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Abstract 

Cells undergo reprogramming/de-differentiation through nuclear and cytoplasmic 

remodelling. Autophagy is a physiological stress response, in which cytoplasmic 

contents including mitochondria are recycled to aid cell survival in response to 

nutrient starvation. It has recently been demonstrated that a functional autophagy 

response is required for factor-based reprogramming to pluripotency, but there is 

little work explicitly linking the stimulation of autophagy with the mechanism of 

cytoplasmic clearance and metabolic remodelling. Human multipotent stromal 

cells/mesenchymal stem cells (MSCs) are cells of mesenchymal origin, which are 

cultured as adherent monolayers in vitro. MSCs can also be cultured as 3D cell 

aggregates or spheroids. Variations in spheroid size should result in variations in 

nutrient availability. I hypothesised that in 3D spheroids, controlled autophagy, 

stimulated by nutrient deprivation, and balanced in favour of its pro-survival/anti-

apoptotic effects, would be sufficient to drive cytoplasmic remodelling and de-

differentiation towards a more primitive state. When MSCs were cultured under 

optimal conditions, they had a multi-lobed irregular nuclear morphology, and 

reduced staining for the heterochromatin marker H3K9me3. 3D spheroids increased 

expression of Oct4, Nanog, Sox2 and telomerase. Under optimal conditions markers 

of increased autophagy were observed along with indicators of a shift to anaerobic 

metabolism. Mitochondria underwent remodelling to a small, rounded morphology, 

highly similar to mitochondria observed in pluripotent cells. Furthermore, oxygen 

consumption rate reduced significantly in 3D culture, and genes associated with 

oxidative metabolism were down-regulated. 3D MSCs increased expression of early 

mesendoderm markers including Brachyury (T), Goosecoid, KDR, Mixl1 and 

CXCR4. In vitro haematopoietic induction stimulated disaggregated 3D MSCs to 

form blast-like colonies, whilst 2D MSCs were unresponsive to haematopoietic 

stimulation. On implantation into nude mice, 3D MSCs formed organised 

mesodermal tissues, indicating enhanced lineage-restricted regenerative capacity, but 

did not form teratomas, so avoiding associated risks. Strikingly optimal 3D culture 

restored proliferative capacity and reversed senescence-associated hypertrophy in 

culture-aged MSCs, suggestive of cellular rejuvenation. Together these results 

suggest that a scaled autophagy response could play a fundamental role in 

reprogramming/de-differentiation and tissue regeneration in human cells. 
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Chapter 1: Introduction 

1.1 An introduction to the field of pluripotent stem cell research 

Stem cells are undifferentiated cells, which have the capacity for self-renewal and 

can give rise to a number of different cells types through differentiation. Embryonic 

stem cells (ESCs) can be isolated from early embryos, and can give rise to all cells in 

the fully developed organism, so are termed pluripotent. Adult stem cells can be 

isolated from various tissues of the body, and can give rise to some but not all tissues 

of the organism, so are termed multipotent (Wagers and Weissman, 2004). Due to 

their capacity to generate different tissues, stem cells are of significant interest to the 

fields of regenerative medicine and cell-based therapies.  

In 2006 Takahashi and Yamanaka demonstrated the generation of pluripotent cells 

similar to embryonic stem cells (ESCs) from mouse fibroblasts by forced expression 

of four transcription factors – Oct4, Sox2, Klf4 and c-Myc. The cells generated from 

these experiments were referred to as induced pluripotent stem cells (iPSCs) 

(Takahashi and Yamanaka, 2006). One year later this group generated iPSCs from 

human fibroblasts using the same four factor approach (Takahashi et al., 2007), 

whilst at the same time the Thomson laboratory demonstrated the induction of iPSCs 

from human fibroblasts using a different four factor combination - Oct4, Sox2, 

Nanog and Lin28 (Yu et al., 2007). The generation of iPSCs represented a major 

advancement in stem cell research, with the possibilities it opened up for the 

generation of patient-specific cells. It could also be said to have redefined the way 

development and differentiation are viewed, demonstrating that differentiation is not 

an irreversible procedure, and that fully differentiated cells maintain the capacity for 

pluripotency if stimulated to undergo de-differentiation/reprogramming (Figure 1.1). 

The generation of iPSCs has contributed greatly to our understanding of pluripotency 

and differentiation, although in turn, the many years of research into embryonic 

development and pluripotency regulation prior to 2006 provided the basis on which 

iPSC generation was first established. 
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Figure 1.1. Schematic showing the effects of differentiation and 

reprogramming/de-differentiation on cell potency 

Differentiation of ESCs results in a progressive loss of potency. Differentiated 

cells can reacquire pluripotent characteristics through forced de-differentiation 

(reprogramming to pluripotency). Adult stem cells are multipotent, maintaining 

self-renewal and the potential to differentiate into some but not all cell types. 

Adult stem cells occupy a position between pluripotent ESCs and terminally 

differentiated cells in terms of potency. 



20 

1.2 Embryonic development and cell fate specification in vivo 

During mammalian development, fertilisation is followed by early cleavage, which 

gives rise to a solid mass of cells, known as the morula. The first cell specification 

events occur at around day 3.5 after fertilisation in the mouse embryo, with the 

formation of the blastocyst, and the specification of two distinct cell populations, the 

trophectoderm and the inner cell mass (ICM). The trophectoderm, which will give 

rise to the placenta and other extra-embryonic tissue, is positioned to the outer edges 

of the blastocyst, whereas the ICM is located towards one end of the blastocyst. 

Following blastocyst formation, at around 4.5 days post-fertilisation, the ICM 

divides into two regions; the outer cells become primitive endoderm, which will 

contribute to extra-embryonic tissues, whilst the inner layer of cells will go on to 

form the epiblast, which will generate the foetus (Figure 1.2).  The blastocyst then 

implants into the uterine wall and the extra-embryonic tissues form the placenta, 

whilst the epiblast forms a cup shape, following formation of the proamniotic cavity. 

At around day 6.5 after fertilisation, gastrulation marks the beginning of 

morphological patterning within the embryo and the specification of the 3 germ 

layers (Beddington and Robertson, 1999). 

1.3 Isolation and culture of pluripotent cells in vitro 

1.3.1 Mouse embryonic stem cells 

Control of embryonic development in these early developmental stages is regulated 

by a complex transcriptional network of both maternal and zygotic factors. Prior to 

the derivation of ESCs, researchers utilised embryonal carcinoma (EC) stem cells 

which can be isolated from teratocarcinomas and differentiated via embryoid body 

formation in vitro, as a model for development and cell fate determination in the 

early embryo (Martin and Evans, 1975). Teratocarcinomas are malignant germ cell 

tumours containing both somatic tissue and undifferentiated stem cells (the EC 

cells). Teratomas are distinguishable from teratocarcinomas, as they contain only 

somatic tissue. Teratocarcinomas continue to form tumours on serial transplantation, 

whilst teratomas are benign on re-transplantation because they do not contain EC 

cells (Andrews, 2002).  
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Figure 1.2. Schematic showing the first specification events in embryonic 

development during blastocyst formation 

Following cleavage in the early embryo, the blastocyst forms from the morula. At 

this point, two distinct cell populations are specified. The trophectoderm, 

localised to the outside of the blastocyst, will form extra-embryonic tissue (the 

placenta), whilst the inner cells, localised at one end of the blastocyst form the 

inner cell mass (ICM). The ICM will generate both primitive endoderm, from its 

outer layer, which forms extra-embryonic tissue, and epiblast, from the central 

ICM, which will give rise to the foetus. 
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Mouse ESCs were first isolated in the laboratory from pre-implantation embryos 

isolated and separated in vitro. Prior to this it had not been possible to maintain 

pluripotent cells isolated from early embryos in culture. However in 1981, cells from 

the ICM of diapause (Evans and Kaufman, 1981) or normal pre-implantation 

(Martin, 1981) embryos were isolated and passaged repeatedly on inactivated 

fibroblast feeder layers, either in serum-supplemented medium (Evans and Kaufman, 

1981), or EC cell-conditioned medium (Martin, 1981). The colonies formed by these 

cultured cells resembled the domed, tightly packed colonies observed in EC cell 

cultures. It was possible to generate embryoid bodies with the cultured cells in vitro, 

and they formed teratocarcinomas on subcutaneous implantation in mice. These 

early experiments defined the characteristics of ESCs, as cells which can be 

maintained as undifferentiated pluripotent cultures in vitro, and which can 

differentiate into tissues from all 3 germ layers both in vitro and in vivo (Evans and 

Kaufman, 1981; Martin, 1981). 

In early experiments to generate mouse ESCs in the laboratory, culture on mouse 

embryonic fibroblast (MEF) feeder cells was required to maintain the 

undifferentiated state. However in the mid-1980s a factor was identified which could 

maintain pluripotency in mouse ESCs in the absence of a feeder layer. A single chain 

glycoprotein was identified in media conditioned with Buffalo rat liver cells. When 

cultured in media containing this factor, mouse ESCs maintained an undifferentiated 

morphology, and expressed the pluripotency cell surface marker SSEA1, with no 

need for a feeder layer. On removal of the factor, ESCs underwent spontaneous 

differentiation, so it was termed ‘differentiation inhibitory activity’ or DIA. The 

protein sequence of DIA was found to be identical to leukaemia inhibitory factor 

(LIF), the term by which it is now referred to when used in mouse ESC culture 

media (Smith et al., 1988) Notably it was demonstrated that established mouse ESC 

lines cultured with LIF in the absence of feeders were capable of both chimera 

contribution and germline transmission. Furthermore it was shown that in the 

presence of LIF, it was possible to establish cultures of freshly-isolated mouse ESCs 

from blastocysts, and that feeder cells were not required for this process if LIF was 

added to the media. It was possible to passage ESCs isolated in the absence of 

feeders. These cells maintained a typical pluripotent morphology and character in 

culture in LIF-supplemented media, whilst LIF withdrawal stimulated 
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differentiation. ESCs isolated in the presence of LIF (without feeders) were also 

capable of chimera contribution and germline transmission (Nichols et al., 1990). 

Taken together this demonstrated that it was possible to isolate and maintain mouse 

ESCs, in LIF-supplemented media without feeder cells, and that these cells were 

developmentally equivalent to mouse ESCs isolated and maintained in traditional 

feeder based cultures. 

1.3.2 Human and non-human primate embryonic stem cells 

Human EC cells have variable cell line-dependent capacity to form tissues from all 3 

germ layers and are usually karyotypically abnormal. This means they are less useful 

as a model of pluripotent cells from the early embryo. Non-human primate (Rhesus 

monkey) ESCs were first isolated from in vitro-separated ICM in 1995. These cells 

expressed similar cell surface markers to human ECs – SSEA3, SSEA4, Tra-1-60 

and Tra-1-81 and had alkaline phosphatase activity (Thomson et al., 1995). The 

colony morphology of primate ESCs was much flatter than observed in mouse ESC 

colonies, with individual cells clearly visible. Primate ESCs could be maintained 

undifferentiated in culture for many passages on inactivated mouse feeder cells, and 

notably this state was LIF-independent, which distinguished these pluripotent cells 

from mouse ESCs. Unlike human EC cells, isolated primate ESCs were 

karyotypically normal. Implantation into SCID mice resulted in teratomas containing 

tissues from all 3 germ layers, which confirmed the pluripotency of primate ESCs 

(Thomson et al., 1995). 

Following on from this work with non-human primates, in 1998 Thomson derived 

the first human ESCs from embryos generated by in vitro fertilisation (IVF).  Cells 

isolated from blastocyst stage embryos resembled ESCs previously isolated from 

non-human primates, characterised by high nuclear to cytoplasmic ratio and 

prominent nucleoli. Human ESCs expressed the cell surface markers SSEA3, 

SSEA4, Tra-1-60 and Tra-1-81, and had high levels of telomerase activity. Their 

colony morphology was similar to that of non-human primates, but distinct from the 

domed colonies formed by mouse ESCs. Human ESCs could proliferate for many 

passages in vitro when maintained on MEFs and this was LIF-independent, 

highlighting the differing requirements for pluripotency maintenance in primate 
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versus mouse ESCs.  The pluripotency of human ESCs was confirmed by teratoma 

assays (Thomson, 1998). Another group also demonstrated the LIF-independent 

nature of undifferentiated human ESC cultures. Flat colonies resembling human ECs 

and primate ESCs, which expressed the cell surface markers Tra-1-60 and SSEA4, 

along with the pluripotency factor Oct4, could be maintained undifferentiated  in 

culture for many passages in the absence of LIF (Reubinoff et al., 2000). 

Whilst mouse ESCs require LIF for pluripotency maintenance, human ESCs require 

signalling through the transforming growth factor β (TGFβ)/Nodal/Activin pathways 

to maintain an undifferentiated state. Signalling through these pathways results in 

phosphorylation and nuclear localisation of Smad2/3. Inhibition of Smad2/3 

phosphorylation resulted in loss of Oct4 and Nanog expression in human ESCs, with 

colony morphology changes indicative of differentiation (James et al., 2005). 

Inhibition of activin binding was also sufficient to induce loss of pluripotency 

markers such as the cell surface marker Tra-1-60 in human ESCs. However this 

effect was diminished in cells over-expressing Nodal, indicating that Nodal could 

compensate for activin inhibition. It was also noted that in Nodal over-expressing 

cells, spontaneous differentiation was uncommon (Vallier et al., 2005). Taken 

together these results suggest that TGFβ/Nodal/Activin signalling, rather than LIF, is 

required for pluripotency maintenance in human ESCs. 

Recently it has been demonstrated that specific blockade of signalling pathways that 

induce differentiation can be used to maintain ESCs in an undifferentiated state. 

Autocrine fibroblast growth factor 4 (FGF4) stimulates the mitogen-activated protein 

kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, and 

differentiation is induced by ERK activation. Whilst LIF can maintain mouse ESCs 

in their undifferentiated state, this does not occur by inhibition of ERK activation. In 

contrast a combination of inhibitors of MAPK/ERK signalling can prevent intrinsic 

stimulation of differentiation from within the ESC population itself (Ying et al., 

2008). ESCs cultured in the presence of an FGF receptor tyrosine kinase inhibitor, in 

combination with an ERK cascade inhibitor could be maintained undifferentiated for 

many cultures, although cell death at a reasonably high frequency was observed. The 

addition of a glycogen synthase kinase 3β (GSK3β) inhibitor, which acts to stimulate 

canonical Wnt signalling, improved viability in these cultures. The use of these three 
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inhibitors (3i) allowed highly efficient expansion of ESCs over many passages. 

ESCs cultured in these conditions maintained expression of pluripotency factors, and 

there was little/no expression of genes associated with differentiation. Expansion of 

ESCs in 3i conditions was comparable to expansion in LIF-supplemented media, and 

ESC clonogenicity was actually improved in 3i versus LIF-supplemented media. 

Combinations of 3i media comprising the FGF receptor inhibitor PD184352, the 

MEK (MAPK kinase) inhibitor PD0325901 and the GSK3β inhibitor CHIR99021 

(Ying et al., 2008), or the more simplistic 2i comprising PD0325901 and 

CHIR99021 (Silva et al., 2008) are now commonly used for the long-term 

maintenance of undifferentiated ESC cultures. 

1.3.3 Epiblast stem cells 

Mouse ESCs are derived from the ICM of the pre-implantation embryo, but it is 

possible to isolate pluripotent cells from the epiblast of post-implantation mouse 

embryos. Cells isolated from post-implantation epiblasts (EpiSCs) expressed the 

pluripotency markers Oct4, Nanog and Sox2. Furthermore, like mouse ESCs, 

EpiSCs could differentiate to form tissues from all 3 germ layers in embryoid bodies 

and formed teratomas on transplantation to nude mice. However, there are a number 

of defining characteristics which distinguish EpiSCs from mouse ESCs. EpiSCs are 

pluripotent because they have the ability to form teratomas, but unlike mouse ESCs, 

they are unable to contribute to chimeras when implanted in blastocyst stage 

embryos (Brons et al., 2007; Tesar et al., 2007). Passaging mouse ESCs using 

disaggregation to single cells is common practice, but in EpiSCs this results in 

increased cell death. Rather, EpiSCs require dissociation to small cell clumps (Brons 

et al., 2007). Expression of epiblast marker genes was observed in EpiSCs (Brons et 

al., 2007; Tesar et al., 2007), whilst the ICM –specific marker Rex1 was only 

expressed in mouse ESCs and not in EpiSCs (Brons et al., 2007). In the pluripotent 

ICM and in mouse ESCs, Oct4 expression is driven by the activity of its distal 

enhancer. In contrast, the proximal enhancer drives Oct4 expression in both the 

epiblast and EpiSCs (Tesar et al., 2007). In culture, EpiSCs form large flat colonies, 

distinct from the smaller domed colonies observed in mouse ESCs. In fact the 

colonies formed by EpiSCs much more closely resemble those of human ESCs 

(Bernemann et al., 2011; Brons et al., 2007; Tesar et al., 2007). Interestingly EpiSCs 
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and human ESCs also share regulatory signalling pathways. Whilst mouse ESCs are 

dependent on LIF/BMP signalling to maintain pluripotency, human ESCs rely on 

Activin/Nodal signalling. Reliance on Activin/Nodal signalling for pluripotency 

maintenance is also a characteristic of EpiSCs (Brons et al., 2007; Tesar et al., 2007). 

Blocking Activin/Nodal signalling with an Alk inhibitor induced differentiation in 

EpiSCs and human ESCs but not in mouse ESCs, demonstrating that in morphology 

and signalling pathway dependency, EpiSCs resemble human ESCs more closely 

than mouse ESCs. Dax1 is a key pluripotency regulator in mouse ESCs, but is not 

expressed in either EpiSCs or in human ESCs. Furthermore, gene expression 

analyses revealed that different EpiSC lines cluster together and distinct from mouse 

ESCs (Tesar et al., 2007). Although cells isolated from the post-implantation epiblast 

appear to represent a distinct pluripotent cell type, it has been demonstrated that 

some EpiSCs can be reprogrammed to an ESC-like state using the stringent culture 

conditions required for maintenance of mouse ESCs. It was observed that when 

isolated epiblasts were dissociated to single cells and maintained in culture in 

standard ESC media (supplemented with LIF), there was gradual appearance at 

relatively high frequency of ESC-like cells. With continued passaging, these cells 

reactivated a GFP reporter driven by the ICM/ESC-specific distal enhancer of Oct4. 

Furthermore, these colonies had strong alkaline phosphatase activity, which is not 

associated with EpiSCs, and were capable of chimera contribution on blastocyst 

injection. The authors suggested therefore that it was possible to reprogramme some 

EpiSCs to a mouse ESC-like state, capable of chimera contribution, through 

continued culture in mouse ESC media (Bao et al., 2009). It has recently been 

confirmed by another group that such culture conditions are sufficient to drive 

reprogramming of some EpiSCs to a mouse ESC-like state. However it was noted 

that variations between EpiSC lines can affect this reprogramming process. EpiSC 

lines expressing mesendodermal markers such as Brachyury (also known as T), 

Goosecoid and Mixl1 were refractory to reprogramming using mouse ESC culture 

conditions, and displayed reduced capacity to differentiate down neural lineages in 

vitro. In contrast, a number of EpiSCs which did not express these mesendodermal 

markers were easily reprogrammed to a mouse ESC-like state by culture conditions 

alone. It was suggested that EpiSCs expressing markers of mesendoderm may 

represent a different developmental state, with a reduced capacity for reprogramming 

in vitro. However it should be noted that all the EpiSC lines in this study were 
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capable of teratoma formation, so displayed pluripotency in the in vivo environment 

(Bernemann et al., 2011). The differing characteristics of ESCs from mouse and 

human have previously been explained by species variation. The identification of 

EpiSCs from mouse has highlighted the possibility that even amongst pluripotent 

cells, there exists different subsets with subtle variations in developmental potential. 

Further analysis and comparison of such cells may give important insights into early 

events in embryonic developmental which occur after ICM specification but before 

the loss of pluripotency and germ layer commitment. 

1.4 Transcriptional, epigenetic and metabolic signature of 

pluripotency 

1.4.1 The master transcriptional regulators of pluripotency 

Pluripotency is established and maintained by a transcriptional network, regulated by 

the pluripotency factors Oct4, Nanog and Sox2 (Boyer et al., 2005). Oct4 (also 

referred to as Oct3 and POU5F1) is a homeo-domain containing transcription factor 

expressed by pluripotent, undifferentiated EC cells and ESCs; expression of Oct4 is 

lost upon differentiation (Okamoto et al., 1990; Rosner et al., 1990). In situ 

hybridisation on mouse embryos detected Oct4 in a number of cell populations prior 

to implantation, but following implantation it was only present in the epiblast 

(Rosner et al., 1990). Oct4 is essential for correct ICM development in early 

embryos. Oct4
-/-

 embryos develop to the blastocyst stage, but the cells which should 

form the pluripotent ICM form a trophoblast- restricted cell population instead, 

which cannot maintain proliferation (Nichols et al., 1998). Precise control of Oct4 

expression levels is required to maintain pluripotency and self-renewal in ESCs. A 2-

fold increase of Oct4 expression resulted in differentiation towards extra-embryonic 

endoderm and mesoderm, evidenced by expression of Gata4 and Brachyury 

respectively. In contrast, ESCs formed trophectoderm, indicating a loss of 

pluripotency through de-differentiation, when Oct4 expression was repressed (Niwa 

et al., 2000). 

Nanog is another homeo-domain transcription factor, which is only expressed in 

pluripotent cells and is required for maintenance of pluripotency. Nanog 

overexpression could sustain self-renewal in murine ESCs in the absence of LIF, 
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which under normal culture conditions is required to prevent differentiation. 

However in the absence of LIF, endogenous Nanog was not sufficient to maintain 

ESC self-renewal. Loss of Nanog expression resulted in differentiation to extra-

embryonic endoderm (Chambers et al., 2003; Mitsui et al., 2003).  

The transcription factor Sox2 is an SRY-related HMG box gene family member. 

Sox2 is expressed in the ICM of blastocyst stage embryos and throughout the 

epiblast. When homozygous Sox2 mutants were generated, there was loss of the 

epiblast, and instead populations of trophectoderm and extra-embryonic endoderm 

were formed. Furthermore it was not possible to isolate ESCs from homozygous 

mutant embryos, demonstrating a role for Sox2 in epiblast maintenance and in ESCs 

(Avilion et al., 2003). 

Genome-wide chromatin immunoprecipitation studies revealed that Oct4, Sox2 and 

Nanog co-occupy a high number of genes, acting as both transcriptional activators 

and repressors. They form an auto-regulatory loop to regulate their own expression, 

and also activate the expression of other pluripotency related genes, along with 

components of the Wnt and TGF-β signalling pathways, which have been linked to 

the maintenance of pluripotency and self-renewal. Many key genes associated with 

lineage specification and development are co-bound and repressed by Oct4, Sox2 

and Nanog (Boyer et al., 2005). 

1.4.2 Chromatin organisation and regulation in pluripotency  

As well as these transcriptional hallmarks, pluripotent cells also have a characteristic 

chromatin conformation, which is distinct from that of differentiated cells. Within 

the interphase nucleus, DNA is packaged as chromatin, a complex of DNA and the 

histone proteins. The nucleosome is the functional unit of chromatin, consisting of 

146bp of DNA wound approximately one and a half times around a histone octamer 

of the four core histones (H2A, H2B, H3 and H4), (Kouzarides, 2007). Histone 

modifications most strongly associated with the establishment of chromatin domains 

are methylation and acetylation. Broadly speaking, there are two different chromatin 

conformations, heterochromatin and euchromatin, which are marked by 

characteristic histone modification profiles. Heterochromatin is transcriptionally 
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repressive, and is marked by tri-methylation of a number of lysine residues on 

histones 3 and 4 (H3K9me3, H3K27me3 and H4K20me3). Euchromatin can be 

marked by both histone acetylation and tri-methylation of histone 3 (H3K4me3, 

H3K36me3 and H3K79me3), and is transcriptionally permissive (Figure 1.3), 

although not all genes marked by euchromatin marks are being actively transcribed, 

rather they have a conformation which is permissive to transcription (Kouzarides, 

2007). 

It has recently been reported that the global profile of chromatin modifications is 

altered as cells progress though differentiation. In pluripotent ESCs there is an 

enrichment of histone modifications which mark euchromatic regions of the genome, 

as well as the transcriptional elongation-associated mark H3K36me2. Levels of the 

heterochromatin marker H3K9me3 are low in ESCs, and pluripotent cells show an 

increase in global transcription compared to differentiated cells. An interesting 

observation is that ESCs express some tissue-specific genes, albeit at extremely low 

levels (Efroni et al., 2008). This suggests that ESCs express many genes which one 

would expect to be repressed (i.e. those associated with tissue-specific 

differentiation). It is hypothesised that low level transcription of lineage-specific 

genes is necessary to maintain pluripotency and upon differentiation these genes are 

either up-regulated or silenced depending on their tissue specificity (Efroni et al., 

2008). Key developmental genes such as the Hox gene cluster are marked by 

bivalent domains in pluripotent cells. Bivalent domains are genome regions which 

are modified with both activating (H3K4me3) and repressive (H3K27me3) histone 

marks, and frequently overlap the transcriptional start sites of developmental 

transcription factors which are involved in lineage specification and are expressed at 

very low levels in ESCs. This is thought to maintain them in a ‘poised’ state. As 

cells differentiate, relevant lineage-specific genes are then either fully activated or 

repressed when cell fate is specified, by the addition/removal of the appropriate 

histone modification (Azuara et al., 2006; Bernstein et al., 2006). As differentiation 

proceeds, only genes related to a specific cell fate are expressed, whilst others 

become repressed, either by repressive histone marks and/or DNA methylation.  

Recent studies have linked the master transcriptional regulators of pluripotency with 

chromatin regulatory mechanisms, demonstrating how Oct4, Nanog and Sox2 can  
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Figure 1.3. Schematic showing the organisation and characteristic 

modifications of heterochromatin and euchromatin 

Chromatin can be organised into two conformations. Heterochromatin is 

repressive to transcription, with tightly packed nucleosomes, denying access of 

the transcriptional machinery to DNA. Characteristic modifications include tri-

methylation of specific lysine residues on histones 3 and 4. Euchromatin is 

transcriptionally permissive, with more widely spaced nucleosomes allowing 

access of the transcriptional machinery to DNA. Characteristic modifications 

include tri-methylation of specific lysine residues on histone 3, and histone 

acetylation. 
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cooperate with chromatin re-modellers to achieve the precise control of gene 

expression required for maintenance of pluripotency and self-renewal.  

1.4.3 Pluripotency regulation by chromatin remodelling factors 

Brg1 is the core catalytic subunit of an ATP-dependent chromatin remodelling 

complex. Brg1 binds both active and repressed genes in ESCs, and co-occupies 

many genes with Oct4, Nanog and Sox2 (Kidder et al., 2009). Reduction of Brg1 in 

mouse ESCs resulted in colony morphology changes indicative of differentiation and 

a reduction in alkaline phosphatase activity. Furthermore, decreased expression of 

pluripotency-related genes including Oct4 and Sox2, and increased expression of 

lineage specific genes was observed. Notably Brg1 regulated the expression of the 

polycomb group (PcG) proteins, which are known to co-bind with Oct4, Nanog and 

Sox2 at many repressed genes in ESCs. Reduction of Brg1 resulted in decreased 

expression of some PcG proteins (Kidder et al., 2009). 

The PcG proteins form complexes known as the polycomb repressive complexes 

(PRC) which act to repress gene expression through histone modification and 

chromatin condensation which prevents transcription of target genes. PRC2 catalyses 

the methylation of H3K27 and this histone modification (H3K27me3) is required for 

the association of PRC1, which alters chromatin to a condensed, non-permissive 

conformation (Boyer et al., 2006; Lee et al., 2006). Eed is a PRC2 component, and 

Eed
-/- 

ESCs failed to maintain pluripotency, so were prone to spontaneous 

differentiation. In Eed
-/- 

ESCs, there was an increase in expression of genes bound by 

the PcG proteins, so clearly a functional PRC complex acts to repress the expression 

of these genes in wild type ESCs (Boyer et al., 2006). Targets of the PRCs are key 

developmental regulators including the Hox, Pax, Sox, Fox and Tbx gene families, 

and many of these genes are co-occupied and repressed by Oct4, Nanog and Sox2 in 

pluripotent cells. The master regulators of pluripotency appear to act alongside PcG 

complexes to silence genes associated with lineage specification in ESCs and indeed 

many of these genes were up-regulated upon differentiation (Boyer et al., 2006; Lee 

et al., 2006). 
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As previously discussed, other histone modifications are associated with 

transcriptional repression. Jmjd1a and Jmjd2c are histone demethylases which act to 

demethylate H3K9me2 and H3K9me3 respectively. When Jmjd1a and Jmjd2c were 

knocked down using short hairpin RNAs (shRNAs), there were widespread effects 

on ESCs indicative of a loss of pluripotency. ESC morphology was altered to a more 

fibroblast-like state, with reduced alkaline phosphatase activity. There was a 

decrease in expression of Oct4, Nanog and Sox2 along with an increase in the 

expression of lineage specific genes. Furthermore, global levels of H3K9me2 and 

H3K9me3 increased, indicative of a shift to a more differentiated state (Loh et al., 

2007). The expression of Jmjd1a and Jmjd2c is linked to the master regulators of 

pluripotency. Oct4 binds both genes and depletion of Oct4 by RNA interference 

(RNAi) resulted in down-regulation of their expression. Furthermore Jmjd2c has 

been linked to the regulation of Nanog, as it binds Nanog, and Jmjd2c depletion 

resulted in reduced expression of Nanog due to an increase in the repressive 

modification H3K9me3 in the Nanog promoter (Loh et al., 2007). 

A number of chromatin modifying proteins and complexes act in the co-binding of 

pluripotency factor target genes, and in the regulation of expression of both other 

chromatin modifiers and the pluripotency factors themselves. This clearly highlights 

the complex transcriptional networks required in pluripotent cells to precisely control 

gene expression and maintain the capacity for pluripotency and self-renewal. 

1.4.4 Metabolic hallmarks of pluripotency 

Along with a characteristic chromatin conformation, the mitochondrial network of 

pluripotent cells is distinct from that of differentiated cells. GFP-labelling of a 

component of the pyruvate dehydrogenase (PDH) complex, which localises to the 

mitochondrial matrix, revealed significant differences in mitochondrial morphology 

and positioning in pluripotent human ESCs and differentiated fibroblasts. Human 

ESCs contain small, rounded perinuclear mitochondria, which under TEM 

microscopy were shown to contain few cristae. In contrast, fibroblasts have complex 

mitochondrial networks, localised to the cytoplasm, and made up of elongated, 

tubular, cristae-rich mitochondria (Varum et al., 2011). Pluripotent and differentiated 

cells also rely on different mechanisms for energy generation. Differentiated cells 
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undergo oxidative phosphorylation under normal oxygen conditions, which can 

produce up to 38 molecules of ATP per molecule of glucose. Pluripotent ESCs have 

a glycolytic metabolism, which produces only 2 molecules of ATP per molecule of 

glucose. Glycolysis is usually adopted under hypoxic conditions, and low oxygen 

conditions have been used for ESC culture. Strikingly though, ESCs are glycolytic 

even under normoxic conditions, and rely on a high glycolytic flux to meet their 

energy requirements. When ESCs are induced to differentiate, mitochondria develop 

to more complex tubular, cristae-rich morphologies, and a cytoplasmic 

mitochondrial network is established. There is also a metabolic shift from glycolysis 

to oxidative phosphorylation (Zhang et al., 2012). The events of in vitro 

differentiation mimic those observed in embryogenesis. Immediately following 

fertilisation, embryos have an oxidative metabolism due to the inheritance of 

maternal mitochondria. However as early cleavage occurs, the metabolism in the 

morula becomes glycolytic. Prior to implantation, the embryo exists in a hypoxic 

environment, and in the ICM, there are few immature, perinuclear mitochondria. The 

mitochondria observed in ESCs very closely resemble mitochondria of the early 

embryo (Varum et al., 2011). As observed in in vitro differentiation, there is a shift 

to oxidative phosphorylation in vivo, following implantation, as differentiation to the 

three germ layers progresses (Zhang et al., 2012). 

Taken together, these studies highlight the complex characteristic profile of 

pluripotent stem cells, with both transcriptional control and metabolic capacity 

playing a role in the establishment and maintenance of the pluripotent state.   

1.5 Generation of pluripotent cells by cloning and cell fusion 

In 1962 John Gurdon demonstrated the generation of pluripotential cells from 

differentiated epithelial cells. Labelled nuclei from Xenopus laevis intestinal 

epithelia were transferred into enucleated oocytes. The experiment generated a small 

number of viable tadpoles, which had arisen from the labelled transplanted nuclei. 

This suggests that oocytes can initiate the conversion of a differentiated nucleus to a 

pluripotent nucleus, which is then capable of development into a viable organism, 

demonstrating that differentiation is not an irreversible developmental progression. 

Differentiated cells must possess the genetic capacity to regain pluripotency, and 
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oocytes must contain factors which can initiate this process (Gurdon, 1962). Decades 

later this was followed by the generation of live mammals by somatic cell nuclear 

transfer (SCNT). It was first possible to generate lambs by this method from nuclei 

from an embryo-derived cell population and from foetal fibroblasts. Most 

significantly, this study produced ‘Dolly the Sheep’, the first mammal generated 

from adult cells by SCNT. This demonstrated that fully differentiated adult 

mammalian cells (in this case mammary epithelial cells from a six year old ewe) 

could be converted to pluripotency, and could generate viable organisms on 

transplantation into enucleated oocytes (Wilmut et al., 1997). The results of this 

study supported the work of John Gurdon and provided further evidence to 

demonstrate the plasticity of differentiated nuclei when exposed to factors contained 

in enucleated oocytes.   

It is also possible to generate pluripotent cells by cell fusion of ESCs with adult 

cells. Cells resulting from the fusion of mouse ESCs with Oct4-GFP reporter 

thymocytes expressed GFP in a pattern highly similar to endogenous Oct4 

expression in ESCs. Furthermore the thymocytes used for fusion experiments were 

XX female, with an inactive X-chromosome and stable expression of the long non-

coding RNA Xist. Following fusion the hybrid cells reactivated the inactive X-

chromosome derived from the female thymocytes and expression of Xist was 

unstable, similar to undifferentiated cells. On injection into normal blastocysts, 

hybrid cells were capable of some chimera contribution, demonstrating pluripotency 

(Tada et al., 2001). Cowan and colleagues demonstrated that this technique could 

also be applied to reprogramme human cells, when cells with characteristics similar 

to ESCs were generated from fusion of ESCs with fibroblasts. Cells produced from 

these fusions had an ESC-like morphology and expressed ESC surface markers 

SSEA4, Tra-1-60 and Tra-1-81. They also reactivated expression of pluripotency-

associated genes Oct4, Nanog and Rex1. Telomerase activity was detectable in 

hybrid cells, which could be maintained in culture for many passages. Hybrid cells 

had a highly similar global gene expression pattern to ESCs. They formed embryoid 

bodies in vitro, and teratomas when transplanted into nude mice, confirming the 

pluripotential of hybrid cells (Cowan et al., 2005). These studies demonstrated that 

cell fusion with pluripotent cells is sufficient to convert differentiated cells to the 
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pluripotent state, and that ESCs possess the factors required to initiate this 

conversion. 

1.6 Induction of pluripotency by forced expression of transcription 

factors 

1.6.1 Induction of pluripotency in mouse somatic cells 

In 2006 Takahashi and Yamanaka demonstrated that the forced expression of just 

four factors could convert mouse embryonic fibroblasts (MEFs) and adult mouse 

fibroblasts to ESC-like pluripotent cells. 24 candidate genes were selected for 

screening due to their expression in ESCs and/or roles in pluripotency maintenance. 

These genes were introduced into Fbx15- reporter MEFs by retroviral transduction. 

Expression of Fbx15, which is downstream of Oct4 and is expressed specifically in 

mouse ESCs and the early mouse embryo, lead to activation of the promoter reporter 

and conferred antibiotic resistance on MEFs, indicative of successful 

reprogramming. The combination of Oct4, Sox2, Klf4 and c-Myc (OKSM) 

generated ESC-like cells which could be maintained undifferentiated in culture, 

termed induced pluripotent stem cells (iPSCs). These cells formed embryoid bodies 

in vitro and teratomas when transplanted into nude mice (Takahashi and Yamanaka, 

2006). Although morphologically similar to ESCs, expression of endogenous Oct4 

and Sox2 was variable between clones in Fbx15-selected iPSCs, due to partially 

maintained methylation in the promoter regions of these genes. Furthermore, these 

iPSCs were unable to form viable adult chimeras, and subsequently were unable to 

contribute to germline transmission when injected into blastocyst stage embryos. The 

cells generated in this study represented a pluripotent cell type, generated from 

somatic cells, which were quite distinct from mouse ESCs (Takahashi and 

Yamanaka, 2006). A schematic of iPSC generation is shown in Figure 1.4.  

Whilst Fbx15 is expressed in mouse ESCs and the early embryo, it is not essential 

for the establishment or maintenance of pluripotency. As previously discussed, Oct4 

and Nanog are key pluripotency regulators, and so the use of Oct4 (Wernig et al., 

2007) or Nanog-reporter MEFs (Okita et al., 2007; Wernig et al., 2007) provides 

more stringent evidence of reprogramming to pluripotency. Oct4-and Nanog-

selected iPSCs could be stably cultured for many passages in vitro. Unlike Fbx15- 
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  Figure 1.4. Schematic showing a typical time line for the generation of 

pluripotent iPSCs from differentiated cells using lentiviral vectors 

Differentiated cells can be reprogrammed to pluripotency by forced expression of 

transcription factors. These factors are commonly transduced into cells using 

lentiviral vectors. Following treatment with lentiviruses, differentiated cells are 

typically counted, and re-seeded onto irradiated MEF feeder cells around 5 days 

after transduction. The differentiated cells are then maintained in ESC media. 

ESC-like colonies will begin to appear, this can take less than two weeks, or up to 

a month after transduction. Oct4-GFP reporter cells are commonly used, as GFP 

fluorescence can be used to identify colonies which have reactivated endogenous 

Oct4 expression. iPSC colonies will proliferate in culture in a similar manner to 

ESCs, and should be expanded for full characterisation. 
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selected iPSCs, Oct4 and Nanog promoters were largely unmethylated in Oct4 and 

Nanog-selected cells. The cells formed teratomas containing tissues from all three 

germ layers, but unlike Fbx15-selected cells, were also capable of both chimera 

contribution and germline transmission (Okita et al., 2007; Wernig et al., 2007). 

There were many more colonies in Fbx15-selected cultures than in Nanog-selected 

cultures, demonstrating that activation of the Fbx-15 gene reporter was much more 

efficient than Nanog-reporter activation. However, Nanog-selected iPSCs were 

capable of sustained pluripotency factor expression in vitro, whilst this was lost with 

passaging of Fbx15-selected cells. It was also possible to propagate Nanog-selected 

iPSCs in the absence of feeder cells in LIF-supplemented media. In contrast Fbx15-

selected colonies were feeder-dependent and underwent spontaneous differentiation 

in the absence of feeder cells, even in the presence of LIF (Okita et al., 2007). 

Although Wernig and colleagues could generate iPSCs highly similar to ESCs from 

both Oct4 and Nanog-reporter MEFs, the authors noted that there was variation in 

the colonies generated, depending upon the selection genes used, even within their 

own system. Whilst Nanog-selection gave rise to more colonies overall, Oct4-

selection produced more colonies which were morphologically similar to ESCs, and 

generated a higher number of stable, homogeneous iPSC colonies. Reprogramming 

to pluripotency using Oct4-reporter MEFs was a gradual process. SSEA1 expression 

and alkaline phosphatase activity were observed some time prior to the expression of 

detectable levels of Nanog protein. Although Nanog-reporter MEFs generated more 

GFP-positive colonies, fewer of these were typical ESC colonies which could go on 

to establish stable iPSC lines, than those generated using Oct4-reporter MEFs. This 

suggested that the Nanog locus was more easily activated by exogenous pluripotency 

factor expression and highlights issues with the use of Nanog expression as a marker 

of reprogramming to pluripotency. Certainly this side by side comparison identified 

endogenous Oct4 activation as the most stringent marker of reprogramming to 

pluripotency that had been tested up to this point (Wernig et al., 2007). 

1.6.2 Reprogramming to pluripotency in the presence and absence of the 

oncogene c-Myc 

During experiments to test germline transmission of Nanog-selected iPSCs, tumours 

in which retroviral c-Myc was reactivated were observed in a number of F1 
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offspring. However in normal tissues, expression of exogenous factors including c-

Myc remained silenced. Attempts to generate iPSCs without c-Myc yielded no GFP-

positive colonies, so this raised serious concerns about the production of iPSCs using 

oncogenic factors (Okita et al., 2007). A number of later studies would demonstrate 

that exogenous c-Myc is in fact dispensable for reprogramming to pluripotency, 

however the onset of reprogramming occurs much later in the absence of c-Myc, and 

the process is less efficient (Nakagawa et al., 2008; Wernig et al., 2008). Indeed it 

was observed that some colonies generated from 3 factor reprogramming using Oct4, 

Klf4 and Sox2 (OKS) only acquired ESC-like morphology and endogenous 

pluripotency factor expression after repeated passaging (Wernig et al., 2008). Using 

the same Nanog-GFP reporter as Okita and colleagues, it was necessary to delay 

antibiotic selection until 14 days after infection with OKS, compared to the 7 days 

after infection which yielded reprogrammed colonies from OKSM-infected MEFs. 

Whilst induction of pluripotency was slower and less efficient in the absence of c-

Myc, it appeared that OKS-reprogramming resulted in a more specific induction of 

iPSC colonies. The number of non-typical GFP-negative colonies observed in the 

absence of c-Myc was much lower (Nakagawa et al., 2008). The GFP-positive 

colonies induced by three factor reprogramming were highly similar to ESCs. 

Endogenous expression of ESC marker genes was equivalent to levels in ESCs, and 

these cells contributed to adult chimeras when injected into blastocyst stage 

embryos, so pluripotency was not compromised by c-Myc omission (Nakagawa et 

al., 2008; Wernig et al., 2008). Notably, removal of c-Myc from the reprogramming 

cocktail resulted in the generation of iPSCs highly similar to ESCs using Fbx15 

selection. As previously discussed, iPSCs selected using Fbx15 selection are similar, 

but not identical to ESCs. They express lower levels of the endogenous pluripotency 

factors and cannot contribute to adult chimeras (Takahashi and Yamanaka, 2006). In 

contrast, in the absence of c-Myc, iPSCs selected for expression of Fbx15 expressed 

pluripotency factors at levels highly similar to ESCs and were capable of producing 

adult chimeras when injected into blastocyst stage embryos. Although this is again a 

very inefficient process, with few colonies produced, it demonstrates a more specific 

induction of true ESC-like cells in the absence of c-Myc. Furthermore based on 

ESC-morphology and retroviral silencing (evidenced by silencing of retroviral GFP), 

it was possible to generate OKS-reprogrammed iPSCs, which were capable of 

chimera contribution, in the absence of any form of antibiotic selection. None of the 
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chimeras generated from OKS-reprogrammed iPSCs were affected by tumours 

during early life (100 days), whilst a number of chimeras from OKSM-

reprogrammed iPSCs died from tumours during this period. This suggests that 

omission of c-Myc results in a reduction in tumorigenicity, at least in early life, 

although tumour formation in later life was not investigated (Nakagawa et al., 2008). 

1.6.3 Induction of pluripotency in human somatic cells  

In 2007 the Yamanaka group demonstrated the generation of human iPSCs from 

adult dermal fibroblasts (HDFs) using the same four factor approach they had 

applied to MEFs and mouse adult fibroblasts (Takahashi et al., 2007). At the same 

time, the laboratory of James Thompson demonstrated the generation of human 

iPSCs using a different four factor approach, comprising of Oct4, Sox2, Nanog and 

Lin28 (OSNL). These factors could induce pluripotency in foetally-derived IMR90 

fibroblasts and also in postnatal foreskin fibroblasts (Yu et al., 2007). Both groups 

demonstrated that their respective four factor combinations produced ESC-like cells 

which expressed the cell surface markers SSEA3, SSEA4, Tra-1-60 and Tra-1-81. 

iPSCs derived from both combinations expressed high telomerase activity and could 

be passaged repeatedly in culture. Both OKSM- and OSNL-derived iPSCs were 

pluripotent, evidenced by generation of tissues from all three germ layers in 

embryoid bodies and teratoma formation (Takahashi et al., 2007; Yu et al., 2007). 

As demonstrated in mice, it is also possible to generate human iPSCs in the absence 

of c-Myc at extremely low efficiency. OKSM-reprogramming produced a small 

number of ESC-like colonies, but these were difficult to isolate, as very high 

numbers of non-typical colonies were also generated in these experiments. In 

contrast a few ESC-like colonies were generated from OKS-reprogramming, but in 

the absence of c-Myc there was a notable absence of non-typical colonies, only a few 

of these cells were observed. This suggests that similar to OKS-reprogramming in 

mouse cells, omission of c-Myc results in a more specific induction of true iPSCs 

from human fibroblasts (Nakagawa et al., 2008). The iPSCs generated from 3 factor 

reprogramming could be expanded in culture and were highly similar to ESCs. 

Expression of ESC cell surface markers SSEA3, SSEA4, TRA-1-60 and Tra-1-81 

was observed, along with endogenous expression of Oct4, Nanog and Sox2 at levels 
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comparable with those in H9 ESCs. These cells could form differentiating embryoid 

bodies in vitro, which expressed markers of tissues derived from all three germ 

layers, demonstrating the pluripotency of three factor iPSCs. The authors did note 

however, that the efficiency of the process was extremely low (Nakagawa et al., 

2008). Therefore, whilst c-Myc omission appears to induce the generation of 

pluripotent cells highly similar to ESCs, with reduced concerns over tumorigenicity, 

issues regarding the generation of viable numbers of iPSCs in the absence of c-Myc 

remain.   

1.7 Methods to enhance the efficiency of reprogramming to 

pluripotency 

1.7.1 The tumour suppressor p53 as a barrier to reprogramming to 

pluripotency 

The omission of c-Myc from the reprogramming cocktail generates iPSCs at 

extremely low efficiency, and even in the presence of c-Myc the vast majority of 

cells exposed to reprogramming factors fail to undergo the full transition to 

pluripotency. Maximum reprogramming efficiencies of around 1% are typically 

observed, so whilst reprogramming technologies are reproducible, the inefficiency of 

the procedure means it is difficult to generate high numbers of iPSC clones, unless 

extremely high starting numbers of cells are transduced (Yamanaka, 2012). The p53 

pathway is stimulated in response to stress signals including over-expression of 

oncogenes and DNA damage. This stimulation results in cell cycle arrest and 

apoptosis in affected cells (Kawamura et al., 2009). Infection of cells with retroviral 

vectors in the reprogramming process results in DNA integration events and 

increased expression of the oncogenes c-Myc and Klf4. Following retroviral 

infection increased expression of p53 (Kawamura et al., 2009; Marion et al., 2009a) 

and its downstream target p21 (Hong et al., 2009) were observed, along with an 

increase in apoptosis (Marion et al., 2009a). There was a significant increase in 

reprogramming efficiency in p53-null MEFs compared to wild type cells and a 

similar result was observed in human fibroblasts treated with a short hairpin RNA 

(shRNA) to knockdown p53 (Hong et al., 2009; Kawamura et al., 2009; Marion et 

al., 2009a). Furthermore, it was possible to derive iPSCs from p53-null terminally 

differentiated T lymphocytes, whilst no colonies were observed in wild type cells 
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(Kawamura et al., 2009). Knockdown of the p53 downstream target p21, a cyclin 

dependent kinase inhibitor which halts cell cycle progression, also resulted in 

enhanced reprogramming efficiency in MEFs (Kawamura et al., 2009). Taken 

together this suggests that p53 acts as a barrier to reprogramming, probably through 

inhibition of proliferation and apoptosis induction in response to forced expression 

of reprogramming factors. Clearly p53 reduction or knockout acts to increase 

reprogramming efficiency. However such approaches should be used with caution, 

as p53 acts to detect and remove cells with genomic instabilities. In wild type cells, it 

was not possible to generate iPSCs from MEFs with critically short telomeres, 

however colonies were derived from such cells in a p53-null background (Marion et 

al., 2009a). Whilst p53 reduction can be used to increase reprogramming efficiency 

it also allows the propagation of genomic instabilities to resultant iPSCs, which 

would be a major concern for therapeutic applications. 

1.7.2 Small molecule chromatin modifiers as enhancers of reprogramming to 

pluripotency 

As previously discussed, pluripotent cells have a characteristic epigenetic profile 

distinct from lineage committed cells. Resetting of both histone modifications and 

DNA methylation to an ESC-like pattern occurs during reprogramming to 

pluripotency (Maherali et al., 2007). However even in some fully reprogrammed cell 

lines there are reports of ‘epigenetic memory’, where somatic cell DNA methylation 

patterns are observed at some sites in iPSCs (Kim et al., 2010; Lister et al., 2011). 

Frequently cells undergo partial reprogramming, adopting some but not all 

characteristics of pluripotency. Incomplete epigenetic remodelling in these cells is 

considered a significant barrier to complete reprogramming. It was observed that in a 

number of partially reprogrammed cells, pluripotency-related genes remained 

hypermethylated, and that in these cells there was little or no detectable expression 

of these endogenous pluripotency factors (Mikkelsen et al., 2008). Treatment of 

partially reprogrammed cells with the DNA methyltransferase inhibitor 5-azacytidine 

(5-AZA) resulted in transition to full pluripotency. The fully reprogrammed cells 

showed decreased DNA methylation in pluripotency related genes. Furthermore the 

cells formed teratomas on implantation in nude mice, whilst partially reprogrammed 

cells did not form teratomas under identical experimental conditions. It was noted 
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that correct timing of 5-AZA addition was required.  Treatment early in the 

reprogramming procedure had no effect on reprogramming efficiency, and actually 

resulted in significant cell death. It was suggested that in these early stages, cells are 

still susceptible to the effects of DNA hypomethylation, which in somatic cells 

induces apoptosis. However 5-AZA added later in the reprogramming process (8 

days after induction of reprogramming through addition of doxycycline) could 

increase reprogramming efficiency, suggesting that DNA de-methylation occurs at a 

later stage when cells have begun the transition towards pluripotency and are not 

therefore adversely affected by a hypomethylated state (Mikkelsen et al., 2008). 

Other small molecule epigenetic modifiers have also been demonstrated to increase 

reprogramming efficiency. Addition of the histone deacetylase (HDAC) inhibitor 

valproic acid (VPA) enhanced three factor (OKS) reprogramming of MEFs by 50-

fold compared to untreated OKS-reprogramming. The addition of VPA also 

enhanced efficiency of generation of iPSCs from human fibroblasts with OKS, 

producing colonies with morphology and marker expression similar to human ESCs 

(Huangfu et al., 2008a; Huangfu et al., 2008b). Notably the efficiency of MEFs 

reprogrammed with OKS with VPA treatment was higher than the efficiency of 

MEFs reprogrammed with OKSM, demonstrating that VPA treatment could replace 

c-Myc transduction. iPSCs generated by OKS reprogramming with VPA treatment 

were similar to ESCs in morphology and global gene expression profile. They were 

pluripotent, evidenced by embryoid body differentiation to tissues from all germ 

layers, teratoma formation and chimera contribution (Huangfu et al., 2008a). 

Furthermore, when human fibroblasts were treated with VPA during reprogramming 

it was possible to derive iPSC colonies after infection with Oct4 and Sox2 (OS) 

alone. The colonies could be repeatedly passaged in culture and maintained ESC-like 

morphology with no further need for VPA treatment. These colonies expressed ESC 

markers, and had reactivated endogenous Oct4 and Sox2. Furthermore, the Oct4 and 

Nanog promoters had undergone DNA de-methylation, resulting in DNA 

methylation profiles similar to those observed in ESCs. iPSCs derived with OS and 

VPA treatment were confirmed pluripotent in vitro and by teratoma formation in 

vivo (Huangfu et al., 2008b). In contrast to the late treatment of MEFs with 5-AZA, 

in both MEFs and human fibroblasts, VPA was applied 1 day following lentiviral 

transduction, and maintained for up to 2 weeks, for optimal reprogramming 
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enhancement (Huangfu et al., 2008a; Huangfu et al., 2008b). This suggests that the 

alteration of histone modifications early in the reprogramming process does not have 

the same detrimental effects as those observed by Mikkleson and colleagues when 

using compounds which drive DNA demethylation (Mikkelsen et al., 2008). 

Further small molecule chromatin modifiers have been demonstrated to improve 

reprogramming to pluripotency with fewer factors. Transduction of MEFs with Oct4 

and Klf4 (OK) alone yielded few non-typical colonies which were difficult to expand 

and stained weakly for alkaline phosphatase (Shi et al., 2008). However addition of a 

small molecule, the G9a histone methyltransferase inhibitor BIX01294, which acts 

to inhibit dimethylation at lysine 9 of histone 3 (H3K9me2), resulted in typical ESC-

like colonies with strong alkaline phosphatase activity. These cells were also positive 

for Oct4, Nanog and SSEA1. Furthermore, transduction with OK, along with the 

combined treatment of MEFs with both BIX01294 and another small molecule, 

BayK, increased the number of colonies observed. Cells transduced with OK and 

treated with BIX01294 and BayK produced greater numbers of colonies which 

stained strongly for alkaline phosphatase, and were positive for Oct4, Nanog, Sox2 

and SSEA1. These colonies could be maintained for many passages in vitro and had 

a highly similar gene expression pattern to ESCs. Interestingly, BayK is an L-type 

calcium channel agonist, with no known epigenetic effects, and treatment with BayK 

alone did not yield ESC-like colonies from OK-transduced cells. The mode of action 

of BayK is unclear, but it was suggested that BayK may act to impact signalling 

pathways involved in reprogramming to pluripotency (Shi et al., 2008). 

1.7.3 Inhibition of chromatin remodelling complexes in reprogramming to 

pluripotency 

A recent breakthrough has provided the strongest evidence yet that epigenetic factors 

can act as a major barrier for reprogramming to pluripotency. MBD3 is a component 

of the nucleosome remodelling and histone deacetylation (NuRD) complex. 

Depletion of MBD3 in MEFs resulted in almost 100% reprogramming efficiency, 

whilst only around one fifth of wild type cells were reprogrammed to pluripotency 

with four factor (OKSM) methods (Rais et al., 2013). Although typically in four 

factor reprogramming experiments a maximum efficiency of around 1% 

reprogramming is observed (Yamanaka, 2012). It was noted that the effects of 
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MDB3 depletion could be reversed if MEFs were infected with MBD3-expressing 

lentivirus in the first 5 days of reprogramming, but that after this point, lentiviral 

infection with MBD3 had a reduced effect on reprogramming efficiency. This 

suggested that MBD3 must act early in the reprogramming process, but could not 

significantly inhibit the final stages of conversion to pluripotency, or affect 

pluripotency maintenance in reprogrammed MEFs (Rais et al., 2013). A similar 

effect was observed when human fibroblasts with a mutation in MDB3 were 

reprogrammed to pluripotency with near 100% efficiency. Notably MDB3 inhibition 

alone was not sufficient to drive reprogramming to pluripotency in the absence of 

OKSM. However inhibition of MDB3 using short interfering RNA (siRNA) could 

induce partially reprogrammed cells to convert to full pluripotency, and activate 

endogenous Oct4 and Nanog expression. Interestingly, it was demonstrated that 

MDB3 only binds pluripotency factor target genes after induction of reprogramming, 

and that MBD3 recruitment increases at this point. OKSM co-immunoprecipitate 

with MBD3, and MBD3 co-binds many genes which are required for reprogramming 

to pluripotency. It would appear that upon the induction of reprogramming, the 

pluripotency factors co-bind with MBD3 at a number of genes, and that MBD3 is 

able to repress these genes even in the presence of pluripotency factors that would 

activate their expression. The role of MBD3 seems to be to restrain expression of 

factors required for the establishment of the pluripotent state, which would explain 

why MBD3 depletion enhances reprogramming efficiency so effectively. Clearly the 

chromatin modification and gene repression mediated by MBD3 is a major barrier to 

reprogramming, and in its absence, the pluripotency factors can freely activate genes 

which would normally be repressed by MBD3, so easily establishing pluripotency in 

the vast majority of cells exposed to reprogramming stimuli (Rais et al., 2013). 

1.7.4 Other small molecules which can enhance reprograming efficiency 

Whilst Shi and colleagues (Shi et al., 2008) noted that the small molecule BayK 

could not reprogramme MEFs to pluripotency in the absence of an epigenetic 

modifier, other groups have identified compounds with no known epigenetic effects 

which can act alone to enhance reprogramming efficiency or replace reprogramming 

factors.  
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A small molecule inhibitor of TGFβ signalling has been shown to either enhance 

reprogramming efficiency and/or replace the need for some exogenous 

reprogramming factors. E-616452, a TGFβ receptor 1 inhibitor acted to enhance the 

reprogramming efficiency of OKSM-transduced MEFs when treatment was applied 

at the same time as doxycycline (dox) in a dox-inducible system, but had no effect 

on reprogramming efficiency when administered prior to dox treatment (Maherali 

and Hochedlinger, 2009). In contrast another group used the same inhibitor, but 

found less than a 2-fold increase in colony numbers over control samples, so 

suggested that this inhibitor acted to replace exogenous factors rather than enhance 

reprogramming efficiency (Ichida et al., 2009). The inhibitor could act to 

functionally replace c-Myc in the reprogramming cocktail (Ichida et al., 2009; 

Maherali and Hochedlinger, 2009). Ichida and colleagues suggested that this 

occurred via the stimulation of endogenous L-Myc expression. L-Myc is a 

homologue of c-Myc previously shown to replace it in reprogramming to 

pluripotency (Ichida et al., 2009). Both groups also demonstrated that E-616452 

could replace Sox2 (Ichida et al., 2009; Maherali and Hochedlinger, 2009), however 

only one group found that E-616452 could replace both Sox2 and c-Myc 

simultaneously (Ichida et al., 2009). There were also striking differences in the 

optimal timing of inhibitor treatment. One group found that E-616452 was optimally 

applied with the start of dox addition, so it was concluded that the inhibitor acted 

early in the reprogramming process (Maherali and Hochedlinger, 2009). In contrast, 

the other group found that in their system, E-616452 acted on partially 

reprogrammed cells. These cells formed colonies which resembled iPSCs, and could 

be maintained for several passages, but failed to activate the endogenous Oct4-GFP 

reporter, a robust marker of full reprogramming to pluripotency. Activation of Oct4-

GFP was observed in a number of these colonies after addition of E-61642. 

Furthermore within 24-48 hours of inhibitor treatment, cells which were responsive 

to the inhibitor (i.e. those that activated Oct4-GFP following treatment) had up-

regulated endogenous Nanog expression by up to 10-fold.  Notably in this period 

endogenous Sox2 expression did not significantly increase, so it would appear that 

whilst E-616452 can replace exogenous Sox2, it does this by activating endogenous 

expression of Nanog rather than Sox2 (Ichida et al., 2009). Despite the differences 

observed with the use of E-616452 in different laboratories, inhibition of TGFβ 

signalling appears to positively benefit reprogramming to pluripotency. Indeed the 
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addition of TGFβ1 or TGFβ2 lead to a dramatic reduction in the number of colonies 

observed in OKSM-transduced MEFs compared to control samples, suggesting that 

TGFβ signalling is a barrier to reprogramming. During development, cells undergo 

an epithelial to mesenchymal transition, which is driven by TGFβ signalling, whilst 

reprogramming to pluripotency requires a mesenchymal to epithelial transition 

(Maherali and Hochedlinger, 2009). As reprogramming to pluripotency can be 

considered as the reversal of development, it would make sense that signalling which 

drives developmental progression may need to be suppressed in order to allow a 

regression to the pluripotent state. 

Lin and colleagues showed inhibition of TGFβ signalling, this time in combination 

with an inhibitor of the MAPK/ERK cascade, could improve the efficiency of 

reprogramming to pluripotency in human fibroblasts using a four factor (OKSM) 

approach. The authors observed that treatment 7 days after infection with the Alk 

inhibitor SB431542 in combination with the MEK inhibitor PD0325901 resulted in 

the generation of ESC-like colonies with increased mRNA levels of endogenous 

pluripotency factors compared to untreated control samples. Furthermore Nanog-

positive colonies were observed in treated samples, whilst there were no Nanog-

positive colonies from control experiments. This suggested that the combination of 

TGFβ and MAPK/ERK inhibition resulted in an increase in colonies which 

expressed endogenous markers of pluripotency (Lin et al., 2009) 

The MEK inhibitor PD0325901 is one part of the 2i combination of inhibitors 

commonly used in the maintenance of undifferentiated ESCs in culture. PD0325901 

combined with the GSK3β inhibitor CHIR99021 (2i) and LIF, acted to push partially 

reprogrammed neural stem cells (NSCs) to full pluripotency. In four factor (OKSM) 

transduced NSCs, early but unstable activation of Oct4-GFP was observed, which 

was not maintained on passaging, suggesting incomplete reprogramming to 

pluripotency. GFP-positive colonies first appeared at around day 5 following 

infection, so at this point NSCs were trypsinised and replated in media supplemented 

with 2i/LIF. This resulted in the growth of multiple colonies, of which around two 

thirds expressed Oct4-GFP. A similar effect was seen without the need for replating. 

Exchange of medium on days 3/5 to serum-free medium supplemented with 2i/LIF 

yielded many colonies of which over half had reactivated Oct4-GFP. These iPSCs 
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expressed endogenous pluripotency factors at levels equivalent to ESCs, and like 

ESCs were LIF-dependent in culture, differentiating on LIF withdrawal. They were 

also capable of chimera contribution on blastocyst injection, confirming the 

pluripotency of colonies treated with 2i/LIF (Silva et al., 2008). Reactivation of 

Oct4-GFP in partially reprogrammed cells following 2i/LIF treatment demonstrates 

that signalling mechanisms involved in the maintenance of the undifferentiated state 

in ESCs also play a role in reprogramming somatic cells to pluripotency. 

1.8 Metabolic restructuring during reprogramming to pluripotency 

As previously discussed, the metabolic profile of differentiated cells is quite distinct 

from that of pluripotent cells. A number of recent studies have focused on and 

highlighted the need for metabolic remodelling, along with transcriptional and 

epigenetic alterations, to achieve reprogramming to pluripotency. Folmes and 

colleagues (Folmes et al., 2011) demonstrated that during four factor (OKSM)-based 

reprogramming, MEFs undergo remodelling in which many tubular cristae-rich 

mitochondria are remodelled to a small number of perinuclear mitochondria, a 

cytotype highly similar to that seen in ESCs. iPSCs showed increased cellular levels 

and increased production of lactate compared to MEFs, along with lower oxygen 

consumption, indicative of a shift to a glycolytic metabolism. Lactate production and 

oxygen consumption rates (OCR) in iPSCs were highly similar to those observed in 

ESCs. The reprogramming factor c-Myc has previously been shown to affect 

glycolysis and mitochondrial biogenesis, so to investigate if c-Myc transduction was 

driving the observed metabolic changes, MEFs were reprogrammed to pluripotency 

using three factors (OKS). In the absence of c-Myc, iPSCs increased glycolysis, 

evidenced by accumulation of glycolytic end products, and had a limited capacity for 

oxidative metabolism. This demonstrated that the reprogramming process itself, and 

not c-Myc transduction, was driving metabolic remodelling in MEFs (Folmes et al., 

2011). The glycolysis inhibitor 2-deoxy-glucose (2DG) impaired induction of the 

pluripotency marker alkaline phosphatase (Folmes et al., 2011), and reduced the 

number of GFP-positive colonies generated (Panopoulos et al., 2012), suggesting 

that inhibition of glycolysis inhibits reprogramming to pluripotency. Conversely, 

treatment with D-fructose-6-phosphate (F6P), a glycolytic stimulator, was able to 

enhance reprogramming efficiency. Metabolomic analyses showed that iPSCs 
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clustered with ESCs and distinct from their parental cells. It was also demonstrated 

that whilst early passage (p16) iPSCs were similar to ESCs in their metabolic profile, 

late passage (>p41) iPSCs were much more similar (Panopoulos et al., 2012). This 

increased similarity to ESCs with time in culture echoes that observed with so called 

‘epigenetic memory,’ in which parental cell epigenetic characteristics are maintained 

at some points in the genome following iPSC derivation, but which are then altered 

to an ESC-like state with repeated passaging in culture. Analysis of DNA 

methylation patterns in genes related to metabolism also showed iPSCs clustering 

with ESCs, and distinct from parental cells. iPSCs up-regulated glycolytic genes and 

down-regulated expression of genes related to oxidative phosphorylation compared 

to their parental cells of origin. Notably the metabolic status of somatic cells has 

been linked to reprogramming efficiency. The authors observed that somatic cells 

have a higher oxidative:glycolytic ratio compared to pluripotent cells, which are 

highly glycolytic. Keratinocytes and human umbilical vein endothelial cells 

(HUVECs) reprogrammed with much greater efficiency than fibroblasts, and it was 

demonstrated that both these cell types had a lower oxidative:glycolytic ratio than 

fibroblasts. This meant that the starting metabolism in these cells was more similar 

to that in pluripotent cells, so it was suggested that cells with a low 

oxidative:glycolytic ratio could be reprogrammed to pluripotency with higher 

efficiency (Panopoulos et al., 2012). A schematic summary of metabolic differences 

between pluripotent and differentiated cells is given in Figure 1.5. 

1.9 Cellular remodelling during a cell stress-triggered autophagy 

response 

Autophagy is a physiological stress response which allows the recycling of 

cytoplasmic contents, as a survival mechanism under conditions of nutrient 

deprivation/starvation. Autophagy is induced by the action of nutrient sensors, which 

can act to detect fluctuations in nutrient availability. Following autophagy induction, 

there is formation of a double-membrane vesicle, which can sequester cytoplasmic 

contents, including organelles such as mitochondria. The double-membrane vesicle 

encloses cytoplasmic contents, and is then referred to as an autophagosome. The 

degradation and recycling of the autophagosome contents occurs on fusion with a 

lysosome, forming an autolysosome. This structure consists of a fusion of the  
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Figure 1.5. Schematic showing the distinct metabolic profiles of pluripotent 

and differentiated cell types  

Pluripotent ESCs have a characteristic simple cytotype, with few small, rounded, 

cristae poor perinuclear mitochondria. They rely on glycolysis (anaerobic 

metabolism) even in normoxic conditions. In contrast, differentiated cells have an 

oxidative metabolism, and a more complex cytotype, with a cytoplasmic network 

of tubular, cristae-rich mitochondria. Increased metabolic complexity develops 

during differentiation, and cells undergo a metabolic switch from glycolysis to 

oxidative metabolism. During reprogramming to pluripotency, the cytotype of 

differentiated cells must be remodelled to an ESC-like state, and iPSCs adopt the 

characteristic pluripotent cytotype and glycolytic metabolic profile. 
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lysosome and outer autophagosome membranes, whilst the autophagosome inner 

membrane is broken down, to release its contents for breakdown by lysosomal 

enzymes (Klionsky and Emr, 2000). 

Mammalian target of rapamycin (mTOR) is one such nutrient sensor, which inhibits 

autophagy in nutrient rich conditions. The compound rapamycin stimulates 

autophagy by inhibiting the action of mTOR. Rapamycin and other mTOR inhibitors 

have also been shown to promote longevity in a number of experimental organisms. 

It was demonstrated that rapamycin could act in a dose-dependent manor to increase 

the efficiency of iPSC generation from four factor (OKSM) transduced MEFs. It was 

also noted that this action of rapamycin was most effective early (1-3 days) in the 

reprogramming process (Chen et al., 2011). This result was also observed by another 

group, although they found that even earlier application (day 1) was required, and 

that rapamycin treatment started 3 days after infection could not improve 

reprogramming efficiency (Wang et al., 2013). PP242 is another mTOR inhibitor and 

longevity enhancing drug, which like rapamycin improved reprogramming 

efficiency in OKSM-transduced MEFs. The authors suggested that this could mean 

that longevity enhancing drugs positively benefitted reprogramming to pluripotency. 

They also demonstrated that a similar enhancement of reprogramming efficiency was 

observed on treatment with spermidine, a known autophagy stimulator (Chen et al., 

2011). So it is possible that rapamycin and PP242 may have been acting through 

their role in autophagy stimulation, to increase reprogramming efficiency. Recent 

work has highlighted that a functional autophagic response is required for 

reprogramming to pluripotency. Depletion of factors required for autophagosome 

formation resulted in an absence of iPSC colonies from MEFs, whilst numerous 

colonies were observed in control samples. Furthermore, in control samples, 

autophagosome formation was observed early (day 1) after initiation of 

reprogramming. This timing coincides with an early requirement for rapamycin 

treatment, and may suggest that autophagy induction is required early in the 

reprogramming process, and could act as a driver for later events. It was observed 

that ectopic expression of Sox2, actually resulted in a dramatic reduction in mTOR 

mRNA, and promoter studies revealed binding of Sox2 in a repressive region of the 

mTOR promoter. This work demonstrates how ectopic expression of reprogramming 

factors can stimulate autophagy, and highlights the requirement of a functional 
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autophagic response in reprogramming to pluripotency. Strikingly in cells depleted 

for key autophagy genes, there was a noticeable failure to reduce mitochondrial 

numbers, and an absence of iPSC colonies (Wang et al., 2013). As previously 

discussed, remodelling of the mitochondrial network and a metabolic shift to 

glycolysis are key features of successful reprogramming. Taken together these 

results suggest that a functional autophagic response is required for successful 

metabolic remodelling, and that this remodelling to immature, limited mitochondria 

may drive the metabolic shift to glycolysis.    

1.10 Enhanced expression of pluripotency factors in mesenchymal 

stem cells/multipotent stromal cells cultured as 3D spheroids 

It was previously observed in our laboratory that culturing mesenchymal stem 

cells/multipotent stromal cells (MSCs) in 3D conditions resulted in up-regulation of 

pluripotent transcription factors compared to expression in 2D MSCs (Elen Bray, 

unpublished observations). Primary human MSCs can be isolated from human bone 

marrow, and selected based on plastic-adherent growth in serum-supplemented 

media. Using appropriate induction protocols, MSCs are multipotent, and can be 

induced to differentiate down osteogeneic, adipogenic and chondrogenic lineages. 

However their potency is restricted to tissues of mesenchymal origin (Pittenger, 

1999). The laboratory in York has utilised a number of dynamic methods for 3D 

culture, including the use of spinner flasks and a rotating wall vessel bioreactor 

designed to enhance MSC stem cell properties and therapeutic potential (Frith et al., 

2010).  The laboratory also uses a static 3D methyl cellulose media-based system, in 

which MSCs are seeded into non-adherent U-bottomed 96-well plates, in media 

supplemented with methyl cellulose. Due to the viscosity of this media, MSCs are 

maintained in suspension, and adhere together to form cell aggregates, referred to 

hereafter as spheroids. Spheroid size is dependent on initial seeding cell number and 

also time in culture, as it was previously demonstrated that MSCs do not proliferate 

under these conditions, and spheroid size actually decreases with time in 3D culture. 

Along with increased expression of pluripotency markers, 3D MSCs showed a much 

greater increase in expression of cardiac markers than that observed in 2D MSCs, 

when stimulated to undergo cardiomyogenic differentiation following 3D culture in 

optimal conditions (Elen Bray, unpublished observations). In summary, it was 
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previously established that 3D MSCs can be cultured in 3D conditions and that 

during 3D culture, spheroids reduced in size. During 3D culture, 3D MSCs displayed 

characteristics of enhanced potency, including pluripotency marker expression, 

compared to 2D MSCs. However, the mechanism driving enhanced potency in 3D 

MSCs was not established. 

Recent work in iPSC research has highlighted a role for autophagy and metabolic 

remodelling in reprogramming to pluripotency, although the processes of autophagy 

and mitochondrial/cytoplasmic remodelling have not been explicitly linked.  It is 

interesting that autophagy, a physiological response to cell stress, particularly 

nutrient deprivation, has been demonstrated as a key early step in reprogramming to 

pluripotency. Given that 3D MSCs will be exposed to varying nutrient availability 

due to variations in spheroid size, and that 3D MSCs increase expression of 

pluripotency factors, as well as reducing in size during 3D culture, I hypothesised 

that controlled autophagy, stimulated by nutrient deprivation, may be the mechanism 

driving enhanced potency in 3D MSCs. In my hypothesis MSCs transferred to 3D 

culture would be exposed to varying nutrient deprivation, depending on spheroid size 

and time in 3D culture. In optimal conditions, autophagy, scaled in favour of cell 

survival, would result in cytoplasmic and metabolic remodelling, driving de-

differentiation towards a more primitive state, in 3D MSCs. 
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Project aims 

The aim of this work was to investigate whether a scaled autophagic response, 

induced by nutrient deprivation in 3D culture, was sufficient to drive de-

differentiation towards a more primitive state.  Initially this project focused on 

establishing 3D culture conditions in which enhanced pluripotency factor expression 

was observed in human MSCs. Following the establishment of such conditions the 

project then aimed to:  

 establish the extent of de-differentiation in 3D MSCs 

 examine MSCs cultured under 3D conditions for evidence of cytoplasmic 

and metabolic remodelling 

 establish if autophagy was the driving mechanism for enhanced pluripotency 

factor expression in 3D MSCs by looking for evidence of increased 

autophagy during 3D culture 
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Chapter 2: Materials and methods 

2.1 Materials 

All cell culture media, supplements and reagents were purchased from Invitrogen 

(Carlsbad, CA, USA) unless otherwise stated. Foetal bovine serum (FBS) was batch 

tested for MSC proliferation and differentiation down osteogenic and adipogenic 

lineages, and the best performing sera were purchased from Invitrogen and Biosera 

(Labtech, Uckfield, East Sussex, UK). Cell culture flasks and plates were purchased 

from Corning Life Sciences (Corning, NY, USA) and all chemicals were purchased 

from Sigma Aldrich (St. Louis, MO, USA) unless otherwise stated. 

2.2 General methods 

2.2.1 Cell culture methods 

2.2.1.1 Isolation of MSCs from femoral heads 

Bone marrow was manually isolated from femoral heads from hip replacement 

surgery following full informed consent under approval of the York Local Research 

Ethical Committee. Marrow was added to 10ml Dulbecco’s modified Eagle’s 

medium (DMEM, high glucose) supplemented with 100 units/ml penicillin and 

100µg/ml streptomycin. Bone marrow fragments were then minced with scissors, 

allowed to settle, and media was transferred to a collection tube. 10ml of medium 

was added to bone marrow fragments, and the mincing procedure was performed 

twice more. 10ml of fresh medium was then added, before vortexing. After the 

fragments had settled, the medium was transferred to the collection tube. The 

collection tube containing the cell suspension was centrifuged for 450g, 5 minutes, 

before the cell pellet was re-suspended in fresh medium, and passed through a 70µm 

cell strainer. The cell suspension was then layered over 12ml Ficoll-Paque Plus, and 

centrifuged at 350g for 30 minutes with low braking. The white mononuclear cell 

layer was isolated, and washed by centrifugation (450g, 5 minutes) in wash buffer (5 

mM EDTA, 0.2% BSA in PBS). Finally, the cell pellet was re-suspended in 2D 

MSC medium (for composition please see 2.2.1.3), and seeded into a T75 tissue 

culture flask. After 3-4 day, the medium was refreshed, removing non-adherent cells 

from the culture. 
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2.2.1.2 Isolation of MSCs from knee samples 

Bone samples from knee replacement surgery were dissected into small pieces and 

placed in cell culture 100mm dishes (BD Falcon, San Jose, CA, USA). 20ml 2D 

MSC medium (for composition please see 2.2.1.3) was added to dishes, which were 

maintained in culture (37ºC, 5% CO2) for 7 days, after which point bone pieces were 

removed and medium replenished. Samples were then cultured as described in 

2.2.1.3. 

2.2.1.3 MSC expansion conditions 

Following isolation, MSCs were cultured as adherent monolayers in 2D MSC 

medium - DMEM (high glucose) supplemented with 15% FBS and 100 units/ml 

penicillin and 100µg/ml streptomycin at 37ºC, 5% CO2. Samples were cultured to 

approximately 90% confluence, before passaging at a ratio of 1:3 or 1:4. Briefly, 

cultures were washed with PBS, before treatment with 0.25% Trypsin/EDTA. 

Following detachment, 2D MSC medium was added, and cells were re-plated into 

the appropriate number of tissue culture flasks. For the experiments performed here, 

primary MSCs from 26 donors, both male and female, with an age range from 51 – 

87 years were used. For ease of reading the donors for a particular experiment used 

were simply identified as Donors 1, 2 and 3. However this identity applies only to 

each particular experiment. 2-3 donors from the 26 were selected at random for each 

experiment, then for the purpose of this thesis identified as Donor 1, 2 or 3. 

2.2.1.4 Human dermal fibroblast (HDF) expansion conditions 

For 2D HDF culture, HDFs were maintained as described for 2D MSCs in 2.2.1.3, 

but 2D HDF medium was supplemented with 10% FBS and the passaging ratio for 

HDFs was 1:4. 

2.2.1.5 3D culture conditions 

For 3D culture, 2D MSCs were grown to approximately 90% confluence and 

trypsinised as described in 2.2.1.3. Cells were counted using a haemocytometer and 

light microscopy, and then re-suspended in 3D medium; DMEM (high glucose), 

supplemented with 15% FBS, 100 units/ml penicillin, 100µg/ml streptomycin and 
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0.25% methyl cellulose (2% stock solution made up in DMEM high glucose). For 

3D HDF culture, HDFs were cultured as described for MSCs above, but 3D HDF 

medium was supplemented with 10% FBS. 

2.2.1.6 ESC culture conditions 

H9 human ESCs were maintained on irradiated MEF (iMEF) feeder layers, with 

daily medium changes. ESC medium consisted of KO DMEM, supplemented with 

20% KO serum replacement, 100 units/ml penicillin, 100µg/ml streptomycin, 2mM 

L-glutamine, 100µM non-essential amino acids (NEAA), 100µM β-mercaptoethanol 

and 4ng/ml basic fibroblast growth factor (bFGF). ESCs were passaged every 3 days 

at a ratio of 1:6. 

2.2.1.7 2102Ep embryonal carcinoma cell culture conditions  

2102Ep cells were cultured as adherent monolayers in DMEM (high glucose) 

supplemented with 10% FBS and 100 units/ml penicillin and 100µg/ml 

streptomycin. Samples were cultured to approximately 80% confluence, before 

passaging at a ratio of 1:4, or harvesting by trypsinisation for further analysis. 

2.2.2 Disaggregation of spheroids for return to 2D culture 

2.2.2.1 Disaggregation and re-seeding 

At the appropriate time point, spheroids were collected, washed in PBS and then re-

suspended in Liberase TL working solution (32 µl Liberase TL (Roche, Basel, 

Switzerland) mixed with 318µl sterile PBS). Spheroids were incubated on an orbital 

shaker for 20 minutes at 37°C and then disaggregated to a single cell suspension by 

pipetting. Disaggregated 3D (d-3D) MSCs were then either collected in suspension 

for further analysis or re-seeded onto tissue culture plastic in 2D MSC medium. 

Following this process, d-3D MSCs were cultured as 2D MSCs (described in 

2.2.1.3) and were treated as 2D MSCs for RNA and protein extraction.  
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2.2.2.2 Crystal violet staining 

To observe the morphology of 3D MSCs following disaggregation (d-3D MSCs), 

samples were fixed in 95% ethanol for 5 minutes, followed by incubation in 0.5% 

Crystal Violet (in 95% ethanol) for 30 minutes. Samples were then washed in tap 

water and air dried. Imaging was performed using a Leica IRB inverted microscope.  

2.2.3 3D MSC snap freezing and sectioning  

3D MSCs were transferred to the caps of 500µl Eppendorf tubes, and then washed 

with PBS (2/3 spheroids per cap). Samples were then embedded in OCT Tissue Tek 

and snap-frozen by submersing in liquid nitrogen. Samples were stored at -80ºC, and 

when required were cryosectioned at 5-7μm, before mounting on Superfrost Plus 

microscope slides (Thermo Scientific, Waltham, MA, USA). Slides were either 

freshly stained or stored at -20ºC. 

2.2.4 Transmission electron microscopy 

2.2.4.1 Sample preparation and fixation 

2D MSCs were cultured on Thermanox cover slips (Thermo Scientific), to enable 

sectioning. 3D MSCs were collected in Eppendorf tubes. Samples were fixed in 8% 

formaldehyde, 5% glutaraldehyde in 100mM phosphate buffer mixed 50/50 with 3D 

MSC medium for 10 minutes followed by fixing with 4% formaldehyde, 2.5% 

glutaraldehyde in 100mM phosphate buffer, pH7.2 for 30 minutes at room 

temperature. Samples were then washed in 100mM phosphate buffer, 2 x 20 

minutes. 

2.2.4.2 Preparation for imaging 

Following fixation, samples were treated as described in Table 2.2.1  

Table 2.2.1 TEM sample preparation 

Procedure/Reagent Time 

1% OsO4 in 100mM buffer on ice 60 minutes 

Wash in 100mM phosphate buffer  2 x 10 minutes 

25% Ethanol 20 minutes 

50% Ethanol 20 minutes 
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70% Ethanol 20 minutes 

90% Ethanol 20 minutes 

100% Ethanol 2 x 20 minutes 

Epoxy propane  15 minutes 

25% epon araldite, 75% epoxy propane  30 minutes 

50% epon araldite, 50% epoxy propane 30 minutes 

75% epon araldite, 25% epoxy propane  30 minutes 

100% epon araldite  

2.2.4.3 Preparation for imaging (enhanced contrast) 

Following fixation, for enhanced contrast TEM used in Chapter 5, samples were 

prepared as described in Table 2.2.2  

Table 2.2.2 TEM sample preparation (enhanced contrast) 

Procedure Time 

1% tannic acid in 100mM phosphate   10 minutes 

100mM phosphate buffer 2 x 20 minutes 

0.5% OsO4 on ice 60 minutes 

Water   2 x 20 minutes 

1% uranyl acetate in water (in dark) 60 minutes 

Water  20 minutes 

Water (at 4ºC) overnight 

25% acetone  20 minutes 

50% acetone  20 minutes 

70% acetone  20 minutes 

90% acetone  20 minutes 

100% acetone  2 x 25 minutes 

25% Spurr (R) : 75% acetone  30 minutes 

50% Spurr (R) : 50% acetone  30 minutes 

75% Spurr (R) : 25% acetone  30 minutes 

100% Spurr (R)  2 hours 

100% Spurr (R) 2 x 30 minutes 

 

2.2.4.4 Sectioning and imaging 

Polymerised sample blocks and 2D samples were then sectioned at 70nm using a 

Leica RM2165 rotary microtome and imaged on a FEI Tecnai G transmission 

electron microscope. 
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2.2.5 RNA techniques 

2.2.5.1 Cell lysis 

2D MSCs/HDFs were trypsinised, centrifuged at 400g for 5 minutes, and then re-

suspended in 350 µl RA1 lysis buffer (Nucleospin RNA II kit) with 3.5µl β-

mercaptoethanol. 3D MSC/HDF spheroids were collected in Eppendorf tubes, 

washed with PBS, re-suspended in lysis buffer as above, before homogenisation with 

a hand-held tissue micro-homogeniser for 5 seconds. H9 ESC colonies were 

trypsinised using recombinant trypsin (TrypLE) and resuspended in lysis buffer as 

above. 

2.2.5.2 RNA extraction 

Following cell lysis, RNA was extracted using Nucleospin RNA II columns 

(Macherey Nagel, Duren, Germany) following manufacturer’s instructions. Briefly, 

lysates were cleared by passing through the filter column, before being mixed with 

350µl 70% ethanol. Samples were then bound to the extraction column by 

centrifugation. Membrane desalting buffer (MBD) was added to desalt the silica 

membrane. Buffer was removed by centrifuging and samples were treated with 95µl 

DNase reaction mixture for 15 minutes at room temperature. Columns were washed 

by centrifugation with RA2 buffer, followed by 2 washes with RA3 buffer. To 

ensure columns were free of buffer, they were centrifuged at 11,000g for 30 seconds 

in a dry collection tube. RNA was then eluted in 30-40µl RNase-free H2O. For 

maximal RNA recovery, the total volume of RNase-free H2O was centrifuged 

through the column twice. Samples were kept on ice throughout and all 

centrifugation steps were performed at 4ºC, 11,000g for 1 minute unless otherwise 

stated. RNA samples were then quantified using the Nanodrop spectrophotometer 

(Thermo Scientific). 

2.2.5.3 cDNA synthesis 

cDNA was synthesised from 1µg mRNA, all reagents were from Invitrogen unless 

otherwise stated. Briefly, mRNA was mixed with 1µl Oligo dT primer, 1µl 10mM 

dNTPs and RNase-free H2O, to a total volume of 12µl. Samples were then incubated 

at 65ºC for 5 minutes. After 2 minutes cooling on ice, a master mix (consisting of 
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4µl First Strand Buffer, 2µl 0.1mM DTT and 1µl RNase-free H2O), was added to 

samples, before incubation at 42ºC for 2 minutes. Samples were then mixed with 1µl 

Superscript II reverse transcriptase (or 1µl RNase-free H2O for No RT controls). 

cDNA synthesis consisted of incubation at 42ºC for 1 hour, followed by 15 minutes 

at 70ºC (to inactivate the reverse transcriptase). All samples were then diluted to a 

total volume of 100µl. 

2.2.5.4 qPCR 

Samples were prepared for qPCR by mixing with Power SYBR Green PCR Master 

Mix (Applied Biosystems, Carlsbad, CA, USA). Briefly, 5 µl of cDNA was added to 

a master mix consisting of 12.5µl Power SYBR Green, 5.5µl RNase-free H2O, and 

1µl each of 20µM forward and reverse primer, in triplicate wells for all genes of 

interest. QPCR was performed using the Applied Biosystems 7300 Real Time PCR 

System, (50°C for 2 minutes, 95°C for 10 minutes followed by 40 cycles of 95°C for 

15 seconds, 60°C for 1 minute). Primer sequences are listed in each chapter. Fold 

changes were calculated as follows: Delta (D) Ct values were calculated by 

normalising Ct values for target genes to average Ct values for GAPDH, which was 

selected as an appropriate housekeeping gene from three others (actin, B2M, 

RPS27a, GAPDH primer sequences are given in Table 2.2.3). DDCt values were then 

calculated between control conditions and experimental conditions. Fold changes 

were calculated as 2
(-DDCt)

. Statistical analyses were performed using Sigmaplot 

software. Data were analyzed using Kruskal Wallis One Way Analysis of variance 

on ranks (with Tukey test for pairwise multiple comparison procedures). 

Table 2.2.3 Primer sequence for GAPDH (housekeeping gene for all qPCR) 

Gene Forward primer sequence (5’-

3’) 

Reverse primer sequence (5’-3’) 

GAPDH TGCACCACCAACTGCTTAGC 

 

GGCATGGACTGTGGTCATGAG 

 

 

2.2.6 Immunocytochemistry 

For 2D samples, MSCs were seeded on coverslips in 24-well plates at a density of 

10,000 cells per cm
2
 in MSC expansion medium and allowed to adhere overnight. 
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3D MSCs were snap-frozen and sectioned as described in 2.2.3.1. Sections and 

coverslips were fixed in 4% paraformaldehyde for 10 minutes at room temperature, 

followed by washing in PBS. Samples were blocked in 10% serum from the animal 

in which the secondary antibody was raised. For intracellular proteins, blocking sera 

contained 0.3% Triton X-100. Primary antibody incubations were overnight at 4ºC 

(in PBS, also containing 0.3% Triton X-100 for intracellular proteins). Samples were 

then washed 3 times for 5 minutes in 1 x PBS, before incubation with fluorescently-

conjugated secondary antibodies for 1 hour at room temperature in the dark. 

Washing was repeated, before nuclear counterstaining with 4',6-diamidino-2-

phenylindole (DAPI). Samples were mounted in Vectashield Mounting Medium for 

Fluorescence (Vector Labs, Peterborough, UK). Slides were imaged using the 

LSM510 confocal imaging system (Zeiss). Antibody details are given in each 

chapter. 
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Chapter 3: Culture of human MSCs as 3D spheroids 

3.1  Introduction 

Human MSCs adopt an adherent fibroblastic morphology when seeded as 2D 

monolayers onto tissue culture plastic, and this morphology is maintained through 

repeated passage in culture (Pittenger, 1999). As previously discussed, the laboratory 

at York has developed a number of methods of 3D MSC culture, in which MSCs 

form spheroids. Up-regulation of transcription factors expressed exclusively by 

pluripotent cells was observed when 3D MSCs were cultured using the static methyl 

cellulose-based method (Elen Bray, unpublished observations). 

Pluripotency marker expression characterises pluripotent ESCs, which are 

morphologically and transcriptionally distinct from MSCs. In contrast to the 

fibroblastic form of MSCs, human ESCs grow as colonies of rounded cells, with a 

high nuclear:cytoplasmic ratio (Thomson, 1998). This distinct pluripotent 

morphology is also re-adopted by somatic cells when they undergo factor-based 

reprogramming to pluripotency (Yu et al., 2007). High nuclear physical plasticity is 

observed in pluripotent ESCs, and it is thought that this may reflect the requirement 

for migration of undifferentiated cells through established tissue blocks during 

embryogenesis in vivo. Certainly, nuclear plasticity is associated with the pluripotent 

state, and nuclear rigidity increases during differentiation. It is thought that the high 

nuclear envelope flexibility in ESCs can be attributed to its unique composition in 

pluripotent cells (Pajerowski et al., 2007). Pluripotent cells do not express the 

nuclear lamina component Lamin A/C. In cultured human ESCs Lamin A/C was first 

detected after down-regulation of the cell surface markers Tra-1-60, Tra-1-81 and 

SSEA-4, but before down-regulation of the transcription factor Oct4. However this 

differed in a mouse in vivo model, where Oct4 was down-regulated before detectable 

expression of Lamin A/C was observed (Constantinescu et al., 2006). Despite 

differences in the precise timing of Lamin A/C up-regulation, its expression can act 

as a differentiation marker, and may be required for the differentiation process. 

Indeed a recent study has demonstrated that Lamin A/C haploinsufficiency or 

knockdown in mouse ESCs affects differentiation. Whilst there was no observed 

defects in undifferentiated Lamin A/C
+/- 

ESCs or those expressing a short hairpin 
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RNA (shRNA) to Lamin A/C, upon differentiation there were defects in the 

formation of a number of tissues, linking the expression of Lamin A/C to lineage 

specification during development (Sehgal et al., 2013). In contrast, the nuclear 

lamina components Lamin B1 and Lamin B2 are expressed in both pluripotent and 

differentiated cells. It is though that increased nuclear rigidity during differentiation 

may reflect the establishment of a defined cell fate, without the need for cellular or 

chromatin plasticity, as nuclear lamina-chromatin interactions are known to regulate 

gene expression. The absence of Lamin A/C is considered a key requirement for high 

flexibility in the pluripotent nuclear envelope (Pajerowski et al., 2007).  

As described in Chapter 1, ESCs and other pluripotent cells also have a characteristic 

chromatin organisation, with reduced abundance of heterochromatin markers, and 

the presence of bivalent domains. It is considered that the nuclear lamina plays a role 

in the organisation of chromatin, and the determination of chromosome positioning, 

and through these roles can influence gene expression. In particular, heterochromatin 

can be linked to the nuclear lamina, and this interaction assists transcriptional 

repression. Loss of heterochromatin marks is observed in cells with Lamin A/C 

deficiencies, or those cells which produce mutant truncated forms of the Lamin A/C 

protein (Dechat et al., 2008).  

During the reprogramming to pluripotency of human somatic cells, one of the first 

observed events is the emergence of ESC-like colonies, which are morphologically 

distinct from the originating parental population (Yu et al., 2007).  The work 

presented in this chapter will investigate how 3D spheroid size can be regulated by 

initial cell seeding number and time in culture. It will also examine nuclear 

morphology, envelope composition and chromatin organisation, to observe any 

changes, which could act as markers of de-differentiation/reprogramming in 3D 

MSCs.   
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3.2 Aims 

The general aims of the work presented in this chapter are to investigate how 3D 

culture affects MSC cellular and nuclear morphology, viability and chromatin 

organisation, and to observe changes which could indicate de-differentiation towards 

the pluripotent state. 

Specific objectives are to: 

 Observe changes in size of 3D MSC with time in culture. 

 Assess cellular and nuclear morphology changes of MSCs cultured as 

3D spheroids. 

 Identify the effects of 3D culture on MSC viability after spheroid 

disaggregation. 

 Determine how nuclear morphology changes may affect chromatin 

organisation in 3D MSCs. 
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3.3 Methods 

3.3.1 Analysis of 3D spheroid size 

3D MSCs were seeded with initiating cell numbers of 30-, 60-, and 120,000 MSCs 

and cultured as described in section 2.2.1.5. On days 1, 3, 5 and 7 of culture, 6 

replicate spheroids for each initial seeding density were imaged using light 

microscopy and analysed using Image J software to measure spheroid diameters. 

Briefly, image files were uploaded to Image J, and the diameter of each spheroid was 

measured. Unit values in Image J were equated to µm (77.364 units = 100µm), 

which allowed the calculation of spheroid diameters in µm.  

3.3.2 Observation of nuclear morphology by TEM 

3D spheroids were seeded with initiating cell numbers of 60,000 MSCs and cultured 

as described in 2.2.1.5 for up to 5 days. On days 1 and 5 of culture, 3D spheroids 

were fixed and prepared as described in 2.2.4.1 and 2.2.4.2, before imaging using 

TEM as described in 2.2.4.4. 

3.3.3 Quantitative real time polymerase chain reaction 

2D MSCs were cultured as described in 2.2.1.3. 3D spheroids were seeded with 

initiating cell numbers of 30-, 60-, and 120,000 MSCs and cultured for up to 6 days 

as described in 2.2.1.5. Samples were isolated on days 1,3,4,5 and 6 of 3D culture. 

RNA was isolated from 2D and 3D samples before cDNA was generated and 

analysed by qPCR as described in 2.2.5. Primer sequences are shown in Table 3.3.1. 

 

Table 3.3.1 Nuclear lamina genes primer sequences 

Gene Forward primer sequence (5’-3’) Reverse primer sequence (5’-3’) 

Lamin A/C GATCAAGCGCCAGAATGGA CCCAGCCTTCAGGGTGAAC 

Lamin B AAGGCGAAGAAGAGAGGTTGAAG GCGGRRTGAGAGATGCTAACACT 
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3.3.4 Immunocytochemistry 

2D monolayers were cultured as described in 2.2.1.3. 3D spheroids were seeded with 

initiating cell numbers of 60,000 MSCs, cultured for 5 days, then snap-frozen and 

sectioned as described in 2.2.1.5 and 2.2.3.2. 2D and 3D samples were then fixed 

and stained as described in 2.2.6. Antibody details are given in Table 3.3.2. Samples 

were imaged using a Zeiss LSM 510 upright confocal microscope. 

Table 3.3.2 Nuclear antibodies 

Antibody Host Dilution Supplier Cat. no. 

Anti-Lamin B1 Goat 1:400 Santa 

Cruz  

sc-6217 

Anti-H3K4me3 Rabbit 1:200 Cell 

Signalling 

#9751 

Anti-H3K9me3 Rabbit 1:800 Abcam ab8898 

Anti-Goat IgG (Cy3 congugate) Rabbit 1:400 Sigma c-2821 

Anti-Rabbit IgG (Cy3 congugate) Sheep 1:400 Sigma c-2306 

 

3.3.5 Assay of MSC plastic-adherent growth following 3D culture 

2D MSCs were cultured to 90% confluence as described in 2.2.1.3 in 35mm dishes. 

3D spheroids were seeded with initiating cell numbers of 60,000 MSCs as described 

in 2.2.1.5. On day 5 of 3D culture 3D spheroids were disaggregated to single cells 

and then d-3D MSCs were seeded in 35mm culture dishes and cultured as described 

in 2.2.2.1. At 5, 24 and 48 hours post-disaggregation, d-3D MSC samples were fixed 

and stained with Crystal Violet as described in 2.2.2.2. All samples were then 

imaged using light microscopy. 
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3.4  Results 

3.4.1 3D MSC spheroid size is dependent on cell number and decreases with 

time in culture 

MSCs are traditionally cultured as adherent 2D monolayers on tissue culture plastic. 

However this method of culture means that nutrients are readily available to all cells 

in the population, and that cells are not susceptible to mechanical cell stress. In order 

to test the hypothesis that culturing MSCs as 3D spheroids would induce a 

physiological stress response and stimulate cytoplasmic clearance to a rejuvenated 

state, it was first necessary to examine the behaviour of MSCs cultured as 3D 

spheroids. MSCs were removed from 2D culture, seeded as spheroids containing 

different initiating numbers of cells (30-, 60-, or 120,000 cells per spheroid), and 

maintained in culture for 7 days. On days 1, 3, 5 and 7 of 3D culture, spheroids were 

imaged by light microscopy. Initial spheroid size was dependent on cell number, the 

higher the cell number, the larger the spheroid. 3D spheroids reduced in size with 

time in culture, with the greatest reduction in size seen between days 1 and 3 of 

culture (Figure 3.4.1. A). On average, spheroids seeded from 30,000 MSCs reduced 

in size from 741µm - 438µm diameter over 7 days in culture, and on day 7 the 

average spheroid diameter was 41% smaller than the average diameter on day 1. 

Spheroids seeded from 60,000 MSCs reduced in size from 1017µm - 609µm 

diameter over 7 days in culture, and on day 7 the average spheroid diameter was 

40% smaller than the average diameter on day 1. Spheroids seeded from 120,000 

MSCs reduced in size from 1474µm - 793µm diameter over 7 days in culture, and on 

day 7 the average spheroid diameter was 46% smaller than the average diameter on 

day 1 (Figure 3.4.1. B). Nutrient availability/deprivation in 3D MSCs will be 

dependent on spheroid size, and this static 3D culture method generates a wide 

repertoire of spheroid sizes by varying initial seeding number and culture time. This 

method should therefore have also resulted in varying levels of nutrient deprivation 

in the different sized spheroids. 
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  Figure 3.4.1. Analysis of changes in MSC spheroid size over time in 3D 

culture 

MSCs were cultured as 3D spheroids with initiating cell numbers of 30-, 60-, or 

120,000 cells for up to 7 days in culture. On days 1, 3, 5 and 7, 3D spheroids were 

imaged using light microscopy. Images were then subject to analysis using Image 

J to measure spheroid diameters. A) Example images of 3D MSC spheroids over 

time in culture. B) Changes in spheroid size with time in 3D culture (mean 

diameters are shown ± SEM, n = 1, 6 replicates, scale bar = 250µm). 
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3.4.2 Nuclear morphology and envelope composition changes in MSCs 

cultured as 3D spheroids 

3.4.2.1 Nuclei of MSCs cultured in 3D have a multi-lobed, distorted morphology  

In order to examine changes in 3D MSC nuclear morphology, TEM was used to 

examine sections from 3D MSCs isolated at different times during 3D culture. 2D 

MSC nuclei had a rounded regular shape, reflecting the fibroblastic morphology of 

MSCs when cultured as adherent monolayers on tissue culture plastic (Figure 3.4.2, 

left panel). In contrast, in spheroids initiated from 60,000 cells, 3D MSCs had multi-

lobed nuclei, with irregular morphologies, throughout 3D culture (Figure 3.4.2, 

centre and right panels), possibly suggestive of increased nuclear envelope flexibility 

in 3D MSCs (Only spheroids initiated from 60,000 MSCs were examined in this 

way, as this was established as the optimal 3D culture condition for markers of de-

differentiation, please see 4.4.1).  

3.4.2.2 Reduced expression of the nuclear lamina component Lamin A/C early in 

3D culture 

The observed changes in nuclear morphology in 3D MSCs may have reflected 

changes in the composition of the nuclear lamina. Lamin A/C is a nuclear lamina 

component expressed in most cell types. Only pluripotent cells do not express Lamin 

A/C, so Lamin A/C expression acts as a marker of non-pluripotent cells. In order to 

examine the expression of Lamin A/C in 3D MSCs, spheroids initiated from 30-, 60- 

or 120,000 cells were cultured for up to 6 days. In the two primary MSC donors 

examined expression of Lamin A/C was initially reduced in 3D culture. mRNA 

expression of Lamin A/C in all spheroid sizes fell below levels in 2D MSCs on day 

1, with expression levels similar across all spheroid sizes. By day 3, mRNA 

expression of Lamin A/C had started to recover in donor 1, in 30,000 and 60,000 

MSCs spheroids, although this recovery occurred slightly later (day 4) in Donor 2. 

Recovery of Lamin A/C levels towards those observed in 2D MSCs continued with 

time in 3D culture for both these spheroid sizes; by days 5 and 6 of culture, 3D 

levels were similar to those in 2D MSCs. In contrast Lamin A/C levels in 120,000 

MSC spheroids remained much lower than 2D MSC levels throughout 3D culture 

(Figure 3.4.3) 
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Figure 3.4.2. Analysis of nuclear morphology changes in MSCs cultured as 3D 

spheroids 

MSCs were cultured as 2D monolayers or 3D spheroids with initiating cell 

numbers of 60,000 cells for up to 5 days in culture. 2D MSCs were cultured on 

Thermanox coverslips (to allow monolayer sectioning). 3D spheroids were 

removed from culture at days 1 and 5, and sectioned. Samples were examined by 

transmission electron microscopy (TEM). Example images of nuclei are shown 

(scale bars = 2µm) 
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  Figure 3.4.3. qPCR analysis of expression of the nuclear lamina component 

Lamin A in MSCs over time in 3D culture 

MSCs from 2 donors were cultured as 2D monolayers and 3D spheroids with 

initiating cell numbers of 30-, 60-, or 120,000 cells for up to 6 days in culture. 

cDNA samples were generated and then analysed by qPCR. A) Expression of 

Lamin A for each donor was normalised to expression of the housekeeping gene 

GAPDH and made relative to expression levels in the donor matched 2D sample. 

Fold changes were calculated as 2
-ddCt

. B) Data from both donors was pooled and 

subject to statistical analysis, mean fold changes are shown ± SEM, * p< 0.05. 

Statistical significance is relative to expression in 2D MSCs (by Kruskal Wallis 

test, n = 2).  
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3.4.2.3 Sustained loss of the nuclear lamina component Lamin B in 3D MSCs 

Lamin B is a nuclear lamina component expressed in all cell types. To analyse 

expression of Lamin B in 3D MSCs, spheroids initiated from 30-, 60-, or 120,000 

cells were cultured for up to 6 days. In the two primary MSC donors examined, 

expression of Lamin B mRNA remained below levels in 2D MSCs throughout 3D 

culture. In donor 1, expression of Lamin B was variable and low in 60,000 and 

120,000 MSC spheroids. This pattern was also observed for donor 2 in spheroids 

initiated from 120,000 cells, although in this donor, the expression of Lamin B in 

60,000 MSC spheroids increased slightly with time in 3D culture, as did expression 

in 30,000 MSC spheroids. In contrast, an increase in Lamin B expression with time 

in 3D culture was only observed in donor 1 in spheroids initiated from 30,000 

MSCs. Notably, whilst there was a small increase in expression of Lamin B in some 

samples, the recovery of expression was not comparable to that observed for Lamin 

A/C, and expression remained well below 2D MSC levels in all 3D samples (Figure 

3.4.4). 

To examine if reduced Lamin B transcript resulted in a reduction in Lamin B protein, 

3D MSC spheroids were initiated from 60,000 cells, as this was established as the 

optimal 3D culture model for markers of enhanced potency (please see 4.4.1). 3D 

MSCs were maintained in culture for 5 days, then snap-frozen, sectioned and stained 

for Lamin B. Immunocytochemistry revealed clear strong Lamin B staining at the 

nuclear periphery in 2D MSCs. In contrast, there was no detectable Lamin B protein 

expression in 3D MSCs. Although no Lamin B protein was observed by 

immunocytochemistry, DAPI counter-staining highlighted the multi-lobed irregular 

nuclear morphology of 3D MSCs, previously shown by TEM microscopy (Figure 

3.4.5). 

There was a substantial loss of Lamin B transcript expression within one day of the 

initiation of spheroid culture. In order to examine how soon MSCs down-regulated 

expression of Lamin B, spheroids initiated from 60,000 MSCs were cultured for up 

to 24 hours. At 4 hours and 24 hours after spheroid seeding, samples were isolated 

and analysed by qPCR for expression of Lamin B. In the two primary MSC donors 

examined, there was already a prominent reduction in Lamin B expression within 4  
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  Figure 3.4.4. qPCR analysis of expression of the nuclear lamina component 

Lamin B in MSCs over time in 3D culture 

MSCs from 2 donors were cultured as 2D monolayers and 3D spheroids with 

initiating cell numbers of 30-, 60-, or 120,000 cells for up to 6 days in culture. 

cDNA samples were generated and then analysed by qPCR. A) Expression of 

Lamin B for each donor was normalised to expression of the housekeeping gene 

GAPDH and made relative to expression levels in the donor matched 2D sample. 

Fold changes were calculated as 2
-ddCt

. B) Data from both donors was pooled and 

subject to statistical analysis, mean fold changes are shown ± SEM, * p< 0.05. 

Statistical significance is relative to expression in 2D MSCs (by Kruskal Wallis 

test, n = 2).  
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Figure 3.4.5. Staining of 2D MSCs and 3D MSC spheroid sections for the 

nuclear lamina component Lamin B 

2D MSCs were cultured as monolayers on coverslips. 3D spheroids were initiated 

from 60,000 MSCs and cultured for 5 days. Spheroids were then snap-frozen and 

sectioned. All samples were fixed and stained for Lamin B (red) and DAPI (cyan), 

2º antibody only controls were also performed; these showed no positive red 

staining. Imaging was performed using confocal microscopy under identical 

conditions (example images from 2 donors shown, scale bars = 10µm). 
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hours of spheroid initiation, which continued to decrease up to 24 hours in culture 

(Figure 3.4.6). Four hours after spheroid initiation, the spheroid structure has only 

just started to aggregate together, with individual rounded cells remaining visible by 

light microscopy.  

3.4.3 MSCs can be returned to plastic-adherent culture following 

disaggregation of spheroids 

Nuclear lamina composition was altered and nuclei underwent major morphological 

changes in MSCs cultured as 3D spheroids. To examine if these nuclear structural 

alterations affected the capacity of 3D MSCs to return to 2D culture conditions, 

MSCs were cultured as 3D spheroids (initiating cell number = 60,000 MSCs) for 5 

days. On day 5 of 3D culture, spheroids were disaggregated to a single cells 

suspension using enzymatic digestion (d-3D MSCs). The resulting cell suspension 

was re-seeded onto plastic, and cultured as 2D MSCs. At 5, 24 and 48 hours after re-

seeding d-3D MSCs were fixed and stained with crystal violet solution. A sample of 

the originating 2D MSC population was also stained. 2D MSCs had a typically flat, 

fibroblastic morphology. At 5 hours after re-seeding, d-3D MSCs were small and 

rounded, but had adhered to plastic, so remained viable immediately after spheroid 

disaggregation. 24 hours after seeding, there appeared to be slightly fewer cells 

remaining, although there was a clear change in morphology, with d-3D MSCs 

adopting a more fibroblastic morphology. This morphology change continued to 48 

hours after re-seeding, where d-3D MSCs had continued to spread into a flatter more 

typical MSC morphology. At this point there also appeared to be a small increase in 

cell numbers, suggesting that d-3D MSCs retain proliferative capacity after spheroid 

disaggregation (Figure 3.4.7).  
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Figure 3.4.6. qPCR analysis of expression of the nuclear lamina component 

Lamin B in MSCs following 3D spheroid seeding 

MSCs from 2 donors were cultured as 2D monolayers and 3D spheroids with 

initiating cell numbers of 60, 000 cells for up to 24 hours in 3D culture. cDNA 

samples were generated and then analysed by qPCR. A) Expression of Lamin B 

for each donor was normalised to expression of the housekeeping gene GAPDH 

and made relative to expression levels in the donor matched 2D sample. Fold 

changes were calculated as 2
-ddCt

. B) Data from both donors was pooled and 

subject to statistical analysis, mean fold changes are shown ± SEM, * p< 0.05. 

Statistical significance is relative to expression in 2D MSCs (by Kruskal Wallis 

test, n = 2).  
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Figure 3.4.7. Analysis of MSC behaviour 

following disaggregation of 3D spheroids 

and return to 2D culture  

MSCs were cultured as 2D monolayers and 

3D spheroids with initiating cell numbers 

of 60,000 cells for 5 days in culture. On 

day 5 of 3D culture, 3D spheroids were 

disaggregated to a single cell suspension 

(d-3D MSCs) using enzymatic digestion 

and re-seeded onto tissue culture plastic. 

Samples were isolated at 5, 24 and 48 

hours following spheroid disaggregation. 

2D MSC and d-3D MSC samples were 

fixed and stained with crystal violet 

staining solution, and then imaged using 

light microscopy. (Example images shown, 

scale bar = 100µm).  
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3.4.4 Reduced staining for the heterochromatin marker H3K9me3 in 3D 

MSCs 

3D MSCs underwent major nuclear morphology changes during 3D culture, but 

remained viable after spheroid disaggregation. Linking of chromatin to the nuclear 

lamina can regulate gene expression, so changes in nuclear lamina composition and 

morphology may lead to changes in chromatin organisation. To examine this, MSC 

spheroids initiated from 60,000 cells were cultured for 5 days. On day 5, spheroids 

were snap-frozen, sectioned and stained for histone markers. Euchromatin is 

permissive to transcription and is marked by the presence of the histone modification 

H3K4me3 (histone 3 trimethylated at lysine 4). Comparative staining of 2D MSCs 

and 3D MSC sections showed little difference in H3K4me3 staining, with relatively 

bright staining seen throughout nuclei of MSCs cultured in both conditions (Figure 

3.4.8). A more notable difference was observed when MSCs were stained for 

H3K9me3 (histone 3 trimethylated at lysine 9). H3K9me3 is a marker of 

heterochromatin, which has a conformation that is repressive to transcription. 

Reduction in H3K9me3 has been reported in pluripotent cells. Whilst 2D MSCs 

stained strongly for H3K9me3, with a typical punctate staining pattern, the staining 

of 3D MSC sections was much fainter at identical imaging conditions (Figure 3.4.9). 

This may suggest a reduction in detectable H3K9me3 when MSCs are cultured as 

3D spheroids. 
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Figure 3.4.8. Staining of 2D MSCs and 3D MSC spheroid sections for the 

euchromatin marker H3K4me3 

2D MSCs were cultured as monolayers on coverslips. 3D spheroids were initiated 

from 60,000 MSCs and cultured for 5 days. Spheroids were then snap-frozen and 

sectioned. All samples were fixed and stained for H3K4me3 (red) and DAPI 

(cyan), 2º antibody only controls were also performed; these showed no positive 

red staining. Imaging was performed using confocal microscopy under identical 

conditions (example images from 2 donors shown, scale bars = 10µm). 
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  Figure 3.4.9. Staining of 2D MSCs and 3D MSC spheroid sections for the 

heterochromatin marker H3K9me3 

2D MSCs were cultured as monolayers on coverslips. 3D spheroids were initiated 

from 60,000 MSCs and cultured for 5 days. Spheroids were then snap-frozen and 

sectioned. All samples were fixed and stained for H3K9me3 (red) and DAPI 

(cyan), 2º antibody only controls were also performed; these showed no positive 

red staining. Imaging was performed using confocal microscopy under identical 

conditions (example images from 2 donors shown, scale bars = 10µm). 
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3.5 Discussion 

MSCs are traditionally cultured as monolayers on tissue culture plastic. In these 

conditions nutrients and oxygen are readily available, and sufficient space for cell 

growth is maintained through repeated passaging in culture.  In contrast, when MSCs 

are cultured as 3D spheroids, they are subject to mechanical forces and enhanced 

cell-cell contacts by growing as a cell aggregate. As well as this, there will be a 

gradient of nutrient availability across the spheroid structure. Previous work in this 

laboratory demonstrated that 3D MSCs do not express the proliferation marker Ki67 

whilst in 3D culture, so appeared to have adopted a quiescent state, and MSC 

spheroids did not increase in size with time in culture (Elen Bray, unpublished 

results). It was demonstrated here that MSC spheroid size is understandably 

dependent on initial cell seeding density, with more cells resulting in a bigger 

spheroid. Furthermore, MSC spheroids reduced in size over time in 3D culture, with 

between 40 – 46% reductions in spheroid diameter over 7 days. This change in size 

with time in culture meant that not only would MSCs in 3D be exposed to nutrient 

gradients, but that these gradients would vary, as spheroid size changed with time in 

culture.  Consequently, this screen, varying both initial cell number and time in 

culture, generated a large repertoire of spheroid sizes, which I hypothesised would 

induce varying degrees of cell stress due to nutrient deprivation. Although MSCs in 

3D culture would be experiencing varying nutrient availability across the spheroid 

structure, there was no evidence to suggest that spheroids had a necrotic core caused 

by nutrient deprivation. Spheroids generated from 60,000 MSCs cultured for 5 days 

were not cystic, samples for both TEM and immunocytochemistry consisted of 

complete sections with no obvious internal cyst, which would have suggested a 

necrotic core. Lack of cell death in the centre of spheroids suggested that the 

magnitude of stress imposed on MSCs by 3D culture was sub-lethal.  

Using TEM microscopy, it was revealed that nuclei in 3D MSCs had undergone 

major morphological changes. Whilst the nuclei of 2D MSCs were regular and 

rounded, nuclei observed in 3D MSCs were multi-lobed and irregular in shape. This 

distorted nuclear morphology was observed throughout 3D culture in 60,000 MSC 

spheroids. 3D MSCs showed a prominent reduction of Lamin A/C transcript early in 

3D culture, however in both 30-, and 60,000 MSC spheroids, levels of Lamin A/C 
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transcript increased with time in 3D culture. By day 5/6, levels had returned to those 

observed in 2D MSCs. Very low level/absence of Lamin A/C expression can act as a 

marker of pluripotency (Constantinescu et al., 2006). However, Lamin A/C down-

regulation was transient in 3D MSCs, so did not indicate a sustained shift to a 

pluripotent state. Given that reprogramming somatic cells to a reprogrammed state 

occurs over a period of days to weeks, rather than hours, it is also unlikely that very 

low levels of Lamin A/C early in 3D culture represented a transient passage through 

a pluripotent state. Early loss of Lamin A/C is more likely to reflect the major 

structural alterations MSCs undergo on entry to 3D culture, and reduced Lamin A/C 

in our model may allow for increased nuclear envelope flexibility early in 3D 

culture. Absence of Lamin A/C is considered an important factor in the high level of 

flexibility of the pluripotent nuclear envelope (Pajerowski et al., 2007).  

In contrast there was sustained down-regulation of the expression of Lamin B, 

another nuclear lamina component, during 3D culture. Lamin B transcript was 

significantly down-regulated, and Lamin B protein was undetectable by 

immunocytochemistry in 3D MSCs. Recently, loss of Lamin B has been identified as  

a both a biomarker (Dreesen et al., 2013; Freund et al., 2012; Shimi et al., 2011) and 

a trigger (Shimi et al., 2011) of cellular senescence. However these findings have 

proved contradictory, as another study demonstrated that in mutant mice with skin 

keratinocyte knockouts for both Lamin B1 and Lamin B2, the cells proliferated 

normally, and the skin and hair development in knockout mice was equivalent to 

wild type (Yang et al., 2011). So the absence of Lamin B does not affect cellular 

proliferation or trigger senescence in some cell types. Indeed it was demonstrated in 

mouse ESCs that both Lamins B1 and B2 are dispensable for self-renewal and 

pluripotency. ESCs maintained normal marker expression, colony morphology, and 

karyotype even in the absence of any Lamin B proteins. The nuclear envelopes of 

Lmnb1
-/-

 Lmnb2
-/-

 ESCs were also normal and indistinguishable from wild type 

ESCs (Kim et al., 2011). As previously mentioned, ESCs do not express Lamin A/C, 

so pluripotent cells can maintain self-renewal and pluripotency in the absence of any 

Lamins. It was demonstrated here that within 4 hours of spheroid seeding, Lamin B 

transcript levels had fallen substantially. It is unlikely that transfer to 3D culture had 

triggered such an immediate onset of senescence. Furthermore it was possible to 

disaggregate MSC spheroids to a single cell suspension (d-3D MSCs) which could 
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be re-seeded on tissue culture plastic. Five hours after re-seeding, d-3D MSCs 

appeared as small rounded cells, which maintained plastic adherence. After 24 hours 

there was a small reduction in adherent MSCs, indicating that some cells were 

unable to survive the disaggregation process. However the remaining cells had begun 

to adopt a more typical MSC fibroblast-like morphology. This morphology change 

continued to 48 hours, and by this point there appeared to be a small increase in cell 

numbers, indicating that d-3D MSCs retained proliferative capacity. Taken together 

these results indicate that down-regulation of Lamin B in our 3D model does not 

mark or trigger the onset of cellar senescence. Rather 3D MSCs are quiescent, and 

retain their ability to proliferate when re-seeded onto plastic. In 3D MSCs, down-

regulation of both nuclear lamina components early in 3D culture may provide 

increased nuclear envelope flexibility and permit the major structural changes which 

are initiated by removal from plastic and seeding in 3D culture. 

Whilst nuclear envelope morphology and composition in MSCs had been changed 

by 3D culture, there was no evidence from these changes to suggest that 3D MSCs 

had undergone de-differentiation or reprogramming towards pluripotency. However, 

as previously discussed, pluripotent cells have a distinct chromatin state, 

characterised by an increase in histone modifications which mark euchromatin, and a 

decrease in histone markers of repressive heterochromatin, which can also be used to 

track reprogramming to pluripotency. Immunocytochemistry was used to analyse the 

expression of two different histone modifications, H3K4me3 (a euchromatin marker) 

and H3K9me3 (a heterochromatin marker which is expressed at low levels in 

pluripotent cells). There was little detectable difference in H3K4me3 staining 

between 2D and 3D MSCs. Relatively strong staining was observed throughout 

nuclei of both 2D and 3D MSCs, indicative of transcriptionally permissive genome 

regions in both conditions. There was a greater difference observed when staining 

for H3K9me3. Whilst 2D MSCs showed relatively strong nuclear staining, this was 

much fainter in 3D MSCs, which could indicate changes in abundance or 

organisation of the H3K9me3 modification. 2D MSCs showed a staining pattern 

typical of a more differentiated cell type, with H3K9me3 foci (observed by strong 

punctate staining) marking repressed genomic regions. Low levels of global 

H3K9me3 are observed in pluripotent ESCs, and they lack the distinct H3K9me3 

foci observed in more differentiated cells. Rather, H3K9me3 staining appears in a 
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more diffuse pattern, which is suggested to indicate a less organised, more dynamic 

chromatin organisation. It is proposed that as differentiation progresses and genes 

become modified by repressive histone marks, chromatin becomes organised into 

distinct genomic regions, marked by the presence of H3K9me3 foci (Meshorer et al., 

2006). Although immunocytochemistry suggested a reduction in H3K9me3 levels in 

3D MSCs, the staining pattern was dissimilar to that generally observed in 

pluripotent cells. The data presented here is therefore not sufficient to confirm wide 

scale chromatin alterations in 3D MSCs. Further quantitative analysis, and gene 

targeted approaches may provide evidence for significant chromatin remodelling 

which has been driven by transfer to 3D culture. 

In conclusion, the work presented in this chapter demonstrates that MSCs can be 

cultured in a self-assembling 3D structure, known as a spheroid. 3D spheroid size is 

dependent on initiating seeding number of cells, and reduces with time in culture, 

indicating that MSCs do not proliferate in 3D. 3D MSCs undergo nuclear structural 

changes, including alterations to the composition of the nuclear lamina, and may also 

have reduced abundance/altered distribution of H3K9me3, a histone modification 

associated with heterochromatin. It is possible that altered distribution may be due to 

the nuclear morphology and lamina composition changes already described, as the 

nuclear lamina is known to interact with and regulate heterochromatin organisation 

within the nucleus (Dechat et al., 2008). Loss of Lamin B can be a marker of 

senescence onset, although in our 3D system, MSCs down-regulate Lamin B 

expression, whilst maintaining viability and proliferative capacity. It was noted in 

one study that Lamin B1 depletion in fibroblasts resulted in reduced proliferation, 

but not in increased cellular senescence. Strikingly in Lamin B1-depleted fibroblasts, 

senescence associated biomarkers were only observed when cells were exposed to 

cell stress by culture at low seeding density (Dreesen et al., 2013). When considered 

in the light of these findings, the results presented here could highlight Lamin B 

reduction as a marker of the onset of cell stress, which if not countered by pro-

survival mechanisms, would lead to senescence and apoptotic cell death. However if 

cell stress remained at a sub-lethal rather than lethal level, cells may be able to 

overcome the onset of stress-induced cell death by triggering survival mechanisms. 

This could also explain why Lamin B expression appeared to stabilise or rise slightly 

with time in 3D culture. During 3D culture, MSC spheroids reduce in size, possibly 
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by recycling of cytoplasmic contents via a pro-survival response stimulated by cell 

stress. Taken together, the work presented in this chapter demonstrates that 3D 

MSCs undergo some changes to nuclear morphology, envelope composition and 

chromatin organisation, but none of these changes provide conclusive evidence of 

de-differentiation or reprogramming towards pluripotency. Work presented in the 

later chapters of this thesis will analyse 3D MSCs further, to investigate markers of 

de-differentiation, and look for evidence of autophagy as the mechanism driving this 

process. 
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Chapter 4: Assessment of the potency of MSCs cultured as 

3D spheroids 

4.1 Introduction 

As previously described, a complex network of transcription factors and chromatin 

remodelling complexes, work together to maintain ESCs in an undifferentiated, self-

renewing state (Boyer et al., 2005). Factors involved in pluripotency regulation are 

also amongst those capable of inducing reprogramming of fibroblasts to the 

pluripotent state (Takahashi et al., 2007; Takahashi and Yamanaka, 2006; Yu et al., 

2007). Reprogramming cocktails, including the oncogene c-Myc, can result in the 

occurrence of tumours, at relatively high frequency, in offspring produced by 

blastocyst injection of iPSCs (Okita et al., 2007). However, whilst c-Myc is 

dispensable for reprogramming of both mouse and human fibroblasts, the efficiency 

of iPSC generation is much lower in the absence of c-Myc (Nakagawa et al., 2008; 

Wernig et al., 2008). Whilst some groups have explored the use of small molecules 

which regulate chromatin organisation and cell signalling, others have attempted to 

identify optimal cell types for reprogramming to pluripotency. Although the 

expression of reprogramming factors in fibroblasts is undetectable/extremely low, 

neural stem cells (NSCs) already express c-Myc, Klf4 and Sox2 at levels equivalent 

to those in pluripotent stem cells, making them ideal candidates for reprogramming 

to pluripotency (Kim et al., 2008). Endogenous expression of these genes means that 

it is possible to reprogramme NSCs using fewer exogenous factors.  It was possible 

to generate iPSCs from mouse NSCs using just two factors, Oct4 in combination 

with either c-Myc (OM) or Klf4 (OK). Sox2 was dispensable for reprogramming of 

NSCs, most likely because endogenous expression of Sox2 was around 2-fold higher 

than expression in mouse ESCs. Both OM- and OK-derived iPSCs had similar 

endogenous expression of ESC markers to mouse ESCs. Furthermore, the 

pluripotency of both was confirmed by teratoma formation. As previously described, 

c-Myc can enhance tumourigenesis in offspring, so OK-derived iPSCs were selected 

for further analysis. They were capable of chimera contribution, and similar to three 

factor-derived iPSCs (without c-Myc), showed no tumour formation in early stage 

F1 progeny (Kim et al., 2008). One year later, the same group demonstrated the 

generation of iPSCs from mouse NSCs with a single factor, Oct4. One factor-derived 
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iPSCs had highly similar gene expression profiles to ESCs, and were pluripotent, 

evidenced by in vitro differentiation studies, teratoma formation and chimera 

contribution (Kim et al., 2009b). Following on from the work in mice, this group 

next demonstrated that human fetal NSCs can also be reprogrammed to pluripotency 

by both two-factor (OK) reprogramming and by Oct4 (O) alone. Global gene 

expression profiling revealed that both OK- and O-derived iPSCs clustered closely 

with human ESC lines, and separate from parental NSCs. Pluripotency of OK- and 

O-derived iPSCs was confirmed in vitro and in vivo (Kim et al., 2009a). The work of 

Kim and colleagues highlighted the possibilities of using fewer factors for 

reprogramming to pluripotency, by utilising cell types which already express some 

of the factors required for this process. Whilst this represented a major technological 

advance, the accessibility of human NSCs means that they are not the most viable 

option for use in cell-based therapies. Dermal papilla cells are cells of mesenchymal 

origin located in the hair follicle, which can be isolated with relative ease. Similar to 

NSCs, these cells also express endogenous Klf4, c-Myc and Sox2. It was possible to 

reprogramme mouse dermal papilla cells to pluripotency using two factor OK and 

single factor O reprogramming. iPSCs derived from both OK and O reprogramming 

of dermal papilla cells are pluripotent, evidenced by teratoma formation and 

germline contribution (Tsai et al., 2011; Tsai et al., 2010). Notably, Oct4 alone was 

also sufficient to reprogramme human adult keratinocytes to pluripotency, when 

used in combination with a small molecule cocktail. Keratinocytes are also 

accessible cells isolated from the skin or hair follicle, and endogenously express Klf4 

and c-Myc. When infected with exogenous Oct4, and exposed to a cocktail of small 

molecules regulating cell signalling pathways, chromatin organisation and 

metabolism, iPSCs colonies were generated. These cells expressed endogenous 

pluripotency factors, and had an ESC-like DNA methylation profile. Furthermore, 

they were capable of embryoid body and teratoma formation, evidence of their 

pluripotential (Zhu et al., 2010). These studies demonstrate that it is possible to 

apply the principles of fewer-factor reprogramming to a more accessible cell type, 

which may improve the clinical relevance of iPSC technology. It has also recently 

been demonstrated that the same type of factor-based approach can be used for direct 

differentiation – the differentiation of one somatic cell type to another, by exogenous 

expression of relevant transcription factors, so the principles of factor-based 

reprogramming can also be applied when a transition to full pluripotency is not 
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desired or required (Huang et al., 2011; Ieda et al., 2010; Szabo et al., 2010; 

Vierbuchen et al., 2010). 

The work presented in this chapter will investigate optimal 3D culture conditions for 

the induction of de-differentiation towards pluripotency in human MSCs, through 

assays and marker analysis commonly used to confirm pluripotency in human cells. 

It will also examine the suitability of MSCs ‘primed’ by optimal 3D culture, for 

traditional factor-based reprogramming techniques. Finally it will seek to examine 

the extent of de-differentiation driven by optimal 3D culture conditions, and identify 

markers to confirm the developmental position of MSCs cultured in 3D. 
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4.2 Aims 

The aims of the work presented in this chapter are to assess the extent to which 3D 

culture is driving de-differentiation of MSCs, to examine the effects of 3D culture on 

the efficiency of factor-based reprogramming in human MSCs, and to use marker 

expression to establish the developmental position of 3D MSCs. 

More specifically, the objectives are to: 

 Determine the effects of 3D culture on the expression of pluripotency-

related factors in MSCs  

 Assess 3D MSC pluripotency by in vivo teratoma assays  

 Identify expression of reprogramming factors in MSCs and other cell 

types used in factor-based reprogramming to pluripotency 

 Derive iPSCs by factor-based methods from both 2D and 3D MSCs to 

allow comparison of the efficiency of iPSC derivation 

 Establish suspension culture methods for 3D MSCs, aimed at 

maintaining pluripotency factor expression and stimulating 

proliferation 

 Assess the expression of known early mesoderm markers during 3D 

culture 

 Examine mesodermal potency of MSCs in vitro and in vivo 

 Investigate the effects of 3D culture on culture-aged senescent MSCs 
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4.3  Methods 

4.3.1 Quantitative real time polymerase chain reaction (qPCR) 

2D MSCs were cultured as described in 2.2.1.3. 3D spheroids were seeded with 

initiating cell numbers of 30-, 60-, and 120,000 MSCs and cultured for up to 6 days 

as described in 2.2.1.5. Samples were isolated for RNA extraction on days 1,3,4,5 

and 6 of 3D culture. For qPCR using disaggregated 3D MSCs (d-3D MSCs, re-

plated on plastic), 3D spheroids were initiated from 60,000 MSCs, and maintained in 

culture for 5 days as described in 2.2.1.5. On day 5, 3D MSCs were disaggregated to 

single cells and re-seeded onto tissue culture plastic as described in 2.2.2.1. d-3D 

MSCs were maintained as described for 2D MSCs in 2.2.1.3, and samples were 

isolated at 5, 24 and 48 hours after re-seeding. HDF monolayers were cultured as 

described in 2.2.1.4, and samples were analysed at 90% confluence. H9 human ESCs 

were cultured as described in 2.2.1.6. For early mesoderm markers 3D spheroids 

were seeded with 60,000 MSCs and cultured for up to 5 days as described in 2.2.1.5. 

Samples were isolated for RNA extraction on days 1, 3, and 5 of 3D culture.  RNA 

was extracted from all 2D, 3D and d-3D samples before cDNA was generated and 

analysed by qPCR as described in 2.2.5. Primer sequences are shown in Table 4.3.1. 

For comparison of expression levels in MSCs versus ESCs (Figure 4.4.10), 

following calculation of 2
(-DDCt)

, fold changes were then converted to positive and 

negative numbers using the formula: IF(X>=1,(X),(-1/X)), where X = 2
(-DDCt)

, in 

order to more easily visualise expression differences in the different samples. 
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Table 4.3.1 Pluripotency and reprogramming factor primer sequences 

Gene Forward primer sequence (5’-

3’) 

Reverse primer sequence (5’-3’) 

Oct4 CCCACACTGCAGCAGATCAG CACACTCGGACCACATCCTTCT 

Nanog CCTCCATGGATCTGCTTATTCAG TGCGACACTATTCTCTGCAGAAG 

Sox2 GAGAACCCCAAGATGCACAAC CGCTTAGCCTCGTCGATGA 

Telomerase CATTTTTCCTGCGCGTCAT GCGTTCTTGGCTTTCAGGAT 

Klf4 CGCCACCCACACTTGTGAT GTGCCTTGAGATGGGAACTCTT 

c-Myc CGTCTCCACACATCAGCACAA TCTTGGCAGCAGGATAGTCCTT 

Brachyury  GGGTCCACAGCGCATGAT 

 

TGATAAGCAGTCACCGCTATGAA 

Goosecoid GATGCTGCCCTACATGAACGT 

 

GACAGTGCAGCTGGTTGAGAAG 

KDR TGATGCCAGCAAATGGGAAT 

 

CCACGCGCCAAGAGGCTTA 

MIXL1 AAGCCCCAGCTGCCTGTT 

 

CCCTCCAACCCCGTTTG 

CXCR4 CGCCTGTTGGCTGCCTTA 

 

ACCCTTGCTTGATGATTTCCA 

 

 

4.3.2 Immunocytochemistry 

3D spheroids were seeded with initiating cell numbers of 60,000 MSCs, cultured for 

5 days, then snap-frozen and sectioned as described in 2.2.1.5 and 2.2.3. 3D samples 

were then fixed and stained as described in 2.2.6. Antibody details are given in Table 

4.3.2. Samples were imaged using a Zen 510 upright confocal microscope. 
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Table 4.3.2 Antibodies used in immunocytochemistry 

Antibody Host Dilution Supplier Cat. no. 

Anti-Oct4A Rabbit 1:100 Cell 

Signalling  

#2840 

Anti-Nanog Rabbit 1:40 Cell 

Signalling 

#3580 

Anti-Brachyury Goat 1:15 R and D 

Systems  

AF2085 

Anti-KDR Mouse 1:25 R and D 

Systems 

MAB3571 

Anti-CXCR4 Rabbit 1:100 Chemicon 

(Millipore) 

AB1846 

Anti-Rabbit IgG (Alexa 594 

conjugate) 

Rabbit 1:500 Life 

Technologies 

A-11012 

Anti-Goat IgG (Cy3 congugate) Rabbit 1:400 Sigma c-2821 

Anti-Rabbit IgG (Cy3 congugate) Sheep 1:400 Sigma c-2306 

Anti-Mouse IgG (Alexa488 

congugate) 

Goat 1:500 Life 

Technologies 

A-11001 

 

4.3.3 Flow cytometry 

2D MSCs were cultured as described in 2.2.1.3. 3D spheroids were seeded with 

initiating cell numbers of 60,000 MSCs and cultured for 5 days as described in 

2.2.1.5. 2102Ep embryonal carcinoma cells were cultured as described in 2.2.1.7. 2D 

MSCs and 2102Ep cells were harvested by trypsinisation as described in 2.2.1.3. 3D 

MSCs were disaggregated to single cells (d-3D MSCs) as described in 2.2.2.1, and 

pipetted through a 25 gauge needle to remove any residual cell clumps. To enable 

intracellular staining, all samples were fixed in 4% PFA for 10 minutes at room 

temperature. Samples were chilled for 1 minute, and then permeabilised by 

incubation in 90% methanol for 30 minutes on ice. Samples were then washed twice 

in incubation buffer (0.5% BSA in PBS), before 10 minutes blocking in incubation 

buffer at room temperature. Samples were incubated on ice with primary antibodies 

for 45 minutes. See Table 4.3.3 for antibody details. Samples were then washed in 
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incubation buffer followed by centrifugation, before incubation on ice in the dark 

with secondary antibodies for 45 minutes. Finally, samples were washed with 

incubation buffer, and re-suspended in 500µl incubation buffer before being 

analysed on a Beckman Coulter CyAn ADP analyser. Secondary antibody only 

controls were also performed for all samples. 

Table 4.3.3 Antibodies for flow cytometry 

Antibody Host Dilution Supplier Cat. no. 

Anti-Oct4A Rabbit 1:100 Cell 

Signalling  

#2840 

Anti-Nanog Rabbit 1:100 Cell 

Signalling 

#3580 

Anti-Sox2 Rabbit 1:100 Cell 

Signalling 

#3579 

Anti-Rabbit IgG (Alexa 488 

conjugate) 

Rabbit 1:200 Life 

Technologies 

A-11034 

 

4.3.4 Teratoma assay 

For the teratoma assay, 2D MSCs were cultured as described in 2.2.1.3. 3D 

spheroids were seeded with initiating cell numbers of 60,000 MSCs and cultured for 

5 days as described in 2.2.1.5. The assay was performed by Reinnervate Ltd, who 

cultured and prepared mouse ESC controls prior to implantation. All work was 

carried out in accordance with ethical guidelines under the Home Office project 

licence of Reinnervate Ltd. 2D MSCs and mouse ESCs were trypsinised, and 

counted before 5x10
5 

cells were injected. 50 MSC spheroids were injected for 3D 

samples. Injections were performed subcutaneously on adult male nude mice. After 

12 weeks, mice were sacrificed, and samples were immediately dissected and fixed, 

before sectioning on a Leica RM2165 rotary microtome at 5µm. Sections were oven 

dried at 40ºC prior to histological staining with haematoxylin and eosin and Massons 

Trichrome.  
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4.3.4.1 Haematoxylin and eosin staining 

After sectioning samples were stained as described in Table 4.3.4. Samples were 

then mounted in DPX mounting media. 

Table 4.3.4 Haematoxylin and eosin staining of tissue sections 

Procedure/Reagent  Time  

Histoclear 5 minutes 

Absolute alcohol 2 minutes 

95% alcohol 1 minutes 

70% alcohol 1 minutes 

Distilled Water 1 minutes 

Mayers Haematoxylin 5 minutes 

Distilled water 30 seconds 

Alkaline Alcohol 30 seconds 

70% Alcohol 30 seconds 

95% Alcohol 30 seconds 

Eosin 30 seconds 

95% Alcohol 10 seconds 

95% Alcohol 10 seconds 

Absolute Alcohol 15 seconds 

Absolute Alcohol 30 Seconds 

Histoclear 3 minutes 

Histoclear 3 minutes 

 

4.3.4.2 Massons Trichrome staining 

After sectioning samples were stained as described in Table 4.3.5. Samples were 

then mounted in DPX mounting media. 

Table 4.3.5 Massons Trichrome staining of tissue sections 

Procedure/Reagent Time  

Histoclear 5 minutes 

Rehydrate: 100% ethanol 2 minutes 

                      95% ethanol 1 minutes 

                     70% ethanol 1 minutes 

Distilled water  1 minutes 

Weigerts Iron Haematoxylin 25 minutes 

Rinse in running tap water 10 minutes 

Rinse in distilled water  

Biebrich Scarlet 10 minutes 

Rinse in distilled water  

Phosphomolybdic/phosphotungstic acid 15 minutes 
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Aniline Blue 7 minutes 

Rinse distilled water  

1% acetic acid 3 minutes 

Rinse distilled water  

Dehydrate 95% ethanol 10 seconds 

                 100% ethanol 10 seconds 

Histoclear 3 minutes 

 

4.3.5 Generation of iPSCs 

2D MSCs were cultured as described in 2.2.1.3. 3D spheroids were seeded with 

initiating cell numbers of 60,000 MSCs and cultured for 5 days as described in 

2.2.1.5. 2D MSCs were trypsinised and re-seeded in 6-well plates, 10,500 cells per 

cm
2
. 3D MSCs were disaggregated to single cells as described in 2.2.2.1, before 

counting and seeding as above for 2D MSCs. Duplicate wells were seeded for each 

sample. 2 wells for each sample were also seeded for GFP transduction controls. 5 

hours after seeding, medium was removed and replaced with transduction media 

(DMEM high glucose supplemented with 10% FBS, 100 units/ml penicillin and 

100µg/ml streptomycin and 6ug/ml polybrene) containing lentiviral vectors for 

OKSM (Stemgent Lentivirus set:hOKSM ST00044) or GFP (Life Technologies, 

A1357701). Samples were incubated with lentivirus for 22 hours, and medium was 

refreshed every other day. For GFP-transduced cells, wells were washed with PBS, 

then imaged using both brightfield and fluorescence microscopy. 10 images per 

sample were taken, before GFP images were inverted. Samples were counted for 

total cells, and GFP+ cells, and these values were used to calculate transduction 

efficiencies as detailed below: 

Transduction efficiency = (No. of GFP+ cells/Total cell no.) x 100 

For OKSM-transduced cells, 5 days after transduction, infected cells were removed 

from plastic with TrypLE, counted and 10,500 cells per cm
2
 re-seeded in 6-well 

plates onto irradiated MEF feeder cells in ESC media (see 2.2.1.6). Duplicate wells 

were seeded for each sample. Media changes were performed daily until day 18 

(Donor 1) and day 27 (Donor 2) after transduction, when samples were fixed and 

stained as described in 2.2.6. Antibody details are given in Table 4.3.2. Samples 

were imaged using a Zeiss LSM 710 inverted microscope. This involved a tile 
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scanning method, which then generated a composite image of the whole well. For 

each sample, Oct4A+ colonies were manually counted. This number was then used 

to calculate a reprogramming efficiency, using previously calculated transduction 

efficiencies as detailed below: 

No. of transduced cells per sample =  

(transduction efficiency (in %)/100) x total cells (which is 20,000 for all samples) 

Reprogramming efficiency = (No. of Oct4A+ colonies/No. of transduced cells) x 100 

OKSM-transduced wells were also imaged conventionally using the Zeiss LSM 710 

inverted microscope for higher magnification images of individual colonies. 

4.3.6 Semi-solid culture of MSCs 

For semi-solid expansion studies, MSCs were cultured as 60,000 cell spheroids for 5 

days as described in 2.2.1.5, before disaggregation to very small cell clumps/single 

cells as described in 2.2.2.1, although here incubation time was reduced to 15 

minutes to ensure maximum cell viability. d-3D MSCs were then re-suspended in 

100µl DMEM high glucose before mixing with semi-solid media (either DMEM 

high glucose supplemented with 5% FBS and 1% methyl cellulose or ESC media 

supplemented with 1% methyl cellulose.) d-3D MSCs were cultured in non-adherent 

50mm dishes (Sterilin) at 37°C, 5% CO2 for 7 days, with no media change or 

refreshment. Samples were imaged by light microscopy. For RNA extraction, d-3D 

MSCs were isolated by washing with PBS, then pelleted by centrifugation, before 

RNA extraction was performed using Trizol. Briefly, 500µl Trizol was added to each 

sample, before samples were frozen overnight at -80ºC. Samples were then brought 

to room temperature and 100µl chloroform was added, before samples were 

vortexed, then incubated for 5 minutes at room temperature. Samples were next 

centrifuged at 12000g for 20 minutes at 4ºC, before the upper aqueous phase was 

transferred to a new tube, and mixed with 500µl 100% isopropanol by vortexing. 

Following 30 minutes incubation at 4ºC, samples were centrifuged at 12000g, 4ºC 

for 15 minutes. After isopropanol removal, 1ml of 75% ethanol was added and 

samples were centrifuged for 5 minutes at 12000g. Ethanol was removed, and 
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samples were air dried briefly before re-suspension in 12µl RNase-free H2O. cDNA 

samples were generated and analysed by qPCR as described in 2.2.5.3 and 2.2.5.4.  

Primers are listed in Table 4.3.1. 

4.3.7 Analysis of Brachyury+ cell percentage and position using Volocity 

A fluorescent image of a single section stained with DAPI and Brachyury as 

described above was analysed using Volocity software. Due to the nuclear location 

of Brachyury staining, it was possible to establish thresholds by which the software 

identified individual nuclei. The number of Brachyury+ cells was calculated as a 

percentage of the total cells (DAPI+). The software was then used to identify and 

highlight the highest- and lowest-intensity Brachyury+ cells, to track their 

distribution throughout the spheroid structure. 

4.3.8 Haematopoietic induction of MSCs 

2D MSCs were cultured as described in 2.2.1.3. 3D spheroids were seeded with 

initiating cell numbers of 60,000 MSCs and cultured for 5 days as described in 

2.2.1.5. On day 5 2D MSCs were trypsinised to a single cell suspension, and 3D 

MSCs were disaggregated to a single cell suspension (d-3D MSCs) as described in 

2.2.2.1. 2D and d-3D MSCs were counted and seeded in MethoCult Enriched (Stem 

Cell Technologies, H4435), according to manufacturer’s instructions. Briefly cells 

were seeded at 2100 cells per cm
2
 in 50mm dishes (Sterilin) in complete MethoCult 

Enriched medium. Samples were maintained at 37ºC, 5% CO2, for 16 days. At this 

point samples were imaged using bright field microscopy, to assess the formation of 

haematopoietic-like colonies. Dishes were performed in duplicate for each sample 

from 2 different primary MSC donors.  

4.3.9 Assessment of the effect of 3D culture on mitotically inactive MSCs 

2D MSCs were cultured as described in 2.2.1.3, with repeated passaging, until they 

ceased to actively proliferate. Cells were counted at each passage until a stable, non-

proliferative point was reached, but before cells began to undergo apoptosis. 3D 

spheroids were seeded with initiating cell numbers of 60,000 MSCs and cultured for 

5 days as described in 2.2.1.5. 3D MSCs were disaggregated to a single cell 



98 

suspension and re-seeded onto plastic as described in 2.2.2.1. Samples of cells 

immediately before 3D culture and 48 hours following disaggregation and re-seeding 

were fixed and stained with stained with Crystal Violet as described in 2.2.2.2. 

Samples were then imaged using light microscopy. Example grayscale images of 

crystal violet stained cells are shown. Following re-seeding onto plastic, d-3D MSCs 

were counted at each passage for a further 14 days. 

  

 

  



99 

4.4 Results 

4.4.1 Enhanced expression of pluripotency-related transcription factors in 

MSCs cultured as 3D spheroids 

Pluripotency is established and maintained by the expression of a network of 

transcription factors which activate the expression of factors required for self –

renewal and repress expression of factors required for differentiation (Boyer et al., 

2005). The transcription factors Oct4, Nanog and Sox2 act together to maintain 

pluripotency. To test the hypothesis that culturing MSCs as 3D spheroids would 

induce a cellular stress response and stimulate cytoplasmic clearance to a 

rejuvenated state, MSCs were removed from 2D culture and seeded as spheroids, 

containing different initiating numbers of cells. As spheroids shrink with time in 

culture, this method established spheroids with a range of sizes, in which cell stress 

from nutrient/oxygen availability and mechanical forces would vary.  

3D MSC spheroids initiated from 30-, 60-, or 120,000 cells were cultured for up to 6 

days. RNA samples were isolated and analysed for expression of Oct4, Nanog and 

Sox2. Across the three different primary MSC donors tested there was an increase in 

expression of all three pluripotency factors across different sized spheroids from day 

3 of culture onwards.  

The expression of Oct4 was up-regulated to a maximum of around 5-fold compared 

to the donor-matched 2D sample in Donor 3 when 30,000 MSCs were cultured in 3D 

for 6 days. Donor 1 also showed the highest up-regulation of Oct4 under these 

conditions, whilst in Donor 2, culturing 60,000 MSCs in 3D for 5 days achieved the 

highest up-regulation of Oct4 expression compared to the donor matched 2D sample. 

In both Donors 1 and 3 a considerable up-regulation of Oct4 was also seen when 

60,000 MSCs were cultured in 3D for 5 days (Figure 4.4.1. A). 

An approximate 15 fold up-regulation of Nanog expression was observed in Donor 1 

when 120,000 MSCs were cultured in 3D for 5 days.  However for both Donors 2 

and 3, maximal Nanog up-regulation was observed when 60,000 MSCs were 

cultured in 3D for 5 days, and in these donors, expression in 120,000 MSC spheroids 

remained close to monolayer levels at day 5. In Donor 1, expression of Nanog at day  
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Figure 4.4.1. qPCR analysis of expression of the pluripotency factor Oct4 in 

MSCs over time in 3D culture 

MSCs from 3 donors were cultured as 2D monolayers and 3D spheroids with 

initiating cell numbers of 30-, 60-, or 120,000 cells for up to 6 days in culture. 

cDNA samples were generated and then analysed by qPCR. A) Expression of 

Oct4 for each donor was normalised to expression of the housekeeping gene 

GAPDH and made relative to expression levels in the donor matched 2D sample. 

Fold changes were calculated as 2
-ddCt

. B) Data from all 3 donors was pooled and 

subject to statistical analysis, mean fold changes are shown ± SEM, * p< 0.05. 

Statistical significance is relative to expression in 2D MSCs (by Kruskal Wallis 

test, n = 3).  
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5 in 60,000 MSC spheroids was enhanced around 10 fold compared to 2D MSCs, 

and other than 120,000 day 5, no other conditions in this donor resulted in a greater 

increase in Nanog expression (Figure 4.4.2. A). 

Notably in both Donors 2 and 3 maximal up-regulation of expression of Sox2 was 

again observed when 60,000 MSCs were cultured as a spheroid for 5 days, whilst in 

Donor 1 120,000 MSCs cultured for 5 days again saw the highest expression of Sox2 

relative to the donor matched 2D sample, with a prominent increase in expression 

also observed in 60,000 MSCs at day 5 of 3D culture (Figure 4.4.3. A). 

Across the three primary donors used in this experiment, there was a notable 

similarity in the expression pattern of pluripotent transcription factors in 3D culture. 

Whilst there was some variation in observed fold changes between donors, the 

pattern of up-regulation of expression was highly similar, across donors and genes. 

The variability of MSCs from different primary donors means that normally pooling 

of data from different donors may be inappropriate. However in this case, given the 

similarity of response across donors, sample data was pooled, in order to identify 

patterns in expression, and to help in the choice of optimal conditions to use in 

further study. When pooled, the highest up-regulation of Oct4 expression was in 

120,000 MSC spheroids at day 6, whilst the second highest level of up-regulation 

was observed in day 5 60,000 MSCs spheroids (Figure 4.4.1. B). Pooled data for 

both Nanog (Figure 4.4.2. B) and Sox2 (Figure 4.4.3. B) showed that across donors, 

up-regulation of expression of both genes was substantially higher in 60,000 MSC 

spheroids at day 5 than under any other conditions tested. For this reason further 

study was focused on MSC spheroids initiated from 60,000 cells and cultured for 5 

days was selected as the optimal culture condition. 
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Figure 4.4.2. qPCR analysis of expression of the pluripotency factor Nanog 

in MSCs over time in 3D culture 

MSCs from 3 donors were cultured as 2D monolayers and 3D spheroids with 

initiating cell numbers of 30-, 60-, or 120,000 cells for up to 6 days in culture. 

cDNA samples were generated and then analysed by qPCR. A) Expression of 

Nanog for each donor was normalised to expression of the housekeeping gene 

GAPDH and made relative to expression levels in the donor matched 2D sample. 

Fold changes were calculated as 2
-ddCt

. B) Data from all 3 donors was pooled and 

subject to statistical analysis, mean fold changes are shown ± SEM, * p< 0.05. 

Statistical significance is relative to expression in 2D MSCs (by Kruskal Wallis 

test, n = 3).  
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Figure 4.4.3. qPCR analysis of expression of the pluripotency factor Sox2 in 

MSCs over time in 3D culture 

MSCs from 3 donors were cultured as 2D monolayers and 3D spheroids with 

initiating cell numbers of 30-, 60-, or 120,000 cells for up to 6 days in culture. 

cDNA samples were generated and then analysed by qPCR. A) Expression of 

Sox2 for each donor was normalised to expression of the housekeeping gene 

GAPDH and made relative to expression levels in the donor matched 2D sample. 

Fold changes were calculated as 2
-ddCt

. B) Data from all 3 donors was pooled and 

subject to statistical analysis, mean fold changes are shown ± SEM, * p< 0.05. 

Statistical significance is relative to expression in 2D MSCs (by Kruskal Wallis 

test, n = 3).  
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Telomerase is expressed by pluripotent cells and is required for their self-renewal 

capacity. Telomerase activity is repressed in normal replicating somatic cells, 

resulting in telomere shortening and eventually leading to replicative senescence. 

MSCs from 3 primary donors were cultured as 2D monolayers, induced to form 

spheroids initiated from 60,000 cells, then maintained in culture for up to 6 days. 

RNA samples were isolated and analysed for expression of telomerase. 3D culture 

also resulted in an increase of telomerase transcript, with maximal expression on 

either day 3, 4 or 5, depending on donor. The highest up-regulation of telomerase 

expression was seen in Donor 3, with an approximately 17-fold increase at Day 3, 

compared to the donor matched 2D sample (Figure 4.4.4. A). The changes in 

telomerase expression were more varied between donors than those seen for the 

pluripotent transcription factors, but were still highly similar, considering the 

variability of MSCs from different primary donors. Pooling sample data revealed 

that the highest up-regulation of telomerase was observed at day 3 of 3D culture, 

although high variation across donors at this time point meant that statistically the 

only time point at which expression was significantly different to monolayer levels 

was day 5 (Figure 4.4.4. B). This supports the results from pluripotency factor 

qPCR, and highlights day 5 in 60,000 MSC spheroids as an optimal point for 

expression of factors associated with pluripotent cells. It should be noted here that 

telomerase is an enzyme, and that these qPCR results only report an increase in 

telomerase transcript. Functional testing would be required to see if this was 

accompanied by an increase in telomerase activity in the optimised 3D spheroid 

model.  
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Figure 4.4.4. qPCR analysis of expression of Telomerase in MSCs over time 

in 3D culture 

MSCs from 3 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60, 000 cells for up to 6 days in culture. cDNA samples 

were generated and then analysed by qPCR. A) Expression of Telomerase for 

each donor was normalised to expression of the housekeeping gene GAPDH and 

made relative to expression levels in the donor matched 2D sample. Fold 

changes were calculated as 2
-ddCt

. B) Data from all 3 donors was pooled and 

subject to statistical analysis, mean fold changes are shown ± SEM, * p< 0.05. 

Statistical significance is relative to expression in 2D MSCs (by Kruskal Wallis 

test, n = 3).  
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4.4.2 Oct4, Nanog and Sox2 proteins are not expressed at detectable levels in 

2D or 3D MSCs 

To examine if increases in transcript levels of pluripotency factors resulted in 

increased protein expression, MSCs were cultured as 60,000 MSC spheroids for 5 

days. Spheroids were then snap-frozen, sectioned and stained for Oct4A and Nanog. 

There was no specific Oct4A or Nanog staining in 3D MSC sections (Figure 4.4.5), 

suggesting that protein levels of these factors were not detectable by 

immunocytochemistry. It was possible that a small population of cells within the 

spheroid had significantly up-regulated expression of pluripotency factors, and that 

this population would also be expressing protein at detectable levels. To ensure all 

cells within the spheroid were examined, 3D MSC spheroids were disaggregated to a 

single cell suspension, incubated with antibodies to Oct4A, Nanog and Sox2, and 

then analysed by flow cytometry. Donor matched 2D MSCs and 2102Eps (positive 

control) were also analysed using this method. 2102Eps are an embryonal carcinoma 

cell line, known to express pluripotency factors, and are a useful positive control for 

in vitro pluripotency assays. Oct4A, Nanog and Sox2 were all highly expressed in 

2102Eps, confirming that the proteins of interest were detectable by flow cytometry 

(Figure 4.4.6). 3 primary MSC donors were examined using flow cytometry, and 

there was no detectable protein expression in any donor in either 2D or 3D samples 

(Figures 4.4.7 – 4.4.9). Although in all MSC donors there was a small but noticeable 

shift in the peak for Nanog. However, the magnitude of this shift was similar to that 

observed when the Nanog peak was compared to peaks for Oct4A and Sox2 in 

2102Eps. As 2D MSCs have not previously been reported to express Nanog, it is 

possible that the Nanog antibody used in this study may bind with higher affinity 

than the other antibodies used. Further antibody titrations and use of an IgG control 

would demonstrate if the concentration of Nanog antibody used may have been 

resulting in a degree of non-specific binding in the samples shown. Overall, the 

results from flow cytometry and immunocytochemistry suggest that MSCs do not 

express pluripotency-associated proteins at levels comparable to 2102Eps and that 

protein expression is not up-regulated in 3D MSCs, despite a significant up-

regulation of transcript levels of Oct4, Nanog and Sox2 under these conditions. 
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Figure 4.4.5. Staining of 3D MSC spheroid sections for the pluripotency 

markers Oct4a and Nanog 

MSCs were cultured as 3D spheroids with an initiating cell number of 60,000 

cells for 5 days in culture. Spheroids were then snap-frozen, sectioned and 

stained for markers of pluripotency. Samples were imaged using confocal 

microscopy. Oct4a (red) with DAPI (cyan) staining of 3D MSC sections (left 

panel). Nanog (red) with DAPI (cyan) staining of 3D MSC sections (right 

panel). Example images from one donor shown, scale bar   = 10µm. 
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Figure 4.4.6 Flow cytometry analysis of expression of pluripotency markers 

in 2102Ep embryonal carcinoma cells 

2102Ep cells were incubated with antibodies for Oct4a, Nanog and Sox2 in 

solution and analysed by flow cytometry. The histograms show marker 

expression of A) Oct4a, B) Nanog, C) Sox2 and D) 2º antibody only control. 
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Figure 4.4.7 Flow cytometry analysis of expression of pluripotency markers 

in 2D and 3D MSCs (Donor 1) 

2D and 3D MSCs (disaggregated to a single cell suspension) cells were 

incubated with antibodies for Oct4a, Nanog and Sox2 in solution and analysed 

by flow cytometry. The histograms show marker expression of A) Oct4a, B) 

Nanog, C) Sox2 and D) 2º antibody only control in 2D MSCs (left panel) and 3D 

MSCs (right panel). 
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Figure 4.4.8 Flow cytometry analysis of expression of pluripotency markers 

in 2D and 3D MSCs (Donor 2) 

2D and 3D MSCs (disaggregated to a single cell suspension) cells were 

incubated with antibodies for Oct4a, Nanog and Sox2 in solution and analysed 

by flow cytometry. The histograms show marker expression of A) Oct4a, B) 

Nanog, C) Sox2 and D) 2º antibody only control in 2D MSCs (left panel) and 3D 

MSCs (right panel). 
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Figure 4.4.9 Flow cytometry analysis of expression of pluripotency markers 

in 2D and 3D MSCs (Donor 3) 

2D and 3D MSCs (disaggregated to a single cell suspension) cells were 

incubated with antibodies for Oct4a, Nanog and Sox2 in solution and analysed 

by flow cytometry. The histograms show marker expression of A) Oct4a, B) 

Nanog, C) Sox2 and D) 2º antibody only control in 2D MSCs (left panel) and 3D 

MSCs (right panel). 
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4.4.3 Transcript levels of pluripotency factors are lower in the 3D MSC 

optimised model than in human ESCs 

Despite enhanced expression of pluripotency factors at the transcript level in 3D 

MSCs, protein expression in these cells was not detected. Using RNA isolated from 

three different primary MSCs donors, cultured as both 2D monolayers and as 60,000 

cell 3D spheroids for 5 days, transcript levels of Oct4, Nanog and Sox2 were 

compared directly to transcript levels in H9 human ESCs, cultured on feeders, by 

QPCR. As previously demonstrated, expression levels of Oct4, Nanog and Sox2 

were higher in 3D MSCs than in the donor matched 2D samples. However levels in 

3D MSCs remained lower than those in H9 ESCs for all genes examined. Oct4 

expression was between 30 – 60 fold lower in 3D MSCs than ESCs, whilst Nanog 

expression was 104 – 181 fold lower, and Sox2 expression was 15 – 30 fold lower. 

Notably, although the expression levels of pluripotent transcription factors varied 

across donors, the expression of all factors in all 3D MSC samples was higher than 

the expression observed in all 2D samples. Oct4 expression was between 82 – 98 

fold lower in 2D MSCs than ESCs, whilst Nanog expression was 665 – 3080 fold 

lower, and Sox2 expression was 275 – 1700 fold lower (Figure 4.4.10). So whilst the 

optimised 3D model results in a substantial increase in transcript levels of these 

factors compared to those seen in 2D MSCs, it cannot enhance expression of 

pluripotency factors to ESC levels. The observed increase in transcript levels in 3D 

MSCs does not appear sufficient to increase protein expression, which is required for 

the establishment and maintenance of pluripotency.  
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Figure 4.4.10. qPCR analysis of expression levels of pluripotent 

transcription factors in 2D and 3D MSCs compared to expression in human 

ESCs  

MSCs from 3 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60, 000 cells for 5 days in culture. cDNA samples were 

generated and then analysed by qPCR. Expression of Oct4 (A), Nanog (B) and 

Sox2  (C) for each donor was normalised to expression of the housekeeping gene 

GAPDH and made relative to expression levels in pluripotent human H9 ESCs. 

Fold changes were calculated as 2
-ddCt

. 
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4.4.3 3D MSC spheroids form small organised tissue masses but not teratomas 

in vivo 

Lack of detectable protein expression, and lower mRNA expression than ESCs 

suggested that although 60,000 MSCs cultured in 3D for 5 days resulted in enhanced 

pluripotent transcript expression, MSCs cultured in these conditions were not 

pluripotent. To test this, MSC spheroids initiated from 60,000 cells were cultured for 

5 days, before implantation into nude mice. Donor-matched 2D MSCs were also 

implanted to test their in vivo potency, and mouse ESCs were implanted to act as a 

positive control for teratoma generation. After 12 weeks, tissue masses generated 

from the implanted cells were isolated, fixed, sectioned and examined by histological 

analyses. Sections of tissue masses generated from both mouse ESCs and 3D MSCs 

were examined by stereo microscopy. At the same magnification it was clear that 

mouse ESCs formed very large tissue masses, typical of teratomas, whilst the tissue 

masses isolated from 3D MSCs were much smaller (Figure 4.4.11. A). 2D MSCs 

failed to form any tissue structures. When H & E stained sections of the large tissue 

masses generated from mouse ESCs were examined under higher magnification, 

tissues from all three germ layers were clearly visible, confirming that the masses 

were indeed teratomas, generated from pluripotent cells (Figure 4.4.11 B). By 

comparison, there was no evidence of tissue from endoderm or ectoderm in the tissue 

masses generated by 3D MSCs, although distinct, segregated mesodermal structures 

including connective tissue, muscle and adipose tissue were observed, and these 

tissues appeared highly organised, in contrast to the typically disorganised 

arrangement of teratoma tissue (Figure 4.4.11. C).  
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Figure 4.4.11. Histological analysis of in vivo tissue generation capacity 

following implantation into nude mice  

3D MSC spheroids (initial cell number = 60’ 000 cells) were cultured in 3D 

conditions for 5 days before subcutaneous injection into nude mice. Mouse ESCs 

were also implanted as a positive control for teratoma formation. After 12 weeks 

tissue samples were recovered, fixed and stained with hematoxylin and eosin (H 

+ E). A) Stereo – microscopy images of tissue masses generated by positive 

control mouse ESCs (left panel) and 3D MSCs (centre panel and right panel, 

scale bar = 500µm). B) Light microscopy images of teratomas generated by 

positive control mouse ESCs tissues (arrows indicate the presence of tissues 

from all 3 germ layers - Mes = mesoderm, Ect = ectoderm, End = endoderm; 

scale bar = 100µm). C) Light microscopy images of organised tissue masses 

generated by 3D MSCs (labels indicate tissues of mesodermal origin – Mu = 

muscle, Ad = adipose, Co = connective tissue; scale bar = 100µm). 
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4.4.4 MSCs cultured as 3D spheroids for 5 days maintain enhanced expression 

of reprogramming factors immediately after spheroid disaggregation 

The process of reprogramming human cells to pluripotency was established in 

HDFs, differentiated cells which are not reported to express the pluripotency factors 

Oct4, Nanog and Sox2. Recent work has demonstrated that the efficiency of 

reprogramming to pluripotency is improved if the starting cell population 

endogenously express some of the factors required for reprogramming (Kim et al., 

2009a; Kim et al., 2009b; Kim et al., 2008; Tsai et al., 2011; Tsai et al., 2010; Zhu et 

al., 2010). It was therefore possible that MSCs cultured in the optimised 3D model 

may reprogramme to pluripotency more efficiently than their donor-matched 2D 

samples. Comparative efficiencies for reprogramming to pluripotency rely on the 

accurate assessment of lentiviral transduction efficiencies, which then allow for the 

calculation of reprogramming efficiencies by counting reprogrammed colonies. 3D 

MSC spheroids were initiated from 60,000 cells, but it was not possible to accurately 

estimate the number of cells remaining after 5 days in 3D culture. Nor was it 

possible to assume that lentiviral particles would have access to all the cells within 

the spheroid equally. It was therefore necessary to adapt the system in order to make 

it comparable to 2D MSCs for reprogramming efficiency experiments.  

MSCs from 3 different primary donors were cultured as 2D monolayers and as 3D 

spheroids (initiated from 60,000 cells) for 5 days in culture. On day 5, 3D spheroids 

were disaggregated to a single cell suspension (d-3D MSCs) using enzymatic 

digestion. The resulting cell suspension was re-seeded onto plastic for 5 hours, 

allowing attachment. At 5 hours following return to 2D culture, RNA samples were 

isolated and analysed for expression of the ‘Yamanaka factors’ (Oct4, Sox2, Klf4 

and c-Myc, also known as OKSM). In order to assess the suitability of MSCs for 

reprogramming to pluripotency, the expression of OKSM was compared to 

expression levels in 2D HDFs. 

In 2D MSCs the expression of Oct4 was similar or slightly higher than in HDFs. 

Expression of Oct4 was enhanced in 3D MSCs, with around 5-16-fold up-regulation 

compared to HDFs, depending on MSC donor. At 5 hours following return to 2D 

culture, levels in disaggregated 3D (d-3D) MSCs had fallen, but still remained above 

those seen in HDFs and 2D MSCs (Figure 4.4.12). A similar pattern was seen when 
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Figure 4.4.12. qPCR analysis of Oct4 expression in MSCs  5 hours after 

spheroid disaggregation. 

MSCs from 3 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for 5 days. After 5 days MSC spheroids 

were disaggregated to single cells and re-plated on tissue culture plastic for 5 

hours.  cDNA samples were generated and then analysed by qPCR. A) 

Expression of Oct4 for each donor was normalised to expression of the 

housekeeping gene GAPDH and made relative to expression levels in monolayer-

cultured HDFs. Fold changes were calculated as 2
-ddCt

. B) Data from all 3 donors 

was pooled and subject to statistical analysis, mean fold changes are shown ± 

SEM, * p< 0.05. Statistical significance is relative to expression in HDFs (by 

Kruskal Wallis test, n = 3). 
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Sox2 expression was examined. Although levels of Sox2 in 2D MSCs were lower 

than those seen in HDFs, the levels of Sox2 in 3D MSCs and d-3D MSCs remained 

higher than those in HDFs. Up-regulation of Sox2 by approximately 5-35-fold in 3D 

MSCs (dependent on donor) and 4-7-fold in d-3D MSCs (dependent on donor) were 

observed compared to levels in HDFs (Figure 4.4.13). 

The expression of Klf4 was inconsistent across different MSC donors. In Donor 1, 

expression of Klf4 was at its lowest in 3D MSCs, although under these conditions 

expression remained comparable to HDFs. Expression of Klf4 in Donor 2 peaked in 

3D MSCs, whilst in d-3D MSCs, expression had fallen to levels similar to those in 

HDFs. Donor 3 showed that 3D culture had little effect on Klf4 expression, whilst 

Klf4 expression peaked in d-3D MSCs after return to 2D culture. Taken together 

these results suggest that 3D culture does not have a consistent effect on Klf4 

expression in primary MSC cultures, although they do demonstrate that across the 

primary donors tested and on average, Klf4 expression is higher in MSCs than 

HDFs, in all three culture conditions tested (Figure 4.4.14). c-Myc expression was 

observed to be higher in 2D and 3D MSCs than HDFs across all donors tested, 

although again, as with Klf4, the expression pattern of c-Myc across donors and 

conditions was less consistent than observed for Oct4 and Sox2. Following 

disaggregation, levels of c-Myc increased substantially in d-3D MSCs across all 

donors tested. Up-regulation of approximately 15-72-fold (dependent on donor) was 

observed compared to c-Myc expression in HDFs (Figure 4.4.15). Considered 

altogether, these results suggest that d-3D MSCs may represent a suitable cell type 

for reprogramming to pluripotency. Furthermore, increased endogenous expression 

of reprogramming factors may mean that they can be reprogrammed to pluripotency 

more efficiently, or with fewer factors, than their originating 2D cell populations 



119 

 

  

Figure 4.4.13. qPCR analysis of Sox2 expression in MSCs  5 hours after 

spheroid disaggregation. 

MSCs from 3 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for 5 days. After 5 days MSC spheroids 

were disaggregated to single cells and re-plated on tissue culture plastic for 5 

hours.  cDNA samples were generated and then analysed by qPCR. A) 

Expression of Sox2 for each donor was normalised to expression of the 

housekeeping gene GAPDH and made relative to expression levels in monolayer-

cultured HDFs. Fold changes were calculated as 2
-ddCt

. B) Data from all 3 donors 

was pooled and subject to statistical analysis, mean fold changes are shown ± 

SEM, * p< 0.05. Statistical significance is relative to expression in HDFs (by 

Kruskal Wallis test, n = 3).  
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Figure 4.4.14. qPCR analysis of Klf4 expression in MSCs  5 hours after 

spheroid disaggregation. 

MSCs from 3 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for 5 days. After 5 days MSC spheroids 

were disaggregated to single cells and re-plated on tissue culture plastic for 5 

hours.  cDNA samples were generated and then analysed by qPCR. A) 

Expression of Klf4 for each donor was normalised to expression of the 

housekeeping gene GAPDH and made relative to expression levels in monolayer-

cultured HDFs. Fold changes were calculated as 2
-ddCt

. B) Data from all 3 donors 

was pooled and subject to statistical analysis, mean fold changes are shown ± 

SEM, * p< 0.05. Statistical significance is relative to expression in HDFs (by 

Kruskal Wallis test, n = 3).  
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Figure 4.4.15. qPCR analysis of c-Myc expression in MSCs  5 hours after 

spheroid disaggregation. 

MSCs from 3 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for 5 days. After 5 days MSC spheroids 

were disaggregated to single cells and re-plated on tissue culture plastic for 5 

hours.  cDNA samples were generated and then analysed by qPCR. A) 

Expression of c-Myc for each donor was normalised to expression of the 

housekeeping gene GAPDH and made relative to expression levels in monolayer-

cultured HDFs. Fold changes were calculated as 2
-ddCt

. B) Data from all 3 donors 

was pooled and subject to statistical analysis, mean fold changes are shown ± 

SEM, * p< 0.05. Statistical significance is relative to expression in HDFs (by 

Kruskal Wallis test, n = 3).  
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4.4.5 The efficiency of derivation of Oct4A+ ESC-like colonies is similar in 2D 

MSCs and d-3D MSCs 

In an attempt to derive iPSC colonies from MSCs, 3D MSCs were cultured under 

optimal conditions for 5 days, before disaggregation and re-seeding onto plastic (d-

3D MSCs) as described above. 2D MSCs were trypsinised and re-seeded at identical 

densities to d-3D MSCs. MSC duplicate wells were transduced with lentiviral 

vectors expressing OKSM for 22 hours, before culture in MSC media for 5 days. 

Identical wells were also infected with lentiviral vectors expressing GFP, in order to 

calculate transduction efficiencies. After 5 days, lenti-GFP wells were viewed using 

fluorescence microscopy, and multiple images per sample were taken (n=10). The 

number of GFP-positive cells was counted and then used to calculate the 

transduction efficiency for each sample. Example (inverted) images are shown in 

Figure 4.4.16, and transduction efficiencies are given in Table 4.4.1. The 

transduction efficiencies observed in d-3D MSCs from both donors tested were 

considerably higher than those observed in 2D MSCs. Increased transduction 

efficiency may be another benefit associated with the reprogramming of d-3D MSCs, 

as higher transduction efficiencies mean more cells will be exposed to the 

reprogramming cocktail, and so more cells have a chance of undergoing 

reprogramming to pluripotency. At day 5 following transduction, OKSM-transduced 

cells were trypsinised, counted and seeded onto irradiated MEF (iMEF) feeder cells 

in iPSC media and observed for colony formation. At day 18 (Donor 1) and day 27 

(Donor 2) following lentiviral transduction, individual wells were fixed and stained 

for the pluripotency markers Oct4A and Nanog. Wells were then imaged using 

confocal microscopy. A tile scanning method was applied, which was then used to 

generate a composite image of each whole well. The staining of Oct4A revealed 

intense immune-reactivity, so for each well, manual counting was applied to identify 

number of Oct4A+ colonies. This was then used with the transduction efficiencies 

generated from GFP-transduction, to determine the reprogramming efficiency for 

each sample (Table 4.4.2). The composite images are shown in Figure 4.4.17. In 

both donors examined, the generation of Oct4A+ colonies was slightly more 

efficient in 2D than d-3D MSCs, so enhanced expression of reprogramming factors 

at the time of transduction does not confer a reprogramming advantage on d-3D 

MSCs. Nor did it enhance the speed at which Oct4A+ colonies appeared in culture,  
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Figure 4.4.16 Analysis of lentiviral transduction efficiencies in 2D and d-3D 

MSCs  

d-3D MSCs and 2D MSCs were incubated with GFP-lentivirus for 24 hours. 

After 24 hours media was exchanged for MSC expansion media, and cells were 

cultured for 5 days. On day 5 2D and d-3D MSCs were examined by fluorescence 

microscopy, and counted for GFP+ cells. Multiple bright field and inverted 

fluorescence (GFP) images were used to calculate transduction efficiencies from 

mean GFP+ cells in each sample (n = 10, example images shown, GFP images 

are inverted). 
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Table 4.4.1. Transduction efficiencies of 2D and d-3D MSCs calculated from 

GFP+ cell numbers 

Sample ID Total cell no. GFP+ cell no. Transduction efficiency 

Donor 1 2D 101 38 37.6% 

Donor 1 d-3D 67 51 76.1% 

Donor 2 2D 72 37 51.4% 

Donor 2 d-3D 56 40 71.4% 

 

 

 

 

Table 4.4.2. Reprogramming efficiencies of 2D and d-3D MSCs calculated from 

Oct4A+ colony numbers 

 

Sample ID Transduction 

efficiency 

No. of cells 

plated 

No. of 

Oct4A+ 

colonies 

Reprogramming 

efficency 

Donor 1 2D 37.6% 20,000 65 0.86% 

Donor 1 d-3D 76.1% 20,000 93 0.61% 

Donor 2 2D 51.4% 20,000 18 0.18% 

Donor 2 d-3D 71.4% 20,000 16 0.11% 
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Figure 4.4.17 Analysis of the generation of Oct4a+ colonies from OKSM-

transduced 2D and d-3D MSCs  

d-3D MSCs and 2D MSCs were transduced with OKSM-expressing lentiviruses 

and cultured under standard protocols for the induction of pluripotency in 6-well 

plates. One well of a 6-well plate for each sample was stained with an antibody 

against Oct4a. Wells were examined by fluorescence microscopy, using a tile 

scanning method to allow quantification of absolute Oct4a+ colony numbers. 

Composite images of whole wells stained for Oct4a (red) for A) Donor 1 2D 

MSCs, B) Donor 1 d-3D MSCs, C) Donor 2 2D MSCs and D) Donor 2 d-3D 

MSCs. 
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this was donor-dependent, with samples from Donor 1 generating more colonies and 

much more quickly than Donor 2. Example higher magnification images of colonies 

generated from both 2D and d-3D MSCs, stained for Oct4A and Nanog, are shown 

in Figure 4.4.18.  
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Figure 4.4.18 Assessment of Oct4a and Nanog expression in colonies 

generated by OKSM transduction of 2D and d-3D MSCs 

Colonies generated from OKSM-transduced 2D and d-3D MSCs were stained for 

Oct4a and Nanog and imaged using fluorescence microscopy. Upper panels show 

staining of colonies generated from 2D MSCs for Oct4a (left) and Nanog (right). 

Lower panels show staining of colonies generated from d-3D MSCs for Oct4a 

(left) and Nanog (right, scale bar = 100µm). 
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4.4.6 Enhanced expression of pluripotency and reprogramming factors in 3D 

MSCs is lost within 24 - 48 hours of return to 2D culture 

In order to investigate the similarity of reprogramming efficiencies in 2D and d-3D 

MSCs, three different primary MSC donors were cultured as described in 4.4.5, and 

samples taken at 5, 24 and 48 hours following return to 2D culture, to track changes 

in pluripotency factor expression with time in 2D culture. In these experiments, 

expression in d-3D MSCs at 5, 24 and 48 hours was compared to that in 2D MSCs. 

The expression of all pluripotency factors returned to 2D MSCs levels in d-3D 

MSCs.  As previously observed when compared to HDF expression levels, the 

expression of Oct4 (Figure 4.4.19) and Sox2 (Figure 4.4.20) was highest in 3D 

MSCs and fell in d-3D MSCs 5 hours after return to 2D culture, whilst still 

remaining higher than levels in 2D MSCs. However within 24 hours of 

disaggregation expression levels of Oct4 reduced to 2D MSC levels (Figure 4.4.19), 

and a similar pattern was observed for Sox2, where between 24 and 48 hours after 

disaggregation, expression fell to 2D MSC levels (Figure 4.4.20). Although not one 

of the ‘Yamanaka factors’, Nanog plays a role in pluripotency maintenance, and was 

included in the four factor combination of reprogramming factors demonstrated to 

reprogramme HDFs to pluripotency by the Thompson laboratory (Yu et al., 2007). 

The expression pattern of Nanog was very similar to that of Oct4, with expression 

levels returning to those observed in 2D MSCs around 24 hours after spheroid 

disaggregation (Figure 4.4.21). Interestingly, the effect of returning 3D MSCs to 2D 

culture appeared to be detrimental to Klf4 expression in d-3D MSCs. 24 hours 

following disaggregation the expression of Klf4 in d-3D MSCs had actually fallen 

below levels observed in 2D MSCs, with only a small but donor-dependent recovery 

of expression 48 hours after disaggregation, and on average Klf4 levels were still 

significantly lower than those in 2D MSCs 48 hours after disaggregation (Figure 

4.4.22). Whilst a peak in c-Myc expression was observed 5 hours after return to 2D 

culture, this effect was transient, with expression in d-3D MSCs returning to 2D 

MSCs levels within 48 hours of return to 2D culture following spheroid 

disaggregation (Figure 4.4.23). 
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Figure 4.4.19. qPCR analysis of Oct4 expression in MSCs  up to 48 hours 

after spheroid disaggregation. 

MSCs from 3 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for 5 days. After 5 days MSC spheroids 

were disaggregated to single cells and re-plated on tissue culture plastic for up to 

48 hours.  cDNA samples were generated and then analysed by qPCR. A) 

Expression of Oct4 for each donor was normalised to expression of the 

housekeeping gene GAPDH and made relative to expression levels in donor-

matched 2D samples. Fold changes were calculated as 2
-ddCt

. B) Data from all 3 

donors was pooled and subject to statistical analysis, mean fold changes are 

shown ± SEM, * p< 0.05. Statistical significance is relative to expression in 2D 

MSCs (by Kruskal Wallis test, n = 3).  
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Figure 4.4.20. qPCR analysis of Sox2 expression in MSCs  up to 48 hours 

after spheroid disaggregation. 

MSCs from 3 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for 5 days. After 5 days MSC spheroids 

were disaggregated to single cells and re-plated on tissue culture plastic for up to 

48 hours.  cDNA samples were generated and then analysed by qPCR. A) 

Expression of Sox2 for each donor was normalised to expression of the 

housekeeping gene GAPDH and made relative to expression levels in donor-

matched 2D samples. Fold changes were calculated as 2
-ddCt

. B) Data from all 3 

donors was pooled and subject to statistical analysis, mean fold changes are 

shown ± SEM, * p< 0.05. Statistical significance is relative to expression in 2D 

MSCs (by Kruskal Wallis test, n = 3).  
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Figure 4.4.21. qPCR analysis of Nanog expression in MSCs  up to 48 hours 

after spheroid disaggregation. 

MSCs from 3 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for 5 days. After 5 days MSC spheroids 

were disaggregated to single cells and re-plated on tissue culture plastic for up to 

48 hours.  cDNA samples were generated and then analysed by qPCR. A) 

Expression of Nanog for each donor was normalised to expression of the 

housekeeping gene GAPDH and made relative to expression levels in donor-

matched 2D samples. Fold changes were calculated as 2
-ddCt

. B) Data from all 3 

donors was pooled and subject to statistical analysis, mean fold changes are 

shown ± SEM, * p< 0.05. Statistical significance is relative to expression in 2D 

MSCs (by Kruskal Wallis test, n = 3).  
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Figure 4.4.22. qPCR analysis of Klf4 expression in MSCs  up to 48 hours 

after spheroid disaggregation. 

MSCs from 3 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for 5 days. After 5 days MSC spheroids 

were disaggregated to single cells and re-plated on tissue culture plastic for up to 

48 hours.  cDNA samples were generated and then analysed by qPCR. A) 

Expression of Klf4 for each donor was normalised to expression of the 

housekeeping gene GAPDH and made relative to expression levels in donor-

matched 2D samples. Fold changes were calculated as 2
-ddCt

. B) Data from all 3 

donors was pooled and subject to statistical analysis, mean fold changes are 

shown ± SEM, * p< 0.05. Statistical significance is relative to expression in 2D 

MSCs (by Kruskal Wallis test, n = 3).  
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Figure 4.4.23. qPCR analysis of c-Myc expression in MSCs  up to 48 hours 

after spheroid disaggregation. 

MSCs from 3 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for 5 days. After 5 days MSC spheroids 

were disaggregated to single cells and re-plated on tissue culture plastic for up to 

48 hours.  cDNA samples were generated and then analysed by qPCR. A) 

Expression of c-Myc for each donor was normalised to expression of the 

housekeeping gene GAPDH and made relative to expression levels in donor-

matched 2D samples. Fold changes were calculated as 2
-ddCt

. B) Data from all 3 

donors was pooled and subject to statistical analysis, mean fold changes are 

shown ± SEM, * p< 0.05. Statistical significance is relative to expression in 2D 

MSCs (by Kruskal Wallis test, n = 3).  
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4.4.7 Suspension culture of d-3D MSCs maintains enhanced expression of 

pluripotency factors following spheroid disaggregation  

Disaggregation studies demonstrated that enhanced expression of pluripotency 

factors in 3D MSCs was dependent on 3D culture, and that a return to adherent 

culture resulted in a return to 2D expression levels of these factors. In order to 

investigate if it was possible to expand 3D MSCs without the need to re-seed onto 

tissue culture plastic, MSCs were cultured as spheroids containing 60,000 cells for 5 

days, before disaggregation to small cell clumps, using a more gentle method of 

enzymatic digestion. Semi-solid media containing 1% methyl cellulose, is a gel-like 

culture media, where cells are held in a static position, but do not adhere to a 

substrate so preventing spreading and acquisition of typical 2D MSC shape and 

growth behaviour. The small cell clumps generated from spheroid disaggregation (d-

3D MSCs) were seeded into semi-solid media, containing either 5% FBS, or a 

serum-free media used for the culture of pluripotent cells. Over 7 days in culture, the 

d-3D MSC clusters were observed to increase in size, suggesting the cells were 

proliferating, and behaviour seemed similar in both media formulations (Figure 

4.4.24. A). To test the colony-forming capacity over time in semi-solid media, 

further experiments were performed, with disaggregation to single cells/cell clumps 

of very few cells. For these experiments media containing 5% FBS was selected, as 

in the previous experiments there was no obvious differences in cell behaviour in the 

different media. MSCs from 2 donors were tested under these conditions, and again 

over 7 days demonstrated an increase in cell clump size, indicative of proliferative 

capacity from single cells/small cell clumps within the cultures Figure 4.4.24. B). 

As discussed above, enhanced expression of pluripotency factors was lost when d-

3D MSCs were re-seeded on tissue culture plastic. RNA was isolated from d-3D 

MSCs cultured in semi-solid media for 7 days, and expression of pluripotency 

factors was analysed by qPCR. Expression was normalised to GAPDH and made 

relative to the donor-matched 2D (adherent) sample. In both semi-solid medias 

tested, d-3D MSCs maintained elevated expression of Oct4, Nanog, Sox2 and 

telomerase, compared to expression in 2D MSCs. Oct4 expression was up-regulated 

around 3-6 fold (dependent on donor) in d-3D MSCs cultured in semi-solid media 

with 5% serum, whilst up-regulation of around 3.5 fold was observed in serum-free  
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Figure 4.4.24. Analysis of MSC growth in non-adherent culture conditions 

following 3D spheroid disaggregation 

MSC spheroids were initiated (60,000 cells per spheroid) and cultured under 3D 

conditions for 5 days. On day 5 spheroids were disaggregated and re-seeded as 

cell clumps into semi-solid media (containing 1% methyl cellulose) with 5% 

serum or serum-free. A) Light microscopy images of MSCs disaggregated to 

small cell clumps and cultured for 7 days in semi-solid media with 5% serum 

(left panel) or serum-free (right panel). B) Light microscopy images of MSCs 

from 2 donors disaggregated to single cells/very small cell clumps and cultured 

for 7 days in semi-solid media with 5% serum (scale bars = 100µm). 
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semi-solid media (Donor 1 sample was lost during recovery from media) (Figure 

4.4.25. A). Similar results were observed for Nanog expression, although the up-

regulation of Nanog was much more variable between donors (4-24 fold in media 

with 5% serum). Enhancement of Nanog expression in serum-free media was highly 

similar to media with serum in Donor 2 (Figure 4.4.25. B). Expression of both Sox2 

and telomerase increased in both medias, although again, the expression changes 

between donors was highly variable. In media with 5% serum Sox2 expression was 

up-regulated 4-200 fold dependent on donor, whilst in Donor 2 culture in serum-free 

media resulted in a 250-fold increase in expression compared to 2D monolayer levels 

(Figure 4.4.26. A). Similarly expression of telomerase in serum free media increased 

around 66 fold in Donor 2, whilst up-regulation varied between 3-44 fold in media 

with 5% serum compared to 2D monolayer levels (Figure 4.4.26. B). This work 

supports the disaggregation studies with re-seeding on to plastic, and confirms that 

3D non-adherent culture is required for the maintenance of a de-differentiated 

phenotype. 
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Figure 4.4.25. qPCR analysis of Oct4 and Nanog expression in MSCs after 

spheroid disaggregation and culture in semi-solid media. 

MSCs from 2 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for 5 days. After 5 days MSC spheroids 

were disaggregated to small cell clumps and re-seeded into semi-solid media 

(containing 1% methyl cellulose) with 5% serum or serum-free. cDNA samples 

were generated and then analysed by qPCR. A) Expression of Oct4 for each 

donor was normalised to expression of the housekeeping gene GAPDH and made 

relative to expression levels in donor-matched 2D samples. B) Expression of 

Nanog for each donor was normalised to expression of the housekeeping gene 

GAPDH and made relative to expression levels in donor-matched 2D samples, 

fold changes were calculated as 2
-ddCt

. Average dCt values ± SEM for technical 

replicates of both genes are shown in the table. 
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Figure 4.4.26. qPCR analysis of Sox2 and Telomerase expression in MSCs 

after spheroid disaggregation and culture in semi-solid media. 

MSCs from 2 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for 5 days. After 5 days MSC spheroids 

were disaggregated to small cell clumps and re-seeded into semi-solid media 

(containing 1% methyl cellulose) with 5% serum or serum-free. cDNA samples 

were generated and then analysed by qPCR. A) Expression of Sox2 for each 

donor was normalised to expression of the housekeeping gene GAPDH and made 

relative to expression levels in donor-matched 2D samples. B) Expression of 

Telomerase for each donor was normalised to expression of the housekeeping 

gene GAPDH and made relative to expression levels in donor-matched 2D 

samples, fold changes were calculated as 2
-ddCt

. Average dCt values ± SEM for 

technical replicates of both genes are shown in the table. 
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4.4.8 3D MSCs show enhanced mesodermal potency in vivo and express 

markers of early mesendoderm in vitro 

As described above, although 3D MSCs did not form teratomas on in vivo 

implantation, they did give rise to small, organised tissue masses (Figure 4.4.11). 

This demonstrated an enhanced ability to form tissue in vivo, as 2D MSCs were 

without effect. Masson’s trichrome staining distinguishes collagen (blue) from 

smooth muscle (red) on histological sections. Tissue masses from 3D MSCs showed 

a substantial collagen component (connective tissue - blue) and also displayed some 

organised blocks of muscle (red) (Figure 4.4.27. A). In contrast, teratomas from 

ESCs showed a reduced connective tissue component, indicated by reduced blue 

staining, and lacked the organised muscle blocks observed in tissue masses form 3D 

MSCs (Figure 4.4.27. B). 

Considering the developmental origins of MSCs, and their propensity to form 

mesodermal-like tissues in vivo, expression of markers associated with early 

mesendoderm was examined. MSCs from two primary donors were cultured as 2D 

monolayers and 3D spheroids for up to 5 days in culture. The expression of all 

mesodermal markers examined was up-regulated in 3D versus 2D MSCs across all 

time points. However, maximal expression of markers did vary across time points, 

and there was some inter-donor variation observed. The expression of Brachyury 

was observed to increase in 3D culture, with maximal up-regulation of around 6-7 

fold compared to 2D cultures. Donor 1 showed a peak of Brachyury expression on 

day 5 of 3D culture, whilst in Donor 2 the peak was on day 3 with a slight reduction 

in expression by day 5 (Figure 4.4.28. A). Both donors showed an increase in 

Goosecoid expression with time in 3D, peaking at day 5, and with a 5.5-7.5 fold 

increase in expression compared to the donor matched 2D sample (Figure 4.4.28. B).  
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Figure 4.4.27. Histological analysis of the generation of mesoderm-derived 

tissue following implantation into nude mice  

3D MSC spheroids (initial cell number = 60’ 000 cells) were cultured in 3D 

conditions for 5 days before subcutaneous injection into nude mice. Mouse ESCs 

were also implanted as a positive control for teratoma formation. After 12 weeks 

tissue samples were recovered, fixed and stained with Massons Trichome. Light 

microscopy images of A) tissue masses generated by 3D MSCs and B) teratomas 

from mouse ESC positive controls. Labels indicate tissues of mesodermal origin 

– Mu = muscle, Ad = adipose, Co = connective tissue; scale bar = 100µm 
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Figure 4.4.28. qPCR analysis of expression of Brachyury and Goosecoid in 

MSCs over time in 3D culture 

MSCs from 2 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for up to 5 days in culture. cDNA samples 

were generated and then analysed by qPCR. Expression of target gene for each 

donor was normalised to expression of the housekeeping gene GAPDH and made 

relative to expression levels in the donor matched 2D sample. Fold changes were 

calculated as 2
-ddCt

. A) Expression of Brachyury in 2 different MSC donors (left 

panel), and pooled donor data (right panel). B) Expression of Goosecoid in 2 

different MSC donors (left panel), and pooled donor data (right panel). Pooled 

donor data was subject to statistical analysis, mean fold changes are shown ± 

SEM, * p< 0.05. Statistical significance is relative to expression in 2D MSCs (by 

Kruskal Wallis test, n = 2).  
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KDR expression fell slightly on day 1 of 3D culture, but by day 3 expression of 

KDR had peaked in both donors, with levels 3-4.7 fold higher than in 2D MSCS. On 

day 5 expression of KDR had fallen in both donors, although this effect was more 

pronounced in Donor 2. In Donor 1 expression at days 3 and 5 was highly similar 

(Figure 4.4.29. A). Expression of Mixl1 increased with time in 3D culture, up to day 

3, with up-regulation of between 6-11 fold, depending on donor, and compared to 2D 

levels. By day 5 of 3D culture the expression of Mixl1 had fallen in both donors 

examined, although it remained higher than observed at day 1 of 3D culture (Figure 

4.4.29. B). Expression of CXCR4, a marker of haemangioblasts (blood/endothelial 

precursors) was highly up-regulated in 3D cultures. Although the expression pattern 

of CXCR4 was inconsistent across donors, both donors demonstrated prominent 

expression increases when cultured as 3D spheroids. Donor 1 showed increases of 

between 20-30 fold, whilst expression of CXCR4 increased 30-70 fold during 3D 

culture of Donor 2 (Figure 4.4.30). 

The expression of a number of these early mesendoderm markers were also 

examined by immunocytochemistry, to determine if detectable protein could be 

identified in 3D MSCs. MSCs were cultured as 3D spheroids for 5 days, snap-frozen 

and cryosectioned before incubation with specific antibodies. Positive staining for 

Brachyury (Figure 4.4.31. A) and CXCR4 (Figure 4.4.31. C) was observed, 

indicating that increased transcript levels did result in the production of sufficient 

protein for detection by immunocytochemistry. Weak positive staining for KDR was 

also observed (Figure 4.4.31. B). It is possible that KDR protein expression may 

have been higher at day 3, as was observed for KDR transcript.  

It was possible that sub-populations of cells within the 3D MSCs had undergone 

autophagy-driven reprogramming to different degrees due to their location within the 

spheroid. To investigate this, images of 3D MSC sections stained with anti-

Brachyury antibody were analysed using Volocity software to identify the highest 

and lowest Brachyury-expressing cells. Using this technique, it was clear that for 

both the lowest (top panel) and highest (bottom panel) Brachyury fluorescence 

intensity cells, there was a relatively even distribution of cells within the section and 

that no obvious sub-population could be identified by low/high Brachyury 

expression (Figure 4.4.32). 
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  Figure 4.4.29 qPCR analysis of expression of KDR and MIXL1 in MSCs 

over time in 3D culture 

MSCs from 2 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for up to 5 days in culture. cDNA samples 

were generated and then analysed by qPCR. Expression of target gene for each 

donor was normalised to expression of the housekeeping gene GAPDH and made 

relative to expression levels in the donor matched 2D sample. Fold changes were 

calculated as 2
-ddCt

. A) Expression of KDR in 2 different MSC donors (left panel), 

and pooled donor data (right panel). B) Expression of MIXL1 in 2 different MSC 

donors (left panel), and pooled donor data (right panel). Pooled donor data was 

subject to statistical analysis, mean fold changes are shown ± SEM, * p< 0.05. 

Statistical significance is relative to expression in 2D MSCs (by Kruskal Wallis 

test, n = 2).  
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Figure 4.4.30. qPCR analysis of expression of CXCR4 in MSCs over time in 

3D culture 

MSCs from 2 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for up to 5 days in culture. cDNA samples 

were generated and then analysed by qPCR. Expression of CXCR4 for each 

donor was normalised to expression of the housekeeping gene GAPDH and made 

relative to expression levels in the donor matched 2D sample. Fold changes were 

calculated as 2
-ddCt

. Expression of CXCR4 in 2 different MSC donors (left panel), 

and pooled donor data (right panel). Pooled donor data was subject to statistical 

analysis, mean fold changes are shown ± SEM, * p< 0.05. Statistical significance 

is relative to expression in 2D MSCs (by Kruskal Wallis test, n = 2).  
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Figure 4.4.31. Staining of 3D MSC spheroid sections for early mesodermal 

markers 

3D spheroids (60,000 MSCs) were cultured for 5 days. Spheroids were then snap-

frozen, sectioned and stained for markers of early mesoderm. Samples were 

imaged using confocal microscopy. Red staining for Brachyury (A), KDR (B) 

and CXCR4 (C), with DAPI counterstain (cyan) of 3D MSC sections (upper two 

panels). Lower two panels show matched secondary antibody only controls (red) 

with DAPI (cyan). Scale bar = 100µm. 
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Figure 4.4.32. Analysis of the distribution of Brachyury

+
 MSCs within the 

3D spheroid structure 

MSCs were cultured as 3D spheroids with an initiating cell number of 60,000 

cells for 5 days in culture. Spheroids were then snap-frozen, sectioned and stained 

for Brachyury (red) with DAPI (cyan). Samples were imaged using confocal 

microscopy. The image was subject to analysis with the Velocity Software 

program, to identify cells expressing the lowest (top panel) and highest (bottom 

panel) levels of Brachyury, which were highlighted in yellow (n = 48). 
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CXCR4 is a marker of mesoderm and haemangioblasts (Oldershaw et al., 2010), and 

is expressed by early haematopoietic progenitors, acting as a marker of definitive 

haematopoiesis during embryogenesis (Moepps et al., 2000). CXCR4 expression 

was highly up-regulated in 3D MSCs. To test if enhanced expression of early 

mesendoderm/haemangioblast markers indicated enhanced in vitro haematopoietic 

potential in 3D MSCs, 2D and 3D MSCs were cultured for 5 days. 3D MSCs were 

disaggregated to a single cell suspension (d-3D MSCs), and 2D MSCs were detached 

from plastic and prepared as a single cell suspension. The cell suspensions were then 

mixed with Methocult (a semi-solid methyl cellulose-based haematopoietic induction 

media). After 16 days in this media, cells were examined by light microscopy to 

monitor the appearance of haematopoietic-like colonies. 2D monolayer MSCs 

remained as single cells and very few tiny cell clusters were observed. There also 

appeared to be increased cell debris in 2D samples, indicative of cell death (Figure 

4.4.33, top panels). In contrast, colonies were observed in d-3D MSC samples, 

which were larger, irregular in shape, and appeared to be producing a ‘halo’ of 

smaller cells around them (Figure 4.4.33, bottom panels, arrows indicate ‘budding’ 

cells). These colonies were similar, but not typical, of the blast-like colonies of early 

haematopoietic progenitors seen in a standard CFU assay using CD34+ cells. Further 

investigation, such as isolation and analysis for CD45-positivity would confirm the 

haematopoietic status of the colonies derived from d-3D MSCs. 
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Figure 4.4.33 Assessment of MSC haematopoietic CFU ability in semi-solid 

induction media 

3D spheroids were initiated from 60,000 MSCs and cultured for 5 days, before 

disaggregation to a single cell suspension. 2D and d-3D MSCs were seeded in 

haematopoietic induction media, and cultured for 16 days, before being analysed 

with brightfield microscopy for the presence of haematopoietic-like colonies. 

Example images from 2 different MSC donors for 2D (A, C) and d-3D (B, D) 

samples are shown. (Scale bar = 100µm, arrows indicate cells ‘budding’ from d-

3D MSC colonies)  
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4.4.9 3D culture reverses morphological changes and growth arrest associated 

with replicative senescence 

As described in section 3.4.3, when 3D MSCs were disaggregated and re-seeded 

onto tissue culture plastic, they re-adopted a typical 2D MSC morphology over 24-

48 hours. However, in relation to the originating 2D MSC population, the size and 

morphology of d-3D MSCs was different. d-3D MSCs were smaller, and noticeably 

less spread out than the 2D MSCs they originated from. When 2D MSCs are 

maintained in culture for long periods of time, they gradually acquire morphological 

features of senescent cells, becoming larger, flatter and more spread out. There is 

also a reduction in proliferative capacity over a number of passages, although the 

time taken to reach cellular senescence is donor-dependent. Given that 3D MSCs 

express markers of a more primitive state, and d-3D MSCs appeared 

morphologically distinct from in vitro cultured MSCs, the effects of 3D culture on in 

vitro-aged MSCs was determined. 2D MSCs were cultured in vitro until they ceased 

to proliferate (Figure 4.4.34.A). At this stage, 2D MSCs had a flat, well spread 

morphology, typical of non-proliferative/senescent cells (Figure 4.4.34.B, left panel). 

These cells were then cultured under optimised 3D conditions for 5 days. Following 

disaggregation and re-seeding onto plastic, d-3D MSCs appeared morphologically 

distinct from the originating 2D MSC population, they were small, and non-spread 

(Figure 4.4.34.B, right panel) and had regained proliferative capacity (Figure 

4.4.34.A). This suggests that optimised 3D culture conditions are sufficient to restore 

proliferative capacity to non-proliferative, in vitro-aged MSC cultures, and reverse 

senescence-associated cellular hypertrophy to a more primitive morphology. 
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  Figure 4.4.34 Analysis of morphology and proliferative capacity of senescent 

MSCs before and after 3D culture 

2D MSCs were repeatedly passaged until a non-proliferative population was 

reached. Culture-aged MSCs were then used to initiate 3D spheroids (60,000 

MSCs per spheroid) and cultured for 5 days, before disaggregation and re-seeding 

onto plastic. A) Cumulative population doublings are shown for culture-aged 

MSCs before and after 3D culture. B) Sample MSCs before and 48 hours after 

disaggregation were stained with crystal violet and imaged using brightfield 

microscopy (Example grayscale images are shown, scale bar = 100µm).   
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4.5 Discussion 

The transcription factor Oct4 is expressed in the epiblast in vivo, and undifferentiated 

ESCs and ECs in vitro (Okamoto et al., 1990; Rosner et al., 1990). Nanog expression 

is also restricted to pluripotent cells (Chambers et al., 2003; Mitsui et al., 2003), 

whilst Sox2 is expressed throughout the epiblast and in pluripotent cells in vitro 

(Avilion et al., 2003). The expression of these factors is also up-regulated in human 

somatic cells, when they are reprogrammed to pluripotency by forced expression of 

defined factors (Takahashi et al., 2007; Yu et al., 2007). Increased expression of 

pluripotency factors was selected as a marker of de-differentiation/reprogramming in 

3D MSCs, and used to identify optimal 3D conditions. 

As demonstrated in section 3.4.1, 3D spheroid size was dependent on initial MSC 

seeding density and time in culture, and a wide repertoire of spheroid sizes could be 

generated using the conditions tested. Optimal/high expression of Oct4, Nanog and 

Sox2 was consistently observed across the donors examined when 60,000 MSCs 

were cultured in 3D for 5 days. The combined up-regulation of all 3 pluripotency 

factors could indicate that the level of stress imposed on 60,000 MSCs after 5 days 

in 3D culture, is optimal for driving an autophagy-reponse which initiates 

reprogramming towards pluripotency. Telomere shortening occurs during ageing in 

the absence of telomerase expression. This limits the proliferative capacity of normal 

adult cells, as when telomeres become critically short, they enter replicative 

senescence. Pluripotent cells, when cultured under the correct conditions have 

unlimited self-renewal capacity, express telomerase, and maintain telomere length 

through repeated passage in culture. In optimal 3D culture conditions (60,000 MSCs 

per spheroid), expression of telomerase was up-regulated compared to donor-

matched 2D samples. This indicates that MSCs re-acquire telomerase expression, 

another marker of pluripotency, through culture under optimal 3D conditions. It has 

recently been demonstrated that during iPSC generation, activity of telomerase is 

restored (Takahashi et al., 2007), but also that after a few passages, iPSCs have 

telomeres of equivalent length to ESCs (Marion et al., 2009b). This shows that not 

only is expression of telomerase reactivated in iPSCs, but that it acts to lengthen and 

maintain telomeres in the same manner as observed in pluripotent ESCs. Increased 

mRNA expression of telomerase in 3D MSCs could indicate an increase in activity 
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during 3D culture, but this would require further validation of both telomerase 

activity, and telomere lengthening, to be comparable to the changes observed in 

factor-based reprogramming to pluripotency.  

During traditional factor-based methods, partial reprogramming to pluripotency has 

been reported by a number of groups. In fact, the breakthrough experiments by 

Takahashi and Yamanaka produced cells with similar but not identical characteristics 

to pluripotent mouse ESCs. The Fbx15-selected iPSCs showed variable expression 

of endogenous pluripotency factors, at levels lower than observed in ESCs. The 

iPSCs generated were also unable to form viable adult chimeras, so were not 

equivalent of ESCs in terms of in vivo potency (Takahashi and Yamanaka, 2006). 

Similar to this, it was observed that, under optimal culture conditions (60,000 MSCs, 

day 5), whilst 3D MSCs up-regulated expression of all 3 pluripotency factors 

compared to 2D MSCs, the expression of these factors was lower than in H9 ESCs, 

in all MSC donors examined. Furthermore, there was no detectable Oct4A, Nanog or 

Sox2 protein expression in 3D MSCs, and they did not form teratomas when 

implanted into immunocompromised mice. Taken together these results suggest that 

3D MSCs cultured under optimal conditions increase mRNA expression for factors 

associated with pluripotency, but that this is not associated with increased protein 

expression. Expression levels remain below levels observed in ESCs, and 3D MSCs 

are not pluripotent in vivo, as they are unable to form teratomas. Notably low 

endogenous expression of pluripotency factors (Lin et al., 2009) and absence of 

teratoma formation (Mikkelsen et al., 2008) have both been observed in cells 

partially reprogrammed with factor-based methods, and further treatment was 

required to induce full reprogramming to pluripotency. It was previously 

demonstrated in the lab that 3D MSCs are quiescent, and do not express the 

proliferation marker Ki67 (Elen Bray, unpublished observations). Ruiz and 

colleagues demonstrated that proliferation was required during reprogramming to 

pluripotency, and that cell cycle inhibition resulted in an absence of reprogrammed 

cells. Furthermore, it was demonstrated that increased proliferation increased the 

number of reprogrammed cells generated, rather than affecting reprogramming 

kinetics, which suggested that proliferation at the individual cell level is a 

requirement for reprogramming to pluripotency (Ruiz et al., 2011). Given that 3D 
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MSCs are quiescent, lack of the necessary cell proliferation could explain why they 

do not appear to undergo full reprogramming to pluripotency under 3D conditions.  

As 3D MSCs are not pluripotent, but up-regulate expression of pluripotency factors, 

they were considered a potentially good source of cells for efficient factor-based 

reprogramming techniques. To allow for comparable experiments, 3D MSCs were 

disaggregated and re-seeded onto plastic (d-3D MSCs). After 5 hours, expression 

levels of OKSM were examined, and compared to both 2D MSCs and HDFs, which 

are commonly used for reprogramming. Expression levels of Oct4, Sox2 and c-Myc 

were higher in d-3D MSCs than HDFs and 2D MSCs, whilst on average this was 

also the case for Klf4, although Klf4 expression was not consistently regulated by 

3D culture of MSCs. NSCs (Kim et al., 2009a; Kim et al., 2009b; Kim et al., 2008), 

dermal papilla cells (Tsai et al., 2011; Tsai et al., 2010) and keratinocytes (Zhu et al., 

2010) all express some of the reprogramming factors at levels higher than in HDFs, 

and have been reprogrammed to pluripotency with increased efficiency and fewer 

factors. This suggested that when transduced at 5 hours post-disaggregation, 3D 

MSCs may be reprogrammed more efficiently than their donor matched 2D samples. 

In fact, reprogramming efficiencies were higher in 2D MSCs in both donors 

examined, although the differences between culture conditions were relatively 

minor. Whilst iPSC-like colonies generated from 2D and d-3D MSCs stained for 

both Oct4A and Nanog, they were difficult to maintain in culture with serial 

passaging. Further experiments revealed that whilst at 5 hours post-disaggregation d-

3D MSCs expressed OKSM at higher levels that 2D MSCs, by 24-48 hours, these 

levels had dropped, and were equivalent of 2D MSC expression. The optimal 

recommended treatment time with lentiviral vectors used was 20-24 hours, so even 

during this time 3D MSCs had lost the increased expression of pluripotency factors, 

which was hypothesised to enhance factor based reprogramming. Given the similar 

efficiencies achieved in both 2D and 3D MSC reprogramming, it is likely that the 

cells were highly similar at the time when lentiviral integration occurred. It is also 

probable that considering the difficulties associated with colony expansion, which is 

common in partially reprogrammed cells (Shi et al., 2008; Silva et al., 2008), that the 

colonies generated in these experiments represented partially reprogrammed, rather 

than true pluripotent iPSCs. 
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Potential technical difficulties associated with lentiviral reprogramming of 3D MSCs 

in suspension culture lead to the use of d-3D MSCs in the reprogramming 

experiments described above, but clearly any reprogramming advantage that 3D 

culture may confer onto 3D MSCs is lost on re-plating to tissue culture plastic. Loss 

of enhanced expression of Oct4, Nanog and Sox2 in d-3D MSCs clearly 

demonstrates that this up-regulation is dependent on 3D non-adherent culture 

conditions. The hypothesis suggests that cell stress, imposed on cells through varied 

nutrient and oxygen availability in 3D culture, is sufficient to drive reprogramming 

towards pluripotency. On return to tissue culture plastic 3D MSCs re-adopt typical 

adherent MSC morphology and behaviour in the presence of plentiful nutrients and 

oxygen. It would therefore seem sensible that in the absence of conditions which 

confer a de-differentiated state onto MSCs, the hallmarks of reprogramming would 

be lost, as is indeed the case for d-3D MSCs. It was demonstrated that 

disaggregation of 3D MSCs to both small cell clumps, and single cells, before 

seeding in a suspension culture in supportive semi-solid media, yielded cell colonies 

which increased in size with time in culture. d-3D MSCs proliferated to a similar 

extent in both media tested. One media consisted of DMEM supplemented with 5% 

FBS, to confer a level of nutrient deprivation onto cells, whilst the other media was 

serum-free iPSC maintenance media, which should help in the maintenance of 

undifferentiated cells, as it is devoid of factors in serum which can induce 

differentiation. QPCR revealed that in 2 different MSC donors, the expression of 

Oct4, Nanog, Sox2 and telomerase was higher in d-3D MSCs, cultured in semi-solid 

conditions for 7 days, than in 2D MSCs. This indicates that enhanced expression of 

pluripotency factors is maintained in d-3D MSCs well beyond the 5 hour window of 

enhanced expression observed when d-3D MSCs are re-seeded onto plastic. Clearly, 

return to 2D culture conditions is responsible for loss of pluripotency markers, and 

maintenance of MSCs in a 3D environment drives continued expression of 

pluripotency factors. As mentioned above, proliferation is required for 

reprogramming to pluripotency (Ruiz et al., 2011). It may be that releasing 3D 

MSCs from their quiescent state, whilst culturing them in an environment which 

supports the maintenance of a de-differentiated state is sufficient to sustain enhanced 

expression of pluripotency factors. 
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The teratoma assays also demonstrated that 3D MSCs, when freed from the 

constraints of plastic-adherent culture, had increased mesodermal potency compared 

to 2D MSCs. 2D MSCs were unable to form any tissues in vivo, whilst 3D MSCs 

formed small, highly organised masses composed of tissues of mesodermal origin. 

The absence of teratomas, but formation of mesodermal tissues from 3D MSCs 

suggests that these cells are more potent than 2D MSCs, but not pluripotent. 

Formation of mesoderm in vivo suggests that 3D MSCs may have de-differentiated 

to early primitive mesodermal stem cells, with the capacity to form mesodermally-

derived tissue, which 2D MSCs were unable to form. The presence of tissue masses 

also demonstrates the proliferative potential of 3D MSCs when exposed to 

exogenous cues, and this proliferative capacity was also demonstrated in vitro, when 

d-3D MSCs proliferated whilst maintaining pluripotency factor expression after 

dissagregation appeared to release them from their quiescent state. This lineage-

restricted de-differentiation rather than full reprogramming to pluripotency may 

actually improve the potential of 3D MSCs for therapeutic applications. Recently an 

increasing focus has been placed on ‘direct reprogramming,’ which is the 

reprogramming of one cell type to another, without passage through pluripotency. 

This method would be considered preferable in the generation of cells for therapeutic 

application, as it effectively circumvents pluripotency and associated teratoma risk. 

Functional neurons (Vierbuchen et al., 2010), hepatocytes (Huang et al., 2011) and 

cardiomyocytes (Ieda et al., 2010) have all been generated from mouse fibroblasts by 

direct reprogramming, and human fibroblasts have been directly reprogrammed to 

haematopoietic progenitors and mature cell types (Szabo et al., 2010). Furthermore 

factor-based direct reprogramming has been demonstrated in vivo, when β-cells were 

reprogrammed to mature exocrine cells of the pancreas, a cell type which, like β-

cells, arise from pancreatic endoderm (Zhou et al., 2008). These studies clearly 

demonstrate that forced expression of factors associated with a particular cell fate 

can directly reprogramme fibroblast and other cell types to that fate, without the need 

for passage through pluripotency. In the proposed model, it would appear that 3D 

conditions initiate a de-differentiation programme, that is associated with increased 

expression of pluripotency factors, but which halts before reaching pluripotency, 

resulting in MSCs which have adopted a lineage-restricted post-pluripotent state. 

Oldershaw and colleagues demonstrated directed differentiation of human ESCs to 

chondrocytes, through a series of stepwise differentiation events which mimicked in 
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vivo development (Oldershaw et al., 2010). In fact, the mesendoderm/mesoderm 

markers expressed by MSCs during 3D culture bore a striking resemblance to the 

stage-specific markers proposed in this paper.  Stage 1 was defined as primitive 

streak/mesendoderm and was characterised by expression of factors including 

Brachyury, Goosecoid and MIXL1, whilst Stage 2, defined as mesoderm was 

characterised by expression of Brachyury, KDR and CXCR4. However qPCR 

actually showed that at Stage 1, high expression of Oct4, Nanog, Sox2, Brachyury 

and Goosecoid was observed, whilst maximal expression of KDR and MIXL1 was 

observed at Stage 2 (Oldershaw et al., 2010). 3D MSCs expressed high/maximal 

levels of Oct4, Nanog and Sox2, along with Brachyury and Goosecoid at day 5 of 

3D culture, suggesting a similarity to the primitive streak/mesendoderm cells 

described by Oldershaw and colleagues. Most strikingly, expression of KDR and 

MIXL1 was highest at day 3 in 3D MSCs, and at Stage 2 (mesoderm cells) in this 

publication. This suggests that 3D MSCs undergo de-differentiation in a manner that 

passes through stages similar to those observed when ESCs are differentiated in a 

stage-specific manner, thought to represent the normal developmental process. 

Taken together these results indicate that the de-differentiation initiated by 3D 

culture could represent a stage-specific reversal of normal developmental 

progression, and that 3D MSCs at day 5 share similarities with cells of the primitive 

streak/mesendoderm. Expression of markers of mesendoderm was not restricted to 

mRNA, as Brachyury protein was detectable by immunofluorescence at day 5 of 3D 

culture. KDR protein was weakly detected at this time point, though it could be 

speculated that expression would have been stronger if day 3 samples had been 

examined. This would also have provided further evidence for the theory of step-

wise de-differentiation, from the starting population of MSCs, though mesoderm to 

primitive streak/mesendoderm at day 5 of 3D culture. Interestingly it appeared that 

the distribution of Brachyury+ cells was uniform throughout the 3D structure, so a 

small highly expressing population was not responsible for the observed up-

regulation of Brachyury mRNA. In fact, based on Brachyury expression, 

approximately 70% of cells were positive for Brachyury staining (using Volocity 

software, calculated as a percentage of DAPI+ nuclei). This indicates that 3D culture 

is highly efficient at inducing Brachyury expression in 3D MSCs at day 5. Strong 

expression of the mesoderm/haemangioblast marker CXCR4 was also observed in 

3D MSCs, along with an enhanced ability to form blast-like colonies when 
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disaggregated and re-seeded in haematopoietic induction media, suggestive of a 

functional enhancement of potency in 3D compared to 2D MSCs. Along with this 

ability to drive de-differentiation in cycling cells, 3D culture also appeared to reverse 

the effects of culture-induced cell senescence in MSCs. Cellular ageing is associated 

with the accumulation of damaging protein aggregates and mutated mitochondria, 

which are thought to contribute to the phenotype of aged cells. Indeed, age-

associated neurodegeneration is caused by these damaging protein aggregates, and 

recently compounds which drive cytoplasmic clearance (including autophagy 

stimulators) have been found to reverse some of the effects of protein accumulation 

(Ravikumar et al., 2004; Rubinsztein, 2006; Rubinsztein et al., 2011). Autophagy 

stimulators are also associated with increased longevity (Eisenberg et al., 2009; 

Harrison et al., 2009; Morselli et al., 2009), and autophagy inhibition results in 

cellular degeneration which mimics that observed in physiological ageing (Harris 

and Rubinsztein, 2012; Rubinsztein et al., 2011). This suggests that reversal of 

replicative senescence in MSCs could indeed be induced by an enhanced autophagy 

response, stimulated by 3D culture conditions. 

The results presented in this chapter suggest that 3D culture drives de-differentiation 

of 3D MSCs, characterised by enhanced/maximal expression of markers of 

pluripotency/primitive streak/mesendoderm. 3D MSCs do not reach full 

pluripotency, which could indicate a reduced teratoma risk when compared to 

pluripotent, teratoma-initiating cells. Instead 3D culture appears to drive a highly 

efficient lineage-restricted de-differentiation to a population of mesendoderm-like 

cells with enhanced potency in vitro and in vivo, although the mechanism driving 

this de-differentiation is unknown. 3D culture is key, as return to tissue culture 

plastic results in loss of de-differentiated characteristics, which supports the initial 

hypothesis that de-differentiation would be induced by autophagy, driven by nutrient 

deprivation in 3D conditions. Cytoplasmic clearance has been demonstrated to 

reverse age-associated defects in studies of neurodegeneration, and 3D culture 

reversed replicative senescence in culture aged MSCs. Although stimulation of 

autophagy and metabolic remodelling are mainly considered in the context of full 

reprogramming to pluripotency, it is possible that in lineage-restricted 

reprogramming, these processes could also play a role. If one considers 

reprogramming to pluripotency as a progressive reversal of the developmental 
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process, rather than a simple ‘switch’ from one cell type to another, with no 

intermediates in between, then it makes sense that cells would passage through de-

differentiation and a number of increasingly primitive cell fates before reaching 

pluripotency. In this scenario, the principles of cytoplasmic clearance and metabolic 

restructuring would also play a role in lineage restricted de-differentiation, as well as 

in reprogramming to full pluripotency. Chapter 5 will attempt to confirm the 

mechanism driving de-differentiation in 3D MSCs by investigating autophagy 

markers, to determine an active autophagic response in MSCs under 3D culture 

conditions. It will also examine the metabolic profile of 3D MSCs to investigate if, 

in 3D MSCs, autophagy is driving cytoplasmic clearance and metabolic remodelling 

to a more primitive state. 
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Chapter 5: Mechanisms driving enhanced potency in 3D 

MSCs 

5.1  Introduction 

As previously described, the metabotype of pluripotent stem cells is distinct from 

that of differentiated cells, and during reprogramming to pluripotency, there is a 

requirement for metabolic remodelling. A number of hallmarks of metabolic 

reprogramming have been observed during factor-based reprogramming. These 

include a decrease in oxygen consumption and an increase in lactate production 

compared to the originating cell population. iPSC colonies derived from MEFs with 

4 factors (OKSM) had highly similar oxygen consumption, cellular lactate levels and 

lactate efflux to ESCs, and these levels were significantly different to those of the 

parent MEFs (Folmes et al., 2011). Differential expression of components of the 

oxidative phosphorylation complexes I and II were also observed under these 

reprogramming conditions, with down-regulation of these components in iPSCs 

compared to expression in parental MEFs. Under TEM examination, tubular cristae 

rich mitochondrial networks were observed in MEFs, whilst in iPSCs, mitochondria 

were small, primitive and cristae-poor, occupying a perinuclear location, highly 

similar to mitochondria in ESCs. iPSCs also showed an increased nuclear to 

cytoplasmic ratio, another hallmark of pluripotent cells (Folmes et al., 2011).  

Autophagy is a physiological mechanism, which recycles organelles and cytoplasmic 

contents, to aid cell survival in response to nutrient starvation. Breakdown and 

recycling of the components of an autophagosome relies on fusion with a lysosome, 

which contains degradative enzymes. Genes encoding lysosome proteins are 

expressed in a co-ordinated fashion, and this expression is regulated by the master 

regulator of lysosomal biogenesis transcription factor EB (TFEB) (Sardiello et al., 

2009). TFEB is a member of the microphthalmia–transcription factor E (MiT/TFE) 

subfamily of basic helix-loop-helix (bHLH) transcription factors. In analyses of 

mechanisms that drive lysosome biogenesis it was observed that many lysosomal 

genes contained a common motif, situated close to the transcriptional start site. This 

motif was a palindromic 10bp GTCACGTGAC motif, which is similar to sequences 

known to be bound by MiT/TFE family members. When all human genes with at 
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least two of these motifs within 200bp of the transcriptional start site were identified, 

this group was found to be strongly enriched for genes associated with lysosome 

biogenesis and function. This suggested that this element regulated the expression of 

many lysosomal genes, and lead to the naming of the motif as a Coordinated 

Lysosome Expression and Regulation (CLEAR) element. Chromatin 

immunoprecipitation showed that TFEB was able to bind to CLEAR elements in 

lysosomal genes, and mRNA levels of such genes increased upon TFEB over-

expression. TFEB over-expression also resulted in increased lysosome numbers. The 

lysosomal-associated membrane protein LAMP1 is a major component of lysosomal 

membranes, and LAMP1 expression is regulated by TFEB (Sardiello et al., 2009). 

Increased expression of LAMP1 can act as a marker of increased lysosome numbers, 

whilst another marker can be used to indicate an increase in autophagosome 

formation. The microtubule-associated protein I light chain 3 (LC3) is a homologue 

of the yeast protein Atg8, which is essential for autophagy, and is thought to play a 

role in autophagosome formation. LC3 exists in two forms, LC3 I is cytoplasmic, 

whilst LC3 II is incorporated into autophagosome membranes. Short term serum and 

amino acid depletion is sufficient to drive an increase in LC3 II levels, so this can act 

as a marker of a starvation-driven enhanced autophagic response (Kabeya et al., 

2003). It was recently demonstrated that TFEB regulates not only lysosomal but also 

autophagy genes, coordinating the regulation of these closely linked cellular 

clearance mechanisms. Overexpression of TFEB resulted in an increase in 

autophagosomes, and enhanced autophagic flux (the rate at which autophagosomes 

are delivered to lysosomes). There was also an increase in expression of autophagy 

related genes. In contrast, autophagy genes were down-regulated after TFEB 

silencing, even under starvation. Furthermore the autophagy marker LC3 II also 

decreased under starvation conditions when TFEB was depleted, indicating a 

requirement for TFEB for a functional autophagy response after nutrient depletion 

(Settembre et al., 2011). The work in this chapter will utilise these well-defined 

markers of autophagy and metabolic remodelling to investigate the hypothesis that 

3D culture regulates autophagy to drive cytoplasmic and metabolic remodelling in 

MSCs. Autophagy is a physiological response to cell stress, and if 3D culture does 

stimulate autophagy to drive cytoplasmic clearance as a survival mechanism, then 

this should be observed in cell types other than MSCs. However, the tolerance of 

nutrient deprivation in 3D culture is likely to be cell-type specific, so it may be 



161 

necessary to optimise conditions for any cell type cultured in 3D. To investigate this 

theory, I will also attempt to establish optimal 3D culture conditions for human 

dermal fibroblasts. HDFs have been reprogrammed to pluripotency using traditional 

factor based methods (Yu et al., 2007), so are amenable to the induction of de-

differentiation through forced expression of pluripotency factors. Here I will 

investigate if optimal 3D culture conditions alone are sufficient to drive enhanced 

expression of pluripotency factors in HDFs, in the absence of exogenous factors. 
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5.2 Aims 

The general aim of the work presented in this chapter is to analyse the metabolic 

status and autophagy response in 3D MSCs. 

More specifically, the objectives are to: 

 Examine the expression of markers of autophagy in 3D MSCs 

 Assess the metabolic status and identify evidence of metabolic 

remodelling in 3D MSCs  

 Investigate if optimised 3D culture conditions are sufficient to drive 

enhanced pluripotency factor expression in other cell types 
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5.3 Methods 

5.3.1 Transmission electron microscopy  

3D spheroids were seeded with initiating cell numbers of 60,000 MSCs and cultured 

for up to 5 days as described in 2.2.1.5. For general analysis of autophagy-induced 

ultrastructural changes, samples were isolated on days 1 and 5; for more detailed 

analysis of mitochondria, samples were isolated on day 5. All samples were fixed as 

described in 2.2.4.1. Samples were stained as described in 2.2.4.2 or for high contrast 

mitochondrial imaging, staining was as described in 2.2.4.3. All samples were then 

prepared and imaged as described in 2.2.4.4. 

5.3.2 Quantitative real time polymerase chain reaction 

2D MSCs were cultured as described in 2.2.1.3. 3D spheroids were seeded with 

initiating cell numbers of 60,000 MSCs and cultured for up to 5 days as described in 

2.2.1.5. Samples were isolated every day of 3D culture for analysis of TFEB 

expression. For qPCR of rapamycin-treated cells, 3D spheroids were initiated from 

60,000 MSCs, and maintained in culture for 5 days as described in 2.2.1.5. Medium 

was refreshed daily. For treated samples, 3D MSC medium was supplemented with 

0.3nM rapamycin; 3D MSC medium alone was used for control samples. 2D HDF 

monolayers were cultured as described in 2.2.1.4, and 3D HDFs were cultured as 

described in 2.2.1.6 for 5 days, with samples isolated daily. RNA was isolated from 

all 2D and 3D samples before cDNA was generated and analysed by qPCR as 

described in 2.2.5. Primer sequences for TFEB were as follows (5’-3’):  

forward primer: CCAGAAGCGAGAGCTCACAGA;  

reverse primer: TGTGATTGTCTTTCTTCTGCCG 

5.3.3 Promoter analysis for TFEB binding sites 

A promoter search was performed using the Gene Name Input option of 

MatInspector software. Searches were performed for human Oct4, Nanog and Sox2. 
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5.3.4 Protein isolation and quantification 

Monolayer MSCs were trypsinised, centrifuged and re-suspended in RIPA buffer 

(Thermo Scientific) containing 0.5% protease inhibitor cocktail set III (Calbiochem) 

and 100μM Na3VO4 (Sigma). 3D MSC spheroids were homogenized in RIPA buffer 

as above. Protein quantification was performed using the BCA Protein Assay Kit 

(Thermo Scientific). Absorbance was measured at 570nm, then protein 

concentrations were calculated from a standard curve generated from standard 

samples of known concentrations. 

5.3.5 Western blot analysis 

For LAMP1 immunoblotting, 20µg of total protein was loaded onto a 10% SDS 

polyacrylamide gel, electrophoresed at 180V, and then wet transferred to a 

nitrocellulose membrane and probed with an anti-LAMP1 antibody. For LC3 

immunoblotting, 20g of total protein was loaded onto a 15% SDS polyacrylamide 

gel, which following electrophoresis at 180V, was wet transferred to a PVDF 

membrane and probed with an anti-LC3 antibody. Detection was performed by 

enhanced chemiluminescence (ECL) following manufacturer’s instructions 

(Promega) and intensities quantified using Image J analysis software. Antibody 

details are given in Table 5.3.1. 

Table 5.3.1 Antibodies used in Western Blot 

Antibody Host Dilution Supplier Cat. no. 

Anti-LAMP1 Mouse 1:1000 Developmental Studies 

Hybridoma Bank 

H4A3 

Anti-LC3 Mouse 1:200 Nanotools 0231-100 

Anti-GAPDH Mouse 1:2000 GeneTex GTX28245 

Anti-Mouse IgG 

(HRP conjugate) 

Goat 1:2000 Santa Cruz 

Biotechnology 

sc-2005 
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5.3.6 Transcriptomics analyses 

2D MSC were cultured as described in 2.2.1.3. 3D spheroids were initiated from 

60,000 MSCs and maintained in culture for 5 days as described in 2.2.1.5. For global 

gene expression analyses, duplicate RNA samples from two primary MSC donors 

were generated as described in 2.2.5.1 and 2.2.5.2.  RNA quality was assessed using 

the Agilent 2100 Bioanalyzer, both samples had RNA integrity numbers of 9.8 or 

greater. 150ng RNA per sample was then spiked with control RNA, and labelled 

with Cy-3. 600ng Cy3-labelled RNA per sample was then hybridized onto an 

Agilent SurePrint G3 Human Gene Expression 8x60K v2 Microarray. Arrays were 

scanned using an Agilent DNA Microarray Scanner (G2565CA) with SureScan 

High-Resolution Technology. Data was analysed using Genespring version 12.1 

software (Agilent technologies). Pathway analysis was performed on lists of genes 

differentially expressed in response to 3D culture conditions, using the pathway 

analysis tool within Genespring v12.1 software.  

5.3.7 Metabolic measurements 

3D spheroids were seeded with initiating cell numbers of 60,000 MSCs and cultured 

for up to 5 days as described in 2.2.1.5. Oxygen consumption by 3D MSCs was 

measured using the BD Biosciences Oxygen Biosensor System (OBS). Briefly, 

every day for 5 days, two MSC spheroids were cultured in triplicate wells of the 

OBS plates in 50µl of culture medium, alongside blank wells containing medium 

alone.  Cells were maintained at 37
o
C on 5% CO2 in air for the duration of the 

assays.  Kinetic measurements were taken every 20 seconds for 30 minutes. Raw 

fluorescence data was corrected against a pre-blank reading and converted to oxygen 

concentration in accordance with manufacturer’s guidelines. The OBS 96-well plates 

contain a proprietary fluorescent compound immobilized to the bottom of each well 

which is quenched in the presence of oxygen. Aerobically respiring cells reduce the 

concentration of oxygen dissolved in the media, which means there is a reduction in 

fluorescence quenching and an increase in fluorescence intensity. The oxygen 

consumption rate (OCR) was calculated as the gradient of change in oxygen 

concentration over time in nmol/spheroid/hr.  At the end of oxygen assays, the 

medium was collected and lactate release into the medium was determined by using 

enzyme linked fluorescent assays. Briefly, sample media were added to an assay 
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mixture and incubated at 25ºC for 30 minutes. The assay mixture contained lactate 

dehydrogenase (40 IU ml
-1

) in a glycine hydrazine buffer, pH 9.4. Changes in 

fluorescence due to NAD
+
 reduction were proportional to lactate concentration in the 

culture medium, which was calculated using a standard curve. Results were analysed 

for statistical significance using a T-test (n=3). 
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5.4  Results 

5.4.1 Enhanced autophagy in 3D MSCs 

I hypothesised that cell stress triggered by 3D culture would be sufficient to induce 

autophagy in 3D MSCs, and that the cytoplasmic clearance and restructuring which 

cells undergo during an autophagic response, could drive de-differentiation to a more 

primitive state.  

As TFEB is the master regulator of lysosomal biogenesis, and also regulates the 

expression of many autophagy genes the effects of 3D culture on TFEB expression 

were determined. MSCs from two different primary donors were cultured as 2D 

monolayers and 3D spheroids for up to 5 days. RNA samples were isolated and 

samples analysed for TFEB expression by qPCR. In both donors examined, 

expression of TFEB increased during 3D culture. By day 1 of 3D culture, up-

regulation of almost 3-fold was observed, relative to the donor-matched 2D sample. 

This up-regulation continued to day 2, where expression in 3D MSCs was just over 

5-fold higher than in 2D MSCs. In both donors there was a small decrease in 

expression of TFEB on day 3, before expression increased again on day 4 and was 

maintained to day 5 around 4.5-5.5 fold higher than 2D MSCs depending on donor 

(Figure 5.4.1. A). Pooling donor data showed significantly enhanced expression on 

days 2-5 of 3D culture, relative to 2D MSCs (Figure 5.4.1. B). TFEB regulates 

expression of lysosomal/autophagy genes through binding the Coordinated 

Lysosomal Expression and Regulation (CLEAR) consensus sequence. Multiple 

CLEAR elements can be found close to the transcriptional start sites of genes 

regulated by TFEB. A promoter search using MatInspector identified a CLEAR 

element immediately upstream of the human Sox2 transcriptional start site (Figure 

5.4.2). However, no functional validation of this binding site was performed in this 

study. CLEAR elements were not identified in Oct4 or Nanog promoters. 

Lysosomal-associated membrane protein 1 (LAMP1) is a lysosome membrane 

protein, and an increase in LAMP1 is associated with an increase in lysosome 

numbers, which can indicate enhanced autophagy. To assess the effects of 3D culture 

on LAMP1 levels, MSCs were cultured as 2D monolayers and 3D spheroids for up 

to 5 days. Protein samples were isolated and analysed for LAMP1 expression by  
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Figure 5.4.1. qPCR analysis of expression of the lysosome and autophagy 

regulator TFEB in MSCs over time in 3D culture 

MSCs from 2 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for up to 5 days in culture. cDNA samples 

were generated and then analysed by qPCR. A) Expression of TFEB for each 

donor was normalised to expression of the housekeeping gene GAPDH and 

made relative to expression levels in the donor matched 2D sample. Fold 

changes were calculated as 2
-ddCt

. B) Data from both donors was pooled and 

subject to statistical analysis, mean fold changes are shown ± SEM, * p< 0.05. 

Statistical significance is relative to expression in 2D MSCs (by Kruskal Wallis 

test, n = 2).  
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Figure 5.4.2. Identification of a TFEB binding site in the promoter region of 

the Sox2 gene 

A promoter search using MatInspector identified a sequence, which matches that 

of known TFEB binding sites, at the transcriptional start site of the human Sox2 

gene. 
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Western blot. In the two primary MSC donors examined, expression of LAMP1 

increased in 3D culture. A small increase was observed by day 1, and expression had 

increased further by day 5 of 3D culture (Figure 5.4.3). To examine if 3D culture-

induced autophagy was reversed when 3D MSCs were returned to 2D culture, 

further studies were performed. MSCs were cultured as 2D monolayers and 3D 

spheroids for 5 days in culture. On day 5 of 3D culture, 3D MSC spheroids were 

disaggregated to single cells (d-3D MSCs) and re-seeded onto tissue culture plastic. 

d-3D MSCs were maintained in 2D culture for up to 7 days. When these samples 

were analysed for LAMP1 expression, it was again observed that LAMP1 expression 

increased during 3D culture. Maximal expression was observed on 3D day 5. 

Following return to 2D culture, the levels of LAMP1 reduced in both primary donors 

examined. Four days after return to 2D culture, levels of LAMP1 in d-3D MSCs 

were lower than observed in the donor matched 2D sample. There was a small 

recovery towards 2D levels in d-3D MSCs 7 days after return to 2D culture (Figure 

5.4.4). These results suggest that enhanced expression of LAMP1 in MSCs is 

induced by 3D culture, and that return to 2D culture is sufficient to reverse the 

observed increase in LAMP1 expression. 

Microtubule-associated protein 1 light chain 3 (LC3) exists in two forms; LC3 I is 

cytoplasmic, whilst the lipidated form, LC3 II is associated exclusively with 

autophagosome membranes. Reduction of LC3 I and increase in LC3 II indicate an 

increase of autophagosome numbers. To assess the effects of 3D culture on LC3 

levels, MSCs were cultured as 2D monolayers and 3D spheroids for up to 5 days. 

Protein samples were isolated and analysed for LC3 expression by Western blot. By 

day 5 of 3D culture, there was near total loss of LC3 I, in both primary MSC donors 

examined, indicating that at this point LC3 existed almost exclusively in its 

autophagosome-incorporated form (Figure 5.4.5).  

Examination of 3D MSCs over time in culture using TEM revealed the presence of 

few cytoplasmic vesicular structures at day 1 of 3D culture (Figure 5.4.6, A-B). In 

contrast, by day 5, many typical autophagic structures were observed in the 

cytoplasm of 3D MSCs. These included double-membrane bound vesicles, and 

contained presumptive degraded cytoplasmic contents (Figure 5.4.6, C-F) 
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Figure 5.4.3. Analysis of the expression of the lysosomal membrane protein 

LAMP1 in MSCs over time in 3D culture 

MSCs from 2 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for up to 5 days in culture. Total protein 

was isolated from each sample and analysed by Western blot. The membrane 

was probed against anti-LAMP1 and anti-GAPDH, which was used as a loading 

control. Densitometry was performed using ImageJ, normalised to GAPDH and 

made relative to levels in 2D MSCs, displayed on the bar chart as relative 

normalised intensity. 
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Figure 5.4.4. Analysis of the expression of the lysosomal membrane protein 

LAMP1 in MSCs following disaggregation of 3D spheroids and return to 2D 

culture 

MSCs from 2 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for up to 5 days in culture. On day 5 

spheroids were disaggregated to a single cell suspension and re-seeded onto 

tissue culture plastic for up to 7 days. Total protein was isolated from each 

sample and analysed by Western blot. The membrane was probed against anti-

LAMP1 and anti-GAPDH, which was used as a loading control. Densitometry 

was performed using ImageJ, normalised to GAPDH and made relative to levels 

in 2D MSCs, displayed on the bar chart as relative normalised intensity. 
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Figure 5.4.5. Analysis of the expression of the autophagy marker LC3 in 

MSCs over time in 3D culture 

MSCs from 2 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for up to 5 days in culture. Total protein 

was isolated from each sample and analysed by Western blot. The membrane 

was probed against anti-LC3 and anti-GAPDH, which was used as a loading 

control. Densitometry to evaluate loss of cytoplasmic LC3 I was performed 

using ImageJ, normalised to GAPDH and made relative to levels in 2D MSCs, 

displayed on the bar chart as relative normalised intensity. 
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Figure 5.4.6. TEM analysis of 3D MSCs for the presence of cytoplasmic 

markers of enhanced autophagy 

3D spheroids were initiated from 60,000 MSCs and maintained in culture for up 

to 5 days. On days 1 and 5, spheroids were fixed, stained and sectioned for TEM 

analysis. Sections were then examined for the presence of markers of enhanced 

autophagy. Example images are shown of 3D MSCs at day 1 (A-B) and day 5 

(C-F). Scale bars = 1µm, arrows indicate typical autophagasomes, arrow heads 

indicate autophagic vesicles which appear to be bound by double membranes. 
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5.4.2 Donor-dependent enhancement of pluripotency factor expression in 3D 

MSCs treated with rapamycin 

Rapamycin is a known autophagy stimulator, acting through inhibition of the mTOR 

complex (itself an autophagy inhibitor). To investigate if pharmacological 

enhancement of autophagy was sufficient to drive further increased expression of 

pluripotency factors in 3D MSCs, MSCs were cultured as 2D monolayers and 3D 

spheroids for up to 5 days in culture. 3D spheroids were grown in the presence and 

absence of 0.3nm rapamycin. Cultures were fed daily and samples harvested each 

day for 5 days. Samples were analysed by qPCR for expression of Oct4, Nanog and 

Sox2. Notably the 2 primary MSC donors examined responded differently to 

treatment.  In Donor 1, by day 5 of 3D culture, expression of all 3 pluripotency 

factors examined was over two times higher in rapamycin-treated versus control 

samples. Clearly in this donor, rapamycin stimulated an increase in pluripotency 

factor expression. In contrast, donor 2 showed little or no change in pluripotency 

factor expression with rapamycin treatment (Figures 5.4.7. - 5.4.9). These results 

highlight the donor-dependent nature of increased pluripotency factor expression in 

response to pharmacological inhibition of autophagy. Given the contradicting 

responses to rapamycin treatment in these two primary donors, there is little to be 

gained from pooling data at this stage. Further analysis of more donors would 

indicate if there is a common response to rapamycin treatment in 3D MSCs, or if this 

response is donor-dependent and highly variable across a greater range of samples.  

5.4.3 Metabolic differences are observed in MSCs cultured as 3D spheroids 

Enhanced autophagy in 3D MSCs may be driving cytoplasmic and organelle 

remodelling. Mitophagy is a form of autophagy, which recycles mitochondria and 

remodels the mitochondrial network. Transcriptomics analyses were performed on 2 

primary MSC donors, cultured under 2D and optimised 3D conditions. Gene 

ontology analysis was used to identify the pathways in which many related genes 

were differentially expressed. Figure 5.4.10 shows the top 25 differentially expressed 

pathways in 3D versus 2D MSCs, included in this list were a number of pathways 

related to autophagy and oxidative metabolism. The electron transport chain and 

oxidative phosphorylation pathways were ranked first and third in this list. 67 of the 

genes assigned to the electron transport chain by gene ontology analysis were  
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Figure 5.4.7. qPCR analysis of expression of Oct4 in 3D MSCs treated with 

the autophagy stimulator rapamycin 

MSCs from 2 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for up to 5 days in culture. Media was 

refreshed daily with 3D MSC media (control samples) or 3D MSC media 

supplemented with 0.3nM rapamycin. 3D MSCs were isolated every day for 5 

days, before cDNA samples were generated and then analysed by qPCR. 

Expression of target gene for each donor was normalised to expression of the 

housekeeping gene GAPDH and made relative to expression levels in the donor 

matched 2D sample. Fold changes were calculated as 2
-ddCt

. Expression of Oct4 

in 2 different MSC donors in both control and treated samples is shown. Average 

dCt values ± SEM for technical replicates are shown in the table. 
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Figure 5.4.8. qPCR analysis of expression of Nanog in 3D MSCs treated 

with the autophagy stimulator rapamycin 

MSCs from 2 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for up to 5 days in culture. Media was 

refreshed daily with 3D MSC media (control samples) or 3D MSC media 

supplemented with 0.3nM rapamycin. 3D MSCs were isolated every day for 5 

days, before cDNA samples were generated and then analysed by qPCR. 

Expression of target gene for each donor was normalised to expression of the 

housekeeping gene GAPDH and made relative to expression levels in the donor 

matched 2D sample. Fold changes were calculated as 2
-ddCt

. Expression of 

Nanog in 2 different MSC donors in both control and treated samples is shown. 

Average dCt values ± SEM for technical replicates are shown in the table. 
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Figure 5.4.9. qPCR analysis of expression of Sox2 in 3D MSCs treated with 

the autophagy stimulator rapamycin 

MSCs from 2 donors were cultured as 2D monolayers and 3D spheroids with an 

initiating cell number of 60,000 cells for up to 5 days in culture. Media was 

refreshed daily with 3D MSC media (control samples) or 3D MSC media 

supplemented with 0.3nM rapamycin. 3D MSCs were isolated every day for 5 

days, before cDNA samples were generated and then analysed by qPCR. 

Expression of target gene for each donor was normalised to expression of the 

housekeeping gene GAPDH and made relative to expression levels in the donor 

matched 2D sample. Fold changes were calculated as 2
-ddCt

. Expression of Sox2 

in 2 different MSC donors in both control and treated samples is shown. Average 

dCt values ± SEM for technical replicates are shown in the table. 
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Figure 5.4.10 Agilent array analysis of the top 25 differentially expressed 

pathways in 3D vs 2D MSCs 

MSCs from 4 different donors were cultured as 2D monolayers and 3D 

spheroids (60,000 MSCs for 5 days). Samples were then subject to 

transcriptomics analyses, which identified differentially expressed pathways 

between 2D and 3D samples. The top 25 differentially expressed pathways are 

shown (arrows highlight pathways related to metabolism and autophagy). 
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significantly differentially expressed in 3D versus 2D MSCs, and out of these, 66 

were down-regulated in 3D (Figure 5.4.11 and Table 5.4.1). Similarly, 42 genes 

assigned to oxidative phosphorylation by pathway analysis were differentially 

expressed, and of these 41 were down-regulated in 3D MSCs (Figure 5.4.11 and 

Table 5.4.2). Supportive of a reduction in oxidative phosphorylation, analysis of 

oxygen consumption rates (OCR) demonstrated that oxygen consumption reduced 

with time in optimised 3D conditions. By day 5 of 3D culture OCR had reduced 

17.5-fold compared to consumption on day 1. This difference was statistically 

significant (Figure 5.4.12.A). Under identical culture conditions, 3D MSCs also 

maintained efflux of lactate into the culture medium, indicating sustained lactate 

production throughout 3D culture (Figure 5.4.12.B). Another feature of pluripotent 

ESCs is a distinct cytotype, characterised by few, immature, rounded mitochondria. 

TEM examination of 3D MSCs revealed the presence of small, rounded 

mitochondria, typical of those seen in ESCs, after 5 days cultured under optimal 3D 

conditions (Figure 5.4.13).  

5.4.4 Expression of pluripotency factors identifies optimal 3D conditions for 

HDFs 

If autophagy induction by cell stress in 3D culture is responsible for the changes 

observed in MSCs, it should be possible to induce similar changes in other cell 

types, and this phenomenon should not be specific to MSCs. To investigate if the 

optimised 3D model could enhance expression of pluripotency factors in other cell 

types, HDF monolayer cultures were grown to confluence on tissue culture plastic, 

before seeding as 3D spheroids, initiated from 60,000 cells and maintained in 3D 

culture for 5 days. RNA samples were isolated and examined for expression of 

pluripotency factors by qPCR. In 3D HDFs expression of Oct4 remained unchanged, 

whilst there was a significant reduction in expression of Nanog relative to expression 

in 2D HDFs. There was however a significant increase of around 100-fold of Sox2 

expression compared to 2D levels (Figure 5.4.14). Although expression of Sox2 was 

enhanced by the optimised 3D model, it appeared that 3D culture had no/negative 

effects on the expression of other pluripotent transcription factors, so the conditions 

optimised for MSCs were not sufficient to induce enhanced expression of all three 

pluripotency factors in HDFs. If this mechanism relies on a precise scaling of cell  



181 

 

  
Figure 5.4.11. Agilent array analysis of expression of genes assigned to the 

electron transport chain and oxidative phosphorylation pathways in 3D vs 

2D MSCs 

Transcritomics analyses identified the electron transport chain (A) and oxidative 

phosphorylation (B) amongst the most differentially expressed pathways in 3D 

MSCs. Relative expression of genes assigned to these pathways is shown in 3D 

versus 2D MSCs. Gene lists and fold changes are shown in Tables 5.4.1 and 

5.4.2. 
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Table 5.4.1 Fold change expression of genes assigned to the electron transport 

chain pathway (using Genespring v12.1) in 3D MSCs vs 2D MSCs. 

Gene name Fold change Gene name Fold change 

ND4L -5.05674 NDUFA8 -1.5948 

SLC25A4 -3.34134 ATP5B -1.58734 

ATP5G1 -2.84382 NDUFB10 -1.57776 

COX7A1 -2.61804 NDUFA9 -1.575 

ATPIF1 -2.48431 NDUFAB1 -1.57454 

NDUFS8 -2.20634 ATP5S -1.57138 

SLC25A5 -2.09295 NDUFS4 -1.56911 

COX8A -2.07 ATP5G3 -1.5637 

NDUFB7 -2.03715 ATP5L -1.54443 

NDUFB2 -2.01686 COX6B1 -1.53532 

ATP5J2 -1.98975 ATP5G2 -1.53316 

NDUFA4 -1.93893 ATP5O -1.53188 

NDUFA7 -1.93 COX7B -1.52843 

COX5A -1.89533 NDUFA6 -1.52465 

ATP5F1 -1.89167 COX7C -1.51127 

UCRC -1.84434 NDUFB5 -1.50213 

DAP13 -1.84087 NDUFA2 -1.49991 

ATP5D -1.8098 COX5B -1.4669 

UQCRFS1 -1.80153 ATP5J -1.438 

NDUFS6 -1.79843 SURF1 -1.41699 

ATP5H -1.77936 NDUFA1 -1.40509 

NDUFB3 -1.77505 NDUFS5 -1.39763 

NDUFC1 -1.76233 SCO1 -1.3874 

ATP5A1 -1.75855 ATP5E -1.37441 

COX6A1 -1.75063 NDUFS1 -1.34605 

QP-C -1.70969 NDUFB9 -1.33539 

ATP5C1 -1.69572 UQCRB -1.3215 

SDHB -1.68605 NDUFC2 -1.2961 

NDUFA3 -1.66852 NDUFS3 -1.26757 

NDUFB6 -1.63827 NDUFS7 -1.2454 

NDUFB1 -1.62896 UQCRC1 -1.23871 

SDHC -1.6136 NDUFA10 -1.1436 

UQCRH -1.61309 COX11 1.054393 

NDUFB8 -1.60262   
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Table 5.4.2 Fold change expression of genes assigned to the mitochondrial 

oxidative phosphorylation pathway (using Genespring v12.1) in 3D vs 2D 

MSCs. 

Gene name Fold change Gene name Fold change 

ATP5G1 -2.84382 FASN2A -1.57454 

NDUFS8 -2.20634 ATP5S -1.57138 

B18 -2.03715 AQDQ -1.56911 

NDUFB2 -2.01686 ATP5G3 -1.5637 

ATP5J2 -1.98975 ATP5L -1.54443 

NDUFA4 -1.93893 ATP5G2 -1.53316 

B14.5a -1.93 ATP5O -1.53188 

ATP5F1 -1.89167 B14 -1.52465 

ATP5D -1.8098 CI-SGDH -1.50213 

NDUFS6 -1.79843 NDUFA2 -1.49991 

ATP5H -1.77936 ATP5J -1.438 

KFYI -1.76233 NDUFS5 -1.39763 

ATP5A1 -1.75855 ATP5E -1.37441 

B9 -1.66852 ATP6AP1 -1.37354 

B17 -1.63827 CI-75Kd -1.34605 

CI-SGDH -1.62896 B22 -1.33539 

ASHI -1.60262 B14.5b -1.2961 

NDUFA8 -1.5948 NDUFS3 -1.26757 

ATP5B -1.58734 NDUFS7 -1.2454 

NDUFB10 -1.57776 CI-42KD -1.1436 

NDUFA9 -1.575 NUOMS 3.654102 
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Figure 5.4.12. Analysis of oxygen consumption rates and lactate production 

in 3D MSCs over time in 3D culture 

3D spheroids were initiated from 60,000 MSCs and maintained in culture for up 

to 5 days. Every day a measure of oxygen consumption rate (A) and lactate 

production (B) was taken. Mean values are shown, ± SEM, * p< 0.05. Statistical 

significance is relative to expression in 3D MSCs at day 1 (by T-test, n = 3). 
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Figure 5.4.13. TEM analysis of 3D MSCs for evidence of mitochondrial 

remodelling  

3D spheroids were initiated from 60,000 MSCs and maintained in culture for 5 

days. On day 5, spheroids were fixed, stained and sectioned for TEM analysis. 

Sections were then examined for the presence of pluripotent stem cell-like 

mitochondria. Arrows indicate small, rounded mitochondria, typical of those 

seen in primitive cell types (scale bar  = 1µm). 
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  Figure 5.4.14. qPCR analysis of expression of pluripotency factors in HDFs 

cultured under optimised 3D conditions 

HDFs were cultured as 2D monolayers and 3D spheroids (initiating cell number 

– 60,000 cells per spheroid) for 5 days in culture. RNA samples from three 

biological replicates were isolated and analysed for expression of Oct4, Nanog 

and Sox2. In all samples expression was normalised to expression of the 

housekeeping gene GAPDH and made relative to expression in 2D monolayers. 

Expression of A) Oct4, B) Nanog and C) Sox2 in 60,000 HDF 3D spheroids 

after 5 days in 3D culture compared to expression in HDF 2D monolayers. Data 

was pooled and subject to statistical analysis, mean fold changes are shown ± 

SEM, * p< 0.05, ** p<0.01. Statistical significance is relative to expression in 

2D HDFs (by T-test, n = 3). 
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stress to stimulate autophagy and drive pluripotency factor expression, different cells 

may require slightly modified conditions to achieve optimal autophagy induction. To 

investigate whether this was the case, 3D HDF spheroids initiated from 30-, 60-, or 

120,000 cells were cultured for up to 5 days. RNA samples were isolated and 

analysed for expression of Oct4, Nanog and Sox2. Strikingly it again appeared that 

an optimal time point could be identified by maximal expression of Oct4, Nanog and 

Sox2. When spheroids initiated from 30,000 HDFs were cultured for 4 days, there 

was a peak in the expression of Oct4, around 3 fold higher than expression observed 

in 2D HDFs (Figure 5.4.15). This pattern was also observed for Nanog expression. 

At day 4 of 3D culture, spheroids initiated from 30’000 HDFs showed around a 3.8 

fold increase compared to 2D HDFs (Figure 5.4.16). Notably day 4 of 3D culture 

also showed a peak of Sox2 expression, with around a 37 fold up-regulation 

compared to 2D levels, in spheroids initiated from 30,000 HDFs (Figure 5.4.17). 

These results provide evidence that increased expression of pluripotency factors 

during 3D culture is not an MSC-specific phenomena, and that optimal culture 

conditions to stimulate this up-regulation can be identified in other cell types. 

Further investigation would be necessary to confirm if similar changes in 

metabolism and autophagy markers also occur in the HDF optimised model. 
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Figure 5.4.15. qPCR analysis of expression of the pluripotency factor Oct4 

in HDFs over time in 3D culture 

HDFs were cultured as 2D monolayers and 3D spheroids with initiating cell 

numbers of 30-, 60-, or 120,000 cells for up to 5 days in culture. cDNA samples 

were generated and then analysed by qPCR. Expression of Oct4 was normalised 

to expression of the housekeeping gene GAPDH and made relative to expression 

levels in the 2D sample. Fold changes were calculated as 2
-ddCt

. Average dCt 

values ± SEM for technical replicates are shown in the table. 
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Figure 5.4.16. qPCR analysis of expression of the pluripotency factor Nanog 

in HDFs over time in 3D culture 

HDFs were cultured as 2D monolayers and 3D spheroids with initiating cell 

numbers of 30-, 60-, or 120,000 cells for up to 5 days in culture. cDNA samples 

were generated and then analysed by qPCR. Expression of Nanog was 

normalised to expression of the housekeeping gene GAPDH and made relative 

to expression levels in the 2D sample. Fold changes were calculated as 2
-ddCt

. 

Average dCt values ± SEM for technical replicates are shown in the table. 
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Figure 5.4.17. qPCR analysis of expression of the pluripotency factor Sox2 

in HDFs over time in 3D culture 

HDFs were cultured as 2D monolayers and 3D spheroids with initiating cell 

numbers of 30-, 60-, or 120,000 cells for up to 5 days in culture. cDNA samples 

were generated and then analysed by qPCR. Expression of Sox2 was normalised 

to expression of the housekeeping gene GAPDH and made relative to expression 

levels in the 2D sample. Fold changes were calculated as 2
-ddCt

. Average dCt 

values ± SEM for technical replicates are shown in the table. 
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5.5 Discussion 

The results presented in this chapter confirm enhanced autophagy in MSCs cultured 

as 3D spheroids. There is also evidence that 3D culture drives metabolic remodelling 

in 3D MSCs. Transcriptomics analyses highlighted the senescence and autophagy 

pathway as one of the top 25 differentially expressed pathways in 3D versus 2D 

MSCs. Autophagy and lysosomal biogenesis are regulated by the master 

transcriptional regulator TFEB (Sardiello et al., 2009; Settembre et al., 2011). TFEB 

expression was up-regulated early (day 1) in 3D culture, and reached maximal up-

regulation by day 2. High expression of TFEB was then maintained throughout 3D 

culture. It has recently been demonstrated that TFEB is itself regulated by the 

nutrient sensor and autophagy inhibitor mTORC1, so showing a direct link between 

nutrient availability and TFEB activity. Under nutrient-rich conditions, mTORC1 

acts to phosphorylate and inactivate proteins required for the initiation of autophagy, 

so inhibiting an autophagic response. In contrast, nutrient deprivation leads to the 

inactivation of mTORC1, and induction of autophagy (Martina et al., 2012). 

mTORC1 also regulates TFEB localisation through phosphorylation of both serine 

142 (Settembre et al., 2012) and serine 211 (Martina et al., 2012; Settembre et al., 

2012). When nutrients are plentiful, TFEB is phosphorylated by mTORC1, and 

through interactions with a member of the 14-3-3 family of proteins, is maintained in 

the cytosol (Martina et al., 2012). However during nutrient deprivation, mTORC1 is 

inactivated, TFEB is not phosphorylated, and translocates to the nucleus, where it 

regulates the expression of lysosome and autophagy genes (Martina et al., 2012; 

Settembre et al., 2012). Although the localisation of TFEB was not tracked during 

3D culture, strong, sustained up-regulation of TFEB expression was observed in 3D 

MSCs. Nuclear translocation in fact occurs before TFEB up-regulation in response to 

nutrient starvation. Nuclear translocation of TFEB was observed very quickly after 

elimination of nutrients from the media, whilst increase in TFEB expression 

occurred several hours later (Settembre et al., 2013). Exogenous over-expression of 

TFEB could also positively regulate endogenous TFEB expression, suggesting the 

presence of a positive auto-regulatory loop, in which nuclear translocation of TFEB-

induced TFEB up-regulation in response to starvation (Settembre et al., 2013). The 

presence of an auto-regulatory loop is supportive of the results seen in 3D MSCs, 

where there was progressive up-regulation of TFEB expression from day 1 of 3D 
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culture. It is likely that TFEB nuclear translocation would have been observed prior 

to the up-regulation of TFEB mRNA. Using TEM, many typical autophagic 

structures were observed in the cytoplasm of day 5 3D MSCs, including vesicles 

with presumptive degraded cytoplasmic contents and double-membrane bound 

structures. This coincided with an increase in the lysosome marker LAMP1 during 

3D culture, indicating an increase in lysosome numbers. This increase was 

dependent on 3D culture, as expression returned to 2D levels after 3D MSCs were 

disaggregated and re-plated onto plastic. The recovery of ‘normal’ LAMP1 levels 

after return to 2D conditions provides strong evidence that the observed increase in 

lysosomes is driven by 3D culture conditions, supporting the hypothesis that 3D 

culture induces an autophagic response. Conversion of LC3 I to LC3 II is a marker 

of an increase in autophagosome abundance (Kabeya et al., 2003). In 3D MSCs, by 

day 5 of 3D culture, there is almost complete loss of cytoplasmic LC3 I, indicating 

that by this stage virtually all LC3 exists in its autophagosome-incorporated form. 

This indicates a highly active autophagy response in MSCs by day 5 of 3D culture. 

This also supports the sustained expression of TFEB through to day 5. TFEB is 

required to activate the expression of many autophagy genes, so would be expressed 

throughout an autophagic response. A number of compounds which act to enhance 

autophagy have been demonstrated to increase reprogramming efficiency, including 

rapamycin, PP242 and spermidine (Chen et al., 2011). Using Oct4, Nanog and Sox2 

expression as a readout of de-differentiation, the effect of rapamycin treatment on 

3D MSCs was examined. The response to rapamycin was donor-dependent in the 

MSC donors examined. One donor up-regulated pluripotency factor expression 

during 3D culture in response to rapamycin, whilst the other donor did not. It may be 

that Donor 2 was unresponsive to rapamycin at this concentration. It is also possible 

that whilst in this donor, pluripotency factors were not up-regulated, other markers of 

de-differentiation, such as early mesendoderm markers may have been enhanced by 

rapamycin treatment. Furthermore, it has been demonstrated that rapamycin is a 

partial mTORC1 inhibitor, as some phosphorylation of mTORC1 substrates has been 

observed during rapamycin treatment (Settembre et al., 2012). It is possible that in 

Donor 2, the level of rapamycin treatment was insufficient to entirely inactivate 

mTORC1, so some level of autophagy inhibitory activity may have remained even 

during treatment. Alternatively, in this donor, 3D conditions alone may have 

achieved mTORC1 inhibition through nutrient starvation, so no further enhancement 
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of the autophagy response (and pluripotency factor expression) was stimulated 

through pharmacological intervention. The results presented here confirm an active 

autophagy response, which is stimulated early in 3D culture, is 3D culture-

dependent, and is reversed when 3D MSCs are re-plated onto tissue culture plastic.  

Transcriptomics analyses also highlighted the electron transport chain and oxidative 

phosphorylation as the first and third most differentially expressed pathways in 3D 

versus 2D MSCs. 66/67 and 41/42 significantly differentially expressed genes were 

down-regulated in 3D compared to 2D MSCs respectively. This is similar to the 

down-regulation of electron transport chain genes when cells undergo 

reprogramming to pluripotency (Folmes et al., 2011). Indeed, the observed down-

regulation of these pathways suggests that by day 5 of 3D culture, MSCs have a 

markedly reduced reliance on oxidative metabolism. This was further supported by 

the observation that oxygen consumption reduced progressively over time in 3D 

culture, and 3D MSCs maintained lactate production throughout 3D culture, both 

hallmarks of a shift to an anerobic metabolism, which was again observed when 

MEFs underwent reprogramming to pluripotency (Folmes et al., 2011). It was 

previously demonstrated that there is no detectable HIF1α staining in 3D MSCs, 

suggesting that 3D culture does not generate a hypoxic environment (Elen Bray, 

unpublished observations). Strikingly, this would indicate that the shift to an 

anerobic metabolism is not driven by hypoxia in 3D MSCs, and anaerobic 

metabolism in the presence of plentiful oxygen is a hallmark of pluripotent cells 

(Zhang et al., 2012). Another feature of ESCs is a distinct mitochondrial profile, 

consisting of few small, simple, perinuclear mitochondria, whilst differentiated cells 

have a cytoplasmic network of tubular cristae-rich mitochondria, which can support 

the oxidative metabolism in these cells (Varum et al., 2011). The mitochondria in 3D 

MSCs were highly similar to mitochondria observed in ESCs, with a small, rounded 

morphology. The presence of a reduced mitochondrial network could explain the 

metabolic shift observed in 3D MSCs, as it would result in a decrease in overall 

oxidative capacity, and an increased reliance on anaerobic metabolism. Altogether, 

these results confirm that during 3D culture, MSCs undergo metabolic remodelling, 

and that by day 5 of 3D culture, resemble pluripotent cells in both metabolism and 

mitochondrial phenotype.  
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Finally, the robustness of the hypothesis was tested using HDFs. If de-differentiation 

is driven by  the induction of autophagy alone, then this mechanism should be 

applicable to other cell types, not just MSCs, which may be more amenable to 

reprogramming and de-differentiation due to their multipotent developmental state. 

Whilst MSC-optimised 3D conditions only stimulated the enhanced expression of 

Sox2 in HDFs, it was observed that when 30,000 HDFs were cultured in 3D for 4 

days, there was maximal up-regulation of Oct4, Nanog and Sox2. Further study 

would be required to investigate the metabolic status of these cells, and also to 

provide evidence of a functional autophagy response. However, this does suggest 

that with optimisation, 3D culture can be used to drive expression of pluripotency 

factors in cells other than MSCs. 

Much of the research in reprogramming to pluripotency has focused on the need for 

somatic cells to re-adopt an ESC-like gene expression and epigenetic profile, as 

these factors are thought to underlie the mechanisms of pluripotency maintenance, 

and often the need for metabolic remodelling had been overlooked. However, more 

recently, the importance of metabolic reprogramming has been acknowledged. 

Indeed, it has been demonstrated that factors which enhance glycolysis can increase 

reprogramming efficiency (Panopoulos et al., 2012), whilst blocking glycolysis 

inhibited reprogramming to pluripotency (Folmes et al., 2011; Panopoulos et al., 

2012). Furthermore, inhibition of mitochondrial fission, through the use of a 

compound which drives the production of mitochondrial net-like structures, 

significantly reduced the formation of iPSC colonies in MEFs. Early treatment was 

sufficient to inhibit iPSC formation, suggesting that the remodelling of the 

mitochondrial network was a necessary early event in the reprogramming process 

(Vazquez-Martin et al., 2012).  

Although in this case, I observe lineage-restricted de-differentiation rather than 

reprogramming to pluripotency, the underlying principles of metabolic remodelling 

would still apply. The evidence presented here indicates that metabolic remodelling 

occurs, not only during factor-based reprogramming to pluripotency, but also in 

culture-driven de-differentiation. This would suggest that cytoplasmic clearance and 

resetting of the metabolism is a fundamental requirement when cells undergo de-

differentiation. It makes sense that if differentiation involves the development of an 
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increasingly complex metabolism and cytotype, then forced de-differentiation would 

require the reversal of this process, to a simplistic, primitive metabolism and 

cytotype. Although the precise mechanism which facilitates metabolic remodelling 

remains unknown, in separate studies, it has been demonstrated that a functional 

autophagy response is required early during factor-based reprogramming to 

pluripotency (Wang et al., 2013). Autophagy is an effective cytoplasmic clearance 

mechanism, which clears cytoplasmic contents including mitochondria, during cell 

stress (Klionsky and Emr, 2000). The hypothesis of this work stated that a scaled 

autophagic response would be sufficient to drive de-differentiation in MSCs cultured 

under optimised 3D conditions. An autophagy response was observed early in 3D 

culture, whilst the metabolic remodelling appeared progressive over the culture 

period, which would support the idea that autophagy is the mechanism by which 

cytoplasmic clearance occurs. A diminished oxidative capacity due to the reduced 

mitochondrial network would then necessitate a shift to an anaerobic metabolism. 

Strikingly, a promoter search revealed the presence of a TFEB binding site directly 

upstream of the Sox2 promoter. Although this would require functional validation, it 

does provide a potential direct link between mechanisms driving enhanced 

autophagy and pluripotency factor expression. Although no such site was observed 

in the Oct4 or Nanog promoters, Sox2 is known to bind both Oct4 and Nanog and 

positively regulate their expression (Boyer et al., 2005). Taken together, these results 

suggest that nutrient deprivation could stimulate autophagy, and that autophagy, 

through cytoplasmic clearance, could drive metabolic remodelling, whilst autophagy 

related expression of TFEB could initiate expression of pluripotency factors via a 

Sox2-mediated positive auto-regulatory feedback loop, in MSCs cultured in our 

optimised 3D model. 
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Chapter 6: Discussion 

Heterogeneity is common in un-sorted MSCs isolated from bone-marrow. Although 

enhanced expression of pluripotency/mesendoderm-associated genes is highly 

similar across different MSC donors, the response to rapamycin was notably 

different in the 2 donors examined, demonstrating that it is always necessary to 

perform experiments in as many primary donors as possible. It is therefore most 

important to consider the results presented here in that context. One must be careful 

to ensure that they do not overestimate the extent to which the behaviours observed 

in a small number of donors are representative of MSC behaviours across a large 

population. That said, results such as those presented here, which show similar cell 

behaviour across MSCs isolated from a number of donors can be used as an indicator 

of MSC behaviour, and form the basis for more extensive study in further donors. 

The use of primary cells in this way also ensures that one is forced to consider 

variations in cell behaviour, which may be overlooked when using biological 

replicates of a single cell line, where you could expect behaviour to be much more 

homogeneous.   

Since the first derivation of iPSCs from mouse somatic cells in 2006 (Takahashi and 

Yamanaka, 2006), our knowledge of reprogramming has grown. The generation of 

human iPSCs using distinct factor combinations (Takahashi et al., 2007; Yu et al., 

2007) has been followed by a range of technical refinements, including removal of 

the oncogene c-Myc to reduce tumour incidence in offspring (Nakagawa et al., 2008; 

Wernig et al., 2008), along with the use of epigenetic compounds (Huangfu et al., 

2008a; Huangfu et al., 2008b; Mikkelsen et al., 2008; Shi et al., 2008) and diverse 

cell types aimed at improving the efficiency of reprogramming to pluripotency (Kim 

et al., 2009b; Kim et al., 2008; Tsai et al., 2011; Tsai et al., 2010). The process of 

direct reprogramming has also been developed, based on the principles of factor 

based reprogramming, whereby exogenous expression of factors associated with a 

particular lineage can drive reprogramming towards that cell fate in other somatic 

cell types. Of particular note, the process of direct reprogramming switches one cell 

type from another, without passage through a pluripotent state. This effectively 

circumvents the associated teratoma risk of induced pluripotency, so is of particular 

relevance to therapeutic applications, as a safer way to generate patient-specific cells 
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(Huang et al., 2011; Ieda et al., 2010; Szabo et al., 2010; Vierbuchen et al., 2010). 

Recent work has highlighted the need for metabolic transition during the 

reprogramming process. As well as a resetting of the transcriptome and epigenome, 

the metabotype of differentiated cells also requires resetting to the pluripotent state. 

Pluripotent ESCs have a simple cytotype, characterised by the presence of very few, 

immature mitochondria, with a rounded, cristae-poor morphology, which are 

observed in a perinuclear location. The limited oxidative capacity of ESCs means 

they rely on glycolysis (anaerobic metabolism) to meet their energy needs, even 

under normoxic conditions. In contrast, differentiated cells generally respire 

aerobically, unless they are exposed to a hypoxic environment, and contain a 

cytoplasmic network of tubular, cristae rich mitochondria (Varum et al., 2011). It has 

been demonstrated that a glycolytic shift is required for successful reprogramming to 

pluripotency (Folmes et al., 2011; Panopoulos et al., 2012), although the exact 

mechanism of this shift, and the mechanism which facilitates mitochondrial 

remodelling has not been identified. However, if we consider differentiation as the 

acquisition of increased cellular and cytoplasmic complexity, then clearly the 

process of reprogramming or de-differentiation, which is essentially the reversal of 

differentiation, would require mechanisms to reduce cytoplasmic/metabolic 

complexity and to reinstate the less complex cytotype of pluripotent cells. 

Autophagy is known to recycle cytoplasmic contents, including mitochondria, during 

a cell stress response (Klionsky and Emr, 2000). Separately it has been demonstrated 

that a functional autophagy response is also required for reprogramming to 

pluripotency, and that exogenous Sox2 expression can actually trigger a transient 

autophagy response (Wang et al., 2013). Longevity-promoting drugs such as 

rapamycin and spermidine have been shown to enhance the efficiency of 

reprogramming to pluripotency (Chen et al., 2011), although both these drugs are 

known autophagy inducers, so it may be that they act through their ability to induce 

autophagy to enhance the reprogramming process. As of yet though, there seems to 

be little connection between autophagy and metabolic remodelling in 

reprogramming/de-differentiation. The work presented in this thesis investigated the 

hypothesis that the requirement for a functional autophagy response and metabolic 

remodelling during de-differentiation are in fact closely linked, and that autophagy 

could be the mechanism by which cytoplasmic clearance is facilitated. Previous 

work in the laboratory showed that when 3D MSCs are cultured as spheroids, they 
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up-regulate expression of Oct4, Nanog and Sox2. It was assumed that oxygen and 

nutrient gradient across the spheroid structure must be providing optimal conditions 

for MSC potency, although the precise mechanisms driving enhanced pluripotency 

factor expression remained unknown (Elen Bray, unpublished observations). In this 

study I hypothesised that controlled induction of autophagy by nutrient deprivation, 

was the mechanism driving de-differentiation in 3D MSCs. The variation of initial 

cell seeding number and culture time enabled the generation of a wide range of 

spheroid sizes, and associated variation in nutrient deprivation. It was hypothesised 

that under optimal conditions, cell stress alone, in the absence of exogenous factors, 

would be sufficient to induce an optimal autophagic response, resulting in 

widespread cytoplasmic clearance and metabolic remodelling to drive de-

differentiation.   

Under optimal 3D conditions, enhanced pluripotency factor expression was 

observed, along with evidence of active autophagy, including high expression of 

TFEB, the master regulator of autophagy and lysosomal biogenesis. TFEB can 

positively regulate its own expression, and the activity of TFEB is positively 

regulated by the nutrient sensor (and autophagy inhibitor) mTORC1 during nutrient 

deprivation (Settembre et al., 2012). Coinciding with maximal expression of 

pluripotency markers, there was maximal reduction in OCR, reduced mitochondrial 

complexity, and decreased expression of genes linked to oxidative metabolism under 

optimal 3D culture conditions. Although a direct link between autophagy and 

metabolic remodelling in 3D MSCs was not demonstrated, autophagy was activated 

early in 3D culture, whilst reduced oxygen consumption was a gradual process, so it 

is possible that mitochondrial clearance through sustained autophagy was 

responsible for the observed shift to an anaerobic metabolism. Though it was not 

functionally validated during this study, the presence of a TFEB binding site was 

identified in the promoter of Sox2. This binding site was optimally positioned 

directly upstream of the transcriptional start site, and if functional, provides a direct 

link between nutrient deprivation, autophagy and increased pluripotency factor 

expression. TFEB, activated by the nutrient sensor mTORC1 during nutrient 

deprivation in 3D culture conditions, could translocate to the nucleus, and establish a 

positive feedback loop to maintain autophagy in the presence of nutrient deprivation. 

As well as regulating its own expression and that of lysosome and autophagy genes, 
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TFEB could also up-regulate expression of Sox2, by binding to the CLEAR element 

in the Sox2 promoter. Expression of Sox2 could then positively regulate the 

expression of itself, along with Oct4 and Nanog. Indeed stimulation of autophagy 

through rapamycin treatment could increase expression of pluripotency factors in 

some primary MSCs cultured in 3D, although this was donor-dependent. At the same 

time, cytoplasmic clearance by autophagy, driven by sustained nutrient deprivation 

during 3D culture, could result in mitochondrial remodelling and a reduced 

mitochondrial network. This would in turn result in a reduced oxidative capacity, and 

an increased reliance on anaerobic metabolism. 

The processes occurring during reprogramming to pluripotency in vitro are not 

dissimilar to those which are required for tissue regeneration in vivo. During tissue 

regeneration, there is widespread reorganisation of the cytoplasmic compartment. 

Studies of zebrafish caudal fin regeneration have demonstrated a requirement for 

functional autophagy following fin amputation (Varga et al., 2013). Autophagy is 

also known to play a key role in early embryogenesis, during pre-implantation 

mammalian development. Embryos showed reduced protein synthesis and failed to 

develop beyond the 4-8 cell stage in the absence of functional autophagy. It is 

suggested that this is likely due to the failure to degrade maternally-derived proteins, 

which would provide metabolites and amino acids for zygotic protein production and 

normal development, as pre-implantation mammalian embryos develop in the 

absence of an extracellular nutrient store (Tsukamoto et al., 2008). 3D MSCs had 

enhanced capacity to generate tissue in vivo, possibly fuelled by increased autophagy 

and the provision of sufficient metabolites and amino acids for tissue generation. The 

regeneration of the caudal fin also requires de-differentiation of differentiated cells 

in the area of the amputation. It was observed that when autophagy was impaired, 

these cells showed reduced proliferative capacity, increased cell death, and 

differentiation defects, leading to failure of fin regeneration. Autophagy clearly plays 

a fundamental role in driving tissue de-differentiation through cytoplasmic clearance, 

and promotes cell survival and proliferation following cell stress (Varga et al., 2013). 

3D culture restored proliferation in culture-aged MSCs, and reversed senescence-

associated hypertrophy. After non-proliferative MSCs were cultured as 3D 

spheroids, they re-entered active cell cycling following disaggregation onto tissue 

culture plastic. The resultant cells were also notably smaller and less spread than the 
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originating 2D cell population, suggestive of re-organisation and reduction of the 

cytoplasmic compartment during 3D culture. Aging in cells is associated with 

increased mTOR activity (Chen et al., 2009) and presumably impaired autophagy. 

Reduced self-renewal capacity and poor haematopoietic reconstitution are both 

features of aged HSCs.  Restoration of self-renewal and in vivo haematopoietic 

regenerative capacity were observed in HSCs following treatment with rapamycin 

(Chen et al., 2009). Autophagy stimulation through cellular rejuvenation is the likely 

mechanism for these observations, and this supports our observation that culture-

aged MSCs are rejuvenated by 3D culture-driven autophagy.  

3D MSCs did not form teratomas in vivo, instead they gave rise to highly organised 

tissue of mesodermal origin, showing enhanced in vivo potency compared to their 

originating 2D cell population, which could not form any tissue on implantation into 

nude mice. d-3D MSCs were also responsive to in vitro haematopoietic induction, 

forming non-typical blast-like colonies in a haematopoietic colony assay. This 

clearly demonstrated enhanced in vitro potency, as 2D MSCs were unresponsive to 

such induction. Haematopoietic lineages arise from early mesoderm, branching off 

before the specification of MSCs (Oldershaw et al., 2010), which suggests that 3D 

MSCs have de-differentiated sufficiently far to regain their haematopoietic potential. 

The absence of teratoma formation by 3D MSCs suggests they are in a post-

pluripotent state. Supportive of this, although mRNA levels of Oct4, Nanog and 

Sox2 are up-regulated under optimal 3D conditions, these levels remain lower than 

expression levels in human ESCs, and pluripotency factor protein expression is 

variable or undetectable in 3D MSCs.  

It is interesting to observe expression of pluripotency factors, albeit at the transcript 

level, in the absence of pluripotency. However, the recent establishment of mouse 

EpiSCs from post-implantation blastocysts should perhaps change the way we 

traditionally view pluripotency. It has long been known that mouse and human ESCs 

are distinct in their requirements for cell signalling to maintain their pluripotent state, 

with mouse ESCs requiring LIF (Nichols et al., 1990; Smith et al., 1988), whilst 

human ESCs rely on FGF/Activin/Nodal signalling to maintain pluripotency (James 

et al., 2005; Vallier et al., 2005). Mouse EpiSCs in fact closely resemble human 

ESCs in their signalling requirements, and are also less potent than mouse ESCs, as 
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they are not capable of germline contribution (Brons et al., 2007; Tesar et al., 2007). 

Some groups have shown that mouse EpiSCs can revert to ESCs, through the use of 

stringent cell culture conditions (Bao et al., 2009), suggesting that EpiSCs represent 

a slightly later developmental state than ESCs. It has even been observed that some 

EpiSC lines, although capable of teratoma formation, so technically pluripotent, 

express the mesendoderm markers Brachyury and Goosecoid, alongside the 

pluripotency markers Oct4, Nanog and Sox2. It was noted that expression of these 

mesendodermal markers made EpiSCs refractory to culture-based reprogramming to 

ESCs, whilst the most easily reprogrammed EpiSCs were those which only 

expressed pluripotency markers (Bernemann et al., 2011). This again suggests 

another element of complexity to the definition of pluripotency, as this study alone 

highlighted 3 distinct developmental states, all pluripotent by teratoma assay, but 

subtly distinct in their gene expression profile and differentiation potential in vitro. 

Strikingly, co-expression of pluripotency factors with markers of mesendoderm was 

observed in 3D MSCs, and given the similarity to their gene expression profile, one 

could speculate that 3D MSCs represent a developmental state  ‘downstream’ of the 

EpiSCs which co-express pluripotency and mesendoderm markers. 3D MSCs remain 

distinctly post-pluripotent, but have undergone de-differentiation to a primitive 

mesendoderm state, capable of enhanced lineage-restricted differentiation, and 

marked by characteristics of a primitive developmental state, including gene 

expression, metabotype and mitochondrial profile.  

The concept of cell stress as a driving mechanism for de- differentiation/ 

reprogramming has been highlighted by 2 recent high profile publications (Obokata 

et al., 2014a; Obokata et al., 2014b). Obokata and colleagues claimed that simple 

exposure to sub-lethal cell stress (acidic pH) was sufficient to drive reprogramming 

to pluripotency in neonatal mouse cells (Obokata et al., 2014b). A 30 minute 

incubation at pH 5.4-5.8 induced Oct4-GFP expression in CD45+ haematopoietic 

cells, which by day 7 after acid exposure showed extensive demethylation of the 

Oct4 and Nanog promoters and were capable of teratoma formation and chimera 

contribution. This process was named stimulus-triggered acquisition of pluripotency 

(STAP), and the resultant cells were referred to as STAP cells. Although there were 

notable differences between STAP cells and ESCs, such as the lack of proliferative 

capacity of STAP cells in LIF-supplemented media, this work suggested that simple, 



202 

non-physiological sub-lethal cell stress was sufficient to drive de-differentiation to a 

fully reprogrammed state. The authors raised the question of in vivo induction of 

pluripotency by cell stress, and how this might be regulated to prevent teratoma 

formation in tissues frequently exposed to acidic pH, such as the oesophageal 

mucosa (Obokata et al., 2014b). However, no mechanism was identified in this 

study, and since publication, questions have been raised about the reproducibility of 

the method. Whilst I am unable to comment on the reproducibility or the validity of 

the results presented in the publications by Obokata and colleagues, I believe that the 

work presented in this thesis may offer support to the theory of sub-lethal stress 

induced de-differentiation. It would appear that in MSCs, sub-lethal cell stress (in 

this case nutrient deprivation) is sufficient to drive de-differentiation. Strikingly, 

some of the observations made by Obokata and colleagues are not dissimilar to those 

seen in 3D MSCs. It was noted that STAP cells were observed to decrease in size 

prior to Oct4-GFP expression (Obokata et al., 2014b), possibly reflective of active 

autophagy and cytoplasmic recycling in response to cell stress. It was also observed 

that by day 3, between one third and one half of cells had been lost through apoptotic 

cell death (Obokata et al., 2014b), perhaps representative of autophagy scaled in 

favour of apoptosis in these cells. Cells strongly expressed Oct4-GFP and other 

pluripotency markers at day 7, but at day 3 expressed mesodermal markers such as 

KDR, indicating a progressive passage to pluripotency (Obokata et al., 2014b), 

similar to the progressive de-differentiation process proposed for 3D MSCs. Many 

questions remain regarding the research into STAP cells, but the theory behind their 

generation is in part supported here by evidence that sub-lethal cell stress (although 

distinct from that applied to generate STAP cells) can drive de-differentiation in 

MSCs cultured under optimal 3D conditions. 

In this study ‘optimal conditions’ are defined as the point when maximal expression 

of pluripotency and mesendoderm markers and maximal evidence of metabolic shift 

is observed. This most likely represents the point where autophagy is finely balanced 

between its pro-survival/anti-apoptotic and its pro-apoptotic effects, the threshold 

point between sub-lethal and lethal cell stress. It is proposed that autophagy may 

play a role in hormesis, the phenomenon by which pre-conditioning of cells by 

exposure to sub-lethal stress confers resistance when cells are later exposed to the 

same stress at a level which would normally prove lethal (Rubinsztein et al., 2011). 
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As previously discussed, autophagy has also been demonstrated to have fundamental 

roles in reprogramming to pluripotency (Wang et al., 2013) and tissue regeneration 

(Varga et al., 2013). The work presented in this thesis provides a mechanism to help 

interpret the recent body of work linking cell-stress and autophagy to de-

differentiation and reprogramming. It demonstrates that an intrinsic mechanism, 

driven by controlled sub-lethal cell stress precisely scales the autophagy response in 

favour of optimal cytoplasmic clearance and cell survival in MSCs cultured as 3D 

spheroids. In these conditions cells undergo lineage-restricted reprogramming, 

avoiding pluripotency and teratoma formation, and giving rise to a primitive cell 

population with enhanced tissue forming capacity in vivo (Figure 6.1). It could be 

considered that the process of STAP, through uncontrolled cell stress, drives 

inappropriate reprogramming to a pluripotent, teratoma initiating state, whilst in 

contrast, the model presented here could reflect a physiologically-relevant capacity 

for lineage-restricted de-differentiation and tissue formation in response to controlled 

cell stress. 
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Figure 6.1. Schematic summarising the data presented in this thesis and 

showing the proposed mechanism of de-differentiation and cellular 

rejuvenation in 3D MSCs 

2D MSCs are characterised by increased mitochondrial network complexity, 

aerobic metabolism and decreased cell cycling with time in culture. Optimal 3D 

culture conditions precisely scale sub-lethal cell stress, driving enhanced 

autophagy, cytoplasmic remodelling, a metabolic shift to anerobic metabolism 

and expression of markers of mesendodermal and pluripotent cells. This results 

in increased cell cycling and reversal of cellular hypertrophy in vitro, and 

enhanced mesodermal tissue regeneration in vivo. 
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List of abbreviations 

2i 2 compounds which maintain ESCs in an undifferentiated state 

when used in combination 

3i 3 compounds which maintain ESCs in an undifferentiated state 

when used in combination 

5' AZA 5' azacytidine 

BMP Bone morphogenetic protein 

CLEAR Coordinated Lysosome Expression and Regulation 

DIA differentiation inhibitory activity 

d-3D MSCs Disaggregated 3D MSCs 

Dox doxycycline 

DMEM Dulbecco's Modified Eagle Medium 

EC embryonal carcinoma 

ESCs embryonic stem cells 

EpiSCs Epiblast stem cells 

ERK Extracellular signal-regulated kinase 

FGF Fibroblast growth factor  

FGF4 Fibroblast growth factor 4 

GSK3β Glycogen synthase kinase 3 beta 

GFP Grren fluorescent protein 

H3K79me3 Histone 3 dimethylated at lysine 36 

H3K27me3 Histone 3 trimethylated at lysine 27 

H3K36me3 Histone 3 trimethylated at lysine 36 

H3K4me3 Histone 3 trimethylated at lysine 4 

H3K36me2 Histone 3 trimethylated at lysine 80 

H3K9me3 Histone 3 trimethylated at lysine 9 
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H4K20me3 Histone 4 trimethylated at lysine 20 

HDAC Histone deacetylase 

HDFs Human dermal fibroblasts 

HUVECs Human umbilical vein endothelial cells 

IVF In vitro fertilisation 

iPSCs  induced pluripotent stem cells 

ICM inner cell mass 

iMEF Irradiated mouse embryonic fibroblasts 

lenti-GFP Lentiviral particles constitutively expressing green fluorescent 

protein 

LIF Leukaemia inhibitory factor 

mTOR mammalian target of rapamycin 

MTORC1 mammalian target of rapamycin complex 1 

MSCs Mesenchymal stem cell/multipotent stromal cells 

MAPK Mitogen-activated protein kinase 

MEK Mitogen-activated protein kinase kinase (often referred to as 

MAPKK) 

MEFs mouse embryonic fibroblasts 

3D MSCs MSCs cultured as 3D spheroids 

2D MSCs MSCs cultured as adherent monolayers 

NSCs Neural stem cells 

NuRD Nucleosome remodelling and histone deacetylation 

O Oct4 (in the context of single factor reprogramming) 

OM  Oct4 and c-Myc 

OK Oct4 and Klf4 

OS Oct4 and Sox2 
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OKS Oct4, Klf4 and Sox2  

OKSM Oct4, Klf4, Sox2 and c-Myc 

OSNL Oct4, Sox2, Nanog and Lin28 

OCR Oxygen consumption rate 

PcG Polycomb group 

PRC Polycomb repressive complex  

RNAi RNA interference 

SCID Severe combined immunodeficient 

shRNA Short hairpin RNA 

siRNA Short interfering RNA 

SSEA Stage specific embryonic antigen 

STAP Stimulus triggered acquisition of pluripotency 

TGFβ Transforming growth factor beta 

TEM Transmission electron microscopy 

VPA Valproic acid 
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