states
v{s; Us;} for s;,s;, v{s; Us} for s;,s; and v{s; Usi} for s;,s; .
In order to proceed, the model requires that we have a complete preference on
F (Gilboa, 2010). All the functions from states to outcomes should be considered
at least as conceivable acts. Thus, if there is a set of available acts E and constructs
S = XE then F is defined as F = X5 = X(X") and we assume that the preference

relationship 7 is a complete order on F. Firstly we need to rank the preferences of

Z3More precisely, the definition is based on the notion of preference for mixtures or differently
hedge against ambiguity.
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the decision maker from the best to the worst outcome, for example x; > x; > x;

Summarizing the values on the following Table:

S; S]' Sk S; US]' S]' U sy s; U s S
v 0 v 0] o ofsisit ofsist vfsis}t 1
u(xs) u(x;)  u(x)  u(x)

For x; < xj < %, the Choquet integral is given by:
u(xi) [ —o({sj,sc3)] + ulx))[o({sj,sc}) —o({se})] +ulx)[o({sc})
or in a different way:
/Su<xs)dv(5> = u(x;) + (u(xj) — u(xi) jo({sj,sc}) + (u(xe) —u(x))o({si}) (2.12)
and by rearranging:
/Su(xs)dv(S) = u(x;)[1 —o({sj,se})] + u(xj) (v({sj,5}) — o({sx})) + u(xi)o({si})

The Choquet integral, can be interpreted as a weighted average of the expected
utility, with weights that depend on the ranking of the different outcomes and
sum up to 1. Let ws being the weight for state s. The weights w;, wj,wy for the

ranking that we assumed, are defined in the following way:

wr = Ok
wj = Ujk— Uk
w; = 1-vjk

Defining the weights in such a way, allows us to write the Choquet integral as:

/(de = Ziwsu(xs)

As in the case of MEU, the CEU model relaxes the Independence axiom. Instead,
it substitutes this axiom with the one of Comonotonic Independence**. In order for

the representation presented above to hold, it must be guaranteed that the acts

24Comonotonic Independence requires that f = g = af + (1 — a)h = ag + (1 — a)h only if f,g,h
are pairwise comonotic. A pair of acts is comonotonic when there is no pair of states, s,s’ such that

f(s) = f(s') and g(s) < g(s").



2.2 The Theoretical Framework 62

under consideration are comonotonic. The optimal allocation for a resolute decision
maker is obtained by the optimisation of the objective function that considers the
problem as a static one. The conditional allocations will be the same as the initial

ones. The objective is to maximise:
wiu(z;) + wiu(z;) + wiu(zy)

subject to the budget constraint m = x; + x; + xx and to the ranking that the out-
comes must satisfy. This means that each ranking generates a different constrained
optimisation problem which requires the incorporation of the Kuhn-Tucker con-
ditions. In the case of three outcomes, the number of these additional constraints,
is a function of the number possible combinations one may have. Three outcomes
can be ordered in 3!=6 ways therefore, in order to completely characterise the so-
lution, it is necessary to solve the problem for all the possible rankings and apply
as acceptable allocation the one that maximises the utility of the agent. In Ap-
pendix A, we analytically present all the possible rankings, the respective weights
that each ranking implies, as well as the analytical solutions for a CRRA utility
function.

The decision process of a naive decision maker involves integration of sequen-
tial arrival of information and updating of the prior beliefs. Hence, an appropri-
ate story is needed as to how this updating process takes place. The timing of
the decision procedure for this type is the following: at time t = 0 she chooses
the allocation that maximises the current utility (exactly in the same way that a
resolute decision maker does). When the partial information becomes available,
the capacities that characterise the decision maker’s beliefs are updated and then
a new optimisation problem is solved, based on her preferences and her updated
beliefs. Let w be the updated weight. Since there are only two alternatives, only
one weight is needed as one prospect is weighted by w and the other by 1 — w. Let
for instance the available information to be that the state of the world is not j. The
decision has to be made between assets i and k. Keeping the same notation as be-
fore and denoting Xinjs X the conditional allocations to i and k,the maximisation

problem can be now written as:
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max wqu(xi—;) + (1 — @) u(xx;) (2.13)

XinjrXk—j

s.t. Xjj + Xp-j =m — x;‘ (2.14)

The next step is to define how these weights are formed. In the literature, there
have been suggested several different rules that are based either on the statistical
approach of updating (Dempster (1967), Dempster (1968), Shafer (1976), Jaffray
(2008)) or on the decision theoretic approach (Eichberger et al. (2007), Eichberger
et al. (2010), Chateauneuf et al. (2011)).% In this chapter, we focus on the decision
theoretic approach as we regard capacities as beliefs. Nevertheless, this approach
requires the satisfaction of a set of axioms. The main result of Eichberger et al.
(2007) is that the utility function over outcomes remains invariant to updating.
Then, consequentialism, state independence®® and conditional certainty equivalent con-
sistency must hold when one wants to apply the available updating rules for CEU
preferences.

The three most common rules that are used in order to update Choquet ca-
pacities are the Optimistic, the Dempster-Shafer and the Generalised or Full Bayesian
update rule. We denote as v(i|—j) the updated capacity for state i conditional
on the information that the state of the world is not j. For an event E € X the
conditional capacities for an event A are given by the following formulas:

Optimistic rule:

_ v(ANE)
7T(a) = 100

Dempster Shafer rule:

ps gy UAUE) — ofE9)
N )

25The difference among the two lies on the way that the two methods approach the notion of
capacity. In the case of the statistical approach the capacities represent objective, imprecise informa-
tion and therefore, are generated by probabilities intervals. On the contrary, the decision theoretic
approach considers capacities as subjective beliefs and is based on a series of axioms regarding the
agent’s preferences.

26The State Independence axiom entails that the ordinal ranking of outcomes remains unchanged
no matter the event on which the preferences are being conditioned.
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Generalised Bayesian Updating Rule:

4GB _ v(ANE)
E 7 9(ANE)+1-9(AUE")

which all collapse to the standard Bayesian rule in case that the capacity is
additive. Then taking the case where we have a binary bet of the form xAy which
yields outcome x on A and y on A° with x,y € X and x > y. Thus it holds that
u(x) > u(y) and the CEU can be expressed as:

o(A)u(x) + (1 —o(A%))uly)
defining the conjugate capacity as 7(B) =1 — v(B¢) the CEU can be written as:
V(xAy) = v(A)u(x) +3(A%)uly)

Then after obtaining information that the event is E, the updated CEU be-

comes:

Ve(xAy) = vp(A)u(x) + 0 (A )u(y)

and applying each updating rule we obtain:

Optimistic:

A ) + A0y

vop' T (xAy) =

Dempster-Shafer rule:

o((AUES) — v(E°) 1—o((AUES)

Generalised Bayesian Updating Rule:

B v(ANE) 1-9(AUE")
o = v(AﬂE)+1—v(AUEC)u(x)+ v(AﬂE)+1—v(AUEC)u(y)

As Eichberger et al. (2010) remark, the Optimistic updating rule, weighs the
good outcome following the rule of conditional probabilities, while the bad out-
come is determined by the complementary decision weight. On the contrary, the

Dempster-Shafer rule puts more weight on the bad outcome based on the law of



2.2 The Theoretical Framework 65

conditional probabilities and the weight to the good outcome is the complemen-
tary weight. Finally, the Generalised Bayesian Updating rule, adjusts both weights
in such a way that they are symmetric for both the good and the bad outcome.
All of the rules that have been axiomatized, share the same property, that the util-
ity index applied to represent the updated preferences remains unchanged. In
Appendix A we present how these rules are applied to our problem taking into
consideration the relevant rankings.

Table 2.7 shows the simulated decisions of a Naive decision maker with CEU
preferences, based on 25 problems out of total 60 that were presented to the sub-
jects during the experiment, assuming that the information received is that the
state of the world is not k. We show what the allocations are for assets i and j and
then the respective allocation conditioned to the event. In the first stage (t = 0),
the decisions (x;,x;) coincide independently of which updating rule is applied
as the decision maker is solving the one-stage static problem. They also coin-
cide with what a Resolute type would do. In the next columns (t = 1), the agent
uses the available information and updates the beliefs accordingly, leading to the
respective allocations (x;-,xj-x). The set of parameters according to which the
simulation was carried out is presented in Table 2.7. No stochastic component is
assumed and the utility is represented by a constant relative risk aversion (CRRA)
function.

Table 2.6 Parameter Values for CEU Simulation

Parameter Value
v; = 0.180

v; = 0.270

Uk = 0.400

UZ']' = 0.520

Vik = 0.790

Ujk = 0.680

r = 0.300

From Table 2.7 it is possible to see that different updating rules generate dif-
ferent optimal allocations and thus, the experimental design enables us to identify

which rule is being used.



Table 2.7 Optimal Allocations for CEU Naive

t=0 t=1
OPT DSU GBU
Problem Income e; €j ey Xi Xj Xi-k Xj-k Xi-k Xj-k Xi-k Xj-k
1 10 1.3 15 14 162 404 259 3.08 159 4.08 225 342
2 20 06 08 07 621 466 480 607 291 79 415 6.72
3 30 03 05 04 439 1138 6.60 917 393 11.84 5.67 10.10
4 40 02 04 05 501 1634 853 1282 5.01 1634 730 14.06
5 50 02 03 03 728 2097 1214 1612 7.28 2097 1045 17.80
6 60 02 03 03 874 2517 1456 1934 874 2517 1254 21.36
7 70 02 02 02 11.80 2857 19.08 2130 11.80 28.57 16.60 23.77
8 80 01 02 02 1047 3413 1783 26.78 1047 3413 1524 29.37
9 90 01 02 02 11.78 3840 20.06 30.13 11.78 3840 17.14 33.04
10 100 01 02 02 13.09 4267 2228 3348 13.09 42.67 19.05 36.71
11 10 14 15 13 169 386 258 297 159 396 224 331
12 20 07 08 06 340 712 482 569 295 756 418 6.33
13 30 04 05 03 517 931 650 798 395 1053 562 8.86
14 40 05 04 02 831 1092 1068 855 6.01 1322 10.68 8.55
15 50 03 03 02 912 1635 1204 1344 745 18.03 1047 15.00
16 60 03 03 02 1095 19.62 1444 1612 893 21.63 1257 18.00
17 70 02 02 02 11.80 2857 19.08 21.30 11.80 28.57 16.60 23.77
18 80 02 02 01 1555 2226 1787 1994 11.05 26.76 1555 22.26
19 90 02 02 01 1749 2505 20.10 2244 1243 30.10 1749 25.05
20 100 02 02 01 1943 2783 2233 2493 1381 3345 19.43 27.83
21 15 14 15 13 2583 579 387 445 238 594 336 496
22 25 07 08 06 425 889 6.02 712 369 945 522 792
23 35 04 05 03 6.04 1086 758 931 461 1229 656 10.34
24 45 05 04 02 935 1228 1202 961 676 1487 1202 9.61
25 55 03 03 02 1003 1799 1324 1478 819 19.83 11.52 16.50
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The decision task for a sophisticated decision maker, requires a solution using
backward induction. As was analytically presented in section 2.2.2, this requires
a kind of connection between conditional and unconditional expectations. This
means, that initially, the decision maker should solve the conditional problems
based on the information that she may receive and applying the respective up-
dating rules as shown above, and then solve the global unconditional problem, in
order to determine the unconditional allocations. In this case, the decision maker
faces three conditional states that each has two outcomes. This means that when
solving for the global unconditional problem, the agent should consider all the six
conditional outcomes and their perspective ranking. With 6 outcomes, there are
6!=720 possible different rankings that one should consider, applying at each the
correct weights. In Appendix A, we present the analytical solutions for the prob-
lem, as well as the steps of the algorithm that we developed in order to account

for the 720 rankings.

2.2.5 Source Choquet Expected Utility (SCEU)

The source method is based on the work of Tversky and Kahneman (1992) on
the different sources of ambiguity and has been recently developed and used in
the analysis of experimental data by Abdellaoui et al. (2011) and Kothiyal et al.
(2014). The main idea of this approach is that different sources of uncertainty
can be treated in a different way. As Kothiyal et al. (2014) indicate, the use of
these source functions allows the mapping of choice-based probabilities into will-
ingness to bet. As a result, decision making under ambiguity is described by
the use of three components, the utility over outcomes that represents tastes, the
choice-based probabilities that reflect beliefs and the source functions that capture
diversion from Expected Utility theory (Allais and Ellsberg type behaviour, home
bias and ambiguity aversion). As a definition, a source of uncertainty concerns
a group of events that is generated by a specific mechanism of uncertainty. In
our framework, it is reasonable to assume that the Bingo Blower is a source of
ambiguity, as the various events and their respective representation are created
in a particular way. The sources are assumed to be algebras which means that
they contain the universal event (happens with probability equal to 1), the empty

event, the complement of each of the elements and the union for each pair of the
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elements. A source function is defined for a specific source of ambiguity and a
specific treatment. That is to say, a subject i in a given treatment, holds subjective
beliefs for the various states of the world that can be represented by a vector P
over S. Then, there exists a source function, which is a mapping in the inter-
val [0,1] such that w(0) =0, w(1) =1 and w(E) = w(P(E)). The objective of this
function is to transform the subjective probabilities. Using the family?’ that Prelec

(1998) suggests, the function can be written as:

w(p) = exp(—(=1In(p))*) (2.15)

The relationship above can be described with the help of a graph of the source
function. The x-axis represents the probability p while on the y-axis the weighted-
transformed probabilities are represented. When the coefficient « is equal to 1,
there are no weighted probabilities and the beliefs satisfy the assumption of prob-
abilistic sophistication. The source function can be characterised as linear and its
shape coincides with the 45° line. This case is illustrated in Figure 2.4 on the top
left graph. Then, depending on the value of a there may be either an S-shaped
source function in the case that « is greater than one or an inverse S-shaped source
function in the case that « is less than one. Similarly the weighting function for
a=0.5, « = 1.5 and « = 0.85 are illustrated.

The intuition of characterizing a weighting function as an inverse S function
is that people usually tend to overweight large probabilities and to underweight
those that are larger and are associated with larger outcomes. Evidence on this
can be found on Abdellaoui (2000) and Tversky and Kahneman (1992). Using
this methodology there are some advantages and at the same time some draw-
backs. As is already mentioned, the positive aspect of this methodology is that
the number of parameters to estimate is significantly reduced. In the case of CEU
preferences with three outcomes, there are six parameters for the capacities that
represent beliefs, plus the coefficient of risk aversion r and the precision param-
eter s for the stochastic specification, requiring 8 parameters in total to be jointly

estimated. Using the source method, these parameters are reduced to five, as now

27 As the objective is to minimise the number of parameters to estimate, we follow Kothiyal
et al. (2014) and apply the one-parameter family. In the same study, they discuss the alternative
specifications (either with one or two parameters) that can be used.
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Figure 2.4 Weighting of Probabilities

there are two probabilities to estimate (p;, p; and py is simply the residual), the

parameter of the weighting function a and again the risk aversion coefficient and

precision. In addition, on the positive side is that this kind of weighing offers a

measure of ambiguity aversion, something that was previously measured only by

the non-additivity of the capacities.

On the other hand, this specification significantly constraints one of the ba-

sic objectives of this research. As one of the scopes is to test how ambiguous

beliefs are updated, the source function method assumes probabilistic sophistica-
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tion, which does not allow the representation of beliefs using capacities and con-
sequently all the alternative rules that have been suggested for the CEU model,
are not possible to apply in this case. As a result, we need to make the assump-
tion that upon the arrival of new information, the prior beliefs are updated based
on the Bayesian rule. Nevertheless, it allows to test behaviour in this sequential
framework with the only difference compared to the CEU being the lack of capac-
ities and thus, different updating rules. As updating rules and behaviour (types)
are interconnected, adapting this specification allows one to focus purely on the
different types without considering the updating process. This kind of modelling
belongs to the class of the Rank Dependent Expected Utility models, which means
that as in the case of the CEU the ranking of the different outcomes e;x; plays a
significant role.

Again, for this model, we examine three different types, the resolute, the naive
and the sophisticated. The resolute decision maker, anticipates only three possible
states of the world and holds subjective beliefs {p;,pj, 1 — p; — pj}. Assuming the
following ranking of the outcomes ¢;x; > e;x; > exx; and the weighting function

A.61, the weights w(.) attached to the outcomes are given by:

w; =w(p;) (2.16)
wj=w(p:Up;) —w(p:) =w(pi + p;) — w(pi) (2.17)
wp=1—w(p;Upj) =1—w(pi+pj) (2.18)

(2.19)

All the appropriate weights for all possible rankings are presented in Table
A.7 of Appendix A. In addition, as the specification is quite similar to the CEU
case, with the only difference being the way that the capacities are handled, the
maximisation problem, as well as the solutions for the optimal allocations, are
exactly the same as in the CEU case, adjusted for the appropriate weights (see
Appendix A).

As already discussed, the naive decision maker will choose at the first stage
exactly in the same way as a resolute decision making but is doing this uninten-

tionally. In the second stage, and always assuming that the beliefs of the decision
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maker are weighted before making a decision, the choices at the second stage will
deviate from what was chosen at t = 0. The nature of the problem to be solved at
the second stage remains the same as before. So for instance, if the event E is that

the ball is not i (p(E) = p(sj U sx)) then the optimisation task reduces to:

_max wiu(z;) + wiu(z;) (2.20)

jirtk—i
s.t. ij]'ﬂi — €k X <0 (221)
Xjni + Xpoi = xf + x; (2.22)

where w},

now is to determine the way that the weights are updated. Since the subjective

w) are the updated weights for j and k respectively. What remains

beliefs are additive, we are still in position to apply the Bayesian rule to update
these beliefs. Then the updated subjective beliefs, are accordingly weighted by the
weighting function w(.) ( Equation A.61). The conditional beliefs for states j and
k on E are respectively given by:

p(s)) p(s))

PEIE) = o Uso ~ 50 + pG) 223)

slEy = PG psi)
PsE) = 20 Tso ~ 76) T pn) @24)

Then, the relevant rankings? are taken into consideration in order to complete
the weight matrix.

Finally, the sophisticated decision maker, backwardly solves the problem and
attach the appropriate weights where needed in a similar manner as in the CEU

case (details on Appendix A).

2.2.6 Specifications and Respective Axioms

It has become clear by now, that when one deviates from the SEU model, in-
evitably either the axiom of dynamic consistency or that of consequentialism is vi-
olated. In this chapter, we have presented 14 possible specifications (combinations

of preference functionals, updating rules and types) that explicitly make some as-

28As in the CEU case, for each conditional state, three rankings are taken into consideration
namely the rankings z; > z;,z; < zx and z; = z;, where z is the payoff at each state.
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sumptions, regarding which axiom is satisfied, topic that has been extensively dis-
cussed in chapter 1. Whenever updating is taking place (naive and sophisticated
type) and appropriate rules are applied, consequentialism in assumed to hold, or
stating differently, the choices are not dynamically consistent. Nonetheless, when
the type is resolute, dynamic consistency is violated®. Doing such a classification,
allows to consider case where, even though the decision maker is non-EU, she
does not fail to satisfy dynamic consistency. In Table 2.8, the combinations of the

specifications along with the respective axioms, are presented.

Table 2.8 Specifications and Respective Axioms

Preferences Type Updating Rule Axioms satisfied

1 SEU Resolute - DC/C
2 MEU Resolute - DC
3 MEU Naive GBU/MLU C

4 MEU Sophisticated =~ GBU/MLU C

5 CEU Resolute - DC
6 CEU Naive GB C

7 CEU Naive DS C

8 CEU Naive OPT C

9 CEU Sophisticated GB C
10 CEU Sophisticated DS C
11 CEU Sophisticated OPT C
12 SCEU Resolute - DC
13 SCEU Naive BAYESIAN C
14 SCEU Sophisticated BAYESIAN C

C stands for Consequentialism and DC for Dynamic Consistency

2.3 The Experimental Procedure

The experimental design is inspired by the sequential Ellsberg problem that
was presented in chapter 1, but is substantially different in nature, regarding the
representation of ambiguity, as well as the decision problem. In our experimental
protocol, subjects had a rough idea of the composition of the urn (there was not

complete ignorance regarding the probabilities of some states, a fact that reduces

2In this case, the dynamic consistent updating rules (Klibanoff and Hanany (2007), Hanany and
Klibanoff (2009)) or the methods that the recursive models propose (Epstein and Schneider (2003))
can be explained by the resolute type-but cannot be identified.
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the level of suspicion that a standard Ellsberg urn may entail®’) and in addition,
they were required to realise allocations of experimental income to the possible
events instead of choosing binary bets. We use a within-subject design as we are
focusing on individual choice. The decision task in the experiment is quite sim-
ple: using a Bingo Blower to represent ambiguity in the lab, the subjects were
presented with a series of allocation problems, with the objective being to allocate
the experimental income to the three assets based on the probabilities that each
asset has to be extracted from the Bingo Blower. The problems are constrained to
allocating an experimental income m to three Arrow security assets (xs,s € {i,],k})
where an Arrow security is defined as the asset that pays 1 monetary unit if the
state of the world is s and zero otherwise.3!

The ambiguous environment was created with the use of a Bingo Blower. The
Bingo Blower consists of a transparent box that contains table tennis balls. At the
bottom of the box, there is a motor that generates a stream of air, which makes the
balls to continuously move inside the box. The advantage of this device, is that
when the number of the balls is sufficiently high, one is not able to count the total
number of the balls, or the number of individual colours. What is possible to do,
is to distinguish that there is at least one ball of each colour (minimum probabil-
ity) and to obtain a rough idea of the maximum number of the balls (maximum
probability) preserving always some ambiguity.®> In other words, while there ex-
ist objective probabilities (known to the experimenter), the subjects are not able to
precisely construct an objective probability distribution. Inside the Bingo Blower
there were balls of three different colours Blue, Yellow and Pink, to represent the
three different Arrow assets. A similar Bingo cage has been used by Andersen

et al. (2012) and the Bingo Blower has been used by Hey et al. (2010) and Hey and

30A standard practice in laboratory experiments that include some form of Ellsberg urns, is to
provide subjects with very vague information of the kind “there are 100 Black and Red balls but their
ratio is unknown” or “there may be 0-100 Black balls”. This type of information creates suspicion
that the experimenter is trying to minimise the payments, as she or he does not explicitly describe
how the urn was composed.

31In this case it is assumed that the exchange rates are equal to 1 and the experimental income
has been normalised to 1. This means that the payoffs above correspond to the case where the entity
of the income is allocated to the asset 5. In the experiment, there were different exchange rates in
each problem and the payoff at state s was the product between the proportion xs of the total income
allocated to the asset s multiplied by the respective exchange rate e;.

32Roughly, when n > 10 the environment becomes ambiguous enough. When n < 10, it is possible
that subjects will be able to count the exact number of balls, transforming the problem to a risky
one.
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Pace (2014), all in static choice problems. The actual synthesis of the Bingo Blower

during the experiment is shown in Table 2.9.
Table 2.9 Composition of the Bingo Blower

Blue Yellow Pink TOTAL
Number of balls 4 12 6 20
Percentage 20%  50%  30% 1

The decision task can be described with the use of a three-period model. At
t = 0 the subjects received an experimental income m and they were informed on
the exchange rates (¢;, ¢, ¢) between experimental income and British sterling that
each asset yields. Based on these exchange rates, they were asked to make an
allocation to the three assets, knowing that only one will be the winning asset and
as such, the only one that provides a payoff equal to the amount allocated to this
asset (colour), transformed to monetary value. But before learning the actual state
of the world, the subjects were receiving some relevant information that would
help them to re-evaluate their choices, if needed, and were given the opportunity
to change their initial choice. The subjects were asked to imagine® the following

scenario:

A ball is drawn from the Bingo Blower. We will not reveal you the
actual colour of the ball but we will let you know what the colour of
the ball that we have in our hands is not. Then, you will lose all the
income that you allocated to this “not” ball, since it is not the winning

colour for sure.

This means, that at t = 1 the subjects received partial information in the form of
a filtration that presents the complementary event (e.g. 1 = {{Blue, Pink},{Yellow}}
which provides the information whether the ball is Yellow or not-subjects were
never received the filtration saying that an event happened with certainty). At
that time, the subjects were asked to allocate the remaining available income (ini-
tial income-amount allocated to the “not” colour) to the two possible states of the
world (e.g. to Blue and Pink) and at t = 2 all relevant uncertainty is resolved by

revealing what the colour of the ball actually is. There were 60 similar problems34,

3In the experiment, we asked subjects to imagine that a ball is drawn, instead of actually draw-
ing, in order to avoid any learning effects. This is discussed in section 2.3.

34 As the nature of the problem we investigate is quite complex, it is inevitable to demand a rich
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with different amounts of experimental income and exchange rates) and the sub-
jects were paid using an incentive compatible mechanism® by picking at random
one of the 60 problems and physically playing it for real. The computer retrieved
the allocations of each subject as well as the information that they were given at
this specific problem. Then, they activate the mechanism that extracts balls from
the Bingo Blower in order to randomly define the winning colour.3®. Then, they
were paid in cash and in private after the end of the experiment. The problems
appeared in a random order, different for each subject to eliminate possible order

effects.

2.3.1 The Problems

Before running the actual experiment we carried out a pilot study (it was con-
ducted in two sessions with 6 participants each) to test the set of problems and the
experimental software. Then, a series of extensive simulations was performed in
order to ensure that the problem set that we have is useful to identify the different
types. The set of questions was chosen in such a way that it could guarantee two
criteria. First, the expected payoff for a risk neutral person would always be the
same. A risk-neutral person devotes everything to the colour s which implies the
highest product between the probability of event s and the exchange rate e;. If
there were no exchange rates between experimental income and money, the opti-
mal choice would be to allocate everything to the asset with the highest probability
to happen, thus to allocate everything to Yellow. In order to preserve this property,
we chose the problems in such a way that a risk neutral person will always choose
to allocate everything to the most probable outcome, Yellow. The second criterion
on choosing the problems for the experiment was the performance of these spe-
cific problems in the testing of the estimation programmes. Having as an objective
the development of robust estimation codes, we simulated and estimated experi-
mental data with many different sets of problems (Monte Carlo simulation). The

set that we applied in the experiment was the one that provided the most robust

dataset in order to obtain as accurate estimates as possible.
%5For a support of this mechanism see Wakker (2007).

36The subjects were keeping drawing balls, with replacement, if the ball extracted was the same
colour with the not ball.



2.3 The Experimental Procedure 76

estimators (maximum likelihood estimation). Table 2.10 shows the set of problems
that we actually used in the experiment.

For each of the subjects, we recorded data on the decisions they made in this
three-period task. There were 60 questions, each consisted of a two-stage deci-
sion, giving in total 120 observations per subject and pooling the data for the
whole population of the experiment, we have 58 x 120 = 6960 observations. For
the conditional states, the available data are roughly 1/3 of the total dataset for
each conditional state.’” The structure of the experiment is such that allows us to
proceed in both a subject level analysis and in aggregate by setting up a mixture
model®®. In this chapter we follow a subject by subject level analysis, as this pro-
vides the flexibility to fit a wide collection of different combinations® (preference

functionals, types and updating rules).

37The experimental software was programmed in such a way, that each conditional state was
appearing with probability equal to 1/3.

38This is left for future work.

%n this chapter we specify and fit 14 different preference functionals for each of the subjects.
See Table 2.12.
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2.3.2 Procedure and Administration

The experiment was conducted at the Centre for Experimental Economics
(EXEC) at the University of York between May and June 2013. The subjects were
recruited from a standard student experimental population using the ORSEE sys-
tem (Greiner, 2004). The majority of subjects were Bachelor students from several
different majors and 52% were females. There were three sessions (24,17,17). The
experiment lasted for less than one hour. The subjects were paid privately in cash
directly after the end of the experiment. The average payment was £11.16 includ-
ing a show-up fee of £3. The maximum payment was £25.5. Upon arrival, the
subjects were randomly assigned to a computer terminal.

The experiment was computerised and the experimental interface was devel-
oped in Python.*® Each problem that the subjects were required to answer had two
stages. Figures 2.5 and 2.6 show screenshots from the experimental framework for

stages 1 and 2 respectively.

You have 60.0 tokens to allocate among the three colours.

The exchange rates between tokens and money are: centre for onomics
BLUE:0.4 eX e C
YELLOW:1.0 perimental
PINK:0.5

Move the sliders to allocate tokens to your preferred colours. Then click to confirm.,

On the right, you can see the implied eanings of money you will win, if this problem Remaining Time:

will be chosen and if this colour will be extracted from the Bingo Blower. 43
QOn the bottom, you can see the implied earnings in money.
Tokens allocated:
20 25 15

The tokens for the next stage will be:
40.00 if the ball is NOT BLUE

35.00 if the ball is NOT YELLOW
45.00 if the ball is NOT PINK

£8.00 £25.00 £750 |kt Gort
Figure 2.5 Experimental Software - Stage 1
In the first stage screen, the subjects could see three sliders, one for each re-

spective colour, and the data for each problem: their total income to allocate and

the exchange rates of the three colours. All the sliders were programmed to be

“0Python Software Foundation. Python Language Reference, version 2.7.  Available at
http:/ /www.python.org. The software is available upon request.
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The ball is NOT BLUE. You have 40.0 tokens to allocate between the two colours,

The exchange rates between tokens and money are: centre fore CM
YELLOW:1.0 : ( i
BINEDE perimental

Move the sliders to allocate tokens to your preferred colours. Then click to confirm.

On the right, you can see the implied eanings of money you will win, if this problem Remzining Time:

will be chosen and if this colour will be extracted from the Bingo Blower.

=m0
On the bottom, you can see the implied earnings in money. e 2
Tokens allocated:
20 20
The implied earnings will be:
£20.00, if a YELLOW ball is drawn
£10.00, if a PINK ball is drawn
| |
Click te Corfirm :
£ 20,00 £10.00 ¢

Figure 2.6 Experimental Software - Stage 2

connected with each other, so at any time, the allocation of the subjects was con-
strained to be equal to the total experimental income (there was no possibility to
short-sell or to save for the next round). In addition, in the screen they could see
how much of the income they have allocated to each colour and the respective po-
tential income that they will have in the second stage, depending on the real state
of the world. Also, there was a timer, with the minimum time to respond set to 10
seconds and the maximum to 90 seconds. Pushing the “next” button, the software
was programmed to reveal some partial information (not 7, not j, not k,) based on
a uniform distribution. The latter was applied in order to avoid learning effects
that would transform the problem to a risky choice one. In the second stage, there
were only two sliders available for remaining states of the word, along with all the
relevant information.

All subjects were given both written instructions (available in Appendix C) and
a slide-show presentation. After reading the instructions, subjects were able to go
through the slide-show presentation which was available at each terminal and
contained simplified instructions and examples, and navigate it at their own pace.
Then, they were free to go near the Bingo Blower and observe the composition of
the three colours where they could create some priors on the proportions. During

the experiment a live image of the bingo blower was projected through two large
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screens in the lab and in addition, during the experiment the subjects were free to
walk around and observe the Bingo Blower whenever they wanted to. The choices
were recorded in discrete values (integer values) in the range [0,m] with integer

steps.

24 The Econometric Specification

In order to be in position to estimate the parameters for the various models,
we need to make a series of assumptions regarding the utility function and the
stochastic part of the decision making process. By specifying the decisions of the
subjects using parametric forms of the models, it is possible to jointly estimate
all the parameters of interest. This methodology differs from the approach of
gradually estimating some of the parameters and substituting the estimated values
so as to derive the remainder of the values (e.g. Baillon et al. (2013)) or using
calibration methods and applying values for specific parameters based on what

other studies have found.*!

2.4.1 Utility Function

We assume that the preferences of the subjects are represented by a Constant

Relative Risk Aversion (CRRA) utility function that has the following form:

x" ifr>0

u(x) = In(x) ifr=0

—x" ifr<o0
where x is the respective income (payoff) and r is the parameter of risk aver-
sion. We choose to use this following specification for two reasons. On the one
hand, it is generally acceptable that in empirical work this function provides the
best fit (Stott (2006), Wakker (2008)) and specifically in our case, the CRRA func-
tion indeed provided better fit.*> On the other hand the CRRA function has a very

“'While this methodology is quite efficient as it reduces the number of parameters to estimate, it
is restricting as it does not allow for full heterogeneity among subjects.

“2We have fitted the models using the CARA and the ExpoPower function. While the CARA
utility function has the nice property of allowing for boundary allocations, the differences with the
CRRA function were trivial. The ExpoPower on the other hand, has nice properties but it faces two
important limitations. Firstly, it adds one extra parameter that needs to be estimated. Then, due
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convenient property that it does not allow for boundary portfolios (zero alloca-
tions or allocations to only one set). Practically, this means that with the use of
Power function, it is possible to derive elegant, closed-form formulas for the optimal
allocations.

If one wants to assume an exponential utility function (CARA), then there is a
positive aspect, where allocations on the bounds can be explained behaviourally,
but modelling utility in such a way creates a series of problems. Firstly, the un-
constrained optimal allocations are not constrained to the feasible interval defined
by the experimental design [0,m], but can be zero (boundary) or even negative
(short-selling-which was not allowed during the experiment). As a consequence,
the form of the optimal solution changes as now it is necessary to check all he
possible combinations that may appear when the strictly positive allocation to all
the assets (x; > 0, x]?" > 0,x; > 0) is not satisfied. We have developed an algorithm
(details are provided below) that solves for the optimal allocations by taking into
consideration all the possible combinations and the respective constraints, but as-
suming a CARA utility function creates some additional difficulties. As explained
later in the stochastic specification, when the optimal allocation is zero and an
actual allocation is observed to be strictly positive, the assumed distribution of the
random variables degenerates and it becomes impossible to estimate the prefer-
ence functionals. In order to overcome similar issues, we suggest different ways
of modelling stochastic choice (this is extensively discussed in chapter 3). These
alternatives solve the degeneration issues but come at a cost, that of an extra pa-
rameter to estimate. As the preference functionals that we assume contain already
a relatively high number of parameters (the minimum number is in the case of
SEU with 4 parameters and the maximum the CEU case with 8) we decided to use
the CRRA specification with the simplest error story that we can suggest. In ad-
dition, observing the data, there are very few subjects that have chosen boundary
portfolios, making the use of a CRRA function appropriate. The properties of the
CRRA utility function are summarised in Table 2.11.

One of the constraints in this experimental design, is that it does not allow the

modelling of a risk loving person who would be willing to short-sell and allocate

to its functional form, it is not possible to obtain a closed form solution. Consequently, numerical
methods should be applied that both increase the computational time and decrease the precision.
The latter was not applied to the more complicated models (e.g. CEU).
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Table 2.11 Risk Attitudes

u(x) gu 327‘2‘ Attitude r
x" b (r—=1rx™?  Averse r<1
log(x)  1/x —1/x? Neutral r=1
—x" - ! —(r—1)rx"2 Loving r>1

negative amounts to one of the assets.
The estimation of the parameters is performed by using Maximum Likelihood
Estimation (MLE) techniques. The estimation program was written in the R pro-

gramming language for statistical computing43.

2.4.2 The Stochastic Specification

In order to complete our story of how the decision process takes place, we
need to make some assumptions about the stochastic specification. Incorporating
stochastic choice is of paramount importance as on the one hand it makes the
estimation of the several specifications feasible and on the other hand, it renders
the modelling of decision making more realistic. Hey (2014), explains that the
errors in the decision making are either due to randomness in the preferences or
due to errors that the subjects make when they choose. The existence of noise
can be explained by the fact that the subjects make mistakes when they make
decisions. This can be due to several factors, such as difficulties to understand
the problems, badly designed software or low incentives. The two former can
be corrected by increasing the number of questions and repetitions (learning is a
factor that reduces noise). Another model of noise is the random preferences model
where the subjects are assumed to have a set of different preference functionals,
not only one, when they make decisions. The error story that will be adopted
seems to be quite significant as this will define the most appropriate econometric
method to be used. Wilcox (2011), names the parameter for the error as tremble
probability. This is the probability that there is some randomness in the observed
choice due to attention lapses or responding mistakes.

In our experiment, for each question, we can solve for the optimal allocation
vector x*, according to the preferences and the utility representation. Since we

focus on continuous random variables, it is easy to think it terms of proportions

#3The R Manuals, version 3.0.2. Available at: http://www.r-project.org/



2.4 The Econometric Specification 83

over the total available income x;/m. Due to the constraint 0 < x; < m, this amount
is always constrained by the interval [0,1]. Thus, the most natural way to model
the stochastic process is by assuming that x;/m follows a Beta distribution. The
Beta distribution is a family of continuous probability distributions that is defined
on the interval [0,1]. It is characterised by two positive shape parameters « and
which are introduced as exponents of the random variable and control the shape
of the distribution. An attractive feature of this distribution is the relationship that
exists between the mean and the variance. While a normal distribution can have
any variance, in the case of Beta distribution the moments are a function of the
proportion (to be explained later). Consequently, the regressions that involve data
from the unit interval (rates and proportions) tend to be heteroscedastic. In other
words, the variance is smaller at the extremes 0 and 1, while it becomes larger

when we approach 0.5. The moments (mean and variance) of this distribution are:

14
E=is
_ ap
Var(x) = (x+ B2+ p+1)

This means that we need to define suitable # and f that will have the following

properties:

X
Var(—) =
(%)
where x is the actual and x* the optimal allocation. The above properties are
satisfied when For this solution it suffices to set:

x*
=2 (s—1
o (s—1)

X
p=(1-2)(s—1)

with s being the precision parameter of the distribution that is to be estimated,

which must be strictly greater than 1. The problem with these parameters is when

the optimal allocation is a boundary portfolio (where all the optimal allocation is

x* =0 or x* = m) the variance is zero, fact that can create problems to the max-
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imum log-likelihood* A proposed solution for this, is to define the parameters
of the distribution in such a way that the variance never becomes zero. A pair of

such parameters is:

(bm/2+ (1 —=b)x*)(s —1)
m
(m—bm/2—(1-Db)x*)(s—1)
m

B=

where b is the bias parameter and s is the precision of the distribution as before.

Using these parameters, the moments we obtain are:

E(%) =b/2+ (1 - b)x*/m

Var(%):_@m—bm—zx +2x°b) (—bm — 2x" + 2x°b)

4m?2s

When b = 0 we obtain an unbiased estimator. In the following Figure the variance
is plotted against the various possible values that the optimal allocation may ob-
tain. It is apparent that the variance is not constant for all values of the allocation.
It tends to zero at the extremes (0 and m) and is maximised at the point m/2.

The probability density function (pdf) of the Beta-distribution is given by

X

1) = T -

where I'(.) the Gamma function: T'(z) = [;~ t*"lexp(—t)dt. a, f represent the shape
parameters for location and dispersion. More specifically, as Smithson et al. 2006,
point out, a pulls the density toward 0 while 8 pulls it toward 1. The next step is to
define the respective a# and B parameters in order to write the likelihood function.
For the first stage we make the following assumptions. For colour i, the proportion
of the amount allocated to that colour over the available experimental income 7

Y

= follows a

follows the Beta distribution. Then, for colour j, we assume that

Beta distribution. Writing it in this way, guarantees that x; is bounded in the space

X Y

T We can

[0,m] and x; in the space [0,m-x;]. Then, % is just the residual 1 —
now write the formulas that provide the respective shape parameters. In the first
stage, we assume that x;/m follows the Beta distribution and that it is centered on

the optimal allocation, thus x}/m. Similarly, we assume that x]-/ (m — x;) is Beta

#We present this analytically in chapter 3.
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distributed centered on X5 /(m — x}). We remind the reader that x stands for the

actual allocation and x* for the optimal. The parameters for the distribution are:

o oy (x7/m), B, (x] /m) for x;

(2.25)

* X is the residual of m — x; — x;, where x;, x; are the amounts allocated in the

first round.

In the second stage, the allocation happens between the two remaining colours
therefore, it suffices to assume that one of the conditional allocations is distributed
according to the Beta distribution and the other is the residual. Take for instance
the case where the information “the ball is not i” is revealed. The conditional
allocation is made between x;-; and x;—; and the available income is m-; = x; +
xy =m — x; . Then, we assume that x;-;/m-; is distributed according to the Beta

distribution. The shape parameters are:

x’.“_|.

‘Xx]'ﬁi = (%ﬁz) (Sj—'i - 1)
x¥ .

‘BXjﬁi = <ﬂ’iﬂz> (S]'ﬂi - 1)

This ensures that x;-; is bounded on the interval [0,m;]. Notice that in form-

(2.27)

ing the shape parameters, it is assumed that the precision parameter has different

indicator for each of the random variables (s;-;,$;-j,S;-x) implying that it takes dif-



2.4 The Econometric Specification 86

ferent values. As there is no story to explain behaviourally how this parameter
is formed and in order to avoid overfitting by adding additional parameters, we
assume that this precision parameter is the same at all stages and is equal to s.

The rest of the conditional states follow the same specification.

2.4.3 Forming the Likelihood Function

In order to obtain the values of the parameters that best fit the model we need
to specify the likelihood function that will be maximised. When the variables
are rounded, then it is better to make the evaluation of a realising value, close
to the measured value. This means, that for a random variable with value y, the
probability that this variable takes values in the interval [y — ¢,y + €] for ¢ small

enough, is considered when forming the likelihood function. In our analysis, we

x—0.5 x+0.5)
m

consider this interval to be the [*5*2,

because the values were represented
to subjects in integers. The latter allows us to use instead of the pdf, the cumulative
distribution function (cdf). We need to take into consideration that when using the
Cumulative Distribution Function for a discrete value, in fact we calculate an area,
contrary to the use of the Density Function, where we obtain the point probability

of the discrete value. Now the probabilities can be written as:
e Prob(x = 0)=cdf[22]m
o Prob(x = i)=(cdf[ 22 |-cdf [ =23 )m
e Prob(x = m)=1-cdf[2=22]m
and then the contributions to the likelihood can be written as:

o if x =0, In(cdfBeta (%2,a,B) m)

o if 0 <x <m,In(cdfBeta((*22,a,B) — cdfBeta(*=22, 0, B))m)

m

o if x=m,In(1— cdfBeta (2=22,a,8) m)

We know that each allocation is bounded between zero and m and are integers.
In that point we are specifying parameters for the simulation (which are to be
estimated later) b,s for the beta distribution. Then we are able to write down the

log-likelihood equation.
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In the case where the subjects fell short of time, the software was programmed
to allocate zero at each colour. Consequently, in this case this question is not
included to the analysis and the contribution to the likelihood function is equal to
zero. This did not happen too often (around 5 subjects, 1-2 problems per subject).

Now we present the general form of the likelihood function. Writing down the

density function, we have:

x, IFla+B) _A\B-1
fWlaB) = Frp? Y

where y € [0,1],a,6 > 0 and T'(.) the gamma function. In the model to be esti-
mated there are two random variables that are distributed according to the beta
distribution. x1,x2 and x3 as the residual. Assuming ¢ a vector of parameters to

be a estimate, the joint density function is:

x’ﬁo I_Ifl x1,190

The likelihood function for the distribution is:

L(8,x) = ﬁ%x“l(l —x)f1

(Fry) [T T1a -0

and for simplicity and computation easiness we can write the log-likelihood

as:

InL =nIn(T'(a+ B)) — nIn(I'(a)) — nIn(TC(B))+ (2.28)
(x—1) iln(xi) +(p—1) iln((l —xi)) (2.29)
i=1 i=1

where 1 the number of observations. By maximising the maximum likelihood
function £(dy,x) we choose from the parameter vector ¢y, a ¢ that maximises the
likelihood of observing the actual sample. Assuming that the observations are inde-
pendent and identically distributed, the probability of obtaining the set of observa-

tions that the data consists of given the specified model is equal to the product of
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the probabilities of obtaining each value.

2.4.4 Obtaining the Standard Errors

For the econometric analysis of the data the general non-linear optimisa-
tion package® rsolnp developed by Ghalanos and Theussl (2012) was used. This
solver implements a general nonlinear augmented Lagrange multiplier method. More
specifically, in the analysis, it was applied using the gosolnp option. This option al-
lows for random initialisation of the starting parameters as well as multiple restarts
of the solver so as to ensure that the solution is a global optimum. As the problem
is quite complex in nature, it is expected that the likelihood surface will not be
smooth and consequently, a global maximum will not be easy to reach. If one
is constrained to use a specific set of starting parameters, there is no guarantee
that the searching algorithm will not stop at a local maximum and return this as
the optimal point. Using random starting values for the parameters and multiple
starting points, the chance of obtaining a local maximum is significantly reduced
and as the number of random values as well as multiple starts is increased, this
chance can be eliminated (always under the respective computing process time
cost). As these methods are gradient-free, it is impossible to compute standard-
errors directly and one needs to use computational methods in order to do so.
The standard way requires the inversion of the covariance matrix and then the
standard errors are given by the square root of the diagonal. Nevertheless, this
method is not always possible to work, as there are singularity issues that make it
impossible to inverse the matrix leading to unreliable results. For this reason, in

the next section we do not present the standard errors.

2.4.5 Number of Parameters

Finally, we present the number of parameters for each model, as well as the
constraints that we impose for the upper and lower bounds of the estimators.
The goodness of fit of the various models depends on the number of parameters
that need to be estimated. If this number high, the models is suffering from

overfitting. Overfitting appears when a statistical model describes random error

#5Package for the R programming language for statistical computing*®
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or noise instead of the underlying relationship of the training set. Effort has been
made to take the latter into consideration. On the one hand, the number of the
parameters to be estimated was held to minimum. On the other hand, when
reducing the number of parameters was not possible, the appropriate criteria have
been applied to allow comparison among different models (comparing the models
using the Akaike and the Bayesian Information Criterion) as is described later.

Table 2.12 presents the number of parameters that were estimated for each of the

models.
Table 2.12 Models and Number of Parameters to Estimate

Preferences Type Updating Rule # Params Parameters
1 SEU - Bayesian 4 Pi, pj, 1,8
2 MEU Resolute - 5 PisPj, Pis 1S
3 MEU Naive GBU /MLE 5 Pi,Pjs Pro TS
4 MEU Sophisticated ~ GBU/MLE 5 PisDjs P15
5 CEU Resolute - 8 i, Vj, Uk,_Ui]', Vjk, Uik, 1,5
6 CEU Naive OPT 8 i, Vj, Uk, Vij, Vjks Uik, 1, S
7 CEU Naive GBU 8 vi,vj, Ok, Z)l‘]‘, Z)]'k, Oik,7,S
8 CEU Naive DS 8 i, U]', Ok, ?Jl']', ?ij, Oik,7,S
9 CEU Sophisticated Optimistic 8 Vi, j, Uk, Vij, Vjk, Vik, T S
10 CEU Sophisticated GBU 8 Vi, j, Uk, Vij, Vj, Vi, 1,8
11 CEU Sophisticated DS 8 Vi, Vj, Uk, Vij, Ujk, Vik, 1, S
12 SCEU Resolute - 5 pi,Pj, &, 1,8
13 SCEU Naive Bayesian 5 PisPj, &, 1,8
14 SCEU Sophisticated Bayesian 5 Pi,Pj,&,1,8

The minimum number of parameters is required by the SEU model (4), while
the maximum by the CEU (8). For all the parameters that express beliefs (probabil-
ities, capacities or lower bounds of probabilities) the upper limit was set to 1 and
the lower to 0. For the SEU model, we require that all the probabilities sum up
to 1. For the MEU this constraint does not hold any more. If it does, then there
is no distinction between the two models, SEU and MEU. For the CEU model, we
require that the individual capacities are no larger than the joint capacities. That
is to say, if v;,v; are the capacities for states i and j and v;; is the joint capacity,
it should hold that v;; —v; > 0 and v;; — v; > 0. The same holds for the rest of
the combinations, for all the possible states of the world. The parameter of risk
aversion 7, is having the same bounds for all the specifications we consider. As the

utility function is of the CRRA form, the coefficient can take both positive and neg-
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ative values. When r > 1, then the decision maker is risk loving. Our design is not
appropriate to define this type, thus we constraint the parameter to the interval
[0,1]. In addition, we do not consider negative values for r, as this indicates very
high levels of risk aversion. The precision parameter s is assumed to take values
between 1 and 60. The largest the precision, the less noisy the dataset is. Finally,
for the case of SCEU, the weighting parameter « takes values in the interval (0,1]

with 1 indicating a SEU decision maker.

2.5 Results

Before presenting the results, it is important to stress the fact that all the anal-
ysis, directly depends on the assumptions that we made in the previous section.
More specifically, we make assumptions regarding the form of the preferences
of the decision makers, the representation of their utility function as well as the
stochastic part of their decision process and objective is to obtain some insight
on which of the above combinations provides a better explanation of how peo-
ple behave on a sequential problem under ambiguity. In addition, an assumption
that is implicitly made is that the type of the subjects remains constant during
the experimental session and the same holds for their preferences. The analysis
was conducted at the individual level. For each of the 58 participants, we fitted

2.4 For each sub-

all the possible combinations that we described in section 2.
ject, for each preference functional and for each specification, we have estimates
of the parameters of the functional (probabilities, lower bounds of probabilities or
capacities,weighting parameter), of the risk aversion parameter (r), the precision
parameter s and the value of the maximised log-likelihood.

We start presenting the results with some descriptive statistics. As the main
question is whether subjects comply to either Dynamic Consistency or Consequen-
tialism, we first use the strict definition of dynamic consistency that was adopted in
section 2.2, which requires that the allocations at stage 1 and stage 2 should be

exactly the same (the proof of this proposition is provided in section A.1 in Ap-

pendix A). In Table 2.13 presents the percentage of subjects whose choices in the

47The subject-level analysis created a large data-set that contains the estimated preferences for
each individual. We do not report it here, but full details are available upon request.
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second stage were different than what they have allocated to the first stage.
Table 2.13 Percentage of Changes

Not Blue Not Yellow Not Pink

N =58 70.54% 72.98% 71.11%
std (0.2) (0.21) (0.25)
Min (subject 58) 50% 0.09% 0%
Max (subject 23) 100% 94% 94%

On average, 70.54% of the subjects (42 out of 58) had allocations that were dif-
ferent at each stage. If one expects that no change should be done on the initial
allocations, then this percentage shows an extremely high violation of the axiom
of dynamic consistency. Nevertheless, this measure is quite sensitive as even if a
subject is making the same allocations at both stages and has a different allocation
in only one problem, then this measure categorises this subject as dynamically
inconsistent. This is quite extreme, since as it can be seen in the third row of
Table 2.13, subject 58 was dynamically consistent in the cases where the ball was
not Yellow or Pink with almost zero percentage of changes. Interestingly though,
50% of the times where the information was that the ball is not Blue, this subject
was changing her or his initial allocations (recall that Blue was the colour with the
lowest probability). On the other hand, subject 23, was the subject with the max-
imum number of changes in the allocations, where almost at all problems she or
he changed the initial allocations. Figure 2.7 illustrates the percentages of changes
with the respective bar-charts.

As the previous measure is quite extreme and not very informative, it is inter-
esting to obtain an illustration of how the decisions look like. In order to obtain
an idea of the different behavioural patterns and the degree of heterogeneity that
we observed in the lab, it is helpful to focus on few representative scatter-plots.
All scatter-plots show the decisions of a subject for both states and for each con-
ditional state. Figures 2.8-2.12 show the decisions of five subjects for the three
conditional states of the world. Let us focus on the right hand side graph, where
the conditional state —Pink is illustrated. On the vertical axis, the payoff when the
ball is Blue is represented while on the horizontal the respective payoff when the

ball is Yellow. The red dots stand for the allocation at period 1, while the blue stars
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Violations in not BLUE Violations in not PINK
T T

0 -
Dynamic Consistency Consequentialism

Dynamic Consistency Consequentialism

(a) Ball is Not Blue (b) Ball is Not Pink

Violations in not YELLOW

0 = n -
Dynamic Consistency Consequentialism

(c) Ball is Not Yellow

Figure 2.7 Percentage of Changes in the Three Conditional States

for the conditional allocation*® The 45 degrees line, represents all the allocations
where the decision maker secures a sure payment no matter the real state of the
world, behaviour that shows extreme risk aversion. Figure 2.8 is exactly the be-
haviour that ones expects from a Resolute decision maker that somehow commits

to the same decision at both stages.

Other patterns that have been observed, include Figure 2.11 where the subject
initially allocates nothing or almost nothing to an asset and upon the receipt of
the partial information, the allocation becomes more ambiguous averse, and gets
closer to the equal allocation line. A different motive that worths mentioning, is

the one at Figures 2.9 and 2.10 where after the receipt of information, the subjects

#8Roughly 20 observations for each conditional state.
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show some kind of ambiguity aversion and tend to make allocations that are close
to the equal allocation line. 2.11 presents similar behaviour but in a more extreme
way. Finally, there are a few subjects who show extensively high degrees of prefer-
ence reversals. Figure 2.12 shows the case where all the income is allocated to one
asset and at the second stage, the allocation to this asset is zero and all the income
is allocated to the remaining asset. The majority of the subjects realised allocation

that were similar to the pattern that is illustrated as Figures 2.9 ad 2.10.%.

Ball is not BLUE Ball is not YELLOW

Ball is not PINK

payoff PINK
payoff BLUE
payoff BLUE

o
payoff YELLOW

o 0
payoff PINK payoff YELLOW

Figure 2.8 Subject 4

Ball is not BLUE Ball is not YELLOW

Ball is not PINK

payoff PINK
payoff BLUE
payoff BLUE

i
' ot ey
e

0 0 0
payoff YELLOW payoff PINK payoff YELLOW

Figure 2.9 Subject 22

Ball is not BLUE Ball is not YELLOW

Ball is not PINK

payoff PINK
payoff BLUE
payoff BLUE

o
payoff YELLOW

o 0
payoff PINK payoff YELLOW

Figure 2.10 Subject 27

Table 2.14 shows the average values of the estimated parameters for the 14
specifications. Recall that the number of parameters differs for each specification

and the only common parameters for all the different preference functionals, are

“'The patterns that presented above have been repeated by many participants and this is the

reason why we do not include all the plots as an appendix. The full set of scatter-plots is available
upon request.
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Ball is not BLUE Ball is not YELLOW Ball is not PINK

payoff PINK
n

payoff BLUE

payoff BLUE

0 0 0
payoff YELLOW payoff PINK payoff YELLOW

Figure 2.11 Subject 45

Ball is not BLUE Ball is not YELLOW Ball is not PINK

AR UL

payoff PINK
payoff BLUE
payoff BLUE

e e LSt

0
payoff YELLOW

0 0
payoff PINK payoff YELLOW

Figure 2.12 Subject 48

the coefficient of risk aversion 7 and the precision parameter s. The estimated value
of the risk parameter is on average equal to .24 for all the specifications. This is in
line with the usual findings, where subjects are found to be risk averse. The pre-
cision parameter s is an indicator of the noise in the data. The largest the value of
the parameter, the less noisy the data are. In the experiment, an average value of
around 24.5 was estimated which is significantly different than one. Then, the rest
of the parameters represent beliefs. In the case of SEU, first row in Table 2.14, the
beliefs are additive and correspond to the subjective beliefs of the decision maker.
Recall that 7, ],k stand for the three colours that represent assets. i is for Blue, j is
for Yellow and k is for Pink. Also recall that the actual probabilities during the
experiment were .2 for Blue, .5 for Yellow and .3 for Pink. Notice, that although
the estimated parameters preserve the correct magnitude order for the probabil-
ities (Yellow is larger, then Pink, then Blue) they are far from their actual values.
More specifically, the probabilities for the less likely events (Blue and Pink) are
over-weighted, while the probability for the state of the world that is most likely
to happen, is undervalued. This can be partly explained by the aversion towards

ambiguity that characterises subjects” beliefs.

However, this Table does not provide much information on how these speci-

fications can be compared to each other, regarding the goodness of fit, due to the
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Table 2.14 Estimates of the Parameters

Specification  p; p;j Pk r s o LL
SEU 0.288 0.362 0.350 0.210 23.93 - -487.86
MEU,s 0231 0.341 0303 0.281 24.34 - -459.526
MEU,4i0e 0.250 0.334 0.307 0.277 24.50 - -456.171
MEUs,pp 0.257 0.333 0.265 0.253 21.44 - -472.250
SCEU,es 0.280 0.372 0.348 0.208 23.87 0.852 -460.640
SCEU,4i0e 0.288 0.361 0.350 0.228 2430 0.815 -458.307
SCEUspn 0288 0.362 0.350 0.201 24.09 0.983 -461.306
Specification v; v; Uk Ujj Uk Vik r S LL
CEU,s 0245 0.298 0.177 0597 0.681 0.526 0.254  25.03 -454.03
CEU,;i»:OPT 0.211 0316 0.241 0595 0.662 0.550 0260 24.88 -449.25
CEU, 410D S 0249 0.318 0.212 0594 0.679 0510 0.248 2493 -449.49
CEU,;i».GB 0253 0.334 0260 0.615 0.672 0.541 0244 2466 -451.23
CEUsp,OPT 0218 0.325 0.242 0.601 0.662 0.548  0.251 24.89 -456.22
CEUsopnDS 0232 0312 0239 0595 0.645 0546  0.243  24.88 -454.94
CEUsopnGB 0215 0.320 0.241 0.598 0.662 0549 0.256  24.88 -454.735

different number of degrees of freedom. We proceed by correcting the value of the
log-likelihoods, taking into consideration both the number of the parameters and

the size of our sample.

2.5.1 Bayesian and Akaike Information Criteria

The models are compared on the basis of the value of the maximised log-
likelihood. Nevertheless, a standard criticism against the non-Bayesian models is
that it is natural to perform better (when they do) due to the additional parame-
ters, due to overfitting. As was discussed before, we estimate different preference
functionals, the parameters’ number of which, was not always the same. For this
reason, also compare the models using the Akaike Information Criterion (AIC)
and the Bayesian Information Criterion (BIC). Both criteria are applied for model
selection and they penalise the models according to the number of the free param-
eters that they allow. In both criteria, a lower value indicates a better fitting. More

analytically, the formulas for the two are provided below:

BIC = —2In(L(8|x)) + kln(n)

AIC = —2In(L(8|x)) + 2k
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where In(L(8|x)) is the value of the maximised log-likelihood, k is the number
of the free parameters in the model and n the number of observations. In the
models that we are testing, the value of the likelihood is different for each of the
subjects, the number of the parameters changes depending on which model we
focus on (for SEU there are 4 parameters, for MEU 5, for SCEU 5 and for CEU
8) and the number of observations is constant and equal to 120 (60 + 60) for all
subjects.

In addition, we also use the corrected version of the AIC (AIC() for finite sam-
ples, when the size of the sample 7 is small, or when the number of the parameters
k is large enough. A rule of thumb, suggests that the AIC¢ should be used when
the ratio n/k is less than 40. The formula for the AICc is:

2k(k +1)

AlCc = AIC + ===~

Table 3.15 presents the respective values for BIC, AIC and AIC..



Table 2.15 Corrected Log-Likelihoods

SEU MEU,es MEU,upe  MEUgyy, SCEUys  SCEUue  SCEUg,,  Obs

Uncorrected LL  -487.86  -459.52631  -456.170862  -472.25 -460.64 -458.307 4613 58
(95.99) (100.88) (99.89) (94.52) (98.71) (96.33) (95.53)

BIC 944.28 942.99 936.28 968.44 945.22 940.55 946.54 58
(191.98) (201.77) (199.79) (189.05) (197.43) (192.66) (191.06)

AIC 933.13 929.05 922.34 954.5 931.28 926.61 932.61 58
(191.98) (201.77) (199.79) (189.05) (197.43) (192.66) (191.06)

AICc 933.48 929.58 922.87 955.03 931.81 927.14 933.13 58
(191.98) (201.77) (199.79) (189.05) (197.43) (192.66) 191.06

CEUps  CEUaioeOPT  CEUyyipeDS  CEUpgineGB  CEUgypOPT  CEUs,,,DS  CEUy,,,GB  Obs

Uncorrected LL -454.034  -449.246241  -449.492103  -451.226 -456.22 -454.94 454735 58
(101.37) (100.88) (97.99) (100.36) (98.16) (98.25) (100.92)

BIC 946.37 936.79 937.28 940.75 948.23 946.95 948.08 58
(202.76) (201.78) (195.99) (200.32) (201.42) (197.04) 198.05

AIC 924.07 914.49 914.98 918.45 926.73 926.88 928.40 58
(202.76) (201.78) (195.99) (200.72) (196) (198.93) (197.19)

AICc 925.37 915.79 916.28 919.75 926.20 928.32 926.10 58
(202.76) (201.78) (195.99) (199) (195.6) (195.96) 201.64

The Table contains the values for the Uncorrected Log-Likelihoods and the Corrected Log-Likelihoods (BIC, AIC, AIC,)
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We are presenting the results model by model and then we generalise the
discussion to the total number of possible combinations. Assuming that subjects
adhere to only one non-EU preference functional (e.g. MEU), we test within this

preference functional, how well the different types we defined fit the data.

2.5.2 MaxMin Expected Utility (MEU)

We start with the MaxMin model. In this specification, we assumed three
different types of decision makers. Recall that in this specific preference functional,
and with the specific choice task, it is not possible to distinguish between the
different updating rules. As the objective is to test how well non-EU models fit
the data, it is reasonable to compare this model using SEU as a benchmark. We
compare the three models using the corrected log-likelihood and more specifically
the BIC criterion. Using the Bayesian Information Criterion, we rank the three
specifications from the best fitting to the worst. Based on the rankings for each
of the subjects, Table 2.16 shows the cumulative percentages of subjects where the

specifications are ranked as best, second best and so on.
Table 2.16 MEU Rankings Based on the BIC

Specification 1 1-2 13 14

SEU 2 9 33 100
MEU,es 26 78 97 100
MEU pnive 66 94 100 100
MEUgy, 7 21 71 100

All values represent cumulative percentages

It is interesting that MEU,,,ive, is ranked first for 66% of the subjects and for
94% is ranked first or second. MEU, 5,1t is ranked first more than 1/4 of the total
population of the experiment. Finally, for less than 10% of the subjects, SEU is

ranked first or second.

An indirect test that we can apply at this stage in order to compare the SEU and
the MEU specifications is to check whether the underlying probabilities satisfy the
additive property of the SEU. In Figure 2.13, histograms of the sum of probabilities

for each of the different types are illustrated. In the case of SEU this sum is equal
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to 1. From the Figure it is obvious that for the resolute and the sophisticated type

there is heterogeneity regarding the beliefs, while in the case of the naive decision

maker, it seems that for almost 50% of the subjects, the sum of the probabilities is

very close to one, but only for 16 subjects (28%) it is exactly equal to 1. Regarding

the magnitude of the probabilities, they retain the correct order (Yellow highest,

and so on) but they are significantly lower that in the SEU case, as they represent

the lower bounds of the probabilities.
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Figure 2.13 Sum of the Lower Bound Probabilities for MEU

2.5.3 Source Choquet Expected Utility (SCEU)

Table 2.17 shows the ranking for the different types of the SCEU model, in-

cluding SEU, according to the BIC criterion. SCEUs,y, is ranked first for 47% of
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the subjects and either first or second for 81%. Similarly, SCEU,,jy. is ranked first

or second for 75% while SEU only for 2% of the subjects.
Table 2.17 SCEU Rankings Based on the BIC

Specification 1 1-2 1-3 14
SEU 0 2 2 100
SCEUy,s 19 41 93 95
SCEUive 34 75 100 100
SCEUsopn 47 81 109 109

All values represent cumulative percentages

In Figure 2.14, the histograms of the parameter « for the different types are
illustrated. Recall that « is a weight parameter and when its value is equal to 1,
SCEU collapses to SEU as there is no weighting of the probabilities.

In the case of a resolute decision maker, the & parameter is quite dispersed. The
same holds for the naive type to a lesser extent. On the contrary, for more than 50%
of the subjects, the value of this parameter tends to 1, where the model collapses
to SEU. Regarding the magnitude of the parameters’ values that represent beliefs,

are quite close to the values of the SEU.

2.5.4 Choquet Expected Utility (CEU)

Tables 2.18, 2.19 and 2.20 show the same kind of classification for the case
of CEU and for the the three updating rules, optimistic, Dempster-Shafer and

Generalised Bayesian rule respectively.
Table 2.18 CEUppr Rankings Based on the BIC

Specification 1 1-2 1-3 14

SEU 7 10 15 100
CEUyes 31 52 92 100
CEU,pi0 41 57 100 100
CEUgop 21 81 98 100

All values represent cumulative percentages

CEU 41y, is classified first for both the optimistic updating rule and the Dempster-
Shafer (41 and 43%). On the contrary, when the Generalised Bayesian rule is ap-
plied, the best fitted specification is the resolute type with 33%.
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Table 2.19 CEUps Rankings Based on the BIC

Specification 1 1-2 1-3 14

SEU 7 12 17 100
CEUyes 29 43 91 100
CEU,yaive 43 67 100 100
CEUgop 21 78 100 100

All values represent cumulative percentages

Regarding the magnitude of the parameters’ values, they are preserve the correct
ranking, but they are far from the actual values. This is expected as they represent
capacities that are not additive.

Finally, we aim to classify all 14 specifications for all the subjects depending

on the BIC criterion. SCEUgp, is ranked first for 25% of the subjects and first
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Table 2.20 CEUgp Rankings Based on the BIC

Specification 1 1-2 1-3 14

SEU 7 12 15 100
CEUyes 33 52 92 100
CEU,pive 29 57 100 100
CEUgoy 31 79 95 100

All values represent cumulative percentages

or second for 37%. CEU,,;».OPT is ranked first for 16% and SCEU,,;;,. first or
second for 25%. The SEU fails to be classified first for any of the subjects while it
is classified second for 5%. The results are significant for most of the subjects at

both 1% and 5% significance levels, based on a Likelihood Ratio™ test.

2.6 Conclusion

When the preferences are assumed to be Subjective Expected Utility, it is au-
tomatically assumed that two conditions are satisfied. On the one hand, it is ex-
pected that the decision maker is probabilistically sophisticated, that she is able to
attach a subjective probability distribution to the various events of the world. On
the other hand, it is assumed that these subjectively formed priors, are updated
according to the Bayesian rule when additional information regarding the future
states of the world becomes available. The combination of the two ensures that the
decisions of the agent, simultaneously satisfy the axioms of Dynamic Consistency
and Consequentialism. Nevertheless, based on the evidence that experiments in-
spired by the Ellsberg paradox provide, subjects usually do not satisfy both axioms
at the same time. Consequently, SEU is not a suitable model anymore and the is-
sue of how people behave in a dynamic problem under ambiguity, becomes an
issue of considerable controversy. Yet, the literature has not converged to a com-
mon accepted answer, regarding which axioms are being satisfied or violated and
how the prior beliefs are updated in the absence of an objective probability distri-

bution.

50The Likelihood Ratio Test (LRT) is used to test for significance when two models are nested
(one model is reduced to the other of a linear constraint is imposed to the parameters). In our case
we compare every model with SEU, as an appropriate constraint either to the additive property of
beliefs or to the weighting function for the probabilities, can transform each model to SEU.
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In this chapter we present an economic experiment on dynamic decision making
under ambiguity. By employing a Bingo Blower as the source of ambiguity, we
ask subjects allocation questions in a sequential problem. The environment is suf-
ficiently ambiguous and the experimental task is designed in such a way that it
allows us, by making several structural assumptions, to fit different specifications
regarding preference functionals and updating rules. The objective of the exper-
iment is twofold. First, we aim to understand which axioms are being satisfied
in an appropriate decision task. Then, accepting that agents have non-EU pref-
erences, which may lead to dynamic inconsistencies, we try to understand how
people decide and how they resolve these possible inconsistencies by defining
three different types (resolute, naive and sophisticated). From the analysis, we
find that SEU lacks descriptive power for this kind of problems. A considerable
proportion of the experimental population seems to adopt the sophisticated type
of decision maker, where the problem is solved backwards. Nevertheless, this
strategy is characterised by ambiguity aversion, as the beliefs are weighted. An
additional result, is that an different, almost same in size proportion, behaves in
a naive way without realising the dynamic nature of the problem. It is natural to
expect that these kind of behaviour has consequences to all aspects of economic
life. Dynamic decision making includes savings decision, financial decisions and
investment decisions, where the agents are asked to plan ahead in an environment
that is characterised by incomplete information and the ambiguity regarding the
future levels of income, rates of return and prices is always present. Thus, it makes
one think, what is the cost of these inconsistencies on the welfare of the decision
makers and what is the role of government intervention to 'nudge” and minimise
this cost if it exists. Of course it is difficult to generalise and further research is
needed. In the Conclusion we present the possible extensions of this experiment

that will provide more evidence on how ambiguous beliefs are updated.



Chapter 3

Modelling Error Specification in a

3-Way Allocation Problem!

3.1 Introduction

Experimentalists are increasingly using allocation problems to make inferences
about subjects’” preferences - the reason being that allocation problems appear
more informative than other types of problems - such as pairwise choices, Holt-
Laury price lists Holt and Laury (2002), and the Becker-DeGroot-Marschak Becker
et al. (1964) mechanism. At the same time some experimentalists are broadening
the type of allocation problem, moving from allocations over just two events to
allocations over more than two, again to get more information from experiments.
Even with just two allocations, the issue of the error process is already interest-
ing; going to allocations over more than two increases the interest as well as the
complexity of the problem. In the previous chapter, we needed to made a sim-
plification assumption, that the utility function of the subjects is represented by
a CRRA utility function, in order to overcome the problems the boundary alloca-
tions create to the calculation of the log-likelihood function. We have seen that in
the case where the optimal allocation is zero or negative, the specification that we
applied degenerated and consequently an estimation of the underlying parame-

ters is not feasible. Nevertheless, assuming a power function to represent utility, is

IThis chapter is based on joint work with John Hey and Xueqi Dong. This research was funded
by the Super Pump Priming Fund, Department of Economics, University of York (RIS 50) awarded
to John Hey.
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a quite restricting assumption as it rules out behavioural patterns that are reason-
able to be expected during an experimental session or even in real-life economic
applications. In this chapter, motivated by the latter, we present two alternatives to
the CRRA modelling specifications for the stochastic term, that allow for boundary
allocations. We run an extended simulation to obtain some insight of what hap-
pens when the true specification according to which the data are generated differs
from the one assumed for the econometric estimation. Based on the results of the
simulation, we present the design and the results of an economic experiment on
decision making under risk, suitably designed to allow for comparison between
the proposed stochastic specification. We find that when the wrong specification is
assumed in order to analyse the data, there may appear considerable effects from
this mis-specification. We also find, that when the degree of risk aversion is sig-
nificantly high, the best specification is the one that preserves CRRA to represent
utility.

The chapter is organised as follows: in the next section, we present the deci-
sion model upon which the chapter is based, in section 3.3 we present the three
different specifications that we propose, in section 3.4 we present the results of an
economic simulation we run to compare the combinations between true and esti-
mated specifications. In section 3.5 the design and the results of the experiment
are discussed. In section 3.6, the assumptions regarding the econometric analysis
are illustrated. In the following section the results of the experiment are discussed.

Then we conclude.

3.2 The Decision Problem

As the objective is to obtain data on allocation problems per se, it is necessary
to have the subjects undergo a task as simple as possible. This is a twofold neces-
sity. On the one hand it provides clean, robust data that is able to provide insights
on the question under investigation. On the other hand, the simplicity of the task
enables us to use simple methods of analysis that do not develop elaborated mod-
els of decision making with a very large number of parameters to estimate, as
was the case in chapter 2. For this reason, the decision problem is quite similar

to what has been used in the previous experiment, but free of the dynamic/se-
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quential dimension as well as the ambiguous environment. We consider a 3-way
allocation problem, in which subjects are asked, in a series of problems (one of
which will be randomly selected at the end of the experiment to determine the
subject’s payment) to allocate a given amount of tokens (experimental income) be-
tween three risky events, with given exchange rates® between tokens and money
for each state, and with given probabilities for each state. We define a state space
S= {sz-,s]-,sk} for the three different states of the world. By m we denote the quan-
tity of tokens that is endowed in order to allocate by e;,¢j,¢; the exchange rate
for the three states and by p;, pj, px the respective probabilities. Let x;, x;, x be the
three allocations that should always satisfy the budget constraint x; + x; + x = m.
Assuming Expected Utility preferences, the subject’s decision is to choose the allo-
cations to maximize ZSS:Z- psu(esx;) subject to the budget constraint. The first order
conditions are psesu’(esx}) = A where A stands for the Lagrangian multiplier and
x; denotes the optimal allocation. After making all the allocations, a randomly se-
lected problem is played out for real and the subject is paid the money equivalent
(given the exchange rates of that problem) of the number of tokens allocated to
that state by that subject.

The experiment will provide observations of the allocations that the subjects
actually made. These observations will be used to infer the preference functions
of the subjects. Specifically, it might be the case that it is desired to infer whether
these preferences are CARA (Constant Absolute Risk Aversion) or CRRA (Con-
stant Relative risk Aversion). In addition, it is desired to infer the degree of risk
aversion, which is captured by the parameter r of the utility function. The CRRA

function is defined as follows:

x" ifr>0
u(x) =19 In(x) ifr=0
—x" ifr<o0

and respectively the CARA utility function:

2The exchange rates are used in the exactly way as in chapter 2.



3.2 The Decision Problem 107

—exp ™ ifr>0

u(x) =< «x ifr=0

exp ™ ifr<o0
where 7 is the risk aversion parameter and x is the payoff of the corresponding
state. Table 3.1 presents the criteria that must be satisfied by the risk aversion
parameter depending on the risk attitudes that characterise the decision maker
for the CRRA function. Table 3.2 presents the same information for the CARA
function. Figures 3.3-3.6 illustrate the shape of the utility function for different

levels of risk aversion.

Table 3.1 Risk Attitudes for the CRRA Function

u(x) gu 327‘2‘ Attitude r
x" b (r=1rx™?  Averse r<1
log(x) 1/x —1/x? Neutral r=1
—x" - ! —(r—1)rx"2 Loving r>1

Table 3.2 Risk Attitudes for the CARA Function

9 02 :
u(x) & b Attitude r
—exp ™ rexp ™ —rPexp ¥ Averse r>0

X 1 0 Neutral =0
exp ™ —rexp " r2 exp ™ Loving r <0

For either preference functional and for any given value of the parameter 7, it
is possible to find the optimal unconstrained allocations (the analytical solutions
are provided in Appendix B). It is in this part where the specificity of the CARA
function becomes apparent which is also one of the main motivations behind this
chapter. As was discussed in chapter 2 the CARA utility function, allows for zero
and negative allocations to the assets. As this is a state that it is impossible to be
implemented in the lab3, it is reasonable to expect that subjects implement their
optimal constrained allocations, which is actually what we observe by observing
in the actual experimental data-sets. In order to capture this constrained max-

imisation decision making process, we have developed a case-specific algorithm

31t is impossible to make subjects lose money in a lab experiment. A possible solution to this, is
to endow subjects with a fixed amount of money or tokens at the beginning of the experiment, so
in any situation, the worst scenario would be to default. But again, this practice entails additional
difficulties, as it is extremely difficult to define, if it can be defined, what this endowment level
should be, because one can never provide a big enough “fixed amount of money”.
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(details on Appendix B).

3.3 Theoretical Framework

In this section we present the different stochastic specifications that we pro-
pose. Taking into consideration the noise that exists in the experimental data is
advantageous in two ways. First, it is natural to make the assumption that in ad-
dition to the deterministic part of each theory, there is a stochastic component that
cannot be explained by the former. In other words, when subjects make decisions,
they do make mistakes and consequently, they do not implement their optimal
strategy (either constrained on unconstrained depending on the case). Sometimes,
it seems that the stochastic part of the decision process is more important than
the assumed preference functional (Wilcox (2008)). Furthermore, when one wants
to obtain estimates of the parameters of an underlying preference functional, it
is inevitable not to make some assumptions on the stochastic part of the decision
making process when particulars techniques are applied for the estimation. This
is also the case of this chapter. The suggested methodology to estimate the respec-
tive parameters is by using Maximum Likelihood Estimation techniques which the
way that they are applied, implicitly require that several assumptions (sometimes
rather strong) regarding the distribution that characterises the random variables
under investigation are satisfied.

As will be shown later, following the standard practice in the literature and
assuming an additive error term that is normally distributed is not possible in our
case due to technical difficulties. A significant part of the analysis is to understand
the cognitive process that the subjects undergo when they make a decision (in the
specific case an allocation under risk). Following the conventional methodology,
it is assumed that the objective of an agent is to maximise some kind of prefer-
ence functional (which is deterministically given by the underlying theories?*). We
assume the following timing regarding the way that the decisions are made. First,
the subjects calculate their optimal, constrained allocations with error, so that the

error is already added into the actual constrained allocations. The reason for this

“Expected Utility theory (EU) and Cumulative Prospect Theory (PT) are the two common spec-
ifications applied in decision making under risk. The assumption of the existence of a preference
functional, excludes from the available stochastic theories the Random Preferences specification.
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assumption is due to the fact that the majority of the experiments, the decision
task is usually constrained to discrete allocations and as a consequence, it is not
possible to detect whether this discretisation happens before or after errors have
been added. In our case, we assume that subjects first arrive at continuous alloca-
tions with error and then discretise them. If the order of the events was the other
way round, that subjects first make the discretisation to the optimal constrained
allocation before the error is added, then different stories should have been ap-
plied.> The objective of the decision maker is to find the optimal allocation that
maximises the Expected Ultility, taking as given the probabilities and the exchange
rates for the possible states of the world, subject to the budget constraint. The

optimisation program can be written as:

S
max Z P5M<€5x5) (3.1
Y5 s={ijk}
N
st. ). xo=m (3.2)
s={i,jk}

or applying it to the three-way allocation problem:

x?}g’;fiu(eixi) + pju(ejx;) + pru(exxr) (3.3)
i XX

st. xi +xj+xp=m (3.4)

3.3.1 Specification 1 - CRRA

One of the main assumptions is that these errors are built ‘on top” of the
optimal constrained allocations, rather than on the optimal unconstrained alloca-
tions. Given this, it is not possible to follow the conventional methodology, and
by assuming normality, to add a normally distributed error term to the optimal
allocations in order to get the actual allocations. The consequence of doing so, is
that the implied actual allocations might violate the non-negativity constraints.

Since we focus on allocation problems with a fixed income m (which means

that the allocations are constrained to the interval [0,m]), it is convenient to work

S5Possible solutions include the Beta-distribution, the Beta with bias and the two-Betas, all of
them are to be explained later.
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with proportions allocated rather than integers. This means that the optimal al-
locations xj/m (proportionally) will be inside the interval [0,1]. A natural error
story that is appropriate to accommodate the above, is to assume that the ran-
dom variables x} follow the Beta distribution, centered on the optimal allocations
x; /m. This stochastic specification has been used before by Hey and Pace (2014),
to model behaviour in a 2-way allocation problem but under ambiguity. As was
also discussed in chapter 2, the Beta distribution requires the specification of the
shape parameters which are denoted as « and . A standard property of the shape

parameters is that:

M = 3.5
ean = - B (3.5)
Variance = s (3.6)
(@+p)? '
The respective shape parameters are:
x*¥
;= Zl(Si - 1) (37)
x¥
Bi=(1="1)(si—1) 9
it is guaranteed that:
E(y =20 (3.9)
m m
Var(Siy = XL0m = %) (3.10)

where s; is the precision parameter which is an indicator of the precision with
which the subjects make their choices (the higher the more precise). In this specifi-
cation there is no bias in the allocations and the expression for the variance implies
that the spread of the distribution of the random variable is smaller the closer that
the optimal allocation is to the bounds (0 or m) which seems to be a reasonable be-
havioural assumption implying that subjects make less errors towards the bounds
(see Figure 3.1).

As we focus on allocations over three outcomes, it is important to illustrate how

this can be modelled. Since there are three allocations to be done, it is convenient
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to focus only on the two and regard the third one as the residual. Assuming
that there are three states of the world s € {i,j,k} we focus on x; and x; as x; =
m — x; — xj. If we assume that both % and % are distributed according to the Beta,
there is no guarantee that the non-negativity constraint will be always satisfied®. In
addition, there is no reason to assume that the allocation among the two different
assets is totally independent. Thus, instead of ignoring the cases where x; + x; <
m there is an alternative way where we assume that x;/m is distributed on the

x

interval [0,m] with shape parameters a; = %(si —1),Bi=(1—£)(s; — 1) with the

*

1
m
(m—x})

m?s;

respective mean and variance to be x? and . On the other hand, X /m is

distributed on the interval [0, — x;]. This means that the shape parameters now
are aj = mxT]x,(S] —1),=(1- mﬁx?)(sj —1). Similarly, the mean is mi"x? of mi"x[*

and the variance:
x]?" (m—x; — x]*)

(m —x})%(s; — 1)%s;

Multiplying by m — x; we obtain the expressions for the mean and the variance

for x;:
m— x;
E(x;) = x} ' 3.11
(x]) x] m— x;'k ( )
xf(m— xf — x¥)(m — x?
Var(xj) = - L ) (3.12)

(m — x})2%s;

The latter expression retains the properties of the variance discussed before. By
3.12 it seems that the mean of X; is biased. Nevertheless, this depends on the value
of x; which when it is unbiased, it is guaranteed that the unconditional mean of

Xx; is equal to x7. The method described above ensures two issues. Firstly, the

*
I
non-negativity constraints are always satisfied. Then, the behavioural assumption
that the allocation to one asset is not independent from that which is allocated to
another asset in the same portfolio, is satisfied. If one wants to reinforce the results
above, the assumption that the optimal allocations (the proportions) are always in
the interval [0,1] must be satisfied at all times. Consequently, the utility function
that is chosen to represent preferences plays a significant role. The simple result

presented before, holds always when the utility function is bounded to the per-

mitted values (in our case the interval [0,m]). This is true when the assumed func-

®This is crucial, as in the experiment not allocate negative amounts.
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tion has the form of a Constant Relative Risk Aversion function (CRRA). Next we
discuss some cases where the specification described above fails to capture some
crucial behaviourial anomalies (mainly due to the assumption of non-negative and

non-boundary allocations).

0.006 -

0.004 -

Var(x*)

0.002 -

0.000 -

1 l
0 25 50 75 100
X*

Figure 3.1 Variance of Beta Distribution with Bias, § = .01

The above specification is convenient when the underlying assumed utility
function has a CRRA form. When the preference functional is CARA, the optimal
unconstrained allocations may lie outside the feasible interval and therefore the
optional constrained allocations may lie on the bounds. It is clear from the equa-
tions above, that when the optimal allocation x* is either zero or m, its distribution
is degenerated at the bounds. Implicity, this specification implies that the subject
never make mistakes at the bounds. This is a quite strong assumption to make and

in order to cover similar possibilities, we propose two additional specifications.

3.3.2 Specification 2 - CARA, Beta with Bias

In this specification, we assume that the random variables follow a Beta distri-
bution with an additional bias parameter. More concretely, we define the following

variables:
b
xj= o+ (1-b)x] (3.13)
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where b; stands for the bias parameter and we replace the x} from specification 1
with 3.13. When b; = 0 there is no bias. When b; > 0 there is bias and its magni-
tude depends on the value of the optimal allocation x;. When x; = m/3 then this
bias goes to zero, which means that as one deviates from equal division, the bias
increases. Applying this model of stochastic specification, eliminates the problems
of degeneration that appear when one applies boundary portfolios. More specif-
ically, if a portfolio contains an allocation on the boundaries, and provided that
b; > 0 then the distributions of the random variable are not degenerate. If this is
the case, it is still possible to observe non-zero actual allocations when the optimal

solution implies that the allocation should be zero.

3.3.3 Specification 3 - CARA, Two Betas

Next, we model the stochastic process of decision making in a slightly different
way. In contrast to the two specifications presented above, where the stochastic
specification remained the same for all values of the random variable (with bias
or without), in this specification we assume that the error follows specification 1
when the allocation is within the bounds and when the allocation is on the bounds,
either on zero or the total income (m), the error specification follows a different
process. For this specification we introduce a new parameter d. It is assumed that
when an allocation is equal to 0, the actual random variable x/m is distributed
according to the beta distribution with parameters 1 and 4. Consequently, the

mean and the variance are given by the following formulas:

Mean = H—Ld
Variance = d
- (1+d)2(d+2)

When the allocation is equal to the total income m, then it is assumed that the
variable is distributed with parameters d and 1 with the respective mean and

variance to be given by the formulas:

d

Mean = H—d
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Figure 3.2 Beta Probability Distribution Function at the Bounds

d
(1+d)2(d+2)

Variance =

As it shown in Figure 3.2, when a random variable has a shape parameter a
equal to 1 then its mode is at 0 and similarly, when the shape parameter g is 1
the mode is at 1, so the error gets larger as one deviates from the bounds. For the
simulation, it is important to consider that the allocations should always sum up
to the total income m. It is necessary to consider the various cases depending on

the values of the optimal allocations x;‘,x}".

1. If all the allocations {xlf‘,x]’.‘,x,;"} are positive, then the process is the same as

in specification 1.

2. If one of the {x;", x}", x,’j} is equal to the total income m (the other two are equal
to zero) one way of proceeding is to generate the actual allocation based on
the beta shape parameters (1,d). This will necessarily provide a value lower
than the total income. We then allocate equally the residual (m — x;) to the

two remaining assets.

3. If one of the {xlf‘,x]’.‘,x,;"} is equal to 0, we need to consider what holds for the
two remaining allocations. If for example x7 = 0 then we assume that x; is
beta distributed with parameters (1,4). Then x; is distributed according to

*(5i—1 —xf—xt)(si—1
beta with parameters o = x’nisixl_* ),,B _ x'mf’x?_*(sj ) ).

Table 3.3, summarises the three specifications and their respective parameters.
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Table 3.3 Specifications and Parameters

Specification = Utility Function = Parameters

1 Beta CRRA 7,8
2 Beta with Bias CARA r,s,b
3 Two Betas CARA r,s,d

3.4 A Simulation Study

In this section we report on extensive simulations inspired by the work of
Wilcox (2008). More specifically, Wilcox suggests that sometimes, the stochastic
specification may be more important than the preference functional (Wilcox (2008),

p. 200):

[...] when it comes to evaluating theories of discrete choice under
risk, where many interesting inferences depend crucially on stochastic
assumptions, average treatment effects alone are relatively uninforma-

tive.

The scope of Wilcox (2008), was to investigate and compare different error
stories in the context of pairwise choice experiments on decision making under
risk. The main objective was to test whether the error specification is a crucial
decision variable for the experimenter. We follow a similar approach for our allo-
cation problem and we report on simulation results, using data that that we have
generated.

The task of the simulation is quite straightforward. Based on the three dif-
ferent specifications presented above, we cross-check if it is possible to identify
the different stochastic specifications and to see what happens when we use the
wrong specification when fitting preference functionals. We examine the estima-
tion results from the 9 pairwise combinations of the three true error specifications
and the three assumed-true specifications. The way to check this is by running
the simulation, combining all the possible scenarios. This means, that after hav-
ing expressed the closed form solutions for all the specifications, respecting the
utility function constraints (CRRA for specification 1, CARA for 2 and 3), we use
the appropriate estimation routine (for specifications 1, 2 and 3) and estimate all
the different cases, based on simulated data that we have generated according to

the respective specifications. This enables us to see if the inferences drawn are
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very different when the wrong specification is applied. As is expected, the results
of a similar exercise, are quite sensitive to the underlying parameters. For this
reason, we consider a number of different parameter sets, related to both the pref-
erences of the subjects (risk aversion) and the underlying stochastic specification
(precision s, bias b, d). For computational simplicity we adopt the following pro-
cedures. Initially, we normalise the value of the experimental income to 1. This
means that the optimal allocations are directly expressed in proportions rather
than in integers.” For a CRRA subject, as is shown in Table 3.1, a value of r greater
or equal to 1 is indicating a person who is risk-loving or risk-neutral. If this is
the case, the optimal decision in our task is to allocate everything on the asset
that has the greater expected payoff and is defined as the asset for which it holds
pses >= max{p;e;, pjej, pxex}. As our task does not allow us to discriminate be-
tween risk-loving and risk-neutral persons, we obtain no information when the
value of r is greater than one. Then, when the values of r is zero or negative the
functional form of the utility function changes. The values for the risk aversion
parameter that we consider here lie in the interval [0,1] as this interval covers a
range of reasonably risk-averse subjects. Similarly, in the case of CARA subjects,
the value of r can be positive, zero or negative leading to different functional
forms. If r is zero, then the subject is risk-neutral and when the risk aversion pa-
rameter becomes negative, it indicates a risk-loving person. The range of values
that we consider is [1,5]. It is important to notice the differences when r increases.
An increase in the CRRA case indicates a reduction of risk aversion, while an in-
crease in the CARA case indicates an increase of risk aversion. Although, there is
no strict mapping between the values of r for CRRA and CARA, we have chosen
the values in such a way that the highest value for r for a CRRA subject implies
the same (low) amount of risk aversion (concavity) as the lowest value of r for
the CARA subjects. In the same way, the lowest value of r for CRRA implies the
same (high) amount of risk-aversion for CARA as the highest value of r in that
case. As their is no full mapping between the risk aversion for the two cases, we
suggest that the values for which the parameters of the two function captures the

same levels of risk aversion, are those shown in Table 3.4. This also can be seen is

7 As the Beta distribution requires the random variables to be strictly between 0 and 1, one can
either divide the actual allocation by the income, which is always in the interval [0,1], or can apply
the methodology we adopt.
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Figures 3.3-3.6 which illustrate the utility functions for values r =.1 and r = .9 for
the CRRA function and, ¥ =1 and r = 5 for the CARA.

Table 3.4 Similarity Between the Risk Aversion Coefficient

r CRRA r CARA

0.9 1
0.7 2
0.5 3
0.3 4
0.1 5
Figure 3.3 CRRA, r = .1 Figure 3.4 CRRA, r = .9
1.00- 1 1.00- 1
0.75 - 0.75 -
U(X) 0.50 - U(X) 0.50 -
0.25- 0.25-
0.00 - 0 i 0.00 - 0
ObO 0‘25 0‘50 0‘75 lbO ObO 0‘25 0‘50 0‘75 160
X X
Figure 3.5 CARA, r =1 Figure 3.6 CARA, r =5
1.00- 1 1.00- 1
0.75 - 0.75 -
U(X) 0.50 - U(X) 0.50 -
0.25- 0.25-
0.00 - 0 i 0.00 - 0
ObO 0‘25 0‘50 0‘75 lbO ObO 0‘25 0‘50 0‘75 160
X X

Table 3.5 lists the sets of parameters used for the simulation. There are 10
different sets that are divided in two different blocks. Within each block, the

levels of risk aversion remain the same and what changes is the level of precision
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(amount of noise in behaviour) with the first block being less noisy (more precise)
than the second. Within each block, the values of r change in such a way to
cover the whole feasible set of values they can take (from the lowest to the highest

possible value).
Table 3.5 The Parameter Sets

Set Risk Aversion Index » Precision Bias Two Betas

CRRA CARA s b d
1 0.9 1 50 0.05 40
2 0.7 2 50 0.05 40
3 0.5 3 50 0.05 40
4 0.3 4 50 0.05 40
5 0.1 5 50 0.05 40
6 0.9 1 25 0.1 20
7 0.7 2 25 0.1 20
8 0.5 3 25 0.1 20
9 0.3 4 25 0.1 20
10 0.1 5 25 0.1 20

We run the simulation on 72 different allocation problems8 (combinations of
probabilities and exchange rates). We assume that all states are treated equally,
given their probabilities, and hence there is no psychological bias towards or away
from particular states. The set of problems was chosen to span as much of the
state space as possible, so we might expect a variety of behaviours from different
subjects”. A total of 1000 simulations'” was implemented. Tables 3.6-3.10, report
the means and the standard deviations for all the parameters of interest (namely
1,s,b,d and the value of the maximised log-likelihood.

Notice than no specification is nested inside any other. It may seem that spec-
ification 2 is nested inside specification 1 but they have different utility functions.
The same holds for specifications 1 and 3. 2 and 3 are not nested either. The sim-
ulation exercise appears to be useful in two ways. Firstly, by running an extensive

Monte Carlo simulation, it is possible to find out whether the problem under dis-

8We describe analytically, the way that these problems were chosen in the next section. The
problems are also listed in Table 3.12.

9As is later indicated, one of the objectives of the simulation exercise, was also to enable us
choosing a suitable problem set that will provide enough information on the decision process and
we will be able to use it for an experimental test.

10The simulation program was written in the R programming language for statistical computing.
The R Manuals, version 3.0.2. Available at: http://www.r-project.org/. The program is available
upon request.
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cussion is interesting and if it is proceeding to an empirical test by designing and
running an economic experiment. The task seems to satisfy this role of simulation,
as by assuming a different stochastic specification from the one that generated the
data, results always to a lower log-likelihood predicted value. In addition, the
simulation exercise is absolutely necessary to enhance the reliability of the anal-
ysis. Given that in a simulation the researcher is able to control and choose the
values of the parameters of interest, by running extensive simulations and tests, it
is ensured that the estimation program is working effectively and is also able to

estimate and the underlying parameters.

We now present the results of this simulation. We begin by looking at Table
3.7, which reports the means and the standard deviations of the risk-aversion
parameter r. Looking down the main diagonal of each block (where the true
specification agrees with the estimated one) we see that everywhere the mean
estimated parameter is close to the true value, as is expected. It is interesting that
the CRRA estimated values seem to be closer to the true values than the CARA
estimated ones'!.

However it is the off-diagonal elements that are most interesting and informa-
tive as these tell us about the dangers of mis-specification. One, should be very
careful, since the risk aversion parameter for CRRA means something different
from the risk aversion parameter for CARA. For example, look at Parameter set 1
(the first block) when the true specification is CRRA with r=0.9 and when specifi-
cation 2 is used for estimation, the mean estimated value of r is 0.617.

In Table 3.8 we report the values of the precisions s. In this case, precisions are
comparable. Again, along the main diagonal of each block the mean estimated
precision is close to the true value of the precision, though the standard devia-
tions are quite large. The latter is a consequence of the likelihood function being
rather flat around its maximum, indicating that differences in precision do not
make a big difference to behaviour. The off-diagonal elements, however, depart
quite sharply from the true values. As a general rule, though it is not always the

case, the estimated precision is less than the true precision. This is an interesting

1INevertheless, it seems that the difference of the mean value of the risk aversion parameter r
from its true value, is never significantly different at the 1% level.
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result which suggests that mis-specification might lead to an under-estimation of
the precision of the subjects. In Table 3.9, we report the results for the bias pa-
rameter (recall that this parameter applies only to Specification 2). When the true
specification is Specification 1, the estimates of b are close to their true values but
occasionally depart significantly from them. When the true value of b is zero, the
estimated values are not significantly different from zero. This happens mostly in
the parameter sets where the value of the risk aversion parameter indicates high
levels of risk aversion. The estimates of the d parameter in Specification 3 appear
in Table 3.10. (recall that this parameter applies only to Specification 3). It is in-
teresting to note, however, that for the parameter sets with higher risk aversion,
the estimated value significantly deviates compared to the sets with lower risk
aversion. Finally, Table 3.6, reports the means and standard deviations of the min-
imised negative log-likelihoods. It seems that these log-likelihoods are comparable
across specifications. What we had expected was that the entries down the main
diagonal of each block would be the smallest in each row (remember that these
numbers are the negative of the minimised log-likelihood) indicating that if one
chooses between specifications on the basis of the maximised log-likelihoods, then
one would always correctly identify the true specification. This is the case most
of the times, apart from the parameter sets with high implied risk aversion (sets
4, 5, 9 and 10), where it seems that the values of the maximised log-likelihoods
are quite close to each other, a fact that makes it difficult to distinguish between
the specifications. This is something that was expected to happen, as in the case
of high risk aversion, a decision maker, regardless of whether her utility is CRRA
or CARA, will tend to equalise the payoffs for all states and consequently, will
almost never have any incentive to make boundary allocations (the total income
or nothing). Taking this for granted, it is reasonable to regard Specifications 2 and
3 as equivalent, as away from the bounds, the two specifications generate the same
result. With the simulation results at hand, we run an incentivised experiment to
test the three specifications in practice. In the remaining sections, we present the

experimental design and report the results.
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Table 3.6 Means and Standard Deviations of the Maximised Log-Likelihoods

True

1

2

3

True

True

True

True

Parameter Set 1
Estimated Specification

1 2 3
13735 -199.54 -278.37
(7.046)  (8.942) (19.155)
40144  -299.06  -409.04
(9.297)  (10.7)  (17.454)
-451.16 -398.84 -307.12
(12.233) (18.107) (11.405)

Parameter Set 2
Estimated Specification

1 2 3
27640 -348.63 -380.38
(9.215)  (9.238)  (18.695)
-408.25 -348.72  -398.01
(7.557)  (9.251)  (12.899)
-449.17 41389 -355.54
(12.68) (17.401) (8.864)

Parameter Set 3
Estimated Specification

1 2 3
350.78  -396.29 -427.31
(8.986) (7.176)  (9.623)
47101 -384.11 -389.52
(6.782)  (8.485)  (7.977)
47025 -401.39 -391.31
(9.207) (11.898)  (9.938)

Parameter Set 4
Estimated Specification

1 2 3
387.18  -410.13  -446.11
(8.357) (8.027)  (85)
459.85 -412.37 -414.08
(8.127)  (8.263)  (8.196)
46923 40656 -407.10
(7.181)  (8.492)  (8.283)

Parameter Set 5
Estimated Specification

1 2 3
-405.66 -422.96  -445.28
(8.232) (8.845)  (6.511)
46701 -42528  -425.89
(8.789)  (8.062)  (8.394)
45762 -42329  -423.14

(8.795)  (8.215)  (8.246)

True

True

True

True

True

Parameter Set 6
Estimated Specification

1 2 3
14992 -195.05 -276.27
(7.804)  (9.696) (19.234)
44403 -375.04 -462.60
(8.889) (11.045) (16.367)
49327 -45534  -365.85
(11.27)  (19.055) (12.532)

Parameter Set 7
Estimated Specification

1 2 3
307.61 -355.05 -387.37
(10.585)  (10.35)  (19.203)
43955 -41424 -448.13
(9.154)  (9.36)  (10.358)
-488.69 -466.84 -412.97
(11.858) (14.301)  (9.91)

Parameter Set 8
Estimated Specification

1 2 3
393.80 -418.98  -442.27
(9.567)  (7.983)  (10.424)
481.16 -443.08 -447.61
(8.209) (8.773)  (9.354)
48412  -455.66 -44547
(9.192)  (10.972) (11.436)

Parameter Set 9
Estimated Specification

1 2 3
43344 44594  -470.02
(8.513) (8.558)  (8.426)
488.11 -465.22  -466.56
(8.894) (8.218)  (8.295)
49215 -45343  -454.00
(7.729)  (8.182)  (8.588)

Parameter Set 10
Estimated Specification

1 2 3
45330 -463.64 -47591
(8.382)  (9.586)  (6.764)
50625 -476.62  -477.40

(9.64)  (8.199)  (8.201)
49128 -471.38 -471.57
(9.344)  (8.229)  (8.174)
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Table 3.7 Means and Standard Deviations of the Estimated Value of the Risk-
Aversion Parameter r

True

True

True

True

True

Parameter Set 1
Estimated Specification

1 2 3
0900 0617  1.846
(0.003) (0.114)  (1.5)

0606 1.025 1.275
(0.015) (0.015) (0.485)
0471  1.012  1.002
(0.039) (0.234) (0.036)

Parameter Set 2
Estimated Specification

1 2 3
0700 1417 1.627
(0.007) (0.179) (0.342)
0515 2.045  2.289
(0.011) (0.046) (0.167)
0501 1954  1.999
(0.021) (0.054) (0.035)

Parameter Set 3
Estimated Specification

1 2 3
0500 2.153  2.685
(0.011) (0.123) (0.253)
0345 3.075 3.241
(0.016) (0.059) (0.075)
0.365 2.885  3.019
(0.019) (0.072) (0.075)

Parameter Set 4
Estimated Specification

1 2 3
0299 2451 3.384
(0.018) (0.109) (0.431)
0.045  4.029  4.209
(0.026) (0.132) (0.062)
0.136 3978  4.002
(0.024) (0.057) (0.037)

Parameter Set 5
Estimated Specification

1 2 3
0.100 2.822  4.467
(0.027) (0.327) (0.073)
0010 4979 5272

0)  (0.306) (0.147)
0010 4876 5.013

(0)  (0.229) (0.125)

True
Value

0.900

True
Value

0.700

True
Value

0.500

True
Value

0.300

True
Value

0.100

True

True

True

True

True

Parameter Set 6
Estimated Specification

1 2 3
0900 059  1.977
(0.004) (0.105) (1.525)
0512 1.061 1.767
(0.02) (0.034) (0.817)
0316 1155  1.006
(0.052) (0.764) (0.063)

Parameter Set 7
Estimated Specification

1 2 3
0700 1413  1.643
(0.011) (0.196) (0.383)
0431 2109  2.646
(0.019) (0.077) (0.27)
0414 1903  1.999
(0.031) (0.129) (0.063)

Parameter Set 8
Estimated Specification

1 2 3
0499 2142  2.738
(0.017) (0.144) (0.307)
0257 3.156  3.493
(0.028) (0.103) (0.149)
0309 2797  3.048
(0.03) (0.126) (0.152)

Parameter Set 9
Estimated Specification

1 2 3
0299 2460 3.525
(0.027) (0.149) (0.485)
0012  4.063  4.445
(0.008) (0.23)  (0.11)
0.138  3.954  4.000
(0.035) (0.104) (0.056)

Parameter Set 10
Estimated Specification

1 2 3
0.098 3.006 4.471
(0.038) (0.57) (0.123)
0010 5031 5.586

0)  (0.448) (0.249)
0.010 4.845  5.007
0)  (0.323) (0.17)

True
Value

0.900

True
Value

0.700

True
Value

0.500

True
Value

0.300

True
Value

0.100
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Table 3.8 Means and Standard Deviations of the Estimated Value of the Precision
Parameter s

True

1

True

True

True

Parameter Set 1

Estimated Specification
1 2 3
54.80 5.52 3.69
(10.224) (1.287) (2.126)
12.12 53.64 41.09
(1.324) (7.468) (16.714)
431 9.87 50.38
(0.474) (2.985) (10.825)

Parameter Set 2
Estimated Specification

1 2 3
5432 1578 1578
(7.68) (2.349) (6.753)
2153 5267 4135
(2.124)  (6.515) (12.196)
11.68 2015  51.89
(1.601) (4275) (7.218)

Parameter Set 3
Estimated Specification

1 2 3
5322 2690  19.43
(6.612) (2.851) (4.276)
1634 5254  50.04
(1434)  (6.524) (6.014)
1577 4019  50.96
(1.944) (6.877) (7.59)

Parameter Set 4
Estimated Specification

1 2 3

5215 3773 2552
(6.023) (4.556) (4.493)
2739 5225  50.99
(2.974)  (6.648) (5.851)
2254 5154 5172
(2.096) (631)  (7.524)

Parameter Set 5
Estimated Specification

1 2 3
5170 4095  29.88
(5.852) (5.529) (3.085)
3111 5163 5132
(3.236) (5.827) (5.991)
3361 5124 5144
(3.592) (5.967) (5.962)

True
Value

50

50

50

True
Value

50

50

50

True
Value

50

50

50

True
Value

50

50

50

True
Value

50

50

50

True

True

True

True

True

Parameter Set 6
Estimated Specification

1 2 3
2712 495 327
(5.709) (1.059) (1.942)
1020 2571 1730
(0.964) (3.151) (9.442)
351 596  25.65
(0.283) (1.575) (6.379)

Parameter Set 7
Estimated Specification

1 2 3
2653  11.86  11.52
(3.638) (1.852) (4.105)
1822 2593 1931
(2.025) (3.011) (4.767)
805 1091  25.58
(0.923) (1.757) (3.896)

Parameter Set 8
Estimated Specification

1 2 3

2613 1770  13.66
(3.149) (1.991) (2.83)
1572 2598  24.86
(1.609) (3.335) (3.242)
1331 1945  25.00
(1.515) (3.141) (4.408)

Parameter Set 9
Estimated Specification

1 2 3
2593 2177 1675
(2.856) (2.582) (2.756)
1939 2584 2548
(2.127) (3.079) (2.887)
1576 2560 25.56
(1.55) (2.886) (3.672)

Parameter Set 10
Estimated Specification

1 2 3
2576 2241  18.92
(2.936) (3.015) (2.036)
1865 2563 2546
(2.004) (2.998) (2.863)
2062 2563  25.61
(2.304) (2.945) (2.933)

True
Value

25

25

25

True
Value

25

25

25

True
Value

25

25

25

True
Value

25

25

25

True
Value

25

25

25
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Table 3.9 Means and Standard Deviations of the Estimated Value of the Bias Pa-

rameter b

Parameter Set 1

Estimated Specification
True

2
1 0.01
(0.004)
’ 0.04
(0.003)
3 0.07
(0.022)
Parameter Set 2
Estimated Specification
True N
1 0.03
(0.005)
’ 0.04
(0.004)
3 0.05
(0.008)
Parameter Set 3
Estimated Specification
True N
1 0.07
(0.008)
’ 0.03
(0.005)
3 0.04
(0.009)
Parameter Set 4
Estimated Specification
True N
1 0.13
(0.008)
5 0.04
(0.028)
0.00
3 (0.01)
Parameter Set 5
Estimated Specification
True 2
1 0.18
(0.031)
5 0.05
(0.052)
3 0.03

(0.038)

True
Value

0.05

True
Value

0.05

True
Value

0.05

True
Value

0.05

True
Value

0.05

True

True

True

True

True

Parameter Set 6
Estimated Specification
2
0.01
(0.004)
0.08
(0.007)
0.13
(0.039)
Parameter Set 7
Estimated Specification
2
0.03
(0.006)
0.07
(0.008)
0.09
(0.016)
Parameter Set 8
Estimated Specification
2
0.07
(0.01)
0.07
(0.012)
0.07
(0.017)
Parameter Set 9
Estimated Specification
2
0.13
(0.012)
0.08
(0.048)
0.01
(0.015)
Parameter Set 10
Estimated Specification
2
0.16
(0.057)
0.10
(0.069)
0.03
(0.051)

True
Value

0.1

True
Value

0.1

True
Value

0.1

True
Value

0.1

True
Value

0.1
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Table 3.10 Means and Standard Deviations of the Estimated Value of the Second

Beta Parameter d

Parameter Set 1

Estimated Specification
True

3
1 47.70
(18.33)
’ 11.66
(11.276)
3 41.46
(6.104)
Parameter Set 2
Estimated Specification
True 3
1 51.68
(10.581)
5 30.22
(15.512)
3 41.75
(6.877)
Parameter Set 3
Estimated Specification
True 3
1 39.33
(11.843)
5 55.22
(6.397)
3 42.10
(9.41)
Parameter Set 4
Estimated Specification
True 3
1 21.29
(9.217)
5 30.90
(17.615)
3 34.36
(19.258)
Parameter Set 5
Estimated Specification
True 3
1 29.96
(17.026)
5 29.29
(17.337)
3 30.00

(16.903)

True
Value

40

True
Value

40

True
Value

40

True
Value

40

True
Value

40

True

True

True

True

True

Parameter Set 6
Estimated Specification
3
46.30
(18.178)
13.27
(12.976)
21.00
(3.211)
Parameter Set 7
Estimated Specification
3
52.72
(10.433)
25.59
(9.874)
20.82
(3.441)
Parameter Set 8
Estimated Specification
3
41.63
(11.757)
31.44
(8.817)
21.53
(6.63)
Parameter Set 9
Estimated Specification
3
22.71
(11.998)
28.96
(17.225)
36.90
(19.074)
Parameter Set 10
Estimated Specification
3
30.16
(17.763)
30.96
(17.475)
30.06
(17.194)

True
Value

20

True
Value

20

True
Value

20

True
Value

20

True
Value

20
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3.5 The Experimental Procedure

The task that the subjects were presented with was the same as the one we dis-
cussed earlier. There were three different assets, represented by table tennis balls
of three different colours (Red, Green and Blue). In total there were 10 balls. For
each problem, the subjects were endowed with an amount of 100 tokens (which
remained the same during the experiment) and were asked to allocate them to
the three assets. In addition, they were told the exchange rates between tokens
and British sterling, as well as the composition of the bag (the probabilities) if this
problem was to be played for real. An incentive compatible mechanism was ap-
plied by picking at random one of the 72 problems and physically playing it out.
So the subject filled the bag according to the probabilities of the chosen problem,
shook the bag and then picked a ball at random, which defined the winning colour.
The payment was defined by the product between the number of tokens that have
been allocated to the winning colour and the respective exchange rate. The sub-
jects were paid immediately after the end of the experiment in cash and privately.
The experiment was conducted at the Centre for Experimental Economics (EXEC)
at the University of York, with a total of 63 participants (35 females, 55%) in May-
June 2014 and it lasted less than 45 minutes. There was a minimum period of 15
seconds where subjects could not submit their choices and they had maximum 1
minute per question to make their allocations. Each subject was allocated to an
isolated terminal and the participants were not able to communicate with each
other. The subjects were recruited using the hroot (Hamburg Registration and Or-
ganization Online Tool, Bock et al. (2012)) from a standard student population
pool that included both undergraduate and postgraduate students. The fields of
studies were diverse. Written instructions were provided (see appendix D) fol-
lowed by a slide-presentation, where the decision task as well as the experimental
framework were explained. Participants had the opportunity to ask clarifications
and then they could start the experiment and proceed at their own pace, subject
to the available minimum and maximum time to respond. The average payment
was £14.62, with the maximum payment being £27.10 and the minimum £2.70 (st.
dev. 4.21).



3.5 The Experimental Procedure 127

Table 3.11 Summary of the Sessions

Session 1 2 3 4 5 6 Overall
N 10 11 10 10 12 10 63
Av. Earn. 15.0 14.1 151 153 132 1496 14.6

3.5.1 The Experimental Framework

The experiment was computerised and the experimental software was devel-
oped in Python'?. For the allocations, an innovative graphical representation was
implemented. The allocation space was represented by a simplex (an equilateral
triangle) where each point inside the triangle corresponded to an allocation to
the three assets, which was a function of the distances between the cursor and
the sides of the triangle. Representing each asset at one of the vertices, choosing
an allocation at a specific vertex meant allocating all the income only to one as-
set. Moving the mouse pointer, the subjects were able to choose their preferred
allocation. In addition, a bar-chart on the screen provided information to the
subjects. The width of the bars was proportional to the implied probability for
each colour, while the height was showing the implied payment if this state of the
world occured. The exchange rates were expressed in pennies. A timer informed
the subjects of their remaining time to respond. In addition, for each problem,
there was a graphical representation of the composition of the bag as a visual aid.

Figures 3.7 and 3.8 show screenshots from the experimental interface.

3.5.2 The Problems

Table 3.12 presents the full set of 72 problems on which participants were
asked to make their allocations. As was described before, the problems were
carefully chosen in such a way that it would be possible to distinguish between
the different specifications. The choice of the probabilities for the three colours
was decided to include all the possible combination of probabilities that ensures
that there is always at least 1 ball of each colour. Practically this means, that the
minimum probability for a state is equal to .1 and the maximum equal to .8. With
this constraint as given, we consider all the possible combinations that ensure

that the sum of all the balls is equal to 10 (or in probability terms, the chances

12Python Software Foundation. Python Language Reference, version 2.7.  Available at
http:/ /www.python.org. The software is available upon request.
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This is problem 1

In this problem there would be: Remaining Time:
4 balls =
3 BLUE balls [
3 RED balls

The composition of the bag is:
The money values are:
37.5 pence for

37.5 pence for BLUE . . .
37.5 pence for RED . . .

£15.00 £7.50

Figure 3.7 Screenshot 1 of the Experimental Framework

add up to 1). Then, we assume that no matter what the colour of the ball is,
the symmetric problems are treated in a similar way. For example that the set of
probabilities (.2,.3,.5) is observationally equivalent to the set (.5,.3,.2) and it will not
provide any additional valuable information to consider both, assuming always
that the assets are treated in a symmetric way regarding their characteristics. For
instance, with the exchange rate fixed to 1, the only important criterion is the
probability of occurring and not any of the irrelevant characteristics (e.g. the
colour). Eliminating all the combinations that have the above characteristics, it
leaves 8 possible combinations. Then, we assume three different levels of exchange
rates. In the simulation, we considered a low value, an intermediate and a high
value and more specifically the values .75, 1 and 1.25. These exchange rates are in
terms of money values, so if one allocated 10 experimental income units to an asset
that has exchange rate equal to 1.25, then if the respective state is also the one that
actually occurs, these 10 units are transformed to £12.50. Again, considering all
the possible combinations of the exchange rate and eliminating duplicates, leaves
9 combinations. Combining probabilities and exchange rates, we obtain the total

of the 72 problems.
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This is problem 2

In this problem there would be: Remaining Time:
5 balls o

3 BLUE balls Ll
2 RED balls

The composition of the bag is:
The money values are:
30.0 pence for

40.0 pence for BLUE . . .

40.0 pence for RED . .

-

£4.00 £12.00

Figure 3.8 Screenshot 2 of the Experimental Framework

The problems were chosen to satisfy two criteria. First, the set of questions
were designed, after extensive Monte Carlo simulations, in such a way that the
produced data-set should be rich enough to identify the different specifications
(the simulation is discussed in section 3.4). The second criterion was to choose
the different problems in such a way that it was ensured for a risk-neutral deci-

sion maker® will always expect to win on average £15. The exchange rates were

15
max{@ipfzfjpjlfkpk}

The order of the problems was randomised for each subject in order to eliminate

re-scaled, based on the formula s = which guarantees the latter.

possible order effects.

131t is reminded that a risk neutral decision maker, allocates the total amount of the income to
the asset with the highest expected payoff. Since the income is normalised to 1, this happens on the
asset that has the highest product between the probability of occurring and the exchange rate.



Table 3.12 Problems of the Experiment

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
pi o4 04 05 05 06 06 07 08 04 04 05 05 06 06 07 08 04 04
P 03 04 03 04 02 03 02 01 03 04 03 04 02 03 02 01 03 04
Pk 03 02 02 01 02 01 01 01 03 02 02 01 02 01 01 01 03 02
e; 375 375 30 30 25 25 214 188 375 375 30 30 25 25 214 188 30 375
€ 375 375 30 30 25 25 214 188 375 375 30 30 25 25 214 188 30 375
ek 375 375 30 30 25 25 214 188 50 50 40 40 333 333 286 25 50 625
Problem 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
pi 05 05 06 06 07 08 04 04 05 05 06 06 07 08 04 04 05 05
P 03 04 02 03 02 01 03 04 03 04 02 03 02 01 03 04 03 04
Pk 2 o001 02 01 01 01 03 02 02 01 02 01 01 01 03 02 02 01
e; 30 30 25 25 214 188 375 281 30 281 25 25 214 188 375 281 30 281
€ 30 30 25 25 214 188 50 375 40 375 333 333 286 25 50 375 40 375
ek 50 50 417 417 357 313 375 281 30 281 25 25 214 188 50 375 40 375
Problem 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
pi 06 06 07 08 04 04 05 05 06 06 07 08 04 04 05 05 06 06
P 02 03 02 01 03 04 03 04 02 03 02 01 03 04 03 04 02 03
Pk 02 01 01 01 03 02 02 01 02 01 01 01 03 02 02 01 02 01
e; 25 25 214 188 30 281 30 281 25 25 214 188 30 225 30 225 25 25
€ 333 333 286 25 40 375 40 375 333 333 286 25 50 375 50 375 417 41.7
ek 333 333 286 25 50 469 50 469 417 417 357 313 30 225 30 225 25 25
Problem 55 5 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
pi 0 08 04 04 05 05 06 06 07 08 04 04 05 05 06 06 07 08
P 02 01 03 04 03 04 02 03 02 01 03 04 03 04 02 03 02 01
Pk 0r o1 03 02 02 01 02 01 01 01 03 02 02 01 02 01 01 01
e; 214 188 30 225 30 225 25 25 214 188 30 225 30 225 25 25 214 1838
¢ 357 313 50 375 50 375 417 417 357 313 50 375 50 375 417 417 357 313
ek 214 188 40 30 40 30 333 333 286 25 50 375 50 375 417 417 357 313
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3.6 Econometric Specification

For each specification, the marginal contribution to the log-likelihood, depends
on the utility function assumed, as well as the form of the stochastic term. In
specification 1, it is quite straightforward to form the log-likelihood function. Since
the CRRA utility function is assumed, it is not possible to observe zero or negative
optimal allocations. The contribution is formed assuming that the actual allocation
is centered to the optimal allocation. In specification 2, it is assumed that subjects
are represented by a CARA utility function. If this is a case, it is possible to see
zero or even negative allocations if one solves the unconstrained problem. Based
on the algorithm for the optimal constrained allocations, the marginal contribution
to the log-likelihood is formed, centered to this optimal constrained allocation.

In specification 3, as it again contains allocations to the bounds, it is necessary
to take into account the several different cases. The simplest case is the one where
the portfolio consists of non-zero allocations. This simplifies things as the form of
the distribution in this case is identical to the one of specification 1. The contribu-
tions to the log-likelihood are based on the actual and optimal allocations to assets
i and j and their respective shape parameters. In order to form the log-likelihood
function, we follow the same procedure as in chapter 2. Then, we need to con-
sider the extreme cases, that is to say the cases where all the income is allocated
to one asset, and then the cases where zero is allocated to the asset. This part
is quite important as it defines the way we treat the marginal contributions (the
way we assume noise is added to the data) Focusing first on the event where all
income is allocated to one of the three outcomes. Let for example the case x; =m
(which means that x;‘ = x; = 0. Following the formulation presented in section
3.3.3, the random variable x; is distributed according to the Beta distribution with
shape parameters a« =d, = 1. Then, we assume that in a similar way x; is Beta
distributed with symmetric shape parameters « = 1,5 = d. Finally, the third vari-
able is assumed to be the residual. In this stage, one needs to be careful as which
variables contribute to the log-likelihood function. Table 3.13 summarises all the
possible cases. The estimation of the parameters was done by applying Constrained

Maximum Likelihood techniques'*.

14The estimation program was written using in the R programming language for statistical com-
puting. The program is available upon request.



Table 3.13 Shape Parameters - Specification 3
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3.7 Results and Discussion

In Table 3.14, we present the mean values of the estimated parameters for the

three specifications (in parenthesis the standard deviations).

Table 3.14 Estimates of the Parameters

Specification r s b d LL
1 230  38.79 - - -459.15
(3.99) (29.61) - - (60.77)
2 19.08 31.05 0.12 - -465.96
(6.22) (17.95) (0.07) - (54.16)
3 20.88  28.64 - 3040 -474.17
(5.04) (17.63) -  (1855) (54.24)

Notice that the values for the risk-aversion parameter. When running the sim-
ulation we were expecting a positive value for the risk aversion parameter in the
case of CRRA and a value in the range [1,7] for the CARA. Looking superficially
at the data, it is possible for one to observe that there are not many boundary
allocations (there are few zero allocations) and this happens for the majority of
the subjects and the majority of the problems. What one observes in Table 3.14
is that the estimated values of the risk aversion parameters, are remarkably high,
indicating high levels of risk aversion. This raises the question of whether alloca-
tion problems make the subjects to behave in a more risk averse way, compared
to the pairwise choice tasks or the multiple price lists. The latter requires further
empirical investigation.

Parameters s and d are the precision parameter of the stochastic specifications.
The larger their value, the less noise exists in the data. On average, specification
1 obtains the highest value of this precision (38.79) while for specifications 2 and
3 is high as well and significantly different than zero. Parameter b captures the
bias when there are boundary allocations. Its value is inside the expected range
as should have been zero if there were not any allocations 0 or m, which was not
the case in our experiment as boundary allocations were observed for some of the
subjects and problem:s.

Let us now focus on the goodness of fit. If one focuses only on the mean value of
the maximised log-likelihood, she can infer that Specification 1 fits the data better
than the other two. But in order to be able to make a direct comparison and since

the three specifications differ in the number of the parameters that they require
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(2 in Specification 1 and 3 in Specifications 2 and 3), one needs to correct for the
degrees of freedom. Table 3.15, presents the mean values (standard deviations
in parenthesis) for the corrected likelihood criteria namely, the Bayesian (BIC),
the Akaike (AIC) and the corrected-Akaike (AIC.) Information Criterion'®. The
criteria have been calculated for the 72 observations and the respective number
of parameters for each specification. A lower value for the corrected likelihoods,

implies a better fit.

Table 3.15 Corrected Log-Likelihoods

Specification LL BIC AIC AICc
1 -459.153 93998 92231  922.48
(60.77)  (120.57) (120.57) (120.57)

2 -465.96  966.28 93793  938.28
(54.16)  (107.46) (107.46) (107.46)

3 -474.17 9827  954.34  954.7

(54.24) (107.61) (107.61) (107.61)

It is obvious that no matter which criterion we are using, on average, the means
in Specification 1 seem to be consistently higher (lower for the corrected likeli-
hoods) than the other two, fact that indicated a better fitting. Let us now see what
happens at the individual level. Using the corrected (for degree of freedom log-
likelihood, BIC) so that we can compare within specifications, we rank the Specifi-
cations from best to worst (lower to higher value of the BIC). Table 3.16, shows the
cumulative percentage in each ranking position. Regarding the specification with
the best fitting, Specification 1 is ranked first for 82% of the subjects, is ranked first
or second for 90 % of the subjects and so on. It is obvious that Specifications 1 and

2, are ranked either first or second for the majority of the participants.
Table 3.16 Rankings Based on the BIC

Specification 1 1-2 1-3

1 82 90 100
2 16 70 100
3 2 40 100

All values represent cumulative percentages

From the results above, it is inferred that Specifications 1 and 2 fit better that

15These criteria are analytically presented in chapter 2.
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the third, and also that Specification 1 is relatively better that 2.

We now turn to the statistical significance of these results. As mentioned before,
the three Specifications are not nested inside each other. In this case, a Clarke test is
appropriate to test for significance (Clarke (2007)). The Clarke test is a distribution-
free test used for comparing non-nested models. The null hypothesis behind this
test is:

HQIP(Lli—L2i>O) =5

where Ly;, Ly; are the individual log-likelihoods for each of the models. The in-
dividual log-likelihood, is calculated for each of the 72 problems, based on the

values of the estimated parameters. The test statistic then is:

72
T =Y I(Ly— Ly)
i

where [ is an indicator function that takes the following values:

1 Ly;—Ly>0
0 Ly —L<0

Then the test statistic is based on a Binomial test assuming that T ~ Bin(72,.5).
The null-hypothesis is rejected when T=44 at 5% significance level and T=46 at 1%.
Table 3.17, reports the results of a Clarke test. We cross-check all specifications. For
example, in the first row, we test whether Specification 1 is significantly better than

2 and 3. This statistical test is telling us that Specifications 1 and 2 perform better

Table 3.17 Significance Test for Superiority of Specifications

1 2 3
1 na. 39 52
2 17 n.a. 42
3 14 11 na

Clarke Test at 5% Significance Level. All values represent percentages.

than the third. Indeed, Specification 1 is significantly better than 2 for 39% of the
subjects and is better for 52% of the participants compared to 3. For Specification
2, it seems that it is significantly better than 1 for 17% of the subjects and better
than 3 for 42%.
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3.8 Conclusion

As allocation questions are gradually becoming popular and are used more
frequently in experimental studies, it is of paramount importance to develop ap-
propriate ways of modelling these error stories. In this chapter we presented three
specifications of modelling stochastic choice in 3-way allocation problems. We
included combinations of both CRRA and CARA utility functions with the Beta-
distribution which was assumed to represent the stochastic process that underlies
the decisions of the subjects. We ran an extended simulation in order to obtain
some intuition of what happens when the researcher assumes the wrong specifi-
cation when the data are generated by a different one. This has effects to both the
magnitude of the values of the estimated parameters, but also to the model selec-
tion process, as one needs to test for all the possible specifications. In addition,
we present an economic experiment that we specifically design in order to obtain
data that could allow us to test for the difference in the stochastic specification.
We found that the CRRA specification fits best, even though it has fewer degree of
freedom. That is good news, as using specification 1 means there is one parameter
less that is needed to be estimated. Nevertheless, if one wants to use a CARA
utility function, specification 2 that assumes the existence of a bias parameter can
be used. The experiment showed that subjects exhibit high degrees of risk aver-
sion. The latter means that boundary allocations are not met very frequently and
consequently both CRRA and CARA could be used without the need to take into
consideration boundary allocation. Further investigation is needed concerning the
correlation between risk aversion and allocation problems or stating it differently,
whether allocation question make subjects to behave in a more risk averse way

compared to pairwise choice tasks.



Conclusion

In this section we conclude. We present the conclusions in the form of ques-
tions where the answers aim to present what is the main problem and the main
research questions, what is the methodology applied, what are the main results of
this study, what is the contribution of this study, what are the limitations and how

this work can be extended.

What is the problem and why it is important?
How people update the prior beliefs that have been formed in an ambiguous en-
vironment is a question in the literature that has been partially or inadequately
answered. The discussion orbits around dynamic decision making, or more pre-
cisely, sequential decision making. This is to be distinguished from the dynamic
choice that involves long time period where the future is discounted. The sequen-
tial choice concerns the formation of prior beliefs, the reception of information
and the updating of these priors. Discounting or impatience plays no role in this
framework. In this thesis, the main objective is to provide some insights of how
people update their initial beliefs that have been formed in an ambiguous envi-
ronment, whether they are dynamically consistent or the history of events plays
no role to the decisions and if they are dynamically inconsistent, how do they ac-
tually resolve this inconsistency. The latter raises several behavioural issues, since
we assume that not all decision makers behave in the same way, and consequently
we allow for various levels of sophistication in the decisions.

These questions are of significance if one takes into consideration that a consid-
erable number of choices in economic life require this type of sequentiality. Sav-
ings decisions, financial decisions, investments, all are examples where both ambi-

guity and reception of information are present. The standard model in economic
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theory assumes that decisions are made based on the Expected Utility model and
dynamic consistency is always satisfied. Experimental evidence shows that this is
not the case. The question now is whether one wants to proceed in a descriptive or
a normative way. If the objective is to predict behaviour, then assuming Expected
Utility will lead to failures in capturing ambiguity aversion. Take for example
public policy. If a new policy is to be applied and Expected Utility is assumed, if
people’s preference are non Expected Ultility, the actions that the model predicts
will be significantly different from the action that economic agents will actually

take.

What do we already know?
Topics of decision making under ambiguity have been studied in experimental
settings relatively early. Nevertheless, the majority of this work has been pub-
lished during the last five years. This is mostly due to the lack of a theoretical
framework, rich enough to capture ambiguity aversion on the one hand, and in-
adequacy of experimental methods and subsequently methods of analysis of the
experimental data on the other. Empirical evidence converges to two main results,
that the participants in economic experiments express attitudes towards ambigu-
ity and that subjects are characterised by high degree of heterogeneity regarding
these attitudes. This conclusion is drawn from experiments conducted in a static
framework. When the problem is extended to its dynamic version, the evidence
is not rich enough to allow conclusions to be safely inferred. The two available
studies provide evidence of the violation of dynamic consistency. The drawback
of these studies is that they are prone to criticism regarding the methodology
adopted, as they include very few questions, one of them does not include any

kind of incentives and none of them takes into consideration noise in the data.

How this work differs from what has been already done?
In order to provide answers to the questions that we aim to investigate, we de-
signed economic experiments that incorporated features that would enable us to
obtain data that would be appropriate to do so. As is highlighted by the results
of Antoniou et al. (2013), failing to correct for the non-linearity of the utility func-

tion provides stronger behavioural support for the Bayesian rule. They conclude
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that in order to be able to capture ambiguity aversion, there are three extensions
than need to be done, in theoretical, experimental and econometrics terms. Our
experiments were designed in such a way that they would be able to capture all
of the above. Our protocols, differ from what has been done in the literature
in four distinct ways. Regarding the theoretical extensions, we include several
different preference functionals that allow for ambiguity aversion. More specifi-
cally, we assume that the subjects in our experiment have preferences that can be
explained either by the Subjective Expected Utility (SEU), the MaxMin Expected
Utility (MEU), the Choquet Expected Utility (CEU) or a parsimonious version of
the CEU, called the Source Choquet Expected Utility (SCEU). We aim to elicit be-
liefs by using an alternative method compared to the standard that has been used
in the literature (Holt-Laury price lists and the Becker-DeGroot-Marschak mech-
anism). Using this kind of elicitation method, one is able to construct structural
models that are capable of capturing attitudes towards ambiguity Then, the ex-
tensions in the experimental framework and the subsequent econometric analysis
require tasks that will make the identification of different theoretical structures
possible. Starting with the decision task, we use allocation problems contrary to
the conventional method of pairwise choices. This kind of questions seems to pro-
vide informationally richer data-sets that render our objective possible. We create
ambiguity in the lab using a Bingo Blower, a device that provides a transparent
and non-manipulable representation of ambiguous events. In the analysis of the
experimental data, we seriously take into consideration the effects that noise in
the data has to the analysis and interpretation of the results. Due to the nature of
the decision task, it is not possible to use standard techniques that are broadly ap-
plied (e.g. normality in errors). Consequently, different specifications are needed
in order to proceed to the econometric estimation of the models. In one of the
experiments we use a particular specification due to the flexibility that it allows.
Nevertheless, as we recognize its limits, in the second experiment we propose
three different specifications and we test them against each other in order to infer
which is the best to be applied in similar frameworks. In addition, we ask subjects
a considerably large set of questions (60 and 72) in order to reduce the levels of
noise in the data and to obtain more robust results. Finally, the stochastic specifi-

cation along with the parametrisation of the preference functionals and combined
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with the fact that the analysis is done on a subject level analysis, allows for the
identification and classification of several different structures that aim to model

decision making.

Are people the same?
We take as a point of departure the idea that people are different. This is not
an unreasonable assumption to make. People differ in their tastes, their beliefs
and the strategies applied to solve complex problems. Many of the experimen-
tal studies analyse the data assuming a representative economic agent and try to
make inferences for the whole experimental population. This approach is adopted
mostly for reasons of simplification. In both our experiments, we proceed by
analysing the data in a subject level analysis. In the experiment in chapter 2 we
define three different types of decision makers (resolute, naive and sophisticated)
and we find that indeed subjects can be classified to different types. In the experi-
ment in chapter 3, we assume three different specifications of modelling stochastic
choice and we try to find which one fits the data best for each individual data-set.
We find considerable heterogeneity which is an indication that analysing the data

assuming only one type of decision makers may lead to totally different results.

Do people make mistakes?
We agree with the point of view that the stochastic part of decision making is
quite powerful to explain behaviour and one should be extremely careful to take
this into consideration when analysing experimental data. In chapter 2, we use
an error specification that allows us to use the fewest possible parameters in the
specification. This was done with the objective to reduce the levels of complexity
in mind. In chapter 3 being motivated by the technical difficulties and constraints
that the previous specification exhibits, we propose and test three different speci-
fications. The results shows that when subjects are characterised by high degrees
of risk aversion, the specification applied to chapter 2 is the one that best explains
behaviour and as a consequence, using the simplest specification with the fewest

parameters, will not have any significant effect on the analysis.

Are people dynamically consistent?

As is expected, the answer to this question is not quite definite. From our exper-
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iment, we find that although having non-EU preferences, a large proportion of
the experimental population (almost 1/3) is dynamically consistent. This result is
contrary to the mis-conception that a non-EU decision maker should obligatory be
dynamically inconsistent. The results do not provide support to the standard SEU
model. Instead, non-EU models (more specifically SCEU) seems to be able to fit
well to the decisions of more than 30% of the subjects. People have non-EU prefer-
ences, but decide that in the second stage they want to keep their choices constant.
On the other hand, there is an equivalent proportion of subjects, that behave in a
quite dynamically inconsistent way. Not only do they have non-EU preferences,
but they also behave naively, failing to take into consideration the further stages of
the task and failing to plan ahead. The rest of the subjects” behaviour is explained
by a mixture of non-EU preferences and dynamic consistency or consequential-
ism. All of the above are extremely important, when the behavioural implications
of these inconsistencies need to be taken into consideration (e.g. reaction of agents
to a change in the taxation regime) as there may be required some form of gov-
ernment intervention (nudge) in the presence of dynamic inconsistencies, or there
may not in cases where people are consistent with their choices. The latter raises

some issues on inconsistency and welfare which we discuss later.

What are the limitations of this approach?
It goes without saying that our results are heavily based on the assumptions we
make regarding the decision process, the stochastic specification and the repre-
sentation of tastes and beliefs. In addition, the results are a function of the way
that ambiguity was represented in the lab. There is no direct way that one can
generalise the results above. One of the limitations of the methodology we ap-
plied can be found in the number of the parameters. The preference functionals
we tested varied from having 4 to 8 parameters, from the simplest specification of
SEU to the more complicated and non-smooth (CEU). Estimating a large number
of parameters using maximum likelihood techniques is a computationally intense
task and the convergence of the optimisation problem is sensitive to many factors
(e.g. starting parameters). Alternative ways could be applied in order to analyse
the results (e.g. Houser et al. (2004)). Nevertheless, it is not clear whether these

methods could eliminate the current difficulties or would generate additional hur-
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dles. During the experiment in Chapter 2, there was the implicit assumption that
the type of the decision maker remains unchanged throughout the duration of the
experiment, as did the preferences towards ambiguity. This is a strong assumption
that needs further testing. Another limitation is to be found to the limits of the
decision task. As in both experiments we were requiring subjects to allocate their
total income, we were not able to observe risk loving behaviour (we could observe
boundary allocations, but on the bounds there is no way to observationally distin-
guish between the risk neutral and the risk loving decision maker). Modifications
of the decision task, such as allowing for negative allocations, would solve this
issue. But as was argued before, is not straightforward how the questions of the
experiment can be efficiently designed (how to provide a large enough amount of
money to the subjects). The representation of ambiguity plays a significant role for
the interpretation of the results. The Bingo Blower provides an adequate source of
ambiguity but there were a number of technical constraints that reduced the effi-
ciency of the device. Recall, that during the experiment we were asking subjects to
suppose that a scenario holds, and then make their decisions accordingly. We did
so as we wanted to avoid any kind of learning effects that would distort the objec-
tive of the experiment. An alternative would be to draw balls for real during the
experiment or even to play every problem for real and then rearranging the com-
position of the Bingo Blower. Something like this would require a considerable
amount of time and a lot of manipulation to hide the Bingo Blower while refilling
that would raise suspicion on the one hand and would make the subjects to feel
bored or even become confused on the other. Inevitably we needed to proceed
with the assumed scenarios that would be played out for real at the end of the
experiment. Another solution to this, is to use computerised sources of ambiguity.
While this solution is the most efficient in terms of presentation and application,
it heavily suffers from suspicion issues, as subjects may always suspect that the
software has been programmed to the benefit of the experimenters. The use of
the Bingo Blower creates an additional problem regarding the number of periods
that the task can be extended to. The optimal number of colours is 3. Having less
than 3 colours renders the task trivial. To make the problem a 4-period problem, 4
different states of the world, thus 4 colours. The consequence of this is that due to

the limited space of the device and the requirement of having lot of balls to create
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ambiguity, it will be extremely difficult for subjects to distinguish the different

proportions of the balls and would probably confuse them.

What is the plan for future work?
As is expected, this line of research provides significant evidence to the literature
of decision making under ambiguity while at the same time it opens the path for
some important direct extensions. The experiments we run generated a number
of research questions that are connected either directly to the issue of updating,
or to further methodological issues. We can identify three possible routes that this
research can be extended individual decision making, interacting decision making
and methodology. On individual decision making, the direct extension is to add
additional periods to the decision task. At each period, some of the states of the
world will be excluded and the priors will be updated accordingly. This requires
the extension of the decision trees and also the way that ambiguity is represented
(we extend this later). Extending the experiment to multiple-periods, allows us
to test two different issues. On the one hand, it is possible to design a life cycle
savings problem in the spirit of Carbone and Infante (2014), where subjects will be
asked to make decisions for longer horizons. This extension requires the elonga-
tion of the time-horizon and the relaxation of the constraint that the total income
must be allocated in one-shot. Subjects may be able to save or borrow'® money
and thus, make decisions in an environment that better resembles the real world
economic environment. On the other hand, extending the number of periods, will
provide subjects the opportunity to learn something by a process of partially re-
ceiving information. The theoretical framework of learning under ambiguity has
been extensively developed (Epstein and Schneider (2007), Epstein et al. (2010))
and few experiments test some of the available models (see literature review in
chapter 1). Combining the two would provide insights into how people design
long-horizon plans under ambiguity, with updating and learning to take place.
Another direct extension is to analyse the data at the aggregate level. Instead of
performing a subject level analysis, the data can be pooled so as to estimate a mix-

ture model following the methodology that Conte and Hey (2013) applied. What

16Borrowing would create the same problem as in our experiment with the nOshort selling con-
straint.
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has been observed from the results of our experiments, is that while the theo-
retical models require remarkably high levels of sophistication from the decision
makers, the subjects usually resort to simple heuristics in order to simplify the
complexity of the tasks. This is a call for the creation of additional links between
economic theory and psychology and a need for more behavioural economics and
bounded rationality approaches to be developed. Psychologists have already devel-
oped similar models that remain inactive in the field of economics (see Busemeyer
and Diederich (2002)). An interesting question that is raised is what is the cost
in welfare of the various inconsistencies. At the end of the day, one should ask
whether there is a cost of being dynamically inconsistent in terms of final wealth
or altering the initial choices is a strategy that can maximise utility (the decision
maker is better-off when is dynamically inconsistent). Finally, the updating issues
can be extended to the cases where it is quite difficult to create priors. These cases
are known as unforseen contingencies and appropriate models have been recently
developed (see Karni and Viero (2013), Karni and Viero (2014)). It would be quite
interesting to obtain insights of how people behave in similar environments. Nev-
ertheless, it is difficult to apply this in the lab, as one should be very careful not

to create suspicion or hints of deception in the experimental protocol to be applied.

The experiment on updating beliefs under ambiguity (Chapter 2) focused on
individual choice, using a simple task to test several different updating rules and
types of decision makers. Most of the applications in real economic life are being
taken under the interaction or influence of other members in the society. Conse-
quently, it is of paramount importance to extend the individual choice framework
in order to capture similar interactions. The straightforward way to do this, is
initially to extend the framework to a game-theoretical model where strategy now
plays a significant role. Already in the game theoretical literature, the notion of
Ellsberg games have been developed which aims to understand how the set of
equilibria is extended or restricted when the players are characterised by ambigu-
ity averse preferences (see Eichberger and Kelsey (2014)). Lately, there are exten-
sions to dynamic games where the players decide either sequentially or multiple
times, and at each decision mode (information set) there is some piece of infor-

mation to allow updating. The standard way that the literature suggests to solve
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this is by assuming Savage players that are probabilistic sophisticated and model
the game assuming a Bayesian-Nash equilibrium exists. Relaxing this assump-
tion and allowing for non-Expected Utility preferences, for sure changes the set of
equilibria (see Battigalli et al. (2013), Mouraviev et al. (2014) and Karni et al. (2013)
for references). It is interesting to test which of those equilibria can behaviourally
survive. Interaction is not constrained only on strategic and non-cooperative en-
vironments but also includes decisions that are made in the context of a group.
There is very little experimental evidence of how groups form beliefs in the pres-
ence of ambiguity, how they update these beliefs and how they collectively decide.
Most of the work has been done in risky environments. Keck et al. (2014) provide
some initial results on this topic but further research is needed

On the methodological issues, there are three extensions that need to be done. On
the experiment of chapter 3, the analysis is realised assuming that the decision
variable follows a continuous distribution. As in the experiment the subjects are
required to make the allocations in integer numbers, it is not unreasonable to as-
sume that the distribution is actually discrete. Further modifications are needed
in order to incorporate discrete beta distribution to the analysis and also to define
the proposed specifications under a discrete distribution. Also, there are options
to extend the specifications to more flexible and behaviourally oriented stories. A
second methodological issue has to do with the elicitation of beliefs. In order to do
so, we jointly estimated parameters that represent beliefs, preference parameters
(risk aversion and weighting coefficients) and parameters of stochastic choice. It
would be interesting to reduce the number of parameters by applying some dif-
ferent mechanism of beliefs” elicitation. In the literature, the most prominent is
to use a scoring rule at the cost of not being able to assume non-linearities in the
utility function. Kothiyal et al. (2010) present some possible extensions of how
scoring rules can be extended to measure ambiguity and subjective beliefs. Em-
pirical work is needed to validate the appropriateness of these methods. Finally,
the experiment in chapter 3, provided evidence that subjects exhibit high degrees
of risk aversion. What is not clear, is the issue of whether this was just a simple
coincidence or allocation questions indeed make subjects to behave in a more risk
averse way. Experimental tests would verify the correlation between the decision

task and the degree of risk aversion elicitated.
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Overall, if we would like to summarise the content of this thesis in a few lines,
it would be that the standard economic model (SEU) is seriously challenged when
decisions are made in a dynamic framework, people hold beliefs that are distorted
due to ambiguity aversion, people significantly differ from each other regarding
their preferences and their choices and further research is needed in order to un-
derstand how people form their prior beliefs, how do they update these priors
in an individual and social context and what the consequences are in welfare by

being dynamically inconsistent.
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Appendix A

Optimal Allocations for Chapter 2

This technical appendix contains the solutions for all the different preference
functionals as well as the strategies that each type is applying. More specifically,
there are the solutions for the Subjective Expected Utility (SEU) decision maker,
the MaxMin Expected Utility (MEU), the Choquet Expected Utility (CEU) and the
Source Choquet Expected Utility (SCEU). The solutions for the SEU, CEU and
SCEU are analytical so the process is presented in full length while in the case of
the MEU the optimal allocation is calculated with the help of numerical methods,

so the specification of the problem, as well as the algorithm applied are presented.

A.1 Dynamic Consistency

This section provides the proof of the strict definition of dynamic consistency
that we applied in chapter 2. This definition requires that the ex-ante choices are
exactly the same with the ex-post.

Consider a two-stage decision problem. At the first stage the individual has m

to allocate between three states of the world, with probabilities p;, p; and py which

*

]
told that state k has not occurred and thus loses x,’j. The individual is then asked

sum to one. Let the optimal allocations be x},x} and x;. Then the individual is
to allocate the remaining amount x; + x]“f between states i and j. Let the optimal
allocations be X} and X]* Then we want to show that X = x} and that X]* = x;-‘.
This is a requirement of dynamic consistency, which is implied by EU.

The Lagrangian in the first problem is given by:
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pin(xi) + pju(x;) + pru(xe) + A(m — xi — xj — x)

and hence the first-order conditions are

piu'(xf)

A
pju'(xf) = A
A

l(%\
prtt (x¢) =
* * *x

Xp +x +x=m

Note that the first two of these and the fourth imply that

pid'(xf) = pju’ (x7) (A1)

Xj+xj=m-—x; (A.2)

Now the objective at the second stage is to choose X; and X; to maximise:

Pi Pi
—u(Xy) + u(X;
pi+pj (%) pit+pj (i)

subject to X; + X; =m — x

This is the same (using a linear transformation) as choosing X; and X; to max-
imise:

piu(X;) + pju(X;) + pru(xf)subject to X; + X; + x; = m.

The Lagrangian is:

piu(X;) + pju(X;) + pru(xg) + A(m — X; — Xj — xf)

and the first-order conditions are
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These imply

pird (X]) = pju' (X}) (A3)

Xi+Xi+x=m (A.4)

Now note that equations A.1, A.2 are the same as equations A.3, A.4 and hence

that X = x7 and X]* = x}". [ |

A.2 Subjective Expected Utility (SEU)

In the case of SEU, there is no way to distinguish among resolute, naive and
sophisticated decision makers as all types update (when updating takes place) us-
ing the Bayesian rule which guarantees dynamic consistency. Nevertheless, in this
Appendix we provide the solution for all the three types by assuming SEU pref-
erences. This is done for the simple reason that due to the elegance that the SEU
model provides, concerning the algebra, it seems easier and more straightforward
to describe the different strategies and the respective optimal allocations by as-
suming Expected Utility maximisation. Then, this methodology can be extended

and applied to all the non-Expected Utility representations that we consider.

A.2.1 Resolute

A resolute decision maker, solves the problem as if it is a one-period problem.
The allocation that is made at stage 1 based on the subjective probabilities, coin-
cides with the conditional allocations. The problem of a resolute decision maker
can be solved in two ways, which both lead to the same result. The first is to
consider only the first stage allocation and solve for the optimal levels of x},x7, x}
given the budget constraint. The objective function to maximise is:

max piu(eix;) + pju(ejx;) + pru(exxy)

* *
X7 X

st.xj +x; +x=m

Assuming a Relative Absolute Risk Aversion (CRRA) function of the following

form:
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x" ifr>0
u(x) =< In(x) ifr=0
—x" ifr<0

The Lagrangian is:
L = pi(ex;)" + pjlejx;)" + prlexxy)” + Alm — x; — x; — xi)
deriving the first order conditions:
Ly =0= peilex) ™ =2

,Cx]. =0= P]‘e]‘(ejx]')lfr =A
Ly, =0= prec(erxe)' ™ = A

and using the budget constraint we obtain the optimal unconditional alloca-

tions:
; m(piei)/ 0 eje
x. ey
b (pien)V (ejer + (prej) U ejer + (prex) (T eje;
« m(pje;)V/ 1 ejey
x. g

P (pied) VU ejer + (pje)t (eier + (prex) 1 eie;

m(prex)/ 1" ege;
(piei)l/(lfr)e].ek + (p].ej)l/(lfr)eiek + (pkek)l/(lfr)eie].

X =

An alternative way to solve this problem, is to think in a backward induction’
way and to consider all the possible future states of the world. Stating this in
a different way, to distinguish among the different conditional allocations (for
instance, the allocation to j conditional that the state is not i is different to the
allocation to j conditional to the information that the state is not k. This leads to
six different conditional allocations (two for each not-state) which are denoted as
Xjmiy Xkis Xinjs Xk=j, Xi-k, Xj-k Where x;-; stands for the allocation to asset j when the
information is that the state of the world is not i . The maximisation problem to

be solved now is:

I This method should not be confused with the sophisticated type that is presented later. The
idea in the method, is that the decision maker anticipated that there will be conditional states,
nevertheless, she is solving the problem as a static one considering all the conditional states.
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max (q]-ﬁ,-)u(e]-x]-ﬁ,-) + (qkﬁi)u(ekxkﬁi) + (qiﬁj)u(eixiﬁj)%— (A.5)

{ XXk X jmis X ke X X }
(G- ulerxe) + (Gi-i)u(eixik) + (gj-r)ulexj«)  (A6)

S.t. Xi—j + Xiok + Xjui + Xjok + Xgmi + Xpnj = 2m (A7)

where now g;-; stands for the compound probability which is simply the con-
ditional probability of j being the real state of the world when the event not i has
occurred multiplied by the probability that the event not i may happen. In this
example, this compound probability can be written as:

P(s)

gj-i = P(Sj’ﬁi)P(ﬁi)w

(P(sj) + P(sk))

which is equal to P(s;).2

The first order conditions are:

Ly, =0= qiﬁjei(eixiﬁj)’l/r =M\ (A.8)
Ly = 0= gigei(eixig) " =M (A.9)
Ly, =0=gjiej(ejxj-i) "=\ (A.10)
Ly, =0=qjej(eixjw) /" =M (A.11)
Ly =0= grier(exxe—) " =M (A.12)
Ly, =0= qjec(exxi) "=\ (A.13)

Using the budget constraint we can solve for the conditional allocations:

2This result will be later useful when we will extend the analysis to the updating of non-additive
capacities where the compound and the unconditional probabilities do not necessarily coincide.
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2m(ql’ﬁj€l’)r€j€k
qj-iej)"eiex + (qr-iex)"ejei + (qi-jei) ejex + (qr-jex) eiej + (gi-kei) ejex + (qj-xe;) eiex
(A.14)

xi_\]‘ = (

2m(qi-ke;)"ejex
q]-ﬁie]-)’eiek + (qkﬁiek)ye]-ei + (qiﬁjei)’e]-ek + (qkﬁjek)feie]- + (qiﬁkei)fejek + (qjﬁke]-)yeiek
(A.15)

Xi-k = (

2m(€]]'_\i€j)r€i€k
C]]'_q'e]')yeiek + (qkﬁiek)’ejei + (qiﬁjei)yejek + (qkﬁjek)yeiej + (qiﬁkei)yejek + (qjﬁkej)reiek
(A.16)

x]'ﬁl' = (

2m(qj-xe;) eiex
qj-iej)"eiex + (qr-iex)"ejei + (qi-jei) ejex + (qr-jex)eiej + (gi-kei) ejex + (qj-xke;) eiex
(A.17)

x]'ﬁk = <

2m(qkﬁl‘€k)r€i€j

Mhmi = (q]-ﬁie]-)’eiek + (qkﬁiek)ye]-ei + (qiﬁjei)’e]-ek + (qkﬁjek)feie]- + (qiﬁkei)fejek + (qjﬁke]-)yeiek
(A.18)
= Zm(qkﬁjek)’eiej
T (gjieg) i + (quoiex)ejei + (qimen) ejex + (qemjer)eie; + (qikei) ejex + (9-kej) eie
(A.19)
(A.20)

It is easy to notice that x;; = x;— as the updating is realised according to
the Bayesian rule, which leads to the same allocation as the two formulas are
equivalent. This type of decision maker is introduced in the literature by Machina
(1989) and later by McClennen (1990) where the main idea behind this, is that of
commitment. Also this kind of behaviour seems to be consistent with actions that
are contrary to consequentialism and that in fact take into consideration the history
of actions. A decision maker decides to impose the decisions that she made at the
first stage and thus, she is not willing to make any changes at the second stage.
Thus, the decision that is made in the first stage is the one that is implemented
throughout the following steps. The decision maker does not rearrange her initial
decisions and does not use the additional information that is revealed (Al Najjar

(2009) refers to this as “ignoring relevant information”).
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A.2.2 Sophisticated Type

This type of decision maker solves the problem in two steps using backward
induction. Solving backward, in the first step, the decision maker thinks what she
would do if she was to reach a specific decision node. It is useful to use again
the decision tree that represents the problem. In this problem there are three

pI) v

o
\

(k| i) Xy

PU\“@ Xi-k

PGl-g) ik
Figure A.1 The 2-Stage Decision Tree

decision nodes (not colour s) which form the set {sﬁi,sﬂj,sﬁk}. At each decision
node, the objective is to solve for the optimal conditional allocation taking as given
the available income (which is the sum of the optimal amounts that were allocated
at stage 1 of the experiment (x}" + xf) if the state of the world is s-;). This leads to
the solution for the conditional allocations as a function of the available conditional
income? In the second step, taking into consideration these conditional allocations,
the decision maker solves for the unconditional optimal allocation x7, x7, x{ which
is exactly what she does at the initial stage. In this experiment, the decision maker
is liable to face three different events. Therefore, she has to solve three different
conditional maximisation problems in the second stage, and the solutions from
these problems will be used to define the initial allocations at stage 1. This leads
to six different conditional allocations as these are all the possible states of the
world that may be realised. We denote x;-; the conditional allocation to j and

p(sjls-i) the conditional probability of state j, when the information the ball is

3Here there are two ways that we can proceed. The first is by approaching the solution using the
conditional income m_; = x;* + x;* as the variable that we are solving for, or by using the General
Envelope theorem, we can solve for the optimal allocations x;*. We provide the solution for both.
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not i is provided. Consequently, there are six conditional allocations denoted as
Xjmiy Xkis Xinjs Xk=j, Xi-k, Xj-k Where x;-; is the amount that is allocated to the asset j
when the state is not i. .

We can now provide the analytical solutions for the amounts allocated at
stage 1, {xf,x;,x;} and the six conditional allocations {xjﬁi,xkﬁi,xiﬁj,xkﬁj,xiﬁk,xﬁk
where x;-;}.

Notice that in the case of subjective Expected Utility, as we will show later, x;-
and x;_; will lead to exactly the same solution as x; due to the application of the
Bayesian rule.

Consider the case where in the second stage, the information revealed is the

ball is not i thus s_;, the problem in the general form can be written as:

max  p(sj|s—;)u(ejxj-i) + p(sk|s—i)u(exxi—i)
{xjﬁ[/xkﬁi}

.t Xjoi + X = x;‘ + x;

Despite the fact that in the case of Expected Utility the conditional probabilities
are much simplified, it is useful to keep the conditional notation, as in the case of
non-additive capacities this is not true any more. At the first stage, the decision
maker solves the following three problems:

When the ball is not i:

max p(sj[=i)u(zj-i) + p(sel=i)u(ze-i) (A.21)
Jortk
s.t. €]'x]'_.z' — i X~ <0 (A22)

Xjni + Xgmi = x;‘ + xp (A.23)

where z;-; = ejx;-; and e;x-; the payoffs at each case. We also write the con-
ditional income as m-; = x; 4 x;. Also for simplicity, the conditional probability
p(sj|—i) will be denoted as pj—i. The two remaining conditional problems are sym-
metric to the one presented above. The solutions of these maximisation problems
give the optimal conditional allocations as a function of the optimal unconditional
allocations xj—; = x]-ﬂi(x]’f +x;). Letm-; = X} + xi be the conditional income for each
of the states. The problem can now be solved in two ways, as for m_; or as for

x; + xi. We adopt the former. Forming the respective Lagrangian functions and
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solving for the conditional allocations of the first step we obtain:

m-iex (exwp) /Y

T @) 0D + ey (el 170 (A-24)
and similarly the conditional allocation to k:
mﬂ.e.(e.w{)l/(rfl)
X = BEAthed) (A.25)

e]-(ejw;)l/(“l) + ey (egw) )1/ 1)

or simply x;_; =m_; — x]ﬂ ;- w, stands for the respective conditional probability.

Following the same procedure for the other two conditional states we obtain
the conditional allocations. The solution is omitted as it is symmetric to the previ-
ous one.

These are the optimal conditional allocations which are functions of the condi-
tional income m-; at each state. In the second step, the decision maker solves for
the optimal levels of the three conditional incomes m-;, m-;,m_y, taking as given
the conditional allocations from step 1. Before writing the objective function, re-
call that p-; stands for the unconditional probability that the state of the world
is not i and is equal to p; + p;. With g;-; we denote the compound probability
that state j will happen when the state of the world is not i, which is simple the
product between the unconditional probability that the state will be either j or k
and the conditional probability of getting j when the event is that the state is not
i. The formula for this compound probability is Qj=i = P=iPj=i = qj-i = P-i Pi The

[=
objective function can now be written as:

1
L= 3 [qj-iu(ejxj—i(m—;)) + qr—itt(exXp-i(m—;)) + gimju(eixi—j(m-;)) (A.26)

kit (exXi—j (M=) + qi-gi (€ixi-x (m—x)) + gj-kui(ejxj-x(m-x))]

+A2m —m-i* —m_ —mo ")

and substituting with the optimal conditional allocations and the appropriate
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form of the utility function:

1 * r * r * r
L= E[ﬂjﬂi(ejxjﬁi(mﬂi)) + G (exxg-i (m—i))" + qinj(eixij(m-;)) (A.27)

i (X (M) + Giie(eixi g (m))" + gj-k (€ (mk))']

+A2m —m_;* —m_ [ —m ")

Deriving the FOC*:

€j€k

Emﬁi* = 0 = Tl’l::l 1 1
ej(ejpj-i) ™7 + ex(expr-i) 7

(qj-i(expr-i)" + qr-i(ejpj-i)") = p
(A.28)

— e;e
Emﬁ]*:0:>m71 Tk

" (qi-j(expr=j)" + qr—j(eiping)") = 1
! ei<eiPiﬁj)% + ek(ekPkﬂj)ﬁ

(A.29)

1 €i¢j

1
ej(ejpj-k) 77 + ei(eipi-x)

Loy =0=m' (g (€ipi-k)” + ik (epj-r)") = p

(A.30)

|
-

—r

By setting

A €j€k

[ (qj-i(exprmi)” + Grmi(ejpj=i)")] 71

T T
ej(ejpjﬂi) =7 + e (exPr—i) T

€€ r \]

B=] - — (qi-j(expr—j)" + qr-jeipinj) )] T
ei(eipi-j) 7 + ex(expr—j) T

ee; 1

C=| i  (qj-k(eipi-k)" + qi-k(ejpj—k)")] 1

1
ej(ejpj-k) T +ei(eipi-k) T
equating A.28 to A.29 and A.28 to A.30 and using the constraint that (mﬁi +m-;+
m_y = 2m), we can solve for the optimal conditional incomes as a function of the

initial income m, the exchange rates e;, ¢j,¢; the coefficient of risk aversion r and

“Here the problem can be solved in two ways. The first is to define m_; = xi* 4+ x;* and take the
derivative with respect to each conditional income. This will lead to 3 equations plus the budget
constraint from which we can solve for the individual allocations. The second methodology is to use
the General Envelop Theorem and to prove that the derivatives from the first methodology are equiva-
lent to the partial derivatives with respect to each optimal allocation x;*. Using either approach will
lead to the same first order conditions and consequently to the same optimal allocations.
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the conditional probabilities.

_ 2m
1+4+4

-

- 2m
T 14+ 848
2m

Mmyp=————o
1S4 ¢
The optimal allocations can then be simply found by using the budget con-

straint. This equation writes:
* * *
Xp +x +x=m

and as we defined earlier the conditional incomes, it is easy to solve for the optimal

allocations. This gives the following equations:

*
Xj=m—m-;

j m—mﬁ]-

Xp=m— m_g

Then, we can use the solutions for the optimal conditional incomes and substi-
tute back to the equations of the conditional allocations that we derived in the first
stage of the maximisation problem. As the update is done using the Bayesian rule,
this ensures Dynamic Consistency and thus the conditional allocations (ex-post)

will be identical to the initial ones (ex-ante).

A.3 MaxMin Expected Utility (MEU)

For the multiple priors model we used numerical optimisation techniques to
obtain the optimal solutions. It is a computationally intense task that requires
several calculations in order to converge to the optimal allocation. For the resolute
type, notice that as we are not aware where exactly the priors lie inside the triangle,
we need to find the vector x = {x;",x;‘,x,f} that maximises the minimum level of

Expected Utility. To do so, based on the triangle illustrated by Figure 2.2 we apply
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this calculation using the prior sets that are formed at each of the vertices of the

small triangle. The maximisation problem can be written as:

max (min(EU(P,,x), EU(Pg,x),EU(Pc,x))) (A.31)

*

{x[*,x]: X5}

and substituting the appropriate priors:

max (min((&(ekxi)’ + ﬁ(e]-x]-)r +(1- pi— ﬁ)(ek(m —x; — x]-))’),

{x;‘,xf,x,j}
(piexxi)” + (1 = pi — pi) (ejx;)" + prlex(m — xi — x7))"),
(1= pj = p)(exxi)” + pj(ejx;)" + pelex(m — xi — x7))")))

where the budget constraint is directly substituted in the objective function and
now it suffices to solve only for the optimal levels of i and ;.

A naive decision maker, firstly solves A.31. Then receives the partial informa-
tion (e.g. not j) and solves the second stage problem, based on the conditional

income acquired at stage 1 and the updated beliefs. At stage 2, she solves:

{xf}ikxﬁ,}{min{wiW(xiﬁf) + (1 —wi)u(xp—), wi(u(xi) + (1 — wi)u(xe—;) }}

s.t. Xinj + Xg—j = X? + x;:

(A.32)

The same process is also applied to the other two conditional states. In the case of
the conditional updating, as was shown in the main text, we do not need to con-
sider the prior that maximises the likelihood of the foregone state. Consequently,
we consider only two priors and search where the minimum utility is maximised
there. For a sophisticated decision maker, the problem at the first step requires to
solve for the optimal allocation given that some information for the possible state
of the world has been received. The three conditional problems of states 7,j and k

are respectively:
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r

max(min((1 — p; — p) /(1 — pi) (ejxj=i)" + pe/ (1 — pi) (ex(m — x; — xj-;))",

(A.33)

pi/ (1= pi)(exj~i)" + (1 = pi — pj) /(1 — pi) (ex(m — xi — xj-i))"))

max(min((1— p; — p)/ (1 = pj)(eixi~j)" + pr/ (1 = pj) (ex(m — xj — xij))",
(A.34)

pi/ (1= pj)(eixi~)" + (1= pi — p;) /(1 = pj) (ex(m — xj — xi~j))"))

max(min((1 - p; — pi) /(1 — pi) (esxis)” + p/ (L — pi) (e (m — x, — xi))',
(A.35)

pi/ (1= pr)(eixi)" + (1= pi — pr) /(1 = pr) (ej(m — xx — xi¢))"))
and then solves for the problem as seen from period 1 to find the optimal

levels for x7, x7, taking into consideration the optimal solutions of the conditional

problems at period 2, given by A.33, A.34 and A.35. The problem now to solve is:
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max (min(.5((px + pj) (min((1 = pi — pe) /(1 = pi) (ejxj=i)" + p/ (1 — pi) (ex(xi-4))"
pi/ (1= pi)(ejxj~i)" + (1= pi — pj) /(1 — pi) (ex(xx-i))"))
+ (1= pj) (min((1 = pj — pe) /(1 = pj)(eixi~;)" + p/ (1 — pj) (ex(xe))",
pi/ (1= pj)(eixi)" + (1 = pi — pj) /(1 = pj)(ex(xx-1))"))
+ (1= pe) (min((1 = pj — pi) /(1 = pi) (eixik)" + pi/ (1 = pi) (ej(xjk))",

pi/ (1= pi)(eixi-k)" + (1 = pi = pi) / (1 = pi) (¢j(xj-k))"))),

S((1 = pi)(min((1 = pi — p) /(1 = pi) (ejxj=i)" + pe/ (1 — pi) (ex(m — x; — xj=i))",
pi/ (L= pi)(ejxj~i)" + (1= pi — pj) /(1 = pi) (ex(m — xi — xj~i))"))

+ (pi + po) (min((1 — p; — pi) /(1 = pj) (eixi~j)" + pr/ (1 = pj) (ex(xi~1))",

pi/ (1= pj)(eixi)" + (1 = pi — pj) /(1 = pj)(ex(xx-1))"))

+ (1= pi) (min((1 = p; — pe) /(1 = pi) (eixii)" + pi /(1 = pic) (ej(xj-1))"

pi/ (1= pi)(eixix)" + (1 — pi — pr) /(1 — pr)(ej(xj-k))"))),

S((1 = pi) (min((1 — pi — pi) /(1 = pi) (ejxj-i)" + p/ (1 — pi) (ex(m — x; — xj-i))",
pi/ (L= pi)(ejxj~i)" + (1= pi — p;) /(1 = pi) (ex(m — xi — xj~i))"))

+ (1= pj) (min((1 = pj — pe) /(1 = pj)(eixi~;)" + p/ (1 = pj) (ex(xe))",

pi/ (1= pj)(eixi)" + (1 = pi — pj) /(1 = pj)(ex(xx-1))"))

+ (pi + pj) (min((1 — pj — pi) /(1 = pi) (eixi)" + pi/ (1 = pi) (e (xj-k))"

1= pe)(eixi)" + (1= pi — pe) /(1 = p)(ej(x-))")))))

—

pi/

A.4 Choquet Expected Utility (CEU)

The problem to solve in its general form is to maximise the Choquet Expected
Utility subject to the budget constraint and to the different rankings of the out-
comes. This means that each ranking, defines a different constrained optimisation
problem which requires the use of the Kuhn-Tucker conditions. We start with the

case of a resolute decision maker that solves the problem as a static one and at
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the second stage applies the same allocations as she did at the first stage. In the
case of CEU, as the beliefs are non-additive, we need to take into consideration
the individual capacities for each state of the world as well as the joint capacities.
In total there are six different capacities to estimate, namely Vi, Vj, Uk the individual
capacities and vjj, v, vjx the joint capacities.

In the case of a resolute decision maker, there is no updating process. For a
resolute decision maker there are 13 different ranking of the outcomes. Solving
for these 13 different rankings we obtain the equations for the optimal allocations.
We remind that for the ranking z; > z; > z;, where z; = ¢;x, the weights are defined

in the following way:

Wi = Ok

I

Ujk — Uk
1-—- ?ij

£
Il

Table A.1 summarises the weights for each of the possible rankings.

Table A.1 Table with all possible rankings

Ranking wj w; Wk
1 zZi > Zj > Zg (% Vij — Ui 1-— Ujj
2 zi>zp >z (7 1—vyp i —v;
3 Zj>zi>Zk Uij— 0 vj 1-— Vjj
4 Zj >z >z 11— Uik Uj Uik — Uj
5 Zy > Zj > Zj Uik — Uk 1— oy Ok
6 Zk > Zj >z, 1-— Uik Ujk — Uk Ok
7 Zi = Zj > Zg (% Vij — 0; 1- Uij
8 Zi = 2z > Zj (%} 1—ovx i — v
9 zj=zc>z 1-vi v; Vjk — 0;
10 z; > Zj = Zk (%} Vij — Ui 1-—- Ujj
11 Zj>Zzi=2Zk Uj— 7 vj 1-— Vjj
12 zp >z = Zj Uik — Uk 1— oy Ok
13 zi—=z=z 1/3 1/3 1/3

The objective is to maximise:

max w;(z;) + wju(z;) + wrn(zx)
X7 xg

subject to the budget constraint 7 = x + x 4 x; and to the ranking that the

outcomes must satisfy. If for example the ranking is z; > z; > z; then the problem
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can be written as:

x}g}(}gi; wiu(z;) + wiu(zj) + wiu(zy) (A.36)
s.t.ejxj—ex; <0 (A.37)

exxp —ejx; <0 (A.38)
Xi+Xj+xX=m (A.39)

Xi, Xj, xg > 0° (A.40)

By setting 7 the Lagrangian multiplier for the budget constraint (A.39) and
A1, A2 the multipliers for A.37 and A.38 respectively, we can form the Lagrangian

function:
L =wu(e;x;) +wiu(ejx;) +wiu(exxy) +y(m — x; — x; — xx) + A1 (eix; — ejx;) + Az (ejxj — exxy)

If we denote Ly the partial derivative with respect to k where k = x;, Xj, Xk, Y, A, A2,

the Kuhn-Tucker conditions for this problem require:
Ly, <0,x;>0,and Ly,x; =0
Exj <0,x; > 0,and Exjxj =0
Ly, <0,x>0,and Ly, x, =0

EM 2 O,/\] 2 O,and EAl)\l =0

®Depending on the design of the experiment this constraint can be either implemented or not.
If we allow subjects to shortsell then we may let them to allocate negative amounts. If we constrain
subjects from borrowing then the non-negativit constrained must hold. In this case it is possible
to have boundary portfolios where all the income is allocated to one of the elements while the rest
remain zero.
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E/\z 2 O,/\] 2 O,and EAl)\l =0

which conditions can be summarised as:

(wint' (e;x;) — v + A1ei)x; =0 (A.41)
(wju'(ejx;) — v — Arej + Azej)x; =0 (A.42)
(wytt' (exxx) — ¥ — Azex)xx =0 (A.43)
(eixi —ejxj)A1 =0 (A.44)

(ejxj — exxx)A2 =0 (A 45)
Xi+xj+x—m=0 (A.46)

Case 1: z; > z; > z; The problem to solve in this case is the following:

,{f}ﬁ;‘kwi”(zz‘) + wju(z;) + win(zx) (A.47)
s.t. ejxj —e;x; <0 (A.48)
exxe — €jxj < 0 (A.49)
Xi+Xxj+xg=m (A.50)

By setting 7 the Lagrangian multiplier for the budget constraint and A1, A, the

multipliers for inequality constraints, we can form the Lagrangian function:
L =wu(e;x;) +wiu(ejx;) +wiu(exxy) +y(m—x; — xj — xx) + Ar(eix; — ejx;) + Az (ejxj — exxy)

In this case, since the constrains are non binding both A; and A, are equal to

0, reducing the objective function to:

L = wju(e;x;) + wiu(ejx;) + wiu(exxy) + y(m — x; — xj — xx)
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The optimal allocations are:

me]-ek(eiwi)l/(lfr)
ejek(eiwi)l/(lfr) + eiek(ejwj)l/(lfr) + ei€j<€kwk)l/(1*r)

mejey(ejw;) 1/ (1=7)

] €j€k(€iwi)l/(lfr) + €i€k(€]'w]')l/(lfr) + €i€j(€kwk)l/(17r)

meje;(exwy )t 17

xp =
k ejek(eiwi)l/(l") + eiek(ejwj)l/(l") + €i€j<€kwk)l/(l_r)

Case 2: z; > z; = z;y When there is equality among the outcomes, this should be
reflected in the weights that the decision maker puts to those. More specifically,
these weights must be the same for the two equal outcomes. To show this we write

down again the maximisation problem.

,{f}ﬁ;‘kwi”(zz‘) + wju(z;) + wiu(zx) (A.51)
s.t.ejxj —e;x; <0 (A.52)
ex X — ejxj =0 (A.53)
Xi+Xxj+xg=m (A.54)

The Lagrangian now is written as:
L =wu(e;x;) +wiu(ejx;) +wiu(exxy) +y(m—x; — xj — xx) + A1(eix; — ejx;) + Az (ejxj — exxy)

Since z; > z; holds with strict inequality, the respective multiplier is zero. In the
case of the constraint z; = zi, the multiplier is positive. We can either solve by ma-
nipulating this multiplier, or we can plug-in the constraint to the objective func-

tion. Following the latter, and setting z; = zj the equation reduces to:
L = wiu(eix;) + wju(e;x;) + wiu(exxy) 4+ y(m — x; — x; — x¢)
and keeping as common factor the z; the problem is reduced to solve for:

L= (wi)u(eix;) + (wj + wy)u(ejx;) + y(m — x; — xj — x¢)
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Writing w; + wy as w the objective function can be written as:
L= (wi)u(eixi) + @u(e]-x]-) + ’y(m —Xi—Xj— xk)

This w, depending on the ranking, will be different. This is given by adding the

relevant weights for the common capacities given in Table A.1s. Then it suffices to

e];;j and x; will be the residual m — x;‘ — x;. The first

solve for x;-‘. x;; is equal to

order conditions of the problem are:

Ly, =0= wirei(eixi)’_l =A (A.55)
~ _ ej + ek
Ly, = 0= wrej(ejx;)" 1_ /\(]T) (A.56)

Solving for the optimal allocations we obtain that:

*_

*
Xj =m—x;

X

X = meiekA

ez-e]-A + eiekA + ejek(@e]-ek) '171

YL

*
X, =
k er

where A = [(¢; + ex)wje;] =

Following the same methodology; it is possible to obtain the optimal allocations
for the remaining two rankings in this case (z; = z; > zx and z; = z; > z).

When z; = z; > z, the optimal allocations are given by:
mejex A

L
xXj =

1
r—1

ejex A + eie A +- eiej(twe;e;)

ek
*:elxi

17 e

x,f:m—x;"—x}"

1

where A = [(EJ + ek)wkek] =1

When z; = z; > zj, the optimal allocations are given by:
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me;ep A
x; = !

= - L
ejex A + ejej A + eiey (Weex ) ™1

*

* *
X] m—Xx; — .X'k
*
* €iX;
xk -
€k

where A = [(e; + ex)w;ej] =1

Case 3: z; = z; > z; In this case, the solutions coincide with those of case 2. The
only difference now are the weights that are attached to each of the outcomes as
now the outcomes of the states that are common, are preferred to the third one.

Case 4: z; = z; = z; This is the trivial case where the decision maker chooses to
allocate her income in such a way that no matter what is the state of the world, a
fixed payoff is always guaranteed.

As the decision depends on the ranking of the outcomes, the algorithm to cal-
culate the optimal allocation for a resolute decision maker has been programmed
taking this into consideration. After forming the appropriate weights, the optimal
allocation is calculated for all the possible rankings using the suitable analytical
solution and the appropriate weights. These solutions then are checked if they do
satisfy the ranking and the non-negative constraint and if they do, the respective
utility is computed and is stored in a matrix. When all the calculation has been
done, the allocation for which the utility is maximised is recovered.

The naive subjects fails to realize the sequential nature of the problem. Never-
theless, there is no issue of bounded rationality, only violation of backward induc-
tion. Consequently, a naive decision makers at the first stage behaves in the same
way as a resolute does and solves the problem as if it is a static one. Then, at stage
2 receives the partial information, updates the beliefs according to the appropriate
rules for the Choquet Expected Utility model and then solves the maximisation
problem that involves the two remaining states. We consider the three updating
rules presented earlier, the Optimistic, the Dempster-Shafer and the Generalized
Bayesian updating rule. The procedure to derive the optimal allocations remains
the same for the three different rules so we present only the solution in its general
form that can be then easily adapted.

At stage 1 the decision maker makes the allocations based on the optimal at
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the present state. Then receiving the partial information there are two effects. On
the one hand, the proportion of the income that was allocated to the state has not
happened is lost. On the other hand, the initial beliefs on the different states are
now updated based on this information. There are three events that can happen,
that the ball is not 7,j or k. We denote with

Consider first the case where the state of the world is “not i”. The decision
maker updates her beliefs for the states j and k. We denote as w},w;( the updated
weights for j and k respectively. Also, the conditional allocations to j and k when

the state is “not i” are denoted as x;-; and xi—;. The objective now is to maximise

/ /
xg}gi[wju(zj) + wiu(zy) (A.57)
s.t. €jXjai — € Xk <0 (A58)
Xjni + Xp-i = Xj + X5 (A.59)

where z; = ¢;x;-; and exxy—; the payoffs at each case. We also write the condi-
tional income as m_; = x]’.‘ + x;

The Lagrangian for the problem is
L= w}u(ejx]-ﬁ,-) + wint (exXp—i) + Y (M- — Xjmj — Xpi)
Assuming a CRRA utility function:
L = wj(ejxj—i)" + wi(exxx—i)" + v (m-i — Xj=i — Xx~i)

The first order conditions for maximisation give:

/

Exj“i = O = I"ZU]

-1
ej(ejxj~i) =0
Exkﬁi =0= rw}cek(ekxkﬁi)’_l =0
which give the optimal conditional allocations:

om0

ji ej(e],w;)l/(rfl) +ek(ekw;()l/(r*1)
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and similarly the conditional allocation to k:

m-je(ejw) '/ ")
e].(ejw;)l/(r—l) + ek(ekwli)l/(y_l)

* —
Xg—i =

or simply xg_; = m—; — xj_;
Following the same procedure for the other two conditional states:

When the state is “not j” the allocation to i and k is given by:

N mﬁjek(ekw;()l/(rfl)

X: .=
T () V=D 4 g (e, )1/ =)

m-jei(ew)) /")

ei(ewf) 1/ =) + ex (exwy) /=)

[l
xkﬁj =

where m-j = X+ x;("

When the state is “not k” the allocation to i and j is given by:

mﬁkej(ejw;)l/(f—l)
ei(ew)) /(=1 + ej(ejw;)l/(f—l)

Xiok =

o= m_ye;(e;w!)1/ =1
= = —
] ei(eiwf)l/(r 14 ej(ejw;)l/(r 1)

where m_j = xj + x;f

The next step is to create the weighing table. Since there are only two re-
maining states of the world, we need to consider only three cases, that is when
ejxj > exXy, jxj < exXy and trivially e;jx; = exxy. In addition, we need to create this

table for the three different updating rules.
Optimistic Updating Rule
The rule in its general form writes:

OPT(A) — v(ANE)

F o(E)
Let the information revealed is “not i”. In this case, the event can be written in
two ways, as that the state of the world is not i on the one hand, or that the state

of the world is either j or k (the union of the two available events). Applying the
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optimistic rule to the specific problem, the capacity for states j and k when the

information revealed is “not i”, is:

v(jNGUK) _ _o()
Um0 = WUR = ZoGuky = oGUR
and similarly the updated capacity for state k is:
N ) (kN (jUk))  o(k)
o(k=) =o®iUD = =2 0@Ge -~ oGuR

_ Y

?J]'k

Uk

vjk

The two remaining possible states of the world are when the state is not j (i(Jk)

and when the state is not k (i|Jj). In the same manner, the updated capacities are

given by the following formulas:

i=f) = o(ilil k) = lﬂz(LlekJ)k)) (ig)k)
o(k|=j) = v(kli| Jk) = v(kv?iﬁ%k» - v(vz'(ﬁ)k) B
i|=k) = v(ilil Jj) = mlfbj)])) Z@j) -
v(jl=k) = v(jlilJj) = v(jv?ig%j)) B vg]i(tﬂ)j) B
_v(ANE)
ViEorT(a) = <o rEy

Table A.2 Weights for the case z; > z;

Ranking  w; Wy

Ui Vik—0;

1 Z]' > Zx U_]]k —]Ujk /

Vjk— Uk
2 Z]' < Z JUT ;}—]I;(
3 zj=z 1/2 1/2
Dempster-Shafer Updating Rule
The rule in its general form writes:

A|JE®) —v(E°
054y _ PUAUES) — o(E)

(1—o(E))

0;
Oik

Uk
Oik

0j
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Applying this in our problem, there are three conditional states. Let the informa-
tion revealed be that the state of the world is noti. Then, the event E can be written
as E = —i or as the union of the two remaining states, E = j{Jk. The complemen-
tary event E¢ then is simply state i, E° =i. When the state of the world is not i
then the decision maker needs to update her initial beliefs on the two remaining

states, namely j and k. The updated capacity for j is given by:

U 0ji — 0;
o(jl=i) = ]’]Uk " Z)v(l)() - 1]— 4

and for k:

v(k ] ik — Ui
o(k|~i) = o(klj|_Jk) = 1U_1)v( 5 (@) _ Ulk_ vfj

In the same way, the updated capacities for the two conditional states are given
by:
When the state of the world is not j, the event is i|Jk, its complementary is

E€ =i and the updated capacities for states i,k are:

MD o(j) _ vij— 9
WUD ="5250 1

v(k j Vik — Uj
o(k|=j) = v(kli Jk) = U])v(],)( D _ - vj]

When the state of the world is not k, the event is i|Jj, its complementary is

E€ = k and the updated capacities for states i, are:

v(iUk) —v(k) _ vk — vk
i|=k) = o(iliUJj) = 1—o(k)  1-—19

R

Generalized Bayesian Updating Rule

The Generalised Bayseian updating rule in its general form is given by the

following formula:
4GB — v(ANE)
E 7 9(ANE)+1-9(AUE)
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Applying this in our problem, there are three conditional states. Let the in-
formation revealed be that the state of the world is noti. Then, the event E can
be written as E = —i or as the union of the two remaining states, E = jJk. The
complementary event E¢ then is simply state i, E° = i. When the state of the world
is not i then the decision maker needs to update her initial beliefs on the two

remaining states, namely j and k. The updated capacity for j is given by:

o(jN (jUK)) _ Y
inGUR) +1—o(Ui o +1-19;

oljli) = o

v(kN (jUk)) _ Uk
(kﬁ(]Uk))—Fl—U(kUZ U+ 1— vy

o(k|~i) =

When the state of the world is not j, the event is i|Jk, its complementary is

E€ =i and the updated capacities for states i,k are:

(i N (iUk)) v
iN@iUk) +1—-o(GUj ©vi+1-10;

olil) =

v(kn (iUk)) _ Ok
kN (iUk) +1—0(iUj v +1—oj

oK) = ¢

When the state of the world is not k, the event is i|Jj, its complementary is

E€ =k and the updated capacities for states i,; are:

Z)(i|ﬂk) _ Z)(i n (ZU])) _ Ui
o(in (iUj)) +1—o(iUk  vi+1— 0y

i) — o(j N (EUj)) _ Y
(Jl k)—v(jm(iuj))+1—v(juk_Uj+1_vjk

In Tables A.3A.5 the weights for the three different rules are gathered.

Table A.3 Updated Capacities Conditional to not i

Rule Ranking w;j Wk
o e
o zj >z o= 4
Optimistic j ok Vjk Vjk
zj <z L Dk
] k Ujk Ujk
7>z Ziij—v,‘ 1—?71']'
Dempster-Shaffer 7/~ “* Lo 10,
7. < Z —Qik Vik— Ui
] k 17?},‘ 117?},‘
o o
i Zj > Zk e 1o,
Gen. Bayesian AR I A
zj <z 1v’k : S
Uk +1—0j v +1—0j



A.4 Choquet Expected Utility (CEU)

182

Table A.4 Updated Capacities Conditional to not j

Rule Ranking w;j W
0 Vik—90i
e e 4. zZi >2Z —L Pik—Yi
Optimistic Pk oo %
. 1 Yk
z; < Zg o o
z; > 7k i Y 17vy
Dempster-Shaffer ! 11—;:,- vl—vé
. —Ujk jk—Yj
z; < Zg o, T,
z; > zx Ui 10,
Gen. Bayesian ! vit1-v;  otl-u;
zi<z I~V O
1 k Z]k+1—Zi]k ?ik-l-l—iijk

Table A.5 Updated Capacities Conditional to not k

Rule Ranking wj w;
Z. > Z ﬂ U,‘j*U[
Optimistic o vij vij
Z. < Z Uz']'—'U] ﬂ
! ] "U,‘j Zii]'
zi > z; Vik—Vk 1-vj
Dempster-Shaffer ] 11:51; 01;_”5k
. . ] ]
Zl < Z] 17?};( l*Uk
Z; > z; o 1
Gen. Bayesian T e o ot o
Z. < Z ]k ]
! ] Uj+17?}]k Uj*Fl*Ujk
A.4.1 Sophisticated Decision Maker
o(j\—b) Xj—i

oo

Xfe—i

xl‘ﬁ]‘

.\xkﬁj

o(k|~)
v U\ﬂk) Xi-k
o(j]=k) Tk

The general behaviour of the sophisticated type and her subsequent strategy

have been presented in the main text. Here we focus on how this model can

accommodate similar behaviour. Due to the fact that CEU belongs to the Rank

Dependent Utility family of models, the decisions are based on weighted proba-

bilities. In order to use the correct weights, one needs to firstly rank all the possible

outcomes. In the case of a naive decision maker, this was easy to do as the problem
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was splited in two parts, the first involving the ranking of three outcomes (stage 1)
and the second the ranking of two (stage 2-conditional). The decision tree above,
shows the different stages of the decision process. At t = 2 all ambiguity is being
resolved and the outcome is defined. This outcome is one of the conditional alloca-
tions X, Xk, Xinj, Xk—j, Xi-k, Xj-k- 1t seems reasonable to expect that the allocations
to the same asset conditional on different information may differ. That is to say
that one may prefer the payoff of asset i when the conditional asset is not j to the
payoff of asset i when the conditional state is notk. As a consequence, in order to
obtain the optimal allocations one needs to consider all the possible rankings
Rewriting the problem A.60, and adjusting the compound probabilities for
the respective weights w, for the case of a Rank Dependent model, the objective

function becomes:

1
L = Slwj-iu(ejxj-i(m-)) + Wit (exXi-i(m—i)) + wi-ju(eixij(m-;))  (A.60)
g (exxp—j(m—;)) + wi—gu(eixi—x(m-x)) + wj—gu(ejxj—x(m—x))]

+/\(2m — mﬂi* — m_\]‘* — mﬁk*)

For the sophisticated type, we needed to develop a computationally intensive
algorithm that will be able to derive all the possible rankings among the six dif-
ferent outcomes and then attach the appropriate weights. If we focus for the time
being at the simple case where we consider only inequalities among the possible
outcomes, the possible unique permutations that we may have are 6! which means
720 possible different ways to rank the outcomes®. As the model is rank depen-
dent, it is necessary for each of the rankings to attach the correct weights. Here
one needs to be careful on how the weights are attached to the outcomes. For
simplicity we denote all the possible rankings as a vector k = {x1,x2,x3, X4, X5, X6 }
that corresponds to the conditional allocations, starting from not i to not j, or more
analytically to the vector {x;-;, X, Xi-j, Xk-j, Xi~k, Xj-k }. Then, a vector g contains
all the compound probabilities as they were defined in Section A.2.2. Writing ana-

lytically the vector gives: {q;-i, qk—i,qi~j, Gk—j, 9i~k,qj-k } Which gives the compound

®For the calculation of all the permutations, the function permutations was used from the R
package GTools.



A.4 Choquet Expected Utility (CEU) 184

probability that each of the outcomes will be reached.” For simplicity we denote
them as {q1,92,93,94,95,96 } As was discussed before, depending on the ranking of
the outcomes, different weights are attached. Let for example the case where the

following ranking is satisfied:
{x1>x2>x3 > x4 > x5 > X}

and assume that the probabilities are weighted according to the way that capacities
are weighted according to the CEU model or according to the following weighting
function in the case of Source Choquet Expected Utility:

w(p) = exp(—=(=In(p))*) (A.61)

Then the respective weights are calculated based on Table A.6 below, where w

stands either for the capacity weighting or for the weighting function.
Table A.6 Weights for the Sophisticated Type at Stage 1

Outcome Weight
Z1 w( )
22 =w(q1 +42) —w(q1)
z3 ws—w(ﬂll +q2+93) —w(q1 + q2)
(
(

Za wy=w(q1+q2 + g3 +qa) —w(q1 + 92 +4q3)
z5 ws =w(q1+ g2 + g3 + qa +g5) —w(g1 + g2 + q3 + g4)
Z6 we=1—w(q1+q2+93+qa+4s)

The algorithm of the solution involves the following steps:

1. The main program provides the data for the problem (m,e; ej,e;) and the

values for the parameters to estimate (p;, pj, 7, ).
2. The compound and conditional additive probabilities are calculated.

3. A permutation is generated involving all the possible rankings among the

six different outcomes.

4. The corresponding weights are calculated based on the rankings from the

previous step and the weighting function.

7In the calculation of the probabilities, this vector is divided by 2 as this was the chance that a
not state was announced during the experiment. This is explained extensively in Section A.2.2.
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5. The conditional weights are calculated, taking into consideration the ranking

at step 3 that must be satisfied.

For each of the permutations, the function for the optimal allocation is called

with arguments the weights, the conditional probabilities and the data of the

problem.

The allocations are checked if they satisfy the ranking. If yes, the Expected

Utility is calculated and stored.

When all the permutations have been checked, the algorithm retrieves the

allocation that generated the highest utility.

A.5 Source Choquet Expected Utility

In this model, as is the case for the CEU model, the ranking of the outcomes is

important regarding the weight that is attached to each of the states of the world.

Again we need to consider all the possible rankings that may exist. For a resolute

decision maker, the rankings are 13 (6 strict inequalities, 6 mixed equalities and 1

case with all outcomes equal).

Table A.7 Table with all possible rankings, SCEU

Ranking w;j wj Wi
1 zi>zj>z w(pi) w(piUp;) —w(p:) 1—w(p;Up))
2z >z >z w(p;) 1-w(1-p)) w(1—p;) —w(p;)
3 zj>z >z w(piUp;j) —w(p)) w(p)) 1—w(piUpj)
4 zj>zp>z 1—w(l—p;) w(p;) w(1—p;) —w(pj)
5 zx>zi>z; w(l—pj)—wl—pi—p) 1—w(l-pj) w(l—pi—pj)
6  zk>zi>z 1-w(l-p) w(l—pi)—w(l—pi—p;) wl—pi—pj)
7 zi=zj >z w(p;Up;) w(p;Up;) 1—w(p;Upj)
8 zi=zk>z w(1 - p;j) 1—w(1-pj) w(1-pj)
9 zj=z >z 1—w(l—p;) w(l—pi) w(l—pi)
10z >z =z w(p:) 1—w(p:) 1—w(p:)
11 zj>z =z 1—w(p)) w(pj) 1—w(p;)
12 z>zi=z 1—w(l—pi—pj) 1—w(l—pi—pj) w(l—pi—pj)
13 Zl‘:Z]':Zk 1/3 1/3 1/3

In the second stage, the beliefs are updated according to the Bayesian rule.

Again, when the optimal allocation is calculated, the respective ranking should

be taken into consideration. For each conditional allocation, we need to consider
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Table A.8 Weights for the case not i

Ranking w;j Wk
Pi Pi
1 Zj > Zk w(ijr]p;;) 1_w(ppj+jpk)
k k
2 zj<z 1_w<Pj+Pk> w(Pj+Pk)

three rankings (two strict inequalities and 1 equality). The way that the weights
are formed is shown in Table A.8.

For the sophisticated decision maker, the solution is exactly the same as in the
case of CEU as this is presented in the previous section. The only difference is that

the appropriate weighting function is applied.



Appendix B

Optimal Allocations for Chapter 3

In this Appendix we present the optimal allocations for both the CRRA and
the CARA utility function. An algorithm is also presented for the CARA case,

when the optimal solution is boundary (either zero or the total income).

B.1 Description of the Problem

The decision maker faces a transparent urn which contains balls of three dif-
ferent colours (we denote the colours as 1,2 and 3). This defines three states of the
world S = {s;,sj,s;}. Let ps jcyi;x) with Y5 .ps = 1 the probability that state i hap-
pens. The probabilities are objective and known and thus the experiment can be
considered as a “decision under risk” one. More specifically, the subjects are being
given a series of allocation problems where they asked to allocate a given amount
of experimental income (tokens) to the different colours. Each of the problem
consists of an experimental income m and three exchange rates ¢ ;c(; ;1 between
tokens and money, which differ at each problem. The decision maker is asked to

allocate a fixed experimental income to the three different assets.

B.2 CARA Utility Function

In the experiment, the subjects are restricted to make allocations on the domain
[0,m] where m the experimental income available at each problem. Consequently,
we are interested in the behaviour of the CRRA utility function inside this interval.

The standard Power function is defined as:



B.2 CARA Utility Function

188

x" ifr>0
u(x) =< In(x) ifr=0
—x" ifr<0

The maximization problem can be written as:

max_ piu(eix;) + pjulejx;) + pru(exxy)
i XX

st.xj +xj +xg=m

The Lagrangian writes:
L = pi(ex;)" + pjlejx;)" + prlexxr)” + Alm — x; — x; — xi)
deriving the first order conditions:
Ly =0= rpiei(eix;)) L= A

Ly=0= rpjei(ejx;) 1 =A

Ly, =0=rprep(exxy) ' = A

and using the budget constraint we obtain the optimal allocations:

m(Piei>1/(l_r)ejek
(piei)l/(l—r)e].ek + (p].ej)l/(l—r)eiek + (pkek)l/(l—r)eie].

*
xj =

= m(pjej)! " eiey

P (pie)V O ejer + (pjep) T Neier + (prer) /1" ese

m(pkek)l/(l”)eiej
(piei)l/(lfr)e].ek + (p].ej)l/(lfr)eiek + (pkek)l/(lfr)eie].

*
X =
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B.2.1 CARA Utility Function

The CARA function is defined as:

—exp ™ ifr>0
u(x) =4 «x ifr=0

exp ™ ifr<o0

The maximisation problem can be written as:

max pju(eix;) + pju(ejx;) + pru(exxr)

xi*,x;f,x;:
st X +x; +x=m

The Lagrangian writes:
L = pie "% 4 pie” " + pre” "% + A(m — x; — xj — xi)

deriving the first order conditions:

Exi =0= rpieie’re‘x" =-A
—rex;

L',x]. =0=rpjeje "1 = =\

Ly, =0=rprege "k = —A

rpieje” N =rpieje " (B.1)
rpjeje” " = rprexe” "k (B.2)
rpieie” "N = rprege” kk (B.3)

Finally substituting to the budget constraint we obtain the optimum value for

xi+

pi¢ Prek

1’€] Ej reg €y
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o mejey — [ln(%)ej + ln(%)ek} /r

! eiex + ejex + eje;

and similarly we obtain:

mese — [In(2%)e; +In( 2% )ey | /r

*
Xj —
e;ex + ejek + eiej
o piiy,. Piciv,.
. me;e; {ln(pkek)e] —l—ln(pkek)el} /r
P =

eiex + ejex + eje;

As the CARA utility function is not bounded, it may be the case where the
subjects would like to short-sell and thus to allocate negative amounts to specific
colours. As the experimental design did not allow for this kind of behaviour and
forced the participants to allocate anything between zero and the total income,
we need to take into consideration these extreme cases. For example, if a deci-
sion maker wants to allocate a negative amount to one of the available options,
based on her preferences, maybe it is optimal to allocate zero in this colour and
concentrate in the remaining options. This kind of optimisation thinking must be
taken into consideration when the optimal allocations are calculated. To tackle
this issue we extend the current algorithm with some additional checks. Using
the formulas derived above, we are able to control if the optimal decision requires
negative allocations. In this case, we can distinguish 2 different extremes. On the
one hand there is the case where the total income is allocated only to one of the
available options while on the other, the case where nothing is allocated to one of
the options and the total income is devoted to the remaining two available colours.
The next table summarizes the possible case we may observe and the respective
formulas that provide the optimal allocations.

The algorithm first finds the optimal allocation for the unconstrained prob-
lem. If the solution satisfies the non-negativity constraints, then the solution is
acceptable and there is no need for further investigation. If there are negative, the
algorithm calculates the optimal allocation based on the cases described on Table
B.1. The values are again checked if they satisfy the constraints. If the answer
is positive, the respective expected utility is calculated and stored along with the

respective allocation. When this process has been applied to all the sub-cases, the
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Table B.1 Extreme Allocations
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algorithm retrieves the allocation that generates the highest possible utility.




Appendix C

The Experimental Instructions -

Experiment in Chapter 2

Instructions
Preamble

Welcome to this experiment. These instructions are to help you to understand
what the experiment is about and what you are being asked to do during it. The
experiment gives you the chance to earn a considerable amount of money, which
will be paid to you in cash after you have completed the experiment. The pay-
ments described below are in addition to a participation fee of £2.5 that you will

be paid independently of your answers.
The Bingo Blower

At the back of this laboratory you will see a Bingo Blower which also projected in
the two screens. In this, as you will see, there are balls of three different colours -
Pink, Blue and Yellow - which are being blown around inside the Blower. Please
familiarize yourself with this device as your payments depend on the composition
of the Bingo Blower. You can observe the screens during the experiment and you
are welcomed at any time to come inside the room where the Bingo Blower is
and have a closer look. After you have responded to the various questions in the
experiment, one of the 60 questions will be chosen at random. Then, you will go to
the Bingo Blower and activate a mechanism which will expel one ball (depending

on the specification-see below) from the Bingo Blower. The colour of this one ball,
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combined with your answer to the question picked at random, will determine

your payment for taking part in this experiment - as we describe below.
The Questions in the Experiment

You will be asked a total of 60 questions. Each question has two stages. A
Three-Colour Fist-Stage and one Two-Colour Second-Stage. You are asked to al-
locate a given quantity of tokens among the three colours in the Bingo Blower.
Then you receive some piece of information and you are asked to make an new

allocation between two colours.
The First Stage

In the first stage, you will be given a quantity of tokens and you will be asked
to allocate them among the three colours in the Bingo Blower: that is, Yellow, Pink
and Blue. You will also be told the exchange rate between tokens and money for

each colour.
The Second Stage

In the second stage you will be told that a ball is drawn but you will not learn
its colour. You will learn that it is not of colour x (where x is Yellow, Blue or Pink).
Then you will be asked to allocate tokens between the two remaining colours in
the Bingo. The amount of available tokens that you have in the second stage
depends on how much you allocated to each colour at the first stage. The ball that
is drawn is the ‘winning colour” and your final payment depends on the amount
you allocated to the ‘wining colour’. For example, you make your allocation at
stage 1. You learn that a ball is drawn and this ball is NOT Pink. Then you are
asked to make an allocation to the two remaining colours, thus Yellow and Blue.
When you receive the information that the ball is NOT Pink, you lose all the tokens
that you have allocated to Pink at stage 1. So the number of tokens you have in
the second stage is equal to the sum of tokens you allocated in the first round to

Yellow and Blue.
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Payment

At the end of the experiment one of all the 60 questions will be played for
real. You will be asked to randomly choose one number from 1 to 60 which will
be the problem according to which you will be paid. The computer will recover
your allocation at this problem and what was the information you received (e.g.
not Pink). You will then activate the Bingo Blower and a ball will be drawn. The
colour of this ball will determine the ‘winning colour” (if the ball is the same
colour to the one that you were informed that is not, you continue drawing balls
till a different colour will be drawn). Your payment is the amount you allocated at
that specific problem to the ‘'winning’ colour expressed in money (multiplied by

respective exchange rate of this colour).
Example of a Question

Suppose the question asks you to allocate 60 tokens among Pink, Blue and
Yellow. Suppose the exchange rate for Pink is 0.5, the exchange rate for Blue is
1 and the exchange rate for Yellow is 0.4. Observing the Bingo Blower and the
likelihood of each colour to be drawn, you decide to allocate: Pink: 20 tokens
Blue: 25 tokens Yellow: 15 tokens

Then you learn that a ball is drawn and this ball is NOT Pink. Now you have
to allocate the remaining tokens between Blue and Yellow. Since the ball is NOT
Pink, what you allocated at the first stage to Pink is not anymore available. This
means that now you have 40 tokens (25+15) to allocate between Yellow and Blue
balls. In this second stage, if you allocate 20 tokens at Blue and 20 tokens at Yellow
the implying payment is: £20 (1*20) if the ‘'winning” colour is Blue £8 (0.4*20) if

the ‘'winning’ colour is Yellow
PowerPoint Presentation

To ensure that you understand these instructions, in your computer there is a
PowerPoint presentation. Then you should call over an experimenter, who will
check that you are happy before initiating the experiment. After the experiment is
over, we will ask you to sign a receipt and then you will be free to go. Thank you

for your participation.
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How Long the Experiment Will Last

Note that the experiment will take at most 2 hours as you are given 60 seconds
for each stage. It is clearly in your interests to be as careful as you can when you

are answering the questions.

Konstantinos Georgalos
John Hey
June 2013



Appendix D

The Experimental Instructions -

Experiment in Chapter 3

Instructions
Preamble

Welcome to this experiment. These instructions are to help you to understand
what you are being asked to do during the experiment and how you will be paid.
The experiment is simple and gives you the chance to earn a considerable amount
of money, which will be paid to you in cash after you have completed the experi-
ment. The payment described below is in addition to a participation fee of £2.50

that you will be paid independently of your answers.
The Experiment

In this experiment, you will be presented with a total of 72 problems. Each
problem is of the same form. You will be asked to allocate a total of 100 tokens to
three different colours: green, blue and red. The problems will vary in two ways:
first the money value of the tokens allocated to each of the three colours; second,
the chances of green, blue and red occurring. After you have responded on all 72
problems, one of them will be chosen at random and played out. ‘Playing out’
a problem means that one of green, blue or red will occur (in a way we describe
below) with chances as specified in that problem, and you will be paid the money
value of the number of tokens that you allocated to that of green, blue and red

that occurred.
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Specifying the Chances

Each problem will specify the chances of green, blue and red occurring. These
may differ from problem to problem but they will always be something out of 10.
For example a problem may specify the chance of green occurring as 5 out of 10,
of blue occurring as 3 out of 10, and of red occurring as 2 out of 10. If this problem
were to be played out at the end of the experiment then you would put 5 green
balls, 3 blue balls and 2 red balls into an opaque bag. The bag would then be
shaken and you would be asked to draw a ball at random (and without looking
into the bag) out of the bag. Clearly the chance of drawing a green ball is 5 out of
10, of drawing a blue ball 3 out of 10, and of drawing a red ball 2 out of 10.

Your Payment

As already noted, at the end of the experiment one of the 72 problems will
be randomly selected by your randomly choosing one lottery ticket from a set
of tickets numbered from 1 to 72; the number on the ticket randomly chosen will
determine the problem to be played out. At this point, the experimenter will recall
your allocation on that particular problem, the money values of tokens allocated to
green, blue and red, and also the chances of green, blue and red in that problem.
You will then compose the bag as described in the paragraph above, and then you
will draw one ball at random (as described above) out of the bag. The money
value of your allocation to the colour drawn will be your payment. Note that you
cannot determine the colour of the ball drawn, but you do know the chances of it

being green, blue or red.
Example of a Problem

Imagine a problem where the chances of green, blue and red are specified as 5
out 10, 3 out of 10 and 2 out of 10 respectively. You have 100 tokens to allocate to
green, blue and red. Suppose that the money values in this problem are: green: 1
token has value 30p blue: 1 token has value 40p red: 1 token has value 40p

Suppose that you make the following allocation: green: 60 tokens blue: 10
tokens red: 30 tokens

Then you will put 5 green, 3 blue and 2 red balls into a bag which will then

be shaken and you randomly draw a ball. Then your payment would be: 60 times
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30p = £18.00 if the ball you draw is green 10 times 40p = £4.00 if the ball you draw
is blue 30 times 40p = £12.00 if the ball you draw is red

The Experimental Interface

The computer will tell you in each problem the money implications of any
allocation. You will see a screen like the one below. This represents the problem
(and a possible response) on the problem discussed above.

At the top left of the screen you are told the problem number, the numbers
of balls of the three different colours in the bag if this problem were to be played
out, and the exchange rate between tokens and money for the three colours. The
triangle is the crucial thing. When you move the cursor around within the triangle
your allocation of the 100 tokens changes. The coloured areas within the triangle
represent the proportional allocations, and the coloured numbers specify the al-
locations to the respective colours. The picture at the bottom right indicates the
amounts implied by your allocations, written in the appropriate colours under-
neath the figure and represented by the heights of the coloured bars; the widths of
the coloured bars represent the chance of the colours being realised in that prob-
lem. You should move your cursor around within the triangle until you reach your
preferred allocation. When you have found your desired allocation, you should
double click on your mouse and then confirm your decision (or cancel it and select
again if you change your mind). When you click on ‘Confirm” you will move onto

the next problem. Remember that there are 72 of them.
Timing

You will not be able to confirm your decision on any problem until at least
15 seconds have elapsed. You will be given a maximum of 60 seconds to decide;
if you have not confirmed your decision by the time 60 seconds have elapsed, it
will be assumed that you wish to allocate your tokens (as near as possible) equally

between the three colours.
PowerPoint Presentation

To ensure that you understand these instructions, we will display a Power-

Point presentation of the Instructions. In this presentation, the interface where
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This is problem 2

In this problem there would be: Remaining Time:
5 balls o

3 BLUE balls Ll
2 RED balls

The composition of the bag is:
The money values are:
30.0 pence for

40.0 pence for BLUE . . .

40.0 pence for RED . .

-

£4.00 £12.00

Figure D.1 Screenshot of the Experimental Framework

you will be able to read the questions and submit your answers is explained. Dur-
ing the session, experimenters will be around so please feel free to ask them for
clarifications. When you finished watching the presentation please call over an
experimenter, who will check that you are happy before initiating the experiment
and will activate your computer. After the experiment is over, we will ask you to

sign a receipt. After you will get paid and then you will be free to go.
How Long the Experiment Will Last

You will be given a maximum of 60 seconds to determine your allocation in
each problem, so the experiment will last at most one-and-a-half hours. It is clearly

in your interests to be as careful as you can when you are answering the questions.
Thank you for your participation

Xueqi Dong
Konstantinos Georgalos
John Hey

June 2014
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